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ABSTRACT

This research introduces a new algorithm to solve the forward kinematics of the 

General Stewart Platform. Basically, there are at least 20 basic feasible topologies for the 

General Stewart Platform and many different configurations for each o f them, some of 

which have been studied fully but most of them have not. The new algorithm can be 

extended to solve every single configuration of General Stewart Platform by slight 

change o f inputs. Unlike the existing algorithm, the proposed algorithm was developed 

by projective geometry, which enables the extension o f solution to any special 

configuration. In addition, extra sensors are introduced to give a set of good initial 

estimate in order to solve the nonlinear equations. A clear classification is given to 

classify all special Stewart Platforms that can be used in practice.

This research also develops a graphical robotic simulation module to model and 

simulate the General Stewart Platforms by creating an optimized object-oriented design 

module added to software designed by Ding [Ding, Z.Q., 2005]. The design approach 

implements all components in the Visual C++ programming language and freely 

distributed graphical library OpenGL, utilizing a single PC running the Windows 

operating system. The algorithm and the simulation module are demonstrated by two 

examples.
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1

CHAPTER I 

INTRODUCTION

This chapter presents an introduction to the principal concepts and technologies 

involved throughout this research. The first section introduces kinematic geometry of 

mechanisms. In the second section some basic topics regarding to robotics are introduced. 

The third section overviews existing kinematics solving methods and graphical robotic 

simulation systems, with emphasis on their characteristics. Through this, the motivation 

for proposing a new algorithm and developing a unified robotic kinematic simulation 

interface is explained. The objectives o f this research are also described at the same time. 

Finally, the fourth section presents an overview of this thesis.

1.1 Kinematic Geometry of Mechanisms

Basic geometry was developed by the ancient Greeks and Euclid’s Elements was 

written as early as 300 BC. The foundations o f algebra as we know it, on the other hand, 

were laid down much later— in the third century AD— and it was only after the 

development of calculus in the 17th century that the analytical study of mechanics 

became possible. The arguable preference of the algebraic over the geometric approach is 

not an issue of the past. The recent advent o f the computer brought a revolution in 

mechanical design. While certainly the computer proved to be o f great assistance to the 

engineer, it has also had negative effects on the readiness to seek deeper understanding of 

the principles of mechanical motion. This trend was quickly noticed and eloquently 

described by the two most famous advocates o f kinematic geometry: [Joyce, D.E., 1997]

1
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With a computer at his elbow an engineer is often tempted to pay little if any 

attention to principles, but rather plunge into a particular problem of synthesis without 

considering either the fundamental theory or the criteria that limit the performance of the 

devices he aims to produce. But more importantly the geometric principles reveal a map 

of a terrain, regions within which can then be explored in greater detail by analytical or 

graphical methods. If  the map shows that there are inaccessible regions on the terrain, if it 

warns of hazards and dangerous frontiers, and if it can guide the explorer along safe paths 

by which he can reach his goal quickly with simple transport, then it should have some 

value [Hunt, K.H., 1978].

The digital computer demands on the part of its machine-designing users a ruthless 

competence in the algebraic processes needed for the manipulation of mechanical 

information and its numerical analysis. It is accordingly fashionable just now in the field 

of the theory of machines not so much to denigrate as simply to ignore the main bases in 

actual mechanical motion from which these algebraic processes grow. The main bases are 

essentially pictorial, geometrical. They arise from natural philosophy. Students in the 

mechanical sciences are becoming increasingly unable to contemplate a piece o f ordinary 

reality in machinery accordingly, and to extract from that reality the geometric essence of 

it. It is o f course true that without algebra there can be no programme, no numerical data, 

and no numerical result; but without an underlying geometry o f the reality there can be no 

applicable algebra. Without a diagram w e cannot write an equation. But without geometry 

we cannot even begin to draw [Phillips, J., 1984].

2
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So well have Profs. Kenneth Hunt and Jack Phillips warned against the treacherous 

trend o f over-dependence on computer-based solutions. While the powerful programs for 

symbolic computations are undoubtedly helpful in design, they should be used only with 

complete understanding of their limitations (e.g., when dealing with trigonometric 

expressions). Paradoxically, it is exactly the development o f the computer that has made 

geometry important again. As computers and automatic control algorithms have become 

more powerful, designs o f increasingly complicated mechanisms have become practical. 

If prior to that, analytic methods were sufficient for the study o f mechanisms, this was 

because these mechanisms were of outstanding simplicity. However, the complex spatial 

machines o f nowadays can no longer be completely analysed by purely analytic or 

numerical methods. While most researchers were occupied developing or using 

computer-aided engineering tools, the two Australian professors, Kenneth Hunt and Jack 

Phillips, were among the few who realised the need for a revival o f the geometric 

methods.

Kinematic geometry is the first and simplest segment o f kinematics that deals 

exclusively with displacements. [Hunt, K.H., 1978] Time, as a variable, is usually not 

required to be brought into account. Indeed, the use of screw theory eliminates that need 

completely. Yet for convenience, velocity may sometimes be introduced in the study of 

the special, so-called singular, configurations of mechanisms. The main subject of this

research is the position kinematics o f  parallel mechanisms or the geometry o f  two 

relatively moving bodies connected by a multitude of kinematic chains.

3
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1.2 Introduction to Robotics

The Robot Institute of America defined that “a robot is a reprogrammable 

multifunctional manipulator designed to move materials, parts, tools or specialized 

devices through variable programmed motions for the performance o f a variety of tasks”.

Robotics is concerned with the study o f those machines that can replace human 

beings in the execution of a task with regards to both physical activity and decision 

making. Robotics is truly a multidisciplinary field that includes mechanical and electronic 

engineering, computer science, and mathematics.

1.2.1 Introduction to Industrial Robots

An industrial robot is officially defined by ISO as an automatically controlled, 

reprogrammable, multipurpose manipulator programmable in three or more axes. The 

field o f industrial robotics may be more practically defined as the study, design and use of 

robot systems for manufacturing.

Typical applications of industrial robots include welding, painting, ironing, assembly, 

pick and place, palletizing, product inspection, and testing, all accomplished with high 

endurance, speed, and precision.

4
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Figure 1.1: Industrial robots doing vehicle underbody assembly (KUKA). 

[Wikipedia, http://en.wikipedia.org/wiki/Industrial robotl

An industrial robot consists of:

A manipulator

4- Actuators

❖ Sensors

A control system.

5
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Elbow
extension

Shoulder
swivel

A rm

WriM

Figure 1.2: Cincinnati Milacron T Robot Arm 

[RISC lab, http://wwwlbpt.bridgeport.edu/~sobh/html/proj/sanjeev/project.html]

A manipulator or mechanical structure consists o f a sequence of rigid links 

connected by revolute or prismatic joints. Figure 1.2 illustrates an industrial robot 

manipulator. A manipulator has a supporting base, an arm that ensures mobility, a wrist 

that confers dexterity, and an end-effector that performs the desired task. The motion of 

the joints results in the relative motion o f links.

1.2.2 Introduction to Parallel mechanism

The geometric approach used in this research has a wide application. Apart from 

Stewart Platforms, the approach may also be applied to the study o f other parallel robots, 

to computer animation, and to many other fields. The field o f parallel robots, despite the 

scarcity o f specialised textbooks, is already too advanced to allow us to review it on a 

couple of pages. I f  the reader is, however, looking for a quick free overview of the field,

6
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we suggest a visit to the on-line Parallel Mechanisms Information Center at 

http ://www .par allemic. or g.

An n-DOF (n-degree-of-freedom) fully-parallel mechanism is composed o f n 

independent legs connecting the mobile platform to the base. Each o f these legs is a serial 

kinematic chain that hosts one and only one motor which actuates, directly or indirectly, 

one o f the joints. The variables that describe the actuated joints will be referred to as the 

input variables or also as the active joint variables. Other authors refer to the same 

variables as articular coordinates. On the other hand, the variables that describe fully the 

pose of the mobile platform (the end-effector) will be referred to as output variables. In 

other works, the same variables are referred to as generalised coordinates.

The configuration o f an n-DOF parallel mechanism is not defined by its input 

variables. The task of finding the valid set of output variables corresponding to a set of 

input variables, referred to as the direct kinematic problem, has usually a multitude of 

solutions, referred to as assembly modes. In fact, some mechanisms allow an infinite 

number o f solutions to their direct kinematics— a situation referred to as self motion 

[Karger, A., 1996]. More precisely, self motion means a finite mobility from some points 

of the workspace, whereas the confusingly similar term architecture singularity refers to a 

singularity in every point of the workspace [Ma, O., 1992]. When two, or more, of the 

assembly modes are coinciding, w e say that there is a Type 2 singularity. The 

configuration of an n-DOF parallel mechanism is not even defined by both the input and 

output variables. Indeed, some mechanisms exist which will allow passive motion even 

when the motors and the mobile platform are fixed. Such particular singularities are

7
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called Redundant Passive Motion (RPM) singularities [Zlatanov, D„ 1994], Most 

frequently, however, the user and the designer o f a parallel mechanism will be interested 

only in the set o f feasible output variables which we will refer to as the complete 

workspace. The complete workspace of a 6-DOF parallel manipulator is a six­

dimensional highly coupled entity which is practically impossible to visualise. Therefore, 

the complete workspace o f such mechanisms is studied only through its different subsets. 

Most of these are also defined for parallel mechanisms with less than six degrees of 

freedom. The most common subset o f the complete workspace is the constant-orientation 

workspace which is the set o f permissible positions for the centre o f the mobile platform 

while the platform is kept at a constant orientation. Conversely, the orientation workspace 

is the set o f permissible orientations o f the mobile platform, while the platform centre is 

held fixed.

1.2.3 Introduction to Stewart-Gough Platform

A Stewart platform is a kind of manipulator using an octahedral assembly of struts. 

A Stewart platform has six degrees of freedom (x, y, z, pitch, roll, & yaw). There are six 

independently actuated legs, where the lengths o f the legs are changed to position and 

orient the platform. The forward kinematics problem, an equation which given the leg 

lengths, finds the position and orientation of the platform, has 16 solutions. However, the 

the inverse kinematics problem (i.e. given the position and orientation o f the platform, 

find the required leg lengths) has a unique and very simple solution.

8
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Stewart platforms have applications in machine tool technology, crane technology, 

underwater research, air-to-sea rescue, flight simulation, satellite dish positioning, aircraft 

simulators and telescopes.

James S. Albus of the National Institute of Standards and Technology (NIST) has 

developed a crane, known as RoboCrane® [Albus, J.S., 1993], which uses the Stewart 

platform technology. Geodetic Technology trademarked "hexapod" for a Stewart platform 

in a machine tool context.

The Stewart platform was first reported in a paper by V. E. Gough in 1956 [Gough,

V.E., 1956]. The name of Stewart was attached to this architecture because Gough's 

earlier work (and a photograph o f his platform) was mentioned in the reviewers' remarks 

to a paper by D. Stewart published in 1965 [Stewart, D., 1965]; in that paper, Stewart 

presents another hybrid design, with three legs having two motors each.

Figure 1.3: An example of Stewart Platform 

[Wikipedia, http://en.wikipedia.org/wiki/Stewart_platform]

9
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1.2.4 Introduction to Kinematics of Parallel Robots

This section describes the kinematics o f parallel robots, i.e., robots whose base and 

end-effector are connected by multiple serial chains in which not all joints are actuated. A 

fully parallel robot has six serial chains in parallel, and only one joint in each chain is 

actuated (Figure 1.4). Of course, all sorts of combinations o f these purely serial and 

parallel structures are possible, and many exist in practice.

md'iffector

passive
spherical
‘-'ini

actuated 
prism tiic 

joint

o missive
revaiuie joints

Figure 1.4: Fully parallel Stewart-Gough platform;

[Bruyninckx, H., 2005, Parallel Robots, http://www.roble.info/robotics/paraIIel/]

base'^

active revolute, 
joint

passive Hook 
joint

' / /  passive sphericc,
’ joint

■'end-effector

Figure 1.5: Fully parallel HEXA platform; all joints are revolute. 

[Bruyninckx, H., 2005, Parallel Robots, http://www.roble.info/robotics/parallel/]

10
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The main reasons for the overwhelming success o f the serial robot design (over 99% 

of installed industrial robots) is that: It gives a large workspace compared to the space 

occupied by the robot itself; Kinematic designs exist that simplify the mathematics of the 

robot’s geometry enormously.

The main drawback of a serial design is its low intrinsic rigidity, so that heavy links 

and joints must be used to obtain a reasonable effective rigidity at the end point. These 

pros and cons are exactly the opposites of those of parallel manipulators. The fully 

parallel designs o f robots (Figure 1.5) have all actuators in or near the bases, which result 

in a very low inertia o f the part of the robot that has actually to be moved. Hence, a higher 

bandwidth can be achieved with the same actuation power. This is why parallel structures 

are used for, for example, flight simulators and fast pick-and-place robots. A parallel 

structure supports its end-effector in multiple places, which yields a stiffer and hence 

more accurate manipulator for the same weight and cost, and which causes the 

positioning errors generated in each leg to “average out,” again increasing the accuracy. 

This would be very advantageous for accurate milling (Figure 1.6). This pioneer was very 

unsuccessful in the marketplace. However, experiments with real prototypes show that 

parallel structures currently do not live up to these expectations: their accuracy and 

stiffness are about an order of magnitude worse than for classical serial machines. The 

reasons are:

The compliance o f the ball screws in the prismatic joints;

The complexity o f the construction with many passive joints that all have to be 

manufactured and assembled with strict tolerances;

11
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The complexity of kinematic calibration o f this structure;

The high forces that some passive joints have to resist.

In addition, another major disadvantage of parallel manipulators is their small 

workspace: legs can collide, and there are many passive joints in the structure that all 

introduce joint limit constraints. This is especially the case with the spherical “ball-in- 

socket” joints used in most implementations [Merlet, J.-P., 2006].

