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Abstract

In this thesis, we give a realization and explicitly describe a basis and the corre-
sponding module action for all non-integral simple torsion free A,-modules of finite
degree. This realization will mirror certain finite dimensional modules viewed in terms
of a tableau formalism. In fact, the basis and module action which we defined for
these realizations is described in terms of the module action on the tableau realization

of finite dimensional modules.

il
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1 Introduction

Let L be a finite dimensional simple Lie algebra over the complex numbers C, and
let H be a Cartan subalgebra of L. An L-module V is said to be a weight module
provided V = @y V), where

Ww={veV|hv=A(h)viorall he H}.

Every simple finite dimensional L-module is a weight module and is completely de-
termined by its highest weight. However, obtaining a classification for the simple
infinite dimensional L-modules is far more difficult. In fact, Lemire [9] showed that
simple infinite dimensional modules need not be weight modules with respect to any
Cartan subalgebra . As a result, at the present time, the classification of all simple
L-modules seems to be beyond reach. However, a complete classification of the simple
weight L-modules having finite dimensional weight spaces does exist.

A major step in this classification came when Suren Fernando [6] reduced the
problem to the classification of all simple weight modules with finite dimensional
weight spaces on which the root vectors act injectively. A weight L-module with this
property is said to be torsion free. Clearly any torsion free module has the property
that all of its weight spaces have the same dimension, called the degree of the module.
Fernando went on to show that only the simple Lie algebras of type A and C admit
simple torsion free modules of finite degree.

In [10] Mathieu classifies and provides a realization of all simple torsion free weight
modules having finite degree. Mathieu’s realization is very complicated, and therefore
a need for an elementary realization was desirable. This was given by Britten and
Lemire [3] where, using the work of Mathieu, showed that every simple torsion free
module of finite degree is a submodule of the tensor product of a simple torsion free
module of degree 1 and a finite dimensional module. This realization, however, does
not explicitly give a basis and a module action for the simple torsion free modules.

Mathieu partitions all simple torsion free modules of finite degree into three cate-
gories, the integral regular, singular integral and non-integral regular. In this thesis,

we explicitly describe a basis and a module action for all non-integral regular simple

1
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torsion free A,-modules of finite degree. This realization is constructed by working
with certain finite dimensional modules viewed in terms of a tableau formalism. More-
over, we show that describing this module action is no more difficult than determining

the module action on certain finite dimensional modules.

2 Lie Algebra Background

The aim of this chapter is to review the background information on Lie algebras and
their representations. This chapter will assume the reader is familiar with vector
space theory and basic abstract algebra. We use for our basic reference Humphreys
“Introduction to Lie Algebras and Representation Theory” [7]. Most results are stated

without proof as they can be found in this basic reference.

2.1 Basic Definitions

Although the general definition of an algebra is over an arbitrary field, we restrict to

algebras over the field of complex numbers C.

Definition 2.1. Let A be a vector space over C. A is said to be an algebra over C
provided there is a bilinear binary operation (-,-) : 4 x A — A with (z,y) written

as xy such that
1. (az +y)z = a(zz) + yz , and
2. z(by + z) = b(zy) + z=

for all a,b € C and z,y,2 € A. This binary operation is called multiplication.

Sometimes the multiplication defined on an algebra is denoted by z * y or [z, y].

There are two main types of algebras of interest to us, associative algebras and Lie

algebras.

Definition 2.2. An associative algebra A over a field C is an algebra over C such

that
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L. (zy)z = 2(y2)

for all z,y,2 € A. If A contains an identity element, i.e. an element 1 such that
lz = z1 = ¢ for all z € A, then we call A an unital associative algebra. A
subalgebra K < A is a sub-vector space of A with the property that zy € K for all
z,y € K.

Remark 2.1. In this work all our associative algebras will be unital unless otherwise

stated.

Definition 2.3. Let G = {gi, ..., gn} be a finite group with group operation *. The
group algebra, C[G], is the vector space over C having basis {g1,...,gn}, with
multiplication defined by:

(Z agg> (Z bhh> = > (agbn)gxh=>_ ( > agbh) k

9€G heG 9€G hEG keG \g+h=k

where g,h € G and a4,b, € C. This algebra is an associative algebra. The group

algebra concept can be defined over infinite groups as well.

Example 2.1. Of particular interest to us is the group algebra C[Sys], where Sy is
called the symmetric group on the set A" = {1,..., N} with N € Z5;. This group
is the collection of all bijective functions from N to A with group operation being

composition.

Definition 2.4. Let (A, *;) and (B, *2) be associative algebras. Let ¢ : 4 — B be
a linear map from A4 to B with the property that o(z *; y) = ¢(z) *2 p(y) for all
z,y € A. Then ¢ is called an algebra homomorphism. If ¢ is bijective then ¢ is
called an isomorphism. In this case, .4 and B are said to be isomorphic, denoted

A = B. When ¢ is bijective, and A = B we call ¢ an automorphism.

Definition 2.5. Let .A be an associative algebra and I C .4 be a sub-vector space
of A. Then I is a left ideal of A provided yzr € [ forallz € T and y € A. [ is a
right ideal of A provided zy € I forall x € I and y € A. I is a two sided ideal
or simply an ideal provided I is both a left and right ideal.

| Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Definition 2.6. Let .4 be an associative algebra and I be a proper ideal of A. The
quotient algebra is the associative algebra A/I = {z + I | z € A} of cosets with
addition and scalar multiplication given by a(x + I) + b(y + I) = (az + by) + I, and
product is given by (z + I)(y+ I) =zy+ I, for all z,y € A and q,b € C.

Definition 2.7. A Lie algebra over C is a vector space L having a multiplication
[,-] : Lx L —> L, called a bracket operation, such that for all z,y,2 € L and a,b € C

the following conditions are satisfied:
1. Bilinearity
(a) [az + by, 2] = a[z, 2] + by, 2]
(b) [z, az + by] = a[z, z] + b[z, y]
2. [z,z] =0 and
3. The Jacobi identity holds: [z, [y, 2]] + [v, [2, z]] + [%, [z, y]] = 0.

Remark 2.2. We notice that property 2 together with bilinearity gives us anti-

commutativity in the following sense:

[z,y] = —[y, 2]
for all z,y € L.

Example 2.2. An associative algebra A with multiplication * can be turned into a Lie
algebra by defining a bracket operation by a commutator product: [z,y] = zxy—y*z,
for all z,y € A. We denote this Lie algebra by A~. In particular, suppose V is a
vector space over a field C. Let End(V) be the set of linear transformations from
V — V then End(V) is an associative algebra under the operations of addition
and composition of functions. By defining a bracket operation [z,y] = zy — yz on
End(V) a Lie algebra is created. We denote this Lie algebra (End(V))~ by gl(V) and
call it the general linear algebra on V. In the case that V is finite dimensional,
after fixing a basis for V, (dimV = n + 1), we may identify g/(V) with the set of
(n 4+ 1) x (n + 1) matrices over C, denoted gl(n + 1, C).

4
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We now introduce some basic concepts of Lie algebras.

Definition 2.8. If L and L' are two Lie algebras, then the map p: L — L' is a Lie

algebra homomorphism provided

1. p(ax + by) = ap(z) + bp(y) and

2. p([z,]) = [p(x), p(y)]

for all z,y € L and a,b € C. A Lie algebra homomorphism which is injective and

surjective is said to be an isomorphism.

Definition 2.9. Let L be a Lie algebra. A vector subspace K of L is called a
subalgebra of L provided it is itself a Lie algebra under the operations that it

inherits from L.

Definition 2.10. Let L be a Lie algebra. A subalgebra K of L is called an ideal
provided [z,y] € K for allz € L and y € K.

Remark 2.3. Unlike associative algebras, we need not define the notion of a left
ideal or a right ideal as anti-commutativity in a Lie algebra implies that any left ideal

or right ideal is in fact an ideal.

Remark 2.4. For a Lie algebra L, let [L, L] consist of all linear combinations of

commutators [z, y] for z,y € L. Clearly [L, L] is an ideal of L.

Definition 2.11. Let L be a Lie algebra. L is said to be simple provided {L, L] # 0
and the only ideals of L are (0) and L.

Example 2.3. In this work, we are interested in the special linear Lie algebra, A,.

It is the subalgebra of gl(n + 1, C) given by:
Ap = {X = (zi5) € gl(n +1,C) | Trace(X) = z11 + - - - + T(n41)(nt+1) = 0}

At this point, we note that A, is closed under the commutator product because
Trace(AB) = Trace(BA) for all square matrices. One can show that A, is a simple

finite dimensional Lie algebra over C.
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Definition 2.12. A Lie algebra L is said to be abelian provided [L, L] = 0.

Definition 2.13. If L is a Lie algebra then the derived series of L is defined by
LO =p[. [k = [L(k), L(k)]

for k € Z>o. L is said to be solvable provided L® =0 for some k € Zso. If I 'is an
ideal of L then I is said to be a solvable ideal of L provided I is solvable as a Lie

algebra.

Proposition 2.1. Let L be a Lie algebra.

1. If L is solvable then so are all subalgebras and homomorphic images of L.

2. If I and J are solvable ideals of L then so is I + J.

Proof. See for example Proposition 3.1 in [7] O

Proposition 2.2. For a Lie algebra L there exists a unique maximal solvable ideal

which is called the radical of L and denoted Rad L.

Proof. Let L be a Lie algebra. Since L is finite dimensional and (0) is solvable by
Zorn's lemma there exists a maximal solvable ideal of S of L. Suppose that I is
another maximal solvable ideal of L. By Proposition 2.1 part 2 we have that S+ 1 is
a solvable ideal of L. By maximality, S+ I = S or I C S and uniqueness is shown.
Therefore, every finite dimensional Lie algebra contains a unique maximal solvable
ideal.

]
Definition 2.14. A Lie algebra L is said to be semisimple provided Rad L = (0).

Remark 2.5. Every simple Lie algebra is semisimple. To see this, let L be a simple
Lie algebra. Then the ideal L(!) # (0) and hence L) = L. Therefore, L®¥) = L # (0)
for all k. Therefore L is not solvable, since the only ideals of L are (0) and L, that

is, Rad L = (0), i.e. L is semisimple.
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Definition 2.15. Let L be a Lie algebra. For z € L define ad, : L — L by ad,(y) =
[z,y] for all y € L. ad; is called the adjoint action of z on L.

Proposition 2.3. Let L be a Lie algebra. Then Ad; = {ad, | z € L} is a Lie
subalgebra of gl(L), in particular [ad;, ady] = adz 4 for all z,y € L.

Proof. By the bilinearity of [, -] we have that ad, is a linear map, ad; + ady, = ad,,

and b(ad;) = ady, for all z,y € L and b € C. Lastly,

[adz, ad,)(2) = adyady(z) — adyad,(z2)
= ad;([y, 2]) — ady([z, 2])
= [z, [y, 2l - [y, [z, 2]]
= [z, [y, 2]] + [z, 2], Y]
= [z, ], 2]

= ad[z,y](z)
and therefore, Ady is a Lie subalgebra of gi(L). O

Theorem 2.1. (Lie’s Theorem) Let L be a solvable subalgebra of gl(V) with V
finite dimensional. Then the matrices of L relative to a suitable basis of V' are upper

triangular.

Proof. See for example, Corollary 4.1 (A) in [7] O

2.2 Killing Form
From this point on we restrict ourselves to finite dimensional Lie algebras over C.

Definition 2.16. Let L be a Lie algebra. The Killing form on L is a symmetric

bilinear associative form defined by:
K:LxL—-C,

such that
K(z,y) = Trace(ad,ad,).

7
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Remark 2.6. The bilinearity of the Killing form is a result of linearity of the ad and
trace operators. Symmetry is due to symmetry of the trace operator. Associativity

is easy to prove: Take z,y,2 € L then,

K([z,y), 2) = Tr(adjzyjad.)
= Tr([ad;, ady]ad,) (Proposition 2.3)
= Tr(adzadyad, — adyad;ad,)
= Tr(adadyad, — adzad,ad,)
= Tr(adzady,;) (Proposition 2.3)

= K(z, [y, 2])-

Definition 2.17. Let L be a Lie algebra. A bilinear form (-,-) : L x L = C is non
degenerate provided (z,y) = 0 for all y € L implies z = 0.

Theorem 2.2. L is a semisimple Lie algebra if and only if the Killing form X on L

is non degenerate.

Proof. See for example Theorem 5.1 in [7] O

2.3 Rootspace decomposition for semisimple Lie algebras

In this section, we briefly review the structure theory of finite dimensional semisimple

Lie algebras over C.

Definition 2.18. Let L be a semisimple Lie algebra. A subalgebra T of L is called

toral provided for every z € T, ad, is diagonalizable.

Proposition 2.4. There exists a maximal toral subalgebra in every finite dimensional

semisimple Lie algebra.

Proof. See for example Section 8.1 in [7] a

Lemma 2.1. Let L be a semisimple Lie algebra. A toral subalgebra of L is abelian.

Proof. See for example Lemma 8.1 in [7] O
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Definition 2.19. Let L be a semisimple Lie algebra. A Cartan subalgebra, H of

L is a maximal toral subalgebra of L.

Remark 2.7. Fix a Cartan subalgebra, H of L. Denote the vector space of linear
functionals on H by H*. For each oo € H*, define L, = {z € L | [h,z] = a(h)z V
h € H}. Since H is abelian, Proposition 2.3 tells us that ady(H) = {ad h | h € H} is
a commuting family of semisimple endomorphisms of L. A standard result in linear
algebra implies that ady(H) is simultaneously diagonalizable. That is, we have the

following decomposition for our semisimple Lie algebra L:

L= @La.

acH*

Proposition 2.5. Let H be a Cartan subgalgebra for a semisimple Lie algebra L.

Then H = Lg.
Proof. See for example Corollary 8.1 in [7] O

Definition 2.20. Let L be a semisimple Lie algebra. If 0 # a € H* and L, # 0
then o is said to be a root of L relative to H. The set of roots of L relative to H

is denoted by ®. For each o € &, L, is a root space of L with respect to 4. The

non-zero vectors in L, are called root vectors.

We have arrived at the standard root space decomposition of L:

L=HEP L.

acd
Lemma 2.2. Let L be a semi-simple Lie algebra. If a,8 € ® with o + 8 # 0 then
L, is orthogonal to Lg with respect to the Killing form K of L. In other words,
K(z,y)=0forall z € L, and y € Lg.

Proof. Take x € L, , y € Lg. Since o # f3, select an element h € H such that
a(h) # B(h).
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a(h)K(z, y) = K(a(h)z, y)

K(a
K([h, z],y)

—~K([z, hl, y)
—-K(z,[h, y])
-K(z, B(h)y)

—B(h)K(z,y)-
Therefore, (a(h) + B(h))K(z,y) =0, i.e. K(z,y) =0. 0
Lemma 2.3. The restriction of the Killing form to H is non-degenerate.

Proof. Assume L # (0). Since L is semisimple by Theorem 2.2, X is non-degenerate
on L and so we may take 0 # z € Ly and y € L with K(z,y) # 0. Now, y =
Yo + 2 acod Yo With yo € Lo and yo € L, for o € . Since Ly is orthogonal to L, for

all o € ® we have,

0 # K(z,y) = K(z,5 + ¥ ¥a)

acd

= K(z, yo)-

Therefore, there exists a yo € Loy with K(x,yo) # 0, i.e. K restricted to Ly is nonde-

generate. Since H = Ly we are done. a

Remark 2.8. In light of Lemma 2.3 we may identify H with H* by using the Killing
form as follows: For ¢ € H* assign a unique element t, € H satisfying ¢(h) = K(t4, h)
for all h € H. In particular, ® corresponds to the subset {t, | @ € ®} of H.

Theorem 2.3. Let L be a semisimple Lie algebra with ® being the set of roots in L

relative to a fixed Cartan subalgebra .

1. & spans H*.
2. If @, 8 and o+ € @ then [Ly, Lg] = Lot p-

10
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3. If a € ® and ca € P then ¢ = +1 and L, is one dimensional.

4. Let o, 8 € ® with 8 # *a. Let r,q be the largest integers for which g — re,
B + qa are roots. Then for —r < i< ¢, B+1ia € ® and B(hy) =7 —¢.

5. If & € ® then for any 0 # z, € L, there exists elements y, € L_, and h, € H
such that Spanc{ha, Za,Ya} = sl(2,C).

6. hq and hy = —h_,.

IC(t Kltaria)

-J

. L is generated as a Lie algebra by the root spaces L.

Proof. See for example Proposition 8.3 and 8.4 in [7] a

Since the Killing form is non-degenerate on H the correspondence between ® and

{to | @ € ®} C H allows us to define an inner product on E = Spang(®):

(n,v) = Kty t,).
We refer to E as the Euclidean space spanned by ®.

Theorem 2.4. Let L be a semisimple Lie algebra. Let H be a Cartan subalgebra of
L, ® the set of roots of L relative to # and F = Spang(®). The following properties
hold:

1. ® is finite, spans E and does not contain 0,

2. If a € ®, the only multiples of & in ¢ are +a,

3. Ifa,B € ® then 8 — wgae@am

4. If o, B € ® then 282 c 7,

(a,e)

Proof. See for example Theorem 8.5 in {7] O

Definition 2.21. Let L be a semisimple Lie algebra with Cartan subalgebra H. ¢
denote the set of roots of L relative to H and E = Spang(®). If @ satisfies properties
1 to 4 in Theorem 2.4 then @ is said to be a root system. If A C ® such that

11
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1. A is a basis for F, and

2. for every 8 € ®, B can be expressed as an integral linear combination of elements

from A where all coefficients are non-negative or non-positive.
then A is a base for ® and the elements in A are called simple roots.

