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Abstract

The design, fabrication, and mounting scheme o f a novel bio-mechanically driven MEMS 

power generator for implantable medical devices is presented and optimized for use in 

cardiac pacemakers. In the system, an asymmetrical planar rotor embedded with 

microfabricated NdFeB altemate-polarity permanent magnets oscillates around a central 

shaft due to the thorax motion during breathing to induce a voltage in two 

microfabricated planar copper coils embedded in two stators. The microgenerator does 

not need any external supply o f fluid, as necessary in some other types of 

microgenerators. Two different rotor geometries: a semicircular one and a circular one 

with a destabilizer have been investigated. With a 1 x 1 mm2 rotor footprint area the 

semicircular rotor microgenerator is capable o f generating 397 pW RMS power with 1.0 

V open circuit RMS voltage per stator. The circular rotor microgenerator has a rotor 

footprint area o f 3 x 3 mm2 and can generate 59.73 mW RMS power with 9.0 V open 

circuit RMS voltage per stator. The generated voltage and power arc sufficient to meet 

the power requirements o f a typical cardiac pacemaker. Scaled or stacked versions o f the 

microgenerator can be used to satisfy power requirements o f other medical devices 

exploiting other biomechanical actuation sources, e.g. head turning. The generator 

occupies a much smaller volume compared to existing cardiac pacemaker batteries and 

offers substantially longer life. This can aid in developing smaller pacemakers and in 

minimizing the frequency and associated risk and cost of invasive surgeries necessary for 

replacement of the implant once its battery has been exhausted.
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CHAPTER 1
Introduction

“The fin ite  supply o f energy is the primary drawback to battery power. Moreover, there 

are many situations where replacement or recharging o f  batteries is inconvenient or 

impossible. Examples include devices implanted in the human body, 

e.g. pacemakers and cochlear implants, and devices intended fo r  long duration. ”

-D avid P. Arnold [17]

1.1 Problem Identification

Historically the service life of fully implantable autonomous therapeutic devices has been 

restricted to the energy content o f their batteries, which have to be recharged periodically 

by means o f an external electromagnetic induction device or have to be replaced through 

a surgical procedure [1], The effective life of the lithium iodine batteries used in modem 

cardiac pacemakers has been estimated to be 5 to 7 years after implantation [2]. This 

effective life span is substantially shorter than the calculated 8 to 11 years lifetime [3-4] 

o f typical pacemakers due to several factors, e.g. lifestyle, medical conditions, type of 

pacemaker, device settings like pacing rate, pulse amplitude/duration, and the self

discharge phenomenon present in all electrochemical cell batteries. Inevitably, after the 

battery has been exhausted, a new surgery must be carried out to replace the implant. 

Highly sophisticated microelectronic modules, such as a Demand Pulse Generator (DPG)
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and a sensor subsystem are used in advanced pacemakers to monitor the operating 

conditions o f the pacemaker and physical activity of the recipient and then change the 

shape and frequency o f the output pulses accordingly, aiming to increase the therapeutic 

performance of the pacemaker and make more efficient utilization o f the energy in the 

battery to extend its lifetime. Although the electronic modules o f the pacemaker have 

been successfully miniaturized, the volume of a typical pacemaker battery ranges from 5 

to 8 cm3, which is nearly half the volume o f the entire pacemaker system [4], The weight 

o f pacemaker batteries ranges from 12.5 to 15.5 grams and their dimensions average 49 

mm x 46 mm x 6 mm [4], For a device that is to be implanted, a minimum size and 

weight are desirable in order to prevent excessive strain, irritation and swelling of 

surrounding tissues, conditions that, if not controlled properly, could lead to rejection of 

the implant. The risk, cost and mental and physical pain associated with recurring 

surgeries, the use o f toxic substances in batteries, along with the need for less invasive 

smaller size longer life implantable medical devices, make it necessary to seek for 

alternative energy sources for cardiac pacemakers.

1.2 Goals

The human body can be conceived as a continuous source o f energy that exists in the 

form o f a complex combination o f quasi-periodic mechanical vibrations and random 

movements due to voluntary and involuntary contraction o f the muscles in outer body 

parts and internal organs. A few examples o f this physiological mechanical activity are 

the overall skeletal muscle contractions, walking activity, wrist/forearm rotation, head 

turning, chewing/talking, eye turning, eyelids flickering, facial expression, the heartbeat, 

expansion-contraction o f lungs and diaphragm, stomach motion, esophagus and intestine 

contractive waves, and the activity o f several internal muscles in permanent motion, even 

during sleep. Exploiting the capabilities o f today’s MEMS and microfabrication 

technologies, a generator that utilizes the kinetic energy supplied by the body organs can 

be built to produce sufficient electrical power to drive a variety o f electronic medical 

implants, like a cardiac pacemaker. Said generator can replace existing batteries used in 

biomedical implants and provide a maintenance-free, non-toxic, long lasting energy

11
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source o f higher power per unit volume at a lower cost, and substantially reduce the 

recurrence o f implant replacement surgeries due to battery exhaust.

Motivated by this philosophical thinking, the main goal o f this research work is to 

develop a microsized power generator capable o f delivering continuous energy to 

implantable medical devices, cardiac pacemakers in particular, in order to overcome the 

problem of limited energy content o f conventional batteries. The approach undertaken to 

achieve this goal is to actively convert the kinetic energy present in the human body in 

the form of physiological motion o f the body organs, into electricity through the use o f an 

electromagnetic induction micropower generator built with the MEMS technology.

The work o f development in this thesis was fractioned into the following specific goals:

1. Definition o f the fundamental structure and components o f a microgenerator capable 

to generate electrical power from the movements present in the human body, clearly 

defining its operating principle and identifying key features over other types of 

microgenerators that could potentially make it more suitable for biomedical implant 

applications.

2. Identification o f the possible application areas of the microgenerator and selection of 

a top-priority target device. Then Investigation of the power requirements o f the 

selected target device.

3. Design o f the microgenerator to meet the power requirements o f the target device, by 

firstly identifying an analytical model that allows predicting the behavior o f the 

microgenerator and optimizing the design parameters to achieve maximum 

performance within the microscale dimensions expected for the device and the 

constraints imposed by the available materials and fabrication technologies.

4. Identification o f the possible variations in the geometry o f the microgenerator or its 

parts as well as the materials and methods that can lead to overcome the main design 

challenges and to meet the power requirements of the target device.

5. Verification o f the design by means o f computer simulation. Then the establishment 

o f the final design specifications that will guide the fabrication process.

12
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6. On the base of the final design specifications, the elaboration o f an industry standard 

fabrication process table for the physical construction o f the device. Then verification 

o f the process by means o f computer simulation.

7. Definition o f a mounting and actuation scheme, as well as a suitable packaging, that 

enable the integration of the device with the circuitry and functional modules o f the 

target device into the target environment.

1.3 Background

1.3.1 Energy Storage Alternatives for Biomedical Implants

Two most prominent energy storage alternatives for biomedical implants are rechargeable 

batteries with extended number o f charge-discharge cycles and miniature nuclear 

batteries [5-7]. Energy in rechargeable batteries is restored by means o f an onboard 

antenna-rectifier-filter system that collects energy from the electromagnetic field o f a 

nearby antenna placed outside the human body [4-5], A recipient o f an implant that uses 

such a power supply system wilt have to permanently carry a battery charger and be 

aware o f the charge level of the battery, that sooner or later will have to be replaced via 

surgical procedure, since the battery has a finite ability to be recharged. In [6], a 

microfabricated solid state rechargeable battery has been reported that uses an amorphous 

vanadium pentaoxide (aVaOs) cathode, an amorphous lithium phosphorus oxynitride 

(called Lipon) electrolyte, and a lithium anode. Though the fabrication o f the battery is 

simple, the battery exhibits a low current density (<100 pA/cm2) that is not sufficient to 

drive devices such as a cardiac pacemaker. Long-life nuclear batteries employ the 

emissions o f charged particles from the natural decay process o f a radioactive isotope to 

generate electricity by a variety of mechanisms, like thermal conversion, direct charging, 

optoelectric conversion, etc. In [7], a MEMS based nuclear battery has been reported. 

The peak output power o f this device (with a 64 microcurie source 63-Ni in liquid form) 

is in the order o f 0.069 nW, which corresponds to a device efficiency o f approximately 

1.0%, which falls very short o f what is necessary for the operation of most implantable 

devices. However, further research is going on to improve the power rating o f the device. 

Additionally, both the rechargeable and the nuclear batteries contain hazardous,

13
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expensive or difficult-to-obtain materials. Other linked setbacks, like the risks o f 

corrosion, leakage, production o f hydrogen as a by-product or radioactive contamination 

have prevented these batteries from being widely used to power implantable medical 

devices, especially cardiac pacemakers.

1.3.2 State of the Art in Microscale Power Generation

The MEMS technology offers the advantage o f realizing microsizcd devices such as 

sensors, actuators, resonators, microfluidic and micro-optic devices that can be batch 

fabricated. In recent years some design examples [8-11] have been published where 

miniature or microsized electromagnetic induction power generators have been created, 

some in MEMS technology, to enable microscale power generation. In [8], an intemal- 

combustion tubular micro-engine has been presented where a piston reciprocates between 

two opposite combustion chambers due to the pressure generated by the expansion o f gas 

produced by the ignition of a fuel-oxidant-catalyst mixture. The piston, containing a 

permanent magnet, induces a voltage across a coil that is wound around the tubular 

engine. With a stroke o f 60 to 70 mm and 8 mm in diameter, the device is capable to 

generate 20 W RMS power. An axial flux permanent magnet (AFPM) brushless 

microgenerator has been reported in [9] where an external gas flow spins a microturbine, 

which in turn causes a permanent magnet embedded SU-8 polymer rotor to rotate 

between two silicon stators embedded with electroplated planar copper coils. To reduce 

friction, the generator employs 1 x 1 x 3  mm conventional ball bearings. With a diameter 

o f 7.5 mm, the device is capable o f producing 1.1 mW RMS power at 1.19 Vpp per stator 

when the rotor is driven at a rotational speed o f 30,000 RPM.

A variant o f the AFPM based power generation in microscale is reported in [10-11] 

where an external actuating force is mechanically transmitted to the rotor through a 

central shaft. The rotor consists o f a 500 pm thick single-piece annular multi-pole 

permanent magnet and a back-iron piece that concentrates the magnetic flux in the rotor- 

stator airgap. The stator has a three-phase multilayer planar coil. In a housing o f 11.5 mm 

diameter, the device is capable o f generating 2.5 W RMS power with 1.0 Vpp open 

circuit voltage at a rotational speed o f 120,000 RPM.

14
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Electromagnetic induction and piezoelectric transduction have also been exploited to 

create microsized power generators that rely on the resonant characteristics o f a mass- 

spring-damper system to generate electricity, as reported in [12-15]. These devices yield 

maximum power when externally vibrating forces match the resonant frequency o f the 

system. In vibration-based electromagnetic induction generators, like those presented in 

[12-14], an external vibration causes a permanent magnet to oscillate through a 

conductor coil, thereby inducing a voltage across its terminals. In vibration-based 

piezoelectric generators, like that presented in [15], an external vibration causes a proof 

mass to oscillate and stress a flexible structure that has been coated with layers of 

piezoelectric material, thereby straining the piezoelectric film and causing an electric 

charge differential to appear on the film surface. A comprehensive review o f vibration- 

powered microgenerators is available in [16].

Micropower generators that require injection o f a driving fluid have necessarily a flow 

output. Miniature combustion engines require fuel and produce gaseous emissions, as 

well as excessive noise and heat. Hence, generators like these cannot be packaged in a 

sealed container, similarly to the generators that have their rotor mechanically coupled to 

an external source o f torque. As sealing is not possible in these devices, they cannot be 

used to power implantable medical devices, where complete isolation between the 

implant’s inner parts and the live tissue is mandatory to prevent rejection.

On the other hand, though vibration-powered generators can be encapsulated and yield 

enough power to energize most biomedical implants, including pacemakers, their life

span is severely compromised due to the fatigue failure o f their vibrational springs. The 

fatigue failure occurs due to cyclic strain that flexible structures suffer over an extended 

period o f operation. Furthermore, vibration-powered generators must be exposed to 

sustained vibrations at their specific resonant frequency for them to output maximum 

power; however, such conditions do not naturally exist in the human body where only 

low  frequency quasi-periodic and random mechanical movements are present. These 

limitations cancel out the possibility o f using this kind of devices to replace conventional 

batteries in long-duration biomedical implants, such as cardiac pacemakers.
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1.3.3 Electromagnetic Induction Micropower Generators

Electromagnetic induction permanent magnet microgenerators are o f special interest due 

to their simple operation mode, their potentially high power density and efficiency [17]. 

