
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2007

A CAD tool for design space exploration of embedded CPU cores A CAD tool for design space exploration of embedded CPU cores

for FPGAs. for FPGAs.

Ian D. L. Anderson
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Anderson, Ian D. L., "A CAD tool for design space exploration of embedded CPU cores for FPGAs." (2007).
Electronic Theses and Dissertations. 7120.
https://scholar.uwindsor.ca/etd/7120

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7120?utm_source=scholar.uwindsor.ca%2Fetd%2F7120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A C A D Tool for D esign Space E xploration
o f E m bedded C P U Cores for F P G A s

by

Ian D. L. Anderson

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through Electrical and Computer Engineering
in Partial Fulfillment of the Requirements for the

Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada
2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-42311-0
Our file Notre reference
ISBN: 978-0-494-42311-0

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nntemet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© 2007 Ian D. L. Anderson

All Rights Reserved. No Part of this document may be reproduced, stored or oth­

erwise retained in a retreival system or transm itted in any form, on any medium by

any means without prior written permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

In this thesis, a genetic algorithm based design space exploration technique using

parameterized cores is examined. A case study was first conducted to investigate

the feasibility of applying a genetic based approach to a parameterized core. Next,

a computer aided design tool called SCBuild was developed which utilizes the inves­

tigated approach. This tool is capable of applying a genetic algorithm to a core’s

parameters, and generating hardware description language models of core variants.

The tool can also compute estimates of a variant’s area and critical path delay on a

field programmable gate array. Using this tool, several experiments were conducted

using a soft-core processor with a large design space. It was concluded from these

experiments tha t using a genetic algorithm to explore the design space of a parame­

terized core can help a designer make intelligent decisions regarding the assignment

of values to the parameters of an embedded hardware platform.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To M om , D ad , K aris and Hil.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknow ledgments

I thank the Lord Jesus for the way in which He pulled me through this degree and

gave me the determination to see it to completion. I find myself standing here a t the

end of this task, not entirely sure about how I got here. But here I am nonetheless,

and for th a t I am thankful.

I would like to express my sincere thanks to Dr. Khalid for all of the advice and

guidance he provided over the course of this research. His assistance to me was

invaluable as I worked my way through the often-confusing world of research work.

My appreciation also goes out to Dr. Kobti and Dr. Wu, for taking the time to sit on

my committee and to review my thesis, and to Dr. Tepe for sitting in as the Chair of

Defense.

Thanks to my family for all of their support, patience and prayers as I completed

this thesis. Thanks Mom for all your love, encouragement and wise advice, from

which I have always benefited immensely. I know you’ve been through a lot over

the past year, but I still appreciate the ways tha t you were there for me as much as

you could. Dad, I am grateful for the ways in which you helped me get through this

degree; for cooking dinner, for picking me up on those late nights at the office, and

just being around when I needed someone to pester when my thesis was driving me

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

nuts. It looks like I have officially finished my thesis before you could get yours done,

so I guess you owe me a trip to Timmy’s. Karis, my brilliant sister; thanks to you

I never forgot th a t my thesis was “taking forever” . But at least now i t ’s done, so

you can find something new to tease me about. Thanks for keeping me humble and

giving me some good laughs along the way.

To my wonderful girlfriend, Hilary: you’ve always been a steadfast support to me

in all my endeavours. It is always great spending time with you, eating lunch, going

for a run, or just sitting around chatting and laughing about anything and everything

together. Your visits were always a very welcome relief from my thesis work. Thank

you also for helping me to edit my thesis and even learning what “FPG A ” stands

for. And to the rest of the Leslie family: thanks for the ways tha t you’ve welcomed

me into your lives. Also, thank you very much for lending me your car; it was very

helpful to have it these past few weeks. And thank you Brian for taking the time to

read and edit my entire thesis. Your revisions were very good and helped to make

this work tha t much better.

Finally, I would like to acknowledge my friends and fellow graduate students at the

University of Windsor. Jay, thanks for always keeping us amused with your various

accents and impressions. We had some great times, from our all-day “programming

parties” to just hanging out day-to-day in the office. Marwan, I will always remember

all of the great conversations we’ve had on a whole host of topics ranging from religion,

ethics and philosophy to the weather, food, politics and many other things tha t were

(thankfully) unrelated to the field of engineering. Seldom have I met anybody who

can talk intelligently on as many different subjects as you. Thanks to Amir for

his willingness to give generously of his time in all of the ways tha t he has helped

me during the course of this degree, and even before that. Thanks to Frank for

his assistance on many occasions; for providing parts, equipment and advice for my

various projects, and for just being available to sit and chat when I needed a break.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

Lastly, thanks to the rest of my engineering colleagues as well; to Ray, Omar, Aws,

Junsong, Hongmei, Kevin, M att, Andrew, Harb, Mahzad, Ashkan and everyone else

who have made this time in my life more enjoyable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C ontents

Abstract iv

Dedication v

Acknowledgments vi

List of Figures xiii

List o f Tables xvi

List o f Abbreviations xvii

List of Symbols xix

1 Introduction 1

1.1 Thesis O b jec tiv e s .. 5

1.2 Thesis O rganization.. 7

2 Background and Previous Work 8

2.1 Intellectual Property (IP) C o re s ... 8

2.1.1 The Digital Abstraction H ierarchy.. 9

2.1.2 Classes of Hardware IP C o r e s ... 11

2.2 Parameterization: Increasing the Reusability of an IP C o r e 13

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

2.3 Soft-core Processors... 15

2.3.1 Examples of Soft-core P ro c e s s o rs .. 15

2.4 FPGA Technology ... 16

2.5 Design Space Exploration (DSE) ... 21

2.5.1 Multi-objective Optimization .. 21

2.5.2 DSE Using Parameterized C o res ... 23

2.6 Closely Related W o rk .. 26

2.7 S u m m a r y .. 28

3 Design Space Exploration of Embedded C PU Cores for FPG A s 30

3.1 Problem S ta te m e n t... 31

3.2 The Altera Nios Soft-core P rocesso r... 32

3.2.1 Target S ystem .. 34

3.3 The Simple Evolutionary Algorithm for Multi-Objective Optimization

(S E A M O)... 34

3.3.1 Evaluation of Configurations: The Objective Functions 37

3.4 Experimental R e su lts .. 40

3.4.1 Testing of Objective F unctions.. 40

3.4.2 Experimental Determination of Algorithm P aram eters 40

3.4.3 Comparison of SEAMO Results Vs. Randomly Generated Con­

figurations .. 43

3.5 Conclusions Drawn from this Case S tu d y .. 44

3.6 S u m m a r y .. 45

4 SCBuild - A CAD Tool for the DSE of Embedded C PU Cores 46

4.1 M ajor Problems Addressed by S C B u ild .. 47

4.1.1 Representing a Parameterized Core in S o f tw a re 47

4.1.2 Exploring the Design Space of a Parameterized Core 50

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

4.1.3 Generating HDL Descriptions of Core In s ta n c e s 50

4.2 SCBuild System E n v iro n m en t.. 50

4.3 CAD Flow for S C B u ild ... 52

4.3.1 Design Entry and Template Description 52

4.3.2 XML Syntax C h eck in g .. 56

4.3.3 Collect System-level P a ra m e te rs ... 57

4.3.4 DSE and Parameter S e le c tio n .. 57

4.3.5 E la b o ra tio n .. 63

4.3.6 Q uartus II Project Creation and Compilation 68

4.4 The VHDL Component L ib r a r y .. 68

4.5 Development and Im plem en tation ... 70

4.5.1 General Design P rio ritie s ... 71

4.5.2 SCBuild Software Development M ethodology.............................. 72

4.5.3 SCBuild Software Architecture ... 73

4.5.4 Implementation D e ta ils .. 80

4.6 S u m m a r y ... 80

5 Experim ental Results 81

5.1 Target C o r e ... 82

5.2 Establishing the Objective Estimation Equations 83

5.2.1 Results of Param eter S w e e p .. 85

5.2.2 Determining the Final Objective Estimation Equations 93

5.2.3 Testing the Objective Estimation E q u a t io n s 93

5.3 Design Space Exploration ... 97

5.3.1 Algorithm P a ra m e te r s .. 97

5.3.2 R esu lts .. 98

5.4 Conclusions Drawn From R e s u l t s ... 99

5.5 S u m m a r y ... 101

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

6 Conclusions and Future Work 102

6.1 Summary of Research Contributions .. 103

6.2 Future W o rk ... 104

Appendices 107

A D etails of the SCBuild Template Description File Format 107

A .l Primitive Template Component D escrip tions... 109

A.2 Aggregate Template Component Descriptions 110

A.3 The Param eter Dependencies F i l e ... 112

A.4 The Objectives F i l e ... 114

A.5 The System F i le .. 115

B Description of the RISC Processor Template 116

B .l Parameters ... 116

B.2 Instruction Set .. 118

B.3 Structure .. 120

B.3.1 D atapath .. 121

B.3.2 Control U n it .. 124

C Synthesis Results for the RISC Processor Template 127

C .l Parameter Sweep R esu lts .. 127

C.2 Initial and Evolved P o p u la tio n s .. 134

C.2.1 Initial P o p u la tio n .. 134

C.2.2 Evolved P o p u la tio n ... 137

References 140

VITA AUCTORIS 146

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 Block Diagram of an Embedded System .. 2

2.1 The Three Classes of Hardware IP C o re s .. 12

2.2 Schematic of a Generic FPGA Logic Element (LE) [4 2] 17

2.3 Schematic of a Lookup Table (LUT) .. 18

2.4 Generic FPGA Routing Architecture (adapted from [2 5]) 19

2.5 The Concept of Pareto-optimality Illustrated (adapted from [60]) . . 22

2.6 Illustration of a 2-Dimensional Design S p a c e 23

3.1 The Chromosome Used in the SEAMO A lg o rith m 35

3.2 A Population of Chrom osom es.. 36

3.3 The Crossover and M utation O p e ra to rs .. 37

3.4 Actual and Estimated Values for Nios Sweep C o n fig u ra tio n s 41

3.5 Actual and Estimated Values for Nios Random Configurations 42

3.6 Initial and Evolved Populations (Using Estimated Values) 43

4.1 The SCBuild System Environment .. 51

4.2 The SCBuild CAD F l o w .. 53

4.3 A Primitive Template Component with Multiple VHDL Implementations 55

4.4 Top-level Entity with System-level P a ra m e te rs 57

4.5 Interdependency Relationships Between System-level Parameters . . . 59

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

4.6 Cyclic Dependency L o o p ... 60

4.7 System-level Description: Elaboration H ierarchy 64

4.8 Translation of R epresentations... 65

4.9 Flowchart for the SCBuild Elaboration A lg o rith m 67

4.10 UML Package Diagram for the SCBuild Software Architecture 74

4.11 Class Model for the RTL L a y e r ... 75

4.12 D ata Dependence Graph for a Generic Add In s tru c tio n 77

4.13 Class Diagram for the Algorithm l a y e r .. 78

4.14 Class Diagram for the System l a y e r ... 79

5.1 Parameter Sweep Results - Area .. 87

5.1 Parameter Sweep Results - Area (Cont’d) ... 88

5.2 Parameter Sweep Results - D e la y .. 91

5.2 Parameter Sweep Results - Delay (Cont’d) ... 92

5.3 Actual and Estimated Values for Sweep C onfigu ra tions 95

5.4 Actual and Estimated Values for Random C onfigurations................... 96

5.5 Initial and Evolved P o p u la tio n s ... 98

A .l Aggregate XML Template Component D esc rip tio n s 108

A.2 Primitive XML Template Component Descriptions 108

A.3 An Example Parameter D ecla ra tion ... 108

A.4 An Example Implementation D ecla ra tion ... 110

A.5 An Example Port D e c la ra tio n ... 110

A.6 An Example of a Sub-Components S e c tio n .. I l l

A.7 Example of a Dependency Relationship D efin itio n 113

A.8 An Example of an Objective Estimation Equation Definition in the

Objectives F i l e ... 114

A.9 An Example of an System File Listing .. 115

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

B .l Instruction Formats for the RISC Processor ... 118

B.2 RISC Processor Block D ia g r a m .. 122

B.3 D atapath Block D iag ram .. 123

B.4 Function Unit Block D ia g ra m .. 124

B.5 Control Unit Block D ia g ra m ... 126

XV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 The Digital Design Hierarchy [11, 50, 65, 6 1] ... 10

3.1 Altera Nios Hardware P a ra m e te rs ... 33

3.2 Relative Sizes of Stratix Components (from [75])...................................... 39

3.3 Regression Coefficients - Nios Processor .. 39

4.1 An Example of a Dependency T a b le .. 61

4.2 Components in the VHDL Component L ib ra ry .. 69

5.1 RISC Processor Hardware P aram eters .. 84

5.2 Summary of Param eter Sweep Results ... 85

5.3 Regression Coefficients for RISC C P U .. 93

5.4 Number of Occurrences of Each Parameter Value in the Evolved Pop­

ulation .. 99

A .l Dependency Lookup Tables for D ata W idth and Multiplier Parameters 113

B .l RISC Processor Hardware P aram eters.. 117

B.2 RISC Processor In s tru c tio n s ... 119

C .l Parameter Sweep D a t a ... 127

C.2 D ata for Initial P o p u la tio n .. 134

C.3 D ata for Evolved P o p u la tio n ... 137

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Abbreviations

Abbreviation Definition
ADL Architecture Description Language
ALU Arithmetic Logic Unit
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor
CAD Computer Aided Design
CPU Central Processing Unit
DOF Decode and Operand Fetch
DSE Design Space Exploration
DSP Digital Signal Processing
EA Evolutionary Algorithm
EX Execute
FF Flip-Flop
FPGA Field Programmable Gate Array
GA Genetic Algorithm
GUI Graphical User Interface
HDL Hardware Description Language
IEEE Institute of Electrical and Electronics Engineers
I/O Input/O utpu t
IC Integrated Circuit
IF Instruction Fetch
IOE Input/O utpu t Element
IP Intellectual Property
LAB Logic Array Block
LE Logic Element

xvii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF ABBREVIATIONS

LUT Lookup Table
MUX Multiplexer
PLD Programmable Logic Device
RAM Random Access Memory
RISC Reduced Instruction Set Computer
ROM Read Only Memory
SEAMO Simple Evolutionary Algorithm for Multi-objective Optimization
SoC System on a Chip
SOPC System on a Programmable Chip
UART Universal Asynchronous Receiver/Transmitter
UML Unified Modeling Language
VHDL Very High Speed Integrated Circuit Hardware Description

Language
WB Write Back
XML Extensible Markup Language

xviii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Symbols

Symbol Definition

P Total number of parameters.

Pi The ith parameter.

i Parameter index.

Set of possible values for the if/, parameter.

D Design space.

M Cardinality operator.

N Size of genetic population.

G Number of generations.

r c Crossover rate.

T m Mutation rate.

K Total number of objectives.

k Objective index.

Fk(Pi,P2, ■■■, Pp) The kth objective function.

fi,k(Pi) The functional form of i th term of the k th objective function.

The ith regression coefficient for the kth objective function.

xix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 1

Introduction

In our modern digital age, devices utilizing embedded systems have become very

common and enjoy widespread use in our daily lives. Examples of these systems are

abundant and include cellular phones, digital cameras, appliances, automobiles, air­

planes, and manufacturing systems. All of these rely on embedded electronic systems

to carry out the task for which they were designed. Essentially, an embedded system

is an electronic sub-system tha t utilizes computational hardware to perform a small

set of tasks tha t are specific to a particular application [45]. They can be logically

broken down into two major components: the embedded software (sometimes referred

to as firmware) and the digital hardware, as shown in Figure 1.1 below.

The hardware component usually consists of one or more embedded central pro­

cessing units (CPUs) and their associated application-specific hardware. These com­

ponents communicate with one another and with embedded memory and Input/O ut-

pu t (I/O) components over a common bus. The software component is a program

written and compiled specifically to run on the embedded processors. In contrast

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

r — — — — — ~ — — — — — — — — — — — — — — — — ~ — — — ~ i

1 Embedded System 1

Memory
and I/O

Application-specific
hardware

Software running
on CPU

Embedded CPU

i__ i

Figure 1.1: Block Diagram of an Embedded System

with general-purpose personal computer systems, which are designed to run a vir­

tually infinite variety of different software programs, an embedded processor is only

required to execute one piece of software continuously. Therefore, the processor can

be optimized to run th a t piece of software as efficiently as possible; resulting in what

is known as an Application Specific Instruction-Set Processor (ASIP). Since embed­

ded systems are utilized in an extremely wide array of applications, it is no surprise

tha t the market for embedded systems today is far larger than th a t of general-purpose

personal computer systems. Therefore, it is quite clear tha t the field of embedded

system design is an im portant and substantial area of study.

W ith the continual improvement of integrated circuit (IC) process technology,

complete embedded systems can be built onto a single chip. This trend has come to

be known as the “system-on-a-chip” (SoC) paradigm. As a result, ever more complex

circuits can be designed and implemented on a single IC chip. The widespread use

and growing complexity of embedded system designs has led to many im portant

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

innovations, but has also introduced many major design challenges. Most importantly,

the challenge of developing a complex system within the constraints of a reasonable

budget and time-frame is a constant consideration for all embedded systems engineers.

When designing an embedded system, there are several major approaches tha t

have been taken. The traditional approach [27, 23] involves first designing the hard­

ware portion of the embedded system, including the microprocessor and associated

application-specific circuitry and then writing the software to run on the microproces­

sor after the hardware design phase has been completed. However, it was observed by

many designers tha t by using this approach they often missed out on many potential

optimizations tha t could be exploited if the design of the hardware and software por­

tions of the system were considered together. Therefore, a second approach, known

as the hardware/software co-design approach [52, 33, 24, 23], took shape. In this

approach, the design of the hardware and software parts of the system are designed

concurrently, allowing the designer to explore the tradeoffs between hardware and

software implementations of the various system tasks.

As the complexity of embedded systems designs increased over time, designing

each and every hardware component of the system from scratch soon became far too

impractical and expensive for many designers. Therefore, a third approach, known

as the platform-based design approach [13, 49, 61], emerged. Platform-based design

entails the the idea of using pre-designed and pre-tested hardware components known

as intellectual property (IP) cores as a platform upon which to build complete sys­

tems. This approach heavily emphasizes design reuse. Using IP cores, a designer

can be confident tha t the building blocks he or she is using in the design will func­

tion as expected. As a result, the designer is subsequently freed from designing the

components from scratch, which naturally leads to a much shorter design cycle.

Soft-cores are a particular class of hardware IP cores tha t are often used by de­

signers to build their systems. Essentially soft-cores are hardware components tha t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

are described using a hardware description language (HDL). In order to increase the

reusability of soft IP cores across a wider range of application domains, many of them

are parameterized, meaning tha t the core’s architecture features a number of config­

urable options or parameters th a t can be set by the engineer at design-time. These

options are built into the core’s architecture by its creators and allow the designer

of an embedded system to tailor the core to closely match the requirements of the

system’s intended application.

The recent development of field programmable gate arrays (FPGAs) and other

programmable logic devices (PLDs) has introduced designers to a new type of flexible

prototyping and implementation medium for embedded systems designs tha t utilize

soft-core components. FPGAs are programmable IC chips tha t can be configured

to function like virtually any digital circuit tha t can be conceived, subject to the

limitations imposed by the logic capacity of the device. Soft-core descriptions of

hardware components can be translated into a logic circuit which can then be mapped

directly onto the programmable fabric of an FPGA. This allows a designer to test

the functionality of a logic circuit in real-time without having to fabricate a custom

chip. Using FPGAs, different design tradeoffs can be rapidly explored, allowing better

design decisions to be made and reducing the overall development time of a system.

When designing an embedded system for any application, it is im portant tha t

designers come up with a hardware platform th a t is well suited for their purposes. If

this is not done well, the result may be a system tha t is over-designed or sub-optimal

for the intended application, which would almost certainly incur the unnecessary

expenditure of additional time and financial resources. Therefore, it is crucial tha t

a good hardware design be selected early in the design process. This endeavour is

complicated by the fact tha t there almost always exists a very large set of possible

hardware designs to choose from. This set of all possible hardware design configura­

tions is known as the design space, and the task of selecting the best design from th a t

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

set is commonly referred to as design space exploration (DSE) [32].

As the complexity of the system being designed increases and the number of

parameters rises, the design space for tha t system expands. As a result, exploring the

design space in search of the best system configuration for a given application can be a

difficult and tedious task. An exhaustive exploration approach [31] is often infeasible,

therefore many designers rely on past experience to narrow down the number of

possible design configurations. Although designer experience is always a very valuable

asset to any design project, this approach is considered by some to be too ad hoc [32],

and may sometimes yield sub-optimal designs. Therefore, much research has been

conducted into automating the process of design space exploration.

This thesis is primarily concerned with the question of how to derive a “good”

hardware platform for a given embedded system constructed from a set of param­

eterized soft-core components. The emphasis of this research is on the design of

embedded microprocessors targeted for implementation on FPGAs specifically, since

FPGAs are a relatively new technology, and as such, microprocessor design targeting

these devices is not yet well understood. In this work, the results of a preliminary

investigation into an automated DSE approach involving parameterized cores [9] are

presented, the design of a software-based Computer Aided Design (CAD) tool tha t

utilizes this approach is described, and the results obtained from experimentation

with this CAD tool are discussed.

1.1 T hesis O bjectives

The main goal of this research is to contribute toward the enhancement of the col­

lective understanding of how embedded microprocessor design targeting FPGAs is

unique in terms of processor architectures, CAD tools, and design techniques and

methodologies. In order to achieve this goal, an exploration of the design space of

soft-core processors targeting FPGAs should be conducted. To this end, this research

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

has several major objectives:

1. Investigate the feasibility of applying an autom ated design space exploration

algorithm to a parameterized soft-core with a sizable design space.

2. Develop a software-based “processor builder” CAD tool th a t is capable of ex­

ploring the design space of a parameterized soft-core using an automated DSE

approach. This tool should also be able to generate HDL descriptions for “vari­

ants” of a core, given a set of param eter values.

3. Perform an exploration of the design space of a parameterized soft-core processor

using the processor builder tool, use the tool to generate a set of variant cores,

and evaluate the variants in terms of performance and area utilization on an

FPGA.

To address the first objective, a preliminary case study was conducted in which an

automated DSE approach was applied to the Altera Nios [17] parameterized soft-core

processor. In this study, the design space of the Nios core was explored using the

Simple Evolutionary Algorithm for Multi-objective Optimization (SEAMO) [69], a

genetic algorithm (GA) based approach. For the second thesis objective, a software-

based CAD tool called SCBuild (“Soft-Core Build”) was developed which utilizes the

SEAMO algorithm to explore the design space of a user-supplied parameterized core.

SCBuild is also capable of estimating a core’s area utilization and performance on

an FPGA, and can generate structural Very High Speed Integrated Circuit Hard­

ware Description Language (VHDL) [54] descriptions of a core given a specific set

of param eter values and a library of soft-core building-block components. Finally,

to satisfy the third objective, several design space exploration experiments were con­

ducted using SCBuild and a simple parameterized Reduced Instruction Set Computer

(RISC) soft-core microprocessor [48].

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

1.2 T hesis O rganization

The outline of this thesis is as follows. Chapter 2 introduces the reader to the greater

context of this research by providing the relevant background information and a

summary of some of the previous work tha t has been done by other researchers in

this area of study. Chapter 3 discusses a preliminary case study involving the design

space exploration of the Altera Nios soft-core processor using the SEAMO algorithm,

which was carried out in order to lead directly into the core1 of this research. In

Chapter 4, the design and implementation of SCBuild are discussed in detail. Chapter

5 presents the results obtained through experimentation using SCBuild and a simple

parameterized RISC processor. Finally, Chapter 6 concludes this thesis and discusses

possible future work in this area.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 2

Background and Previous Work

In this chapter the background material th a t is relevant to this research is presented,

followed by a brief summary of previous work tha t has been done in this area. This

chapter begins with a discussion of the different classes of intellectual property cores

th a t exist a t the various levels of abstraction. Then the parameterization of IP cores

is defined, followed by a discussion of several prominent examples of parameterized

soft-core processors from the industrial and open-source communities. Next, the

basic concepts of FPGA technology are briefly explained, followed by an introduction

to design space exploration and multi-objective optimization. Finally, this chapter

concludes with a presentation of previous work th a t is closely related to this research.

2.1 In tellectual P rop erty (IP) Cores

The definition of the term “intellectual property” is a broad one and covers a wide

range of products and ideas across numerous fields of research. However, in the

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

context of this research, the term refers to reusable hardware or software building

blocks tha t have been pre-designed and pre-tested prior to deployment in a design

[64, 34], These building blocks are usually the property of a particular individual or

organization who licenses designers to use their hardware and software blocks. This

idea of reuse is certainly not a new one; relying on past knowledge and experience

has led to virtually all of the great discoveries and advancements over the course of

history. For example, in the area of software development, programmers and software

engineers have been collecting useful functions together into libraries for a long time.

In the context of hardware design for embedded systems, the term “IP core” refers to

reusable hardware components tha t are ready to be placed into a design with little or

no modification made to them. Hardware IP cores can be any of a number of different

types of digital components, including full microprocessors. These cores can come in

the form of descriptions of hardware at the various levels of abstraction in the digital

abstraction hierarchy, as will be discussed in the next section.

2.1.1 The D igital A bstraction Hierarchy

Any digital system can be described a t different levels or layers of abstraction. Bell

and Newell [11] were some of the first writers to formally discuss the hierarchy of

abstraction levels in the context of digital system design. This hierarchy also appears

in updated form in later literature [50, 65, 61]. The hierarchy includes the five major

levels of abstraction shown in Table 2.1, and each level is characterized by a distinct

class of languages tha t are used to represent the behaviour and structure of the system.

Behaviour refers to the way tha t the system or its components interact with their

environment, while structure refers to the set of interconnected components tha t

make up the system. A description of the behaviour and structure of the system

can be made at any one of these abstraction levels, and the process of translating

a higher-level description to a lower-level description is generally known as synthesis

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Table 2.1: The Digital Design Hierarchy [11, 50, 65, 61]

Level Behaviour Structure

System (Architecture) Communicating Processes Processors, Memories

Algorithm (Program) Programming Languages D ata Structures

Register Transfer (RTL) Register Transfers Registers, ALUs, MUXes

Logic (Gate) Boolean Equations Logic gates, Flip-flops

Circuit (Layout) Circuit Equations Interconnected Transistors

[50].

Starting from the highest, the five levels of system abstraction are the System

level (also known as the Architecture level), the Algorithm (or Program) level, the

Register Transfer level (RTL), the Logic (Gate) level, and the Circuit (or Layout)

level.

At the Circuit Level, the system is viewed as a circuit consisting of a collection of

interconnected transistors and their physical layout on an IC chip. All signals in the

system a t this level are continuously varying quantities, so the behaviour of the system

can be described using the fundamental equations of circuit analysis. The system’s

structure may be described symbolically using a schematic or layout diagram.

