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Abstract

In this thesis, a genetic algorithm based design space exploration technique using 

parameterized cores is examined. A case study was first conducted to  investigate 

the feasibility of applying a genetic based approach to a parameterized core. Next, 

a computer aided design tool called SCBuild was developed which utilizes the inves­

tigated approach. This tool is capable of applying a genetic algorithm to a core’s 

parameters, and generating hardware description language models of core variants. 

The tool can also compute estimates of a variant’s area and critical path  delay on a 

field programmable gate array. Using this tool, several experiments were conducted 

using a soft-core processor with a large design space. It was concluded from these 

experiments tha t using a genetic algorithm to explore the design space of a parame­

terized core can help a designer make intelligent decisions regarding the assignment 

of values to the parameters of an embedded hardware platform.
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C hapter 1

Introduction

In our modern digital age, devices utilizing embedded systems have become very 

common and enjoy widespread use in our daily lives. Examples of these systems are 

abundant and include cellular phones, digital cameras, appliances, automobiles, air­

planes, and manufacturing systems. All of these rely on embedded electronic systems 

to carry out the task for which they were designed. Essentially, an embedded system 

is an electronic sub-system tha t utilizes computational hardware to  perform a small 

set of tasks tha t are specific to a particular application [45]. They can be logically 

broken down into two major components: the embedded software (sometimes referred 

to as firmware) and the digital hardware, as shown in Figure 1.1 below.

The hardware component usually consists of one or more embedded central pro­

cessing units (CPUs) and their associated application-specific hardware. These com­

ponents communicate with one another and with embedded memory and Input/O ut- 

pu t (I/O ) components over a common bus. The software component is a program 

written and compiled specifically to run on the embedded processors. In contrast

1
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r  —  —  —  —  —  ~  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  —  ~  —  —  —  ~ i

1 Embedded System 1

Memory 
and I/O

Application-specific
hardware

Software running 
on CPU

Embedded CPU

i____________________________________________________________________________ i

Figure 1.1: Block Diagram of an Embedded System

with general-purpose personal computer systems, which are designed to run a vir­

tually infinite variety of different software programs, an embedded processor is only 

required to execute one piece of software continuously. Therefore, the processor can 

be optimized to run th a t piece of software as efficiently as possible; resulting in what 

is known as an Application Specific Instruction-Set Processor (ASIP). Since embed­

ded systems are utilized in an extremely wide array of applications, it is no surprise 

tha t the market for embedded systems today is far larger than th a t of general-purpose 

personal computer systems. Therefore, it is quite clear tha t the field of embedded 

system design is an im portant and substantial area of study.

W ith the continual improvement of integrated circuit (IC) process technology, 

complete embedded systems can be built onto a single chip. This trend has come to 

be known as the “system-on-a-chip” (SoC) paradigm. As a result, ever more complex 

circuits can be designed and implemented on a single IC chip. The widespread use 

and growing complexity of embedded system designs has led to  many im portant

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. INTRODUCTION

innovations, but has also introduced many major design challenges. Most importantly, 

the challenge of developing a complex system within the constraints of a reasonable 

budget and time-frame is a constant consideration for all embedded systems engineers.

When designing an embedded system, there are several major approaches tha t 

have been taken. The traditional approach [27, 23] involves first designing the hard­

ware portion of the embedded system, including the microprocessor and associated 

application-specific circuitry and then writing the software to run on the microproces­

sor after the hardware design phase has been completed. However, it was observed by 

many designers tha t by using this approach they often missed out on many potential 

optimizations tha t could be exploited if the design of the hardware and software por­

tions of the system were considered together. Therefore, a second approach, known 

as the hardware/software co-design approach [52, 33, 24, 23], took shape. In this 

approach, the design of the hardware and software parts of the system are designed 

concurrently, allowing the designer to explore the tradeoffs between hardware and 

software implementations of the various system tasks.

As the complexity of embedded systems designs increased over time, designing 

each and every hardware component of the system from scratch soon became far too 

impractical and expensive for many designers. Therefore, a third approach, known 

as the platform-based design approach [13, 49, 61], emerged. Platform-based design 

entails the the idea of using pre-designed and pre-tested hardware components known 

as intellectual property (IP) cores as a platform  upon which to build complete sys­

tems. This approach heavily emphasizes design reuse. Using IP cores, a designer 

can be confident tha t the building blocks he or she is using in the design will func­

tion as expected. As a result, the designer is subsequently freed from designing the 

components from scratch, which naturally leads to a much shorter design cycle.

Soft-cores are a particular class of hardware IP cores tha t are often used by de­

signers to  build their systems. Essentially soft-cores are hardware components tha t
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1. INTRODUCTION

are described using a hardware description language (HDL). In order to increase the 

reusability of soft IP cores across a wider range of application domains, many of them 

are parameterized, meaning tha t the core’s architecture features a number of config­

urable options or parameters th a t can be set by the engineer at design-time. These 

options are built into the core’s architecture by its creators and allow the designer 

of an embedded system to tailor the core to  closely match the requirements of the 

system’s intended application.

The recent development of field programmable gate arrays (FPGAs) and other 

programmable logic devices (PLDs) has introduced designers to a new type of flexible 

prototyping and implementation medium for embedded systems designs tha t utilize 

soft-core components. FPGAs are programmable IC chips tha t can be configured 

to function like virtually any digital circuit tha t can be conceived, subject to the 

limitations imposed by the logic capacity of the device. Soft-core descriptions of 

hardware components can be translated into a logic circuit which can then be mapped 

directly onto the programmable fabric of an FPGA. This allows a designer to test 

the functionality of a logic circuit in real-time without having to fabricate a custom 

chip. Using FPGAs, different design tradeoffs can be rapidly explored, allowing better 

design decisions to be made and reducing the overall development time of a system.

When designing an embedded system for any application, it is im portant tha t 

designers come up with a hardware platform th a t is well suited for their purposes. If 

this is not done well, the result may be a system tha t is over-designed or sub-optimal 

for the intended application, which would almost certainly incur the unnecessary 

expenditure of additional time and financial resources. Therefore, it is crucial tha t 

a good hardware design be selected early in the design process. This endeavour is 

complicated by the fact tha t there almost always exists a very large set of possible 

hardware designs to choose from. This set of all possible hardware design configura­

tions is known as the design space, and the task of selecting the best design from th a t

4
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1. INTRODUCTION

set is commonly referred to as design space exploration (DSE) [32].

As the complexity of the system being designed increases and the number of 

parameters rises, the design space for tha t system expands. As a result, exploring the 

design space in search of the best system configuration for a given application can be a 

difficult and tedious task. An exhaustive exploration approach [31] is often infeasible, 

therefore many designers rely on past experience to  narrow down the number of 

possible design configurations. Although designer experience is always a very valuable 

asset to any design project, this approach is considered by some to be too ad hoc [32], 

and may sometimes yield sub-optimal designs. Therefore, much research has been 

conducted into automating the process of design space exploration.

This thesis is primarily concerned with the question of how to derive a “good” 

hardware platform for a given embedded system constructed from a set of param­

eterized soft-core components. The emphasis of this research is on the design of 

embedded microprocessors targeted for implementation on FPGAs specifically, since 

FPGAs are a relatively new technology, and as such, microprocessor design targeting 

these devices is not yet well understood. In this work, the results of a preliminary 

investigation into an automated DSE approach involving parameterized cores [9] are 

presented, the design of a software-based Computer Aided Design (CAD) tool tha t 

utilizes this approach is described, and the results obtained from experimentation 

with this CAD tool are discussed.

1.1 T hesis O bjectives

The main goal of this research is to contribute toward the enhancement of the col­

lective understanding of how embedded microprocessor design targeting FPGAs is 

unique in terms of processor architectures, CAD tools, and design techniques and 

methodologies. In order to achieve this goal, an exploration of the design space of 

soft-core processors targeting FPGAs should be conducted. To this end, this research

5
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has several major objectives:

1. Investigate the feasibility of applying an autom ated design space exploration 

algorithm to  a parameterized soft-core with a sizable design space.

2. Develop a software-based “processor builder” CAD tool th a t is capable of ex­

ploring the design space of a parameterized soft-core using an automated DSE 

approach. This tool should also be able to generate HDL descriptions for “vari­

ants” of a core, given a set of param eter values.

3. Perform an exploration of the design space of a parameterized soft-core processor 

using the processor builder tool, use the tool to generate a set of variant cores, 

and evaluate the variants in terms of performance and area utilization on an 

FPGA.

To address the first objective, a preliminary case study was conducted in which an 

automated DSE approach was applied to  the Altera Nios [17] parameterized soft-core 

processor. In this study, the design space of the Nios core was explored using the 

Simple Evolutionary Algorithm for Multi-objective Optimization (SEAMO) [69], a 

genetic algorithm (GA) based approach. For the second thesis objective, a software- 

based CAD tool called SCBuild ( “Soft-Core Build”) was developed which utilizes the 

SEAMO algorithm to explore the design space of a user-supplied parameterized core. 

SCBuild is also capable of estimating a core’s area utilization and performance on 

an FPGA, and can generate structural Very High Speed Integrated Circuit Hard­

ware Description Language (VHDL) [54] descriptions of a core given a specific set 

of param eter values and a library of soft-core building-block components. Finally, 

to satisfy the third objective, several design space exploration experiments were con­

ducted using SCBuild and a simple parameterized Reduced Instruction Set Computer 

(RISC) soft-core microprocessor [48].

6
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1.2 T hesis O rganization

The outline of this thesis is as follows. Chapter 2 introduces the reader to the greater 

context of this research by providing the relevant background information and a 

summary of some of the previous work tha t has been done by other researchers in 

this area of study. Chapter 3 discusses a preliminary case study involving the design 

space exploration of the Altera Nios soft-core processor using the SEAMO algorithm, 

which was carried out in order to lead directly into the core1 of this research. In 

Chapter 4, the design and implementation of SCBuild are discussed in detail. Chapter 

5 presents the results obtained through experimentation using SCBuild and a simple 

parameterized RISC processor. Finally, Chapter 6 concludes this thesis and discusses 

possible future work in this area.
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C hapter 2

Background and Previous Work

In this chapter the background material th a t is relevant to this research is presented, 

followed by a brief summary of previous work tha t has been done in this area. This 

chapter begins with a discussion of the different classes of intellectual property cores 

th a t exist a t the various levels of abstraction. Then the parameterization of IP cores 

is defined, followed by a discussion of several prominent examples of parameterized 

soft-core processors from the industrial and open-source communities. Next, the 

basic concepts of FPGA technology are briefly explained, followed by an introduction 

to design space exploration and multi-objective optimization. Finally, this chapter 

concludes with a presentation of previous work th a t is closely related to this research.

2.1 In tellectual P rop erty  (IP ) Cores

The definition of the term “intellectual property” is a broad one and covers a wide 

range of products and ideas across numerous fields of research. However, in the

8
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context of this research, the term  refers to reusable hardware or software building 

blocks tha t have been pre-designed and pre-tested prior to deployment in a design 

[64, 34], These building blocks are usually the property of a particular individual or 

organization who licenses designers to use their hardware and software blocks. This 

idea of reuse is certainly not a new one; relying on past knowledge and experience 

has led to virtually all of the great discoveries and advancements over the course of 

history. For example, in the area of software development, programmers and software 

engineers have been collecting useful functions together into libraries for a long time. 

In the context of hardware design for embedded systems, the term  “IP core” refers to 

reusable hardware components tha t are ready to be placed into a design with little or 

no modification made to them. Hardware IP cores can be any of a number of different 

types of digital components, including full microprocessors. These cores can come in 

the form of descriptions of hardware at the various levels of abstraction in the digital 

abstraction hierarchy, as will be discussed in the next section.

2.1.1 The D igital A bstraction Hierarchy

Any digital system can be described a t different levels or layers of abstraction. Bell 

and Newell [11] were some of the first writers to formally discuss the hierarchy of 

abstraction levels in the context of digital system design. This hierarchy also appears 

in updated form in later literature [50, 65, 61]. The hierarchy includes the five major 

levels of abstraction shown in Table 2.1, and each level is characterized by a distinct 

class of languages tha t are used to represent the behaviour and structure of the system. 

Behaviour refers to the way tha t the system or its components interact with their 

environment, while structure refers to the set of interconnected components tha t 

make up the system. A description of the behaviour and structure of the system 

can be made at any one of these abstraction levels, and the process of translating 

a higher-level description to a lower-level description is generally known as synthesis

9
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Table 2.1: The Digital Design Hierarchy [11, 50, 65, 61]

Level Behaviour Structure

System (Architecture) Communicating Processes Processors, Memories

Algorithm (Program) Programming Languages D ata Structures

Register Transfer (RTL) Register Transfers Registers, ALUs, MUXes

Logic (Gate) Boolean Equations Logic gates, Flip-flops

Circuit (Layout) Circuit Equations Interconnected Transistors

[50].

Starting from the highest, the five levels of system abstraction are the System 

level (also known as the Architecture level), the Algorithm (or Program) level, the 

Register Transfer level (RTL), the Logic (Gate) level, and the Circuit (or Layout) 

level.

At the Circuit Level, the system is viewed as a circuit consisting of a collection of 

interconnected transistors and their physical layout on an IC chip. All signals in the 

system a t this level are continuously varying quantities, so the behaviour of the system 

can be described using the fundamental equations of circuit analysis. The system’s 

structure may be described symbolically using a schematic or layout diagram.

At the Logic Level, it is assumed tha t all signals in the system are discrete variables 

tha t can take on one of two values: 1 or 0 (or alternatively, high or low). This 

allows the system to be described in terms of its logical behaviour using Boolean 

equations. The structure of the system is described as a combinational or sequential 

circuit consisting of primitive logic components such as gates and flip-flops and their 

associated set of interconnections.

As its name implies, at the Register Transfer Level the behaviour of the system 

is expressed as a set of data transfers between storage registers. The system per­

forms a set of discrete micro-operations, in which the data  stored in the registers

10
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are manipulated or combined with other data  and then stored in another register. 

Structurally, the system consists of any number of registers and functional units such 

as arithmetic logic units (ALUs) connected together by buses. In general, hardware 

description languages such as VHDL, Verilog [55] and others can be used to describe 

the structure and behaviour of digital hardware components at this level.

When viewed at the Algorithm Level, the system is seen as a collection of data 

structures such as variables stored within a memory block and the instructions tha t 

operate on those variables. Instructions are formed when micro-operations at the 

Register Transfer Level are combined to form complete operations, such as the addi­

tion of two numbers or the transfer of data to and from memory. A collection of these 

instructions form a complete instruction set, which is the base language for describing 

system behaviour a t this level. The instructions are executed sequentially, which is 

unique to  this level, since at all levels below the Algorithm level, the behaviour of the 

system is expressed as a set of events occurring in parallel. W ithin this level, there is 

a sub-hierarchy of languages tha t are used to express the functionality of a program. 

High-level languages such as C /C + +  [43], Visual Basic [21], etc. are translated down 

to assembly language by a compiler, which .is, in turn, translated to machine code by 

an assembler.

Finally, at the System Level, the structure of the system is depicted as a set of 

abstract processing elements interacting with one another and the external environ­

ment. At this level, a designer would be concerned with overall system architecture 

and information flow between the processors, the memory and their interface to the 

surrounding environment (i.e. I/O ).

2.1.2 Classes o f Hardware IP Cores

In general, there are three major classes of hardware IP cores available: hard-cores, 

firm-cores and soft-cores [64, 34]. These different classes represent descriptions of

11
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Figure 2.1: The Three Classes of Hardware IP Cores

hardware components at different levels of abstraction. Hard-cores are Circuit-level 

descriptions of components and are optimized for a particular target IC technology 

and include information regarding the physical layout of the core on a chip. Firm- 

cores are pre-synthesized Logic-level netlist descriptions of digital components tha t 

are ready for technology mapping, placement and routing on a given target IC pro­

cess. Finally, soft-cores are components th a t are described a t the Register Transfer 

Level using a synthesizable subset of a hardware description language. A soft-core 

description of a component can translated into a firm-core using a hardware synthesis 

tool such as Synopsys Design Compiler [39], A ltera’s Quartus II software [18], Xilinx 

Synthesis Technology (XST) [41], or the like. Subsequently, a firm-core description 

can then be translated into a hard-core through the process of technology mapping, 

which maps generic logic primitives such as gates and flip-flops onto particular phys­

ical implementations of those primitives. This process of translating a higher-level

Circuit Level 
Hard-cores
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description to a lower level description is illustrated in Figure 2.1.

This research focuses exclusively on the development of soft-core hardware com­

ponents. Using soft-core components in designs holds a number of distinctive ad­

vantages to the designer. First, soft-cores are flexible and can be customized for a 

specific application with relative ease. Second, they are technology independent in 

tha t they can be synthesized for virtually any desired Application Specific Integrated 

Circuit (ASIC) or FPGA technology. Third, due to their technology independence, 

they are more immune to  becoming obsolete as technology changes when compared 

with Circuit- or Logic-level descriptions of a component. Fourth, since a soft-core’s 

structure and behaviour are described at a higher abstraction level using an HDL, 

it becomes much easier to  understand the overall design of the component. Fifth, 

since they are written using an HDL, designing them often resembles the process of 

software development. Also, as an added benefit, software tools can be created to 

automatically generate the HDL code of a soft-core component. Finally, due to their 

flexibility, they can be easily parameterized, thus greatly enhancing their reusability 

and applicability across a wider range of designs and applications.

2.2 Param eterization: Increasing th e  R eu sab ility  

o f an IP  Core

A parameterized core is a hardware component whose architectural features can be 

varied to a certain extent. A parameter is a particular feature or aspect of the 

component’s architecture th a t can be changed and assigned particular values from a 

finite set by the embedded system designer [76, 29]. Examples of parameters include 

variable bus widths, functional unit implementations, hardware algorithms, memory 

sizes, pipeline depth, etc. Assigning values to all of the parameters of a component 

produces one configuration. Parameterizing a core greatly expands its versatility and

13
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usefulness in a wider range of applications.

There are two different types of parameters: static parameters and dynamic pa­

rameters [29]. Static param eters must be set prior to the fabrication of the chip and 

often take the form of “generic” or statements within a VHDL description [54] of a 

soft-core component, or “param eter” statements in Verilog [55]. In contrast, dynamic 

parameters are those tha t can be set after the chip is fabricated, provided the chip 

has the facilities for supporting various param eter settings. Dynamic param eters are 

especially useful for parameterizing hard and firm-core components. For this research 

only static parameters of soft-core components will be considered.

Many of the parameters of a core often share interdependencies with one an­

other. Assigning a value to one param eter will affect the choice of value assignments 

for other parameters, therefore the value assignments of interdependent parameters 

should be considered simultaneously. These interdependencies can either be soft or 

hard dependencies [29]. Soft interdependencies dictate that the value assignments of 

dependent parameters should be done at the same time in order to achieve optimal 

system performance, power consumption and IC area utilization. On the other hand, 

hard interdependencies require simultaneous param eter assignments if a valid and 

feasible design configuration is to be chosen.

Parameters of a soft-core hardware component are especially valuable to an em­

bedded systems designer, since they give them the flexibility to customize the core 

as they desire in order to better fit the target application without having to manu­

ally rewrite large portions of the core’s underlying HDL source code. Often, if the 

parameters of a core significantly affect its underlying structure, then it may be nec­

essary to use a software-based HDL code generator program to customize the code 

automatically.
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2.3 Soft-core P rocessors

A soft-core can be a description of virtually any digital hardware component, including 

a full microprocessor. For many of the reasons mentioned above, soft-core processors 

are a popular choice for embedded systems designers. Several examples of commercial 

and open-source soft-core processors will be discussed below [67].

2.3.1 Exam ples of Soft-core Processors

Altera Corporation [70] is an industry leader in programmable logic technology, spe­

cializing in FPGAs and other programmable logic devices. They are the makers of 

the Stratix and Cyclone Series of FPGAs [22]. They also provide numerous soft IP 

cores th a t are specifically designed to target their devices. Their flagship IP core is 

the Nios II soft-core processor [71], which is a general-purpose RISC processor th a t is 

optimized for embedded applications. This core consists of three processor variants 

tha t can be selected based on a designer’s specific needs: the Nios l l / i  fast core, 

which is designed for maximum performance, the Nios I l/e  economy core, which is 

the smallest processor core, and the Nios II/s  standard core, which is a tradeoff be­

tween the fast core and the economy core. These cores each feature their own set of 

configurable options, and all of them  provide support for up to 256 custom instruc­

tions and interfacing to peripheral devices using the automatically-generated Avalon 

bus [3]. The Nios II processor is the successor to the original Nios [17], and features 

improvements over the original design th a t are aimed at providing better performance 

and FPGA area utilization. Designers working with the Nios II processor can use the 

Quartus II CAD tool suite [7] with System on a Programmable Chip (SOPC) Builder 

[19] to instantiate one or more processor cores into an embedded system design and 

connect them to other peripheral components, such as timers, universal asynchronous 

receiver/transm itters (UARTs) and memories.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. BACKGROUND AND PREVIOUS W ORK

MicroBlaze [73] is a 32-bit parameterized soft-core RISC processor provided by 

Xilinx Incorporated [40] tha t is targeted for Xilinx FPGAs and optimized for embed­

ded applications. Its fixed features include 32-bit instructions, a 5-stage single-issue 

pipeline, a thirty-two general-purpose registers and a 32-bit address bus for data  and 

instruction memories. The latest version of MicroBlaze (v5.00a a t the time of this 

writing) also includes a large number of parameters, including an optional hardware 

barrel shifter, multiplier, divider, floating point unit (FPU), and others. Memory 

can reside on-chip or as an external peripheral. On-chip memory can be accessed by 

MicroBlaze using a Local Memory Bus (LMB), which provides single-cycle access to 

the memory. Also, the a general purpose interface known as the On-chip Peripheral 

Bus (OPB) can be used to interface MicroBlaze with memories and other peripheral 

components.

