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ABSTRACT

Due to the increasing use of aluminum silicon alloys in automotive in­

dustries for reduced weight in vehicles and decreased emission of pollutants for 

improvements in fuel economy, the fracture characteristics and wear resistance of 

aluminum alloys have become of great interest. Hypereutectic Al-Si alloys have the 

potential to eliminate cast iron liners in engine blocks. One of the challenges for 

casting difficulties of hypereutectic Al-Si Alloys is coarse primary silicon particles 

size, irregular shape and uneven distribution. Deformation of surface and subsur­

face layers and also fracture of subsurface layer in this nano-composite structure 

are the determining factors of the wear resistance properties of the material. The 

major concern of this work is focused on developing a numerical model of fracture 

(crack propagation) in aluminum-silicon nano-composites. More particularly, an 

extended finite element approach couple with the level set method is used.
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CHAPTER I 

INTRODUCTION

Aluminium alloys have the potential to reduce vehicles weight and decrease emis­

sion of pollutants by improvements in fuel economy. However, no aluminum alloy 

has been developed or identified that provides the required combination of cast­

ing, machining and wear resistance properties for manufacturing engine block. 

Engine manufacturers have tended to select castable and machinable alloys and 

modify the surfaces of the cylinder walls to obtain the necessary wear resistance. 

Thus, when current cylinder blocks are cast of alloys such as AA 319 or AA 356 

they require cylinder liners (cast iron, metal matrix composite, AA390) or surface 

treatment (plating, coating) to provide wear resistance during operation. Cast 

iron liners have been placed like cores in the casting mold or inserted in the ma­

chined cylinder bores. Other wear resistant liner compositions have also been used. 

As an alternative to cylinder liners, wear resistant coatings have been applied to 

the cylinder walls of the cast and machined block. Each of these modifications to 

the block increases the cost of the product. In addition, engine blocks with cast 

iron liners suffer because of the added weight, and relatively high thermal stresses 

due to different thermal conductivity and thermal expansion of the two mate­

rials. Therefore there still remains a need for an aluminum alloy that provides 

all of the above properties for manufacturing engine block and wear properties. 

The requirements for an aluminum alloy intended for mass production of an all- 

aluminum cylinder block for an automotive engine are very demanding. The alloy 

must require minimal post casting operations, such as heat-treatment, machining 

and assembly.

Germany is the leading producer of the all-aluminum performance blocks (by 

Porsche, Daimler-Benz and BMW). Conversely, US automotive manufacturers are 

still without an all-aluminum block in production. This state of affairs may change 

because the Japanese automotive manufacturers have a stated goal of decreasing 

the weight of the automobile by 40%. Thus, the cast iron block and the aluminum

1
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block with cast iron liners, both will be unacceptable in the relatively near future 

for automakers that are interested in gaining or maintaining market share. Us­

age of all-aluminum engine blocks provides performance-based benefits including 

reduced weight, improve thermal conductivity and greater rigidity. The thermal 

conductivity of hypereutectic Al-Si alloys is nearly 400% higher than that of cast 

iron. This high thermal conductivity is one of the most useful and important prop­

erties. The thermal and physical properties of the copper-free aluminum silicon 

hypereutectic alloys are closely related to and dependent on the silicon content of 

the alloy. For example, with increasing silicon content the coefficient of thermal 

expansion decreases where as the modules of elasticity increases. Finally, wear 

resistance is provided by the volume fraction of primary silicon particles in the 

microstructure. There is nearly a doubling of the wear resistance in going from 

the 16% silicon content to the 20% silicon content because the volume fraction of 

primary silicon doubles with this composition [12].

One of the challenges for casting difficulties of hypereutectic Al-Si Alloys is 

coarse primary silicon particles size, irregular shape and uneven distribution. The 

development of an optimization module integrated with simulation codes will fa­

cilitate the fast set up of the most suitable casting parameters while additionally 

reducing internal defects. By using numerical optimization, expensive and time 

consuming ’’trial and error” iterations are reduced to the minimum, or even elim­

inated.

Computer simulation of fracture processes remains a challenge for many indus­

trial modelling problems. The basic question is how to incorporate the disconti­

nuity of the displacement field into the finite element model. One straightforward 

method is to enforce mesh lines along the crack, i.e., to create a new mesh at each 

propagation step as the crack propagates with time. In standard finite element 

method, the non-smooth displacement near the crack tip is captured by refining 

the mesh locally. The number of degrees of freedom may drastically increase, es­

pecially in three dimensional applications. Moreover the incremental computation

2
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of a crack growth needs frequent remeshings. Reprocessing the solution on the 

updated mesh is not only a costly operation but also it may have a troublesome 

impact on the quality of results. Also in standard finite-element analysis the rep­

resentation of discontinuities in the displacement and/or strain fields requires the 

alignment of mesh boundaries to the discontinuity line or surface. The extended 

finite-element method (XPEM) enriches the standard finite-element basis through 

a local partition of unity (PU), Babuska and Melenk [22]. This was first applied 

to fracture problems by Belytschko et al. [3], where the asymptotic nearfield for a 

crack was incorporated by a local PU and the discontinuity in this field was used 

to represent the crack discontinuity independent of the mesh.

When multiple crack segments are needed to be enriched with the near tip 

fields, a mapping algorithm introduced by Fleming et al. [14] is used to align the 

discontinuity with the crack geometry. They also proved that the use of discontin­

uous displacements along the crack produces a solution with zero traction along 

the crack faces. Moes et al. [23] introduced a much more elegant and straight­

forward procedure to introduce a discontinuous field across the crack faces away 

from the crack tip by adapting the generalized Heaviside function, and developed 

simple rules for the introduction of the discontinuous and crack tip enrichments. 

Later, Daux et al. [8] introduced the junction function concept to account for mul­

tiple branched cracks and named their method the extended finite element method 

(XFEM). They have employed this method for modelling complicated geometries 

such as multiple branched cracks, voids and cracks emanating from holes without 

the need for the geometric entities to be meshed. Sukumar et al. [32] studied 

cracks in three dimensions with the XFEM. Dolbow et al. [10] studied 2D crack 

growth under three different interfacial constitutive laws on the crack faces: per­

fect contact and unilateral contact with or without friction [11]. In XFEM, a 

standard finite element mesh for the problem is first created without accounting 

for the geometric entity. The presence of cracks, voids or inhomogeneities is then 

represented independently of the mesh by enriching the standard displacement

3
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approximation with additional functions. For crack modelling, both discontinu­

ous displacement fields along the crack faces and the leading singular crack tip 

asymptotic displacement fields are added to the displacement based finite element 

approximation through the PU method. The additional coefficients at each en­

riched node are independent. In addition, XFEM provides a seamless means to 

use higher order elements or special finite elements without significant changes in 

the formulation. The XFEM will also improve the accuracy in problems where 

some aspects of the functional behavior of the solution field is known a priori and 

relevant enrichment functions can then be used.

In order to model complex crack configurations, more powerful and convenient 

techniques for representing internal discontinuities are required. The level set 

method (LSM) developed by Osher and Sethian [25] [29] for modelling the motion 

of interfaces is very promising. It represents the interface as the zero level set of 

a function of one higher dimension. With the use of the LSM, the motion of the 

interface is computed on a fixed mesh. The LSM handles topology changes of the 

interface naturally, and extending it to higher dimensions is easy. The geometric 

properties of the interface can also be obtained from the level set function. By 

coupling the LSM with the XFEM, Stolarska et al. [31] studied the growth of a 

fatigue crack; Belytschko et al. [5] studied several frictionless contact problems 

and provided the level set functions of discontinuities in a function, in a specific 

component of a function as well as in its derivatives.

Iarve [17] replaced the Heaviside step function with a higher order polynomial 

B-spline shape function approximation. Stazi et al. [30] investigated quadratic 

background elements for linear elastic fracture mechanics able to represent a crack 

with curvature. Fan et al. [13] enriched the crack tip node with singular as well as 

higher order terms of the crack tip asymptotic field. The accuracy of the directly 

determined stress intensity factors (SIFs) can be significantly improved. How­

ever, for general mixed mode cracks, the SIFs are still not very accurate, since

4
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the enrichment approximation adjacent to the crack tip cannot reduce to the ac­

tual crack tip field. Xiao and Karihaloo [34], and Liu et al. [21] ensured that 

the enriched approximation is equivalent to the crack tip asymptotic field. They 

obtained SIFs directly for homogeneous as well as interfacial cracks. Belytschko 

et al. [4] developed a new method for handling a discontinuity that ends within 

an element, and showed how to switch from a continuum description to a discrete 

discontinuity for rate-independent materials when the governing partial differen­

tial equation for momentum loses hyperbolicity (i.e. the differential equations of 

equilibrium lose ellipticity). The loss of hyperbolicity is tracked enabling both 

the crack speed and crack direction to be determined for a given material model. 

Ventura et al. [33] described the level set in two dimensions by the sign of the 

level set function and the components of the closest point projection to the sur­

face. The update of the level set was constructed by geometric formulas. Chessa 

and Belytschko [6] introduced arbitrary discontinuities in space-time using a local 

enrichment to discontinuities along a moving hyper-surface. They showed that 

by capturing the discontinuity in time as well as space the results are improved 

in comparison with capturing the discontinuity in space alone. For stationary 

and growing cracks, Lee et al. [19] modelled the near-tip field by superimposing 

quarter point elements on an overlaid mesh while the rest of the discontinuity was 

implicitly described by a step function.

Moes et al. [24] and Gravouil et al. [15] studied non-planar 3D crack growth. 

Chopp and Sukumar [7] studied propagation of multiple coplanar cracks. Liang 

et al. [20] studied evolving crack patterns in thin films. Many works have also 

appeared on the cohesive crack model, as reviewed by de Borst et al. [9].

Rubinstein [28] has shown that relatively small errors in the determination of 

the crack path deflection angle can lead to a significant cumulative deviation of 

the crack path over a finite crack length. Therefore, a reliable analysis of crack 

propagation requires not only a suitable criterion of crack growth but also accurate 

evaluation of the crack tip stress field.

5
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Recently, Bchet et al. [2] and Laborde et al. [18] introduced singular mappings 

for numerical integration of the singularity in r- or radial direction.

6
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CH APTER II 

STANDARD FINITE ELEM ENT M ETHOD  

2.1 W hat is the Finite Element M ethod?

The finite element method is a numerical technique for obtaining approximate 

solutions to the partial differential equations that arise in scientific and engineering 

applications.

2.2 How the Finite Element M ethod works?

In a continuum problem of any dimension, the field variable (whether it is pressure, 

temperature, displacement, stress, or some other quantity) possesses infinitely 

many values because it is a function of each generic point in the body or solution 

region. Consequently, the problem is one with an infinite number of unknowns. 

The finite element discretization procedures reduce the problem to one of a finite 

number of unknowns by dividing the solution region into elements and by ex­

pressing the unknown field variable in terms of assumed approximating functions 

within each element. The approximating functions (sometimes called interpola­

tion functions) are defined in terms of the values of the field variables at specified 

points called nodes or nodal points. Nodes usually lie on the element boundaries 

where adjacent elements are connected. In addition to boundary nodes, an ele­

ment may also have a few interior nodes. The nodal values of the field variable 

and the interpolation functions for the elements completely define the behavior of 

the field variable within the elements. For the finite element representation of a 

problem the nodal values of the field variable become the unknowns. Once these 

unknowns are found, the interpolation functions define the field variable through­

out the assemblage of elements. Clearly, the nature of the solution and the degree 

of approximation depend not only on the size and number of the elements used but 

also on the interpolation functions selected. We cannot choose functions arbitrar­

ily, because certain compatibility conditions should be satisfied. Often functions

7
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are chosen so that the field variable or its derivatives are continuous across ad­

joining element boundaries. The important feature of the finite element method 

is the ability to formulate solutions for individual elements before putting them 

together to represent the entire problem. This means, for example, that if we are 

treating a problem in stress analysis, we find the force-displacement or stiffness 

characteristics of each individual element and then assemble the elements to find 

the stiffness of the whole structure. In essence, a complex problem reduces to 

considering a series of greatly simplified problems.

Another advantage of the finite element method is the variety of ways in which 

one can formulate the properties of individual elements. There are basically three 

different approaches. The first approach to obtaining element properties is called 

the direct approach because its origin is traceable to the direct stiffness method of 

structural analysis. However the direct approach can be used only for relatively 

simple problems.

Element properties obtained by the direct approach can also be determined 

by the variational approach. The variational approach relies on the calculus of 

variations and involves extremizing a functional. For problems in solid mechanics 

the functional turns out to be the potential energy, the complementary energy, 

or some variant of these. Knowledge of the variational approach is necessary to 

work beyond the introductory level and to extend the finite element method to a 

wide variety of engineering problems.

A third and even more versatile approach to deriving element properties is the 

weighted residuals approach. The weighted residuals approach begins with the 

governing equations of the problem and proceeds without relying on a variational 

statement. This approach is advantageous because it thereby becomes possible 

to extend the finite element method to problems where no functional is available. 

The method of weighted residuals is widely used to derive element properties for 

nonstructural applications such as heat transfer and fluid mechanics.

Regardless of the approach used to find the element properties, the solution of

8
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a continuum problem by the finite element method always follows an orderly step- 

by-step process. To summarize in general terms how the finite element method 

works we will succinctly list these steps now.

1. Discretize the Continuum: The first step is to divide the continuum or 

solution region into elements. A variety of element shapes may be used, and 

different element shapes may be employed in the same solution region. Indeed, 

when analyzing an elastic structure that has different types of components such 

as plates and beams, it is not only desirable sometimes but also necessary to use 

different elements in the same solution. Although the number and the type of 

elements in a given problem are matters of engineering judgment, the analyst can 

rely on the experience of others for guidelines.

2. Select Interpolation Functions: The next step is to assign nodes to each 

element and then choose the interpolation function to represent the variation of 

the field variable over the element. The field variable may be a scalar, a vector, or a 

higher-order tensor. Often, polynomials axe selected as interpolation functions for 

the field variable because they are easy to integrate and differentiate. The degree 

of the polynomial chosen depends on degree of approximation, the nature and 

number of unknowns at each node, and certain continuity requirements imposed 

at the nodes and along the element boundaries. The magnitude of the field variable 

as well as the magnitude of its derivatives may be the unknowns at the nodes.

3. Find the Element Properties: Once the finite element model has been 

established (that is, once the elements and their interpolation functions have been 

selected), we are ready to determine the matrix equations expressing the properties 

of the individual elements. For this task we may use one of the three approaches 

just mentioned: the direct approach, the variational approach, or the weighted 

residuals approach.

