University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2007

DNLMS-based adaptive filters for echo cancellation.

Raymond Lee
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Lee, Raymond, "DNLMS-based adaptive filters for echo cancellation." (2007). Electronic Theses and
Dissertations. 7123.

https://scholar.uwindsor.ca/etd/7123

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.


https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7123?utm_source=scholar.uwindsor.ca%2Fetd%2F7123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

DNLMS-based Adaptive Filters for Echo
Cancellation

by

Raymond Lee

A Thesis
Submitted to the Faculty of Graduate Studies and Research
through Electrical and Computer Engineering
in Partial Fulfillment of the Requirements for
the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada
2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

Library and Bibliothéque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-42314-1
Qur file  Notre référence
ISBN: 978-0-494-42314-1

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theéses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont éteé enleveés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(© 2007 Raymond Lee

All Rights Reserved. No Part of this document may be reproduced, stored or oth-
erwise retained in a retreival system or transmitted in any form, on any medium by

any means without prior written permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Power consumption is a main issue with echo canceller implementation due to the use
of high-order adaptive filters. The normalized least-mean-square (NLMS) algorithm
is an adaptive filtering algorithm typically used in echo cancellation, but does not
permit pipelining, a technique that facilitates low-power filter architectures. This
limitation can be overcome by using the delayed NLMS (DNLMS) algorithm. There
are two objectives of this thesis related to the implementing a DNLMS adaptive filter
for echo cancellation.

The first objective is to apply computationally-efficient techniques to the DNLMS
algorithm to reduce power and/or area consumption. The considered techniques
either simplify computationally-intensive operations or schedule less filter coefficient
updates.

The second objective is to present the hardware implementation of a pipelined
DNLMS adaptive filter. The implemented design is pipelined, modular, low-latency,
and portable. The design methodology consists of fixed-point and RTL simulations,
physical synthesis for the Altera Stratix FPGA, and hardware verification.
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Chapter 1

Introduction

1.1 Background on Echo Cancellation

Echoes are delayed or distorted versions of a sound or signal that have been reflected
back to the source [21]. For small round trip delays, echoes are interpreted as re-
verberations. In conversations, people usually prefer the presence of reverberations
over an anechoic environment. However, when round trip delays are longer than a
few tens of milliseconds, echoes become distinct and disruptive [14]. The two types
of echoes considered in telecommunications are network echoes and acoustic echoes.

Network echoes appear in telephone calls over the public switched telephone net-
work (PSTN). The link connecting two users is comprised of a two-wire line that
connects each phone to its respective local central office and two separate unidirec-
tional lines that make a four-wire inter-office link, as shown in Fig. 1.1. The hybrid
transformer is the device that connects the two-wire circuit to the four-wire circuit.

Ideally, the hybrid would transfer all energy from the incoming signal on the four-wire
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Figure 1.1: Network echoes over the PSTN.

circuit to the two-wire circuit. However, due to imperfect impedance matching, some
of the energy is reflected back to its source on the four-wire circuit as an echo [31].
Thus, network echoes arise from hybrid devices. For roundtrip delays less than 100 ms
duration, echo suppressors were used to suppress network echoes [33]. However, when
the round-trip delay exceeded 100 ms, as was the case with the incorporation of satel-
lite links, network echo cancellation (NEC) was required.

The echo canceller was first introduced in the 1960’s by Sondhi [30] and concur-
rently by Becker and Rudin [8]. The basic principle of echo cancellation is to eliminate
the echo from the transmission signal by subtracting a synthesized replica. In order
to create the synthetic echo, the unknown time-varying echo path impulse response
is modelled using an adaptive filter. Typically, an adaptive filter on the order of
hundreds is needed for NEC [21].

Figure 1.2 shows the system model of echo cancellation. When excited by the
received signal, the adaptive filter outputs a synthetic echo. By subtracting the
synthetic echo, the genuine echo is effectively removed prior to transmission. Usually
during adaptation, the near-end signal is assumed to be simply noise. This is a
reasonable assumption because a double-talk detector (DTD) is usually implemented

to pause the adaptive filter’s adaptation, in order to avoid divergence, when both

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Received Signai
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Figure 1.2: Echo cancellation system model.

received and near-end signals are present, i.e. during double talk [14].

Recently, NEC has received renewed attention with the introduction of voice over
Internet protocol (VoIP) [19, 29]. In this application, the packet-switched network
is connected to the PSTN through a voice gateway. Network echoes are a problem
for VoIP because, irrespective of whether the call is local or long distance, the round
trip delay is always large as a result of the inherent large delay in the packet-switched
network which includes encoding, jitter buffer, and network propagation delays.

An adaptive filter can be similarly applied to eliminate acoustic echoes in acous-
tic echo cancellation (AEC). Acoustic echoes arise in applications such as teleconfer-
encing and hands-free telephony, where there is a loudspeaker-enclosure-microphone
(LEM) system. An electro-acoustic coupling between the loudspeaker and the micro-
phone results in the microphone picking up signals from the loudspeaker as well as
signal reflections off surrounding objects and boundaries [9], as illustrated in Fig. 1.3.
AEC presents a more challenging problem compared to NEC because acoustic echoes

are generally longer, requiring an adaptive filter on the order of thousands [14].
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Room boundaries

Speaker

Microphone

Figure 1.3: Acoustic echoes.
1.2 Thesis Objectives

The normalized least-mean-square (NLMS) algorithm is a commonly used adaptive
filtering algorithm for echo cancellation [14]. However, a variant of the NLMS algo-
rithm, the delayed normalized least-mean-square (DNLMS) algorithm [3], is of interest
because it allows pipelining, a useful filter design technique suitable for low-power or
high-speed applications [22]. With the DNLMS algorithm as the algorithm of choice,
this work addresses two issues related to the implementation of an adaptive filter for
echo cancellation.

The first issue is the requirement of high-order adaptive filters for echo cancella-
tion. Such large filters have high computational requirements, i.e. a large number of
multiplications, divisions, and additions/subtractions occur within one clock period.
This translates to large resource demands and high power consumption, thus making
implementation challenging. The second issue is that, to this date, there has been
little work in presenting architectures for DNLMS adaptive filters [23, 26, 27], none

of which present implementation details.
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1. INTRODUCTION

Thus, this work has two objectives.

1. Reducing the computational demand of the DNLMS algorithm through the

application of computationally-efficient techniques.

2. Presenting the field programmable gate array (FPGA) implementation of a
pipelined DNLMS adaptive filter.

1.3 Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 provides a review of
adaptive filter theory, ending with the introduction of the DNLMS algorithm. Chap-
ter 3 is associated with the first objective of this work: reduction of the amount of com-
putations required by the DNLMS algorithm through application of computationally-
efficient techniques. Analysis and simulation results are provided for the modified
DNLMS algorithm. Chapter 4 is associated with the second objective of this work:
providing details of an FPGA implementation of a pipelined DNLMS adaptive filter.
The applied design methodology begins with architecture derivation and ends with
hardware verification. Finally, conclusions and future work are described in Chap-

ter 5.
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Chapter 2

Review of Adaptive Filtering

2.1 Fundamentals of Adaptive Filtering

The adaptive linear combiner (ALC), shown in Fig. 2.1(a), is the fundamental building
block in most adaptive systems [33]. The output, y(n), is a linear combination of

several inputs at time index n and is given by

y(n) =x"(n)w(n) = w' (n)x(n) (2.1)
where x(n) = [zo(n) z1(n) ... zn_1(n)]" is the input signal vector comprised of
sampled data from N different sources and w(n) = [wo(n) wi(n) ... wy_1(n)]7 is

the weight vector (also referred to as the coefficient vector). The output is compared

to the desired response input, d(n), to produce the error signal, e(n). The error is
given by

e(n) = d(n) — y(n). (22)

When x(n) consists of the N sequential samples of the same signal, i.e. x(n) -

[z(n) z(n — 1) ... z(n — N + 1)]7, the ALC becomes the adaptive finite-duration
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x(n) x() . . . X, (n)
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(a) General form.

x(n) x(n-1)
\ 1 |
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I I i

w (n) w (n)

R —p e(n)
+ i
v

y(n)  d(n)

(b) As an FIR filter.

Figure 2.1: Adaptive linear combiner.
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2. REVIEW OF ADAPTIVE FILTERING

impulse response (FIR) filter shown in Fig. 2.1(b). In adaptive filtering, x(n) is
typically referred to as the regressor. |

In order for the output to progressively approximate the desired response, the
weights are adjusted in a manner that minimizes a cost function. The mean-square

error (MSE) is a commonly used cost function given by

MSE £ ¢
= El’(n)]
= E[(d(n) - y(n))’]
= E[(d(n) -~ w'(n)x(n))?]
= Bld*(n)] - 2B[d(n)w" (n)x(n)] + Elw" (n)x(n)x" (n)w(n)]. (2.3)

Assuming that the weights are fixed, the MSE cost function is given by
¢ = E[d*(n)] — 2w  E[d(n)x(n)] + wl E[x(n)x" (n)]w. (2.4)
Let R be defined as the input correlation matrix given by

R = E[x(n)x"(n)]

z3(n) zo(n)zi(n) ... zo(n)zn_1(N)
- xl(n).xo(n) z3(n) . wl(n)x.]v,l(n) (25)
| zy-1(n)zo(n) xn-1(n)zi(n) ... z3_1(n) |

and let p be defined as the cross correlation vector given by
p = E[d(n)x(n)] = Eld(n)zo(n) d(n)zi(n) ... dn)zy_i(n)]*. (2.6)
By substituting R and p into (2.4), the MSE cost function can be simplified to

¢ = E[d*(n)] — 2wTp + wRw. (2.7)
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2. REVIEW OF ADAPTIVE FILTERING

Figure 2.2: Mean-square error surface.

It can be seen from (2.7) that the MSE cost function is a quadratic function of the
weights forming a hyperparaboloid surface. Figure 2.2 illustrates the MSE surface as
a paraboloid for the case of the weight vector consisting of two weights. The bowl-
shaped surface is concave upwards and has only positive values. The bottom of the
surface represents the minimum mean-square error, (., which projects to optimal
weight vector, w*. The values of (i and w* can be found through the gradient of
the MSE cost function.

The gradient of the MSE cost function with respect to the weight vector is given

by
T
vV & o _ |9 & ¢
ow 8’(1)0 8’1111 o O’UJN_l
— —2p+2Rw. (2.8)
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2. REVIEW OF ADAPTIVE FILTERING

Equating (2.8) to zero allows for the optimal weight vector to be solved as
w* =R 'p. (2.9)

Substitution of w* into (2.7) allows for the minimum mean-square error to be solved

as

Il

E[d*(n)] — 2w p + wTRw"

Cmin

= E[d*(n)] - w*Tp. (2.10)

The solution for the optimal weight vector is known as the Wiener solution.

2.2 The Method of Steepest-Descent

As discussed in the previous section, the weights of the adaptive filter are adjusted
to minimize the MSE cost function. The method of steepest-descent is a well-known
weight adaptation procedure that seeks the minimum of the MSE surface. It serves
as the basis for several adaptive filtering algorithms [10]. The method iteratively
adds to the each weight a term proportional to the instantaneous gradient in order
to descend the MSE surface. As a result, the weight vector progressively converges
to the Wiener solution or a near-optimal solution.

The weight update equation of the method of steepest-descent is given by
w(n+1) = w(n) — uV(n). (2.11)

where p is the adaptation step-size that controls the stability and convergence rate.
The gradient vector measured at w = w(n) is denoted as V(n).

Generally, when the step-size is chosen small, the MSE slowly converges to a
steady-state value that will be close to the minimum value. On the other hand, when

the step-size is chosen large, the MSE quickly converges to a steady-state value that

10
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2. REVIEW OF ADAPTIVE FILTERING

will be larger than the minimum value. However, having a step-size that is too large
will result in the weights diverging from the Wiener solution.

The calculation of the gradient vector requires statistical knowledge of the input
and desired signals. In practice, these quantities are usually unknown. To get around
this problem, there are methods to estimate the input correlation matrix R and corre-
lation vector p [33]. However, several steepest-descent-based algorithms alternatively

use an estimate of the gradient.

2.3 Least-Mean-Square Algorithm

The least-mean-square (LMS) algorithm is the most commonly used weight adapta-
tion procedure in adaptive filtering [10, 33]. It is a steepest-descent-based algorithm
that estimates the gradient of the MSE, shown in (2.8), with the gradient of the

squared error given by

- 2
— %(n) de(n)  Be(n) de(n)
Owp(n) Owi(n)  Owy_1(n)
= —2e(n)x. (2.12)

Substituting this estimate for the true gradient in (2.11) yields the weight update
equation for the LMS algorithm, given by

w(n+1) = w(n)—uV(n)
w(n) — 2ue(n)x. (2.13)

I

As seen in (2.13), the weight update equation of the LMS algorithm is very simple
and straightforward; it does not require calculations of the input correlation matrix

nor the correlation vector. Another advantage of the LMS algorithm is that it has

11
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2. REVIEW OF ADAPTIVE FILTERING

guaranteed stable convergence when the step-size is chosen within the range

O<pu<

(2.14)

)\ma:z

where A4, is the largest eigenvalue of R. Since A, cannot exceed the trace of R,
the selectable range of the step-size can also be expressed as

0<p< Ex%R—] (2.15)

2.4 Normalized Least-Mean-Square Algorithm

Several algorithms have been derived from the standard LMS algorithm. One no-
table variant commonly used in echo cancellation is the normalized least-mean-square

(NLMS) algorithm [12, 14]. Its weight update equation is given by
w(n+ 1) = w(n) + p(n)e(n)x(n). - (2.16)

The step-size, w(n), is time-varying and is given by

(6

p(n) = W_ﬁ (2.17)

where « is the convergence parameter, § is a small constant preventing division by
zero, and | - || is the ly norm operation. The quantity [|x(n)||? will be referred to
as the regressor energy. By normalizing the convergence parameter by the regressor
energy, large values of x(n) have a minimal affect on the adaptation. In other words,
unlike the LMS algorithm, the NLMS algorithm does not suffer from the gradient
noise amplification problem [15].

The NLMS algorithm has guaranteed stable convergence when the convergence

parameter is chosen within the range

0<a<?2 (2.18)

12
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2. REVIEW OF ADAPTIVE FILTERING

This range is independent of the input signal statistics, thus making selection of «
much easier than selection of y for the LMS algorithm. The other advantage of the
NLMS algorithm is that it can potentially converge faster than the LMS algorithm
[12].

2.5 Delayed Weight Adaptation

The feedback error of the LMS algorithm limits the speed of adaptation and prohibits
pipelining. Pipelining is a technique of breaking up the effective critical path by
inserting delays, thereby facilitating either low-power or high-speed architectures [22].
To allow pipelining, (2.13) can be modified by inserting delays of D samples, resulting
in the weight update equation for the delayed least-mean-square (DLMS) algorithm
given by

w(n+1) =w(n) + pe(n — D)x(n — D). (2.19)

Since the convergence speed of the DLMS algorithm worsens as D increases, D should
be kept as small as possible [18].

Likewise, delaying the weight adaptation can be extended to the NLMS algo-
rithm [3]. The weight update equation of the delayed normalized least-mean-square

(DNLMS) algorithm is given by

w(n+1) =w(n) + u(n — D)e(n — D)x(n — D). (2.20)

13
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Chapter 3

Computationally-efficient
DNLMS-based Algorithms

In this chapter, computationally-efficient techniques are applied to the DNLMS algo-
rithm in order to reduce power and/or area consumption. NEC and AEC simulations
are provided to show that applying these techniques introduce marginal performance
degradation. Please note that the material presented in this chapter has been pub-

lished in [17].

