University of Windsor

Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers
1-1-2007

A Multi-Dimensional Logarithmic Number System based central
processing unit.

Mahzad Azarmehr
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Azarmehr, Mahzad, "A Multi-Dimensional Logarithmic Number System based central processing unit."
(2007). Electronic Theses and Dissertations. 7131.
https://scholar.uwindsor.ca/etd/7131

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7131?utm_source=scholar.uwindsor.ca%2Fetd%2F7131&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Multi-Dimensional Logarithmic
Number System based Central Processing
Unit

by
Mahzad Azarmehr
A Thesis
Submitted to the Faculty of Graduate Studies and Research through
Electrical and Computer Engineering in Partial Fulfillment

of the Requirements for the Degree of Master of Applied Science at the
University of Windsor

Windsor, Ontario, Canada
2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

Library and Bibliothéque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-42322-6
Qur file Notre référence
ISBN: 978-0-494-42322-6

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theéses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont éteé enleveés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(© 2007 Mahzad Azarmehr

All Rights Reserved. No Part of this document may be reproduced, stored or oth-
erwise retained in a retreival system or transmitted in any form, on any medium by

any means without prior written permission of the author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The Multi-Dimensional Logarithmic Number System (MDLNS), provides a reduc-
tion in the size of the number representation and promises a lower cost realization of
arithmetic operations. The orthogonal nature of the parallel base computations and
the multi-digit extensions of the MDLNS representations reduce the complexity of
computations. The reduced hardware complexity, simplified arithmetic operations,
and the non-linear nature of the representation makes MDLNS suitable for some DSP

applications.

The work presented in this thesis is the design and implementation of a 2DLNS
based CPU. This CPU, in addition to traditional arithmetic operations, is able to
perform some special 2DLNS based operations. The CPU takes advantage of a rel-
atively simple architecture and a well designed organization which greatly simplifies
the implementation of many DSP algorithms.

An assembly program is also written to implement a 2DLNS based filterbank archi-
tecture. This implementation demonstrates the efficiency and efficacy of 2DLNS CPU

in real applications.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To whom made me believe that where there is a will, there is a way.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgments

There are several people who deserve to be acknowledged for their generous con-
tributions to this project. I would first like to express my sincere gratitude and
appreciation to Dr. Roberto Muscedere, my supervisor, for his invaluable guidance
throughout the course of this thesis work. Special thanks to Dr. Majid Ahmadi and
Dr. Maher Sid-Ahmed for their expert guidance and constant support throughout
my study. I would also like to thank Dr. Angela Sodan for reviewing this work.

I also sincerely appreciate my family for their endless support and my friends, Josee
Jarry, Ashkan Hosseinzadeh, Mitra Mirhassani, Kevin Banovic, Amirali Yazdan-

shenas, Elham Shahinfard and Karl Leboeuf, for their help and friendship.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

Abstract iv
Dedication \%
Acknowledgments vi
List of Figures xii
List of Tables xiv
List of Abbreviations XV

1 Introduction 1
1.1 Imtroduction 1
1.2 Thesis Objectives o 3
1.3 Thesis Organization, 3
2 Multi-Dimensional Logarithmic Number System 5
2.1 Imtroduction L 5
2.2 Representation 6
2.3 Mathematical Operation 7
24 Conversion u e e e e 8

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

3 TLNS CPU Design 13
3.1 Overview of TLNS CPU Design 13
3.2 TLNS Instruction Set Architecture (ISA) 14

321 Registers. e 15
3.2.2 Instruction Types 16
3.2.3 Imstruction Set 16

3.3 TLNS External Interface 21
34 TLNS Operation e 23
3.5 TLNS CPU Organization 25
3.5.1 The Arithmetic and Logic Unit (ALU) 27
352 TheRegisters o 29
3.5.3 TheRegister File 30
3.5.4 The Multiplexers 31
3.5.50 TheExtenders 32
3.5.6 The Binary / 2DLNS Converter (BTC) 33
3.5.7 The Multiply and Accumulate unit (MAC) 34
3.5.7.1 The Exclusive-or unit 36

3.56.7.2 The First Exponent Adders 38

3.5.7.3 The Second Exponent Adders 38

3.5.7.4 The 2DLNS / Binary Converter 39

3.5.7.5 20-bit Adder / Subtracter 39

3.5.7.6 21-bit Adder / Subtracter 40

3.5.7.7 23-bit Adder / Subtracter 40

3.5.7.8 Accumulator Register 41

3.5.7.9 High Channel Register 42

3.5.7.10 Channel Multiplexer 43

3.5.8 The Controller 43

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

36 TLNSCPU Test 55
3.6.1 The Test Bench Clock Generator 55

3.6.2 The Test Bench Instruction Memory 56

3.6.3 The Test Bench Data Memory 57

3.6.4 The Test Bench Input Data Reader 58

3.6.5 The TLNS CPU Test Bench 59

4 Filterbank Application 60
4.1 Filterbank Introduction. 60
4.2 Filterbank Design L 62
4.3 Filterbank TLNS Program 64
4.4 Filterbank Results, 71

5 Conclusions and Future Work 77
5.1 Conclusions 7
5.2 Suggestions for Future Work 78
References 81
A Hardware Description Codes 83
A1l TLNS Packages i 83
A.1.1 The TLNS Types Package 84