At the Logic Level, it is assumed tha t all signals in the system are discrete variables

tha t can take on one of two values: 1 or 0 (or alternatively, high or low). This

allows the system to be described in terms of its logical behaviour using Boolean

equations. The structure of the system is described as a combinational or sequential

circuit consisting of primitive logic components such as gates and flip-flops and their

associated set of interconnections.

As its name implies, at the Register Transfer Level the behaviour of the system

is expressed as a set of data transfers between storage registers. The system per­

forms a set of discrete micro-operations, in which the data stored in the registers

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

are manipulated or combined with other data and then stored in another register.

Structurally, the system consists of any number of registers and functional units such

as arithmetic logic units (ALUs) connected together by buses. In general, hardware

description languages such as VHDL, Verilog [55] and others can be used to describe

the structure and behaviour of digital hardware components at this level.

When viewed at the Algorithm Level, the system is seen as a collection of data

structures such as variables stored within a memory block and the instructions tha t

operate on those variables. Instructions are formed when micro-operations at the

Register Transfer Level are combined to form complete operations, such as the addi­

tion of two numbers or the transfer of data to and from memory. A collection of these

instructions form a complete instruction set, which is the base language for describing

system behaviour a t this level. The instructions are executed sequentially, which is

unique to this level, since at all levels below the Algorithm level, the behaviour of the

system is expressed as a set of events occurring in parallel. W ithin this level, there is

a sub-hierarchy of languages tha t are used to express the functionality of a program.

High-level languages such as C /C + + [43], Visual Basic [21], etc. are translated down

to assembly language by a compiler, which .is, in turn, translated to machine code by

an assembler.

Finally, at the System Level, the structure of the system is depicted as a set of

abstract processing elements interacting with one another and the external environ­

ment. At this level, a designer would be concerned with overall system architecture

and information flow between the processors, the memory and their interface to the

surrounding environment (i.e. I/O).

2.1.2 Classes o f Hardware IP Cores

In general, there are three major classes of hardware IP cores available: hard-cores,

firm-cores and soft-cores [64, 34]. These different classes represent descriptions of

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

RT Level
Soft-cores

Increasing
ab strac tio n ,

flexibility,
an d reusab ility

Logic S y n t h e s i s J ^ j ^

Logic Level
Firm-cores

Tech. m app ing , I I

V p lac em e n t & I I
routing , e tc .

Increasing
p e rfo rm ance ,

d e c reas in g
chip a re a , e tc .

Figure 2.1: The Three Classes of Hardware IP Cores

hardware components at different levels of abstraction. Hard-cores are Circuit-level

descriptions of components and are optimized for a particular target IC technology

and include information regarding the physical layout of the core on a chip. Firm-

cores are pre-synthesized Logic-level netlist descriptions of digital components tha t

are ready for technology mapping, placement and routing on a given target IC pro­

cess. Finally, soft-cores are components th a t are described a t the Register Transfer

Level using a synthesizable subset of a hardware description language. A soft-core

description of a component can translated into a firm-core using a hardware synthesis

tool such as Synopsys Design Compiler [39], A ltera’s Quartus II software [18], Xilinx

Synthesis Technology (XST) [41], or the like. Subsequently, a firm-core description

can then be translated into a hard-core through the process of technology mapping,

which maps generic logic primitives such as gates and flip-flops onto particular phys­

ical implementations of those primitives. This process of translating a higher-level

Circuit Level
Hard-cores

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

description to a lower level description is illustrated in Figure 2.1.

This research focuses exclusively on the development of soft-core hardware com­

ponents. Using soft-core components in designs holds a number of distinctive ad­

vantages to the designer. First, soft-cores are flexible and can be customized for a

specific application with relative ease. Second, they are technology independent in

tha t they can be synthesized for virtually any desired Application Specific Integrated

Circuit (ASIC) or FPGA technology. Third, due to their technology independence,

they are more immune to becoming obsolete as technology changes when compared

with Circuit- or Logic-level descriptions of a component. Fourth, since a soft-core’s

structure and behaviour are described at a higher abstraction level using an HDL,

it becomes much easier to understand the overall design of the component. Fifth,

since they are written using an HDL, designing them often resembles the process of

software development. Also, as an added benefit, software tools can be created to

automatically generate the HDL code of a soft-core component. Finally, due to their

flexibility, they can be easily parameterized, thus greatly enhancing their reusability

and applicability across a wider range of designs and applications.

2.2 Param eterization: Increasing th e R eu sab ility

o f an IP Core

A parameterized core is a hardware component whose architectural features can be

varied to a certain extent. A parameter is a particular feature or aspect of the

component’s architecture th a t can be changed and assigned particular values from a

finite set by the embedded system designer [76, 29]. Examples of parameters include

variable bus widths, functional unit implementations, hardware algorithms, memory

sizes, pipeline depth, etc. Assigning values to all of the parameters of a component

produces one configuration. Parameterizing a core greatly expands its versatility and

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

usefulness in a wider range of applications.

There are two different types of parameters: static parameters and dynamic pa­

rameters [29]. Static param eters must be set prior to the fabrication of the chip and

often take the form of “generic” or statements within a VHDL description [54] of a

soft-core component, or “param eter” statements in Verilog [55]. In contrast, dynamic

parameters are those tha t can be set after the chip is fabricated, provided the chip

has the facilities for supporting various param eter settings. Dynamic param eters are

especially useful for parameterizing hard and firm-core components. For this research

only static parameters of soft-core components will be considered.

Many of the parameters of a core often share interdependencies with one an­

other. Assigning a value to one param eter will affect the choice of value assignments

for other parameters, therefore the value assignments of interdependent parameters

should be considered simultaneously. These interdependencies can either be soft or

hard dependencies [29]. Soft interdependencies dictate that the value assignments of

dependent parameters should be done at the same time in order to achieve optimal

system performance, power consumption and IC area utilization. On the other hand,

hard interdependencies require simultaneous param eter assignments if a valid and

feasible design configuration is to be chosen.

Parameters of a soft-core hardware component are especially valuable to an em­

bedded systems designer, since they give them the flexibility to customize the core

as they desire in order to better fit the target application without having to manu­

ally rewrite large portions of the core’s underlying HDL source code. Often, if the

parameters of a core significantly affect its underlying structure, then it may be nec­

essary to use a software-based HDL code generator program to customize the code

automatically.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS WORK

2.3 Soft-core P rocessors

A soft-core can be a description of virtually any digital hardware component, including

a full microprocessor. For many of the reasons mentioned above, soft-core processors

are a popular choice for embedded systems designers. Several examples of commercial

and open-source soft-core processors will be discussed below [67].

2.3.1 Exam ples of Soft-core Processors

Altera Corporation [70] is an industry leader in programmable logic technology, spe­

cializing in FPGAs and other programmable logic devices. They are the makers of

the Stratix and Cyclone Series of FPGAs [22]. They also provide numerous soft IP

cores th a t are specifically designed to target their devices. Their flagship IP core is

the Nios II soft-core processor [71], which is a general-purpose RISC processor th a t is

optimized for embedded applications. This core consists of three processor variants

tha t can be selected based on a designer’s specific needs: the Nios l l / i fast core,

which is designed for maximum performance, the Nios I l/e economy core, which is

the smallest processor core, and the Nios II/s standard core, which is a tradeoff be­

tween the fast core and the economy core. These cores each feature their own set of

configurable options, and all of them provide support for up to 256 custom instruc­

tions and interfacing to peripheral devices using the automatically-generated Avalon

bus [3]. The Nios II processor is the successor to the original Nios [17], and features

improvements over the original design th a t are aimed at providing better performance

and FPGA area utilization. Designers working with the Nios II processor can use the

Quartus II CAD tool suite [7] with System on a Programmable Chip (SOPC) Builder

[19] to instantiate one or more processor cores into an embedded system design and

connect them to other peripheral components, such as timers, universal asynchronous

receiver/transm itters (UARTs) and memories.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

MicroBlaze [73] is a 32-bit parameterized soft-core RISC processor provided by

Xilinx Incorporated [40] tha t is targeted for Xilinx FPGAs and optimized for embed­

ded applications. Its fixed features include 32-bit instructions, a 5-stage single-issue

pipeline, a thirty-two general-purpose registers and a 32-bit address bus for data and

instruction memories. The latest version of MicroBlaze (v5.00a a t the time of this

writing) also includes a large number of parameters, including an optional hardware

barrel shifter, multiplier, divider, floating point unit (FPU), and others. Memory

can reside on-chip or as an external peripheral. On-chip memory can be accessed by

MicroBlaze using a Local Memory Bus (LMB), which provides single-cycle access to

the memory. Also, the a general purpose interface known as the On-chip Peripheral

Bus (OPB) can be used to interface MicroBlaze with memories and other peripheral

components.

In addition to commercially available soft-core processors, there are numerous

cores available from various open-source communities on the internet. Many of these

cores can be downloaded, modified, and used in designs free of charge. Opencores.org

[56] contains a large number of soft-core hardware components th a t have been de­

veloped by people all across the world. A number of open-source microprocessors

are available, including the OpenRISC 1200 processor [2], which is a 32-bit RISC

processor with a 5-stage pipeline and basic digital signal processing (DSP) function­

ality. O ther examples of open-source soft-core processors include Qrisc [62], and the

LEON3 processor by Gaisler Research [63].

2.4 F P G A T echnology

Field programmable gate arrays are a specific class of programmable logic device

tha t are designed to be programmed and reprogrammed to act like virtually any

digital circuit tha t can be conceived, subject to logic capacity limitations. They are

becoming an increasingly popular choice for embedded systems designers who want a

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Logic Element (LE)

Inputs -

>clk

4-input
LUT

elk

Figure 2.2: Schematic of a Generic FPGA Logic Element (LE) [42]

medium for prototyping and implementing soft-core hardware components. Soft-cores

and FPGAs often go hand-in-hand. In fact, it is quite common for companies who

manufacture FPGAs to also provide their own soft-cores tha t target their devices as

well, with Altera Corporation [70] and Xilinx Incorporated [40] being the two largest

and best-known examples.

The design of an FPGA differs between various manufacturers and also between

different device families. However, in general, an FPGA is an IC chip th a t consists of

an array of programmable blocks, often referred to as Logic Elements (LEs), which

are connected to each other by a programmable interconnection network. A basic

schematic diagram of an idealized LE is depicted in Figure 2.2 [42], Although the

LEs in the current generation of devices are much more sophisticated, this idealized

LE does serve to illustrate the basic idea of how an FPGA works.

At the core of each LE is a block of programmable memory called a Lookup Table

(LUT). The diagram in Figure 2.3 illustrates the essential functionality of an LUT.

The LUT consists of an array of 1-bit memories connected to a multiplexed output

p in . I f th e L U T h a s n in p u ts , th e n th e m e m o r y array w ill h a v e 2 ” b its . T h is array ca n

be programmed with the tru th table of any possible n-input Boolean logic function,

and the n multiplexer (MUX) select inputs decide which of the 2" memory array

bits appears at the LUT output. For example, to implement the logic function of a

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

16-to-l
MUX ♦■Output

A B CD

Figure 2.3: Schematic of a Lookup Table (LUT)

4-input “AND” gate, bits 0 to 14 are programmed with 0’s and bit 15 is set to 1.

Using this memory array, a total of 22" logic functions can be implemented using an

n-input LUT.

In order to make the creation of sequential logic circuits possible, the output of

an LUT in a Logic Element is connected to a flip-flop (FF). Then the registered and

unregistered outputs of the LE are both made available through a 2-to-l MUX whose

select line value is determined by the value stored in a second flip-flop, which is set

by a bit-stream when the FPGA device is configured.

On an FPGA, a large number of LEs are connected together using a network

of programmable interconnects, also known as “routing” . There are many different

types of routing architectures available, but they all have one thing in common:

programmability. As depicted in Figure 2.4 [25], the LEs are grouped together into

clusters called Logic Blocks (L in the figure) which are surrounded by horizontal and

vertical wires on all sides, and special I/O blocks are arranged around the perimeter

of the FPGA chip. The output of each Logic Block can be programmed to connect

to a set of horizontal and vertical wire segments, and each wire segment can be

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

I/O I/O

I/O I/O

I/O I/O

I/O

I/O I/O

I/OI/O I/O I/O I/O

Figure 2.4: Generic FPGA Routing Architecture (adapted from [25])

programmed to connect to other wire segments through a Switch Block (S).

By programming both the contents of the Logic Blocks on the FPGA as well as the

routing connecting the blocks together, a designer can implement a virtually limitless

number of digital hardware circuits. Using an FPGA as an implementation medium

offers the distinct advantage of flexibility—if the designer needs to change the circuit

on the FPGA, it is merely a m atter of reprogramming it. However, this flexibility

does come with a cost. Circuits th a t are implemented on an FPGA will generally take

up more chip area, consume more power, and run slower than they would if they were

implemented using an ASIC technology. Nevertheless, since FPGAs are a relatively

new technology, research is being conducted th a t aims at closing the performance gap

between FPGA and ASIC technologies.

The first FPGAs tha t were introduced featured relatively small logic capacities

and offered only a few basic features. However, as the technology improved, the

devices were able to hold increasingly larger circuits and began including a number of

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

more advanced features. Currently, on top of an ever-increasing number of LEs and

I/O pins, the latest cutting-edge devices also feature large amounts of on-chip memory

and other special-purpose blocks such as dedicated multipliers. In addition to having

configurable elements, some FPGAs also feature one or more hard-core processors

built right into the device. For instance, the Xilinx Virtex-4 family of FPGAs [57]

features two built-in hard-core embedded IBM PowerPC™ 405 processors [16], which

can be used in any number of embedded applications. These new features serve to

substantially improve the performance, area utilization, and power consumption of

systems implemented on FPGAs.

The Altera Stratix EP1S40F780C5 FPGA has been selected as the target device

used for this research, therefore a brief description of the Stratix architecture [8] is

necessary. All of the devices in the Stratix family contain six different types of logic

resources: Logic Array Blocks (LABs), M512, M4K, and M-RAM memory blocks,

DSP blocks, and I/O Elements (IOEs). LABs are blocks which consist of 10 LEs

each and are used to implement user-defined logic functions. The M512 blocks, the

smallest memory blocks, each contain 512 bits of memory, plus parity bits, and can be

used to provide single-port or simple dual-port memory operation. The M4K blocks

are larger than the M512s and feature 4 kilobits of memory each, plus parity. These

blocks can be used in single-port, simple dual-port or true dual-port mode. The M-

RAM blocks are significantly larger than both the M512 and M4K blocks, containing

512 kilobits of memory each (plus parity). Like the M4K blocks, the M-RAM blocks

can be used in single-port, simple dual-port or true dual-port mode. The DSP blocks

are special-purpose resources on the device, and can each be used to implement eight

9 x 9-bit multipliers, four 18 x 18-bit multipliers, or one 36 x 36-bit multiplier. Lastly,

the IOE elements are connected to the Stratix device pins, and support a number of

different I/O standards. All of these resources are arranged in a 2-dimensional row-

and column-based structure on the Stratix device. The EP1S40F780C5 device, one

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

of several in the Stratix family, contains exactly 4,125 LABs (or 41,250 LEs), 384

M512s, 183 M4Ks, 4 M-RAMs (for a total of 3,423,744 memory bits), 14 DSP blocks

(for a to tal of 112 9 x 9-bit multipliers, 56 18 x 18-bit multipliers or 14 36 x 36-bit

multipliers) and 616 I/O pins [8].

2.5 D esign Space E xploration (D SE)

The term design space in the context of digital embedded systems generally refers to

the set of all possible system designs; tha t is, the complete collection of all possible

digital hardware and software configurations tha t will achieve the functionality re­

quired to perform the system’s intended tasks. When dealing with a complex system

like those commonly encountered in the area of embedded systems, the design space

is extremely vast and contains a large number of configurations that are sub-optimal

for any given application. Therefore, it is essential to the success of any embedded

systems design project tha t the design space be traversed to determine the system

design configuration th a t best suits the intended application. This is. in essence, the

main goal of design space exploration.

2.5.1 M ulti-objective O ptim ization

The problem of DSE is essentially a multi-objective optimization problem in which

design configurations are chosen so tha t they provide the best balance between a

set of competing objectives. Most commonly, these objectives include minimizing IC

chip area, reducing power consumption and maximizing system performance. These

objectives cannot be optimized independently, since improving one objective will al­

most always mean sacrificing another. Since several competing objectives are being

optimized at once, there is seldom one single “optimal” design configuration for any

given multi-objective optimization problem. Instead, there exists a set of configura-

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Pareto-optimal Not Pareto-optimal

Figure 2.5: The Concept of Pareto-optimality Illustrated (adapted from [60])

tions known as the Pareto-optimal set tha t is a subset of the complete design space.

A configuration is said to be Pareto-optimal if you cannot improve one objective

without sacrificing another. The concept of Pareto-optimality is illustrated with a

geometric example in Figure 2.5 (adapted from [60]).

Suppose in this hypothetical multi-objective optimization problem [60] th a t the

goal was to simultaneously maximize the areas of circles A, B and C within the area

of the triangle, with the constraint th a t the circles must not overlap or pass the

boundary of the sides of the triangle. In this case there cannot be just one solution,

but rather a multitude. The configuration on the left-hand side of the figure is an

example of a Pareto-optimal solution, because you cannot increase the area of any of

the circles without decreasing the area of the other two. In contrast, the triangle on

the right-hand side is a non Pareto-optimal configuration, because the area of circle

B can be increased without affecting the areas of circles A or C.

Finding the Pareto-optimal set drastically reduces the size of the design space

by eliminating all sub-optimal configurations, allowing the designer to select a single

design configuration from the Pareto-optimal set tha t is well-suited to the intended

application. If one were to plot one objective against another on a graph, the result

would be something tha t looks similar to the graph shown in Figure 2.6.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

Objective 2

Design Space

Pareto-optim al
front

Objective 1

Figure 2.6: Illustration of a 2-Dimensional Design Space

All of the possible design configurations are located within the Design Space region

of the graph. Outside of this region, no design configurations can exist. The boundary

of the Design Space region at the lower left-hand side nearest to the origin of the graph

is referred to as the Pareto-optimal front. Design configurations tha t lie along this

boundary line represent the very best configurations of the design space in terms of

the objectives across which the graph is plotted. It is this set of configurations tha t is

being sought when Pareto-based design space exploration is performed. Conversely,

it is clear that there is also a large space of sub-optimal configurations tha t exists

within the boundaries of the Design Space. Ideally, these configurations can be safely

eliminated, or “pruned” , from consideration, thus drastically reducing the size of the

space tha t must be explored.

2.5.2 DSE U sing Param eterized Cores

In the context of platform-based embedded systems design involving parameterized

cores, the goal of DSE is to prune the design space in search of a suitable combination

of parameter values for the hardware platform tha t provides a good balance between

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

the each of the objectives while satisfying the design constraints imposed by the

requirements of a particular application. Many approaches for handling this task

have been proposed.

The simplest and most straightforward approach to design space pruning is to

exhaustively visit and evaluate each and every combination of parameters in the de­

sign space and remove the worst configurations from consideration. Some research

has been done on the application of this approach [31, 28]. The obvious drawback to

this approach is the fact tha t it rapidly becomes infeasible to evaluate every configu­

ration as the design space grows. Therefore, this approach is seldom practical on its

own, except for very small systems with relatively few parameters, as concluded by

Givargis et al [28].

Since the exhaustive approach is so often infeasible, there are a multitude of

approaches tha t have been developed tha t help to automate the process of DSE

of embedded hardware platforms. A good summary of some of these approaches,

such as the use of Architectural Description Languages (ADLs), can be found in the

literature [32, 66, 53]. For this work one particular approach will be examined: the

use of genetic-based algorithms with parameterized cores, as will be discussed in the

following sections.

Approaches Based on G enetic Algorithm s

The idea of a genetic algorithm (GA, sometimes referred to an an evolutionary algo­

rithm or EA) was first proposed by Holland in 1975 [37] and was used primarily in

the field of artificial intelligence. However, it was later applied in a wider range of

applications and was found to be very effective in solving multi-objective optimization

problems, including the problems posed by DSE using parameterized cores. Genetic

algorithms are a class of optimization problems tha t gain their inspiration from the

field of biological sciences. There are many variations of the algorithm, but they

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

all work by attem pting to emulate the biological process of natural selection, where

stronger members of a population survive and pass on their genes while the weaker

members gradually die off. A good overview of genetic and evolutionary algorithms

for multi-objective optimization can be found in the literature [26, 14].

The genetic algorithm starts with and maintains a set of design configurations

rather than just a single configuration. This set of configurations is called the popu­

lation and has a fixed size N. Each member of the population represents one unique

design configuration, and is referred to as a chromosome. Each chromosome in the

population is made up of a string of symbols tha t represent the system’s parameters.

A symbol in the chromosome is called a gene.

During an iteration or generation of the algorithm, each chromosome is evaluated

according to its “fitness” , where fitness is a measure of how well the configuration

meets the problem objectives. Pairs of chromosomes are selected to become parents

of offspring through reproduction. During this process, features from both parents are

combined to form the offspring using the genetic operators: crossover and mutation.

During crossover, the genes of the parents are combined to form a new chromosome,

called the offspring. The mutation operator produces random changes in a single

chromosome without producing offspring.

A new generation of chromosomes is formed through the production of numerous

offspring from the set of parents. Since the population has a fixed size, N chromosomes

of the total number of parent and offspring chromosomes are selected to survive to

the next generation; the rest are discarded. The N surviving chromosomes can either

be selected randomly from the full set, or selected based on fitness. After several

generations of the algorithm, the population of configurations should converge toward

an optimal configuration set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

2.6 C losely R elated W ork

Yiannacouras [75] developed SPREE, the Soft Processor Rapid Exploration Environ­

ment, in order to facilitate the exploration of the design space for soft-core processors

targeted for implementation on an FPGA. SPREE consists of a hardware Component

Library and an RTL Generator. The RTL Generator fetches hardware components

from the library and builds a datapath according to a special Architectural Descrip­

tion which is given to the RTL Generator as an input. The RTL Generator then

creates the corresponding control logic, either pipelined or unpipelined, yielding a

complete soft-core processor. The generated processors were based on the MIPS-I

[35] instruction set architecture. The SPREE system was used to investigate several

soft-core processor architectural alternatives including hardware versus software mul­

tiplication, different shifter implementations, varying pipeline depths, as well as some

other interesting architectural tradeoffs. One major difference between the SPREE

system and this present work is the exploration methodology. The SPREE system

uses an exhaustive exploration strategy, in which the user must manually explore

the various design tradeoffs by developing different architectural descriptions for each

processor variant. In contrast, this research applies an autom ated approach based on

a genetic algorithm to explore the design space of a heavily parameterized soft-core

description.

The Platune system [30] is an environment tha t allows an embedded system de­

signer to tune the parameters of a parameterized hardware platform. The system

provides a set of simulation and power models for the components of a parameterized

system consisting of a MIPS R3000 processor [35] with instruction and data caches,

on-chip memory, and a set of interconnecting buses. The simulation models are used

to compute the execution time of a specific program running on the processor and to

gather information on the power consumption of the system. Platune also features

a design space exploration framework tha t uses a param eter interdependency model

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

and an exhaustive approach to determine the Pareto-optimal set of configurations. A

graph of parameter interdependencies is created, and interdependent parameters are

gathered together into clusters. Then an exhaustive exploration approach is applied

to each cluster to determine its local Pareto-optimal set. Once each cluster has been

searched, pairs of clusters are merged together, and the exhaustive search is applied

to the merged clusters. This process continues until a single cluster remains, and

the Pareto-optimal set of configurations is determined. In contrast to the Platune

system, this work features a GA-based approach to search the design space for the

Pareto-optimal set. Additionally, the Platune system is directed specifically toward

the use of the MIPS R3000 processor model, which is not designed specifically for

FPGA implementation. In this research, a general framework for the design space ex­

ploration of any parameterized core has been established, with emphasis on soft-cores

targeted for implementation on an FPGA.

Palesi and Givargis [59] present an approach to explore the design space of heav­

ily parameterized systems using a genetic algorithm, namely the Strength Pareto

Evolutionary Algorithm 2 (SPEA2) [77]. The approach combines the param eter de­

pendency clustering and exhaustive search method used by Platune with the genetic-

based SPEA2 algorithm to reduce the time needed to find the Pareto-optimal set of

configurations. Their results indicate tha t an approximated Pareto-optimal set tha t

is within 1% of the actual set can be obtained using the combined approach while

reducing the amount of simulation time required to determine the set by 80%. Ascia

et al [10] later use the SPEA2 algorithm directly with the Platune system to search

for the Pareto-optimal set of configurations. These researchers provide some useful

conclusions about the use of genetic-based algorithms in platform-based design prob­

lems. However, they do not focus specifically on the exploration of the design space

of soft IP cores targeted for FPGAs.

The PEAS-III system by M. Itoh et al [44] is a System-level design environment

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

tha t enables designers to quickly explore the design space of pipelined embedded

processors. The system is based on the micro-operation description of instructions,

which allows designers to concentrate on the design of a processor’s instruction set.

A pipelined processor is built from a series of pipeline stage models. Each stage

model represents a single stage in the pipeline and consists of pipeline resources such

as ALUs and other functional units, inter-stage pipeline registers, a stage controller

and the interconnections between them. The PEAS-III system creates a datapath

and associated control logic by cascading the stage models in series. Two VHDL

descriptions of the processor are generated by the system: a non-svnthesizable model

used purely for simulation and a version intended for synthesis. In order to evaluate

the effectiveness of PEAS-III, several processors were built using the' system, including

a MIPS R3000 processor, a DLX processor [36], and a simple RISC controller. The

PEAS-III system does not utilize any form of automated design space exploration,

thus distinguishing it from this present research.

2.7 Sum m ary

The relevant background material and related previous work was presented in this

chapter. First, Intellectual Property cores, and specifically soft IP cores, were' intro­

duced. Next, the parameterization of IP cores was discussed, followed by a presenta­

tion of some examples of soft-core processors tha t are available' fremi industrial vendors

and open-source communities. Then the basic concepts of Field Programmable Gate

Array technology were introduced, summing up with a discussiem of the architecture

of the Altera Stratix FPGA. The ideas of design space exploration and multi-objective

optimization were presented next, leading into the main thrust of this chapter: the

DSE of parameterized cores using genetic algorithms. Finally, this chapter concluded

with a discussion of some of the previous research tha t is closely related to the work

presented in this thesis. In Chapter 3, the results of a preliminary case study involv-

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. BACKGROUND AND PREVIOUS W ORK

ing the DSE of a parameterized soft-core processor using a genetic-based approach

are presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Design Space Exploration of

Embedded CPU Cores for FPGAs

Any given parameterized soft-core component of even modest complexity may have

numerous parameters, and each of those parameters may have a large number of

possible values to choose from. As a result, the total number of possible combinations

of these parameter values may be exceedingly large, often into the thousands, millions

or more. In addition, each param eter can potentially have an impact on the cost and

performance of the resulting system. Since the set of possible configurations can be so

large, one major question th a t arises is this: how does a designer go about selecting

a combination of parameter values tha t yields a system tha t has the lowest cost and

the highest performance for a particular application? It is this main question tha t

the study of DSE using parameterized cores sets out to address.