In addition to commercially available soft-core processors, there are numerous 

cores available from various open-source communities on the internet. Many of these 

cores can be downloaded, modified, and used in designs free of charge. Opencores.org 

[56] contains a large number of soft-core hardware components th a t have been de­

veloped by people all across the world. A number of open-source microprocessors 

are available, including the OpenRISC 1200 processor [2], which is a 32-bit RISC 

processor with a 5-stage pipeline and basic digital signal processing (DSP) function­

ality. O ther examples of open-source soft-core processors include Qrisc [62], and the 

LEON3 processor by Gaisler Research [63].

2.4 F P G A  T echnology

Field programmable gate arrays are a specific class of programmable logic device 

tha t are designed to be programmed and reprogrammed to act like virtually any 

digital circuit tha t can be conceived, subject to logic capacity limitations. They are 

becoming an increasingly popular choice for embedded systems designers who want a

16
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Figure 2.2: Schematic of a Generic FPGA Logic Element (LE) [42]

medium for prototyping and implementing soft-core hardware components. Soft-cores 

and FPGAs often go hand-in-hand. In fact, it is quite common for companies who 

manufacture FPGAs to also provide their own soft-cores tha t target their devices as 

well, with Altera Corporation [70] and Xilinx Incorporated [40] being the two largest 

and best-known examples.

The design of an FPGA differs between various manufacturers and also between 

different device families. However, in general, an FPGA is an IC chip th a t consists of 

an array of programmable blocks, often referred to as Logic Elements (LEs), which 

are connected to each other by a programmable interconnection network. A basic 

schematic diagram of an idealized LE is depicted in Figure 2.2 [42], Although the 

LEs in the current generation of devices are much more sophisticated, this idealized 

LE does serve to  illustrate the basic idea of how an FPGA works.

At the core of each LE is a block of programmable memory called a Lookup Table 

(LUT). The diagram in Figure 2.3 illustrates the essential functionality of an LUT. 

The LUT consists of an array of 1-bit memories connected to a multiplexed output

p in . I f  th e  L U T  h a s  n in p u ts , th e n  th e  m e m o r y  array w ill h a v e  2 ” b its . T h is  array ca n

be programmed with the tru th  table of any possible n-input Boolean logic function, 

and the n multiplexer (MUX) select inputs decide which of the 2" memory array 

bits appears at the LUT output. For example, to implement the logic function of a

17
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Figure 2.3: Schematic of a Lookup Table (LUT)

4-input “AND” gate, bits 0 to 14 are programmed with 0’s and bit 15 is set to  1. 

Using this memory array, a total of 22" logic functions can be implemented using an 

n-input LUT.

In order to make the creation of sequential logic circuits possible, the output of 

an LUT in a Logic Element is connected to  a flip-flop (FF). Then the registered and 

unregistered outputs of the LE are both made available through a 2-to-l MUX whose 

select line value is determined by the value stored in a second flip-flop, which is set 

by a bit-stream when the FPGA device is configured.

On an FPGA, a large number of LEs are connected together using a network 

of programmable interconnects, also known as “routing” . There are many different 

types of routing architectures available, but they all have one thing in common: 

programmability. As depicted in Figure 2.4 [25], the LEs are grouped together into 

clusters called Logic Blocks (L in the figure) which are surrounded by horizontal and 

vertical wires on all sides, and special I/O  blocks are arranged around the perimeter 

of the FPGA chip. The output of each Logic Block can be programmed to  connect 

to a set of horizontal and vertical wire segments, and each wire segment can be
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Figure 2.4: Generic FPGA Routing Architecture (adapted from [25])

programmed to connect to other wire segments through a Switch Block (S).

By programming both the contents of the Logic Blocks on the FPGA as well as the 

routing connecting the blocks together, a designer can implement a virtually limitless 

number of digital hardware circuits. Using an FPGA as an implementation medium 

offers the distinct advantage of flexibility—if the designer needs to change the circuit 

on the FPGA, it is merely a m atter of reprogramming it. However, this flexibility 

does come with a cost. Circuits th a t are implemented on an FPGA will generally take 

up more chip area, consume more power, and run slower than they would if they were 

implemented using an ASIC technology. Nevertheless, since FPGAs are a relatively 

new technology, research is being conducted th a t aims at closing the performance gap 

between FPGA and ASIC technologies.

The first FPGAs tha t were introduced featured relatively small logic capacities 

and offered only a few basic features. However, as the technology improved, the 

devices were able to hold increasingly larger circuits and began including a number of
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more advanced features. Currently, on top of an ever-increasing number of LEs and 

I/O  pins, the latest cutting-edge devices also feature large amounts of on-chip memory 

and other special-purpose blocks such as dedicated multipliers. In addition to having 

configurable elements, some FPGAs also feature one or more hard-core processors 

built right into the device. For instance, the Xilinx Virtex-4 family of FPGAs [57] 

features two built-in hard-core embedded IBM PowerPC™  405 processors [16], which 

can be used in any number of embedded applications. These new features serve to 

substantially improve the performance, area utilization, and power consumption of 

systems implemented on FPGAs.

The Altera Stratix EP1S40F780C5 FPGA  has been selected as the target device 

used for this research, therefore a brief description of the Stratix architecture [8] is 

necessary. All of the devices in the Stratix family contain six different types of logic 

resources: Logic Array Blocks (LABs), M512, M4K, and M-RAM memory blocks, 

DSP blocks, and I/O  Elements (IOEs). LABs are blocks which consist of 10 LEs 

each and are used to implement user-defined logic functions. The M512 blocks, the 

smallest memory blocks, each contain 512 bits of memory, plus parity bits, and can be 

used to provide single-port or simple dual-port memory operation. The M4K blocks 

are larger than the M512s and feature 4 kilobits of memory each, plus parity. These 

blocks can be used in single-port, simple dual-port or true dual-port mode. The M- 

RAM blocks are significantly larger than both the M512 and M4K blocks, containing 

512 kilobits of memory each (plus parity). Like the M4K blocks, the M-RAM blocks 

can be used in single-port, simple dual-port or true dual-port mode. The DSP blocks 

are special-purpose resources on the device, and can each be used to implement eight 

9 x 9-bit multipliers, four 18 x 18-bit multipliers, or one 36 x 36-bit multiplier. Lastly, 

the IOE elements are connected to the Stratix device pins, and support a number of 

different I/O  standards. All of these resources are arranged in a 2-dimensional row- 

and column-based structure on the Stratix device. The EP1S40F780C5 device, one
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of several in the Stratix family, contains exactly 4,125 LABs (or 41,250 LEs), 384 

M512s, 183 M4Ks, 4 M-RAMs (for a total of 3,423,744 memory bits), 14 DSP blocks 

(for a to tal of 112 9 x 9-bit multipliers, 56 18 x 18-bit multipliers or 14 36 x 36-bit 

multipliers) and 616 I/O  pins [8].

2.5 D esign  Space E xploration  (D SE )

The term  design space in the context of digital embedded systems generally refers to 

the set of all possible system designs; tha t is, the complete collection of all possible 

digital hardware and software configurations tha t will achieve the functionality re­

quired to  perform the system’s intended tasks. When dealing with a complex system 

like those commonly encountered in the area of embedded systems, the design space 

is extremely vast and contains a large number of configurations that are sub-optimal 

for any given application. Therefore, it is essential to the success of any embedded 

systems design project tha t the design space be traversed to determine the system 

design configuration th a t best suits the intended application. This is. in essence, the 

main goal of design space exploration.

2.5.1 M ulti-objective O ptim ization

The problem of DSE is essentially a multi-objective optimization problem in which 

design configurations are chosen so tha t they provide the best balance between a 

set of competing objectives. Most commonly, these objectives include minimizing IC 

chip area, reducing power consumption and maximizing system performance. These 

objectives cannot be optimized independently, since improving one objective will al­

most always mean sacrificing another. Since several competing objectives are being 

optimized at once, there is seldom one single “optimal” design configuration for any 

given multi-objective optimization problem. Instead, there exists a set of configura-
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Figure 2.5: The Concept of Pareto-optimality Illustrated (adapted from [60])

tions known as the Pareto-optimal set tha t is a subset of the complete design space. 

A configuration is said to be Pareto-optimal if you cannot improve one objective 

without sacrificing another. The concept of Pareto-optimality is illustrated with a 

geometric example in Figure 2.5 (adapted from [60]).

Suppose in this hypothetical multi-objective optimization problem [60] th a t the 

goal was to  simultaneously maximize the areas of circles A, B and C within the area 

of the triangle, with the constraint th a t the circles must not overlap or pass the 

boundary of the sides of the triangle. In this case there cannot be just one solution, 

but rather a multitude. The configuration on the left-hand side of the figure is an 

example of a Pareto-optimal solution, because you cannot increase the area of any of 

the circles without decreasing the area of the other two. In contrast, the triangle on 

the right-hand side is a non Pareto-optimal configuration, because the area of circle 

B can be increased without affecting the areas of circles A or C.

Finding the Pareto-optimal set drastically reduces the size of the design space 

by eliminating all sub-optimal configurations, allowing the designer to select a single 

design configuration from the Pareto-optimal set tha t is well-suited to the intended 

application. If one were to plot one objective against another on a graph, the result 

would be something tha t looks similar to the graph shown in Figure 2.6.
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Objective 2

Design Space

Pareto-optim al
front

Objective 1

Figure 2.6: Illustration of a 2-Dimensional Design Space

All of the possible design configurations are located within the Design Space region 

of the graph. Outside of this region, no design configurations can exist. The boundary 

of the Design Space region at the lower left-hand side nearest to the origin of the graph 

is referred to as the Pareto-optimal front. Design configurations tha t lie along this 

boundary line represent the very best configurations of the design space in terms of 

the objectives across which the graph is plotted. It is this set of configurations tha t is 

being sought when Pareto-based design space exploration is performed. Conversely, 

it is clear that there is also a large space of sub-optimal configurations tha t exists 

within the boundaries of the Design Space. Ideally, these configurations can be safely 

eliminated, or “pruned” , from consideration, thus drastically reducing the size of the 

space tha t must be explored.

2.5.2 DSE U sing Param eterized Cores

In the context of platform-based embedded systems design involving parameterized 

cores, the goal of DSE is to prune the design space in search of a suitable combination 

of parameter values for the hardware platform tha t provides a good balance between
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the each of the objectives while satisfying the design constraints imposed by the 

requirements of a particular application. Many approaches for handling this task 

have been proposed.

The simplest and most straightforward approach to design space pruning is to 

exhaustively visit and evaluate each and every combination of parameters in the de­

sign space and remove the worst configurations from consideration. Some research 

has been done on the application of this approach [31, 28]. The obvious drawback to 

this approach is the fact tha t it rapidly becomes infeasible to evaluate every configu­

ration as the design space grows. Therefore, this approach is seldom practical on its 

own, except for very small systems with relatively few parameters, as concluded by 

Givargis et al [28].

Since the exhaustive approach is so often infeasible, there are a multitude of 

approaches tha t have been developed tha t help to automate the process of DSE 

of embedded hardware platforms. A good summary of some of these approaches, 

such as the use of Architectural Description Languages (ADLs), can be found in the 

literature [32, 66, 53]. For this work one particular approach will be examined: the 

use of genetic-based algorithms with parameterized cores, as will be discussed in the 

following sections.

Approaches Based on G enetic Algorithm s

The idea of a genetic algorithm (GA, sometimes referred to an an evolutionary algo­

rithm  or EA) was first proposed by Holland in 1975 [37] and was used primarily in 

the field of artificial intelligence. However, it was later applied in a wider range of 

applications and was found to be very effective in solving multi-objective optimization 

problems, including the problems posed by DSE using parameterized cores. Genetic 

algorithms are a class of optimization problems tha t gain their inspiration from the 

field of biological sciences. There are many variations of the algorithm, but they
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all work by attem pting to emulate the biological process of natural selection, where 

stronger members of a population survive and pass on their genes while the weaker 

members gradually die off. A good overview of genetic and evolutionary algorithms 

for multi-objective optimization can be found in the literature [26, 14].

The genetic algorithm starts with and maintains a set of design configurations 

rather than just a single configuration. This set of configurations is called the popu­

lation and has a fixed size N. Each member of the population represents one unique 

design configuration, and is referred to as a chromosome. Each chromosome in the 

population is made up of a string of symbols tha t represent the system’s parameters. 

A symbol in the chromosome is called a gene.

During an iteration or generation of the algorithm, each chromosome is evaluated 

according to its “fitness” , where fitness is a measure of how well the configuration 

meets the problem objectives. Pairs of chromosomes are selected to become parents 

of offspring through reproduction. During this process, features from both parents are 

combined to form the offspring using the genetic operators: crossover and mutation. 

During crossover, the genes of the parents are combined to  form a new chromosome, 

called the offspring. The mutation operator produces random changes in a single 

chromosome without producing offspring.

A new generation of chromosomes is formed through the production of numerous 

offspring from the set of parents. Since the population has a fixed size, N  chromosomes 

of the total number of parent and offspring chromosomes are selected to survive to 

the next generation; the rest are discarded. The N  surviving chromosomes can either 

be selected randomly from the full set, or selected based on fitness. After several 

generations of the algorithm, the population of configurations should converge toward 

an optimal configuration set.
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2.6 C losely  R elated  W ork

Yiannacouras [75] developed SPREE, the Soft Processor Rapid Exploration Environ­

ment, in order to facilitate the exploration of the design space for soft-core processors 

targeted for implementation on an FPGA. SPREE consists of a hardware Component 

Library and an RTL Generator. The RTL Generator fetches hardware components 

from the library and builds a datapath  according to a special Architectural Descrip­

tion which is given to the RTL Generator as an input. The RTL Generator then 

creates the corresponding control logic, either pipelined or unpipelined, yielding a 

complete soft-core processor. The generated processors were based on the MIPS-I 

[35] instruction set architecture. The SPREE system was used to investigate several 

soft-core processor architectural alternatives including hardware versus software mul­

tiplication, different shifter implementations, varying pipeline depths, as well as some 

other interesting architectural tradeoffs. One major difference between the SPREE 

system and this present work is the exploration methodology. The SPREE system 

uses an exhaustive exploration strategy, in which the user must manually explore 

the various design tradeoffs by developing different architectural descriptions for each 

processor variant. In contrast, this research applies an autom ated approach based on 

a genetic algorithm to explore the design space of a heavily parameterized soft-core 

description.

The Platune system [30] is an environment tha t allows an embedded system de­

signer to tune the parameters of a parameterized hardware platform. The system 

provides a set of simulation and power models for the components of a parameterized 

system consisting of a MIPS R3000 processor [35] with instruction and data  caches, 

on-chip memory, and a set of interconnecting buses. The simulation models are used 

to  compute the execution time of a specific program running on the processor and to 

gather information on the power consumption of the system. Platune also features 

a design space exploration framework tha t uses a param eter interdependency model
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and an exhaustive approach to determine the Pareto-optimal set of configurations. A 

graph of parameter interdependencies is created, and interdependent parameters are 

gathered together into clusters. Then an exhaustive exploration approach is applied 

to each cluster to determine its local Pareto-optimal set. Once each cluster has been 

searched, pairs of clusters are merged together, and the exhaustive search is applied 

to the merged clusters. This process continues until a single cluster remains, and 

the Pareto-optimal set of configurations is determined. In contrast to the Platune 

system, this work features a GA-based approach to search the design space for the 

Pareto-optimal set. Additionally, the Platune system is directed specifically toward 

the use of the MIPS R3000 processor model, which is not designed specifically for 

FPGA implementation. In this research, a general framework for the design space ex­

ploration of any parameterized core has been established, with emphasis on soft-cores 

targeted for implementation on an FPGA.

Palesi and Givargis [59] present an approach to explore the design space of heav­

ily parameterized systems using a genetic algorithm, namely the Strength Pareto 

Evolutionary Algorithm 2 (SPEA2) [77]. The approach combines the param eter de­

pendency clustering and exhaustive search method used by Platune with the genetic- 

based SPEA2 algorithm to reduce the time needed to find the Pareto-optimal set of 

configurations. Their results indicate tha t an approximated Pareto-optimal set tha t 

is within 1% of the actual set can be obtained using the combined approach while 

reducing the amount of simulation time required to determine the set by 80%. Ascia 

et al [10] later use the SPEA2 algorithm directly with the Platune system to search 

for the Pareto-optimal set of configurations. These researchers provide some useful 

conclusions about the use of genetic-based algorithms in platform-based design prob­

lems. However, they do not focus specifically on the exploration of the design space 

of soft IP cores targeted for FPGAs.

The PEAS-III system by M. Itoh et al [44] is a System-level design environment
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tha t enables designers to quickly explore the design space of pipelined embedded 

processors. The system is based on the micro-operation description of instructions, 

which allows designers to concentrate on the design of a processor’s instruction set. 

A pipelined processor is built from a series of pipeline stage models. Each stage 

model represents a single stage in the pipeline and consists of pipeline resources such 

as ALUs and other functional units, inter-stage pipeline registers, a stage controller 

and the interconnections between them. The PEAS-III system creates a datapath  

and associated control logic by cascading the stage models in series. Two VHDL 

descriptions of the processor are generated by the system: a non-svnthesizable model 

used purely for simulation and a version intended for synthesis. In order to evaluate 

the effectiveness of PEAS-III, several processors were built using the' system, including 

a MIPS R3000 processor, a DLX processor [36], and a simple RISC controller. The 

PEAS-III system does not utilize any form of automated design space exploration, 

thus distinguishing it from this present research.

2.7 Sum m ary

The relevant background material and related previous work was presented in this 

chapter. First, Intellectual Property cores, and specifically soft IP cores, were' intro­

duced. Next, the parameterization of IP cores was discussed, followed by a presenta­

tion of some examples of soft-core processors tha t are available' fremi industrial vendors 

and open-source communities. Then the basic concepts of Field Programmable Gate 

Array technology were introduced, summing up with a discussiem of the architecture 

of the Altera Stratix FPGA. The ideas of design space exploration and multi-objective 

optimization were presented next, leading into the main thrust of this chapter: the 

DSE of parameterized cores using genetic algorithms. Finally, this chapter concluded 

with a discussion of some of the previous research tha t is closely related to the work 

presented in this thesis. In Chapter 3, the results of a preliminary case study involv-
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ing the DSE of a parameterized soft-core processor using a genetic-based approach 

are presented.
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Chapter 3

Design Space Exploration of 

Embedded CPU Cores for FPGAs

Any given parameterized soft-core component of even modest complexity may have 

numerous parameters, and each of those parameters may have a large number of 

possible values to choose from. As a result, the total number of possible combinations 

of these parameter values may be exceedingly large, often into the thousands, millions 

or more. In addition, each param eter can potentially have an impact on the cost and 

performance of the resulting system. Since the set of possible configurations can be so 

large, one major question th a t arises is this: how does a designer go about selecting 

a combination of parameter values tha t yields a system tha t has the lowest cost and 

the highest performance for a particular application? It is this main question tha t 

the study of DSE using parameterized cores sets out to address.

In this chapter, the results of a preliminary case study are presented. This study 

was conducted in order to investigate the feasibility of applying a genetic algorithm-
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based approach to a parameterized core with a sizable design space to  determine 

an approximation of its Pareto-optimal set [9]. The core tha t was chosen was Al- 

te ra’s Nios [17] soft-core processor and the Simple Evolutionary Algorithm for Multi­

objective Optimization (SEAMO) [69] was selected as the engine for exploration.

3.1 P rob lem  S tatem en t

The problem of DSE using parameterized cores is as follows [10]: a parameterized 

system has a set of P  parameters, pi, p<i, . . . ,  pp. Each of these param eters can 

be assigned a value from a finite ordered set of possible values, Vj, i € { 1 , 2 , . . . .  P ) . 

The design space, D is defined as the Cartesian product of all of the sets of possible 

values:

D = Vi x V2 x . . .  x VP (3.1)

Assigning particular values to all parameters of each component of the system 

produces one design configuration. If dependencies exist between the param eters of 

the system, then not every configuration in the design space will be feasible and 

physically realizable. Subsequently, the total number of configurations in the design 

space is the product of the cardinalities of each of the sets of values for each parameter:

\D\ — |Vi| x |V2 1 x . . .  x |Vp| (3.2)

Every configuration has a set of K  objective functions, Fk(pi,p<z,. ■ ■ ,pp),  where 

k E { 1 , 2 , . . . ,  K }, which arc measures of how well or how poorly the configuration 

meets the objectives of chip area minimization, power consumption reduction, per­

formance maximization, etc. The set of all possible configurations makes up the 

design space for the system.
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The objective of DSE in this case is to determine the Pareto-optimal set of con­

figurations from the complete design space. However, it is clear tha t as the number 

of components, parameters and values per param eter grow larger, the design space 

expands enormously. Therefore, to achieve the goal of finding the Pareto-optimal set, 

two related tasks need to be performed. The first is to prune the design space down 

to a manageable size by eliminating all sub-optimal configurations. The second is to 

evaluate design configurations by estimating their area usage, power consumption, 

performance values, etc. to see how well each configuration meets the objectives.

3.2 T he A ltera  N ios Soft-core P rocessor

The Nios processor is a “pipelined general-purpose RISC microprocessor” [17] de­

signed by Altera Corporation [70]. It is a flexible processing core tha t features nu­

merous parameters as well as support for custom instructions. These parameters are 

summarized in Table 3.1.

The width of the datapath  is configurable, supporting either 16 or 32-bit variants 

[6, 5] . However, both  the 16 and 32-bit architectures use a 16-bit instruction set. 

The datapath  has a five-stage pipeline, and a large, windowed register file, which can 

be configured to include either 128, 256, or 512 registers.

