
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2006

Extended finite element simulation of fracture mechanisms in Extended finite element simulation of fracture mechanisms in

composite materials. composite materials.

Siamak Tavoosfard
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Tavoosfard, Siamak, "Extended finite element simulation of fracture mechanisms in composite materials."
(2006). Electronic Theses and Dissertations. 7125.
https://scholar.uwindsor.ca/etd/7125

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7125?utm_source=scholar.uwindsor.ca%2Fetd%2F7125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EXTENDED FINITE ELEMENT SIMULATION OF FRACTURE
MECHANISMS IN COMPOSITE MATERIALS

by

Siamak Tavoosfard

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through Engineering Materials
In Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada

2006

© 2006 Siamak Tavoosfard

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-42316-5
Our file Notre reference
ISBN: 978-0-494-42316-5

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nntemet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Due to the increasing use of aluminum silicon alloys in automotive in­

dustries for reduced weight in vehicles and decreased emission of pollutants for

improvements in fuel economy, the fracture characteristics and wear resistance of

aluminum alloys have become of great interest. Hypereutectic Al-Si alloys have the

potential to eliminate cast iron liners in engine blocks. One of the challenges for

casting difficulties of hypereutectic Al-Si Alloys is coarse primary silicon particles

size, irregular shape and uneven distribution. Deformation of surface and subsur­

face layers and also fracture of subsurface layer in this nano-composite structure

are the determining factors of the wear resistance properties of the material. The

major concern of this work is focused on developing a numerical model of fracture

(crack propagation) in aluminum-silicon nano-composites. More particularly, an

extended finite element approach couple with the level set method is used.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedicated to m y wife Haleh

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOW LEDGEMENTS

This thesis is the account of two years of concerted work at University of Windsor,

which would not have been possible without the help of many. A few lines are

too short to make a complete account of my deep appreciation for my advisor,

Vesselin Stoilov. I wish to first thank him for his unfaltering trust and constant

encouragements, which have been essential ingredients in the construction of our

success throughout the last two years. I wish to thank him for who he is as

a professor and manager, an enthusiastic, sagacious, square and honest minded

individual with broad interests who provides unwavering support in the most

difficult times. But I want to extend my appreciation to him for his understanding

and account of life outside work. His trust and honesty, his efforts in understanding

a student’s personality and tailoring his management accordingly translated for

me into very pleasurable two years at University of Windsor. I also wish to thank

Vesselin Stoilov for being such an attainable, likable and witty professor and

individual, helping a student feel at ease and comfortable. My advisor’s approach

to research and science inspired, after long internal struggles, my pursuing of an

academic career. I wish to thank him for that. It has been a distinct privilege for

me to work with Professor Vesselin Stoilov.

I would like to extend my thanks to Professor Ahmet Alpas for accepting me

so readily as a new addition to the research team.

I thank all the professors here at University of Windsor that have dispensed

wonderful lessons to me at the university. I am thinking especially about Profes­

sors Northwood for Advanced Crystallography , Altenhof for the Crashworthiness

and Impact Analysis by Finite Element, Hu for Casting Modelling and Simulation,

for Introduction to Finite Element Analysis, Zamani.

I would not be sitting in front of my monitor typing these acknowledgment

lines without my Mom and Dad. I owe my parents, Ismail and Tahereh much

of what I have become. I thank them for their love, their support and their

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

confidence throughout the past years. My parents have always put education as

a first priority in my life, and raised me to set high goals for myself. They taught

me to value honesty, courage and humility above all other virtues. I have always

needed to work hard to achieve my goals in life and they have always been there

for me as an unwavering support. But for my wife, Haleh who has always stood

by me and comforted me on the numerous occasions when I felt downcast and

dispirited, this work could not have been achieved. I thank her for her love and

devotion, which, with her earnest application to helping me see through the mist

of discouragement were essential to my emotional and psychological balance and

thus to my success in this enterprize. I also thank her for wordlessly bearing

with my long hours in the lab, my little availability, recurrent bad temper and

irascibility. Haleh has never known me otherwise than as a graduate student and

I dedicate this work to her, to honor her love, patience and genuine attention

during these years.

This thesis has been financially supported by the Natural Sciences and En­

gineering Research Council of Canada (NSERC) and General Motors of Canada

(GM) which is gratefully acknowledged.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

A B ST R A C T ... iii

DEDICATION.. iv

ACKNOWLEDGEMENTS ... v

LIST OF F IG U R E S ... ix

I INTRODUCTION... 1

II STANDARD FINITE ELEMENT M E T H O D ... 7

2.1 What is the Finite Element M ethod?... 7

2.2 How the Finite Element Method w o rk s? 7

2.3 Basic Steps for Solving a Problem... 10

2.3.1 Steady State Heat Conduction in a B a r 11

2.3.2 Step 1: Formulation of the problem................................... 11

2.3.3 Step 2: Formulation of the weak f o r m 12

2.3.4 Step 3: Finite element approximation 13

2.3.5 Step 4: Assembling the stiffness matrix and load vector . 16

III XFEM AND LEVEL S E T .. 20

3.1 Extended Finite Element M ethod... 20

3.1.1 Extended finite element approximation............................. 20

3.1.2 Discretized equilibrium equations...................................... 21

3.1.3 Level set representation of a crack in 2D 23

3.1.4 Definition and selection of the enriched n o d e s 24

3.1.5 Enrichment functions: Discontinuous interior enrichment 25

3.1.6 Enrichment functions: Asymptotic near-tip enrichment . 26

3.1.7 Summary of the algorithm.. 26

3.2 Level Set ... 27

3.3 Definition of Level Set M e th o d .. 29

3.4 Numerical In teg ra tio n .. 29

3.5 C ++ Im plem entation 31

3.6 Mesh G eneration 32

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IV NUMERICAL RESU LTS... 33

4.1 Configuration................................... 33

4.2 Aluminium Silicon Composite M ate ria ls 36

4.2.1 Single inclusion.. 36

4.2.2 Multiple inclusions... 40

4.2.3 Bimaterial-two dimensional delamination......................... 44

4.2.4 Bimaterial - three dimensional delam ination 47

4.2.5 Po lycrysta l... 49

V CONCLUSIONS AND FUTURE W O R K ... 52

5.1 Conclusions.. 52

5.2 Future Work . .. 52

APPENDIX A STEADY STATE HEAT CONDUCTION IN A BAR . 54

A.l An Example .. 54

A.2 Organize the Finite Element Method P rogram 57

APPENDIX B DOCUMENTATION OF FINAL PROGRAM 58
B .l Crack Propagation Program Using XFEM/LS M e th o d 58

B.1.1 Crack propagation p rogram ... 58

B .l.2 Parameter file... 78

REFERENCES... 81

VITA A U C T O R IS 84

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

2.1 Steady state thermal conduction in a b a r 11

2.2 Approximation of 9 and 9 by the use of shape functions........ 13

2.3 Relation between local and global coordinates.................................. 15

2.4 Test functions used to get the final form of the equation................ 17

3.1 Nodal enrichment for a crack in 2D defined by two level set functions 23

3.2 X-FEM/LS crack growth algorithm in 2D 28

3.3 Element partitioning for X-FEM integration. The interface is de­
noted by a heavy dashed line, quadrature points by circles and the
triangular elements resulting from the split in light dotted lines.
Note that the subelements are only used for integration purposes
and that no additional dof is associated with them [16]................... 30

4.1 Geometry, force and crack nuclei .. 35

4.2 Geometry for delaminated c rack ... 35

4.3 Single circular inclusion: a) crack propagation pattern b) stress-
strain response... 37

4.4 Single elliptical inclusion: a) crack propagation pattern b) stress-
strain response... 38

4.5 Stress-strain diagrams for single circular and elliptical inclusion . 38

4.6 Critical stress as function of the orientation of single elliptical in­
clusion 39

4.7 Critical stress as function of the shape of the inclusions.............. 39

4.8 Coordinate of multiple elliptical inclusion parallel to the force . . 40

4.9 Multiple elliptical inclusions: a) crack propagation pattern b) stress-
strain response... 41

4.10 Multiple elliptical inclusions: a) crack propagation pattern b) stress-
strain response.. 41

4.11 Multiple elliptical inclusions: a) crack propagation pattern b) stress-
strain response.. 42

4.12 Multiple elliptical inclusions: a) multiple cracks propagation pat­
tern b) stress-strain response.. 42

4.13 Compare critical stress diagrams to orientation of inclusions . . . 42

4.14 Critical stress as function of the orientation of multiple inclusion . 43

4.15 Critical stress as function of the orientation of in c lu sio n s 43

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.16 Al-Si Bimaterial displacem ent.. 44

4.17 Mesh and crack in Al-Si B im aterial.. 45

4.18 Von Misses Stress in Al-Si B im aterial... 45

4.19 Displacement in Al-Si Bimaterial with multiple cracks................. 46

4.20 3D geometry for delaminated crack test shows mesh and crack plane 47

4.21 Mesh and crack in Y-Z plane... 48

4.22 Displacement for delaminated crack t e s t 48

4.23 Polycrystal geom etry... 50

4.24 Polycrystal m e s h ... 50

4.25 Mesh and crack in Polycrystal with a crack.................................... 51

A.l Example problem... 54

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

INTRODUCTION

Aluminium alloys have the potential to reduce vehicles weight and decrease emis­

sion of pollutants by improvements in fuel economy. However, no aluminum alloy

has been developed or identified that provides the required combination of cast­

ing, machining and wear resistance properties for manufacturing engine block.

Engine manufacturers have tended to select castable and machinable alloys and

modify the surfaces of the cylinder walls to obtain the necessary wear resistance.

Thus, when current cylinder blocks are cast of alloys such as AA 319 or AA 356

they require cylinder liners (cast iron, metal matrix composite, AA390) or surface

treatment (plating, coating) to provide wear resistance during operation. Cast

iron liners have been placed like cores in the casting mold or inserted in the ma­

chined cylinder bores. Other wear resistant liner compositions have also been used.

As an alternative to cylinder liners, wear resistant coatings have been applied to

the cylinder walls of the cast and machined block. Each of these modifications to

the block increases the cost of the product. In addition, engine blocks with cast

iron liners suffer because of the added weight, and relatively high thermal stresses

due to different thermal conductivity and thermal expansion of the two mate­

rials. Therefore there still remains a need for an aluminum alloy that provides

all of the above properties for manufacturing engine block and wear properties.

The requirements for an aluminum alloy intended for mass production of an all-

aluminum cylinder block for an automotive engine are very demanding. The alloy

must require minimal post casting operations, such as heat-treatment, machining

and assembly.

Germany is the leading producer of the all-aluminum performance blocks (by

Porsche, Daimler-Benz and BMW). Conversely, US automotive manufacturers are

still without an all-aluminum block in production. This state of affairs may change

because the Japanese automotive manufacturers have a stated goal of decreasing

the weight of the automobile by 40%. Thus, the cast iron block and the aluminum

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

block with cast iron liners, both will be unacceptable in the relatively near future

for automakers that are interested in gaining or maintaining market share. Us­

age of all-aluminum engine blocks provides performance-based benefits including

reduced weight, improve thermal conductivity and greater rigidity. The thermal

conductivity of hypereutectic Al-Si alloys is nearly 400% higher than that of cast

iron. This high thermal conductivity is one of the most useful and important prop­

erties. The thermal and physical properties of the copper-free aluminum silicon

hypereutectic alloys are closely related to and dependent on the silicon content of

the alloy. For example, with increasing silicon content the coefficient of thermal

expansion decreases where as the modules of elasticity increases. Finally, wear

resistance is provided by the volume fraction of primary silicon particles in the

microstructure. There is nearly a doubling of the wear resistance in going from

the 16% silicon content to the 20% silicon content because the volume fraction of

primary silicon doubles with this composition [12].

One of the challenges for casting difficulties of hypereutectic Al-Si Alloys is

coarse primary silicon particles size, irregular shape and uneven distribution. The

development of an optimization module integrated with simulation codes will fa­

cilitate the fast set up of the most suitable casting parameters while additionally

reducing internal defects. By using numerical optimization, expensive and time

consuming ’’trial and error” iterations are reduced to the minimum, or even elim­

inated.

Computer simulation of fracture processes remains a challenge for many indus­

trial modelling problems. The basic question is how to incorporate the disconti­

nuity of the displacement field into the finite element model. One straightforward

method is to enforce mesh lines along the crack, i.e., to create a new mesh at each

propagation step as the crack propagates with time. In standard finite element

method, the non-smooth displacement near the crack tip is captured by refining

the mesh locally. The number of degrees of freedom may drastically increase, es­

pecially in three dimensional applications. Moreover the incremental computation

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of a crack growth needs frequent remeshings. Reprocessing the solution on the

updated mesh is not only a costly operation but also it may have a troublesome

impact on the quality of results. Also in standard finite-element analysis the rep­

resentation of discontinuities in the displacement and/or strain fields requires the

alignment of mesh boundaries to the discontinuity line or surface. The extended

finite-element method (XPEM) enriches the standard finite-element basis through

a local partition of unity (PU), Babuska and Melenk [22]. This was first applied

to fracture problems by Belytschko et al. [3], where the asymptotic nearfield for a

crack was incorporated by a local PU and the discontinuity in this field was used

to represent the crack discontinuity independent of the mesh.

When multiple crack segments are needed to be enriched with the near tip

fields, a mapping algorithm introduced by Fleming et al. [14] is used to align the

discontinuity with the crack geometry. They also proved that the use of discontin­

uous displacements along the crack produces a solution with zero traction along

the crack faces. Moes et al. [23] introduced a much more elegant and straight­

forward procedure to introduce a discontinuous field across the crack faces away

from the crack tip by adapting the generalized Heaviside function, and developed

simple rules for the introduction of the discontinuous and crack tip enrichments.

Later, Daux et al. [8] introduced the junction function concept to account for mul­

tiple branched cracks and named their method the extended finite element method

(XFEM). They have employed this method for modelling complicated geometries

such as multiple branched cracks, voids and cracks emanating from holes without

the need for the geometric entities to be meshed. Sukumar et al. [32] studied

cracks in three dimensions with the XFEM. Dolbow et al. [10] studied 2D crack

growth under three different interfacial constitutive laws on the crack faces: per­

fect contact and unilateral contact with or without friction [11]. In XFEM, a

standard finite element mesh for the problem is first created without accounting

for the geometric entity. The presence of cracks, voids or inhomogeneities is then

represented independently of the mesh by enriching the standard displacement

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approximation with additional functions. For crack modelling, both discontinu­

ous displacement fields along the crack faces and the leading singular crack tip

asymptotic displacement fields are added to the displacement based finite element

approximation through the PU method. The additional coefficients at each en­

riched node are independent. In addition, XFEM provides a seamless means to

use higher order elements or special finite elements without significant changes in

the formulation. The XFEM will also improve the accuracy in problems where

some aspects of the functional behavior of the solution field is known a priori and

relevant enrichment functions can then be used.

In order to model complex crack configurations, more powerful and convenient

techniques for representing internal discontinuities are required. The level set

method (LSM) developed by Osher and Sethian [25] [29] for modelling the motion

of interfaces is very promising. It represents the interface as the zero level set of

a function of one higher dimension. With the use of the LSM, the motion of the

interface is computed on a fixed mesh. The LSM handles topology changes of the

interface naturally, and extending it to higher dimensions is easy. The geometric

properties of the interface can also be obtained from the level set function. By

coupling the LSM with the XFEM, Stolarska et al. [31] studied the growth of a

fatigue crack; Belytschko et al. [5] studied several frictionless contact problems

and provided the level set functions of discontinuities in a function, in a specific

component of a function as well as in its derivatives.

Iarve [17] replaced the Heaviside step function with a higher order polynomial

B-spline shape function approximation. Stazi et al. [30] investigated quadratic

background elements for linear elastic fracture mechanics able to represent a crack

with curvature. Fan et al. [13] enriched the crack tip node with singular as well as

higher order terms of the crack tip asymptotic field. The accuracy of the directly

determined stress intensity factors (SIFs) can be significantly improved. How­

ever, for general mixed mode cracks, the SIFs are still not very accurate, since

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the enrichment approximation adjacent to the crack tip cannot reduce to the ac­

tual crack tip field. Xiao and Karihaloo [34], and Liu et al. [21] ensured that

the enriched approximation is equivalent to the crack tip asymptotic field. They

obtained SIFs directly for homogeneous as well as interfacial cracks. Belytschko

et al. [4] developed a new method for handling a discontinuity that ends within

an element, and showed how to switch from a continuum description to a discrete

discontinuity for rate-independent materials when the governing partial differen­

tial equation for momentum loses hyperbolicity (i.e. the differential equations of

equilibrium lose ellipticity). The loss of hyperbolicity is tracked enabling both

the crack speed and crack direction to be determined for a given material model.