A.1.2 The TLNS Instruction Set Package 85

A.1.3 The TLNS ALU Types Package 88

A.1.4 The NUMERICBIT Package 89

A2 The TLNS CPU Modules 97
A21 The TLNSCPU 97

A.2.2 The Arithmetic and Logic Unit (ALU) 105

A23 The Aand Bregisters 107

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

A.2.4 The Memory Address Register (MAR) 108
A.25 The Program Counter (PC) 109
A2.6 ThelInput Register 110
A.2.7 The Output Register 111
A28 TheRegister File 112
A.2.9 The Multiplexers 114
A210 The Extender 115
A.2.11 The Extender / Director, 116
A.2.12 The Binary / 2DLNS Converter (BTC) 118
A.2.13 The TLNS Binary / 2DLNS Conversion Register 155
A.2.14 The Multiply and Accumulate unit (MAC) 156
A.2.14.1 The Exclusive-or unit 161
A.2.14.2 The First Exponent Adders 162
A.2.14.3 The Second Exponent Adders 163
A.2.14.4 The 2DLNS / Binary Converter 164
A.2.14.5 20-bit Adder / Subtracter 175
A.2.14.6 21-bit Adder / Subtracter 176
A.2.14.7 23-bit Adder / Subtracter 177
A.2.14.8 Accumulator Register 179
A.2.14.9 High Channel Register 180
A.2.14.10Channel Multiplexer 181

A.2.15 The Controller 182
A3 TLNS CPU Test v v i o e e et e i e e e e 207
A3.1 The TLNSCPU Test Bench 207
A.3.2 The Test Bench Clock Generator 210
A.3.3 The Test Bench Instruction Memory 211
A.3.4 The Test Bench Data Memory 217
x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

A.3.5 The Test Bench Input Data Reader 221

VITA AUCTORIS 223

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

2.1 Standard LUT Structure 10
2.2 RALUT Structure 11
3.1 The three instruction types in TLNS 16
3.2 The external ports of the TLNSCPU 22
3.3 The TLNS CPU Organization 26
34 The TLNS ALU et e e 28
3.5 The TLNS Registers, 29
3.6 The TLNS Memory Address Register (MAR) 29
3.7 The TLNS Program Counter (PC) 30
3.8 The TLNS Input Register 30
3.9 The TLNS Output Register 30
3.10 The TLNS Register File 31
3.11 The TLNS Multiplexers, 32
3.12 The TLNS Extender 32
3.13 The TLNS Extender / Director 33
3.14 The TLNS Binary / 2DLNS Converter 34
3.15 The TLNS Binary / 2DLNS Conversion Register 34
3.16 The TLNS Multiply and Accumulate unit (MAC) 35
3.17 The MAC unit Organization 37

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31

4.1
4.2
4.3
4.4
4.5
4.6

The MAC Exclusive-or unit 38
The MAC unit First Exponent Adder 38
The MAC unit Second Exponent Adder. 39
The MAC unit 2DLNS / Binary Converter 39
The MAC unit 20-bit Adder Subtracter 40
The MAC unit 21-bit Adder / Subtracter 40
The MAC unit 23-bit Low-Channel Adder / Subtracter 41
The MAC unit 23-bit High-Channel Adder / Subtracter 42
The MAC unit Accumulator Register 42
The MAC unit High Channel Register 42
The MAC unit Channel Multiplexer 43
The TLNS Controller 45
The TLNS Filter Instruction 53
The TLNS Test Bench Organization 56
The Filterbank Input Signal 73
The Filterbank Output of Filters Oand 7 73
The Filterbank Output of Filters 1and 6 74
The Filterbank Output of Filters 2and 5 74
The Filterbank Output of Filters 3and 4 75
The Filterbank Output of all filters 75

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 TLNS Data Transfer Instructions 17

3.2 TLNS Arithmetic and Logical Instructions 19

3.3 TLNS Control Transfer Instructions 20

3.4 TLNS Special Instructions 21

4.1 Filterbank Timing Results 71

4.2 TLNS Synthesis Results 76
Xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Abbreviations

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit
CPU Central Processing Unit

DFT Discrete Fourier Transform

DSP Digital Signal Processing

EPROM Erasable Programmable Read Only Memory
FIR Finite Impulse Response

FSM Finite State Machine

I/O Input/Output

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers
IFIR Interpolated Finite Impulse Response

ISA Instruction Set Architecture

LNS Logarithmic Number System

LUT Look Up Table

MAC Multiply and Accumulate

RALUT Range Addressable Look Up Table
RAM Random Access Memory

RISC Reduced Instruction Set Computer
ROM Read Only Memory

RTL Register Transfer Language

VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VLSI Very Large Scale Integration

Xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Introduction

Integrated Circuits (ICs), after only a half century of their initiation, are consistent
parts of all microelectronic devices. ICs which are consisting of many interconnected
transistors in a circuitry, are packed on chips. In accordance to Moore’s law, during
last decades the number of transistors per unit area of chips has been doubled every 18
months, which has decreased cost and/or increased functionality. Among the most
advanced ICs are microprocessors, which in a variety of complexity, are dominant
controllers of all digital appliances. Microprocessors are an example of Very Large
Scale Integration (VLSI) devices. VLSI is the process of creating ICs by combining
thousands of transistor-based circuits into a single chip.

The improvements in IC process technology has led to tremendous growth in the
Digital Signal Processing (DSP) field. Today, DSP has permeated into almost every

aspect of science and engineering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

The algorithms required for DSP are sometimes performed using specialized com-
puters, which make use of specialized microprocessors. Digital signal processors are
generally purpose-designed, Application Specific Integrated Circuits (ASICs), and
process signals in real time.

The demands of low power consumption and small size processing have led to a
number of advances in algorithms, semiconductor technologies and architectures of
DSP systems.

Special purpose high performance DSP systems often take advantage of the prop-
erties of special number representations. The Logarithmic Number System (LNS) has
been considered as a major alternative to the binary representation [10], [11], [18], [19],
as it simplifies the difficult multiplication, division and exponentiation operations. It
has been recognized that LNS architectures are perfectly suited for low-power, low-
precision DSP problems. The major drawback of the LNS is the need to use very
large ROM arrays in implementing addition and subtraction [6].