The ALU is configurable and supports the inclusion of up to five custom instruc­

tions integrated directly into the unit. Five user opcodes are provided so th a t software 

can make use of these custom instructions directly. Nios also provides a number of 

options for integer multiplication support. The 32-bit Nios variant can optionally 

be configured to include a full 16 x 16-bit integer multiplier (MUL instruction), a 

partial hardware multiplier (MSTEP instruction), or no hardware multiplier a t all 

(multiplication is done using software routines). The designer is also given the option 

of implementing the processor’s instruction decoder as a Read Only Memory (ROM) 

unit using on-chip memory resources or directly in logic using the FPG A ’s logic ele-
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Table 3.1: Altera Nios Hardware Parameters
Parameter Possible Values

D atapath width 16 or 32 bits

Instruction decoder (p4) Logic Elements or ROM

Register file size (p2) 128, 256 or 512 registers

WVALID register (p3) Read-only or read/write

Instruction cache size (p4) Off, 1, 2, 4, 8 or 16 kB

D ata cache size (ps) Off, 1, 2, 4, 8, or 16 kB

Integer multiplication (p^) Software, MSTEP, MUL

Pipeline optimization (p7) More stalls/Fewer LEs, Fewer stalls/M ore LEs

Support RLC/RRC (p8) Yes or no

Support interrupts/traps (p9) Yes or no

Support OCI module (pi0) Yes or no

ments. The core provides the designer with the option of optimizing the pipeline for 

fewer stalls at the expense of requiring additional LEs. Finally, the WVALID register, 

which stores the high and low limits of the register file window, can be set to either 

read-only or read/write.

Nios features a Harvard memory architecture, with separate instruction and data 

bus masters. Memory can reside either on-chip or as an off-chip peripheral. Direct- 

mapped instruction and data  cache memories of various sizes can be optionally in­

cluded in the 32-bit Nios variant. The Nios processor can connect to any number 

of on-chip and off-chip peripherals using the automatically-generated Avalon bus [3]. 

Nios also has an optional on-chip instrum entation (OCI) debug module [17] which con­

nects directly to signals internal to the Nios processor tha t allows the user to perform 

various debug operations. Finally, Nios provides optional support for hardware and 

software interrupts and internal exceptions, as well as left and right rotate-through-
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carry (RLC and RRC) instructions.

Some of these parameters share hard interdependencies with one another. For 

example, caches and hardware multiplication can only be included on the 32-bit Nios 

variant. Similarly, the OCI debug module can only be added if support for interrupts 

and traps has been enabled. Considering just the Nios core with the parameters 

mentioned above, this gives us a total of exactly 10,512 different feasible Nios con­

figurations, with 10,368 configurations for the 32-bit Nios, and 144 configurations for 

the 16-bit Nios. This represents a substantial design space, which should be traversed 

in order to effectively select a suitable configuration for the intended application.

3.2.1 Target System

For this case study, a simple Nios system was created using A ltera’s Quartus II Ver­

sion 4.2 and SOPC Builder [19] software packages. The target FPGA and associated 

hardware was the Altera Stratix EP1S40F780C5 FPGA [8] present on the Nios De­

velopment Board Stratix Professional Edition [4], The system consisted of a 32-bit 

Nios core along with an Avalon Tri-state Bridge [3] used to connect the processor to 

an 8 MB off-chip memory located on the development board. The decision was made 

to  restrict the case study to the 32-bit Nios variant in order to avoid complicating it 

with parameter interdependencies, and also because the 32-bit variant represents the 

significant majority of the design space.

3.3 T he Sim ple E volutionary A lgorithm  for M ulti- 

O bjective O ptim ization  (SE A M O )

The algorithm chosen for this exploration was the Simple Evolutionary Algorithm for 

Multi-objective Optimization (SEAMO) proposed by Valenzuela [69]. This algorithm 

was chosen because of its relative simplicity and easy applicability to this particular
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Figure 3.1: The Chromosome Used in the SEAMO Algorithm

case study. This algorithm was originally applied to the 0-1 multiple knapsack prob­

lem, a well known member of the class of NP-hard problems. However, the setup of 

the algorithm was modified to suit the purposes of this case study. The algorithm as 

it was applied to this case study is briefly summarized as follows: Each Nios param ­

eter is represented as a gene—a discrete variable with a finite set of possible integer 

values. The integer values correspond to the possible param eter values of the Nios 

processor (for example param eter p2 is a variable which represents the register file 

size, where 1 is a register file size of 128, 2 for 256 and 3 for 512 registers). The 

chromosome is given as a string of these discrete variables gem's as illustrated in 

Figure 3.1.

The population is made up of a collection of N  of these chromosomes. The first 

step of the algorithm is to generate an initial population of chromosomes randomly. 

After this is done, each chromosome is evaluated individually one-by-one in terms 

of its objectives—in this case, FPGA area utilization and critical path delay. The 

method used for determining these values will be discussed below. The estimated 

objective values for area and delay are stored separately in an “objectives vector” 

for each chromosome. Once every chromosome has been evaluated, the “best-so-far” 

values for area and for delay are recorded. This is illustrated in Figure 3.2.

After this has been done, the algorithm proceeds through every member of the 

population in order one-by-one. Each member is paired with another, randomly 

selected member from the population and is given a chance to produce an offspring 

using the crossover operator. The crossover operator selects a cut-point a t random
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Figure 3.2: A Population of Chromosomes

and combines the left half of one parent with the right half of the other. Which half 

comes from which parent is also decided randomly. The crossover operator is usually 

only applied a certain percentage of the time, according to the specified crossover 

rate, rc. The offspring is then mutated, which involves randomly selecting one gene 

within the offspring chromosome and changing it to another possible value, again 

selected a t random. Normally, only a certain percentage of the offspring produced are 

mutated, the proportion of which is determined by the mutation rate, rm. Crossover 

and m utation are illustrated in Figure 3.3.

At this point, the m utated offspring is evaluated in terms of its objectives and 

replaces one of the parents if one of several conditions are met. If one of the parents is 

dominated by the offspring (i.e. is inferior to the offspring across all of the objectives), 

then the dominated parent is replaced by the offspring. If the offspring improves on 

one or more of the best-so-far values, then the offspring replaces one of its parents
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Figure 3.3: The Crossover and M utation Operators

(the parent to  be replaced is randomly chosen). Finally, if an identical copy of the 

offspring already exists within the population, then the offspring is discarded.

After the algorithm has visited each member of the population and paired it with 

another to produce offspring, one generation has passed. The algorithm will generally 

iterate through a number of generations before the population converges toward an 

approximation of the Pareto-optimal set of configurations. The size of the population, 

N, and the number of generations, G, the crossover rate rc, and the m utation rate, 

rm, constitute the parameters of the algorithm and appropriate values for them are 

often determined through experimentation.

3.3.1 Evaluation of Configurations: The O bjective Functions

Any multi-objective DSE procedure requires th a t individual configurations be evalu­

ated in terms of their objectives. The simplest and most straightforward approach is 

to synthesize each and every possible configuration using a CAD tool and store the 

generated area and delay values in a library. When values for a particular configu­

ration are needed, they are simply fetched from the library. However, the obvious
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drawback of this approach is that, for larger systems, data  for an exceedingly large 

number of configurations would have to be stored. Another option is to synthesize 

configurations as they are generated by the DSE algorithm; however this is often im­

practical due to the long run-times tha t are usually required to synthesize a design. 

A third possible option is to model the area and delay characteristics mathematically, 

by trying to establish equations tha t can be used to predict these numbers given the 

values for all of the parameters.

The approach used in this case study is a compromise between the first and 

third of these approaches. For this case study, the objective estimation approach 

proposed by Jha and D utt [46] was utilized. This approach involves establishing fast 

and accurate equations for estimating area and critical path  delay delay using least- 

squares regression analysis on actual synthesis data for a number of representative 

configurations. These equations relate the area and delay objectives to the P  (the 

total number of parameters; in this case P=T0) different param eter variables, p\, P2 ■ 

. . . ,  pp and have the general form:

p
F k ( P l , P 2 ,  ■■■, Pp ) =  ao,k +  ^ 2 i a i,k • f i , k ( P i )) (3 -3 )

i= 1

Where do,*, ai j, , . . . .  a,p k are the constant coefficients determined using regression 

analysis. The form of functions fi,k(Pi) can be determined by studying the rela­

tionships between the parameters p-i and the area and delay values. For this case 

study, the area of the circuit is given in terms of equivalent LEs used on the Stratix 

EP1S40F780C5 FPGA. This value is determined by summing the number of LEs, 

DSP blocks (9 x 9-bit), M512s, M4Ks and M-RAM memory blocks multiplied by 

their relative sizes on the Stratix FPGA. These values are given in Table 3.2 (ob­

tained from [75]). Delay is a measure of the critical path  delay of the circuit in 

nanoseconds (ns) reported by the Q uartus II Timing Analyzer [7].

For this approach, a “parameter sweep” was performed, in which each of of the
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Table 3.2: Relative Sizes of Stratix Components (from [75])
Stratix Block Relative Size

Logic Element (LE) 1
DSP Block ( 9 x 9  bit) 23.37

M512 RAM 20.5
M4K RAM 47.8

M-RAM 1550.3

Table 3.3: Regression Coefficients -  Nios Processor

Parameter i ai, i  

(Area)
di, 2

(Delay) (Area)
fiA P i) 
(Delay)

- 0 77.3 13.6 - -

Instruction Decoder 1 31.9 -0.205 Pi Pi
Register File Size 2 264.3 -0.205 P2 loglo(P2)
WVALID Register 3 71.9 -0.092 P3 P 3

Instruction Cache Size 4 62.6 6.22 PA2 loglo(P4)
D ata Cache Size 5 53.7 2.19 Ps2 loglo(P5)
Integer Multiplication 6 79.5 -0.16 P6 logio(Pe)
Pipeline Optimization 7 87.9 0.44 P7 P7
Support RLC/RRC 8 74.9 -0.76 P8 P8
Support In terrupts/traps 9 202.1 -1.22 P9 P9
Support OCI Module 10 476.6 1.21 PlO PlO

10 Nios parameters was varied across its entire range of values while the others were 

held constant. This resulted in 47 different Nios “sweep” configurations, each of 

which was generated using SOPC Builder and synthesized with Quartus II Version 

5.0 using the default synthesis, fitter and timing analysis settings. After synthesis, the 

FPGA resource utilization and delay data  were collected from the reports generated 

by Q uartus II. Using these data as a basis, the aitk coefficients in equation (3.3) were 

determined using least-squares regression techniques. These are listed in Table 3.3 

along with the function forms of fi,k{Pi) used in the equations.
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3.4  E xperim ental R esu lts

3.4.1 Testing of O bjective Functions

In order to test the mathematical objective functions for accuracy, the actual and 

estimated area and delay values were first compared for the 47 Nios sweep configura­

tions th a t were used to establish the objective estimation equations. See Figure 3.4 

for graphical comparisons of these two sets of data. As can be seen in the figure, the 

estimated values for both area and delay tracked the actual values quite closely. The 

average percentage error was 3.93% for the area estimates, and 4.75% for the delay 

estimates.

To test the accuracy of the equations for any arbitrary Nios configuration, 20 

unique configurations were generated randomly and then synthesized using Quartus 

II. Again, the area and delay data were collected and compared against the area and 

delay values tha t were predicted by the established objective functions. Graphs of 

these comparisons are shown in Figure 3.5. For these 20 test cases, it was found that, 

on average, the estimated area values were within 7.22% of the actual values and the 

delay values were within an average of 7.58%.

3.4.2 Experim ental D eterm ination of A lgorithm  Param eters

A number of experiments were performed with the SEAMO algorithm in order to 

determine suitable values for the algorithm parameters—the population size, N, and 

the number of generations, G. To this end, the SEAMO algorithm was run with dif­

ferent population sizes for 50 generations each. It was determined th a t the algorithm 

converges to w ith in  10% of i t s  fin a l v a lu e  in  a b o u t  20 g en er a tio n s , an d  th a t  a  pop­

ulation size of 50 provided a  good diversity of configurations. For this simple case 

study, both th e  crossover and m utation rates were assumed to be 1.0, indicating tha t 

crossover happens for every pair of parent chromosomes and tha t and every offspring
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Actual and Estimated Area - Sweep Configurations

800 0  

7 000  

6 000
4>
zl 5000 c

> 400 0  
5
O'
“  300 0  

*  2000 

1000 

0
1 3  5 7 9 11 13 15 17 19 21 2 3  25  2 7  2 9 3 1  3 3  35  37  3 9 4 1  4 3  4 5  47  

Configuration

A ctual

E stim ated

(a) Area

Actual and Estimated Delay - Sweep Configurations

25

20

15

10

5

0
1 3 5 7  9  11 13 15 17 19 21 2 3  2 5  2 7  2 9  31 3 3  35  3 7  3 9  41 4 3  4 5  4 7

Configuration

-A ctual

-E s tim a te d

(b) Delay

Figure 3.4: Actual and Estimated Values for Nios Sweep Configurations
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Actual and Estimated Area - Random Configurations
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Figure 3.5: Actual and Estimated Values for Nios Random Configurations
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Initial and Evolved Populations
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Figure 3.6: Initial and Evolved Populations (Using Estimated Values) 

is mutated.

3.4.3 Comparison of SEAM O R esults Vs. Random ly Gener­

ated Configurations

For this experimental case study, an initial random population of 50 chromosomes 

was first generated and the estimated area and delay values for each individual in 

the population were gathered. Then the SEAMO algorithm was run on this initial 

population for 20 generations, and the data for resulting population was collected. 

For comparison, the results are shown graphically in Figure 3.6 along with the initial 

data points (using the estimated objective values).

T h e  grap h  sh o w s s ig n ifica n t overa ll im p ro v em en t o f  th e  en tire  p o p u la t io n  a fter  20  

generations over and above the initial population. The data  points for the “evolved” 

population crowd around close to the origin of the graph. These points approximate 

the Pareto-optimal front, the boundary of the design space beyond which no con­
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figurations can exist. The configurations on this boundary are non-dominated and 

represent the set of the best configurations from the design space in terms of the area 

and delay objectives examined.

3.5 C onclusions D raw n from  th is Case S tu d y

One point tha t was observed during the course of experimentation was tha t the types 

of Nios configurations tha t tended to exist within the approximated Pareto-optimal 

were the more minimal configurations. All three types of multipliers were present 

within the configurations of this set, as were the rest of the options. However, these 

configurations always excluded any type of caching and often had smaller register file 

sizes. Also, the SEAMO algorithm almost always eliminated the OCI Debug Module.

It has been concluded from these experiments tha t caches, larger register files, and 

the OCI Debug Module add significant area and delay to the Nios processor, therefore 

they were eliminated by the SEAMO algorithm. However, the benefit derived from 

including these components in the Nios processor is not always accurately reflected 

in the delay and area measures tha t are utilized by the algorithm. Therefore, the 

decision about whether or not to include these components is application-specific in 

nature.

The approach tha t was utilized during this case study can be of greatest use when 

deriving application-specific hardware components from parameterized cores. The 

designer may require certain features for their intended application, therefore they 

could constrain those parameters to their suitable values. The rest of the parameters 

may be “free” and a genetic-based approach can be used to determine appropriate 

values for them.
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3.6 Sum m ary

In this chapter the results of a preliminary DSE case study were presented. The 

SEAMO algorithm was applied to the 10 parameters of the Altera Nios soft-core 

processor and an approximation of the Pareto-optimal set of configurations was de­

termined. Then the “evolved” population generated by the algorithm was compared 

with an initial, randomly generated population of configurations and a substantial 

improvement was seen in the evolved population in terms of both FPGA area utiliza­

tion and critical path delay. In the next chapter, the design and implementation of 

a CAD tool tha t applies the genetic-based approach presented in this chapter will be 

discussed in detail.
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C hapter 4

SCBuild - A CAD Tool for the 

DSE of Embedded CP U Cores

In this chapter, the design and implementation of SCBuild (Soft-Core Build) is pre­

sented. SCBuild is a software-based CAD tool tha t has been developed over the 

course of this research in order to facilitate the rapid exploration of the design space 

of parameterized soft-core hardware components in general, and embedded processor 

cores in particular. This tool accepts a template description of a parameterized core 

as an input, which is essentially a blueprint for the core th a t contains information 

on its parameters and tells the tool how to generate HDL code for the core given 

certain param eter values. It uses the automated DSE approach tha t was presented 

in Chapter 3 to prune the design space of the parameterized core and determine an 

approximation of its Pareto-optimal set of configurations. Once one configuration 

from th a t set is selected and values for each of the core’s parameters have been cho­

sen, SCBuild generates a structural VHDL description of the core with the selected
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features by instantiating components from a library of synthesizable VHDL compo­

nents. If SCBuild is running on a machine tha t has a version of A ltera’s Quartus II 

[18] software installed, it is also able to  generate a Tool Command Language (Tel) 

[72] script file and invoke Quartus to run the script, creating a new Quartus Project 

File (.qpf), compiling the generated VHDL code and saving the synthesis results in 

a text file for later processing. Each of these steps will be described in detail in the 

sections tha t follow.

4.1 M ajor P rob lem s A ddressed  by SC B uild

During the development of SCBuild, several major design problems needed to be 

addressed. Each of these problems has been handled by some aspect of the SCBuild 

software tool, as will be discussed in the following sections.

4.1.1 Representing a Param eterized Core in Software

In order for a piece of software to be able to work with parameterized cores, a precise 

description or representation of these cores which the software understands needs to 

be available. In other words, the problem tha t the software is trying to  solve needs 

to be modeled or described using some type of “language” . The software needs to be 

able to read this representation and work with it so tha t it can map it onto software 

data structures, manipulate it internally, and ultimately translate it into a viable 

output, which in this case is structural VHDL code. This representation should be as 

simple as possible and should provide just enough of the required information for the 

software to do its work. It should then be able to figure out the rest of the details on 

its own.

Ideally, when a parameterized core is viewed at its highest level of abstraction, 

nothing should been seen except a black box with a set of parameters tha t allow
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users to control what features the core has without having to worry about how those 

features are implemented inside the box. One of the main goals of SCBuild is to hide 

the implementation details inside the box so tha t all the end-users of the software have 

to concern themselves with are the core’s parameters. However, from the perspective 

of the software, more information about the core needs to be known in order for it 

to  successfully generate an HDL description. One of the main questions tha t was 

considered during the design of SCBuild is this: how much information should the 

software need to be provided with ahead of time, and how much of it should it be 

able to figure out on its own?

These two things represent a major design tradeoff. At one extreme, the software 

is provided with an input description tha t precisely defines and describes every detail 

of the core, in which case there is not much left for the software to do. At the other 

extreme, the software is simply given a set of parameter values and is expected to 

generate the remaining information itself, in which case there may be insufficient 

information provided to perform the task. Between these two impossible extremes 

lies a spectrum of software designs th a t require varying levels of input information 

and which include varying capabilities for information synthesis. At the higher end 

of this spectrum are tools tha t include substantial high-level synthesis [50] support, 

meaning tha t the program accepts a System- or Algorithm-level description of the 

core and generates an RTL description with minimal guidance. For the design of 

SCBuild, this option was rejected, since it would inevitably involve developing some 

sort of high-level synthesis compiler, a difficult task in itself, and one tha t is well 

beyond the scope of this research.

Since including high-level synthesis in SCBuild is currently out of the question, it 

was determined th a t there were several aspects of parameterized cores th a t needed 

to  be represented in the input description of a core th a t is provided to the software. 

These are:
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1. The core’s parameters. Parameters are essentially discrete variables th a t can 

be set to any value from a finite set. The input description should provide 

information about each of the core’s parameters, including the set of all possible 

values tha t the param eter can take.

2. The ways in which the core’s param eters affect its architecture. These parame­

ters may affect the underlying architecture of the core in a variety of ways. They 

may be able to change the bit-width of components in the core, specify different 

physical implementations for various functional units, alter the number of in­

stances of a component tha t are included in the core (the number of registers in 

a register file for example), and even dictate which components are instantiated 

in the core and how they are connected together. Some of these parameters 

may drastically affect the resulting core, so the input description needs to be 

able to adequately describe the ways in which each parameter changes the core’s 

underlying structure.

3. The hierarchy of sub-components th a t make up the core. Building a complex 

core from a number of smaller sub-components makes the process of designing 

tha t core much simpler. Each sub-component can itself be made up of other 

sub-components and so on, and each sub-component may have its own set of 

parameters which can be set to certain values. This hierarchy of components 

should be specified in the input description.

4. The connectivity of the core’s sub-components. Information should be provided 

on how the sub-components are connected together.

5. The set of possible physical implementations tha t a sub-component can have. 

Many components often have several functionally-equivalent implementations 

th a t differ only with regards to performance, area utilization, power consump­

tion or some other objective. For example, a digital adder may be either ripple-
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carry, carry-lookahead, or some other functionally-equivalent implementation. 

A separate VHDL description for each of these implementations may be cre­

ated and stored in a library, so the input description should provide a list of the 

equivalent implementations tha t can be used for each component.

4.1.2 Exploring the D esign Space of a Param eterized Core

SCBuild should be able to assist users in exploring the design space of the parame­

terized core with which they are working. The preliminary case study presented in 

Chapter 3 was useful for determining an approach for doing this. This approach was 

subsequently utilized in SCBuild as the main engine of automated exploration, as will 

be discussed later in this chapter.

4.1.3 G enerating HDL D escriptions of Core Instances

The final major problem tha t was addressed by SCBuild was the question of how to 

generate final HDL descriptions of instances of a parameterized core given a set of 

param eter values and the input description. This process will be discussed in detail 

in Section 4.3.