3.1 Computationally-efficient techniques

As seen in (2.1), calculation of the ALC output requires N multiplications and N — 1
additions per iteration. Furthermore, (2.20) indicates that the DNLMS weight up-
date requires N + 1 multiplications and N additions per iteration. Therefore, the

number of required multiplications and additions per iteration is proportional to the

14
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3. COMPUTATIONALLY-EFFICIENT DNLMS-BASED ALGORITHMS

adaptive filter order. As mentioned in Chapter 1, high-order adaptive filters are typ-
ically applied in echo cancellation. The related high demand for large amounts of
computations per iteration translates to high power consumption for the hardware
implementation. There are several modifications that can be made to an adaptive
filtering algorithm to reduce power and/or area consumption. Two general ways con-
sidered here are (1) simplifying computationally-intensive operations of the algorithms
and (2) reducing the switching activity in the device.

The large number of multipliers is the main reason for the high power consumption.
Adders are not as large of a concern because they are considerably simpler than
multipliers. For example, a 4-bit ripple carry adder requires 20 logic gates while
a 4-bit by 4-bit binary multiplier requires 16 logic gates plus 3 4-bit adders [20].
Simplifying the multiplications to less complicated operations, such as additions or
shifts, would reduce power and area consumption. This can be achieved by using
power-of-two (POT) quantization [10, 34].

Dynamic power consumption of complementary metal-oxide semiconductor (CMOS)
circuits is due to the charging and discharging of the capacitive loads occurring each
time a transistor’s binary representation switches, i.e. 0 — 1 or 1 — 0 transition [32].
Thus, the higher the amount of switching activity, the higher the dynamic power
consumption. Reducing the switching activity would therefore reduce dynamic power
consumption. The M-Max algorithm [2] and the stop-and-go algorithm (SAG) [1, 24]
both reduce the switching activity by scheduling less weight updates.

The aforementioned computationally-efficient techniques have been applied to the
LMS and NLMS algorithms. The remainder of this section shows the application of
these techniques to the DNLMS algorithm. Additionally, a new stopping criterion for
the SAG algorithm is introduced.

15
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3. COMPUTATIONALLY-EFFICIENT DNLMS-BASED ALGORITHMS

Q{input)
[=]

-2 -1 0 1 2
input

Figure 3.1: Transfer characteristic of POT quantizer for a = 2,b = 2, and 7 = 0.

3.1.1 Power-of-two Quantization

POT error quantization has been applied to the LMS algorithm in order to simplify
N multiplications required for the weight update to shift operations, thereby reducing
the computational load [10, 34]. The quantization is a nonlinear operation that results
in the error data being represented as a binary word with a single “1” bit. This idea
can be extended to the regressor energy, thereby allowing the division operation in

(2.17) to be implemented as a shift operation as well. The POT quantization is given

as
sgn{-}27, |-z 27
Q{} =< sgn{-}alleaaD) 27t <| . |< 20! (3.1)
sgn{ I, <2

where a > 0 is the number of integer bits excluding the sign bit, b > 0 is the number
of fractional bits, and 7 is set to either 0 or 27°. Figure 3.1 illustrates the transfer
characteristic of the POT quantizer for a = 2,0 =2, and 7 = 0.

By applying POT quantization to the error and regressor energy, DNLMS is

16
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3. COMPUTATIONALLY-EFFICIENT DNLMS-BASED ALGORITHMS

modified to the Quantized-Error-Regressor-energy DNLMS (QER-DNLMS) algorithm,
for which the weight update equation is given by

w(n+1) =w(n) + p(n—D)Q{e(n—D)}x(n—D) (3.2)

where

#r D) = =Dy + 5y (33)

Note that if « is chosen to be a POT number, then QER-DNLMS weight up-

date equation will consist of NV + 1 shifts plus 2 POT quantizations in place of N

multiplications and 1 division per iteration.

3.1.2 M-Max Algorithm

Partial update algorithms update only a portion of the filter weights, effectively re-
ducing the demand of memory resources and computation power when implementing
adaptive filtering algorithms on digital signal processors (DSPs) [11]. Since the com-
putational cost of adaptive filtering algorithms is proportional to the filter order,
partial update algorithms are most effective in high-order filter applications such as
echo cancellation. Partial update algorithms are considered for hardware implemen-
tation because updating only & portion of the weights would decrease the switching
activity in the device, thereby reducing the dynamic power consumption.

A straightforward selective-partial weight update algorithm is the M-Max algo-
rithm [2]. The M-Max algorithm, which was originally applied to the NLMS algo-
rithm, only updates the weights corresponding to the M largest absolute values of
the regressor, where M < N. The M-Max-NLMS algorithm saves N — M weight up-
dates per iteration while maintaining close performance to NLMS. Extending this

algorithm to DNLMS yields the M-Max-DNLMS algorithm, for which the weight
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3. COMPUTATIONALLY-EFFICIENT DNLMS-BASED ALGORITHMS

update equation is given by

wi(n) + p(n—D)e(n—D)x(n—i—D), if ¢ corresponds to one
of the first M maxima

wi(n+1) = of |z(n—i—D)| (34)

w;(n), otherwise

where i = 0,..., N — 1. Compared to the DNLMS algorithm, the M-Max-DNLMS
algorithm has N — M less multiplications and additions per iteration. The overhead
cost of this M-Max algorithm includes implementing a sorting algorithm. If the
SORTLINE sorting algorithm [25] is used, the amount of additional comparisons per
iteration would be at most |2logaN | + 2.

3.1.3 Stop-and-go Algorithm

A SAG technique was first introduced in [24] to improve the convergence capabilities
of decision-aided blind joint equalization and carrier recovery. The idea behind this
algorithm is to “stop” adaptation or let it “go” based on the error at the particular
sampling time under consideration. In [1], the SAG concept was applied to the NLMS
algorithm in order to reduce the amount of computations. In this SAG algorithm,
when the magnitude of the error is below a pre-defined threshold, weight adaptation is
stopped for that iteration. The weight update equation for the SAG-NLMS algorithm
is given by

w(n +1) = w(n) + f(n)u(n)e(n)x(n) (3.5)

where
1, le(n)|> =~
fn) = (3.6)
0, |le(n)|<«
In (3.6), & is a positive real number and f(n) is the flag indicating whether or not to

update the coefficients. In [1], K was determined by observing the statistics of le(n)|

18
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3. COMPUTATIONALLY-EFFICIENT DNLMS-BASED ALGORITHMS

over a large number of iterations. Here, the SAG-threshold is related to the regressor
energy.

Consider the weight update correction term of the NLMS algorithm given by

Aw(n) = w(n+1)—w(n)

Il

W@(n)x(n) (3.7)

where, for simplicity, the 5 term has been omitted. The weight update should be
stopped when the |e(n) | is small so that | Aw(n)| is significantly small and w(n+1) =~
w(n). To ensure that this condition is true for all values in the vector Aw(n), let
the stopping criterion be defined in terms of the largest absolute value of Aw(n),
which is associated with the largest absolute value of x(n). The new SAG-stopping
criterion is defined as max{| Aw(n)|} < k, where again « is a positive real number.

Substituting (3.7) into this condition gives

K

te(n)|< M”X(n)”2 (3.8)
To avoid division, (3.8) can be rewritten as
%maX{IX(n) [} le(m)|< IIx(n)II? (3.9)

where the ratio 2 can be implemented as a single constant. Now, applying the SAG
algorithm to DNLMS with the new stopping criterion gives SAG-DNLMS, for which

the weight update equation is given by
w(n+1) =w(n)+ f(n—D)u(n—D)e(n—D)x(n—D) (3.10)

where

L |x(n=D)|?* < & max{|x(n—D)|} [e(n—D)]|

K

fn=D) =
0, [x(n=D)|*> ¢ max{|x(n—D)|} |e(n—D)|

(3.11)

Assuming that o and « are chosen such that the ratio ¢ is a POT number, then

when the weight adaptation is stopped, there is a savings of N multiplications, N
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additions, and 1 shift for the weight update as well as 1 division for the step-size
calculation for that iteration. One overhead cost of the SAG algorithm is the calcula-
tions of f(n—D), which requires one comparison and two multiplications per iteration.
However, if the constants « and « are power-of-two numbers, then one of the mul-
tiplications can be replaced with a shift operation. Another overhead cost is the
implementation of a max selection algorithm. A fast algorithm for maximum/min-
imum calculation across a sliding data window has been proposed in [13] and was
labeled the MAXLIST algorithm. This algorithm requires three comparisons and
O(log N) memory locations on average for independent and identically distributed
(ii.d.) input signals. However, if the SAG algorithm is to be used with the M-Max
algorithm, then the sorting algorithm can also serve to find the maximum values of

the regressor.

3.1.4 Proposed Algorithm

The proposed algorithm is the DNLMS modified with all the techniques previously

mentioned in this section. Its coefficient update equation is given by

;

wi(n) + f(n—=D)pu(n—D)Q{e(n—D)}x(n—i— D), if i corresponds
to one of the first

M maxima of

wi(n+1) =
|z(n—1~D)|

wq(n), otherwise
(3.12)

\
where f(n — D) is given by

1, [x(n=D)|* < ¢ max{|x(n—-D)[} |Q{e(n—D)}|
fn—D) = (3.13)
0, lx(n=D)|* = ¢ max{|x(n-D)[} |Q{e(n-D)}|
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and p(n — D) is that in equation (3.3).

Assuming that « and x are POT numbers, the combined techniques have the
effect of: (1) simplifying N multiplications and 1 division to N + 1 shifts and 2 POT
quantizations; (2) saving N — M shifts and additions per “GO” iteration; and (3)
saving M + 2 shifts and M additions per “STOP” iteration.

Table 3.1 summarizes the total number of multiplicatidns, divisions, additions,
shifts, and comparisons that execute over m input samples for adaptive filtering
when the DNLMS algorithm and its variants previously introduced are used. The
amount of computations was derived under the following assumptions: « is a POT
number for all algorithms, resulting in at least one shift operation in the coefficient
update calculation; the ratio ¢ is implemented as a single constant equal to a POT
number; the regressor energy is calculated recursively as ||x(n)]|* = |lx(n — 1)||* +
z?(n) — z*(n — N), requiring 2 multiplications and 2 additions per iteration; and the
SAG algorithms have only ¢ out of m samples in the “GO” mode. It can be seen that
an adaptive filter using the proposed algorithm has /N less multiplications and 1 less
division per iteration compared to the DNLMS algorithm at the cost of additional
shifts and comparisons. The number of reduced additions is dependent on the choice

of M and how often the proposed algorithm is in “STOP” mode.

3.2 Simulation Results

In this section, two simulation examples are presented to compare the performance
of all algorithms discussed previous section. See Appendix A for the Matlab source

code.
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Table 3.1: Number of Operations Executed over m input samples

Algorithm Multiplications | Divisions Additions Shifts Comparisons
DNLMS m{2N + 2) m m{2N + 3) m 0
QER-DNLMS m(N +2) 0 m(2N + 3) m(N +2) 0
M-Max-DNLMS | m(M + N +2) m m(M + N +3) m m(2[logaN | +2)
SAG-DNLMS gN +m(N + 3) g gN +m(N +3) g+m 4m
Proposed algorithm m(N +2) 0 gM +m(N +3) | g(M +2) +2m | m(2|logaN| + 3)
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3. COMPUTATIONALLY-EFFICIENT DNLMS-BASED ALGORITHMS

3.2.1 Network Echo Cancellation with White Gaussian Input

In this set of simulations, the performance of each algorithm mentioned in the previous
sections is investigated under varying parameters for NEC. Simulations are carried out
using an echo path impulse response model from the International Telecommunication
Union (ITU) G.168 Recommendation [16], shown in Fig. 3.2(a). The input is white
Gaussian noise (WGN) with signal-to-noise ratio (SNR) of 30 dB. The echo return
loss (ERL), which is the ratio of the input signal power to the echo signal power,
is 6 dB. The filter length is chosen to equal the channel length, i.e. N = 96. All
simulations have parameters oo = 0.5, 8 = 0.008, and D = 32. The MSE is calculated
as the average instantaneous squared error over 200 trials.

The first simulation results show how DNLMS is affected by POT quantization.
Quantized-Error DNLMS (QE-DNLMS) has POT quantization of the delayed error
e{n—D) to an 8bit word (a = 1,b = 6). Quantized-Regressor-energy DNLMS (QR-
DNLMS) has POT quantization of the delayed regressor energy ||z(n—D)||? to an 8-bit
word (a = 7,b = 0). As mentioned in the previous section, QER-DNLMS has POT
quantization of both the delayed error and regressor energy to the same wordlengths
used for QE-DNLMS and QR-DNLMS respectively. For QE-DNLMS, 7 = 0 and for
QR-DNLMS, 7 = 27° because both achieved better performances for those choices
of 7. Figure 3.3 shows that, compared to DNLMS, QE-DNLMS converges slower
but achieves a lower steady-state MSE, QR-DNLMS converges slower and achieves a
higher steady-state MSE, and QER-DNLMS achieves similar performance.

The next simulation shows the affects of using different values of M for M-Max-
DNLMS. Note that for M = N the M-Max-DNLMS is reduced to DNLMS. Figure 3.4
shows that as M decreases, the MSE convergence time decreases.

Next, simulations to investigate how varying ~ affects thc MSE learning curve
of SAG-DNLMS are carried out. Note that s = 0 represents DNLMS. It is shown

in Fig. 3.5 that as « increases, convergence time increases. Table 3.2 shows how
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(a) A hybrid echo path from ITU G.168.
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(b) An acoustic echo path of the inside of a car.

Figure 3.2: Echo path impulse responses.
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MSE (dB)
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Figure 3.3: MSE curves of DNLMS under different quantization algorithms.

often, on average over 200 trials, the SAG-DNLMS coefficients were updated before
and after convergence. This table also includes results for the proposed algorithm,
which will be discussed later. For SAG-DNLMS, it can be seen that as x increases,
the percentage of samples in the “GO” mode decreases drastically, especially after

convergence.

Finally, the performance of the proposed algorithm is compared to that of the

Table 3.2: Impact of SAG algorithm under WGN input

Percent Samples in “GO” mode
Algorithm K
Before Convergence | After Convergence
SAG-DNLMS | 0.0005 63.24 35.32
SAG-DNLMS | 0.0010 31.64 6.75
SAG-DNLMS { 0.0015 21.16 1.41
Proposed 211 44.97 14.13
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Figure 3.4: MSE curves of M-Max-DNLMS for different M’s.
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Figure 3.5: MSE curves of SAG-DNLMS for different «’s.
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Figure 3.6: MSE curves of NLMS and Proposed algorithm.

standard NLMS algorithm. The parameter chosen include D = 32, M = 32, x = 27},
quantization of e(n— D) to an 8-bit word (a = 1,b = 6,7 = 0), and quantization of
|lz(n— D)||? to an 8-bit word (a = 7,b = 0,7 = 27%). From Fig. 3.6, it can be seen
that the proposed algorithm has moderate performance degradation when compared
to NLMS. From Table 3.2, it can be seen that the proposed algorithm experiences

significant reductions in computations due to its SAG-related portion alone.