Ventura et al. [33] described the level set in two dimensions by the sign of the

level set function and the components of the closest point projection to the sur­

face. The update of the level set was constructed by geometric formulas. Chessa

and Belytschko [6] introduced arbitrary discontinuities in space-time using a local

enrichment to discontinuities along a moving hyper-surface. They showed that

by capturing the discontinuity in time as well as space the results are improved

in comparison with capturing the discontinuity in space alone. For stationary

and growing cracks, Lee et al. [19] modelled the near-tip field by superimposing

quarter point elements on an overlaid mesh while the rest of the discontinuity was

implicitly described by a step function.

Moes et al. [24] and Gravouil et al. [15] studied non-planar 3D crack growth.

Chopp and Sukumar [7] studied propagation of multiple coplanar cracks. Liang

et al. [20] studied evolving crack patterns in thin films. Many works have also

appeared on the cohesive crack model, as reviewed by de Borst et al. [9].

Rubinstein [28] has shown that relatively small errors in the determination of

the crack path deflection angle can lead to a significant cumulative deviation of

the crack path over a finite crack length. Therefore, a reliable analysis of crack

propagation requires not only a suitable criterion of crack growth but also accurate

evaluation of the crack tip stress field.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Recently, Bchet et al. [2] and Laborde et al. [18] introduced singular mappings

for numerical integration of the singularity in r- or radial direction.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER II

STANDARD FINITE ELEM ENT M ETHOD

2.1 W hat is the Finite Element M ethod?

The finite element method is a numerical technique for obtaining approximate

solutions to the partial differential equations that arise in scientific and engineering

applications.

2.2 How the Finite Element M ethod works?

In a continuum problem of any dimension, the field variable (whether it is pressure,

temperature, displacement, stress, or some other quantity) possesses infinitely

many values because it is a function of each generic point in the body or solution

region. Consequently, the problem is one with an infinite number of unknowns.

The finite element discretization procedures reduce the problem to one of a finite

number of unknowns by dividing the solution region into elements and by ex­

pressing the unknown field variable in terms of assumed approximating functions

within each element. The approximating functions (sometimes called interpola­

tion functions) are defined in terms of the values of the field variables at specified

points called nodes or nodal points. Nodes usually lie on the element boundaries

where adjacent elements are connected. In addition to boundary nodes, an ele­

ment may also have a few interior nodes. The nodal values of the field variable

and the interpolation functions for the elements completely define the behavior of

the field variable within the elements. For the finite element representation of a

problem the nodal values of the field variable become the unknowns. Once these

unknowns are found, the interpolation functions define the field variable through­

out the assemblage of elements. Clearly, the nature of the solution and the degree

of approximation depend not only on the size and number of the elements used but

also on the interpolation functions selected. We cannot choose functions arbitrar­

ily, because certain compatibility conditions should be satisfied. Often functions

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are chosen so that the field variable or its derivatives are continuous across ad­

joining element boundaries. The important feature of the finite element method

is the ability to formulate solutions for individual elements before putting them

together to represent the entire problem. This means, for example, that if we are

treating a problem in stress analysis, we find the force-displacement or stiffness

characteristics of each individual element and then assemble the elements to find

the stiffness of the whole structure. In essence, a complex problem reduces to

considering a series of greatly simplified problems.

Another advantage of the finite element method is the variety of ways in which

one can formulate the properties of individual elements. There are basically three

different approaches. The first approach to obtaining element properties is called

the direct approach because its origin is traceable to the direct stiffness method of

structural analysis. However the direct approach can be used only for relatively

simple problems.

Element properties obtained by the direct approach can also be determined

by the variational approach. The variational approach relies on the calculus of

variations and involves extremizing a functional. For problems in solid mechanics

the functional turns out to be the potential energy, the complementary energy,

or some variant of these. Knowledge of the variational approach is necessary to

work beyond the introductory level and to extend the finite element method to a

wide variety of engineering problems.

A third and even more versatile approach to deriving element properties is the

weighted residuals approach. The weighted residuals approach begins with the

governing equations of the problem and proceeds without relying on a variational

statement. This approach is advantageous because it thereby becomes possible

to extend the finite element method to problems where no functional is available.

The method of weighted residuals is widely used to derive element properties for

nonstructural applications such as heat transfer and fluid mechanics.

Regardless of the approach used to find the element properties, the solution of

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a continuum problem by the finite element method always follows an orderly step-

by-step process. To summarize in general terms how the finite element method

works we will succinctly list these steps now.

1. Discretize the Continuum: The first step is to divide the continuum or

solution region into elements. A variety of element shapes may be used, and

different element shapes may be employed in the same solution region. Indeed,

when analyzing an elastic structure that has different types of components such

as plates and beams, it is not only desirable sometimes but also necessary to use

different elements in the same solution. Although the number and the type of

elements in a given problem are matters of engineering judgment, the analyst can

rely on the experience of others for guidelines.

2. Select Interpolation Functions: The next step is to assign nodes to each

element and then choose the interpolation function to represent the variation of

the field variable over the element. The field variable may be a scalar, a vector, or a

higher-order tensor. Often, polynomials axe selected as interpolation functions for

the field variable because they are easy to integrate and differentiate. The degree

of the polynomial chosen depends on degree of approximation, the nature and

number of unknowns at each node, and certain continuity requirements imposed

at the nodes and along the element boundaries. The magnitude of the field variable

as well as the magnitude of its derivatives may be the unknowns at the nodes.

3. Find the Element Properties: Once the finite element model has been

established (that is, once the elements and their interpolation functions have been

selected), we are ready to determine the matrix equations expressing the properties

of the individual elements. For this task we may use one of the three approaches

just mentioned: the direct approach, the variational approach, or the weighted

residuals approach.

4. Assemble the Element Properties to Obtain the System Equations. To

find the properties of the overall system modeled by the network of elements

we must assemble all the element properties. In other words, we combine the

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

matrix equations expressing the behavior of the elements and form the matrix

equations expressing the behavior of the entire system. The matrix equations for

the system have the same form as the equations for an individual element except

that they contain many more terms because they include all nodes. The basis

for the assembly procedure stems from the fact that at a node, where elements

are interconnected, the value of the field variable is the same for each element

sharing that node. A unique feature of the finite element method is that the

system equations are generated by assembly of the individual element equations.

5. Impose the Boundary Conditions: Before the system equations are ready

for solution they must be modified to account for the boundary conditions of the

problem. At this stage we impose known nodal values of the dependent variables

Or nodal loads.

6. Solve the System Equations: The assembly process gives a set of simultane­

ous equations that we solve to obtain the unknown nodal values of the problem.

If the problem describes steady or equilibrium behavior, then we must solve a set

of linear or nonlinear algebraic equations. If the problem is unsteady, the nodal

unknowns are a function of time, and we must solve a set of linear or nonlinear

ordinary differential equations.

7. Make Additional Computations If Desired: Many times we use the solution

of the system equations to calculate other important parameters. For example, in

a structural problem usually the nodal unknowns are displacement components.

From these displacements we calculate element strains and stresses. Similarly, in

a heat-conduction problem the nodal unknowns are temperatures, and from these

we calculate element heat fluxes.

2.3 Basic Steps for Solving a Problem

There are several basic steps to solving a problem by the FEM method. These

steps are:

1. Formulation of the problem into a differential or integral equation.

2. Development of the weak formulation of the problem.
10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Finite element approximation of the domain and variables.

4. Assembling the stiffness matrix and load vector and solving the problem.

5. Post processing (analysis of the results).

2.3.1 S teady S ta te H eat C onduction in a B ar

We will proceed to describe the steps in the finite element method by the aid of

an example. Consider the problem of heat conduction through a bar.

2.3.2 S tep 1: Form ulation of th e problem

The problem under consideration is that of the steady state flow of heat through

a bar. Figure 2.1 shows how heat flows through an element of this bar. Balancing

the heat entering and exiting this element gives

q(x) + f(x)A(x) = q(x + A x) , (2.1)

where q is the heat flux along the bar and f{x) is the heat flow through the lateral

surfaces per unit length of the bar. Reorganizing and taking the limit as Ax goes

to zero yields

! - / (.) (2.2)

Introducing Fouriers law of heat conduction (q = —k ^) into this equation results

f(x)
f(x)

//

■H I
Ax

tN \
 ̂ q(x)— - | |— ►qfx+Ax)

' b Ax

Figure 2.1: Steady state thermal conduction in a bar

in
rPf)

~ k d £ = /(X)’ (2‘3)

where 9 is the temperature and k is the coefficient of thermal conduction.

Since the problem is a second order ordinary differential equation one can

prescribe two conditions. We will look at solving the above differential equation

subject to any one of the following boundary conditions:
11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 — 0a at x = a and 0 = 0b at x = b,

0 — Qa at x = o and q — —k ^ = qb at x = b,

q = — = qa at x = a and 0 = 0b at x — 6, or

q = —k ^ = qa at x = a and q = —k ^ = % at x

2.3.3 Step 2: Form ulation o f the weak form

The solution to this problem is a temperature field which satisfies the differential

equation
J2a

(2.4)

at every point in the bar. We will relax this requirement by replacing this equation

by

— f kO^rda; = f 0f(x)dx, (2.5)
J r J r

where R is any region of the bar and 0 is a test function. If one requires that

this equation hold for all possible test functions 0, it will be possible to get the

original differential equation from this integral equation. Any point in the bar

can be isolated by selecting a test function which is only positive and is nonzero

only in a small region around that point. The aim is not to require the integral

equation to hold for all possible 0 functions, but to select a set of test functions

and require the integral equality to hold for this set of functions. Hence, we do not

require the differential equation to be exactly satisfied at all points, but require

the temperature field to only satisfy the integral equation for a select number of

test functions (we have weakened the original equation).

We will now use integration by parts to get the weak form of the problem as

~ lkŜ]" ‘ +l k^ = l Sflx)ix' (2-6>

subject to the appropriate boundary conditions. The application of integration by

parts also introduces a weakening of the problem since we are no longer required

to have temperature fields which have a second derivative. It is now only required

that the temperature field have a first derivative as can be seen from equation.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.3.4 S tep 3: F in ite elem ent approxim ation

We will use two node line elements to approximate both the temperature field

and the test functions. The length of the bar will be partitioned into ne elements

as shown in Figure 2.2. Each element has an element number and one node at

each end. Nodes are given two numbers. The global node number is one which

is unique for each node and which distinguishes it from all other nodes. For each

element there is also a local numbering system. For a two node element the local

nodes are distinguished in the element by designating a local node number of 1

to one node and 2 to the other node.

The temperature and the test function will be approximated over each element

by

et
0 = ee1N1(x) + 0tN2{x) = N i i x) N 2 (x)

and

0 = OlNtix) + 0e2N2(x) =
r -I N i (x)

■ N 2 (x)

(2.7)

(2 .8)

where 0® is the value of 0 at local node i, 0? is the value of 0 at local node i, and

© (§) ® © elem ent number

1 2 3 4 n nodal number
0

3 4
©>

3 4 3

F igure 2.2: Approximation of 0 and 0 by the use of shape functions.

N{(x) are known functions of x. The A/j are known as shape functions. The shape

functions are selected such that Ni = 1 at local node 1, Ni = 0 at local node 2,

N2 = 0 at local node 1, N2 — 1 at local node 2. For a two node line element of

length le and local coordinate s as shown in Figure 2.3, the shape functions will

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be

and

Ni = 1

N2 = y
►ft

(2.9)

(2 .10)

The shape functions are selected such that the sum of the shape functions at each

point will add up to unity. It must be noted that the shape functions are different

for different elements, even though this is not made explicit in the notation.

The two integrals in the weak formulation of the problem, given in equation

(2.6), can each be written as a sum of integrals, each integral being over one

element. This can be written as

/J a

6 dOdQ
„ dxdx ^—f j n " dxdxa e—l “ e

^ r ,d0d0 ,> I k-——dx, (2 .11)

and
r b n e p

/ 0f(x)dx = ^ 2 / 0f(x)dx, (2.12)
a e=l

where is the domain of element number e.

Over each element one can use the above approximations for the temperature

and test function to get

rlc dfitNi + %N2] djeiNt + 0%N2]/ * * * * _ / % «
Jn dx dx J0 ds ds

-ds

and

f 0f(x)dx = / V i ^ i + 0L2N2}f(x)ds,
Jq Jo

(2.13)

(2.14)

since x = Xi + s, where x\ is the location of the first node in the element. Since

0®, 02 , Q\, and 6% are constants, one can write

and

(W _ d[6\N1 + 62N2]
dx ds

<W _ d[0lNi + 0IN2]
dx ds

14

0\ e\
dJV,
da

dNi
ds

(2.15)

dNi dN'j
ds ds

el
(2.16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/
/
/
/

✓ s p <D q
/ / 1

I—
2

X

global node number

local node number

Figure 2.3: Relation between local and global coordinates.

Substitution of these relations into the integrals of equations (2.13) and (2.14)

gives

^ r i 0?
e\ ez ' s J" '

, dO d,Q , k — ~—ax = k
ax dx I "Jo d N i

ds

dN i dN i
ds ds

ds

and
r -] We Ni

J Jo n 2
f(x)ds.

These equations can be written as

m m .

and

where

f 6f(x)dx = [de]T[fe],
Jsi

0f
m =

[6e

[Ke} = K l x

1

* (d N , \2
v ds >

dN, dNi
ds ds

K 21 1

h d N i dN i
ds ds

(dN i \2
V ds >

ds,

[/e] =
f l 1 £ ...

,
1

/ I Jo n 2
f(x)ds.

(2.17)

(2.18)

(2.19)

(2 .20)

(2 .21)

(2 .22)

(2.23)

(2.24)

The matrix [K e] is known as the element stiffness matrix and the matrix [/e] is

known as the element load vector. For the shape functions in (2.9) and (2.10) we
15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have ^ and ^ ^ . Therefore, the element stiffness matrix can be

written as

m = k f '
Jo

1 1 k k
if ds = le le

1 1 _k_ k_
^ . le le

(2.25)

To evaluate the element load vector one needs to know f{x). We will later calculate

this for a particular example. The weak form of the problem can now be written

as
ne ne

IV — + E i v m r] = E ^ n n (2.26)
e = l e = l

where Fouriers law is used to replace the derivative of temperature in the first

term.

2.3.5 Step 4: A ssem bling the stiffness m atrix and load vector

The next step is to organize the problem in the form of a set of algebraic equations.

Consider the example of a problem with two elements and three nodes as shown

in Figure 2.4. The two summations in equation (2.26) can be written as

e—1

r -i
K ln * } >

1

r -I

1
0

.2

.
S

f 9\
s; 9 3 + Bj B\

K \ . K

1
to

n
-

1

■

•

01 02 03

K l K h 011 "12

K h K l2 + K l K f2

0 K l K%2

and

E i V i n =
e = l

#»1
6\ 0q

f l
+ 9\ 91

A ■

01

02

03

f t

/I

(2.27)

0\ 02 03

n
n+n

f i

(2.28)

Therefore, for this problem the weak formulation given in equation (2.26) can be

put in the form

[03,3 ~ 01,1} + [9}t [K] [9] = [9] [/], (2.29)
16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0

•---------------- '

1

.....................•------------- -—*--------------- a
2 3 4 5

1 2 S

1

4 5

1 2 3

1

4 5

1 2 3 4 5

•--------------- >--------------- -a---------------
1 2 3 4 5

F igure 2.4: Test functions used to get the final form of the equation.

where [if] is known as the global stiffness matrix, [/] is known as the global load

vector, and

0i

[&} =

[0] =

(2.30)

(2.31)

m

K n K n ifis ifx1! i f 12 0

K2l i f22 if23 — if2! i f ^ + ifx2! K \2 (2.32)

Kzi i f 32 if33 0 if22! if222.

f l f l

[/] = h = n + f i > (2.33)

h f l

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To illustrate the way in which one arrives at the final set of equations we will

write the expanded form of equation (2.29) in the form

K n K n K 13 01

[#3g3 — # lg l] + 01 02 03 K 21 K 22 K 23 02

1
CO$£

1 03

0\ 02 03 (2.34)

The test functions 0 are arbitrary functions which we will select in the manner

shown in Figure 2.4. Three test functions are selected since we will have three

unknowns in this problem (0i, 02, 03; <?i, 02 , 03 ; 0i, 02, q2\ or qi, 02, (fe)- Each

test function provides one algebraic equation for the unknowns. As can be seen

from Figure 2.4, the first test function has 0\ = 1, 02 = 0 , and 03 = 0. The

second test function has 0i — 0, 02 = 1 , and 0z = 0. The third test function has

0i — 0, 02 = 0 , and 63 — 1. The following three equations are obtained from the

substitution of the selected test functions into equation (2.34).