4.2 SC B uild  S ystem  E nvironm ent

A diagram of the SCBuild system environment is shown in Figure 4.1. SCBuild 

accepts a special input template description tha t describes all of the aspects of a given 

parameterized core tha t were discussed in Section 4.1.1. Ultimately, this description 

w ill b e  a  se t o f  files g en er a ted  b y  a n o th e r  so ftw a re  p rogram  ca lled  th e  Template 

Architect Tool. This tool will be a design environment complete with a graphical 

user interface (GUI) tha t will allow a designer to drag and drop a set of template 

components from a Template Component Library to create a template description
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Figure 4.1: The SCBuild System Environment

for virtually any parameterized core tha t can be envisioned. The development of this 

tool and the accompanying Template Component Library were deemed to be beyond 

the scope of this work and were relegated to future research projects. At present, the 

template descriptions used with SCBuild are created manually. The format of these 

tem plate descriptions is covered in greater detail in Section 4.3.1 and in Appendix A.

Once the SCBuild software has a template description of a parameterized core to 

work with, it processes the description, and based on a set user-selected parameter 

values, it builds a structural VHDL description of a core variant by instantiating 

ready-made components from the VHDL Component Library. It also applies the 

SEAMO algorithm to the core’s parameters in order to explore its design space and
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return an approximation of the Pareto-optimal set of configurations. Users can se­

lect one of these automatically-generated configurations for final implementation, or 

they can manually set a core’s param eter values. An estimate of each configuration’s 

objective values, such as its FPGA logic resource utilization and critical path  delay, 

are also computed by the program. Many different variant cores can be potentially 

generated from a single template description simply by specifying different values for 

the core’s parameters. In addition, SCBuild is not locked into using one particular 

tem plate description. It has been designed to  be general enough to accept virtu­

ally any template description with which it is provided, as long as tha t description 

represents a functionally correct design and follows proper syntax.

4.3  C A D  Flow  for SC B uild

The SCBuild CAD flow is depicted as a flowchart in Figure 4.2. Each step in the 

flowchart will be discussed in detail in the sections th a t follow.

4.3.1 Design Entry and Tem plate D escription

The first step in the CAD flow for SCBuild is Design Entry. At this initial stage, a 

template description for a parameterized core is created by the end-user so th a t it 

can be given to SCBuild as an input. At present, this template description is created 

manually by the template designer, although in future research work, the Template 

Architect Tool will assist the designer in creating this description.

As its name implies, the SCBuild template description serves as a template or 

blueprint for a parameterized core from which many different variant cores can be 

generated, given a set of param eter values. The complete template description for 

a parameterized core is made up of a set of text files containing Extensible Markup 

Language (XML) [74] code. XML was chosen as the tem plate description language
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Figure 4.2: The SCBuild CAD Flow

for a number of reasons:

1. It is a well-defined and widely-used data exchange format with simple but strict 

syntax rules.

2. Since authors of XML documents “invent” their own tags, they are not restricted 

to using a set of predefined tags or keywords, thus making it ideal for virtually 

any application.

3. It is relatively easy to write software code tha t can parse XML.

A detailed description of the SCBuild template description file format can be 

found in Appendix A. To summarize, the template description is made up of a set of
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template components, which are “abstract” or “virtual” hardware components tha t 

define a class of real hardware modules rather than  just a single component. Each and 

every template component description is stored in a single XML file. The following 

pieces of information are common to all template component description files:

•  The name of the component: Each component must be provided with a unique 

name before it can be instantiated to build larger cores.

• The component’s parameters: Each component can have any number of param ­

eters which can be used to alter the underlying structure of the component in 

some way. In addition to having a specific name, each param eter is classified as 

a certain type, which can be either “scalable” , “implementation” , or “general” . 

Scalable type parameters represent numerical quantities such as bit-widths and 

correspond directly to “generic” statem ents in VHDL [54]. Implementation type 

parameters are used to specify the physical implementation of the component. 

Finally, General type parameters are open-ended, and are often used to make 

various changes to a component’s structure. Each param eter has a list of pos­

sible values th a t it can take, as well as a default value in case a value is not 

explicitly assigned to the parameter.

Just as with conventional hardware design, several smaller template components 

can be used to build larger, more complex components. A component tha t is con­

structed from one or more sub-components is referred to as an aggregate component, 

while those components tha t do not have any sub-components are called primitive 

components. Since many components can have multiple, functionally-equivalent im­

p le m e n ta t io n s , d esc r ip tio n s  o f  p r im itiv e  c o m p o n e n ts  a lso  c o n ta in  a  lis t  o f  a ll o f  th e

possible implementations from the VHDL Component Library tha t the component 

can have. An Implementation type param eter can be created to control which im­

plementation is used for the component in the final structural VHDL description of
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Figure 4.3: A Primitive Template Component with Multiple VHDL Implementations

the core. Figure 4.3 illustrates an example of a primitive template component with 

multiple implementations.

Descriptions of aggregate components do not contain a list of possible implemen­

tations. Instead, they include a list of ports and sub-components. Ports define the 

interface of the component to the outside world. These can be connected to the 

ports of other components to form circuits. The name, mode (either “in” , or “out” ) 

and bit-width of each port are specified in the port listing. Sub-components are in­

stances of other template components tha t are used to construct the component. In 

a template component description, the sub-components section includes a listing of 

which template components are instantiated, as well as information on how the sub­

components’ ports are connected to each other, and what values their parameters are 

mapped to. Most importantly, the listing can contain conditional statements which 

work just like “if” statements in a computer programming language. These state­

ments specify which sub-components are instantiated, which ports are connected to 

each other, and which parameters are mapped when specific parameters are certain 

values. Using these statements, template components can be created tha t have enor­

mous variability in terms of their internal structure, the extent of which is controllable 

simply by assigning values to their parameters.
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The complete template description of a parameterized core consists of a set of 

XML template component description files. SCBuild can read and use any template 

description tha t it is provided with as long as all of the proper information is provided 

in the description and it is syntactically correct. This means th a t SCBuild is not 

locked into working with only one particular hardware template; it is general enough 

to be able to work with a multitude of different template designs.

The template description also includes several special-purpose files. These are the 

Parameter Dependencies file, the Objectives file, and the System file. The Parameter 

Dependencies file contains a set of dependency rules that are used to model the 

hard interdependencies between various parameters. The Objectives file contains 

information on the relationships between each param eter of the system and the values 

of the objectives. The Parameter Dependencies file and the Objectives file will be 

covered in greater detail later in this chapter. Finally, the System file conveniently 

stores the names of all of the template component files, the Parameter Dependencies 

file, and the Objectives file in a single location so tha t SCBuild has easy access to 

these file names.

4.3.2 XML Syntax Checking

Once the template description files have been created, they are opened and checked 

to ensure tha t they follow correct XML syntax. If they do not. then the user must go 

back to the Design Entry step and correct any errors th a t arc* present. Ultimately, this 

step will not be necessary, since the Template Architect Tool, discussed in Section 

4.2, will automatically generate error-free XML files, thus eliminating the need to 

verify the syntax.
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4.3.3 Collect System -level Param eters

At this step, one of the template component files is chosen as the top-level entity of 

the core, and is denoted the “System” component. Then the template component file 

containing the description of the System component is read and all of the param eter 

information is collected and stored in a data structure internal to SCBuild. All of 

these parameters then become visible to  the user. If a core with a specific set of 

features is required, then any or all of the System-level param eters can be set and 

locked to  their desired values. Parameters tha t are locked will not be changed during 

the process of autom ated DSE and are considered constant. Parameters tha t are 

not locked are considered “free” and will be used to explore the design space of the 

parameterized core. This concept is illustrated in Figure 4.4.

4.3.4 DSE and Param eter Selection

Once SCBuild has finished collecting the System-level parameters, the SEAMO ge­

netic algorithm is applied to the free parameters of the system, resulting in a set 

of configurations tha t approximates the Pareto-optimal set. The algorithm is imple­

mented in SCBuild as described in Section 3.3 of Chapter 3. Prior to running the 

algorithm, the user must specify the population size to use, the number of genera­
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tions for which to  run the algorithm and the crossover and m utation rates. Once the 

algorithm has run its course and the final set of configurations has been determined, 

SCBuild will display a listing of these configurations along with their respective ob­

jective values. The user selects one of these configurations as the final configuration, 

and all of the System-level param eters are set and locked to these values.

When applying the SEAMO algorithm to the problem of DSE using parameterized 

cores, there are two major issues th a t need to be considered:

1. Hard parameter interdependencies: SCBuild should ensure th a t only valid con­

figurations are generated by the SEAMO algorithm during the process of ex­

ploration.

2. Evaluation of configurations: Configurations need to be quickly evaluated in 

terms of their objectives during the course of the algorithm.

The ways in which SCBuild handles these two issues will be discussed in the next 

sections.

Handling Hard Parameter Interdependencies

It is very common for two or more parameters of a parameterized system to share 

hard interdependencies with one another. Hard interdependencies dictate tha t value 

assignments of interdependent parameters must be done simultaneously in order to 

generate valid configurations. For example, the Nios soft-core processor core has 

param eters for datapath  bus width, instruction and data  cache size and hardware 

multiplication support. Instruction and data caches and hardware multiplication can 

only be included in the processor if its datapath  width is set to 32 bits; any other 

configuration is considered invalid. Therefore, the data and instruction cache and 

hardware multiplication parameters each have a hard interdependency relationship 

with the datapath  bus-width parameter.
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In SCBuild, there are two situations in which parameter interdependencies need to 

be considered. First, when values are manually assigned to the System-level param ­

eters, the program should ensure th a t the combination of param eter values chosen 

does not violate the interdependency rules. Second, when SCBuild is running the 

SEAMO algorithm, the program should make sure tha t only valid configurations are 

created when applying the genetic crossover and m utation operators.

SCBuild handles both of these situations in a similar manner. Between any pair of 

parameters in the System, a dependency relationship can exist. There are two major 

rules tha t govern the dependency relationships between pairs of parameters:

1. In any given dependency relationship, one param eter is considered independent 

and the other is dependent.

2. Any given parameter can be directly dependent on one and only one other 

parameter, although many parameters can be dependent on it.

This concept is illustrated in Figure 4.5.

In the figure, the D atapath W idth param eter is the independent parameter, and 

the Instruction and D ata Cache Sizes and the Multiplier param eters are the depen­

dent parameters. The arrows in the figure denote dependency relationships, with the 

arrowhead pointing to  the dependent param eter in each case. A dependency relation­

ship in which the param eter is the independent param eter is called an independent
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Figure 4.6: Cyclic Dependency Loop

relationship, and conversely, a relationship in which the param eter is dependent is re­

ferred to as a dependent relationship. As the rules above dictate, any given param eter 

can have many independent relationships, bu t only one dependent relationship. These 

rules ensure tha t no cyclic dependency loops are created, as illustrated in Figure 4.6.

The parameter pairs in each dependency relationship share a dependency table 

which stores the valid values of the first param eter for all the values of the second 

param eter and vise versa. An example of the dependency table between the D atapath 

W idth and Multiplier parameters of the Nios processor core is shown in Table 4.1.

As can be seen from the table, when D atapath W idth is 16 bits, then the only value 

tha t Multiplier can take is “Software” . However, when D ata W idth is 32 bits then 

the Multiplier param eter can be Software, MSTEP (partial hardware multiplication) 

or MUL (full hardware multiplier).

All of the information pertaining to  each dependency relationship for a given pa­

rameterized core is stored in the Parameter Dependencies file tha t was introduced in 

Section 4.3.1. All of the dependency relationships between the System-level parame­

ters must be defined in this file in order for them to be enforced by SCBuild.

The procedure for assigning values to parameters in a dependency relationship 

is as follows. If the param eter being set is independent in a relationship, then all 

parameters which are dependent on th a t param eter are forced to take valid values.
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Table 4.1: An Exam )le of a Dependency Table

D atapath W idth M ultiplier

16-bit Software

32-bit Software, MSTEP, MUL

For example, if D atapath W idth is set to 16 bits, then SCBuild will look up the 16-bit 

entry in the first column of the D atapath W idth param eter’s dependency table. In 

the second column beside tha t entry are all of the possible values th a t Multiplier 

can take when D atapath W idth is 16 bits. In this case, “Software” is the only valid 

possible value, so the Multiplier param eter will be forced to take th a t value. If 

D atapath  W idth is set and locked to 16 bits, then Multiplier will also be locked to 

“Software” as well, since it is the only valid possible value tha t Multiplier can take 

when D atapath W idth is 16 bits. However, if D atapath W idth is set to 32 bits, then 

Multiplier will be forced to be either Software, MSTEP or MUL, selected randomly. 

If D atapath W idth is locked to 32 bits, Multiplier will remain unlocked, because there 

is more than one valid possible value tha t it can take when D atapath W idth is 32 

bits. If the parameter tha t is being assigned a value is a dependent parameter, then 

the value tha t it is assigned must be valid and must not violate any of its dependency 

relationships. If the Multiplier param eter is being set to MSTEP for example, then 

the D atapath W idth parameter must be 32-bit, otherwise the assignment will not be 

allowed.

Evaluation o f Configurations

As discussed in Section 3.3.1 in Chapter 3, individual configurations are rapidly eval­

uated by using fast objective estimation equations th a t relate the values of each 

param eter to the objective values, the form of which is given in equation (3.3). Any 

parameterized system tha t SCBuild works with can have K  objective estimation
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equations. These objective equations will most often directly represent physically 

quantifiable aspects of the system such as FPGA circuit area utilization, critical path  

delay and power consumption, although the user is not restricted to  these objectives 

alone. In order for these equations to be used during the autom ated DSE process, 

they must be known to SCBuild ahead of time. Therefore, they are stored in the 

Objectives file in the template description tha t was discussed briefly in Section 4.3.1.

The constant coefficient and the information on each term  are determined using a 

set of real-world synthesis data for the core [46]. A small set of “representative” con­

figurations for the core are produced and synthesized using a logic synthesis tool such 

as Quartus II, which then reports the results of the synthesis, including information 

such as the FPGA resource utilization and critical path delay. In order to determine 

the form of the functions fi,k(p%) in each term of a equation (3.3), it is necessary 

to study the relationships between each parameter and the values of the respective 

objectives. For example, the equivalent LE utilization on an FPGA may be found to 

increase linearly as the datapath  bus width increases, so the form of f i tk(Pi) for the 

datapath  bus width will be linear. Once the form of each term has been determined 

and the set of synthesis data has been obtained for a number of different synthesized 

configurations, then P-dimensional regression analysis can be applied to the collected 

data  in order to determine the values of the regression coefficients, ao,fc, dpfc,.. •, ap.k- 

The designer of the estimation equations should endeavour to produce just enough 

configurations in order to provide sufficient definition to the design space so th a t the 

objective values for any arbitrary configuration can be computed with a reasonable 

degree of accuracy.

Once the objective estimation equations have been established and the information 

regarding these equations is stored in the Objectives File, then it is a relatively simple 

m atter for SCBuild to read the file and compute the objective values for any given 

combination of param eter values. Each of the possible values of every param eter

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

is assigned a corresponding integer, and these integer values are plugged into the 

estimation equations when SCBuild calculates the objectives.

4.3.5 Elaboration

Once all of the values of the System-level parameters are known, SCBuild proceeds 

with the most im portant step of the CAD flow: elaboration. At this stage, a final 

VHDL model of a given core with the set of features specified by the user-selected 

param eter values is constructed. At this step, SCBuild processes the input template 

description files and uses the assigned param eter values to build two intermediate 

representations of the system before writing the final VHDL code. In order to clearly 

explain what follows, a distinction must be made between those two major internal 

representations.

The first representation is the System-level description of the hierarchy of tem­

plate components. This representation is derived directly from the input template 

description files and the set of selected param eter values, and can be depicted as a 

tree graph as shown in Figure 4.7.

Each node in the figure is a template component that is used to build the sys­

tem. The node a t the top is the System, or top-level entity node, and each solid line 

connecting the nodes represents a parent/sub-component relationship. The System 

can have any number of sub-components, and any given sulwom ponent can have 

any number of sub-sub-components, etc. Also, any given component in the hier­

archy can have any number of parameters. An important feature of this hierarchy 

representation is tha t there also exists a hierarchy of component parameters. The 

parameters of sub-components can be linked to parameters of their parent compo­

nents and so on up the hierarchy until the System component is reached, at which 

point the param eter becomes a System-level parameter. For example, in the figure 

Pi of sub-sub-component 1 is linked with p\ of sub-component 1, which is, in turn,
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L inked  P a ra m e te r s
P a r a m e te r s

System (Top-level Entity)

Sub-component 1 Sub-component n

Sub-sub-component 1 Sub-sub-component n

Figure 4.7: System-level Description: Elaboration Hierarchy

linked with pi of the System component. Linking component param eters together un­

til the param eter chain reaches all the way to the top-level node allows System-level 

parameters to directly affect components tha t are buried deep within the hierarchy.

The second internal representation is the Register Transfer Level representation. 

This description stores the information on the system at the RT-level of abstraction 

and is directly translatable into VHDL or some other hardware description language. 

This representation features more detailed information on the structure of each sub­

component of the system including what ports and “generic” constants the component 

has, what sub-components are instantiated under it, and how the sub-components’ 

ports are connected to one another using interconnecting nets. This representation 

is not parameterized to any extent beyond what is possible to represent using the 

“generic” constructs within VHDL (or conversely, the “param eter” constructs in Ver- 

ilog).

SCBuild translates the information in the input template description files into an 

internal System-level hierarchy description, then into an internal Register Transfer 

Level representation before finally writing a set of VHDL files describing the resulting
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Figure 4.8: Translation of Representations

core variant. This process of translation is illustrated in Figure 4.8.

The process of translating the template description into VHDL code involves a 

number of steps. The flowchart for the SCBuild Elaboration algorithm is shown in 

Figure 4.9. This flowchart depicts how a single template component is elaborated. 

The very first step in the process is to read the name of the tem plate component 

from its template description file. SCBuild then performs a check to see whether 

the component is “primitive” or “aggregate” by searching for an <im plem entations> 

section in the file. If a set of implementation definitions is found in the file, then 

it is assumed tha t the template component is a primitive component with one or 

more implementations in the VHDL Component Library. If there is more than one 

VHDL im p le m e n ta t io n  to  ch o o se  from , SCBuild th e n  se le c ts  th e  a p p r o p r ia te  o n e  by 

checking the value th a t is assigned to the “implementation” type param eter tha t 

controls the template component’s final implementation. Once this is done, SCBuild 

then reads the selected VHDL file from the Component Library and constructs an
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internal Register Transfer Level representation of the component for later use.

If no implementation definitions are found in the template description file, then 

the component is assumed to be an aggregate of one or more sub-components. In this 

case, the process is more complex. First, a brand new RTL component model is cre­

ated with the name specified. Then generic constants are added to the newly-created 

RTL component tha t correspond directly to the “scalable” type param eters th a t be­

long to its associated System-level component. Then a set of new ports are added to 

the component. Next, SCBuild proceeds to read the <sub_components> section of 

the template description file where the current component’s sub-component instan­

tiations are located. All of the sub-components tha t lie outside of the conditional 

blocks are created first and added to the System-level hierarchy. Then any condi­

tional statements tha t present within the <sub_components> section are evaluated 

and any conditions tha t evaluate to “true” are recorded of for later use. Then the sub­

components contained within the true conditional blocks are created and subsequently 

added to the hierarchy as well. At this point, the current component should have all 

of its sub-components stored in the hierarchy, but these sub-components are missing 

param eter information, therefore parameters are added to these sub-components by 

reading their respective template description files. Then these sub-component pa­

rameters are either mapped to specific values or linked to parameters of their parent 

components. Finally, each sub-component is itself elaborated using the exact same 

algorithm just described. In this way, the entire System-level hierarchy is built by 

recursively calling the Elaborate algorithm for each component in the hierarchy. Once 

the sub-components have been successfully elaborated, their ports are connected to­

gether in the RTL description using a set of intermediate nets, and the internal RTL 

model of the system is complete. Finally, a structural VHDL description of the com­

ponent is written.

By recursively calling the Elaborate algorithm for each component in the System-
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Figure 4.9: Flowchart for the SCBuild Elaboration Algorithm
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level hierarchy, a complete description of a core variant, consisting of a set of VHDL 

files, is created. The very last step in the elaboration process is to copy the generated 

files into a specified project directory along with the set of VHDL files used from the 

Component Library.

4.3.6 Quartus II Project Creation and Com pilation

If SCBuild is running on a computer th a t has a copy of A ltera’s Quartus II software 

installed, then it can optionally generate a simple Tool Command Language (abbrevi­

ated Tel, and pronounced “tickle”) script file [72] tha t Quartus II’s Tel interpreter [7] 

can subsequently read and execute. Quartus II has a set of Application Programming 

Interface (API) functions [7] tha t can be called from a Tel script to autom ate a large 

number of tasks, including creating new projects, compiling designs, making device 

pin assignments and creating custom report files. SCBuild can generate a simple Tel 

script file tha t directs Quartus II to create a new project file, take the newly-generated 

set of VHDL files and include them in the project, perform a complete compilation 

including analysis and synthesis, fitting, assembly and timing analysis and write the 

pertinent compilation report information into a text file tha t can be subsequently 

read back by SCBuild for later use. SCBuild calls Quartus II in batch mode directly 

so tha t all of these functions are handled automatically without requiring the inter­

vention of the user. Once Quartus II has finished its work, it returns control back to 

SCBuild.

4.4 T he V H D L  C om ponent Library

The SCBuild VHDL Component Library is an open-ended collection of pre-designed 

and pre-tested primitive soft-core components described in VHDL tha t can be used to 

build more complex designs using SCBuild. The Library can be expanded limitlessly
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by adding new hardware components to it. For the purposes of this research, the 

VHDL Component Library consists of the hardware modules listed in Table 4.2.