4. Assemble the Element Properties to Obtain the System Equations. To 

find the properties of the overall system modeled by the network of elements 

we must assemble all the element properties. In other words, we combine the

9
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matrix equations expressing the behavior of the elements and form the matrix 

equations expressing the behavior of the entire system. The matrix equations for 

the system have the same form as the equations for an individual element except 

that they contain many more terms because they include all nodes. The basis 

for the assembly procedure stems from the fact that at a node, where elements 

are interconnected, the value of the field variable is the same for each element 

sharing that node. A unique feature of the finite element method is that the 

system equations are generated by assembly of the individual element equations.

5. Impose the Boundary Conditions: Before the system equations are ready 

for solution they must be modified to account for the boundary conditions of the 

problem. At this stage we impose known nodal values of the dependent variables 

Or nodal loads.

6. Solve the System Equations: The assembly process gives a set of simultane­

ous equations that we solve to obtain the unknown nodal values of the problem. 

If the problem describes steady or equilibrium behavior, then we must solve a set 

of linear or nonlinear algebraic equations. If the problem is unsteady, the nodal 

unknowns are a function of time, and we must solve a set of linear or nonlinear 

ordinary differential equations.

7. Make Additional Computations If Desired: Many times we use the solution 

of the system equations to calculate other important parameters. For example, in 

a structural problem usually the nodal unknowns are displacement components. 

From these displacements we calculate element strains and stresses. Similarly, in 

a heat-conduction problem the nodal unknowns are temperatures, and from these 

we calculate element heat fluxes.

2.3 Basic Steps for Solving a Problem

There are several basic steps to solving a problem by the FEM method. These 

steps are:

1. Formulation of the problem into a differential or integral equation.

2. Development of the weak formulation of the problem.
10
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3. Finite element approximation of the domain and variables.

4. Assembling the stiffness matrix and load vector and solving the problem.

5. Post processing (analysis of the results).

2.3.1 S teady S ta te  H eat C onduction in a  B ar

We will proceed to describe the steps in the finite element method by the aid of 

an example. Consider the problem of heat conduction through a bar.

2.3.2 S tep  1: Form ulation of th e  problem

The problem under consideration is that of the steady state flow of heat through 

a bar. Figure 2.1 shows how heat flows through an element of this bar. Balancing 

the heat entering and exiting this element gives

q(x) + f(x )A(x) = q(x + A x) ,  (2.1)

where q is the heat flux along the bar and f{x)  is the heat flow through the lateral 

surfaces per unit length of the bar. Reorganizing and taking the limit as Ax goes 

to zero yields

! - / ( . )  (2.2) 

Introducing Fouriers law of heat conduction (q = —k ^ )  into this equation results

f(x)
f(x)

//

■H I 
Ax

tN \
 ̂ q(x)— - |  |— ►qfx+Ax)

'  b Ax

Figure  2.1: Steady state thermal conduction in a bar

in
rPf)

~ k d £  = /(X)’ (2‘3)

where 9 is the temperature and k is the coefficient of thermal conduction.

Since the problem is a second order ordinary differential equation one can

prescribe two conditions. We will look at solving the above differential equation

subject to any one of the following boundary conditions:
11
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0 — 0a at x = a and 0 =  0b at x = b,

0 — Qa at x  =  o and q — —k ^  =  qb at x  =  b,

q =  — =  qa at x  = a and 0 =  0b at x  — 6, or

q = —k ^  = qa at x  =  a and q =  —k ^  =  % at x

2.3.3 Step 2: Form ulation o f the weak form

The solution to this problem is a temperature field which satisfies the differential 

equation
J2a

(2.4)

at every point in the bar. We will relax this requirement by replacing this equation 

by

—  f  kO^rda; =  f  0f(x)dx,  (2.5)
J r J r

where R  is any region of the bar and 0 is a test function. If one requires that 

this equation hold for all possible test functions 0, it will be possible to get the 

original differential equation from this integral equation. Any point in the bar 

can be isolated by selecting a test function which is only positive and is nonzero 

only in a small region around that point. The aim is not to require the integral 

equation to hold for all possible 0 functions, but to select a set of test functions 

and require the integral equality to hold for this set of functions. Hence, we do not 

require the differential equation to be exactly satisfied at all points, but require 

the temperature field to only satisfy the integral equation for a select number of 

test functions (we have weakened the original equation).

We will now use integration by parts to get the weak form of the problem as

~ lkŜ ]" ‘ +l k^ = l Sflx)ix' (2-6>

subject to the appropriate boundary conditions. The application of integration by 

parts also introduces a weakening of the problem since we are no longer required 

to have temperature fields which have a second derivative. It is now only required 

that the temperature field have a first derivative as can be seen from equation.

12
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2.3.4 S tep 3: F in ite  elem ent approxim ation

We will use two node line elements to approximate both the temperature field 

and the test functions. The length of the bar will be partitioned into ne elements 

as shown in Figure 2.2. Each element has an element number and one node at 

each end. Nodes are given two numbers. The global node number is one which 

is unique for each node and which distinguishes it from all other nodes. For each 

element there is also a local numbering system. For a two node element the local 

nodes are distinguished in the element by designating a local node number of 1 

to one node and 2 to the other node.

The temperature and the test function will be approximated over each element

by

et
0 = ee1N1(x) + 0tN2{x) = N i i x )  N 2 ( x )

and

0 = OlNtix) +  0e2N2(x) =
r  -I N i ( x )

■ N 2 ( x )

(2.7)

(2 .8)

where 0® is the value of 0 at local node i, 0? is the value of 0 at local node i, and 

©  (§) ®  ©  elem ent number

1 2 3 4  n nodal number
0

3 4
©>

3 4 3

F igure 2.2: Approximation of 0 and 0 by the use of shape functions.

N{(x) are known functions of x. The A/j are known as shape functions. The shape 

functions are selected such that Ni =  1 at local node 1, Ni =  0 at local node 2, 

N2 = 0 at local node 1, N2 — 1 at local node 2. For a two node line element of 

length le and local coordinate s as shown in Figure 2.3, the shape functions will

13
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be

and

Ni =  1

N2 = y
►ft

(2.9)

(2 .10)

The shape functions are selected such that the sum of the shape functions at each 

point will add up to unity. It must be noted that the shape functions are different 

for different elements, even though this is not made explicit in the notation.

The two integrals in the weak formulation of the problem, given in equation 

(2.6), can each be written as a sum of integrals, each integral being over one 

element. This can be written as

/J  a

6 dOdQ
„ dxdx ^—f j n  " dxdxa e—l  “ e

^  r ,d0d0 ,> I k-——dx, (2 .11)

and
r b  n e  p

/  0f(x)dx = ^ 2  /  0f(x)dx,  (2.12)
a e=l

where is the domain of element number e.

Over each element one can use the above approximations for the temperature

and test function to get

rlc dfitNi +  %N2] djeiNt +  0%N2]/ * * * * _ / % «
Jn dx dx J0 ds ds

-ds

and

f  0f(x)dx = / V i ^ i  +  0L2N2}f(x)ds, 
Jq Jo

(2.13)

(2.14)

since x = Xi + s, where x\ is the location of the first node in the element. Since 

0®, 02 , Q\, and 6% are constants, one can write

and

(W _ d[6\N1 + 62N2] 
dx ds

<W _  d[0lNi + 0IN2] 
dx ds

14

0\ e\
dJV,
da

dNi
ds

(2.15)

dNi dN'j 
ds ds

el
(2.16)
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/
/
/
/

✓ s p  <D q
/ / 1

I—
2

X

global node number 

local node number

Figure 2.3: Relation between local and global coordinates.

Substitution of these relations into the integrals of equations (2.13) and (2.14) 

gives

^  r i 0? 
e\ ez ' s J"  '

, dO d,Q , k — ~—ax =  k 
ax dx I "Jo d N i

ds

dN i dN i
ds ds

ds

and
r -] We Ni

J Jo n 2
f(x)ds.

These equations can be written as

m m .

and

where

f  6f(x )dx  = [de]T[fe], 
Jsi

0f
m  =

[6e

[Ke} = K l x

1

* (d N ,  \2  
v ds >

dN, dNi  
ds ds

K 21 1

h d N i  dN i 
ds ds

( dN i  \2  
V ds >

ds,

[/e] =
f l 1 £ ... 

, 
1

/ I Jo n 2
f(x)ds.

(2.17)

(2.18)

(2.19)

(2 .20)

(2 .21)

(2 .22)

(2.23)

(2.24)

The matrix [K e] is known as the element stiffness matrix and the matrix [ /e] is

known as the element load vector. For the shape functions in (2.9) and (2.10) we
15
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have ^  and ^  ^  . Therefore, the element stiffness matrix can be

written as

m  = k f '
Jo

1 1 k k
if ds = le le

1 1 _k_ k_
^ . le le

(2.25)

To evaluate the element load vector one needs to know f{x).  We will later calculate 

this for a particular example. The weak form of the problem can now be written 

as
ne ne

IV — + E i v m r ] = E ^ n n  (2.26)
e = l  e = l

where Fouriers law is used to replace the derivative of temperature in the first 

term.

2.3.5 Step 4: A ssem bling the stiffness m atrix and load vector

The next step is to organize the problem in the form of a set of algebraic equations. 

Consider the example of a problem with two elements and three nodes as shown 

in Figure 2.4. The two summations in equation (2.26) can be written as

e—1

r  -i
K ln  * } >

1

r  -I

1
0

.2

.
S

f 9\
s; 9 3 + Bj B\

K \ .  K

1
to

n
-

1

■

•

01 02 03

K l  K h 011 "12 

K h  K l2 + K l  K f2 

0 K l  K%2

and

E i V i n  =
e = l

#»1
6\ 0q

f l
+ 9\ 91

A ■

01

02 

03

f t

/I

(2.27)

0\ 02 03

n 
n+n

f i

(2.28)

Therefore, for this problem the weak formulation given in equation (2.26) can be 

put in the form

[03,3 ~  01,1} + [9}t [K] [9] = [9] [/], (2.29)
16
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0

•---------------- '

1

.....................•------------- -—*--------------- a
2 3 4 5

1 2 S 

1

4 5

1 2 3

1

4 5

1 2 3 4 5

•--------------- >--------------- -a---------------
1 2 3 4 5

F igure 2.4: Test functions used to get the final form of the equation.

where [if] is known as the global stiffness matrix, [/] is known as the global load 

vector, and

0i

[&} =

[0] =

(2.30)

(2.31)

m

K n K n  ifis ifx1! i f  12 0

K2l i f22 if23 — if2! i f ^  +  ifx2! K \2 (2.32)

Kzi i f 32 if33 0 if22! if222.

f l f l

[/] = h = n + f i > (2.33)

h f l

17
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To illustrate the way in which one arrives at the final set of equations we will 

write the expanded form of equation (2.29) in the form

K n  K n  K 13 01

[#3g3 — # lg l]  + 01 02 03 K 21 K 22 K 23 02

1
CO$£

1 03

0\ 02 03 (2.34)

The test functions 0 are arbitrary functions which we will select in the manner 

shown in Figure 2.4. Three test functions are selected since we will have three 

unknowns in this problem ( 0i, 02, 03; <?i, 02 , 03 ; 0i, 02, q2\ or qi, 02, (fe)- Each 

test function provides one algebraic equation for the unknowns. As can be seen 

from Figure 2.4, the first test function has 0\ =  1, 02 =  0 , and 03 =  0. The 

second test function has 0i — 0, 02 =  1 , and 0z =  0. The third test function has 

0i — 0, 02 = 0 , and 63 — 1. The following three equations are obtained from the 

substitution of the selected test functions into equation (2.34).

—q \ +  K n 0 i  +  K i2 0 2  +  K i3 0 3  =  f l y

K 2\0 \ +  K>2202 +  K 2303 =  /2)

Q3 +  ^3\0\ +  Kz202 +  K 3303 = / 3, (2.35)

These equations can now be solved for the three unknowns. If qi and q3 are 

specified, then this system can be written as

K n  K\2 K n

K 21 K 22 K 23 

K 31 K 32 K 33

01 f i + Q i

02 = f2

03 1
421-s?

1

(2.36)

This would be the problem which one would solve if this was a well posed problem. 

It turns out that this particular set of boundary values are not proper. Since the 

temperature is not fixed at any point in the bar, the temperature profile can slide 

up and down. An examination of the stiffness matrix shows that its determinant 

is zero (i.e., the system is singular).

18
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If &i and 03 are specified, then the middle equation can be used to find 02> and 

the first and last equation are used to find the heat flux at the two ends. The, 

mixed type boundary conditions can also be solved in a similar manner.

Before we proceed it is important to state that in practice the boundary con­

ditions are not imposed as was presented above. Theoretically, if we have known 

values of temperature at the boundary we should eliminated these known values 

from the set of unknowns and introduce the unknown heat fluxes in the boundary 

term into the list of unknowns. To avoid this complex procedure, the penalty 

method is used for imposing the temperature boundary. This method modifies 

the stiffness matrix and load vector to fix the value of temperature to a given value 

at a boundary node. The method is based on the fact that for any boundary node 

i there will be an equation

KaOi +  otherterms = fa. (2.37)

To impose the condition 0j =  9. one can add a term pKuOi to the left hand side 

of the equation and the term pKu9 to the right hand side of the equation to get

KaOi + pKuOi +  otherterms = fa + pKu§ (2.38)

where p  is a large number. After dividing by pKti one gets

$i . otherterms fa -— +  9, -|----------------------   +  9
P pKu pKu ^

All term in this equation become small accept the two newly added ones. There­

fore, the equation will become dominated by the equation 9i =  9 and the other 

terms become unimportant. Since the method eliminates the importance of any 

other terms entering this equation, it will not be necessary to introduce the un­

known heat flux into the list of unknowns.

In short, to impose a temperature boundary condition at global node i one 

can multiply Ku in the stiffness matrix by (1 +p) (i.e., add pKu to Ku), and add 

pKu9 to fa. To impose a heat flux boundary condition at global node j  one adds 

q to fa, where q is a heat flux directed into the bar.

19
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CH APTER III 

XFEM  A N D  LEVEL SET  

3.1 Extended Finite Element M ethod

This section reviews the basics of the extended Finite Element Method applied 

to crack growth problems. The extended Finite Element Method is a Partition 

of Unity Method. Melenk and BabuSka [22] and Babuska and Melenk [1] treat in 

detail the mathematical foundations of Partition of Unity Finite Element Methods.