In this chapter, the results of a preliminary case study are presented. This study

was conducted in order to investigate the feasibility of applying a genetic algorithm-

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

based approach to a parameterized core with a sizable design space to determine

an approximation of its Pareto-optimal set [9]. The core tha t was chosen was Al-

te ra’s Nios [17] soft-core processor and the Simple Evolutionary Algorithm for Multi­

objective Optimization (SEAMO) [69] was selected as the engine for exploration.

3.1 P rob lem S tatem en t

The problem of DSE using parameterized cores is as follows [10]: a parameterized

system has a set of P parameters, pi, p<i, . . . , pp. Each of these param eters can

be assigned a value from a finite ordered set of possible values, Vj, i € { 1 , 2 , P) .

The design space, D is defined as the Cartesian product of all of the sets of possible

values:

D = Vi x V2 x . . . x VP (3.1)

Assigning particular values to all parameters of each component of the system

produces one design configuration. If dependencies exist between the param eters of

the system, then not every configuration in the design space will be feasible and

physically realizable. Subsequently, the total number of configurations in the design

space is the product of the cardinalities of each of the sets of values for each parameter:

\D\ — |Vi| x |V2 1 x . . . x |Vp| (3.2)

Every configuration has a set of K objective functions, Fk(pi,p<z,. ■ ■ ,pp), where

k E { 1 , 2 , . . . , K }, which arc measures of how well or how poorly the configuration

meets the objectives of chip area minimization, power consumption reduction, per­

formance maximization, etc. The set of all possible configurations makes up the

design space for the system.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

The objective of DSE in this case is to determine the Pareto-optimal set of con­

figurations from the complete design space. However, it is clear tha t as the number

of components, parameters and values per param eter grow larger, the design space

expands enormously. Therefore, to achieve the goal of finding the Pareto-optimal set,

two related tasks need to be performed. The first is to prune the design space down

to a manageable size by eliminating all sub-optimal configurations. The second is to

evaluate design configurations by estimating their area usage, power consumption,

performance values, etc. to see how well each configuration meets the objectives.

3.2 T he A ltera N ios Soft-core P rocessor

The Nios processor is a “pipelined general-purpose RISC microprocessor” [17] de­

signed by Altera Corporation [70]. It is a flexible processing core tha t features nu­

merous parameters as well as support for custom instructions. These parameters are

summarized in Table 3.1.

The width of the datapath is configurable, supporting either 16 or 32-bit variants

[6, 5] . However, both the 16 and 32-bit architectures use a 16-bit instruction set.

The datapath has a five-stage pipeline, and a large, windowed register file, which can

be configured to include either 128, 256, or 512 registers.

The ALU is configurable and supports the inclusion of up to five custom instruc­

tions integrated directly into the unit. Five user opcodes are provided so th a t software

can make use of these custom instructions directly. Nios also provides a number of

options for integer multiplication support. The 32-bit Nios variant can optionally

be configured to include a full 16 x 16-bit integer multiplier (MUL instruction), a

partial hardware multiplier (MSTEP instruction), or no hardware multiplier a t all

(multiplication is done using software routines). The designer is also given the option

of implementing the processor’s instruction decoder as a Read Only Memory (ROM)

unit using on-chip memory resources or directly in logic using the FPG A ’s logic ele-

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

Table 3.1: Altera Nios Hardware Parameters
Parameter Possible Values

D atapath width 16 or 32 bits

Instruction decoder (p4) Logic Elements or ROM

Register file size (p2) 128, 256 or 512 registers

WVALID register (p3) Read-only or read/write

Instruction cache size (p4) Off, 1, 2, 4, 8 or 16 kB

D ata cache size (ps) Off, 1, 2, 4, 8, or 16 kB

Integer multiplication (p^) Software, MSTEP, MUL

Pipeline optimization (p7) More stalls/Fewer LEs, Fewer stalls/M ore LEs

Support RLC/RRC (p8) Yes or no

Support interrupts/traps (p9) Yes or no

Support OCI module (pi0) Yes or no

ments. The core provides the designer with the option of optimizing the pipeline for

fewer stalls at the expense of requiring additional LEs. Finally, the WVALID register,

which stores the high and low limits of the register file window, can be set to either

read-only or read/write.

Nios features a Harvard memory architecture, with separate instruction and data

bus masters. Memory can reside either on-chip or as an off-chip peripheral. Direct-

mapped instruction and data cache memories of various sizes can be optionally in­

cluded in the 32-bit Nios variant. The Nios processor can connect to any number

of on-chip and off-chip peripherals using the automatically-generated Avalon bus [3].

Nios also has an optional on-chip instrum entation (OCI) debug module [17] which con­

nects directly to signals internal to the Nios processor tha t allows the user to perform

various debug operations. Finally, Nios provides optional support for hardware and

software interrupts and internal exceptions, as well as left and right rotate-through-

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

carry (RLC and RRC) instructions.

Some of these parameters share hard interdependencies with one another. For

example, caches and hardware multiplication can only be included on the 32-bit Nios

variant. Similarly, the OCI debug module can only be added if support for interrupts

and traps has been enabled. Considering just the Nios core with the parameters

mentioned above, this gives us a total of exactly 10,512 different feasible Nios con­

figurations, with 10,368 configurations for the 32-bit Nios, and 144 configurations for

the 16-bit Nios. This represents a substantial design space, which should be traversed

in order to effectively select a suitable configuration for the intended application.

3.2.1 Target System

For this case study, a simple Nios system was created using A ltera’s Quartus II Ver­

sion 4.2 and SOPC Builder [19] software packages. The target FPGA and associated

hardware was the Altera Stratix EP1S40F780C5 FPGA [8] present on the Nios De­

velopment Board Stratix Professional Edition [4], The system consisted of a 32-bit

Nios core along with an Avalon Tri-state Bridge [3] used to connect the processor to

an 8 MB off-chip memory located on the development board. The decision was made

to restrict the case study to the 32-bit Nios variant in order to avoid complicating it

with parameter interdependencies, and also because the 32-bit variant represents the

significant majority of the design space.

3.3 T he Sim ple E volutionary A lgorithm for M ulti-

O bjective O ptim ization (SE A M O)

The algorithm chosen for this exploration was the Simple Evolutionary Algorithm for

Multi-objective Optimization (SEAMO) proposed by Valenzuela [69]. This algorithm

was chosen because of its relative simplicity and easy applicability to this particular

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

P i
— --hm *
P i'i Ps 1 ■ ■ ■ Pp

Gene Chromosome

Figure 3.1: The Chromosome Used in the SEAMO Algorithm

case study. This algorithm was originally applied to the 0-1 multiple knapsack prob­

lem, a well known member of the class of NP-hard problems. However, the setup of

the algorithm was modified to suit the purposes of this case study. The algorithm as

it was applied to this case study is briefly summarized as follows: Each Nios param ­

eter is represented as a gene—a discrete variable with a finite set of possible integer

values. The integer values correspond to the possible param eter values of the Nios

processor (for example param eter p2 is a variable which represents the register file

size, where 1 is a register file size of 128, 2 for 256 and 3 for 512 registers). The

chromosome is given as a string of these discrete variables gem's as illustrated in

Figure 3.1.

The population is made up of a collection of N of these chromosomes. The first

step of the algorithm is to generate an initial population of chromosomes randomly.

After this is done, each chromosome is evaluated individually one-by-one in terms

of its objectives—in this case, FPGA area utilization and critical path delay. The

method used for determining these values will be discussed below. The estimated

objective values for area and delay are stored separately in an “objectives vector”

for each chromosome. Once every chromosome has been evaluated, the “best-so-far”

values for area and for delay are recorded. This is illustrated in Figure 3.2.

After this has been done, the algorithm proceeds through every member of the

population in order one-by-one. Each member is paired with another, randomly

selected member from the population and is given a chance to produce an offspring

using the crossover operator. The crossover operator selects a cut-point a t random

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

Population
I

1 P i P i f t
■ ■ ■

P p

2 P i P i f t
I I I

f t

3 P i P i f t
I I I f t

■

N P i P i f t I I I P p

Best-so-far: •Sii L .21

Objectives
Vector

i— 1— i

F i n

F i F 2

iuT
i

i f 2

F1 F:

Figure 3.2: A Population of Chromosomes

and combines the left half of one parent with the right half of the other. Which half

comes from which parent is also decided randomly. The crossover operator is usually

only applied a certain percentage of the time, according to the specified crossover

rate, rc. The offspring is then mutated, which involves randomly selecting one gene

within the offspring chromosome and changing it to another possible value, again

selected a t random. Normally, only a certain percentage of the offspring produced are

mutated, the proportion of which is determined by the mutation rate, rm. Crossover

and m utation are illustrated in Figure 3.3.

At this point, the m utated offspring is evaluated in terms of its objectives and

replaces one of the parents if one of several conditions are met. If one of the parents is

dominated by the offspring (i.e. is inferior to the offspring across all of the objectives),

then the dominated parent is replaced by the offspring. If the offspring improves on

one or more of the best-so-far values, then the offspring replaces one of its parents

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

- R a n d o m C u t-P o in t

Parent 1

Parent 2

Offspring

A A A A X 4 Pe
|

A A A - A

A
i

A A
M

. . . Pp
1

Offspring A A A . . . Pp

F ro m
P a r e n t 1

F ro m
P a r e n t 2

(a) Crossover

G e n e s e l e c t e d a t
r a n d o m a n d c h a n g e d

to a n o t h e r p o s s ib le v a lu e

(b) M utation

Figure 3.3: The Crossover and M utation Operators

(the parent to be replaced is randomly chosen). Finally, if an identical copy of the

offspring already exists within the population, then the offspring is discarded.

After the algorithm has visited each member of the population and paired it with

another to produce offspring, one generation has passed. The algorithm will generally

iterate through a number of generations before the population converges toward an

approximation of the Pareto-optimal set of configurations. The size of the population,

N, and the number of generations, G, the crossover rate rc, and the m utation rate,

rm, constitute the parameters of the algorithm and appropriate values for them are

often determined through experimentation.

3.3.1 Evaluation of Configurations: The O bjective Functions

Any multi-objective DSE procedure requires th a t individual configurations be evalu­

ated in terms of their objectives. The simplest and most straightforward approach is

to synthesize each and every possible configuration using a CAD tool and store the

generated area and delay values in a library. When values for a particular configu­

ration are needed, they are simply fetched from the library. However, the obvious

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

drawback of this approach is that, for larger systems, data for an exceedingly large

number of configurations would have to be stored. Another option is to synthesize

configurations as they are generated by the DSE algorithm; however this is often im­

practical due to the long run-times tha t are usually required to synthesize a design.

A third possible option is to model the area and delay characteristics mathematically,

by trying to establish equations tha t can be used to predict these numbers given the

values for all of the parameters.

The approach used in this case study is a compromise between the first and

third of these approaches. For this case study, the objective estimation approach

proposed by Jha and D utt [46] was utilized. This approach involves establishing fast

and accurate equations for estimating area and critical path delay delay using least-

squares regression analysis on actual synthesis data for a number of representative

configurations. These equations relate the area and delay objectives to the P (the

total number of parameters; in this case P=T0) different param eter variables, p\, P2 ■

. . . , pp and have the general form:

p
F k (P l , P 2 , ■■■, Pp) = ao,k + ^ 2 i a i,k • f i , k (P i)) (3 -3)

i= 1

Where do,*, ai j, , a,p k are the constant coefficients determined using regression

analysis. The form of functions fi,k(Pi) can be determined by studying the rela­

tionships between the parameters p-i and the area and delay values. For this case

study, the area of the circuit is given in terms of equivalent LEs used on the Stratix

EP1S40F780C5 FPGA. This value is determined by summing the number of LEs,

DSP blocks (9 x 9-bit), M512s, M4Ks and M-RAM memory blocks multiplied by

their relative sizes on the Stratix FPGA. These values are given in Table 3.2 (ob­

tained from [75]). Delay is a measure of the critical path delay of the circuit in

nanoseconds (ns) reported by the Q uartus II Timing Analyzer [7].

For this approach, a “parameter sweep” was performed, in which each of of the

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

Table 3.2: Relative Sizes of Stratix Components (from [75])
Stratix Block Relative Size

Logic Element (LE) 1
DSP Block (9 x 9 bit) 23.37

M512 RAM 20.5
M4K RAM 47.8

M-RAM 1550.3

Table 3.3: Regression Coefficients - Nios Processor

Parameter i ai, i

(Area)
di, 2

(Delay) (Area)
fiA P i)
(Delay)

- 0 77.3 13.6 - -

Instruction Decoder 1 31.9 -0.205 Pi Pi
Register File Size 2 264.3 -0.205 P2 loglo(P2)
WVALID Register 3 71.9 -0.092 P3 P 3

Instruction Cache Size 4 62.6 6.22 PA2 loglo(P4)
D ata Cache Size 5 53.7 2.19 Ps2 loglo(P5)
Integer Multiplication 6 79.5 -0.16 P6 logio(Pe)
Pipeline Optimization 7 87.9 0.44 P7 P7
Support RLC/RRC 8 74.9 -0.76 P8 P8
Support In terrupts/traps 9 202.1 -1.22 P9 P9
Support OCI Module 10 476.6 1.21 PlO PlO

10 Nios parameters was varied across its entire range of values while the others were

held constant. This resulted in 47 different Nios “sweep” configurations, each of

which was generated using SOPC Builder and synthesized with Quartus II Version

5.0 using the default synthesis, fitter and timing analysis settings. After synthesis, the

FPGA resource utilization and delay data were collected from the reports generated

by Q uartus II. Using these data as a basis, the aitk coefficients in equation (3.3) were

determined using least-squares regression techniques. These are listed in Table 3.3

along with the function forms of fi,k{Pi) used in the equations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

3.4 E xperim ental R esu lts

3.4.1 Testing of O bjective Functions

In order to test the mathematical objective functions for accuracy, the actual and

estimated area and delay values were first compared for the 47 Nios sweep configura­

tions th a t were used to establish the objective estimation equations. See Figure 3.4

for graphical comparisons of these two sets of data. As can be seen in the figure, the

estimated values for both area and delay tracked the actual values quite closely. The

average percentage error was 3.93% for the area estimates, and 4.75% for the delay

estimates.

To test the accuracy of the equations for any arbitrary Nios configuration, 20

unique configurations were generated randomly and then synthesized using Quartus

II. Again, the area and delay data were collected and compared against the area and

delay values tha t were predicted by the established objective functions. Graphs of

these comparisons are shown in Figure 3.5. For these 20 test cases, it was found that,

on average, the estimated area values were within 7.22% of the actual values and the

delay values were within an average of 7.58%.

3.4.2 Experim ental D eterm ination of A lgorithm Param eters

A number of experiments were performed with the SEAMO algorithm in order to

determine suitable values for the algorithm parameters—the population size, N, and

the number of generations, G. To this end, the SEAMO algorithm was run with dif­

ferent population sizes for 50 generations each. It was determined th a t the algorithm

converges to w ith in 10% of i t s fin a l v a lu e in a b o u t 20 g en er a tio n s , an d th a t a pop­

ulation size of 50 provided a good diversity of configurations. For this simple case

study, both th e crossover and m utation rates were assumed to be 1.0, indicating tha t

crossover happens for every pair of parent chromosomes and tha t and every offspring

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

Actual and Estimated Area - Sweep Configurations

800 0

7 000

6 000
4>
zl 5000 c

> 400 0
5
O'
“ 300 0

* 2000

1000

0
1 3 5 7 9 11 13 15 17 19 21 2 3 25 2 7 2 9 3 1 3 3 35 37 3 9 4 1 4 3 4 5 47

Configuration

A ctual

E stim ated

(a) Area

Actual and Estimated Delay - Sweep Configurations

25

20

15

10

5

0
1 3 5 7 9 11 13 15 17 19 21 2 3 2 5 2 7 2 9 31 3 3 35 3 7 3 9 41 4 3 4 5 4 7

Configuration

-A ctual

-E s tim a te d

(b) Delay

Figure 3.4: Actual and Estimated Values for Nios Sweep Configurations

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

Actual and Estimated Area - Random Configurations

7000

6 0 0 0

m 50 0 0

40 0 0
A ctual

- E s t im a te d
o- 30 0 0

* 2000

1000

Configuration

(a) Area

Actual and Estimated Delay - Random Configurations

25

20

15

10

5

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 0

Actual
-E stim ate d

Configuration

(b) Delay

Figure 3.5: Actual and Estimated Values for Nios Random Configurations

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

Initial and Evolved Populations

30

5 H-----------------1---------------- 1----------1------1---------------- 1-----------------1----------------
1000 2000 3000 4000 5000 6000 7000

Area (# of Equivalent LEs)

a Initial Population ■ Evolved Population

Figure 3.6: Initial and Evolved Populations (Using Estimated Values)

is mutated.

3.4.3 Comparison of SEAM O R esults Vs. Random ly Gener­

ated Configurations

For this experimental case study, an initial random population of 50 chromosomes

was first generated and the estimated area and delay values for each individual in

the population were gathered. Then the SEAMO algorithm was run on this initial

population for 20 generations, and the data for resulting population was collected.

For comparison, the results are shown graphically in Figure 3.6 along with the initial

data points (using the estimated objective values).

T h e grap h sh o w s s ig n ifica n t overa ll im p ro v em en t o f th e en tire p o p u la t io n a fter 20

generations over and above the initial population. The data points for the “evolved”

population crowd around close to the origin of the graph. These points approximate

the Pareto-optimal front, the boundary of the design space beyond which no con­

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

figurations can exist. The configurations on this boundary are non-dominated and

represent the set of the best configurations from the design space in terms of the area

and delay objectives examined.

3.5 C onclusions D raw n from th is Case S tu d y

One point tha t was observed during the course of experimentation was tha t the types

of Nios configurations tha t tended to exist within the approximated Pareto-optimal

were the more minimal configurations. All three types of multipliers were present

within the configurations of this set, as were the rest of the options. However, these

configurations always excluded any type of caching and often had smaller register file

sizes. Also, the SEAMO algorithm almost always eliminated the OCI Debug Module.

It has been concluded from these experiments tha t caches, larger register files, and

the OCI Debug Module add significant area and delay to the Nios processor, therefore

they were eliminated by the SEAMO algorithm. However, the benefit derived from

including these components in the Nios processor is not always accurately reflected

in the delay and area measures tha t are utilized by the algorithm. Therefore, the

decision about whether or not to include these components is application-specific in

nature.

The approach tha t was utilized during this case study can be of greatest use when

deriving application-specific hardware components from parameterized cores. The

designer may require certain features for their intended application, therefore they

could constrain those parameters to their suitable values. The rest of the parameters

may be “free” and a genetic-based approach can be used to determine appropriate

values for them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. DESIGN SPACE EXPLORATION OF EMBEDDED CPU CORES FOR FPGAS

3.6 Sum m ary

In this chapter the results of a preliminary DSE case study were presented. The

SEAMO algorithm was applied to the 10 parameters of the Altera Nios soft-core

processor and an approximation of the Pareto-optimal set of configurations was de­

termined. Then the “evolved” population generated by the algorithm was compared

with an initial, randomly generated population of configurations and a substantial

improvement was seen in the evolved population in terms of both FPGA area utiliza­

tion and critical path delay. In the next chapter, the design and implementation of

a CAD tool tha t applies the genetic-based approach presented in this chapter will be

discussed in detail.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 4

SCBuild - A CAD Tool for the

DSE of Embedded CP U Cores

In this chapter, the design and implementation of SCBuild (Soft-Core Build) is pre­

sented. SCBuild is a software-based CAD tool tha t has been developed over the

course of this research in order to facilitate the rapid exploration of the design space

of parameterized soft-core hardware components in general, and embedded processor

cores in particular. This tool accepts a template description of a parameterized core

as an input, which is essentially a blueprint for the core th a t contains information

on its parameters and tells the tool how to generate HDL code for the core given

certain param eter values. It uses the automated DSE approach tha t was presented

in Chapter 3 to prune the design space of the parameterized core and determine an

approximation of its Pareto-optimal set of configurations. Once one configuration

from th a t set is selected and values for each of the core’s parameters have been cho­

sen, SCBuild generates a structural VHDL description of the core with the selected

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

features by instantiating components from a library of synthesizable VHDL compo­

nents. If SCBuild is running on a machine tha t has a version of A ltera’s Quartus II

[18] software installed, it is also able to generate a Tool Command Language (Tel)

[72] script file and invoke Quartus to run the script, creating a new Quartus Project

File (.qpf), compiling the generated VHDL code and saving the synthesis results in

a text file for later processing. Each of these steps will be described in detail in the

sections tha t follow.

4.1 M ajor P rob lem s A ddressed by SC B uild

During the development of SCBuild, several major design problems needed to be

addressed. Each of these problems has been handled by some aspect of the SCBuild

software tool, as will be discussed in the following sections.

4.1.1 Representing a Param eterized Core in Software

In order for a piece of software to be able to work with parameterized cores, a precise

description or representation of these cores which the software understands needs to

be available. In other words, the problem tha t the software is trying to solve needs

to be modeled or described using some type of “language” . The software needs to be

able to read this representation and work with it so tha t it can map it onto software

data structures, manipulate it internally, and ultimately translate it into a viable

output, which in this case is structural VHDL code. This representation should be as

simple as possible and should provide just enough of the required information for the

software to do its work. It should then be able to figure out the rest of the details on

its own.

Ideally, when a parameterized core is viewed at its highest level of abstraction,

nothing should been seen except a black box with a set of parameters tha t allow

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

users to control what features the core has without having to worry about how those

features are implemented inside the box. One of the main goals of SCBuild is to hide

the implementation details inside the box so tha t all the end-users of the software have

to concern themselves with are the core’s parameters. However, from the perspective

of the software, more information about the core needs to be known in order for it

to successfully generate an HDL description. One of the main questions tha t was

considered during the design of SCBuild is this: how much information should the

software need to be provided with ahead of time, and how much of it should it be

able to figure out on its own?

These two things represent a major design tradeoff. At one extreme, the software

is provided with an input description tha t precisely defines and describes every detail

of the core, in which case there is not much left for the software to do. At the other

extreme, the software is simply given a set of parameter values and is expected to

generate the remaining information itself, in which case there may be insufficient

information provided to perform the task. Between these two impossible extremes

lies a spectrum of software designs th a t require varying levels of input information

and which include varying capabilities for information synthesis. At the higher end

of this spectrum are tools tha t include substantial high-level synthesis [50] support,

meaning tha t the program accepts a System- or Algorithm-level description of the

core and generates an RTL description with minimal guidance. For the design of

SCBuild, this option was rejected, since it would inevitably involve developing some

sort of high-level synthesis compiler, a difficult task in itself, and one tha t is well

beyond the scope of this research.

Since including high-level synthesis in SCBuild is currently out of the question, it

was determined th a t there were several aspects of parameterized cores th a t needed

to be represented in the input description of a core th a t is provided to the software.

These are:

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

1. The core’s parameters. Parameters are essentially discrete variables th a t can

be set to any value from a finite set. The input description should provide

information about each of the core’s parameters, including the set of all possible

values tha t the param eter can take.

2. The ways in which the core’s param eters affect its architecture. These parame­

ters may affect the underlying architecture of the core in a variety of ways. They

may be able to change the bit-width of components in the core, specify different

physical implementations for various functional units, alter the number of in­

stances of a component tha t are included in the core (the number of registers in

a register file for example), and even dictate which components are instantiated

in the core and how they are connected together. Some of these parameters

may drastically affect the resulting core, so the input description needs to be

able to adequately describe the ways in which each parameter changes the core’s

underlying structure.

3. The hierarchy of sub-components th a t make up the core. Building a complex

core from a number of smaller sub-components makes the process of designing

tha t core much simpler. Each sub-component can itself be made up of other

sub-components and so on, and each sub-component may have its own set of

parameters which can be set to certain values. This hierarchy of components

should be specified in the input description.

4. The connectivity of the core’s sub-components. Information should be provided

on how the sub-components are connected together.

5. The set of possible physical implementations tha t a sub-component can have.

Many components often have several functionally-equivalent implementations

th a t differ only with regards to performance, area utilization, power consump­

tion or some other objective. For example, a digital adder may be either ripple-

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

carry, carry-lookahead, or some other functionally-equivalent implementation.

A separate VHDL description for each of these implementations may be cre­

ated and stored in a library, so the input description should provide a list of the

equivalent implementations tha t can be used for each component.

4.1.2 Exploring the D esign Space of a Param eterized Core

SCBuild should be able to assist users in exploring the design space of the parame­

terized core with which they are working. The preliminary case study presented in

Chapter 3 was useful for determining an approach for doing this. This approach was

subsequently utilized in SCBuild as the main engine of automated exploration, as will

be discussed later in this chapter.

4.1.3 G enerating HDL D escriptions of Core Instances

The final major problem tha t was addressed by SCBuild was the question of how to

generate final HDL descriptions of instances of a parameterized core given a set of

param eter values and the input description. This process will be discussed in detail

in Section 4.3.

4.2 SC B uild S ystem E nvironm ent

A diagram of the SCBuild system environment is shown in Figure 4.1. SCBuild

accepts a special input template description tha t describes all of the aspects of a given

parameterized core tha t were discussed in Section 4.1.1. Ultimately, this description

w ill b e a se t o f files g en er a ted b y a n o th e r so ftw a re p rogram ca lled th e Template

Architect Tool. This tool will be a design environment complete with a graphical

user interface (GUI) tha t will allow a designer to drag and drop a set of template

components from a Template Component Library to create a template description

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

(Not part of this
present research)

T em plate
C om ponent

Library

Template
Description Parameter

Selections

VHDL
C om ponent

Library

VHDL
Description

of Core

SCBuild

Template
Architect

Tool

Figure 4.1: The SCBuild System Environment

for virtually any parameterized core tha t can be envisioned. The development of this

tool and the accompanying Template Component Library were deemed to be beyond

the scope of this work and were relegated to future research projects. At present, the

template descriptions used with SCBuild are created manually. The format of these

tem plate descriptions is covered in greater detail in Section 4.3.1 and in Appendix A.

Once the SCBuild software has a template description of a parameterized core to

work with, it processes the description, and based on a set user-selected parameter

values, it builds a structural VHDL description of a core variant by instantiating

ready-made components from the VHDL Component Library. It also applies the

SEAMO algorithm to the core’s parameters in order to explore its design space and

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

return an approximation of the Pareto-optimal set of configurations. Users can se­

lect one of these automatically-generated configurations for final implementation, or

they can manually set a core’s param eter values. An estimate of each configuration’s

objective values, such as its FPGA logic resource utilization and critical path delay,

are also computed by the program. Many different variant cores can be potentially

generated from a single template description simply by specifying different values for

the core’s parameters. In addition, SCBuild is not locked into using one particular

tem plate description. It has been designed to be general enough to accept virtu­

ally any template description with which it is provided, as long as tha t description

represents a functionally correct design and follows proper syntax.