Table 4.2: Components in the VHDL Component Library

Component Description
adder.cl Generic carry-lookahead adder. Taken from [20].
adder_rc Generic ripple-carry adder.

b_input Jogic Controls which arithmetic operations are performed 
by an adder.

barrel_arith_shifter Performs arithmetic left and right shifts any number 
of places.

barrel Jogical .shifter Performs logical left and right shifts any number of 
places.

barrel_rotator Rotates a bit-held left or right any number of places.

basic_arith_shifter
Performs arithmetic shifts left or right one bit- 
position a t a time.

basicdogical-shifter Performs logical shifts left or right one bit-position 
at a time.

basic_rotator Rotates a bit-held left or right one position at a time.

branch_resolve Computes the branch targets for branch and jump 
instructions in a RISC processor.

bus_interface

Interfaces two buses of unequal bit-width together. 
If the bit-width of the output bus is greater than 
the input bus, then the extra bits are filled with 0 ’s. 
If the width of the input bus is greater, then the 
extra bits are left “open” .

constant-unit Performs either zero-hll or sign extension, based on 
the value of the select signal.

data_RAM
Single-port RAM block with variable word size and 
address width. Created using A ltera’s “altsyncram” 
megafunction [51].

incrementer Increments the input by a given value.

in str_m em ory
ROM module with a variable word size and address 
w id th . C re a te d  u s in g  A lte r a ’s “a lty n c r a m ”
megafunction [51].

logic_cct
Logic circuit th a t performs one of four bitwise logical 
operations: AND, OR, XOR, NOT.

mem_controller A data  memory controller.
Continued on next page . . .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. SCBUILD - A CAD TOOL FOR THE DSE OF EMBEDDED CPU CORES

Table 4.2 -  continued from previous page
Component Description

multiplier A full combinational n  x n  —► 2n bit multiplier.
mux_2 _to_l Generic 2 -to -l multiplexer.
mux_4_to_l Generic 4-to-l multiplexer.

reg Generic register with synchronous load and 
asynchronous reset.

registerJile Generic register file with any number of registers.

register_file_rO Generic register file with any number of registers. 
R0 is always 0.

risc_instr_dec Instruction decoder for a simple RISC processor.

useful Junctions VHDL package containing useful functions such as 
the log2 0  function.

zero_detect O utputs a logical ‘1’ when the input is all 0’s, and 
a ‘O’ when otherwise.

zero Jill Generic zero-fill circuit with an m-bit input and an 
n-bit output.

zero JilLl_bit Generic zero-fill circuit with a 1-1 >it input and an 
n-bit output.

zero_reg
Zero register. Stores all 0’s. Writes to this register 
are invalid.

Each of these components was designed and coded in VHDL. and compiled using 

Quartus II Version 5.0 software. The data_RAM and the instr .memory components, 

were created using the A ltera’s “altsyncram” megafunction [51]. and the source-eode 

for the adder_cl component was obtained from [20]. The remaining components were 

designed and coded from scratch using behavioural and structural VHDL modeling 

techniques. They were then verified to be functionally correct using Quartus II’s 

simulator tool [7].

4.5  D evelop m en t and Im plem entation

The development of SCBuild was achieved by applying many of the principles from 

the field of software engineering. In this section, the overall design methodology used
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to  develop and implement SCBuild is discussed in some detail.

4.5.1 General Design Priorities

In any software project development project, it is im portant to define a set of design 

priorities tha t will ultimately guide the development of the software from concept to 

completed system. During the development of SCBuild, several design priorities were 

set forth. These are listed in order of decreasing importance below:

1. Synthesizable output. It is absolutely essential tha t the VHDL code gener­

ated by SCBuild be synthesizable. Similarly, it should be easy to simulate the 

behaviour of the resulting hardware component using any available simulator, 

and the results of RTL-level and gate-level simulation should match up.

2. Generality and flexibility. The program should possess an internal data 

structure tha t is capable of representing virtually any hardware component 

described using a hardware description language. This includes support for the 

hierarchical structural descriptions of components tha t are quite common in 

soft-core hardware component designs.

3. Easy extensibility. It should be relatively easy to build on the framework of 

earlier versions of SCBuild so tha t the system can be extended to include more 

complex features.

4. Portability. Ideally, SCBuild should be easily portable between different op­

erating systems, and the source code should be easily interchangeable between 

different compilers.

All of these priorities were given their proper consideration during the development 

of SCBuild.
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4.5.2 SCBuild Software D evelopm ent M ethodology

It was determined tha t an object-oriented approach was a convenient way of repre­

senting a soft-core hardware component in software. Since hardware components are 

made up of other objects such as sub-components, ports and nets, this paradigm pro­

vides a natural and intuitive way of representing all the necessary information about 

the component’s structure and attributes. Each part of a component can be repre­

sented as an object of a class, and these classes can be created in order to represent 

the set of all of these objects.

For the development of SCBuild, an iterative design methodology [47] was applied. 

Using this approach, five prototype “alpha” versions of the SCBuild system were de­

veloped: Versions 0.1, 0.2, 0.3, 0.4 and 0.41. Each successive version implemented 

more of the final system’s functionality than the one before. Version 0.1 contained 

a partial implementation of the facilities necessary to construct a Register Transfer 

Level representation of a core and to translate tha t representation into structural 

VHDL code. Version 0.2 featured the added ability of representing soft-core compo­

nents th a t contained “generic” constants at the Register Transfer Level. In Version 

0.3, classes and functions for constructing an Algorithm-level description of a soft-core 

processor were added. Finally, a framework for handling the System-level hierarchy 

representation was added in Version 0.4, and cleaned up and expanded in Version

0.41. Using this iterative strategy, the development of SCBuild was broken down 

into a set of manageable tasks tha t were completed one-by-one during the develop­

ment of each prototype. The development of each version followed a software design 

methodology tha t included the following tasks:

1. Requirements gathering. The initial stage of the design process involved 

defining precisely what the system is supposed to do (functional requirements) 

as well as what constraints the system must meet (non-functional requirements). 

These requirements were gathered together and recorded in a Requirements
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Document for later reference.

2. Design. After deciding what tasks the software is required to perform, the next 

step was to design its overall architecture by dividing it up into sub-systems and 

deciding which sub-systems will handle which tasks.

3. M odeling. At this step, the detailed design of each software sub-system was 

performed. Since an object-oriented approach was used to  design SCBuild, the 

structure of each sub-system was modeled using the Unified Modeling Language 

(UML) [6 8 ], a visual language tha t was developed specifically for modeling the 

structure and behaviour of object-oriented software systems. Class diagrams 

were used to model the basic class structure of each of SCBuild’s sub-systems, 

and package diagrams were drawn to model the relationships between each of 

the sub-systems. The design of each sub-system will be discussed in more detail 

later in this chapter.

4. Coding. After detailed UML models for each sub-system were constructed, 

they were implemented in software using the C + +  programming language.

5. Program Inspection, Testing and Debugging. In order to ensure tha t each 

prototype version functioned as expected, each sub-system was tested using a 

variety of methods. The software was subjected to a series of exceptional inputs 

designed to uncover bugs in the implementation. For the later prototypes, a 

simple “test processor” template model was also developed to use as a test case 

to verify tha t SCBuild was able to correctly generate synthesizable VHDL code 

as an output.

4.5.3 SCBuild Software Architecture

As was discussed in Chapter 2 , any given hardware core can be described at several 

levels or “layers” of abstraction. Based on this observation, it seemed logical to  split
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Figure 4.10: UML Package Diagram for the SCBuild Software Architecture

SCBuild up into sub-systems in a like manner. The Multi-Layer architectural pattern 

was taken from [47] and adapted for this purpose. A UML package diagram for the 

software architecture model used for SCBuild is shown in Figure 4.10.

Each layer, except for the User Interface layer, contains a data  structure tha t 

represents some aspect of a core at tha t abstraction level. Each layer also contains 

an API tha t allows higher layers to access its functionality. Each API is a set of 

functions tha t controls the data structure a t th a t layer. Functions a t higher layers can 

call the API functions of lower layers in order to construct lower-level representations 

of a processor or fetch information from those representations. The System layer 

contains the System-level hierarchy representation of a component th a t was discussed 

in Section 4.3.5. Likewise, the RTL layer holds the internal Register Transfer Level 

description which is ultimately translated into HDL code. In between these two 

layers is the Algorithm layer, which can represent certain aspects of a processor’s 

instruction set architecture. Although it was not ultimately used in the current 

version of SCBuild, the Algorithm layer does provide a basis for extending the software
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Figure 4.11: Class Model for the RTL Layer

tool to perform other useful functions such as automatic control logic generation and 

the removal of unused hardware. Each of these three layers will be discussed briefly 

in the paragraphs th a t follow.

The RTL Layer

The UML class diagram for the RTL layer is shown in Figure 4.11. This layer is 

responsible for storing all of the data  necessary to construct the Register Transfer 

Level representation of a soft-core hardware component tha t was presented in Section

4.3.5.

The model consists of eight classes: Lib, ComponentPrototype, Componentln­

stance, PortPrototype, Portlnstance, GenericPrototype, Generidnstance, and Net. 

These eight classes together have the capabilities and functions necessary to  construct 

a data  structure representing a soft-core hardware component as a set of smaller, in-
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terconnected sub-components. Essentially, this model states the following: any given 

hardware component prototype can have any number of ports, generics, and sub­

components (component instances). A prototype is an abstract object from which 

many identical instances can be made. When an instance of a given component 

prototype is created under another component prototype, instances of its ports and 

generics are created as well. Nets are intermediate signals tha t connect the ports of 

the various sub-components together to form complete circuits.

The Lib class contains the API, a set of functions tha t control how the data  struc­

ture is constructed. Higher layers can call these API functions in order to construct 

an RTL description of a component. This model, minus the GenericPrototype and 

Generidnstance classes, was created during the development of SCBuild Version 0.1. 

Support for the representation of generics was added in Version 0 .2 .

The Algorithm Layer

The purpose of the Algorithm layer is to represent the behaviour of all instructions in 

the instruction set of any given processor. This provides a basis for specifying what 

instructions will be implemented in a generated processor as well as how they will be 

implemented. A common approach used to represent the behaviour of an instruction 

is the data dependence graph, used by the author of SPREE [75] as well as others. 

This approach was adapted for implementation in Version 0.3. In this approach, the 

instruction is broken down into a series of microoperations. Each microoperation is 

a small unit of functionality which can be implemented by a single hardware module 

(for example, add, subtract, etc.), although multiple implementations of the same 

microoperation can exist. Each microoperation has a set of input and output ports. 

These ports represent the required inputs to  tha t microoperation and the outputs 

tha t are generated. The ports of the various microoperations are connected together 

to form a complete data  dependence graph which defines the order in which the
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Figure 4.12: D ata Dependence Graph for a Generic Add Instruction

microoperations need to execute in order to carry out an instruction. An example of 

a data dependence graph for for a generic “add” instruction is shown in Figure 4.12.

In order to completely define an instruction set, a data dependence graph for 

each instruction in th a t instruction set should be constructed. W ith this conceptual 

framework established, a UML class model was developed which efficiently represents 

data dependence graphs internally in SCBuild. The model that was developed and 

implemented is shown in Figure 4.13.

Essentially, the class model states the following:

1. An Instruction Set is made up of many Instructions.

2. An Instruction is made up of many Microoperations.

3. A Microoperation owns many MicroopPorts.

4. Any given MicroopPort can be connected to many other MicroopPorts.

This simple model is general enough to represent the instruction set for any pro­

cessor provided tha t it is possible to construct a set of data dependence graphs for
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Figure 4.13: Class Diagram for the Algorithm layer

tha t instruction set. Also included in the model, although not shown in Figure 4.13, 

is the ability to represent the various instruction formats th a t a processor may have. 

Each instruction in the instruction set is assigned an instruction format based on the 

number and bit-widths of the operands tha t are needed.

The System  Layer

The System layer is responsible for representing a parameterized soft-core hardware 

component at the System level, the highest level of abstraction. At this level, the soft­

core is seen as a set of user-configurable parameters. The System layer is responsible 

for constructing the System-level hierarchy description th a t was discussed in Section

4.3.5. It also handles all of the functionality related to the design space exploration 

of the core’s parameters using the SEAMO algorithm. The UML class diagram for 

the System layer is given in Figure 4.14.

The most im portant class in the diagram is the System class. It is derived from
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Figure 4.14: Class Diagram for the System layer

the TemplateComponent class and inherits all of its functionality and associations to 

other classes. It also owns multiple objects of the TemplateComponent class, which 

represent the components of the hierarchy, as depicted earlier in Figure 4.7. Each of 

these template components has a set of objects of the Param eter class which represent 

its parameters. Parameter objects tha t belong to the System class are the System- 

level parameters, and as such, are the ones tha t can be configured by the user or left 

free to be varied during design space exploration.

Also contained within the System class are numerous objects of the Chromosome 

class, which represent the population of configurations used by the SEAMO algo­

rithm. Each Chromosome object, in turn, possesses a collection of objects of the 

Gene class, whose values can be varied freely during DSE. Finally, the Parameter 

class also has a double association with the Dependency class, which is an association 

class whose objects store information on the interdependency relationships between 

pairs of parameters in the core.
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The System class contains all of the functions and associations to other classes 

th a t are necessary to perform an autom ated design space search using the SEAMO al­

gorithm and to  construct a System-level hierarchy model given a set of XML template 

description files. It communicates with classes a t lower layers by calling their API 

functions, which enables it to direct the construction of lower-level representations of 

a core, and ultimately generate synthesizable VHDL code.

4.5.4 Im plem entation D etails

All five versions of SCBuild were written completely using C + + . Version 0.41, the 

final alpha version, is about 16,400 lines long. In order to maintain code portability, an 

effort was made during development to use only those library functions and classes 

th a t were recognized by a number of different compilers. Two different compilers 

were used to develop the software: the Microsoft Visual C + +  6.0 [12] compiler and 

the MinGW compiler [38] paired with the Code::Blocks [1] integrated development 

environment.

4.6  Sum m ary

In this chapter, the design and implementation of the SCBuild CAD tool was pre­

sented. The major problems tha t were addressed by SCBuild were first presented, fol­

lowed by a discussion of the environment under which SCBuild operates. An overview 

of the SCBuild CAD flow was then given, and a detailed explanation of each step 

in the flow was provided. Finally, the VHDL Component Library was briefly dis­

cussed before the details of the development and implementation of SCBuild were 

presented. The next chapter discusses the results of some experimental studies tha t 

were conducted using SCBuild and a simple RISC processor.
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Experimental Results

In this chapter the results of several design space exploration experiments are pre­

sented. For these experiments, a template description model of a simple param eter­

ized pipelined RISC processor core was created. Then the SCBuild CAD tool was 

used to generate and compile a number of variant implementations of the processor 

core by performing a parameter sweep of all the core’s parameters. The purpose of 

this exercise was to generate enough real synthesis data in order to establish objective 

estimation equations tha t provided reasonable estimates of the FPGA area utilization 

and critical path delay for any arbitrary processor configuration. Next, an initial pop­

ulation of 50 random configurations was generated, and each of these configurations 

was synthesized using Quartus II. The area and delay objective estimation equations 

were tested for accuracy against these 50 data points. Experiments were then con­

ducted in order to  determine suitable values for the crossover and m utation rates 

used in the SEAMO algorithm. Finally, using the determined crossover and m utation 

rates, the initial population was “evolved” for 20 generations of the SEAMO algo­
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rithm, yielding an approximation of the Pareto-optimal set. VHDL implementations 

for these 50 evolved configurations were generated and synthesized using Q uartus II, 

and the resulting synthesis data  were compared with tha t of the initial population.

5.1 Target Core

The parameterized RISC processor template used in this research is a modified version 

of the pipelined RISC CPU presented by Mano and Kime [48]. A detailed description 

of the modified core can be found in Appendix B. To summarize, the core is a simple 

microprocessor with a load-store architecture consisting of a datapath, a control unit, 

and separate data  and instruction memories. It features a total of 38 instructions, 

including instructions for performing arithmetic, logical, shift, branch and memory 

operations with integer data.

In order to  facilitate experimentation, a set of parameters was added to the pro­

cessor, a template description model of the core was created and a library of VHDL 

building-block components was constructed (see Section 4.4). The core features the 

param eters listed in Table 5.1. The numbers in parentheses are the integer values as­

signed to  each param eter value. The data width of the processor can be either 8 , 16, 

32, or 64 bits. The data and instruction memory bus widths are configurable to any 

value between 5 and 15 bits, yielding anywhere between 32 to 32,768 words of memory 

each. The adder present in the ALU and the branch adder can be implemented using 

either a ripple-carry or a carry-lookahead structure. There are also three types of 

shifters available: logical, arithmetic and rotator. Each of these can be implemented 

either as a “basic” shifter, meaning tha t a value is shifted or rotated only one position 

per clock cycle, or as a “barrel” shifter, allowing values to be shifted or rotated more 

than  one position per cycle a t the expense of a much larger shifter. The user can also 

choose not to include any or all of these shifters. A combinational integer multiplier 

can also be optionally included. The operand width, which directly affects the reg­
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ister file size, can be configured between 2 and 9 bits, providing anywhere between 

4 and 512 general-purpose registers. Finally, pipelined and unpipelined versions of 

the processor are available, with the pipelined version featuring a 4-stage pipeline. 

D ata and control hazards are presently handled in software by inserting NOP (no 

operation) instructions into a program. None of these parameters share hard interde­

pendencies with any of the others—they are all independent. Applying equation (3.2) 

to the parameters listed in the table, there are a total of exactly 1,672,704 possible 

configurations for this core.

In order to ensure tha t the RISC processors generated by SCBuild functioned as 

expected, a simple assembler was w ritten for the processor. This assembler translates 

a listing of program instructions down into a memory initialization file (.mif) [7], 

which is used to specify the contents of the processor’s instruction memory. A sample 

configuration was then generated by SCBuild in order to  test the processor’s func­

tionality. The configuration was a 32-bit pipelined variant with 32 general-purpose 

registers, 32 words of data and instruction memory each, hardware multiplication 

and barrel shifters for the arithmetic shifter, the logical shifter and the rotator. This 

configuration was compiled using Quartus II and its functionality was observed using 

Quartus II’s Simulator Tool [7]. In this way, all of the processor’s instructions were 

verified to be functioning correctly.

5.2 E stab lish ing th e  O bjective E stim ation  Equa­

tions

In order to establish a set of objective estimation equations (equation (3.3)) for the 

RISC processor core using the P-dimensional regression technique described in Chap­

ter 3, it was first necessary to synthesize a set of configurations tha t are representative 

of core’s design space. To this end, a param eter sweep was performed on each of the

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. EXPERIMENTAL RESULTS

Table 5.1: RISC Processor Hardware Parameters
P a ra m e te r P ossib le  V alues

ALU Adder Implementation (pi) (1) Ripple-carry, (2) Carry-lookahead

Arithmetic Shifter Implementation (P2) (1) None, (2) Basic, (3) Barrel

Branch Adder Implementation (ps) (1) Ripple-carry, (2) Carry-lookahead

D ata Address W idth (P4) (1-11) 5 to 15 bits

D ata W idth (ps) (1) 8 , (2) 16, (3) 32, (4) 64 bits

Include Multiplier (pe) (1) False, (2) True

Instruction Address W idth (P7) (1-11) 5 to 15 bits

Logical Shifter Implementation (p8) (1) None, (2) Basic. (3) Barrel

Operand W idth (pg) (1-8) 2 to 9 bits

Pipelined (pw) (1) False, (2) True

R otator Implementation (pn) (1) None, (2) Basic. (3) Barrel

core’s 11 parameters. Starting from a base configuration, (in which all of the pa­

rameter values are set to 1 ), each of the core’s parameters were varied across their 

entire range of values while the other parameters were held constant at their base 

values. This yielded a total of 41 sweep configurations, each of which was generated 

by SCBuild and compiled using Quartus II [7]. All of these configurations were ta r­

geted for the Altera Stratix EP1S40F780C5 FPGA [8 ], and were compiled using the 

default compiler settings. The following pieces of information were collected from 

the Quartus II compilation reports for each configuration: the number of LEs, DSP 

blocks, M512, M4K and M-RAM memory blocks used by the configuration, and the 

critical path  delay of the processor in nanoseconds reported by the Timing Analyzer.

A second set of sweep configurations was also produced. In order to study the 

relationship between the data width param eter {jp§) and the 1 0  remaining parameters 

of the core, an additional 1 1 1  sweep configurations were generated and compiled.
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Table 5.2: Summary of Parameter Sweep Results

Config. elk  (ns) LEs M 512s M 4Ks M -RAM s D SPs Eq. LEs

Smallest 21.197 173 3 0 0 0 234.5

Largest 49.99 12,393 3 1 0 0 12,502.3

Max. - 49,250 384 0 0 32 57,869.84

Fastest 9.53 181 1 1 0 0 249.3

Slowest 62.84 1,152 2 2 0 32 2036.44

This time, the data width param eter was varied a t the same time as each of the other 

parameters. Of these 111 configurations, four were so large th a t the Quartus II F itter 

could not successfully place them into the S tratix FPGA. Quartus II failed to compile 

another two configurations due to a shortage of memory in the computer on which 

they were compiled. In total, 146 different sweep configurations were generated and 

compiled successfully. These configurations served as the basis for establishing area 

and delay objective estimation equations for the RISC processor. The results of the 

param eter sweep experiments will be discussed in greater detail in the sections tha t 

follow.

5.2.1 R esults of Param eter Sweep

The sweep configurations showed great variability in both FPGA  area utilization and 

critical path  delay. These results are summarized in Table 5.2. The complete table 

of sweep results can be found in Appendix C. In terms of area, the smallest config­

uration generated was the “base” configuration—an unpipelined 8 -bit variant tha t 

used only 234.5 equivalent LEs. The largest successfully-compiled sweep configura­

tion was a 32-bit variant with 256 general-purpose registers. This particular con­

figuration used 12,502.3 equivalent LEs, although larger configurations are possible 

provided an FPGA with a higher logic capacity is available. In fact, the “maximum”
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configuration—with all parameters set to their highest values—required a to tal of 

49,250 LEs (119% of 41,250 LEs total), 384 M512 RAM blocks (100%), and 32 DSP 

blocks (29%) after fitting, equal to 57,869.84 equivalent LEs. The timing analysis 

results could not be obtained for this configuration. In terms of delay, the fastest 

sweep configuration seen was an 8 -bit pipelined variation, with a critical path  delay 

of 9.534 ns (104.9 MHz), while the slowest configuration was an unpipelined 64-bit 

processor with a integer multiplier, showing a delay of 62.84 ns (15.9 MHz).