Nowadays however, batch manufacturability, further miniaturization and enhancement o f 

the total power output, power density and efficiency o f these microgenerators face two 

major challenges: the implementation o f physically small permanent magnets with strong 

magnetic properties, i.e. high remanence (Br), high coercivity (Hc) and high energy 

product (BHmax); and the development o f micro scale low-friction bearings. In [17], 

miniature and microscale permanent magnet power generators developed over the last 

decade are classified into three groups:

Rotational generators -  Designed for continuous rotational motion under a steady 

driving torque provided by a fluid-powered microturbine or heat engine. A conceptual 

drawing of such generator is shown in figure la. They often operate at high rotational 

velocities, due to the small diameter o f their rotor, thus enabling a high rate o f change of 

magnetic flux per unit time. They can produce power in the order o f tens o f watts. 

Oscillatory generators -  A conceptual drawing o f such generator is shown in figure lb. 

They are driven by forced environmental vibrations in resonance mode and rely on small 

relative displacements between a permanent magnet and a coil. Operate at lower 

electrical frequencies and lower power densities than rotational generators. The basic 

design utilizes a mass-spring-damper system and maximum power is achieved at the 

mechanical resonant frequency. In the case o f MEMS oscillatory generators said resonant 

frequency is well above the range of naturally occurring vibrations (1 Hz to 1 kHz).

Hybrid generators -  Shown in figure lc  this type of generators is intended to convert 

short oscillatory mechanical motion into rotational motion (from here the term “hybrid”) 

using an unbalanced or eccentric rotor that will rotate under forced acceleration o f the 

pivot point. Depending on the operating conditions the rotation may be continuous, 

oscillatory or chaotic and the output power waveform will have a shape accordingly. 

These devices have been developed on the need for non-resonant generators that respond 

to linear vibrations in a broad spectrum of frequencies.
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Figure 1. Three types of electromagnetic induction microgenerators [17]. 

(a) Rotational generators, (b) Oscillatory generators, (c) Hybrid generators.
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Though a few devices, like that in [8], do not belong to any o f these categories, the above 

classification can be considered comprehensive. The author o f [17] cites 14 small-scale 

electromagnetic induction power generation systems pertaining to the rotational category 

and 19 in the oscillatory category. Distinctive examples in these two categories are the 

devices o f [9] and [14], respectively. In the category o f hybrid generators four systems 

are cited: three o f them are designed to power Automatic Generating System (AGS) 

wristwatches [18-23], They have a non-magnetic oscillating weight that occupies the rear 

portion o f the watch and oscillates due to the movements o f the wearer’s wrist. The 

oscillating weight can either drive a gear train that increases rotational speed by hundred 

times and spins a small permanent magnet generator [18-21], or wind a circular spring 

that when reaches a maximum torque is released, starting a millimeter-scale generator 

through a gear train [22-23]. The fourth hybrid system [24] cited in [17], consists o f a 

pendulum, formed by two permanent magnets in opposite polarities, that oscillates freely 

around a shaft across a set o f six round-shape conductor coils accommodated in 

circumference beneath the rotation plane o f the pendulum. In a computer simulation, this 

hybrid generator is placed in horizontal or vertical position and exposed to radial short- 

distance continuous vibration, seeking to cause a self-sustained rotational movement of 

the pendulum, thereby producing continuous output of electricity. The aim o f the device 

is to convert small amplitude linear vibration into rotary motion, not stochastic 

movement, like the non-resonant generators used in watch industry. Results o f simulation 

o f millimeter-scale and microscale devices in [24] suggest the feasibility to produce a 

MEMS generator o f this design with a pendulum of 440 pm length. In a 1.5 cm3 

prototype, built with conventional windings and two millimeter-size NdFeB magnets 

mounted on a pendulum, a vibration o f 75 pm amplitude at 80 Hz is capable to induce 

synchronous rotation at 4800 RPM and generate 3 mW power.

1.3.4 In-body Micropower Generation

In an attempt to substitute batteries in medical implants for other more reliable long-term 

power sources, the physical or chemical conversion of different forms o f energy present 

in the human body into electricity has been explored since the 1960’s [25],
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The authors of [25] presented a macro scale handmade variable capacitance electrostatic 

power generator to be driven by the contraction of the heart ventricles during the 

heartbeat, aiming to produce power for a cardiac pacemaker. The feasibility o f the 

generator was demonstrated in a vibrating table that emulated the motion o f the left 

ventricular wall following in real-time the readings o f an accelerometer attached to a live 

canine heart. The generated power was supplied to a cardiac pacemaker, which then 

stimulated the animal heart. A mean power o f 36pW was generated, which was enough to 

power the cardiac pacemaker for continuous generation and pacing for more than two 

hours. A simple variable-frequency variable-width pulse oscillator circuit made with off- 

the-shelf CMOS inverters was used as a constant-rate pacing cardiac pacemaker for the 

experiment. The electrostatic generator consists of an enlarged surface area variable 

capacitor with one o f its plates fixed and the other movable and attached to a mass-spring 

system to form a linear resonant mechanism tuned to a harmonic component o f the 

heartbeat in the range o f 1 to 2 Hz, such that the capacitance o f the variable capacitor 

changes by an external vibrating force and maximum power is attained at resonance. The 

total spring constant o f the system was calculated to be 1100 N/m, and the total mass 

suspended by the steel springs was estimated to be 780 grams for a resonant frequency of 

6.0Hz. The generator also requires a starting power supply, i.e. a battery, to charge the 

variable capacitor with an initial DC voltage only once at the very beginning o f power 

generation.

The authors o f [25] envisioned the MEMS technology as a means to produce a variable 

capacitor from a microfabricated comb-drive to reduce the size o f the electrostatic 

generator. However some technical challenges place difficulties to the miniaturization 

and practical implementation of this generator: due to the small masses and relatively 

high spring constants of MEMS components the lowest resonant frequencies that can be 

achieved with a MEMS resonator are well above the range of the heartbeat vibrations; the 

generator requires an initiating power supply, which entails the incorporation o f a battery 

to the system; the mechanical durability o f the variable capacitor, made for the 

experiment o f a honeycomb aluminum-polyester structure, and the fatigue failure o f the 

spring-like flexible structures needed in the resonator are the factors that would determine 

the life span o f a microgenerator of this type made with the MEMS technology.
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In spite o f this, the experiment successfully certifies that the motion o f the heart is 

capable to drive a generator to produce power for a cardiac pacemaker that in turn 

maintains the heart motion, in this way giving raise to a closed loop self-sustained 

permanent power generation-stimulation system.

A bio-thermo-electrical generator has been reported in [26-27] to recharge a battery in an 

implantable device. The design exploits the Seebeck effect in which a voltage is created 

in the presence o f a temperature differential between two junctions o f dissimilar metals or 

semiconductors. The bio-thermal generator is to be implanted directly under the skin in 

order to exploit the temperature difference between the patient’s body and the outer 

environment at opposite faces o f the device. The patient is responsible for providing a 

continuous temperature difference, either putting on or taking off clothing, moving to a 

warmer or colder environment, or topically applying an irritant substance or ice.

In this approach large contact area surfaces are needed in order to assure sufficient heat 

transfer through the device, fact that complicates its miniaturization. Medical conditions 

like fever or stress, or physical activity can negatively affect the temperature differential 

necessary for power generation. As implantation o f the device is to be done under the 

skin, it cannot be integrated to medical devices targeting deep-body organs, like cardiac 

pacemakers. Moreover, as this generator is intended to recharge a battery, the limited 

number o f charge-discharge cycles o f such a battery will eventually result in an early end 

of life o f the implant.

The authors of [28-30] have presented a micropower fuel cell that employs oxygen and 

glucose in the blood stream and other ambient body fluids to produce electricity. In its 

electrochemical process, the fuel cell outputs water and CO2 as byproducts, which the 

human body later on disposes. Capable to generate 100 nW power and 400 mV, the fuel 

cell comprises o f two reaction chambers: the anode chamber and the cathode chamber, 

made o f a biocompatible polymer, separated by a proton exchange membrane (PEM) and 

electrically connected through an external circuit by thin film gold electrodes. The anode 

chamber contains a live culture o f yeast microbes that serve as a biocatalyst for the 

glucose that they employ as a nutrient. As the microbes metabolize glucose, electrons and 

protons are released. Electrons are collected by the anode electrode and then travel 

through an external load to the cathode electrode. In the cathode chamber, potassium
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ferricyanide is used as an oxidant that accepts the electrons, thereby closing the external 

electrical circuit. Simultaneously, electrostatic attraction causes protons in the anode 

chamber to diffuse across the PEM into the cathode chamber, where they recombine with 

oxygen and form water. A nanoporous polycarbonate membrane keeps the yeast 

microbes trapped in the anode chamber but allows circulation o f glucose into the 

chamber and wastes out of it. With pore size o f 10 nm, the membrane also prevents 

antibodies, which size ranges from 10 to 25 nm, from entering the anode chamber, 

isolating it from the immune system.

The power produced by this fuel cell still falls below the power requirements o f most 

medical implants. In the device, the production of electricity will continue as long as the 

yeast microbes survive. However, the delicate habitat inside the anode chamber, in close 

relation to the human organism, may be interfered and endangered by agents such as viral 

infections or medication, that can easily penetrate the porous membrane. Also medical 

conditions like diabetes may take the fuel cell to an unpredictable situation. In case of 

failure to preserve the health of the anode chamber microbes, a violent rejection process 

would be rapidly initiated by the immune system.

1.4 Principal Results

The outcomes of this research work are the following:

1. A MEMS electromagnetic induction axial flux permanent magnet (AFPM) brushless 

power generator has been developed for use in a cardiac pacemaker to replace 

conventional batteries. In the system, an asymmetrical planar rotor embedded with 

microfabricated NdFeB alternate-polarity permanent magnets oscillates around a 

central shaft due to the thorax motion during breathing to induce a voltage in two 

microfabricated planar copper coils embedded in two stators. The microgenerator 

does not need any external supply of fluid, as necessary in some other types of 

microgenerators.

2. Two different rotor geometries: a semicircular one and a circular one with a 

destabilizer have been investigated. With a 1 x 1 mm2 rotor footprint area the 

semicircular rotor microgenerator is capable o f generating 397 pW RMS power with
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1.0 V open circuit RMS voltage per stator. The circular rotor microgcnerator has a 

rotor footprint area o f 3 x 3 mm2 and can generate 59.73 mW RMS power with 9.0 V 

open circuit RMS voltage per stator. The generated voltage and power are sufficient 

to meet the power requirements o f a typical cardiac pacemaker.

3. A novel magnetization method to produce alternate polarity thin film micromagncts 

in close proximity was developed and verified through 3D finite element analysis 

simulation.

4. A nanoparticle based thin film solid lubrication system was identified as a suitable 

means to minimize wear and energy losses due to friction between the rotor and the 

shaft, thereby improving the efficiency and extending the lifetime of the 

microgenerator.

5. A detailed fabrication process sequence was developed to fabricate the device. The 

developed process sequence was verified by simulation using IntelliSuite, an industry 

standard MEMS design and fabrication tool.

6. A biocompatible mounting and actuation system that enables the thorax muscles to 

drive the proposed microgenerator from breathing was presented and designed to 

ensure power generation for the pacemaker even when the recipient is at rest.

1.5 Organization of Thesis

Chapter 2 o f this thesis describes the basic components o f the proposed microgenerator 

and their role in the system, as well as the underlying operating principle and the features 

that make the generator suitable to power medical implants. At the end o f the chapter the 

medical devices that could benefit from using the microgenerator are mentioned. Chapter 

3 explains function o f a pacemaker as a therapeutic device and presents the requirements 

to be met by the microgenerator to supply power to a typical cardiac pacemaker. Then, 

the analytical model that allows estimation o f the output voltage, output power and other 

relevant design parameters of the generator is detailed. The same chapter describes two 

possible rotor geometries that accomplish the operating principle o f the microgenerator. 