The Multi-Dimensional Logarithmic Number System (MDLNS), which has similar
properties to the classical LNS, provides more degrees of freedom by the virtue of
having multiple orthogonal bases, and the ability to gain from the use of multiple
digits. The MDLNS has found initial applications in the implementation of special
digital signal processing systems, where the parallel operations on independent bases
greatly reduces both the hardware and the connectivity of the architecture [16].

In order to ease the implementation of MDLNS applications, and speed up any
design and simulation process, the idea of having a CPU based on MDLNS has been
raised. In such a case, every application is a microprogram running on this CPU.
In order to maintain simplicity in our design, 2DLNS representations and operations
have been considered, which it means just two bases are used. Since having two
orthogonal bases is sufficient to provide desired precision in most applications, in this

research work a 2DLNS based CPU has been designed and implemented. The design

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

concepts and algorithms are the same for dimensions more than two. Therefore, this
work is scalable for any other dimension. The reasonably small number of instructions,
limited instruction types, and simple instruction architecture, provides the CPU with
a simple assembly language, and makes it applicable to‘other research work, as well

as the realization of DSP algorithms.

1.2 Thesis Objectives

The work presented in this thesis conforms to the following objectives:
1. Develop a processor (CPU) with 2DLNS capabilities

2. Demonstrate the efficiency of the CPU by programming and implementing a

filterbank application

1.3 Thesis Organization

This thesis is organized into five chapters and one appendix. Chapter 2 provides back-
ground material on MDLNS by covering the MDLNS representation, its properties
and arithmetic, and conversions associated with it. Chapter 3 includes the details of
a 2DLNS based CPU design, which is a Reduced Instruction Set Computer (RISC).
This chapter contains the design flow of the CPU architecture and its organization.
First of all, the Instruction Set Architecture and its operations are specified, the CPU
interfaces are determined, and then the CPU organization, consisting of operational
components, is designed. The functional behavior of these components is described
at the Register Transfer Language (RTL) level. Finally, the CPU’s test bench, and
its ancillary HDL programs are explained. In this regard, the CPU’s controller is
described in detail. Chapter 4 explores a previous filterbank custom design and de-

scribes a microprogram which runs on the 2DLNS CPU. The chapter continues with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. INTRODUCTION

the simulation of the VHDL modules, and the final results are illustrated. Chapter 5
concludes this thesis and provides recommendations for future work. The HDL codes

of all CPU components and auxiliary packages are attached in Appendix A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Multi- Dimensional Logarithmaic

Number System

2.1 Introduction

In the area of Digital Signal Processing (DSP) an increasing demand exists for com-
pact, high speed, real time, and low power digital processing systems. DSP systems
manipulate signals as a sequence of numbers, and usually require massive arithmetic
computations to perform algorithmic processing such as modulation or filtering.

On the other hand, multipliers are fundamental units in most DSP applications, such
as FIR filtering and in the Discrete Fourier Transform (DFT), and are also the most
hardware consuming components. Multiplication is usually implemented in Multiply
and Accumulate (MAC) units. Hence, specialized DSP hardwares heavily rely on
optimized MAC operations.

In recent signal processing research, the use of special coding schemes or new num-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. MULTI-DIMENSIONAL LOGARITHMIC NUMBER SYSTEM

ber systems in the design of algorithms have been considered. Most new design ap-
proaches have been directed to provide a greater degree of modularity and parallelism
in comparison with traditional algorithms. One such approach is a Multi-Dimensional
Logarithmic Number System (MDLNS), whose arithmetic is broken up into indepen-
dent sub-terms, providing a modular hardware implementation [8].

The MDLNS has a number of properties that can be advantageous to DSP applica-
tions, such as reduced hardware complexity for a DSP application mostly reliant on
multiplication. The non-linear number representation of MDLNS which is mostly an
error free mapping, may benefit certain special applications while the logarithmic-
like representation of numbers promises a realization improvement on a non-uniform
quantization mapping of data [12].

Since the MDLNS was introduced [7] in 1996, it has been increasingly used in some

DSP and cryptography applications [4], [5], [3].

2.2 Representation

A representation of the real number, X, in the form:

n

b
(%)
x=3all
1 =1

where s; € {~1,0,1} and p;, ;) are integers, is called a multi-dimentional n-digit
logarithmic (MDLNS) representation of X, where b is the number of bases used (at
least two), the first one, that is py, will always be assumed to be 2 [13].

The logarithmic properties of the MDLNS allow for a reduced-complexity multipli-
cation, and a larger dynamic range. On the other hand, error-free representations
are special cases of the MDLNS, but the extra degree of freedom provided by the
use of multiple digits can mitigate the non-uniform quantization properties of other

representations [6]. The MDLNS orthogonal bases, and ability to gain from the use

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. MULTI-DIMENSIONAL LOGARITHMIC NUMBER SYSTEM

of multiple digits, reduces both the hardware and the connectivity of the architecture
[16].

MDLNS is a redundant number system, it is provable that every real value has a
MDLNS representation, but realistically the majority will have at most 4 or 5 error-
free representations. This redundancy can be useful in order to choose the best
possible representation for each application. Particularly, the redundant values of 1
in MDLNS can be used as a coeflicient to decrease the values of exponents, which is

an easy way to prevent overflow in calculations.