4.3 C A D Flow for SC B uild

The SCBuild CAD flow is depicted as a flowchart in Figure 4.2. Each step in the

flowchart will be discussed in detail in the sections th a t follow.

4.3.1 Design Entry and Tem plate D escription

The first step in the CAD flow for SCBuild is Design Entry. At this initial stage, a

template description for a parameterized core is created by the end-user so th a t it

can be given to SCBuild as an input. At present, this template description is created

manually by the template designer, although in future research work, the Template

Architect Tool will assist the designer in creating this description.

As its name implies, the SCBuild template description serves as a template or

blueprint for a parameterized core from which many different variant cores can be

generated, given a set of param eter values. The complete template description for

a parameterized core is made up of a set of text files containing Extensible Markup

Language (XML) [74] code. XML was chosen as the tem plate description language

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

Design Entry <-----

4
Check XML Syntax

^ — S y n ta x \^ N
v ss C orrect? /^ -

Y y

Collect System-
level Parameters

T
DSE and

Parameter Selection - — -

Elaboration

i
Write VHDL

— r ~
Create and Compile

Quartus II Project
(optional)

Figure 4.2: The SCBuild CAD Flow

for a number of reasons:

1. It is a well-defined and widely-used data exchange format with simple but strict

syntax rules.

2. Since authors of XML documents “invent” their own tags, they are not restricted

to using a set of predefined tags or keywords, thus making it ideal for virtually

any application.

3. It is relatively easy to write software code tha t can parse XML.

A detailed description of the SCBuild template description file format can be

found in Appendix A. To summarize, the template description is made up of a set of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

template components, which are “abstract” or “virtual” hardware components tha t

define a class of real hardware modules rather than just a single component. Each and

every template component description is stored in a single XML file. The following

pieces of information are common to all template component description files:

• The name of the component: Each component must be provided with a unique

name before it can be instantiated to build larger cores.

• The component’s parameters: Each component can have any number of param ­

eters which can be used to alter the underlying structure of the component in

some way. In addition to having a specific name, each param eter is classified as

a certain type, which can be either “scalable” , “implementation” , or “general” .

Scalable type parameters represent numerical quantities such as bit-widths and

correspond directly to “generic” statem ents in VHDL [54]. Implementation type

parameters are used to specify the physical implementation of the component.

Finally, General type parameters are open-ended, and are often used to make

various changes to a component’s structure. Each param eter has a list of pos­

sible values th a t it can take, as well as a default value in case a value is not

explicitly assigned to the parameter.

Just as with conventional hardware design, several smaller template components

can be used to build larger, more complex components. A component tha t is con­

structed from one or more sub-components is referred to as an aggregate component,

while those components tha t do not have any sub-components are called primitive

components. Since many components can have multiple, functionally-equivalent im­

p le m e n ta t io n s , d esc r ip tio n s o f p r im itiv e c o m p o n e n ts a lso c o n ta in a lis t o f a ll o f th e

possible implementations from the VHDL Component Library tha t the component

can have. An Implementation type param eter can be created to control which im­

plementation is used for the component in the final structural VHDL description of

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

A D D E R

Ripple-carry
(adder rc.vhd)

Carry-lookahead
(adder cl.vhd)

Tempate Component VHDL Implementations

Figure 4.3: A Primitive Template Component with Multiple VHDL Implementations

the core. Figure 4.3 illustrates an example of a primitive template component with

multiple implementations.

Descriptions of aggregate components do not contain a list of possible implemen­

tations. Instead, they include a list of ports and sub-components. Ports define the

interface of the component to the outside world. These can be connected to the

ports of other components to form circuits. The name, mode (either “in” , or “out”)

and bit-width of each port are specified in the port listing. Sub-components are in­

stances of other template components tha t are used to construct the component. In

a template component description, the sub-components section includes a listing of

which template components are instantiated, as well as information on how the sub­

components’ ports are connected to each other, and what values their parameters are

mapped to. Most importantly, the listing can contain conditional statements which

work just like “if” statements in a computer programming language. These state­

ments specify which sub-components are instantiated, which ports are connected to

each other, and which parameters are mapped when specific parameters are certain

values. Using these statements, template components can be created tha t have enor­

mous variability in terms of their internal structure, the extent of which is controllable

simply by assigning values to their parameters.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

The complete template description of a parameterized core consists of a set of

XML template component description files. SCBuild can read and use any template

description tha t it is provided with as long as all of the proper information is provided

in the description and it is syntactically correct. This means th a t SCBuild is not

locked into working with only one particular hardware template; it is general enough

to be able to work with a multitude of different template designs.

The template description also includes several special-purpose files. These are the

Parameter Dependencies file, the Objectives file, and the System file. The Parameter

Dependencies file contains a set of dependency rules that are used to model the

hard interdependencies between various parameters. The Objectives file contains

information on the relationships between each param eter of the system and the values

of the objectives. The Parameter Dependencies file and the Objectives file will be

covered in greater detail later in this chapter. Finally, the System file conveniently

stores the names of all of the template component files, the Parameter Dependencies

file, and the Objectives file in a single location so tha t SCBuild has easy access to

these file names.

4.3.2 XML Syntax Checking

Once the template description files have been created, they are opened and checked

to ensure tha t they follow correct XML syntax. If they do not. then the user must go

back to the Design Entry step and correct any errors th a t arc* present. Ultimately, this

step will not be necessary, since the Template Architect Tool, discussed in Section

4.2, will automatically generate error-free XML files, thus eliminating the need to

verify the syntax.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBU1LD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

System-level
Parameters Pi

Locked Parameter

±

Top-level Entity

Figure 4.4: Top-level Entity with System-level Parameters

4.3.3 Collect System -level Param eters

At this step, one of the template component files is chosen as the top-level entity of

the core, and is denoted the “System” component. Then the template component file

containing the description of the System component is read and all of the param eter

information is collected and stored in a data structure internal to SCBuild. All of

these parameters then become visible to the user. If a core with a specific set of

features is required, then any or all of the System-level param eters can be set and

locked to their desired values. Parameters tha t are locked will not be changed during

the process of autom ated DSE and are considered constant. Parameters tha t are

not locked are considered “free” and will be used to explore the design space of the

parameterized core. This concept is illustrated in Figure 4.4.

4.3.4 DSE and Param eter Selection

Once SCBuild has finished collecting the System-level parameters, the SEAMO ge­

netic algorithm is applied to the free parameters of the system, resulting in a set

of configurations tha t approximates the Pareto-optimal set. The algorithm is imple­

mented in SCBuild as described in Section 3.3 of Chapter 3. Prior to running the

algorithm, the user must specify the population size to use, the number of genera­

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

tions for which to run the algorithm and the crossover and m utation rates. Once the

algorithm has run its course and the final set of configurations has been determined,

SCBuild will display a listing of these configurations along with their respective ob­

jective values. The user selects one of these configurations as the final configuration,

and all of the System-level param eters are set and locked to these values.

When applying the SEAMO algorithm to the problem of DSE using parameterized

cores, there are two major issues th a t need to be considered:

1. Hard parameter interdependencies: SCBuild should ensure th a t only valid con­

figurations are generated by the SEAMO algorithm during the process of ex­

ploration.

2. Evaluation of configurations: Configurations need to be quickly evaluated in

terms of their objectives during the course of the algorithm.

The ways in which SCBuild handles these two issues will be discussed in the next

sections.

Handling Hard Parameter Interdependencies

It is very common for two or more parameters of a parameterized system to share

hard interdependencies with one another. Hard interdependencies dictate tha t value

assignments of interdependent parameters must be done simultaneously in order to

generate valid configurations. For example, the Nios soft-core processor core has

param eters for datapath bus width, instruction and data cache size and hardware

multiplication support. Instruction and data caches and hardware multiplication can

only be included in the processor if its datapath width is set to 32 bits; any other

configuration is considered invalid. Therefore, the data and instruction cache and

hardware multiplication parameters each have a hard interdependency relationship

with the datapath bus-width parameter.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

Independent
Parameter

Dependent
Parameters

MultiplierData
Cache Size

Instruction
Cache Size

Datapath Width

v ___ s

Figure 4.5: Interdependency Relationships Between System-level Parameters

In SCBuild, there are two situations in which parameter interdependencies need to

be considered. First, when values are manually assigned to the System-level param ­

eters, the program should ensure th a t the combination of param eter values chosen

does not violate the interdependency rules. Second, when SCBuild is running the

SEAMO algorithm, the program should make sure tha t only valid configurations are

created when applying the genetic crossover and m utation operators.

SCBuild handles both of these situations in a similar manner. Between any pair of

parameters in the System, a dependency relationship can exist. There are two major

rules tha t govern the dependency relationships between pairs of parameters:

1. In any given dependency relationship, one param eter is considered independent

and the other is dependent.

2. Any given parameter can be directly dependent on one and only one other

parameter, although many parameters can be dependent on it.

This concept is illustrated in Figure 4.5.

In the figure, the D atapath W idth param eter is the independent parameter, and

the Instruction and D ata Cache Sizes and the Multiplier param eters are the depen­

dent parameters. The arrows in the figure denote dependency relationships, with the

arrowhead pointing to the dependent param eter in each case. A dependency relation­

ship in which the param eter is the independent param eter is called an independent

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

Figure 4.6: Cyclic Dependency Loop

relationship, and conversely, a relationship in which the param eter is dependent is re­

ferred to as a dependent relationship. As the rules above dictate, any given param eter

can have many independent relationships, bu t only one dependent relationship. These

rules ensure tha t no cyclic dependency loops are created, as illustrated in Figure 4.6.

The parameter pairs in each dependency relationship share a dependency table

which stores the valid values of the first param eter for all the values of the second

param eter and vise versa. An example of the dependency table between the D atapath

W idth and Multiplier parameters of the Nios processor core is shown in Table 4.1.

As can be seen from the table, when D atapath W idth is 16 bits, then the only value

tha t Multiplier can take is “Software” . However, when D ata W idth is 32 bits then

the Multiplier param eter can be Software, MSTEP (partial hardware multiplication)

or MUL (full hardware multiplier).

All of the information pertaining to each dependency relationship for a given pa­

rameterized core is stored in the Parameter Dependencies file tha t was introduced in

Section 4.3.1. All of the dependency relationships between the System-level parame­

ters must be defined in this file in order for them to be enforced by SCBuild.

The procedure for assigning values to parameters in a dependency relationship

is as follows. If the param eter being set is independent in a relationship, then all

parameters which are dependent on th a t param eter are forced to take valid values.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

Table 4.1: An Exam)le of a Dependency Table

D atapath W idth M ultiplier

16-bit Software

32-bit Software, MSTEP, MUL

For example, if D atapath W idth is set to 16 bits, then SCBuild will look up the 16-bit

entry in the first column of the D atapath W idth param eter’s dependency table. In

the second column beside tha t entry are all of the possible values th a t Multiplier

can take when D atapath W idth is 16 bits. In this case, “Software” is the only valid

possible value, so the Multiplier param eter will be forced to take th a t value. If

D atapath W idth is set and locked to 16 bits, then Multiplier will also be locked to

“Software” as well, since it is the only valid possible value tha t Multiplier can take

when D atapath W idth is 16 bits. However, if D atapath W idth is set to 32 bits, then

Multiplier will be forced to be either Software, MSTEP or MUL, selected randomly.

If D atapath W idth is locked to 32 bits, Multiplier will remain unlocked, because there

is more than one valid possible value tha t it can take when D atapath W idth is 32

bits. If the parameter tha t is being assigned a value is a dependent parameter, then

the value tha t it is assigned must be valid and must not violate any of its dependency

relationships. If the Multiplier param eter is being set to MSTEP for example, then

the D atapath W idth parameter must be 32-bit, otherwise the assignment will not be

allowed.

Evaluation o f Configurations

As discussed in Section 3.3.1 in Chapter 3, individual configurations are rapidly eval­

uated by using fast objective estimation equations th a t relate the values of each

param eter to the objective values, the form of which is given in equation (3.3). Any

parameterized system tha t SCBuild works with can have K objective estimation

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

equations. These objective equations will most often directly represent physically

quantifiable aspects of the system such as FPGA circuit area utilization, critical path

delay and power consumption, although the user is not restricted to these objectives

alone. In order for these equations to be used during the autom ated DSE process,

they must be known to SCBuild ahead of time. Therefore, they are stored in the

Objectives file in the template description tha t was discussed briefly in Section 4.3.1.

The constant coefficient and the information on each term are determined using a

set of real-world synthesis data for the core [46]. A small set of “representative” con­

figurations for the core are produced and synthesized using a logic synthesis tool such

as Quartus II, which then reports the results of the synthesis, including information

such as the FPGA resource utilization and critical path delay. In order to determine

the form of the functions fi,k(p%) in each term of a equation (3.3), it is necessary

to study the relationships between each parameter and the values of the respective

objectives. For example, the equivalent LE utilization on an FPGA may be found to

increase linearly as the datapath bus width increases, so the form of f i tk(Pi) for the

datapath bus width will be linear. Once the form of each term has been determined

and the set of synthesis data has been obtained for a number of different synthesized

configurations, then P-dimensional regression analysis can be applied to the collected

data in order to determine the values of the regression coefficients, ao,fc, dpfc,.. •, ap.k-

The designer of the estimation equations should endeavour to produce just enough

configurations in order to provide sufficient definition to the design space so th a t the

objective values for any arbitrary configuration can be computed with a reasonable

degree of accuracy.

Once the objective estimation equations have been established and the information

regarding these equations is stored in the Objectives File, then it is a relatively simple

m atter for SCBuild to read the file and compute the objective values for any given

combination of param eter values. Each of the possible values of every param eter

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

is assigned a corresponding integer, and these integer values are plugged into the

estimation equations when SCBuild calculates the objectives.

4.3.5 Elaboration

Once all of the values of the System-level parameters are known, SCBuild proceeds

with the most im portant step of the CAD flow: elaboration. At this stage, a final

VHDL model of a given core with the set of features specified by the user-selected

param eter values is constructed. At this step, SCBuild processes the input template

description files and uses the assigned param eter values to build two intermediate

representations of the system before writing the final VHDL code. In order to clearly

explain what follows, a distinction must be made between those two major internal

representations.

The first representation is the System-level description of the hierarchy of tem­

plate components. This representation is derived directly from the input template

description files and the set of selected param eter values, and can be depicted as a

tree graph as shown in Figure 4.7.

Each node in the figure is a template component that is used to build the sys­

tem. The node a t the top is the System, or top-level entity node, and each solid line

connecting the nodes represents a parent/sub-component relationship. The System

can have any number of sub-components, and any given sulwom ponent can have

any number of sub-sub-components, etc. Also, any given component in the hier­

archy can have any number of parameters. An important feature of this hierarchy

representation is tha t there also exists a hierarchy of component parameters. The

parameters of sub-components can be linked to parameters of their parent compo­

nents and so on up the hierarchy until the System component is reached, at which

point the param eter becomes a System-level parameter. For example, in the figure

Pi of sub-sub-component 1 is linked with p\ of sub-component 1, which is, in turn,

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

L inked P a ra m e te r s
P a r a m e te r s

System (Top-level Entity)

Sub-component 1 Sub-component n

Sub-sub-component 1 Sub-sub-component n

Figure 4.7: System-level Description: Elaboration Hierarchy

linked with pi of the System component. Linking component param eters together un­

til the param eter chain reaches all the way to the top-level node allows System-level

parameters to directly affect components tha t are buried deep within the hierarchy.

The second internal representation is the Register Transfer Level representation.

This description stores the information on the system at the RT-level of abstraction

and is directly translatable into VHDL or some other hardware description language.

This representation features more detailed information on the structure of each sub­

component of the system including what ports and “generic” constants the component

has, what sub-components are instantiated under it, and how the sub-components’

ports are connected to one another using interconnecting nets. This representation

is not parameterized to any extent beyond what is possible to represent using the

“generic” constructs within VHDL (or conversely, the “param eter” constructs in Ver-

ilog).

SCBuild translates the information in the input template description files into an

internal System-level hierarchy description, then into an internal Register Transfer

Level representation before finally writing a set of VHDL files describing the resulting

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

SCBuild

VHDL
Description

Parameter
Selections

Tem plate
Description

Register Transfer Level Representation

System -level Hierarchy Representation

Figure 4.8: Translation of Representations

core variant. This process of translation is illustrated in Figure 4.8.

The process of translating the template description into VHDL code involves a

number of steps. The flowchart for the SCBuild Elaboration algorithm is shown in

Figure 4.9. This flowchart depicts how a single template component is elaborated.

The very first step in the process is to read the name of the tem plate component

from its template description file. SCBuild then performs a check to see whether

the component is “primitive” or “aggregate” by searching for an <im plem entations>

section in the file. If a set of implementation definitions is found in the file, then

it is assumed tha t the template component is a primitive component with one or

more implementations in the VHDL Component Library. If there is more than one

VHDL im p le m e n ta t io n to ch o o se from , SCBuild th e n se le c ts th e a p p r o p r ia te o n e by

checking the value th a t is assigned to the “implementation” type param eter tha t

controls the template component’s final implementation. Once this is done, SCBuild

then reads the selected VHDL file from the Component Library and constructs an

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

internal Register Transfer Level representation of the component for later use.

If no implementation definitions are found in the template description file, then

the component is assumed to be an aggregate of one or more sub-components. In this

case, the process is more complex. First, a brand new RTL component model is cre­

ated with the name specified. Then generic constants are added to the newly-created

RTL component tha t correspond directly to the “scalable” type param eters th a t be­

long to its associated System-level component. Then a set of new ports are added to

the component. Next, SCBuild proceeds to read the <sub_components> section of

the template description file where the current component’s sub-component instan­

tiations are located. All of the sub-components tha t lie outside of the conditional

blocks are created first and added to the System-level hierarchy. Then any condi­

tional statements tha t present within the <sub_components> section are evaluated

and any conditions tha t evaluate to “true” are recorded of for later use. Then the sub­

components contained within the true conditional blocks are created and subsequently

added to the hierarchy as well. At this point, the current component should have all

of its sub-components stored in the hierarchy, but these sub-components are missing

param eter information, therefore parameters are added to these sub-components by

reading their respective template description files. Then these sub-component pa­

rameters are either mapped to specific values or linked to parameters of their parent

components. Finally, each sub-component is itself elaborated using the exact same

algorithm just described. In this way, the entire System-level hierarchy is built by

recursively calling the Elaborate algorithm for each component in the hierarchy. Once

the sub-components have been successfully elaborated, their ports are connected to­

gether in the RTL description using a set of intermediate nets, and the internal RTL

model of the system is complete. Finally, a structural VHDL description of the com­

ponent is written.

By recursively calling the Elaborate algorithm for each component in the System-

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

No YesComponent
.Primitive?.*

Write VHDL

Create Ports

Select ImplementationCreate RTL Component

Read Component Name

Create Generic Constants

Elaborate Sub-components

Add Parameters to
Sub-components

Map Sub-component Ports

Map Sub-component
Parameters

Evaluate Conditional Statements

Add Conditional Sub­
components to Hierarchy

Add Non-conditional Sub­
components to Hierarchy

Read VHDL Library File
and Construct Internal

RTL Model of Component

Figure 4.9: Flowchart for the SCBuild Elaboration Algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

level hierarchy, a complete description of a core variant, consisting of a set of VHDL

files, is created. The very last step in the elaboration process is to copy the generated

files into a specified project directory along with the set of VHDL files used from the

Component Library.

4.3.6 Quartus II Project Creation and Com pilation

If SCBuild is running on a computer th a t has a copy of A ltera’s Quartus II software

installed, then it can optionally generate a simple Tool Command Language (abbrevi­

ated Tel, and pronounced “tickle”) script file [72] tha t Quartus II’s Tel interpreter [7]

can subsequently read and execute. Quartus II has a set of Application Programming

Interface (API) functions [7] tha t can be called from a Tel script to autom ate a large

number of tasks, including creating new projects, compiling designs, making device

pin assignments and creating custom report files. SCBuild can generate a simple Tel

script file tha t directs Quartus II to create a new project file, take the newly-generated

set of VHDL files and include them in the project, perform a complete compilation

including analysis and synthesis, fitting, assembly and timing analysis and write the

pertinent compilation report information into a text file tha t can be subsequently

read back by SCBuild for later use. SCBuild calls Quartus II in batch mode directly

so tha t all of these functions are handled automatically without requiring the inter­

vention of the user. Once Quartus II has finished its work, it returns control back to

SCBuild.

4.4 T he V H D L C om ponent Library

The SCBuild VHDL Component Library is an open-ended collection of pre-designed

and pre-tested primitive soft-core components described in VHDL tha t can be used to

build more complex designs using SCBuild. The Library can be expanded limitlessly

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

by adding new hardware components to it. For the purposes of this research, the

VHDL Component Library consists of the hardware modules listed in Table 4.2.

Table 4.2: Components in the VHDL Component Library

Component Description
adder.cl Generic carry-lookahead adder. Taken from [20].
adder_rc Generic ripple-carry adder.

b_input Jogic Controls which arithmetic operations are performed
by an adder.

barrel_arith_shifter Performs arithmetic left and right shifts any number
of places.

barrel Jogical .shifter Performs logical left and right shifts any number of
places.

barrel_rotator Rotates a bit-held left or right any number of places.

basic_arith_shifter
Performs arithmetic shifts left or right one bit-
position a t a time.

basicdogical-shifter Performs logical shifts left or right one bit-position
at a time.

basic_rotator Rotates a bit-held left or right one position at a time.

branch_resolve Computes the branch targets for branch and jump
instructions in a RISC processor.

bus_interface

Interfaces two buses of unequal bit-width together.
If the bit-width of the output bus is greater than
the input bus, then the extra bits are filled with 0 ’s.
If the width of the input bus is greater, then the
extra bits are left “open” .

constant-unit Performs either zero-hll or sign extension, based on
the value of the select signal.

data_RAM
Single-port RAM block with variable word size and
address width. Created using A ltera’s “altsyncram”
megafunction [51].

incrementer Increments the input by a given value.

in str_m em ory
ROM module with a variable word size and address
w id th . C re a te d u s in g A lte r a ’s “a lty n c r a m ”
megafunction [51].

logic_cct
Logic circuit th a t performs one of four bitwise logical
operations: AND, OR, XOR, NOT.

mem_controller A data memory controller.
Continued on next page . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

Table 4.2 - continued from previous page
Component Description

multiplier A full combinational n x n —► 2n bit multiplier.
mux_2 _to_l Generic 2 -to -l multiplexer.
mux_4_to_l Generic 4-to-l multiplexer.

reg Generic register with synchronous load and
asynchronous reset.

registerJile Generic register file with any number of registers.

register_file_rO Generic register file with any number of registers.
R0 is always 0.

risc_instr_dec Instruction decoder for a simple RISC processor.

useful Junctions VHDL package containing useful functions such as
the log2 0 function.

zero_detect O utputs a logical ‘1’ when the input is all 0’s, and
a ‘O’ when otherwise.

zero Jill Generic zero-fill circuit with an m-bit input and an
n-bit output.

zero JilLl_bit Generic zero-fill circuit with a 1-1 >it input and an
n-bit output.

zero_reg
Zero register. Stores all 0’s. Writes to this register
are invalid.

Each of these components was designed and coded in VHDL. and compiled using

Quartus II Version 5.0 software. The data_RAM and the instr .memory components,

were created using the A ltera’s “altsyncram” megafunction [51]. and the source-eode

for the adder_cl component was obtained from [20]. The remaining components were

designed and coded from scratch using behavioural and structural VHDL modeling

techniques. They were then verified to be functionally correct using Quartus II’s

simulator tool [7].

4.5 D evelop m en t and Im plem entation

The development of SCBuild was achieved by applying many of the principles from

the field of software engineering. In this section, the overall design methodology used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

to develop and implement SCBuild is discussed in some detail.

4.5.1 General Design Priorities

In any software project development project, it is im portant to define a set of design

priorities tha t will ultimately guide the development of the software from concept to

completed system. During the development of SCBuild, several design priorities were

set forth. These are listed in order of decreasing importance below:

1. Synthesizable output. It is absolutely essential tha t the VHDL code gener­

ated by SCBuild be synthesizable. Similarly, it should be easy to simulate the

behaviour of the resulting hardware component using any available simulator,

and the results of RTL-level and gate-level simulation should match up.

2. Generality and flexibility. The program should possess an internal data

structure tha t is capable of representing virtually any hardware component

described using a hardware description language. This includes support for the

hierarchical structural descriptions of components tha t are quite common in

soft-core hardware component designs.

3. Easy extensibility. It should be relatively easy to build on the framework of

earlier versions of SCBuild so tha t the system can be extended to include more

complex features.

4. Portability. Ideally, SCBuild should be easily portable between different op­

erating systems, and the source code should be easily interchangeable between

different compilers.

All of these priorities were given their proper consideration during the development

of SCBuild.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

4.5.2 SCBuild Software D evelopm ent M ethodology

It was determined tha t an object-oriented approach was a convenient way of repre­

senting a soft-core hardware component in software. Since hardware components are

made up of other objects such as sub-components, ports and nets, this paradigm pro­

vides a natural and intuitive way of representing all the necessary information about

the component’s structure and attributes. Each part of a component can be repre­

sented as an object of a class, and these classes can be created in order to represent

the set of all of these objects.

For the development of SCBuild, an iterative design methodology [47] was applied.

Using this approach, five prototype “alpha” versions of the SCBuild system were de­

veloped: Versions 0.1, 0.2, 0.3, 0.4 and 0.41. Each successive version implemented

more of the final system’s functionality than the one before. Version 0.1 contained

a partial implementation of the facilities necessary to construct a Register Transfer

Level representation of a core and to translate tha t representation into structural

VHDL code. Version 0.2 featured the added ability of representing soft-core compo­

nents th a t contained “generic” constants at the Register Transfer Level. In Version

0.3, classes and functions for constructing an Algorithm-level description of a soft-core

processor were added. Finally, a framework for handling the System-level hierarchy

representation was added in Version 0.4, and cleaned up and expanded in Version

0.41. Using this iterative strategy, the development of SCBuild was broken down

into a set of manageable tasks tha t were completed one-by-one during the develop­

ment of each prototype. The development of each version followed a software design

methodology tha t included the following tasks:

1. Requirements gathering. The initial stage of the design process involved

defining precisely what the system is supposed to do (functional requirements)

as well as what constraints the system must meet (non-functional requirements).

These requirements were gathered together and recorded in a Requirements

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

Document for later reference.

2. Design. After deciding what tasks the software is required to perform, the next

step was to design its overall architecture by dividing it up into sub-systems and

deciding which sub-systems will handle which tasks.

3. M odeling. At this step, the detailed design of each software sub-system was

performed. Since an object-oriented approach was used to design SCBuild, the

structure of each sub-system was modeled using the Unified Modeling Language

(UML) [6 8], a visual language tha t was developed specifically for modeling the

structure and behaviour of object-oriented software systems. Class diagrams

were used to model the basic class structure of each of SCBuild’s sub-systems,

and package diagrams were drawn to model the relationships between each of

the sub-systems. The design of each sub-system will be discussed in more detail

later in this chapter.