The selection of magnetic material, deposition and micropatteming techniques necessary 

for the elaboration o f the thin film permanent magnets in the rotor, as well as the 

magnetization procedure are also explained in this chapter. The features o f the lubrication

22

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



system o f choice are illustrated and finally the simulation results for the output voltage of 

the microgenerator are presented along with final specifications o f two generator designs: 

one with a semicircular rotor and one with a circular rotor. Chapter 4 details the 

microfabrication process steps for the physical construction o f the rotor and the two 

stators o f the microgenerator and the procedure for assembly/encapsulation o f these 

major parts into a single functional unit. Chapter 5 reveals a novel mounting and 

actuation scheme where the microgenerator is submerged in a liquid silicone ambient 

inside a soft silicone rubber capsule that provides biocompatibility between the 

microgenerator and the live tissue, at the same time offering a reliable way to maintain 

the oscillation o f the rotor, hence power generation, when the recipient of the implant is 

at rest or sleeping, only relying on the contraction o f the thorax muscles during breathing. 

The chapter begins with a description o f the proposed mounting and actuation system, 

then introduces the pleural pressure in charge o f driving the microgenerator and ends 

with a description o f the forces that form the mechanical input to the microgenerator in 

the breathing actuation mechanism.

The conclusions section remarks fundamental observations and achievements o f this 

research work and establishes its future direction in two senses: firstly, in the possibility 

of using the developed microgenerator as a power supply o f medical implants other than 

pacemakers exploiting the motion of different organs in the human body; and secondly, 

in the suitability o f integrating MEMS based supercapacitors to the microgenerator 

system as a means o f energy storage in order to guarantee power availability for the 

target biomedical device during periods of inactivity.
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CHAPTER 2
Device Concept

In this chapter the fundamental concept o f the proposed bio-mechanically driven MEMS 

power generator is presented. Its fundamental components, their functions, and operating 

principle are explained. The chapter also covers the features that make the 

microgenerator suitable for medical implantable devices and points out the other possible 

target devices in which the microgenerator might be used as a power supply instead o f a 

conventional battery.

2.1 Fundamental Structure and Components

A simplified single-stator conceptual model o f the proposed MEMS power generator is 

shown in figure 2. The device comprises o f a microfabricated planar asymmetrical rotor 

embedded with high coercivity permanent magnets in alternate polarities; a circular 

cross-section central shaft and a stator embedded with a microfabricated planar square 

cross-section copper coil. A pair o f terminals provides connection o f the planar coil to the 

external electrical load. A thin gap separates the free-to-move rotor from the underneath 

stator, as shown in figure 3.
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Figure 2. A conceptual 3D model of the microgenerator.

Asymmetrical Rotor Shaft

Thin gap Coil tracks

Figure 3. Close-up view of the 3D model of the microgenerator.
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2.2 Operating Principle

The overall movements of the human body and the local movements o f the region where 

the system is implanted provide driving force to the microgenerator. The motion o f the 

thorax during breathing, head turning, mechanical activity of the extremities or even the 

movement of internal organs like the heart or stomach, cause the asymmetrical rotor to 

leave its initial stable position (figure 4a) and change its previous axis orientation (figure 

4b), such that the Earth’s gravitation alone can generate a torque that triggers oscillation 

of the rotor. The rotor oscillates for a certain time (figure 4c) and finally reaches a new 

stable position (figure 4d).

(d)
Figure 4. Operating principle of the microgenerator.

(a) Initial stable position of the rotor, (b) The rotor axis orientation changes on excitation, 
(c) The rotor oscillates after excitation, (d) New stable position of the rotor.

Due to the mechanical oscillation o f the rotor, a changing magnetic axial flux cutting 

through the planar coil induces a voltage across its terminals following Faraday’s Law of 

electromagnetic induction. The kinetic energy acquired by the rotor on excitation 

eventually dissipates and oscillation stops due to a couple of factors: (a) mechanical 

damping, caused by friction between the rotor and the shaft; (b) electromagnetic 

damping, caused by the induced current in the planar coil, that in turn causes a magnetic 

field that opposes the motion o f  the rotor. Once the kinetic energy o f  the rotor has been 

dissipated a new change in the orientation o f the rotation plane is necessary to trigger a 

new energy generation cycle.

The voltage in the planar coil is generated in peaks, which are rectified, filtered, and 

stepped up to an appropriate DC level using microelectronic circuitry. Additionally, the
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energy can be stored in a MEMS fabricated super capacitor to provide stable power to the 

target device even during certain periods o f inactivity.

For its construction, according to the classification in [17], the microgenerator belongs to 

the category of hybrid generators. However is not intended to convert forced linear 

vibrations in the radial direction into continuous rotational motion, though it is capable to 

do this kind o f conversion, but to convert changes in inclination angle (or axis 

orientation) and stochastic motion, which are the predominant situations in the human 

body, into rotational motion.

2.3 Key Features

The presented microgenerator does not carry potentially harmful liquid/gel agents and 

does not produce emissions/byproducts. Since no fluid injection or mechanical shaft 

coupling are necessary to drive its asymmetrical rotor, the microgenerator can be 

packaged as a self-contained unit in a sealed biocompatible encapsulation to eliminate the 

threat o f leakage o f body fluids towards the interior o f the generator and escape of 

materials from it to the organism. Also, the microgenerator can be electromagnetically 

shielded to prevent electromagnetic interference (EMI) over the circuitry o f the target 

device, as well as perturbations o f strong external magnetic fields to the microgenerator 

system. The operation o f the microgenerator is independent o f the corporal temperature 

or the presence o f any substance or live organism in the body ambient.

The microgenerator is much smaller than conventional pacemaker batteries and offers a 

much greater energy per unit volume. The smaller volume o f the device also means a 

smaller amount o f foreign material inside the body, therefore a better tolerance from the 

recipient and lower risk o f rejection. Additionally, the generator does not produce noise 

or excessive heat, and differently from vibration-powered microgenerators, its 

functionality is not restricted to environmental vibrations sustained at a specific resonant 

frequency, because just a change in orientation is enough to drive the device.

Compared to other more complex generators, the presented device can be more reliable 

since it operates with only one movable part. Furthermore, the absence o f elastically 

deformable structures in the system eliminates fatigue failure.
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Figure 5. Stacks and arrays of microgenerators for increased power generation, 

(a) Vertical stacks of microgenerators, (b) Horizontal arrays o f microgenerators.

HHi

Figure 6. Multiple-axes mounting system of the microgenerator.
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These two features can yield a maintenance-free energy source suitable to supply power 

to implantable devices over long periods of time and therefore minimize the frequency of 

invasive surgeries nowadays needed for replacement o f an implant when its battery 

reaches the end o f its lifetime.

The essential simplicity o f the microgenerator allows its batch fabrication using the 

MEMS technology, and a number o f these generators can be arranged vertically or 

horizontally, as shown in figure 5, or scaled up versions can be used to meet higher 

power demands. This modularity also enables the use o f a multiple-axes mounting 

system, as shown in figure 6, to ensure power generation at any physical posture o f the 

patient, e.g. standing or laying down on the back or on a side.

The device can be implanted in any part o f the body, provided that it will be exposed to 

enough motion so as to produce sufficient power for the target device. In the case of 

modem pacemakers, as the person increases his/her physical activity, more energy is 

drawn from the battery, as more pulses have to be applied to the myocardium, hence 

more rapidly the battery exhausts. Conversely, for a pacemaker using the proposed 

microgenerator an increased physical activity o f the patient would mean higher energy 

generation rate and power availability.

2.4 Target Application Areas

The design parameters of the microgenerator can be fine-tuned to meet the power 

requirements of existing electronic medical implants that already face the problem of 

limited energy content o f batteries, e.g. cardiac pacemakers and defibrillators, cerebral 

pacemakers, hydrocephalus pumps, cochlear implants; as well as those implants in the 

stage o f research and development that may greatly benefit from using an in-body 

renewable power source that permits integration and miniaturization, such as artificial 

retinas, ingestible video cameras and smart pills, continuous glucose-monitoring systems, 

muscle stimulators, integrated pain relief and drug delivery systems, in-body blood 

pressure telemetry sensors and mini autonomous surgical robots. The device can serve 

also as a power supply for low power integrated therapeutic devices to be anchored on 

the skin or external organs, such as hearing aid instruments, glucose-level-
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measurement/insulin-liberation patches and other closed-loop physiological function 

controllers which perform blood sampling, analysis/diagnosis and drug delivery.

In this thesis, the design of the microgenerator will be optimized for its application in 

cardiac pacemakers, because the survival and long-term health o f a recipient of one of 

these implants strongly depends on the power supply capacities o f the pacemaker.

Chapter Summary

In this chapter the fundamental components and operating principle o f a bio- 

mechanically driven MEMS power generator to overcome the problem o f limited energy 

content o f batteries in implantable medical devices have been presented, as well as the 

key features that enable the use o f the microgenerator in biomedical implants and the 

possible target devices that could benefit from using the microgenerator. From these 

devices, cardiac pacemakers were chosen as the top-priority target device for which the 

design o f the microgenerator will be optimized.
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CHAPTER 3
Microgenerator Design

Supported on a brief description o f the heart’s excitation and conduction system, this 

chapter explains the role of a pacemaker as a therapeutic implant, then establishes its 

typical power requirements, to be met by the microgenerator, and presents the 

mathematical model that allows predicting the behavior o f the microgenerator and 

optimizing its design parameters. Two possible rotor geometries for the microgenerator 

are proposed to create the instability that enables the Earth’s gravitation to generate the 

driving torque. The selection o f magnetic material, along with the deposition, 

micropatteming and magnetization techniques necessary to produce the thin film 

alternate polarity permanent magnets in the rotor are presented. Then, a nanoparticle 

based lubrication system is proposed to reduce friction between movable parts in the 

microgenerator as a solution to lessen energy losses and extend the lifetime o f the device. 

Finally, simulation results for design verification are presented, as well as the design 

strategy employed to optimize the microgenerator for use in pacemakers and the final 

design specifications are summarized in a table.

3.1 Function of a Pacemaker

The heart is composed o f four major muscles: the right atrium, left atrium, right ventricle 

and left ventricle, redrawn in figure 7 from [1], that make up the myocardium; and 

specialized muscular fibers that can be subdivided into excitation and conduction fibers, 

responsible o f the regular pumping o f the heart [1], Those fibers in turn are classified into 

the following groups: the sinoatrial (SA) node, the intemodal tracks, Bachmann’s bundle, 

the atrioventricular (AV) node, the bundle of His, bundle branches and Purkinje fibers.
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During normal sinus rhythm, the heart is controlled by the SA node, which depolarizes at 

a rate of 60 to 100 beats per minute. The right atrial internodal tracks and Bachmann’s 

bundle conduct the SA-nodal activation throughout the atria, initiating a coordinated 

contraction o f the atrial walls. Meanwhile, the electrical impulse transfers through the AV 

node that introduces a delay allowing the contraction of the atria to complete before 

ventricular contraction is initiated. Then, the bundle of His, bundle branches and Purkinje 

fibers conduct the electrical impulse at a high velocity while splitting the excitation 

throughout the two ventricles, enabling a coordinated and massive contraction [1],

Internodal Tracks
Bachmann’s  Bundle

Left
atriumBundle BranchSA Node

Right
atrium

AV Node 
Bundle of His Left

ventricle

Right
ventricle

Purkinje Fibers

Figure 7. Excitation and conduction system and major muscles in the human heart [1].

These sequential contractions of the muscular fiber groups can be traced in the 

electrocardiogram (ECG) signal, redrawn in figure 8 from [1], which records the 

electrical activity generated by the heart. The baseline of electrical potentials in the ECG 

signal is known as the isoelectric line. The first ECG wave is the P-wave, which reflects 

the depolarization of the atria. Following the P-wave is the PR interval, a short relatively 

isoelectric period, related to the propagation delay induced by the AV node on the cardiac 

impulse in its way from the atria to the ventricles. Once the excitation reaches the 

ventricles, a rapid and large wave is observed, called the QRS complex or R-wave, that 

corresponds to the depolarization o f the ventricles. Following the QRS complex, another 

isoelectric period, the ST interval, is observed. The ST interval represents the duration of 

depolarization after all ventricular cells have been activated. After the ST segment, the
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ventricular cells return to their electrical and mechanical resting state, completing the 

repolarization phase, which is observed as the T-wave [1].

P Wave: Atrial 
Depolarization

PR Interval

Figure 8. Typical electrocardiogram (ECG) and its characteristic waves [1].