—q \ + K n 0 i + K i2 0 2 + K i3 0 3 = f l y

K 2\0 \ + K>2202 + K 2303 = /2)

Q3 + ^3\0\ + Kz202 + K 3303 = / 3, (2.35)

These equations can now be solved for the three unknowns. If qi and q3 are

specified, then this system can be written as

K n K\2 K n

K 21 K 22 K 23

K 31 K 32 K 33

01 f i + Q i

02 = f2

03 1
421-s?

1

(2.36)

This would be the problem which one would solve if this was a well posed problem.

It turns out that this particular set of boundary values are not proper. Since the

temperature is not fixed at any point in the bar, the temperature profile can slide

up and down. An examination of the stiffness matrix shows that its determinant

is zero (i.e., the system is singular).

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If &i and 03 are specified, then the middle equation can be used to find 02> and

the first and last equation are used to find the heat flux at the two ends. The,

mixed type boundary conditions can also be solved in a similar manner.

Before we proceed it is important to state that in practice the boundary con­

ditions are not imposed as was presented above. Theoretically, if we have known

values of temperature at the boundary we should eliminated these known values

from the set of unknowns and introduce the unknown heat fluxes in the boundary

term into the list of unknowns. To avoid this complex procedure, the penalty

method is used for imposing the temperature boundary. This method modifies

the stiffness matrix and load vector to fix the value of temperature to a given value

at a boundary node. The method is based on the fact that for any boundary node

i there will be an equation

KaOi + otherterms = fa. (2.37)

To impose the condition 0j = 9. one can add a term pKuOi to the left hand side

of the equation and the term pKu9 to the right hand side of the equation to get

KaOi + pKuOi + otherterms = fa + pKu§ (2.38)

where p is a large number. After dividing by pKti one gets

$i . otherterms fa -— + 9, -|---------------------- + 9
P pKu pKu ^

All term in this equation become small accept the two newly added ones. There­

fore, the equation will become dominated by the equation 9i = 9 and the other

terms become unimportant. Since the method eliminates the importance of any

other terms entering this equation, it will not be necessary to introduce the un­

known heat flux into the list of unknowns.

In short, to impose a temperature boundary condition at global node i one

can multiply Ku in the stiffness matrix by (1 +p) (i.e., add pKu to Ku), and add

pKu9 to fa. To impose a heat flux boundary condition at global node j one adds

q to fa, where q is a heat flux directed into the bar.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER III

XFEM A N D LEVEL SET

3.1 Extended Finite Element M ethod

This section reviews the basics of the extended Finite Element Method applied

to crack growth problems. The extended Finite Element Method is a Partition

of Unity Method. Melenk and BabuSka [22] and Babuska and Melenk [1] treat in

detail the mathematical foundations of Partition of Unity Finite Element Methods.

The difficulty in modelling cracks using the standard finite element method

is that the discretization (mesh) has to conform to the crack faces in order to

model the discontinuity associated with the presence of the crack. Here again,

the notion of local approximation can be exploited. By adding a discontinuous

function across the crack faces to the displacement approximation space, it enable

the finite element method to model the discontinuity without needing to conform

the discretization to the discontinuity. This incorporation of the asymptotic fields

of linear elastic fracture mechanics as well as a discontinuous function in a standard

finite element approximation in this fashion was first used in Moes et al. [23] and

the associated finite element method was coined the extended Finite Element

Method (X-FEM). Belytschko et al. [5] explain how the X-FEM may be used to

introduce arbitrary discontinuities in finite elements. Since its introduction, the

eXtended Finite Element Method has been used for a variety of fracture mechanics

problems including non-planar crack growth in three dimensions, cohesive crack

growth, and dynamic crack growth.

3.1.1 E xtended finite elem ent approxim ation

Consider a point x that lies inside a finite element e. Denote the element’s nodal

set as J\fe = {«i, n2, • • • , nme}, where me is the number of nodes of element e. The

enriched displacement approximation for a vector-valued function uh : 9^ —► 9^

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assumes the form

u l(x) = ^ 2 Nj (x)uj + ^ 2 Nj(x)£{x)aj
I,n[€fSe J ,n j€Afs

(3.1)

where the nodal set M 9 is the set of nodes whose support is intersected by the

domain Q,g associated with a geometric entity such as a hole, crack surface, or

crack front and M is the set of nodes that are not enriched. Mathematically,

M a = {n j : n j € N e\u)j fl Clg ^ 0} (3.2)

In the above equation, u>j = supp(nj) is the support of the nodal shape function

Nj(x), which consists of the union of all elements with n j as one of its vertices;

and is the domain associated with a geometric entity such as a hole, crack

surface, or crack front. The choice of the function 8 : x >-+ £(x) depends on the

geometric entity under consideration.

As an alternative to the approximation (3.1) above, the approximation

«*(*) = 5 2 N /(x)u /+ ^ 2 N j (x) (£ { x) - £{xj))aj (3.3)
I,ni€Af J,nj€Af9

provides the enriched displacement function uh with the nice property that uj are

the nodal displacements.

3.1.2 D iscretized equilibrium equations

In the extended Finite Element Method, the additional unknowns aj associated

with the enrichment functions simply augment the conventional unknown dis­

placement vector u and are solved for in the same manner:

K.u = / '•ext
/ ‘ext

u

/ ext
a

(3.4)
Ifuu Ifua W

Ifau Ifafl a

Note that the extended finite element equations are identical to the standard finite

element equations with the additional unknowns a and the additional enrichment

arrays K aa and K ua = Kau. The size of the stiffness matrix is N totai = Ne + Nenr,

it is symmetric, positive definite, sparse and banded - since enrichment is local.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The implementation of the eXtended Finite Element Method is thus very closely

related to that of the finite element method. Using the definition of the bilinear

form for linear elasticity,

(3.5)
(u, v) i-> B(u,v) = f n (Vau)C(Vsv)dfl

where 7i and y are Hilbert spaces of square integrable functions and Vs = |(V +

VT) is the symmetric gradient operator, C is the fourth order elasticity tensor.

The stiffness matrix K can also be written

V/, J € ||1, • • • , Ntotal] : K u = B(Nj, N j) = f (V N j)C (V N j)dn = [BjCBjdtt
Jn Jn

(3.6)

where, for an element e, with Ne standard degrees of freedom and total number

of degrees of freedom Ntotai — Ne + Nenr, the shape function vector N is the

enriched version of its finite element counterpart N f b m = N j . In the following,

the discussion is restricted to three-node triangular elements to fix ideas but is

easily generalized to other linear and higher-order elements. Assuming all the

three nodes in the element are enriched with the local enrichment function E , and

letting Ni be their associated shape functions, N can be written

N — [N f e m > N e n r i c h e d] = [[Ai, N i , IV3], [£ N i , £ N 2, £A3]] (3.7)

where the shape functions Ni and the enrichment function, £, are functions of the

point x = (x, y) € 5ft2 in the plane at which they are evaluated. The discretized

gradient of the extended shape functions is written

B = \[Bfem], [B enriched]]

B =

(5A0,* 0 (£N2)tX 0 (£N3),x 0

B f e m 0 (S N ^ y 0 (£N2)>y 0 (£N3)ty | (3.8)

(ENjly (£A0,X (SN2),y (£N2)tX (£N3),y (£N3),X

The mentioned before definition of the discretized gradient operator B is easily

extended to the case where more than one enrichment function is used for each
22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

node in the element. Also note that for an element which is not enriched, B
degenerates to the standard finite element discretized gradient operator B f e m -
3.1.3 Level set rep resen ta tion of a crack in 2D

For more information about Level Set, see next section.

Consider a single crack in two dimensions, and let Tc be the crack interior

(crack faces) and (x,)i<,<2 the crack tips. First, the definition of the signed-

distance function 0 to the curve Tc

min^gr,. ||x — arc|| = d(x, x*), i f {x — x*).e2 > 0

— min^gFc Ik ~ ^cll = —d(x, x*), otherwise
<f>(x) = (3.9)

^< 0 0 0

Crack Interior

<f>< 0

(a) Definition of the two level set functions representing the crack in 2D

W>0

(b) Nodal enrichment

Figure 3.1: Nodal enrichment for a crack in 2D defined by two level set functions

where d(x, x*) is the usual Euclidian distance on 5ft2, x* the closest point to x

on the crack Tc and xc a point on r c. The function <j> is schematically represented
23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Figure 3.1.

While the function </> suffices to describe a closed or unbounded contour in a

two-dimensional space, additional information is required to describe the geometry

of an open segment in a two-dimensional space (Stolarska et al., [31]). To describe

the location of each crack tip i additional functions ipi are introduced. These

functions are defined by the signed distance function to the line going through the

tip and normal to the crack, as shown in Figure 3.1. Mathematically:

ipi(x) = (x — Xi).ei (3.10)

To avoid using a separate function ipi for each tip, it is convenient to use the

function ip defined by ip = maXiipi (Stolarska et al., [31]). Figure 3.1 illustrates

the use of both level set functions <p and ip to define the geometry of a line crack

in 2D.

The crack is the part of the zero level set of the signed-distance to the crack,

(p, for which ip < 0. The crack therefore is the set of points

r c = {x € 3?d|«/>(a;) = 0 and ip{x) < 0} (3-11)

3.1.4 Definition and selection o f the enriched nodes

The crack is modelled by enriching the nodes whose nodal shape function support

intersects the interior of the crack by the discontinuous function H. The nodes

whose nodal shape function support contains the crack tips are enriched by the

two-dimensional asymptotic crack-tip fields. The level set description of cracks

permits a natural selection of the enriched nodes. Also, the values of the functions

<p and ip are computed at the nodes of the fixed mesh (the same throughout

the crack growth) used to solve the elliptic problem for the crack evolution. To

determine the location of a point x relative to the crack, it is sufficient to know

the value of <p at that point. If <p(x) < 0, x is below the crack, if 4>{x) > 0, x is

above the crack.

Similarly, due to the orthogonal nature of the zero level sets of <p and ip at the

crack tips, the computation of the branch functions, present in the asymptotic
24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

enrichment, in the domain is simplified. As shown in Figure 3.1, the two level

set functions <p and ip allow the construction of a natural local coordinate system,

centered at the crack tip. Consequently, the values of r and 6 needed for the

computation of the near-tip fields can be simply obtained by

tions (p and Let <pmin and <pmax (resp. i/’mm and ipmax) be the minimum and

maximum values of <p (resp ip) at the nodes of a given element. For an element

to contain the crack tip, it is necessary and sufficient that ipmin x VWx < 0 and

4>min x (pmax < 0. Also, an element is completely slit by a crack if and only if the

Figure 3.1.

3.1.5 Enrichm ent functions: D iscontinuous interior enrichm ent

The displacement discontinuities in the interior of a line crack are modelled by

an enrichment function based on the function H, which will be referred to as a

generalized Heaviside function. The function H takes the value +1 above the

crack and -1 below the crack. More precisely, let x* be the closest point to x on

the crack r c, and e2 be the normal to the crack at x* as shown in Figure 3.1.

First, recall the definition of the signed-distance function <p to a curve Tc

where d(x, x*) is the usual Euclidian distance on 5R2, x* the closest point to x on

the crack Tc and xc a point on Tc. The function <p is schematically represented in

Figure 3.1. The function H is then given by +1 if (x — x*).e2 > 0, -1 otherwise,

r(x) = \/<p2(x) + ip2(x), 0(x) = arctan (3.12)

The selection of enriched nodes is also simplified by the use of the level set func-

function (p takes both positive and negative values at its nodes (</>min x (pmax < 0)

and the function ip is negative (ip < 0) at all of its nodes. This is illustrated in

, min,c£r e ||x - xc|| = d(x, x*) i f (x - x*).e2 > 0
x) = (3.13)

— minXc6r c ||x — xc\\ = —d(x, x*) otherwise
\

i.e.,

H{x) — sign(<p(x))
—1 otherwise

(3.14)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Therefore, the computation of the discontinuous enrichment function i f at a point

x in the domain reduces to
*

1 > 0
H(x) — sign((j)(x)) (3.15)

-1 otherwise

3.1.6 Enrichment functions: A sym ptotic near-tip enrichm ent

To model the crack front and also to improve the representation of crack-tip fields

in three-dimensional computations, crack-tip enrichment functions are used in

elements which contain a crack tip. The enrichment consists of functions which

incorporate the radial and angular behavior of the two-dimensional asymptotic

crack-tip displacement field

9 9 9 0B(x) = {B i , B2, f?3, Bi}{x) = [y/rcos-, y/rsin-, y/rsin-sind, y/rcos-sin6]
£ £ £ £

(3.16)

where r and 9 are polar coordinates in the plane. Note that the second func­

tion B2{r,9) = y/rsin§ is discontinuous at the crack interior, which induces the

required discontinuity in the displacement field in the tip elements.

R em ark : Enrichment may be seen as adding extra degrees of freedom to the

enriched nodes. An enriched node gains one extra degree of freedom per enrich­

ment function per dimension. In 2D, a node for which the displacement fields are

enriched with the four crack tip asymptotic enrichment functions, for instance,

has two conventional degrees of freedom (its displacements in both directions)

and 2 x 4 = 8 enrichment degrees of freedom.

3.1.7 Sum mary o f th e algorithm

Let the crack be described at each increment in crack advance n by the two level set

functions <f>̂ and presented above and let be the set containing the tips of

this crack at the increment n. The crack growth rate may be interpreted as a speed

function F. This speed function may then be used to update the level sets (j/1̂

and ip ^ to <̂ n+1) and ip(n+1) respectively. Note that those level set functions need

only be updated ahead of the tips of the crack and remain unchanged in the rest
26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the domain. The crack advance direction 6C and the crack growth increment Aa

are used to update ip ^ to ^ n+1 ̂ for each crack tip ar|n) according to the hyperbolic

conservation law of the same type as (3.20). Note that an hypothesis made above

to derive this hyperbolic conservation law for the movement of the hypersurface

was that the front (here the level set t p^) was propagating perpendicularly to itself

so that it is not ipjn ̂ that obeys this conservation law but rather the adequately

rotated level set function ■0,-"̂ = jR(^1-n)̂, such that -tp^J-F. By construction of

■0, ||V0II = 1 and ||F || = Aa. Once all the are computed for all tips, the

value of ip(n+1) at all nodes in the level set update domain may be deduced using

the relation ip(n+l) = max^ ,ip̂ n+1\

The crack propagation direction Qc is also used to update the level set function

#("). This ’’update” of 6 ^ is really a re-initialization, which ensures that is

a signed-distance function for the updated interface T(n + 1) as 9 ^ was for T(n).

Once the crack propagation direction is known, 0(n+1) may be computed exactly

at any point x in the level set update region, by computing the signed distance to

the new interface:

r fS E U f a .M = ± ll(* - * ? !) X p j l l (3-17)

The new position of the crack tip is then obtained by finding the intersection of

the updated level sets <f>(n+1) and -ip(n+V . Figure 3.2 summarizes the algorithm

for both the 2D case and the 3D case.

3.2 Level Set

The level set and fast marching methods were first developed by Sethian [29]

to track interfaces moving with curvature-dependent speed. In this method, the

interface is represented as the zero level set of a function <j> of one higher dimension

than the dimension of the interface, i.e., 4> is a function of position and time.