Theorem 2.5. Let L be a semisimple Lie algebra with root system ®. Then ® has
a base A.

Proof. See for example Theorem 10.1.2 [7] O

Definition 2.22. Let L be a semisimple Lie algebra with root system ¢ and base A.
Let

F(A)={pe2|f= Zkiai o; € Zxo},

i=1

and

O (A)={B€®|B=) ki o0;€ L},
i=1

where ®+(A) is referred to as the positive roots of ® and ®(A) is referred to as

the negative roots of ®.

Remark 2.9. Clearly by definition the set of positive and negative roots of ® partition
®.

2.4 The Weyl Group

Definition 2.23. Let L be a semisimple Lie algebra, with root system ®. Let FE
be the Euclidean space spanned by ®. For each a € @, let 0, : E — F denote the
reflection in the hyperplane perpendicular to a. i.e.

(7, @)
(o, @)

oga(y)=7-2 04

for all v € E. Define the Weyl group, denoted W, to be the group generated by

{oa | @ € D}.

12
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Proposition 2.6. Let L be a semisimple Lie algebra, with root system ®. Let A be
a base for ®. Then W is generated by the set {0, | @ € A}.

Proof. See for example Theorem 10.3 in [7]. O

Definition 2.24. For a semisimple Lie algebra L with root system ® with respect to
the Cartan subalgebra H, fix a base A = {0, ..., a,} with basis {hy, ..., h,} of H,
where h; = h,,. Obtain the dual basis for #* by choosing, for each i, w; € H* given
by w;(h;) = d;; and extending linearly. We call {w,...,w,} the fundamental basis
for H* relative to A, and the w;’s are called the fundamental weights. Notice
the fundamental weights are defined with respect to A, i.e. if you change A the

fundamental weights change.
Example 2.4. For A, the fundamental weights are given by:
j(n—i+1) “Ni(n—k+1)
Z 1 9T 2:1 n+1  *
fori=1,...n

Definition 2.25. Let L be a semisimple Lie algebra, with Cartan subalgebra H and
root system ®. Let wj,...,w, be the fundamental weights with respect to a fixed

base A = {ay,...,a,}. Define
i=1
We now define another useful action of the Weyl group.

Definition 2.26. Let L be a semisimple Lie algebra, with root system ® and fixed
base A. Let E be the Euclidean space spanned by ®, and W be the Weyl group of
L. Define the affine action of W on E to be - : W x E — FE given by

o-y=0a(y+p)—p

2.5 Structure of A,

Our algebra of interest is the special linear Lie algebra given by
Ap={X = (zi5) € gl(n+1,C) | Trace X = z11 + - - + T(n41)(n+1) = 0}.
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We give a description of its root space decomposition.

The set of all diagonal matrices in A, forms a Cartan subalgebra, which we will
denote by H. Define the linear functional ¢; : H — C by €;(M) = m,;; where
M=(m;)eH, fori=1,...,n+1.

The roots for A, can be expressed in terms of the ¢;’s as follows:

q):{:t(Cl—GJ)llSZ(JSTL‘l'l}

Define o; = ¢; — €;41 for i = 1,...,n. Then A = {a,...,a,} is a set of simple
roots for ®. Since, ® = {£(e; —¢;)) = (i + -+ 1) |1 <i < j<n+1}, we

easily see that

PT(A)={e—¢|1<i<ji<n+1}

and

<I>"(A)={q—e,-|l§i<j$n+1}.

A basis for A,, can be defined in terms of the standard matrix units as follows:
Xo=E;j fora =¢ —¢; € (A),
Yo =Ej,; fora =¢; — ¢, € @7(A), and
H, =F;,;—Ein1imfori=1,...,n.

For a € ®*(A) we have L, = CX, and so X, is a root vector. For a € ®(A)
we have L, = CY, and so Y, is a root vector. The rootspace decomposition for A,

is given by:

An=H @ (CXa @ CYa-

aedt(A) acd®—(A)

14
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2.6 Tensor algebras

In this section our goal is to introduce the notion of a tensor algebra. This algebra
will be central in the construction of the so called universal enveloping algebra and

free Lie algebra.

Definition 2.27. Let V; and V5, be two vector spaces over a field K with basis
By, = {vi," - ,vn} and By, = {uy, - ,uy} for Vi and V, respectively. Then the

tensor product of V; with V5, denoted V; ® V4 is the vector space having basis:

{vi®ujli=1,---,m,j=1,---,n}

where

v ® () bju) = bi(v; @ uy)
=1 =1

(Z aiv;) @ u; = Z a;(v; ® u;)
i=1 i=1

for all v, € V1 , uj € V; and a;,b; € K. This definition may be extended to NV =
V1®---® Vy and it is called the N-fold tensor product. Any 8 € ®N V; is said
to be a simple tensor provided =3, ® --- ® Oy where ; € V; fori=1,...,N.

Definition 2.28. Let V be a finite dimensional vector space over C with basis
{v1,...,vn}. For k € N define T = C and T*V = @*V (the k-fold tensor
product of V with itself) for £ > 1. Let T(V) = > o ,®T*V as a vector space. A
basis for T'(V) is {1,v;, ® - -®vs, | k € Z;iso ; i; = 1,...,n}. Define a multiplication
on the basis elements by juxtaposition and extend linearly:

(viy @ - @uy )(v;, ® - ®v;) =v;, @ By, BV ®--- B Y,

With this multiplication T'(V) is an associative algebra with 1 and is called the tensor

algebra on V.

15
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2.7 Universal Enveloping Algebra

The universal enveloping algebra of a Lie algebra is a central object of study in
representation theory. In this section we give a brief description of it, and we follow

this section with an introduction to representations.

Definition 2.29. Let A and B be two associative algebras over C. Themap p: A —

B is an algebra homomorphism provided:
1. p(az + by) = ap(z) + bp(y), and
2. p(zy) = p(z)p(y)

for all z,y € A and a,b € C.

Definition 2.30. A universal enveloping algebra of L is a pair (4(L),7) where

U(L) is an associative algebra with 1, i : L — U(L) is a linear map satisfying:

i([z,y]) = 1(2)ily) — i(y)i(z)

for all z,y € L, and the following holds: for any associative algebra A with 1 and
any Lie algebra homomorphism A : L — A~ there is a unique associative algebra

homomorphism A : U(L) — A such that h(1) =1 and h = h o .

Remark 2.10. We outline the existence and uniqueness of a universal enveloping
algebra of L. Construct T'(L) using only the vector space structure of L. Let J be
the ideal of T(L) generated by {r®y—y®z—[z,y] | z,y € L}. LetU(L) =T(L)/J.
Define w : T(L) — U(L) be the canonical homomorphism, and i : L — U(L) be
restriction of w to L. It follows that (/(L),?) is a universal enveloping algebra of L

and is in fact unique.

16
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Proof. See for example Section 17.2 in (7] a

Notation. To simplify notation, when working with the universal enveloping algebra,

zy is to be interpreted as z ® y.
The following Theorem has been specialized to A, but holds for any Lie algebra.

Theorem 2.6. (Poincaré-Birkhoff-Witt) Let U/(A,) be the universal enveloping al-
gebra of A,. Let Xj,...,X; and Yj,..., Y be an ordered list of the positive and
negative root vectors as described in Section 2.5 and Hy, ..., H, be an ordered list of

the H,,’s also described in Section 2.5. Then
(X7 - -X,T"Yfl . ..yékal o HR | omy, iy ki € Zso}
is a basis of U(A,).

Proof. See for example Theorem 17.3 in [7] O

2.8 Serre Relations

In this section we briefly review the generator/relations realization of any semisimple
Lie algebra L as given by Serre. For more details see Section 18 in [7]. This realization
provides a computational means to verify whether a map p : L — g¢l(V) is a Lie
algebra homomorphism. In the next section we will see that such a Lie algebra

homomorphism will be referred to as a representation.

Definition 2.31. If X is a set then the free Lie algebra generated on X consists of
a pair (i, L(X)) where L(X) is a Lie algebra and ¢ : X — L(X) is a map such that
if $: X — L' is a map into a Lie algebra L’ then there exists a unique Lie algebra

homomorphism & : L(X) — L' such that boi=g.

17
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This property determines the pair (¢, L(X)) uniquely up to isomorphism and is known

as the universal mapping property.

Remark 2.11. We outline the existence and uniqueness of such an algebra. The
reader is encouraged to refer to the diagram below while reading through this con-
struction. Let X be a set whose elements form a basis for the vector space V over C.
Form the tensor algebra T'(V'), which when endowed with the bracket operation has
a Lie algebra structure. Viewing T(V') in terms of it’s Lie algebra structure, we see
that T'(V) contains the subalgebra generated by X, which we denote by L(X). Given
amap ¢ : X — L' where L' is a Lie algebra, define the injection map 7 : X — V.
There exists a unique linear map ¢ : V — L’ such that ¢ o i = ¢. Define injection
maps j : V — T(V) and k : L' — U(L') respectively. Then there exists a unique
associative algebra homomorphism {Z : T(V) — U(L') whose restriction to L(X) is

a Lie algebra homomorphism. Uniqueness follows from the definition and is easily

verified.
¢ k
X L’ ULYorL
/ /
i /L /
. /
/ /
Vv A
s
J / ¢
/
/
L(X)cT(V)

Definition 2.32. Let L be a semisimple Lie algbera. The Cartan matrix of L is

given by
C(L)= (< 0y, O >) = (M)

(, o))

where A = {ay,...,a,} are the simple roots.

18
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Remark 2.12. Taking the root system defined in Section 2.5 we have,

(2 -1 0
-1 2 -1
0 -1 2
0 0 0

\0 0 0

-1
0

0
0
0

2
-1

0 )

0

By

Lemma 2.4. The Cartan matrix is independent of the choice of ®.

Proof. See for example Theorem 10.3 (B) in [7]

a

Lemma 2.5. Let L be a semisimple Lie algebra. L is determined up to isomorphism

by it’s Cartan matrix.

Proof. See for example Proposition 11.1 in [7]

(]

The following theorem will be crucial in later sections. Since it will be applied directly

to the Lie algebra A,, we state it in terms of this algebra.

Theorem 2.7. (Serre) Let # be a Cartan subalgebra for A,, ® the set of roots of
A, relative to H with base A = {ay,...,an}. Let X = {z4;, Yo;, ha, | @i € A}. Then

A, is isomorphic to the free Lie algebra L(X) subject to the following relations:

1

N

w

=~

 [hais ha;] = 0,

[Ta;s Ya;] — ijha; =0,
- [hay, To;] = CjiTa; =0,
[Pais Ya;] + Cjitha; =0,

(adwai)l—cﬁ (maj) = 0’

1# 7, and

6. (adye,) "% (yo;) =0, 1# ]

where c;; is the (3, j) entry of C(A4,).
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Proof. See for example Theorem 18.3 in {7] O

Definition 2.33. The relations 1 through 6 of Theorem 2.7 are called the Serre

relations of A,.
Before closing this section we emphasize our application of Serre’s Theorem.
Let L(X) be the free Lie algebra generated by X = {z4;, Yo, Pa; |1 = 1,...,0n}

as in Theorem 2.7. Let I be the ideal of L(X) generated by the elements of L(X)
obtained by taking the left hand side of relations 1 through 6. Then A, = L(X)/I.

For an arbitrary Lie algebra L' and a map ¢ : X — L' there exists a unique Lie

algebra homomorphism ¢ : L(X) — L' given by the commutative diagram:

If I C Ker(¢), then ¢ determines a unique Lie algebra homomorphism on A4, :
¢: A, =L(X)/I > L

such that ¢(hqa,) = ¢(ha,), B(za,) = ¢(za,) and ¢(ys,) = d(ys,), for i =1,...n.

2.9 Representation theory of semisimple Lie algebras

A representation of a Lie algebra is a special Lie algebra homomorphism. Throughout

this section L denotes a semisimple Lie algebra.

Definition 2.34. A representation of a Lie algebra L is a pair (p, V') where V
is a vector space and p : L — gl(V) is a Lie algebra homomorphism. In this case,

V is called the representation space of p.

20
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Example 2.5. Since A, is a Lie subalgebra of gl(C"*!) = gi(n + 1,C), we see that
the injection map:

i:A, > glln+1,C)
is a representation of A, on C**!. For this reason C"*! is called the natural repre-

sentation space of A,, and we denote it by V.
We also have representations of associative algebras.

Definition 2.35. A representation of an associative algebra A is a pair (p,V)
where V' is a vector space and p : 4 — End(V) is an associative algebra homomor-

phism. In this case, V is called the representation space of p.
One can view representations from the point of view of modules.

Definition 2.36. A vector space V' with an operation L x V — V (denoted (z,v) =

z.v) is called a L-module if the following conditions are satisfied:
1. (az + by).v = a(z.v) + b(y.v),
2. z.(av + bw) = a(z.v) + b(z.w), and
3. [zylv=zyv—yzv

forallz,y€e L; v,w €V and a,b € C.

Remark 2.13. The notions of modules and representations are interchangeable in
the following sense. Suppose (p, V) is a representation of L. We may view V as an
L-module via the action z.v = p(z)(v). Clearly, conditions 1,2 and 3 are satisfied.
Conversely, given a L-module V, define p : L — ¢l(V) by setting p(z)(v) = z.v.
Due to this correspondence we will use the phrases L-module and L-representation

interchangeably throughout this work.

Definition 2.37. Let V be an L-module and W be a subspace of V. W is said to
be a sub-module of V provided z.w € W for all z € L and w € W. V is said
to be a simple L-module provided it has no non-zero proper sub-modules. Simple
modules viewed in terms of their representations are said to be irreducible. Lastly,

V is completely reducible provided V is the direct sum of simple L sub-modules.
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Remark 2.14. There is a one to one correspondence between representation of L
and representations of U(L): If V is a L-module and (p, V) is the associated repre-

sentation, then we have a commutative diagram:

The existence of 5 turns V' into a module for the associative algebra U(L). Conversely,
if V' is a module for the associative algebra U(L) then the existence of the injection
map, i : L — U(L) turns V into a module for L. Lastly, this one to one correspon-
dence preserves irreducibility as any submodule of V' under p is a submodule of V

under p and vice versa.

Definition 2.38. Let V and W be two L-modules. A homomorphism of L-
modules is a linear map ¢ : V — W such that ¢¥(z.v) = z.4(v) for all z € L and
v € V. When ¢ is an isomorphism of vector spaces we call it an isomorphism of

L-modules.

Theorem 2.8. (Weyl) Let (p, V) be a finite dimensional representation of a semi-

simple Lie algebra. Then V is completely reducible.
Proof. See for example Theorem 6.3 in [7] O

As a result of Weyl’s Theorem, for a semisimple Lie algebra L, the study of finite

dimensional L-modules reduces to the study of the simple L-modules.

Definition 2.39. Let V be a finite dimensional L-module, # a fixed Cartan subal-
gebraof L, A € H* and V) = {v € V | hw = A(h)w forall h € H }. f V) # 0,
then V) is called a weight space of V', ) is called a weight of V', and the elements
0 # v € V), are called the weight vectors. The support of the module V, denoted
Supp V is defined to be

SuppV = {A € H* | V) # 0}.
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That is, Supp V is the set of all linear functionals corresponding to weight spaces in

V.

Definition 2.40. An L-module V is said to admit a weight space decomposition

provided

V= @ Vi

A€Supp V

Theorem 2.9. Let V be an arbitrary L-module.
1. If V is finite dimensional then V has at least one weight.
2. If a is a root of L and A is a weight of V then L,V) C V)4
3. If V is finite dimensional then V admits a weight space decomposition.

Proof. (1) Recall that # is abelian (Lemma 2.1) and hence solvable. Therefore p(#)
being the homomorphic image of H is a solvable subalgebra of gi(V') (Proposition
2.1). Since V is finite dimensional w. have by Lie theorem (Theorem 2.1) that there
exists a A € H* such that for some 0 # vy € V, p(h)vg = A(h)v for all h € H.

(2) Take z € L,,v € V), and h € H then
h.x.wv =z.hv+ [h,z].v = (A(h) + a(h))z.v.

(3) By Weyl’s Theorem we may assume that V' is simple. Let
V=0 W
AEH*

By part (1) and (2), V is a non-zero L-module. Simplicity of V implies that V =V

and therefore V is a weight module. O

Definition 2.41. Let L be a semisimple Lie algebra with root system &, with simple
roots A and positive roots ®*(A). The integral root lattice, denoted @, is defined
to be

Q={)_kaa| ks € Z}.

acd
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Define

Q+:{ Z kaa|ka€Z20}

acd+(A)

and

Q" ={ ) kao|ke € Zs}.

a€d+(A)

Remark 2.15.

UrL) = Pur),

r€Q

where U (L), denotes the v weight space of U(L) with respect to the adjoint represen-
tation of L on U(L). Also observe that U(L)o = {u € U(L) | [h,u] =0 for all h € H}.
This is exactly the centralizer of % in U(L) and hence U(L), is a submodule.

Definition 2.42. Let ® be a root system of L with base A and positive roots ®*(A).
Let V be a L-module. A maximal vector of weight XA in V is a non-zero weight

vector v+ € V), such that z.vt =0 for all z € L, and all & € ®+(A).

Definition 2.43. Let v* be a maximal vector of weight A. A L-module is said to
be of highest weight )\ provided it is generated by v*. That is, V is a L-module of

highest weight A provided V = U(L).v* and v* is a maximal vector.

Theorem 2.10. Let ® be a root system of L with base A = {ay,...,o}. ?T(A) =
{B1, .., Pm} be the positive roots, and {z1g,,. .., Tss,, } be a fixed set of root vectors.