3.2.2 Network and Acoustic Echo Cancellation with Com-

posite Source Signal Input

In this simulation example, NLMS and the proposed algorithm are simulated for
both NEC and AEC applications. The input used in this simulation is the composite
source signal (CSS) from ITU G.168. The CSS has been downsampled to 8 kHz. It
is approximately 350 ms long and consists of a 48.62 ms duration voice signal, a 200

ms duration pseudo-noise signal, and a 101.38 ms duration pause. This sequence is
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Table 3.3: Impact of SAG on Proposed algorithm under CSS input

Percent Samples in “GO” mode

Voice | Pseudo Noise | Pause
NEC | 32.13 42.23 2.42
AEC | 34.33 50.54 6.28

repeated as many times as needed, with an inversion at each repetition, to create a
longer signal.

For NEC, the echo path shown in Fig. 3.2(a) is once again used. For AEC, the
echo path impulse response model of the inside of a car, shown in Fig. 3.2(b), is used.
The SNR is 30 dB. The filter lengths are given as N = 96 for NEC and N = 300 for
AEC. Algorithmic parameters for NLMS and the proposed algorithm in both NEC
and AEC simulations include o = 0.125 and # = 0.008. Additionally, the proposed
algorithm has the following parameters: M = 32 for NEC and M = 128 for AEC;
k=271 for NEC and s = 274 for AEC; and all remaining parameters are the same
as the ones used in the first simulation example.

For this simulation example, echo return loss enhancement (ERLE), a typical
meagsure of echo canceller performance, is calculated and plotted. ERLE is defined as

Bl (n)
[(d(n) —y(n))?]

and can be described as the ratio of the power of the echo versus the power of the

dB. (3.14)

residual echo.

Figure 3.7 shows the residual echo and corresponding ERLE of NLMS and the
proposed algorithm for NEC simulation. The echo is included with the residual echoes
and labelled as the case when there is no echo cancellation. The results show that the
echo is effecitively cancelled after the first CSS sequence for both algorithms. Also,

the proposed algorithm achieves similar ERLE performance to NLMS.
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Figure 3.7: Residual echo and ERLE of NLMS and proposed algorithm for NEC simulation.
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Figure 3.8: Residual echo and ERLE of NLMS and proposed algorithm for AEC simulation.
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For AEC simulation, Fig. 3.8 shows that the echo is effectively cancelled after the
third CSS sequence. Although the proposed algorithm initially has a lower ERLE
performance than NLMS, it achieves similar ERLE performance to NLMS.

Finally, Table 3.3 shows, for the proposed algorithm under NEC and AEC simu-
lations, how often the samples were in the “GO” mode over the voice, pseudo noise,
and pause portions of the input. It can be seen that the proposed algorithm provides

a significant amount of computational savings, especially during periods of pause.
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Chapter 4

FPGA Implementation of
Pipelined DNLMS Adaptive Filter

As mentioned in Chapter 2, the DNLMS algorithm is suitable for implementing
pipelined adaptive filter architectures. However, to this date there has been little
work presenting architectures for DNLMS adaptive filters [23, 26, 28], none having
given a detailed implementation. This chapter presents the FPGA implementation
of a pipelined, regular, modular, low-latency, portable DNLMS adaptive filter.

This chapter is organized as follows: Section 4.1 shows the derivation of the archi-
tecture for the DNLMS adaptive filter. The design is then tested for echo cancellation
application. Section 4.2 discusses the design methodology which includes fixed-point
and register transfer level (RTL) simulations, physical synthesis for the Altera Stratix
EPS140F780C5 FPGA [6], and functional verification results obtained from hardware

implementation using the Nios Development Board, Stratix Professional Edition [4].
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4.1 Architecture Derivation

A pipelined architecture can be derived using the cutset retiming technique [22]. A
cutset is a set of edges in a graph that, when removed, partition the graph into two
separate sub-graphs. Cutset retiming is performed by removing & delays from each
edge moving in a given direction, from one sub-graph to the other, while adding & de-
lays to the remaining edges moving in the opposite direction, where & is an arbitrary
positive integer [22]. This technique does not change the input/output characteristic
of the graph. In [7], cutset retiming is used to produce a hybrid FIR form filter
architecture, a cross between the direct and transposed FIR forms, for the DLMS
adaptive filter. In this section, a pipelined architecture is similarly derived for the
DNLMS adaptive filter. Redundant delays elements are then removed for a more
efficient implementation. Cutset retiming has been used to derive a pipelined archi-
tecture for the DNLMS adaptive filter in [26, 28], however that design was ultimately
a folded architecture. Although folded architectures consume less resources, they
require operation at higher frequencies than unfolded architectures.

Figure 4.1 shows the direct form DNLMS adaptive FIR filter architecture. Note
that D delays are applied to the input z(n) in two places. The delays are applied in
this manner to provide a sufficient amount of delays for the retiming technique.

The critical path is defined as the path of the graph not containing a delay element
that has the longest computation time. The critical path of the direct form structure
is highlighted in Fig. 4.1 and labelled “1% crit. path”. Thus, the critical time is
(N + 1)t, +t,,, where t, and ¢, are the amounts of time required to complete single
addition and multiplication operations respectively. Recall from Chapter 1 that echo
cancellation requires the use of high-order adaptive filters. In other words, N is large
and consequently, so is the critical time of this architecture. Using cutset retiming,
delays can be inserted to break up the critical path, thereby decreasing the critical

time while preserving the functionality and zero-latency characteristic of the direct
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form FIR DNLMS adaptive filter architecture.

Cutsets, shown by dashed lines in Fig. 4.1, are applied to the filter such that P
weights are grouped together. It is assumed that NV is a multiple of P. It will be
seen that applying the cutsets in this regular manner results in a regular structure.
An additional cutset is applied to the step-size calculation component, seen in the
lower-right corner of Fig. 4.1. By doing this, a delay will be inserted in the potential
critical path labelled “2™® crit. path”, which has a computation time of 3t, + 3¢, +t4,
where t4 is the amount of time required to complete a single division operation.

Applying cutset retiming results in the hybrid form DNLMS adaptive FIR filter
architecture shown in Fig. 4.2. Identical processing elements (PEs), each containing P
weights, are outlined. Two potential critical paths are highlighted. Thus, the critical
time for this pipelined architecture is the larger amount between (P + 1)t, + i,
and t, + t,, + tg. This is true under the condition that D > N/P — 1. Therefore,
the minimum value of D is N/P. Note that there is a redundancy of signal values
between the regressor, x(n), and the delayed regressor, x(n — D). By having one
single tap-delay line for the input, the number of delay elements can be reduced by
N —-2N/P+ D +1.

Figure 4.3 shows the proposed efficient architecture of the hybrid form FIR DNLMS
adaptive filter. The contents of i* PE are illustrated in Fig. 4.4, where i = 0,1,...,
(N/P —1). The values yo(n),y:1(n) ..., yn/p(n) are defined as intermediate values of
the output, where yo(n) = y(n) and yn/p = 0. Also, it is shown in Fig. 4.3 that the
divider and the delay following it has been replaced with an look-up table (LUT),
which is assumed to have an inherent delay of ¢4. Since ¢4 is now equal to the amount
of time required to read from memory, the critical time for this design is clearly
(P+ Dty +tm.

Now the tradeoff introduced by varying the value of P can be discussed. As P

decreases, the critical time decreases as well as the degree of data broadcasting of
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Figure 4.1: Direct form FIR DNLMS adaptive filter architecture with cutsets.
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Figure 4.2: Pipelined hybrid form FIR DNLMS adaptive filter architecture.
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Figure 4.3: Proposed efficient hybrid form FIR DNLMS adaptive filter architecture.

HALTIA HALLAVAY SWINA JANITHdId A0 NOILLVINAWHITINI viodd 7



4. FPGA IMPLEMENTATION OF PIPELINED DNLMS ADAPTIVE FILTER

u(n-D+ile(n-D+i) < p(n-D+ije(n-D+i)
x(n-D-iP+i-P+1) ~-~€A»€—— e —»é

x(n-D-iP+i-1)

x(n-D-iP+i)

x(n-iP+i-P+1)

x(n-il5+i- 1)
X(n-iP+i}
— ¥,.,(n-1)

i+1

y(n)

Figure 4.4: The i** PE of the efficient hybrid form FIR DNLMS adaptive filter

architecture.

pw{n — D +i)e(n — D + i) seen in the i*" PE. However, the minimum value of D, i.e.
N/P, increases. Recall from Section 2.5 that D should be kept as small as possible
since a larger value would worsen the convergence behaviour. Therefore, changes in
P results in a tradeoff between architectural design characteristics and algorithmic
performance.,

Table 4.1 summarizes the different critical times and number of delay elements

required for each discussed architecture.
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Table 4.1: Architecture Comparison

Architecture Critical Time No. of Delay Elements

Direct Form (N + Dty +tm 3N +3D
Hybrid Form | max{(P + 1)ts + tm, ta +tm + ta} | 3N—2N/P+3D+1
Proposed (P4 D)ty +tm 2N +2D

Architegture Derivation l :

\

Floating- & Fixed-Point -
Simulation

v

{ RTL Simulation } «
| Physical Synthesis

i (Logic Synthesis, Technology
( Mapping, & Fitting)

A

] Ml:i;rdwa;;éénfiguration ”

& Verification

Figure 4.5: Design methodology.

4.2 Design Methodology for FPGA Implementa-
tion

Figure 4.5 shows the design methodology used to implement the proposed architecture

shown in Fig. 4.3. Each step is discussed in further details in the following subsections.
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4.2.1 Fixed-Point Simulations

Fixed-point simulations of the pipelined hybrid form FIR DNLMS adaptive filter
for echo cancellation are carried out using the fixed-point toolbox in Matlab. See
Appendix A for the Matlab fixed-point source code.

The echo path impulse response model illustrated in Fig. 3.2(a) is used to create
the desired response signal. The two test input signals used are WGN and the CSS
from ITU G.168. The CSS sequence is repeated four times, with an inversion at each
repetition, to create a longer signal. The SNR is 30 dB.

The filter length is chosen to equal the channel length, ie. N = 96. Other
parameter values were set as P = 3 and 3 = 0.0625. Recall from Section 4.1 that
the design constraint for the adaptation delay was given as D > N/P — 1. Since it
should also be kept as small as possible, D is chosen to equal 32. The parameter «
is equal to 0.5 and 0.125 for WGN input and CSS input respectively. To measure
the filter’s performance, the instantaneous squared error is calculated for the case of
WGN input and ERLE is calculated for the case of CSS input.

Two’s complement number system was chosen for the implementation. Overflow
is avoided by saturating the sum or product while rounding is handled with trunca-
tion. The wordlengths, shown in Table 4.2, were determined by observing the range
of all signals in floating-point simulations and by performing fixed-point and RTL
simulations to ensure adequate performance.

Figure 4.6(a) shows the instantaneous squared error plotted from fixed-point sim-
ulation of the DNLMS adaptive filter when WGN input was applied. It can be seen
that the filter exhibits stable behaviour with the squared error having converged to
its steady-state value within the first 600 samples. Figure 4.6(b) shows the ERLE
performance of the filter when CSS input was applied. It is shown that the echo
is effecitively cancelled after the first CSS sequence. The results shown in Fig. 4.6

will be used as a benchmark for checking the equivalence of between the fixed-point

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. FPGA IMPLEMENTATION OF PIPELINED DNLMS ADAPTIVE FILTER

Table 4.2: Signal Wordlengths

Signal(s) Wordlengths (Total, Fractional)
z(n), d(n), e(n),y(n) (8,7)
w(n) (18, 17)
p(n) (11, 7)
| (m) | (12,7)

design model and the other design models that follow in this section.

4.2.2 RTL Simulations

The design in Fig. 4.3 was modelled using Verilog Hardware Description Language
(HDL). Each Verilog module was written behaviourally and is parametizable, and
independent of vendor technology (see Appendix B for Verilog source code). Thus,
the design description can be considered as an intellectual property (IP) core. It is
flexible and portable, making it suitable for design re-use. These characteristics are
important in digital design because it reduces the “time-to-market” for projects using
similar architectures.

Cadence NC-Verilog Simulator was used to perform RTL simulations. All param-
eters and wordlengths have the same values mentioned in Section 4.2.1. Both WGN
and CSS inputs are used. Figures 4.7(a) and 4.7(b) show the squared error and ERLE
plots from the RTL simulation results, respectively. These plots are nearly identical
to the fixed-point simulation plots in Fig. 4.6(a) and Fig. 4.6(b). The only difference
is that the error and output from the RTL simulations are delayed by one clock pe-
riod. This is due to buffering of the input. Thus, the implemented design will have
a latency of one. Aside from that difference, the RTL simulations generate the same

outputs as fixed-point simulations.
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(a) Instantaneous squared error plot from fixed-point simulation for WGN input.
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Figure 4.6: Results from fixed-point simulations.
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Figure 4.7: Results from RTL simulations.
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Figure 4.8 shows the captured signal waveforms of z(n), d(n), y(n), and e(n)
(which are given alias names xin, din, yout, and e, respectively) from the RTL simu-
lations. The chosen time frame is the moment when y(n) begins to have a non-zero
output. These results will be used to compare the hardware implementation in Section

4.2.3 to the RTL simulation.

4.2.3 Synthesis and Hardware Verification

The Verilog behavioural description of the design under test (DUT), i.e. the adaptive
filter, was physically synthesized for the Altera Stratix EPS140F780C5 FPGA, then
functionally verified using the Altera Nios Development Board, Stratix Professional
Edition. The Altera Quartus II 5.0 design software is used to perform logic synthesis,
technology mapping, fitting, timing analysis, hardware configuration, and functional
verification [5].

To stimulate the DUT, a finite-state machine (FSM) was incorporated into the
Quartus project. The FSM was used to reset the DUT, apply inputs, and write
outputs to memory. Appendix B contains the Verilog source code for the FSM.

The top-level of the Quartus project is shown in Fig. 4.9. It can be seen that
the FSM’s I/Os are mapped to an on-board clock pin through a frequency divider
module, two on-board push-button pins, and memory modules. The timing analysis
performed by the Quartus II Timing Analyzer indicated that the maximum operating
frequency of the DUT is 32.27 MHz. Thus, a frequency divider was necessary to
reduce the 50 MHz clock supplied on the on-board oscillator. The push-buttons were
used to manually reset the FSM to its idle state and to initiate the test. The ROM
modules contained the input and desired response signal data as well as the LUT
data necessary for the division operation. The RAM modules were used to store the
error and output data. Using the In-System Memory Content Editor, the content of

the ROM/RAM modules was viewed and manually changed during online operation.
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i Table 4.3: FPGA Resource Utilization

Resource Used | Available | Utilization (%)
Logic elements 38,037 41,250 92
Pins 3 616 <1
Memory bits 407,936 | 3,423,744 11
DSP block 9-bit elements 112 112 100

In this manner, the error and output data were exported to files.

Table 4.3 summarizes the resource utilization after fitting. It is shown that the
implementation requires nearly all of the available logic elements (LEs). An LE is
the Altera Stratix FPGA’s smallest unit of logic [6]. The digital signal processing
(DSP) blocks, which contain dedicated hardware suitable for DSP applications, were
completely utilized. The implementation requires few I/O pins and memory resources.
To further convey the resource utilization, Fig. 4.10 shows a high-level view of the
FPGA after fitting. Unused resources are given light colours. The logic array blocks
(LLABs), each of which contain 10 LEs, have a colour gradient corresponding to their
usage. The darker a LAB is coloured, the more LEs within it are utilized.