Arrhythmia disorders entail the abnormal or irregular beating rhythm o f the heart due to 

asynchrony of the cardiac chambers [1], negatively affecting the hemodynamic 

performance of the circulatory system. The therapeutic function o f a cardiac pacemaker 

in the treatment o f arrhythmia is to restore the synchrony between the atria and ventricles 

by applying controlled electrical pulses to the heart muscles.

3.2 Design Requirements

Redrawn from [1], a block diagram of a typical cardiac pacemaker is depicted in figure 9. 

For effective pacing, the output pulses o f the pacemaker should have an appropriate 

width and frequency and sufficient energy to depolarize the myocardial cells in the 

vicinity o f the electrodes. On successful depolarization, the electrical stimulation will 

propagate from the cells surrounding the electrodes to the neighboring cells throughout 

the entire excitation and conduction muscular fiber system o f the heart, completing a 

contraction sequence.

The typical power supply specifications o f a cardiac pacemaker are listed in Table 1 [1- 

4], From Table 1, it is evident that the proposed microgenerator must generate at least 3.0 

volts open circuit voltage to energize the control unit, the telemetry system and the 

sensors in the pacemaker, as well as to provide 3 to 6 pJ of energy per pulse to the
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microelectronic Demand Pulse Generator (DPG). Higher power generation may help to 

include additional microelectronic-based functionalities in a future pacemaker system.

Power
SourceAntenna

Telemetry
System

Logic and 
Control Unit Sensors

i----- —  i

Analog Sense 
Amplifier

Output
Driver

Timing
Control

Myocardial
CellsElectrodes

Demand Pulse Generator

Figure 9. Block diagram of a typical cardiac pacemaker.

Table 1. Typical Cardiac Pacemaker Power Supply Specifications.

Parameter Value Unit

Battery open circuit voltage 3.0 Volts

Battery capacity 2 Ah

Pacemaker control unit voltage supply 2.2 Volts

Pacemaker control unit current drain 10 pA

Pulse duty cycle 16.7 %

Energy consumption per pulse 3-6 pj

Battery dimensions (length x width x height) 49 x 46 x 6 mm

% volume occupied by the battery in the pacemaker 50 (Approx.) %
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3.3 Mathematical Model of Axial Flux Brushless Power Generators

The induced RMS voltage across the terminals o f a planar conductor coil exposed to a 

changing axial magnetic flux can be expressed as [9]:

Vms= 2 p ^ N lr QN,BS  (1)

where /? is a shape factor, Np is the number o f alternate polarity magnetic pole pairs in the 

rotor, N, is the number of coil turns exposed directly to the axially changing magnetic 

flux, B  is the remanence of the permanent magnets and S  is the area o f the planar coil 

covered by the pole pieces. Ignoring the fringing fields, the product J3B represents the 

magnetic flux density in the rotor-stator gap.

The shape factor /? as described in [10-11] determines the percentage of flux linkage 

between the rotor and stator and depends on the relative thicknesses of the permanent 

magnets embedded in the rotor, the planar coil and the gap between them, as shown 

graphically in figure 10, and is given by:

Asymmetrical rotor

Planar coilRotor-stator gap

Figure 10. Thickness parameters used to determine the shape factor/?.

where Tpm is the thickness of the permanent magnets, Tci is the thickness o f the coil layer, 

and Tag is the thickness of the rotor-stator gap. The rotor is slightly thicker than the 

permanent magnets as the magnets are fully embedded in the structural material of the 

rotor body. As can be seen from equation (2), the thickness of the rotor-stator gap and the
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planar coil should be kept to a minimum in order to obtain a shape factor close to unity to 

maximize the output voltage. The angular velocity Q  o f the rotor in equation (1) can be 

determined from the relation:

developed in this research work, where g  is the acceleration due to gravity, 0 is the 

instantaneous angular displacement and Rp is the radius of the rotor. The generated RMS 

power thus can be calculated from [9]:

where R is the total ohmic resistance o f the planar coil.

3.4 Rotor Geometry

In this thesis two possible rotor geometries for the microgenerator were investigated: a 

semicircular rotor geometry and a circular rotor geometry.

Semicircular Rotor Geometry -  A conceptual model of this geometry is shown in figure 

11. In this approach, a number o f alternate polarity permanent magnets or pole pieces are 

embedded in a semicircular shaped rotor made o f a non-magnetic structural material. It is 

the asymmetrical shape of the rotor that causes it to leave its initial stable position in the 

presence o f an external excitation. The Earth’s gravitational attraction on the rotor center 

o f mass, which has been displaced out of the rotation axis, generates the actuating torque, 

w hile the magnets embedded in the rotor are the source o f  magnetic flux that, as the rotor 

oscillates, fluctuates in direction and magnitude over the planar coils embedded in the 

stators, thereby inducing a voltage in them.

(3)

3 6

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Gap between 
permanent magnets

Permanent magnet Structural material

Shaft hole

(b)

Permanent magnet
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Figure 11. Semicircular rotor geometry.

(a) Top view of the semicircular rotor, (b) Cross-section view of the semicircular rotor.

Circular Rotor Geometry -  In this geometry, depicted in figure 12, an asymmetrical 

destabilizer body made of a high mass density material, e.g. gold or tungsten, has been 

formed along a portion of the circumference of a circular rotor embedded with alternate 

polarity permanent magnets. In this configuration, it is the asymmetrical shape o f the 

destabilizer what displaces the center o f mass out of the rotation axis, enabling the 

Earth’s gravitation to generate the actuating torque. The major advantage of this 

geometry is that the entire area o f the planar coils embedded in the stators is exposed to 

the changing magnetic flux created by the mechanical oscillation of the rotor, fact that 

contributing to a higher power generation.

Destabilizer

Circular rotor

Permanent magnet 

/—Shaft hole

Ivmva

Destabilizer

Shaft hole
- Permanent magnet

Structural material

(b)
Gap between 
permanent magnets

(a)

Figure 12. Circular rotor geometry.

(a) Top view of the circular rotor, (b) Cross-section view o f the circular rotor.
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The fabrication process of a microgenerator with a semicircular rotor will require fewer 

process steps and materials than a microgenerator that incorporates a circular rotor, hence 

the later will be more expensive. A semicircular rotor microgenerator occupies a smaller 

volume, however it cannot reach the energy generation capability o f a circular rotor 

microgenerator. Additionally, in the circular rotor geometry the magnitude o f the 

actuating torque, exerted by the Earth’s gravitation on the rotor, can be controlled by 

changing the radius, thickness and material o f the destabilizer independently o f the 

dimensions or material of the rotor and permanent magnets.

3.5 Magnetic Material Selection

Investigation shows that the high coercivity Nd2Fei4B (abbreviated NdFeB) crystalline 

system is the most suitable for the target design, since this magnetic material possesses 

the highest remanence and energy density compared to other modem hard magnetic 

materials such as Samarium-Cobalt (SmCo), Iron-Platinum (FePt), and Cobalt-Platinum 

(CoPt) [31-39]. NdFeB is a finely grained nanostructured material, which in bulk form 

can maintain maximum energy products o f up to 50 MGOe (0.4 MJ/m) [32]. Although 

NdFeB permanent magnets have been produced in industrial scale since 1983 and there 

exist many ways to manufacture them, this alloy has not been used extensively in MEMS 

due to the lack o f readily available deposition, etching, and magnetization techniques.

At present only magnetron sputtering and the pulsed laser deposition (PLD) methods 

[32-34] have been successfully applied to produce thin NdFeB films with properties 

comparable to those o f bulk magnets. With magnetron sputtering, maximum film 

thickness o f about 10 pm can be achieved in one deposition cycle [32]. Sputtered NdFeB 

films feature good mass density and coercivity in the order o f 796 KA/m. On the other 

hand, NdFeB films deposited by PLD feature high purity and can be grown at rates o f 50 

to 100 pm/hour, with typically achievable remanence o f 1 Tesla (T) and maximum 

achievable remanence o f up to 1.5 T [33-34], The PLD technique still faces technical 

problems that have prevented it to be widely used, e.g. lack o f film uniformity over large 

substrate areas and splashing effects [34]. Despite this limitations, from the point o f view 

o f high deposition rate, the PLD method is a good choice for the fabrication of the 

NdFeB magnets for the proposed microgenerator. Regarding the low corrosion resistance
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of NdFeB thin films, the micromagnets in the rotor are to be immediately coated with a 

protective layer before being exposed to air and to the strong etchants used to pattern 

other materials during the fabrication process.

3.6 Magnetization of NdFeB Magnets

A major design challenge to realize the MEMS microgenerator appears to be the alternate 

polarity magnetization of the deposited and patterned NdFeB thin film magnetic pole 

pieces embedded in the rotor. Although a number of different methods for alternate 

polarity magnetization are available [40-43], it appears that none o f the methods is 

suitable for the microgenerator due to microsized dimensions and micrometer scale 

proximity o f the pole pieces. After investigation, the author has developed a novel 

method o f alternate polarity magnetization of very close proximity thin film magnets. 

The capacitor discharge magnetization circuit used for the developed Magnetic Flux 

Shielding Selective Magnetization (MFSSM) method is illustrated in figure 13. As shown 

in figure 13, in the magnetizing fixture two identical high-permeability (nickel, 

Permalloy®, MU-metal®) shielding plates with protruding teeth are placed above and 

below the set of thin film magnets to be magnetized. Then, the stack o f shielding plates 

and magnets is secured between the poles o f a commercial capacitor discharge 

magnetizer.

NdFeB micromagnets Shielding
plates

Protruding
teethPower

supply

 ----------   Magnetizing fixture
Capacitor Discharge Magnetizer

Figure 13. Capacitor discharge magnetization circuit used to implement MFSSM.
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The two stages of the MFSSM method are depicted in figure 14. During forward 

magnetization, the magnetizing field H  generated by the capacitor discharge magnetizer 

is directed towards the selected pole pieces by aligning them with the protruding teeth of 

the shielding plates. As a result a high permeability magnetic path is established through 

these pole pieces, whereas the pole pieces in between the aligned ones are placed in a low 

permeability magnetic path, i.e. they become shielded. Thus, when applying the 

magnetizing field in the first stage (figure 14a), the shielded pole pieces do not reach the 

magnetization saturation point o f the material and remain unmagnetized when the field is 

withdrawn. In the second stage (figure 14b), the direction of the magnetizing field H  is 

reversed while the protruding teeth o f the shielding plates are aligned with the pole pieces 

that were shielded in the first stage. As a result, the pole pieces now in the high 

permeability magnetic path are magnetized in the reverse polarity and the magnetizing 

force through the shielded ones is not strong enough to switch their previously 

established polarity as they feature a high coercivity property.

Forward
M agnetization

R ev erse
M agnetization

Protruding teeth

N dFeB M icrom agnets

Shielding P lates
Shielded pole pieces

(a)

Shielded pole pieces

N
S

■ j ^

s

*

N
S

'//M

s
N

*

(b)

Figure 14. Stages of the MFSSM magnetization method.

(a) First stage -  forward magnetization, (b) Second stage -  reverse magnetization.

To verify the developed MFSSM magnetization method, a magnetostatic finite element 

analysis simulation was carried out using MagNet™. In the model used for the
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simulation, as shown in figure 15, a set of three unmagnetized NdFeB thin film pole 

pieces are placed next to each other on the same plane and separated by an airgap.

Figure 15. 3D Model used for simulation of the MFSSM magnetization method.

The shielding plates are placed on top and bottom of the magnet array, with their teeth 

touching the two NdFeB thin film pole pieces at the extremes. For more efficient 

meshing and shorter simulation time, the rotor structural material and the protective 

coating o f the NdFeB thin film pole pieces were not included in the simulation. The 

model was then exposed to a constant and uniform magnetizing field produced by an 

infinitely long solenoid that plays the role o f the actual capacitor discharge magnetizer. 