The difficulty in modelling cracks using the standard finite element method 

is that the discretization (mesh) has to conform to the crack faces in order to 

model the discontinuity associated with the presence of the crack. Here again, 

the notion of local approximation can be exploited. By adding a discontinuous 

function across the crack faces to the displacement approximation space, it enable 

the finite element method to model the discontinuity without needing to conform 

the discretization to the discontinuity. This incorporation of the asymptotic fields 

of linear elastic fracture mechanics as well as a discontinuous function in a standard 

finite element approximation in this fashion was first used in Moes et al. [23] and 

the associated finite element method was coined the extended Finite Element 

Method (X-FEM). Belytschko et al. [5] explain how the X-FEM may be used to 

introduce arbitrary discontinuities in finite elements. Since its introduction, the 

eXtended Finite Element Method has been used for a variety of fracture mechanics 

problems including non-planar crack growth in three dimensions, cohesive crack 

growth, and dynamic crack growth.

3.1.1 E xtended  finite elem ent approxim ation

Consider a point x  that lies inside a finite element e. Denote the element’s nodal 

set as J\fe =  {«i, n2, • • • , nme}, where me is the number of nodes of element e. The 

enriched displacement approximation for a vector-valued function uh : 9^ —► 9^

20
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assumes the form

u l(x ) =  ^ 2  Nj (x)uj +  ^ 2  Nj(x)£{x)aj
I,n[€fSe J ,n j€Afs

(3.1)

where the nodal set M 9 is the set of nodes whose support is intersected by the 

domain Q,g associated with a geometric entity such as a hole, crack surface, or 

crack front and M  is the set of nodes that are not enriched. Mathematically,

M a =  {n j : n j  € N e\u)j fl Clg ^  0} (3.2)

In the above equation, u>j =  supp(nj) is the support of the nodal shape function 

Nj(x), which consists of the union of all elements with n j  as one of its vertices; 

and is the domain associated with a geometric entity such as a hole, crack 

surface, or crack front. The choice of the function 8 : x  >-+ £(x) depends on the 

geometric entity under consideration.

As an alternative to the approximation (3.1) above, the approximation

«*(*) =  5 2  N /(x)u /+  ^ 2  N j ( x ) ( £ { x )  -  £{xj))aj  (3.3)
I,ni€Af J,nj€Af9

provides the enriched displacement function uh with the nice property that uj are 

the nodal displacements.

3.1.2 D iscretized  equilibrium  equations

In the extended Finite Element Method, the additional unknowns aj  associated 

with the enrichment functions simply augment the conventional unknown dis­

placement vector u and are solved for in the same manner:

K.u  =  / '•ext
/ ‘ext  

u

/ ext 
a

(3.4)
Ifuu Ifua W

Ifau Ifafl a

Note that the extended finite element equations are identical to the standard finite 

element equations with the additional unknowns a and the additional enrichment 

arrays K aa and K ua =  Kau. The size of the stiffness matrix is N totai = Ne +  Nenr, 

it is symmetric, positive definite, sparse and banded - since enrichment is local.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The implementation of the eXtended Finite Element Method is thus very closely 

related to that of the finite element method. Using the definition of the bilinear 

form for linear elasticity,

(3.5)
(u, v) i-> B(u,v) = f n (Vau)C(Vsv)dfl

where 7i and y  are Hilbert spaces of square integrable functions and Vs =  |(V  +  

VT) is the symmetric gradient operator, C is the fourth order elasticity tensor. 

The stiffness matrix K  can also be written

V/, J  €  ||1, • • • , Ntotal] : K u  = B(Nj, N j )  =  f  (V N j)C (V N j)dn  =  [  BjCBjdtt
Jn  Jn

(3.6)

where, for an element e, with Ne standard degrees of freedom and total number 

of degrees of freedom Ntotai — Ne +  Nenr, the shape function vector N  is the 

enriched version of its finite element counterpart N f b m  = N j .  In the following, 

the discussion is restricted to three-node triangular elements to fix ideas but is 

easily generalized to other linear and higher-order elements. Assuming all the 

three nodes in the element are enriched with the local enrichment function E , and 

letting Ni  be their associated shape functions, N  can be written

N  — [N f e m > N e n r i c h e d ] =  [[Ai, N i ,  IV3], [ £ N i , £ N 2, £A3]] (3.7)

where the shape functions Ni and the enrichment function, £, are functions of the 

point x  =  (x, y) € 5ft2 in the plane at which they are evaluated. The discretized 

gradient of the extended shape functions is written

B  =  \[Bfem], [ B enriched ] ]

B  =

(5A0,* 0 (£N2)tX 0 (£N3),x 0

B f e m  0 (S N ^ y  0 (£N2)>y 0 (£N3)ty | (3.8)

(ENjly  (£A0,X (SN2),y (£N2)tX (£N3),y (£N3),X

The mentioned before definition of the discretized gradient operator B  is easily

extended to the case where more than one enrichment function is used for each
22
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node in the element. Also note that for an element which is not enriched, B  
degenerates to the standard finite element discretized gradient operator B f e m -
3.1.3 Level set rep resen ta tion  of a  crack in 2D

For more information about Level Set, see next section.

Consider a single crack in two dimensions, and let Tc be the crack interior 

(crack faces) and (x,)i<,<2 the crack tips. First, the definition of the signed- 

distance function 0 to the curve Tc

min^gr,. ||x — arc|| =  d(x, x*), i f {x  — x*).e2 > 0 

— min^gFc Ik ~  ^cll =  —d(x, x*), otherwise
<f>(x) = (3.9)

^< 0  0 0

Crack Interior

<f>< 0

(a) Definition of the two level set functions representing the crack in 2D

W>0

(b) Nodal enrichment

Figure 3.1: Nodal enrichment for a crack in 2D defined by two level set functions 

where d(x, x*) is the usual Euclidian distance on 5ft2, x* the closest point to x

on the crack Tc and xc a point on r c. The function <j> is schematically represented
23
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in Figure 3.1.

While the function </> suffices to describe a closed or unbounded contour in a 

two-dimensional space, additional information is required to describe the geometry 

of an open segment in a two-dimensional space (Stolarska et al., [31]). To describe 

the location of each crack tip i additional functions ipi are introduced. These 

functions are defined by the signed distance function to the line going through the 

tip and normal to the crack, as shown in Figure 3.1. Mathematically:

ipi(x) = (x — Xi).ei (3.10)

To avoid using a separate function ipi for each tip, it is convenient to use the 

function ip defined by ip =  maXiipi (Stolarska et al., [31]). Figure 3.1 illustrates 

the use of both level set functions <p and ip to define the geometry of a line crack 

in 2D.

The crack is the part of the zero level set of the signed-distance to the crack, 

(p, for which ip < 0. The crack therefore is the set of points

r c =  {x  € 3?d|«/>(a;) =  0 and ip{x) <  0} (3-11)

3.1.4 Definition and selection  o f the enriched nodes

The crack is modelled by enriching the nodes whose nodal shape function support 

intersects the interior of the crack by the discontinuous function H. The nodes 

whose nodal shape function support contains the crack tips are enriched by the 

two-dimensional asymptotic crack-tip fields. The level set description of cracks 

permits a natural selection of the enriched nodes. Also, the values of the functions 

<p and ip are computed at the nodes of the fixed mesh (the same throughout 

the crack growth) used to solve the elliptic problem for the crack evolution. To 

determine the location of a point x relative to the crack, it is sufficient to know

the value of <p at that point. If <p(x) < 0, x  is below the crack, if 4>{x) > 0, x  is

above the crack.

Similarly, due to the orthogonal nature of the zero level sets of <p and ip at the

crack tips, the computation of the branch functions, present in the asymptotic
24
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enrichment, in the domain is simplified. As shown in Figure 3.1, the two level 

set functions <p and ip allow the construction of a natural local coordinate system, 

centered at the crack tip. Consequently, the values of r and 6 needed for the 

computation of the near-tip fields can be simply obtained by

tions (p and Let <pmin and <pmax (resp. i/’mm and ipmax) be the minimum and 

maximum values of <p (resp ip) at the nodes of a given element. For an element 

to contain the crack tip, it is necessary and sufficient that ipmin x VWx < 0 and 

4>min x (pmax < 0. Also, an element is completely slit by a crack if and only if the

Figure 3.1.

3.1.5 Enrichm ent functions: D iscontinuous interior enrichm ent

The displacement discontinuities in the interior of a line crack are modelled by 

an enrichment function based on the function H, which will be referred to as a 

generalized Heaviside function. The function H  takes the value +1 above the 

crack and -1 below the crack. More precisely, let x* be the closest point to x  on 

the crack r c, and e2 be the normal to the crack at x* as shown in Figure 3.1. 

First, recall the definition of the signed-distance function <p to a curve Tc

where d(x, x*) is the usual Euclidian distance on 5R2, x* the closest point to x  on 

the crack Tc and xc a point on Tc. The function <p is schematically represented in 

Figure 3.1. The function H  is then given by +1 if (x — x*).e2 > 0, -1 otherwise,

r(x) = \/<p2(x) +  ip2(x), 0(x) = arctan (3.12)

The selection of enriched nodes is also simplified by the use of the level set func-

function (p takes both positive and negative values at its nodes (</>min x (pmax < 0) 

and the function ip is negative (ip < 0) at all of its nodes. This is illustrated in

, min,c£r e ||x -  xc|| =  d(x, x*) i f ( x  -  x*).e2 > 0
x) = (3.13)

— minXc6r c ||x — xc\\ = —d(x, x*) otherwise
\

i.e.,

H{x) — sign(<p(x))
—1 otherwise

(3.14)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Therefore, the computation of the discontinuous enrichment function i f  at a point 

x  in the domain reduces to
*

1 > 0
H(x) — sign((j)(x)) (3.15) 

-1 otherwise

3.1.6 Enrichment functions: A sym ptotic near-tip  enrichm ent

To model the crack front and also to improve the representation of crack-tip fields 

in three-dimensional computations, crack-tip enrichment functions are used in 

elements which contain a crack tip. The enrichment consists of functions which 

incorporate the radial and angular behavior of the two-dimensional asymptotic 

crack-tip displacement field

9 9 9 0B(x)  =  {B i , B2, f?3, Bi}{x) = [y/rcos-, y/rsin-, y/rsin-sind, y/rcos-sin6]
£  £  £  £

(3.16)

where r  and 9 are polar coordinates in the plane. Note that the second func­

tion B2{r,9) =  y/rsin§ is discontinuous at the crack interior, which induces the 

required discontinuity in the displacement field in the tip elements.

R em ark  : Enrichment may be seen as adding extra degrees of freedom to the 

enriched nodes. An enriched node gains one extra degree of freedom per enrich­

ment function per dimension. In 2D, a node for which the displacement fields are 

enriched with the four crack tip asymptotic enrichment functions, for instance, 

has two conventional degrees of freedom (its displacements in both directions) 

and 2 x 4  =  8 enrichment degrees of freedom.

3.1.7 Sum mary o f  th e  algorithm

Let the crack be described at each increment in crack advance n by the two level set

functions <f>̂  and presented above and let be the set containing the tips of

this crack at the increment n. The crack growth rate may be interpreted as a speed

function F. This speed function may then be used to update the level sets (j/1̂

and ip ^  to <̂ n+1) and ip(n+1) respectively. Note that those level set functions need

only be updated ahead of the tips of the crack and remain unchanged in the rest
26
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of the domain. The crack advance direction 6C and the crack growth increment Aa 

are used to update ip ^  to ^ n+1  ̂ for each crack tip ar|n) according to the hyperbolic 

conservation law of the same type as (3.20). Note that an hypothesis made above 

to derive this hyperbolic conservation law for the movement of the hypersurface 

was that the front (here the level set t p^)  was propagating perpendicularly to itself 

so that it is not ipjn  ̂ that obeys this conservation law but rather the adequately 

rotated level set function ■0,-"̂  =  jR(^1-n )̂, such that -tp^J-F. By construction of 

■0, ||V0II =  1 and ||F || =  Aa. Once all the are computed for all tips, the

value of ip(n+1) at all nodes in the level set update domain may be deduced using 

the relation ip(n+l) = max^ ,ip̂ n+1\

The crack propagation direction Qc is also used to update the level set function 

#("). This ’’update” of 6 ^  is really a re-initialization, which ensures that is 

a signed-distance function for the updated interface T(n +  1) as 9 ^  was for T(n). 

Once the crack propagation direction is known, 0(n+1) may be computed exactly 

at any point x in the level set update region, by computing the signed distance to 

the new interface:

r fS E U f a .M  =  ± ll(*  -  * ? !) X p j l l  (3-17)

The new position of the crack tip is then obtained by finding the intersection of 

the updated level sets <f>(n+1) and -ip(n+V . Figure 3.2 summarizes the algorithm 

for both the 2D case and the 3D case.

3.2 Level Set

The level set and fast marching methods were first developed by Sethian [29]

to track interfaces moving with curvature-dependent speed. In this method, the

interface is represented as the zero level set of a function <j> of one higher dimension

than the dimension of the interface, i.e., 4> is a function of position and time.

Therefore, the interface is a hypersurface of the space in which the function <p

takes its values. As the interface evolves, it always coincides with the zero-level

set of the function <f>, whose values are determined by solving an initial value
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Find new crack tip

Update level set 
reinitialize to signed-distance function

Assemble stiffness matrix from element contributions. 
Element stiffnesses account for the presence of the crack 

through enrichment

Define the initial shape and location of the crack 
function to the original crack 

Initialize the level set function to be the signed-distance 
Find the initial tip positions

Find the elements located inside the narrow band 
using the current crack ty  and level set information

For each tip compute crack propagation direction 
and increment in crack length

For nodes in the narrow band 
Find the enriched nodes 

(two criteria: for asymptotic and split-enriched nocfes)

Solve system of equations for the displacement field 
at all nodes in the domain 

Compute stresses (domain integral and auxiliary 
fields method)

F igure 3.2: X-FEM/LS crack growth algorithm in 2D

partial differential equation in one higher dimension than the interface dimension. 

This allows sharp corners, merging and changes in topology in the interface (the 

zero-level set of <f>) to be naturally and seamlessly accounted for.

The level set function is typically approximated on a fixed mesh, which avoids 

the additional weight of mesh regeneration or mesh motion tracking. In addition, 

this allows coupling the level set method with finite element and extended Finite 

Element Methods naturally since the level set update may then use the same 

mesh that is used for the finite element calculations. Basic geometric properties 

of the interface (normal vector, curvature) are easily determined from the level 

set function.
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3.3 Definition of Level Set M ethod

To set the stage for the description of level sets in the fracture problems, the 

basics of the level set method for the particular case of a curve evolving in 2D are 

now recalled. Let T(t = 0) be a closed, non-intersecting curve in 5ft2 moving at 

constant speed F  perpendicularly to itself.