After completing physical synthesis and timing analysis, programming files are
generated and used to configure the FPGA. After programming the FPGA, WGN
and CSS input were applied to the DUT. During online operation, SignalTap II
Analyzer was used to capture signal waveforms. Figure 4.11 shows the captured
signal waveforms of z(n), d(n), y(n), and e(n) from the hardware tests. The trigger
moment used for capturing the data is the instance when y(n) begins to have a non-
zero output. It can be seen that the waveforms in this figure identically match the
RTL simulation waveforms in Fig. 4.8.

Finally, the error data from the hardware implementation was acquired through

the In-System Memory Content Editor and plotted in Fig. 4.12. These plots are
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Figure 4.10: Post-fitting chip view illustrating resource utilization.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



‘uolssiwiad jnoyum paugiyoud uononpoidal Jeyung -Jaumo JybuAdoo ayp Jo uoissiwiad ypm paonpoiday

67

F2h b4 FBR A A5h X FER K £ Z6h E }
[ E TG CE R BN D En e RE

Y Fin ) fah ¥ £ X fBn . d8n Y fBn ¥ £Fn ) 2ih o zan X fea i

{(a) WGN input

(b) CSS input

Figure 4.11: Captured waveforms from hardware implementation.
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Figure 4.12: Results from hardware simulations.

identical to the RTL simulation plots in Fig. 4.7 and differ the fixed-point simulation
plots in Fig. 4.6(a) and Fig. 4.6(b) by a delay of one clock period. Again, this is due
to buffering of the input.
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Chapter 5

Conclusions and Future Work

This thesis has focused on the implementation of the DNLMS adapti've filter for
echo cancellation. The DNLMS algorithm is of interest because unlike the NLMS
algorithm, DNLMS allows pipelining, which in turn facilitates low-power or high-
speed architectures. Two issues related to the implementation were addressed.

The first issue is that echo cancellation typically requires high-order adaptive
filters which induce high power and area consumption. Application of computationally-
efficient techniques to the DNLMS algorithm has been considered. POT quantization
was applied to the DNLMS algorithm, which has simplified multiplication/division
to a single shift. Simplifying such computationally-intensive operations has the effect
of reducing power and area consumption. The DNLMS algorithm was also modified
by using the M-Max algorithm and a SAG algorithm. Both reduce the amount of
computations by scheduling less weight updates. Having less computations results
in decreased switching activity in the device, which reduces the dynamic power con-

sumption. For the SAG algorithm, a new and effective stopping criterion related to
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5. CONCLUSIONS AND FUTURE WORK

the regressor energy has been introduced. NEC and AEC simulations have shown
that, compared to the standard NLMS algorithm, the proposed algorithm experi-
enced only moderate performance degradation when using either WGN input or ITU
G.168 CSS input.

The second issue is that, to this date, there has been no work presenting a detailed
implementation of a pipelined DNLMS adaptive filter. Thus, the design and imple-
mentation of a DNLMS adaptive filter was presented. The design methodology con-
sisted of architectural derivation, fixed-point and RTL simulations, physical synthesis
for the Altera Stratix EPS140F780C5 FPGA, and real-time hardware verification us-
ing the Nios Development Boad, Stratix Professional Edition. The pipelined, modular
architecture was derived from the direct form by applying cutset retiming. Then, to
eliminate redundancy of N — 2N/P + D + 1 delay elements between two tap-delay
lines, the architecture was modified to use a single tap-delay line. The proposed ar-
chitecture thus achieved the smallest amount of delay elements as well as the least
critical time equal to (P+1)t,+tp. The minimum adaptation delay for this architec-
ture was determined to be N/P. It was also seen that the varying the parameter P
resulted in a tradeoff between design characteristics, namely critical time and degree
of local signal broadcasting, and algorithmic performance. The implemented design
is pipelined and offers modularity, low-latency, and portablility. Fixed-point, RTL,
and hardware models of the adaptive filter were tested for NEC using both WGN and
CSS as test signals. It was shown that results from fixed-point, RTL, and hardware
simulations produce nearly identical outputs, thus verifying the functionality of the
implementation.

Future work that could follow this thesis is the implementation of a DNLMS adap-
tive filter with computationally-efficient techniques. A sorting algorithm and POT
quantizer would be included in the implementation. The impact of the techniques,

namely savings in power and area, can be measured when comparing this proposed
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implementation to the DNLMS adaptive filter implementation presented in this work.
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Appendix A

Matlab Source Code

f nlms.m

The following source code describes the floating-point function describing the NLMS

algorithm.

% This function performs NLMS adaptive filtering
% Last updated: Aug 7, 2006
% By Raymond Lee

function [e, y, ¢] = f_.nlms(x, d, alpha, beta, Lf);

% r — input to the filter

% d — desired signal

% alpha — constant in range (0,2)

% beta — small constant greater than 0

% e— error equal to d — vy

% y — output of filter

% ¢ — coefficients of the filter

% regg — regressor wector containing Lf last last samples of the input.
% Lf — length of the filter

% Initialize vectors
= length (x);

=
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regg = zeros (1, Lf);
y= zeros(l,n);
e= zeros(1l,n);
c= zeros(1,Lf);

% perform filtering
for i =1 : n
regg [x(1) reg

g(1:Li-1)];
y(i) = cx(regg. ’)3

i

e(i) = d(i) - y(
mu= alpha /(beta
c= c+ mu*(regg)x*e(

regg ) x(regg.’));
) Z%update equation

(

end

f dnlms.m

The following source code describes the floating-point function describing the DNLMS

algorithm.

% This function performs DNLMS adaptive filtering
% Last updated: Aug 7, 2006
% By Raymond Lee

function [e, y, c¢] = f.dnlms(x, d, alpha, beta, Lf, Da);
% x — input to the filter

% d — desired signal

% alpha — constant in range (0,2]

% beta — small constant greater than 0

% e— error equal to d — vy

% y — output of filter

% ¢ — coefficients of the filter

% regg — regressor wvector containing Lf last last samples of the input.
% Lf — length of the filter

% Da — adaptation delay

% Initialize wvectors
n = length(x);

regg = zeros (1, Lf);
regg_delayed = zeros(1, Lf);
y= zeros (1,n);

e= zeros(1l,n);

c= zeros(1,Lf);

% perform filtering
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for i =1 :n
regg = [x(i) regg(L:Lf-1)];
y(i) = c*(regg.’);
e(i) = d(i) - y(1);

if ((i-Da)>0)
regg-delayed = [x(i-Da) regg-delayed (1:Lf-1)];
regg_energy = regg-delayedsregg._delayed.’;
mu = alpha/(beta + regg_energy);
¢ = ¢ + mux(regg_delayed)xe(i-Da); %update equation
end
end

f_gspotdnlms.m

The following source code describes the floating-point function describing the QER-
DNLMS algorithm.

% This function performs POT Quantization on the error and regressor
% engergy of DNLMS adaptive filtering.

% Last updated: Aug 27, 2006

% By Raymond Lee

function [e, y, ¢] = f_gspotdnlms(x, d, alpha, beta, Lf, Da, qe_ibits ,
qe-fbits , qre_ibits, gre_fbits);

% x — input to the filter

% d — desired signal

% alpha — constant in range (0,2]

% beta — small constant greater than 0

% e— error equal to d — vy

% y — output of filter

% ¢ — coefficients of the filter

% regg — regressor vector containing Lf last last samples of the input.

% Lf — length of the filter

% Da — adaptation delay

% qe_ibits , qe_-fbit — number of integer and fractional bits (including
s1gn

% bit) that the error is quantized to.

% qre_ibits, gre_fbits — number of integer and fractional bits (
including

% sign bit) that the regressor energy is quantized to.

%

n

Initialize wvectors
= length(x);
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regg = zeros(l, Lf);

regg.delayed = zeros(1l, Lf);

y= zeros (1,n);

e= zeros(1l,n);

c= zeros(1,Lf);

qe = zeros(1l,n); % quantized error signal

% perform filtering

for i=1:n
regg = [x(i) regg(l:Lf-1)];
y(1) = ce(regg.’)
e(i) = d(i) - v(i);
qe(i) = f.powoftwo_anywl2(e(i), qe-ibits, qe-fbits ,0);

if ((i-Da)>0) ‘
regg_delayed = [x(i-Da) regg_delayed (1:Lf-1)];
regg_energy = f_powoftwo.anywl2(beta + regg-delayedsx

regg.delayed.’, qre-ibits , qre_fbits ,1);
mu = alpha/(regg_energy);
¢ = ¢ + mux(regg.-delayed)xqe(i—Da); %update equation

end
end

f mmaxdnlms.m

The following source code describes the floating-point function descfibing the M-Max-

DNLMS algorithm.

% This function performs M-Max DNLMS adaptive filtering
% Last updated: Aug 7, 2006 ‘
% By Raymond Lee

function [e, y, c¢] = f.mmaxdnlms(x, d, alpha, beta, Lf, Da, M);
% © — input to the filter

% d — desired signal

% alpha — constant in range (0,2]

% beta — small constant greater than 0

% e— error equal to d — y

% y — output of filter

% ¢ — coefficients of the filter

% regg — regressor wector containing Lf last last samples of the input.
% Lf — length of the filter

% Da — adaptation delay

% M — the number of taps that will be updated
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% Initialize wvectors

n = length(x);

regg = zeros(l, Lf);
regg_delayed = zeros(1, Lf);
y= zeros(1,n)
e= zeros(1l,n);
c= zeros(1,Lf);

b

% perform filtering

for i =1 : n
regg = [x(1i) regg(l:Lf-1)];
y(i) = cx(regg.’);
e(i) = d(i) — y(i);

if ((i-Da)>0)
regg_delayed = [x(i—-Da) regg-delayed (1:Lf-1)];

% create a wector that flags the largest P wvalues of the
regressor

[mm tempii] = sort(abs(regg._delayed));

tempii= tempii(Lf:-1:1);

index= zeros(1,Lf);

for iii =1 : M
index (tempii(iii)) = 1;

end

regg _energy = regg_delayedsregg_delayed.’;
mu = alpha/(beta + regg-energy);
¢ = ¢ + mux(regg._delayed)diag(index)*e(i—Da); Y%update
equation
end
end

f sagdnlms.m

The following source code describes the floating-point function describing the SAG-
DNLMS algorithm.

% This function performs SAG-DNLMS adaptive filtering
% Last updated: Aug 27, 2006
% By Raymond Lee

funetion [e, y, ¢, flag] = f_sagnlms(x, d, alpha, beta, Lf, Da, kappa);
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% x — input to the filter

% d — desired signal

% alpha — constant in range (0,2]

% beta — small constant greater than 0
% e— error equal to d — y

% y ~ output of filter

% ¢ ~ coefficients of the filter

% regg — regressor wvector containing Lf last last samples of the input.
% Lf — length of the filter

% Da ~ adaptation delay

% kappa — parameter for SAG

% Initialize wectors

n = length(x);

regg = zeros(1l, Lf);

regg_delayed = zeros(1l, Lf);

y= zeros(1,n)

e= zeros(1,n)
1,Lf

b

)i

c= zeros |

% perform filtering

for i =1 : n
regg = [x(i) regg(l:Lf-1)];
y(i) = cx(regg.’);
e(i) =d(i) — y(i);

if ((i-Da)>0)
regg.-delayed = [x(i—Da) regg_delayed (1:Lf—-1)];
regg_cenergy = regg_delayedsregg_delayed.’;
mu = alpha/(beta + regg._energy);

% determine if there will be an update of not
if (alpha/kappaxabs(e(i~Da))«max(abs(regg_delayed)) >
regg_energy )

f=1;

flag (i) = 1;
else

f = 0;

flag (i) = 0;
end

¢ = ¢ + fxmux(regg-delayed)xe(i-Da); %update equation
end
end
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f_gsmdnlms.m

The following source code describes the floating-point function describing the pro-

posed algorithm.

% This function performs proposed (QER SAG M-Max) DNLMS adaptive
filtering

% Last updated: Aug 27, 2006

% By Raymond Lee

function [e, y, ¢, flag] = f.gsmdnlms(x, d, alpha, beta, Lf, Da, M,
kappa, qe_ibits, ge_fbits, qre-ibits, qre_fbits);

% x — input to the filter

% d — desired signal

% alpha — constant in range (0,2]

% beta — small constant greater than 0

% M — the number of taps that will be updated

% kappa — constant walue greater than 0; used for SSAG

% qe.ibits, qe_fbit — number of integer and fractional bits (including
sign

% bit) that the error is quantized to.

% qre_ibits, qre_fbits — number of integer and fractional bits (
including

% sign bit) that the regressor energy is quantized to.
% e~ error equal to d — y
% y — output of filter
% ¢ — coefficients of the filter
% flag — vector that keeps track of number of updates
% regg — regressor wector containing Lf last last samples of the input.
% Lf — length of the filter
% Da — adaptation delay
% f— flag =0 or 1

% Initialize wvectors

n = length(x);

regg = zeros (1, Lf);

regg_delayed = zeros(1, Lf);

y= zeros(l,n);

e= zeros(l,n);

c¢= zeros (1,Lf);

qe = zeros(1l,n); % quantized error signal

% perform filtering

for i =1 : n
regg = [x(1) regg(1:Lf-1)];
y(i) = cx(regg.’);
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e(i) =d(i) - y(i);

qe(i) =f_powoftwo_anywl2(e(i), qe.ibits, qe_fbits ,0);

if ((i-Da)>0)
regg_delayed = [x(i—-Da) regg.-delayed (1:Lf—1)];

% create a vector that flags the largest P values of the
regressor
[m tempii] = sort(abs(regg.delayed), ’descend’);
index= zeros(1,Lf);
for iii =1 : M
index (tempii(iii)) = 1;
end

regg_energy =f_powoftwo_anywl2(beta + regg-delayedx
regg_delayed.’, qre_ibits , qre_fbits ,1);
mu = alpha/(regg._energy);

% determine if there will be an update of not
if (alpha/kappaxabs(qe(i-Da))*max(abs(regg_delayed)) >
regg.energy)

f=1;

flag (i) = 1;
else

f =0;

flag (i) = 0;
end

¢ = c¢ + fxmux(regg-delayed)xdiag(index)*qe(i-Da); Zupdate
equation
end
end

f_powoftwo_anywl2.m

The following source code describes the floating-point function describing POT quan-

tization.

% This function returns an error quantized to a power of two. Inputs to
% this function are the error, the number of integer bits (EXCLUDING the
% sign bit), the number of fractional bits, and tau = 0 for 0 or 1 for
% 2°(—fracbits). Note that error is real valued.

% Last Modified Aug. 27, 2006

% Raymond Lee
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function e = f_powoftwo.anywl2(error, intbits, fracbits, tau)
abs_error = abs(error);

% set the value of tau

if tau = 0

tau = 0;
elseif tau == 1

tau = 2°(—fracbits);
else

error ( 'tau_should.be.0c_or.1")
end

% quantize
if abs_error >= 2" (intbits —1)
e = 2" (intbits —1);
elseif abs_error >= 2°(—fracbits)
e = 2" (floor(log2(abs_error)));

else

¢ = tau;
end
e = sign(error)x*e;

echo_gsmdnlms_comparison.m

The following source code describes the floating-point NEC simulation of NLMS and
the proposed algorithm for WGN input. It specifically generates the results seen in
Fig. 3.6 and the last row of Table 3.2. Other results provided in Section 3.2.1 are
similarly simulated, but call on different functions previously mentioned in this sec-

tion to simulate different algorithms.