Figure 1.6: Milling machine with a parallel manipulator design

The definitions o f forward and inverse position and velocity kinematics as defined 

for serial robots apply to parallel robots without change. But parallel robots have a large 

number o f passive joints, whose only function is to provide the required number of 

degrees o f freedom to each leg. Adding a leg between end-effector and base adds motion 

constraints to the end-effector, while in the case of serial robots adding a joint reduces the 

motion constraints (or, equivalently, adds a motion degree o f freedom). This text 

discusses six degrees of freedom robots only, but many designs have less than six, e.g., 

planar [Kong, X., 2002] or spherical robots [Dafaoui, M., 1998].

12
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1.3 Objectives and Contributions

Reconflgurable Kinematics of GSP

Most o f researches nowadays are only focused on one specific or several similar 

Stewart Platforms. The algorithms they proposed are mostly Platform-Specific. An 

algorithm that can solve all the special cases o f General Stewart Platform will make the 

analysis of GSP kinematics easier a lot and it also will make the software programming of 

GSP simulation possible. And the reconflgurable kinematics can help to pick up a best 

topology for a specific application as well.

General Stewart Platform Simulation

A number of simulation software has been programmed to implement simulation of 

one or more particular platforms or products. If this simulation can be extended to general 

case it will be a great help for robot producers and researchers. So the development o f a 

GUI, which provides 3D GSP kinematics modeling and simulation, is necessary. Our 

main objectives consist o f the following two parts:

Develop an algorithm to solve general Stewart Platforms

U tilizing the geometrical similarity o f  all different Stewart Platform, w e can develop  

an algorithm with 6 variables (Struts’ lengths) and 12 inputs (links’ parameters) to solve 

general Stewart Platforms with slight changes o f inputs.

13
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Create software to simulate general Stewart Platforms

Create a programming strategy to embed the GUI o f GSP simulation to our UROCA 

6DOF serial robot simulation software. Design the GUI o f GSP simulation based on the 

model developed in our first objective. Build DLLs to solve kinematics automatically and 

implement the GSP simulation.

Contributions

In the past 40 years, much research and innovation has been made to parallel robots, 

their kinematics and simulation. Most o f the improvements were focused on some special 

topologies, which have simpler structures or special characteristics making the real-time 

calculation o f forward kinematics possible. The Stewart Platforms are the most widely 

used parallel mechanisms and they have most o f the advantages o f parallel mechanisms 

compared with serial robots and relatively simple structures.

In this research, the improvements have been made consist of two main parts, a new 

algorithm that can solve forward kinematics o f General Stewart Platform and an upgraded 

software with the simulation function o f General Stewart Platforms. In addition, a clear 

classification has been made to classify all special topologies o f Stewart Platforms that 

can be used in practise.

14
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1.4 Thesis Overview

Chapter 1 provides an introduction to kinematic geometry, robotics, robotic 

kinematics, simulation platform, as well as the main technologies involved. Then the 

motivation and objectives o f this research are presented.

Chapter 2 provides a systematic literature review, which consists o f two parts, 

review o f Stewart Platform Kinematics and review of Graphical Robotic Simulation 

System.

In Chapter 3, the details o f the proposed algorithm for reconflgurable kinematics of 

General Stewart Platforms are introduced along with the Matlab implementation and the 

illustration o f reconflgurable kinematics applications. Meantime, a clear classification of 

Stewart Platforms is proposed.

Chapter 4 introduces the software design procedure and illustrates software structure 

of the GUI, its main functions and an explanation o f software implementation based on 

the theories in Chapter 1 previously.

Application examples are provided in Chapter 5 to illustrate the application of 

algorithm to a special topology and the simulation procedure.

The conclusion and future research are given in Chapter 6.

15
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CHAPTER II 

REVIEW OF LITERATURE

2.1 Review of Kinematics of Stewart Platform

The purpose of using flight simulators while training pilots is to minimize training 

losses and training time. A parallel mechanism placed under the simulator provides the 

translational and rotational movements that the pilot would be exposed to when flying 

with a real aircraft. Stewart was the first to bring up the idea o f using parallel 

mechanisms in flight simulators [Stewart, D., 1965]. In the following years, parallel 

mechanisms have started being used commonly in various areas such as oil platforms and 

robotics.

Vito

A3

82

Figure 2.1: Stewart Platform Mechanism 
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Parallel mechanisms are kinematic chains with one or more closed loops and with 

actuators moving one or more of their links. Stewart Platform Mechanism (SPM), the 

most renowned parallel mechanism, consists of a fixed base platform and a movable 

platform, linked by 6 legs whose lengths can be changed via actuators on the base. 

[Figure 2.1]

The top platform has 6 degrees of freedom (DOF) o f motion with respect to the base. 

If the legs are appointed certain fixed lengths, then the mechanism becomes a structure 

[Ku, D., 1999]. Traditional industrial robots are open-loop mechanisms with serial chains. 

Although serial chains reach further and have larger workspaces than parallel ones, 

parallel mechanisms have better dynamic characteristics. Serial mechanisms are not as 

rigid as parallel ones and have lower natural frequencies. Additionally, each link, starting 

from the one fixed to the base, until the tip link, must both be large enough to carry the 

preceding ones and provide the required accuracy. Another disadvantage o f serial chains 

is that actuator errors add to one another, resulting in a huge error at the tip. Parallel 

mechanisms are preferred in applications where dynamic loading is high, speed and 

accuracy are important, and workspace volume is o f less importance. In contrast to serial 

chains, not all the links are set into motion by the actuators, and moving parts are lighter, 

since the actuators are fixed to the base.

Due to their com m on application in aircraft simulators, a lot o f  work has been 

conducted on the SPM. Most often, one of the joints linking the legs to the platforms is a 

spherical joint while the other is a universal joint. Nomenclature o f the SPM is done

17
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according to its joint types and the number of links the SPM has. Even though there exist 

many papers in the literature on 3-3, 6-6 and 6-3 mechanisms, some researchers have 

come up with their own mechanism architectures in order to optimize certain criterion 

[Stoughton, R. S., and Arai, T., 1993].

The forward kinematics problem of the SPM is to determine the position and 

orientation o f the top platform with respect to the base, when leg lengths are known. The 

inverse kinematics problem is to solve for the leg lengths that will result in a given 

position and orientation o f the top platform. The forward kinematics problem has more 

than one solution, whereas the inverse kinematics problem has a single solution. Inverse 

kinematics has to be solved online for real-time trajectory tracking, and forward 

kinematics must be solved for real time control of the SPM [Innocenti, C., and Parenti- 

Castelli, V., 1990],

Lee and Shah [Lee, K. and Shah, D.K., 1988], who have shown that 6-dof parallel 

mechanisms can be composed by linking 3-dof mechanisms, have done the forward and 

inverse kinematic analysis o f a 3-dof parallel mechanism. Nanua et al [Nanua, P., 

Waldron, K.J., and Murthy, V., 1990], have solved the forward kinematics problem of 6- 

3 SPM, reaching a 16th order polynomial, meaning the top platform can have 16 different 

configurations for a given set o f leg lengths. Innocenti and Parenti-Castelli [Innocenti, C., 

and Parenti-Castelli, V ., 1990], have solved the forward kinematics problem o f  the 

general SPM in closed form, repeating that the problem has 16 different solutions. 

Similarly, Wohlhart [Wohlhart, K., 1994] has worked on the forward kinematics of the

18
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spherical SPM, concluding that the problem has 16 solutions. Shi and Fenton [Shi, X. ve 

Fenton, R.G., 1992] have worked on the instantaeous kinematics o f the SPM, resulting in 

6 linear equations. Merlet [Merlet, J. P., 1993] has solved the forward kinematics of 

parallel mechanism in 4 different ways, and compared them on the grounds of 

computational time. Three of these methods are iterative methods and the fourth is the 

polynomial method. Although the computational time o f the polynomial method is one 

order o f magnitude greater than that o f the other three, it is the only method that gives all 

solutions.

It must be kept in mind that not all o f the solutions o f the forward kinematics 

problem are physically feasible. When leg length constraints, joint rotation constraints 

and leg interference are taken into consideration, it will be seen that out of the 16 

solutions o f the forward kinematics problem, only 12 are feasible solutions [Yurt, S. N.,

2002]. Liu et al [Liu, K., Fitzgerald, J. M., and Lewis, F. L., 1993] has put the forward 

kinematics problem of the SPM in the form of three nonlinear equations, which can only 

be solved by numerical schemes. With the method proposed in this work, the difficulty of 

solving a 16th order polynomial no longer exists. Sreenivasan, Husty and Innocenti 

[Sreenivasan, S.V., Waldron, K.J., and Nanua, P., 1994][Husty, M. L., 1996][Innocenti, 

C., 1998] have solved the forward kinematics problem of the 6-6 SPM using closed-form 

algebraic equations. Dasgupta and Mruthyunjaya [Dasgupta, B. and Mruthyunjaya, T.S., 

1994] have solved the very same problem in canonic form. Ku [Ku, D ., 1999] has solved  

the kinematics equations o f the octahedral SPM that Nanua derived, using a simple and 

computationally efficient method based on Newton-Raphson’s method. The aim of that

19
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work was to reduce the computational effort that the polynomial method requires. 

Jakobovic and Jelenkovi [Jakobovic, D. and Jelenkovic, L., 2002] have stated that the 

forward kinematics problem can also be solved via optimization algorithms and that the 

solution converges when errors are allowed to be of the order o f 10-12 times leg lengths.

In addition to the general SPM, there has been work done on mechanisms with 

special architectures. For example, Nanua [Nanua, P., Waldron, K.J., and Murthy, V., 

1990] has solved the forward kinematics of 3-6/3-3 Stewart Platform. Tsai [Tsai, M. S.,

2003] have solved the forward kinematics of the 3-PRS mechanism, while Kim and Park 

[Kim, J. and Park, F. C., 2001] have solved the forward kinematics o f the 3-RS parallel 

mechanism., Di Gregorio [Di Gregorio, R., 2001] has solved the forward kinematics of 

the 3-URC wrist, Carretero [Carretero, J. A., 2000] has solved the forward and inverse 

kinematics of the 3-PRS mechanism, and Callegari and Tarantini [Callegari, M. and 

Tarantini, M., 2003] has solved the forward and inverse kinematics o f the 3-RPC. Di 

Gregorio [Di Gregorio, R., 2002] has made proposals on purely translational parallel 

mechanisms, however they can not be used as flight simulators since they cannot 

simulate motion in six directions, meaning translation in three dimensions and rotation in 

three dimensions.

2.2 Comparison with the Existing Approaches

Basically, there are three approaches that are adopted to solve the forward 

kinematics o f parallel robots, and they are univariate polynomial equation method, 

numerical iterative method and extra sensors method. Among these three methods, the

20
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univariate polynomial equation method is the only one that is able to solve the kinematics 

completely and get all the solutions for the forward kinematics but unfortunately there is 

no way to determine which solution is the current pose o f the parallel robot. For 

numerical iterative method, there is no guarantee that the iteration is convergent. In the 

latest 10 years, the extra sensors method was proposed and implemented in researches 

and practice uses. The advantage o f this method is that the forward kinematics can be 

obtained in short time without high performance computer required. This is the only 

method that can be used for real time applications. In the following three paragraphs, a 

brief introduction o f these methods will be given [Karger, A., 1996] [Merlet, J.-P., 2006].

Univariate polynomial equation method is to obtain a polynomial equation with a 

single variable by using some algebraic eliminating methods or geometrical eliminating 

methods so that the maximal number of solution can be easily told. It is worth noting that 

this study was started by Nanua and Waldron who determined a 24th order polynomial 

for the MSSM system [Nanua, P., Waldron, K.J., 1990][Husty, M. L., 1996][Innocenti, 

C., 1998][Wang, T. and Chen, C. C., 1993],

Numerical iterative method is to use numerical approaches to solve forward 

kinematics directly. The computation time is rather large and the convergence is not 

guaranteed; there is the problem of sorting the current pose from all the possible solutions, 

which has never been studied so far because o f  its com plexity. W e need a numerical 

method that produces the right solution in a reasonable time. All we concern are the 

methods efficiency and convergence. The drawback is that the obtained solution is not
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necessarily the solution closest to the initial estimation, which will be the most likely the 

current pose of the end-effector [Huang, M.Z., 1996][Wang, T. and Chen, C. C., 1993].

Solving direct kinematics with extra sensors is adding extra sensors to the non­

actuated joints to obtain information allowing fast calculation o f the forward kinematics. 

What type o f the extra sensors? Where are they placed? How many extra sensors the 

system needs? Rotation sensors are usually mounted on the base to avoid increasing 

moving platform weight. If  three links are instrumented, which means adding six sensors, 

we are able to calculate the position o f three points of the platform and hence solve the 

forward kinematics directly. Six sensors are enough to determine the pose o f the moving 

platform by themselves [Bonev, I. A. and Ryu, J., 2000]. However it can be proved that 

only four extra sensors are necessary to determine the position and orientation of the end- 

effector. The difference here is that we still need equations to solve that unique solution 

according to the extra inputs from four extra sensors. The proof is illustrated by figure 2.2.

Figure 2.2: Stewart Platform with four extra sensors 
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If  two rotation sensors are instrumented on both B1 and B2 joints the position and 

orientation of A1 and A2 on the platform is determined. Let us pick up one of the left 

joints on the moving platform, for example A5. Apparently, it has to be following the 

trajectory of a circle C l, which is perpendicular to the fixed line A1A2 with the radius 

A5P1. At the same time, since the points PI and the B5 are both fixed the point A5 

should also follows the trajectory of the circle C2 perpendicular to the line P1B5 and the 

radius is A5P2, whose length is also fixed. Obviously the circles C l and C2 can only has 

one single common point so actually the joint A5 is determined. The same theory applies 

to the rest joints on the moving platform. Hence the forward kinematics of Stewart 

Platform can be determined by four extra-sensors installed on two joints on base with 2-2 

arrangement.
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The comparison Matrix [Table 2.1] below illustrates the advantages and 

disadvantages o f different methods adopted to solve the forward kinematics of Stewart 

Platform. Most o f research are focused on the platforms with six joints and three joints on 

the base so that most o f Stewart Platforms with five and four joints on the base are not 

discussed before. I mark all these unsolved topologies with “No solution in published 

papers” in the category tables[3.1-3.4], including 6-4(2), 5-4(2), 5-3, 5-2, 4-4(2), 4-4(3), 

4-3 and 4-2.