Let V be a L-module with highest weight A and maximal vector v* € V). Then:

1. V is spanned by the vectors z" 8 ---xi_"lﬁm.v+ where i; € Z* and zg, are fixed

nonzero root vectors in Lg,.
2. The weights of V' are of the form p= A — Zé:l k;o; for k; € ZT.
3. For each p € H*, V, is finite dimensional and V) has dimension one.

4. Each submodule of V is the direct sum of its weight spaces.
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5. If V is simple then vt is the unique maximal vector in V up to a non zero scalar

multiple.

6. For every A € H* there exists a unique simple highest weight L-module of weight
A

Proof. See for example Theorem 20.2, Corollary 20.2 and Theorem 20.3 (A) and (B)
in [7] O

As a result of part 6 of the previous Theorem we make the following definition.

Definition 2.44. Let H be a Cartan subalgebra of L. For each A € H*, denote the
simple L-module having highest weight A by V().

Proposition 2.7. Let H be a Cartan subalgebra of L. Let ® be root system of L
with base A. Let V be a finite dimensional simple L-module. Then V' = V() for

some \ € H*.

Proof. Let ®(A)* be the positive roots with respect A = {a,...,0,}. By Proposi-
tion 2.9 , since V is finite dimensional, V' admits a weight space decomposition. Also,
since V is finite dimensional, we must have that Supp V is a finite set. If A\ € SuppV/,
then the set .

{ o+ Zkiai € Supp V' | k; € Zx, for each i}

=1

is also finite. We can therefore choose m,, ..., m, € Z>g such that
A= +Zm,~a,~ € Supp V
=1
and for any sequence (ki,...,k,) € Zso with (k1,...,kn) # (mq,...,m,) and k; > m;

for all 7z, we have

Ao + Z k;a; ¢ SuppV

=1

Let vt € V) with vt # 0. Let 8 € ®(A)*. Then 8 = Y, bia; for some b; € Z,.
Therefore zgvt has weight equal to Ao + > (m; + b;)y. Since 8 # 0 we have

(my +by,...,mu + by) # (My,...,my,). Further, for each ¢, m; + b; > m; and hence

Ao + Z(ml + b;)a; ¢ SuppV

=1
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Therefore zgvt = 0, which implies v* is a maximal vector. Since the highest weight
module generated by v is a submodule of V', and V' is simple, we must have that V

is itself generated by v*. Therefore V = V(A). O

Definition 2.45. For a semisimple Lie algebra L with root system ¢ with respect to
the Cartan subalgebra H, fix a base A = {ay,...,a,} with basis {ha,,...,ha,} of
H. Let {wy,...,ws} be the fundamental basis for H*. A weight which is expressible
as a nonnegative integral linear combination of the w;’s is said to be a dominant

integral weight or simply dominant integral.

Theorem 2.11. Let L be a semisimple Lie algebra, with Cartan subalgebra H. For
each A € H*, the simple highest weight L-module V() is finite dimensional if and

only if X is a dominant integral weight.
Proof. See for example Theorem 21.1 and Theorem 21.2 in [7] O

Corollary 2.1. Let L be a semisimple Lie algebra, with Cartan subalgebra H. Every
finite dimensional simple L-module is some V(\) where A is a dominant integral

weight.

Proof. If V is any finite dimensional simple L-module, then by Theorem 2.10 part 7,
V = V() for some A € H*. Due to the previous theorem, A must be a dominant

integral weight. d

3 Mathieu’s classification of simple torsion free A,-

modules of finite degree

We now move onto the work of Mathieu [10] who classifies the so called simple torsion
free modules for the type A and C Lie algebras. In the next several sections we will
be introducing the required background information so that we may begin reviewing

Mathieu’s classification.
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3.1 Admissible Modules

Definition 3.1. Let L be a semisimple Lie algebra, and V' a L-module admitting
a weight space decomposition. For each v € SuppV, the multiplicity of v in V,

denoted my (v), is the dimension of the v weight space in V. That is,
mv(I/) = dsz,,

Notice that Theorem 2.10 implies that if V is a A highest weight module then

my(A) =1 and for all v € Supp V' we have my (v) < co.

Definition 3.2. Let L be a semisimple Lie algebra, and V' be a L-module admitting
a weight space decomposition. V is admissible provided V is infinite dimensional,
the set of roots of V' are contained in the union of a finite number of Q)-cosets, and

there exists an IV € Zxq such that for all v € SuppV, my(v) < N.

Definition 3.3. Let L be a semisimple Lie algebra, and V' be an admissible L-module.

Define the degree of V, denoted deg V' by
deg V = max{my(v) | v € Supp V'}

Definition 3.4. Let A be an associative algebra, and V be a submodule of A. An
ascending chain of submodules is a finite sequence C = (W, ..., W) consisting of

submodules of V' such that
WoC Wi C---C W,

where all inclusions are proper. The number & is called the length of the ascending

chain C, and is denoted by [(C).

Definition 3.5. Let 4 be an associative algebra, and V' be an .A-module. Define the
length of V' to be the (possibly infinite) value

Length(V') = sup{k € Z+, | I(C) = k for some ascending
chain C of submodules of V'}
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Theorem 3.1. (Jordan-Hoélder) Let A be an associative algebra, and V' be a sub-

module of A. If Length(V’) = k < oo then there exists an ascending chain
WoCcW,C.--C W

such that Wy = (0), Wy = V and for each 1 < i < k the module W;/W,_, is simple.
Such a sequence is called a composition series of V. Further, if Wy C --- C Wy

and Uy C --- C Uy are two composition series of V, then the semisimple modules
k k
U=@U/Ur and W =PWi/Wi,
i=1 i=1
are equivalent.

Proof. See for example Theorem 3.5 in [8] O

Lemma 3.1. (Mathieu) Let L be a finite dimensional simple Lie algebra, and V be
an admissible L-module. Then V' has finite length.

Proof. See Lemma 3.3 in [10] O

3.2 Torsion Free Modules

Definition 3.6. Let L be a semisimple Lie algebra. An L-module V is said to be
torsion free provided it has a weight space decomposition with respect to a Cartan

subalgebra H of L, and the root vectors of L act injectively on V.

Proposition 3.1. (Fernando) Let L be a semisimple Lie algebra with Cartan sub-
algebra H, and V' be a simple L-module admitting a weight space decomposition.

Then V is torsion free if and only if Supp V = X + @ for some A € H*.
Proof. See for example Corollary 1.4 in [10] O

Naturally, torsion free modules are infinite dimensional. Using the above Proposi-
tion we show that for a simple torsion free module of finite degree every weight space
has the same dimension. That is, simple torsion free modules of finite degree are

admissible.
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Proposition 3.2. Let L be a semisimple Lie algebra, and V be a simple torsion free
L-module of finite degree. Then there exists an N € Zy( such that dimV, = N for

all v € Supp V. In particular, V' is admissible.

Proof. Let H be a Cartan subalgebra of L, and let ® be the root system of L with
respect to H. Let ®F(A) = {fi,...,8m} be the set of positive roots. Let ¢ : L —
gl(V) be the map defining the action of L on V. By the previous proposition, we
have that SuppV = A+ Q for some A € H*. Let v,y € SuppV. Then v — v € Q,

and hence
Y= V+Zki5i - Zliﬁi
i=1 7=1

for some ky, ..., kn,li, ..., ln € Z>o. Set

o =¢(zp,)" ... p(zp,) " d(z_p)" ... P(z_p,)™

then o € g¢l(V) is an injective linear map. Further, for any v € V,, we have that
o(v) € V,. We can therefore find a injective linear map between any two weight
spaces of V. Thus all weight spaces of V' must have the same dimension. Since V is

assumed to have finite degree, we have our result. O

The reader is encouraged to pay close attention to the following example, as it
will be used in later sections to motivate our methods of constructing certain torsion

free A,-modules.

Example 3.1. Let V = Spanc{z{*---z%% | a; € C}. V is an A,-module which
contains submodules of interest to us. Rather then viewing the module action on
V' in terms of the operators E;;, we will view the module action in terms of the
operators z;0;, where z; acts on V' as multiplication by z; and 9; acts on V' by partial
differentiation with respect to x;. This is justified by the algebra homomorphism
given by

¢ : gl(n+1,C) — Endc(V) where ¢(E;;) = z;0;

Let k € Zyg and k = (k,0,...,0) € C"*'. Then
M(k) = Spanc{zF ™oy ..alr  |0< 1, <Ly <1 < kY 2V (kw).
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V also contains simple torsion free sub-modules of degree one. Fixa = (ay,...,n41) €
C"*! with each a; € C\ Z. Then

n+1
M(a) = Spanc{xfll1+k1 ...zzﬁwknﬂ | ki € Z and Z k = 0}

i=1

is a simple torsion free module having all one dimensional weight spaces.
Proof. See Example 1.4 in [2] O
The following theorem will be important in later sections.

Theorem 3.2. Every simple torsion free A,-module of degree one is isomorphic to

M (@) for some choice of @ = (ay,...,ans+1) with a; € C\ Z.

Proof. See main result in [4] O

3.3 The Central Character

Proposition 3.3. (Schur’s Lemma) Let L be a semisimple Lie algebra, and V be
a simple L-module with action given by ¢ : L — g¢l(V). If 7 € gl(V) such that
[7,¢(z)] =0 for all z € L, then there exists a ¢ € C such that 7(v) = cv forallv € V.

i.e. 7 acts as multiplication by some scalar.
Proof. See for example Lemma 6.1 in [7] O

Definition 3.7. Let L be a Lie algebra, and U(L) be the universal enveloping algebra
of L. The centre of U(L), denoted Z(U(L)) is defined to be

ZUWL)={z€eU(L) | zz— 2z =0 forallz € U(L)}

Definition 3.8. Let L be a semisimple Lie algebra, and Z(U(L)) be the centre of
the universal enveloping algebra of L. An algebra homomorphism x : Z(U(L)) - C
is called a central character. If M is a U(L) — module with the property that there
exists a central character x,s for which zu = xp(2)u for all z € Z(U(L)) and all
u € M, then M is said to admit a central character, and x is called the central

character of M.
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Proposition 3.4. Let L be a semisimple Lie algebra. Let V be a simple L-module,

then V admits a central character.

Proof. Suppose the action of V on L is given by the map ¢ : L — gl(V). Let
z € Z(U(L)). Then for any z € L, we have

Then by Schur’s lemma, we have that for each z € Z(U(L)) ¢(z)(v) = c,v for some
c, € C and all v € V. Define x : Z(U(L)) — C by x(z) = c,. Clearly, since ¢ is an

algebra homomorphism, we have that x is an algebra homomorphism. Hence x is the

central character of V. O

Corollary 3.1. Let L be a semisimple Lie algebra, with Cartan subalgebra . Then
for any A € H* the simple highest weight module V()) admits a central character,
which we will denote by x».

Proof. By Proposition 3.4, since V() is simple, it admits a central character. O

Theorem 3.3. (Harish-Chandra) Let L be a semisimple Lie algebra with Cartan
subalgebra H and Weyl group W. Let A, 1 € H*. Then x, = x, if and only if there
exists 0 € W such that (A + p) — p = p.

Proof. See Theorem 23.3 in [7] d

Proposition 3.5. Let L be a semisimple Lie algebra with Cartan subalgebra #, and
Z(U(L)) be the centre of the universal enveloping algebra of L. If x : Z(U(L)) = C

is an algebra homomorphism then y = x, for some A € H*.

Proof. See for example Proposition 7.4.8 in [5] O

3.4 Coherent Families

Fernando [6] showed that the only finite dimensional simple Lie algebras which admit
torsion free modules of finite degree are the Lie algebras of type A and type C.

The work of Mathieu [10] classifies the simple torsion free modules of finite degree
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occurring in type A and type C Lie algebras. In the next section we will restrict
ourselves to Mathieu’s classification of the simple torsion free modules of finite degree
for type A Lie algebras. Mathieu’s classification requires the notion of a semisimple
irreducible coherent family, and it will be the aim of this section to introduce such a
concept.

We remind that reader that as defined in section 2.7, U(L) denotes the universal
enveloping algebra of L and U(L), denotes the zero weight space of /(L) with respect
to the adjoint action of the Cartan subalgebra #.

Definition 3.9. Let L be a finite dimensional simple Lie algebra with Cartan subal-

gebra H. A coherent family M is an admissible L-module of degree d such that
1. SuppM =H*;
2. dim M, =d for all A € H*; and

3. for any u € U(L), there exists a polynomial p(z) such that
p(A) = Tru|m, for all A € H*.

We say M is irreducible provided there exists a A € H* such that the U(L)y module
M, is simple.

Definition 3.10. Let L be a finite dimensional simple Lie algebra with Cartan sub-
algebra H and root system ®. Let ) be the integral root lattice with respect to @.
Let M be a coherent family of L. Then for u € H*

M[N] = ZVEIL+Q M,.

Definition 3.11. A coherent family M of L is said to be semisimple provided for
each p € H*, the module M|[y] is semisimple.

Lemma 3.2. (Mathieu) Let L be a finite dimensional simple Lie algebra, and V' be
a simple admissible L-module with degree d. Then the following hold:

1. there exists a unique semisimple irreducible coherent family M of degree d such

that V' is a submodule of M;
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2. if V' is any infinite dimensional submodule of M then V' is admissible, and

degV' = d; and
3. all simple submodules of M have the same central character.

Proof. See Proposition 4.8 in [10] O

3.5 Classification of coherent families for si(n + 1)

We will be restricting ourselves to Mathieu’s classification of all simple torsion free
A,-modules of finite degree. Recall in section 2.3 ® denotes a root system for A,
with base A and F stands for the Euclidean space spanned by ®. In section 2.4 we
define {wy,...,wyn} to be the fundamental basis for H* with p = >0~ w;. W will
be the Weyl group of A,, and for any ¢ € W and v € F ¢ - v denotes the affine
action. From section 2.5 H denotes a Cartan subalgebra of A, = sl(n+ 1) with basis
given by {hy,...,h,}. For z,y € C z > y means that £ — y € Z5 and z ¥ y will
indicate that © —y & Zso. Let P = {A € H* | A(h;) € Zfori = 1,...,n} and
Pt={Ae P|Ah)€Zyfori=1,...,n}.

Lemma 3.3. Let V(\) be an admissible A-highest weight A,, module, and let A =
{i | (A+ p)(h;) € Z>o}. Then one of the following three assertions holds:

1. A={1} or A = {n}.

2. A= {i} forsome 1 < i < nand (A+p)(hi—1+hi) € Zso or (A+p)(h;i +hiy1) €
Zi~q.

3. A={i,i+ 1} for some 1 <7 < n and (A + p)(h; + hiy1) € Zso.
Proof. See Lemma 8.1 in [10] a

Definition 3.12. A k-tuple m = (my, ..., my) € C* is called ordered if m; > m;,,,

ie.m;—my1 €Zspfori=1,...,k—-1.

Remark 3.1. Notice that if m = (my4, ..., my) is an ordered sequence then m; —m; €

Z provided i < j, which implies m; — m; € Z for any 1, j.

33

- Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Definition 3.13. An sl(n+1)-sequence is a n+1-tuple m = (my,...,mp41) € C**!
such that 3" ' m; = 0.

Notation. Let P be the set of all si(n + 1)-sequences which are not ordered but
become ordered after removing one term. Let Pt be the set of all sequences in P
which become ordered by removing the first term. Let P~ be the set of all sequences

in P which become ordered by removing the last term.

Proposition 3.6. A weight A € H* of sl(n+1) can be associated bijectively with the
sl(n+1) sequence m(A) = (my(A), ..., muy1(A)) where (A+p)(h;) = m;(A) —=m;ip1(N)
fori=1,...,nand 31 m;()) = 0.

Proof. Let A € H* be a weight of sl(n + 1). Then there exists a unique si(n + 1)

sequence determined by
A+ p)(h) = mi(A) = mip (\) for i =1,...,n and 37 my(\) =0

After setting each m;()) to m;, these conditions create n + 1 equations in n + 1

unknowns given by

(1 -1 o .0 0\ /m1\ (()\—i-p)(hl)\
0 1 -1 .. 0 0 ma (A+ p)(he)
S ) _ (1)
00 0 ... 0 1-1]|] mn (A + p) (hn)
\l 1 1 ... 1 1 1) \mpu/ \ 0 )
Since
(1 -1 o .0 0) (1 -1 o0 .0 0 )
0 1 -1 ... 00 row reduce 0 1 -1 ... 0 0
s
0o 0 0 ... 0 1 -1 0o 0 0o ... 0 1 -1
\! 1 1 ... 1 1 1/ \0 0 0 ... 0 0 n+1)
the matrix has non-zero determinant and is therefore invertible which implies there
exists a unique solution (my,...,my41), which is necessarily an sl(n + 1)-sequence.
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Conversely given any sl(n + 1)-sequence it can be associated to the weight A € #H*

by setting A= Z?zl(m,- - m,-+1)w,~ - pP. O

Remark 3.2. Let A = Y " | m;w; with corresponding sl(n + 1)-sequence m(A) =
(my(A), ..., mps1(A)). Solving equation (2) in the proof of Proposition 3.6 one finds
that fore=1,...,n+1

i—1 . n
-7 n—k+1 n .
j=1 k=1

Note that this sequence is not in general ordered. However, when )\ is dominant

integral, A corresponds to an ordered sl(n + 1)-sequence.

Proposition 3.7. Let A be a weight for A4,. m()A) € P if and only if A satisfies one

of the three conditions in Lemma 3.3.

Proof. Let A = {i | (A+ p)(h:) & Z+o} and m(A) = (my,...,my41) € P. Recall by
Proposition 3.6 that (A + p)(h;) =m; —my fori=1,... n.