% This program simulates echo cancellation with NLMS and proposed using
% floating—point arithmetic. The channels used here are the hybrid echo
% paths from G.168, o model of a car room, and a model of a room.

% The test signals include white gaussian noise only.

% We will assume an 8 kHz sampling frequency.

% Last modified Aug 27, 2006

% Raymond Lee
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clear all
% close all

%7 %% LIST OF VARIABLES I et e ie oo el ele

% Lf — filter length

% n — # of samples

% mu — adaptation step—size

% mse — mean squared error

% num-realizations — number of realizations over which the squared error
% is averaged

% d — genuine echo that the filter is trying to match (desired signal)
% y — filter output or echo replica

% error — error signal = d - y
% mse — mean square error
% erle — echo return loss enhancement

% chan — echo path impulse response

% w ~ weights of the adaptive filter

% regg — regressor which holds current input and Lf—1 past input signals
% x — the input to the adaptive filter (Far—end speaker’s signal). z is
% either wgn or CSS.

% noise — Near—end speaker ’s signal (part of the desired signal)

% alpha ~ parameter for NLMS — (0,2)

% beta — parameter for NLMS — small and positive

% SNR — signal to noise ratio = z.power/noise_power

% SNRdb — 10log10 (SNR)

% Da — amount by which DNLMS adaptation s delayed

e e o i
W% %%%%% PARAMETERS and INITIALIZATION %060%06060006%%%
O IR R e e R IR e e e R R R e Ve RV 067606760

chan_num_flag = input(’Enter_1.for.chan.gl;.2.for.chan.g2;.....;.8_for.
chan_.g8;._.9.for.car_room;.10_for.rooml:._");

if ("(chan_num_flag == 1 || chan.num flag = 2 || chan_num._flag == 3 ||
chan_num_flag == 4 || chan.num._flag = 5 || chan_num_flag = 6 ||
chan_num _flag =— 7 || chan_num_flag = 8 || chan_num_flag == 9 ||

chan_num_flag ==10))
error( 'You.were.supposed._to.enter.a.number_from.1.t0o.10");

end

if (chan.num_flag = 9) % car_room
n = 5000;

elseif (chan_num._flag = 10) % car.room
n = 5000;

else
n = 3000;

end

o o ]
ORI % LOADING CHANNEL I8 R 66 i e il te e el
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e S s S oo
Bi%%%%%% Echo Path Channels
% Refer to generate_channels.mat for the generation of these channels.
% ERL is set to 6 dB. Channels g1 —> g4 are models from mnetwork hybrid
% simulator while channels g5 —> g8 are models from measured from
% telephone networks in North America.
if (chan.num_flag = 9)
load mat.dat.files/room.car.mat;
chan = 0.2xcar_room;
elseif (chan_num_flag = 10)
load mat_dat_files/rooml.mat;
chan = rooml;
else
load mat_dat_files/gecho_paths.mat;
if (chan.num.flag == 1)
chan = gl1;
elseif (chan_num_flag = 2)
chan = g2;
elseif (chan_num_flag == 3)
chan = g3;
elseif (chan_num_flag == 4)
chan = g4;
elseif (chan_num_flag == 5)
chan = gb;
elseif (chan_num_flag
chan = g6;
elseif (chan_num_flag == 7)
chan = g7,

|

else
chan = g8;
end
end

Lf = length(chan);

% SNR and power calculations

x_power = 1;

SNRdb = 30;

SNR = 10" (SNRdb/10);
noise_power = x_power/SNR;

% Parameters
% Note that we use beta = 0 for QSM-DNLMS
if (chan.num_flag = 10) % rooml
alpha = 0.5;
beta = 0.008;
kappa = 2" —-13;
M= 64;
elseif (chan.num.flag = 9) % car_room
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alpha = 0.5;
beta = 0.008;
kappa = 2" -13;
M = 64;
else % g.168 hybrids
alpha = 0.5;

beta = 0.008;
kappa = 2" -11;
M= 32;

end

Da = 32;
ge_ibits = 1;

JNOTE: ibits EXCLUDES the sign bit, i.e. total WL =1 + x_ibits + =
_fbits
ge_fbits = 6;
qre_ibits

7
qre_fbits 0;

num_realizations = 20; %VGN input

esq.nlms = zeros(1,n);
esq_gsmdnlms = zeros(1l,n);
dsq = zeros(1l,n);

flag.qsm = zeros(1,n);

for nr = 1: num_realizations
nr
tic
B o e o o o L L L oL LR Lo L
R %% % RESET VECTORS TO ZERO TRR%6 0% %77 %% %%
R T e e e Tt e e R e T e e e e e 6 b e e e e e e T T e e

9% %%%% NLMS vectors R%0%%%%%%

y-nlms = zeros(1,n); % output of the filter
error-nlms = zeros(l,n); % error signal

c.nlms = zeros(1,Lf); % coefficient INITIALIZATION
Y5%%%%% QSM DNLMS vectors Y000%e%e%%%

y-gqsmdnlms = zeros(1l,n); % output of the filter
error_gsmdnlms = zeros(1l,n); % error signal

c_gsmdnlms = zeros (1,Lf); % coefficient INITIALIZATION
flag_qsm_temp = zeros(1l,n);

o o o o o S o o o o L ol
950%%%%% CREATE DESIRED SIGNAL (ECHO) Y0600t n it
9% %% WGN input

x = randn(1,n); % lzn vector (var = 1)
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Max_x = max(abs(x));

X = x./Maxx;-

noise = randn(1,n);

noise = sqrt(noise.power).*(noise./Maxx);
d = filter(chan,l,x) + noise;

Y o e o i
TR T I 6706%% ADAPTIVE FILTERING S0 0060600606006
Y o s e e o o

[error_.nlms, ynlms, c.nlms] = f.nlms(x, d, alpha, beta, Lf);

[error_gsmdnlms, y_gsmdnlms, c_qsmdnlms, flag_qsm_temp| =
f.gsmdnlms(x, d, alpha, beta, Lf, Da, M, kappa, qe_ibits,
qge-fbits , qre_ibits , qre_fbits);

esq-nlms = esq.nlms + error_nlms."2;
esq.-gsmdnlms = esq_qsmdnlms + error_gsmdnlms.”2;
flag_gsm= flag_gsm + flag.gqsm_temp;

dsq = dsq + (d."2);

toc
end
iter = 1:n;
iterms = iter./8;

D S St e L o
TR %% % FILTER PERFORMANCE %0800 7800006 7606 % % %%
e A o S o S e AL
mse.nlms = esq_nlms./num_realizations;

mse_gsmdnlms = esq-gsmdnlms./num_realizations;

mse.nlms = 10xlogl0(mse_nlms);
mse_gsmdnlms = 10xlog10 (mse_gsmdnlms) ;

% Quantitative Analysis returning Steady—state MSE, Misadjustment, and
Time to convergence (TTC)

[ssmsenlms, M.mnlms, TTC.nlms] = f_qanalysis(mse_.nlms, iter, Lf, SNRdb,
chan);
[ssmse.gqsmdnlms , M_gsmdnlms, TTC_gsmdnlms] = f_qanalysis(mse_gsmdnlms,

iter , Lf, SNRdb, chan);

% Calculate the percent updates before and after convergence

flag_qsm = flag.qsm./num_realizations;

percent_update.qsm = sum(flag_gsm)/n;

percent_update_.qsm_bc = sum(flag_gsm (1: TTC_gsmdnlms)) /{TTC_gsmdnlms) ;
percent_update_qsm_ac = sum(flag_qsm (TTC_gsmdnlms:n)) /(n—TTC_gsmdnlms) ;

display (’Steady—State MSE: ’} %last 500 samples
ssmse_nlms
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ssmse_gsmdnlms

display ("TTC: ")

TTC_nlms

TTC_gsmdnlms
display(’Percent.updates’)
percent.update.qgsm
percent_update_gsm_bc
percent_.update_gsm_ac

% plots

figure

plot(iter , mse_nlms,’r’);
hold on;

plot(iter , mse_gsmdnlms, 'b’);
xlabel ( "Samples’);

ylabel ('MSE.(dB) ’);

legend ( 'NLMS’, ’'Proposed’);

echo_gsmdnlms_erle.m

The following source code describes the floating-point NEC and AEC simulation of
NLMS and the proposed algorithm for CSS input. It generates the results seen in
Section 3.2.2.

% This program simulates echo cancellation with NLMS and proposed

% (QFER SAG M-Maz) DNLMS using floating—point arithmetic. The channels
% used here are the hybrid echo paths from G.168, a model of a car

% room, and a model of a room. The test signals include CSS from

% G.168 and a wvoice signal. We will assume an 8 kHz sampling frequency.
% Last modified Aug 28, 2006

% Raymond Lee

clear all
% close all
j = sart(-1);

TR %%%%% LIST OF VARIABLES %0i0i0i0ee0i e e et elnte e didedareeds
% Lf — filter length

% n — # of samples

% mu — adaptation step—size

% mse — mean squared error
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% num_realizations — number of realizations over which the squared error
s averaged

% d — genuine echo that the filter tis trying to match (desired signal)

% y — filter output or echo replica

% error — error signal =d — y

% mse — mean square error

% erle — echo return loss enhancement

% chan —~ echo path impulse response

% w— weights of the adaptive filter

% regg — regressor which holds current input and Lf—1 past input signals

% x — the input to the adaptive filter (Far—end speaker’s signal). z is
% either wgn or CSS.

% moise — Near—end speaker ’s signal (part of the desired signal)

% alpha — parameter for NLMS — (0,2)

% beta — parameter for NLMS — small and positive

% SNR — signal to noise ratio = x_power/noise_power

% SNRdb — 10log10 (SNR)

% Da — amount by which DNLMS adaptation is delayed

T T eI I R T e IR T e e T e e e T e e I e oo e e T Ve el

T6%%930%6%% PARAMETERS and INITIALIZATION Z706060%%% %% %%

e e T R e e e T T T e e e e e e e e e V6 e P o666 %%

input.flag = input(’Enter_1_for.CSS.input.or.2.for.voice.signal:.");

if ("(input_flag = 1 || input_flag = 2))
error(’'You.were_supposed.to_enter_l_or.2’);

end

chan_num_flag = input(’Enter.l.for.chan_gl;_2.for.chan.g2;.....;.8.for.
chan.g8;.9.for.car_room;.10.for.rooml:.’);

if ("(chan_num_flag = 1 |! chan.num_flag = 2 || chan_num_flag = 3 ||
chan_num._flag = 4 || chan.num_flag == 5 || chan_pum_flag =— 6 ||
chan_num_flag = 7 || chan_num.flag =— 8 || chan.num_flag = 9 ||

chan_num_flag ==10))
error{ 'You_.were_.supposed_to_enter_a_number_from.1.t0.10");
end

if (input_-flag == 1)
%R %%%% Loading the Composite Source Signal (CSS)
% This signal has been normalized, i.e. it ’s power equals 1
if (chan_num flag = 9 || chan_num_flag = 10)
load mat_dat_files/css8kHz6.mat;

x = css8kHz6;

else
load mat.dat _files/css8kHz4 . mat;
x = css8kHz4;

end

else % (input_flag == 2)
%%%% Loading woice signal
load mat_dat_files/tape.8kHz_8bits.mat;
x = tape.8kHz_8bits;
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end
n = length(x);

T e T I e e e e R It R Te T Tn e de o e e e e %
I %%6% LOADING CHANNEL J08006060 066067606 60606606
R I T R R e e e T e Tt o e e e e e e T e e e e e R e e e 6%
95%%%%%% Echo Path Channels
% Refer to generate.channels.mat for the generation of these channels.
% ERL is set to 6 dB. Channels g1 —> ¢4 are models from network hybrid
% simulator while channels g6 —> g8 are models from measured from
% telephone mnetworks in North America.
if (chan_num_flag = 9)
load mat._dat_files /room_car.mat;
chan = 0.2xcar_room;
elseif (chan_num_flag == 10)
load mat._dat_files/rooml.mat;
chan = rooml;
else
load mat_dat_files/gecho_paths.mat;
if (chan_num_flag = 1)
chan = gl;
elseif (chan.num_flag — 2}
chan = g2;
elseif (chan.num._flag = 3)
chan = g3;
elseif (chan.num-_flag
chan = g4;
elseif (chan_num_flag = 5)
chan = gb;
elseif (chan.num_flag == 6)
chan = g6;
elseif (chan_num_flag = 7)
chan = g7;
else
chan = g8;
end

|

end
Lf = length(chan);

% SNR and power calculations

x.power = 1;

SNRdb = 30;

SNR = 10" (SNRdb/10) ;
noise_power = x.power/SNR;

% Parameters
INOTE: ibits EXCLUDES the sign bit, i.e. total WL =1 + x_ibits + x
_fbits
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if (input_flag = 1) % CSS input
if (chan.num._flag = 10) % rooml
alpha = 27 -3;
beta = 0.008;

M= 64;
ge_-ibits = 1;
qge_fbits = 6;
qre.ibits = 8;
qre_fbits = 0;
kappa = 27 —13;
elseif (chan_num_flag = 9) % car_room
alpha = 27 -3;
beta = 0.008;

M= 128;
ge_ibits =
ge.fbits = 6;
qre_ibits = T;
qre_fbits = 0;
4;

)

kappa = 2" -1

else % g.168 hybrids
alpha = 2"-3
beta = 0.008;

M= 32;
ge_ibits = 1;
qe_fbits = 6;

qre_ibits = 7;

qre_fbits = 0;
kappa = 27 -13;

end
else % voice input

if (chan.num_flag = 10) % rooml
alpha = 2" -4,
beta = 0.008;
M= 32;
qe-ibits = 1;
qge_fbits = 6;
qre_ibits = 8;
qre_fbits = 0;
kappa = 2" —-13;

elseif (chan_num_flag == 9) % car.room
alpha = 2" —4;
beta = 0.008;
M= 32;

qe_ibits = 1;
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qe._fbits = 6;

qre_ibits = 8;

qre_fbits = 0;

kappa = 2" —-13;

else % g.168 hybrids

alpha = 2" -4

beta = 0.008;

M= 32;

ge_ibits = 1;

ge_fbits = 6;

qre_ibits = T;
qre.fbits = 0;
kappa = 2" —13;
end
end

Da = 32;

esq_nlms = zeros(1,n);
esq_gsmdnlms = zeros(1l,n);
dsq = zeros(1,n);

flag_gsm = zeros(1,n);

Y 8 oo
W99 %% %% RESET VECTORS TO ZERO Y0060 80e 08960 %96%%
Y A o o e s

%% % %%% NLMS vectors %hIR%wH%%%

y-nlms = zeros(1,n); % output of the filter
error.nlms = zeros(1,n); % error signal

c.nlms = zeros (1,Lf); % coefficient INITIALIZATION

%% %%% QSM DNLMS vectors %%%%%%%%%

y-gsmdnlms = zeros(1,n); % output of the filter
error _gsmdnlms = zeros(1,n); % error signal

c.gsmdnlms = zeros(1,Lf); % coefficient INITIALIZATION

flag_gsm_temp = zeros(1l,n);

O e e o ]
5%%%%% CREATE DESIRED SIGNAL (ECHO) %0006%080606%%0606%%
Maxx = max(abs(x));

X = x./Max.x;

noise = randn(1,n);

noise = sqrt(noise_power).*( noise./Max.x);

d = filter(chan,l,x) + noise;

Y e e s o e o e
IR IR0 %% ADAPTIVE FILTERING 00006006 006007000 %%
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e o