2.3 Review of Graphical Robotic Simulation Systems

Graphical robotic simulation and off-line programming o f industrial robots are today 

relatively mature technologies. Robotic simulation software plays an important role in 

robotics research in many areas such as robot design, forward and inverse kinematics 

analysis, dynamics, control, path planning, etc. for both commercial and educational 

purposes. There are a lot o f graphical robotic simulation software packages available in 

the market. Within this chapter, first, the common functionality implemented in the 

graphical robotic simulation software packages is described. Second, a literature review 

of these packages classified according to their control systems is presented. Meanwhile, 

characteristic analyses are provided for each category to summarize the discussed 

literature. Finally, the theories and technologies for developing a graphical robotic 

simulation system are explained.
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Grasp2000 rBYG Systems Ltdl. invented by BYG systems Ltd, is a true 3D 

simulation tool, based on accurate 3D geometry, process parameters and a library of 

industrial robots. Grasp2000 enables the creation of accurate 3D models, and real-time 

interactive simulations for cell layout design, planning, optimisation, and cycle time 

calculation. As a tool for off-line programming, the instructions can be automatically 

translated into the required native robot language.

Grasp2000 can generate specific application menus for arc welding, palletising and 

spraying. The software will find applications in PC-based cell layout and design, analysis, 

offline programming and process planning throughout the full range o f Toshiba SCARA 

robot applications.

An important factor in off-line programming is the presence o f inherent inaccuracies 

in most robots. Grasp2000 uses in-depth mathematical calculations to calibrate both the 

robot and 3D model to match the real world. It only requires the demonstration of a 

number o f robot poses, which are then read into Grasp2000 and analyzed by the 

calibration software without external measuring equipment. An optional module for 

discrete event simulation extends Grasp2000's application areas to factory simulation, 

warehousing, logistics and materials handling.

C SR  f Applied Computing & Engineering Ltdl. is powerful 3D  simulation software 

which enables manufacturing engineers to quickly simulate and evaluate automation 

concepts to determine the cost, feasibility and performance o f a proposed robotic system.
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Using existing in-house CAD data and AC&E's library o f commercial robots and 

accessories to create a detailed simulation o f the proposed manufacturing system, CSR 

accurately simulates interactions between work cell components to optimize equipment 

selection, fine-tune equipment positioning, and maximize production throughput.

The system is the most comprehensive and easy-to-use robotic simulation tool 

available and works completely off-line, eliminating the risk o f damage to equipment and 

freeing robots for round-the-clock production. CSR can be purchased in a modular 

fashion to suit all budgets. Specialized application solutions tailored to the requirements 

of a particular robotic task provide advanced functionality and ease o f use for painting, 

spot welding, arc welding, polishing, assembly and press operations.

Interactive G raphics Robot Instruction Program  (IG R IP) owned by rPELM'IA 

Corporation], is an interactive, 3D graphic simulation tool for designing, evaluating, and 

off-line programming robotic work cells. Actual robotic/device geometry, motion 

attributes, kinematics, dynamics, and I/O logic are incorporated to produce extremely 

accurate simulations. IGRIP optimizes critical factors such as robot motion planning, 

cycle time prediction, collision detection, calibration, and multiple I/O communication.

The several specific task software modules consist o f UltraArc, UltraSpot, 

UltraPaint, and UltraFinishing, which are designed specially for arc welding, spot 

welding, painting, and surface finishing work cell applications respectively. Other 

applications include research and development, articulated design, flexible manufacturing 

system simulation, nuclear/hazardous duty automation, and general-purpose simulation.
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Work cell components can be created in the integral CAD package or imported from 

other CAD packages via IGES, DXF, and direct translators. A built-in surface modeling 

package provides modification and/or optimization of imported surface data.

EASY-ROB [Anton, S., 2001], 3D Robot Simulation Tool was written in Visual 

C++ under the Windows operating system. In order to create high quality and high speed 

rendered images, the graphical capabilities of OpenGL are used. EASY-ROB is a 

complex and comprehensive modeling and simulation tool. It is especially designed to 

fulfill requirements for several industrial robotic applications as well as for educational 

purposes.

The EASY-ROB Basic Model allows the planning and designing o f robotic work 

cell layouts consisting o f a robot, tool and environment. A simple 3D CAD system is 

provided to create basic geometric parameterized primitives like cubes, cones, cylinders, 

pyramids, etc. In addition, a CAD interface is available to import other 3D formats such 

as STL. Created and imported geometries are assigned to the robot group to active or 

passive joints, to the tool group or to the environment group. Using a 3 button mouse, 

each geometry can be translated and rotated about its axis, or the operator can enter 

absolute or relative Cartesian values to set the Cartesian location. A modification o f the 

view point (pan, tilt, zoom in and zoom out) in full shaded mode allows various world 

views.
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The robot motion can be programmed using EASY-ROB standard program 

commands. A special Teach Window supports the user in writing robot motion programs. 

The built-in motion planner is implemented for the motion types, Point to point (PTP), 

Linear (LIN) and Circular (CIRC). The orientation interpolation for the LIN and CIRC 

motion type is realized for variable, fixed, tangential and quaternion modes. Several on­

line output windows allow the operator to monitor robot joint values, Cartesian TCP 

location as well as simulation states such as cycle time, step size, override, etc. All data is 

saved into documented ASCII text files.

W orkspace fFlow software technologies!, described in [Owens, J., 1994], has been 

developed by a team led by John Owens as the world’s first industrial robot simulation 

software package commercially released in 1989, and continuously updated over the last 

decade.

In addition to a library over 140 industrial robot 3D models available to the user, the 

3D CAD modeler can create 3D solid objects using Constructive Solid Geometry and 

surface objects such as Bspline, Parametric, and Bezier surfaces. The 3D objects also can 

be imported from other CAD system via SXF or IGES file formats. The movement of any 

mechanism may be modeled using a kinematics modeler. The mechanism may have any 

number o f joints in any serial or tree-structure combination. Conveyors, automatic 

vehicle, and other independently m oving objects may also be modeled. Positions and 

paths for the robot tool to move to may be defined in several ways such as by use of the 

teach pendant, by clicking the mouse on the screen, or by using geometry points.
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It can be used to create and simulate robots in the native language o f the robot. For 

example, users o f Fanuc robots may write robot programs in Karel, ABB robot users may 

write programs in ARLA, or Visual Basic can be used just for simulation. Therefore, 

there is no need for translating simulation language to robot language. It is also possible 

to transfer existing robot programs from the robot control to Workspace for optimization.

In addition, the simulation can be replayed in real time. Calibration and dynamics 

modules are also available.
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CHAPTER III

RECONFIGURABLE KINEMATICS OF STEWART PLATFORMS

3.1 Reconfigurable Kinematics Model

With reference to figure 3.1, input data to the forward kinematics of the general 

Stewart platform are the coordinates of the base attachment points Bi (i= l, . . .  ,6) with 

respect to a reference frame Wb fixed to the base, the coordinates of the platform 

attachment points Ai (i= l, . . .  ,6) with respect to a reference frame Wa fixed to the 

platform, and the actuator lengths Ti (i= l, . .  . ,6). Without loss o f generality, the origins 

of reference frames Wb and Wa are chosen at points B l and A l respectively.

Platform
Wa

Wb
B4

Base

Figure 3.1: The general Stewart platform
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3.1.1 Reconfigurable Forward Kinematics

Based on the above defined inputs, we can get the follow list o f inputs for the 

convenience of developing the kinematics model.

Inputs (i= l,2 ,...,6) (Linkparameters)

Base parameters: hexagon 

Length o f sides: Bi 

Angles: 0 i

“v* Moving platform parameters: hexagon 

Length o f sides: Ai 

Angles: a i 

Length o f struts: (actuated parameters): Ti

And the variables using in our model are two types o f parameters which together 

determine the position and orientation of the platform.

Variables (i= l,2 ,...,6) (End effector’s position and orientation);

The length o f struts’ projection on base-plane P i;

A  Y i : The angles between pi and Li on the base-plane.

The geometric-based approach we are using to solve the general Stewart Platform 

kinematics is projective geometrical method. Basically, the projection o f each S joint
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(vertex) on moving platform is used as an intermediate point and the distance between 

any two of them is used as an intermediate variable, which is one of the projections of 

sides and diagonals on the moving platform.

Since this is a geometrical method, we must include all the conditions that can be 

used to bring us to the solution and the projections we should consider consist o f point 

projection and line projection. For line projection, there are two types of lines on the 

platform, they are the lines between adjacent joints (sides) and the line between non- 

adjacent joints (diagonals). For point projection, this only occurs when two or three joints 

are superposed and the point projection is the projection o f coincident joint.

Based on the above analysis, the projection conditions are falling into three 

categories: common side (IS), common diagonal (2S and 3S) and superposition condition 

(OS) and the common diagonal conditions consist of two types o f diagonals, which are 

named 2S and 3S diagonals.

IS Common side conditions

Simply speaking, the sides o f polygon on the platform are used to be projected on 

the base in order to develop the relation equations between inputs and variables. The

number o f  the generic conditions can vary from 1 to 6 in terms o f  the particular topology 

we are discussing [figure 3.2],
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Figure 3.2: Common Side Condition

To develop the corresponding equations, we take a particular polyhedron out of the 

system to research. In the highlighted tetrahedron, AI is the side we are using on the 

platform. The side (B I) on the base, the lengths of struts (TI and T2) and the moving side 

(11) are known. The variables in this polyhedron are the projections o f struts (pi and p2) 

and the angles between these struts’ projections and the base side (yl).

From top, one can develop: 

lx -  ( A 2 -  Pi -  -  Pi )* = /„  (3.1)

From bottom, one can develop:

\_P\ ■sin Yi~  P t -sin (P ~ Yi ) ] 2 + [A  “  P\ ' cos Y\~ Pi-  cos {p  -  y2 ) ] 2 = lpX (3.2)
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Combine and generalize:

=[pr  s™ r, -  pm • s i"  (P-  r„  ) T + [A  -  p, ■c o s  r, -  p„ ■ ̂ ( P -  rM ) T

Let us set generalize the above equations as:

= [P, ■ sin<t>n - p,+ ■ sin ]2 + [B ,~p t • cos</>n - p l+ ■ cos<f>,2]2 

Where:

4 = /,.

4  = z, 

k  =  r,

$2 = Pm ~Ym  

/+ = / +1

This is the first set o f equations that obtained by common side conditions with two 

types o f variables: length p and angle y. The number of these equations could be up to 6 

in terms o f the number of vertices on the platform.

2S Common diagonal conditions

Similarly, when we take a look at a particular highlighted tetrahedron, which has a 

side on platform acting as a diagonal [figure 3.3], w e are going to use the 2S diagonal to 

develop the kinematic equations.

35
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(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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*r

Figure 3.3: 2S Common Diagonal Condition

By the same way, the same set of equations in terms of common diagonal conditions 

can be developed as (3.4), however, different Ai, Bi, O il ,  O i2 and i+ should be 

substituted in for two types of diagonals.

For those 2S diagonals, which are forming triangles with the corresponding 2 

adjacent sides.

4  = V7/2 + lM ~ 2 '1‘ ' lM ■ COS «/+!

B, = ^L, + Lm  — 2 -Li - Lm  • cos PM

<t>>x = Yi ~ arctan (l m  • sin p M/ ( L , -  LM ■ cos p M ))

(3.15)

(3.16)

(3.17)

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



h i  = P m  + P m  ~  Y m  +  arctan ( Lm  ■sin P m / ( Li ~  Lm ' cos fiM ) ) - n  

z+ =  / +  2

37

(3.18)

(3.19)

3S Common diagonal conditions

For those 3S diagonals, which are forming quadrangles with the corresponding 3 

adjacent sides [figure 3.4].

A C *

Figure 3.4: 3S Common Diagonal Condition

A  ~ [/; ■*" h+1 /̂+2 + 2 • • //+2 • cos(a/+1 + cc (+2) — 2 • /( • lMlj+2 • cos ccM • cos ccj+2 J (3.20)

5,. = [ l , 2 +LM2 + Li+2 + 2-L,- Li+2 • cos(/?/+1 + P i+2)~ 2 • Lt ■ LMLl+2 ■ cos f i+1 ■ cos/3i+2J 2 (3.21)
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/

arcsin
(Z,.+1 -L,  cos pM - I ,.+2 co s# +2)

P,+i+ x/2  Vi Q 22)

arcsin (A+i ~L, cos/?+1 ~~Ij+2 cos/|+2)
I  +&2+/?+3 ft* 3n/ 2 (3.23)

-Z, cos/?+1 -L i+2 c o s /? +2 )2 + ( 4 2 sin/?+2 -2, sin$+l) y

/+ — z + 3 (3.24)

Superposition conditions

We can image that in some cases two or more joints may superposed together. At 

this time, another kind of conditions should be taken into account: superposition 

conditions because these are also the necessary conditions that determine the position and 

orientation o f end-effector [Figure 3.5].

The condition equations’ development is illustrated by an example here. When the 

first two joints on the moving platform are coincident with each other, we take the 

corresponding tetrahedron (with sides B I, TI and T2) out o f the system to research.

38
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B i

Figure 3.5: OS Superposition Condition

This condition is simpler comparing with the former two, we use the projection line 

as common side the following equations can be developed:

T ? - p ? = T M* - p M* (3.25)

When n joints on the moving platform are superposed, n-1 equations can be 

developed. Based on the above mentioned three conditions, up to 15 equations can be

derived in terms o f them and for those applicable topologies at least 12 equations can be

derived. The nonlinear kinematics model can be derived as following:

= [Pt ■ sin </>a -  p i+ • sin <j>a f  + [5, -  p t • cos ̂  -  p M • cos </)a f  (3.26)

rp2   2   rp 2   _ 2
1 i P i  ~ J i+l P i+ \ (3.27)
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To solve the above equations, as the motion is continuous, at each calculation step, 

an initial estimate is the posture at the previous step. The convergence problem can be 

solved mainly by choosing a very small time step, which require higher computing 

capability and is not suitable for real-time applications. By using the extra sensors, we 

can use the redundant data input from sensors to determine uniquely the solution of the 

forward kinematics and to provide a good initial estimate for the iterative solving process. 