From the results of simulation, shown in figures 16 and 17, it is evident that most o f the 

magnetic flux is confined within the magnetic path passing through the NdFeB thin film 

pole pieces at the extremes, while just a few flux lines cross through the NdFeB thin film 

piece in the center, i.e. the magnet in the center is being shielded from the magnetizing 

field. Figure 17 is a plot of the magnetic flux densities measured in a horizontal line that 

intersects the three micromagnets through the center. The peaks correspond to the 

magnetic flux density at the interior of the micromagnets on the extremes and the valley 

corresponds to the magnetic flux density in the shielded magnet. From figure 17, it can be 

seen that the magnets at the extremes receive a magnetizing force approximately five 

times greater compared to the shielded magnet. As a result, the magnets on the extremes 

will reach saturation earlier compared to the shielded magnet and will be the only ones in 

attaining a permanent magnet characteristic after turning off the magnetizing field. These

High permeability 
shielding plates

Unmagnetized NdFeB 
thin film pole pieces
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simulation results establish the validity o f the developed MFSSM magnetization method 

that is to be used for alternate polarity magnetization o f the permanent magnets 

embedded in the rotor of the microgenerator.

Figure 16. Simulation results o f magnetic flux density in the MFSSM method.

26
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. -

1.2

Distance* [pm]

Figure 17. Magnetic flux density along a line crossing through the pole pieces.
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3.7 Lubrication System

As the rotor oscillates around the central shaft, the friction at the interface between them, 

as shown in figures 18 and 19, will unavoidably wear these bodies and will produce 

losses due to frictional forces opposing to the movement of the rotor. If the rotor was 

made o f a soft material, e.g. SU-8 (as used in [9]) and the shaft was fabricated of a hard 

material, like polysilicon, the rotor would wear very fast if no bearing or lubrication 

mechanism is incorporated to the system. Additionally, due to the small mass o f the rotor, 

the magnitude of the frictional force may surpass the gravitational torque that causes the 

rotor to oscillate, thus preventing the rotor from moving or from reaching maximum 

angular velocity. However, if friction is controlled properly, energy losses can be reduced 

to allow satisfactory operation of the device and wear can be minimized to a point that 

the life span of the generator extends for the term of years. With this purpose a suitable 

lubrication mechanism must be incorporated in the system. The lubrication system of 

choice must meet the conditions of micro-scale manufacturability and batch fabrication 

capability. Furthermore, its tribological properties must remain the same during the 

anticipated life span of the microgenerator and it must not interfere with the 

magnetic/electric circuits in the microgenerator.

Semicircular rotor

Shaft
Semicircular rotor

Shaft

Interface

(a)
Figure 18. Detail of the interface between a semicircular rotor and the shaft.

(a) Top view of the semicircular rotor, (b) Cross-section view o f the semicircular rotor.
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Figure 19. Detail of the interface between a circular rotor and the shaft.

(a) Top view of the circular rotor, (b) Cross-section view of the circular rotor.

Thin air film hydrodynamic lubrication systems, as used in [10-11], appear not to be 

suitable for the proposed microgenerator, as the low relative velocity between sliding 

surfaces o f the shaft and the rotor does not allow the formation of an air film capable to 

keep separation between them, and also because the microgenerator is to be vacuum- 

sealed in order to minimize mechanical damping of the rotor. Conventional oil or silicone 

lubricants cannot be used either as their tribological properties are highly dependant on 

temperature, in vacuum they volatilize away, their surface tension and viscosity may be 

high enough to clog the rotor and the lubricant itself could be a source o f contamination if 

leakage occurs through microscopic cracks in the walls of the microgenerator.

Many attempts have been made to improve the tribological performance of MEMS. As an 

example, some alcohols like propanol, ethanol, butanol or pentanol have been used [44] 

to produce ultra-thin low-viscosity liquid films on the surfaces of movable parts by 

condensation of alcohol vapor. Surface texturing is a friction reduction technique that 

entails the modification o f the roughness of the sliding surfaces by means o f selective 

surface etching, chemical treatment or laser machining [45]. Micro-sliders, used in 

magnetic data storage devices [46], are flexible structures that reduce the contact angle 

and contact area between movable parts and employ hydrodynamic lubrication to keep 

separation between them. Solid lubricants are a good alternative to friction reduction in
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MEMS because a number o f them can be deposited using standard microfabrication 

techniques, like chemical vapor deposition (CVD), epitaxial growth or electroplating 

[47], Some most prominent solid lubricant films are those made o f super-hard materials, 

like synthetic diamond or carbides containing tungsten, silicon, aluminum or titanium; 

also soft metallic films like TiN, silver and thick plasma-sprayed layers o f chromia- 

molybdenum, zirconia-alumina and alumina-titania; self-assembled monolayers (SAMs) 

o f methylated fluorocarbon and other organic compounds; thin films or powder o f 

graphite, molybdenum disulfide or Molybdenite (M0 S2) and tungsten disulfide or 

Tungstenite (WS2).

The major advantage of solid lubricants is that they can provide effective lubrication 

while eliminating the strong surface tension and high viscosity o f liquid phase oil-based 

or silicone-based lubricants. Solid lubricants are also well suited for low speed or vacuum 

applications, where hydrodynamic lubrication cannot be created. These features make 

solid lubricants a suitable solution to reduce friction in the presented microgenerator.

An clcctroless deposited Ni-P-(IF-WS2) composite solid lubricant film presented by [48] 

consisting o f a suspension o f inorganic Fullerene-like tungsten disulfide nanoparticles 

(IF-WS2) aggregated to a nickel-phosphorus (Ni-P) alloy was developed and tested to 

compare its tribological performance with other Ni-P based solid lubricant films already 

being used as wear-resistant coatings. The IF-WS2 nanoparticles, synthesized through the 

method described by [49], range in size from 100 nm to 200 nm and even though they are 

not perfect spheres, have a very definite boundary, which is the consequence o f their 

multilayer closed crystalline structure that, differently from amorphous WS2 

nanoparticles, enables them to roll and slide.

The experiments to determine wear and friction coefficient o f the different Ni-P films 

tested by [48] yield the results shown in Table 2. From Table 2, it is evident that the Ni- 

P-(IF-WS2) film possesses considerably better tribological properties than other Ni-P 

based solid lubricant films.
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Table 2. Wear and Friction Coefficient o f different Ni-P thin films [48].

Thin Film Mass loss of block (mg) Friction Coefficient

Ni-P 15.6 0.090

Ni-P-(2H-WS2) 5.2 0.062

Ni-P-Graphite 4.3 0.067

Ni-P-(IF-WS2) 3.0 0.030

According to [48-49] and [52], the favorable tribological properties of the Ni-P-(lF-WS2) 

film are due to the ability of IF-WS2 nanoparticles to roll/slide between interfacing 

surfaces; also, during friction, they are slowly released from the Ni-P alloy, providing 

continuous replenishing of lubricant material; they serve as spacers, preventing contact 

between asperities; they can fill up very small pores, contributing to reduce surface 

roughness; they associate with the wear particles and facilitate them to slide past the 

contact area, limiting abrasive wear; some particles exfoliate, yielding one-atom thick 

sheets of hexagonal crystalline structure that locally produce a superlubricity effect, also 

observed in graphite [50-51]. A conceptual 3D model of the Ni-P-(lF-W S2) solid 

lubricant film is depicted in figure 20.

IF-WS2
nanoparticles

-

Ni-P alloy

Figure 20. Conceptual 3D Model of the Ni-P-(lF-WS2) solid lubricant film.
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As can be seen from figure 20, some nanoparticles move freely on the surface o f the film 

while the rest, to be released along time due to friction, is trapped in the Ni-P alloy.

Due to the good experimental performance o f the Ni-P-(IF-WS2) film, its ability to be 

integrated to a batch fabrication process, as it can be electroless deposited, and 

considering the complexities of implementing micro ball bearings, micro sliders and 

other solid or liquid lubricants, a thin coating o f Ni-P-(IF-WS2) around the central shaft 

was selected as the lubrication system to minimize wear and energy losses due to friction 

between interfacing surfaces o f the shaft and the rotor in the microgenerator system.

3.8 Design Strategy and Final Device Specifications

Following equation (1), the major design objective is to minimize the overall volume of 

the microgenerator while optimizing the rotor size to increase the exposed face area S. 

Additionally, a double stator configuration, one above and one below the rotor will 

double the coupling area and thereby ensure higher power generation. Once the 

geometrical specifications of the rotor are fixed, the number and shape o f the pole pieces 

are to be determined based on the capabilities o f today’s microfabrication technology to 

ensure manufacturability. To determine the number of pole pieces to be embedded in the 

rotor of the microgenerator, MATLAB™ simulations were carried out using the magnetic 

properties o f NdFeB and plots o f the maximum generated output voltage as a function of 

different number o f pole pairs embedded in a circular and semicircular rotor are shown in 

figure 21. From figure 21, it can be seen that the circular rotor geometry with 12 pole 

pairs can generate 9.0 volts RMS voltage. The semicircular rotor geometry with 12 pole 

pairs can generate about 5 volts RMS voltage. Nevertheless, due to fabrication 

constraints, realization o f such a high number o f pole pairs in the relatively small area of 

a semicircular rotor is really challenging considering the capabilities o f today’s 

microfabrication technology. However, investigation shows that 6 pole pairs embedded in 

the semicircular rotor geometry enable easy manufacturability and can generate 1.0 volt 

RMS voltage in a 2 x 2 mm2 microgenerator footprint area with a single stator. Three of 

such generators can be stacked vertically to meet the requirement o f 3.0 volts power 

supply o f a typical cardiac pacemaker. For a double stator configuration, only two 

generators will be required.
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Figure 21. Maximum output voltage as a function of number o f embedded pole pairs.

Figure 22 shows a plot o f the rectified maximum generated output voltage waveform as a 

function o f the angular displacement o f the semicircular rotor for different number of 

pole pairs. Figure 23 shows the rectified maximum generated output voltage waveform as 

a function of the angular displacement o f the circular rotor for different number of pole 

pairs. In both cases, a ring-shaped back-iron piece o f soft (low-coercivity high- 

permeability) magnetic material has been used under the planar coil in the stator to avoid 

flux leakage and concentrate the magnetic flux in the rotor-stator gap. Based on the 

results presented in figures 21 to 23, 6 pole pairs have been chosen for the semicircular 

rotor and 12 pole pairs have been chosen for the circular rotor. The spacing between the 

rotor and the stator, number o f coil conductors, conductor cross-sectional area, and 

conductor pitch have been determined to match the available copper deposition and 

etching capabilities o f a standard microfabrication foundry as described in the next 

chapter.

Detailed specifications for both types o f microgenerators are summarized in Table 3 and 

cross-sectional diagrams (not in scale) o f the final microgenerator for both the 

semicircular and circular rotor geometries for a double stator configuration are shown in 

figures 24 and 25, respectively.
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Table 3. Final Design Specifications o f the Microgenerator.

Parameter

Value

UnitSemicircular Rotor 

Microgenerator
Circular Rotor 

Microgenerator

Footprint: length x width 2 x 2 4 x 4 mm

Thickness o f micromagnets 100 100 pm

Thickness o f coil layer 1 2 pm

Thickness o f rotor-stator gap 14 13 pm

Generator total thickness 500 500 pm

Geometrical factor, ft 0.87 0.89

Radius o f rotor 500 1500 pm

Total face area o f rotor 0.393 7.069 mm2

Cross section area per pole piece 0.040 0.111 mm2

Rotor area covered by pole pieces 60.35 18.81 %

Maximum angular velocity 182.50 105.37 rad/s

Number o f pole pairs in rotor 6 12

Number o f coil turns 259 179

Coil cross section: height x width l x l 2 x 2 pm

Remanence o f micromagnets 1.1 1.1 T

Exposed coil face area 0.237 1.33 mm2

Coil resistance 3.0 1.4 KG

RMS open circuit voltage per coil 1.09 9.08 V

RMS output power per coil 0.397 59.732 mW
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Figure 24. Cross-sectional view of the final microgenerator with a semicircular rotor.
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Figure 25. Cross-sectional view o f the final microgenerator with a circular rotor.
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Chapter Summary

In this chapter the function o f a cardiac pacemaker as a therapeutic implant was defined 

in terms o f the physiology o f the excitation and conduction system o f the human heart 

and the contraction sequence that takes place in it triggered by electrical impulses. The 

power supply requirements o f a typical cardiac pacemaker were extracted in order to 

optimize the design o f the microgenerator to meet such requirements. The analytical 

model that predicts the behavior o f the microgenerator and allows optimization o f its 

design parameters was presented. A semicircular rotor geometry and a circular rotor 

geometry with a destabilizer, both unstable in nature, were presented to enable power 

generation from the natural movements o f the human body and key features o f both were 

highlighted. The magnetic material for the thin film micromagnets to be embedded in the 

rotor was selected with the high-remanence, high-coercivity and high-energy product 

properties as the selection criteria and the deposition and micropatteming techniques 

necessary to produce such micromagnets were identified. A novel MFSSM magnetization 

method to produce alternate polarities in close-proximity thin film micromagnets was 

disclosed and proven valid through finite element analysis simulation. The suitability o f a 

nanoparticle based lubrication system to minimize energy losses and wear by friction 

between the rotor and the shaft was justified. Finally, the design parameters o f the 

generator were optimized to meet the power requirements of a typical cardiac pacemaker 

following a design strategy that takes into account constraints in the dimensions o f the 

microgenerator and available fabrication capabilities as well as simulation results.
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CHAPTER 4
Microgenerator Fabrication

This chapter describes the microfabrication process sequence developed to batch 

fabricate the microgenerator. The process sequence involves the fabrication o f the rotor, 

the fabrication o f the stator and finally the assembly of these parts into a single vacuum 

encapsulated functional unit. The mask sets, necessary in the etching steps, have been 

developed using IntelliSuite™ and validated through simulation to check for mask errors 

and geometrical compatibility. The deposition and patterning techniques for the major 

materials, as described in the previous chapter, have been determined by researching into 

the capabilities of existing commercially accessible microfabrication facilities in Canada 

and the United States to ensure manufacturability. The 3D models o f the rotor and the 

stator, as generated by IntelliSuite™ after simulation of the fabrication process, match the 

design requirements. The generated step-by-step process tables and mask sets can be used 

by any standard microfabrication facility to fabricate the device.