2.3 Mathematical Operation

A 2DLNS representation provides a triple, {s;, a;, b;}, for each digit, where s; is the
sign bit and a;, b; are the exponents of the binary and non-binary bases. Usually, the
second base is shown with D. D is a suitably chosen real number (not necessarily an

integer but not a multiple of 2). Thus a number, z, can be represented as given in:

xTr = Zn: S,‘.Qai .Dbi

i=1
where b; = {—2f71 ..., 28 — 1} and R is the number of bits needed to represent b in
binary. The number of required bits to represent the second base exponent is usually
shown by B. Although the range of a is self limiting, there is also some restriction

based on B to specify the range of @ in binary, which is a; = {—2871,...,28 — 1}[13].
MDLNS multiplication and division are the simplest arithmetic operations. The
corresponding equations, given a single-digit 2DLNS representation of £ = {s, @z, b}

and y = {sy, ay, by}, are [5]:

2.y = {84.8y, Oy + Gy, by + by}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. MULTI-DIMENSIONAL LOGARITHMIC NUMBER SYSTEM

/Y = {Sz-Sy, Gz — Gy, by — by}

These equations show that single-digit 2DLNS multiplication / division can be
implemented in hardware using two independent binary adders / subtracters and
simple logic for the sign correction.

Unfortunately, addition and subtraction operations are not as simple as multiplication

and division operations. They must be handled through a set of identities and look-up

tables. The identities are:

2% Db +2% D% = (2%.D%).(14 2% % Db ’)

~ (2°.D*).®(a, — a,, b, — b,)
) Yy

20 Dbe — 2% Db = (2% Db*) (1 — 2% % Dbvbr)

~ (2“”.Dbz).\IJ(ay — ag,by — b;)

The operators ® and U are look-up tables that store the precomputed 2DLNS
values. Since the size of these tables may be very large, it is more practical to convert
the 2DLNS numbers to binary, and perform the addition and subtraction using binary
representation.

Multi-digit MDLNS arithmetic is simply an extension of the single-digit MDLNS
arithmetic. In this case, each digit can be treated as an independent MDLNS number

and the operations handled separately [13].

2.4 Conversion

Since the MDLNS was first introduced and considered for use in DSP applications, a

method for converting data between binary and MDLNS representations was needed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. MULTI-DIMENSIONAL LOGARITHMIC NUMBER SYSTEM

On the other hand, it was preferable to execute addition in binary for every appli-
cation. Therefore, these converters should be considered as a requirement in almost
every MDLNS application. Since there is no functional relationship between stan-
dard binary representation and MDLNS representation, the early methods proposed
for binary to MDLNS conversion used simple look-up tables (LUTSs) [5].

In order to explain how these tables work, a single-digit 2DLNS number is considered:
X =5.2°.Db

To find the equivalent binary representation, b is used as an index address to a LUT

to find a floating-point representation for DP:
D® = u(b).2°®

Here, u(b) is the mantissa (1< u(b) < 2) and €(b) is the exponent (integer). The

final floating-point representation of X is:
X = s.u(b).20t<®)

For the reverse conversion, the input to the LUT is the mantissa, u(b), and the
outputs are b and and €(b). Since the mantissa is not influenced by the exponent,
this exponent can remain as an output. The conversion of | X| to a mantissa is easily
achieved in hardware with a conditional feedback bit-shifter and counter, or a priority
encoder [13]. In either case, the number of shifts performed, shifts, is used to generate
the binary exponent:

a = shifts — e(mantissa)

Although a LUT offers a simple and fast binary to MDLNS conversion algorithm,
the implementation of these LUTs can become very large and unrealistic as their
size is exponentially dependent on the input binary dynamic range [8]. The LUT
sizes further depend on the number of digits and bases in the MDLNS representa-

tion. Therefore, some other hardware realizable techniques for conversion have been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. MULTI-DIMENSIONAL LOGARITHMIC NUMBER SYSTEM

developed [13]. All these techniques use a special memory device named Range Ad-
dressable Look-up Tables (RALUTS).

In this approach, the address decode system is changed from exact matching to range
matching. In a standard LUT architecture, shown in Fig. 2.1, an address decoder is

used to match the address to a unique stored value.

<L

I = Addr(0) Data{0})

| = Addr{1) Data(1)

1 = Addr(2) Data(2)
| = Addr{m-3) Data{m-3)
| = Addr{m-2) Data{m-2)
| = Addr(m-1) Data(m-1)

I = Adde{m) Data{m)

Figure 2.1: Standard LUT Structure

The RALUT architecture of Fig. 2.2, shows the new address decoder system that
matches a stored value to a range of addresses.

The decoder compares the input address, I, to a range of two neighboring mono-
tone addresses (e.g., Addr(1) and Addr(2)). Only one of these comparisons will

match the input and activate a word-enable line, which drives the data patterns,

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. MULTI-DIMENSIONAL LOGARITHMIC NUMBER SYSTEM

JL

Addr(0) < I < Addr({1) Data(0)
Addr(1) < I < Addr(2) Data(1)
Addr(2) < 1 = Addr(3) Data{2)
Addr{m-3) < 1 < Addr{m.2} Data{m-3)
Addr{m-2) < 1 < Addr(m-1) Data{m-2)
Addr{m-1) <1< Addr{m) Data{m-1)
Addrimi =1l Dataim)

<>
Figure 2.2: RALUT Structure

Data, to the output, O, of the RALUT. Half of the comparators in the range de-

coder can be removed:

(I < Addr(n)) = (Addr(n) < I)
(I > Addr(n)) @ (I > Addr(n+ 1)) = Addr(n) < I < Addr(n+1)

Since the address has a monotone nature, if (I > Addr(n + 1)) is true, then (

I > Addr(n)) must also be true. Therefore, the XOR operator can be reduced as:

(I =2 Addr(n)).(I > Addr(n+ 1)) = Addr(n) < I < Addr(n+ 1)

The RALUT architecture is optimal since it only requires 2% + 1 rows [13].

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. MULTI-DIMENSIONAL LOGARITHMIC NUMBER SYSTEM

Conversion from a two-digit 2DLNS to binary is a fairly simple process. Both
2DLNS digits are converted separately using the single-digit method, and their re-
sults are accumulated to produce the final binary representation. For the reverse
conversion four methods have been developed [16].