A={1} & (A+p)(h1) & Zsoand (A + p)(h;) € Zoyfori=2,...,n
= my—myo g€ Zsgand m; — my € Zygfori=2,...,n

<= m(A) with m; removed is ordered.

A={n} <= (A+p)(h,) &€ Zsoand (A + p)(h;) € Zspfori=1,...,n—1
= My —Mpy1 € Zsgand m; —mjy € Zsgfori=1,...,n—-1

<= m(A) with m,; removed is ordered.

Forsome 1l <i<n
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A= {i,i+1} and (A + p)(h; + hit1) € Zs
= (A+p)(h) € Zso , (A + p)(hit1) & Zso
(A+ p)(h;) € Zsg for j #14,5+ 1 and
(A+ p)(hi + hiv1) € Zso
= My — Mig1, Miy1 — Mt § Lo, My — My € Lo
for j #14,i+1and m; — mie € Zsg

<= m(\) with m;; removed is ordered

Forsomel <i<n

A= {i} and (A + p)(hi—1 + hi) € Zsg or (A+ p)(hi + hiy1) € Zso
&> m; —Mip1 & Lo, mj — My € Lo for j # ¢ and
Mi_1 — Myt1 € Lo O My — My € Ly
= (m; — miy1 & Lo, mj — mjyy € Zsg for j # i and
My — Miy1 € Zsg) or (m; — My & Zso,myj — mjq1 € Zig
for j # i and m; — miyo € Zsg)
<= m(A) with m; removed is ordered or m(\) with m;,; removed is

ordered.

Therefore one of the three assertions in Lemma 3.3 hold if and only if m()) becomes

ordered after eliminating one term if and only if m()) € P. O

Proposition 3.8. Let A be a weight for A,,. V(}) is admissible if and only if m(}\) €
P.

Proof. See Proposition 8.4 in {10] a

Definition 3.14. The action of the Weyl group W ~ S, on elements in P is defined
by
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U(ml (’\)7 ERE) mn+1(’\)) - (ma(l)(’\)’ cee ,md(n+1)(/\))

for all o € Sp4; and m(A\) = (my(A), -+ ,mpy1(X)) € P. Take m(A) € P. The Spi
orbit of m()) is the set defined by

W(m(})) = {om()) | 0 € Sp41}-

Definition 3.15. Let A € H* be an admissible weight for s/(n+1) with corresponding
sl(n + 1)-sequence m(A). The central character associated with the weight A

is denoted by x(A) and defined to be

xX(A) = W(m(X) NP

Definition 3.16. Let A € H* be an admissible weight for si(n + 1). x(A) will
denote the central character of P associated with the weight A. Take m(\) =

(my,...,Mpt1) € x(A). m(A) is said to be
1. integral provided m; —m; € Z forall1 <i,7 <n+1.
2. non-integral provided there exists indices %, j such that m; — m; ¢ Z.
3. regular provided m; —m; #0forall1 <i#j <n+1.
4. singular provided there exists distinct indices 7, j such that m; — m; = 0.

Remark 3.3. Notice that if m(A) is integral (respectively non-integral, regular or
singular) then all the elements in W(m(\)) are integral (respectively non-integral,
regular or singular). For this reason we often refer to the set x(\) as being integral,

non-integral, regular or singular.

Proposition 3.9. Let A € H* be a weight for sl(n+1) with m()A) = (mq, ..., mpy1) €
X(A)-

1. If m(A) is singular then m()) is integral and there are exactly two distinct

indices %, j such that m; = m;.

2. If m()\) is non-integral then m(A) is regular and if n # 1 there exists a unique

index ¢ such that m; — my € Z for all j #¢ # k.
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Proof. Suppose m()) is singular. Therefore there exists two distinct indices i, j
such that m; = m;. Since m(A) € P by removing m; or m; the resulting subse-
quences must be ordered. Without loss of generality assume m; is eliminated, then
My > -+ > Mi_y > Mg > +++ > Mj > -+ > Myy1 and therefore my —m; € Z for all
1<k#i#1<n+1. Since m;=m; we have my —m; € Zforall1 <k, l<n+1

and so m(\) is integral.

Now we need to show there is a unique set of distinct indices ¢, j such that m; = m;.
Suppose there are three terms in m(A) which are equal. Without loss of generality
suppose m; = m; = my, with ¢ < j < k. Since m()\) € P it must be the case that
eliminating one of these three terms will result in an ordered subsequence. Without
loss of generality suppose we eliminate m;. By Remark 3.1 0 = m; — my € Zy,,
which is a contradiction. Therefore we cannot have three terms equal in m(\). Also
if we had four distinct indices ¢, j, k, [ such that m; = m; # m; = m,; then more then
one term would need to be eliminated in order for an ordered subsequence to result.

Therefore, there exists a unique set of distinct indices 7, j such that m; = m;.

Moving onto part 2, suppose that m(A) is non-integral. Therefore there exists
distinct indices ¢, j such that m; — m; € Z. Since m(\) € P we must eliminate m;
or m;. Without loss of generality assume that m; must be eliminated. Therefore
My > Mg > -+ > M;_1 > Myl > -+ > My which implies my — m; € Z+( for all
k # 1 # | with k < [. Therefore m; # m,; for all distinct indices &k, with k # i # L.
By assumption we also have m; # m; for all £ # i. Therefore m; # m; for any

distinct indices k,{ which implies that m(\) is regular.

Now we need to show there exists a unique index r such that m; — m; € Z for
all i # r # j. m()\) is non-integral and therefore there exists distinct indices r, s
such that m, — m, & Z. Since m(A) € P eliminating one of m, or m, will result
in an ordered subsequence. Without loss of generality assume we eliminate m,, and

therefore, m; —m; € Z for all < # r # j. Suppose there exists an index r’ # r such
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that m; —m; € Z for all i # 7' # j. Therefore we know that m;—m; € Zfori #r # j
and m; — m; € Z for i # r' # j. In particular, for an ¢ # r,7', m, — m; € Z and
m; —m, € Z which implies m, —m, € Z. But then we have m; —m; € Z for any ¢, j
and therefore, m() is integral. This contradiction implies that there exists a unique
index r such that m; — m; € Z for any i # r # j.

O

Proposition 3.10. The integral regular, non-integral regular and singular integral

elements in P partition P.

Proof. By the above proposition we see that any element in P is either integral and
regular, non-integral and regular or singular and integral. We now have exactly three
types of central characters occurring in P. By definition any element in P cannot
be singular and regular. Also, if an element in P were non-integral it could not
be singular as singular implies integral. Therefore the integral regular, non-integral

regular and singular integral characters occurring in P must partition P. O

Definition 3.17. Let m and m’ be two distinct elements in P. There is an oriented
edge from m to m', denoted m — m/, provided there is an index 7 such that m; —
miv1 € Zso and m' = s;m, where s; is the transposition interchanging position 7 and
position 7 + 1. If in addition m; — m;,, & Z there will also be an oriented edge from
m' to m and we write m < m/. A connected component is a set of elements in
P such that for any two elements in the set say v and v' there exists a sequence of

vertices v = vy, Vs, ..., U, = v’ such that v; and v;;; are joined by an oriented edge.

Remark 3.4. We now focus our attention on the central characters in P which are
non-integral. Let x()) be the central character of P associated with the weight A.
Take m(A) € x(A) such that m(\) = (my, mg, ..., my41) with ¢ being the unique index
such that m; — my € Z for j # ¢ # k. Let s; be the transposition which exchanges
position ¢ and position ¢+1. Define ¢;x = sgSg+1-..5i—1 fork < iand cjx = sg_18¢-..5;
for i < k. Set x(i) = m(A) and x(k) = cixmm(A) for 1 < k # ¢ < n+ 1. Notice by
definition of x(k) removing the k™ term in x(k) results in an ordered sl(n + 1)-
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sequence. Later we will show that x(1),...,x(n + 1) form a complete list of the

non-integral central characters appearing in P which are associated to the weight A.
Example 3.2. Let (my, my, m3) be an ordered sequence and suppose m' — m; € Z
foralli=1,2,3.
Now, (1,2)(m', my, mq, m3) = (my, m', ma, m3), therefore,

(m/, my, mg, m3) <> (my, m', Mgy, m3).

Similarly,

(ml,m',mz,m3) <~ (ml,m2>ml7m3) < (ml,mg,mg,m’).

Therefore
(m,7 my, My, m3)a (m17 m,7 may, m3)7 (m17 ma, mla m3)a a‘nd (mla mg,ms, m,)

make up the connected component all corresponding to the same non-integral central

character.

Lemma 3.4. Let m(A) = (my,...,muq1) be a sl(n + 1)-sequence in P such that
m; —my, € Z for j # ¢ # k. Define x(i) = m(A) and x(k) = cm(A) for 1 <k #: <
n+ 1. Let x()A) be the non-integral central character occurring in P associated with
the weight A. Then x()) consists of exactly n+ 1 elements which form the connected

component defined as follows:
x(1) & x(2) & - x(@) o x(E+1) & - x(n+1).
Moreover x(1) € Pt and x(n+1) € P~.
Proof. See Lemma 8.3 in [10] 0

Definition 3.18. Let M be a semisimple irreducible coherent family. m(M) is
defined to be the set of all sl(n + 1)-sequences m(A) such that A ¢ P* and V()) is a
submodule of M.
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Remark 3.5. Notice that by Proposition 3.8 each m()) in m(M) must be in P as
m(A) corresponds to the simple admissible A highest weight module. Each element
in m(M) corresponds to a simple admissible highest weight submodule of M. By
Lemma 3.2 part 4 all these submodules have the same central character. As a result
the elements in m(,M) can either be all integral and regular, non-integral and regular
or singular and integral. The next Theorem establishes a correlation between the

elements in m(M) and the connected components.
Theorem 3.4. Let M be an irreducible semi-simple coherent family.
1. m(M) contains exactly one connected component.

2. There is a bijection between the set of irreducible semisimple coherent families

and the set of connected components of P.
Proof. See Theorem 8.6 in [10] O

Remark 3.6. By Theorem 3.4 and Lemma 3.4, if m(M) consists of non-integral cen-
tral characters then there are exactly n+ 1 simple admissible highest weight modules
which occur as submodules in M. All of these submodules have the same non-integral
central character. Furthermore, each of these submodules corresponds to a unique
x(k) in the connected component x(1) +> x(2) & -+ x(i1) < x(i+1) © - -x(n+1).
By part 2 of Theorem 3.4 each connected component uniquely determines the semi-
simple irreducible coherent family which the n 4+ 1 simple admissible highest weight
submodules of M. Hence for each non-integral central character there exists a unique

irreducible semi-simple coherent family for this central character.

Theorem 3.5. Let V' be a simple torsion free A,-module of finite degree having
a non-integral central character. V is determined up to equivalence by it’s central

character and weight lattice.

Proof. V' has non-integral central character x,. Let m()) be the corresponding
sl(n + 1)-sequence in P. By Theorem 3.4 part 1, m(}) is part of a unique connected

component. By Theorem 3.4 part 2, this connected component uniquely determines
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the semisimple irreducible coherent family M which V is a submodule of. Since V' is
simple torsion free module by Proposition 3.1 SuppV = A + @ for some A € H* and
V = M|} is the submodule of M O

Theorem 3.6. Leta ¢ Zand m; € Z-ofori =2,...,n+1. Let A = aw1+2?=+21 mw;.
For the central character x, and any weight lattice corresponding to a torsion free
module there exists a unique simple torsion free A,-module and it has degree equal

to the dimension of the A,_; module with highest weight Y ", m;jw;.

Proof. See Theorem 11.4 in [10] O

4 Tableau Background

Y denotes the natural representation space of A, defined in Example 2.5, and @V
denotes the IV — fold tensor product of V outlined in section 2.6. The aim of this chap-
ter is to review the realization of finite dimensional simple A4, modules as particular
submodules of @V V. The key to this realization is the notion of Young symmetrizers,

which are certain elements in the group algebra C[Sy].

4.1 Basic Definitions

We first introduce some basic terminology and notation to familiarize the reader with

the notion of a tableau.

Definition 4.1. A sequence of positive integers 7 = {m > 7 > -+ > 7,} is called

a partition of N if and only if

P
Zﬂ'i =N
i=1

The 7;’s are called the parts of m, and the set of all partitions of IV is denoted by
[T(N). If several parts of 7 are equal, suppose a; parts are equal to ¢, this is denoted
by # = {N°~ (N — 1)*~-1 ... 1}, For notational convenience we set m; = 0 for

1> Dp.
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Example 4.1. {3 >3 > 2 > 2} € [](10) will be written as {32, 2%}.

For the remainder of this work we make the following assumptions. NV will denote
a positive integer and N = {1,...,N}. Form = {m > -+ > m,} € [I(N) let
7| =m +---+ 7, = N. When N = &, there is just one partition in [J(N), the

partition with zero parts.
Example 4.2. Suppose 7 = {3,2,1%} € [[(7) then 7 has 4 parts and |r| = 7.

Definition 4.2. For every m € [[(V), the associated Young frame or Ferrers
diagram, denoted by F(), is an array of boxes with m; boxes in the ¢th row and

each row of boxes is left justified.

Example 4.3. The Young frame having the partition 7 = {3,2,1} is

Definition 4.3. If 7 € [[(/V) then a Young tableau having frame F(r) is obtained
by inserting the elements of A/ bijectively into the boxes.

Example 4.4. Suppose N'={1,2,3,4,5,6} with 7 = {3,2,1} € [[(6). Then

1]2]4]
3|5
6]

is a Young tableau corresponding to F ().

Definition 4.4. Any Young tableau with underlying partition = € [J(NV) is said to
have content {1,..., N} and shape =.

Definition 4.5. A Young tableau is called standard provided the entries strictly

increase from top to bottom and left to right.

The symmetric group on N, denoted Sy, is the collection of all one to one, onto
functions from N to A, with the group operation being composition of functions.

Given a Young tableau we associate two subgroups of Sy .
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Definition 4.6. Fix a 7 € [[(N) with associated Young tableau 7. The row group
of 7, denoted by R, is the set of all permutations in Sy, which permute only the
elements of A lying in the same row in 7. The column group of 7, denoted by C,,
is the permutations in Sy which permute only the elements in A lying in the same

column in 7.
We now define an element in the group algebra C[Sy] known as a Young symmetrizer.

Definition 4.7. Let 7 be a Young tableau with underlying partition = € [[(NV), row
group R, and column group C,. The Young symmetrizer of a Young tableau 7,

denoted g, is defined to be:

gr = (Z sgn(v)7> (Z w) = > sgn(y)7y

’YECT weRr ')’Ec-r
YER~

where sgn(vy) takes on a value of +1 when + is an even permutation and —1 when v

is an odd permutation.

4.2 Viewing ®"V as an Sy-module and an A,-module

In this section we define actions on ®"V in order to view ®"V as an Sy-module
and an A,-module. Inside ®"¥V we will be considering a particular submodule, de-
noted g,(®"V), which we be crucial in our goal of realizing all simple torsion free

Ap-module of finite degree having a non-integral central character.

Fix a basis {e; | i = 1,...,n+1} for V. Then a basis for "V is given by {e;, ® -+ ®
ejn | i €{1,...,n+1}}.

Definition 4.8. For any ¢ € Su the action of ¢ on a basis vector of @V is
a(ejl ® T ® e.7N) = eja—l(l) ® c ® eja—l(N)'
Extending this action linearly we have an action of Sy on ®VV.

We now give an example to illustrate that this definition is equivalent to permuting

the positions of the factors of the simple tensors by o € Sy.
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Example 4.5. Consider ®3V. If ¢ = (123) then o~! = (132). For a basis vector

er, ® e, ® ey, of @YV, consider the action of o on e, ® €;, ® ey,:
olen ®en ®en) = e,y ®er, 1, D€, i, =eu @y B

Now we permute the positions of the simple basis tensor by . Therefore, ¢ moves
the first factor of our simple basis tensor to the second position, the second factor to

the third position and third factor to the first position giving:
ole;, e, Dey,) =€, Qe Dey,.

Definition 4.9. The canonical tableau with underlying partition = € [[(N), de-
noted 7, is the standard tableau constructed by inserting the elements of A in order
from smallest to largest into the frame F (), beginning with the first row, then the

second row and so forth, proceeding from left to right.

Notation. For the remainder of this work to simplify notation we fix 7, to be the
canonical tableau with underlying partition 7 and we denote R,_, C. and g, by

Rr,Cr and g, respectively.

Example 4.6. If 7 = {3,2,1} then

3
I
BNE
[S)]

is the canonical tableau with underlying partition =. Moreover,
Rz = S1,23) % Sasy X Stey,s

and

Cr = S{1,4,6) X Sg2,51 X S(a}-

Lemma 4.1. Let 7 and 7’ be Young tableaux with underlying shape 7 € [[(V).
Then

9:(®"V) = g (@NV).
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Proof. See for example Lemma 2.37 in [1] O

Remark 4.1. As a result of the above Lemma for the remainder of this work we will

be working with the Young symmetrizer g,.

Definition 4.10. Let e;,...,¢e,.1 be the standard basis of V. For every simple basis
tensor B =e;, @ -+ - ® e, in ®VV, a substitution of the factors of 3 into the tableau
Tr is made. For k = 1,..., N put the subscript #;, in the box of 7, holding the entry
k. We call this the generalized tableau for 3, denoted 7,(8). T(f) is said to have
content {t",...,ty"} provided T,(8) has my boxes filled with #, for k =1,..., N.

The shape of 7,(5) is the underlying partition 7.

Example 4.7. If 1 = {3,2,1} € [[6) and f =1 R e3 R es R ea R ey D €y € RV

then the generalized tableau for 3 is

[ro]ro]~
=

where 77(8) has content {1,22, 3,42} and shape 7= = {3,2,1}.