4.1 Fabrication Strategy

The fabrication process o f the microgenerator has been divided into three phases: rotor 

fabrication, stator fabrication and assembly/encapsulation. The following description and 

diagrams o f the fabrication process refer to a microgenerator with a circular rotor. For a 

microgenerator with a semicircular rotor, the mask sets are to be replaced following the 

design specifications listed in Table 3 and the steps associated with the destabilizer 

fabrication are to be omitted.
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The description o f each process step is followed by the corresponding figure, showing on 

the left hand side the conceptual cross-section diagram of the structure at that step and to 

the right hand side the IntelliSuite™ generated 3D model o f the process step simulation. 

The materials used in the fabrication process are represented in the conceptual cross- 

section diagrams as crosshatch shadings encoded in the material key o f figure 26.

| ] j  Silicon NdFeB SU-8 Photoresist

H  S®2 fU f  Gold |m j Copper

| Epipoly | Ni-P-(!F-WS2) j | | |  Perm alloy

Figure 26. Key of materials used in the fabrication process.

4.2 Rotor Fabrication

The rotor fabrication has been grouped into 16 major steps.

Step 1

On the bottom of a cleaned and two-side polished 100 pm thick <100> oriented silicon 

substrate, a 1.0 pm thick film of Si0 2  is thermally grown to serve as a seed layer, as 

shown in figure 27.

Figure 27. Rotor fabrication step 1 -  thermal growth o f bottom Si02 seed layer.
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Step 2

A 15 pm thick film o f epitaxial polysilicon (epipoly) is then grown on the SiC>2 seed layer 

[53] to serve as the first structural layer, as shown in figure 28.

Figure 28. Rotor fabrication step 2 -  growth of first epipoly structural layer.

Step 3

The wafer topside is then patterned using a photoresist and through etched using the 

advanced oxide etch (AOE) technique to create openings that will contain the NdFeB 

pole pieces, as shown in figure 29.

Figure 29. Rotor fabrication step 3 -  patterning of openings for NdFeB pole pieces,

S te p  4

A thick layer o f NdFeB is then deposited on top o f the wafer using the pulsed laser 

deposition (PLD) technique [39] up to completely fill up the openings for the pole pieces, 

as shown in figure 30.
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Figure 30. Rotor fabrication step 4 -  deposition o f  NdFeB thick film  using PLD.

Step 5

Excess NdFeB is then removed by mechanical polishing, as shown in figure 31. No 

chemicals are used at this step in order to avoid oxidation o f the magnetic material and 

degradation o f its magnetic properties.

Figure 31. Rotor fabrication step 5 -  removal of excess NdFeB by polishing.

Step 6

On the top o f the wafer a new 1.0 pm thick seed layer o f Si02 is then deposited using 

LTO LPCVD technique, as shown in figure 32.

5 6
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Figure 32. Rotor fabrication step 6 -  deposition o f  SiCh seed layer on top o f  the wafer.

Step 7

A second 15 pm thick structural layer o f epitaxial polysilicon is grown on the top SiC>2 

seed layer, as shown in figure 33. This epipoly layer encapsulates the magnetic material 

to protect it from corrosion and contamination during the rest of the fabrication.

Figure 33. Rotor fabrication step 7 -  growth of second epipoly structural layer.

Step 8

To form the rotor-stator gap the top and bottom epipoly layers are then patterned and 

partially etched to a depth of 10 pm, as shown in figure 34.
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Figure 34. Rotor fabrication step 8 -  patterning o f  the rotor-stator gap.

Step 9

The wafer is then partially etched from both sides using deep reactive ion etch (DRIE) 

technique to create 30 pm deep trenches with the shape o f the destabilizer at the 

periphery and the shape o f the shaft holes at the center, as shown in figure 35.

Figure 35. Rotor fabrication step 9 -  patterning of destabilizer shape and shaft holes.

Step 10

A 30 nm thick seed/adhesion layer o f Cr is sputter deposited on both sides o f the wafer. 

Then, photoresist layers are deposited and patterned, leaving open only the destabilizer 

trenches. Connecting an electrode to the Cr seed layer through an opening in the 

photoresist, gold is electroplated to fill up the destabilizer trenches, as shown in figure 36.
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Figure 36. Rotor fabrication step 10 -  electroplating o f  gold for the destabilizer.

Step 11

After electroplating the photoresist is stripped and a light bath o f etchant is used to 

eliminate the remaining portion o f the Cr seed layer. A 5 pm thick Ni-P-(IF-WS2) 

conformal solid lubricant film is electroless deposited [48] on both sides o f the wafer, as 

shown in figure 37.

Figure 37. Rotor fabrication step 11- electroless deposition o f solid lubricant film.

Step 12

The solid lubricant film on both sides o f the wafer is patterned using a photoresist and 

etched using a Nitric-Acid/Acetic-Acid/Sulfuric-acid isotropic wet etch solution [52] to 

leave a thin coating of solid lubricant only in the shaft holes and at their vicinity, as 

shown in figure 38.
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Figure 38. Rotor fabrication step 12 -  patterning of solid lubricant film in shaft holes.

Step 13

A 5.0 pm thick SU-8 sacrificial layer is spin deposited on the bottom side over the 

epipoly layer, as shown in figure 39, to support the rotor when cut from the wafer in the 

subsequent process step.

Figure 39. Rotor fabrication step 13 -  deposition of bottom sacrificial SU-8 layer.

Step 14

The wafer topside is then patterned using a photoresist and DRIE-etched down to the SU- 

8 layer to create the rotor geometry, as shown in figure 40. At the completion o f this step 

the rotor will be separated from the wafer, held in place only by the underlying SU-8

layer.
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Figure 40. Rotor fabrication step 14 -  patterning o f  the rotor geometry.

Step 15

Another 5 pm thick SU-8 layer is spin deposited on the top side over the epipoly layer, 

fully capturing the rotor, as shown in figure 41.

Figure 41. Rotor fabrication step 15 -  deposition of top sacrificial SU-8 layer.

Step 16

Finally, the SU-8 layers are etched on both sides o f the wafer to expose the structures 

and partially release the rotor, as shown in figure 42. This process step completes the 

rotor fabrication process. At this stage the magnetization o f the pole pieces can be carried 

out. Full release of the rotor will be performed after assembly to the top and bottom 

stators, as explained in the assembly and encapsulation section later in this chapter.
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Figure 42. Rotor fabrication step 16 -  partial release of the rotor.

The labeled cross-section view and full view o f the completed 3D model resulting from 

simulation in IntelliSuite™ of the developed process sequence are shown in figures 43 

and 44, respectively.

Solid lubricant film

Rotor 

SU-8 Support

NdFeB Pole pieces

' Destabilizer

Figure 43. IntelliSuite™ simulation result of rotor process sequence (cross section).

Solid lubricant film 

Destabilizer

Silicon substrate

Rotor

SU-8 Support

Epipoly
Structural Layers

Figure 44. IntelliSuite™ simulation result of rotor process sequence (full view).
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4.3 Stator Fabrication

The stator fabrication has been grouped into 14 major steps.

Step 1

A 1.0 pm thick film o f SiCh is thermally grown on a cleaned and top-side polished 150 

pm thick <100> oriented Silicon wafer, as shown in figure 45, to serve as an electrical 

insulation.

Figure 45. Stator fabrication step 1 -  thermal growth o f top SiCh insulating layer.

Step 2

A thin seed film o f nickel is sputter deposited and then a 10 pm thick layer of 

Permalloy® (19% Ni - 81% Fe) is electroplated [54] on top of the oxide layer, as shown 

in figure 46.

▼
Figure 46. Stator fabrication step 2 -  electroplating of Permalloy® layer.
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Step 3

The Permalloy® layer is patterned with a photoresist and etched down to the oxide 

surface, as shown in figure 47, to form the ring-shaped back-iron piece that will 

concentrate the magnetic flux in the rotor-stator gap.

V  8

Figure 47. Stator fabrication step 3 -  patterning o f the back-iron piece.

Step 4

Another 1.0 pm thick layer of SiC>2 is deposited using LTO LPCVD technique and a first 

20 pm thick epitaxial polysilicon (epipoly) structural layer is grown using the oxide as 

the seed layer. The epipoly layer is then planarized, as shown in figure 48. At the 

completion of this step the Permalloy® back-iron piece will be encapsulated and 

electrically isolated.

Figure 48. Stator fabrication step 4 -  growth of first epipoly structural layer.
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Step 5

Following the Damascene copper pattering technique described in [55-59], the epipoly 

layer is dry etched to create grooves for the planar copper coil tracks and its terminals, as 

shown in figure 49.

.;aasg&. 1

Figure 49. Stator fabrication step 5 -  patterning o f planar coil tracks and terminals.

Step 6

A 30 pm thick back-copper layer is electroplated on a sputter deposited thin copper film 

on the bottom of the wafer, as shown in figure 50.

Figure 50. Stator fabrication step 6 -  electroplating of back-copper layer.

Step 7

The wafer is then through etched using DRIE technique to form the vias that will connect 

the coil terminals to the external solder pads, as shown in figure 51. The back-copper
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layer will serve in the subsequent process as the seed layer for copper to fill up the vias 

from their deepest zone.

Figure 51. Stator fabrication step 7 -  patterning o f vias to the planar coil terminals.

Step 8

A 1.0 pm thick film o f SiCh is thermally grown on the exposed surfaces o f silicon and 

epipoly to provide electrical insulation. Then, a thin copper seed layer is sputter deposited 

on top o f the wafer. Using this film and the back-copper layer as a near-electrode, a thick 

film o f copper is electroplated on top. In this step the grooves defining the planar coil will 

be completely filled up with copper as well as the vias to the coil terminals, as shown in 

figure 52.

•  gp
Figure 52. Stator fabrication step 8 -  copper electroplating o f planar coil and vias.
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Step 9

Polishing removes excess copper down to the oxide layer, as shown in figure 53, 

completing this way the Damascene copper patterning process.

Figure 53. Stator fabrication step 9 -  polishing of excess copper.

Step 10

A 1.0 pm thick seed layer of SiC>2 is deposited with LTO LPCVD technique to 

electrically isolate the planar coil and protect it from oxidation, which might reduce the 

small amount o f conductive material if  not controlled rapidly. A second 35 pm thick 

structural layer of epipoly is then grown on top of the oxide layer, as shown in figure 54.

Figure 54. Stator fabrication step 10 -  growth of second epipoly structural layer.

6 7
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Step 11

The second epipoly structural layer is patterned and etched down to a 30 pm depth to 

create the shaft geometry, while a remaining 5 pm thick epipoly layer is left to protect the 

planar coil, as shown in figure 55.

iu u m m n l

Figure 55. Stator fabrication step 11 -  pattering o f the shaft.

Step 12

A 5 pm thick Ni-P-(IF-WS2) conformal solid lubricant film is then electroless deposited 

on top o f the wafer, as shown in figure 56.

Figure 56. Stator fabrication step 12 -  electroless deposition o f the solid lubricant film.