1. The Quick method chooses the first-digit nearest to the target, and generates the
second-digit to reduce the error, a simple greedy algorithm.

2. The High/Low method chooses the two nearest approximations to the target as
the first-digits, generates two associated second-digits for the error, and selects the
combination with the smaller error.

3. The Brute-Force method operates by selecting the combination with the smallest
error, but it uses all possible mantissa of D as the first-digits instead of just one
(Quick) or two (High/Low).

4. The Extended-Brute-Force method improved upon the Brute-Force method by us-
ing first-digit approximations above 2.0 and below 1.0 (shifted left or right L bits).
Each method ranges from simple implementations and fairly accurate approximations
to difficult implementations and very accurate approximations. All of these methods
have been implemented in fully parametrized Verilog HDL code, which can be found

in [13].

The TLNS (as we name this CPU) CPU design makes use of the two-digit 2DLNS
High/Low serial converter. Since the filterbank is intended for speech processing and
low power operation, a serial implementation was selected to minimize both power

and area.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

TLNS CPU Design

3.1 Overview of TLNS CPU Design

The first step in designing a CPU is to determine its applications. The 2DLNS CPU
which we name TLNS hereafter, in addition to performing most traditional arith-
metic and logical operations, should also be able to perform some particular tasks.
These special tasks include 2DLNS / Binary conversions, 2DLNS multiplication and
multiply and accumulation, as well as some other operations. Therefore this CPU
is not an application specific design, and can be considered a relatively simple Re-
duced Instruction Set Computer (RISC) architecture. The original RISC design of
Hennessy and Patterson [9] is considered as a conceptual basis in architecture design
of this CPU. The Instruction Set Architecture (ISA) and CPU basic architecture are
modified in order to achieve compatibility with design requirements [1]. We start
by developing the processor’s ISA based on its application. Then the state diagram

of this CPU is designed. All micro-operations performed during each state, and the

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

conditions that cause the CPU to go from one state to another are shown. In the
next step, micro-operations should be developed to fetch, decode, and execute each
instruction. Then we determine the necessary components that need to be included
within the CPU. Once this is done, we define the internal data paths and necessary
control signals. Finally, we design the control unit, the logic that generates the con-
trol signals and causes the operations to occur. This is the entire design process to

determine the CPU organization.

3.2 TLNS Instruction Set Architecture (ISA)

The Instruction Set Architecture (ISA) is essentially the microprocessor interface. A
microprocessor’s ISA includes information needed to interact with the microproces-
sor. The Instruction Set is the set of all assembly language instructions that the
microprocessor can execute. In addition, the details of the programmer accessible
registers within the microprocessor are also included in the ISA. These registers store
and perform operations on data. The ISA must specify these registers, their sizes,
and the instructions in the Instruction Set that can use each register. The ISA also
includes information necessary to interact with memory [2]. Based on the conducted
research on [15], considering (B = 6) for binary base exponent and (R = 5) for
second base exponent and an optimal second base of D = 0.92024380912663017, in
order to convert a 16-bit signed binary data to its equivalent 2DLNS representation,
19513 representations of 32768 possible representations, will be error-free (59.5% with
€ < 0.5) representations. The remaining 13255 representations have errors from 0.5
to 6. Therefore, in a 1-bit sign 2DLNS representation, considering 24 bits provides a
reasonable mapping precision. In order to keep the TLNS CPU architecture consis-
tent, instruction length, register size, data buses, and memory words are all designed

in 24 bits. This section introduces the attributes of assembly language instructions

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

as well as processor register set specifications.

3.2.1 Registers

Registers have a large effect on the performance of a CPU. The CPU can retrieve data
from its register set much more quickly than from memory. Having too few registers
causes a program to refer to memory more often which reduces performance. TLNS
has 16 general-purpose registers, as well as some special-purpose registers. Registers
r0 to rl5 are general-purpose registers that may be used to hold any 24-bit value,
including data and instruction. Register r0 is special in that it always has the value
0. Any value written into this register is discarded. Register r14 is used to keep the
equivalent 2DLNS representation for value 1. This value is necessary for using the
MAC unit to perform 2DLNS / Binary conversion. In a 24-bit representation with
two’s-complement representations for both indexes, its Hexadecimal value is 414414.
This value should be preloaded to data memory and written into r14 by the first in-
struction of every program. Register r15 also has a special application in every “link”

instruction, as we will see later.

The remaining registers have special purposes and are not used to store data.
The program counter (PC) holds the memory address of the next instruction to be
read into the CPU. As mentioned above, each TLNS instruction and memory word
is represented in one 24-bit word. Hence, the PC value is incremented by one after
each instruction is fetched. The memory address register (MAR) is used in order to
specify the next address in data memory. There are two other registers named A and

B which will be discussed later as parts of CPU register file.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

I-type opcode Is1 rs2 immed-10
R-type opcode Ist rs2 ra func
J-type opcode immed-18

Figure 3.1: The three instruction types in TLNS

3.2.2 Instruction Types

As mentioned earlier, each TLNS instruction is encoded in a 24-bit word. There are
three instruction formats, I-type, R-type and J-type, shown in Fig. 3.1. I-type for-
mat is generally used for arithmetic and logical instructions that have an immediate
operand, and for branch instructions. R-type format is used for arithmetic and logical
instructions that operate entirely on register contents. J-type instructions are used

for unconditional jump instructions, allowing for a larger displacement.

3.2.3 Instruction Set

The TLNS includes instructions for transferring data to and from memory, for per-
forming arithmetic and logical operations, for transferring control within a program,
and some special instructions based on 2DLNS. These groups of instructions are de-

scribed in the following sections.