Therefore, the interface is a hypersurface of the space in which the function <p

takes its values. As the interface evolves, it always coincides with the zero-level

set of the function <f>, whose values are determined by solving an initial value
27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Find new crack tip

Update level set
reinitialize to signed-distance function

Assemble stiffness matrix from element contributions.
Element stiffnesses account for the presence of the crack

through enrichment

Define the initial shape and location of the crack
function to the original crack

Initialize the level set function to be the signed-distance
Find the initial tip positions

Find the elements located inside the narrow band
using the current crack ty and level set information

For each tip compute crack propagation direction
and increment in crack length

For nodes in the narrow band
Find the enriched nodes

(two criteria: for asymptotic and split-enriched nocfes)

Solve system of equations for the displacement field
at all nodes in the domain

Compute stresses (domain integral and auxiliary
fields method)

F igure 3.2: X-FEM/LS crack growth algorithm in 2D

partial differential equation in one higher dimension than the interface dimension.

This allows sharp corners, merging and changes in topology in the interface (the

zero-level set of <f>) to be naturally and seamlessly accounted for.

The level set function is typically approximated on a fixed mesh, which avoids

the additional weight of mesh regeneration or mesh motion tracking. In addition,

this allows coupling the level set method with finite element and extended Finite

Element Methods naturally since the level set update may then use the same

mesh that is used for the finite element calculations. Basic geometric properties

of the interface (normal vector, curvature) are easily determined from the level

set function.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Definition of Level Set M ethod

To set the stage for the description of level sets in the fracture problems, the

basics of the level set method for the particular case of a curve evolving in 2D are

now recalled. Let T(t = 0) be a closed, non-intersecting curve in 5ft2 moving at

constant speed F perpendicularly to itself.

Let 0 be a scalar function such that T(f) is the zero-level set of 4> at all positive

times t, that is:

Vt € 3ft+, T(t) = { x € 5ft2|0(x(f),t) = 0} (3.18)

At the initial time t = 0, the scalar function <f> is set to be the signed-distance

function to the curve T(0). It is also assumed that each level set of <f> flows along

its gradient field with the constant speed F. Consider the motion of the level set

of (f> such that (/>(x(t),t) = C. Note that x(t) is the route of any particle located

on this level set curve. By definition of F (normal velocity), the particle speed

IIV*||in the direction of the outward normal — — n^ji is equal to the speed

function F:

<3-19)

Using the chain rule on the term V<j>, the initial-value partial differential equation

governing the evolution of the scalar function <j> becomes:

H + .F||V0|| = 0,
94 " " (3.20)
0(x(O),O) = ± m incer ||x - a : r ||,

The curve V(t) at time t is then given by solving equation (3.20) for the unknown

function (j).

3.4 Num erical Integration

There are two main reasons that make numerical integration of X-FEM approx­

imations more involved than the Standard Finite Element Method integration

procedures. Due to the presence of a discontinuous function in the approxima­

tion, it is important to be considerate the numerical integration of the extended

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

finite element equations. For elements in which discontinuous enrichment is used,

a modified Gaussian quadrature scheme based on sub-elements aligns with the

discontinuity is employed. This avoids inaccuracies and ill-conditioned systems

associated with Gaussian Integration of discontinuous functions. This principle

is summarized, for the 2D case of a rectangular element in Figure 3.3 [16]. The

dashed line is the line of discontinuity. Note that no additional degree of freedom

is added to the system. The partitioning is only used for numerical integration.

R em ark : The triangular elements in Figure 3.3 have no degree of freedom

associated with them. They exist only for the purpose of numerical integration.

(a) Original QUAD element with its 4 integration (b) QUAD after being split into 4 triangles
points

(c) Case which would lead to insufficient Integra- (d) After element splitting, integration points are
tion: no integration point is present on the "top" present on both sides of the interface, thus allowing
side of the interface an accurate integration

Figure 3.3: Element partitioning for X-FEM integration. The interface is de­
noted by a heavy dashed line, quadrature points by circles and the triangular
elements resulting from the split in light dotted lines. Note that the subelements
are only used for integration purposes and that no additional dof is associated
with them [16].

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 C + + Implementation

C ++ is an example of an object-oriented programming language and is the lan­

guage in which the X-FEM code is written. As opposed to procedural program­

ming, the object-oriented programming philosophy segments the problem at hand

into objects and defines the necessary data that those objects should hold and

the functions they should be able to perform, on themselves and on other objects.

This produces a set of application-specific data types used in writing the code.

The rest of the programming resides in precisely designing and implementing, for

each of the data types (or objects), the operations that can be carried out with

each object type. Then, the logic of the program in terms of those objects and

the kinds of operations they allow should be set up. These concepts should make

a well-written object-oriented program easier to understand and easier to evolve.

In C++, as in any other object oriented programming language, a program is

written in terms of objects in the domain of the problem that is to be solved.

A large part of the programming process resides in deciding which objects are

useful, what data they should hold, which actions they should perform, and how

they should interact with each other. For example, in the extended finite element

framework, there are objects, which would have to ’’know” its type (triangular,

quadrilateral), its dimension, the coordinates of its nodes, the type of integra­

tion used and the coordinates of the integration points, the type of interpolation

functions defined on the element, which of its nodes are enriched, etc.. A finite

element object should also be able to perform some operations; it would therefore

contain functions to operate on it such as: compute its area or volume, its Jaco-

bian matrix, get its stiffness matrix or mass matrix, etc.. This packaging of data

values and functions within an object is referred to as encapsulation and is one of

the corner stones of object-oriented programming.

We used the ”getfem++” library to modify the C ++ codes to solve the prob­

lem. ”getfem++” is a free Generic Finite Element library in C ++ language [26].

We modified C + + codes for using crack propagation with XFEM/LS method.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The documentation of final program in C + + language is shown in Appendix

B.

3.6 M esh Generation

For mesh generation we used the GiD software. GiD is an interactive graphi­

cal user interface used for the definition, preparation and visualization of all the

data related to a numerical simulation. This data includes the definition of the

geometry, materials, conditions, solution information and other parameters. The

program can also generate a mesh for finite element, finite volume or finite differ­

ence analysis and write the information for a numerical simulation program in its

desired format [27].

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER IV

NUM ERICAL RESULTS

In this section three groups of numerical examples in two-dimensional and three

dimensional elastostatics are presented to illustrate the accuracy of the XFEM for

study fracture mechanisms in Aluminium-Silicon composite material. The first

example we study crack growth in two dimensional plate with a different shape of

inclusions under tension, and then study example of a delamination in bimaterial

in two-dimensional and three dimensional. The last example is about crack growth

in Aluminium-Silicon polycrystalline structure.

R em ark: The materials models are elasticity and the criterion for crack open­

ing is the fracture toughness of the Silicon or Aluminium. The fracture toughness

for Silicon is K c = 0.95 MPa.m1/2 and for Aluminium is K c = 0.28 M Pa.m 1̂ 2.

N ote: We assume perfect interface boundary between Silicon particles and

Aluminium matrix.

4.1 Configuration

The configuration for all tests includes:

• Geometry: lx l Square two dimensional geometry with nuclei crack in Y

axes in point of Y=0 and X=0. Except for section 4.2.3 which is used three

dimensional geometry. See Figure 4.1 and Figure 4.2.

• Mesh: Linear triangle elements with different element size from 0.05 to

0.025 (Size is given by the average side of the corresponding triangle or

quadrilateral). Except for section 4.2.3 which is used quadrilateral elements.

The numbers of the nodes are between 138 to 1832 and the numbers of the

elements are between 222 to 3502. The program doesn’t have capability

to run with more than 4000 element. We should select the mesh densities,

which are acceptable for the program. Mesh density is automatically created

by GiD mesh generator software [27].

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Force: Traction force is used for all cases.

• Material: Aluminium - Silicon alloy, AA319 with Young’s modulus 72.4

GPa and Poisson’s ratio of 0.33. Young’s modulus for Silicon is 107 GPa

and Poisson’s ratio is 0.278. Fracture toughness for Silicon particles is Kc =

0.95 M P a.m 1!2 and for Aluminium is K c = 0.28 M Pa.m 1!2.

• FEM Method: Lagrangian

• Boundary conditions: Top and bottom edges by uniform traction. One node

on the bottom edge is pinned, the other is on a horizontal roller.

• Void and inclusion shape: circular, elliptical, square and triangle shapes are

used for voids and only circular and elliptical are used for inclusion.

• Elliptical shape: With a/b=1.5, a /b=2 and a/b=2.5. The theta angle se­

lected for elliptical shape are zero degree (orthogonal to the force), 45 degree

(Figure 4.1) and 90 degree (parallel to the force). The angle is measured

relative to bottom edge and ”a”, major axis radius in elliptical inclusion.

This configuration has been selected because we want to find the best shape

and orientation of silicon particles in Aluminium matrix to find a better way for

casting of these alloys. Therefore we select the simple geometry and simple mesh

to apply force in Aluminium Silicon alloy. We used the mechanical properties

of Aluminium Silicon alloy, such as Young modules and Poisson ratio and also

fracture toughness for Silicon particles.

The tests are categorized in three groups.

1. Inclusions

2. Bimaterial

3. Polycrystal

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F

F
1.0

Figure 4.1: Geometry, force and crack nuclei

0.100

0.500.500

0.500

Figure 4.2; Geometry for delaminated crack

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Aluminium Silicon Composite Materials

The XFEM model is applied to AA319 Aluminium Silicon alloy with a different

number of Silicon inclusions and different orientations. This part has most im­

portant results, because we consider Silicon particles as inclusion in Aluminium

matrix and it is close to reality. The initial crack nuclei are present in Figure

4.1. In all simulations, we consider a material with properties similar to AA319

alloy with a Young’s modulus of 72.4 GPa and Poisson’s ratio of 0.33. Young’s

modulus for Silicon is 107 GPa and Poisson’s ratio is 0.278. We consider fracture

toughness of Silicon particles, K c — 0.95MPa.m1/2. All calculations are done in

plane strain considering a unit thickness and isothermal conditions. The AA319

plate is subjected to traction at its top and bottom edges. The displacement and

the nominal traction are used to characterize the overall response of the body.

In all of the simulations, we report nominal strain and nominal stress. Nominal

strain defined by:

e = (U~G) / L . (1)

where U averaged edge displacement, and G is the gap (if exists). Nominal stress

is magnitude of the traction vector.

Remark: We assume perfect interface boundary between Aluminium and Sili­

con particles.

We study two shapes of inclusions, circular and elliptical, because with sta­

tistical methods of these two shapes, we can find the solution for all shapes of

inclusions in reality.

4.2.1 Single inclusion

Figure 4.3 shows a single edge crack nucleus in Aluminium matrix with a single

circular inclusion. The monotonic loading facilitated the crack propagation within

the homogenous Aluminium matrix and eventually in the Silicon circular inclusion

(Figure 4.3a). The characteristic strain stress curve is shown in Figure 4.3b. It

can be seen that after a linear response to the point where the crack reaches the

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

critical stress, the crack starts to grow and snapback occurs. Critical stress is

maximum nominal stress when the crack starts to propagate.

P

1.0 -

single circular incusion

$ 0.6 -

1•£
E

ao
aooo aooi aoo2 0.003 0.004 aoos 0.006 0.007 o.oos

m lasto sta fla _ d ia p ta c9 rrm n t m agn ttu dm
0.0144 f t f ig 0366 0.637 0.69■ 0.U 9 1.04 1.21

nominai strain

Figure 4.3: Single circular inclusion: a) crack propagation pattern b) stress-
strain response.

Figure 4.4a shows crack propagation pattern in Aluminium matrix with a single

elliptical inclusion with b=0.07 and a=0.14 oriented along x axis (a/b=2), and

the characteristic strain stress curve is shown in Figure 4.4b. We can compare the

two stress-strain respond diagrams for circular and elliptical inclusions as shown

in Figure 4.5. As we can see the critical stresses between two diagrams almost

the same, but the slope is different. The slope for elliptical inclusion is more than

circular inclusion, and the elliptical inclusion has more nominal strain. We should

note that the angle of elliptical inclusion is zero or it is orthogonal to the force

in the stress strain diagram. If we change the angle of elliptical inclusion critical

stress and slope will be change. Critical stress as function of the orientation

of single elliptical inclusion is shown in Figure 4.6. As we can see we have the

maximum critical stress when the elliptical inclusion is parallel to the force or has

a 90 degree. If the a /b in ellipse is increased or it like needle, we even have better

results. Figure 4.7 shows data for critical stresses as function of the shape of the

inclusions. We choose different angles and different a /b factor to find which angle

and which a/b factor has the best results. Then we can optimize casting process

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to get proper shape and angle of Silicon particles.

We can conclude that the elliptical inclusion with long semi-axes parallel to

the external force has a distinct advantage over any other orientations and shapes.

—* — single elliptical Inclusion
wth a - orthogonal to the fbroe

&*<riSWE)
0-000 0001 0002 0003 0004 0005 0006 0007 0008

nominal strain

Figure 4.4: Single elliptical inclusion: a) crack propagation pattern b) stress-
strain response.

to-to — single elliptical inclusion
with a - orthogonal to the forcesirtgie circular incusion

08

2 o-e

0 4 .

0.2 0.2 -

0.0 0.0 Y T { I ‘I f -T r ,----j - .-fT I I " f I
0.000 OOOt 0002 0003 0004 0005 0006 0007 0008 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

nominal strain nominal strain

F igure 4.5: Stress-strain diagrams for single circular and elliptical inclusion

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3-

1.2 -

.1
5

1.0 -

angle

Figure 4.6: Critical stress as function of the orientation of single elliptical inclu­
sion

shape critical stress
(MPa)

Circular 1.00

Elliptical (zero degree) 1.03

Elliptical (45 degree) 1.14

Elliptical (90 degree) 1.30

Figure 4.7: Critical stress as function of the shape of the inclusions

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.2 Multiple inclusions

The coordinate for multiple elliptical inclusion with parallel to the force shown in

Figure 4.8. Multiple elliptical inclusion with a orthogonal to the force, parallel to

the force and 45 degree to the force with stress-strain response shown in Figures

4.9, 4.10 and 4.11. The 45 angle is measured relative to bottom edge and ”a”,

major axis radius in elliptical inclusion. All of elliptical inclusions has a/b=2 with

b=0.07 and a=0.14. The reason for why we select these configuration is mention

on last section.

X=0.3
Y=0.15X=0.15

Y=0.25

X=0.5
Y= 0

X=0.15
Y= -0.25 X=0.75

Y= -0.25

Figure 4.8: Coordinate of multiple elliptical inclusion parallel to the force

Figure 4.12a shows crack propagation pattern in multi-inclusion system with

three crack nuclei. Similarly to the single inclusion case after a linear response

a critical stress is reached and the edge crack starts to grow. However, at this

moment the secondary cracks within the volume do not start their growth. Clearly,

the advance of the edge crack initiates the growth of the secondary cracks. The

instances of initiation of the secondary cracks can be seen in Figure 4.12b as

specific kinks in the snapback portion of the strain stress curve.

We can compare the three stress-strain respond diagrams for elliptical inclu­

sions with different orientation as shown in Figure 4.13. As we can see the critical

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— multiple elliptical inclusion
with a - orthogonal to the force

0.0)0 0.001 0.002 0003 0004 OOGS 0006 0007 0.008

nominal strain

F igure 4.9: Multiple elliptical inclusions: a) crack propagation pattern b) stress-
strain response.

— multiple elliptical inclusion
with a - parallel to the force

0000 0.001 0.002 0.003 0.004 0005 0006 0007 0.008

norrinal strain

Figure 4.10: Multiple elliptical inclusions: a) crack propagation pattern b)
stress-strain response.

stresses of multiple elliptical inclusion parallel to the force is highest amount. Crit­

ical stress as function of the orientation of multiple elliptical inclusion is shown

in Figure 4.14. As we can see we have the maximum critical stress when the

elliptical inclusion is parallel to the force or has a 90 degree. If the a /b in ellipse

is increased or it like needle, we even have better results. Figure 4.15 has data for

critical stresses as function of the orientation of the inclusions.

We can conclude that the multiple elliptical inclusions with long semi-axes

parallel to the external force have a distinct advantage over any other orientations

and shapes.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

 ■— multiple elliptical Inclusion
with a-4 5 “to the force

0.000 0.001 0.002 0.003 0004 0005 0006 0007 0.008
nominal strain

Figure 4.11: Multiple elliptical inclusions: a) crack propagation pattern b)
stress-strain response.

multiple inclusions with multiple cracks

1.0 -

i
E
s

0.2 -

00
0.000 0001 0002 0003 0004 0005 0006 0007 0008

nominal strain

Figure 4.12: Multiple elliptical inclusions: a) multiple cracks propagation pat­
tern b) stress-strain response.