[error_nlms , y.nlms, c.nlms] = f.nlms(x, d, alpha, beta, Lf);
[error_gsmdnlms , y._gsmdnlms, c.gsmdnlms, flag_qsm_temp] = f_gsmdnlms(x,
d, alpha, beta, Lf, Da, M, kappa, qe_ibits, qe_fbits, qre.ibits ,

qre_fbits);
esq-nlms = esq-nlms + error_nlms."2;

esq-gsmdnlms = esq_gsmdnlms + error_gsmdnlms."2;
flag_qsm= flag.qsm + flag.qsm_temp;
dsq = dsq + (d."2);

iter = 1l:n;
iterms = iter./8;

T e e e e e A e e e e Ve e Ve e

W96 %% %% % FILTER PERFORMANCE 080606606000 e e %606 %

I R I I e T e e I T e I Db IR 6 T 7 e e

block = 256,

for (kk = block:n)
dsqav(kk) = sum(dsq(kk—(block —1):kk}})/(block);
esqav_nlms (kk) = sum{esq _nlms (kk—(block —1):kk))/(block});
esqav_qsmdnlms (kk) = sum(esq-gsmdnlms (kk—(block —1):kk))/(block);

erle.nlms (kk) = dsqav(kk)./esqav_nlms{(kk);
erle_.qsmdnlms (kk) = dsqav(kk)./esqav.qsmdnlms(kk);
end

erle.nlms = 10xloglO(erle_nlms);
erle_.qsmdnlms = 10xlogl0O(erle_gsmdnlms);

% Calculation of % updates
percent.update_gsm = sum(flag._qsm)/n;

percent_update_voice = 0;
percent_update_-pseudo = 0;
percent_update_pause = 0;
if (chan.num.flag = 9 || chan.num_flag = 10)
css_lim = 6-1;
else
c¢ss.lim = 4-1;
end
for u=0:css_lim %for css8kHz6
percent_update_voice = percent.update_voice + sum(flag gsm (1+2803%
u:388+2803%u));
percent_update.pseudo = percent.update.pseudo + sum(flag._qsm
(389+2803*u:19944+2803%u) ) ;
percent_update_pause = percent_update_pause + sum(flag._gsm

(1995+2803%u:2803+2803xu) ) ;
end
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percent _update_voice = percent_update_voice/css_lim /388;
percent_update_pseudo = percent_update_pseudo/css.lim/1603;
percent_update_pause = percent_update_pause/css_lim /812;

display(’Percent._updates’)
percent_update_gsm
percent_update_voice
percent_update_pseudo
percent_update_pause

% plots

figure

subplot (2,1,1)

plot(iter ,d, ’k’");

hold on;

plot(iter ,error_gsmdnlms , 'b’);
plot(iter ,error_nlms,’'r’);
xlabel ( ’Samples’);

ylabel (’Redisual _Echo’};

subplot(2,1,2)

hold on;

plot(iter , erle.nlms,’r’);
plot(iter , erle_.gsmdnlms,’'b’);
xlabel ( ’Samples’);

vlabel ( 'ERLE_(dB) ') ;

legend ( 'NLMS’, ’'Proposed’);

dnlms_hybrid _fix.m

The following source code describes the proposed architecture of Chapter 4 using
fixed-point wordlengths and arithmetic. This source code generates the results seen

in Section 4.2.1

% This program simulates echo cancellation with DNLMS using fized-
% point arithmetic. The channels used here are the ones from G.168.
% The test signals include white gaussian noise and a normalized CSS
% from G.168 sampled at 8 kHz. We will assume an 8 kHz sampling

% frequency. Here, the data flow is manipulated to mimic the data

% flow in the hybrid architecture.

%

% Last modified Nov 26, 2006
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% Raymond Lee

clear all
close all

j = sqrt(-1);

IR % N %% LIST OF VARIABLES V80000t e 0n e 0606 e e e e a0 %%

% N — filter length

% n — # of samples

% mu — adaptation step—size

% num_realizations — number of realizations over which the

% squared error ts averaged

% d — genuine echo that the filter is trying to match (desired signal)
% y — filter output or echo replica

% error — error signal = d — y

% mse — mean square error
% erle — echo return loss enhancement
% chan — echo path impulse response

% w — weights of the adaptive filter
% regg — regressor which holds current input and N—1 past input signals
% © — the input to the adaptive filter (Far—end speaker’s signal). z is

% either wgn or CSS.
% notse — Near—end speaker ’s signal (part of the desired signal)

% alpha — parameter for NLMS — (0,2]

% beta — parameter for NLMS — small and positive

% SNR — signal to noise ratio = z.power/moise.power

% SNRdb — 10log10 (SNR)

% D — amount by which DNLMS adaptation is delayed

% P — number of taps per module

% flag — vector to keep track up updates or choose options.

o o o e ]
%% % %% % PARAMETERS and INITIALIZATION %0005 %%
O e ]

% Prompt user

input_flag = input(’Enter_0_for WGN.input ,.1_for _CSS_input:._’");

if ("(input_flag = 0 || input_flag = 1))
error(’You.were.supposed.to.enter .0 or.1);

end

chan_num_flag = 3;

/4

Fized—point parameters

t1 = numerictype ( 'WordLength’,8, Fractionlength’,7, 'Signed’,1);
t3 = numerictype (*WordLength ' ,8, Fractionlength’ ,6, Signed’ ,1);
t4 = numerictype (’WordLength’,16, Fractionlength’,15, ’Signed ’,1);
t5 = numerictype (’WordLength’ ,11,  Fractionlength’,7,’Signed ’,1);
t6 = numerictype (’WordLength’,12, ’Fractionlength’,7, ’Signed’,1);
t7 = numerictype ( 'WordLength’ ,13,’Fractionlength’ 12, ’Signed’ ,1);
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t8 = numerictype ('WordLength’,18, 'Fractionlength’,17, 'Signed’,1);

t_c.hybdnlms = t8;

t.d = t1;

t_error_hybdnims = t1;

t_pf = t4;

t.pw = t8;

t-mu_.e = t7;

t.x = t1;

t_.y_hybdnlms = t1;

t_mu_hybdnlms = t5;

t_regg.energy = t6;

t_xsq = tl;

t_alpha =t3;

% c_hybdnlms = c_hybdnlms + pw

% pf0 = c-hybdlms (ff)xregg(ff)

Fil=fimath;

F1.CastBeforeSum = false;

F1.SumMode = ’'SpecifyPrecision ’;
F1.SumWordLength = t_c_hybdnlms.wordlength ;
Fl.SumTFractionLength = t_c_hybdnlms . fractionlength;
F1.ProductMode = ’SpecifyPrecision
F1.ProductWordLength = t_pf.wordlength;
Fl.ProductFractionLength = t_pf.fractionlength;
F1.RoundMode = ’floor ’;

F1.OverflowMode = ’saturate’;

% error_hybdnlms (i) = d(i) — y_hybdnlms(i);

%

F2.SumWordLength = t.error.hybdnlms.wordlength

mu-e = mu.hybdnlms (i—error_delay) % error_hybdnlms(i—error_delay)
Fo=F1,

F2.SumFractionLength = t_error_hybdnlms . fractionlength;

F2.ProductWordLength = t_mu_e.wordlength ;
F2.ProductFractionLength = t_mu_e.fractionlength;

%
%
%
%

regg-energy = regg-energy + z0sq — zLsq
regg-energy = regg-energy + z0sq;

z0sq = z(i—error_delay )xz(i—error_delay)
zNsq = last_regg.delayedxlast_regg_delayed

F3=F1;

F3.SumWordLength = t_regg.-energy.wordlength ;

F3.SumFractionlLength = t.regg_energy.fractionlength;

F3.ProductWordLength = t_xsq.wordlength;
F3.ProductFractionLength = t_xsq.fractionlength;

% pw = regg-delayed.x mue_regg_delayed
y.addertemp = y.adderline (ff/2) + pf0 + pfl;

%

F4=F1;
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F4.SumWordLength = t_pf.wordlength;
F4.SumFractionLength = t_pf.fractionlength;
F4.ProductWordLength = t_c_hybdnlms.wordlength;
F4.ProductFractionLength = t_c_hybdnlms. fractionlength;

[A4
v

T T I e R I e R e iR

We%%%% LOADING INPUT AND CHANNEL 06080806 e0eetede o e 6 %%

TR I TR R TR R IR e TR e T e T e T T R e T It e e e e e e R I 6 T e e 6%

W% %%%% Echo Path Channels

% Refer to generate_channels.mat for the generation of these channels.
% ERL is set to 6 dB. Channels gl —> g4 are models from network hybrid
% simulator while channels g5 —> g8 are models from measured from

% telephone metworks in North America.

%% %%%% Input = and desired d

% The input signal has been normalized, i.e. it ’s power equals 1. The
% desired signal was created by passing the input z through the channel.
% White gaussian noise was added the d such that SNR = 80 dB.

if (input.flag = 1)

R %%%%% Loading the Composite Source Signal (CSS)
if (chan.num.flag == 1)

load mat_dat._files/x_d_css_gl.mat;
elseif (chan_num_flag — 2)

load mat_dat_files/x_d_css.g?2 .mat;
elseif (chan_num._flag = 3)

load mat_dat_files/x.d_css_g3.mat;
elseif (chan.num.flag == 4)

load mat-dat.files/x_d_css_g4.mat;
elseif (chan_num_flag == 5)

load mat_dat_files/x_d_css.g5.mat;
elseif (chan_num_flag = 6)

load mat_dat_files/x_d_css_g6.mat;
elseif (chan.num._flag == 7)

load mat_dat_files/x.d_css.g7.mat;
else

load mat_dat_files/x_d_css_g8 .mat;
end

else

WR%%%%% Loading the White Gaussian Noise (WGN)
if (chan.num.flag = 1)

load mat_-dat_files/x.d_wgn_gl.mat;
elseif (chan_num.flag — 2)

load mat._dat_files/x_d_wgn.g2.mat;
elseif (chan_num._flag = 3)

load mat_dat_files/x_d_wgn_g3.mat;
elseif (chan_num_flag = 4)

load mat_dat_files/x_d_wgn_g4.mat;
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elseif (chan_num._flag == 5)
load mat_dat_files/x.d.wgn_gh.mat;
elseif (chan.num.flag = 6)
load mat.dat_files/x.d_-wgn_g6.mat;
elseif (chan_num_flag = 7)
load mat.dat_files/x.d_-wgn_g7.mat;
else
load mat-dat-files/x.d-wgn.g8.mat;
end
end
n = length (x);
x = fi(x ,t-x,F3);
d = fi(d ,t.d,F2);
N = length(chan);
% Parameters

P = 3; % the number of taps per module
if (input_flag = 0)
alpha0 = 2" -1;
alpha = fi(alpha0 ,t_.alpha ,F2);
% WGN alpha — parameter for NLMS - (0,2); fi properties are
arbitraty ,
% but we’ll set it to F2, same as mu_hybdnims
else
alpha0 = 2" -3;
alpha = fi (alphal ,t_alpha ,F2); % CSS alpha — parameter for NLMS —
(0,2)
end

betal = 2" —4;

beta = fi(betal,t_regg-energy ,F3);

% beta — small and positive; same fi properties as regg-energy
D = floor(N/P); % D >= N/P % ASSUME N is divisible by P
error.delay = D-N/P+1;

num_._realizations = 1;

esq_hybdnlms = zeros(1,n);
dsq = zeros(1,n);

for nr = 1: num._realizations
nr
tic

S e
%% %%6%%% RESET VECTORS TO ZERO %08%%90600 606767 %%
R e R e e R R R I e R I R I T T R I e IR TR TR e TR e Te e 6026
regg = fi(zeros(l, N), t.x,F1);

regg.delayed = fi(zeros(1l, N), t x,F4);
mue_regg_delayed = fi(zeros(1, N), t_mu_e,F4);

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A. MATLAB SOURCE CODE

y_hybdnlms = fi(zeros(1l,n), t_y hybdnlms,F2);
error_hybdnlms = fi(zeros(l,n), t-error-hybdnlms F2);
c_hybdnlms = fi(zeros(1,N), t_c.hybdnlms ,F1);
mu_hybdnlms = fi(alpha0/beta0, t_mu.hybdnlms ,F2);
y-adderline = fi(zeros(l, N/P), t_pf F4);

y-hybdnlms = fi (0, t.y_hybdnlms ,F2};

regg_energy = fi(beta, t_regg_energy ,F3);

e e o o S o S e
T TR R 0% %% ADAPTIVE FILTERING %9909 %0 %% %% %% %6 %%
IR R T T e R e T R IR T T e e e R I TR Do Vet T e e %e%%
for 1 =1 :n
% Update the regressor
newvalue = x(1i);
for ii = 1:N
if (ii>1 &% mod(ii —1,P)==0)
regg(ii) = regg(ii —1);

else
nextnewvalue = regg(ii);
regg(ii) = newvalue;
newvalue = nextnewvalue;
end

end
regg = fi(regg, t-x,Fl);

T I T e eI e e e R e e B 6 e b6 i e o6
ORI IR Te IR eT0R0e% % DINLMS it e i e e e 0ol 6 6 o060
o S o e e o e e e e
% use 2 taps at a time and an adder—delay line to
% find the output y(n—1)

y.addertemplast = fi (0, t.pf ,F4);

for ff = N:-P:1

pf0 = fi(c_hybdnlms(ff)*regg(ff), t.pf ,F4d);
pil = fi{c_hybdnlms (ff —1)xregg(ff-1), t_pf , F4);
pf2 = fi(c_hybdnlms (ff —-2)«regg (ff —2), t_pf , F4);

v_addertempnext = fi(y_adderline(ff/P) + pf0 + pfl + pf2,
t_pf ,F4);
y_adderline(ff/P) = fi(y_.addertemplast, t_pf,F4);
y-addertemplast = fi(y.addertempnext, t_pf ,F4);
end
y-hybdnlms (i) =
error_hybdnlms (i

)

fi (y_addertempnext , t_y_hybdnlms F2);
) = fi(d(i) — y-hybdolms(i), t.error_hybdnlms ,F2

% Update the delayed regressor
if ((i-D)>0)
newvalue = x(i-D);
for ii = 1:N
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if (ii>1 & mod(ii —1,P)==0)
regg.delayed(ii) = regg_delayed (ii —1);

else
nextnewvalue = regg._delayed(ii);
regg_delayed(ii) = newvalue;
newvalue = nextnewvalue;

end

end
regg-delayed = fi(regg.delayed, t.x ,F4);
end

if ((i—(error.delay —1))>0)
x0sq = fi(double(x(i—(error.delay —1)))*double (x(i—(
error_delay —1))), t_xsq,F3);
last_regg_delayed = double(regg.-delayed(N));
xNsq = fi(last_regg_delayed=*last_regg._delayed, t_xsq,F3);
regg _energyd = fi(regg _energy, t_regg_enecrgy , F3);
regg-energytemp = fi(regg-energyd — xNsq, t_regg.energy ,F3);
regg_energy = fi(regg_energytemp + x0sq, t._regg_energy ,F3);
end

% create the delay line for muxe
if ((i—error.delay)>0)
mu_hybdnlmsl = fi (mu_hybdnlms, t_mu_hybdnlms,fF2);
mu_hybdnlms = t_mu_hybdnlms. divide (alpha, regg_energy);
mu.e¢ = fi(mu_-hybdnlmsl % error.hybdnlms(i—error_delay),
t_mu_e ,F1);
mue.regg.delayed = fi ([mue_regg_delayed (4:N) mu_e mu_e mu.e
], t-mu_.e ,F4);