It is also helpful to declare a package that represents the details of the TLNS
instruction set. This package, which is named tlns_instr, also includes specified en-
codings for opcodes. The package first declares bit-vector types for the fields in an

instruction. These are followed by some constants defining the opcode values for each

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

of the instructions in the TLNS instruction set. The opcode op_special represents
a class of instructions that use R-type format. In this case, the func field is used
to specify the instruction. Next, the type reg_index represents numeric values for
register numbers. The constants output_reg_1 and output_reg_2 specify registers
r12 and rl3 as output registers for the filter instruction. The rl4 register always
contains the 2DLNS representation of 1. The constant link_reg is the number of the

general-purpose register used in “jal” and “jalt” instructions.

Data Transfer Instructions

The TLNS instructions for transferring data are listed in Table 3.1, These instruc-
tions transfer data between the CPU and data memory. The memory address for
both load and store instructions is determined by adding the immediate value to the
contents of a base register ry;, and rq is the register whose content is loaded from

memory or stored into memory.

Instruction Operands Descriptions
lw rs1, Tq, immed-10 Load word
SW rs1, Tq, immed-10 Store word

Table 3.1: TLNS Data Transfer Instructions

Arithmetic and Logical Instructions

Table 3.2 shows the TLNS instructions for performing arithmetic operations on bi-
nary integer data. Integers are either unsigned or two’s-complement signed values.

Instructions are included to add and subtract operands in source registers rs; and

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

Ts2, with the result overwriting the destination register 4. There are also immediate
forms, in which the second operand is an immediate value. The next two groups
of instructions shown in this table are relational instructions, which compare their
source operands. The conditions that can be tested are “eq” (equal to), “ne” (not
equal to), “It” (less than), “le” (less than or equal to), “gt” (greater than) and “ge”
(greater than or equal to). If the condition is met, the destination register is set to the
integer 1, otherwise it is set to zero [1]. The “lhi” instruction is used to load a 10-bit
immediate value into the most significant 10 bits of the destination register, clearing
the rest 14 bits to zero. The “nop” instruction, as its name suggests, performs no
operation.

The next group of rows in table 3.2 show the logical operations. The “and” , “or”
and “xor” instructions perform the logical operation on corresponding bits from each
of the operands to generate the 24 bits of the result. The immediate versions of these
instructions extend the 10-bit immediate operand to 24 bits by adding zeros to the
left, in order to perform the bitwise logical operation. The first group of shift instruc-
tions shift the value read from r4 by the number of bits specified in 7¢, and store
the results in r4. The second group shifts the value by the number of bits specified

by the immediate operand.

Control Transfer Instructions

The TLNS instructions to handle transfer of control within a program are listed in
Table 3.3. The branch instruction transfer control to the data memory address cal-
culated by adding a displacement to the PC. The “beqz” and “bnez” instructions
compare a register r,; with zero and branch if the condition is met. The next four

instructions unconditionally transfer control. The “j” and “jal” instructions add the

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

Instruction Operands Descriptions

add, addu Ts1, Ts2, Td Add signed or unsigned

sub, subu Ts1, Ts2, Td Subtract signed or unsigned

addi, addui Ts1, Tq, immed-10 Add signed or unsigned immediate

subi, subui Ts1, Tq, immed-10 Subtract signed or unsigned
immediate

SXX, SXXU Ts1, 's2y Td Set if condition signed or unsigned

sxxi, sxxui Ts1, T4, immed-10 Set if condition signed or unsigned
immediate

lhi rq, immed-10 Load high immediate

nop No operation

and, or, xor Tsl, Ts2y Td Bitwise logical and, or, exclusive-or

andi, ori, xori rs1, Tq, immed-10 Bitwise logical and, or, exclusive-or
immediate

sll, srl, sra Ts1, T's2, Td Shift left-logical, right-logical,

right-arithmetic
slli, srli, srai Ts1, Tq, immed-10 Shift left-logical, right-logical,

right-arithmetic immediate

Table 3.2: TLNS Arithmetic and Logical Instructions

displacement to the PC to determine the target address. The “jr” and “jalr” instruc-

tions, on the other hand, use the contents of a register r,, as the target address. The
term “link” in “jal” and “jalr” means that these instructions copy the old value of PC
into register r15 before overwriting it with the target address. The last instruction,

“halt” is used for terminating the program.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

Instruction Operands Descriptions

beqz 741, immed-10 Branch if register equal to zero
bnez rs1, immed-10 Branch if register not equal to zero
j immed-18 Jump unconditional

jal immed-18 Jump and link unconditional

jr Ts1 Jump register |

jalr T's1 Jump and link register

halt Halt execution

Table 3.3: TLNS Control Transfer Instructions

Special Instructions

The final set of instructions provided by the TLNS are special instructions. The first
two instructions are used to provide data transfer between the CPU and the exter-
nal world. The “inpt” instruction reads data from the external input register to the
destination register r4. The “oupt” instruction writes the contents of the ry register
to the external output register. The “mult” instruction performs 2DLNS multiplica-
tions. The contents of 74, and 74 are operands, and the product is written to r4. A
2DLNS multiply and accumulate is executed by the “filter” instruction. Since this
operation is performed on two sequences of data in instruction and data memories,
the start addresses of these sequences should be loaded to a register before the “filter”
instruction is executed. This register is addressed by rs;. These addresses are incre-
mented with each iteration of the instruction execution. While the data sequence in
instruction memory is supposed to have a fixed range specified by the least significant
7 bits of the immediate value, the range of the data sequence in the data memory
is preloaded to register r4. The accumulated results are written to registers r12 and

r13. This instruction will be discussed in more detail in later sections.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

Instruction Operands Descriptions

inpt Td Read input data to ry

oupt T'g1 Write output data from rg

mult Te1, Ts2, Td 2DLNS multiplication

filter Ts1, Tq, immed-10 FIR filter (Multiply and Accumulate)
the Ts1, Td 2DLNS to binary conversion

btc Ts1, T'q Binary to 2DLNS conversion

Table 3.4: TLNS Special Instructions

The “tbc” instruction performs 2DLNS to binary conversion. This instruction
converts the contents of r,; to 2DLNS representation, and writes the result to rg.
The “btc” instruction performs the reverse conversion. Again, 7, contains the source

2DLNS data, and the converted value is written to ry.