Another advantage o f the extra sensors is that they can be used for robot self-calibration 

and also ensure the robot reliability in the case o f a sensor failure. The choice of type and 

disposition o f extra sensors is aimed at obtaining the unique solution to the forward 

kinematics with a minimal number of sensors. The sensors we are going to use are rotary 

sensors for measuring the leg direction and it has been proved that at least four rotary 

sensors are need for obtaining a unique solution, which means two of joints on base 

should be measured by four rotary sensors and each two sensors is assigned to get 

direction of the base universal joint on both axes so that the position of corresponding 

two joints on the moving platform are given, which are four adjacent variables for the 

above equations.

3.1.2 Reconfigurable Inverse Kinematics

For inverse kinematics, the objective is to solve the six struts’ lengths with given 

end-effector position and orientation.
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Wa
A6

A3

A2

B5

Wb

B2

Figure 3.6: the end-effector position and orientation of Stewart Platform

With reference to the Figure 3.6, the given inputs are the coordinates of the end- 

effector and the orientation of the end-effector, which are roll, pitch and yaw. Other 

known parameters are the shape of moving platform and base. In order to solve the length 

of six struts, the coordinates o f the joints on the moving platform must be solved first. 

With the given initial joint coordinates of the moving platform, the transformation matrix 

can be adopted here to obtain the coordinates o f the joints on the moving platform. The 

translational and rotational matrices used in the process are shown below.

The translational matrix along axis x of the moving coordinate frame:

Tx matrix

1 0 0 Tx

0 1 0  0
0 0 1 0
0 0 0 1

(3.28)
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The translational matrix along axis y o f the moving coordinate frame:

T y m a tr ix  =

1 0  0 0 
0 1 0 Ty

0 0 1 0  
0 0 0 1

The translational matrix along axis z of the moving coordinate frame:

Tz matrix

1 0  0 0
0 1 0  0

0 0 1 Tz

0 0 0 1

The rotational matrix about axis x of the moving coordinate frame:

Troll m atrix =

C os(T  roll) -S in(T  roll) 0 0 

Sin(T  roll) C os(T roll) 0 0

0 0 1 0
0 0 0 1

The rotational matrix about axis y of the moving coordinate frame:

T pitch_m atrix

Co.s(T p itch ) 0 S in (T p itch ) 0

0 1 0  0 
-S in (T p itch ) 0 C os(T p itch ) 0

0 0 0 1

The rotational matrix about axis z of the moving coordinate frame:

T yaw _m atrix  =

1 0  0 0 
0 C o s(T y a w ) -S in (T yaw ) 0

0 S in (T yaw ) C os(T yaw ) 0
0 0 0 1

The product o f the above matrix is the transformation matrix:

42

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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Ttrans_m atrix =
Tx_m atrix -Ty_m atrix -Tz_m atrix -Troll_m atrix •Tpitch_m atrix •Tyaw_m atrix

(3.34)

By multiplying the transformation matrix with the known initial coordinates of the 

moving joints, we can obtain coordinates of the joints on the moving platform. Let’s say 

the given coordinates matrix o f the moving joints is movePMO, then the final coordinates 

matrix o f the moving joints is:

m ovePM 2 = Ttrans_m atrix •movePMO (3-35)

Assume the given base coordinates matrix is basePM, then the struts length matrix 

can be solved as:

Strutlen = |movePM 2 - basePM  | (3.36)

3.2 Classification of Stewart Platforms

We classify different categories o f Stewart platform based on the shape formed by 

the rotational joints on base and moving platform respectively. There are five types of 

geometric shapes: hexagon, pentagon, quadrangle, triangle and line. I exclude the special 

type o f shape, point, which leads to all the rotational joints coincident together on 

platform or base, because this situation reduces the degree o f freedom of the system to 

zero, which is meaningless.

For the base, first four shapes are practicable but the line shape is unusable for its 

un-stability. Considering the hexagon on the base [Table 3.1], all types of moving
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platform shapes can be applied to it. Considering the pentagon base [Table 3.2], hexagon 

moving platform has the exactly same calculating condition as the 6-6 type so it will not 

be mentioned here and the same for all those types with more joints on moving platform. 

For the quadrangle base [Table 3.3], there are five available topologies are practicable. 

The last category, triangle base [Table 3.4], contains only one usable topology, 3-3 SP, 

with every adjacent joint couple coincident together. The ones with Fs under the numbers 

of types are unpractical. FI stands for the ones with more than 4 joints intersecting 

together; F2 is for the ones with legs interfering with each others; F3 is for the ones with 

unstable structures.

Table 3.1: Hexagon Base Topologies

Conf Conditions Demo Applications

6-6 Com:[ls] 1/2, 2/3, 3/4, 4/5, 5/6, 6/1 

[2s] 1/3, 2/4, 3/5, 4/6, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 

Coi: None
0

COPRA® Hexapod 

Lens Hexapod 

Servos motion system 

PI Hexapod

6-5 Com:[Is] 2/3, 3/4, 4/5, 5/6, 6/1

[2s] 1/3, 2/4, 3/5, 4/6, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 

Coi: 1/2

6-4(1) Com:[Is] 2/3. 3/4, 5/6, 6/1

[2s] 1/3, 2/4, 3 /5 ,4 6 . 5 1. 6 2 

[3s] 1/4, 2/5, 3/6  

Coi: 1/2, 4/5
0
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6-4(2) Com:[ls] 3/4,4/5, 5/6. 6/1 

[2s] 2/4, 3/5,4/6, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 

Coi: 1/2,2/3

No solution in 

published papers

6-3(1) Com:[Is] 2/3, 4/5, 6/1

[2s] 1/3, 2/4, 3/5, 4/6, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 

Coi: 1/2, 3/4, 5/6

Fanuc F-200iB 

Moog E-Cue 660 

AI Motion Bases

6-3(2) Com:[Is] 3/4, 5/6, 6/1

[2s] 2/4, 3/5, 4/6, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 

Coi: 1/2, 2/3, 4/5

6-3(3)

FI

Com:[ls] 4/5, 5/6, 6/1 

[2s] 3/5, 4/6, 5/1, 6/2 

[3s] 2/5, 3/6 

Coi: 1/2, 2/3, 3/4

N/A

6-2(1) Com:[Is] 3/4, 6/1

[2s] 2/4, 3/5, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 

Coi: 1/2, 2/3,4/5, 5/6

A
6-2(2)

FI

Com:[Is] 4/5. 6/1 

[2s] 4/6, 6/2 

[3s] 3/6 

Coi: 1/2, 2/3, 3/4,4/5

N /A -  ■ *■': ■

6-2(3)

FI

Com:[ls] 5/6, 6/1

[2s] 3/5, 4/6, 5/1, 6/2 

[3s] 2/5, 3/6 

Coi: 1/2, 2/3, 3/4, 5/6

N/A
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Table 3.2: Pentagon Base Topologies

Conf Conditions Demo Applications

5-5 Com:[Is] 2/3, 3/4, 4/5, 5/6

[2s] 1/3, 2/4, 3/5, 4/6, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 

Coi: 1/2

5-4(1) Com:[ls] 2/3, 3/4, 5/6

[2s] 1/3, 2/4, 3/5.4/6, 5/1, 6/2 

[3s] 1/4. 2/5, 3/6 

Coi: 1/2,4/5

No solution in 

published papersC i>
5-4(2) Com:[ls] 3/4,4/5, 5/6

[2s] 2/4, 3/5, 4/6, 5/1, 6/2 

[3s] 1/4. 2/5, 3/6 

Coi: 1/2, 2/3

No solution in 

published papers

5-3(1) Com:[Is] 2/3, 4/5

[2s] 1/3, 2/4, 3/5, 4/6, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 

Coi: 1/2, 3/4, 5/6

No solution in 

published papers

5-3(2) Com:[Is] 3/4, 5/6

[2s] 2/4, 3/5, 4/6, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 

Coi: 1/2, 2/3, 4/5

No solution in 

published papers

<3L>
5-3(3)

FI

Com:[Is] 4/5, 5/6

[2s] 3/5, 4/6, 5/1, 6/2 

[3s] 2/5, 3/6 

Coi: 1/2, 2/3, 3/4

N/A

5-2(1) Com:[Is] 3/4

[2s] 2/4, 3/5. 5/1. 6/2 

[3s] 1/4. 2/5. 3/6

No solution in 

published papers
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Coi: 1/2.2/3,4/5. 5/6

5-2(2)

I-l

Com:[ls] 4/5

[2s] 3/5, 4/6, 5/1, 6/2 

[3s] 2/5, 3/6 

Coi: 1/2. 2/3, 3/4, 5/6

N/A

5-2(3)

FI

Com:[ls] 5/6 

[2s] 4/6, 6/2 

[3s] 3/6 

Coi: 1/2. 2/3, 3/4.4/S

N/A « \  f

Table 3.3: Quadrangle Base Topologies

Conf Conditions Demo Applications

4-4(1) Com:[Is] 2/3, 5/6

[2s] 1/3,2/4, 3/5,4/6, 5/1,6/2 

[3s] 1/4,2/5, 3/6 

Coi: 1/2, 4/5
%

4-4(2) Com:[Is] 4/5, 5/6

[2s] 2/4, 3/5, 4/6, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 

Coi: 1/2, 2/3
% No solution in 

published papers

4-4(3) Com:[Is] 5/6, 6/1

[2s] 1/3, 3/5, 4/6, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 

Coi: 1/2, 4/5
3 No solution in 

published papers

4-4(4)

F3

Com:[ls] 3/4, 6/1

[2s] 2/4, 3/5, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 3 N/A
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Coi: 1/2,2/3

4-3(1) Com:[ls] 4/5

[2s] 1/3, 2/4. 3/5. 4/6, 5/1, 6/2 

[3s] 1/4. 2/5. 3/6 

Coi: 1/2.3/4, 5/6

No solution in 

published papers

4-3(2) Com:[ls] 5/6

[2s] 2/4. 3/5, 4/6, 5/1, 6/2 

[3s] 1/4. 2/5. 3/6 

Coi: 1/2, 2/3, 4/5
3

No solution in 

published papers

4-3(3)

FI

Com:[Is] 5/6

[2s] 3/5,4/6. 5/1, 6/2 

[3s] 2/5. 3/6 

Coi: 1/2, 2/3, 3/4

N/A ■ ' ■ J-

4-3(4)

F2

Com:[ls] 3/4

[2s] 2/4. 3/5. 4/6, 6/2 

[3s] 1/4. 2/5. 3/6 

Coi: 1/2. 2/3, 4/5
%

N/A

4-3(5)

FI

Com:[Is] 6/1

[2s] 3/5. 5/1. 6/2 

[3s] 2/5, 3/6 

Coi: 1/2, 2/3, 3/4
SN/A

4-2(1)

F

Com:[Is] N/A

[2s] 2/4, 3/5, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 

Coi: 1/2, 2/3, 4/5, 5/6

N/A

4-2(3)

FI

Com:[Is] 4/5, 5/6 

[2s] 2/4, 6/2 

[3s] 1/4, 3/6 

Coi: 1/2, 2/3

N/A
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Table 3.4: Triangle Base Topologies

Conf Conditions Demo Applications

3-3 Use of conditions:

Com:[Is] N/A

[2s] 1/3, 2/4, 3/5, 4/6, 5/1, 6/2 

[3s] 1/4, 2/5, 3/6 

Coi: 1/2, 3/4, 5/6

aFCS E-Cue 624- 

1800

E-Cue 660-12000 

MOOG 6DOF2000E 

PI M-850 

AI Hexapod

3-2

F2

Use of conditions: 

Com:[Is] 1/2. 3/4, 5/6 

[2s] None 

[3s] 1/4, 2/5, 3/6 

Coi: None

aN/A

According to the above mentioned tables, up to 20 different topologies can be used 

for industrial application theoretically. In the following section, the solving method will 

be presented for all o f these topologies and for each of topology a pick-up algorithm is 

shown in the corresponding table row to choose those proper conditions for a specific 

topology.

3.3 Matlab-based Implementation

Matlab [Mathwork] is an interactive environment for mathematical and scientific 

computing. It is the standard tool for numerical computing in industry and research. 

Matlab stands for Matrix Laboratory. It specializes in Matrix and vector computations,
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but includes functions for graphics, numerical integration and differentiation, solving 

differential equations, etc. Matlab differs from most significantly from, say, Maple, by 

not having a facility for abstract computation.

In addition to functions for numerical linear algebra, Matlab provides functions for 

the solution of a number of common problems, such as numerical integration, initial 

value problems in ordinary differential equations, root-finding, and optimization. In 

addition, optional “Toolboxes” provide a variety of such functions aimed at a particular 

type o f computation, for example, optimization, spline approximation, signal processing, 

and so forth. The optional toolboxes are not the main point here but the solving nonlinear 

problems.

More details about the following commands may be obtained from the help 

command:

fzero root-finding (single variable);

fmin nonlinear minimization (single variable);

fmins nonlinear minimization (several variables);

“v* fsolve solves systems o f nonlinear equations o f several variables.

Matlab is powerful math computing tool but it still has som e fatal limitations, which  

are insufficient user interface, poor debug environment and so on. A short program was
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coded to implement and solve the kinematic model with all necessary inputs and outputs 

displayed. The code example is shown in APPENDIX A.

This code example just shows how simple it could be to program a Matlab program 

in order to implement the mathematical model and it is not adopted for simulation 

because Visual C++ is another more powerful way to implement the modelling and 

simulation process, which is the way we are using in the coming chapters. [Mark, S., 

1999]

3.4 Applications of Reconfigurable Kinematics Model

Stewart Platforms are the most commonly used parallel robot in industrial 

applications and they can be applied in many different fields, such as motion simulators, 

milling machines, auto test rigs, positioning systems and so on. Figure 3.7 shows some of 

applications existing in real industrial applications.