—■— mutiple ettipjlcai induston
vAh a - parallel to th e tw ee multiple eWptical Indicton

with a -45° to the force

— mufyte efilpticd indufikr wlha-erthogcnaitotte farce 1.0 .

0.S-

a m aooo 0.001 o.ooe o.ooa 0.004 0.00s
nominal strain

o.ocs aoao 0.001 a (903 0004 0.005 4006 4007 0.008

nominal strain

Figure 4.13: Compare critical stress diagrams to orientation of inclusions

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2-

g

s 1.0 -s
0.9-

angle

Figure 4.14: Critical stress as function of the orientation of multiple inclusion

Orientation (elliptical) critical stress
(MPa)

Orthogonal (zero degree) 0.86

Parallel (90 degree) 1.14

45 degree 1.05

Figure 4.15: Critical stress as function of the orientation of inclusions

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.3 Bimaterial-two dimensional delamination

Bimaterial has two different material that has own properties connected together.

In our case one of them is Aluminium and another one is Silicon. We modified

program parameters to meet the requirements for Al-Si bimaterial. The geometry,

the nuclei of the crack and force is the same as other tests. Figure 4.16 shows

the geometry and displacement for Al-Si bimaterial. In larger magnification we

can see the meshes and the crack (Figure 4.17). Von Misses Stress magnitude for

Al-Si bimaterial with single crack shown in Figure 4.18 and Figure 4.19 shows

displacement for Al-Si bimaterial with multiple cracks.

Remarks: The units for displacement is ’’em” and for stress is ”MPa” in the

following Figures.

0.500 T

-0.500
0.000

elastostatic^dlsplacement (cm)
0.000 0.0382 0.0764 0.115 0.153 0.191 0.229 0.267

Figure 4.16: Al-Si Bimaterial displacement

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elattottaHc <
0.000 0.0362 0.0764 0.115~

Figure 4.17: Mesh and crack in Al-Si Bimaterial

0.500

X
magnitude (MPa)

0.000200 0.173 a 346 0.819 0.692 0.865 1.04 1.21

Figure 4.18: Von Misses Stress in Al-Si Bimaterial

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0lasfotfatlc_dlsplac»m9nf (cm)
0.026 0.304 0.381 0AS7 0.533

Figure 4.19: Displacement in Al-Si Bimaterial with multiple cracks

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.4 Bimaterial - three dimensional delamination

In this case we need 3D mesh to shows crack delaminate the plate. Due to

geometry symmetry the quadrilateral elements were selected. Figure 4.20 shows

3D geometry for this test with mesh and crack and Figure 4.21 shows the mesh

and crack in Y-Z plane. The displacement for delaminated crack test shows in

Figure 4.22.

0.500

0.500.500

Figure 4.20: 3D geometry for delaminated crack test shows mesh and crack
plane

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.21: Mesh and crack in Y-Z plane

magnitude (cm)
\0jQ975

0.0336

0.0697

OJ3SB7

0.0413

0.500
\0.0279

\0.0139

3.78e-02l

0.500.509

Figure 4.22: Displacement for delaminated crack test

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.5 Poly crystal

The methodology used to carry out crack propagation simulations through a poly­

crystalline microstructure consisted of main ingredients:

• Unlike in many existing simulations of brittle fracture, a continuum descrip­

tion of a polycrystal was employed. This was based on a realistic microstruc­

ture.

• The polycrystal is assumed to be elastically homogeneousall grains and grain

boundaries have the same elastic constants (E and P).

We presented a numerical model for crack propagation through a realistic poly­

crystalline material microstructure. In the X-FEM, a discontinuous function and

the two-dimensional asymptotic crack-tip displacement fields are added to the fi­

nite element approximation to account for the crack using the notion of partition

of unity.

Figure 4.23 shows the geometry of polycrystal with grain boundaries. The

mesh is 2D with linear triangle elements as shown in Figure 4.24. The size of

element in Figure 4.24 is 0.025. We used two size of elements, 0.025 and 0.035.

The Figure 4.25 shows the displacement for polycrystal when we add multiple

cracks to the program parameters.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.5

l£\, x

- 0.5
1.0

Figure 4.23: Polycrystal geometry

Figure 4.24: Polycrystal mesh

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

Figure 4.25: Mesh and crack in Polycrystal with a crack

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH APTER V

CONCLUSIONS A N D FU TU R E W ORK

5.1 Conclusions

A methodology to model arbitrary voids, inclusions, bimaterial, delamination in

2D and 3D in single crystal and polycrystalline composite materials has been

suggested. The following items are summarized as conclusions:

• The shape of the inclusions along with the type of loading strongly influences

the fracture of composite material.

• The needle like inclusions with long semi-axes parallel to the external force

showed distinct advantage over any other orientations.

• In the case of multiple cracks the evolution of every single one affects the

behavior of the composite material.

• No delamination along the matrix-inclusion interface has been observed,

mainly due to the assumption of the continuous displacements at the matrix-

inclusion interface.

5.2 Future Work

The approaches for the modelling of 2D fracture within Extended Finite Element

are presented and discussed. However, there are several of additional subjects

worth addressing in the future.

Perhaps the most important issue is comparison with experimental results.

Academic examples are nice in the sense that particular effects may be clarified.

Nevertheless, to actually develop models of any use outside the academic world, of

course these models have to agree with real-world observations. An experimental

comparison may lead to one of two things, either a validation of the proposed

models or an indication of how to future refine the same, both equally valuable.

A challenging task and the ultimate goal is a generation to three dimensional

analysis in order to simulate more complex geometries in real-world application.
52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

So far, only tension forces is considered. Thus other forces such as shear force

or combined forces would be of interest.

Scanning electron microscope (SEM) images of the fracture surface of a cast

Aluminium Silicon alloy subjected to cyclic loading demonstrate that some of the

pure silicon particles debonded. Therefore the program should be modified to

consider matrix-interface delamination.

This program has potential of the XFEM as a computational fracture tool

to study complex failure mechanisms in polycrystalline materials, but we should

modify program to meet the requirements, such as add some grains as Silicon

inclusions to reach the best results. Also we should consider that the toughness

(critical energy) of the grain boundary and the grain interior should be different*

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A PPE N D IX A

STEADY STATE HEAT CO NDUCTIO N IN A BA R

A .l An Example

As an example consider the problem of the bar shown in Figure A.I. The bar is of

length I = 1, is connected to a constant temperature thermal bath of temperature

0 — 2 from the left and heat is being drawn from it at a constant rate <7 = 1 from

the right. The heat flow into the bar per unit length from the lateral surfaces is

given by f (x) = x. The coefficient of thermal conduction k = 1. Three two node

f(x)=x

q=1i = 2

1=1

x=0 x=1/2

© V © 3 ©

Figure A .l: Example problem.

x=3/4 x=1

2 1

3
2
4

line elements are selected as shown in Figure 2.5. The local stiffness matrices can

be calculated using equation (2.25) and will be

[K') =

[K2

2 - 2

- 2 2

4 - 4

- 4 4

4 - 4

- 4 4

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The global stiffness matrix will, therefore, be

2 - 2 0

[K) =

0

- 2 (2 + 4) - 4 0

0 - 4 (4 + 4) - 4

0 0 - 4 4

The load vectors can be calculated using equation (2.24). Using equation (2.9)

and (2.10), the shape functions for the first element are

Therefore,

Ni = 1 - 2x, N2 = 2x.

1 /** 1/ i = J (l~ 2 x) x d x = — ,

n =/Jo
9 , 12 x d x = — .

12

The shape functions for the second element are

Therefore,

Ni = 1 — 4(x — i) , IV2 = 4(x — i) .

f t = J * [(1 ~ 4 (z - ^)]xd x =

r - i .

The shape functions for the third element are

Therefore,

N\ — \ — 4(x — ^), N2 = 4(x — ^).

f t = K1 ~ 4 (z - ^)]xd x =
4

The global load vector will become

[/]

i
24

+ + X
12 ~ 96

JL + -L
12 “ 48

11

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The problem that we must solve is

2(1 +p) -2 0 0 0i T4+4P
-2 6 - 4 0 92 5

32

0 - 4 8 - 4 9,3 3
16

0 0 - 4 4 A i i _ 1
96 .

where p is a large number and the stiffness matrix and load vectors have been

modified to impose the boundary conditions.

For p = 1 the solution will be

9i 7
4 1.75

92 71
48 1.47916

9s 167
128 1.30468

93
13

. 12 .
1.08333

For p = 10 the solution is

For p = 100 the solution is

The exact solution is

which yields

0i
79
40 1.975

02 409
240 1.70416

03 979
640 1.52968

03 157
.1 2 0 . 1.30833

0i
799
400 1.9975

02 259
150 1.72666

03 4967
3200 1.55218

03 1597
.1 2 0 0 . 1.33083

0 == 2 -
X 3

6
X

~ 2 ’

01 2 2

02 83
48 1.72916

03 199
128 1.55468

03 4
. 3 . 1.33333

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison of the exact solution and the finite element method solution shows

that for p = 100 there is less than 1 error in the finite element solution.

A .2 Organize the Finite Element M ethod Program

Finite element method programs are normally organized in the following manner.

This allows each part of the program to be a separate module which can be

replaced from one application to another.

1. Division of the domain into elements, numbering the elements, numbering

the nodes, providing the connection between local node numbers and global node

numbers, providing the coordinate for each node.

2. Numbering boundary elements and connection between local node numbers

and global node numbers.

3. Assembling global stiffness matrix, [K], and load vector, [/], element by

element.

(a) Calculate the element stiffness matrix, [Ke], for each element and assemble

it into the global stiffness matrix.

(b) Calculate the element load vector, [/e], for each element and assemble it

into the global load vector.

4. Modifying global stiffness matrix and global load vector to enforce boundary

conditions.

5. Solving the resulting system of equations (i.e., [K}[0\ — [/]) for the value of

the unknown function at each nodal point, [0].

6. Presenting the results in a suitable format (post-processing).

This layout of the program provides a certain degree of flexibility. For exam­

ple, the same problem can be solved using several different equation solvers, or

the same program can solve different problems just by changing the method for

calculating the element stiffness matrix, load vector, and boundary conditions.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A PPE N D IX B

DOCUM ENTATION OF FINAL PR O G R A M

B .l Crack Propagation Program Using X FE M /L S M ethod

The following programs is a part of getfem++ for crack propagation using XFEM/LS

method. The parameters file is shown all parameters that used for the main pro­

gram.

B .1.1 Crack propagation program

/ / C++ (enables emacs C++ mode)

/ /
// Copyright (C) 2002-2006 Yves Renard, Julien Pommier.

/ /
// This file is a part of GETFEM++

/ /

// Getfem++ is free softvare; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.

/ /
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public
// License along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,
// USA.
//ssssssssaisasasBsssssssssssssssssssssssBssssanissBassssssEasssssssssssstBsssQs

/**
* Linear El&stostatic problem with a crack.
*

* This program is used to check that getfem++ is working. This is also
* a good example of use of Getfem++.

*/

#include <getfem_assembling.h> /* import assembly methods (and norms comp.) * /

#include <getfem_export.h> /* export functions (save solution in a file) * /

♦include <getfem_import.h>

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tinclude <getfem.derivatives.h>
#include <getfeo.regular.meshes.h>
#include <getfera.model.solvers.h>
#include <getfem_mesh.im.level.set.h>
#include <getfem.mesh.fem.level.set .h>
#include <getf em.mesh.f em.product.h>
#include <getfem.mesh.fem.global.function.h>
#include <getfem_spider.fem.h>
#include <getfem.mesh.fem.sum.h>
#include <gmm.h>

/* some Getfem++ types that ve will be using * /

using bgeot::base_small.vector; /* special class for small (dim<16) vectors */
using bgeot::base_node; /* geometrical nodes(derived from base.small.vector) * /

using bgeot::scalar.type; /♦ * double */
using bgeot::size.type; /♦ * unsigned long * /

using bgeot::base_matrix; /* small dense matrix. */

/ * definition of some matrix/vector types. These ones are built
* using the predefined types in Gmm++ */
typedef getfem::modeling.standard.sparse.vector sparse.vector;
typedef getfem::modeling.standard.sparse.matrix sparse.matrix;
typedef getfem::modeling_standard_plain.vector plain.vector;

/**/
/ * Exact solution. */
/**/

#define VALIDATE.XFEM
#ifdef VALIDATE.XFEM

/* returns sin(theta/2) where theta is the angle
of 0-(x,y) with the axis Ox */

scalar.type sint2(scalar.type x, scalar.type y) {

scalar.type r * sqrt(x*x+y*y);
if (r 0) return 0;
else return (y<0 ? -1:1) * sqrt(gmm::abs(r-x)/(2*r));
// sometimes (gcc3.3.2 -03). r-x < 0

} scalar.type cost2(scalar_type x, scalar.type y) {
scalar.type r * sqrt(x*x+y*y);
if (r == 0) return 0;
else return sqrt(gmm::abs(r+x)/(2*r));

} /* analytical solution for a semi-infinite crack [-inf,a] in an
infinite plane submitted to +sigma above the crack
and -sigma under the crack. (The crack is directed along the x axis).

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nu and E are the poisson ratio and young modulus

solution taken from "an extended finite element method vith high order
elements for curved cracks'*, Stazi, Budyn,Chessa, Belytschko */

void elasticite21ame(const scalar.type young.modulus,
const scalar.type poisson.ratio,
scalar.type* lambda, scalar.type* mu) {

mu » young.modulus/(2*(i+poisson_ratio));
lambda * 2*mu*poisson.ratio/(l-poisson.ratio);

>

void sol.ref.infinite.plane(scalar.type nu, scalar.type E, scalar.type sigma,
scalar.type a, scalar.type xx, scalar.type y,
base.small.vector* U, int mode,
base.matrix *pgrad) {

scalar.type x * xx-a; /+ the eq are given relatively to the crack tip */
//scalar.type K1 * sigma*sqrt(M_PI*a);
scalar.type r » std::max(sqrt(x*x+y*y),le-16);
scalar.type sqrtr « sqrt(r), sqrtr3 ■ sqrtr*sqrtr*sqrtr;
scalar.type cost ■ x/r, sint = y/r;
scalar.type theta = atan2(y,x);
scalar.type s2 * sin(theta/2); //sint2(x,y);
scalar.type c2 * cos(theta/2); //cost2(x,y);
// scalar.type c3 * cos(3*theta/2); //4*c2*c2*c2-3*c2; / * cos(3*theta/2) */
// scalar.type s3 * sin(3*theta/2); //4*s2*c2*c2-s2; /* sin(3*theta/2) */
scalar.type lambda, mu;
elasticite21ame(E,nu,lambda,mu);

U.resize(2);
if (pgrad) (*pgrad).resize(2,2);
scalar.type C» l./E * (mode -* 1 ? 1. : (1+nu));
if (mode == i) {
scalar.type A-2+2*mu/(lambda+2*mu);
scalar.type B«-2*(lambda+mu)/(lambda+2*mu);
U[0] ■ sqrtr/sqrt(2*M.PI) * C * c2 * (A + B*cost);
U[l] * sqrtr/sqrt(2*M_PI) * C * s2 * (A + B+cost);
if (pgrad) {.