3.3 TLNS External Interface

The TLNS CPU makes use of several ports. These are shown in Fig. 3.2. The signal
clk is the master clock signal that drives the CPU. When reset changes to ‘1’, the
CPU aborts any activity in progress and returns all output signals to their inactive
states. When reset returns to ‘0’ , the CPU resumes fetching instructions from in-
struction memory address 0. The CPU uses the halt signal to indicate that it has
stopped execution. The ifetch signal is a status signal that the CPU sets to ‘1’ to
distinguish a read to fetch an instruction from a read to fetch data. The Input_data
port is used to enter data to the CPU, and the Output_data port transfers data
outside of the CPU. The controller sets the Output_enable signal to indicate the

contents of the output register outside of the CPU are valid for the next cycle.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

The remaining ports of the CPU are its interface with the instruction and data
memories. The signals ir_mem_address(a) and mem_a provide the addresses to
access memories. Each address identifies a single word of memory which is equal to
three bytes. The instruction memory words can only be read, and it is done via the
ir-mem_read_data(d) bus. The controller sets the the ir_mem_enable signal to
access instruction memory. Data memory has separate buses to read data from mem-
ory, mem_d_in, and to write data into memory, mem_d_out. The mem_en signal
is used to enable the CPU to access data memory, and the signal mem_write_en is

set by the controller whenever data memory is accessed to be written.

1LY ovm—) halt
reset C——)) ifetch

input_data =% TLNS % output_data
) output_enable

ir_mem_read_data{d) g}

o ir_mem_address{a)

——————%ir_mem_enable

mem_d_in "} % mem_a

mem_an

s

) mem_write_en

Figure 3.2: The external ports of the TLNS CPU

There are some data types used in the TLNS CPU design. These types are all
defined in a package named tlns_types. Defined types are based on the predefined

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

bit and bit-vector types, and on the numeric bit-vector types defined in the IEEE nu-
meric_bit package. The package also defines some other types that are used in the
design. The type tlns_address represents logic vectors used for address values, and
the type tlns_word represents logic vectors used for data values. tlns_word_array
represent an array of data words. The type tlns_bus_word is a standard-logic vector
used for the CPU tristate data bus. The constant disabled_tlns_word is the value

driven by the CPU or memory onto the data bus when it is inactive.

3.4 TLNS Operation

In general, a CPU performs three sequences of operation in Fetch, Decode, and Ex-
ecute cycles. In the Fetch cycle, the CPU fetches an instruction from memory, then
goes to the Decode cycle. In the Decode cycle, based on the fetched instruction, a
corresponding Execute cycle is determined. Finally, in the Execute cycle, the CPU
executes the instruction and goes to the Fetch cycle to fetch the next instruction.
The controller in the TLNS CPU, is a complex Finite State Machine (FSM) which
realizes CPU operations. The controller is organized as a series of procedures. Each
procedure includes all necessary micro-operations to perform each individual control

task.

Fetching an Instruction

In the TLNS CPU, an instruction fetch is accomplished by performing two proce-
dures. The first procedure, bus_instruction_fetch_1, sequences a bus read opera-
tion to fetch an instruction from instruction memory. The procedure sets the select

control signal of the instruction memory address multiplexer, loading the PC value

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

onto the external memory address bus. It sets an instruction fetch (ifetch set to ‘1°)
and sets ir_mem_enable to ‘1’ to start the memory operation. The controller then
waits for the successive rising edge of clk, and then when the memory operation is
done, executes the bus_instruction_fetch_2 procedure. This procedure disables the

instruction memory control signal.

Decoding the Instruction

In order to decode an instruction, two procedures are executed. After an instruction
has been fetched, the CPU must increment the program counter. This can be done
by the ALU addition function. The current value of the PC is read to s1_bus and
the controller sends a constant value of 1 to s2_bus. These two values are sent to the
ALU, and the result should be written to the PC as the next instruction memory ad-
dress. This procedure, instruction_decode_1, also considers r5; and r,, as registers
which should be read in the first step of each instruction execution, and sets enable
signals for A and B registers, so they are ready to be read. There is an exception for
2DLNS/Binary conversion. In this case, register r14 is considered as register whose
contents should be read to register B. Again, after one clock cycle, all control signals
are reset through the instruction_decode_2 procedure. Then, based on the decoded

instruction, the execution state is specified.

Executing the Instruction

The most significant part of the controller, is the part that actually executes instruc-
tions. Execution starts immediately after the instruction is decoded. The controller
uses a case statement to select which group of statements to execute, depending on

the instruction opcode. As mentioned above, these statements are organized in pro-

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

cedures. Later, when the controller is discussed, these procedures will be described

in detail.

3.5 TLNS CPU Organization

At the Register Transfer Language (RTL) level, the TLNS CPU is composed of reg-
isters, buses, multiplexers, an Arithmetic and Logical Unit (ALU), a Multiply and
Accumulate (MAC) unit, a Binary / 2DLNS Converter (BTC), and a sequential con-
trol unit. Fig. 3.3 shows the RTL level organization of the CPU upon which we base
our VHDL model.