For the area objective estimation equations, the forms of the functions fi,k(Pi) 

in equation (3.3) were determined by studying the relationships between each of 

the RISC processor’s parameters and the resulting area and critical path  delay data 

collected from the param eter sweep results. The effects on the to tal equivalent LE 

utilization and the critical path  delay of the processor for each param eter were studied 

individually.

Area Utilization

Figure 5.1 contains graphs showing the relationships between the to tal area of the 

processor and each of the 11 parameters. In general, these relationships followed fairly 

predictable patterns. Based on the results, the following observations were made:

•  The ALU and branch adder implementation parameters had only a minor ef­

fect on the total area of the processor. At most, the carry-lookahead adder 

contributed only 2  extra LEs to the to tal count. Since there are only two possi­

bilities for these two parameters, the relationships between them and the total 

FPGA area utilization were assumed to be linear.

•  The implementation parameters for the arithmetic shifter, the logical shifter, 

and the rotator affect the to tal area of the processor significantly. The basic 

shifter adds a few LEs to the processor: anywhere between 10 and 43 LEs for 

the arithmetic shifter, 19 to 42 LEs for the logical shifter, and 10 to 41 for
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the rotator, depending on the D ata Width. As can be expected, the barrel 

versions of each shifter are considerably larger than their “basic” counterparts. 

The arithmetic barrel shifter can add anywhere between 61 to 758 LEs, the 

logical barrel shifter adds 56 to 745 LEs, and the barrel rotator adds 58 to 

838 LEs to the processor, again depending on the D ata W idth parameter. The 

relationships between these three implementation param eters and the to tal area 

were modeled using exponential functions.

•  The total equivalent LE usage increases exponentially as the the bit-width of the 

data  and instruction memory addresses increase. The “kinks” in the curves for 

the D ata Address W idth param eter are due to the fact th a t some of the FPGA 

memory resources tha t are occupied by the processor, such as the M4Ks and 

M-RAM blocks, are only partially utilized by some configurations. As the D ata 

Address W idth increases, more and more of the partially-full memory resource 

is filled until the whole block is occupied, making it necessary to use additional 

memory blocks and resulting in a “jum p” in the to tal equivalent LE usage.

•  As expected, the data width param eter causes an exponential increase in the 

to tal area of the processor as the param eter is increased.

•  The integer multiplier was implemented using the S tratix DSP blocks, plus 

some additional LEs. Anywhere from 1 to 32 DSP blocks were utilized, and an 

additional 11 to 311 LEs were added by the multiplier, depending on the data  

width parameter. The relationship between the integer multiplier param eter 

and total equivalent LE count was considered to be linear.

•  The Operand W idth parameter, which directly affects the number of general- 

purpose registers included in processor, has an extremely significant impact on 

the total size of the processor. For instance, if the Operand W idth is set to  8  

bits, giving a total of 512 registers, then an additional 6,383 LEs and one extra
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M512 memory block are added to the total resource count of the 8 -bit processor 

variant. These numbers increase further as the size of the D ata W idth param eter 

increases. Again, the relationship between the Operand W idth param eter and 

the total area of the processor can be approximated by an exponential function.

•  The pipelined parameter has only a negligible effect on the size of the processor 

and can be approximated by a simple linear function. This is due to the fact 

tha t only a small amount of hardware (about 10 equivalent LEs) is added to the 

RISC processor when it is pipelined. However, this would not be the case with 

a more complex processor, which may require additional hardware for branch 

prediction, data  forwarding, and pipeline stalling.

•  Almost all of the parameters have a soft interdependency relationship with the 

data  width parameter. The amount tha t a parameter affected the final area of 

the processor was often proportional to the data width of the processor. There­

fore, in order to increase the accuracy of the objective estimation equations, 

several of the terms in the area objective estimation equation were scaled by 

the data width parameter.

Critical Path Delay

Figure 5.2 contains graphs depicting the relationships between the critical path delay 

and the processor parameters. As can be seen from the figures, the critical path delay 

generally did not follow any predictable patterns and was therefore more difficult to 

estimate accurately. Therefore, to increase the accuracy of the estimates, the rela­

tionships between all of the parameters, except for the branch adder implementation, 

the include multiplier, and the pipelined parameters, were modeled using base 1 0  or 

base 2 logarithmic functions. As would be expected, the pipelined param eter had the 

greatest positive effect on the critical path  delay of the processor, reducing the delay 

by at least 1 0  ns in all cases.
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Table 5.3: Regression Coefficients for RISC CPU

P a ra m e te r i at, 1 
(Area)

Oi, 2 
(Delay)

fi,i(Pi)
(Area)

f iA P i ) 
(Delay)

- 0 198.86 17.52 - -
ALU Adder 
Implementation (pQ 1 -25.28 -1.03 Pi logio(Pi)

Arithmetic Shifter 
Implementation (p2) 2 0.00014p5 4.59 99 P2 loglo(P2)

Branch Adder 
Implementation (p3) 3 -80.73p5 0.95 P3 P3

D ata Address W idth (P4 ) 4 14.11p5 0 .2 1 1.5P4 logl0 (P4)
D ata W idth (p5) 5 15.46 1.73 2.3P5 2 .1 2 P6

Include Multiplier (p6) 6 89.44p5 6.33 P6 Pa
Instruction Address 
W idth (p?) 7 4.33 0 .6 8 1.99P7 logio(P7)

Logical Shifter 
Implementation (p8) 8 0.00014p5 3.74 9 9 P8 logio(P8 )

Operand W idth (p9) 9 12.22 x 1.98P5 2.55 2P9 log2 (pg)
Pipelined (pi0) 1 0 -52.86 x l . P 5 -11.44 P10 P10
Rotator
Implementation (pn)

11 0 .0 0 0 2 0 p5 2.30 90 vn logio(Pn)

5.2.2 D eterm ining the Final O bjective Estim ation Equations

Some trial and error was necessary to determine the exact forms for all of the functions 

fi,k(Pi) f°r each parameter. After these functions were determined, P-dimensional 

regression analysis was applied to the param eter sweep data in order to  compute the 

a^k coefficients in equation (3.3). The final functions and coefficients used in the area 

and delay estimation equations are listed in Table 5.3.

5.2.3 Testing the O bjective Estim ation Equations

The accuracy of the area and delay estimation equations was first tested using the 

146 parameter sweep configurations used to establish the equations. The “actual” 

values obtained from compilation data  collected from Quartus II were compared with
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the estimated values tha t were computed using the established objective estimation 

equations. Graphs comparing the actual values to the estimated values of area and 

critical path  delay for the 146 sweep configurations is shown in Figure 5.3. As can be 

seen in Figure 5.3(a), the estimated area values correlate well with the actual values, 

showing an average percentage error of 10.1%. The delay estimates also track the 

actual values reasonably well, with an average percentage error of 11.7%, as shown 

in Figure 5.3(b).

Next, the equations were tested to determine their accuracy for any arbitrary con­

figuration. For this test, a set of 50 individuals was randomly generated and compiled 

with Quartus II. Nine of these configurations failed to compile, so the remaining 41 

configurations were used as test points. Again, the compilation data  obtained for 

these 41 configurations were compared to the approximated values th a t were deter­

mined using the estimation equations. Graphs comparing the actual and estimated 

values for area and delay are shown in Figure 5.4. As can be seen from the figure, the 

area equation provides better overall estimates than does the delay equation; however 

they are both still within reasonable tolerances. The average error was 13.3% for the 

area estimates and 16.4% for the delay estimates.

These experiments serve to demonstrate the inherent difficulty with estimating the 

critical path  delay of an arbitrary parameterized core. This difficulty is due to the 

fact tha t a number of different factors affect the critical path  delay of a core, including 

the implementation of the core’s underlying components, the placement of the circuit 

on the FPGA, the routing running between the various parts of the core, etc. By 

contrast, the FPGA area utilization of a core is easier to estimate accurately, because 

many of the parameters affect the to tal area of a core in a regular and predictable 

manner.

Another comment tha t can be made about these results is tha t a tradeoff exists be­

tween the accuracy of the estimated objective values and the amount of computation
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Actual and Estimated Area Values - Sweep Configurations
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Figure 5.3: Actual and Estimated Values for Sweep Configurations
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Actual and Estimated Area Values - Random Configurations
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Figure 5.4: Actual and Estimated Values for Random Configurations
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required to obtain those values. In general, more accurate estimations can be made at 

the expense of longer computation times. The goal of the regression-based objective 

estimation technique used in this research is to produce a set of estimation equations 

tha t can be evaluated quickly and easily. However, the light computation workload 

required by this method does come at the cost of reduced estimation accuracy. In ad­

dition, an up-front investment of time and effort is also necessary to produce enough 

real sythesis data in order to establish these equations. In future work, different ob­

jective estimation techniques may be applied in order to increase the accuracy of the 

estimates and remove the need to generate a set of sweep configurations.

5.3 D esign  Space E xploration

The SEAMO algorithm was applied to a population of randomly-generated config­

urations in order to determine an approximation of the Pareto-optimal set. In this 

section, the results of this experiment are presented.

5.3.1 A lgorithm  Param eters

The set of 50 configurations (of which 9 failed to  compile) th a t was generated previ­

ously to test the objective estimation equations was also used as the initial population 

for this exploration experiment. Suitable values of the crossover and m utation rates 

were determined experimentally. The crossover and m utation rates were both var­

ied between 0.1 and 1.0, and the resulting evolved population was observed. It was 

determined tha t a value of 0 .1  for the crossover rate and 0 .2  for the m utation rate 

provided the greatest diversity of configurations in the evolved population. Finally, 

the number of generations of the algorithm was set to 2 0 .
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Initial and Evolved Populations
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Figure 5.5: Initial and Evolved Populations

5.3.2 Results

Using the algorithm parameters mentioned above, the SEAMO algorithm was ap­

plied to the initial population of 50 configurations (including the nine configurations 

tha t failed to compile). After 20 generations of the algorithm, the population began 

to converge toward an approximation of the Pareto-optimal set. Each of the con­

figurations in the resulting evolved population was compiled using Q uartus II (see

A p p e n d ix  C for th e  ta b le  o f  r e su lts ). A  v isu a l co m p a riso n  o f  th e  in it ia l an d  th e  

evolved populations (using the actual values collected from the compilation reports), 

is shown in Figure 5.5.

As can be seen in the figure, the majority of the configurations in the evolved
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Table 5.4: Number o: 

Value

10

11

Occurrences of Each Parameter Value in the Evolved Population

P i

23

27

P2

25

17

Pi

40

10

P i P 5

26

15

P e_

39

11

P 7 P 8_

21

17

12

13

P 9

19

15

P io

47

Pn

21

16

13

population tend to cluster around the lower left corner of the design space, approx­

imating the Pareto-optimal front. The variability in the evolved population is due 

to  the inaccuracies present in the objective estimation equations used to evaluate 

each configuration. If more accurate estimation methods were used, then the evolved 

population would form a smoother curve along the lower-left boundary of the design 

space.

5.4 C onclusions D raw n From  R esu lts

In Table 5.4, the number of occurrences of each param eter value in the evolved pop­

ulation are listed. A number of observations can be made from this table:

• There are roughly the same number of configurations with the ALU adder im­

plemented using a ripple-carry structure as with a carry-lookahead implementa-
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tion. However, the SEAMO algorithm tended to heavily favour the ripple-carry 

implementation for the branch adder.

•  In roughly half the configurations, the arithmetic and logical shifters and the 

rotator were completely eliminated. For the remaining configurations, the barrel 

implementation was the favoured choice for the arithmetic shifter, and there 

was a slight bias toward the basic implementation for the logical shifter and the 

rotator.

•  There appears to be a roughly even distribution of data  and instruction address 

widths across the whole population.

•  The integer multiplier was removed in the majority of the configurations. Only 

11  configurations featured hardware multiplication support.

•  The SEAMO algorithm tended to eliminate configurations tha t had longer 

operand widths (and therefore larger register files). This is unsurprising, con­

sidering the fact tha t the operand width parameter contributes significant area 

to the processor when its value is large.

•  As would be expected, 47 out of 50 configurations were pipelined. This is 

because of the dramatic improvement tha t the pipelined param eter makes to 

the critical path  delay of the processor with only a minimal increase in area.

These experiments have shown tha t utilizing a genetic-based approach to  prune 

the design space of a parameterized core can be helpful in assisting a designer making 

decisions regarding the selection of param eter values for a parameterized hardware 

platform. Coupled with an accurate configuration evaluation methodology, the ge­

netic algorithm helps to eliminate the sub-optimal configurations from consideration, 

yielding a much smaller set of configurations from which to choose. Designers can then
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choose one configuration from the pruned set tha t satisfies their application-specific 

design constraints.

5.5 Sum m ary

In this chapter, the results of several experiments involving the SCBuild CAD tool 

and a simple RISC processor were presented. First, a total of 146 different “parame­

ter sweep” configurations were generated and compiled in order to provide sufficient 

definition to  the processor’s design space so tha t equations could be established tha t 

provided reasonably accurate estimations of the FPGA area utilization and critical 

path  delay of any arbitrary configuration. After the exact forms of the area and delay 

estimation equations were determined, their accuracy was tested using a set of 41 

randomly-generated configurations. It was discovered tha t the equations provided 

reasonably accurate estimations of the area and delay for the configurations tested— 

within 13.3% for area and 16.4% for delay. Next, the SEAMO algorithm was applied 

to a population of 50 random configurations for 20 generations. The evolved popula­

tion showed significant overall improvement in both the area and delay objectives.

The next chapter concludes this thesis by providing a summary of the research 

contributions made by this work. In addition, a discussion of some of the future work 

tha t remains to be done in this area is also presented.
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C hapter 6

Conclusions and Future Work

As long as the rate of growth in the complexity of embedded systems continues to 

increase at its present pace, new technologies, design techniques and methodologies 

will continue to be developed to meet the challenges th a t this growth in complex­

ity presents. An emerging technique known as platform-based design has generated 

a good deal of interest in recent years, due mainly to its emphasis on the use of 

pre-designed and pre-tested IP cores as hardware platforms upon which to build de­

signs. This thesis presented an investigation of one particular platform-based design 

technique: genetic algorithm-based design space exploration using parameterized soft- 

cores. After providing the relevant background material, the results of a preliminary 

case study involving the SEAMO genetic algorithm and the Altera Nios param e­

terized soft-core processor were presented. From this study, it was concluded tha t 

applying a genetic-based algorithm to a parameterized core with a sizable design space 

can be helpful in narrowing down the number of design configurations tha t must be 

considered by the designer when selecting one for a particular application.
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In Chapter 4, the design and implementation of SCBuild, a CAD tool which in­

corporates the techniques investigated during the case study, were discussed in some 

detail. In Chapter 5, the results of a set of experiments carried out using SCBuild and 

simple parameterized RISC processor were presented. From these results, a number 

of observations were made. First, it is comparatively easier to predict the final imple­

mented area of a given core than  it is to estimate its critical path  delay. This is due 

to the numerous factors tha t affect the critical path  delay of a circuit implemented on 

an FPGA. Second, it was concluded th a t utilizing a genetic-based approach, coupled 

with accurate objective estimation models, can help an embedded systems designer to 

make intelligent decisions regarding the assignment of values to the parameters of an 

embedded hardware platform. It does this by pruning uninteresting and sub-optimal 

configurations from the design space and returning the set of Pareto-optimal config­

urations, allowing the designer to select one configuration from tha t set tha t satisfies 

the requirements of the intended application. Finally, some observations were made 

regarding the exploration of the design space of the simple RISC processor.

6.1 Sum m ary o f  R esearch C ontributions

The following contributions were made over the course of this research:

1. A preliminary case study was conducted in which the feasibility of applying a 

genetic algorithm-based approach to parameterized soft-core hardware compo­

nents was investigated.

2. A technique for estimating the objective values (i.e. FPGA area utilization 

and critical path  delay) given a set of param eter values was examined and ap­

plied to several soft-core components. Using this technique, reasonably accurate 

estimations were made for both area and delay of the cores tha t were tested.
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3. SCBuild, a software-based CAD tool, was developed which utilizes the explo­

ration and objective estimation approaches tha t were investigated during the 

preliminary case study. The tool is capable of exploring the design space of a 

parameterized soft-core using the SEAMO algorithm, it can generate structural 

VHDL descriptions of core variants given a user-selected set of param eter val­

ues, and it is able to provide estimates of the FPGA area utilization and critical 

path  delay of the final logic circuit. SCBuild helps to lay the groundwork for a 

more thorough and detailed investigation of the soft-core processor design space 

targeting FPGAs to be conducted. During the the development of SCBuild, a 

number of contributions were made:

(a) A unique text-based file format was created in conjunction with the de­

velopment of SCBuild, which allows descriptions of “tem plate” cores to 

be created. SCBuild can potentially generate thousands, millions or more 

of different variant VHDL implementations of a soft-core from a single 

template description.

(b) UML models were created to  represent the structure of soft-core hardware 

components at the System, Algorithm and RTL levels of abstraction.

4. A parameterized template description of a simple pipelined RISC processor was 

created, and several design space exploration experiments were carried out with 

it using SCBuild.

6.2 Future W ork

The research work presented in this thesis can be extended in a variety of ways. First, 

a number of new features could be added to SCBuild tha t would enable it to  automate 

a greater number of design tasks. For instance, the tool could be extended so tha t
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it is able to automatically generate the necessary control logic for a processor given 

a datapath  template description and a set of parameter values. A greater number of 

tasks can also be automated using Tel scripts—automatic compilation of the cores 

generated by SCBuild and reporting of the synthesis results are just the beginning of 

what is possible to accomplish using this method.

Adding more accurate objective estimation techniques would also be another way 

of improving the quality of the results generated by SCBuild. At its present state, 

a fair number of “representative” variants of a processor core must be generated by 

SCBuild and synthesized in order to  provide enough definition to the design space to 

make accurate estimations of a core’s FPGA area utilization, critical path delay, etc, 

for any arbitrary configuration. These estimations provide some useful information 

tha t helps to determine which configurations are “good” universally speaking: however 

they make no indication of how well or how poorly a specific software' application 

would run on a given processor variant. Later versions of SCBuild could include a 

simulation framework, similar to th a t found in the Platune system [30] for example, 

tha t could compute estimates of the run-times of software applications on particular 

processor configurations.

New tools could be developed th a t would help to supplement the work performed 

by SCBuild. As was discussed in Chapter 4, a Template Architect Tool could be 

developed tha t would allow a designer to quickly and easily create parameterized 

Template Descriptions of soft-cores by dragging and dropping Template Components 

from a library. Another interesting avenue to explore would be the development of a 

software code profiling tool tha t can analyze a given software application written in 

C /C + +  or some other high-level language and call SCBuild to automatically create a 

customized processor tha t is optimized to run th a t software program [58, 15]. SCBuild 

could also generate a compiler and assembler tha t is customized for the particular 

processor variant for which the software application is targeted.
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One major addition to SCBuild could be in the area of high-level synthesis [50]. 

Since the tool manipulates descriptions of a core at the various levels of abstraction, it 

may be possible to add functionality tha t allows it to automatically translate a higher- 

level description (System or Algorithm) into an RTL description without the aid of 

a pre-existing template. Other exploration algorithms may also be investigated and 

compared with one another to see which one proves the most useful in assisting in the 

process of deriving an application-specific processor given a parameterized processor 

core.

Finally, a broader exploration of the soft-core processor design space targeting 

FPGAs can be conducted. A wider variety of architectural features can be exam­

ined, including cache sub-systems, branch prediction schemes, floating-point support, 

various pipeline architectures, custom instruction support, functional unit implemen­

tations, interrupt and exception handling and others. Also, parameterized multi­

processor hardware platforms and the various accompanying implementation issues 

would prove to  be a useful course of study.
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A ppendix A  

Details of the SCBuild, Template 

Description File Format

Each file in the template description contains an XML [74] description of one template 

component. Template components are abstract hardware components tha t describe 

a class of hardware modules rather than just a single concrete component. Template 

components fall into two categories: primitive and aggregate components. Figures 

A .l and A.2 show example skeleton XML descriptions for each of these two categories.

Aggregate components are those components th a t are made up of one or more 

sub-components, while primitive components are singular modules th a t do not have 

sub-components. Every template component description, regardless of whether tha t 

component is aggregate or primitive, contains information on the component’s name 

and parameters. The <param eters> declaration section can contain numerous pa­

rameter definitions, each of which has the form shown in Figure A.3.

The param eter type can be either “scalable” , “implementation” or “general” .
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<component>
<name>...</name>
<ports>

</ports>
<parameters>

</parameters>
<sub_components>

</sub_components>
</component>

Figure A .l: Aggregate XML Template Component Descriptions

<component>
<name>...</name>
<parameters>

</parameters>
<implementations>

</implementations>
</component>

Figure A.2: Primitive XML Template Component Descriptions

<parameters>
<parameter>

<name>parameter_name</name>
<type>parameter_type</mode>
<values>vl, v2, ...</values>
<default_value>def_value</default_value>

</parameter>

</parameters>

Figure A.3: An Example Parameter Declaration
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Scalable type parameters are numerical parameters tha t are used to represent variable 

bit-widths within a component and correspond directly to the “generic” constants 

used in VHDL entity declarations [54], or “param eter” statem ents in Verilog [55]. 

Implementation type parameters are used to select which component from the VHDL 

Component Library to instantiate in the final VHDL description of the core. Lastly, 

General type parameters are an open-ended param eter category tha t can be used for 

various purposes to alter the underlying structure of the parameterized core.