4. Coding. After detailed UML models for each sub-system were constructed,

they were implemented in software using the C + + programming language.

5. Program Inspection, Testing and Debugging. In order to ensure tha t each

prototype version functioned as expected, each sub-system was tested using a

variety of methods. The software was subjected to a series of exceptional inputs

designed to uncover bugs in the implementation. For the later prototypes, a

simple “test processor” template model was also developed to use as a test case

to verify tha t SCBuild was able to correctly generate synthesizable VHDL code

as an output.

4.5.3 SCBuild Software Architecture

As was discussed in Chapter 2 , any given hardware core can be described at several

levels or “layers” of abstraction. Based on this observation, it seemed logical to split

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

1 r

System

Algorithm

RTL

User Interface

Figure 4.10: UML Package Diagram for the SCBuild Software Architecture

SCBuild up into sub-systems in a like manner. The Multi-Layer architectural pattern

was taken from [47] and adapted for this purpose. A UML package diagram for the

software architecture model used for SCBuild is shown in Figure 4.10.

Each layer, except for the User Interface layer, contains a data structure tha t

represents some aspect of a core at tha t abstraction level. Each layer also contains

an API tha t allows higher layers to access its functionality. Each API is a set of

functions tha t controls the data structure a t th a t layer. Functions a t higher layers can

call the API functions of lower layers in order to construct lower-level representations

of a processor or fetch information from those representations. The System layer

contains the System-level hierarchy representation of a component th a t was discussed

in Section 4.3.5. Likewise, the RTL layer holds the internal Register Transfer Level

description which is ultimately translated into HDL code. In between these two

layers is the Algorithm layer, which can represent certain aspects of a processor’s

instruction set architecture. Although it was not ultimately used in the current

version of SCBuild, the Algorithm layer does provide a basis for extending the software

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

RTL
API

±
Lib

7

ComponentPrototype
1 in s ta n c e of

J o
s u b -c o m p o n e n t»

£
GenericPrototype Jo
PortPrototype 0..1

c o n n e c te d to

Componentlnstance O n

in s ta n c e o f

j ^ub-param etei^ Generidnstance

Net 0..1
c£ec^cT

5
Portlnstance

0..1 1 *
in s ta n c e of

co n n e c te d to

Figure 4.11: Class Model for the RTL Layer

tool to perform other useful functions such as automatic control logic generation and

the removal of unused hardware. Each of these three layers will be discussed briefly

in the paragraphs th a t follow.

The RTL Layer

The UML class diagram for the RTL layer is shown in Figure 4.11. This layer is

responsible for storing all of the data necessary to construct the Register Transfer

Level representation of a soft-core hardware component tha t was presented in Section

4.3.5.

The model consists of eight classes: Lib, ComponentPrototype, Componentln­

stance, PortPrototype, Portlnstance, GenericPrototype, Generidnstance, and Net.

These eight classes together have the capabilities and functions necessary to construct

a data structure representing a soft-core hardware component as a set of smaller, in-

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

terconnected sub-components. Essentially, this model states the following: any given

hardware component prototype can have any number of ports, generics, and sub­

components (component instances). A prototype is an abstract object from which

many identical instances can be made. When an instance of a given component

prototype is created under another component prototype, instances of its ports and

generics are created as well. Nets are intermediate signals tha t connect the ports of

the various sub-components together to form complete circuits.

The Lib class contains the API, a set of functions tha t control how the data struc­

ture is constructed. Higher layers can call these API functions in order to construct

an RTL description of a component. This model, minus the GenericPrototype and

Generidnstance classes, was created during the development of SCBuild Version 0.1.

Support for the representation of generics was added in Version 0 .2 .

The Algorithm Layer

The purpose of the Algorithm layer is to represent the behaviour of all instructions in

the instruction set of any given processor. This provides a basis for specifying what

instructions will be implemented in a generated processor as well as how they will be

implemented. A common approach used to represent the behaviour of an instruction

is the data dependence graph, used by the author of SPREE [75] as well as others.

This approach was adapted for implementation in Version 0.3. In this approach, the

instruction is broken down into a series of microoperations. Each microoperation is

a small unit of functionality which can be implemented by a single hardware module

(for example, add, subtract, etc.), although multiple implementations of the same

microoperation can exist. Each microoperation has a set of input and output ports.

These ports represent the required inputs to tha t microoperation and the outputs

tha t are generated. The ports of the various microoperations are connected together

to form a complete data dependence graph which defines the order in which the

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

Add

PC Read

Reg. Write

Reg. Read

Instr. Read

Instr. Decode

Figure 4.12: D ata Dependence Graph for a Generic Add Instruction

microoperations need to execute in order to carry out an instruction. An example of

a data dependence graph for for a generic “add” instruction is shown in Figure 4.12.

In order to completely define an instruction set, a data dependence graph for

each instruction in th a t instruction set should be constructed. W ith this conceptual

framework established, a UML class model was developed which efficiently represents

data dependence graphs internally in SCBuild. The model that was developed and

implemented is shown in Figure 4.13.

Essentially, the class model states the following:

1. An Instruction Set is made up of many Instructions.

2. An Instruction is made up of many Microoperations.

3. A Microoperation owns many MicroopPorts.

4. Any given MicroopPort can be connected to many other MicroopPorts.

This simple model is general enough to represent the instruction set for any pro­

cessor provided tha t it is possible to construct a set of data dependence graphs for

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

API
Algorithm

InstructionSet

I
Instruction

I
MicroopPort

*
connected to

Figure 4.13: Class Diagram for the Algorithm layer

tha t instruction set. Also included in the model, although not shown in Figure 4.13,

is the ability to represent the various instruction formats th a t a processor may have.

Each instruction in the instruction set is assigned an instruction format based on the

number and bit-widths of the operands tha t are needed.

The System Layer

The System layer is responsible for representing a parameterized soft-core hardware

component at the System level, the highest level of abstraction. At this level, the soft­

core is seen as a set of user-configurable parameters. The System layer is responsible

for constructing the System-level hierarchy description th a t was discussed in Section

4.3.5. It also handles all of the functionality related to the design space exploration

of the core’s parameters using the SEAMO algorithm. The UML class diagram for

the System layer is given in Figure 4.14.

The most im portant class in the diagram is the System class. It is derived from

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

API

System

Dependency
p a r e n t

X

TemplateComponent
c o m p o n e n t

h ie ra rc h y

* Z \

d e p e n d e n t
r e la t io n s h ip

1
Parameter

in d e p e n d e n t
r e la t io n s h ip

1
1

0 .

lo c k ed
genes

System O '”""--"*
:3= T ^ - =

lin k e d to

f r e e

Chromosome |<y - nes--*| Gene

T o T o
RTL A lg o rith m
API API

Figure 4.14: Class Diagram for the System layer

the TemplateComponent class and inherits all of its functionality and associations to

other classes. It also owns multiple objects of the TemplateComponent class, which

represent the components of the hierarchy, as depicted earlier in Figure 4.7. Each of

these template components has a set of objects of the Param eter class which represent

its parameters. Parameter objects tha t belong to the System class are the System-

level parameters, and as such, are the ones tha t can be configured by the user or left

free to be varied during design space exploration.

Also contained within the System class are numerous objects of the Chromosome

class, which represent the population of configurations used by the SEAMO algo­

rithm. Each Chromosome object, in turn, possesses a collection of objects of the

Gene class, whose values can be varied freely during DSE. Finally, the Parameter

class also has a double association with the Dependency class, which is an association

class whose objects store information on the interdependency relationships between

pairs of parameters in the core.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

The System class contains all of the functions and associations to other classes

th a t are necessary to perform an autom ated design space search using the SEAMO al­

gorithm and to construct a System-level hierarchy model given a set of XML template

description files. It communicates with classes a t lower layers by calling their API

functions, which enables it to direct the construction of lower-level representations of

a core, and ultimately generate synthesizable VHDL code.

4.5.4 Im plem entation D etails

All five versions of SCBuild were written completely using C + + . Version 0.41, the

final alpha version, is about 16,400 lines long. In order to maintain code portability, an

effort was made during development to use only those library functions and classes

th a t were recognized by a number of different compilers. Two different compilers

were used to develop the software: the Microsoft Visual C + + 6.0 [12] compiler and

the MinGW compiler [38] paired with the Code::Blocks [1] integrated development

environment.

4.6 Sum m ary

In this chapter, the design and implementation of the SCBuild CAD tool was pre­

sented. The major problems tha t were addressed by SCBuild were first presented, fol­

lowed by a discussion of the environment under which SCBuild operates. An overview

of the SCBuild CAD flow was then given, and a detailed explanation of each step

in the flow was provided. Finally, the VHDL Component Library was briefly dis­

cussed before the details of the development and implementation of SCBuild were

presented. The next chapter discusses the results of some experimental studies tha t

were conducted using SCBuild and a simple RISC processor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 5

Experimental Results

In this chapter the results of several design space exploration experiments are pre­

sented. For these experiments, a template description model of a simple param eter­

ized pipelined RISC processor core was created. Then the SCBuild CAD tool was

used to generate and compile a number of variant implementations of the processor

core by performing a parameter sweep of all the core’s parameters. The purpose of

this exercise was to generate enough real synthesis data in order to establish objective

estimation equations tha t provided reasonable estimates of the FPGA area utilization

and critical path delay for any arbitrary processor configuration. Next, an initial pop­

ulation of 50 random configurations was generated, and each of these configurations

was synthesized using Quartus II. The area and delay objective estimation equations

were tested for accuracy against these 50 data points. Experiments were then con­

ducted in order to determine suitable values for the crossover and m utation rates

used in the SEAMO algorithm. Finally, using the determined crossover and m utation

rates, the initial population was “evolved” for 20 generations of the SEAMO algo­

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

rithm, yielding an approximation of the Pareto-optimal set. VHDL implementations

for these 50 evolved configurations were generated and synthesized using Q uartus II,

and the resulting synthesis data were compared with tha t of the initial population.

5.1 Target Core

The parameterized RISC processor template used in this research is a modified version

of the pipelined RISC CPU presented by Mano and Kime [48]. A detailed description

of the modified core can be found in Appendix B. To summarize, the core is a simple

microprocessor with a load-store architecture consisting of a datapath, a control unit,

and separate data and instruction memories. It features a total of 38 instructions,

including instructions for performing arithmetic, logical, shift, branch and memory

operations with integer data.

In order to facilitate experimentation, a set of parameters was added to the pro­

cessor, a template description model of the core was created and a library of VHDL

building-block components was constructed (see Section 4.4). The core features the

param eters listed in Table 5.1. The numbers in parentheses are the integer values as­

signed to each param eter value. The data width of the processor can be either 8 , 16,

32, or 64 bits. The data and instruction memory bus widths are configurable to any

value between 5 and 15 bits, yielding anywhere between 32 to 32,768 words of memory

each. The adder present in the ALU and the branch adder can be implemented using

either a ripple-carry or a carry-lookahead structure. There are also three types of

shifters available: logical, arithmetic and rotator. Each of these can be implemented

either as a “basic” shifter, meaning tha t a value is shifted or rotated only one position

per clock cycle, or as a “barrel” shifter, allowing values to be shifted or rotated more

than one position per cycle a t the expense of a much larger shifter. The user can also

choose not to include any or all of these shifters. A combinational integer multiplier

can also be optionally included. The operand width, which directly affects the reg­

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

ister file size, can be configured between 2 and 9 bits, providing anywhere between

4 and 512 general-purpose registers. Finally, pipelined and unpipelined versions of

the processor are available, with the pipelined version featuring a 4-stage pipeline.

D ata and control hazards are presently handled in software by inserting NOP (no

operation) instructions into a program. None of these parameters share hard interde­

pendencies with any of the others—they are all independent. Applying equation (3.2)

to the parameters listed in the table, there are a total of exactly 1,672,704 possible

configurations for this core.

In order to ensure tha t the RISC processors generated by SCBuild functioned as

expected, a simple assembler was w ritten for the processor. This assembler translates

a listing of program instructions down into a memory initialization file (.mif) [7],

which is used to specify the contents of the processor’s instruction memory. A sample

configuration was then generated by SCBuild in order to test the processor’s func­

tionality. The configuration was a 32-bit pipelined variant with 32 general-purpose

registers, 32 words of data and instruction memory each, hardware multiplication

and barrel shifters for the arithmetic shifter, the logical shifter and the rotator. This

configuration was compiled using Quartus II and its functionality was observed using

Quartus II’s Simulator Tool [7]. In this way, all of the processor’s instructions were

verified to be functioning correctly.

5.2 E stab lish ing th e O bjective E stim ation Equa­

tions

In order to establish a set of objective estimation equations (equation (3.3)) for the

RISC processor core using the P-dimensional regression technique described in Chap­

ter 3, it was first necessary to synthesize a set of configurations tha t are representative

of core’s design space. To this end, a param eter sweep was performed on each of the

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Table 5.1: RISC Processor Hardware Parameters
P a ra m e te r P ossib le V alues

ALU Adder Implementation (pi) (1) Ripple-carry, (2) Carry-lookahead

Arithmetic Shifter Implementation (P2) (1) None, (2) Basic, (3) Barrel

Branch Adder Implementation (ps) (1) Ripple-carry, (2) Carry-lookahead

D ata Address W idth (P4) (1-11) 5 to 15 bits

D ata W idth (ps) (1) 8 , (2) 16, (3) 32, (4) 64 bits

Include Multiplier (pe) (1) False, (2) True

Instruction Address W idth (P7) (1-11) 5 to 15 bits

Logical Shifter Implementation (p8) (1) None, (2) Basic. (3) Barrel

Operand W idth (pg) (1-8) 2 to 9 bits

Pipelined (pw) (1) False, (2) True

R otator Implementation (pn) (1) None, (2) Basic. (3) Barrel

core’s 11 parameters. Starting from a base configuration, (in which all of the pa­

rameter values are set to 1), each of the core’s parameters were varied across their

entire range of values while the other parameters were held constant at their base

values. This yielded a total of 41 sweep configurations, each of which was generated

by SCBuild and compiled using Quartus II [7]. All of these configurations were ta r­

geted for the Altera Stratix EP1S40F780C5 FPGA [8], and were compiled using the

default compiler settings. The following pieces of information were collected from

the Quartus II compilation reports for each configuration: the number of LEs, DSP

blocks, M512, M4K and M-RAM memory blocks used by the configuration, and the

critical path delay of the processor in nanoseconds reported by the Timing Analyzer.

A second set of sweep configurations was also produced. In order to study the

relationship between the data width param eter {jp§) and the 1 0 remaining parameters

of the core, an additional 1 1 1 sweep configurations were generated and compiled.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Table 5.2: Summary of Parameter Sweep Results

Config. elk (ns) LEs M 512s M 4Ks M -RAM s D SPs Eq. LEs

Smallest 21.197 173 3 0 0 0 234.5

Largest 49.99 12,393 3 1 0 0 12,502.3

Max. - 49,250 384 0 0 32 57,869.84

Fastest 9.53 181 1 1 0 0 249.3

Slowest 62.84 1,152 2 2 0 32 2036.44

This time, the data width param eter was varied a t the same time as each of the other

parameters. Of these 111 configurations, four were so large th a t the Quartus II F itter

could not successfully place them into the S tratix FPGA. Quartus II failed to compile

another two configurations due to a shortage of memory in the computer on which

they were compiled. In total, 146 different sweep configurations were generated and

compiled successfully. These configurations served as the basis for establishing area

and delay objective estimation equations for the RISC processor. The results of the

param eter sweep experiments will be discussed in greater detail in the sections tha t

follow.

5.2.1 R esults of Param eter Sweep

The sweep configurations showed great variability in both FPGA area utilization and

critical path delay. These results are summarized in Table 5.2. The complete table

of sweep results can be found in Appendix C. In terms of area, the smallest config­

uration generated was the “base” configuration—an unpipelined 8 -bit variant tha t

used only 234.5 equivalent LEs. The largest successfully-compiled sweep configura­

tion was a 32-bit variant with 256 general-purpose registers. This particular con­

figuration used 12,502.3 equivalent LEs, although larger configurations are possible

provided an FPGA with a higher logic capacity is available. In fact, the “maximum”

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

configuration—with all parameters set to their highest values—required a to tal of

49,250 LEs (119% of 41,250 LEs total), 384 M512 RAM blocks (100%), and 32 DSP

blocks (29%) after fitting, equal to 57,869.84 equivalent LEs. The timing analysis

results could not be obtained for this configuration. In terms of delay, the fastest

sweep configuration seen was an 8 -bit pipelined variation, with a critical path delay

of 9.534 ns (104.9 MHz), while the slowest configuration was an unpipelined 64-bit

processor with a integer multiplier, showing a delay of 62.84 ns (15.9 MHz).

For the area objective estimation equations, the forms of the functions fi,k(Pi)

in equation (3.3) were determined by studying the relationships between each of

the RISC processor’s parameters and the resulting area and critical path delay data

collected from the param eter sweep results. The effects on the to tal equivalent LE

utilization and the critical path delay of the processor for each param eter were studied

individually.

Area Utilization

Figure 5.1 contains graphs showing the relationships between the to tal area of the

processor and each of the 11 parameters. In general, these relationships followed fairly

predictable patterns. Based on the results, the following observations were made:

• The ALU and branch adder implementation parameters had only a minor ef­

fect on the total area of the processor. At most, the carry-lookahead adder

contributed only 2 extra LEs to the to tal count. Since there are only two possi­

bilities for these two parameters, the relationships between them and the total

FPGA area utilization were assumed to be linear.

• The implementation parameters for the arithmetic shifter, the logical shifter,

and the rotator affect the to tal area of the processor significantly. The basic

shifter adds a few LEs to the processor: anywhere between 10 and 43 LEs for

the arithmetic shifter, 19 to 42 LEs for the logical shifter, and 10 to 41 for

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

A rea - ALU A dder Im plem entation
1200

LLJ 1 0 0 0

■8-btt

■16-bit

■32-bit

■64-bit

C 8 0 0 • •

> 6 0 0

4 0 0 • -

200 ■ -

Configuration

A rea - A rithm etic S hifter Im plem entation
2000

- 1 1 5 0 0 • -
■8-blt

1 6 -b it

■32-bit

■64-bit

> 1000 ■-

5 0 0 - -

C onfigura tion

(a) ALU Adder Implementation (pi) (b) Arithmetic Shifter Implementation (p2)

Area - B ranch A dder Im plem entation
1200

Uj 1000 —

I 8 0 0

5 6 0 0 - - -

■8-bit

■16-bit

■32-bit

•6 4 -b lt4 0 0 • -

200 • -

C onfigura tion

A rea - Data A ddress Width

Configuration

(c) Branch Adder Implementation (p3) (d) Data Address W idth (p4)

A rea - Data Width
1200

<0
y 1000

C 8 0 0 - -

4 0 0

O 2 0 0 • -

0 1 2 3 4 5

C onfigura tion

Area - Include M ultiplier
2 5 0 0

2000 • -

■8-bit

■16-bit

■32-bit

•6 4 -b it

« 1 5 0 0 - -

3 1000 • -

O 5 0 0 -

C onfigu ra tion

(e) Data W idth (ps) (f) Include Multiplier (pe)

Figure 5.1: Parameter Sweep Results - Area

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Area - in s truc tion A ddress Width

8 0 0 0 - •

3 2 -bit4 0 0 0 - -

3 0 0 0 • -

1000 - •

4 6 8 1 0

C onfigura tion

A rea - Logical S hifter Im plem entation
2000

1 5 0 0
•8 -b lt

■16-bit

■32-bit

■64-blt

> 1 0 0 0 - -

5 0 0 - — •m

C o n fig u ra tio n

(g) Instruction Address W idth {p-j) (h) Logical Shifter Implementation (p s)

A rea - O perand Width
1 4 0 0 0

u j 1 2 0 0 0 - -
-I
■g 10000

■ I 8 0 0 0 . .

■ | 6 0 0 0 ■-

■8-blt

■16-blt

■32-bit

•6 4 -b it
UJ 4 0 0 0 -

© 2000 • -

C o n fig u ra tio n

1200

1000

8 0 0

6 0 0

4 0 0

200

0

A rea - Pipelined

1 2

C o n fig u ra tio n

8 -b lt

16 -b it

3 2 -b it

6 4 -b it

(i) Operand W idth (pg) (j) Pipelined (p10)

Area - R ota tor Im plem entation

1 2 3

C onfigura tion

(k) Rotator Implementation (p n)

Figure 5.1: Param eter Sweep Results - Area (Cont’d)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

the rotator, depending on the D ata Width. As can be expected, the barrel

versions of each shifter are considerably larger than their “basic” counterparts.

The arithmetic barrel shifter can add anywhere between 61 to 758 LEs, the

logical barrel shifter adds 56 to 745 LEs, and the barrel rotator adds 58 to

838 LEs to the processor, again depending on the D ata W idth parameter. The

relationships between these three implementation param eters and the to tal area

were modeled using exponential functions.

• The total equivalent LE usage increases exponentially as the the bit-width of the

data and instruction memory addresses increase. The “kinks” in the curves for

the D ata Address W idth param eter are due to the fact th a t some of the FPGA

memory resources tha t are occupied by the processor, such as the M4Ks and

M-RAM blocks, are only partially utilized by some configurations. As the D ata

Address W idth increases, more and more of the partially-full memory resource

is filled until the whole block is occupied, making it necessary to use additional

memory blocks and resulting in a “jum p” in the to tal equivalent LE usage.

• As expected, the data width param eter causes an exponential increase in the

to tal area of the processor as the param eter is increased.

• The integer multiplier was implemented using the S tratix DSP blocks, plus

some additional LEs. Anywhere from 1 to 32 DSP blocks were utilized, and an

additional 11 to 311 LEs were added by the multiplier, depending on the data

width parameter. The relationship between the integer multiplier param eter

and total equivalent LE count was considered to be linear.

• The Operand W idth parameter, which directly affects the number of general-

purpose registers included in processor, has an extremely significant impact on

the total size of the processor. For instance, if the Operand W idth is set to 8

bits, giving a total of 512 registers, then an additional 6,383 LEs and one extra

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

M512 memory block are added to the total resource count of the 8 -bit processor

variant. These numbers increase further as the size of the D ata W idth param eter

increases. Again, the relationship between the Operand W idth param eter and

the total area of the processor can be approximated by an exponential function.

• The pipelined parameter has only a negligible effect on the size of the processor

and can be approximated by a simple linear function. This is due to the fact

tha t only a small amount of hardware (about 10 equivalent LEs) is added to the

RISC processor when it is pipelined. However, this would not be the case with

a more complex processor, which may require additional hardware for branch

prediction, data forwarding, and pipeline stalling.

• Almost all of the parameters have a soft interdependency relationship with the

data width parameter. The amount tha t a parameter affected the final area of

the processor was often proportional to the data width of the processor. There­

fore, in order to increase the accuracy of the objective estimation equations,

several of the terms in the area objective estimation equation were scaled by

the data width parameter.

Critical Path Delay

Figure 5.2 contains graphs depicting the relationships between the critical path delay

and the processor parameters. As can be seen from the figures, the critical path delay

generally did not follow any predictable patterns and was therefore more difficult to

estimate accurately. Therefore, to increase the accuracy of the estimates, the rela­

tionships between all of the parameters, except for the branch adder implementation,

the include multiplier, and the pipelined parameters, were modeled using base 1 0 or

base 2 logarithmic functions. As would be expected, the pipelined param eter had the

greatest positive effect on the critical path delay of the processor, reducing the delay

by at least 1 0 ns in all cases.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Delay - ALU A dder Im plem entation

S 5 0 • -

•8 -b it

•1 6 -b it

•3 2 -b it

•6 4 -b it

4 0

£ 3 0

1 0 *-

Configuration

Delay - A rithm etic Shifter Im plem entation

____£ 5 0 • - -

•8 -b it

•1 6 -b it

■32-blt

•6 4 -b lt

4 0 - -

£ 3 0 • -

20 • -

10 • -

Configuration

(a) ALU Adder Implementation [j>\) (b) Arithmetic Shifter Implementation (p2)

Delay - B ranch A dder Im plem entation

6 0 t
<0
w 6 0 •
>

s
4 0 •

f
Tfi

3 0 -

a .
2 0 -

»
1 0 •

0
U •

1 2

Configuration

- 8 - b i t

- 1 6 - b i t

- 3 2 - b l t

- 6 4 - b i t

Delay - D ata A ddress Width

S 5 0 -

• 8 -b it

•1 6 -b it

3 2 -b it

•6 4 -b it

4 0

£ 3 0 - - - A " _ A s .

2 0 - - -

(c) Branch Adder Implementation (553) (d) Data Address W idth (p.

Delay - D ata Width

c , 5 0 - -

! 4 0 —

£ 3 0 -

Configuration

Delay • Include Multiplier
7 0

•8-b it

• 16-b it

•32 -b tt

•6 4 -b it
£ 3 0 - -

3 20 ■ -

§ 1 0 - -

Configuration

(e) Data W idth (p$) (f) Include Multiplier (pe)

Figure 5.2: Parameter Sweep Results - Delay

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Delay - Instruction A ddress Width

Configuration

Delay - Logical Shifter Im plem entation

5 0 - - -

■ B-blt

■16-bit

■32-blt

•6 4 -b lt

S 4 0

£ 3 0 - -

8.
<5 2 0 -

•C 1 0

Configuration

(g) Instruction Address W idth ('P7) (h) Logical Shifter Implementation (p%)

Delay - O perand Width
7 0

£ 5 0 -
• 8 -b it

•1 6 -b it

•3 2 -b it

•6 4 -b it

O 4 0 •

Configuration

Delay - Pipelined
6 0

c , 5 0 • -

>»
■2 4 0 • -

•8 -b lt

■16-blt

•3 2 -b it

•6 4 -b it

•C 1 0 • -

Configuration

(i) Operand W idth (p9) (j) Pipelined (pi0)

6 0 J
g 5 0 -

&
4 0 -

£

S.
3 0 -

s
2 0 -

o
1 0 -

Delay - R ota tor Im plem entation

Configuration

8-b it

1 6 -b it

3 2 -b it

6 4 -b it

(k) R o t a t o r I m p l e m e n t a t i o n (p n)

Figure 5.2: Param eter Sweep Results - Delay (Cont’d)

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Table 5.3: Regression Coefficients for RISC CPU

P a ra m e te r i at, 1
(Area)

Oi, 2
(Delay)

fi,i(Pi)
(Area)

f iA P i)
(Delay)

- 0 198.86 17.52 - -
ALU Adder
Implementation (pQ 1 -25.28 -1.03 Pi logio(Pi)

Arithmetic Shifter
Implementation (p2) 2 0.00014p5 4.59 99 P2 loglo(P2)

Branch Adder
Implementation (p3) 3 -80.73p5 0.95 P3 P3

D ata Address W idth (P4) 4 14.11p5 0 .2 1 1.5P4 logl0 (P4)
D ata W idth (p5) 5 15.46 1.73 2.3P5 2 .1 2 P6

Include Multiplier (p6) 6 89.44p5 6.33 P6 Pa
Instruction Address
W idth (p?) 7 4.33 0 .6 8 1.99P7 logio(P7)

Logical Shifter
Implementation (p8) 8 0.00014p5 3.74 9 9 P8 logio(P8)

Operand W idth (p9) 9 12.22 x 1.98P5 2.55 2P9 log2 (pg)
Pipelined (pi0) 1 0 -52.86 x l . P 5 -11.44 P10 P10
Rotator
Implementation (pn)

11 0 .0 0 0 2 0 p5 2.30 90 vn logio(Pn)

5.2.2 D eterm ining the Final O bjective Estim ation Equations

Some trial and error was necessary to determine the exact forms for all of the functions

fi,k(Pi) f°r each parameter. After these functions were determined, P-dimensional

regression analysis was applied to the param eter sweep data in order to compute the

a^k coefficients in equation (3.3). The final functions and coefficients used in the area

and delay estimation equations are listed in Table 5.3.