Step 13

The solid lubricant film is patterned with a photoresist and etched to create a thin coating 

of solid lubricant only around the shaft, as shown in figure 57.
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Figure 57. Stator fabrication step 13 -  patterning o f  solid lubricant film around shaft.

Step 14

Finally, the wafer is through etched using DRIE technique, as shown in figure 58, to 

create the thin rotor-release trenches which function will be clarified in the next assembly 

and encapsulation section. This process step completes the stator fabrication process.

Figure 58. Stator fabrication step 14 -  patterning o f rotor-release trenches.

Labeled 3D models o f the structure, resulting from IntelliSuite™ simulation o f the 

developed process sequence are shown in figures 59 to 61. Figure 59 (cross-section 1) 

shows a cross-section view o f the structure at process step 9 at a plane crossing through 

the middle o f  the copper vias (the oxide film has been omitted for better visualization).

6 9
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First structural layer

P lanar coil

C opper vias

Figure 59. IntelliSuite™ simulation result of stator process sequence (cross section 1).

Figure 60 (cross-section 2) shows a cross-section view o f the completed structure at a 

plane crossing through the center o f the stator. Figure 61 shows a full view o f the 

completed structure.

R otor-re lease tren ch

Solid lub rican t film

P lanar coil

struc tu ra l layers

R otor-release
tren c h

amcun suuMrdte
Back-iron p iece

' —  B ack-copper layer

Figure 60. IntelliSuite™ simulation result of stator process sequence (cross section 2).
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Shaft coated 
with solid lubricant Stator

Rotor-release trenches

Silicon substrate
Epipoly
Structural Layers

Back-copper layer •

Figure 61. IntelliSuite™ simulation result o f stator process sequence (full view).

4.4 Assembly / Encapsulation of the Microgenerator

The exposed epitaxial polysilicon surfaces o f the rotor and stator are wet oxidized to 

prepare them for bonding [60-62]. This oxidation process will reduce further the 

diameter o f the rotor-release trenches. After alternate polarity magnetization o f the rotor, 

it is aligned between two identical stators, as shown in figure 62.

Figure 62. Assembly & Encapsulation step 1 -  alignment o f rotor and stators.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The three-wafer stack is assembled, hermetically bonded and annealed at 100° C in a 

single step using the direct oxide bonding (DOB) technique described in [60-62], as 

shown in figure 63, which is vacuum-encapsulation compatible and preserves the 

magnetization of the NdFeB pole pieces that have a Curie point of 150° C.

Figure 63. Assembly & Encapsulation step 2 -  Assembly and bonding

The back-copper layers are patterned to form the contact pads. Then, the rotor is released 

enabling it to move freely around the shaft by injecting SU-8 solvent through the rotor- 

release trenches, as shown in figure 64.

Figure 64. Assembly & Encapsulation step 3 -  Solder pads pattering and rotor release.
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Combining dry oxidation and LTO LPCVD deposition at temperatures below the Curie 

point o f the micromagnets, a 3 to 5 pm thick film of silicon dioxide is deposited/grown 

on the top and bottom silicon surfaces and inside the rotor-release trenches, vacuum 

sealing the microgenerator. The oxide will not invade the interior of the microgenerator, 

as the rotor-release trenches will clog rapidly. A final mechanical polishing will expose 

the copper solder pads, as shown in figure 65.

Figure 65. Assembly & encapsulation step 4 -  vacuum sealing.

Before dicing the microgenerators, the solder pads can be coated with a plastic film or 

paint, which would protect them from oxidation until the moment o f soldering/wire- 

bonding to the circuitry o f the target biomedical device, when cleaning with acetone will 

be enough to expose the solder pads.

Chapter Summary

In this chapter the detailed fabrication process of a circular rotor microgenerator has been 

presented, dividing the sequence into 16 steps for the rotor fabrication, 14 steps for the 

stator fabrication and 4 steps for the assembly/encapsulation procedure. Conceptual 

cross-section diagrams of the structures at every process step have been used for the 

reader’s better understanding o f the fabrication and IntelliSuite™ generated 3D models 

resulting from simulation of the process table have been shown for every step o f the rotor 

and stator fabrication and for the completed structures.
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CHAPTER 5
Microgenerator Mounting and Actuation System

The first section o f this chapter describes a mounting and actuation system that has been 

developed to provide biocompatible encapsulation for the microgenerator and integration 

with the standard modules o f a cardiac pacemaker. The developed system also enables 

the microgenerator to be actuated by the pressure caused by the contraction o f the thorax 

muscles during breathing in order to maintain energy generation even when the recipient 

is at rest or sleeping. Then, the human respiration mechanism is briefly introduced to 

explain which specific pressure in the thorax is capable of driving the microgenerator. 

Finally the forces that comprise the mechanical input to the microgenerator and the 

resulting behavior are described.

The built-in encapsulation o f the microgenerator, formed by the stator bodies and the 

structure surrounding the rotor, allows its use as an off-the-shelf component simply to be 

soldered to the PCB of certain types o f biomedical devices, such as cochlear implants or 

hearing aid instruments, in which the turning o f the head may provide actuation for the 

microgenerator to produce enough power for the device, that would operate mostly 

during the day or whenever the recipient is awake. However, in critical applications, such 

as a cardiac pacemaker, continuous energy generation must be assured. For this purpose, 

a mounting and actuation system specially suited to enable the microgenerator to be used 

as a power source for cardiac pacemakers has been designed. In this system, the actuation 

of the microgenerator relies on the changes in thorax pressure during the inhalation and 

exhalation phases of breathing. The system consists o f a silicone based biocompatible 

package designed to encapsulate and mount the microgenerator, and a breathing actuation
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mechanism that drives the microgenerator from breathing to produce power even when 

the recipient is at rest or sleeping. The package also considers accommodation o f the 

circuitry and sensors o f the pacemaker and connection to the electrodes.

5.1 Silicone Encapsulation Package

In the system, a soft silicone rubber capsule filled with liquid silicone, as shown in figure 

66, encapsulates the microgenerator and the designed breathing actuation mechanism, 

described later in this section. The silicone capsule and the microelectronic circuits o f the 

pacemaker are to be surface mounted on a small PCB, as shown in figure 67.

M icrogenerator S ilicon e rubber c a p su le  

r ~  Liquid silicon e

G uide

Trigger

M--------- T  Mc

Figure 66. The microgenerator and actuation mechanism in a silicone rubber capsule.

A hard casing that holds the PCB and the whole system is then wrapped using another 

silicone capsule through which the pacemaker electrodes are interconnected with the 

PCB. A high permeability metallic layer should be embedded in the hard casing to 

provide electromagnetic shielding. Silicone has been chosen to be the structural material 

o f the packaging system because it is used extensively in medical implants due to its low 

chemical reactivity. Liquid silicone, used in breast implants, has been selected to create 

the inner atmosphere o f the capsule, as unlike gases, it cannot filtrate through the silicone
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rubber. Additionally, it will act as a lubricating agent for the hinges and the rods in the 

guides used to mount the microgenerator in the breathing actuation mechanism.

Surface Mount Technology (SMT) 
PCB mounting terminals

Outer silicone capsule  

Hard casing  

Printed circuit board (PCB)

£ -  Breathing Actuation System  

M embrane area
7

/ -M ic r o e le c tr o n ic  circuitry 
and sen sor

Electrodes

Figure 67. Silicone encapsulation of the complete pacemaker system.

First of all, the microgenerator is mounted in a housing with two lateral hinges and two 

driving rods attached at opposite sides, as shown in figure 68. Following figure 66 and 

68, the hinges enable the microgenerator to be anchored to the baseplate o f a cylindrical 

shaped cage through which a plunger-like solid silicone trigger piece moves like a piston 

due to a change in pleural pressure during breathing.

M icrogenerator

Driving rod

Hinge

Figure 68. Attachment of the microgenerator to lateral hinges and driving rods.
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The driving rods slide in slanted guides cut into the walls o f the trigger piece. The shape 

o f the cage and the trigger piece limit the angular displacement o f the microgenerator to 

prevent breakage of the mechanism in case that too much force is exerted by the thorax 

muscles. This situation may occur, for example, when the recipient is under intense 

physical activity. The liquid silicone in the capsule is kept at an intermediate pressure 

within the range o f the thorax pressure.

The capsule is to be mounted on the bone tissue o f the sternum or the ribs or on any 

suitable support surface in such a way that the trigger piece remains oriented in the 

direction o f the center o f the thorax. At exhalation, when the lungs are deflated, the 

pressure inside the capsule generates a force proportional to the area A, o f the base o f the 

trigger. This force is greater than the force exerted by the thorax on the trigger piece, 

thus, the trigger is pushed away from the fixed support as shown in figure 69a and the 

free end o f the microgenerator moves downwards, as the driving rods attached to the 

microgenerator housing are pushed downwards due to the motion of the trigger piece.

Soft tissueSupport surface
(a)

r‘

(b)
Figure 69. Operation o f the breathing actuation mechanism.

(a) State o f the system at exhalation, (b) State of the system at inhalation.

At inhalation, an increased thorax pressure compresses the soft tissue around the capsule 

against the support surface as shown in figure 69b. The force on the normal area At o f the 

trigger piece coming from outside o f the capsule becomes greater than the force exerted 

by the liquid silicone from inside o f the capsule. As a result, the trigger moves towards
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the fixed support, guiding the microgenerator upwards. In this way, with every inhalation 

and exhalation, the microgenerator will move up and down that will cause the rotor to 

oscillate, as described in section 5.3, to generate electrical power.

Assuming that the deformation of the silicone capsule is small and the liquid silicone is 

nearly incompressible, the volume inside the silicone capsule can be considered to remain 

constant throughout an inhalation-exhalation cycle. Thus the pressure exerted by the 

liquid silicone on the movable trigger can also be assumed to be constant.

Although the system for breathing actuation presented here produces oscillation o f the 

rotor inside the microgenerator by the action o f breathing, it still receives input from 

several organs in the body, as mentioned in section 1.2, such as the vibrations created by 

the heartbeat. The packaging of the microgenerator, as described here, is appropriate for 

the standing posture o f the recipient. For other postures, the same packaging can be used 

just relocating the axis o f the hinges and the orientation o f the guides in the trigger. 

Therefore, for power generation at any physical posture o f the recipient at least three 

generators, one for each spatial axis, should be present in the system as illustrated 

conceptually in figure 6. The liquid silicone in combination with the soft rubber silicone 

capsule will act as a spring system, but unlike conventional springs, silicone does not 

change its mechanical properties over time if  not exposed to excessive heat, solvents or 

other chemicals that might modify its molecular structure. From this point of view the 

spring system can be regarded as a free-of-fatigue spring that may extend the life span of 

the system by eliminating fatigue failure associated to conventional springs.

5.2 Driving Pressure

The human ventilatory system includes the thoracic cavity and the abdominal cavity 

separated by the diaphragm [63] as shown in figure 70. Nearly one-third o f the inner 

surface o f the rib cage is composed o f the area where the diaphragm is directly apposed 

to the rib cage. This is called the area of apposition, and the rest o f the inner rib cage is 

apposed to the lung [64],

As the external intercostal muscles and the diaphragm contract, the lungs expand. The 

expansion o f the lungs causes the pressure in the lungs to become slightly negative
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relative to the atmospheric pressure. Consequently, the air moves from a region o f higher 

pressure (the atmosphere) to a region o f lower pressure (the lungs).

During expiration, the respiratory muscles relax and lung volume decreases. This causes 

pressure in the lungs to become slightly positive relative to the atmospheric pressure, 

which results in air leaving the lungs.