(♦pgrad)(0,0) * C/(2.*sqrt(2*M_PI)*sqrtr)
* (cost*c2eA-co8t*cost*c2*B+sint*s2*A+sint*s2*B*cost+2*c2*B);
(♦pgrad)(1,0) = -C/(2*sqrt(2*M.PI)*sqrtr)

* (-sint»c2*A+sint*c2»B*cost+cost*s2*A+cost*cost*s2»B);
(♦pgrad)(0,l) * C/(2.*sqrt(2*M.PI)*sqrtr)

* (cost*s2*A-cost*cost*s2*B-sint*c2*A-sint*c2*B*cost+2*s2*B) ;

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(♦pgrad)(l,l) * C/(2.*sqrt(2*M_PI)*sqrtr)
♦ (sint*s2*A-sint*s2*B*cost+cost*c2*A+cost*cost*c2*B);

>

> else if (mode ““ 2) {
scalar.type Cl “ (laabda+3*mu)/(lajnbda+mu);
UtO] * sqrtr/sqrt(2*M_PI) * C * s2 * (Cl + 2 + cost);
UC1] * sqrtr/sqrt(2*M_PI) * C * c2 * (Cl - 2 + cost) * (-1.);
if (pgrad) {
(♦pgrad)(0,0) * C/(2.*sqrt(2*M_PI)*sqrtr)

♦ (cost*s2*Cl+2*cost*s2**cost*cost*s2-sint*c2*Cl
-2*sint*c2-sint*cost*c2+2*s2);
(♦pgrad)(1,0) “ C/(2.^sqrt(2+M.PI)*sqrtr)

♦ (sint*s2*Cl+2*sint*s2-sint*s2*cost+cost*c2*Cl
+2^cost*c2+cost^cost^c2);
(♦pgrad)(0,1) - -C/(2.^sqrt(2+M.PI)+sqrtr)

♦ (cost^c2+Cl“2^cost+c2-cost^cost+c2+sint^s2^Cl
“2^sint^s2+sint+s2+cost+2+c2);
(♦pgrad)(1,1)» C/(2.♦sqrt(2+M.PI)♦sqrtr)

♦ (-sint+c2^Cl+2^sint+c2+sint^cost^c2+cost+s2^Cl
-2^cost^s2+cost^cost+s2);

>
} else if (mode “= 100) {
U[0] “ - sqrtr3 ♦ (c2 + 4./3 ♦(7+mu+3^1ambda)/(lambda+mu)+c2^s2+s2

-l./3+(7+mu+3*lambda)/(lambda+mu)+c2);
UCl] = - sqrtr3 ♦ (s2+4./3+(lambda+5+mu)/(lambda+nm)^s2^s2+s2

-(lambda+5+mu)/(lambda+mu)^s2);
if (pgrad) {
(♦pgrad)(0,0) * 2^sqrtr^(**6^cost+c2+mu+7^cost+c2^c2^c2+mu

-3^cost^c2+lambda+3+cost*c2*c2*c2*lambda
-2^sint+s2+mu
+7^sint^s2^c2+c2*mu-sint*s2*lambda
+3+sint+s2+c2^c2+lambda)/(lambda+mu);

(♦pgrad)(1,0) = -2+sqrtr+(6+sint+c2+mu“7+sint+c2+c2+c2+mu
+3*sint*c2+lambda-3*sint*c2*c2*c2*lambda
-2+cost+s2+mu
+7+cost^s2+c2+c2+mu-cost+s2+lambda
+3*cost*s2+c2*c2+lambda)/(lambda+mu);

(♦pgrad)(0,1) “ 2+sqrtr+(-2+cost+s2+mu-cost+s2+lambda
+cost*s2+c2*c2*lambda+5*cost+s2*c2*c2+mu
+4+sint+c2+mu
+sint*c2*lambda-sint*c2*c2*c2*lambda
-5+siat+c2^c2+c2+mu)/(lambda+mu);

(♦pgrad) (1,1) » 2+sqrtr+(“2+sint+s2+mu-sint^s2^1ambda
+sint*s2+c2^c2*lambda+5*sint+s2*c2*c2+mu

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-4*cost*c2*mu
-co8t*c2*laabda+cost*c2*c2*c2*lambda
+5*cost*c2*c2*c2*mu)/(lambda+mu) ;

>

> else if (mode ■■ 101) {
U[03 * -4*sqrtr3*s2*(-lambda-2*mu+7*lambda*c2*c2

+Il*mu*c2*c2)/(3*lambda-mu);
U[l] ■ -4*sqrtr3*c2*(-3*lambda+3*lambda*c2*c2-mu*c2*c2)/(3*lambda-mu);
if (pgrad) {
(♦pgrad) (0,0) ® -6+sqrtr^(-cost+s2+lambda-2^cost^s2+nm

+7»cost*s2*lambda,»tc2*c2
+ll*cost*s2*mu*c2*c2+5*sint*c2*lainbda
+8*sint*c2*mu-7*sint*c2*c2*c2*lambda
-Il*sint*c2*c2,*tc2*mu)/(3,*tlajflbda-iim);

(♦pgrad)(1,0) * -6^sqrtr^(-sint^s2^1ambda-2^sint+s2^mu
+7+sin1t^s2^1ambda^c2^c2

+H+sint+s2+mu*c2^c2-5^cost+c2+lambda
-8*cost^c2^mu+7^cost^c2^c2^c2+lambda
+ll̂ cost+c2+c2*c2>Hini)/(3*laiiibda-mu);

(♦pgrad)(0,1) ■ -6tsqrtr+(-3+costtc2+lambda+3+cost+c2+c2+c2+lambda
-cost+c2^c2+c2^nm-sint+s2^1ambda
+3+sint+s2+lambda+c2+c2
-sint^s25*TBU+c2+c2)/(3+lambda-mu);

(♦pgrad)(1,1) ■ 6+sqrtr+(3+sint+c2+lambda
-3*sint^c2^c2+c2*lambda+sint*c2*c2*c2*nm
-cost*s2^1ambda+3*cost*s2*lambda*c2*c2
-cost^s2^mu^c2+c2)/(3^1ambda-mu);

>
> else if (mode « 10166666) {

U[0] * 4*sqrtr3*s2*(-lambda+lambda*c2*c2-3*nm*c2*c2)/(lambda-3*mu);
UCl] ■ 4^sqrtr3+c2+(-3^1ambda-6^mu+6^1ambda^c2^c2+9^mu^c2+c2)/(lambda-3^mu);
if (pgrad) {

(♦pgrad) (0,0) * 6+sqrtr+(-cost+s2+lambda+cost+s2+lambda+c2^c2-
3*cost*s2*mu*c2*c2-2*sint*c2*mu+sint*c2*lainbda-
Sint*c2^c2^c2+lambda
+3*sint+c2+c2^c2*mu)/(lambda-3*mu);

(♦pgrad)(1,0) » 6^sqrtr^(-sint+s2+lambda+sint^s2+laabda^c2^c2-
3*sint^s2*mu*c2^c2+2*cost*c2*nm-cost*c2*lambda+
cost*c2*c2^c2^1ambda
-3^cost♦c2+c2^c2+mu)/(lambda-3+mu);

(♦pgrad)(0,1) * 6^sqrtr^(-3^cost^c2+lambda-6^cost^c2’t'mu
+5+cost+c2+c2+c2+lambda+
9^cost+c2+c2+c2+mu-sint+s2+lambda-2+sint+s2^mu+

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5*sint*s2*laabda*c2*c2
+9*sint*s2*mu*c2*c2)/(lambda-3*mu);

(♦pgrad)(1,1) * -6*sqrtr*(3*sint*c2*lambda+6*sint*c2*mu
-5*sint*c2*c2*c2*lambda-
9*sint*c2*c2*c2*mu-cost*s2*lambda-2*cost*s2*mu+
5*cost*s2*lambda*c2*c2
+9*co8t*s2*nra*c2*c2)/(lambda-3*mu);

>

} else assert(0);
if (std: :isnan(U[0]))
cerr « "raaah not a number ... nu*" « nu « ", E«" « E « ", sig="
« sigma « ", a=" « a « ", xx=" « xx « ", y«" « y « ", r="
« r « ", sqrtr=" « sqrtr « ", cost*" « cost « ", U*" « U[0]
« "," « U[l] « endl;
assert(!std;:isnan(U[0]));
assert(!std::isnan(U[l]));

>

struct exact.solution {
getfem: :mesh_fem_global.function mf;
getfem::base_vector U;
exact_solution(getfem: :mesh feme) : mf(me) {}
void init(int mode, scalar.type lambda, scalar.type mu,

getfem::level.set 41s) {
std::vector<getfem::pglobal.function> cfun(4);
for (unsigned j*0; j < 4; ++j)
cfunfj] * getfem::isotropic.crack.singular.2D(j, Is);

mf .set.functions(cfun);
mf .set.qdim(l);

U.resize(8); assert(mf.nb.dof() =* 4);
getfem: :base_vector::iterator it * U.beginO;
scalar.type coeff*0.;
svitcb(mode) <
case l: {

scalar.type A*2+2*mu/(lambda+2*mu) , B«-2*(lambda+mu)/(lambda+2*am) ;
/♦ "colonne" 1: ux, colonne 2: uy */
+it++ * 0; *it++ » A-B; /* sin(theta/2) */
♦it++ * A+B; *it++ * 0; /* cos(theta/2) */

♦it++ * -B; *it++ » 0; /♦ sin(theta/2)*sin(theta) */
♦it++ * 0; *it++ ■ B; /♦ cos(theta/2)*cos(theta) */

coeff * l/sqrt(2*M_PI);
> break;
case 2: {

scalar.type Cl = (lambda+3*mu)/(lambda+mu);

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

*it++ = Cl+2-1; *it++ » 0;
*it++ - 0; *it++ = -(Cl-2+1);
*it++ = 0; *it++ = 1;
*it++ = 1; *it++ ■= 0;
coeff - 2*(mu+laabda)/(lambda+2*mu)/sqrt(2*M_PI) ;
> break;
default:

assert(0);
break;
>

gmm::scaleCU, coeff);

>
>;

base.small.vector sol.f(const base_nod© ftx) {
int N • x.sizeO;
base.small.vector res(N);
return res;

>

#else base.small.vector sol.f(const base.node &x) {
int N = x.sizeO;
base.small.vector res(N); res[N-l] - x[N-l];
return res; ________

>

#endif

/**/

/* Structure for the crack problem. */
/**********̂ **/

struct crack_problem {

enum i DIRICHLET_BOUNDARY_NUM * 0, NEUMANN.BOUNDARY.NUM - 1, NEUMANN_B0UNDARY.NUM1*2,
NEUMANN_H0M0GENE_B0UNDARY_NUM=3>;

getfem::mesh mesh; /* the mesh */
getfem::mesh_level_set mis; /* the integration methods. */
getfem::mesh.im.level.set mim; /* the integration methods. */

getfem: :mesh.fem mf.pre.u;
getfem: :mesh.fem mf.mult;
getfem::mesh.fem.level.set mfls.u;
getfem::mesh.fem.global_function mf.sing.u;
getfem: :mesh.fem mf..partition.of.unity;
getfem::mesh.fem.product mf.product;
getfem: :mesh.fem_sum mf.u_sum;

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

getfem::spider.fem *spider;
getfem:tmesh.fem mf.us;

getfem: :mesh_femfe mf.uO { return mf.u.sum; }
// getfem: :mesh_fern& mf_u() < return mf.us; >

scalar.type lambda, mu; /* Lame coefficients. */
getfem::mesh.fem mf_rhs; /* mesh.fem for the right hand side (f(x),..) */
getfem::mesh_fem mf.p; /* mesh.fem for the pressure for mixed form */

#ifdef VALIDATE.XFEM
exact.solution exact.sol;

#endif
int bimaterial; /* For bimaterial interface fracture */

double lambda.up, lambda.doun; /♦Lame coeff for bimaterial case*/
// scalar.type lambda.inc, mu.inc; // Lam coefficients, of the inclusions
getfem::level.set Is; /* The two level sets defining the crack. */
getfem:ilevel.set ls2, ls3; /* The two level-sets defining the add. cracks.*/
base.small.vector translation;
scalar.type thetaO;
scalar.type spider.radius;
unsigned spider.Nr;
unsigned spider.Ntheta;
int spider.K;
scalar.type residual; /* max residual for the iterative solvers */
bool mixed.pressure, add.crack;
unsigned dir.vith.mult;
scalar.type cutoff.radius, cutoff.radiusl, cutoff.radiusO, enr.area.radius;
int enrichment.option;
size.type cutoff.func;
std::string datafilename;
ftool::md_param PARAH;

bool solve(plain.vector &U);
void init(void);
crack.problem(void) : mls(mesh), mim(mls), mf.pre.u(mesh), mf.mult(mesh),

mfls.uCmls, mf.pre.u), mf.sing.u(mesh),
mf.partition.of.unity(mesh),
mf.product(mf.partition_of.unity, mf.sing.u),

mf.u.sum(mesh), mf.us(mesh), mf.rhs(mesh), mf.p(mesh),
#ifdef VALIDATE.XFEM

exact.sol(mesh),
#endif

Is(mesh, 1, true), ls2(mesh, 1, true),

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Is3(mesh, 1, true) O
>;

/* Read parameters from the .param file, build the mesh, set finite element
* and integration methods and selects the boundaries. */

void crack.problem::init(void) {
std::string MESH.TYPE = PARAM.string.value("MESH.TYPE","Mesh type ");
std::string FEM.TYPE - PARAM.string.value("FEM_TYPE","FEM name");
std;:string INTEGRATION - PARAM.string_value("INTEGRATION",

"Name of integration method");
std;:string SIMPLEX.INTEGRATION - PARAM.string.value("SIMPLEX.INTEGRATION",

"Name of simplex integration method") ;
std::string SINGULAR.INTEGRATION - PARAM.string.value("SINGULAR.INTEGRATION") j

add.crack - (PARAM.int.value(" ADDITIONAL.CRACK", "An additional crack ?•') !- 0);
enrichment.option - PARAM.int_value("ENRICHMENT_OPTION",

"Enrichment option");
cout « "MESH.TYPE-" « MESH.TYPE « "\n";
cout « "FEM.TYPE-" « FEM.TYPE « "\n";
cout « "INTEGRATION-" « INTEGRATION « "\n";

spider.radius = PARAM.real_value("SPIDER_RADIUS","spider.radius”);
spider_Nr = PARAM.int.value("SPIDER_NR","Spider_Nr ");
spider.Ntheta - PARAM.int.valueC'SPIDER.NTHETA","Ntheta ");
spider _K - PARAM. int .value ("SPIDER.K" , "K ");

translation.resize(2);
translation[0] -0.5;
translation[1] -0.;
thetaO -0;

std::string meshname
(PARAM.string.value("MESHNAME", "Norn du fichier de maillage"));

/* First step : build the mesh */
bgeot::pgeometric_trans pgt -
bgeot: :geometric_trans_descriptor (MESH.TYPE);

getfem;:import.mesh(meshname,”gid", mesh); /* read the mesh from external gid file */

mesh.optimize.structureO;

size.type N - pgt->dim();
/* std::vector<size_type> nsubdiv(N);
std::fill(nsubdiv.begin(),nsubdiv.end(),

PARAM.int.valueCNX", "Nomber of space steps "));
getfem::regular_unit_mesh(mesh, nsubdiv, pgt,

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PARAM.Int.value("MESH NOISED") != 0);
base.small.vector tt(N); tt[l] * -0.5;
mesh.translation(tt); */

datafilename ■ PARAM.string.value(“ROOTFILENAME'V'Base name of data files.'1);
residual * PARAM.real.value("RESIDUAL”); if (residual == 0.) residual « le-10;
enr.area.radius ■ PARAM.real_value(“RADIUS.ENR_AREA",

"radius of the enrichment area");

bimaterial ■ PARAM.int.value("BIMATERIAL", "bimaterial interface crack");

if (bimaterial 1){
mu ■ PARAM. real, value ("MU", "Lame coefficient mu1');
lambda_up « PARAM.int_value("LAMBDA_UP“, "Lame Coef");
lambda_down - PARAM. int .value ("LAMBDA.DOWN", "Lame Coef");
lambda - PARAM.real.value("LAM6DA", "Lame'coefficient lambda");
// mu.inc «* PARAM.real_value("HUIHC", “Lam coefficient mu.inc”);
// lambda.inc = PARAM.real.value("LAMBDAINC", "Lam coefficient lambda.inc");

>
else{

mu * PARAM.real.value(“MU", "Lame coefficient mu");
lambda • PARAM.real.valueC'LAMBDA", "Lame coefficient lambda");

>

cutoff.func = PARAM.int.value("CUTOFF.FUNC". "cutoff function");
cutoff.radius = PARAM.real_value("CUTOFF“, "Cutoff");
cutoff.radiusl - PARAM.real.value("CUT0FF1". "Cutoffl");
cutoff.radiusO - PARAM.real.value("CUT0FF0", "CutoffO");
mf_u().set.qdim(N);

/* set the finite element on the mf.u */
getfem::pfem pf.u -
getfem: :fem_descriptor(FEM_TYPE);

getfem: :pintegration_method ppi -
getfem::int_method_descriptor(INTEGRATION);

getfem: :pintegration_method simp.ppi -
getfem::int_metbod_descriptor(SIMPLEX.INTEGRATION) ;

getfem::pintegration.method sing.ppi - (SINGULAR.INTEGRATION.sizeO ?
getfem::int.method.descriptor(SINGULAR.INTEGRATION) : 0);

mim.set.integrationjnethod(mesh.convex_index(), ppi);
mis.add_level_set(Is) ;
if (add.crack) { mis.add.level.set(ls2); mis.add.level.set(ls3); >