5.2.3 Testing the O bjective Estim ation Equations

The accuracy of the area and delay estimation equations was first tested using the

146 parameter sweep configurations used to establish the equations. The “actual”

values obtained from compilation data collected from Quartus II were compared with

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

the estimated values tha t were computed using the established objective estimation

equations. Graphs comparing the actual values to the estimated values of area and

critical path delay for the 146 sweep configurations is shown in Figure 5.3. As can be

seen in Figure 5.3(a), the estimated area values correlate well with the actual values,

showing an average percentage error of 10.1%. The delay estimates also track the

actual values reasonably well, with an average percentage error of 11.7%, as shown

in Figure 5.3(b).

Next, the equations were tested to determine their accuracy for any arbitrary con­

figuration. For this test, a set of 50 individuals was randomly generated and compiled

with Quartus II. Nine of these configurations failed to compile, so the remaining 41

configurations were used as test points. Again, the compilation data obtained for

these 41 configurations were compared to the approximated values th a t were deter­

mined using the estimation equations. Graphs comparing the actual and estimated

values for area and delay are shown in Figure 5.4. As can be seen from the figure, the

area equation provides better overall estimates than does the delay equation; however

they are both still within reasonable tolerances. The average error was 13.3% for the

area estimates and 16.4% for the delay estimates.

These experiments serve to demonstrate the inherent difficulty with estimating the

critical path delay of an arbitrary parameterized core. This difficulty is due to the

fact tha t a number of different factors affect the critical path delay of a core, including

the implementation of the core’s underlying components, the placement of the circuit

on the FPGA, the routing running between the various parts of the core, etc. By

contrast, the FPGA area utilization of a core is easier to estimate accurately, because

many of the parameters affect the to tal area of a core in a regular and predictable

manner.

Another comment tha t can be made about these results is tha t a tradeoff exists be­

tween the accuracy of the estimated objective values and the amount of computation

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Actual and Estimated Area Values - Sweep Configurations

14000

12000

to 10000
UJ
_i

8000cora
>
3tX
UJ

3
60 0 0

* 40 0 0

2000

1 10 19 28 37 4 6 5 5 6 4 7 3 82 91 100 109 118 127 136 145

Actual

-E s tim a te d

Configuration

(a) Area

Actual and Estimated Delay Values - Sweep Configurations

» 40

S 20

1 9 17 2 5 3 3 41 4 9 5 7 6 5 7 3 81 8 9 9 7 105 113 121 129 137 145

Actual
Estimated

C o n f ig u ra tio n

(b) Delay

Figure 5.3: Actual and Estimated Values for Sweep Configurations

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Actual and Estimated Area Values - Random Configurations

o
>3ain
o*

25000

20000

15000

10000

5000

0
1 3 5 7 9 11 13 15 17 19 21 23 25 2 7 29 31 3 3 3 5 3 7 3 9 41

Actual
* - Estim ated

Configuration

(a) Area

Actual and Estimated Delay Values - Random Configurations

70

lir
e

<0
CL
<0o

O

1 3 5 7 9 11 13 15 17 19 21 23 25 2 7 29 31 33 35 3 7 3 9 41

Actual
Estim ated

C o n f ig u ra tio n

(b) Delay

Figure 5.4: Actual and Estimated Values for Random Configurations

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

required to obtain those values. In general, more accurate estimations can be made at

the expense of longer computation times. The goal of the regression-based objective

estimation technique used in this research is to produce a set of estimation equations

tha t can be evaluated quickly and easily. However, the light computation workload

required by this method does come at the cost of reduced estimation accuracy. In ad­

dition, an up-front investment of time and effort is also necessary to produce enough

real sythesis data in order to establish these equations. In future work, different ob­

jective estimation techniques may be applied in order to increase the accuracy of the

estimates and remove the need to generate a set of sweep configurations.

5.3 D esign Space E xploration

The SEAMO algorithm was applied to a population of randomly-generated config­

urations in order to determine an approximation of the Pareto-optimal set. In this

section, the results of this experiment are presented.

5.3.1 A lgorithm Param eters

The set of 50 configurations (of which 9 failed to compile) th a t was generated previ­

ously to test the objective estimation equations was also used as the initial population

for this exploration experiment. Suitable values of the crossover and m utation rates

were determined experimentally. The crossover and m utation rates were both var­

ied between 0.1 and 1.0, and the resulting evolved population was observed. It was

determined tha t a value of 0 .1 for the crossover rate and 0 .2 for the m utation rate

provided the greatest diversity of configurations in the evolved population. Finally,

the number of generations of the algorithm was set to 2 0 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Initial and Evolved Populations

80

70

60

£ 4 0 a a.
75 o
5 30
o

20

10

0
0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

Area (# of Equivalent LEs)

9 1

-|T
■

T """"......—................i.... i----------------------- r-

Initial Population
■ Evolved Population

Figure 5.5: Initial and Evolved Populations

5.3.2 Results

Using the algorithm parameters mentioned above, the SEAMO algorithm was ap­

plied to the initial population of 50 configurations (including the nine configurations

tha t failed to compile). After 20 generations of the algorithm, the population began

to converge toward an approximation of the Pareto-optimal set. Each of the con­

figurations in the resulting evolved population was compiled using Q uartus II (see

A p p e n d ix C for th e ta b le o f r e su lts). A v isu a l co m p a riso n o f th e in it ia l an d th e

evolved populations (using the actual values collected from the compilation reports),

is shown in Figure 5.5.

As can be seen in the figure, the majority of the configurations in the evolved

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

Table 5.4: Number o:

Value

10

11

Occurrences of Each Parameter Value in the Evolved Population

P i

23

27

P2

25

17

Pi

40

10

P i P 5

26

15

P e_

39

11

P 7 P 8_

21

17

12

13

P 9

19

15

P io

47

Pn

21

16

13

population tend to cluster around the lower left corner of the design space, approx­

imating the Pareto-optimal front. The variability in the evolved population is due

to the inaccuracies present in the objective estimation equations used to evaluate

each configuration. If more accurate estimation methods were used, then the evolved

population would form a smoother curve along the lower-left boundary of the design

space.

5.4 C onclusions D raw n From R esu lts

In Table 5.4, the number of occurrences of each param eter value in the evolved pop­

ulation are listed. A number of observations can be made from this table:

• There are roughly the same number of configurations with the ALU adder im­

plemented using a ripple-carry structure as with a carry-lookahead implementa-

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

tion. However, the SEAMO algorithm tended to heavily favour the ripple-carry

implementation for the branch adder.

• In roughly half the configurations, the arithmetic and logical shifters and the

rotator were completely eliminated. For the remaining configurations, the barrel

implementation was the favoured choice for the arithmetic shifter, and there

was a slight bias toward the basic implementation for the logical shifter and the

rotator.

• There appears to be a roughly even distribution of data and instruction address

widths across the whole population.

• The integer multiplier was removed in the majority of the configurations. Only

11 configurations featured hardware multiplication support.

• The SEAMO algorithm tended to eliminate configurations tha t had longer

operand widths (and therefore larger register files). This is unsurprising, con­

sidering the fact tha t the operand width parameter contributes significant area

to the processor when its value is large.

• As would be expected, 47 out of 50 configurations were pipelined. This is

because of the dramatic improvement tha t the pipelined param eter makes to

the critical path delay of the processor with only a minimal increase in area.

These experiments have shown tha t utilizing a genetic-based approach to prune

the design space of a parameterized core can be helpful in assisting a designer making

decisions regarding the selection of param eter values for a parameterized hardware

platform. Coupled with an accurate configuration evaluation methodology, the ge­

netic algorithm helps to eliminate the sub-optimal configurations from consideration,

yielding a much smaller set of configurations from which to choose. Designers can then

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. EXPERIMENTAL RESULTS

choose one configuration from the pruned set tha t satisfies their application-specific

design constraints.

5.5 Sum m ary

In this chapter, the results of several experiments involving the SCBuild CAD tool

and a simple RISC processor were presented. First, a total of 146 different “parame­

ter sweep” configurations were generated and compiled in order to provide sufficient

definition to the processor’s design space so tha t equations could be established tha t

provided reasonably accurate estimations of the FPGA area utilization and critical

path delay of any arbitrary configuration. After the exact forms of the area and delay

estimation equations were determined, their accuracy was tested using a set of 41

randomly-generated configurations. It was discovered tha t the equations provided

reasonably accurate estimations of the area and delay for the configurations tested—

within 13.3% for area and 16.4% for delay. Next, the SEAMO algorithm was applied

to a population of 50 random configurations for 20 generations. The evolved popula­

tion showed significant overall improvement in both the area and delay objectives.

The next chapter concludes this thesis by providing a summary of the research

contributions made by this work. In addition, a discussion of some of the future work

tha t remains to be done in this area is also presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 6

Conclusions and Future Work

As long as the rate of growth in the complexity of embedded systems continues to

increase at its present pace, new technologies, design techniques and methodologies

will continue to be developed to meet the challenges th a t this growth in complex­

ity presents. An emerging technique known as platform-based design has generated

a good deal of interest in recent years, due mainly to its emphasis on the use of

pre-designed and pre-tested IP cores as hardware platforms upon which to build de­

signs. This thesis presented an investigation of one particular platform-based design

technique: genetic algorithm-based design space exploration using parameterized soft-

cores. After providing the relevant background material, the results of a preliminary

case study involving the SEAMO genetic algorithm and the Altera Nios param e­

terized soft-core processor were presented. From this study, it was concluded tha t

applying a genetic-based algorithm to a parameterized core with a sizable design space

can be helpful in narrowing down the number of design configurations tha t must be

considered by the designer when selecting one for a particular application.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. CONCLUSIONS AND FUTURE W ORK

In Chapter 4, the design and implementation of SCBuild, a CAD tool which in­

corporates the techniques investigated during the case study, were discussed in some

detail. In Chapter 5, the results of a set of experiments carried out using SCBuild and

simple parameterized RISC processor were presented. From these results, a number

of observations were made. First, it is comparatively easier to predict the final imple­

mented area of a given core than it is to estimate its critical path delay. This is due

to the numerous factors tha t affect the critical path delay of a circuit implemented on

an FPGA. Second, it was concluded th a t utilizing a genetic-based approach, coupled

with accurate objective estimation models, can help an embedded systems designer to

make intelligent decisions regarding the assignment of values to the parameters of an

embedded hardware platform. It does this by pruning uninteresting and sub-optimal

configurations from the design space and returning the set of Pareto-optimal config­

urations, allowing the designer to select one configuration from tha t set tha t satisfies

the requirements of the intended application. Finally, some observations were made

regarding the exploration of the design space of the simple RISC processor.

6.1 Sum m ary o f R esearch C ontributions

The following contributions were made over the course of this research:

1. A preliminary case study was conducted in which the feasibility of applying a

genetic algorithm-based approach to parameterized soft-core hardware compo­

nents was investigated.

2. A technique for estimating the objective values (i.e. FPGA area utilization

and critical path delay) given a set of param eter values was examined and ap­

plied to several soft-core components. Using this technique, reasonably accurate

estimations were made for both area and delay of the cores tha t were tested.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. CONCLUSIONS AND FUTURE W ORK

3. SCBuild, a software-based CAD tool, was developed which utilizes the explo­

ration and objective estimation approaches tha t were investigated during the

preliminary case study. The tool is capable of exploring the design space of a

parameterized soft-core using the SEAMO algorithm, it can generate structural

VHDL descriptions of core variants given a user-selected set of param eter val­

ues, and it is able to provide estimates of the FPGA area utilization and critical

path delay of the final logic circuit. SCBuild helps to lay the groundwork for a

more thorough and detailed investigation of the soft-core processor design space

targeting FPGAs to be conducted. During the the development of SCBuild, a

number of contributions were made:

(a) A unique text-based file format was created in conjunction with the de­

velopment of SCBuild, which allows descriptions of “tem plate” cores to

be created. SCBuild can potentially generate thousands, millions or more

of different variant VHDL implementations of a soft-core from a single

template description.

(b) UML models were created to represent the structure of soft-core hardware

components at the System, Algorithm and RTL levels of abstraction.

4. A parameterized template description of a simple pipelined RISC processor was

created, and several design space exploration experiments were carried out with

it using SCBuild.

6.2 Future W ork

The research work presented in this thesis can be extended in a variety of ways. First,

a number of new features could be added to SCBuild tha t would enable it to automate

a greater number of design tasks. For instance, the tool could be extended so tha t

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. CONCLUSIONS AND FUTURE WORK

it is able to automatically generate the necessary control logic for a processor given

a datapath template description and a set of parameter values. A greater number of

tasks can also be automated using Tel scripts—automatic compilation of the cores

generated by SCBuild and reporting of the synthesis results are just the beginning of

what is possible to accomplish using this method.

Adding more accurate objective estimation techniques would also be another way

of improving the quality of the results generated by SCBuild. At its present state,

a fair number of “representative” variants of a processor core must be generated by

SCBuild and synthesized in order to provide enough definition to the design space to

make accurate estimations of a core’s FPGA area utilization, critical path delay, etc,

for any arbitrary configuration. These estimations provide some useful information

tha t helps to determine which configurations are “good” universally speaking: however

they make no indication of how well or how poorly a specific software' application

would run on a given processor variant. Later versions of SCBuild could include a

simulation framework, similar to th a t found in the Platune system [30] for example,

tha t could compute estimates of the run-times of software applications on particular

processor configurations.

New tools could be developed th a t would help to supplement the work performed

by SCBuild. As was discussed in Chapter 4, a Template Architect Tool could be

developed tha t would allow a designer to quickly and easily create parameterized

Template Descriptions of soft-cores by dragging and dropping Template Components

from a library. Another interesting avenue to explore would be the development of a

software code profiling tool tha t can analyze a given software application written in

C /C + + or some other high-level language and call SCBuild to automatically create a

customized processor tha t is optimized to run th a t software program [58, 15]. SCBuild

could also generate a compiler and assembler tha t is customized for the particular

processor variant for which the software application is targeted.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6. CONCLUSIONS AND FUTURE W ORK

One major addition to SCBuild could be in the area of high-level synthesis [50].

Since the tool manipulates descriptions of a core at the various levels of abstraction, it

may be possible to add functionality tha t allows it to automatically translate a higher-

level description (System or Algorithm) into an RTL description without the aid of

a pre-existing template. Other exploration algorithms may also be investigated and

compared with one another to see which one proves the most useful in assisting in the

process of deriving an application-specific processor given a parameterized processor

core.

Finally, a broader exploration of the soft-core processor design space targeting

FPGAs can be conducted. A wider variety of architectural features can be exam­

ined, including cache sub-systems, branch prediction schemes, floating-point support,

various pipeline architectures, custom instruction support, functional unit implemen­

tations, interrupt and exception handling and others. Also, parameterized multi­

processor hardware platforms and the various accompanying implementation issues

would prove to be a useful course of study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix A

Details of the SCBuild, Template

Description File Format

Each file in the template description contains an XML [74] description of one template

component. Template components are abstract hardware components tha t describe

a class of hardware modules rather than just a single concrete component. Template

components fall into two categories: primitive and aggregate components. Figures

A .l and A.2 show example skeleton XML descriptions for each of these two categories.

Aggregate components are those components th a t are made up of one or more

sub-components, while primitive components are singular modules th a t do not have

sub-components. Every template component description, regardless of whether tha t

component is aggregate or primitive, contains information on the component’s name

and parameters. The <param eters> declaration section can contain numerous pa­

rameter definitions, each of which has the form shown in Figure A.3.

The param eter type can be either “scalable” , “implementation” or “general” .

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. DETAILS OF THE SCBUILD TEMPLATE DESCRIPTION FILE FORMAT

<component>
<name>...</name>
<ports>

</ports>
<parameters>

</parameters>
<sub_components>

</sub_components>
</component>

Figure A .l: Aggregate XML Template Component Descriptions

<component>
<name>...</name>
<parameters>

</parameters>
<implementations>

</implementations>
</component>

Figure A.2: Primitive XML Template Component Descriptions

<parameters>
<parameter>

<name>parameter_name</name>
<type>parameter_type</mode>
<values>vl, v2, ...</values>
<default_value>def_value</default_value>

</parameter>

</parameters>

Figure A.3: An Example Parameter Declaration

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. DETAILS OF THE SCBUILD TEMPLATE DESCRIPTION FILE FORMAT

Scalable type parameters are numerical parameters tha t are used to represent variable

bit-widths within a component and correspond directly to the “generic” constants

used in VHDL entity declarations [54], or “param eter” statem ents in Verilog [55].

Implementation type parameters are used to select which component from the VHDL

Component Library to instantiate in the final VHDL description of the core. Lastly,

General type parameters are an open-ended param eter category tha t can be used for

various purposes to alter the underlying structure of the parameterized core.

Each param eter must have a set of possible values specified within its declaration.

These can be given either as a set of discrete comma-separated values, or, if the

param eter is a Scalable type, a range of values can be given (for example, the values

can be specified as “1 to 10”). Finally, each param eter must have a default value tha t

is used when a value is not explicitly assigned to the param eter when the template

component is instantiated.

A .l P rim itive T em plate C om ponent D escrip tions

Each primitive template component can be linked to any number of “physical” imple­

mentations from the VHDL Component Library. As shown in Figure A.2, primitive

template components have a special section called <im plem entations>. In this sec­

tion, the various VHDL implementations tha t the template component has are listed.

An example <im plem entations> section is shown in Figure A.4.

If there is more than one possible implementation for a given template component,

then these implementations should be linked with one of the Implementation type pa­

rameters declared in the <param eters> section discussed above. The <parameter>

field in the <im plem entations> section specifies the param eter to which the imple­

mentation of tha t component is linked. If this field is missing, SCBuild will simply

use the first implementation th a t it finds in the section. The <im plem entations>

section also has many <im plem entation> fields, and each of these fields provides the

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. DETAILS OF THE SCBUILD TEMPLATE DESCRIPTION FILE FORMAT

< im plem entat i ons >

<param eter>param eter_nam e</param eter>

< implement a t i on>
<name>im plem entation_nam e</name>
<f i le > f ile_nam e.vhd</f i le >

< /im p lem en ta tio n

</im plem entations>

Figure A.4: An Example Implementation Declaration

<ports>
<port>

<name>port_name</name>
<mode>port_mode</mode>
<w idth>port_bit_w idth< /w idth>

< /po rt>

< /p o rts>

Figure A.5: An Example Port Declaration

implementation with a name and the name of the VHDL file in which the implemen­

tation can be found. In order to properly link an Implementation type param eter to

the listed implementations in the section, tha t parameter must have the names of all

listed implementations in its <values> field.

A .2 A ggregate T em plate C om ponent D escrip tion s

Aggregate component descriptions contain information on the component’s ports and

sub-components. A component’s <ports> declaration section can contain as many

ports as needed. These ports define the interface to the component. An example port

declaration section is given in Figure A.5.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. DETAILS OF THE SCBUILD TEMPLATE DESCRIPTION FILE FORMAT

<sub_ component s >
<sub_component>

<name>sub_cmptl</name>
<f ile>sub_cm pt_f ile_nam e.xm l</f i le >

</sub_component>

<param eter_m ap>sub_cm ptl.pi = vl</param eter_map>
<parameter_map>sub_cmpt2 .p 2 = paren t_cm pt.p 2 </parameter_map>

<port_m ap>sub_cm ptl.portl = sub_cmpt2 .p o r t2 </port_map>
<port_m ap>sub_cm ptl.port2 = p a ren t_ cm p t.p o rt2 </port_map>

< if co n d itio n = "expression">

< /if>
< /sub_components>

Figure A.6 : An Example of a Sub-Components Section

Each port in the port declaration section must include a name for the port, the

po rt’s mode (which can either be “in” or “out”), and the p o rt’s bit-width, which can

either be an integer or an expression containing the names of one or more “scalable”

type parameters.

Template components can be constructed by instantiating smaller template com­

ponents as sub-components and specifying the connections between the ports of the

sub-components. As shown in Figure A .l, aggregate template component descriptions

have a special <sub_components> section where the sub-components are instantiated

and connected together. In Figure A.6 , an example <sub_components> section is

given.

Individual sub-components are instantiated in the <sub_component> field, where

the name of the sub-component instance and the XML file name of the instantiated

template component are provided. The <parameter_map> statem ents are used to map

each sub-components’ parameters to specific values or to link the param eter with one

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. DETAILS OF THE SCBUILD TEMPLATE DESCRIPTION FILE FORMAT

of the parent component’s parameters. If a sub-component’s param eter is linked to

one of the parent’s parameters, then whatever value the parent param eter receives

will automatically be mapped to the sub-component’s param eter as well. In this way,

a parameter th a t may be buried deep within the hierarchy of sub-components may

be made visible to a higher level component. The <port_map> statem ents are used

to connect the ports of each of the sub-components together to create a complete

circuit. A sub-component’s port may be mapped to one or more ports of other sub­

components, or to one of the parent component’s ports.

One of the most significant features of the sub-components section are the con­

ditional < if > statements. These statem ents can be used to make potentially drastic

changes to the underlying structure of an aggregate component based on the val­

ues given to particular parameters. The “condition” attribute in the opening < if>

tag is a Boolean expression containing the names of one or more of the the par­

ent component’s parameters. If the condition evaluates to "true" then all of the

statements present in between the opening and closing < if> tags are executed. All

three types of statements mentioned above—<sub_component>. <port_map>. and

<parameter_map>—can be included in an < if> block, therein- allowing the structure

of the aggregate component to be significantly different depending 011 the values of

the parameters named in the condition. There is no limit on the number of <if>

blocks th a t can be present under the <sub_components> section.

A .3 T he P aram eter D ep en d en cies F ile

It is quite common for parameters of a core to share hard interdependencies with one

another. SCBuild can be provided with a Parameter Dependencies file th a t contains

the necessary information on each param eter interdependency. In this file, depen­

dency relationships between pairs of parameters are declared, and their dependency

tables are defined. An example dependency relationship definition is shown in Figure

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. DETAILS OF THE SCBUILD TEMPLATE DESCRIPTION FILE FORMAT

<dependency>
<dependent_parameter>multiplier</dependent_parameter>
<independent_parameter>data_width</independent_parameter>
<if data_width = "-">multiplier = -</if>
<if data_width = "16">multiplier = software</if>
<if multiplier = "software">data_width = 32</if>
<if multiplier = "MSTEP">data_width = 32</if>
<if multiplier = "MUL">data_width = 32</if>

</dependency>

Figure A.7: Example of a Dependency Relationship Definition

Table A .l: Dependency Lookup Tables for D ata W idth and Multiplier Parameters
D ata W idth M ultiplier

- -
16-bit Software

32-bit Software,
MSTEP, MUL

M ultiplier D ata W idth
- -

Software 16, 32-bit
MSTEP 32-bit

MUL 32-bit

A.7.

In this example, the dependent and independent parameters are both listed. The

< if> statements define the elements of the dependency table. Internal to SCBuild,

the dependency table is actually stored as two separate one-way lookup tables—one

for the dependent parameter and the other for the independent parameter. These are

depicted in Table A.I.

The first entry in each of these tables is the default null value. Each System-

level parameter, regardless of whether or not it has any dependency relationships, has

this value as one of its possible values. When a parameter is set to the null value, it

essentially means tha t the param eter is “unset” . The remaining entries in the tables

contain the valid values of the second param eter for each possible value of the first

parameter.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. DETAILS OF THE SCBUILD TEMPLATE DESCRIPTION FILE FORMAT

< objective>
<name>area</name>
<im provem ent> sm aller_better< /im provem ent
<const_coef> 1 0 .l< /co n st_ co ef>

<term>
<param eter>data_w idth< /param eter>
<function>data_w idth**2 < /fu n c tio n >
< c o e ff ic ie n t> 2 .5 < /c o e ff ic ie n t>

</term >

< /o b jec tiv e>

Figure A.8 : An Example of an Objective Estimation Equation Definition in the
Objectives File

A .4 T he O bjectives F ile

The Objectives file stores the declarations for each objective estimation equation tha t

will be evaluated during design space exploration. Expressed in its most general form,

each objective estimation equation has the form given in equation (3.3). A declaration

in the Objectives file includes information on the functional form fi,k(Pi) and the

regression coefficient for each term of every objective function. An example of an

objective estimation equation definition is shown in Figure A.8 .

Each objective is given a unique name (e.g. “area”). The type of improvement

is specified (either “smaller-better” or “larger_better”), because some objectives im­

prove when their values decrease, while others improve when they increase. The

<const_coef> element stores the value of the ao.fc coefficient from equation (3.3). In­

formation on each term of the objective estimation equation is stored in the <term>

se c t io n s o f th e file. T h e < p a r a m e te r > fie ld sp ec ifies w h ich S y s te m -le v e l p a ra m eter

the variable Pi in the term corresponds to. The <function> field provides the form

of function fi^iPi) m equation (3.3) and the Ccoeff ic ie n t> element stores the

coefficient for each term. Each objective estimation equation can have any number

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. DETAILS OF THE SCBUILD TEMPLATE DESCRIPTION FILE FORMAT

<system>
< tem p la te_ file s>

< f i le > f i le l .x m l< /f i le >
<f i le > f i l e 2 .xml</f ile >

< /tem p la te_ f i le s>
< o b je c t iv e s _ f ile > o b je c tiv e s .x m l< /o b je c tiv e s _ f ile >
< dependencies_ file> dependenc ies.xm l< /dependencies_ file>

</system >

Figure A.9: An Example of an System File Listing

of terms as long as the system has the corresponding set of parameters.

A .5 T he S ystem F ile

The System file stores the names of all of the template component files, as well as

the names of the Parameter Dependencies file and the Objectives file for a given core

in a single location. When users of SCBuild wish to load a particular tem plate de­

scription, then they must provide the program with the name of the System file. An

example System file listing is shown in Figure A.9. Under the < tem plate_f i le s >

section, the names of all of the XML template component files are listed. All of the

template component files must be listed in this section in order for SCBuild to recog­

nize them. The < o b jec tiv e s_ f i le > element stores the Objectives file name, and the

<dependencies_f i le > element contains the name of the Param eter Dependencies

file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix B

Description of the RISC

Processor Template

The parameterized RISC processor template used in this research is a modified version

of the pipelined RISC CPU presented by Mano and Kime [48]. The following is a

brief description of the processor template model used during this research. See Mano

and Kime’s book for a more detailed discussion of the processor’s design.