Test 'Rigs
IMXBC Vtau turning !M

J'CS "£€w 66irman

JUJO Aexapods
SM’WOXXmmerkfe

:V1/ sDOf jpthtmr robotftmuc-'HoBotkS'f'Huot'U'

Figure 3.7: Applications of Stewart Platforms 
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As we discussed, the kinematics model is derived for general case so that this model 

can be applied to any special application by slightly change some inputs. In the following 

section, two configurations are discussed to illustrate how and why this model can be 

applied to special cases.

3-3 Stewart Platform

One of the most famous Stewart Platform is the 3-3 Stewart Platform and it is 

applied in many industrial fields and for miscellaneous purposes, such as flight simulator 

FCS E-Cue 624-1800 and E-Cue 660-12000. motion base MOOG 6DQF2000E. 

positioning PI M-850. multiple-application Al Hexapod and so on. The configurations 

used for above-mentioned applications are specified in Table3.1-Table3.4.

Figure 3.8: 3-3 Stewart Platform 

[Bruyninckx, H., 2005, Parallel Robots, http://www. roble.lnfo/robotics/pa rallel/1

As shown in figure 3.8, in 3-3 Stewart Platform three pairs o f joints are superposed 

respectively on both base and moving platform. This configuration is widely used in
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industry because its triangle structures make it stronger and more rigid. Another major 

advantage is that it is easier to be configured and controlled. Our kinematics model can 

be easily applied in this case by changing the inputs on base and moving platform and the 

detail is explained as following.

The inputs we are talking about are actually the link parameters, which determine 

the special configuration of the topology. These inputs include the moving platform 

parameters: the lengths of sides and the angles of adjacent sides, which form the moving 

platform, and the similar base parameters. The inputs are listed as following:

Inputs (i=l ,2,—,6) (Link parameters)

*v- Base parameters: hexagon 

Length o f sides: Li 

Angles:pi

Moving platform parameters: hexagon 

Length o f sides: li 

Angles :ai

When these parameters are changed a new topology is obtained. For example, when 

we let L I, L3 and L5 equal to zero and let 12,14 and 16 equal to zero too, a 3-3 Stewart 

Platform is formed. So we can solve the 3-3 Stewart platform by changing the above 

parameters with no consideration of changing kinematics model.
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6-3/6-6 Stewart Platform

6-316-6 Stewart Platform is another popular used topology and many researchers 

have done lots o f work on solving the kinematics, singularity and workspace. Ku D.M 

[Ku, D.M., 2000] and Akcali ID [Akcali, I.D., Mutlu, H., 2006] proposed effective and 

efficient approach to solve forward kinematics and provide some numerical examples. 

Yanwen Li [Li ,Y., Huang, Z., Chen, L., 2003] studied the singularity o f the 6-3 Stewart 

Platform in 2003. A program 6p-3 [Merlet, J.P., 1992] was designed to compute the 

solutions o f the forward kinematics o f 6-3 Stewart Platform with a planar base [figure 

3.8]. 6-3 Stewart Platforms are used in Funuc F-200iB, Moog E-Cue 660, AI Motion 

Bases etc. and 6-6 Stewart Platforms are used in COPRA® Hexapod, Lens Hexapod, 

Servos motion system, PI Hexapod and so on. The configurations used for above- 

mentioned applications are specified in Table3.1-Table3.4.

Figure 3.9: 6-3 Stewart Platform 

[Merlet, J-P., 1992,6p-3, http://www-sop.inria.fr/coprin/logiciels/RP/FK/6p-3/notice-html.html]
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For the forward kinematics the mechanism is equivalent to a 3-(RS) mechanism. 

The 3-(RS) mechanism is constituted of a base and a moving platform, which is a triangle. 

Each vertex of this triangle is connected to the ground by a fixed length link which is 

attached to the platform by a ball-and-socket joint. The other extremity o f the link is 

connected to the ground through a revolute joint [figure 3.10].

The difference between 6-3 Stewart Platform and 6-6 general Stewart Platform can 

be simply figured out that the three pair of joints on moving platform are superposed and 

there are two struts are connecting to each vertex of the triangle on moving platform. So 

for instance if we set 11, 13 and 15 equal to zero at the same time we can have a 6-3 

Stewart Platform. By the same way can we use the same reconfigurable kinematics model 

to solve this special topology.

.. || ' P—■

Figure 3.10: 6-3Equivalent Mechanism 

[Merlet, J-P., 1992, 6p-3, http://www-sop.inria.fr/coprin/logiciels/RP/FK/6p-3/notice-html.html]
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Other applications

A 3-2-1 Stewart Platform was studied as early as 1994 by Geng, Z.[Geng, Z., and 

Haynes, L., 1994] and he provided an application to six degrees o f freedom pose 

measurements. 6-4 Stewart Platforms are studied by Chen N.X. and Song S.M. [Chen 

N.X. and Song S.M., 1992 and 1994] and they presented a forward kinematics analysis 

for 6-4 Stewart Platform. Husain, M. and Herman Bruyninckx [Husain, M. and Waldron, 

K.J., 1994 and Herman Bruyninckx, 1998] proposed an algorithm to solve the forward 

kinematics of 3-1-1-1 Stewart Platform. In 1992, Knapczyk J., Dzierzek S.[Knapczyk, J. 

and Dzierzek, S., 1992] and Nielsen J., Roth B.[Nielsen, J. and Roth, B., 1996] studied 

the 6-5 Stewart Platform and gave its forward kinematics solutions. In 1990, Lin W. and 

Duffy J.[Lin, W., Duffy, J. and Griffis M., 1990] published a paper talking about the 

kinematics o f 4-4 Stewart Platform and two years later they gave the forward kinematics 

solution o f 4-5 Stewart Platform[Lin, W., Crane, C.D. and Duffy, J., 1992].
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CHAPTER IV

SIMULATION SOFTWARE DESIGN AND IMPLEMENTATION

4.1 Software background and Design requirements

Unified Kinematic Modeler and Simulator (UKMS) was designed by Zhongqing 

Ding in 2005 [Ding, Z.Q. and ElMaraghy, W.H., 2005], UKMS applied the unified 

solution for Puma serial robots proposed by Dr. Djuric and Dr. ElMaraghy [Djuric, A.M. 

and ElMaraghy, W.H, 2004] and hence implement modeling and simulating of Puma 

type serial robots. Nowadays, Parallel robots are attracting growing attention in various 

fields and the star is absolutely Stewart Platform, which is widely used in industrial 

application, machine tools, positioning device and other miscellaneous applications. 

More than 100 laboratories and R&D centers around the world are focusing research on it. 

Most o f famous robot and machine tool manufacturers including Fanuc, ABB and Adept 

are currently supplying some parallel robot products.

Although Stewart Platform has brought a lot o f attention to researchers and 

manufacturers, the software platforms that can model and simulate Stewart Platforms are 

still too few compared with the wide spread o f Stewart Platforms. SEMORS-PKM 

designed by I-Ming Chen is used to Simulate Modular Reconfigurable Robotic Systems 

based on Product-Of-Exponential formulation. It can be run on Windows desktop 

operating system and do the singularity analysis and kinematic simulation. RoboWork is 

another software tool that can be use to model parallel robot. It provides seven shapes of
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objects (cylinder, cone, disk, annular disk, sphere, cube and wedge), five transformations 

(rotation, translation, scaling, transformation start and transformation stop) and several 

materials, group trees and on/off switch. Unfortunately, the functions of RoboWork are 

too simple to run kinematics simulation.

My main objectives of the proposed research is not only to provide a GUI software 

module to implement the functionality described in former section, but also to create a 

software platform, which has the features o f easy of use, extensibility, portability, and 

reusability. And these functions of modeling and simulating Stewart Platforms are going 

to be integrated into our UKMS to make the software stronger and multi-functional. The 

theory and specification used to build the software are the same in order to make the 

software has solid stability.

4.2 Software design and implementation

Introduction of Robot Modeling and Simulation

Geometrical modeling o f robot manipulators is an expanding area of research 

because it can aid in the design and usage of robots in a number of ways [Mirolo, C. and 

Pagello, E., 1989]:

D esign and testing o f  manipulators: The purpose o f  the m odeling is to study 

different approaches to satisfy the design specifications o f the manipulator
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Robot action planning: The modeling environment is used to build a 

representation of the robots, positioners, and other mechanisms with moving 

joints, and the objects in the workspace for creating and validating action plans 

by simulating the effect of these actions in the model space.

^  On-line control o f robot manipulators: The simulated action plans generated in 

the model space are transmitted (after validation) to the attached robot 

manipulators for execution.

■O' Training and education: Robotics simulation packages provide an inexpensive 

and safe way to teach the theory and operation of robot manipulators.

•0* Tele-robotic user interface: In applications where the operator o f the robot has 

to be at a large distance from the workcell (radiation, space, etc.) realistic 

graphical simulation can be used for better interaction with the manipulator.

To satisfy all or some o f the above goals, a robotics modeling and simulation 

package has to provide the following minimal fixtures:

•v- A way to build models of solid objects: This requires the facilities to create a set 

o f solid primitives ((like boxes, cylinders, cones, etc.) and some services to 

combine these into more complex shapes.

•v* A way to assemble models o f robot manipulator links and other solid objects 

into complete models of robotic work cells.

A  way to manipulate the models. This includes methods fix  accessing and 

animating objects, routines for forward and inverse kinematics calculations, and 

graphics display.
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Advanced robot simulation environments can also support one or more o f the 

following:

•b- Path planning services for moving the manipulator along various trajectories 

(straight-line, etc).

Collision detection and collision avoidance services.

Simulation o f manipulator dynamics to obtain the forces and torques on the 

links o f the manipulator arm and to enforce their limits.

Manu structure and Graphical user interface

The developed user menu of the software is interactive for the construction of 

kinematic modeling and simulation for both industrial serial and parallel robots. The 

software allows the user to create kinematic models and implement the simulation of 

robots by using graphical user dialogs which have several sub-tab to perform different 

tasks. The default supervising GUI, which is loaded automatically at the startup of the 

system, is a Multiple Document Interface (MDI) application. The menu structure of GUI 

is shown in figure 4.1

The new menu added for General Stewart Platform modeling and simulation is the 

GSP menu, which includes three submenus: model, pendent view and simulation. The 

menu is shown in figure 4.2.
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Figure 4.1: The Menu Structure of GUI

File Edit View Geometry Robot GSP Window help

1f

Model
Pendent

View
Simulation

Figure 4.2: The GSP Menu

The default window is shown in figure 4.3. The window comprises:

A Menu Bar that contains all command menus and options.

4- A Toolbar that contains icons for the most commonly used options.

A working area which is a 3D scene viewer showing images o f the work cell 

objects.
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A Status Bar that includes 5 columns for displaying the status message, the 

selected object name, the origin coordinate X, Y, Z values o f the selected object 

respectively.

Menu

Toolbar

Working
Area

Status

Figure 4.3: Graphical User Interface

The new introduced shortcut buttons on the toolbar are the three blue buttons that act 

as the shortcuts with the same functions with the corresponding menus. These three 

shortcut buttons are shown in figure 4.4.

Q  -P '■ S 1

Figure 4.4: GSP Toolbar Shortcut Buttons

The world coordinate system known as the world coordinate system and the 

platform coordinate system known as the moving reference coordinate system both adopt
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the right-hand rectangular Cartesian coordinate system regulation which specifies the x, y, 

and z axes are in the same relative orientation as forefinger, second finger, and thumb 

respectively of a right hand shown in figure 4.5

Figure 4.5: Moving Reference Coordinate System

Creation of Models: the System Modeling Environment

UKMS models the three dimensional geometric objects using lists of their bounding 

polygons in a manner similar to other solid modeling software tools. It can model and 

simulate two major branches o f industrial robots, which are the Puma type robots 

(designed by Zhongqing Ding [Ding, Z.Q. and ElMaraghy, W.H., 2005]) and Stewart 

Platforms. The system supports a GUI developed and run under Windows-based 

operating system, which makes it easy to port this system to PC-based robot control 

systems. The overall system structure is illustrated in Figure 4.6.
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i v

Visual C++ OpenGL Graphics Library

Graphical User Interface for Robotic simulation

Windows Operating System

PC Computer

Figure 4.6: Overall System Structure 

[Ding, Z.Q. and ElMaraghy, W.H., 2005]

The procedure of GSP modeling is as following:

By analyzing the kinematic structures o f General Stewart Platform, we give the 

input parameters to determine the topology o f the Stewart Platform. By simply clicking 

on the model sub-menu o f the GSP menu, inputting the necessary link parameters, we are 

able to obtain the model view in the work area [Figure 4.7].

Create the origin coordinate of moving platform with matrix translation. There 

is no rotational translation for the moving platform origin.

Calculate the joint coordinates on m oving platform and create the model.

Change model by using different link parameters to form all different Stewart 

Platforms.
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Figure 4.7: Parameters Input Dialogs

The coordinate systems used in the modeling system are shown in figure 4.8. There 

are two coordinate systems are assigned to the objects, the base coordinate system which 

is fixed and the moving platform coordinate system which is moving. The origin o f base 

coordinate system is fixed on the first joint of the base. The origin o f moving platform is 

fixed on the first joint of the moving platform and moving with the platform. The 

absolute coordinates o f moving platform coordinate frame is the position of the first joint 

of moving platform in base coordinate system [Figure 4.8].
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Z»o

Figure 4.8: The Overall Coordinate Systems

Operating the Models: the System Simulation Environment

The required robot path is given by a set o f points. Those points are target locations 

of the robot’s end-effector and are called Target Points (TPs). Each point is defined with 

its position and orientation. We need to calculate robot joint values for each point 

depending on the position and orientation of the point.

A path is a list o f all the TPs that a robot follows during a sequence o f motions. We 

can generate a TP using the Learn TP button on the pendent view. After the user has 

created the path, the simulation function can be used to simulate the activity of the robot 

following the path.
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The pendent view is divided into three sections. The top section is labeled “end- 

effector” and displays the absolute position and orientation o f the tool frame o f the robot 

with regard to the base coordinate frame. The second section is labeled “Strut lengths” 

and shows the lengths o f the six extendable struts. The third section includes two 

operating button. The Learn TP button learns and saves the current data as a Target Point 

(TP). The Home button moves the robot to the initial position. The robot will be moving 

to the location o f solution when it is selected.