Let 0 be a scalar function such that T(f) is the zero-level set of 4> at all positive 

times t, that is:

Vt € 3ft+, T(t) = { x €  5ft2|0(x(f),t) =  0} (3.18)

At the initial time t = 0, the scalar function <f> is set to be the signed-distance 

function to the curve T(0). It is also assumed that each level set of <f> flows along 

its gradient field with the constant speed F.  Consider the motion of the level set 

of (f> such that (/>(x(t),t) =  C. Note that x(t) is the route of any particle located 

on this level set curve. By definition of F  (normal velocity), the particle speed

IIV*||in the direction of the outward normal — — n^ji is equal to the speed

function F:

<3-19)

Using the chain rule on the term V<j>, the initial-value partial differential equation 

governing the evolution of the scalar function <j> becomes:

H  +  .F||V0|| =  0,
94 " "  (3.20)
0(x(O),O) =  ±  m incer ||x - a : r ||,

The curve V(t) at time t  is then given by solving equation (3.20) for the unknown 

function (j).

3.4 Num erical Integration

There are two main reasons that make numerical integration of X-FEM approx­

imations more involved than the Standard Finite Element Method integration 

procedures. Due to the presence of a discontinuous function in the approxima­

tion, it is important to be considerate the numerical integration of the extended
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finite element equations. For elements in which discontinuous enrichment is used, 

a modified Gaussian quadrature scheme based on sub-elements aligns with the 

discontinuity is employed. This avoids inaccuracies and ill-conditioned systems 

associated with Gaussian Integration of discontinuous functions. This principle 

is summarized, for the 2D case of a rectangular element in Figure 3.3 [16]. The 

dashed line is the line of discontinuity. Note that no additional degree of freedom 

is added to the system. The partitioning is only used for numerical integration.

R em ark  : The triangular elements in Figure 3.3 have no degree of freedom 

associated with them. They exist only for the purpose of numerical integration.

(a) Original QUAD element with its 4 integration (b) QUAD after being split into 4 triangles 
points

(c) Case which would lead to insufficient Integra- (d) After element splitting, integration points are
tion: no integration point is present on the "top" present on both sides of the interface, thus allowing
side of the interface an accurate integration

Figure 3.3: Element partitioning for X-FEM integration. The interface is de­
noted by a heavy dashed line, quadrature points by circles and the triangular 
elements resulting from the split in light dotted lines. Note that the subelements 
are only used for integration purposes and that no additional dof is associated 
with them [16].
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3.5 C + +  Implementation

C ++ is an example of an object-oriented programming language and is the lan­

guage in which the X-FEM code is written. As opposed to procedural program­

ming, the object-oriented programming philosophy segments the problem at hand 

into objects and defines the necessary data that those objects should hold and 

the functions they should be able to perform, on themselves and on other objects. 

This produces a set of application-specific data types used in writing the code. 

The rest of the programming resides in precisely designing and implementing, for 

each of the data types (or objects), the operations that can be carried out with 

each object type. Then, the logic of the program in terms of those objects and 

the kinds of operations they allow should be set up. These concepts should make 

a well-written object-oriented program easier to understand and easier to evolve. 

In C++, as in any other object oriented programming language, a program is 

written in terms of objects in the domain of the problem that is to be solved. 

A large part of the programming process resides in deciding which objects are 

useful, what data they should hold, which actions they should perform, and how 

they should interact with each other. For example, in the extended finite element 

framework, there are objects, which would have to ’’know” its type (triangular, 

quadrilateral), its dimension, the coordinates of its nodes, the type of integra­

tion used and the coordinates of the integration points, the type of interpolation 

functions defined on the element, which of its nodes are enriched, etc.. A finite 

element object should also be able to perform some operations; it would therefore 

contain functions to operate on it such as: compute its area or volume, its Jaco- 

bian matrix, get its stiffness matrix or mass matrix, etc.. This packaging of data 

values and functions within an object is referred to as encapsulation and is one of 

the corner stones of object-oriented programming.

We used the ”getfem++” library to modify the C ++  codes to solve the prob­

lem. ”getfem++” is a free Generic Finite Element library in C ++ language [26]. 

We modified C + +  codes for using crack propagation with XFEM/LS method.
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The documentation of final program in C + +  language is shown in Appendix

B.

3.6 M esh Generation

For mesh generation we used the GiD software. GiD is an interactive graphi­

cal user interface used for the definition, preparation and visualization of all the 

data related to a numerical simulation. This data includes the definition of the 

geometry, materials, conditions, solution information and other parameters. The 

program can also generate a mesh for finite element, finite volume or finite differ­

ence analysis and write the information for a numerical simulation program in its 

desired format [27].
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CH APTER IV  

NUM ERICAL RESULTS

In this section three groups of numerical examples in two-dimensional and three 

dimensional elastostatics are presented to illustrate the accuracy of the XFEM for 

study fracture mechanisms in Aluminium-Silicon composite material. The first 

example we study crack growth in two dimensional plate with a different shape of 

inclusions under tension, and then study example of a delamination in bimaterial 

in two-dimensional and three dimensional. The last example is about crack growth 

in Aluminium-Silicon polycrystalline structure.

R em ark: The materials models are elasticity and the criterion for crack open­

ing is the fracture toughness of the Silicon or Aluminium. The fracture toughness 

for Silicon is K c  =  0.95 MPa.m1/2 and for Aluminium is K c  =  0.28 M Pa.m 1̂ 2.

N ote: We assume perfect interface boundary between Silicon particles and 

Aluminium matrix.

4.1 Configuration

The configuration for all tests includes:

• Geometry: lx l Square two dimensional geometry with nuclei crack in Y 

axes in point of Y=0 and X=0. Except for section 4.2.3 which is used three 

dimensional geometry. See Figure 4.1 and Figure 4.2.

• Mesh: Linear triangle elements with different element size from 0.05 to

0.025 (Size is given by the average side of the corresponding triangle or 

quadrilateral). Except for section 4.2.3 which is used quadrilateral elements. 

The numbers of the nodes are between 138 to 1832 and the numbers of the 

elements are between 222 to 3502. The program doesn’t have capability 

to run with more than 4000 element. We should select the mesh densities, 

which are acceptable for the program. Mesh density is automatically created 

by GiD mesh generator software [27].
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Force: Traction force is used for all cases.

• Material: Aluminium - Silicon alloy, AA319 with Young’s modulus 72.4 

GPa and Poisson’s ratio of 0.33. Young’s modulus for Silicon is 107 GPa 

and Poisson’s ratio is 0.278. Fracture toughness for Silicon particles is Kc = 

0.95 M P a.m 1!2 and for Aluminium is K c  =  0.28 M Pa.m 1!2.

• FEM Method: Lagrangian

• Boundary conditions: Top and bottom edges by uniform traction. One node 

on the bottom edge is pinned, the other is on a horizontal roller.

• Void and inclusion shape: circular, elliptical, square and triangle shapes are 

used for voids and only circular and elliptical are used for inclusion.

• Elliptical shape: With a/b=1.5, a /b=2 and a/b=2.5. The theta angle se­

lected for elliptical shape are zero degree (orthogonal to the force), 45 degree 

(Figure 4.1) and 90 degree (parallel to the force). The angle is measured 

relative to bottom edge and ”a”, major axis radius in elliptical inclusion.

This configuration has been selected because we want to find the best shape 

and orientation of silicon particles in Aluminium matrix to find a  better way for 

casting of these alloys. Therefore we select the simple geometry and simple mesh 

to apply force in Aluminium Silicon alloy. We used the mechanical properties 

of Aluminium Silicon alloy, such as Young modules and Poisson ratio and also 

fracture toughness for Silicon particles.

The tests are categorized in three groups.

1. Inclusions

2. Bimaterial

3. Polycrystal
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F

F
1.0

Figure 4.1: Geometry, force and crack nuclei

0.100

0.500.500

0.500

Figure 4.2; Geometry for delaminated crack
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4.2 Aluminium Silicon Composite Materials

The XFEM model is applied to AA319 Aluminium Silicon alloy with a different 

number of Silicon inclusions and different orientations. This part has most im­

portant results, because we consider Silicon particles as inclusion in Aluminium 

matrix and it is close to reality. The initial crack nuclei are present in Figure 

4.1. In all simulations, we consider a material with properties similar to AA319 

alloy with a Young’s modulus of 72.4 GPa and Poisson’s ratio of 0.33. Young’s 

modulus for Silicon is 107 GPa and Poisson’s ratio is 0.278. We consider fracture 

toughness of Silicon particles, K c — 0.95MPa.m1/2. All calculations are done in 

plane strain considering a unit thickness and isothermal conditions. The AA319 

plate is subjected to traction at its top and bottom edges. The displacement and 

the nominal traction are used to characterize the overall response of the body. 

In all of the simulations, we report nominal strain and nominal stress. Nominal 

strain defined by:

e = ( U~G) / L .  (1)

where U averaged edge displacement, and G is the gap (if exists). Nominal stress 

is magnitude of the traction vector.

Remark: We assume perfect interface boundary between Aluminium and Sili­

con particles.

We study two shapes of inclusions, circular and elliptical, because with sta­

tistical methods of these two shapes, we can find the solution for all shapes of 

inclusions in reality.

4.2.1 Single inclusion

Figure 4.3 shows a single edge crack nucleus in Aluminium matrix with a single 

circular inclusion. The monotonic loading facilitated the crack propagation within 

the homogenous Aluminium matrix and eventually in the Silicon circular inclusion 

(Figure 4.3a). The characteristic strain stress curve is shown in Figure 4.3b. It 

can be seen that after a linear response to the point where the crack reaches the
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critical stress, the crack starts to grow and snapback occurs. Critical stress is 

maximum nominal stress when the crack starts to propagate.

P

1.0 -

single circular incusion

$ 0.6 -

1•£
E

ao
aooo aooi aoo2  0.003 0.004 aoos 0.006 0.007 o.oos

m lasto sta fla _ d ia p ta c9 rrm n t m agn ttu dm  
0.0144 f t  f ig  0366 0.637 0.69■ 0.U 9 1.04 1.21

nominai strain

Figure 4.3: Single circular inclusion: a) crack propagation pattern b) stress- 
strain response.

Figure 4.4a shows crack propagation pattern in Aluminium matrix with a single 

elliptical inclusion with b=0.07 and a=0.14 oriented along x axis (a/b=2), and 

the characteristic strain stress curve is shown in Figure 4.4b. We can compare the 

two stress-strain respond diagrams for circular and elliptical inclusions as shown 

in Figure 4.5. As we can see the critical stresses between two diagrams almost 

the same, but the slope is different. The slope for elliptical inclusion is more than 

circular inclusion, and the elliptical inclusion has more nominal strain. We should 

note that the angle of elliptical inclusion is zero or it is orthogonal to the force 

in the stress strain diagram. If we change the angle of elliptical inclusion critical 

stress and slope will be change. Critical stress as function of the orientation 

of single elliptical inclusion is shown in Figure 4.6. As we can see we have the 

maximum critical stress when the elliptical inclusion is parallel to the force or has 

a 90 degree. If the a /b  in ellipse is increased or it like needle, we even have better 

results. Figure 4.7 shows data for critical stresses as function of the shape of the 

inclusions. We choose different angles and different a /b  factor to find which angle 

and which a/b  factor has the best results. Then we can optimize casting process
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to get proper shape and angle of Silicon particles.

We can conclude that the elliptical inclusion with long semi-axes parallel to 

the external force has a  distinct advantage over any other orientations and shapes.

—* — single elliptical Inclusion 
wth a - orthogonal to the fbroe

&*<riSWE)
0-000 0001 0002 0003 0004 0005 0006 0007 0008

nominal strain

Figure 4.4: Single elliptical inclusion: a) crack propagation pattern b) stress- 
strain response.

to-to — single elliptical inclusion 
with a  - orthogonal to the forcesirtgie circular incusion

08

2 o-e

0 4 .

0.2 0.2 -

0.0 0.0 Y  T { I ‘I   f -T r  ,----j - .-f .....T I I " f  I
0.000 OOOt 0002 0003 0004 0005 0006 0007 0008 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

nominal strain nominal strain

F igure 4.5: Stress-strain diagrams for single circular and elliptical inclusion
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1.3-

1.2 -

.1
5

1.0 -

angle

Figure 4.6: Critical stress as function of the orientation of single elliptical inclu­
sion

shape critical stress 
(MPa)

Circular 1.00

Elliptical (zero degree) 1.03

Elliptical (45 degree) 1.14

Elliptical (90 degree) 1.30

Figure 4.7: Critical stress as function of the shape of the inclusions
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4.2.2 Multiple inclusions

The coordinate for multiple elliptical inclusion with parallel to the force shown in 

Figure 4.8. Multiple elliptical inclusion with a orthogonal to the force, parallel to 

the force and 45 degree to the force with stress-strain response shown in Figures 

4.9, 4.10 and 4.11. The 45 angle is measured relative to bottom edge and ”a”, 

major axis radius in elliptical inclusion. All of elliptical inclusions has a/b=2 with 

b=0.07 and a=0.14. The reason for why we select these configuration is mention 

on last section.

X=0.3
Y=0.15X=0.15

Y=0.25

X=0.5 
Y= 0

X=0.15 
Y= -0.25 X=0.75 

Y= -0.25

Figure 4.8: Coordinate of multiple elliptical inclusion parallel to the force

Figure 4.12a shows crack propagation pattern in multi-inclusion system with 

three crack nuclei. Similarly to the single inclusion case after a linear response 

a critical stress is reached and the edge crack starts to grow. However, at this 

moment the secondary cracks within the volume do not start their growth. Clearly, 

the advance of the edge crack initiates the growth of the secondary cracks. The 

instances of initiation of the secondary cracks can be seen in Figure 4.12b as 

specific kinks in the snapback portion of the strain stress curve.

We can compare the three stress-strain respond diagrams for elliptical inclu­

sions with different orientation as shown in Figure 4.13. As we can see the critical
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— multiple elliptical inclusion 
with a - orthogonal to the force

0.0)0 0.001 0.002 0003 0004 OOGS 0006 0007 0.008 

nominal strain

F igure 4.9: Multiple elliptical inclusions: a) crack propagation pattern b) stress- 
strain response.

— multiple elliptical inclusion 
with a  - parallel to the force

0000 0.001 0.002 0.003 0.004 0005 0006 0007 0.008

norrinal strain

Figure 4.10: Multiple elliptical inclusions: a) crack propagation pattern b) 
stress-strain response.

stresses of multiple elliptical inclusion parallel to the force is highest amount. Crit­

ical stress as function of the orientation of multiple elliptical inclusion is shown 

in Figure 4.14. As we can see we have the maximum critical stress when the 

elliptical inclusion is parallel to the force or has a 90 degree. If the a /b  in ellipse 

is increased or it like needle, we even have better results. Figure 4.15 has data for 

critical stresses as function of the orientation of the inclusions.