B . 1 Param eters

The RISC processor template features the parameters listed in Table B .l. The D ata

W idth of the processor can be set to either 8 , 16, 32 or 64 bits and both the D ata and

Instruction Address W idths can be varied between 5 and 15 bits, giving anywhere

between 32 and 32,768 words of data and instruction memory, respectively. The ALU

can be configured with or without a full combinational hardware multiplier using the

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

Table B .l: RISC Processor Hardware Parameters
Parameter Possible Values

ALU Adder Implementation (pi) (1) Ripple-carry, (2) Carry-lookahead

Arithmetic Shifter Implementation (p2) (1) None, (2) Basic, (3) Barrel

Branch Adder Implementation (P3) (1) Ripple-carry, (2) Carry-lookahead

D ata Address W idth (^4) (1-11) 5 to 15 bits

D ata W idth (ps) (1) 8 , (2) 16, (3) 32, (4) 64 bits

Include Multiplier (p6) (1) False, (2) True

Instruction Address W idth (p?) (1-11) 5 to 15 bits

Logical Shifter Implementation (pg) (1) None, (2) Basic, (3) Barrel

Operand W idth (pg) (1-8) 2 to 9 bits

Pipelined (pio) (1) False, (2) True

Rotator Implementation (pn) (1) None, (2) Basic, (3) Barrel

Include Multiplier parameter. Both the and the ALU adder and the branch adder

can be implemented using either a ripple-carry or a carry-lookahead structure. Three

different types of shifters are also available: an arithmetic shifter, a logical shifter, and

a rotator. Any or all of these shifters can be optionally included with the processor,

and each can be implemented as “basic” shifter (allowing a shift of only one position

per clock cycle), or as a barrel shifter (enabling the shifting of operands multiple

positions in a single clock cycle). Finally, pipelined and unpipelined variants of the

processor can be generated by setting the value of the Pipelined param eter to “true”

and “false” respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

Three-Register OPCODE DR SA SB UNUSED
i i l I l l I I I l

7 bits
i i i i
------------- .— ■— 6 o r 10 bi ts d epend ing

Operand Width 0 n O p erand Width

Two-Register OPCODE DR SA IMMEDIATE
1 1 i i 1 I i i

7 bits
1 1

Operand Width

i
6 + O p era n d Width or
1 0 + O p era n d Width

Branch OPCODE DR SA TARGET OFFSET
i i i i 1 1 1 i

i i i i
7 bits 6 + O p era n d Width or

O perand Width 1 0 + O p era n d Width

Figure B.l: Instruction Formats for the RISC Processor

B .2 Instru ction Set

The RISC processor has three different instruction formats: three-register, two-

register, and branch. These formats are illustrated in Figure B .l. In all cases, the

opcode is 7 bits wide. The widths of the operand fields, DR, SA and SB, all depend

directly on the value of the Operand W idth parameter. Additionally, the widths of

the Unused, Immediate and Target Offset fields depend on the Operand W idth pa­

rameter as well, only indirectly. If the Operand W idth is less than or equal to 7 bits,

then the Unused field is 10 bits wide, and if it is greater than 7 bits, then the Unused

field is only 6 bits wide. The core was designed this way so th a t configurations uti­

lizing large amounts of instruction memory with wide operand widths would fit onto

a Stratix EP1S40F780C5 FPGA [8],

T h e in str u c t io n se t o f th e RISC p ro cesso r fea tu r es 38 d ifferen t in s tr u c t io n s for

performing arithmetic, logic, shift, branch, and memory operations. It also features

one “trap” instruction, which asserts a trap output signal, which can be used to

indicate the end of program execution or other exceptional conditions. Table B.2

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

lists the instructions supported by the RISC processor.

Table B.2: RISC Processor Instructions

O pcode Sym bol F o rm a t D esc rip tio n
0 0 0 0 0 0 0 NOP 3-Reg No Operation
0 0 0 0 0 0 1 ADD 3-Reg Add register
0 0 0 0 0 1 0 SUB 3-Reg Subtract Register
0 0 0 0 0 1 1 SLT 3-Reg Set Less Than
0 0 0 0 1 0 0 MLL 3-Reg Multiply Low
0 0 0 0 1 0 0 MLH 3-Reg Multiply High
0 0 0 0 1 0 1 MLI 2 -Reg Multiply Low Immediate
0 0 0 0 1 1 0 MHI 2 -Reg Multiply High Immediate
0 0 0 1 0 0 0 INC 3-Reg Increment
0 0 0 1 0 0 1 DEC 3-Reg Decrement
0 0 0 1 0 1 0 LSL 2 -Reg Logical Shift Left
0 0 0 1 0 1 1 LSR 2 -Reg Logical Shift Right
0 0 0 1 1 0 0 ASL 2-Reg Arithmetic Shift Left
0 0 0 1 1 0 1 ASR 2-Reg Arithmetic Shift Right
0 0 0 1 1 1 0 ROL 2-Reg Rotate Left
0 0 0 1 1 1 1 ROR 2-Reg Rotate Right
0 0 1 0 0 0 0 AND 3-Reg Bitwise AND
0 0 1 0 0 0 1 OR 3-Reg Bitwise OR
0 0 1 0 0 1 0 XOR 3-Reg Bitwise XOR
0 0 1 0 0 1 1 NOT 3-Reg Bitwise Complement
0 0 1 0 1 0 0 ST 3-Reg D ata Memory Store
0 0 1 0 1 0 1 LD 3-Reg D ata Memory Load
0 0 1 0 1 1 0 ADI 2-Reg Add Signed Immediate
0 0 1 0 1 1 1 SBI 2-Reg Subtract Signed Immediate
0 0 1 1 0 0 0 ANI 2-Reg AND Immediate
0 0 1 1 0 0 1 ORI 2-Reg OR Immediate
0 0 1 1 0 1 0 XOR 2-Reg XOR Immediate
0 0 1 1 0 1 1 AIU 2-Reg Add Unsigned Immediate
0 0 1 1 1 0 0 SIU 2-Reg Subtract Unsigned Immediate
0 0 1 1 1 0 1 MOV 3-Reg Move
0 0 1 1 1 1 0 JMR Branch Jum p Register
0 0 1 1 1 1 1 BZ Branch Branch on Zero
0 1 0 0 0 0 0 BNZ Branch Branch on Not Zero
0 1 0 0 0 0 1 JMP Branch Jump

Continued on next page . . .

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11 DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

Table B.2 - continued from previous page
O pcode Sym bol F o rm a t D e sc rip tio n
0 1 0 0 0 1 0 JML Branch Jump and Link
0 1 0 0 0 1 1 IMP 3-Reg Increment Memory Page
0 1 0 0 1 0 0 DMP 3-Reg Decrement Memory Page
0 1 0 0 1 0 1 TRP 3-Reg Trap

B .3 Structure

A block diagram of the RISC processor is shown in Figure B.2. A brief description

of each of the processor’s components is provided here. The processor consists of

four major components: the D atapath, Control Unit, Instruction Memory and D ata

Random Access Memory (RAM). The word size of the processor can be set to 8 ,

16, 32 or 64 bits using the D ata W idth parameter, and the number of addressable

locations in the D ata RAM and Instruction Memory can be set to any value between

32 to 32,768 words by setting the D ata Address W idth and Instruction Address W idth

parameters respectively.

If the D ata W idth is equal to the D ata Address W idth, then the D atapath ’s “D ata

Address O ut” port is connected directly to the D ata RAM’s “Address” port. However,

if the values of these two parameters are unequal, then one of two different components

may be instantiated in order to interface the D atapath with the D ata RAM. If the

value of the D ata W idth param eter is larger than th a t of the D ata Address W idth

parameter, then a Bus Interface component is used to connect the “D ata Address

O ut” port on the D atapath with the “Address” port on the D ata RAM. The Bus

Interface component simply connects two buses of unequal width together, leaving

the extra input signals open. If the D ata W idth is less than the D ata Address W idth,

then a Memory Controller component is instantiated instead. The purpose of this

component is to make all of the space in the D ata RAM addressable through the use

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

of “memory pages” . Since the width of the D ata Address Out port on the D atapath

is less than the width of the Address port on the D ata RAM, not all of the words

in the D ata RAM are addressable directly. Therefore, the D ata RAM is divided into

2 {data.addressjwidth-data.w%dth) memory pages, with each page containing 2data-wultfl words.

Only one memory page is addressable a t a time. The Memory Controller contains a

page register which points to the current page of memory being accessed. The IMP

and DMP instructions are used to increment and decrement the page register so tha t

the entire space of data memory can be addressed.

Pipelined and unpipelined variants of the processor can be generated by setting

the Pipelined param eter to “true” and ’’false” respectively. The pipelined version

of the processor contains the following four pipeline stages: Instruction Fetch (IF),

Decode and Operand Fetch (DOF), Execute (EX), and Write Back (WB). Currently,

there is no additional hardware for handling data and control hazards in the pipeline.

Hazards must be handled in software by inserting NOPs in between instructions in a

program.

B.3.1 D atapath

The D atapath component handles all of the data processing operations performed

by the processor. See Figure B.3 for a block diagram of the Datapath. The two

major components of the D atapath are the Register File and the Function Unit. If

the Pipelined param eter is set to a value of “true” , then two pipeline registers are

created as well: D O F/EX and EX/W B.

The number of general-purpose registers in the Register File can be controlled

using the Operand W idth param eter and is equal to 2operand-mdth. The first register,

RO, always contains a value of 0, and writes to this register are invalid. The remaining

registers can be used for any purpose.

The Function Unit contains the logic necessary to perform arithmetic, logical and

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

CLK RESET

Control Unit CLK
RESET

INSTR ADDRESS OUT

INSTRUCTION

D ADDRESS

A ADDRESS
B ADDRESS

CIN
ADDER SEL

ADD OR MULT SEL
LOGIC SEL

ARITH OR LOGIC SEL

SHIFT DIR
SHIFT DIST

SHIFTER SEL

ALU OR SHIFT SEL
MA

MB

MD

REG WRITE

PC OFFSET
RAA

CONSTANT OUT

PC MINUS 1 OUT

MEM WRITE

MEM OPCODE
TRAP

'17+3*operand_width

r address width

Instr. Memory
CLOCK

Q
ADDRESS

^ p e r a n g ^ id t f ^
o p e ra n f lj
operand width

log2 (dat9_width)

instr_addcess_width
instraddcess_width

data_yvidth
instr_addgess_width,

clk Datapath
RESET

D ADDRESS

A ADDRESS
B ADDRESS

CIN
ADDER SEL

ADD OR MULT SEL
LOGIC SEL
ARITH OR LOGIC SEL

SHIFT DIR
SHIFT DIST
SHIFTER SEL DATA OUT

MA DATA IN
MB

MD

REG WRITE

PC OFFSET
RAA

CONSTANT iN
PC MINUS 1 IN

ZOUT

'data width Data RAM data
address
widthdata width

D A T A
data jwndth

WREN

C r e a te d if
d a ta w id th > d a ta a d d r e s s w idth

Bus Interface
INPUT OUTPUT — 1 :

I,*
— i

to

C re a te d if
d a ta w id th < d a t a a d d r e s s w id th

Mem Controller
ADDRESS IN

OPCODE

RESET

CLK
ADDRESS OUT

to
to

Figure B.2: RISC Processor Block Diagram

DESCRIPTION
OF

THE
RISC

PROCESSOR
TEM

PLATE

B. DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

CLK •
RESET -

REG WRITE -

A ADDRESS -

B ADDRESS -
D ADDRESS -

operand width
^operan^w id t^

operan'cLwidth

> c u Register File
RESET

WRITE

A ADDRESS D DATA

B ADDRESS
D ADDRESS

CONSTANT IN -

PC MINUS 1 IN -

BUS In t A

INPUT OUTPUT

address
width

instr
address B us In t RAA

“ K . 1 MUX A / \ MUX B A ~

RAA
width

DOF/EX|Register

INPUT o u t p u t 4

CIN ■

ADDER S E L -

ADD OR MULT SEL-
LOGIC SEL-

ARITH OR LOGIC SEL -

INPUT OUTPUT p

address B us in t PC O ffse t
width

Z O U T 4 -

*—

i
[Created if
i Pipelined = true

Created if | j

A B

c in Function Unit
ADDER SEL

ALU OR SHIFT SEL
SHIFTER SEL

DIRECTION

LOGIC SEL

ARITH OR LOGIC SEL

NOUT
DISTANCE

COUT
VOUT

MULT RESULT HIGH RESULT

t f_____J - s r

log^(n)

! EX/WB
Pipelined = true I j [R e g is te r \ ■

I ..
INPUT

Z ero Fill 1 Bit
OUTPUT

I
MUX D

•MB

^ DATA ADDRESS OUT
► DATA OUT

-ALU OR SHIFT SEL
-SHIFTER SEL
- SHIFT DIR

- SHIFT DIST

- DATA IN

Figure B.3: D atapath Block Diagram

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

ARITH OR LOGIC SEL -
LOGIC SEL -

ADDER SEL -
CIN "

ADD OR MULT SEL -

A -
B -

ARITH OR LOGIC SEL
LOGIC SEL
ADDER SEL
CIN A I M
ADD OR MULT SEL

A
B

MULT RESULT HIGH

RESULT

DIRECTION -
DISTANCE ■

SHIFTER SEL-

log2(nU -
y h DISTANCE

 =C___fe* r-.nrr-rpr,

C reatedjf one or more shifters are present

Shifter
Unit

INPUT
► DIRECTION

NOUT
COUT
VOUT

Zero Detect

RESULT'

► NOUT
► co irr
► VOUT

► MULT RESULT HIGH

ZOUT

► RESULT

l _ _______ | ALU OR SHIFT SEL

Figure B.4: Function Unit Block Diagram

shift operations on data stored in the general-purpose registers. A logic block diagram

for the Function Unit is given in Figure B.4. The Function Unit consists of the

ALU, the Shifter Unit and a Zero Detect circuit. The ALU performs arithmetic and

logical operations on integer data, and can be configured with or without hardware

multiplication using the Include Multiplier parameter. In addition, the ALU’s adder

can be implemented using a either a ripple-carry or a carry-lookahead structure by

setting the value of the ALU Adder Implementation parameter.

The Shifter Unit can be configured to optionally handle the arithmetic shift, logical

shift and rotation operations. The Arithmetic Shifter Implementation, Logical Shifter

Implementation and Rotator Implementation parameters control which shifters are

included in the Shifter Unit, and whether their implementations will be “basic” or

“barrel” .

B.3.2 Control Unit

The Control U n it d e te r m in e s w h ich o p e r a tio n s th e D a ta p a th will p erform by fe tch in g

instructions from the Instruction Memory and decoding them. The block diagram

of the Control Unit is shown in Figure B.5. There are two configurable features on

the Control Unit. First, the IR, PC Minus 1, PC Minus 2, D O F/EX and EX/W B

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

pipeline registers are added to the unit when the value of the Pipelined param eter is

set to “true” . Second the implementation of the Adder can be set to either a ripple-

carry or carry-lookahead structure by configuring the Branch Adder Implementation

Parameter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B. DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

DATA IN

PC
DATA OUT

Branch Resolve
BRANCH ADDRESS

REG A ADDRESS
i/V PC OUT

BS
PS

INCREMENTED PC ZIN

■ From AddenSUM

■ From Instruction D ecoder (DOF/EX):BS
• From Instruction D ecoder (DOF/EX):PS

INSTR „
ADDRESS <4-

OUT
INPUT

Incrementer
OUTPUT

INSTRUCTION-

C reated if (
Pipelined « tru e i

V .U II3 I

□ l. S
PC Minus l i

PC MINUS ^ lOUT^
TRAP- 4 -

C reated if i
Pipelined - t r u e 1 IR

1

C o n stan t
Bus Int

i“l11

i

Constant Unit
►CONSTANT OUT

TRAP
MEM OPCODE
REG WRITE
D ADDRESS
MD
BS
PS
MEM WRITE
ARITH OR LOGIC SEL
LOGIC SEL
ALU OR SHIFT SEL

INSTRUCTION

Instruction Decoder

A ADDRESS
B ADDRESS

MA
MB
CS

SHIFT DIST
SHIFT DIR

SHIFTER SEL
ADDER SEL

CIN
ADD OR MULT SEL

JL t *
Pipe,in“ ef:PC_Minus_2: DOF/EX

J . x Jr.

Adder
COUT

To Branch Resolve:
BRANCH ADDRESS

Q- l:
l Created If

Pipelined -

-► To Branch Resolve:PS
■^•To Branch Resolve:BS

. j .
c re a te d if | r v A A / R

Pipelined = tru e ^ c a / v v o

"1“ u

-► A ADDRESS
-► B ADDRESS

-*■ SHIFT DIST
-► SHIFT DIR
-► SHIFTER SEL
-►ADDER SEL
-►CIN
-► ADD OR MULT SEL
-►ALU OR SHIFT SEL
-►LOGIC SEL
-►ARITH OR LOGIC SEL
-► MEM WRITE

-► MEM OPCODE

-►MD
-► D ADDRESS
-► REG WRITE

Figure B.5: Control Unit Block Diagram

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ppendix C

Synthesis Results for the RISC

Processor Template

C .l Param eter Sw eep R esu lts

Table C .l: Param eter Sweep D ata

Config. Pi P2 P 3 P 4 P 5 P 6 P 7 P8 P 9 P l O Pn elk (ns) Eq. LEs

0 1 1 1 1 1 1 1 1 1 1 1 2 1 .2 234.5

1 2 1 1 1 1 1 1 1 1 1 1 18.1 236.5

2 1 2 1 1 1 1 1 1 1 1 1 21.3 244.5

3 1 3 1 1 1 1 1 1 1 1 1 2 1 .6 295.5

4 1 1 2 1 1 1 1 1 1 1 1 2 0 .6 235.5

5 1 1 1 2 1 1 1 1 1 1 1 2 2 .1 234.5

Continued on next page . . .