% update the coefficients

pw = fi(regg.delayed.xmue_regg_delayed, t_pw, F1);

c_hybdnlms = fi(c_hybdnlms + pw, t_c.hybdnlms ,F1); %update
equatton

end
end

esq_hybdnlms = esq-hybdnlms + double(error_hybdnlms)."2;
dsq = dsq + (double(d)."2);

toc
end
iter = 1:n;
iterms = iter./8;

o e oo e i
IRRT T %% EQUALIZER PERFORMANCE G300 0e et i e etedededededs
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e o e e
if (input-flag = 0)
% Calculate MSE
mse_hybdnlms = esq_hybdnlms./num.realizations;
mse_hybdnlms = 10xlogl0O(mse_hybdnlms);
else
block = 256;
for (kk = block:n)
dsqav(kk) = sum(dsq(kk—(block —1):kk))/(block);
esqav_hybdnlms(kk) = sum(esq-hybdnlms(kk—(block —1):kk)) /(
block);
erle_hybdnlms(kk) = dsqav(kk)./esqav_hybdnlms(kk);
end
erle_hybdnlms = 10xlogl0(erle_hybdnlms);
end

% Plots
if (input_flag == 0)
figure
plot(iter , mse.hybdnlms (1:length (mse_hybdnlms)),’b’);
title (| "Mean.Squared_Error.({\alpha}.=." num2str(double (alpha)),’
~{\beta}.=.", num2str(double(beta)),’,_and SNR_.=_.  num2str(
SNRdb) , '.dB) ]} ;
legend ('DNLMS’);
")

)

xlabel (’Samples’);
ylabel ('MSE_(dB)’);
else

figure

plot (iter ,d, 'k’);

hold on;

plot (iter ,error_hybdnlms,’b’);

xlabel (’Samples’);

ylabel (' Redisual.Echo’);

figure
plot(iter , erle-hybdnlms,’b’};
xlabel (’Samples’);
ylabel ('ERLE.(dB) ) ;
legend ( 'DNLMS’ ) ;
end
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Verilog Source Code

This Appendix gives the Verilog source code used for the DNLMS adaptive filter
in Chapter 4. The code is written behaviourally, parametzable, and independent of

vendor technology. Figure B.1 shows the hierarchy of the Verilog modules.

hybrid_fsm
hybrid_fiit
e e e ]
| v Y
hybrid_mod mydff_beta
?
v v v
trunc_mult  trunc_add mydff
i ,,,,,,,,,,,, |
trunc_sat

Figure B.1: Hierarchy of Verilog modules
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hybrid_fsm.v

The following source code describes the FSM applied to the DUT.

SRR AR F KKK KK KKK KKK KKK KKK KKK K KK R K K K

This module is intended to act as a finite state machine for
hybrid.filter.v. It uses hybrid_filter.v, hybrid.mod.v, trunc.ams2.v,
and mydff.v

When START is high, the machine exzits out of the IDLE state and
1. Resets all dffs.
2. Loads parameter beta and initial coefficients from memory.
3. Applies the input vector to the filter and saves the output.
4. Returns to the IDLE state when complete.
RESET_ FSM_low is active low and initializes the FSM to the IDLE state
Last modified: Nov 26, 2006

By Raymond Lee

module hybrid_fsm (

clk, // clk is the clock
RESET.FSM low, // reset for FSM. Changes state to IDLE
START, // Control signal to start process
xin , // Value read from zROM. Input to filter
din , // Value read from dROM. Input to filter
ul, // ul is the delayed step—size which comes from an LUT
regg _energy , // regg-energy is the delayed reggressor energy
and address to the LUT
X.en , // Enable signal for zROM
x_addr, // Address for zROM
d_en, // Enable signal for dROM
d_addr, // Address for dROM
yout , // Output of filter written to yRAM
y_wren , // Enable signal for yRAM
y-addr, // Address for yRAM
e, // Output of filter written to eRAM
e.wren, // Enable signal for eRAM
e_addr // Address for eRAM
)
parameter

num-inputs = 11212, // CSS input

N = 96, // NOIE: N is assumed to by divisible by P
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input
input
input
input

output
output
output
output
output

x.ibits = 041, x_fbits = 7,
d_ibits = 041, d_fbits = 7,
regg_energy.ibits = 4+1,regg_energy.fbits
w.-ibits = 0+1, w_fbits = 17,
y_ibits = 041, y.fbits = 7,
e_ibits = 0+1, e_fbits = 7,
u_ibits = 341, u_fbits = 7

ue.ibits = 041,
xsq-ibits = 0+1, xsq-fbits = 7,

, // NOTE: D> N/P-1
=D, // =N/P

// =_ibits includes the sign bit

a_ibits = 0+1, a_fbits

x_bits = x_ibits+x.fbits,
d_bits = d_ibits+d_fbits ,
regg_energy_bits = regg_energy_ibits+regg_energy_fbits ,
w_bits = w_.ibits+w_fbits,
y.bits = y_ibits+y_fbits,
e.bits = e_ibits+e_fbits ,
u_bits = u_ibits+u_fbits,
ue_bits = ue_ibits+ue_fbits ,
xsq.bits = xsq-ibits+xsq-fbits ,
a_bits = a_ibits+4a_fbits ,

x_maxbits = (D4N-NdivP+1)xx_bits ,

ue.maxbits =

NdivPsue_bits ,

a_maxbits = NdivP*a_bits ,

ed_maxbits =

(D-NdivP+1+4+1)xe_bits ,

w.maxbits = Nxw_bits ,

x.addrbits =
d_addrbits =
y_addrbits =
e_addrbits =

¥

ue.fbits = 12,

15,

14-1, // for 11212inputs

x_addrbits ,
x.addrbits
x_addrbits

clk , RESET_FSM._low, START;

[x-bits —1:0]
[d-bits —1:0]

xin ;
din;

signed [u.bits —1:0] ul;

x.en, d_en,
[x_addrbits
[d_addrbits
[y-addrbits
[e_addrbits

y.wren, e_wren;

:0] x_addr;
:0] d.addr;
:0] y-addr;
:0] e_addr;

7,
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output [y_bits ~1:0] yout;
output [e.bits —~1:0] e;
output signed [regg_energy._bits —1:0] regg_energy;

reg reset , y_wren, e_wren;
reg [x_addrbits:0] x.addr;
reg [d-addrbits:0} d.addr;
reg [y-addrbits:0] y.addr;
reg [e_addrbits:0] e_addr;
reg current_state;

wire[regg_energy.bits —1:0] betain = 12°b000000001000;

hybrid_filt #(

N(N),
P(P),
-D(D),
.NdivP (NdivP) ,
.X-ibits(x_ibits), .x_fbits(x-fbits),
.d_ibits(d_ibits), .d_-fbits(d_-fbits),
.regg_energy_ibits (regg_energy_ibits
.regg_energy_fbits(regg_energy_fbits
.w.ibits (w_.ibits), .w_fbits(w_fbits),
.y_ibits(y_ibits), .y_fbits(y-fbits),
.e.ibits(e_ibits), .e.fbits(e.fbits),
.u-ibits (u-ibits), .u_fbits(u_-fbits),
.ue_ibits(ue_ibits), .ue_fbits(ue_fbits),
.xsq-ibits (xsq-ibits), .xsq_fbits(xsq-fbits),
.a_ibits(a-ibits), .a-fbits(a_fbits)
)
Filtl (

clk ,

reset ,

xin ,

din ,

betain ,

ul,

regg_energy ,

yout ,

e

)

// Declaring symbolic names for states
parameter IDLE = 1’'b0, FILT = 1’bl;

)
)

always @ (posedge clk)
begin
if (RESET_FSM_low == 0)
current_state <= IDLE;
else
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begin
// Next State logic
case (current_state)

IDLE:
if (START == 1)
current_state <= FILT;
else
current_state <= IDLE;
FILT:
if (x_.addr >= num_inputs)
current_state <= IDLE;
else
current_state <= FILT;
default :
current_state <= IDLE;
endcase

// Output Logic (Delayed Control Signals)
reset <= “{current_state);

y-wren <= current_state;

e.wren <= current._state;

// Output Logic (Memory Addresses)

if (x_en = 1) // Increment address
x.addr <= x_addr + 1;

else
x_.addr <= 0;

if (d_en == 1) // Increment address
d.addr <= d_addr + 1;

else
d_addr <= 0;

if (y_wren == 1) // Increment address
y-addr <= y_addr + 1;

else
y.addr <= 0;

if (e-wren = 1) // Increment address
e.addr <= e_addr + 1;

else
e_addr <= 0;

end

end

// Output Logic (Control signals)
assign x_en = current_state;
assign d_en = current_state;
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endmodule

hybrid_filter.v

The following source code describes the proposed architecture seen in Fig. 4.3.

/***************************************
This module uses hybrid_-mod.v, trunc.ams.v, and mydff.v to make an
adaptive filter DNLMS FIR filter.

Last modified: Nov 26, 2006

By Raymond Lee

module hybrid._ filt(
clk, // clk 4s the clock

reset , // rTeset is the synchronous reset signal

xin0, // zin0 is the input to the filter

d, // d is the desired signal

beta, // beta is a parameter of the DNLMS alg equal to a small
value

ul, // ul is the delayed step—size which comes from an LUT

regg_energy , // regg-energy is the delayed reggressor energy

and address to the LUT
yout, // yout is the output of the filter

e // e is the error signal
)5
parameter
N = 96, // N is the length of the filter (NOIE: N is assumed

to be divisible by P)
P =3, // P is the number of taps per PE
D = 32, // D is the adaptation delay (NOTE: D > N/P—1)
NdivP = D, // = N/P

// x_ibits includes the sign bit

x-ibits = 0+1, x_fbits = 7,
d.ibits = 0+1, d_fbits = 7,
regg-energy-ibits = 4+1,regg_energy_fbits = 7,
w.ibits = 0+1, w_fbits = 17,
y_ibits = 041, y.fbits = 7,
e_ibits = 0+1, e_fbits = 7,
u_ibits = 3+1, u_fbits = 7,
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ue.ibits = 0+1, ue_fbits = 12,
xsq-.ibits = 041, xsq_fbits = 7,
a_ibits = 0+1, a_fbits = 15,

x_bits = x_ibits+x_fbits ,

d_bits = d.ibits+d_fbits ,

regg_energy_bits = regg_energy_ibits+regg _energy _fbits ,
w_bits = w_ibits+w_fbits ,

y-bits = y_ibits+y_fbits ,

e_bits = e_ibits+e_fbits ,

u.bits = u.ibits+u.fbits ,

ue_bits = ue_ibits+ue_fbits ,

xsq-bits = xsq.-ibits+xsq_fbits ,

a_bits = a_ibits+a_fbits ,

x_maxbits = (DHN-NdivP+1)xx_bits ,
ue.maxbits = NdivP+ue_bits ,
a.maxbits = NdivPxa_bits ,
ed_maxbits = (D-NdivP+1+1)xe_bits ,
w_maxbits = Nxw_bits

3

input clk;

input reset;

input signed [x_bits —1:0] xin0;

input signed [d_bits —1:0] d;

input signed [regg_energy.bits —1:0] beta;
input signed [u_bits —1:0] ul;

output signed [regg_energy.bits —1:0] regg.energy;
output signed [y_bits —1:0] yout;
output signed [e_bits —1:0] e;

wire signed [x.maxbits —1:0] x; // regressor containing wvalues z(n), z(n
~1), ... , z(n-D-N+N/P)

wire signed [d_bits —1:0] d1; // the inputs, wzin0 and d, are buffered, .
e. they are delayed by 1

wire signed [y.bits —1:0] youtl, youtneg;

// youtl is the output yout is buffered, i.e. they are delayed by I

// youtneg = —yout

wire signed [xsq.-bits —1:0] xsq0, xsqN; // z(n=D+N/P) "2 and z(n—D-N+N/
P)"2 respectively

wire signed [regg._energy.bits —1:0] regg_energyd , regg.energy_temp;

// regg-energy = regg_energy_temp + z(n—-D+N/P)"2

// regg-energy-temp = regg-energyd + x(n—D-N#N/P) "2

// regg-energyd <= regg.energy

wire signed [ue.maxbits—1:0] ue; // is a delay—line containing u(n—-D+N/
P-1)e(n-D+N/P~1), ..., u(n-D)e(n-D)
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wire signed [a.maxbits —1:0] ain, aout; // is a collection of the inputs
and outputs for the serial addition of each PE. The input of PE i
is the delayed output of PE i+1
wire signed [ed_maxbits —1:0] ed; // is a delay—line containing e(n),
., e(n-D+N/P)

reg signed [u_bits —1:0] ulmuxout; // = 0 on resct. else = ul

assign ain[a_bits —-1:0] =0; // the input to PE N/P-1 is set to zero
assign yout = $signed (aout|[a-maxbits —1l:a_maxbits—y_bits]);

// the filter output yout is the serial addition output of PE 0,

// truncated to yout’s wordlength

assign ed[ed_maxbits —~1:ed_maxbits—e_bits] = e;

assign youtneg = —yout;

// e = dl — yout
trunc_add #(
.a_ibits(y_ibits), .a_fbits(y_-fbits}),
.b_ibits(d_ibits), .b_fbits(d.fbits), // the # of ‘a’ and ‘b’
fractional bits need to be the same.
.c.ibits(e.ibits), .c-fbits(e_fbits)

Add_Error (
youtneg ,
d1, J/ dl is just the buffered input. It has zeros padded
to the end of the word because, for the addition to
occur, the number of fractional bits of both operands
need to be the same.