If  the user changes the position and orientation of end-effector in the first section, 

the robot will immediately move according to the given values. Meanwhile, the inverse 

kinematic problem will be solved, and the corresponding struts’ lengths will be shown in 

the second section.

The UKMS provides an interactive simulation environment where the configuration 

inputs entered by the user are immediately executed and the results are displayed on a 

graphics screen. From this interactive environment users can change the simulation 

scenario and operate the robot manipulator models in the system. The procedure of 

simulation can be described as follows:

Select the object that we want to simulate and click the pendent view sub-menu of 

GSP menu. The pendent v iew  dialog w ill be popping up [Figure 4.9].
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Click on the up/down arrow in the end-effector area or just type the value to give the 

position and orientation of the end-effector. Once a parking point is selected we click on 

the “learn TP” button on the bottom of pendent view dialog to let the system learn the 

robot pose at this point [Figure 4.9].

After all necessary points on the trajectory are given, we can click the OK button to 

finish the learning section and proceed to simulation section by choosing the simulate 

menu in the GSP main menu and then the system will exactly follow the trajectory that 

you taught to show the simulation o f the platform moving [Figure 4.10].

Figure 4.9: Pendent View Dialog
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Figure 4.10: Learn Pose Points View

In order to make the software easy to install and use for the first time user, we 

provide a software user manual for reference, which is listed in Appendix C.
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CHAPTER V

APPLICATION EXAMPLES

Thanks to the rigid, precise and agility of Stewart Platform, it is ideal solution for 

motion simulation, positioning device, Nano technology and assembly line. In this 

chapter two application examples are given by both using the reconfigurable model to 

produce numerical kinematic model and using the GUI to create graphical model and 

simulation. We are using a 3-3 Stewart Platform, which is one o f the most popular 

configurations using in flight simulators, and a 5-4 Stewart Platform, which has never 

been studied and has no solved solution in published papers.

5.1 3-3 Stew art P latform s

5.1.1 Problem Description

The special case we consider here is 3-3 Stewart Platform shown in figure 5.1.

Figure 5.1: 3-3 Stewart Platform 

[Bruyninckx, H., 2005, Parallel Robots, http://www.roble.info/robotics/parallel/]
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3-3 Stewart Platform is a parallel mechanism, which has two rigid bodies connected 

by six extensible struts. The six extensible struts are forming three concurrent pairs both 

on base and moving platform, hence six triangles are formed with six struts and two rigid 

bodies. The joints used to connect struts and the base are universal joints and the joints 

between the struts and moving platform are spherical joints or ball-and-socket joints. The 

only actuated joints are those prismatic joints on the struts.

5.1.2 kinematic Model

As we discussed in chapter 3, there are three conditions that can be used for 

developing the kinematic model. For any special topology, we have to analyze these three 

conditions one by one. One important rule to decide which conditions can be used in 

developing procedure is that any coincident joint can not be used as a condition, in other 

words, any zero-length side or diagonal can not be used as a condition [Figure 5.2].

5/6

6/1

Figure 5.2: Kinematic Model of 3-3 Stewart Platform
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IS Common side conditions

Refer to the figure 5.2, three non-zero sides on the moving platform are sides A2-3, 

A4-5 and A6-1, but the corresponding sides B2-3, B4-5 and B6-1 on the base are all zero. 

Based on the above analysis, there is no common side condition that can be used for 

developing.

2S and 3S Common diagonal conditions

With reference to the figure 5.2, all the diagonals on the moving platform are non­

zero, so are the corresponding diagonals on the base. All nine common diagonal 

conditions are available.

Consider the common diagonal condition equations (5.1) we developed in chapter 3

For those 2S diagonals, which are forming triangles with the corresponding 2 

adjacent sides.

- \ P t ' sin4  - p i+ ■ s in<ti2 f  + - p, • cos<j>n - p i+ ■ cosh i f (5.1)

k  = Y, ~ arctan (A+i • sin # +1/(A  -  Lm  • cos ))

t i l  -  Pm  + Pi+2 -  Vi+1 +  arctan(Z,+1 ■ sin/?<+1/(Z , - LM ■ c o sP M ) ) - n

i+ = i + 2

i =1, 2, 3, 4, 5, 6.

(5.2)
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For those 3S diagonals, which are forming quadrangles with the corresponding 3 

adjacent sides.

A  = |' j '  + 1m  + lJ  + 2• • lM • cos(or,+1 + a  <+2) -  2 ■ /, • lMlM • cosa M • cosa M ] ‘

A  ~ [A  + A+i + A +2 + 2 -Lt - Li+1 ■ cos(/3i+l + 0 j+2) — 2 • Z( • LMLj+2 • cos /?(+1 • cos Pi+2 J

■tl/2

- |l /2

arcsin (A+i "A cos $ +l “  A+2 cos/?(+2)

>/(4+i “  A cos/?M -  A+2 cosA +2)2 + (4 ,2  sinA+2 “ A sinA +i)2
- P M + 7 r /2 - r t

fin ~

arcsin
(A+i-Acos&i-A^cos/L)

V(A+i -A  cosA+i A+2 coŝ ) 2 +(A+2 sinA+2 -A  sinA+i)2
+/fif+2+yfif+3—yz+3—̂

/+ — / + 3 

i =1, 2, 3.

(5.3)

OS Superposition conditions

With reference to the figure 5.2, three pairs of joints are coincident with each other 

on the moving platform, they are joints 1/2, joints 3/4 and joints 5/6 and the 

corresponding sides on the base are non-zero. The superposition conditions can be 

applied to these three pairs o f joints. The superposition condition equations can be 

developed as following.

T,2 ~  P , 2 = T i+l2 -  p M2 (5 .4 )

i= l ,  3, 5.
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Kinematic Model of 3-3 Stewart Platform

The characteristic parameters for 3-3 Stewart Platform are six zero sides, they are 

three sides on the moving platform 11,13,15 and three sides on the base L I, L3, L5. The 

kinematic model o f 3-3 Stewart Platform can be obtained as following.

= [ p , - s in  (/>\n -  p i+2 - s in  0 \ i2f  + [51,. -  p , - c o s ^ l n -  p i+2 • co s  <H,.2 ]2 

I - [ / > , -  sin #(2yl -  p Jt, • sin ^ 2 „ ] 2 + [ f l 2 ,  -  p ,  • cos *>2,, -  p „ , ■ c o s ^ 2 „ ]

rp 2 2   p  2 2
l k  ~  P k  ~  1 k + 1 _  P k  + 1 

i =  1 , 2 , 3 , 4 , 5 , 6  

j  =  1,2,3 

V  ^ = 1,3,5

(5.5)

Where:

A  = V l,2 + Im  - 2 -Ip /,+1 • c o s a M

51,. = j L , 2+L2M - 2 - L r LM -cos/3M

fin  = Yi ~ arctan (A+1' sin / W (  A "  Lm  'cosPm ))

A ,  = # +1 + A+i - r,+2 + arctan(Z,.+1 • sinp M/ { L , - Z,.+1 • cos0 M) ) - n

A2j = \}j2 + lM  + h +2 + 2 '1, '  h+i ’ cos(a 7+i + a  j A ~  2 ' [, ■ l, J j +2 • cos a j+l • cos « y+2 ]*'2

B2j = [Zy + z ,+1 + Lj+2 + 2  ■ Lj ■ Lj+2 • cos{PJ+l + P J+2) ~ 2 • Z, • Zy+1Zy+2 • cos /?J+1 ■ cos /?J+2 J
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arcsin
(L]+1 -  Lj c o s /3J+l -  Lj+2 cos/?;+2)

\ ( LJ+,‘ ~ L) Q0SPj+\ ~ Lj+2 C0SPj+l ) 2 + (Lj+2 Sin f t  J+2 ~ Lj S*n ftj+l)2 ,

-ft]+l+x/2 -Y j

arcsin
(Lj+1 -Z , cos/?/+| -Z ,+2cos/?y+2)

(z,+1 -Z, cos/?;+1 -L j+2 cos/?.+2) +(z.+2 sin/?+2 -Z , sin/?.+1)
+/?. +2+/?j+3 Ty'4-3 _3^2

5.1.3 Graphical Model and Simulation

This section gives the illustration of a given 3-3 Stewart Platform model and 

simulation with the following data:

B =

The base coordinates:

0 0 O'
400 -6 0 0  0

400 -6 0 0  0

1600 500 0
1600 500 0

0 0 0 (5.6)

The platform coordinates:

A =

0 0 0

0 0 0
500 - 5 0 0 50
5 0 0 - 5 0 0 50

400 300 30

4000 300 0 (5.7)
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Input the above given base and platform coordinates as shown in figure 5.3.

Edit o b je c t  ’P _ R o b o t 0* id
Moving Plaifcim B « e . |  End e ffeo lu j Cacitiinata |

r 04 - ‘ '
* Jl600 Y poj z  (3

ISgjSfifefeiife

f^ 1 6 °0 y; pci— z fn —■ 1

l l s a i
X (o - Y p -------- 2 fj

. ■ 1 1 Cancel I

" " ■’ ' ' RoboS ri"
M ovvgP'«ifo.m |Bas« | End effector | C cadina ta |-I

:w ..|5 0 0  | f ^ '  -50: 5C

Figure 5.3: Parameters Input of 3-3 Stewart Platform 

The simulation target points are listed in table 5.1.

Table 5.1: the Definition of Target Points

Points Px Py Pz Yaw Pitch Roll
1 460 -80 855 15 5 -10
2 1000 200 690 25 20 -15
3 880 620 800 20 30 -5
4 680 725 820 25 25 0

Input target points in pendent view dialog as shown in figure 5.4.
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Figure 5.4: the Inputs of Target Points

Click the “learn TP” button for each target point and then click “OK”. The target 

simulation path is shown in the view window marked by four target points [Figure 5.5].

Figure 5.5: the Simulation Path
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By choosing the simulation menu in the GSP menu, the simulation animation is 

played in the view window following the target point path we defined.

5.2 5-4 Stewart Platforms (1-2-1-21

5.2.1 Problem  Description

The special case we consider here is 5-4 Stewart Platform with 1-2-1-2 joints 

arrangement on the moving platform. 5-4 Stewart Platform is also a parallel mechanism, 

which has two rigid bodies connected by six extensible struts. The six extensible struts 

are connecting the five joints on the base and the four joints on the moving platform, 

hence there are two pairs o f joints on the moving platform coincident with each other and 

one pair o f joints on the base are superposed. The joints used to connect struts and the 

base are universal joints and the joints between the struts and moving platform are 

spherical joints or ball-and-socket joints. The only actuated joints are those prismatic 

joints on the struts.

5

6/1

Figure 5.6: Kinematic Model of 5-4 Stewart Platform
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5.2.2 kinematic Model

By the same way, three conditions can be used to develop the kinematic model as 

follows and the kinematics model o f the 5-4 Stewart Platform is shown in [Figure 5.6].

IS Common side conditions

Refer to the figure 5.6, two pairs of joints (1/2 and 4/5) on the moving platform are 

coincident with each other and so do the joint 1 and joint 6 on the base, hence only the 

sides 2, 3, 5 can be used for the IS condition.

Consider the common side condition equations (5.8) we developed in chapter 3

= [Pi' sin <t>n -  p i+ • sin <j)a f  + [B, -  p, • cos </>n -  p M • cos 4>a ]2 (5.8)

For the IS condition, for which we have 3 o f them, the followings are fiven:

h = Y i

<l>n=P,+i - y M

/+ = i +1 (5.9)

where i =2, 3, 5.
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2S and 3S Common diagonal conditions

With reference to the figure 5.6, all the diagonals on the moving platform are non­

zero, so are the corresponding diagonals on the base. All nine common diagonal 

conditions are available.

For those 2S diagonals:

B, = V1-2 + 4 1 -  2 • A ■ A+i ■cos A+i 

h  = Yt ~  arctan (A+i •sin P j i P  ~  A+i' cos p M ))
< t> n =  P m  +  P m  ~ Y l + i  +  a r c t a n ( L m  ' s in A+i/(A  ~ L m  ' c o s 0 M ) ) - 7 t

i'+ = i + 2

i =1, 2, 3, 4, 5, 6.

For those 3S diagonals:

A  = [l,2 + lM + l, J  + 2  -I,' li+2 ■ cos (aM + a i+2)~  2 • /,. • l J l+2 • cos a M • cos «,+2 ] ‘/2

Bj — [  A A+i A+2 + 2 • a  • A+2 ■ cos(A,+l+ P  ,+2 ) —2 • A ■ A+i A+2 ■ c°s A+i ■ cos A+ 2  J
/i

/ \

arcsin (A+l - A c o s A +l-A +2 cosA +2)
- P m + * / 2 - Y ,

vV(A+1 -  A cos A +1 -  A+2 cos a+2 ) 2 +(A+2 sin a+2 “ A  sin A +i)2 ,

arcsin (A+1-ACOSA+1-A+2COSA+2)
=■ + A + 2 + A + 3 —A + 3 - ^ 2

vV(A+i - A cosA +i -A+2 cos A+2)2 + (A+2 sin A+2 “ A sinA+i)' /

I-I- =  / -A 3 (5.11)
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Kinematic Model of 5-4 Stewart Platform

The characteristic parameters for 5-4 Stewart Platform are three zero sides, they are 

two sides on the moving platform 11, 14 and one side on the base L6. The kinematic 

model of 5-4 Stewart Platform can be obtained as following.

= [ p , - s in ^ l , !  -  p i+2 - s in  ^ l /2 ]2 + [B \ ,  -  p ,  • c o s  </>\n -  p i+2 - c o s ^ l , 2]2 

A 2 / - ^ T j - p ^ - ^ , - p % , f

= \_P, - s i n - p Jt, s i n ^ , ] ’ + [ S 2 y -  • cos (*2,, - cos f i 2; ! ]

\  A i ' - ^ T i - p l - j T ^ - p l , ?

= [Pk - sin  </>3k l -  p k+l • sin ]2 + [B 3k -  p k - c o s ^ 3 t , -  p k+l c o s^ 3 * 2f

i =  1 , 2 , 3 , 4 , 5 , 6  

j  = 1,2,3 

V  k  = 2 ,3 ,5

(5.12)

Where:

A  = 'J1? + til “  2 • /,. • lM ■ C0S «/+!