Each param eter must have a set of possible values specified within its declaration. 

These can be given either as a set of discrete comma-separated values, or, if the 

param eter is a Scalable type, a range of values can be given (for example, the values 

can be specified as “1 to 10” ). Finally, each param eter must have a default value tha t 

is used when a value is not explicitly assigned to the param eter when the template 

component is instantiated.

A .l  P rim itive  T em plate C om ponent D escrip tions

Each primitive template component can be linked to any number of “physical” imple­

mentations from the VHDL Component Library. As shown in Figure A.2, primitive 

template components have a special section called <im plem entations>. In this sec­

tion, the various VHDL implementations tha t the template component has are listed. 

An example <im plem entations> section is shown in Figure A.4.

If there is more than one possible implementation for a given template component, 

then these implementations should be linked with one of the Implementation type pa­

rameters declared in the <param eters> section discussed above. The <parameter> 

field in the <im plem entations> section specifies the param eter to  which the imple­

mentation of tha t component is linked. If this field is missing, SCBuild will simply 

use the first implementation th a t it finds in the section. The <im plem entations> 

section also has many <im plem entation> fields, and each of these fields provides the
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< im plem entat i  ons >

<param eter>param eter_nam e</param eter>

< implement a t  i  on>
<name>im plem entation_nam e</name>
<f i le > f  ile_nam e.vhd</f i le >

< /im p lem en ta tio n

</im plem entations>

Figure A.4: An Example Implementation Declaration

<ports>
<port>

<name>port_name</name>
<mode>port_mode</mode>
<w idth>port_bit_w idth< /w idth>

< /po rt>

< /p o rts>

Figure A.5: An Example Port Declaration

implementation with a name and the name of the VHDL file in which the implemen­

tation can be found. In order to properly link an Implementation type param eter to 

the listed implementations in the section, tha t parameter must have the names of all 

listed implementations in its <values> field.

A .2 A ggregate T em plate C om ponent D escrip tion s

Aggregate component descriptions contain information on the component’s ports and 

sub-components. A component’s <ports>  declaration section can contain as many 

ports as needed. These ports define the interface to the component. An example port 

declaration section is given in Figure A.5.
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<sub_ component s >
<sub_component>

<name>sub_cmptl</name>
<f ile>sub_cm pt_f ile_nam e.xm l</f i le >

</sub_component>

<param eter_m ap>sub_cm ptl.pi = vl</param eter_map> 
<parameter_map>sub_cmpt2 .p 2  = paren t_cm pt.p 2 </parameter_map>

<port_m ap>sub_cm ptl.portl = sub_cmpt2 .p o r t2 </port_map> 
<port_m ap>sub_cm ptl.port2  = p a ren t_ cm p t.p o rt2 </port_map>

< if  co n d itio n  = "expression">

< /if>
< /sub_components>

Figure A.6 : An Example of a Sub-Components Section

Each port in the port declaration section must include a  name for the port, the 

po rt’s mode (which can either be “in” or “out”), and the p o rt’s bit-width, which can 

either be an integer or an expression containing the names of one or more “scalable” 

type parameters.

Template components can be constructed by instantiating smaller template com­

ponents as sub-components and specifying the connections between the ports of the 

sub-components. As shown in Figure A .l, aggregate template component descriptions 

have a special <sub_components> section where the sub-components are instantiated 

and connected together. In Figure A.6 , an example <sub_components> section is 

given.

Individual sub-components are instantiated in the <sub_component> field, where 

the name of the sub-component instance and the XML file name of the instantiated 

template component are provided. The <parameter_map> statem ents are used to map 

each sub-components’ parameters to specific values or to link the param eter with one
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of the parent component’s parameters. If a sub-component’s param eter is linked to 

one of the parent’s parameters, then whatever value the parent param eter receives 

will automatically be mapped to the sub-component’s param eter as well. In this way, 

a parameter th a t may be buried deep within the hierarchy of sub-components may 

be made visible to a higher level component. The <port_map> statem ents are used 

to connect the ports of each of the sub-components together to create a complete 

circuit. A sub-component’s port may be mapped to one or more ports of other sub­

components, or to one of the parent component’s ports.

One of the most significant features of the sub-components section are the con­

ditional < if  > statements. These statem ents can be used to make potentially drastic 

changes to the underlying structure of an aggregate component based on the val­

ues given to particular parameters. The “condition” attribute in the opening < if>  

tag is a Boolean expression containing the names of one or more of the the par­

ent component’s parameters. If the condition evaluates to "true" then all of the 

statements present in between the opening and closing < if>  tags are executed. All 

three types of statements mentioned above—<sub_component>. <port_map>. and 

<parameter_map>—can be included in an < if>  block, therein- allowing the structure 

of the aggregate component to be significantly different depending 011 the values of 

the parameters named in the condition. There is no limit on the number of <if>  

blocks th a t can be present under the <sub_components> section.

A .3 T he P aram eter D ep en d en cies F ile

It is quite common for parameters of a core to  share hard interdependencies with one 

another. SCBuild can be provided with a Parameter Dependencies file th a t contains 

the necessary information on each param eter interdependency. In this file, depen­

dency relationships between pairs of parameters are declared, and their dependency 

tables are defined. An example dependency relationship definition is shown in Figure
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<dependency>
<dependent_parameter>multiplier</dependent_parameter> 
<independent_parameter>data_width</independent_parameter> 
<if data_width = "-">multiplier = -</if>
<if data_width = "16">multiplier = software</if>
<if multiplier = "software">data_width = 32</if>
<if multiplier = "MSTEP">data_width = 32</if>
<if multiplier = "MUL">data_width = 32</if>

</dependency>

Figure A.7: Example of a Dependency Relationship Definition

Table A .l: Dependency Lookup Tables for D ata W idth and Multiplier Parameters
D ata W idth M ultiplier

- -
16-bit Software

32-bit Software, 
MSTEP, MUL

M ultiplier D ata W idth
- -

Software 16, 32-bit
MSTEP 32-bit

MUL 32-bit

A.7.

In this example, the dependent and independent parameters are both listed. The 

< if>  statements define the elements of the dependency table. Internal to  SCBuild, 

the dependency table is actually stored as two separate one-way lookup tables—one 

for the dependent parameter and the other for the independent parameter. These are 

depicted in Table A.I.

The first entry in each of these tables is the default null value. Each System- 

level parameter, regardless of whether or not it has any dependency relationships, has 

this value as one of its possible values. When a parameter is set to the null value, it 

essentially means tha t the param eter is “unset” . The remaining entries in the tables 

contain the valid values of the second param eter for each possible value of the first 

parameter.
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A. DETAILS OF THE SCBUILD TEMPLATE DESCRIPTION FILE FORMAT

< objective>
<name>area</name>
<im provem ent> sm aller_better< /im provem ent 
<const_coef> 1 0 .l< /co n st_ co ef>

<term>
<param eter>data_w idth< /param eter>
<function>data_w idth**2 < /fu n c tio n >
< c o e ff ic ie n t> 2 .5 < /c o e ff ic ie n t>

</term >

< /o b jec tiv e>

Figure A.8 : An Example of an Objective Estimation Equation Definition in the 
Objectives File

A .4 T he O bjectives F ile

The Objectives file stores the declarations for each objective estimation equation tha t 

will be evaluated during design space exploration. Expressed in its most general form, 

each objective estimation equation has the form given in equation (3.3). A declaration 

in the Objectives file includes information on the functional form fi,k(Pi) and the 

regression coefficient for each term  of every objective function. An example of an 

objective estimation equation definition is shown in Figure A.8 .

Each objective is given a unique name (e.g. “area”). The type of improvement 

is specified (either “smaller-better” or “larger_better”), because some objectives im­

prove when their values decrease, while others improve when they increase. The 

<const_coef> element stores the value of the ao.fc coefficient from equation (3.3). In­

formation on each term of the objective estimation equation is stored in the <term> 

se c t io n s  o f  th e  file. T h e  < p a r a m e te r >  fie ld  sp ec ifies  w h ich  S y s te m -le v e l p a ra m eter  

the variable Pi in the term corresponds to. The <function>  field provides the form 

of function fi^iPi) m equation (3.3) and the Ccoeff ic ie n t>  element stores the 

coefficient for each term. Each objective estimation equation can have any number
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A. DETAILS OF THE SCBUILD TEMPLATE DESCRIPTION FILE FORMAT

<system>
< tem p la te_ file s>

< f i le > f i le l .x m l< /f i le >
<f i le > f  i l e 2 .xml</f ile >

< /tem p la te_ f i le s>
< o b je c t iv e s _ f ile > o b je c tiv e s .x m l< /o b je c tiv e s _ f ile >  
< dependencies_ file> dependenc ies.xm l< /dependencies_ file>  

</system >

Figure A.9: An Example of an System File Listing 

of terms as long as the system has the corresponding set of parameters.

A .5  T he S ystem  F ile

The System file stores the names of all of the template component files, as well as 

the names of the Parameter Dependencies file and the Objectives file for a given core 

in a single location. When users of SCBuild wish to load a particular tem plate de­

scription, then they must provide the program with the name of the System file. An 

example System file listing is shown in Figure A.9. Under the < tem plate_f i le s >  

section, the names of all of the XML template component files are listed. All of the 

template component files must be listed in this section in order for SCBuild to recog­

nize them. The < o b jec tiv e s_ f i le >  element stores the Objectives file name, and the 

<dependencies_f i le >  element contains the name of the Param eter Dependencies 

file.
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A ppendix  B

Description of the RISC  

Processor Template

The parameterized RISC processor template used in this research is a modified version 

of the pipelined RISC CPU presented by Mano and Kime [48]. The following is a 

brief description of the processor template model used during this research. See Mano 

and Kime’s book for a more detailed discussion of the processor’s design.

B . 1 Param eters

The RISC processor template features the parameters listed in Table B .l. The D ata 

W idth of the processor can be set to either 8 , 16, 32 or 64 bits and both the D ata and 

Instruction Address W idths can be varied between 5 and 15 bits, giving anywhere 

between 32 and 32,768 words of data and instruction memory, respectively. The ALU 

can be configured with or without a full combinational hardware multiplier using the
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B. DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

Table B .l: RISC Processor Hardware Parameters
Parameter Possible Values

ALU Adder Implementation (pi) (1) Ripple-carry, (2) Carry-lookahead

Arithmetic Shifter Implementation (p2) (1) None, (2) Basic, (3) Barrel

Branch Adder Implementation (P3) (1) Ripple-carry, (2 ) Carry-lookahead

D ata Address W idth (^4 ) (1-11) 5 to 15 bits

D ata W idth (ps) (1) 8 , (2) 16, (3) 32, (4) 64 bits

Include Multiplier (p6) (1) False, (2) True

Instruction Address W idth (p?) (1-11) 5 to 15 bits

Logical Shifter Implementation (pg) (1) None, (2) Basic, (3) Barrel

Operand W idth (pg) (1-8) 2 to 9 bits

Pipelined (pio) (1) False, (2) True

Rotator Implementation (pn) (1) None, (2) Basic, (3) Barrel

Include Multiplier parameter. Both the and the ALU adder and the branch adder 

can be implemented using either a ripple-carry or a carry-lookahead structure. Three 

different types of shifters are also available: an arithmetic shifter, a logical shifter, and 

a rotator. Any or all of these shifters can be optionally included with the processor, 

and each can be implemented as “basic” shifter (allowing a shift of only one position 

per clock cycle), or as a barrel shifter (enabling the shifting of operands multiple 

positions in a single clock cycle). Finally, pipelined and unpipelined variants of the 

processor can be generated by setting the value of the Pipelined param eter to “true” 

and “false” respectively.
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B. DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

Three-Register OPCODE DR SA SB UNUSED
i i l I l l I I I l

7 bits
i i i  i
------------- .— ■—  6 o r  10 bi ts d epend ing

Operand  Width 0 n O p erand  Width

Two-Register OPCODE DR SA IMMEDIATE
1 1 i i 1 I i i

7 bits
1 1 

Operand  Width

i
6 + O p era n d  Width or 
1 0 + O p era n d  Width

Branch OPCODE DR SA TARGET OFFSET
i i i i 1 1 1 i

i i i i
7 bits 6 + O p era n d  Width or

O perand  Width 1 0 + O p era n d  Width

Figure B.l: Instruction Formats for the RISC Processor

B .2  Instru ction  Set

The RISC processor has three different instruction formats: three-register, two- 

register, and branch. These formats are illustrated in Figure B .l. In all cases, the 

opcode is 7 bits wide. The widths of the operand fields, DR, SA and SB, all depend 

directly on the value of the Operand W idth parameter. Additionally, the widths of 

the Unused, Immediate and Target Offset fields depend on the Operand W idth pa­

rameter as well, only indirectly. If the Operand W idth is less than  or equal to 7 bits, 

then the Unused field is 10 bits wide, and if it is greater than 7 bits, then the Unused 

field is only 6  bits wide. The core was designed this way so th a t configurations uti­

lizing large amounts of instruction memory with wide operand widths would fit onto 

a Stratix EP1S40F780C5 FPGA  [8 ],

T h e  in str u c t io n  se t  o f  th e  RISC p ro cesso r  fea tu r es  38  d ifferen t in s tr u c t io n s  for 

performing arithmetic, logic, shift, branch, and memory operations. It also features 

one “trap” instruction, which asserts a trap  output signal, which can be used to 

indicate the end of program execution or other exceptional conditions. Table B.2
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B. DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

lists the instructions supported by the RISC processor.

Table B.2: RISC Processor Instructions

O pcode Sym bol F o rm a t D esc rip tio n
0 0 0 0 0 0 0 NOP 3-Reg No Operation
0 0 0 0 0 0 1 ADD 3-Reg Add register
0 0 0 0 0 1 0 SUB 3-Reg Subtract Register
0 0 0 0 0 1 1 SLT 3-Reg Set Less Than
0 0 0 0 1 0 0 MLL 3-Reg Multiply Low
0 0 0 0 1 0 0 MLH 3-Reg Multiply High
0 0 0 0 1 0 1 MLI 2 -Reg Multiply Low Immediate
0 0 0 0 1 1 0 MHI 2 -Reg Multiply High Immediate
0 0 0 1 0 0 0 INC 3-Reg Increment
0 0 0 1 0 0 1 DEC 3-Reg Decrement
0 0 0 1 0 1 0 LSL 2 -Reg Logical Shift Left
0 0 0 1 0 1 1 LSR 2 -Reg Logical Shift Right
0 0 0 1 1 0 0 ASL 2-Reg Arithmetic Shift Left
0 0 0 1 1 0 1 ASR 2-Reg Arithmetic Shift Right
0 0 0 1 1 1 0 ROL 2-Reg Rotate Left
0 0 0 1 1 1 1 ROR 2-Reg Rotate Right
0 0 1 0 0 0 0 AND 3-Reg Bitwise AND
0 0 1 0 0 0 1 OR 3-Reg Bitwise OR
0 0 1 0 0 1 0 XOR 3-Reg Bitwise XOR
0 0 1 0 0 1 1 NOT 3-Reg Bitwise Complement
0 0 1 0 1 0 0 ST 3-Reg D ata Memory Store
0 0 1 0 1 0 1 LD 3-Reg D ata Memory Load
0 0 1 0 1 1 0 ADI 2-Reg Add Signed Immediate
0 0 1 0 1 1 1 SBI 2-Reg Subtract Signed Immediate
0 0 1 1 0 0 0 ANI 2-Reg AND Immediate
0 0 1 1 0 0 1 ORI 2-Reg OR Immediate
0 0 1 1 0 1 0 XOR 2-Reg XOR Immediate
0 0 1 1 0 1 1 AIU 2-Reg Add Unsigned Immediate
0 0 1 1 1 0 0 SIU 2-Reg Subtract Unsigned Immediate
0 0 1 1 1 0 1 MOV 3-Reg Move
0 0 1 1 1 1 0 JMR Branch Jum p Register
0 0 1 1 1 1 1 BZ Branch Branch on Zero
0 1 0 0 0 0 0 BNZ Branch Branch on Not Zero
0 1 0 0 0 0 1 JMP Branch Jump

Continued on next page . . .
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11 DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

Table B.2 -  continued from previous page
O pcode Sym bol F o rm a t D e sc rip tio n
0 1 0 0 0 1 0 JML Branch Jump and Link
0 1 0 0 0 1 1 IMP 3-Reg Increment Memory Page
0 1 0 0 1 0 0 DMP 3-Reg Decrement Memory Page
0 1 0 0 1 0 1 TRP 3-Reg Trap

B .3  Structure

A block diagram of the RISC processor is shown in Figure B.2. A brief description 

of each of the processor’s components is provided here. The processor consists of 

four major components: the D atapath, Control Unit, Instruction Memory and D ata 

Random Access Memory (RAM). The word size of the processor can be set to 8 , 

16, 32 or 64 bits using the D ata W idth parameter, and the number of addressable 

locations in the D ata RAM and Instruction Memory can be set to any value between 

32 to 32,768 words by setting the D ata Address W idth and Instruction Address W idth 

parameters respectively.

If the D ata W idth is equal to the D ata Address W idth, then the D atapath ’s “D ata 

Address O ut” port is connected directly to the D ata RAM’s “Address” port. However, 

if the values of these two parameters are unequal, then one of two different components 

may be instantiated in order to interface the D atapath with the D ata RAM. If the 

value of the D ata W idth param eter is larger than  th a t of the D ata Address W idth 

parameter, then a Bus Interface component is used to connect the “D ata Address 

O ut” port on the D atapath with the “Address” port on the D ata RAM. The Bus 

Interface component simply connects two buses of unequal width together, leaving 

the extra input signals open. If the D ata W idth is less than the D ata Address W idth, 

then a Memory Controller component is instantiated instead. The purpose of this 

component is to make all of the space in the D ata RAM addressable through the use
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B. DESCRIPTION OF THE RISC PROCESSOR TEMPLATE

of “memory pages” . Since the width of the D ata Address Out port on the D atapath 

is less than the width of the Address port on the D ata RAM, not all of the words 

in the D ata RAM are addressable directly. Therefore, the D ata RAM is divided into 

2 {data.addressjwidth-data.w%dth) memory pages, with each page containing 2data-wultfl words.

Only one memory page is addressable a t a time. The Memory Controller contains a 

page register which points to  the current page of memory being accessed. The IMP 

and DMP instructions are used to increment and decrement the page register so tha t 

the entire space of data  memory can be addressed.

Pipelined and unpipelined variants of the processor can be generated by setting 

the Pipelined param eter to “true” and ’’false” respectively. The pipelined version 

of the processor contains the following four pipeline stages: Instruction Fetch (IF), 

Decode and Operand Fetch (DOF), Execute (EX), and Write Back (WB). Currently, 

there is no additional hardware for handling data and control hazards in the pipeline. 

Hazards must be handled in software by inserting NOPs in between instructions in a 

program.

B.3.1 D atapath

The D atapath component handles all of the data processing operations performed 

by the processor. See Figure B.3 for a block diagram of the Datapath. The two 

major components of the D atapath are the Register File and the Function Unit. If 

the Pipelined param eter is set to a value of “true” , then two pipeline registers are 

created as well: D O F/EX  and EX/W B.

The number of general-purpose registers in the Register File can be controlled 

using the Operand W idth param eter and is equal to 2operand-mdth. The first register, 

RO, always contains a value of 0, and writes to this register are invalid. The remaining 

registers can be used for any purpose.

The Function Unit contains the logic necessary to perform arithmetic, logical and
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Figure B.4: Function Unit Block Diagram

shift operations on data  stored in the general-purpose registers. A logic block diagram 

for the Function Unit is given in Figure B.4. The Function Unit consists of the 

ALU, the Shifter Unit and a Zero Detect circuit. The ALU performs arithmetic and 

logical operations on integer data, and can be configured with or without hardware 

multiplication using the Include Multiplier parameter. In addition, the ALU’s adder 

can be implemented using a either a ripple-carry or a carry-lookahead structure by 

setting the value of the ALU Adder Implementation parameter.

The Shifter Unit can be configured to optionally handle the arithmetic shift, logical 

shift and rotation operations. The Arithmetic Shifter Implementation, Logical Shifter 

Implementation and Rotator Implementation parameters control which shifters are 

included in the Shifter Unit, and whether their implementations will be “basic” or 

“barrel” .