)

// 1sq0 = z(n—D+N/P)xz(n-D+N/P) = z(n)xz(n) iff D=N/P
trunc_mult #(
.a_ibits(x_-ibits), .a.fbits(x_fbits),
.b_ibits (x_-ibits), .b_fbits(x_fbits),
.c_ibits(xsq-ibits), .c_fbits(xsq_fbits)

Mult_Xsq0 (
x [x_maxbits —1—(D-NdivP)*x _bits : x.maxbits —(D-NdivP+1)x
x-bits],
x|[x_maxbits —1-(D-NdivP ) +x _bits : x.maxbits —(D~NdivP-+1)%
x_bits],
xsq0
)5

// wsqN = z(n-D-N+N/P)xx (n—D-N+N/P)

trunc_mult #(
.a_ibits(x_ibits), .a_fbits(x_-fbits),
.b_ibits(x_ibits), .b_fbits(x_fbits),
.c_ibits(xsq_ibits), .c_fbits(xsq-fbits)
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)
Mult_XsqN (

x[x_bits —1:0],
x[x-bits —1:0],
xsgN

)

// regg_energy = regg_energy_temp + z(n—D+N/P)"2

trunc_add #(
.a_ibits(regg_energy_ibits), .a_fbits(regg.energy_fbits),
.b_ibits (xsq_ibits), .b_fbits(xsq-fbits),
.c_ibits(regg_energy_ibits), .c_fbits(regg.-energy_fbits)

)

Add_-ReggEnergy (
regg_energy.-temp ,
xsq0 ,
regg._energy

ki

// regg_energy_temp = regg-energyd — z(n—-D-N+N/P) "2

trunc_add #(
.a_ibits(regg_energy_ibits), .a_fbits(regg.-energy_fbhits),
.b_ibits(xsq_ibits), .b_fbits(xsq_-fbits),
.c_.ibits(regg.energy_ibits), .c_fbits(regg_energy_fbits)

Add_ReggEnergyTemp (
regg_energyd ,
—xsqN,
regg_energy_temp

b

// regg-energyd <= regg-energy
mydff_beta #(.dff_bits(regg energy_bits))
Dff_ReggEnergyd (
clk ,
reset ,
regg.energy ,
beta ,
regg_energyd

)

// vwe_{mod(N/P—1)} = u(n-D+N/P-1)xe(n-D+N/P—1)
trunc_mult #(
.a_ibits(u_ibits), .a_fbits(u_fbits),
.b_ibits(e_ibits), .b_fbits(e_fbits),
.c-ibits (ue-ibits), .c-fbits(ue_fbits)

)
Mult_UE (

ulmuxout ,
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ed[e.bits —1:0],
ue[ue_bits —1:0]

)

// Buffering the inputs, zin0 and d, is mnecessary for the FSM
mydff #(.dff_bits(x_bits))
Dff BuffX (
clk ,
reset ,
xinQ ,
x[x.maxbits —1:x_maxbits—x_bits |

)5

mydff #(.dff_bits(d_bits))
Dff_BuffD (
clk ,
reset ,
d,
dl
)

// Buffer the output yout too.
mydff #(.dff_bits(y_bits))

Dff_BuffY (
clk ,
reset ,
yout ,
youtl
)
genvar ii;
generate :
for (ii=0; ii<=DN-NdivP—1; ii=ii+1)
begin : reggressor
// tap—delay line containing z(n), z(n—-1), ..., z(n—-D-N+N/P)
mydff #(.dff_bits(x_bits))
Dff_Regressor (
clk,
reset ,
x [x.maxbits—1—ii*x_.bits : x_maxbits—(ii+1)x*
x_bits],
x[x-maxbits~1—(ii+1)xx_bits : x_maxbits—{1i+2)x
x_bits]
)
end
endgenerate
generate

for (ii=0; ii<=NdivP-1; ii=ii+1)

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B. VERILOG SOURCE CODE

begin : hybridmodules
hybrid_mod #(
.x-in-ibits (x_ibits), .x-in_fbits{x-fbits),
.w_ibits(w_ibits), .w_fbits(w_fbits),
.ue_ibits (ue.ibits), .ue_fbits(ue_fbits),
.a_ibits (a_ibits), .a_fbits(a_fbits)

)
HybridMod (
clk ,
reset
x[x_maxbits—1—-ii *(P—1)xx_bits : x_maxbits—ii (P
—1) *x_bits -Pxx_bits],
x[x.maxbits —1-Dxx_bits —ii «(P—1}+x_bits
x_maxbits—Dxx_bits —ii x(P—1)*x_bits ~-Pxx.bits

I

ain[a_maxbits~1-ii+a_bits : a.maxbits—(ii+1)x
a.bits],
ue[ue_maxbits—1-ii*uec_bits : ue_maxbits —(ii+1)x*
ue.bits],
aout[a.maxbits—1-iixa_bits : a.maxbits—(ii+1)x
a_bits]
)
end
endgenerate
generate

for (ii=1; ii<=NdivP-1; ii=ii+1)
begin : serialadder
// ain_{ii—1}(n) = aout_-{ii}(n—-1)
mydff #(.dff.bits(a_bits))
Dff_SerialAdd (

clk ,
reset ,
aout [a_maxbits~1-ii*a_bits : a.maxbits—(ii+1)«
a_.bits],
ain [a.maxbits —1—{ii —1)xa_bits : a_maxbits—iix
a.bits |
)i
end
endgenerate
generate

for (ii=1; ii<=NdivP-1; ii=ii+1)
begin : ue_delay_line
// uwe{ii—1}(n) = ve_{ii}(n—1)
mydff #(.dff_bits(ue_bits))
DIf.UE (
clk ,
reset ,
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ue [ue_maxbits~1-ii*ue_bits : ue_maxbits —(ii+1)x*
ue_bits],
ue[ue_maxbits —1—(ii —1)*ue_bits : ue_maxbits—iis
ue_bits]
)
end
endgenerate
generate

for (ii=0; ii<=D-NdivP; ii=ii+41)
begin : error_delay_line
mydff #(.dff_bits(e.bits))
Dff_Error (
clk ,
reset ,
ed[ed_maxbits—1—ii*e_bits : ed_maxbits—(ii+1)*
e.bits],
ed[ed_-maxbits —1-(ii+1)xe-bits : ed.maxbits—(ii
+2)xc_bits]
)s

end
endgenerate

always @(reset or ul)

begin
if (reset == 1)
ulmuxout=0;
else
ulmuxout=ul;
end
endmodule

hybrid_mod.v

The following source code describes the PE used in the proposed architecture seen in

Fig. 4.4.

/***************************************

This module is the PE containing P taps of the hybrid adaptive FIR
form filter.

Last modified: Nov 25, 2006
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By Raymond Lee

module hybrid_mod (
clk, // clk is the clock

reset , // reset is the synchronous reset signal
x.in , // z_in is a collection of P values of the regressor.
xd.in , // wd_in is o collection of P values of the delayed
regressor.
a.in , // a-in is the input of the serial adder.
ue.in , // we_in s an input u(n—-D+i)xe(n-D+i).
a_out // a.out is the output of the serial adder.
)i
parameter
P=3,
x_in_ibits = 041, x_in_fbits = 7,
w.ibits = 0+1, w_fbits = 7,
a_ibits = 0+1, a_fbits = 15,
ue.ibits = 0+1, ue.fbits = 12,

a_bits = a_ibits + a_fbits ,
x_in_bits = x_in.ibits+x_in._fbits ,
w_bits = w_ibits+w_fbits ,

ue_bits = ue_ibits+ue_fbits,

x.maxbits = Pxx_in_bits ,
a_maxbits = (P+1)xa_bits,
pf-maxbits = Pxa_bits ,
w_maxbits = Pxw_bits

b

input clk;

input reset;

input signed [x_maxbits —1:0] x_.in, xd_in;
input signed [a_bits —1:0] a.in;

input signed [ue_bits —1:0] ue.in;

output signed [a.bits —1:0] a_out;

wire signed [w.maxbits —1:0] w, w.next; //w and w_nezt are a set of P
weights for this iteration and the mnext iteration respectively.

wire signed [pf.maxbits —1:0] pf; //product z_in.xw for filtering

wire signed [a_maxbits —1:0] a; //intermediate wvalues of the serial

addition

wire signed [w._maxbits ~1:0] pw; //product zd_inxmue_in for weight—
update

assign a_out = a[a_maxbits —1:a_maxbits—a_bits];
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assign a[a_bits —1:0] = a.in;

genvar ii;
generate
for (1i=0; ii<=P-1; ii=ii+1)
begin : hybridmod
// pf = xz_in.xw
trunc_mult #(
.a_ibits(x_in_ibits), .a_fbits(x.in-fbits),
.b_ibits(w-ibits), .b_fbits(w_fbits),
.c_ibits{a_ibits), .c_fbits(a.fbits)

Mult_PF (
x.in [x.maxbits—~l-x_in_bitsxil : x.maxbits—
x_in.bitsx(ii+1)],
w[w_maxbits—1-w_bitsxii : w_maxbits—w_bitsx*(ii
+1,
pflpf_maxbits —1-a.bitsxii : pf_maxbits—a_bits *(
ii+1)]

)

// pw = zd.in * uc_in

trunc_mult #(
.a-ibits (x_in_ibits}, .a_fbits(x-in.fbits),
.b_ibits(ue_ibits), .b_fbits(ue_fbits),
.c_ibits(w_ibits), .c.-fbits(w_fbits)

)
Mult PW (
xd.in [x.maxbits~1-x_in_bits*ii : x_maxbits—
x_in_bits*(ii+1)],
ue_in ,
pw|w_maxbits —1-w_bits*ii : w._maxbits—w _bitsx(ii
+1)]

)

//w_next = w + pw

trunc.add #(
.a.ibits (w_ibits), .a_fbits(w_fbits),
_b_ibits (w.ibits), .b_fbits(w_fbits),
.c_ibits (w_ibits), .c_-fbits(w_fbits)

)
AddW (
w([w_maxbits~1-w_bitsxii : w_maxbits—w_bits*(ii
+1)] ?
pw[w_maxbits —1-w_bitsxii : w._maxbits—w_bits«(ii
+1)] k
w_next [ w_maxbits—1-w_bitsxil : w_maxbits—w_bits
w«(1i+1)]
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//serial addition a_ii=a_{ii—I1}+pf-i1
trunc_add #(
.a-ibits(a-ibits), .a_fbits(a-fbits)
.b_ibits(a_ibits), .b_fbits(a_-fbits)
.c_ibits(a_ibits), .c_fbits(a_-fbits)
)
Add_SerialA (
ala-maxbits—l—a_bits*(1i+1) : a_maxbits—a_bits x(
ii42)],
pf[pf-maxbits—1—a_bits*ii : pf_maxbits—a_bits *(
ii+1)],
ala.maxbits—l-a_.bits*(ii) : a.maxbits—a.bits*(ii
+1)]

bl
)

1

mydff #(.dff_bits(w_bits))

DFF W (
clk ,
reset ,
w_next [w.maxbits—1-w_bitsxii : w_maxbits—w_bits
#(ii+1)],
w|w_maxbits—l—w_bits*ii : w_maxbits—w_bits=(1ii
+1)]
)
end
endgenerate
endmodule

trunc_ams.v

The following source code describes two modules, namely trunc_add and trunc_mult,
for handling addition and multiplication arithmetic respectively. Also included is the

trunc_sat module, which handles truncation and saturation.

/*******************************************
This module takes 2 numbers, adds them, then truncates them. If

overflow occurs, the result is saturated. Note that the operands
and sum are signed numbers.

Last modified: Nov 20, 2006
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By Raymond Lee

********************************************/

module trunc_add (
, // a and b are inputs

// ¢ is the final output

— 0 T ®

H

parameter

/xNOTE: 1. xibits includes the sign bit
2. the wordlength of ctemp is calculated under the assumption that
a has a larger wordlength than b.
3. a and b should have the same fractional wordlength x/

a_ibits = 1, a_fbits = 19,
b_ibits = 1, b_fbits 19,
c_ibits = 1, c_fbits = 19,
ctemp.ibits = a_ibits + 1,
ctemp _fbits = a_fbits,

i

a.bits — a.ibits + a_fbits ,
b_bits = b_ibits + b_fbits,
c_-bits = c_ibits + c_fbits ,
ctemp.bits = ctemp.ibits + ctemp_fbits;

input signed [a_bits —1:0] a;
input signed [b._bits —1:0] b;
output signed [c_bits —1:0] c;

reg signed [ctemp_bits —1:0] ctemp; // ctemp is the full precision sum of
a and b

trunc_sat #(
.a_ibits(a_ibits), .a_fbits(a-fbits}),
.b_ibits(b_ibits), .b_fbits(b_fbits),
.c.ibits(c_ibits), .c.fbits(c_fbits),
.ctemp_ibits(ctemp.ibits), .ctemp_fbits(ctemp_fbits)

)

TRUNC.SAT ADDER. (
ctemp ,
c

)3

always @(a or b)
begin

ctemp = a + b;
end
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endmodule

/*******************************************
This module takes 2 numbers, multiplies them, then truncates them.
If overflow occurs, the result is saturated.

Last modified: Nov 19, 2006

By Raymond Lee

module trunc.mult (
, // o and b are inputs

// ¢ is the final output

— O T

b

parameter

/x NOTE: xibits includes the sign bit x/
a.ibits = 2, a_fbits = 6,
b.ibits = 1, b_fbits = 15,
c.ibits = 2, c_fbits = 16,
ctemp.ibits = a_ibits -1 + b_ibits -1 + 1+1,
ctemp.fbits = a_fbits + b_fbits,

a_bits = a_ibits + a_fbits,

b.bits = b_ibits + b_fbits

c.bits = c_ibits + c_fbits,

ctemp_bits = ctemp_ibits + ctemp_fbits;

J/etrunc_msb = ctemp_bits—a_ibits—b_ibits+c_ibits —1;

input signed [a_bits —1:0] a;
input signed [b.bits —1:0] b;
output signed [c_bits —1:0] c;

reg signed [ctemp._bits —1:0] ctemp; // ctemp is the full precision
product of a and b

trunc_sat #(
.a.ibits(a.ibits), .a-fbits(a_fbits),
.b_ibits(b_ibits), .b_fbits(b_fbits),
.c.ibits(c-ibits), .c_fbits(c_fbits),
.ctemp_ibits(ctemp.ibits), .ctemp_fbits{ctemp_fbits)

)

TRUNCSATMULT (
ctemp ,
c
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always @Q(a or b)
begin

ctemp = a * b;
end

endmodule

/*******************************************

This module truncates the input to a specified wordlength. If the input
is larger than the truncated result, then the output is saturated.

Last modified: Nov 20, 2006

By Raymond Lee

module trunc_sat(

ctemp // ctemp is the full precision input

c // ¢ is the truncated/saturated output
parameter

a_ibits = 2, a_fbits = 3,

b.ibits = 2, b_fbits = 3,

c_ibits = 2, c_fbits = 3,

ctemp.ibits = 3, ctemp_fbits = 4,

c.bits = c.ibits + c_fbits,
ctemp_bits = ctemp_ibits + ctemp_fbits;

input signed [ctemp_bits —1:0] ctemp;
output signed [c_bits —1:0] c¢;

reg signed [c_bits —1:0] ¢, ctrunc, csat;

// csat is the saturated output derived from ctemp

// ctrunc is the truncated output derived from ctemp

reg sel; // sel = 1 means overflow will occur after truncation =>
saturate the ouput instead

always @Q(ctemp)
begin
ctrunc = $signed (ctemp|[ctemp_bits—1-ctemp_ibits+c_ibits: O+
ctemp-fbits—c_fbits]);
csat = $signed ({ctemp|ctemp_bits —1], {(c_bits =1) { ctemp]
ctemp_bits —1}} }1});
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sel = ( "(&ctemp[ctemp_bits —2:ctemp_bits—l-ctemp_ibits+c_ibits])&(
ctemp|ctemp_bits —1}) ) | ( (]ctemp|ctemp_bits —2:ctemp_bits—1-
ctemp.ibits+c_ibits]) &("ctemp{ctemp_bits —1]) );

// MUX operations
4 ¢ = $signed ((({ c-bits{sel}})&csat)| (({c-bits{ sel}})&ctrunc));

endmodule

mydff.v

The following source code describes two D flip-flops: the first has a synchronous reset

to zero and the second has synchronous reset to beta.

This module is a D flip—flop with a reset.

Last modified: Nov 25, 2006

By Raymond Lee

module mydff(
clk ,
reset ,
D7
Q
)5

parameter dff_bits = 8;

input clk;

input reset;

input [dff_bits —1:0] D;
output {dff_bits —1:0] Q;

reg [dff_bits —1:0} Q;

always @(posedge clk)
begin
if (reset = 1)
Q<=0;
else
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Q<=D;

end
endmodule

/***************************************

This module is a D flip—flop that sets wvalue to beta upon reset.

‘

Last modified: Nov 25, 2006

By Raymond Lee
******************************************/
module mydff_beta(

clk ,

reset ,

D7

beta ,

Q

)s

parameter dff_bits = 8;
input clk;

input reset;

input [dff_bits —1:0] D, beta;
output [dff_bits —1:0] Q;

reg [dff_bits —1:0] Q;

always @(posedge clk)

begin
if (reset = 1)
Q<=beta;
else
Q<=D;
end
endmodule
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