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mira.set_simplex_im(simp_ppi, sing_ppi);

mf.pre.u. set.f inlte.element (mesh.convex.indexO , pf.u) ;
mf.mult, set.f inlte.element (mesh. convex.indexO , pf.u) ;
mf_mult.set_qdim(N);
mf.partition.of.unity.set.classical.finlte.element(1)j

if (enrichment.option == 3 11 enrichment.option =» 4) {
spider 3 new getfem::spider_fem(spider.radius, mim, spider.Nr,

spider.Ntheta, spider.K, translation.
thetaO);

mf.us.set.finite.element(mesh.convex.indexO,spider->get_pfem()) ;
for (dal: :bv_visitor_c i(mf.us.convex.indexO); !i.finished() ; ++i) {
if (mf_us.fem_of_element(i)->nb_dof(i) == 0) {

mf.us.set.finite.element(i.O);

}

}

>

mixed.pressure -
(PARAM. int .value ("MIXED .PRESSURE", "Mixed version or not.") !- 0);

dir.with.mult - PARAM.int_value("DIRICHLET_VERSINO") ;
if (mixed.pressure) {
std::string FEM.TYPE.P - PARAM.string.value("FEM.TYPE.P","FEM name P");
mf_p.set.finlte.element(mesh.convex.index(),

getfem::fem_descriptor(FEM_TYPE_P));

>

/* set the finite element on mf.rhs (same as mf.u is DATA.FEM.TYPE is
not used in the .param file */

std::string data.fem.name ■ PARAM.string.value("DATA.FEM.TYPE");
if (data_fem_name.size() ■= 0) {
if (!pf_u->is_lagrange()) {
DAL.THROW(dal::failure_error, "You are using a non-lagrange FEM. "
« "In that case you need to set "
« "DATA.FEM.TYPE in the .param file");

>

mf.rhs.set.finite.element(mesh.convex.indexO, pf.u);
} else {
mf.rhs. set.f inlte.element (mesh. convex.index () ,

getfem::fem.descriptor(data.fem_name));

>
/* set boundary conditions
* (Neuman on the upper face, Dirichlet elsewhere) */

cout « "Selecting Neumann and Dirichlet boundariesNn";

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

getfem: :mesh region border faces; —
getfem::otter.faces_of_mesh(mesh, border.faces);
for (getfem::mr.visitor i(border.faces); !i.finishedO; ++i) {

base.node un - mesh.normal.of_face.of_convex(i.cv(), i.f());
un /= gmm::vect_norm2(un);
if(bimaterial == 1) {

if (un(0] > 1.0E-7) { // new Neumann face
mesh•region(DIRICHLET.BOUNDARY.NUM),add(i.cv(), i.f());
> else {

if (un[l] > 1.0E-7) {
cout « "normal ■ " « un « endl;
mesh.region(NEUMANN.B0UNDARY.NUM1) .add(i.cv() , i.f ()) ;

}
else {
if (un[l) < -1.0E-7) <
cout « "normal ■ “ « un « endl;

mesh .region (NEUMANN.BOUNDARY.NUM) . add (i. c v () , i.f ()) ;
>
else {
if (un[0) < -1.0E-7) {
cout « "normal “ " « un « endl;
mesh.region(NEUMANN_HOMOGENE_BOUNDARY_NUM).add(i.cv(), i.f());

>
>

>

>

>
else {

#ifdef VALIDATE.XFEM
mesh. region(DIRICHLET.BOUNDAKY.NUM) . add(i. cv() , i. f ());
#else

base.node un ■ mesh.normal_of_face_of_conver(i.cv(), i.fO);
un /= gmm::vect_norm2(un);
if (un[0] - 1.0 < -1.0E-7) { // new Neumann face
mesh.region(NEUMANN.BOUNDARY.NUM) .add(i.cv(), i.f ()) ;

}• else {
cout « “normal » " « un « endl;

mesh.region(DIRICHLET.B0UNDARy.mnO .add(i.cv(), i.f());
>

tendif

>

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ttifdef VALIDATE.XFEM
exact_sol.init(l, lambda, mu. Is);

#endif >

base.small.vector ls_function(const base_node P, int num “ 0) {
scalar.type x = P[0] , y = P[l] ;
base.small.vector res(2);
switch (num) {
case 0: {
res[0] = y;
res(l] = -.5 + x;

> break;

case 1: {
res[0] = gmm::vect_dist2(P, base.node(0.5, 0.)) - .25;
res[l] » gmm::vect_dist2(P, base.node(0.25, 0.0)) - 0.27;

> break;
case 2: {
resCO] = x - 0.25;
res[1] = gmm::vect_dist2(P, base.node(0.25, 0.0)) - 0.36;

> break;
default: assert(0);

>

return res;

y

bool crack.problem:: solve (plain_vector W) {
size.type nb.dof.rhs - mf.rhs.nb.dof();
size.type N - mesh.dimO;
ls.reinitO;

cout « "Is.get_mesh_fem().nb.dof() = “ « Is.get_mesh_fem().nb.dof() « "\n";
for (size.type d “ 0; d < Is.get_mesh_fem().nb.dof(); ++d) {
Is.values(0)[d] ■ ls_function(ls.get_mesh_fem().point.of.dof(d), 0)[0];
Is.values(1)[d] » ls_function(ls.get_mesh_fem().point.of.dof(d), 0)[1];

>
ls.touchO;

if (add.crack) {
ls2.reinit();

for (size.type d « 0; d < ls2.get.mesh.fem().nb.dof0; ++d) {
ls2.values(0) Cd] = ls_function(ls2.get_mesh.fem() .point.of.dof (d) , 1) CO] ;
ls2. values(1) [d] = ls_function(ls2.get_mesh_fem() .point.of.dof (d) , 1) [1] ;

>

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Is2.touch();

ls3.reinit();
for (size.type d * 0; d < ls3.get_mesh_fem().nb.dof(); ++d) i

ls3.values(0)[d] * ls.function(ls2.get.mesh.fem().point.of.dof(d), 2)[0];
ls3.values(1) [d] - ls.function(ls2.get_mesh.femO .point.of.dof (d) , 2)[1];

>

ls3.touch();

>

mis.adapt();
mim.adapt();
mfls_u.adapt();
std::vector<getfem::pglobal_function> vfunc(4);
for (size.type i ■ 0; i < 4; ++i)
vfuncCi] = isotropic_crack_singular_2D(i, Is,

(enrichment.option 2) ? 0.0 : cutoff.radius,
(enrichment.option --2) ? 0.0 : cutoff.radiusl,
(enrichment.option ** 2) ? 0.0 : cutoff.radiusO,

cutoff.func);

mf.sing.u.set.functions(vfunc);

if (enrichment.option «* 3 11 enrichment.option =*= 4) {
spider * new getfem::spider.fem(spider.radius, mim, spider.Nr,

spider.Ntheta, spider.K, translation,
thetaO);

mf .us. set.f inlte.element (mesh. convex.index (), spider->get.pf emO);
for (dal: jbv.visitor.c i(mf.us.convex.index()); !i.finishedO ; ++i) {
if (mf_us.fem_of_eleraent(i)->nb.dof(i) 0) {

mf_us.set.finite_element(i,0);
>

>
spider~>check();

>

switch (enrichment.option) {
case 1 :{
if(cutoff.func == 0)
cout«ttUsing exponential Cutoff... H«endl;

else
cout«MUsing Polynomial Cutoff... "«endl;
mf.u.sum.set.mesh.fems(mf.sing.u, mfls.u); break;

}

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case 2 :

dal::bit.vector enriched.dofs;
plain.vector X(mf.partition.of.unity.nb.dof());
plain.vector Y(mf.partition.of.unity,nb.dof());
getfem::interpolation(ls.get_mesh.fem(), mf.partition.of.unity,

Is.values(1), X);
getfem::interpolation<ls.get.mesh.fem(), mf.partition.of.unity,

Is.values(0), Y);
for (size.type j » 0; j < mf.partition.of.unity,nb.dof(); ++j) {

if (gmm::sqr(X[j)) + gmm::sqr(Y[j]) <» gmm::sqr(enr.area.radius))
enriched.dofs.add(j);
>

if (enriched.dofs.cardO < 3)
DAL.WARNINGO("There is H « enriched.dofs.card() «

N enriched dofs for the crack tip");
mf.product.set.enrichment(enriched.dofs);
mf.u.sum.set.mesh.fems(mf.product, mfls.u);

>

break;
case 3 : mf_u_sum.set.mesh.fems(mf.us); break;

case 4 :
mf.u.sum.set.mesh_fems(mf.us, mfls.u);
break;

default : of.u.sum.set.mesh.fems(mfls.u)j break;

>

U.resize(mf_u().nb.dof());
if (mixed.pressure) cout « "Number of dof for P: " « mf.p.nb.dof() « endl;
cout « "Number of dof for u: " « mf.uO .nb.dof () « endl;

// Linearized elasticity brick.

getfem::mdbrick.isotropic.linearized.elasticity<>
ELAS(mim, mf.uO, mixed.pressure ? 0.0 : lambda, mu);

if(bimaterial -= 1){
cout« "___" «endl;
cout«"CASE OF BIMATERIAL CRACK uith lambda.up - "«lambda_up«";
cout«"and lambda.down = "«lambda_dovn«endl;
cout« "___■ «endl;
std::vector<float> bi.lambda(ELAS.lambda().mf().nb.dof());

cout<<"ELAS.lambda() .mf () .nb.dof ()=“«"«ELAS.lambda() .mf () .nb.dof ()«endl;

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for (size.type ite ■ 0; ite < ELAS.lambdaO.mf().nb.dof();ite++) {

if (ELAS.lambdaO .mf() .point.of.dof (ite) [1] > 0)
bi.lambda[ite] “ lambda.up;
else
bi_lambda[ite] = lambda.down;

>
//cout«“bi_lambda.size() * "«bi_lambda.size()«endl;
// cout«"ELAS.lambdaO .mf () .nb.dof ()=”-”«ELAS.lambda() .mf () .nb.dof ()«endl;

ELAS.lambda().set(bi.lambda);

>

getfem::mdbrick_abstract<> *pINC0MP;
if (mixed.pressure) {
getfem::mdbrick.linear_incomp<> *incomp
= new getfem::mdbrick_linear.incomp<>(ELAS, mf_p);

incomp->penalization_coeff0.set(1.0/lambda);
pINCOMP = incomp;

} else pINCOMP » 4ELAS;

// Defining the volumic source term,
plain.vector F(nb_dof_rhs * N);
for (size.type i • 0; i < nb.dof.rhs; ++i)

gmm: :copy(sol_f (mf.rhs.point.of.dof (i)) ,
gmm::sub.vector(F, gmm::sub_interval(i*N, N)));

// Volumic source term brick.
getfem::mdbrick_source_term<> V0L_F(*pINC0MP, mf.rhs, F);

// Defining the Neumann condition right hand side,
gmm::clear(F);

// Neumann condition brick.

getfem::mdbrick_abstract<> epNEUHANN;

if (bimaterial == 1H
for(size_type i = 1; KF.sizeO; i=i+2)
F[i]e-0.2;

>
getfem::mdbrick_source_term<> NEUMANN(VOL.F, mf.rhs, F,NEUMANN.BOUNDARY.NUM);

gmm::clear(F);
getfem: :mdbrick_source.term<> NEUMANN.HOM(NEUMANN, mf.rhs, F,NEUMANN_H0M0GENE_B0UNDARY.NUM) ;

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gmm::clear(F);
for(size_type i - 1; i<F.size(); i*i+2)
F[i]*0.2;

getfem::mdbrick.source_term<> NEUMANN1(NEUMANN.HOM, mf.rhs, F,NEUMANN.BOUNDARY.NUM1);

if (bimaterial =*1)
pNEUMANN » k NEUMANN1;

else
pNEUMANN - k NEUMANN;

//toto.solution toto(mf.rhs.linked.meshO); toto.init();
//assert(toto.mf.nb.dof() *** 1);

// Dirichlet condition brick.
getfem::mdbrick_Dirichlet<> final.model(*pNEUMANN, DIRICHLET.BOUNDARY.NUM, mf.mult);

if (bimaterial ■»= 1)
final.model.rhs().set(exact.sol.mf,0);

else {
#ifdef VALIDATE.XFEM

final.model.rhs().set(exact.sol.mf,exact.sol.U);
#endif

>
final.model. set.constraints.type (getfem:: constraints.type (dir.with.mult));

// Generic solve.
cout « "Total number of variables : H « final.model.nb.dof() « endl;
getfem::standard.model.state MS(final.model);
gmm::iteration iter(residual, 1, 40000);
getfem::standard_solve(MS, final_model, iter);

// Solution extraction
gmm::copy(ELAS.get.solution(MS), U);

return (iter.convergedO);

>

/**/

/* main program. */
/**/

int main(int argc, char *argv[]) {

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DAL_SET_EXCEPTION.DEBUG; // Exceptions make a memory fault, to debug.
FE.ENABLE.EXCEPT; // Enable floating point exception for Nan.

//getfem::getfem.mesh_level_set.noisy();

try <
crack.problem p;
p.PAAAM.read_command.line(argc, argv);
p.init();
p.mesh.vrite.to.file(p.datafilename + ".mesh");
plain,vector U(p.mf.uO .nb.dof ());
if Op.solve(U)) DAL_THROW(dal: :failure_error,"Solve has failed1');

getfem::mesh mcut;
p.mls.global_cut_mesh(mcut);
unsigned Q * p.mf.uO .get.qdimO;
getfem::mesh.fem mf(mcut, Q);
mf.set.classical.discontinuous.finlte.element(2, 0.001);
// mf.set.finlte.element
// (getfem::fem.descriptor("FEM_PK_DISCONTINUOUS(2, 2, 0.0001)"));
plain.vector V(mf.nb.dof());

getfem: interpolation (p. mf.uO, mf, U, V);

getfem::stored.mesh.slice si;
getfem::mesh mcut.refined;

unsigned NX = p.PARAM.int_value("NX"), nn;
if (NX < 6) nn » 24;
else if (NX < 12) nn * 8;
else if (NX < 30) nn * 3;

else nn * 1;

/* choose an adequate slice refinement based on the distance to the crack tip */

std::vector<bgeot::short.type> nrefine(mcut.convex.indexO.last.true()+l);
for (dal: tbv.visitor cv(mcut .convex.indexO); Icv.finishedO ; ++cv) {

scalar.type dmin»0, d;
base.node Pmin,P;
for (unsized i*0; i < mcut.nb.points.of.convex(cv); ++i) {
P » mcut.points.of.convex(cv)[i];
d » gmm::vect.norm2(ls.function(P));
if (d < dmin II 1**0) i dmin * d; Pmin * P; >

>

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (dmin < le-5)
nrefineCcv] “ nn»8;

else if (dmin < .1)
nrefinetcv] « nn*2;

else nrefineCcv] ■ nn;
if (dmin < .01)
cout « "cv: " « cv « ", dmin * " « dmin « "Pmin=" « Pmin « • * « nrefineCcv] « “\n";
>
{

getfem::mesh_slicer slicer(mcut);
getfem::slicer_build_mesh bmesh(mcut.refined);
slicer.push_back_action(bmesh);

slicer.exec(nrefine, getfem::mesh_region::all.convexes());
}
/ *

si.build(mcut,
getfem::slicer_build_mesh(mcut_refined), nrefine);*/

getfem::mesh_im mim.ref ined (mcut .refined);
mim.refined.set.integration.method(getfem::int.method.descriptor

("IM_TRIANGLE(6)"));

getfem::mesh_fem mf_refined(mcut_refined, Q); —
mf.refined.set.classical.discontinuous.finite.element(2, 0.0001);
plain.vector W(mf.refined.nb.dof());

getfem: interpolation (p.mf.uO , mf.refined, U, W) ;