B.3.2 Control Unit

The Control U n it  d e te r m in e s  w h ich  o p e r a tio n s  th e  D a ta p a th  will p erform  by fe tch in g  

instructions from the Instruction Memory and decoding them. The block diagram 

of the Control Unit is shown in Figure B.5. There are two configurable features on 

the Control Unit. First, the IR, PC Minus 1, PC Minus 2, D O F/EX  and EX/W B
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pipeline registers are added to the unit when the value of the Pipelined param eter is 

set to “true” . Second the implementation of the Adder can be set to either a ripple- 

carry or carry-lookahead structure by configuring the Branch Adder Implementation 

Parameter.
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A ppendix C

Synthesis Results for the RISC  

Processor Template

C .l  Param eter Sw eep R esu lts

Table C .l: Param eter Sweep D ata

Config. Pi P2 P 3 P 4 P 5 P 6 P 7 P8 P 9 P l O Pn elk (ns) Eq. LEs

0 1 1 1 1 1 1 1 1 1 1 1 2 1 .2 234.5

1 2 1 1 1 1 1 1 1 1 1 1 18.1 236.5

2 1 2 1 1 1 1 1 1 1 1 1 21.3 244.5

3 1 3 1 1 1 1 1 1 1 1 1 2 1 .6 295.5

4 1 1 2 1 1 1 1 1 1 1 1 2 0 .6 235.5

5 1 1 1 2 1 1 1 1 1 1 1 2 2 .1 234.5

Continued on next page . . .
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C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

Table C .l -  continued from previous page

Config. P i P 2 P3 P4 P5 P e P7 P& P9 PlO Pll elk  (ns) Eq. LEs

6 1 1 1 3 1 1 1 1 1 1 19.4 261.8

7 1 1 1 4 1 1 1 1 1 1 1 2 0 .8 261.8

8 1 1 1 5 1 1 1 1 1 1 1 19.7 261.8

9 1 1 1 6 1 1 1 1 1 1 1 19.2 311.6

1 0 1 1 1 7 1 1 1 1 1 1 1 21.3 408.2

1 1 1 1 1 8 1 1 1 1 1 1 1 19.7 601.4

1 2 1 1 1 9 1 1 1 1 1 1 1 2 0 .1 1770.3

13 1 1 1 1 0 1 1 1 1 1 1 1 19.6 1771.3

14 1 1 1 11 1 1 1 1 1 1 1 19.2 1772.3

15 1 1 1 2 1 1 1 1 1 1 24.8 338.5

16 1 1 1 1 3 1 1 1 1 1 1 33.0 552.8

17 1 1 1 1 4 1 1 1 1 1 1 50.8 977.6

18 1 1 1 1 1 1 1 1 1 1 23.6 268.87

19 1 1 1 1 1 1 2 1 1 1 1 2 0 .6 260

2 0 1 1 1 1 1 1 3 1 1 1 1 20.4 323.5

2 1 1 1 1 1 1 1 4 1 1 1 1 20.4 288.3

2 2 1 1 1 1 1 1 5 1 1 1 1 18.2 361.6

23 1 1 1 1 1 1 6 1 1 1 1 2 1 .1 495.3

24 1 1 1 1 1 1 7 1 1 1 1 20.3 737.3

25 1 1 1 1 1 1 8 1 1 1 1 2 2 .6 1218.3

26 1 1 1 1 1 1 9 1 1 1 1 25.8 2268.1

27 1 1 1 1 1 1 1 0 1 1 1 1 21.5 4282.7

28 1 1 1 1 1 1 11 1 1 1 1 26.2 8399.9

Continued on next page . . .
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C. SYNTHESIS RESULTS FOR THE RISC PROCESSOR TEMPLATE

Table C .l -  continued from previous page

Config. Pi P i Pz P i Ps P6 P7 Pz P9 Pio Pn elk (ns) Eq. LEs

29 1 1 1 1 1 1 1 2 1 1 1 2 2 .0 253.5

30 1 1 1 1 1 1 1 3 1 1 1 18.4 290.5

31 1 1 1 1 1 1 1 1 2 1 1 23.2 286.5

32 1 1 1 1 1 1 1 1 3 1 1 25.4 397.5

33 1 1 1 1 1 1 1 1 4 1 1 23.1 589.5

34 1 1 1 1 1 1 1 1 5 1 1 26.1 986.5

35 1 1 1 1 1 1 1 1 6 1 1 27.9 1805.5

36 1 1 1 1 1 1 1 1 7 1 1 28.7 3456

37 1 1 1 1 1 1 1 1 8 1 1 39.5 6638

38 1 1 1 1 1 1 1 1 1 1 9.5 249.3

39 1 1 1 1 1 1 1 1 1 1 2 18.6 244.5

40 1 1 1 1 1 1 1 1 1 1 3 20.7 292.5

41 1 1 1 2 1 1 1 1 1 1 23.3 336.5

42 1 2 1 1 2 1 1 1 1 1 1 25.0 352.5

43 1 3 1 1 2 1 1 1 1 1 1 23.8 477.5

44 1 1 1 2 1 1 1 1 1 1 25.2 339.5

45 1 1 1 2 2 1 1 1 1 1 1 24.3 366.8

46 1 1 1 3 2 1 1 1 1 1 1 25.0 366.8

47 1 1 1 4 2 1 1 1 1 1 1 23.1 366.8

48 1 1 1 5 2 1 1 1 1 1 1 24.6 414.6

49 1 1 1 6 2 1 1 1 1 1 1 24.0 510.2

50 1 1 1 7 2 1 1 1 1 1 1 24.2 701.4

51 1 1 1 8 2 1 1 1 1 1 1 27.8 1083.8

Continued on next page . . .
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Table C .l -  continued from previous page

Config. Pi P2 P'S P i P5 Pf> Pi P8 P9 Pio P n elk (ns) Eq. LEs

52 1 1 1 9 2 1 1 1 1 1 1 24.1 1869.3

53 1 1 1 10 2 1 1 1 1 1 1 2 2 .8 1869.3

54 1 1 1 11 2 1 1 1 1 1 1 24.3 1869.3

55 1 1 1 1 2 1 1 1 1 1 28.9 407.24

56 1 1 1 1 2 1 2 1 1 1 1 2 2 .8 360

57 1 1 1 1 2 1 3 1 1 1 1 24.4 423.5

58 1 1 1 1 2 1 4 1 1 1 1 24.0 414.8

59 1 1 1 1 2 1 5 1 1 1 1 25.1 506.6

60 1 1 1 1 2 1 6 1 1 1 1 24.2 596.3

61 1 1 1 1 2 1 7 1 1 1 1 25.1 8 8 6 .1

62 1 1 1 1 2 1 8 1 1 1 1 27.1 1416.9

63 1 1 1 1 2 1 9 1 1 1 1 34.3 2554.3

64 1 1 1 1 2 1 10 1 1 1 1 30.1 4782.1

65 1 1 1 1 2 1 11 1 1 1 1 - -

6 6 1 1 1 2 1 1 2 1 1 1 24.1 360.5

67 1 1 1 1 2 1 1 3 1 1 1 27.8 474.5

6 8 1 1 1 1 2 1 1 1 2 1 1 25.0 430.5

69 1 1 1 1 2 1 1 1 3 1 1 26.1 634.5

70 1 1 1 1 2 1 1 1 4 1 1 28.8 997.5

71 1 1 1 1 2 1 1 1 5 1 1 30.9 1780.5

72 1 1 1 1 2 1 1 1 6 1 1 34.1 3320

73 1 1 1 1 2 1 1 1 7 1 1 41.3 6459

74 1 1 1 1 2 1 1 1 8 1 1 51.5 12837

Continued on next page . . .
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Table C .l -  continued from previous page

Config. Pi P2 Pz P i Ps P6 P7 P8 P9 PlO P n elk (ns) Eq. LEs

75 1 1 1 1 2 1 1 1 1 2 1 13.3 347.3

76 1 1 1 2 1 1 1 1 1 2 27.5 348.5

77 1 1 1 1 2 1 1 1 1 1 3 25.0 480.5

78 1 1 1 3 1 1 1 1 1 1 31.1 553.8

79 1 2 1 1 3 1 1 1 1 1 1 33.4 574.8

80 1 3 1 1 3 1 1 1 1 1 1 36.6 877.8

81 1 1 1 3 1 1 1 1 1 1 34.1 553.8

82 1 1 1 2 3 1 1 1 1 1 1 31.6 552.8

83 1 1 1 3 3 1 1 1 1 1 1 30.0 552.8

84 1 1 1 4 3 1 1 1 1 1 1 30.0 600.6

85 1 1 1 5 3 1 1 1 1 1 1 30.2 696.2

8 6 1 1 1 6 3 1 1 1 1 1 1 30.5 887.4

87 1 1 1 7 3 1 1 1 1 1 1 32.4 1269.8

8 8 1 1 1 8 3 1 1 1 1 1 1 32.7 2034.6

89 1 1 1 9 3 1 1 1 1 1 1 33.6 2055.3

90 1 1 1 1 0 3 1 1 1 1 1 1 30.7 2055.3

91 1 1 1 1 1 3 1 1 1 1 1 1 30.1 3605.6

92 1 1 1 1 3 1 1 1 1 1 35.2 788.76

93 1 1 1 1 3 1 2 1 1 1 1 35.7 574.3

94 1 1 1 1 3 1 3 1 1 1 1 34.6 638.8

95 1 1 1 1 3 1 4 1 1 1 1 34.0 628.1

96 1 1 1 1 3 1 5 1 1 1 1 34.2 718.9

97 1 1 1 1 3 1 6 1 1 1 1 36.1 811.6

Continued on next page . . .
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Table C .l -  continued from previous page

Config. Pi P2 P3 Pi P5 P6 P7 P 8 P9 P io P n elk (ns) Eq. LEs

98 1 1 1 1 3 1 7 1 1 1 1 32.5 1101.4

99 1 1 1 1 3 1 8 1 1 1 1 34.4 1629.2

1 0 0 1 1 1 1 3 1 9 1 1 1 1 42.2 2770.6

1 0 1 1 1 1 1 3 1 1 0 1 1 1 1 39.9 4995.4

1 0 2 1 1 1 1 3 1 11 1 1 1 1 - -

103 1 1 1 1 3 1 1 2 1 1 1 33.8 574.8

104 1 1 1 1 3 1 1 3 1 1 1 32.8 874.8

105 1 1 1 1 3 1 1 1 2 1 1 40.1 728.8

106 1 1 1 3 1 1 1 3 1 1 39.0 1 1 1 0 .8

107 1 1 1 1 3 1 1 1 4 1 1 37.1 1804.8

108 1 1 1 1 3 1 1 1 5 1 1 44.9 3324.8

109 1 1 1 1 3 1 1 1 6 1 1 45.2 6350.3

1 1 0 1 1 1 1 3 1 1 1 7 1 1 50.0 12502.3

1 1 1 1 1 1 1 3 1 1 1 8 1 1 - -

1 1 2 1 1 1 1 3 1 1 1 1 1 2 0 .8 555.6

113 1 1 1 1 3 1 1 1 1 1 2 33.9 574.8

114 1 1 1 1 3 1 1 1 1 1 3 32.0 907.8

115 1 1 1 4 1 1 1 1 1 1 48.6 977.6

116 1 2 1 1 4 1 1 1 1 1 1 52.2 1 0 2 0 .6

117 1 3 1 1 4 1 1 1 1 1 1 51.3 1735.6

118 1 1 1 4 1 1 1 1 1 1 49.1 978.6

119 1 1 1 2 4 1 1 1 1 1 1 53.1 979.6

1 2 0 1 1 1 3 4 1 1 1 1 1 1 47.0 979.6

Continued on next page . . .
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Table C .l -  continued from previous page

Config. Pi P2 P3 P a P5 P6 Pi Ps P9 Pio Pn elk (ns) Eq. LEs

1 2 1 1 1 1 4 4 1 1 1 1 1 1 51.3 1075.2

1 2 2 1 1 1 5 4 1 1 1 1 1 1 50.7 1239.1

123 1 1 1 6 4 1 1 1 1 1 1 51.4 1648.8

124 1 1 1 7 4 1 1 1 1 1 1 45.6 2413.6

125 1 1 1 8 4 1 1 1 1 1 1 52.9 2435.3

126 1 1 1 9 4 1 1 1 1 1 1 50.5 2434.3

127 1 1 1 1 0 4 1 1 1 1 1 1 50.0 3984.6

128 1 1 1 11 4 1 1 1 1 1 1 50.7 7085.2

129 1 1 1 1 4 1 1 1 1 1 62.8 2036.44

130 1 1 1 1 4 1 2 1 1 1 1 56.4 997.1

131 1 1 1 1 4 1 3 1 1 1 1 52.4 1066.6

132 1 1 1 1 4 1 4 1 1 1 1 53.3 1052.9

133 1 1 1 1 4 1 5 1 1 1 1 49.8 1142.7

134 1 1 1 1 4 1 6 1 1 1 1 51.7 1234.4

135 1 1 1 1 4 1 7 1 1 1 1 56.9 1525.2

136 1 1 1 1 4 1 8 1 1 1 1 53.9 2054

137 1 1 1 1 4 1 9 1 1 1 1 60.9 3193.4

138 1 1 1 1 4 1 1 0 1 1 1 1 59.8 5421.2

139 1 1 1 1 4 1 11 1 1 1 1 - -
140 1 1 1 1 4 1 1 2 1 1 1 53.6 1019.6

141 1 1 1 1 4 1 1 3 1 1 1 51.0 1722.6

142 1 1 1 1 4 1 1 1 2 1 1 51.8 1312.6
143 1 1 1 1 4 1 1 1 3 1 1 52.4 2065.6

Continued on next page . . .
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Table C .l -  continued from previous page

Config. P i P 2 Pa P i P5 Pa P7 P8 P9 P io Pn elk (ns) Eq. LEs

144 1 1 1 1 4 1 1 1 4 1 1 59.0 3410.6

145 1 1 1 1 4 1 1 1 5 1 1 61.6 6454.6

146 1 1 1 1 4 1 1 1 6 1 1 59.4 12437.1

147 1 1 1 1 4 1 1 1 7 1 1 - -

148 1 1 1 1 4 1 1 1 8 1 1 - -

149 1 1 1 1 4 1 1 1 1 2 1 35.9 967.4

150 1 1 1 1 4 1 1 1 1 1 2 51.4 1018.6

151 1 1 1 1 4 1 1 1 1 1 3 49.7 1815.6

C.2 In itia l and E volved  P opu lations  

C.2.1 Initial Population

Table C.2: D ata for Initial Population

Config. P i P 2 Ps P i Ps P6 P? Ps P9 Pio Pu elk (ns) Eq. LEs

0 2 3 2 1 1 2 5 3 5 2 2 17.713 1324.07

1 1 3 2 5 2 2 9 2 8 1 3 59.394 16935.34

2 2 3 1 8 3 2 7 2 6 2 1 26.643 9430.76

3 2 1 1 7 4 2 7 1 7 1 1 - -

4 1 3 1 11 4 1 7 1 3 2 3 42.58 9834.2

5 2 2 2 5 2 1 2 3 8 2 3 35.777 12971.9

6 2 1 2 4 3 2 7 1 2 2 3 27.452 1958.96

7 1 3 2 1 0 3 1 4 1 5 2 1 23.509 5281.9

Continued on next page . . .
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Table C.2 -  continued from previous page

Config. P i P 2 P s P i P5 P 6 P7 Ps P9 Pio Pn elk (ns) Eq. LEs

8 1 2 1 1 1 2 1 8 3 7 1 3 40.189 9951.9

9 1 2 1 5 3 1 1 1 1 3 21.539 1125

1 0 1 3 1 3 2 2 9 3 5 1 2 38.381 4952.94

11 2 2 1 4 2 8 2 8 2 - -

1 2 1 3 2 8 2 1 6 2 2 1 1 29.923 1675.4

13 1 2 2 2 4 2 11 3 7 1 2 - -

14 1 2 1 5 2 1 9 1 5 1 3 37.343 4866

15 1 2 1 0 2 2 5 1 2 1 1 28.675 2153.44

16 1 3 1 2 1 2 8 1 2 12.265 1352.67

17 1 1 1 . 6 4 2 11 1 3 1 3 - -

18 1 1 1 7 1 1 2 1 4 1 2 25.283 823.2

19 2 2 6 2 1 4 1 7 1 2 42.068 6825.3

2 0 1 2 1 2 3 2 8 1 4 1 1 44.284 3623.36

2 1 1 2 1 11 2 1 11 1 4 1 3 - -

2 2 1 3 1 3 2 2 8 3 1 2 30.974 2319.74

23 2 2 1 1 3 2 3 1 6 1 22.758 9797.86

24 2 2 1 2 1 1 0 1 8 1 1 33.145 22222.5

25 1 2 1 1 1 1 9 3 7 1 3 38.477 7138.7

26 1 3 2 1 0 3 2 2 3 2 1 3 40.073 3100.76

27 1 1 2 1 0 1 1 3 2 6 2 3 15.794 3481.1

28 1 1 1 5 1 1 6 3 4 2 1 11.624 1076.2

29 2 1 2 1 0 3 2 7 1 5 1 3 49.979 6298.66

30 2 2 2 3 4 2 11 1 2 2 3 - -

Continued on next page . . .
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Table C.2 -  continued from previous page

Config. Pi P2 P3 Pi P5 P6 P7 Ps P9 Pio Pll elk (ns) Eq. LEs

31 1 2 1 8 1 1 9 2 8 1 2 44.489 10996.4

32 1 1 2 4 2 2 1 0 1 4 1 1 34.451 7324.94

33 1 3 1 5 4 1 4 1 7 1 3 - -

34 1 3 2 8 1 1 9 2 7 1 1 36.17 7469.6

35 2 3 2 1 0 3 2 5 2 1 1 3 38.641 2996.36

36 1 3 1 8 4 2 11 1 7 2 1 - -

37 1 2 1 7 2 1 3 3 5 1 1 35.705 2344.2

38 1 1 1 2 4 1 8 3 5 2 3 49.159 9270.6

39 2 2 2 2 1 1 1 3 3 2 1 11.527 487.3

40 2 3 1 1 0 1 2 9 3 7 2 3 18.529 8713.87

41 2 3 1 1 2 2 7 3 1 2 2 16.577 1187.84

42 1 1 1 4 3 2 6 2 5 1 3 42.75 4454.76

43 2 1 1 9 1 1 11 3 1 2 1 11.521 9994.7

44 2 1 1 8 3 1 8 1 8 1 3 - -

45 2 3 1 5 4 2 8 1 1 2 1 45.061 4139.34

46 2 3 2 9 2 1 9 2 4 2 3 16.1 5875.5

47 2 2 1 6 4 1 1 0 2 6 1 2 68.567 20821.4

48 1 2 1 9 4 1 3 1 3 1 2 58.031 3642.1

49 2 1 1 8 2 1 7 2 6 2 2 18 4968
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C .2.2 Evolved Population

Table C.3: D ata for Evolved Population

Config. Pi P2 P3 Pi P5 P6 P7 Ps, P9 Pio Pn elk (ns) Eq. LEs

0 2 3 2 1 1 2 1 1 1 2 2 12.534 370.67

1 2 3 1 6 3 2 5 2 2 2 3 26.805 1958.76

2 2 3 1 2 1 2 7 3 1 2 2 12.854 877.67

3 1 3 1 3 2 2 8 2 1 2 2 18.359 1716.94

4 2 2 1 9 4 1 8 1 1 2 1 36.655 3608.7

5 1 1 1 9 4 1 2 1 1 2 1 36.902 2428.1

6 2 2 9 1 1 7 2 6 2 2 18.136 4214.7

7 1 1 1 8 2 1 4 2 1 2 2 15.473 1183.4

8 2 1 1 9 2 1 3 1 2 2 1 14.332 1975.1

9 1 2 1 5 3 1 1 1 1 2 3 21.539 1125

1 0 1 3 1 2 1 8 2 1 2 2 12.265 1352.67

11 1 1 1 9 4 1 9 1 1 2 2 39.107 4709.1

1 2 1 1 1 2 2 1 6 2 2 1 1 30.109 799.4

13 2 3 1 2 1 1 1 3 3 2 1 10.647 480.3

14 1 1 1 7 4 1 5 2 2 2 3 35.758 3806

15 2 1 1 7 1 1 7 2 2 1 3 22.421 1098.8

16 1 3 1 2 1 8 2 1 2 2 12.265 1352.67

17 1 1 1 8 2 1 7 2 6 2 2 17.026 4961

18 1 1 1 7 1 1 2 1 4 2 1 11.15 805

19 2 1 1 7 1 1 7 2 2 2 3 9.606 1106.8

2 0 2 3 2 1 1 1 5 2 2 2 1 11.345 491.9

Continued on next page . . .
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Table C.3 -  continued from previous page

Config. P i P2 P3 P a Ps Pe P7 Ps P9 Pio P n elk (ns) Eq. LEs

2 1 2 1 1 7 1 1 2 1 4 2 1 11.483 807

2 2 1 3 2 1 1 1 5 2 2 2 1 11.564 487,9

23 2 3 2 1 1 1 5 3 5 2 2 13.736 1282.7

24 2 2 2 1 2 1 1 0 1 1 2 1 16.212 4823.1

25 2 1 1 8 2 1 2 1 1 2 2 11.731 1 1 2 0 .6

26 2 1 1 7 1 1 2 3 4 2 1 12.719 872

27 1 3 1 3 1 5 2 2 2 1 24.835 1226.2

28 1 1 1 5 1 1 6 3 4 2 1 11.624 1076.2

29 1 1 1 2 1 7 3 4 2 1 15.463 1416.87

30 1 1 1 7 1 1 7 1 2 2 3 9.783 1079.8

31 2 1 1 9 2 1 7 1 2 1 3 29.034 2717.7

32 2 2 1 11 2 1 7 2 2 2 3 13.656 2754.7

33 2 3 1 8 1 1 9 3 5 2 1 13.732 4652.2

34 1 3 8 1 1 9 1 1 2 1 9.66 2702

35 1 1 1 7 1 7 1 2 2 3 12.256 1115.17

36 2 2 1 11 2 1 7 1 2 2 3 13.829 2755.7

37 1 2 1 0 1 1 3 2 6 2 3 16.868 3483.1

38 2 1 1 2 4 1 8 3 5 2 3 43.484 9306.6

39 2 2 2 1 1 1 3 3 2 1 11.527 487.3

40 1 3 1 1 0 1 2 1 1 1 2 2 12.153 1907.47

41 2 3 1 1 2 2 1 1 1 2 2 16.538 612.04

42 2 3 1 2 1 2 1 3 3 2 1 11.136 520.67

43 2 1 1 9 1 1 11 3 1 2 1 11.521 9994.7

Continued on next page . . .
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Table C.3 -  continued from previous page

Config. Pi P2 P3 Pi P 5 P e P7 Ps P 9 Pio Pn elk (ns) Eq. LEs

44 2 1 1 7 1 1 7 1 2 2 3 10.551 1080.8
45 2 3 1 5 4 1 4 1 1 2 2 39.727 2209.7
46 1 1 1 8 2 1 4 3 3 2 1 13.264 1578.4
47 1 1 1 8 2 1 2 1 1 2 2 14.161 1115.6
48 1 1 1 8 2 1 4 1 1 2 2 12.362 1175.4
49 2 1 1 3 2 1 7 2 6 2 1 17.188 4250
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