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

Table C .l - continued from previous page

Config. P i P 2 P3 P4 P5 P e P7 P& P9 PlO Pll elk (ns) Eq. LEs

6 1 1 1 3 1 1 1 1 1 1 19.4 261.8

7 1 1 1 4 1 1 1 1 1 1 1 2 0 .8 261.8

8 1 1 1 5 1 1 1 1 1 1 1 19.7 261.8

9 1 1 1 6 1 1 1 1 1 1 1 19.2 311.6

1 0 1 1 1 7 1 1 1 1 1 1 1 21.3 408.2

1 1 1 1 1 8 1 1 1 1 1 1 1 19.7 601.4

1 2 1 1 1 9 1 1 1 1 1 1 1 2 0 .1 1770.3

13 1 1 1 1 0 1 1 1 1 1 1 1 19.6 1771.3

14 1 1 1 11 1 1 1 1 1 1 1 19.2 1772.3

15 1 1 1 2 1 1 1 1 1 1 24.8 338.5

16 1 1 1 1 3 1 1 1 1 1 1 33.0 552.8

17 1 1 1 1 4 1 1 1 1 1 1 50.8 977.6

18 1 1 1 1 1 1 1 1 1 1 23.6 268.87

19 1 1 1 1 1 1 2 1 1 1 1 2 0 .6 260

2 0 1 1 1 1 1 1 3 1 1 1 1 20.4 323.5

2 1 1 1 1 1 1 1 4 1 1 1 1 20.4 288.3

2 2 1 1 1 1 1 1 5 1 1 1 1 18.2 361.6

23 1 1 1 1 1 1 6 1 1 1 1 2 1 .1 495.3

24 1 1 1 1 1 1 7 1 1 1 1 20.3 737.3

25 1 1 1 1 1 1 8 1 1 1 1 2 2 .6 1218.3

26 1 1 1 1 1 1 9 1 1 1 1 25.8 2268.1

27 1 1 1 1 1 1 1 0 1 1 1 1 21.5 4282.7

28 1 1 1 1 1 1 11 1 1 1 1 26.2 8399.9

Continued on next page . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

Table C .l - continued from previous page

Config. Pi P i Pz P i Ps P6 P7 Pz P9 Pio Pn elk (ns) Eq. LEs

29 1 1 1 1 1 1 1 2 1 1 1 2 2 .0 253.5

30 1 1 1 1 1 1 1 3 1 1 1 18.4 290.5

31 1 1 1 1 1 1 1 1 2 1 1 23.2 286.5

32 1 1 1 1 1 1 1 1 3 1 1 25.4 397.5

33 1 1 1 1 1 1 1 1 4 1 1 23.1 589.5

34 1 1 1 1 1 1 1 1 5 1 1 26.1 986.5

35 1 1 1 1 1 1 1 1 6 1 1 27.9 1805.5

36 1 1 1 1 1 1 1 1 7 1 1 28.7 3456

37 1 1 1 1 1 1 1 1 8 1 1 39.5 6638

38 1 1 1 1 1 1 1 1 1 1 9.5 249.3

39 1 1 1 1 1 1 1 1 1 1 2 18.6 244.5

40 1 1 1 1 1 1 1 1 1 1 3 20.7 292.5

41 1 1 1 2 1 1 1 1 1 1 23.3 336.5

42 1 2 1 1 2 1 1 1 1 1 1 25.0 352.5

43 1 3 1 1 2 1 1 1 1 1 1 23.8 477.5

44 1 1 1 2 1 1 1 1 1 1 25.2 339.5

45 1 1 1 2 2 1 1 1 1 1 1 24.3 366.8

46 1 1 1 3 2 1 1 1 1 1 1 25.0 366.8

47 1 1 1 4 2 1 1 1 1 1 1 23.1 366.8

48 1 1 1 5 2 1 1 1 1 1 1 24.6 414.6

49 1 1 1 6 2 1 1 1 1 1 1 24.0 510.2

50 1 1 1 7 2 1 1 1 1 1 1 24.2 701.4

51 1 1 1 8 2 1 1 1 1 1 1 27.8 1083.8

Continued on next page . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

Table C .l - continued from previous page

Config. Pi P2 P'S P i P5 Pf> Pi P8 P9 Pio P n elk (ns) Eq. LEs

52 1 1 1 9 2 1 1 1 1 1 1 24.1 1869.3

53 1 1 1 10 2 1 1 1 1 1 1 2 2 .8 1869.3

54 1 1 1 11 2 1 1 1 1 1 1 24.3 1869.3

55 1 1 1 1 2 1 1 1 1 1 28.9 407.24

56 1 1 1 1 2 1 2 1 1 1 1 2 2 .8 360

57 1 1 1 1 2 1 3 1 1 1 1 24.4 423.5

58 1 1 1 1 2 1 4 1 1 1 1 24.0 414.8

59 1 1 1 1 2 1 5 1 1 1 1 25.1 506.6

60 1 1 1 1 2 1 6 1 1 1 1 24.2 596.3

61 1 1 1 1 2 1 7 1 1 1 1 25.1 8 8 6 .1

62 1 1 1 1 2 1 8 1 1 1 1 27.1 1416.9

63 1 1 1 1 2 1 9 1 1 1 1 34.3 2554.3

64 1 1 1 1 2 1 10 1 1 1 1 30.1 4782.1

65 1 1 1 1 2 1 11 1 1 1 1 - -

6 6 1 1 1 2 1 1 2 1 1 1 24.1 360.5

67 1 1 1 1 2 1 1 3 1 1 1 27.8 474.5

6 8 1 1 1 1 2 1 1 1 2 1 1 25.0 430.5

69 1 1 1 1 2 1 1 1 3 1 1 26.1 634.5

70 1 1 1 1 2 1 1 1 4 1 1 28.8 997.5

71 1 1 1 1 2 1 1 1 5 1 1 30.9 1780.5

72 1 1 1 1 2 1 1 1 6 1 1 34.1 3320

73 1 1 1 1 2 1 1 1 7 1 1 41.3 6459

74 1 1 1 1 2 1 1 1 8 1 1 51.5 12837

Continued on next page . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

Table C .l - continued from previous page

Config. Pi P2 Pz P i Ps P6 P7 P8 P9 PlO P n elk (ns) Eq. LEs

75 1 1 1 1 2 1 1 1 1 2 1 13.3 347.3

76 1 1 1 2 1 1 1 1 1 2 27.5 348.5

77 1 1 1 1 2 1 1 1 1 1 3 25.0 480.5

78 1 1 1 3 1 1 1 1 1 1 31.1 553.8

79 1 2 1 1 3 1 1 1 1 1 1 33.4 574.8

80 1 3 1 1 3 1 1 1 1 1 1 36.6 877.8

81 1 1 1 3 1 1 1 1 1 1 34.1 553.8

82 1 1 1 2 3 1 1 1 1 1 1 31.6 552.8

83 1 1 1 3 3 1 1 1 1 1 1 30.0 552.8

84 1 1 1 4 3 1 1 1 1 1 1 30.0 600.6

85 1 1 1 5 3 1 1 1 1 1 1 30.2 696.2

8 6 1 1 1 6 3 1 1 1 1 1 1 30.5 887.4

87 1 1 1 7 3 1 1 1 1 1 1 32.4 1269.8

8 8 1 1 1 8 3 1 1 1 1 1 1 32.7 2034.6

89 1 1 1 9 3 1 1 1 1 1 1 33.6 2055.3

90 1 1 1 1 0 3 1 1 1 1 1 1 30.7 2055.3

91 1 1 1 1 1 3 1 1 1 1 1 1 30.1 3605.6

92 1 1 1 1 3 1 1 1 1 1 35.2 788.76

93 1 1 1 1 3 1 2 1 1 1 1 35.7 574.3

94 1 1 1 1 3 1 3 1 1 1 1 34.6 638.8

95 1 1 1 1 3 1 4 1 1 1 1 34.0 628.1

96 1 1 1 1 3 1 5 1 1 1 1 34.2 718.9

97 1 1 1 1 3 1 6 1 1 1 1 36.1 811.6

Continued on next page . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

Table C .l - continued from previous page

Config. Pi P2 P3 Pi P5 P6 P7 P 8 P9 P io P n elk (ns) Eq. LEs

98 1 1 1 1 3 1 7 1 1 1 1 32.5 1101.4

99 1 1 1 1 3 1 8 1 1 1 1 34.4 1629.2

1 0 0 1 1 1 1 3 1 9 1 1 1 1 42.2 2770.6

1 0 1 1 1 1 1 3 1 1 0 1 1 1 1 39.9 4995.4

1 0 2 1 1 1 1 3 1 11 1 1 1 1 - -

103 1 1 1 1 3 1 1 2 1 1 1 33.8 574.8

104 1 1 1 1 3 1 1 3 1 1 1 32.8 874.8

105 1 1 1 1 3 1 1 1 2 1 1 40.1 728.8

106 1 1 1 3 1 1 1 3 1 1 39.0 1 1 1 0 .8

107 1 1 1 1 3 1 1 1 4 1 1 37.1 1804.8

108 1 1 1 1 3 1 1 1 5 1 1 44.9 3324.8

109 1 1 1 1 3 1 1 1 6 1 1 45.2 6350.3

1 1 0 1 1 1 1 3 1 1 1 7 1 1 50.0 12502.3

1 1 1 1 1 1 1 3 1 1 1 8 1 1 - -

1 1 2 1 1 1 1 3 1 1 1 1 1 2 0 .8 555.6

113 1 1 1 1 3 1 1 1 1 1 2 33.9 574.8

114 1 1 1 1 3 1 1 1 1 1 3 32.0 907.8

115 1 1 1 4 1 1 1 1 1 1 48.6 977.6

116 1 2 1 1 4 1 1 1 1 1 1 52.2 1 0 2 0 .6

117 1 3 1 1 4 1 1 1 1 1 1 51.3 1735.6

118 1 1 1 4 1 1 1 1 1 1 49.1 978.6

119 1 1 1 2 4 1 1 1 1 1 1 53.1 979.6

1 2 0 1 1 1 3 4 1 1 1 1 1 1 47.0 979.6

Continued on next page . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

Table C .l - continued from previous page

Config. Pi P2 P3 P a P5 P6 Pi Ps P9 Pio Pn elk (ns) Eq. LEs

1 2 1 1 1 1 4 4 1 1 1 1 1 1 51.3 1075.2

1 2 2 1 1 1 5 4 1 1 1 1 1 1 50.7 1239.1

123 1 1 1 6 4 1 1 1 1 1 1 51.4 1648.8

124 1 1 1 7 4 1 1 1 1 1 1 45.6 2413.6

125 1 1 1 8 4 1 1 1 1 1 1 52.9 2435.3

126 1 1 1 9 4 1 1 1 1 1 1 50.5 2434.3

127 1 1 1 1 0 4 1 1 1 1 1 1 50.0 3984.6

128 1 1 1 11 4 1 1 1 1 1 1 50.7 7085.2

129 1 1 1 1 4 1 1 1 1 1 62.8 2036.44

130 1 1 1 1 4 1 2 1 1 1 1 56.4 997.1

131 1 1 1 1 4 1 3 1 1 1 1 52.4 1066.6

132 1 1 1 1 4 1 4 1 1 1 1 53.3 1052.9

133 1 1 1 1 4 1 5 1 1 1 1 49.8 1142.7

134 1 1 1 1 4 1 6 1 1 1 1 51.7 1234.4

135 1 1 1 1 4 1 7 1 1 1 1 56.9 1525.2

136 1 1 1 1 4 1 8 1 1 1 1 53.9 2054

137 1 1 1 1 4 1 9 1 1 1 1 60.9 3193.4

138 1 1 1 1 4 1 1 0 1 1 1 1 59.8 5421.2

139 1 1 1 1 4 1 11 1 1 1 1 - -
140 1 1 1 1 4 1 1 2 1 1 1 53.6 1019.6

141 1 1 1 1 4 1 1 3 1 1 1 51.0 1722.6

142 1 1 1 1 4 1 1 1 2 1 1 51.8 1312.6
143 1 1 1 1 4 1 1 1 3 1 1 52.4 2065.6

Continued on next page . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

Table C .l - continued from previous page

Config. P i P 2 Pa P i P5 Pa P7 P8 P9 P io Pn elk (ns) Eq. LEs

144 1 1 1 1 4 1 1 1 4 1 1 59.0 3410.6

145 1 1 1 1 4 1 1 1 5 1 1 61.6 6454.6

146 1 1 1 1 4 1 1 1 6 1 1 59.4 12437.1

147 1 1 1 1 4 1 1 1 7 1 1 - -

148 1 1 1 1 4 1 1 1 8 1 1 - -

149 1 1 1 1 4 1 1 1 1 2 1 35.9 967.4

150 1 1 1 1 4 1 1 1 1 1 2 51.4 1018.6

151 1 1 1 1 4 1 1 1 1 1 3 49.7 1815.6

C.2 In itia l and E volved P opu lations

C.2.1 Initial Population

Table C.2: D ata for Initial Population

Config. P i P 2 Ps P i Ps P6 P? Ps P9 Pio Pu elk (ns) Eq. LEs

0 2 3 2 1 1 2 5 3 5 2 2 17.713 1324.07

1 1 3 2 5 2 2 9 2 8 1 3 59.394 16935.34

2 2 3 1 8 3 2 7 2 6 2 1 26.643 9430.76

3 2 1 1 7 4 2 7 1 7 1 1 - -

4 1 3 1 11 4 1 7 1 3 2 3 42.58 9834.2

5 2 2 2 5 2 1 2 3 8 2 3 35.777 12971.9

6 2 1 2 4 3 2 7 1 2 2 3 27.452 1958.96

7 1 3 2 1 0 3 1 4 1 5 2 1 23.509 5281.9

Continued on next page . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

Table C.2 - continued from previous page

Config. P i P 2 P s P i P5 P 6 P7 Ps P9 Pio Pn elk (ns) Eq. LEs

8 1 2 1 1 1 2 1 8 3 7 1 3 40.189 9951.9

9 1 2 1 5 3 1 1 1 1 3 21.539 1125

1 0 1 3 1 3 2 2 9 3 5 1 2 38.381 4952.94

11 2 2 1 4 2 8 2 8 2 - -

1 2 1 3 2 8 2 1 6 2 2 1 1 29.923 1675.4

13 1 2 2 2 4 2 11 3 7 1 2 - -

14 1 2 1 5 2 1 9 1 5 1 3 37.343 4866

15 1 2 1 0 2 2 5 1 2 1 1 28.675 2153.44

16 1 3 1 2 1 2 8 1 2 12.265 1352.67

17 1 1 1 . 6 4 2 11 1 3 1 3 - -

18 1 1 1 7 1 1 2 1 4 1 2 25.283 823.2

19 2 2 6 2 1 4 1 7 1 2 42.068 6825.3

2 0 1 2 1 2 3 2 8 1 4 1 1 44.284 3623.36

2 1 1 2 1 11 2 1 11 1 4 1 3 - -

2 2 1 3 1 3 2 2 8 3 1 2 30.974 2319.74

23 2 2 1 1 3 2 3 1 6 1 22.758 9797.86

24 2 2 1 2 1 1 0 1 8 1 1 33.145 22222.5

25 1 2 1 1 1 1 9 3 7 1 3 38.477 7138.7

26 1 3 2 1 0 3 2 2 3 2 1 3 40.073 3100.76

27 1 1 2 1 0 1 1 3 2 6 2 3 15.794 3481.1

28 1 1 1 5 1 1 6 3 4 2 1 11.624 1076.2

29 2 1 2 1 0 3 2 7 1 5 1 3 49.979 6298.66

30 2 2 2 3 4 2 11 1 2 2 3 - -

Continued on next page . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

Table C.2 - continued from previous page

Config. Pi P2 P3 Pi P5 P6 P7 Ps P9 Pio Pll elk (ns) Eq. LEs

31 1 2 1 8 1 1 9 2 8 1 2 44.489 10996.4

32 1 1 2 4 2 2 1 0 1 4 1 1 34.451 7324.94

33 1 3 1 5 4 1 4 1 7 1 3 - -

34 1 3 2 8 1 1 9 2 7 1 1 36.17 7469.6

35 2 3 2 1 0 3 2 5 2 1 1 3 38.641 2996.36

36 1 3 1 8 4 2 11 1 7 2 1 - -

37 1 2 1 7 2 1 3 3 5 1 1 35.705 2344.2

38 1 1 1 2 4 1 8 3 5 2 3 49.159 9270.6

39 2 2 2 2 1 1 1 3 3 2 1 11.527 487.3

40 2 3 1 1 0 1 2 9 3 7 2 3 18.529 8713.87

41 2 3 1 1 2 2 7 3 1 2 2 16.577 1187.84

42 1 1 1 4 3 2 6 2 5 1 3 42.75 4454.76

43 2 1 1 9 1 1 11 3 1 2 1 11.521 9994.7

44 2 1 1 8 3 1 8 1 8 1 3 - -

45 2 3 1 5 4 2 8 1 1 2 1 45.061 4139.34

46 2 3 2 9 2 1 9 2 4 2 3 16.1 5875.5

47 2 2 1 6 4 1 1 0 2 6 1 2 68.567 20821.4

48 1 2 1 9 4 1 3 1 3 1 2 58.031 3642.1

49 2 1 1 8 2 1 7 2 6 2 2 18 4968

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

C .2.2 Evolved Population

Table C.3: D ata for Evolved Population

Config. Pi P2 P3 Pi P5 P6 P7 Ps, P9 Pio Pn elk (ns) Eq. LEs

0 2 3 2 1 1 2 1 1 1 2 2 12.534 370.67

1 2 3 1 6 3 2 5 2 2 2 3 26.805 1958.76

2 2 3 1 2 1 2 7 3 1 2 2 12.854 877.67

3 1 3 1 3 2 2 8 2 1 2 2 18.359 1716.94

4 2 2 1 9 4 1 8 1 1 2 1 36.655 3608.7

5 1 1 1 9 4 1 2 1 1 2 1 36.902 2428.1

6 2 2 9 1 1 7 2 6 2 2 18.136 4214.7

7 1 1 1 8 2 1 4 2 1 2 2 15.473 1183.4

8 2 1 1 9 2 1 3 1 2 2 1 14.332 1975.1

9 1 2 1 5 3 1 1 1 1 2 3 21.539 1125

1 0 1 3 1 2 1 8 2 1 2 2 12.265 1352.67

11 1 1 1 9 4 1 9 1 1 2 2 39.107 4709.1

1 2 1 1 1 2 2 1 6 2 2 1 1 30.109 799.4

13 2 3 1 2 1 1 1 3 3 2 1 10.647 480.3

14 1 1 1 7 4 1 5 2 2 2 3 35.758 3806

15 2 1 1 7 1 1 7 2 2 1 3 22.421 1098.8

16 1 3 1 2 1 8 2 1 2 2 12.265 1352.67

17 1 1 1 8 2 1 7 2 6 2 2 17.026 4961

18 1 1 1 7 1 1 2 1 4 2 1 11.15 805

19 2 1 1 7 1 1 7 2 2 2 3 9.606 1106.8

2 0 2 3 2 1 1 1 5 2 2 2 1 11.345 491.9

Continued on next page . . .

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

Table C.3 - continued from previous page

Config. P i P2 P3 P a Ps Pe P7 Ps P9 Pio P n elk (ns) Eq. LEs

2 1 2 1 1 7 1 1 2 1 4 2 1 11.483 807

2 2 1 3 2 1 1 1 5 2 2 2 1 11.564 487,9

23 2 3 2 1 1 1 5 3 5 2 2 13.736 1282.7

24 2 2 2 1 2 1 1 0 1 1 2 1 16.212 4823.1

25 2 1 1 8 2 1 2 1 1 2 2 11.731 1 1 2 0 .6

26 2 1 1 7 1 1 2 3 4 2 1 12.719 872

27 1 3 1 3 1 5 2 2 2 1 24.835 1226.2

28 1 1 1 5 1 1 6 3 4 2 1 11.624 1076.2

29 1 1 1 2 1 7 3 4 2 1 15.463 1416.87

30 1 1 1 7 1 1 7 1 2 2 3 9.783 1079.8

31 2 1 1 9 2 1 7 1 2 1 3 29.034 2717.7

32 2 2 1 11 2 1 7 2 2 2 3 13.656 2754.7

33 2 3 1 8 1 1 9 3 5 2 1 13.732 4652.2

34 1 3 8 1 1 9 1 1 2 1 9.66 2702

35 1 1 1 7 1 7 1 2 2 3 12.256 1115.17

36 2 2 1 11 2 1 7 1 2 2 3 13.829 2755.7

37 1 2 1 0 1 1 3 2 6 2 3 16.868 3483.1

38 2 1 1 2 4 1 8 3 5 2 3 43.484 9306.6

39 2 2 2 1 1 1 3 3 2 1 11.527 487.3

40 1 3 1 1 0 1 2 1 1 1 2 2 12.153 1907.47

41 2 3 1 1 2 2 1 1 1 2 2 16.538 612.04

42 2 3 1 2 1 2 1 3 3 2 1 11.136 520.67

43 2 1 1 9 1 1 11 3 1 2 1 11.521 9994.7

Continued on next page . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

Table C.3 - continued from previous page

Config. Pi P2 P3 Pi P 5 P e P7 Ps P 9 Pio Pn elk (ns) Eq. LEs

44 2 1 1 7 1 1 7 1 2 2 3 10.551 1080.8
45 2 3 1 5 4 1 4 1 1 2 2 39.727 2209.7
46 1 1 1 8 2 1 4 3 3 2 1 13.264 1578.4
47 1 1 1 8 2 1 2 1 1 2 2 14.161 1115.6
48 1 1 1 8 2 1 4 1 1 2 2 12.362 1175.4
49 2 1 1 3 2 1 7 2 6 2 1 17.188 4250

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R eferences

[1] Code::Blocks IDE - Open source, cross-platform free C + + IDE. h t tp :/ /
www.codeblocks.org/, January 2007.

[2] OpenRISC 1200. http://w w w .opencores.org/projects.cgi/w cb/orlk/
openrisc_1200, January 2007.

[3] Altera Corporation. Avalon Bus Specification Reference Manual. Version 2.3,
July 2003.

[4] Altera Corporation. Nios Development Board Reference Manual Stratix Profes­
sional Edition, July 2003.

[5] Altera Corporation. Nios Embedded Processor 32-bit Progmmmcr's Reference
Manual Version 3.1, January 2003.

[6] Altera Corporation. Nios Embedded Processor 16-bit Progmmmcr's Reference
Manual Version 3.1, January 2004.

[7] Altera Corporation. Quartus I I Version 5.0 Handbook. V ision 5.0.0. May 2005.

[8] Altera Corporation. Stratix Device Handbook, July 2005.

[9] I. D. L. Anderson and M. A. S. Khalid. Design space exploration using param ­
eterized cores: A case study. In Proc. of the Canadian Conference on Electrical
and Computer Engineering (CCECE), Ottawa, Ontario. Canada, May 2006.

[10] G. Ascia, V. Catania, and M. Palesi. A GA-based design space exploration
framework for parameterized system-on-a-chip platforms. IEEE Transactions
on Evolutionary Computation, 8(4):329-345, August 2004.

[1 1] C. G. Bell and A. Newell. Computer Structures: Readings and Examples.
McGraw-Hill, New York, New York, USA, 1971.

[12] Visual C + + Developer Center, http://m sdn.m icrosoft.com /visualc/, January
2007.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.codeblocks.org/
http://www.opencores.org/projects.cgi/wcb/orlk/
http://msdn.microsoft.com/visualc/

REFERENCES

[13] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd. Surviv­
ing the SOC Revolution: A Guide to Platform-Based Design. Kluwer, Norwell,
Massachusetts, USA, 1999.

[14] C. A. C. Coello. A comprehensive survey of evolutionary-based multiobjective
optimization techniques. Knowledge and Information Systems, 1(3): 129-156,
August 1999.

[15] XPRES Compiler. http://ww w .tensilica.com /products/xpres.htm , January
2007.

[16] IBM Microelectronics PowerPC 405 Embedded Cores, http://www-306.ibm.com
/ chips / techlib / techlib. nsf/ product s/Power P C -405 -Embedded-Cores, J anuary
2007.

[17] Altera Corporation. Nios 3.0 CPU datasheet, version 2 .2 . http://www .altera.com
/literature/ds/ds_nios_cpu.pdf, October 2004.

[18] Altera Corporation. Quartus II software, h ttp://w w w .altera.com /products/
software/products/quartus2/qts-index.htm l, January 2007.

[19] Altera Corporation. SOPC builder, http://w w w .altera.com /products/softw are/
products/sopc/sop-index.html, January 2007.

[20] Altera Corporation. VHDL: Carry look-ahead adder, http://w w w .altera.com /
support/examples/vhdl/v_cl_addr.html, January 2007.

[21] Microsoft Corporation. Visual Basic 6.0 resource center. h ttp ://m sdn2 .
microsoft.com/en-us/vbrun/default.aspx, January 2007.

[22] Altera Devices, http://w w w .altera.com /products/devices/dev-index.jsp, Jan­
uary 2007.

[23] R. Ernst. Codesign of embedded systems: Status and trends. IEEE Design &
Test o f Computers, pages 45-54, April-June 1998.

[24] R. Ernst, J. Henkel, and T. Benner. Hardware-software cosynthesis for micro­
controllers. IEEE Design & Test o f Computers, pages 64-75, December 1993.

[25] M. F ang, M. Jarv in , a n d L. L in g , h t t p : / /w w w .e e c g .t o r o n t o .e d u /~ a l in g /e c e l7 1 8 /
project/Main/W elcome.shtml, January 2007.

[26] C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in
multiobjective optimization. Evolutionary Computation, 3(1):1—16, Spring 1995.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.tensilica.com/products/xpres.htm
http://www-306.ibm.com
http://www.altera.com
http://www.altera.com/products/
http://www.altera.com/products/software/
http://www.altera.com/
http://msdn2
http://www.altera.com/products/devices/dev-index.jsp
http://www.eecg.toronto.edu/~aling/ecel718/

REFERENCES

[27] D. W. Franke and M. K. Purvis. Hardware/software codesign: A perspective.
In Proc. o f the 13th International Conference on Software Engineering, pages
344-352, Austin, Texas, USA, May 13-16, 1991.

[28] T. Givargis, J. Henkel, and F. Vahid. Interface and cache power exploration
for core-based embedded system design. In Proc. o f the 1999 IE E E /A C M In ­
ternational Conference on Computer-Aided Design, pages 270-273, San Jose,
California, USA, November 1999.

[29] T. Givargis and F. Vahid. Parameterized system design. In Proc. o f the 8th Inter­
national Workshop on Hardware/Software Codesign (CO DES’OO), pages 98-102,
San Diego, California, USA, May 3-5, 2000.

[30] T. Givargis and F. Vahid. Platune: A tuning framework for system-on-a-chip
platforms. IEEE Transactions on Computed Aided Design of Integrated Circuits
and Systems, 21(11): 1317—1327, September 2002.

[31] T. Givargis, F. Vahid, and J. Henkel. System-level exploration for pareto-optimal
configurations in parameterized system-on-a-chip. IE E E Transactions on Very
Large Scale Integration (VLSI) Systems, 10(4):416-422, August 2002.

[32] M. Gries. Methods for evaluating and covering the design space early in design
development. RFC UCB/ERL M 03/32, Electronics Research Lab, University of
California at Berkeley, August 2003.

[33] R. K. G upta and G. De Micheli. Hardware-software cosynthesis for digital sys­
tems. IEEE Design & Test of Computers, pages 29-41, September 1993.

[34] R. K. Gupta and Y. Zorian. Introducing core-based system design. IEEE Design
& Test of Computers, 14(4):15-25, October-December 1997.

[35] J. L. Hennessy, N. P. Jouppi, J. Gill, F. Baskett, A. Strong, T. R. Gross,
C. Rowen, and J. Leonard. The MIPS machine. In COMPCON, pages 2-7,
1982.

[36] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach, Fourth Edition. Morgan Kaufmann, San Fransisco, California, USA,
September 2006.

[37] J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michi­
gan Press, Ann Arbor, Michigan, USA, 1975.

[38] MinGW Home, http://w w w .m ingw .org/, January 2007.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mingw.org/

REFERENCES

[39] Synopsys Incorporated. Synopsys products: RTL synthesis, h t tp : / /
www.synopsys.com/products/logic/design_compiler.html, January 2007.

[40] Xilinx Incorporated, http://w w w .xilinx.com /, January 2007.

[41] Xilinx Incorporated. Xilinx logic design: (XST). http://ww w .xilinx.com /
products/ design_tools/logic_design/ synthesis/xst .htm, January 2007.

[42] EECS Instructional and k Electronics Groups Homepage at University of Cali­
fornia Berkeley. http://inst.eecs.berkeley.edu/, January 2007.

[43] International Electrotechnical Commission (IEC) International Standardization
Organization (ISO). International standard: Programming languages - C + + ,
ISO/IEC 14882:1998, 1998.

[44] M. Itoh, S. Higaki, J. Sato, A. Shiomi, Y. Takeuchi, A. Kitajima, and M. Imai.
PEAS-III: An ASIP design environment. In Proc. of the 12000 International
Conference on Computer Design, 2000, pages 430-436, Austin, Texas, USA,
September 2000.

[45] A. A. Jerraya. Long term trends for embedded system design. In Proc. EUROMI-
CRO Systems Digital System Design (DSD ’Of), pages 20-26, Rennes, France,
August 31-September 3, 2004.

[46] P. K. Jha and N. D. D utt. Rapid estimation for parameterized components in
high-level synthesis. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, l(3):296-303, September 1993.

[47] T. C. Lethbridge and R. Laganiere. Object-Oriented Software Engineering. Mc-
Graw Hill, Glasgow, Scotland, 2001.

[48] M. M. Mano and C. R. Kime. Logic and Computer Design Fundamentals 2nd
Edition Updated. Prentice Hall, Upper Saddle River, New Jersey, USA, 2001.

[49] G. Martin and J.-Y. Brunei. Platform-based co-design and co-development: Ex­
perience, methodology and trends. In Proc. o f the 9th IE E E /D A TC Electronic
Design Processes Workshop, April 2002.

[50] M. C. McFarland, A. C. Parker, and R. Camposano. The high-level synthesis of
digital systems. 78(2):301-318, February 1990.

[51] Altera Megafunctions, h ttp ://w w w .altera.com /products/ip/altera/m ega.htm l,
January 2007.

[52] G. De Micheli and R. K. Gupta. Hardware/software co-design. Proc. o f the
IEEE, 85(3):349-365, March 1997.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.synopsys.com/products/logic/design_compiler.html
http://www.xilinx.com/
http://www.xilinx.com/
http://inst.eecs.berkeley.edu/
http://www.altera.com/products/ip/altera/mega.html

REFERENCES

[53] P. Mishra and N. Dutt. Architecture description languages for programmable em­
bedded systems. IEE Proceedings Computers & Digital Techniques, 152(3):285-
297, May 2005.

[54] Institute of Electrical and Electronics Engineers. IEEE standard VHDL language
reference manual, ANSI/IEEE Std 1076-1993, 1993.

[55] Institute of Electrical and Electronics Engineers. IEEE standard for Verilog
hardware description language, IEEE 1364-2005, 2006.

[56] Opencores.org. http://w w w .opencores.org/, January 2007.

[57] Xilinx Virtex-4 Overview, http://www.xilinx.com/products/silicon_solutions/
fpgas/virtex/virtex4/overview/index.htm, January 2007.

[58] Xtensa Configurable Processors Overview, http://w w w .tensilica.com /products/
xtensa_overview.htm, January 2007.

[59] M. Palesi and M. Givargis. Multi-objective design space exploration using genetic
algorithms. In Proc. o f the Tenth International Symposium on Hardware/Soft­
ware Codesign, 2002 (CODES 2002), pages 67-72, Estes Park, Colorado, USA,
May 6 - 8 , 2002.

[60] C. J. Petrie, T. A. Webster, and M. R. Cutkosky. Using pareto-optimality to
coordinate distributed agents. http://w w w -cdr.stanford.edu/N extLink/papers/
pareto/pareto.htm l, January 2007.

[61] P. Pop, P. Eles, and Z. Peng. Analysis and Synthesis o f Distributed Real-Time
Embedded Systems. Kluwer Academic Publishers, Boston / Dordrecht / London,
2004.

[62] XiRisc Homepage Qrisc. http ://x irisc.deis.unibo.it/, January 2007.

[63] Gaisler Research, http://w w w .gaisler.com /, January 2007.

[64] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P. P.
Pande, C. Grecu, and A. Ivanov. System-on-chip: Reuse and integration. Proc.
of the IEEE, 94(6):1050-1069, June 2006.

[65] O. Tanir, V. K. Agarwal, and P. C. P. Bhatt. A specification-driven architectural
design environment. Computer, 28(6) :26—35, June 1995.

[6 6] H. Tomiyama, A. Halambi, P. Grun, N. D utt, and A. Nicolau. Architecture
description languages for systems-on-chip design. In Proc. of the Sixth Asia
Pacific Conference on Chip Design Language, pages 109-116, Fukuoka, Japan,
October 1999.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.opencores.org/
http://www.xilinx.com/products/silicon_solutions/
http://www.tensilica.com/products/
http://www-cdr.stanford.edu/NextLink/papers/
http://xirisc.deis.unibo.it/
http://www.gaisler.com/

REFERENCES

[67] J. G. Tong, I. D. L. Anderson, and M. A. S. Khalid. Soft-core processors for
embedded systems. In Proc. o f the 18th International Conference on Microelec­
tronics (ICM), Dhahran, Saudi Arabia, December 2006.

[6 8] Object Management Group UML. http://w w w .um l.org/, January 2007.

[69] C. L. Valenzuela. A simple evolutionary algorithm for multi-objective optimiza­
tion (SEAMO). In Proc. of the 2002 Congress on Evolutionary Computation
(C EC ’02), volume 1, pages 717-722, Honolulu, Hawaii, USA, May 12-17 2002.

[70] Altera Corporation Website, h ttp ://w w w .altera.com /, January 2007.

[71] Nios II Website, http://w w w .altera.com /products/ip/processors/nios2/
ni2-index.html, January 2007.

[72] Tel Developer Xchange. h ttp ://w w w .tc l.tk /, January 2007.

[73] Xilinx Incorporated. Micro Blaze Processor Reference Guide, UG081 (v6.0), June
2006.

[74] Extensible Markup Language (XML). http://w w w .w 3.org/X M L/, January 2007.

[75] P. Yiannacouras. The microarchitecture of FPGA-based soft processors. M aster’s
thesis, University of Toronto, Toronto, Ontario, Canada, 2005.

[76] P. Yiannacouras, J. Rose, and J. G. Steffan. The microarchitecture of FPGA-
based soft processors. In Proc. of the 2005 International Conference on Com­
pilers, Architectures and Synthesis fo r Embedded Systems (C A SE S’05), pages
202-212, San Francisco, California, USA, September 2005.

[77] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto
evolutionary algorithm. Technical report, Computer Engineering and Communi­
cation Networks Lab, Swiss Federal Institute of Technology (ETH) Zurich Glo-
riastrasse, CH-8092, May 2001.

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.uml.org/
http://www.altera.com/
http://www.altera.com/products/ip/processors/nios2/
http://www.tcl.tk/
http://www.w3.org/XML/

VITA AUCTORIS

Ian D. L. Anderson was born in Winnipeg, Manitoba, Canada on November 27,

1981. He received his B.A.Sc degree in electrical engineering in 2004 from the Uni­

versity of Windsor in Windsor, Ontario, Canada. He is currently a candidate in the

electrical and computer engineering M.A.Sc. program at the University of Windsor.

His research interests include field-programmable technologies and platform-based

design for embedded applications.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A CAD tool for design space exploration of embedded CPU cores for FPGAs.
	Recommended Citation

	tmp.1507664919.pdf.Djd0t