Rib cage

Lungs

Diaphragm

Area of 
apposition

Appositional
force

Insertional
force

P  ab

Abdom en

Figure 70. The human ventilatory system as shown in [55],

When the diaphragm contracts, it moves downwards like a piston, decreasing the pleural 

pressure in the area o f lungs and increasing the abdominal pressure and the pleural 

pressure in the area o f apposition, which is exerted outwards the inner surface o f the 

lower rib cage [63],

The area o f apposition is a good place for implantation of the microgenerator in the 

breathing actuation system explained in the previous section, since it is a wide area that 

allows many possible spots for implantation and because strong and well defined changes 

in pressure have been measured [64—65], As determined in [63], the pleural pressure Ppi 

in the area o f apposition raises from a baseline that equals the atmospheric pressure up to 

a maximum peak value o f 490.32 to 980.67 Pa during inspiration and decreases back to 

the pressure baseline during expiration.
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5.3 Mechanical Input to the Microgenerator

For the circular rotor geometry, the overall dimension of the microgenerator is 4 x 4 x 0.5 

mm3. This prompts the encapsulating soft rubber silicone capsule to have a diameter Dc 

o f 10 mm and a thickness Tc of 8 mm to accommodate both the microgenerator and the 

breathing actuation mechanism. Assuming a circular surface o f diameter 5.6 mm at the 

contact between the trigger and the inner wall of the capsule, the area of the capsule 

exposed to the normally incident pleural pressure in the apposition area A, can be 

calculated as 24.63 mm2. For any value o f the pressure Pc of the liquid silicone inside the 

capsule within the range of change o f pleural pressure (0 to 490.3 Pascal), for example 

196.13 Pa, the internal force of the liquid silicone in the capsule Fc acting on the trigger 

can be calculated from Fc = Pc x At , or 4.83 mN for the example. The external force F, 

working on the area A, in the opposite direction due to the pleural pressure can be 

calculated from Ft = Pplx A ,  This force F, varies between 0 N to 12 mN, assuming 490.3 

Pascal as the peak pleural pressure reached in the area of apposition [64]. Under these 

conditions the system will behave as shown in figure 71, in which the Ppl waveform is an 

approximation to the pleural pressure, waveform 5 is the angle o f the microgenerator 

respect to the z-axis and waveform Q is the angular velocity of the rotor.

d

(a)
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Figure 71. Waveforms of the mechanical input to the microgenerator.

(a) Approximation to the pleural pressure, (b) Angle of the microgenerator respect to the
z-axis, (c) Angular velocity o f the rotor.
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While at rest, the thorax muscles exert nearly zero force over the trigger, so the internal 

force o f the capsule keeps the trigger in the “out” position and the microgenerator is 

inclined at an angle -5 respect to the z-axis as shown in figure 70a. When inhaling the 

external force over the trigger raises and crosses the internal force threshold, causing the 

trigger to move to the “in” position and inclining the microgenerator to an angle +8 

respect to the z-axis as shown in figure 70b. Assuming that the microgenerator was in 

stable state, it will start to oscillate at the change in inclination. Such an oscillation will 

be damped due to friction between the rotor and the shaft and due to the electromagnetic 

damping caused by the current induced in the planar coil.

In exhalation, the external force over the trigger will drop and will cross the threshold, so 

that the internal pressure of the capsule will take again the trigger to the “out” position 

and the microgenerator will be inclined back to the -8 angle. In this change o f inclination 

the rotor will be taken to oscillation again. Thus, the microgenerator is actuated both, at 

the time o f inhalation and at the time o f exhalation. The average duration o f a complete 

breath is 2 seconds. As the respiratory rate o f a healthy adult human goes between 12 to 

20 breaths per minute, the microgenerator will be actuated a minimum of 24 times per 

minute.

Chapter Summary

In this chapter a mounting and actuation system for the microgenerator was presented, 

providing details on the construction and materials for the package that contains and 

isolates the microgenerator from the live tissue, as well as the mechanism that enables the 

thorax muscles to actuate the microgenerator such that even when the recipient is at rest 

electricity for the pacemaker can still be generated. The way to integrate the 

encapsulation with the rest of the components o f a pacemaker has also been clarified and 

the specific thorax pressure capable to drive the microgenerator has been exposed on the 

base o f an explanation o f the human respiration mechanism. The relevant forces that form 

the mechanical input to the microgenerator occurring in the system at inhalation and 

exhalation were described and numerical figures for them where derived from the 

physical dimensions of the package and the value o f pleural pressure found in literature.
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CONCLUSIONS

In this thesis, the design, fabrication and a scheme for mounting and actuation o f a novel 

double stator axial flux bio-mechanically driven MEMS power generator for implantable 

medical devices, cardiac pacemakers in particular, has been presented. In the system, an 

asymmetrical pendulum-shaped rotor embedded with alternate polarity NdFeB thin film 

permanent magnets oscillates around a central shaft due to the overall movements o f the 

human body and the local movement o f the body organs to induce a voltage in planar 

coils embedded in a pair of stators. A semicircular rotor device o f 1 x 1 mm2 footprint 

area o f the rotor can generate 390 pW RMS power with an open circuit RMS voltage of 

1.1 Volts per stator. Two of these microgenerators can be stacked to meet the power 

requirements of typical pacemakers. A circular rotor device with a 3 x 3 mm2 footprint 

area o f the rotor can generate 59.7 mW RMS power with an open circuit RMS voltage of 

9.0 Volts per stator. A mounting and actuation system has also been presented to 

physically mount the microgenerator along with the necessary microelectronic circuitry 

for the operation o f the pacemaker. In its application to cardiac pacemakers, the designed 

mounting and actuation system enables the generator to produce power by means o f the 

thorax pressure changes at inhalation and exhalation even when the recipient is at rest. 

Scaled or stacked versions o f the microgenerator can be used to satisfy power 

requirements of other medical implants. The device can potentially provide a greater 

energy supply per unit volume compared to existing pacemaker batteries and can aid in 

developing smaller longer life pacemakers. Most importantly the microgenerator doesn’t 

need injection o f any sort of external gas or fuel for power generation. The maintenance 

free longer life of the microgenerator reduces the frequency o f invasive surgery as 

necessary for implant replacement due to battery exhaust, particularly necessary for

82

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



existing pacemakers every 5 to 7 years. Additionally, a Magnetic Flux Shielding 

Selective Magnetization (MFSSM) method has been developed for alternate polarity 

magnetization of the deposited and patterned NdFeB thin film permanent magnets 

embedded in the rotor. A solid lubricant film composed o f a blend o f IF-WS2 

nanoparticles in a Ni-P alloy has been selected to minimize friction and wear in the shaft- 

rotor interfacing surfaces to ensure the long lifetime of the microgenerator.

Future Direction

The scalability and modularity o f the developed MEMS power generator allow its 

optimization for target biomedical devices like blood pressure sensors, drug delivery 

systems and hearing aids. Without the need o f an additional actuation mechanism, the 

motion o f the forearms, wrists or feet, can drive the microgenerator in blood pressure 

sensors like those described in [69-71], These monitoring systems, illustrated in figure 

72, incorporate an instrumentation and diagnosis unit that interprets the electrical output 

o f a MEMS pressure sensor, usually a silicon-based membrane with either, capacitive or 

piezoresistive sensing mechanism, and transmits the reading o f pressure to a computer 

via a telemetry system. The received data is utilized to follow up a medical condition 

responsible o f abnormal blood pressure and to prescribe a therapy accordingly.

Antenna

M EM S Power 
Generator

Telemetry
System

Instrumentation and 
Diagnosis Unit

M E M S  Pressure 
Sensor

Blood Vessel Walls 
or blood Stream

Figure 72. The MEMS power generator as a power supply o f a blood pressure sensor.

Commercially available implantable pressure sensors, like that produced by [71], operate 

only when the physician interrogates the device by placing a nearby antenna that collects 

data and supplies power to the sensor. Flowever, the autonomy that the developed MEMS
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generator would give to these pressure sensors may allow their integration in a distributed 

wireless sensor network implanted throughout the human body. The sensors, placed in 

arms, legs and head, for example, would transmit their readings to a pacemaker for it to 

apply pulses with the most appropriate width and frequency to different areas o f the 

myocardium in order to reach the optimum blood pressure at all measurement points, 

building this way a closed loop pacing system.

Due to the technical difficulties for the long-term supply o f continuous electrical power 

to medical implants, most drug delivery systems nowadays are made passive, i.e. no 

microelectronics or electricity-consuming mechanical actuators are integrated to 

accurately regulate the drug flow. An example o f a passive drug delivery system has been 

presented in [72] where a drug in a refillable reservoir is slowly released to the eye to 

treat conditions like diabetic retinopathy and glaucoma. The use o f the developed 

microgenerator as a power supply may lead to advancements in active drug delivery 

systems like those in [73-74], In these systems, depicted in figure 73, a logic/control and 

diagnosis unit determines the amount o f drug to be delivered into the organism, as well as 

the delivery schedule to meet the prescribed therapy. Then, according to the diameter of 

the drug reservoir output pipe, the logic/control unit calculates the release time. Such a 

time is loaded into the timer/counter o f a pulse generator that in turn activates either a 

microvalve that opens a pre-pressurized drug reservoir or a micropump that increases the 

pressure o f the drug for it to be ejected out of the reservoir.

MEMS Power 
Generator

Antenna

Drug Level or 
Physiological 

parameter 
Sensor

Telemetry
System

Logic/Control and 
Diagnosis Unit

Body Ambient

Pulse
Generator

Drug
Reservoir

Microvalve or 
Micropump

Flow/Pressure
Sensor

Figure 73. The MEMS power generator as a power supply o f a drug delivery system.
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A flow or pressure sensor may be also included in the system to assure that the amount of 

drug released from the drug reservoir matches the calculated value. For a closed loop 

control and depending on the nature o f the physiological variable being controlled, a 

sensor module can be added to measure the concentration o f medication or body 

chemicals like glucose or a physiological parameter like blood pressure.

The developed MEMS power generator may also open opportunities to realize devices 

like an active aqueous humor pressure controller for the treatment o f glaucoma. In 

glaucoma disorders, the pressure o f aqueous humor in the anterior chamber of the eye 

raises above normal levels, damaging permanently the nervous cells o f the retina and 

causing blindness. In the proposed system, shown in figure 74, the developed MEMS 

power generator would provide electrical power driven by the rapid stochastic turning of 

the eye. A microvalve would be used to open the drainage o f aqueous humor for it to be 

absorbed under a sac made of conjunctiva or to be injected directly into the blood stream. 

A MEMS pressure sensor would periodically acquire pressure measurements that the 

logic/control and diagnosis unit would employ to estimate the optimal aperture schedule 

o f the microvalve in order to keep the pressure o f aqueous humor within its safe range.

Antenna

MEMS Power 
Generator

Telemetry Logic/Control and MEMS Pressure
System Diagnosis Unit Sensor

Aqueous Humor in 
the Anterior 

Chamber of the Eye

Pulse MEMS
Generator Valve

Blood
Stream

Figure 74. The MEMS power generator as a power supply o f a pressure controller.

Employing the head turning as a source o f driving motion, the developed MEMS power 

generator can also be integrated in hearing aid instruments or cochlear implants like those 

described in [75-76]. As shown in figure 75, these systems collect the mechanical 

vibrations within the audible range in the environment with a specialized acoustical 

sensor, like that described in [77], The collected sound signal is filtered in a
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microelectronic digital signal processor according to the particular needs o f the recipient. 

The conditioned signal is amplified and sent to the auditory system by means o f a set of 

electrodes or by an electromagnetic transducer that produces mechanical vibrations over 

the sensory cells/organs or the ear.

MEMS Power 
Generator

Auditory
SystemEnvironmental

Sound MEMS
Acoustical

Sensor

Magnetic 
Transducer or 

Electrodes

Sound/Speech 
Digital Signal 

Processor
Amplifier,

Figure 75. The MEMS power generator as a power supply o f a hearing aid instrument.

To ensure power availability for the target device during periods o f low or no muscular 

actuation over the microgenerator, a supercapacitor should be added to the system for 

energy storage. The top and bottom faces o f the microgenerator are suitable to build 

MEMS based planar supercapacitors. The designed circular and semicircular rotor 

microgenerators allow 4 mm2 and 16 mm2 of capacitor plate area at each face, 

respectively. Supercapacitors made o f activated carbon [78] have been in the market 

since long. Researchers now pursue the fabrication of MEMS supercapacitors [79-80] 

and supercapacitors based on carbon nanotubes [81-82] that are expected to surpass the 

energy density o f electrochemical cell batteries. Whereas batteries rely on chemical 

reactions to produce ions that move from one electrode to the other, supercapacitors store 

energy in the form o f an electric field and no chemical reaction occurs in them. For this 

reason, they deliver and store energy faster than batteries, as only the electrical resistance 

o f conductors limits their charge/discharge currents. Supercapacitors have a consistent 

performance over time, can be safely left completely discharged for indefinitely long 

time, can operate in very low temperature environments and can withstand temperature 

changes, mechanical shocks and vibrations. Furthermore, supercapacitors can be 

recharged thousands o f times and their chemical constituents are less toxic than those of 

batteries [82].
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