A  = ^ L 2 + tf+i -  2 - Lt -Li+l ■ cosPM

A x  = Vi ~ arctan (Lm  • sin Pm /(L, -  Li+l • cos p M))

A i  = P +1 + Pm  ~ Ym  + arctan (Lm  • sin # +l/ ( 4  -  LM • cos PM ) ) - n

A 2 j = [ / /  + lJ+x2 + lj+2 +2- l j ■ lJ+2 • cos(a;+l + a , +2) -  2 • /,. • /,+1/,+2 • cos a J+i • cos a j+2 J 2

=  \j->j +  L j +1 +  L j +2 2 ■ L j  • L j+2 • cos(/?/+l +  / 3 J+2)  —2 -  L } • L j+1L j+2 ■ cos /?7+1 • cos/?^+2 J
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A i  =

arcsin

0/2  =

arcsin

(LJ+l - L j  c o s / 7 +1 - Z , +2 c o s / ? , + 2 )

]j(Lj+i-Lj cos/3j+1 - L j+2 cos/?.+2)2 + ( l /+2 sin/?;+2 - 1, sin/?/+1 )*
A +1+ ;r /2 -y

( l jh -Lj ccs/3J+l -L j+2 c o s  f3j+1)

(LJ+\ ~Lj cos^+1 -L j+1 cos/?/+2)2 +(Z,+2 sin$+2 -Z. sin$+1)
+Pj +2+/3j+3 yj+3

B \ = L k

fiki  = r*

-  Pk+l ~Yk+\

5.2.3 G raphical M odel and Simulation

This section gives the illustration o f a given 5-4 Stewart Platform model and 

simulation with the following data:

The base coordinates:

B

0

400
900

1200
800

0

0 0 

-6 0 0  0 
-8 0 0  0 

100 
700 

0 (5.13)
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The platform coordinates:

0 0 0

0 0 0
600 -3 0 0 100

800 0 -5 0

800 0 -5 0

300 400 50
(5.14)

Input the above given base and platform coordinates. The simulation target points are 

listed in table 5.2. Input target points in pendent view dialog and learn TP. The target 

simulation path is shown in the view window marked by four target points [Figure 5.7].

Table 5.2: the Definition of Target Points

Points Px Py Pz Yaw Pitch Roll
1 400 200 800 0 0 0
2 400 500 800 0 20 0
3 400 500 1000 -20 20 10
4 900 500 800 30 20 20

Figure 5.7: the Simulation Path
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CHAPTER VI 

CONCLUSION AND FUTURE W O RK

6.1 Conclusion

In this research, we present a new geometry-based algorithm, which is 

reconfigurable and unified model for solving forward kinematics o f General Stewart 

Platform. As we proved that this new reconfigurable kinematic model can be applied to 

any special case o f General Stewart Platforms and it is very useful for digging a new 

topology for special application and verifying the existing method as well.

There are seven topologies that have been studied in published papers and in this 

thesis three o f them have been studied, which are 6-6, 3-3 and 6-3 Stewart Platform 

[Table 3.1- 3.4]. Basically, at least one configuration for each type of applicable base 

configuration has been studied. More examples should be done for the rest o f the 

configurations in the future. The cases studied in published papers are: 6-6, 6-3, 3-3, 6-5, 

6-4, 6-2, 5-5 and the first three cases have been verified in this thesis. The cases that have 

not been studied in published papers include 5-4, 5-3, 5-2, 4-4, 4-3, 4-2 and the 5-4 

Stewart Platform has been studied in this thesis.

In addition, an upgraded version of UKMS simulation system has been developed 

with add-in feature o f model and simulation o f General Stewart Platform. The upgraded 

software can be used for work cell planning and simulating.
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6.2 F u tu re  W ork

There are still a number o f unsolved research and development issues related to the 

kinematic model and 3D graphical user interface as well.

The method to use for solving the reconfigurable kinematic model is still a 

challenge. The current extra-sensor method can be applied for real-time 

application but it can not obtain all solution and the accuracy is probably a 

problem because o f the error of sensors. Numerical iterative methods sometimes 

requires heavy computation that makes the calculation time too long, besides, it 

still requires a high performance computer for real-time use. A univariate 

polynomial is the best solution for kinematic model but as we know it is very 

hard to find out the solution. In order to get the univariate polynomial the 

substructure approach and compatible equations might be an efficient way.

Carry out more case studies as discussed in section 6.1.

For the simulation software, the manufacturing model o f industrial robots 

should be introduced for better visualization and dynamic analysis and control 

design.

An improvement of the GUI should be made for a better visualization and more 

convenient operation, such as some embedded link bodies should be available to 

pick up for better view of robotic model.
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APPENDICES 

APPENDIX A 

SAMPLE MATLAB PROGRAM

options = optimset('MaxFunEvals', 10000); 
options = optimset('MaxIter', 10000); 
n=fsolve('fungsp',

[10,9.6,10.5,10.2,9.8,10,1.045,1.048,1.044,1.05,1.052,1.042],options) 
fungsp.m
function m = fungsp(n)
% initial conditions -b e g in -  %
a=[0,0,0; 5,-8.5,0; 15,-8.5,0; 20,0,0; 15,8.5,0; 5,8.5,0];
b=[0,0,0; 10,-17,0; 30,-17,0; 40,0,0; 30,17,0; 10,17,0];
T=[40,30,35,25,28,33]; 
for i=7:10 

T(i)=T(i-6);
end
% initial conditions —end— %
% calculating sides, diagonals and angles on the base— begin— % 
for i= l:6 

il=i; 
i2=i; 
i3=i;
if(i==4)i3=-2; 
elseif(i==5) i2=-l;i3=-l; 
elseif(i==6) il=0;i2=0;i3=0; 
end
%------------calculate length o f sides or diagonals begin %
l(i)=sqrt((a(i, 1 )-a(i 1+1,1 ))A2+(a(i,2)-a(i 1+1,2))A2+(a(i,3)-a(i 1+1,3))A2);
11 (i)=sqrt((a(i, 1 )-a(i2+2,1 ))A2+(a(i,2)-a(i2+2,2))A2+(a(i,3)-a(i2+2,3))A2); 
12(i)=sqrt((a(i,l)-a(i3+3,l))A2+(a(i,2)-a(i3+3,2))A2+(a(i,3)-a(i3+3,3))A2); 
L(i)=sqrt((b(i, 1 )-b(i 1+1,1 ))A2+(b(i,2)-b(i 1+1,2))A2+(b(i,3)-b(i 1+1,3))A2); 
L 1 (i)=sqrt((b(i, 1 )-b(i2+2,1 ))A2+(b(i,2)-b(i2+2,2))A2+(b(i,3)-b(i2+2,3))A2); 
L2(i)=sqrt((b(i,l)-b(i3+3,l))A2+(b(i,2)-b(i3+3,2))A2+(b(i,3)-b(i3+3,3))A2);
%-----------calculate length of sides or diagonals---------end-------%

end
for i= l:6 

for z=l:5 
ii(z)=i+z;
if (ii(z)>6) ii(z)=ii(z)-6; 
end 

end
%-----------calculate angles(betas) on the base--------- begin------ %
if((L(i)==0)&(L(i+5)~=0))
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beta(i)=acos((L(ii(l))A2+L(ii(5))A2-L2(ii(2))A2)/(2*L(ii(l))*L(ii(5))));
beta(ii( 1 ))=beta(i); 

elseif((L(i)~=0)&(L(ii(5))==0)) 
beta(i)=acos((L(i)A2+L(ii(4))A2-L2(ii(l))A2)/(2*L(i)*L(ii(4)))); 
beta(ii(5))=beta(i); 

elseif ((L(i)==0)&(L(ii(5))==0)) 
beta(i)=acos((L(ii( 1 ))A2+L(ii(4))A2-L 1 (ii(2))A2)/(2 *L(ii( 1 ))*L(ii(4)))); 
beta(ii( 1 ))=beta(i); 
beta(ii(5))=beta(i); 

else
beta(i)=acos((L(i)A2+L(ii(5))A2-Ll(ii(5))A2)/(2*L(i)*L(ii(5))));

end
% calculate angles(betas) on the base end %

end
% calculating sides, diagonals and angles on the base— begin— %
% define rous and gamas begin %
q = i ;
for p=l:10 

if(p>6) 
q=p-6; 

end
rou(p)=n(q); 
gama(p)=n(q+6); 

q=p+l; 
end
% define rous and gamas end %
% Calculate A(i), B(i), fil(i) and fi2(i) begin-----------%
k=l;
for z=l:5 

kk(z)=k+z;
if (kk(z)>6) kk(z)=kk(z)-6; 
end 

end
for k l= l:6  

k=kl;
A(k)=l(k);
B(k)=L(k);
fil(k)=gama(k);
fi2(k)=beta(kk( 1 ))-gama(kk( 1)); 

end
for k2=7:12 

k=k2-6;
A(k2)=ll(k);
B(k2)=Ll(k);
fi 1 (k2)=gama(k)-atan(L(kk( 1)) * sin(beta(kk( 1 )))/(L(k)- 

L(kk( 1)) * cos(beta(kk( 1)))));
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fi2(k2)=beta(kk( 1 ))+beta(kk(2))- 
gama(kk(2))+atan(L(kk( 1 ))*sin(beta(kk(l)))/(L(k)-L(kk( 1 ))*cos(beta(kk( 1 )))))-pi; 

end
for k3=13:15 

k=k3-12;
A(k3)=12(k);
B(k3)=L2(k);
fi 1 (k3)=abs(asin((L(kk( 1 ))-L(k)*cos(beta(kk( 1 )))- 

L(kk(2))*cos(beta(kk(2))))/sqrt((L(kk(l))-L(k)*cos(beta(kk(l)))- 
L(kk(2))*cos(beta(kk(2))))A2+(L(kk(2))*sin(beta(kk(2)))-L(k)*sin(beta(kk(l))))A2))- 
beta(kk( 1 ))-gama(k)+0. 5 *pi);

fi2(k3)=abs(asin((L(kk( 1 ))-L(k)*cos(beta(kk( 1 )))- 
L(kk(2))*cos(beta(kk(2))))/sqrt((L(kk(l))-L(k)*cos(beta(kk(l)))- 
L(kk(2))*cos(beta(kk(2))))A2+(L(kk(2))*sin(beta(kk(2)))- 
L(k)*sin(beta(kk(l))))A2))+beta(kk(2))+beta(kk(3))-gama(kk(3))-1.5*pi); 

end
% Calculate A(i), B(i), fil(i) and fi2(i) end-----------%
% Forming simultaneous equations----------- begin------------%
num=l; 
for k= 1:15 

if(k<7) kk=l; 
elseif(k>12) kk=3;k=k-12; 
else kk=2;k=k-6; 
end
if((l(k)~=0) & (L(k)~=0))

% Common side conditions %
m(num)=A(k)A2-(sqrt(T(k)A2-rou(k)A2)-sqrt(T(k+kk)A2-rou(k+kk)A2))A2- 

(rou(k)*sin(fi 1 (k))-rou(k+kk)*sin(fi2(k)))A2-(B(k)-rou(k)*cos(fi 1 (k))- 
rou(k+kk)*cos(fi2(k)))A2; 

num=num+l; 
end 

end
for t= l:6  

if (l(t)==0)
% Coincident conditions %
m(num)=T (t) A2-rou(t)A2-T (t+1) A2+rou(t+1 )A2;

num=num+l;
end

end
% Forming simultaneous equations------------end------------%
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APPENDIX B 

SAM PLE C++ PROGRAM

glNewList(listJointAO, GLCOM PILE);
CCoordinate *pCoordinateAO= new CCoordinate(100.0,100.0,100.0,1'0');
pCoordinateAO->Render();
glEndList ();

glNewList(listJointBO, GL_COMPILE);
CCoordinate *pCoordinateB0= new CCoordinate( 100.0,100.0,100.0,' 1'); 
pCoordinateB 0->Render(); 
glEndList ();

if (m_Create)
{
GSPInverse(EE0, basePMO, movePMO, movePM2, StrutlenO);

glPushMatrix(); // Start Drawing Robot

glCallList(listJointBO);

// DRAW BASE 
glColor4f(0.0f,0.0f, 1 .Of, 1 .Of); 
glLineWidth(3);

glBegin(GL_LINE_LOOP); 
glVertex3f( m xBASEl, m_yBASEl, m zB A S E l); 
glVertex3f( m_xBASE2, m_yBASE2, m_zBASE2); 
glVertex3f( m_xBASE3, m_yBASE3, m_zBASE3); 
glVertex3f( m_xBASE4, m_yBASE4, m_zBASE4); 
glVertex3f( m_xBASE5, m_yBASE5, m_zBASE5); 
glVertex3f( m_xBASE6, m_yBASE6, m_zBASE6); 
glEnd();

// DRAW STRUTS 
glPushMatrix(); 
glColor4f(0.0f, 1.0f,0.0f, 1 .Of); 
glLineWidth(6);

glBegin(GL_LINES);
glVertex3f( m_xBASEl, m_yBASEl, m_zBASEl); 
glVertex3f( movePM2[0][0], movePM2[l][0], movePM2[2][0]);

glVertex3f( m_xBASE2, m_yBASE2, m_zBASE2); 
glVertex3f( movePM2[0][l], m ovePM 2[l][l], movePM2[2][l]);
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glVertex3f( m_xBASE3, m_yBASE3, m_zBASE3); 
glVertex3f( movePM2[0][2], movePM2[l][2], movePM2[2][2]);

glVertex3f( m_xBASE4, m_yBASE4, m_zBASE4); 
glVertex3f( movePM2[0][3], movePM2[l][3], movePM2[2][3]); 
glVertex3f( m_xBASE5, m_yBASE5, m_zBASE5); 
glVertex3f( movePM2[0][4], movePM2[l][4], movePM2[2][4]);

glVertex3f( m_xBASE6, m_yBASE6, m_zBASE6); 
glVertex3f( movePM2[0][5], movePM2[l][5], movePM2[2][5]); 
glEnd();