#ifdef VALIDATE.XFEM
p.exact.sol.mf.set.qdim(Q);
assert (p. exact.sol.mf .nb.dof () *=“ p.exact.sol.U.sizeO) ;
plain.vector EXACT(mf_ref ined.nb.dof ()) ;
getfem::interpolation(p.exact_sol.mf, mf.refined,

p.exact.sol.U, EXACT);

plain.vector DIFF(EXACT); gmm::add(gmm::scaled(W,-l),DIFF);
#endif

umiimiitiimiiiiiiiiiimuiuiiiiiiiiui
// compute the strain

size.type N = p.mf.uO .get.qdimO;
cout « “Test" « M « ’\n’;

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

plain.vector vStr(N*mf.nb.dof());
getfem::compute.gradient(mf, mf, V, vStr);

// end comp strain
/ /

if (p. PARAM. int .value ("VTK.EXPORT")) {
getfem::mesb.fem mf.refined.vm(mcut_refined, 1);
mf .refined, vm. set.classical.discontinuous.f inite.element (i, 0.0001) ;
cerr « "mf.refined.vm.nb.dof»H « mf_refined.vm.nb.dof() « “\n";
plain.vector VMCmf.refined.vm.nb.dof());

cout « "computing von misesNn";

getfem::interpolation.von_mises(mf.refined, mf.refined.vm, U, VM);

plain.vector DCmf.refined_vm.nb.dof() * Q),
DN(mf.refined.vm.nb.dof());

#ifdef VALIDATE.XFEM
getfem::interpolation(mf.refined, mf.refined.vm, DIFF, D);
for (unsigned i=0; i < DN.sizeO; ++i) {
DN[i] - gmm::vect.norm2(gmm::sub_vector(D, gmm::sub_interval(i*Q, Q)));

>
#endif

cout « "export to 11 « p.datafilename + ".vtk" « ",.\n";
getfem::vtk_export exp(p.datafilename + ".vtk”,

p. PARAM. int.value ("VTK.EXPORT")— 1) ;

exp.exporting(mf.refined);
//exp.write.point.data(mf_refined_vm, DN, “error");
exp.write_point_data(mf_refined_vra, VM, "von mises stress");

//exp.vrite.point.data(mf.refined, W, "elastostatic.displacement");

(fifdef VALIDATE.XFEM

plain.vector VM.EXACT(mf.refined.vm.nb.dof ()) ;

/* getfem::mesh_fem.global.function mf(mcut.refined,Q);
std::vector<getfem::pglobal.function> cfun(4);
for (unsigned j=0; j < 4; ++j)
cfun[j] " getfem::isotropic.crack_singular_2D(j, p.Is);
mf.set.functions(cfun);

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

getfem: :interpolation_von_mises(mf, mf.refined.vm, p.exact.sol.U,
VM.EXACT);

* /

getfem:interpolation.von.mises(mf_refined, mf.refined_vm, EXACT, VM.EXACT);
getfem: :vtk_export exp2Ccrack.exact.vtk");
exp2. exporting (mf.ref ined) ;
exp2.write.point.data(mf.refined.vm, VM.EXACT, "exact von mises stress");
exp2.write_point_data(mf_refined, EXACT, "reference solution");

#endif

cout « “export done, you can view the data file with (for example)\n"
"mayavi -d " « p.datafilename « ".vtk -f "
"WarpVector -m BandedSurfaceMap -m Outline\n";

>

#ifdef VALIDATE.XFEM
cout « "L2 ERROR:"« getfem: :asm_L2_dist(p.mim, p.mf.uO, U,

p.exact.sol.mf, p.exact.sol.U)
« endl « "Hi ERROR:"
« getfem: :asm.Hi_dist(p.mim, p.mf.uO, U,

p.exact.sol.mf, p.exact.sol.U) « "\n“;

/* cout « "OLD ERROR L2:“

« getfem::asm_L2_norra(mim_refined,mf.refined,DIFF)
« “ HI:" « getfem::asm_Hl_dist(mim_reflned,mf.refined,
EXACT,mf_refined,W) « "\n";

cout « "ex » " « p.exact.sol.U « “\n";
cout « "U « " « gmm::sub.vector(U, gmm::sub.interval(0,8)) « "\n";

* /

#endif

>
>
DAL.STANDARD.CATCH.ERROR;

return 0;
>

B.1.2 Param eter file

xxxxxxxxxxxxxxxxxxxxxxxxxxxyxxxxxx.xxx

% parameters for crack program X

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXY.XXX

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XXXXX pde parameters : xxxxx
MU - 1.0; X Lam coefficient.
LAMBDA « 1.0; */. Lam coefficient.
MUINC - 100.0; X Lam coefficient.
LAMBDAINC = 100.0; 7, Lam coefficient.
BIMATERIAL = 1; X 1 : To enable the bimaterial case.
CUTOFF.FUNC = 0.2; CUT0FF1 = 0.2; CUT0FF0 - 0.2; LAMBDA.UP - 0.2; LAMBDA.DOWN - 0.2;

MESH_NOISE - 0; X Set to one if you want to "shake" the mesh
XFEM.TYPE - *FEM_PK_WITH_CUBIC_BUBBLE(2, 2)';
FEM.TYPE - ’FEM_PK(2, 1)’; X PK element
XFEM.TYPE = ’FEM_QK(2,1)’; X Q1 fern for quadrangles
XFEM.TYPE - ’FEM.HERMITE.SEGMENT’; X (broken) Hermits fern on a segment
XFEM.TYPE = ’FEM_PK_HIERARCHICAL(2,2) ’; X Hierarchical PK on simplexes
MIXED.PRESSURE-0; X Mixed version or not.
X FEM.TYPE.P - ’FEM_PK(3,1)’; X PI for triangles
FEM.TYPE.P * ’FEM_PK_DISC0NTINU0US(2,0)’; X Discontinuous PI for triangles
DIRICHLET.WITH.MULTIPLIERS - 0;

X DATA.FEM.TYPE must be defined if your main FEM is not Lagrangian
DATA.FEM.TYPE - *FEM.PK(2,1)>;
X DATA.FEM.TYPE = ’FEM.PK(2,2) >;

XINTEGRATION - ’IM_TETRAHEDR0N(6)’; X quadrature rule for polynomials up
X to degree 6 on tetra

SIMPLEX.INTEGRATION = ’IM_STRUCTURED_C0MP0SITE(IM_TRIANGLE(6), 5)’; INTEGRATION -
>IM_STRUCTURED.C0MP0SITE(IM_TRIANGLE(6) , 5) ’;
XINTEGRATION - *IM_EXACT.SIMPLEX(2)’; X exact integration on triangles
XINTEGRATION = ’IM_NC(2,6)’; X newton-cotes of degree 6 on triangles
XSIMPLEX.INTEGRATION = ’IM.TRIANGLEC6) ’;
XINTEGRATION- ’IM.TRIANGLE(6)’;
ADDITIONAL.CRACK - 0;
ENRICHMENT.OPTION - 2; X 0 = Pas d’enrichissement

XXXXX d is c re t is a t io n param eters :

MESH.TYPE = ’GT.PKC2,1)*; X l in e a r tr ia n g le s

XMESH.TYPE - ’GT_LINEAR_QK(2,1) ’; X l in e a r rec tan g le s

XMESH.TYPE - *GT_PRISM(3f 1) ’; X 3D prisms

XXXXX

NX = 10; X space step.

X I - global functions with cutoff
X 2 - standard XFEM on a fixed zone
X 3 - spider fern alone

X 4 - spider fern enrichment
MESHNAME-'meshes/poly-035.msh *;

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RADIUS.ENR.AREA -0.1; CUTOFF-0.2
X RADIUS.ENR.AREA =0.2;
SPIDER.RADIUS = 0.3;
SPIDER.NR = 20;
SPIDER.NTHETA = 20;
SPIDER.K-1;
RESIDUE - IE-9;

X size of the cartesian mesh in r for spider tea

X size of the cartesian mesh in theta for spider fern
X order of the spider fern
X residue for iterative methods if any.

XXXXX saving parameters XXXXX

R00TFILENAME = 'crack*; X Root of data files.
VTK.EXP0RT - I X export solution to a .vtk file T

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1] B a b u sk a , I. and M e le n k , J., “Partition of unity method,” International
Journal for Numerical Methods in Engineering, vol. 40, pp. 727-758, 1997.

[2] B e c h e t , E ., M innebo, H ., M oes, N ., and B u r g a r d t , B ., “Improved
implementation and robustness study of the x-fem for stress analysis around
cracks,” International Journal for Numerical Methods in Engineering, vol. 64,
pp. 1033-1056, 2005.

[3] B e ly t s c h k o , T . and BLACK, T ., “Elastic crack growth in finite elements
with minimal remeshing,” International Journal for Numerical Methods in
Engineering, vol. 45, pp. 601-620, 1999.

[4] B e ly t s c h k o , T., C h en , H., Xu, J ., and Zl, G., “Dynamic crack propaga­
tion based on loss of hyperbolicity and a new discontinuous enrichment,” In­
ternational Journal for Numerical Methods in Engineering, vol. 58, pp. 1873-
1905, 2003.

[5] B e ly t s c h k o , T ., M o e s , N., U su i, S ., and P a rim i, C., “Arbitrary dis­
continuities in finite elements,” International Journal for Numerical Methods
in Engineering, vol. 50, pp. 993-1013, 2001.

[6] C h e ssa , J. and B e ly t s c h k o , T., “Arbitrary discontinuities in spacetime
finite elements by level sets and x-fem,” International Journal for Numerical
Methods in Engineering, vol. 61, pp. 2595-2614, 2004.

[7] C h op p, D. and SUKUMAR, N ., “Fatigue crack propagation of multiple copla-
nar cracks with the coupled extended finite element, fast marching method,”
International Journal of Engineering Science, vol. 41, pp. 845-869, 2003.

[8] D a u x , C., M o e s , N ., M o r a n , B ., and B e l y t s c h k o , T ., “Arbi­
trary branched and intersecting cracks with the extended finite element
method,” International Journal for Numerical Methods in Engineering,
vol. 48, pp. 1741-60, 2000.

[9] d e B o r s t , R., G u t ie r r e z , M., W e l l s , G., R em m ers, J., and A sk e s ,
H., “Cohesive-zone models, higher-order continuum theories and reliability
methods for computational failure analysis,” International Journal for Nu­
merical Methods in Engineering, vol. 60, pp. 289-315, 2004.

[10] D o lb o w , J ., M o e s , N ., and B e ly t s c h k o , T ., “M odelling fracture in
mindlinreissner plates with the extended finite element m ethod,” Interna­
tional Journal for Solids Structure, vol. 37, pp. 7161-83, 2000.

[11] D o lb o w , J., M o e s , N., and B e ly t s c h k o , T., “An extended finite ele­
ment method for modeling crack growth with frictional contact,” Computer
Methods in Applied Mechanics and Engineering, vol. 190, pp. 6825-46, 2001.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[12] DONAHUE, R. and F a b iy i, P ., “Manufacturing feasibility of all- aluminum
automotive engines via application of high silicon aluminum alloy,” SAE
Transactions Journal of Materials and Manufacturing, vol. 109, pp. 16-26,
2000.

[13] F an , S., Liu, X., and Lee, C., “Enriched partition-of-unity finite element
method for stress intensity factors at crack tips,” Computational Mechanics,
vol. 82, pp. 445—461, 2004.

[14] F le m in g , M ., C h u , Y ., M o r a n , B ., and B e l y t s c h k o , T ., “Enriched
element-free galerkin m ethods for crack-tip fields,” International Journal for
Numerical Methods in Engineering, vol. 40, pp. 1483-504, 1997.

[15] G r a v o u il , A., M o e s , N., and B e ly t s c h k o , T., “Non-planar 3d crack
growth by the extended finite element and level sets, part ii: level set up­
date,” International Journal for Numerical Methods in Engineering, vol. 53,
pp. 2569-2586, 2002.

[16] HEINTZ, P ., “On the numerical modeling of quasi-static crack growth in lin­
ear elastic fracture mechanics,” Chalmers Finite Element Center, vol. 2005-
02, pp. 1-18, 2005.

[17] I a r v e , E., “Mesh independent modelling of cracks by using higher order
shape functions,” International Journal for Numerical Methods in Engineer­
ing, vol. 56, pp. 869-882, 2003.

[18] L a b o r d e , P ., P o m m ier , J ., R e n a r d , Y ., and S a la u n , M ., “High-order
extended finite element method for cracked domains,” International Journal
for Numerical Methods in Engineering, vol. 64, pp. 351-381, 2005.

[19] L e e , S., S o n g , J., Y o o n , Y ., Zi, G., and B e l y t s c h k o , T., “Combined
extended and superimposed finite element method for cracks,” International
Journal for Numerical Methods in Engineering, vol. 59, pp. 1119-1136, 2004.

[20] L ia n g , J., H u a n g , R., P r e v o s t , J., and Suo, Z., “Evolving crack pat­
terns in thin films with the extended finite element method,” International
Journal of Solids and Structures, vol. 40, pp. 2343-2354, 2003.

[21] Liu, X., X ia o , Q., and K a r ih a lo o , B., “Xfem for direct evaluation of
mixed mode sifs in homogeneous and bi-materials,” International Journal
for Numerical Methods in Engineering, vol. 59, pp. 1103-1118, 2004.

[22] MELENK, J. and B a b u sk a , I., “The partition of unity finite element
method: basic theory and applications,” Computer Methods in Applied Me­
chanics and Engineering, vol. 139, pp. 289-314, 1996.

[23] M o e s , N., D o lb o w , J ., and B e ly t s c h k o , T., “A finite element method
for crack growth without remeshing,” International Journal for Numerical
Methods in Engineering, vol. 46, pp. 131-50, 1999.

[24] M o e s , N., G r a v o u il , A., and B e ly t s c h k o , T., “Non-planar 3d crack
growth by the extended finite element and level sets, part i: mechanical

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

model,” International Journal for Numerical Methods in Engineering, vol. 53,
pp. 2549-2568, 2002.

[25] O sh er , S. and S e th ia n , J ., “Fronts propagating with curvature depen­
dent speed: algorithms based on hamiltonjacobi formulations,” Journal of
Computer Physics, vol. 79, pp. 12-49, 1988.

[26] RENARD, Y. and P om m ier, J., getfem++, A generic finite element library
in C++. INSAT, Toulouse, France, 2005.

[27] R ib o , R. and P a se n a u , M., GiD, The personal pre and post processor.
CIMNE, Brcelona, Spain, 2005.

[28] R u b in s te in , A., “Computational aspects of crack path development sim­
ulation in materials with nonlinear process zone,” International Journal of
Fracture, vol. 119, pp. L15-L20, 2003.

[29] S e th ia n , J., Level set methods and fast marching methods. Cambridge Uni­
versity Press, 1999.

[30] S ta z i , F., B u d y n , E., C h e ssa , J., and B e ly t s c h k o , T ., “An extended
finite element method with higher-order elements for curved cracks,” Com­
putational Mechanics, vol. 31, pp. 38-48, 2003.

[31] S t o l a r s k a , M., C h op p , D., M o e s , N., and B e l y t s c h k o , T., “Mod­
elling crack growth by level sets in the extended finite element method,” In­
ternational Journal for Numerical Methods in Engineering, vol. 51, pp. 943-
GO, 2001.

[32] S u k u m a r , N., M o e s , N., M o r a n , B., and B e l y t s c h k o , T ., “Extended
finite element method for three-dimensional crack modelling,” International
Journal for Numerical Methods in Engineering, vol. 48, pp. 1549-70, 2000.

[33] V e n t u r a , G., B u d y n , E., and B e ly t s c h k o , T., “Vector level sets for
description of propagating cracks in finite elements,” International Journal
for Numerical Methods in Engineering, vol. 58, pp. 1571-1592, 2003.

[34] XlAO, Q. and K a r ih a lo o , B., “Direct evaluation of accurate coefficients
of the linear elastic crack tip asymptotic field,” Fatique and Fracture of En­
gineering Materials and Structures, vol. 26, pp. 719-730, 2003.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

Name: Siamak Tavoosfard

Place of Birth: Shiraz, Iran

Year of Birth: 1965

Education: Kherad High School, Shiraz 1979-1983

Iran University of Science and Technology, Tehran 1984-1988 B.Sc

Humber College of Art and Technology, Toronto, Ontario 1998-2000

University of Windsor, Windsor, Ontario 2004-2006 M.Sc

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Extended finite element simulation of fracture mechanisms in composite materials.
	Recommended Citation

	tmp.1507664919.pdf.0vxMC