Remark 4.2. There is a bijective correspondence between simple basis tensors com-
ing out of "V and the collection of all generalized tableaux with shape 7 and content
{t7, ..., ty"} where t; € {1,...,n+1}. Therefore, for the remainder of this work we
will refer to simple basis tensors coming out of "V and it’s corresponding generalized

tableaux interchangeably.

Definition 4.11. Let n = {m; > --- > m,} € [[(N) and f = e1®- - - €1, ®€r, 41Q - ®
en be a simple tensor out of @Y. Let 7' = {my > --- > mp}and B’ = ey 11Q: - -®en.
T=(B') is the row diminished tableau of 7, (3) which, to simplify notation, is denoted

e~

by T(8).
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Example 4.8. Suppose

1]3]4
T=(8) = 512
12
then
—— |2]4]
ﬂ(ﬂ)—l

For this work we will be viewing the action of Sy on generalized tableaux rather then

simple tensors.

Definition 4.12. Let m € [](V) and 3 be a basis tensor out of V. For any o € Sy

0Tz(B) = Tx(aB).

Extending this action linearly we again have an action of Sy on @V V.

Example 4.9. Suppose 7 = {3,2,1} and =€) Qe3 R e, Qe R ey Qe € RV,

3[4]

1
24
2 ]

Let 0 = (123)(45) then o(e; ®e3QRes Qe ®es Rer) = e, Qe Ve ® ey ® ey ® ey and

we have:

1]3]
2

o] ]

Remark 4.3. Instead of taking a simple basis vector 8 out of "V and relating it to
it’s corresponding generalized tableau 7;(3), we will often suppress the 7 and S and

simply write 7, explicitly giving the shape and content of 7. Also for any o € Sy
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when we write 07 we mean that o is acting on the corresponding simple basis tensor

of T.

Definition 4.13. Let 7 = {my > --- > n,} € [[(N). Let T be a generalized tableau
having shape 7. Fori=1,...,pand j = 1,...,m, T|i, 7] will denote the index which

occurs in the intersection of the i** row and j** column of 7.

Definition 4.14. Let 7 € [J(IN) and S be a simple basis tensor out of ®"V. T,(3)
is called 7 semi-standard provided for all indices i < i, T(8)[i, 5] < T=(B)[?, j]
and for all indices j < j', T:(B8)[i,7] < T=(B)[7,7']- The set of all = semi-standard
generalized tableaux is denoted by S, (N). T,(5) is said to be non 7 semi-standard
provided there exists indices ¢ < #’ such that 7,(B)[¢, j] > T=(B)[, j] or there exists
indices j < j' such that T,(8)[¢, j] > T-(B)[Z, 5]

Notation. For i € {1,...,n+ 1} , [ € Z and K; € Z+, define to stand for a
1 row tableau having K; boxes each containing the value i. When we write
we are indicating a 1 row tableau having K; 4+ [ boxes each containing the value of 7.

o | K | stands for a one row tableau containing K; 1’s followed by K,

2’s, and so on.

Example 4.10. If K; = 3 and K, = 2 then

K|Ko=[1]1]1]2]2],

and if [ = 2 then

LK+ UK =111 ]]1]2]2]-

We now define an action of gl(n + 1,C) on @™V.

Definition 4.15. Let I = {1,...,n+ 1}". For each A € gl(n + 1,C), and
t= Z(il,...,iN)EI(ail--~iN)eil ® -+ @ e;, where a;, i, € C, an action of gl(n + 1,C) on

®MV is as follows,
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N
A(t) = Z ail...a,-NZeil®"'®(A€ij)®"‘®€i]v.
j=1

(31,..IN)ET
Extending this action linearly defines a gl(n + 1, C) module structure on ®"V, and

restricting this action to A,, ®"V becomes an A,-module.

Remark 4.4. In later sections we will be interested in the action of gl(n + 1,C) on
simple basis tensors coming out of ®"V. For the simple basis tensor e, ® - ® ey,
and the standard matrix unit E;; € gl(n + 1,C) we have

N
Eijlen ® - ®ew) =) ey ® - ® (Eijey,) ® - @ ey

k=1
Remark 4.5. Observe that for any E;; € gl(n + 1,C), 0 € Sy and simple basis
tensor 8 € NV

Eij(0(B)) = o(Ey;(8)).
Therefore
9:(®"V) = Spanc{gs(e;, ® - ®ejy) | ji € {1,...,n+ 1}}
is an A,, submodule of @V V.
We can also view the action of gl(n + 1, C) on generalized tableaux.

Definition 4.16. Consider 8 =¢;, ® - - ® €;,, € ®"V. The action of gl(n+1,C) on
T.(B) is as follows

EyT:(8) =) Ta(Be)

k=1
where Sy =€, @ - Q@ Ejjer, ® -+ ® ey,

Example 4.11. For f=e3RQe; Qes ® 3 ® €5

1]4]

BEE
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Consider the action of Ei on 7.(8). In this case 81 = B, = B3 = B4 = 0, since
FEi2e; = 0 for j # 2. Therefore, we have

4] 1]4]

E127;r(/3) =

+

proo

lhd Iy L]

4.3 Classical Results

In this section we review two main results about the A,-module g,(®"V). The
first result describes a basis for g,(®"V) and the second result realizes every finite
dimensional simple A,-module as the module g,(®"V) for an appropriate choice of

.

Lemma 4.2. If 7 and 7' are two generalized tableaux with underlying partition 7

such that 7= pT"' for some p € R, then g.(T) = g.(T").

Proof. For any p € R,, we have that
> wor=) ¥
1/1€R7r wERﬂ'

and therefore,

9:(T) = g:(pT") = (Z sgn(v)v) ( > W op) T = g:(T").

YECK YERL

O

Lemma 4.3. If a generalized tableau 7 of shape 7 is such that 7 has a column
containing two equal elements then

(Z sgn(o)o)T = 0.

UECn
Proof. Suppose that (g,r) € C, such that (g,r) interchanges two equal elements in

the same column in 7. Since {o(q,r) | 0 € C;} = C, we have:

3 sgn(0)oT = 3 sgn(o(a,m)o(g, T = = 3 (sgn(e))oT

o€&Cr oc€Cx o€Cy
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and therefore,

Z sgn(o)oT = 0.

o€Cr
O
Theorem 4.1. {g,(T) | T € S;(N)} is a basis for g.(®"V).
Proof. See for example Theorem 8.11 in [1] O

For any non 7 semi-standard generalized tableau T, g,(T) € g.(®"V). By Theorem
4.1, g.(T) can be expressed as a linear combination of the elements in {g.(7) | T €

Sz(N)}. In this event g,(7) is said to be straightened.

Recall, by combining Proposition 2.7 and Theorem 2.11 we know that every finite
dimensional simple A,-module is some V(A) where X is dominant integral. The
following Theorem shows how we can realize every finite dimensional simple A,-

module as a particular submodule of @V V.

Theorem 4.2. Suppose A = 3. | hw; is a dominant integral weight for A,. Set
Tk =) iy hjand let N =371 m then 7 = {m > .- > m,} € [[(N). The finite
dimensional simple A, module V()\) with highest weight ) is isomorphic to g,(®VV).
In particular, the highest weight vector in g,(®"V) is g,(7T+) where 7 is the 7

semi-standard generalized tableau having ‘" row filled with the values 1.

Proof. See for example Theorem 2.33 in [1].

4.4 Ordering on Tableaux

In this section we define an ordering on generalized tableaux and review some re-
sulting properties. This ordering will assist us in determining which 7 semi-standard
generalized tableaux appear in the expansion of a Young symmetrizer, g,, acting on

an arbitrary m semi-standard generalized tableau.
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Definition 4.17. Let 8; and 3, be basis tensors for ®VV. B; < B, if there exists
v € Cr such that 7,(f2) can be obtained from 7,(y3;) by successively interchanging
pairs of entries in the same row of 7.(yf;) such that at each stage the entry with
the smaller value is moved to a column which is further left while still lying in it’s

original row. In this case, we say T(81) < Tr(52).

Example 4.12. Let 7 = {3,2,1} € [[(6). Consider f; =€, ®e;®e; ez Qe ® ey
and =€ ReaPes Ve Qes ey € RV, Then

11f2]2] _l1]2]4]
T(6) = Tl = 515
4] 4]
TTal3 112]4] 1]2[4]
4 4] 4
and therefore 8, < B,. However,
|1]2]4]
T80 = 513
12

is not related to 7,(51) because there does not exist a v € C, such that the row sets

of Tz(Bs) coincide with the row sets of 7,(81).

Lemma 4.4. 1. Let 8, and 3, be 7 semi-standard basis tensors for @ V. If

gpB2 = B, for g € C; and p € R, then either 5; = 35 or B < Bs.

2. If B is a 7 semi-standard basis tensor for ®"V then the coefficient of 8, when

9-(B) is written as a linear combination of basis tensors, is nonzero. In partic-

ular, g.(8) # 0.

Proof. See Lemma 8.8 in [1] O
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Remark 4.6. By part 2 of the above Lemma for any 7 € S(N), T appears in g,(7)

with non-zero coefficient.

With the groundwork set, in the next section we will realize all torsion free A,-
modules of degree one by working with finite dimensional simple A,,-modules viewed

in terms of a tableau formalism.

5 Motivating Example

In this section we show that all simple torsion free A,-modules of degree one can be
obtained by a “complex continuation” of the simple A, modules V(Kw,) for K € Zx,.
For each K € Zsq, in this realization a basis for V/(Kw;) consists of the vectors

9r(|K1|Ka|...|Kny1|) where Y77 K; = K, 7 = {K} € [[(K) and K; € Zy. For

all K € Z-, these are representations, and therefore the operators satisfy the Serre
relations for all bases elements. The coeflicients of the bases elements in the Serre
relations can be viewed as polynomials in the integer variables Ki,..., K, which

are identically zero. For example consider the Serre relation [Ey; — FEag, Ea3] + Eos.

([En = Ex,En) + Bx)gr (| K1 | K. . [ Kny1|)

= ((Ell - E22)E23 - E23(E11 - EZ?) + E23)g7r( Kl |K2 ce Kn—H )
= K3(K, — (K2 +1))gx |K2-|—1|K3—1|

— K3(K1 — Kp)gx( - |K2+1|K3—1|

+ Kagn( -+ |Ka+1|K3—1]--+)

= (K3(K1 — (K3 + 1)) — Ks(K1 — K3) + K3)gn( -+ | Ky + 1[ K3 — 1]---

:O-g,,(---|K2+1|K3—1|---)

Therefore, (K3(K; — (K2 + 1)) — K3(K, — K3) + K3) is a polynomial in K7, K, and

K3 which is identically zero.

The idea is to construct new representations by “complexifying” the parameters

K;. With appropriate conditions on the new parameters, these A,-modules are sim-
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ple torsion free degree one, and in fact all such modules can be realized in this manner.

We first establish the connection between two realizations of the simple finite dimen-

sional A,-module V(Kw).

For each K € Z3o we fix m = {K} € [[(K) then

R, = Za,C’,r:e,andg,rz Za.

cESK oESK
Consider the following A, module:

n+1

97r(®KV) = Spanc{gx( |K1 |K2]- . -!Kn+ll) | ZKi =K ; K; € Zxo}.

=1

By Theorem 4.2 this module is simple with highest weight Kw; and maximal
vector vt = g, ), and hence isomorphic to V(Kw;). All the weight
spaces are one dimensional with weight vector g,( | K; |K2 l ..| Kny1]) having weight
i (G — Kipws.

On the other hand, recall the following simple finite dimensional A,-module from

Example 3.1:
M(l—c) = Spanc{xllc—hxl;—lz . "$£f+1 |0< 1y <lpey--- <l <K}
where k = (K,0,...,0).

Lemma 5.1. Assuming the notation above, M (k) and g,(®¥V) are isomorphic as

Ap-modules when k£ = (K,0,...,0).

Proof. Let
¥ M(k) = g (®@"V)

given by

plaf ey o) = g ([Ka]Ka) - [Kan])

where K1 =K -1, K;=1l,_1—1;, fori=2,...,nand K, , = [,.
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We will show that 1 is in fact an isomorphism of gl(n + 1, C)-modules. Clearly

is an isomorphism of vector spaces as we are mapping basis vector to basis vector, and

so we need only show ¥(E;;.v) = E;;.9(v) for all E;; € gl(n+1,C) and v € M (k).
Take E;; € gl(n+1,C). Set lp = K and l,4; = 0.

Eyp(af e ™ ol ) = Eyge( | K1 | Kz | . .| Knpa])
= g.(Ei | K1 | K2 |- . .| Kuy1|)
= jg,,(...lw... K;—1|...)
= (lj_y = L)p(- - - gl Tl .mé_i-l“i—l )
= (o — ) o zp TR g T

K-l 11—l l
= ’l[)(Eij.’L'l 1.’L'21 z. .. x1:L+l)'

Restricting v to the elements in A,,, it follows that M (k) and g, (®" V) are isomorphic
as A,-modules.

g

Recall,

Ezygw(ll(llK2||Kn+1|)=K]g7r( Kl+1 KJ—l )

Since g,(®%V) is a module the Serre relations must be satisfied (comment pro-
ceeding Theorem 2.7). It is obvious from the action of E;; that the coefficients of
the basis vectors in the Serre relations will result in polynomials in Kj,..., K,41.
This result along with the next lemma will assist us in our goal of realizing all simple

torsion free A,-modules of degree one.

Lemma 5.2. Fori =1,...,n+ 1 fix N; € Z. Let f € C[zy,...,Zn41] such that
f(z)=0forallz € {(ki,...,kn41) €Z" | k; > N;, i=1,...,n+1} then f(Z) =0

in Clzy,...,Zn41]-

Proof. We induct on n. Forn = 1, f is a polynomial in one variable. Let f(Z) € C[z4].

By assumption for some N; € Z, f(k;) = 0 for all k; > N;. Therefore, f has infi-
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nitely many roots and therefore f(z;) = 0.

Now assume that the Lemma is true for n > 1. Consider f(z1,...,Zn+1) € Clz1,. .., Tnei]

such that we write f(zi,...,Zp41) as

q
flz1, .. ZTng1) = ZPi(ﬂ?l, . ,zn)x;_}_l
i=0

where each P;(z1,...,%,) is a polynomial in C[z1,...,z,].
For each z; substitute k; € Z such that k; > N;. Then

q
Fkty e kny@ng1) = > Pilkr, .. ka)zh
i=0

is a polynomial in one variable with infinitely many roots, namely, 13 > Nu41.
Therefore,

Piki,... ka) =0
for all k; > V;. By the inductive hypothesis we have

Pi(zy,...,2,) =0.
Therefore,

q q
f(z1,. ., Zng1) = ZPi(xl,...,xn)x:lH = ZO-x;H = 0.
i=0 i=0
d
We now introduce our modified tableau construction of a simple torsion free A,.-

module of degree one. Fix @ = (ai,...,a,41) € C such that each a; € C\ Z. Define

a vector space M (@) over C to have a formal basis

n+1

B={v(@+M)|M=(M,...,My) € Z"*",> M,;=0}.
i=1

Next we define a module structure on M () by defining the action on M (@) analogous
to our finite module g,(®"V). Let e; stand for an n + 1-tuple which has a zero in

every co-ordinate except in the i** co-ordinate, which has a value of 1.

o6
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EijU(C_L + M) = (aj + Mj)v(d + M +e — Cj)
The following Theorem shows that we have now constructed a simple torsion free

Ap-module of degree one.

Theorem 5.1. Fix @ = (ay,...,an41) € C such that each a; € C\ Z. M(a) is
a simple torsion free A,-module of degree one isomorphic to M(a), where M (a) is

described in Example 3.1.
Proof. For @ = (ay, ..., an+1), we have the simple torsion free degree one A,-module,

_ - - - k
M(a) = Spanc{z®~Frggpthi=he | ganthn-i—knpdentie ) g 7}

Let ¢ : M(a) — M (a) given by:

w(l.llll-klxgz-Fkl—kz . :L.Taln%—kn—l—knle-i—ll"f'kn) — ’U(C_l + M)

where M} = —ky and M; =k;y — k;fori=2,...,n+ 1 with k,,; = 0.

Now M (a) and M (@) are isomorphic as vectors spaces. Since M(a) is a module
and M (@) has an action defined on it, it suffices to show that for the generators Eij,

¥ satisfies the module homomorphism condition:

Y(Eijv) = Eijy(v),

— 01—k _a2+ki1—k2 an+kn_1—kn ,.0n+1tkn
where v = 277" x5 U e I

. ma1—k1 a2+k1—k an+kn_1—kn Gn+1+kn
w(Ele Ty - Ty " n$n+1 )

= P((aj + hjor — ky) ...l Thm kAl gthahint

= (aj -+ kj—l - k])'l/)( .. :L‘gi+ki_1_ki+l - .’L‘;j+kj_l_kj_1 . )
= (aj + M]‘)’U(C—L + M + €; — Cj)
= Eij’l)((_l + M)

- . a1 —k1 .a2+k1—k2 an+kn-1—k ant+1+kn
= Ejp(z ™ g T T gy R,
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We have now achieved our goal for this section. By Theorem 3.2 every simple
torsion free A,-module of degree one is isomorphic to M(a) for an appropriate choice
of a = (a1,-..,ay41). For any such @, by Theorem 5.1, we can construct a simple
torsion free degree one A,-module, M (&), which is isomorphic to M (a@). Therefore, we
have just realized every simple torsion free A,-module of degree one using a tableau
formalism. Clearly the construction by Britten and Lemire [3] provides a better
realization then the one we have constructed. For torsion free modules having degree
greater then 1, Britten and Lemire [3] showed that these torsion free modules occur
as submodules in M (@) ® V() for appropriate choices of @ and A. The problem with
this realization is that a basis and a module action is not described. Generalizing
the results from this section we will give a basis and a module action for realizing
all non-integral simple torsion free A,-module having finite degree. Moreover, this
module action will be defined by working with certain finite dimensional modules,
and therefore will be no more difficult then determining the modules action for finite

dimensional modules.