We can conclude that the multiple elliptical inclusions with long semi-axes 

parallel to the external force have a distinct advantage over any other orientations 

and shapes.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



 ■— multiple elliptical Inclusion
with a-4 5 “to the force

0.000 0.001 0.002 0.003 0004 0005 0006 0007 0.008
nominal strain

Figure 4.11: Multiple elliptical inclusions: a) crack propagation pattern b) 
stress-strain response.

multiple inclusions with multiple cracks

1.0 -

i
E
s

0.2 -

00
0.000 0001 0002 0003 0004 0005 0006 0007 0008

nominal strain

Figure 4.12: Multiple elliptical inclusions: a) multiple cracks propagation pat­
tern b) stress-strain response.

—■— mutiple ettipjlcai induston 
vAh a  -  parallel to  th e  tw ee multiple eWptical Indicton 

with a -45° to the force

— mufyte efilpticd indufikr wlha-erthogcnaitotte farce 1.0 .
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a m  aooo 0.001 o.ooe o.ooa 0.004 0.00s 
nominal strain

o.ocs aoao 0.001 a ( 903 0004 0.005 4006 4007 0.008

nominal strain

Figure 4.13: Compare critical stress diagrams to orientation of inclusions
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Figure 4.14: Critical stress as function of the orientation of multiple inclusion

Orientation (elliptical) critical stress 
(MPa)

Orthogonal (zero degree) 0.86

Parallel (90 degree) 1.14

45 degree 1.05

Figure 4.15: Critical stress as function of the orientation of inclusions
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4.2.3 Bimaterial-two dimensional delamination

Bimaterial has two different material that has own properties connected together. 

In our case one of them is Aluminium and another one is Silicon. We modified 

program parameters to meet the requirements for Al-Si bimaterial. The geometry, 

the nuclei of the crack and force is the same as other tests. Figure 4.16 shows 

the geometry and displacement for Al-Si bimaterial. In larger magnification we 

can see the meshes and the crack (Figure 4.17). Von Misses Stress magnitude for 

Al-Si bimaterial with single crack shown in Figure 4.18 and Figure 4.19 shows 

displacement for Al-Si bimaterial with multiple cracks.

Remarks: The units for displacement is ’’em” and for stress is ”MPa” in the 

following Figures.

0.500 T

-0.500
0.000

elastostatic^dlsplacement (cm)
0.000 0.0382 0.0764 0.115 0.153 0.191 0.229 0.267

Figure 4.16: Al-Si Bimaterial displacement
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elattottaHc < 
0.000  0.0362 0.0764 0.115~

Figure 4.17: Mesh and crack in Al-Si Bimaterial

0.500

X
magnitude (MPa)

0.000200 0.173 a 346 0.819 0.692 0.865 1.04 1.21

Figure 4.18: Von Misses Stress in Al-Si Bimaterial

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0lasfotfatlc_dlsplac»m9nf (cm)
0.026 0.304 0.381 0AS7 0.533

Figure 4.19: Displacement in Al-Si Bimaterial with multiple cracks
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4.2.4 Bimaterial - three dimensional delamination

In this case we need 3D mesh to shows crack delaminate the plate. Due to 

geometry symmetry the quadrilateral elements were selected. Figure 4.20 shows 

3D geometry for this test with mesh and crack and Figure 4.21 shows the mesh 

and crack in Y-Z plane. The displacement for delaminated crack test shows in 

Figure 4.22.

0.500

0.500.500

Figure 4.20: 3D geometry for delaminated crack test shows mesh and crack 
plane
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Figure 4.21: Mesh and crack in Y-Z plane

magnitude (cm)
\0jQ975

0.0336

0.0697

OJ3SB7

0.0413

0.500
\0.0279

\0.0139

3.78e-02l

0.500.509

Figure 4.22: Displacement for delaminated crack test
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4.2.5 Poly crystal

The methodology used to carry out crack propagation simulations through a poly­

crystalline microstructure consisted of main ingredients:

• Unlike in many existing simulations of brittle fracture, a continuum descrip­

tion of a polycrystal was employed. This was based on a realistic microstruc­

ture.

• The polycrystal is assumed to be elastically homogeneousall grains and grain 

boundaries have the same elastic constants (E and P).

We presented a numerical model for crack propagation through a realistic poly­

crystalline material microstructure. In the X-FEM, a discontinuous function and 

the two-dimensional asymptotic crack-tip displacement fields are added to the fi­

nite element approximation to account for the crack using the notion of partition 

of unity.

Figure 4.23 shows the geometry of polycrystal with grain boundaries. The 

mesh is 2D with linear triangle elements as shown in Figure 4.24. The size of 

element in Figure 4.24 is 0.025. We used two size of elements, 0.025 and 0.035. 

The Figure 4.25 shows the displacement for polycrystal when we add multiple 

cracks to the program parameters.
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Figure 4.23: Polycrystal geometry

Figure 4.24: Polycrystal mesh 
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X

Figure 4.25: Mesh and crack in Polycrystal with a crack
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CH APTER V  

CONCLUSIONS A N D  FU TU R E W ORK  

5.1 Conclusions

A methodology to model arbitrary voids, inclusions, bimaterial, delamination in 

2D and 3D in single crystal and polycrystalline composite materials has been 

suggested. The following items are summarized as conclusions:

• The shape of the inclusions along with the type of loading strongly influences 

the fracture of composite material.

•  The needle like inclusions with long semi-axes parallel to the external force 

showed distinct advantage over any other orientations.

•  In the case of multiple cracks the evolution of every single one affects the 

behavior of the composite material.

• No delamination along the matrix-inclusion interface has been observed, 

mainly due to the assumption of the continuous displacements at the matrix- 

inclusion interface.

5.2 Future Work

The approaches for the modelling of 2D fracture within Extended Finite Element

are presented and discussed. However, there are several of additional subjects

worth addressing in the future.

Perhaps the most important issue is comparison with experimental results.

Academic examples are nice in the sense that particular effects may be clarified.

Nevertheless, to actually develop models of any use outside the academic world, of

course these models have to agree with real-world observations. An experimental

comparison may lead to one of two things, either a validation of the proposed

models or an indication of how to future refine the same, both equally valuable.

A challenging task and the ultimate goal is a generation to three dimensional

analysis in order to simulate more complex geometries in real-world application.
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So far, only tension forces is considered. Thus other forces such as shear force 

or combined forces would be of interest.

Scanning electron microscope (SEM) images of the fracture surface of a cast 

Aluminium Silicon alloy subjected to cyclic loading demonstrate that some of the 

pure silicon particles debonded. Therefore the program should be modified to 

consider matrix-interface delamination.

This program has potential of the XFEM as a computational fracture tool 

to study complex failure mechanisms in polycrystalline materials, but we should 

modify program to meet the requirements, such as add some grains as Silicon 

inclusions to reach the best results. Also we should consider that the toughness 

(critical energy) of the grain boundary and the grain interior should be different*
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A PPE N D IX  A  

STEADY STATE HEAT CO NDUCTIO N IN  A  BA R  

A .l  An Example

As an example consider the problem of the bar shown in Figure A.I. The bar is of 

length I =  1, is connected to a constant temperature thermal bath of temperature 

0 — 2 from the left and heat is being drawn from it at a constant rate <7 =  1 from 

the right. The heat flow into the bar per unit length from the lateral surfaces is 

given by f (x )  =  x. The coefficient of thermal conduction k =  1. Three two node

f(x)=x

q=1i = 2

1=1

x=0 x=1/2

© V ©  3 ©

Figure A .l: Example problem.

x=3/4 x=1

2 1 

3
2
4

line elements are selected as shown in Figure 2.5. The local stiffness matrices can 

be calculated using equation (2.25) and will be

[K') =

[K2

2 - 2  

- 2  2

4 - 4

- 4  4

4 - 4

- 4  4
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The global stiffness matrix will, therefore, be

2 - 2  0

[K) =

0

- 2  (2 +  4) - 4  0

0 - 4  (4 +  4) - 4

0 0 - 4  4

The load vectors can be calculated using equation (2.24). Using equation (2.9) 

and (2.10), the shape functions for the first element are

Therefore,

Ni =  1 -  2x, N2 = 2x.

1 /** 1/ i  =  J  ( l~ 2 x ) x d x  = — ,

n =/Jo
9  , 12 x d x  =  — . 

12

The shape functions for the second element are

Therefore,

Ni = 1 — 4(x — i ) ,  IV2 =  4(x — i ) .

f t  =  J *  [(1 ~  4 (z  -  ^ )]xd x  =

r - i .

The shape functions for the third element are

Therefore,

N\ — \ — 4(x — ^), N2 = 4(x — ^).

f t  =  K1 ~  4 (z  -  ^ )]xd x  =
4

The global load vector will become

[/]

_i_
24

+  +  X
12 ~  96

JL +  -L
12 “  48

11
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The problem that we must solve is

2(1 +p) -2 0 0 0i T4+4P
-2 6 - 4 0 92 5

32

0 - 4 8 - 4 9,3 3
16

0 0 - 4 4 A i i  _  1
96 .

where p is a large number and the stiffness matrix and load vectors have been 

modified to impose the boundary conditions.

For p = 1 the solution will be

9i 7
4 1.75

92 71
48 1.47916

9s 167
128 1.30468

93
13 

.  12 .
1.08333

For p = 10 the solution is

For p =  100 the solution is

The exact solution is

which yields

0i
79
40 1.975

02 409
240 1.70416

03 979
640 1.52968

03 157
.1 2 0 . 1.30833

0i
799
400 1.9975

02 259
150 1.72666

03 4967
3200 1.55218

03 1597
.1 2 0 0 . 1.33083

0 == 2 -
X 3

6
X  

~ 2 ’

01 2 2

02 83
48 1.72916

03 199
128 1.55468

03 4
.  3 . 1.33333
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Comparison of the exact solution and the finite element method solution shows 

that for p  =  100 there is less than 1 error in the finite element solution.

A .2 Organize the Finite Element M ethod Program

Finite element method programs are normally organized in the following manner. 

This allows each part of the program to be a separate module which can be 

replaced from one application to another.

1. Division of the domain into elements, numbering the elements, numbering 

the nodes, providing the connection between local node numbers and global node 

numbers, providing the coordinate for each node.

2. Numbering boundary elements and connection between local node numbers 

and global node numbers.

3. Assembling global stiffness matrix, [K], and load vector, [/], element by 

element.

(a) Calculate the element stiffness matrix, [Ke], for each element and assemble 

it into the global stiffness matrix.

(b) Calculate the element load vector, [ /e], for each element and assemble it 

into the global load vector.

4. Modifying global stiffness matrix and global load vector to enforce boundary 

conditions.

5. Solving the resulting system of equations (i.e., [K}[0\ — [/]) for the value of 

the unknown function at each nodal point, [0].

6. Presenting the results in a suitable format (post-processing).

This layout of the program provides a certain degree of flexibility. For exam­

ple, the same problem can be solved using several different equation solvers, or 

the same program can solve different problems just by changing the method for 

calculating the element stiffness matrix, load vector, and boundary conditions.
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A PPE N D IX  B 

DOCUM ENTATION OF FINAL PR O G R A M

B .l  Crack Propagation Program Using X FE M /L S M ethod

The following programs is a part of getfem++ for crack propagation using XFEM/LS 

method. The parameters file is shown all parameters that used for the main pro­

gram.

B .1.1 Crack propagation program

/ /  C++ (enables emacs C++ mode)

/ /
// Copyright (C) 2002-2006 Yves Renard, Julien Pommier.

/ /
// This file is a part of GETFEM++

/ /

// Getfem++ is free softvare; you can redistribute it and/or modify 
// it under the terms of the GNU Lesser General Public License as 
// published by the Free Software Foundation; version 2.1 of the License.

/ /
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of 
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
// GNU Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public 
// License along with this program; if not, write to the Free Software 
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
// USA.
//ssssssssaisasasBsssssssssssssssssssssssBssssanissBassssssEasssssssssssstBsssQs

/**
* Linear El&stostatic problem with a crack.
*

* This program is used to check that getfem++ is working. This is also
* a good example of use of Getfem++.

*/

#include <getfem_assembling.h> /* import assembly methods (and norms comp.) * /

#include <getfem_export.h> /* export functions (save solution in a file) * /

♦include <getfem_import.h>
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tinclude <getfem.derivatives.h>
#include <getfeo.regular.meshes.h>
#include <getfera.model.solvers.h>
#include <getfem_mesh.im.level.set.h>
#include <getfem.mesh.fem.level.set .h>
#include <getf em.mesh.f em.product.h>
#include <getfem.mesh.fem.global.function.h>
#include <getfem_spider.fem.h>
#include <getfem.mesh.fem.sum.h>
#include <gmm.h>

/* some Getfem++ types that ve will be using * /

using bgeot::base_small.vector; /* special class for small (dim<16) vectors */
using bgeot::base_node; /* geometrical nodes(derived from base.small.vector) * /

using bgeot::scalar.type; /♦ * double */
using bgeot::size.type; /♦ * unsigned long * /

using bgeot::base_matrix; /* small dense matrix. */

/ * definition of some matrix/vector types. These ones are built 
* using the predefined types in Gmm++ */ 
typedef getfem::modeling.standard.sparse.vector sparse.vector; 
typedef getfem::modeling.standard.sparse.matrix sparse.matrix; 
typedef getfem::modeling_standard_plain.vector plain.vector;

/**************************************************************************/
/ * Exact solution. */ 
/**************************************************************************/

#define VALIDATE.XFEM 
#ifdef VALIDATE.XFEM

/* returns sin(theta/2) where theta is the angle 
of 0-(x,y) with the axis Ox */ 

scalar.type sint2(scalar.type x, scalar.type y) {  

scalar.type r * sqrt(x*x+y*y); 
if (r 0) return 0;
else return (y<0 ? -1:1) * sqrt(gmm::abs(r-x)/(2*r));
// sometimes (gcc3.3.2 -03). r-x < 0 ....