// DRAW MOVING PLATFORM 
glPushMatrix(); 
glColor4f(0.0f,0.0f, 1 .Of, 1 .Of); 
glLineWidth(4);

glBegin(GL_TRIANGLE_FAN);
glVertex3f( movePM2[0][0], movePM2[l][0], movePM2[2][0]); 
glVertex3f(movePM 2[0][l], m ovePM 2[l][l], movePM2[2][l]); 
glVertex3f( movePM2[0][2], movePM2[l][2], movePM2[2][2]); 
glVertex3f( movePM2[0][3], movePM2[l][3], movePM2[2][3]); 
glVertex3f( movePM2[0][4], movePM2[l][4], movePM2[2][4]); 
glVertex3f( movePM2[0][5], movePM2[l][5], movePM2[2][5]); 
glEnd();

g lB egin(G LLIN ELO O P);
glVertex3f( movePM2[0][0], movePM2[l][0], movePM2[2][0]); 
glVertex3f( movePM2[0][l], movePM 2[l][l], movePM2[2][I]); 
glVertex3f( movePM2[0][2], movePM2[l][2], movePM2[2][2]); 
glVertex3f( movePM2[0][3], movePM2[l][3], movePM2[2][3]); 
glVertex3f( movePM2[0][4], movePM2[l][4], movePM2[2][4]); 
glVertex3f( movePM2[0][5], movePM2[l][5], movePM2[2][5]); 
glEnd();

glLineWidth(l);

///draw endeffector coodinates 
glPushMatrix();
glTranslated(m_iGSPX,m_iGSPY,m_iGSPZ);

glRotated(m_iGSPyaw, 1.0, 0.0, 0.0); 
glRotated(m_iGSPpitch, 0.0, 1.0, 0.0); 
glRotated(m_iGSProll, 0.0, 0.0, 1.0); 
glCallList(listJointA0);
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glPopMatrix();//End 
glPopMatrix() ;//End 
glPopMatrix();//End 
glPopMatrix();//End 
}

else
{
GSPInverse(EEO, basePMO, movePMO, movePM2, StrutlenO);

glPushMatrix(); // Start Drawing Robot

glCallList(listJointBO);

// DRAW BASE 
glColor4f(0.0f,0.0f, 1 .Of, 1 .Of); 
glLineWidth(3);

glB egin(G LLIN ELO O P); 
glVertex3f( m xBASEl, m_yBASEl, m zB A S E l); 
glVertex3f( m_xBASE2, m_yBASE2, m_zBASE2); 
glVertex3f( m_xBASE3, m_yBASE3, m_zBASE3); 
glVertex3f( m_xBASE4, m_yBASE4, m_zBASE4); 
glVertex3f( m_xBASE5, m_yBASE5, m_zBASE5); 
glVertex3f( m_xBASE6, m_yBASE6, m_zBASE6); 
glEnd();

//D RA W  STRUTS 
glPushMatrix(); 
glColor4f(0.0f, 1.0f,0.0f, 1 .Of); 
glLineWidth(6);

glBegin(GL_LINES);
glVertex3f( m_xBASEl, m_yBASEl, m_zBASEl);
glVertex3 f( movePM2 [0] [0], movePM2 [ 1 ] [0], movePM2 [2] [0]);

glVertex3f( m_xBASE2, m__yBASE2, m_zBASE2); 
glVertex3f( movePM2[0][l], m ovePM 2[l][l], movePM2[2][l]);

glVertex3f( m _xBASE3, m _yBASE3, m _zBA SE3); 
glVertex3f( movePM2[0][2], movePM2[l][2], movePM2[2][2]);

glVertex3f( m_xBASE4, m_yBASE4, m_zBASE4); 
glVertex3f( movePM2[0][3], movePM2[l][3], movePM2[2][3]);
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glVertex3f( m_xBASE5, m_yBASE5, m_zBASE5); 
glVertex3f( movePM2[0][4], movePM2[l][4], movePM2[2][4]);

glVertex3f( m_xBASE6, m_yBASE6, m_zBASE6); 
glVertex3f( movePM2[0][5], movePM2[l][5], movePM2[2][5]); 
glEnd();

// DRAW MOVING PLATFORM 
gIPushMatrix(); 
glColor4f(0.0f,0.0f, 1 .Of, 1 .Of); 
glLineWidth(4);

glBegin(GL_TRIANGLE_FAN);
glVertex3f( movePM2[0][0], movePM2[l][0], movePM2[2][0]); 
glVertex3f( movePM2[0][l], m ovePM 2[l][l], movePM2[2][l]); 
glVertex3f( movePM2[0][2], movePM2[l][2], movePM2[2][2]); 
glVertex3f( movePM2[0][3], movePM2[l][3], movePM2[2][3]); 
glVertex3f( movePM2[0][4], movePM2[l][4], movePM2[2][4]); 
glVertex3f( movePM2[0][5], movePM2[l][5], movePM2[2][5]); 
glEnd();
glBegin(GL_LINE_LOOP);
glVertex3f( movePM2[0][0], movePM2[l][0], movePM2[2][0]); 
glVertex3f( movePM2[0][l], m ovePM 2[l][l], movePM2[2][l]); 
glVertex3f( movePM2[0][2], movePM2[l][2], movePM2[2][2]); 
glVertex3f( movePM2[0][3], movePM2[l][3], movePM2[2][3]); 
glVertex3f( movePM2[0][4], movePM2[l][4], movePM2[2][4]); 
glVertex3f( movePM2[0][5], movePM2[l][5], movePM2[2][5]); 
glEnd();

glLineWidth(l);

///draw endeffector coodinates 
glPushMatrix();
glTranslated(m_iGSPX,m_iGSPY,m_iGSPZ);

glRotated(m_iGSPyaw, 1.0, 0.0,0.0); 
glRotated(m_iGSPpitch, 0.0, 1.0, 0.0); 
glRotated(m_iGSProll, 0.0, 0.0,1.0); 
glCallList(listJointA0);

glPopMatrixO;//End 
glPopMatrix();//End 
glPopMatrix() ;//End 
glPopMatr ixO ;//End 
}
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APPENDIX C 

USER MANUAL

1.1 What UKMS can do

UKMS is a modeling and simulation system designed for the Puma-Fanuc serial 
robots and Stewart Platforms. It is a 32-bit Microsoft Windows application and uses 
OpenGL kernel to create good quality, high speed, and precise 3D images.

With UKMS you can:
Model work cells using the UKMS modeling functional menu.
Record robot paths based on the given target points.
Simulate robot work motion
Generate the system parameters and the results.

Note: The system supports 6R Puma and Fanuc type serial robots and Stewart 
Platforms (Parallel robots). The software designed by Ms. Zhongqing Ding and Anqi 
Wang.

1.2 System Requirements (recommendation)

Processor: 500MFIz minimum, 1.0GHz or higher recommended.
Memory: 64MHz minimum, 256MHz or higher recommended.
Graphics: 4MHz RAM minimum, 16MHz or higher RAM recommended. 
Mouse type: 2 button minimum, 3 button recommended.
Disk space: 10M free disk space for the software occupation.
Operating system: Windows 98, Windows 2000 or Windows XP.
Screen resolution: 1024*768 or higher recommended.
CD-ROM: required for installing UKMS.

2.1 Installation

1 Exist from all other applications and ensure that the system you are using is 
Windows based operation system.

2 Insert the UKMS 1.0 installation CD-ROM into your CD-ROM drive or DVD- 
ROM drive.

3 Double click on the Setup.exe file.
4 When the installation dialog is launched, click on the “next” botton.
5 Type the program display name that you want use to display in the system 

program list of the system or just keep the default program name “UKMS”, then click on 
the button “next” .

6 Type the program folder name that you want use to copy program files to or just 
keep the default folder name “UKMS”.

7 Select the destination disk in which you want the program installed, then click on 
the button “next” .

8 The installation program will automatically install all necessary files into the 
desired folder and click on the button “finish” to end.
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9 At this time, you will see a shortcut key on the desktop and a program folder in 
the “Start” menu.

2.2 Uninstall

Use the Windows programs removing platform to remove UKMS and all its files 
from the system. The procedure is as following:

1. Open control panel from Start menu > setting > control panel.
2. Double click on the icon “Add and Remove Programs”.
3. Scroll down to select the UKMS 1.0 in the list.
4. Click on the “Change/Remove” button at the bottom-right corner.

3.1 Serial Robots Modeling

Through the Robot->Model menu, the kinematic structures o f a serial robot can be 
modeled inside the program. The robot (Puma or Fanuc type) data can be saved for future 
use by the Geometry->Save as menu like other objects. To represent a robot’s kinematic 
model in this system, we need to define all the joint coordinate frames with their 
positions and orientations. The procedure that creates a kinematic model is as following:

1. Select the joint coordinate frame with its orientations with arbitrary link length 
and offset under the “6R robot joints” tab.

2. Modify the robot arm lengths, offsets and the robot name with exact values under 
the “links definition” tab.

3. You can also move the robot position by changing the coordinates under the 
“Coordinates” tab. The robot can be translated and rotated about the world coordinate 
system.

3.2 Serial Robots Pendent View

After the kinematic model has been created, the direct kinematics can be visualized 
by the pendent view. The pendent view allows the user to manipulate a robot by changes 
the joint variable values. Meanwhile the robot moves to the new location. The pendent 
view is an accurate way for the user to create a Target Point (TP).

The pendent view is divided into three sections. The top section is labeled “Joint 
values” and show the numbers of the six joint variables 0i. The second section is labeled 
“End-effector” and displays the absolute position and orientation o f the tool frame of the 
robot with regard to the base coordinate frame. The third section has no label. A Home 
button moves the robot to the home position. After the position and orientation of the 
end-effector have been input, the Inverse button calculates and pop ups the 8 solutions o f  
six joint variables 0i. If  any one is selected, the robot will move to that location. The 
Learn TP button saves the current data as a Target Point (TP).

If the user changes the six joint variables 0i in the first section, the robot will 
immediately move according to the 0i values. Meanwhile, the direct kinematic problem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

will be calculated, and the absolute position and orientation o f the tool frame of the robot 
will show in second section. If  the user inputs the values in second section and presses 
the inverse button, the inverse kinematic problem will be solved. If  one o f the 8 solutions 
is selected, the values of the six joint variables will be shown in the top section.

3.3 Serial Robots Motion Simulation

The required robot path is given by a set o f points, which is set in pendent view 
section. Those points are target locations of the robot’s end-effector and are called Target 
Points (TPs). Each point is defined with its position and orientation. We need to calculate 
robot joint values for each point depending on the position and orientation of the point.

A path is a list o f all the TPs that a robot follows during a sequence o f motions. We 
can generate a TP using the Learn TP button on the pendent view. After the user has 
created the path, the simulation function can be used to simulate the activity o f the robot 
following the path by simply clicking on the simulation menu or the simulation button on 
the toolbar.

4.1 Stewart Platforms Modeling

Through the GSP->Model menu, the kinematic structures o f a Stewart Platform can 
be modeled inside the program. To represent a Stewart Platform’s kinematic model in 
this system, we need to define all the joint coordinate frames with their positions and 
orientations for the moving platform and base respectively. The procedure that creates a 
kinematic model is as following:

1. Input the joint coordinates for the moving platform under the “Moving Platform”
tab.

2. Input the joint coordinates for the base platform under the “Base” tab.
3. You can also move the robot position by changing the system origin coordinates 

under the “Coordinate” tab. The Stewart Platform can be translated and rotated about the 
world coordinate system.

4.You can specify an original position and orientation o f the end-effector if you like.

4.2 Stewart Platforms Pendent View

After the kinematic model has been created, the inverse kinematics can be visualized 
by the pendent view. The pendent view allows users to manipulate a robot by changing 
the end-effector position and orientation. Meanwhile the system gives the corresponding 
struts’ length. The pendent view provides a vivid way for users to evaluate the pose of the
Stewart Platform corresponding to a specific Target Point (TP).

The pendent view is also divided into three sections. The top section is labeled “End 
effector” and shows the position and orientation o f the end-effector. The second section is 
labeled “Strut lengths” and displays the struts’ lengths corresponding to a given end- 
effector position and orientation. In the third section, a “Home” button can move the
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robot to the home position. Once a target point is chosen, clicking the “Learn TP” button 
saves the current data as a Target Point (TP), which is also a preparation for motion 
simulation.

4.3 Stewart Platforms Motion Simulation

The target points (TPs) are given in the pendent view section and they give the 
required motion path as a set of points, which are defined with their position and 
orientation. Then the struts’ lengths are calculated automatically for each target point 
depending on the position and orientation o f the point.

A path is a list o f all the TPs that the moving platform follows during a sequence of 
motions. The TPs are generated by clicking on the “Learn TP” button on the pendent 
view section. After the user has created the path, the simulation function can be used to 
simulate the activity of the robot following the path by simply clicking on the “GSP- 
>Simulation” menu or the simulation button on the toolbar.

The procedure of work-cell modeling and simulation is pretty similar to the above- 
mentioned steps. By using this software, can we evaluate a complex work-cell, which has 
serial robots and parallel robots working collaboratively.

5.1 Objects (Cube and Cylinder)

An important task is the planning and designing o f robotic work cell layouts which 
consist o f robots, tools and environment. A simple 3D CAD system is provided to create 
basic geometric parameterized primitives like cubes, cones, cylinders. Using a 3 button 
mouse, we can modify the dimensions and color of the selected object and move the 
object in the scene. The selected object can be translated about the world coordinate 
system, and rotated about its own coordinate axis. All objects such as robots, box, 
cylinders, target points can be selected and saved as a *.obj file. Any other applications 
can load these files for use. A *.obj file format is same as the *.wld file.

5.2 File Functions

The work cell data which includes the robot kinematic model and the geometric data 
related to other objects are stored in a *.wld file. The File menu contains the usual 
Windows functions that allow you to open, close, and save files, and to exit the software. 
In addition, you can open the most-recently opened work cell files from this menu.

5.3 View Functions

The view position and direction affect how the model appears to the user when it is 
displayed. This system supports various standard views such as ISO view, XZ(front) 
view, YZ(side) view, XY(top) view, and Zoom in, Zoom out. Through this menu you can 
toggle the display o f the Toolbar and Status Bar.
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