6 Action of operators £;; on finite dimensional mod-

ules in tableau form

In section 5, we showed that starting with simple finite dimensional A,-modules,
viewed in terms of tableau formalism, we can construct simple torsion free A,-modules
of degree one by applying a “complex continuation”. Motivated by this success, the
goal of this work is to generalize this construction to obtain all simple torsion free
A,-modules of finite degree having a non-integral central character. An important
step in this generalization is examining the coefficients which appear in the action of
the operators E;; on certain basis vectors for the modules g.(®"V). This analysis

will be the focus of this chapter.
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6.1 Setup

We begin this section by defining these special basis vectors and discussing a general
method for examining the coefficients which appear in the action of the operators Ej;

on these special basis vectors.

Recall from section 4.2 we defined |K1 |K21 -++ | Kp41| to stand for a one row

tableau containing K; 1’s followed by K, 2’s, and so on. V stands for the natural

representation space of A, which was defined in Example 2.5.

For all partitions m = {m; > -+ > m,} with# = {my > --- > 7, } fixed and m > m,
variable, we consider certain basis vectors coming out of the modules g,(®"VV) =

Spanc{g-(T) | T € Sz(N)}.

Definition 6.1. Fix # = {my > --- > 7m,} € [[(M) and m; € Z+ such that m; > m,
and m is variable. Let 7 = {m > --- > 7,}. Let T € S;(N) with top row

K; ! --| Kpy1 | with each K; chosen large enough such that the action of the Serre

relations on g,(7) is non-zero. Then T is said to be core and g,(7) is said to be a
core basis vector. K € Z-, will denote a lower bound on Kj,..., K, such that

T is core.

Remark 6.1. The core basis vectors come from an infinite number of finite dimen-
sional representations. We fix # = {m > --- > m,} € [[(M) and consider all
partitions m = {m; > --- > m,} with variable m; € Zs( such that m, > m,. As long as
each K; > K the corresponding core basis vectors satisfy all results in this chapter.
As the Serre relations are generated by a finite number of operators, the existence of

K is guaranteed.

Fix m = {m > m > --- > m,} € [[(N) and define 7, to be the corresponding
canonical tableau with row group R, column group C, and Young symmetrizer g,.

Fix a 7 semi-standard generalized tableau with underlying Young frame F(r), and

content{151 2Kztmz _ (p 4 1)Kn+1tmatil o he
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K | K

with 7 a fixed row diminished tableau of 7 with content {2m) ..., (n 4+ 1)mt1}
Ki>>? mfori=1,...,n+1 and m = 27;1 K. Naturally, the condition that

K;> ) 7_, 7 imposes a size constraint on 7, that is m, > (p— 1) 3 2_, m;.

Remark 6.2. For the remainder of this chapter 7 will stand for the fixed core =

semi-standard generalized tableau defined above.

We wish to examine the action of E;; on g.(T).

Ez'jg‘/r(T) = Zgw(,];) (2)

where each 7, is a 7 generalized tableaux not necessarily semi-standard. Each of
the generalized tableaux appearing in the right hand side of equation (2) which are
non 7 semi-standard must be straightened. To do this, suppose 7, . is an arbitrary
one of these non 7 semi-standard generalized tableaux. Since g,(7,.;.) € g.(®"V),

by Theorem 4.1, g-(7T,.s.) has a unique expansion with respect to the basis {g.(7%) |
Tr € Sz(N)}. That is,

9r(Ths) = Z ck9r(Te)  where each ¢, € C and each T; € S, (N). (3)
k

We now expand all the terms in (3) with respect to the basis elements of @V,
namely, {e;, ® --- ® e;, | i; € {1,...,n + 1}}. To determine the values of the

coeflicients ¢ we observe that any 7 semi-standard generalized tableau, say 7,, must
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appear with the same coefficient on both sides of the equation. We then need to
know the number of times 7; appears in g,(7,s.) and in each of the basis vectors
9x(Tx), when g.(T,.s.) and ¢,(Tx) are both expressed with respect to the basis tensors
of @ V. To solve these problems, in later sections several counting properties will be
introduced. However, for certain values of ¢« and j the dependence on Ki,..., K,
when straightening E;;g,(7) requires no advanced counting properties. We break the

problem into the following 3 cases:
(1) Ei1g«(T) for i arbitrary
(2) Eijg«(T) for i#1+#j, and
(3) Esjg.(T) for j arbitrary

In the next section we will be concerned with cases (1) and (2).

6.2 Cases (1) and (2)

The goal of this section is to determine the dependence of the coefficients in equation

(3) on Ki, ..., K,1 when straightening E;;g,(T), for the following two situations:
(1) Ei1g.(T) for i arbitrary
(2) Fign(T) fori 14

We remind the reader that g,(7) represents a special type of basis vector in {g,(T) |
T € S;(N)} which was defined explicitly in section 6.1.

Notation. As we are interested in examining the action of E;; on g(7T), we introduce
a notation to keep track of what factor Ej; is acting on in 7. Define Efjl’T to be the
result of the operator E;; acting on the element in 7 located in the k** row and [
column. Therefore, for 7 = {my > --- > n,} € [[(N)

E,;T= )Y E&T.

k=1,...p
I=1,...,m
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Notation. Let 7;’ denote the m semi-standard generalized tableau identical to T

except in the top row, which has an extra i and exactly one less j.
Lemma 6.1. Let M =0if j=1and M = S/ K, if j > 1.

M+K;

Z Ezljlgrr(’r) = Kjgr(ﬁ)'

I=M+1
Proof. E};T =Ounlessl=M+1,... M+ K;. Foranyl=M+1,...,M + K;
there exists a p € R, such that pE}}T = T;. By Lemma 4.2, g,(E}/T) = g,(T}) for
l=M+1,...,M + K;. Therefore,

M+K; M+K; M+K;
S Elg(T)= Y 0:(BIT)= Y 9(T}) = K;gu(T;).
I=M+1 I=M+1 I=M+1

Now we consider the operator E;; acting on g,(7).

Lemma 6.2.

Eilgr(T) = Klgﬂ'(ﬂ)'

Proof. Since 7T is semistandard, the index 1 only appears in the first K; positions
of the first row, and so, EFT is non-zero only when acting on elements in :

Therefore we have the following decomposition:

K,

Einge(T) = g.(>_ ELT)

1=1
K,
= Z Ejg(T)
=1
= K19.(T}). (Lemma 6.1)
Observe that 7 = T when i = 1. O

Before moving onto Case (2) we introduce some notation and several Lemmas.
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Notation. Recall from definition 4.13 that 774, j] denotes the index which occurs in

the intersection of the i* row and j** column of 7.

Many times the action of elements from R, on 7 will leave 7 fixed. In particular,

we are interested when this property occurs on the first row of 7.

Notation. Recall N = {1,...,N}. Let N = {m +1,..., N} and so, the symmetric
group Sy can be embedded into the symmetric group Sy. We remove from the
canonical tableau, 7, the first row to obtain the row diminished canonical tableau
7.. Let R, be the row group of 7, and C. be the column group of 7. Then §, will

denote the corresponding Young symmetrizer explicitly given by

gr= Y sgn(v)ve.
7€c:1r
YERR

Definition 6.2. Let p € R,,, M = Z:”:_ll K. pis said to act block invariant on

provided:

NL,il=m for i=M+1,...,M+ K,,.

p is said to act block invariant on the first row of T if (p7)[1,4] = T([1,4] for
i=1,...,m. S={p € R | N1,i =T[1,ifori=1,...,m} is a subgroup of
Rnr,, is called the stabilizer of the top row of 7.

Remark 6.3. Notice that S| = K;!--- K,,1!. To simplify notation, for the remain-
der of this work set

K!:.= Kl' . 'Kn+1!-

Lemma 6.3. Let 7 = {my > --- > m,} € [[(N), T a 7 generalized tableau, having
top row | K |- - -| K41 |, with each K; > 25?22 7j, and row diminished tableau, T, of
T having content {2%,..., (n + 1)*+'} where t; € Z»(. If there exists a ¢ € C; and a

p € R, such that ¢pT is semi-standard, then ¢ € C, and p must act block invariant
on the top row of T.

Proof. Let q € C; and p € R, such that ¢gpT is 7 semi-standard. First consider the

action of p on T', and suppose p is not block invariant on the top row of 7. Therefore
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pT is not a m semi-standard generalized tableau, and we must find a ¢ € C; such that
qpT is semi-standard. Suppose p does not act block invariant on . Since no 1’s
lie below the 1% row, there does not exist a ¢ € C, such that ¢gpT is a 7 semi-standard
generalized tableau. Therefore, p must act block invariant on . Suppose p does
not act block invariant on for some i = 2,...,n+ 1. Since K; > E?:z 7j, there
does not exist a q € C, such that ¢pT is semi-standard. Therefore, p must act block
invariant on the top row of T'.

Now consider the action of ¢ on pT. Suppose q & C.. Therefore ¢ must permute

the top row of pT" non-trivially, and since pT" has top LKI—I | Kpt1 |, ¢ will permute

a 1 into Tv, creating a non semi-standard tableau. Therefore, q € C..

a

Notation. Let T and T’ be 7 generalized tableaux. [T : ¢-(T")] will denote the
number of times T appears in g.(T") when g,(T") is expressed as a sum of generalized

tableaux written in terms of the basis elements of @V V.

Lemma 6.4. Let 7 = {m; > --- > m,} € [[(N), T be a 7 generalized tableau having

top row IK1—| . '[Kn-f—l |, with each K; > }**_,7;, and row diminished tableau, T, of

T having content {2%,...,(n + 1)"+1} where ¢; € Z>¢. Let T; be a 7 semi-standard

generalized tableau having shape and content identical to 7. Then
[Ts : 9.(T)] = K! [T : g:(T)].

Proof. Ry =Ry, X R,. Let S C R,, be stabilizer of the top row of T. Let oo = id,
0; € Ry, for ¢ =1,...,1 be transversals for R,,/S. That is, R,, = 0oSlH---¥a,S.
Let po = id, pu; € C, for ¢ = 1,...,r be transversals for C,,/é,,. That is, C, =
ﬂoéw - Lﬂ#réw-

9:(T) = (Z sgn(v)v) <Z p) (T)

YECH PER
r l
= [ 3 sonr+ 303 sontsoncr | | 2 930 X s | @
'yGCA,r i=1 7€é, pESx'fZ,r =1 seSxR,
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We are interested in the 7 semi-standard generalized tableaux appearing in the
expansion of g,(7T). Examining the right hand side of the above equation, notice for
i>1py € Crand 0;s ¢ S. By Lemma 6.3, the action of either of these elements on

T will result in a non 7 semi-standard generalized tableau. Therefore,

> sgn(r | D Y ps

veCr 3€S peR,

are the only terms in g, whose action on T can create 7 semi-standard generalized

tableaux. Since

dosgnv | DD ps | (M=KD sgn(n)v | | D_p| (D)

YECH 5€5 peR, v€Cr PER .

= K!QW(T)’

any semi-standard appearing in g,(7") appears exactly K! times more then in §,(7).

a

Lemma 6.5. Let 7 = {m; > --- > m,} € [[(V), T be a 7 generalized tableau having

top row |K1 | | Kpq1|, with each K; > Zﬁﬁ 7;, and row diminished tableau, T, of

T having content {2%,...,(n + 1)™+'} where ¢; € Zyo. Let {S1,..., Sk} be a set of

semi-standard generalized tableaux such that

1) (T =_Zcig,r(si).

Then letting 7; be the 7 semi-standard generalized tableau having top row iden-
tical to top row of T, and having a row diminished tableau S;, for : = 1,...,k, it

follows that

k
gTr(T) = Z Cigﬂ'(ﬂ)’
i=1
where the ¢;’s are as in (1). As a result, each ¢; is a constant number independent of
Ky, ..., Kni1.
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Proof. By assumption,
_ k
gﬂ(T) - Cigw(si)a
i=1

has no semi-standard generalized tableaux when expressed with respect to the bases

of @V V. Therefore,

(1) gw(T)-Zcigﬂ(Ti),

has no semi-standard generalized tableaux when expressed with respect to the bases

of @M V.

Suppose, )
2) 9a(T) = 3 ciga(T2),

has a 7 semi-standard generalized tableaux, 7', when (2) is expressed with respect to

the bases of @V V.

By Lemma 6.4,
[T : g<(T)] = KYT : (7)),
and
[T: 9.(T)] = KT : §(T))] fori=1,...,k.

Therefore, the coefficient in front of 7" in (2) is

b

K! x [T : §.(T)] - K! Zc"[T - 4:(T0)).

By combining this with (1)
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k k

[T 9:(T)] = Y _all : gu(T)] = K x [T: gu(T)] = K'Y [T : 4a(T3)]

= KY([T : §.(T)] - Zci[T : 92(T7)))
=K!x0
- 0.

Therefore, when expressing (2) with respect to the bases of @V, T appears with
coefficient 0, which implies (2) has no 7 semi-standard generalized tableaux when

expressed with respect to the bases of ®"VV. Therefore

M»

ngw
i=1

where the ¢;’s are as they were in (1). Since the ¢;’s came out of

k
T = Z Cigﬂ'(S
=1

and all tableaux involved in the above equation are independent of K, ..., K, 4, it
must follow that each ¢; is a constant number independent of Kj, ..., K ;.

O
We are now in a position to examine Case (2).

Lemma 6.6. Fori #1# 7,

Ez_]gw(T) ]g7r + Z Crg7r

where each ¢, is a constant number independent of K;,..., K., and each 7, isa 7

semi-standard generalized tableau having top row identical to the top row of 7.

Proof. Let M = Y)"! K;. Since, ENYT #0only whenl = M +1,...,M + K; we
have
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M+K;
E;T= Y EIT+ > ENT.

I=M+1 k=2,....p

I=1,..., 7
Therefore
M+K;
Eygn(T) =9: | > E4T+ Y EHT
I=M+1 k=2,...p
I=1,...,7
M+K;
=S En e S adEn
I=M+1 k=2,...p
I=1,...,m

= Kigu(TH+ Y. 9:(BET) (Lemma6.1),
Now consider the second term in the right hand side of the above equation.

For k > 1, E’”T has top row identical to 7, with row diminished tableau, Efle,
of EffT having content {2™2,...,a™*!, .. j™~1 .. (n4+1)™+}. By Theorem 4.1,

E’“"T Z crdn(S

where each S, is a semi-standard generalized tableau and each ¢, € C. Let 7, be the
7 semi-standard generalized tableau with top row identical to the top row of T, and

row diminished tableau S,. By Lemma 6.5,

gﬂ(EZlT) = ZCTgW(T;‘)7

r

where each c, is a constant number independent of K, ..., K, ;.

Since our k£ and [ were arbitrary, this results holds for all £ > 1 and [, and so,

Z gw(Efle) = Z ¢rgx(Tr)

k=2,...p
=1,...,7
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where each ¢, is a constant number independent of K, ..., K,41.

Combining our results,

Eijg:(T) = Kjgw(’];i) + Z ¢ 9=(T>)

T

which completes the proof.

O
We have now achieved our goal for this section and summarize below.
Case (1): For arbitrary 4,
Eilgn(T) = Klgﬂ'(ﬁ)'
Case (2): Fori # 1 #j,
Eijgr(T) = Kjgw(f’}i) + Z CTgW(7;‘)’
where each ¢, is a constant number independent of K1, . .., K1, and each 7, € S;(N)

having top row identical to top row of 7.

6.3 Introducing Case (3)

Analyzing F1;¢,(T) is more complicated. This section outlines the difficulties which

arise in this situation, and the need for several counting properties.
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Consider the decomposition of E;;g,(T):

I=1,...,m k=2,...,p

= g(BET) + > ga(BET)

= K;g:(T}') + Z 9(BET)  (Lemma 6.1),

Unfortunately for & > 2, Ef;T does not create a generalized tableau row equivalent
to some 7 semi-standard generalized tableau. For k > 2 the action of Ef} on T creates

non 7 semi-standard generalized tableaux of the form:

K, | K, |.......

7;1,.3. =

=

where ’i',: is the row diminished tableau of 7, ,. identical to T except the k** row,

———
—

I column has a 1 in place of a j, i.e. T, = ENT.

Recall, 7 has content {2m2,...,(n+1)™+1} Fori=2,...,n+1, define f; to be
the number of 7 semi-standard generalized tableaux having shape equal to the shape

of T and content {2m2, ..., jmi=1 . im+l (n 4 1)mes1},

Define the following 7 semi-standard generalized tableaux:

K; +1 |Ko-1] Ks |..| Knnr |

T =

Tok
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fork=1,...,f

K;+1 | K |K3—1|...| Koy |
Tsx =
T3k
fork=1,..., fs.
K;+1 | Ko | K | |Knii—1
7zn+1)k:
Tn+1)k

f0rk=1,...,fn+1.

where ﬁ is a row diminished tableau of 7;; having content
{2m2 .. gmiml it (n+ )™y for i = 2,...,n+1and k = 1,..., f;

necessarily having each K; > ", 7;.

Lemma 6.7. Let p € R, and ¢ € C,. If ¢gpT; is a ™ semi-standard generalized

tableau then ¢ € CA,r and p must act block invariant on the first row of 7.