} scalar.type cost2(scalar_type x, scalar.type y) { 
scalar.type r * sqrt(x*x+y*y); 
if (r == 0) return 0; 
else return sqrt(gmm::abs(r+x)/(2*r));

} /* analytical solution for a semi-infinite crack [-inf,a] in an 
infinite plane submitted to +sigma above the crack
and -sigma under the crack. (The crack is directed along the x axis).
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nu and E are the poisson ratio and young modulus

solution taken from "an extended finite element method vith high order 
elements for curved cracks'*, Stazi, Budyn,Chessa, Belytschko */

void elasticite21ame(const scalar.type young.modulus, 
const scalar.type poisson.ratio, 
scalar.type* lambda, scalar.type* mu) { 

mu » young.modulus/(2*(i+poisson_ratio)); 
lambda * 2*mu*poisson.ratio/(l-poisson.ratio);

>

void sol.ref.infinite.plane(scalar.type nu, scalar.type E, scalar.type sigma, 
scalar.type a, scalar.type xx, scalar.type y, 
base.small.vector* U, int mode, 
base.matrix *pgrad) { 

scalar.type x * xx-a; /+ the eq are given relatively to the crack tip */ 
//scalar.type K1 * sigma*sqrt(M_PI*a); 
scalar.type r » std::max(sqrt(x*x+y*y),le-16); 
scalar.type sqrtr « sqrt(r), sqrtr3 ■ sqrtr*sqrtr*sqrtr; 
scalar.type cost ■ x/r, sint = y/r; 
scalar.type theta = atan2(y,x); 
scalar.type s2 * sin(theta/2); //sint2(x,y); 
scalar.type c2 * cos(theta/2); //cost2(x,y);
// scalar.type c3 * cos(3*theta/2); //4*c2*c2*c2-3*c2; / * cos(3*theta/2) */
// scalar.type s3 * sin(3*theta/2); //4*s2*c2*c2-s2; /* sin(3*theta/2) */
scalar.type lambda, mu; 
elasticite21ame(E,nu,lambda,mu);

U.resize(2);
if (pgrad) (*pgrad).resize(2,2);
scalar.type C» l./E * (mode -* 1 ? 1. : (1+nu));
if (mode == i) {
scalar.type A-2+2*mu/(lambda+2*mu); 
scalar.type B«-2*(lambda+mu)/(lambda+2*mu);
U[0] ■ sqrtr/sqrt(2*M.PI) * C * c2 * (A + B*cost);
U[l] * sqrtr/sqrt(2*M_PI) * C * s2 * (A + B+cost); 
if (pgrad) {.

(♦pgrad)(0,0) * C/(2.*sqrt(2*M_PI)*sqrtr)
* (cost*c2eA-co8t*cost*c2*B+sint*s2*A+sint*s2*B*cost+2*c2*B);
(♦pgrad)(1,0) = -C/(2*sqrt(2*M.PI)*sqrtr)

* (-sint»c2*A+sint*c2»B*cost+cost*s2*A+cost*cost*s2»B);
(♦pgrad)(0,l) * C/(2.*sqrt(2*M.PI)*sqrtr)

* (cost*s2*A-cost*cost*s2*B-sint*c2*A-sint*c2*B*cost+2*s2*B) ;
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(♦pgrad)(l,l) * C/(2.*sqrt(2*M_PI)*sqrtr)
♦ (sint*s2*A-sint*s2*B*cost+cost*c2*A+cost*cost*c2*B);

>

> else if (mode ““ 2) {
scalar.type Cl “ (laabda+3*mu)/(lajnbda+mu);
UtO] * sqrtr/sqrt(2*M_PI) * C * s2 * (Cl + 2 + cost);
UC1] * sqrtr/sqrt(2*M_PI) * C * c2 * (Cl - 2 + cost) * (-1.); 
if (pgrad) {
(♦pgrad)(0,0) * C/(2.*sqrt(2*M_PI)*sqrtr)

♦ (cost*s2*Cl+2*cost*s2**cost*cost*s2-sint*c2*Cl
-2*sint*c2-sint*cost*c2+2*s2);
(♦pgrad)(1,0) “ C/(2.^sqrt(2+M.PI)*sqrtr)

♦ (sint*s2*Cl+2*sint*s2-sint*s2*cost+cost*c2*Cl
+2^cost*c2+cost^cost^c2);
(♦pgrad)(0,1) - -C/(2.^sqrt(2+M.PI)+sqrtr)

♦ (cost^c2+Cl“2^cost+c2-cost^cost+c2+sint^s2^Cl
“2^sint^s2+sint+s2+cost+2+c2);
(♦pgrad)(1,1)» C/(2.♦sqrt(2+M.PI)♦sqrtr)

♦ (-sint+c2^Cl+2^sint+c2+sint^cost^c2+cost+s2^Cl
-2^cost^s2+cost^cost+s2);

>
} else if (mode “= 100) {
U[0] “ - sqrtr3 ♦ (c2 + 4./3 ♦(7+mu+3^1ambda)/(lambda+mu)+c2^s2+s2 

-l./3+(7+mu+3*lambda)/(lambda+mu)+c2);
UCl] = - sqrtr3 ♦ (s2+4./3+(lambda+5+mu)/(lambda+nm)^s2^s2+s2 

-(lambda+5+mu)/(lambda+mu)^s2); 
if (pgrad) {
(♦pgrad)(0,0) * 2^sqrtr^(**6^cost+c2+mu+7^cost+c2^c2^c2+mu 

-3^cost^c2+lambda+3+cost*c2*c2*c2*lambda 
-2^sint+s2+mu
+7^sint^s2^c2+c2*mu-sint*s2*lambda 
+3+sint+s2+c2^c2+lambda)/(lambda+mu);

(♦pgrad)(1,0) = -2+sqrtr+(6+sint+c2+mu“7+sint+c2+c2+c2+mu 
+3*sint*c2+lambda-3*sint*c2*c2*c2*lambda 
-2+cost+s2+mu
+7+cost^s2+c2+c2+mu-cost+s2+lambda 
+3*cost*s2+c2*c2+lambda)/(lambda+mu);

(♦pgrad)(0,1) “ 2+sqrtr+(-2+cost+s2+mu-cost+s2+lambda 
+cost*s2+c2*c2*lambda+5*cost+s2*c2*c2+mu 
+4+sint+c2+mu
+sint*c2*lambda-sint*c2*c2*c2*lambda 
-5+siat+c2^c2+c2+mu)/(lambda+mu);

(♦pgrad) (1,1) » 2+sqrtr+(“2+sint+s2+mu-sint^s2^1ambda 
+sint*s2+c2^c2*lambda+5*sint+s2*c2*c2+mu
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-4*cost*c2*mu
-co8t*c2*laabda+cost*c2*c2*c2*lambda 
+5*cost*c2*c2*c2*mu)/(lambda+mu) ;

>

> else if (mode ■■ 101) {
U[03 * -4*sqrtr3*s2*(-lambda-2*mu+7*lambda*c2*c2 

+Il*mu*c2*c2)/(3*lambda-mu);
U[l] ■ -4*sqrtr3*c2*(-3*lambda+3*lambda*c2*c2-mu*c2*c2)/(3*lambda-mu);
if (pgrad) {
(♦pgrad) (0,0) ® -6+sqrtr^(-cost+s2+lambda-2^cost^s2+nm 

+7»cost*s2*lambda,»tc2*c2 
+ll*cost*s2*mu*c2*c2+5*sint*c2*lainbda 
+8*sint*c2*mu-7*sint*c2*c2*c2*lambda 
-Il*sint*c2*c2,*tc2*mu)/(3,*tlajflbda-iim);

(♦pgrad)(1,0) * -6^sqrtr^(-sint^s2^1ambda-2^sint+s2^mu 
+7+sin1t^s2^1ambda^c2^c2 

+H+sint+s2+mu*c2^c2-5^cost+c2+lambda 
-8*cost^c2^mu+7^cost^c2^c2^c2+lambda 
+ll̂ cost+c2+c2*c2>Hini)/(3*laiiibda-mu);

(♦pgrad)(0,1) ■ -6tsqrtr+(-3+costtc2+lambda+3+cost+c2+c2+c2+lambda 
-cost+c2^c2+c2^nm-sint+s2^1ambda 
+3+sint+s2+lambda+c2+c2 
-sint^s25*TBU+c2+c2)/(3+lambda-mu);

(♦pgrad)(1,1) ■ 6+sqrtr+(3+sint+c2+lambda
-3*sint^c2^c2+c2*lambda+sint*c2*c2*c2*nm 
-cost*s2^1ambda+3*cost*s2*lambda*c2*c2 
-cost^s2^mu^c2+c2)/(3^1ambda-mu);

>
> else if (mode «  10166666) {

U[0] * 4*sqrtr3*s2*(-lambda+lambda*c2*c2-3*nm*c2*c2)/(lambda-3*mu);
UCl] ■ 4^sqrtr3+c2+(-3^1ambda-6^mu+6^1ambda^c2^c2+9^mu^c2+c2)/(lambda-3^mu);
if (pgrad) {

(♦pgrad) (0,0) * 6+sqrtr+(-cost+s2+lambda+cost+s2+lambda+c2^c2- 
3*cost*s2*mu*c2*c2-2*sint*c2*mu+sint*c2*lainbda- 
Sint*c2^c2^c2+lambda 
+3*sint+c2+c2^c2*mu)/(lambda-3*mu);

(♦pgrad)(1,0) » 6^sqrtr^(-sint+s2+lambda+sint^s2+laabda^c2^c2- 
3*sint^s2*mu*c2^c2+2*cost*c2*nm-cost*c2*lambda+ 
cost*c2*c2^c2^1ambda 
-3^cost♦c2+c2^c2+mu)/(lambda-3+mu);

(♦pgrad)(0,1) * 6^sqrtr^(-3^cost^c2+lambda-6^cost^c2’t'mu 
+5+cost+c2+c2+c2+lambda+
9^cost+c2+c2+c2+mu-sint+s2+lambda-2+sint+s2^mu+
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5*sint*s2*laabda*c2*c2 
+9*sint*s2*mu*c2*c2)/(lambda-3*mu);

(♦pgrad)(1,1) * -6*sqrtr*(3*sint*c2*lambda+6*sint*c2*mu 
-5*sint*c2*c2*c2*lambda-
9*sint*c2*c2*c2*mu-cost*s2*lambda-2*cost*s2*mu+ 
5*cost*s2*lambda*c2*c2 
+9*co8t*s2*nra*c2*c2)/(lambda-3*mu);

>

} else assert(0); 
if (std: :isnan(U[0]))
cerr «  "raaah not a number ... nu*" «  nu «  ", E«" «  E «  ", sig=" 
«  sigma «  ", a=" «  a «  ", xx=" «  xx «  ", y«" «  y «  ", r="
«  r «  ", sqrtr=" «  sqrtr «  ", cost*" «  cost «  ", U*" «  U[0]
«  "," «  U[l] «  endl; 
assert(!std;:isnan(U[0])); 
assert(!std::isnan(U[l]));

>

struct exact.solution {
getfem: :mesh_fem_global.function mf; 
getfem::base_vector U;
exact_solution(getfem: :mesh feme) : mf(me) {} 
void init(int mode, scalar.type lambda, scalar.type mu, 

getfem::level.set 41s) { 
std::vector<getfem::pglobal.function> cfun(4); 
for (unsigned j*0; j < 4; ++j)
cfunfj] * getfem::isotropic.crack.singular.2D(j, Is); 

mf .set.functions(cfun); 
mf .set.qdim(l);

U.resize(8); assert(mf.nb.dof() =* 4); 
getfem: :base_vector::iterator it * U.beginO; 
scalar.type coeff*0.; 
svitcb(mode) < 
case l: {

scalar.type A*2+2*mu/(lambda+2*mu) , B«-2*(lambda+mu)/(lambda+2*am) ; 
/♦ "colonne" 1: ux, colonne 2: uy */
+it++ * 0; *it++ » A-B; /* sin(theta/2) */
♦it++ * A+B; *it++ * 0; /* cos(theta/2) */

♦it++ * -B; *it++ » 0; /♦ sin(theta/2)*sin(theta) */
♦it++ * 0; *it++ ■ B; /♦ cos(theta/2)*cos(theta) */

coeff * l/sqrt(2*M_PI);
> break; 
case 2: {

scalar.type Cl = (lambda+3*mu)/(lambda+mu);
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*it++ = Cl+2-1; *it++ » 0;
*it++ - 0; *it++ = -(Cl-2+1);
*it++ = 0; *it++ = 1;
*it++ = 1; *it++ ■= 0;
coeff - 2*(mu+laabda)/(lambda+2*mu)/sqrt(2*M_PI) ; 
> break; 
default: 

assert(0); 
break;
>

gmm::scaleCU, coeff);

>
>;

base.small.vector sol.f(const base_nod© ftx) { 
int N • x.sizeO; 
base.small.vector res(N); 
return res;

>

#else base.small.vector sol.f(const base.node &x) { 
int N = x.sizeO;
base.small.vector res(N); res[N-l] - x[N-l];
return res; ________

>

#endif

/**************************************************************************/

/* Structure for the crack problem. */ 
/**********̂ **************************************************************/

struct crack_problem {

enum i  DIRICHLET_BOUNDARY_NUM * 0, NEUMANN.BOUNDARY.NUM - 1, NEUMANN_B0UNDARY.NUM1*2, 
NEUMANN_H0M0GENE_B0UNDARY_NUM=3>; 

getfem::mesh mesh; /* the mesh */
getfem::mesh_level_set mis; /* the integration methods. */
getfem::mesh.im.level.set mim; /* the integration methods. */

getfem: :mesh.fem mf.pre.u;
getfem: :mesh.fem mf.mult;
getfem::mesh.fem.level.set mfls.u;
getfem::mesh.fem.global_function mf.sing.u;
getfem: :mesh.fem mf..partition.of.unity;
getfem::mesh.fem.product mf.product;
getfem: :mesh.fem_sum mf.u_sum;
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getfem::spider.fem *spider; 
getfem:tmesh.fem mf.us;

getfem: :mesh_femfe mf.uO { return mf.u.sum; }
// getfem: :mesh_fern& mf_u() < return mf.us; >

scalar.type lambda, mu; /* Lame coefficients. */
getfem::mesh.fem mf_rhs; /* mesh.fem for the right hand side (f(x),..) */
getfem::mesh_fem mf.p; /* mesh.fem for the pressure for mixed form */

#ifdef VALIDATE.XFEM
exact.solution exact.sol;

#endif
int bimaterial; /* For bimaterial interface fracture */

double lambda.up, lambda.doun; /♦Lame coeff for bimaterial case*/
// scalar.type lambda.inc, mu.inc; // Lam coefficients, of the inclusions
getfem::level.set Is; /* The two level sets defining the crack. */
getfem:ilevel.set ls2, ls3; /* The two level-sets defining the add. cracks.*/
base.small.vector translation;
scalar.type thetaO;
scalar.type spider.radius;
unsigned spider.Nr;
unsigned spider.Ntheta;
int spider.K;
scalar.type residual; /* max residual for the iterative solvers */
bool mixed.pressure, add.crack; 
unsigned dir.vith.mult;
scalar.type cutoff.radius, cutoff.radiusl, cutoff.radiusO, enr.area.radius;
int enrichment.option;
size.type cutoff.func;
std::string datafilename;
ftool::md_param PARAH;

bool solve(plain.vector &U); 
void init(void);
crack.problem(void) : mls(mesh), mim(mls), mf.pre.u(mesh), mf.mult(mesh), 

mfls.uCmls, mf.pre.u), mf.sing.u(mesh), 
mf.partition.of.unity(mesh), 
mf.product(mf.partition_of.unity, mf.sing.u),

mf.u.sum(mesh), mf.us(mesh), mf.rhs(mesh), mf.p(mesh),
#ifdef VALIDATE.XFEM

exact.sol(mesh),
#endif

Is(mesh, 1, true), ls2(mesh, 1, true),
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Is3(mesh, 1, true) O
>;

/* Read parameters from the .param file, build the mesh, set finite element 
* and integration methods and selects the boundaries. */ 

void crack.problem::init(void) {
std::string MESH.TYPE = PARAM.string.value("MESH.TYPE","Mesh type "); 
std::string FEM.TYPE - PARAM.string.value("FEM_TYPE","FEM name"); 
std;:string INTEGRATION - PARAM.string_value("INTEGRATION",

"Name of integration method"); 
std;:string SIMPLEX.INTEGRATION - PARAM.string.value("SIMPLEX.INTEGRATION",

"Name of simplex integration method") ; 
std::string SINGULAR.INTEGRATION - PARAM.string.value("SINGULAR.INTEGRATION") j

add.crack - (PARAM.int.value(" ADDITIONAL.CRACK", "An additional crack ?•') !- 0); 
enrichment.option - PARAM.int_value("ENRICHMENT_OPTION",

"Enrichment option"); 
cout «  "MESH.TYPE-" «  MESH.TYPE «  "\n"; 
cout «  "FEM.TYPE-" «  FEM.TYPE «  "\n"; 
cout «  "INTEGRATION-" «  INTEGRATION «  "\n";

spider.radius = PARAM.real_value("SPIDER_RADIUS","spider.radius”); 
spider_Nr = PARAM.int.value("SPIDER_NR","Spider_Nr "); 
spider.Ntheta - PARAM.int.valueC'SPIDER.NTHETA","Ntheta "); 
spider _K - PARAM. int .value ( "SPIDER.K" , "K ");

translation.resize(2); 
translation[0] -0.5; 
translation[1] -0.; 
thetaO -0;

std::string meshname
(PARAM.string.value("MESHNAME", "Norn du fichier de maillage"));

/* First step : build the mesh */ 
bgeot::pgeometric_trans pgt -
bgeot: :geometric_trans_descriptor (MESH.TYPE); 

getfem;:import.mesh(meshname,”gid", mesh); /* read the mesh from external gid file */  

mesh.optimize.structureO;

size.type N - pgt->dim();
/* std::vector<size_type> nsubdiv(N); 
std::fill(nsubdiv.begin(),nsubdiv.end(),

PARAM.int.valueCNX", "Nomber of space steps ")); 
getfem::regular_unit_mesh(mesh, nsubdiv, pgt,
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PARAM.Int.value("MESH NOISED") != 0);
base.small.vector tt(N); tt[l] * -0.5; 
mesh.translation(tt); */

datafilename ■ PARAM.string.value(“ROOTFILENAME'V'Base name of data files.'1); 
residual * PARAM.real.value("RESIDUAL”); if (residual == 0.) residual « le-10; 
enr.area.radius ■ PARAM.real_value(“RADIUS.ENR_AREA",

"radius of the enrichment area");

bimaterial ■ PARAM.int.value("BIMATERIAL", "bimaterial interface crack");

if (bimaterial 1){ 
mu ■ PARAM. real, value ("MU", "Lame coefficient mu1'); 
lambda_up « PARAM.int_value("LAMBDA_UP“, "Lame Coef"); 
lambda_down - PARAM. int .value ("LAMBDA.DOWN", "Lame Coef"); 
lambda - PARAM.real.value("LAM6DA", "Lame'coefficient lambda");
// mu.inc «* PARAM.real_value("HUIHC", “Lam coefficient mu.inc”);
// lambda.inc = PARAM.real.value("LAMBDAINC", "Lam coefficient lambda.inc");

>
else{

mu * PARAM.real.value(“MU", "Lame coefficient mu");
lambda • PARAM.real.valueC'LAMBDA", "Lame coefficient lambda");

>

cutoff.func = PARAM.int.value("CUTOFF.FUNC". "cutoff function"); 
cutoff.radius = PARAM.real_value("CUTOFF“, "Cutoff"); 
cutoff.radiusl - PARAM.real.value("CUT0FF1". "Cutoffl"); 
cutoff.radiusO - PARAM.real.value("CUT0FF0", "CutoffO"); 
mf_u().set.qdim(N);

/* set the finite element on the mf.u */ 
getfem::pfem pf.u -
getfem: :fem_descriptor(FEM_TYPE); 

getfem: :pintegration_method ppi - 
getfem::int_method_descriptor(INTEGRATION); 

getfem: :pintegration_method simp.ppi -
getfem::int_metbod_descriptor(SIMPLEX.INTEGRATION) ; 

getfem::pintegration.method sing.ppi - (SINGULAR.INTEGRATION.sizeO ? 
getfem::int.method.descriptor(SINGULAR.INTEGRATION) : 0);

mim.set.integrationjnethod(mesh.convex_index(), ppi); 
mis.add_level_set(Is) ;
if (add.crack) { mis.add.level.set(ls2); mis.add.level.set(ls3); >
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mira.set_simplex_im(simp_ppi, sing_ppi); 

mf.pre.u. set.f inlte.element (mesh.convex.indexO , pf.u) ; 
mf.mult, set.f inlte.element (mesh. convex.indexO , pf.u) ; 
mf_mult.set_qdim(N);
mf.partition.of.unity.set.classical.finlte.element(1)j

if (enrichment.option == 3 11 enrichment.option =» 4) {
spider 3 new getfem::spider_fem(spider.radius, mim, spider.Nr, 

spider.Ntheta, spider.K, translation. 
thetaO);

mf.us.set.finite.element(mesh.convex.indexO,spider->get_pfem()) ; 
for (dal: :bv_visitor_c i(mf.us.convex.indexO); !i.finished() ; ++i) { 
if (mf_us.fem_of_element(i)->nb_dof(i) == 0) { 

mf.us.set.finite.element(i.O);

}

}

>

mixed.pressure -
(PARAM. int .value ("MIXED .PRESSURE", "Mixed version or not.") !- 0); 

dir.with.mult - PARAM.int_value("DIRICHLET_VERSINO") ; 
if (mixed.pressure) {
std::string FEM.TYPE.P - PARAM.string.value("FEM.TYPE.P","FEM name P"); 
mf_p.set.finlte.element(mesh.convex.index(),

getfem::fem_descriptor(FEM_TYPE_P));

>

/* set the finite element on mf.rhs (same as mf.u is DATA.FEM.TYPE is 
not used in the .param file */ 

std::string data.fem.name ■ PARAM.string.value("DATA.FEM.TYPE"); 
if (data_fem_name.size() ■= 0) { 
if (!pf_u->is_lagrange()) {
DAL.THROW(dal::failure_error, "You are using a non-lagrange FEM. "
«  "In that case you need to set "
«  "DATA.FEM.TYPE in the .param file");

>

mf.rhs.set.finite.element(mesh.convex.indexO, pf.u);
} else {
mf.rhs. set.f inlte.element (mesh. convex.index () ,

getfem::fem.descriptor(data.fem_name));

>
/* set boundary conditions 
* (Neuman on the upper face, Dirichlet elsewhere) */ 

cout «  "Selecting Neumann and Dirichlet boundariesNn";
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getfem: :mesh region border faces; —
getfem::otter.faces_of_mesh(mesh, border.faces);
for (getfem::mr.visitor i(border.faces); !i.finishedO; ++i) {

base.node un - mesh.normal.of_face.of_convex(i.cv(), i.f()); 
un /= gmm::vect_norm2(un); 
if(bimaterial == 1) {

if (un(0] > 1.0E-7 ) { // new Neumann face
mesh•region(DIRICHLET.BOUNDARY.NUM),add(i.cv(), i.f());
> else {

if (un[l] > 1.0E-7 ) {
cout «  "normal ■ " «  un «  endl;
mesh.region(NEUMANN.B0UNDARY.NUM1) .add(i.cv() , i.f ()) ;

}
else {
if (un[l) < -1.0E-7 ) <
cout «  "normal ■ “ «  un «  endl;

mesh .region (NEUMANN.BOUNDARY.NUM) . add ( i. c v () , i.f ()) ;
>
else {
if (un[0) < -1.0E-7 ) {
cout «  "normal “ " «  un «  endl;
mesh.region(NEUMANN_HOMOGENE_BOUNDARY_NUM).add(i.cv(), i.f());

>
>

>

>

>
else {

#ifdef VALIDATE.XFEM
mesh. region(DIRICHLET.BOUNDAKY.NUM) . add(i. cv() , i. f () );
#else

base.node un ■ mesh.normal_of_face_of_conver(i.cv(), i.fO); 
un /= gmm::vect_norm2(un);
if (un[0] - 1.0 < -1.0E-7) { // new Neumann face 
mesh.region(NEUMANN.BOUNDARY.NUM) .add(i.cv(), i.f ()) ;

}• else {
cout «  “normal » " «  un «  endl;

mesh.region(DIRICHLET.B0UNDARy.mnO .add(i.cv(), i.f());
>

tendif

>
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ttifdef VALIDATE.XFEM
exact_sol.init(l, lambda, mu. Is); 

#endif >

base.small.vector ls_function(const base_node P, int num “ 0) { 
scalar.type x = P[0] , y = P[l] ; 
base.small.vector res(2); 
switch (num) { 
case 0: { 
res[0] = y; 
res(l] = -.5 + x;

> break; 

case 1: {
res[0] = gmm::vect_dist2(P, base.node(0.5, 0.)) - .25; 
res[l] » gmm::vect_dist2(P, base.node(0.25, 0.0)) - 0.27;

> break; 
case 2: {
resCO] = x - 0.25;
res[1] = gmm::vect_dist2(P, base.node(0.25, 0.0)) - 0.36;

> break;
default: assert(0);

>

return res;

y

bool crack.problem:: solve (plain_vector W) { 
size.type nb.dof.rhs - mf.rhs.nb.dof(); 
size.type N - mesh.dimO; 
ls.reinitO;

cout «  "Is.get_mesh_fem().nb.dof() = “ «  Is.get_mesh_fem().nb.dof() «  "\n"; 
for (size.type d “ 0; d < Is.get_mesh_fem().nb.dof(); ++d) {
Is.values(0)[d] ■ ls_function(ls.get_mesh_fem().point.of.dof(d), 0)[0];
Is.values(1)[d] » ls_function(ls.get_mesh_fem().point.of.dof(d), 0)[1];

>
ls.touchO;

if (add.crack) { 
ls2.reinit();

for (size.type d « 0; d < ls2.get.mesh.fem().nb.dof0; ++d) {
ls2.values(0) Cd] = ls_function(ls2.get_mesh.fem() .point.of.dof (d) , 1) CO] ; 
ls2. values(1) [d] = ls_function(ls2.get_mesh_fem() .point.of.dof (d) , 1) [1] ;

>
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Is2.touch();

ls3.reinit();
for (size.type d * 0; d < ls3.get_mesh_fem().nb.dof(); ++d) i

ls3.values(0)[d] * ls.function(ls2.get.mesh.fem().point.of.dof(d), 2)[0]; 
ls3.values(1) [d] - ls.function(ls2.get_mesh.femO .point.of.dof (d) , 2)[1];

>

ls3.touch();

>

mis.adapt(); 
mim.adapt(); 
mfls_u.adapt();
std::vector<getfem::pglobal_function> vfunc(4); 
for (size.type i ■ 0; i < 4; ++i)
vfuncCi] = isotropic_crack_singular_2D(i, Is,

(enrichment.option 2) ? 0.0 : cutoff.radius,
(enrichment.option --2) ? 0.0 : cutoff.radiusl,
(enrichment.option ** 2) ? 0.0 : cutoff.radiusO,

cutoff.func);

mf.sing.u.set.functions(vfunc);

if (enrichment.option «* 3 11 enrichment.option =*= 4) {
spider * new getfem::spider.fem(spider.radius, mim, spider.Nr, 

spider.Ntheta, spider.K, translation, 
thetaO);

mf .us. set.f inlte.element (mesh. convex.index (), spider->get.pf emO ); 
for (dal: jbv.visitor.c i(mf.us.convex.index()); !i.finishedO ; ++i) { 
if (mf_us.fem_of_eleraent(i)->nb.dof(i) 0) {

mf_us.set.finite_element(i,0);
>

>
spider~>check();

>

switch (enrichment.option) { 
case 1 :{
if(cutoff.func == 0)
cout«ttUsing exponential Cutoff... H«endl; 

else
cout«MUsing Polynomial Cutoff... "«endl; 
mf.u.sum.set.mesh.fems(mf.sing.u, mfls.u); break;

}
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case 2 :

dal::bit.vector enriched.dofs;
plain.vector X(mf.partition.of.unity.nb.dof());
plain.vector Y(mf.partition.of.unity,nb.dof());
getfem::interpolation(ls.get_mesh.fem(), mf.partition.of.unity,

Is.values(1), X); 
getfem::interpolation<ls.get.mesh.fem(), mf.partition.of.unity,

Is.values(0), Y); 
for (size.type j » 0; j < mf.partition.of.unity,nb.dof(); ++j) { 

if (gmm::sqr(X[j)) + gmm::sqr(Y[j]) <» gmm::sqr(enr.area.radius)) 
enriched.dofs.add(j);
>

if (enriched.dofs.cardO < 3)
DAL.WARNINGO("There is H «  enriched.dofs.card() «

N enriched dofs for the crack tip"); 
mf.product.set.enrichment(enriched.dofs); 
mf.u.sum.set.mesh.fems(mf.product, mfls.u);

>

break;
case 3 : mf_u_sum.set.mesh.fems(mf.us); break; 

case 4 :
mf.u.sum.set.mesh_fems(mf.us, mfls.u); 
break;

default : of.u.sum.set.mesh.fems(mfls.u)j break;

>

U.resize(mf_u().nb.dof());
if (mixed.pressure) cout «  "Number of dof for P: " «  mf.p.nb.dof() «  endl; 
cout «  "Number of dof for u: " «  mf.uO .nb.dof () «  endl;

// Linearized elasticity brick.

getfem::mdbrick.isotropic.linearized.elasticity<>
ELAS(mim, mf.uO, mixed.pressure ? 0.0 : lambda, mu);

if(bimaterial -= 1){
cout« "_____________________________________________________________" «endl;
cout«"CASE OF BIMATERIAL CRACK uith lambda.up - "«lambda_up«"; 
cout«"and lambda.down = "«lambda_dovn«endl;
cout« "_____________________________________________________________■ «endl;
std::vector<float> bi.lambda(ELAS.lambda().mf().nb.dof());

cout<<"ELAS.lambda() .mf () .nb.dof ()=“«"«ELAS.lambda() .mf () .nb.dof ()«endl;
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for (size.type ite ■ 0; ite < ELAS.lambdaO.mf().nb.dof();ite++) { 

if (ELAS.lambdaO .mf() .point.of.dof (ite) [1] > 0) 
bi.lambda[ite] “ lambda.up; 
else
bi_lambda[ite] = lambda.down;