Proof. This is just a special case of Lemma 6.3. a

Remark 6.4. The above lemma implies that when ¢ # r, T;x does not appear in

g-(T;s) when expressed in terms of the bases for @V V.
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Lemma 6.8.

n+l f;
9r(Tns) = Z Z cikgr(Tix) where ¢, € C.
i=2 k=1

Proof. First consider the 7 semi-standards appearing in expansion of g-(T,,). Let
g € C; and p € R, such that ¢pT, ;. is semi-standard. Suppose p has already acted on
T...s. and consider the action of ¢ on p7,,. The 1in 177'; must be permuted into the
top row of p7, ... We claim that 1 is the only element which can be permuted out of
p/7\;/s Suppose another element besides 1 were permuted into the top row of pT, ;..
Since K, > %, m;, the top row would not be weakly increasing from left to right,
and hence a semi-standard would not result. Therefore, only the 1 from 1)/7\',;: can be
permuted to the top row of p7, ., and must be replaced by a 2,...,n+ 1. Therefore,
any 7 semi-standard generalized tableau appearing in the expansion of g,(7,..) is of

the form T; for somei=2,...,n+1landk=1,...,f;.

Now consider the types of semi-standard generalized tableaux appearing in g, (7).
By Lemma 6.7, any semi-standard tableau in g,(7;) must have top row identical to

the top row of T, and therefore must be of the form 7, for some [ =1,..., f;.

Define 7 semi-standard generalized tableaux, T, having the same content as 7, ;.

but not equal to any of the 7;;’s. Suppose there exist coefficients ¢;; and ¢, such that

n+l fi
g7r(7;z.s.) - Z Z Cijgw('];k) + Z C’I‘gﬂ’(TT)'
1=2 k=1 r

Using the partial ordering on tableaux from Definition 4.17 let T, be maximal
among the T,’s. By Lemma 4.4, T, appears with a non-zero coefficient when express-
ing Y. crg=(T,) in terms of the bases of @ V. By the above argument, for any i, k,
T, does not appear in 9x(Tns.) and g,(T;x) when expressed with respect to the bases
of @V V. This contradiction implies that

nt+l fi
g7r(7:1.s.) = Z Z Cikg’lr(’];k)
1=2 k=1
|
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We wish to solve for the coefficients c;; to determine their dependence on K, ..., K, 4.

Before doing this, we introduce some counting properties.

6.4 Counting Properties

In this section we discuss several counting properties which will aid us in answering

the following two questions:

1. How many times does 7;; appear in the expansion of g(7wu)?

2. How many times does 7;; appear in the expansion of gr(7ns.)?

We again remind the reader that 7, and 7;; are the generalized tableaux defined

explicitly in section 6.3.

Lemma 6.9. The number of times 7;; appears in the expansion of g,(7) is

(K +1)

i

K!x M
where M is a constant number, possibly zero, independent of K7, ..., K,11.

Proof. By Lemma 6.4,

[Tij : 9 (Tir)] = (Ko + DK - K WK = 1) Koy - K 1! T §a(Ti)]
K+l
=%

K![T; : §=(Tix)]-

Since g, involves permutations which act on ﬁ, M = [T;; : §2(Tix)] must be the same
constant number for all values of K3, ..., K, .1 chosen sufficiently large.

O

Recall, for i € {1,...,n+ 1} , k € Z and K, € Z~,, define to be a one row
tableau having K; boxes, where each box contains the value i. will indicate
a 1 row tableau having K; + k boxes each containing the value of i.

K, 1 |stands for a one row tableau containing K; 1’s followed by K, 2’s, and so on.
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Notation. Let 7, (1,%) denote a m generalized tableau obtained from the 7 general-

ized tableau T, , = E{“;T, by replacing the top row by |K1 +1 ] . -|K,- —TI- - Kpy

and the 1 in 7, by i.

Lemma 6.10. Let p = p;p} with p; € R,, and p] € R,. Without loss of generality

lth

suppose the 1 in 1;*1‘\7/' n.s. 18 located in the I** column. Then

1. If there exists a ¢ € C, such that gp7ns. = Ti; then the top row of p7, ;. is of

the form,

(= [L]|Ki— (1 -1) K| | Knta

2. The number of p; € R,, such that p;p; 7, ;. has top row

(1= D [L[ K - (= D) [Ke) [ K]

is K.
3. There exists at most one ¢ € C, such that ¢p7,., = T;.

4. If there is a ¢ € C, such that ¢gpip}7,, = Tij, then there is a unique ¢’ € Cx
such that ¢'piTh,.(1,4) = T;;.

Proof. (1) Consider the action of ¢ on p1p;7,,.. Suppose an element other then 1
were permuted into the top row of p;p;7,. Since K; > Zf:z 7, the top row of

gp1P; Tn.s. would not be weakly increasing from left to right, and therefore, not in

semi-standard form. Therefore, only the 1 in p;p} may be permuted into the top

n.s.

row of p;piT,.s.. Since an ¢ from the top row of p;p}7,.s. must also be permuted into

—

p1piT, , it follows that the top row of pip]7y,.. is of the form,

(-1 [L] K - (- 1) [ K] - [ Ka )

(2) Let S be the stabilizer of the top row of p;7,, and

BZ{UERM 'O'(IKll Kn+1)= (l—l)l 1i Kl—(l—l) K?J Kn+1 }
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Fix 0o € P,. Let f : S — P, be a map, given by f(c) = 00 0. We claim that
f is a bijective map. Take 01,0, € S then f(o;) = f(02) implies 64 0 67 = 0¢ 0 0.
Multiplying both sides by o' gives 0; = o, and therefore f is one to one. To see
that f is onto take an arbitrary o; € P,. Then f(o;'0;) = 0; and therefore, f is onto.

f is a bijective map between finite sets S and P, and therefore |P| = |S| = K!.

(3) Assume p € R, is such that there exists a ¢ € C, with ¢gpT, s, = T;;. Clearly, the
columns of p7, ;. must have all distinct entries. Since there is only one way to order
each column such that it is strictly increasing, reading top to bottom, this ¢ must be

unique.

(4) We are assuming without loss of generality that the 1 in ﬁ:,: is located in the
I** column. Since there exists a ¢ € C, such that ¢gp7,, = 7ij, by part 1 the top row

of p7,.. must have the form:

(= |L|K - (1= 1) [ Ky K |

Now ¢ = ¢q1---¢q, with ¢; € ¢, for i # | and q € C, \CA7r such that g; orders

the elements in the i** column of p7, . so that they are strictly increasing from top
to bottom. pT, and p;T,,.(1,7) only differ in the 1% entry in the [** column and
without loss of generality, suppose the k* entries in the I** column. That is, the {**

column of pT, ;. and p}7,,.(1,1) are

respectively, where the entries not listed imply that they are identical in p7, . and

PiTns.(1,4).
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We need to find a ¢’ € C; such that ¢'PiTns.(1,1) = Tij. Let s be the unique
permutation in C, which interchanges the 1°* and k™ entry in the I** column of
P Tns(1,3). Let ¢ = qs. ¢ € C, since the 1 in the I column of p:7,., (1,9) is
already in the correct position. Then ¢' = ¢1...q-1¢@+1-.-¢r € C, is such that
¢'piTns.(1,1) = T;;. By part 3 ¢ is unique.

([l

Lemma 6.11. Let 7, and 7;; be the 7 generalized tableaux defined explicitly in

section 6.3. Let p; € Ry, and p* € R,. Assume the 1 in ;;‘{v . is located in the I*®

column. Define the set

P={0€Ru | o(Ki| - |Knt1)) =|( = 1)1 |L]|Ki — (1 = 1) | K2 | | Knia [}-

Then,

[Tii : 92(Tns)] = K! x M,
where M is a constant number independent of K, ..., K,41.
Proof.

T gx(Tas)) =T : > > sqn()7pT.s)

YECr pERR
= [T : Z 591 (Yp)VpPTn.s.) (Lemma 6.10 part 3)
pERn

=Ty : Z Z sgn(Yp)Yop1P1 Tns.] (Lemma 6.10 part 1)

PLEPR; o R

=K![T;: Z 591(Yp)YpP1P1 Tns.] (Lemma 6.10 part 2)

piERR
=K![T; : Z $9n(7,) 7,01 Tn.s.(1,4)]  (Lemma 6.10 part 4)
piERR

= K![IJ : gw(ﬂs(lﬂ))]
[7i; : 92(Tns.(1,1))] is a constant number independent of K7, ..., K11 =

With Lemma 6.9 and Lemma 6.11 answering questions one and two, we move onto

examining Case (3).
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6.5 Case (3)

Before we discuss Case (3) recall, 7 was the fixed core m semi-standard generalized
tableau defined in section 6.1, and 7,5 and Ty fori =2,...,n+1land k=1,..., f;

are the m generalized tableaux defined in section 6.3.

In Case (3) we consider the action of Ey; on g,(7), which in section 6.3 yielded the

following decomposition:

9:(EyT) = Kjg,,('];l) + QW(EH‘T)-

We still need to straighten the sum of terms in the right hand side of the above
equation. As 7, represents Efle for arbitrary integers ¥ > 2 and [ our first goal is

to straighten g.(7,..).

Before discussing a straightening algorithm for g,(7,.s.), we first make the following

definition.

Definition 6.3. Let (C, <) be a partially ordered set. Let C; be the set of all maximal
elements in C, and for &k > 1, C; be the set of all maximal elements in C \ Uf;} C.. C
is said to have k-layers provided C = Ule C;. The i**-layer of C is C;. C; is said to

be in an upper-layer to C; provided i < j.

Theorem 6.1. Let 7, .. and T;; be the 7 generalized tableaux defined in section 6.3.

n+l fi K.
1
gvr(7;z.s.) - ; ; Kl n 1Mikg7r(7;k)a
where each M;; is a constant number independent of K, ..., Kp41.

Proof. Fixan i =2,...,n+ 1. Let C' = {Tix | k = 1,..., fi}. (C% <) is a partially
ordered set with < defined in Definition 4.17. Re-index C* in terms of layers. That is
suppose C* has t-layers. Then C* = Ule Ci, with C; = {Si1, ..., Sim, }, where my € Z

7
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and YI_, my = f;.

It suffices to show that there exists coefficients M;, for [ = 1,...,t and ¢ =
1,...,my, where each M, is a constant number independent of K, ..., K,,1, such

that when expressing

in terms of a basis of @V, no elements in C* appear. The justification of this claim
will be withheld until the end of this proof. The reason for this, is that by this time,
the reader will then be familiar with our straightening algorithm, which will make

the justification of our claim easier to describe.

We show by induction that we can remove all occurrences of Sy, for / = 1,...¢ and
g =1,...,m;. The inductive parameter is the layer index /. We begin by removing
all occurrences of Sy; for j =1,...,my. At the conclusion of this step, the first layer

of C* will be removed.

Without loss of generality, take S;; € C;. By Lemma 6.11, Lemma 6.9 and Remark
4.6

[S11 1 9(Tns)] = K! X Q11 and [S1; : g,(S11)] = K}S_—lK! X Ry,

where (J4; is a constant number and R;; is a non-zero constant number, both inde-

pendent of K;,..., K, 1.

Therefore when

_ [Su :gw(%.s.)]g
[511 igw(Su)] "

is expressed with respect to a basis for ®"V, no occurrences of S;; appear. Since all

__K Qu

gﬂ(n.s.) (Sll) = g7r(7;1,s) gw(sll) (5)

elements in C; are maximal, by Lemma 4.4, S;, € C; does not appear in g,(Sy;) for

l # q. Therefore in a similar fashion, for ¢ = 1, ..., m;, we may subtract terms of the
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form E‘-ﬁ o =14.9.(S14) to (5), where each Q14 is a constant number and each R;, is a
non-zero constant number, all of which are independent of K1,..., K, ;. As a result,

the elements in C; do not appear in

— K qu

ns) ZK1+1R1qg"(SI")

when expressed with respect to a basis for @V V.

Assume the Theorem holds for C* having less then ¢ layers. That is, forl = 1,...,t—1
and ¢ = 1,...,my, let M, be a constant number independent of K3, ..., K,4;, and

suppose when
t—1 my

K;
9x(Tas) = D> T 1 M= (Si)

=1 ¢=1

is expressed with respect to a basis for "V, no elements in C; | J- - -|JC;-1 appear.

Take S € C;. By Lemma 6.11

[Stl : gw(ﬁzs)] = K! x Qtl

where (41 is a constant number independent of K,..., K, ;.

By Lemma 6.9 and Remark 4.6

{Sn : gw(Stl)] = 5‘}:—11{' X Ry

and

[St : 9x(Sig)] = FLHK! x Ry
forl=1,...,t—1and ¢g=1,...,m;, where Ry is a non-zero constant number and
each Ry, is a constant number, all independent of K1,..., K.

We want to find a value for M, in the following expression,
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t—1 my

(7;zs)—
= 1K +1

Mlqgw Slq) Mtg‘lr(stl),

such that when it is expressed with respect to a basis for "V, no occurrences of Sy,

appear. Therefore we solve for M, such that,

my

-1
[Ser : gx(Tns.)] ZZ
=1 ¢=

K
-1 my
K y Kl Ki+1
=K!Qt1—z oM 1K K!R,, — My IK K!R;

=1 ¢=1 t

Mlp[Stl g,r(Slq)]_Mtl[Stl gﬂ'(SlQ)]

=0.

Which gives,

~ K; Qu M Riq
My = .
"TK +1 (Rﬂ ;;

Let M = Q—l —Zf;} o Sl MiqB1y and therefore, M;; = -£i-M,. Since all the terms

g=1 R“ K +1
in My, are constant numbers independent of Kj,..., K, 1, it follows that My is a
constant number independent of Ky, ..., K, 1.
We now have,
-1 my K
M,,9-(S, M1 9,(S 6
n.s. ;;K +1 lqgﬂ' lq) K 1 t19 ( tl) ( )

has no elements in C; | J- - - |J Ci—1 |J{ St} when it is expressed with respect to a basis
for ®"V. By Lemma 4.4, Sy does not appear in g,(S;,) for [ # q. Therefore, we
may subtract terms of the form g.(S) for ¢ = 2,...,m; to (6), and when (6) is
expressed with respect to a basis for ®VV, it still will not contain the elements in
CiU---UCi—1 U{Su}- Choosing coefficients in front of each g,(Sy) as we did for
9-(Sn) we conclude that,
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g7r(7:1.s.) - Z Z T(—f{—_:_'IMlqgr(Slq) (7)

has no elements in C* = C;{J---|JC; when it is expressed with respect to the basis

for "V, and each M, is a constant number independent of Kj, ..., Kni1.

We have now eliminated all the elements in C* from g,(7,,.;.). Now that the reader
is familiar with our straightening algorithm, we justify the claim made at the begin-
ning of this proof. Let C = {7;; |t =2,...,n+1land j =1,..., f;}. Suppose r # i
and we consider the set C" = {Tx | k =1,..., f;}. By Remark 6.4, for any T € C¢,
none of the elements in C™ appear in g.(7i), when g, (7T:) is expressed with respect to
a basis for ®"V. That is, when }j_, >t i Miggx(Sig) is expressed with respect
to a basis for ®"V, none of the elements in C" appear. Therefore, adding terms of
the form g,(7yx) for T.x € C" to (7), and expressing this new equation with respect
to a basis for ®VV, will still have no occurrences of the elements in C*. By Remark
6.4, we also have that for any T;x € C", none of the elements in C* appear in g,(7+).
Therefore, the process of eliminating every element in C" from g, (7,.s.) is independent
of eliminating the elements in C* from g,(7,.,.). Not only is this process independent,
but it is also done in an identical manner. As the number of times any element in C
appears in g (Tn.s.) is K! multiplied by some constant number which is independent
of Ki,..., Kny1, the process of eliminating every element in C” from g.(7,.,.) is iden-
tical to the straightening algorithm we have just presented. Since C = L-lj;’:zl C*, and
by Lemma 6.8, the elements in C form a complete list of 7 semi-standard generalized

tableaux needed to straighten g¢,(7,.,.), we have our result.

We are now in a position to examine Case (3). Recall,

9(E1;T) =Kjg7r(7;1) + Z g,,(Ef}'T).
k=2,....p
I=1,...,mg
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By Theorem 6.1,

n+1 fr
Ekl TS T rs
where each M,, is a constant number 1ndependent from Ki,...,K,y1.
Therefore,
n+1 fr
7r E r
I HET = 3 (T

I=1,..., 7k

where C,; is a constant number independent of K1, ..., K, ;. Notice that we changed
the coefficients from M, to C,,, as the coefficients M,; came from Theorem 6.1, which

corresponded to straightening an arbitrary but fixed g,r(Ekl'T)

Combining these results

9:(ByyT) = Kjgu(T}) + D) g:(EST)

k=2,...p
1=1,...,m
n+1 fr
Jgr + ZZK 11 rsgw(T )
r=2 s=1
where for r =2,...,n+1and s =1,..., f,, Cys is a constant number independent

of Kl, . -aKn+1'

6.6 Summary

We have now achieved our goal for this chapter and summarize our results below.

Case (1): For arbitrary 1 <i<n+1,

Eilg‘ll'(T) = Klgﬂ(ﬁ)a

Notice when i =1 T = T.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Case (2): For1<i,j <n+1,

Eijgw(T) Jg‘/r + Z crg7r

where each ¢, is a constant number independent of K 1,---y Kny1, and each 7, € S;(N)

having top row identical to top row of 7.

Case (3): For1<j<n+1,

n+1 fr
Eljgw(T) Kjgw + ZZ K + 1 rsg'lr T )
r=2 s=1
where each C,, is a constant number independent of Ki,..., K, 1, and each T, €

S;(N) which we defined explicitly in section 6.3.