>
//cout«“bi_lambda.size() * "«bi_lambda.size()«endl;
// cout«"ELAS.lambdaO .mf () .nb.dof ()=”-”«ELAS.lambda() .mf () .nb.dof ()«endl;

ELAS.lambda().set(bi.lambda);

>

getfem::mdbrick_abstract<> *pINC0MP; 
if (mixed.pressure) {
getfem::mdbrick.linear_incomp<> *incomp
= new getfem::mdbrick_linear.incomp<>(ELAS, mf_p); 

incomp->penalization_coeff0.set(1.0/lambda); 
pINCOMP = incomp;

} else pINCOMP » 4ELAS;

// Defining the volumic source term, 
plain.vector F(nb_dof_rhs * N); 
for (size.type i • 0; i < nb.dof.rhs; ++i) 

gmm: :copy(sol_f (mf.rhs.point.of.dof (i)) ,
gmm::sub.vector(F, gmm::sub_interval(i*N, N)));

// Volumic source term brick.
getfem::mdbrick_source_term<> V0L_F(*pINC0MP, mf.rhs, F);

// Defining the Neumann condition right hand side, 
gmm::clear(F);

// Neumann condition brick.

getfem::mdbrick_abstract<> epNEUHANN;

if (bimaterial == 1H
for(size_type i = 1; KF.sizeO; i=i+2)
F[i]e-0.2;

>
getfem::mdbrick_source_term<> NEUMANN(VOL.F, mf.rhs, F,NEUMANN.BOUNDARY.NUM); 

gmm::clear(F);
getfem: :mdbrick_source.term<> NEUMANN.HOM(NEUMANN, mf.rhs, F,NEUMANN_H0M0GENE_B0UNDARY.NUM) ;
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gmm::clear(F);
for(size_type i - 1; i<F.size(); i*i+2)
F[i]*0.2;

getfem::mdbrick.source_term<> NEUMANN1(NEUMANN.HOM, mf.rhs, F,NEUMANN.BOUNDARY.NUM1);

if (bimaterial =*1) 
pNEUMANN » k NEUMANN1; 

else
pNEUMANN - k NEUMANN;

//toto.solution toto(mf.rhs.linked.meshO); toto.init();
//assert(toto.mf.nb.dof() *** 1);

// Dirichlet condition brick.
getfem::mdbrick_Dirichlet<> final.model(*pNEUMANN, DIRICHLET.BOUNDARY.NUM, mf.mult);

if (bimaterial ■»= 1)
final.model.rhs().set(exact.sol.mf,0); 

else {
#ifdef VALIDATE.XFEM

final.model.rhs().set(exact.sol.mf,exact.sol.U);
#endif

>
final.model. set.constraints.type (getfem:: constraints.type (dir.with.mult) );

// Generic solve.
cout «  "Total number of variables : H «  final.model.nb.dof() «  endl; 
getfem::standard.model.state MS(final.model); 
gmm::iteration iter(residual, 1, 40000); 
getfem::standard_solve(MS, final_model, iter);

// Solution extraction
gmm::copy(ELAS.get.solution(MS), U);

return (iter.convergedO);

>

/**************************************************************************/

/* main program. */ 
/**************************************************************************/

int main(int argc, char *argv[]) {
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DAL_SET_EXCEPTION.DEBUG; // Exceptions make a memory fault, to debug. 
FE.ENABLE.EXCEPT; // Enable floating point exception for Nan.

//getfem::getfem.mesh_level_set.noisy();

try <
crack.problem p;
p.PAAAM.read_command.line(argc, argv); 
p.init();
p.mesh.vrite.to.file(p.datafilename + ".mesh"); 
plain,vector U(p.mf.uO .nb.dof ());
if Op.solve(U)) DAL_THROW(dal: :failure_error,"Solve has failed1');

getfem::mesh mcut; 
p.mls.global_cut_mesh(mcut); 
unsigned Q * p.mf.uO .get.qdimO; 
getfem::mesh.fem mf(mcut, Q);
mf.set.classical.discontinuous.finlte.element(2, 0.001);
// mf.set.finlte.element
// (getfem::fem.descriptor("FEM_PK_DISCONTINUOUS(2, 2, 0.0001)"));
plain.vector V(mf.nb.dof());

getfem: interpolation (p. mf.uO, mf, U, V);

getfem::stored.mesh.slice si; 
getfem::mesh mcut.refined;

unsigned NX = p.PARAM.int_value("NX"), nn;
if (NX < 6) nn » 24;
else if (NX < 12) nn * 8;
else if (NX < 30) nn * 3;

else nn * 1;

/* choose an adequate slice refinement based on the distance to the crack tip */ 

std::vector<bgeot::short.type> nrefine(mcut.convex.indexO.last.true()+l); 
for (dal: tbv.visitor cv(mcut .convex.indexO); Icv.finishedO ; ++cv) { 

scalar.type dmin»0, d; 
base.node Pmin,P;
for (unsized i*0; i < mcut.nb.points.of.convex(cv); ++i) {
P » mcut.points.of.convex(cv)[i];
d » gmm::vect.norm2(ls.function(P));
if (d < dmin II 1**0) i dmin * d; Pmin * P; >

>
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if (dmin < le-5) 
nrefineCcv] “ nn»8; 

else if (dmin < .1) 
nrefinetcv] « nn*2; 

else nrefineCcv] ■ nn; 
if (dmin < .01)
cout «  "cv: " «  cv «  ", dmin * " «  dmin «  "Pmin=" «  Pmin «  • * «  nrefineCcv] «  “\n"; 
>
{

getfem::mesh_slicer slicer(mcut);
getfem::slicer_build_mesh bmesh(mcut.refined);
slicer.push_back_action(bmesh);

slicer.exec(nrefine, getfem::mesh_region::all.convexes());
}
/ *

si.build(mcut,
getfem::slicer_build_mesh(mcut_refined), nrefine);*/ 

getfem::mesh_im mim.ref ined (mcut .refined);
mim.refined.set.integration.method(getfem::int.method.descriptor 

("IM_TRIANGLE(6)"));

getfem::mesh_fem mf_refined(mcut_refined, Q);  —
mf.refined.set.classical.discontinuous.finite.element(2, 0.0001); 
plain.vector W(mf.refined.nb.dof());

getfem: interpolation (p.mf.uO , mf.refined, U, W) ;

#ifdef VALIDATE.XFEM
p.exact.sol.mf.set.qdim(Q);
assert (p. exact.sol.mf .nb.dof () *=“ p.exact.sol.U.sizeO) ; 
plain.vector EXACT(mf_ref ined.nb.dof ()) ; 
getfem::interpolation(p.exact_sol.mf, mf.refined, 

p.exact.sol.U, EXACT);

plain.vector DIFF(EXACT); gmm::add(gmm::scaled(W,-l),DIFF);
#endif

umiimiitiimiiiiiiiiiimuiuiiiiiiiiui
// compute the strain

size.type N = p.mf.uO .get.qdimO; 
cout «  “Test" «  M «  ’\n’;
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plain.vector vStr(N*mf.nb.dof()); 
getfem::compute.gradient(mf, mf, V, vStr);

// end comp strain 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

if (p. PARAM. int .value ( "VTK.EXPORT")) { 
getfem::mesb.fem mf.refined.vm(mcut_refined, 1);
mf .refined, vm. set.classical.discontinuous.f inite.element ( i, 0.0001) ; 
cerr «  "mf.refined.vm.nb.dof»H «  mf_refined.vm.nb.dof() «  “\n"; 
plain.vector VMCmf.refined.vm.nb.dof());

cout «  "computing von misesNn";

getfem::interpolation.von_mises(mf.refined, mf.refined.vm, U, VM);

plain.vector DCmf.refined_vm.nb.dof() * Q),
DN(mf.refined.vm.nb.dof());

#ifdef VALIDATE.XFEM
getfem::interpolation(mf.refined, mf.refined.vm, DIFF, D); 
for (unsigned i=0; i < DN.sizeO; ++i) {
DN[i] - gmm::vect.norm2(gmm::sub_vector(D, gmm::sub_interval(i*Q, Q)));

>
#endif

cout «  "export to 11 «  p.datafilename + ".vtk" «  ",.\n"; 
getfem::vtk_export exp(p.datafilename + ".vtk”,

p. PARAM. int.value ( "VTK.EXPORT" )— 1) ;

exp.exporting(mf.refined);
//exp.write.point.data(mf_refined_vm, DN, “error"); 
exp.write_point_data(mf_refined_vra, VM, "von mises stress");

//exp.vrite.point.data(mf.refined, W, "elastostatic.displacement");

(fifdef VALIDATE.XFEM

plain.vector VM.EXACT(mf.refined.vm.nb.dof ()) ;

/* getfem::mesh_fem.global.function mf(mcut.refined,Q); 
std::vector<getfem::pglobal.function> cfun(4); 
for (unsigned j=0; j < 4; ++j)
cfun[j] " getfem::isotropic.crack_singular_2D(j, p.Is); 
mf.set.functions(cfun);
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getfem: :interpolation_von_mises(mf, mf.refined.vm, p.exact.sol.U, 
VM.EXACT);

* /

getfem:interpolation.von.mises(mf_refined, mf.refined_vm, EXACT, VM.EXACT); 
getfem: :vtk_export exp2Ccrack.exact.vtk"); 
exp2. exporting (mf.ref ined) ;
exp2.write.point.data(mf.refined.vm, VM.EXACT, "exact von mises stress"); 
exp2.write_point_data(mf_refined, EXACT, "reference solution");

#endif

cout «  “export done, you can view the data file with (for example)\n" 
"mayavi -d " «  p.datafilename «  ".vtk -f "
"WarpVector -m BandedSurfaceMap -m Outline\n";

>

#ifdef VALIDATE.XFEM
cout «  "L2 ERROR:"« getfem: :asm_L2_dist(p.mim, p.mf.uO, U, 

p.exact.sol.mf, p.exact.sol.U)
«  endl «  "Hi ERROR:"
«  getfem: :asm.Hi_dist(p.mim, p.mf.uO, U,

p.exact.sol.mf, p.exact.sol.U) «  "\n“;

/* cout «  "OLD ERROR L2:“

«  getfem::asm_L2_norra(mim_refined,mf.refined,DIFF)
«  “ HI:" «  getfem::asm_Hl_dist(mim_reflned,mf.refined,
EXACT,mf_refined,W) «  "\n";

cout «  "ex » " «  p.exact.sol.U «  “\n";
cout «  "U « " «  gmm::sub.vector(U, gmm::sub.interval(0,8)) «  "\n"; 

* /

#endif

>
>
DAL.STANDARD.CATCH.ERROR; 

return 0;
>

B.1.2 Param eter file

xxxxxxxxxxxxxxxxxxxxxxxxxxxyxxxxxx.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

% parameters for crack program X

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXY.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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XXXXX pde parameters : xxxxx
MU - 1.0; X Lam coefficient.
LAMBDA « 1.0; */. Lam coefficient.
MUINC - 100.0; X Lam coefficient.
LAMBDAINC = 100.0; 7, Lam coefficient.
BIMATERIAL = 1; X 1 : To enable the bimaterial case.
CUTOFF.FUNC = 0.2; CUT0FF1 = 0.2; CUT0FF0 - 0.2; LAMBDA.UP - 0.2; LAMBDA.DOWN - 0.2;

MESH_NOISE - 0; X Set to one if you want to "shake" the mesh 
XFEM.TYPE - *FEM_PK_WITH_CUBIC_BUBBLE(2, 2)';
FEM.TYPE - ’FEM_PK(2, 1)’; X PK element
XFEM.TYPE = ’FEM_QK(2,1)’; X Q1 fern for quadrangles
XFEM.TYPE - ’FEM.HERMITE.SEGMENT’; X (broken) Hermits fern on a segment
XFEM.TYPE = ’FEM_PK_HIERARCHICAL(2,2) ’; X Hierarchical PK on simplexes
MIXED.PRESSURE-0; X Mixed version or not.
X FEM.TYPE.P - ’FEM_PK(3,1)’; X PI for triangles
FEM.TYPE.P * ’FEM_PK_DISC0NTINU0US(2,0)’; X Discontinuous PI for triangles 
DIRICHLET.WITH.MULTIPLIERS - 0;

X DATA.FEM.TYPE must be defined if your main FEM is not Lagrangian 
DATA.FEM.TYPE - *FEM.PK(2,1)>;
X DATA.FEM.TYPE = ’FEM.PK(2,2) >;

XINTEGRATION - ’IM_TETRAHEDR0N(6)’; X quadrature rule for polynomials up
X to degree 6 on tetra 

SIMPLEX.INTEGRATION = ’IM_STRUCTURED_C0MP0SITE(IM_TRIANGLE(6), 5)’; INTEGRATION - 
>IM_STRUCTURED.C0MP0SITE(IM_TRIANGLE(6) , 5) ’;
XINTEGRATION - *IM_EXACT.SIMPLEX(2)’; X exact integration on triangles 
XINTEGRATION = ’IM_NC(2,6)’; X newton-cotes of degree 6 on triangles 
XSIMPLEX.INTEGRATION = ’IM.TRIANGLEC6) ’;
XINTEGRATION- ’IM.TRIANGLE(6)’;
ADDITIONAL.CRACK - 0;
ENRICHMENT.OPTION - 2; X 0 = Pas d’enrichissement

XXXXX d is c re t is a t io n  param eters :

MESH.TYPE = ’GT.PKC2,1)*; X l in e a r  tr ia n g le s

XMESH.TYPE - ’GT_LINEAR_QK(2,1) ’; X l in e a r  rec tan g le s  

XMESH.TYPE - *GT_PRISM(3f 1) ’; X 3D prisms

XXXXX

NX = 10; X space step.

X I -  global functions with cutoff 
X 2 - standard XFEM on a fixed zone 
X 3 - spider fern alone 

X 4 - spider fern enrichment
MESHNAME-'meshes/poly-035.msh *;
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RADIUS.ENR.AREA -0.1; CUTOFF-0.2 
X RADIUS.ENR.AREA =0.2; 
SPIDER.RADIUS = 0.3;
SPIDER.NR = 20;
SPIDER.NTHETA = 20;
SPIDER.K-1;
RESIDUE - IE-9;

X size of the cartesian mesh in r for spider tea 

X size of the cartesian mesh in theta for spider fern 
X order of the spider fern 
X residue for iterative methods if any.

XXXXX saving parameters XXXXX

R00TFILENAME = 'crack*; X Root of data files.
VTK.EXP0RT - I X  export solution to a .vtk file T
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