Remark 6.5. Let g,(7) be a basis vector for the A,-module g,(®"V) where T €
Sx(N) having top row | K, ’ -+| K41 | with each K; is chosen sufficiently large. Let
Si,...,Se be the Serre relations for A,, defined in definition 2.33. The Serre relations

are sums and differences of monomials in the operators E;;. Therefore, forr =1,...,6

P(Ky,...,Kpt1)

Sy 9:(T) = (Tt
oM =2 = Gmy ™
where for all values of I, P, and @), are polynomials in K3, ..., K,;+; and K; respec-

tively, and 7; € S;(N). In addition, as K; was chosen to be sufficiently large, Q; is a

non-zero polynomial.

7 Realization of non-integral simple torsion free
A,-modules

Recall in our motivating example from section 5 through a complex continuation we
realized all simple torsion free A,-modules of degree one. Following these methods
the goal of this chapter is a realization of all simple torsion free A,-modules of fi-

nite degree having a non-integral central character. As in the case of our motivating
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example we look to the finite dimensional simple highest weight A,-modules as the

framework for our construction.

Recall from section 4.3 we may use tableau formalism to construct finite dimen-
sional simple highest weight A,-modules. For # = {m > --- > w,} € [[(N). Set
A= Z?zl m;w; with m; = m; — myy for s = 1,...,n and m,4; = m,4;. By The-
orem 4.2, g,(®"V) is isomorphic to the finite dimensional simple A,-module V()
with highest weight A. In addition we know that g,(®"V) has highest weight vector
gr(T*) where T is the 7 semi-standard generalized tableau having i** row filled en-
tirely with the value i fori = 1,...,n+1. Lastly by Theorem 4.1 {g.(T) | T € S:(N)}
is a basis for g,(®V).

We wish to construct a torsion free A,-module having central character

Xaw, +maws+-+mnw, Where a € C\Z and m; € Zyo for i = 2,...,n. Fix 7 = {my >
<« >m,} € [[(M) and let m; € Zsg such that m; > 75 and 7, is variable. First fix a
vector @ = (ai,...,an41) € C**! where each a; € C\ Z such that 37" a; — m = a.
We introduce a formal symbol v(@+ M, T) , where M = (M, ..., M,,,) € Z™*! with
S M; = 0 and T € S;(M) with no index having a value of 1. We are viewing
v(a+ M, ’7') as corresponding to a core basis vector. Formally define the vector space
V (@, 7) to have basis

n+1l
B={v@+M,T)| MeZ"" ) M;=0and T € S;(M)}.

=1
Define the action of the operators E;; on V(a,7) analogous to it’s action on the
core basis vectors, which we outlined in section 6.6. For 1 <7 < n+1, e; will denote
the n+ 1-tuple having a zero in every co-ordinate other then the i** co-ordinate, which

contains the value 1.
l. For1<i<n+1
Egw(a+M,T) = (ai + M; + k)v(@a+ M, T)
where k; is equal to the number of #’s occurring in T.
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2. Forl<i<n+1

—~ — ~

Eqgv@+M,T)= (a1 + M)v(@a+M+e —e,T).

3. Forl<ij<n+1

Egv@+M,T) = (aj + Mj)v(@a+M+e;—e;, )+ Y_coa+M,T,)

where each 7, € Si(M), and the coefficients ¢, correspond to the coefficients

which occur in case (2) of section 6.6

4. Forl<j<n+1

o~ -~

Eyjv@a+M,T)=(a; + Mj)v(@a+ M +e; —e;,T)
n+l fr

a, + M, ~
+§;a1+M1 Crov(@+ M + e, — ej, Trs)

where each T,, € Si(M) was defined explicitly in section 6.3, and the coefficients

C,s are the coefficients which occur in case (3) of section 6.6.

Remark 7.1. It is important that the reader notice that this action is identical to
the action we outlined in section 6.6 except each Kj; is substituted with an a; + M;.
Also the basis vectors for V (@, #) are weight vectors for the Cartan subalgebra # of
A,. The weight of each v(a + M, T) is

n

Z(ai —Qiy1 +M; — My + ki — kip1)w;

i=1
where k; is the number of ¢’s occurring in 7. Notice since 7 does not contain an

index with a value of 1, we must have k, = 0.

V(a,7) has weight lattice contained in
(a1 — az — mp)w1 + Z(ai = i1+ T — Tig)wi + Q.
i=2
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Lemma 7.1. Let a € C\ Z and fix @ = (ay,...,an41) € C**! with each a; € C\ Z

such that Z?:ll a; — w3 = a. Then V (@, #) is an A,-module.

Proof. Let S, ..., S be a complete list of Serre relations for A,, defined in definition
2.33. Since the action of the operators E;; on V(a,#) were defined analogously to
the action of the operators E;; on the core basis vectors coming out of our finite

dimensional modules ¢,(®"V) by Remark 6.5

Pl(a'l + M17 Y S e Mn+1)
Qi(ay + M)

Sw(a+ ,7)=3" v(a+ M, T)

1
where for each index of | we have '?l € 8z(M), P, is a polynomial in n + 1 variables
evaluated at a; + My, . .., an41+ M, 41 and Q) is a polynomial in one variable evaluated
at a;+ M;. Observe that the roots of the polynomial @, are all integers and since a; €

C\ Z we have that Q;(a; + M;) # 0 for all [. Furthermore, each P’(“‘Mén;'l’i"ﬂz; Mns1)

J10:TN ¢ L
corresponds to W occurring in

_ _ P(Ky, -, Kng)
S9r(T) = 2 =Gy

Since each g,(7") are basis vectors for some A,-module g, ("))

9x(T1).

Sig(T)=0fori=1,...,6.

Therefore for every [,
P(Ky,...,Kpy1) =0forall Ky,..., Ky, larger then K.
By Lemma 5.2
Piay+ My, ... 6041 + Mpyq) =0foralla; + My, ...,an41 + Mpy1 in C\ Z.

Therefore,
Sw(a+ M, T)=0

for all basis vectors v(a + M, ’i’) of V(a,7) and all Serre relations S, ...,Ss. By the

)
comment proceeding Theorem 2.7, V(a, 7) is an A,-module. a
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Lemma 7.2. Let a € C\Z and fixa@ = (ay, ..., an41) € C**! with each a; € C\Z such
that 37 a; — m, = a. The degree of V/(a, ) is equal to the dimension of the finite

dimensional simple A,_;-module having highest weight A = Y 7" ,(7; — mig1)wi—1.

Proof. Let u be a weight for A,. Let v(@ + M ,'i’) € V, with T having content
{2% .. (n+ 1)k}

Therefore, v(a + M, T) has weight
> (@i — apa + M; = Migy + ki — kia)wi
=1

Forany 7' € S#(M) with content {22, ..., (n+1)+1}, let M’ = M+(0, ky, ..., kny1)+
(0,—la,...,—lp+1). Then v(a + M’,?/’) € V,. Also for a fixed T e Sz (M) there cor-
responds a unique choice for M such that v(a + M, i’) isin V.

Therefore, the dimension of V), is equal to the number of ways a Young frame with
underlying partition 7 can be filled with the values 2,... ,n + 1 in semi-standard
fashion. However, this is equal to the number of ways a Young frame with under-
lying partition 7 can be filled with the values 1, ..., n in semi-standard fashion. By
Theorem 4.1 this is the dimension of V(Y ,(m; — miy1)wi—1), the finite dimensional

simple A,_;-module of highest weight > " (7, — mit1)wi—1.

As V,, was arbitrarily chosen we have shown that the dimension of each weight space

is equal to the dimension of V(\) and we have our result. ]

Lemma 7.3. Fix # = {my > -+ > m,} € [[(M). Let a € C\Z and fix a =
(a1, ...,aQn41) € C"! with each a; € C\ Z such that 27:11 a; — 72 = a. Then V(a,7)

(2

has central character x, where A = aw; + > 1, (7 — mig1)w;.

Proof. Let 7 = {m > --- > m,} with m > m, be variable and 7 is fixed. Let
{hy,...,hn} be a basis for the Cartan subalgebra H of A,. We want to show that

the central character of V (@, #) is xx. First consider g,(®"V), the finite dimensional
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simple A,-module of highest weight 1 = Y"1 (m;~miy1)wi. gx(®"V) admits a central
character x,. By definition, for any v € g,(®"V) and any z € Z(U(A,))

z.v = xu(2)v.

In particular this is true for the maximal vector vt € g,(®"VV). Take a z =

S RE - hE e Z(U(Ay)), where py € Zsg and hy € {hy, ..., ha}.

2ot = plhu)P - p(ha)Priot = xu(2)ot
l

Therefore for z € Z(U(A,))
xu(2) = Zﬂ(hu)p” T
!
= Z(m — o) (T — Tpg1)P
!

n+1

- Z(Z Ki — )P (my — m3)P2 - - - (T — Ty )P
1=l

As 7= {my > .- > mp} is fixed and we are varying m = Z?:ll K;

n+1

Xu(2) = fz(Z K;)

where f, is a polynomial in the variable EZH'II K;.

By Schur Lemma 3.3

n+1
U= fz(z K)v forallv € g.(@VV)
i=1
In particular for all core basis vectors v in the finite dimensional modules g,(®@"V)
n+1

zZ0 = fz(z K;)v.
i=1
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The action of z on the basis vectors in V(a, 7) were defined identically to it’s action on
the core basis vectors in our finite dimensional modules g,(®"V), with the exception

that each K is substituted with a a; + M;. Therefore

zv=f,(a+m)v forallveV(a,r)

1
where Y1 a; — ™ = a.

Therefore V' (a, ) has central character x) where A = aw; + Z?:; (75 — Tig1)wie

Lemma 7.4. Fix # = {my > --- > m,} € [[(M). Let a € C\Z and fix a =
(a1,...,a,41) € C"*! with each a; € C\ Z such that Z?:ll a; —m = a. Let A =
awy + Y o o(mi — Tiy1)w;. The central character x, of V(a, ) is non-integral.

Proof. Suppose the sequence associated with A = aw;y + )Y (7 — mipq1)w; is m(A) =

(m1(A), ..., mpy1(A). Then fori=1,... ,n, (A+ p)}(ha,) = mi(X) — mip1(A).
m(A) is non-integral provided there exists indices 7, & such that m;(X) — my(\) € Z.

Since

mi(A) —me(X) =a+1¢7Z,

X is a non-integral central character.

O

Lemma 7.5. Let # = {my > --- > 7m,} € [[(M). Let a € C\ Z and fix a =
(a1, ...,an+1) € C"*! with each a; € C\ Z such that ZZ‘:]] a; — ™ = a. The operator

E;; acts injectively on V(a, 7).

Proof. It suffices to show that E;; acts injectively on an arbitrary weight space of
V(a, 7). Recall, in the proof of Lemma 7.2, for any weight u, the weight space V,
has a basis labelled by the elements 7 € S3(M). That is, for each 7 € S#(M) there
exists a unique Mjz such that v(a + 1\7!7:,’?) eV, and {v(a + MT’%) | T € Sx(M)}
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is a basis of V,.

For any basis vector v(a + Mz, T) of |

o~

Ejlv(('z + Mf" :j;) = (a1 + Ml)’l}(C_L -+ Mi— + €; — €, T)
Therefore, for an arbitrary non-zero linear combination of elements in V,,, say

Zf?es;r(M) czv(a + Mz, i—)

Ej Z civ(d+1\7l~,'i') = Z cz(a1 + ( _;)1)v(('1+1\7[%+ej—el,’i').
TeSz(M) TEeSz(M)
AS Y Fes.om czv(a+ Mz, 7T) is non-zero, there exists a 7 € Sz(M) such that cz # 0.

Since (a1 + (M3z)1) # 0 for all Te S#(M), it follows that

Epn Y cpv(@+ Mz, T)= Y cglar+ (Mph)v(@a+ Mz +e;— e, T) #0.

TeS7(M) TeSz(M)
As {v(a+ Mz +e;—e, T)| T € S:(M)} is a basis for the weight space Vi—a» Where
a = ¢; — €; was defined in section 2.5, Ej; acts injectively on V,.

O

Lemma 7.6. Let # = {my > --- > m,} € [[(M). Let a € C\ Z and fix a =
(a1,...,an41) € C**! with each a; € C\ Z such that Z?:ll a; — 7 = a. Then V(a, )

is torsion free and simple.

Proof. By Lemma 7.2, V(a, ) has bounded weight spaces, by construction, V(a, %)
is infinite dimensional, and by Remark 7.1 the weights of V (@, #) are contained in
exactly one (-coset, and therefore V (G, 7) is admissible. By Lemma 3.1, V(a,#)
has finite length. By Theorem 3.1 a composition series exists and therefore V(a, 7)
contains a simple submodule V'. V' is a submodule of V (@, #), and by Lemma 7.5,
V' is infinite dimensional, and therefore is admissible. V' has central character
X, where v = aw; + zn:(ﬂ'i — Tit1)Wi
i=2
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and weight lattice contained in
(a1 — ag — 71'2)0.)1 + Z(ai — Qi1 + T — 7ri+1)wi + Q
=2
Fix @ = (a},...,al,,) € C"* with each a} € C\ Z. Recall from Example 3.1, M(a’)
denotes a simple torsion free A,-module of degree one. Let m; € Z with m; > 7. By

Theorem 1.15 part 3 3]

n

M@@)® V(Z(TH — Mig1)Ws)

i=1
is torsion free. By Theorem 3.4 [3], M(a') ® V(31 (m — mi41)w;) contains a simple

torsion free submodule W which has central character

n+1
X Where p = za +7r1—772w1+z Ty — Tig1)W

and weight lattice
n
Z(‘é — @iy + T = Ti)wi + Q.
i=1

Notice by letting a} = a3 — m and a; = a; for ¢ > 1, W and V' are both
simple admissible modules having the same central character and weights contained
Yoiglal —aj, +m — miy1)w; + Q. The semi-simple irreducible coherent families
constructed from W and V' both have the same central character and by Remark 3.6
these coherent families are isomorphic and hence W and V' are isomorphic. Therefore

V' is a simple torsion free A,-module having central character

X, where v = awy + Z(ﬂ', — Mi1)W;
=2
and weight lattice

(a1 — az — m)wy + Z(ai — Qit1 + M — Tipwi + Q.
i=2
By Theorem 3.6 the degree of V' is equal to the dimension of the finite dimensional
A, _1-module having highest weight 21_2 — Tiy1)wi—1. By Lemma 7.2 this is also
the degree of V(a, 7). Therefore V(a,#) = V' which implies V (@, #) is simple and

torsion free. O
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We have now arrived at the goal of our work. We have a realization of any sim-
ple torsion free A,-module having finite degree and a non-integral central character.
Moreover, this realization was achieved by working exclusively with finite dimensional

A,-modules. We present this realization in the next Theorem.

Theorem 7.1. (Main Theorem) Let a € C\Z and m; € Z»; for i = 2,...,n. A
simple torsion free A,-module of finite degree having a non-integral central character

Xaw+¥ 7, mew; Can be realized in the following manner.

Fix 7 = {my > -+ > m,} € [[(M) such that m; = m; — w31 for ¢ = 2,... n. Fix

a=(a,---,ans1) € C**! with each a; € C\ Z such that Z:.’:ll a; — Ty = a.

Let V(a, %) be the vector space with basis

B={v@a+M,T)|MezZ"*", nZHMi =0and T € Sx(M)}.
i=1
Define the action of the root vectors E;; on basis vectors of V' (a, 7) to be
1. For1<i<n+1
Ew(@a+ M, T) = (a;i + M; + k)v(@a+ M, T)
where k; is equal to the number of ¢’s occurring in T.
2. Forl<i<n+1
Eqv(@+ M, T) = (a; + M)v(@+ M +e; — e, 7).
3. Forl1<i,j<n+1

Ejv(a+ M,T)= (aj + M)v(@+ M +e; — ej,’i') + Zc,«u(&—i— M,T,)

where each 7, € Sz(M), and the coefficients ¢, correspond to the coefficients

which occur in case (2) of section 6.6
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4. Forl<j<n+1

Eyjv(a + M,T)= (a; + My)v(@a+ M +e; — e;, T)

a, + M, _ _ ~
+ Z Z mcmv(a + M+ €r — €5, 7;3)
where each 7,, € S7(M) was defined explicitly in section 6.3, and the coefficients

C,s are the coefficients which occur in case (3) of section 6.6.

Then V (@, ) is a simple torsion free A,-module having a non-integral central charac-
ter Xaw;+3r, mw; With degree equal to the dimension of the finite dimensional An_q

module having highest weight >, mw;_1.

Proof. By Lemma 7.1 and Lemma 7.6, V(@, 7) is a simple torsion free A,-module.

By Lemma 7.3 and Lemma 7.4, V(a, 7) has a non-integral central character

Xﬂw1+2?=z(7l'i—7fi+1)wi = XW1+E?=2 miws*

By Lemma 7.2, the degree of V (a, 7) is equal to the dimension of the finite dimensional

Ap—1 module having highest weight >, m,w;_1. a

8 Future Research

Mathieu [10] classified all simple torsion free A,-modules having finite degree. In par-
ticular, Mathieu partitioned all such modules into 3 types: integral regular, singular
integral and non-integral regular. In Theorem 7.1, we gave a realization and explicitly
described a basis and a module action for the simple torsion free A,-modules in the
non-integral regular case. We believe that for an appropriate choice of @ € C**!, by
using the module constructed in this work, a complete realization with an explicit
basis and module action described will be obtained for the singular integral type.
However, for the integral regular case, a realization using a tableau formalism is
somewhat more problematic. We can find an @ € C™**! such that the module V(a, 7)
admits an integral regular central character. However, in this situation V(a, 7) is not

simple. The problem here is to determine a decomposition of V (@, 7).
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