It includes a register file for the 16 general purpose registers. Data is written
directly to any of these registers, however the A and B registers are used to store
values read from the register file. The input and output registers transfer data to and
from the CPU. The Program Counter (PC) and Memory Address Register (MAR)
are individual registers which are used to address memories. The two multiplexers
allow memory addresses to be determined by the controller as well. The two modules
X1 and X2 are extension modules which extend 10-bit or 18-bit immediate values
of instructions to 24 bits for processing by ALU, BTC, or MAC. X2 is also used to
directly pass the 24-bit data from instruction memory to S2_bus. All ALU and MAC
operations are accomplished in one clock cycle, but the BTC operation needs a vari-
able number of clock cycles to be performed. At the start of the operation cycle, the
source operands are placed on the S1 and S2 buses, and the operation commences.
At the end of operation, the result is placed on the destination bus, and is stored in

the destination register.

The RTL level architecture body of the CPU is constructed using these compo-

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

» BTC

ALU

Rid

=%

Register

File

[1

Controller

J
» X2
» X1

PC

Instruction
Memory

MAR

Data
Memory

Figure 3.3: The TLNS CPU Organization

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

nents. The VHDL description of the “tlns” entity and its “rtl” architecture is coded
in the “tlns.vhd” file. The declarative part of the architecture contains component
declarations corresponding to each of the data path elements. The architecture body
also declares signals corresponding to the connections shown in the data path diagram
as well as additional control signals. The concurrent statement part of the architec-
ture body consists of component instantiation statements that lay out the data path.
The data input and output ports are connected using the declared signals, according
to the CPU organization. The control ports of the data path component instances
are connected to the declared control signals. Furthermore, the controller must be
connected to the CPU’s external control input and output ports so that it can se-
quence memory transfers.

We develop our design description of this implementation by a brief description of the
data path entities and their behavioral architecture bodies. Finally, we describe the
behavioral architecture of the controller that sequences data path operations. The
VHDL code of all modules including their entity declaration and architecture body
are found in Appendix A.

3.5.1 The Arithmetic and Logic Unit (ALU)

The ALU performs the operations on data needed to implement arithmetic and logic
instructions. It is also used to perform address arithmetic for load and store instruc-
tions. The particular function to be performed by the ALU at any time is determined
by the controller. The different function types and allowable values for each function
are described in a separate package named alu_types. In this package, all ALU func-
tions are defined as constant 4-bit encoded values. Two constants are also defined to

represent identity operations on each of two ALU inputs.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

5] — — result

82 —» ALU - ZEro
fUNG — i Rlegative

Cir s e OV EIFIOW

Figure 3.4: The TLNS ALU

The ALU block is shown in Fig. 3.4. The two ports, s1 and s2, are the data
inputs, and result is the data output. The func port selects the function to be
performed, and the zero, negative and overflow ports are status outputs providing
information regarding the result value. The clr port is used to control ALU access
to the destination bus. If the ALU is not in use, it provides high impedance to its
output, so that other components can use the destination bus.

The behavioral code of architecture body contains a single process, alu_op, that
is sensitive to changes on any of the inputs. The process uses the function code as
the selector expression in a case statement to select the function to perform. For the
two identity functions, the result is simply a copy of the appropriate operand. For
the logical and shift functions, the overloaded operators defined in the numeric_bit
package, are used to determine the result. This package is an IEEE standard package
which defines arithmetic operations on integers represented using vectors of bit ele-
ments. The ALU process include a local procedure, add, in order to provide a means
of detecting overflow. The procedure includes a carry-in parameter and a Boolean
parameter to indicate whether signed or unsigned addition should be performed. The
process also generates status output values and sends them out through the ALU

block ports.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

3.5.2 The Registers

The CPU data path makes use of a number of different kinds of registers, most of
which are rising-edge triggered. The registers A and B are similar, and both have an
enable line to copy the value on the data input d to an internal variable. When the
out_en signal is ‘1’, this value is copied to output q. If out_en is ‘0’, the output is

disabled. The register block is shown in Fig. 3.5.

.

Glk —
enable —
out_en wwie

reg i

Figure 3.5: The TLNS Registers

The only difference between the Memory Address Register (MAR), shown in
Fig. 3.6, and these registers is that MAR has no out_en port. Therefore, when-
ever the enable signal is ‘1’, the data input d is directly copied to the output q.

s —
G e MAR ——
enable —

Figure 3.6: The TLNS Memory Address Register (MAR)

The register used for the program counter has two outputs. The first one is
connected to the s1_bus, and the second one goes to the multiplexer which addresses
the instruction memory. The first output can be disabled from the bus when it is not
necessary. This register, shown in Fig. 3.7, has an additional input port to reset the
register to zero whenever the CPU is reset.

The register input_reg is not clocked, and there are just d and enable in its

process sensitivity list. Since its input data, d, is a 16-bit binary word, it is resized to

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

d —
Glk — — 0
enable —» Program Counter
out_en ——p —
reset g

Figure 3.7: The TLNS Program Counter (PC)

24 bits by filling the most significant 8 bits with zeros. Fig. 3.8 shows the input_reg
block.

i
enable e input_reg i €]
out_en —

Figure 3.8: The TLNS Input Register

The block diagram of output_reg is shown in Fig. 3.9. Its behavioral architecture
is different from the other registers. Here, the out_enable is an output signal and
shows when the output of this register is ready to be read. There is another process

in its architecture, to activate out_enable, based on the enable signal.

d i v g
ClK i output_reg
eénable —» - OUt_enable

Figure 3.9: The TLNS Output Register

3.5.3 The Register File

The CPU data path includes a register file with two read ports and one write port.
Ports q1 and g2 are the two read ports, and d3 is the write port. Ports al, a2 and a3

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

are the corresponding register addresses, and write_en is a control input indicating
when the write port should store a value into the register file. The register file block

is shown in Fig. 3.10.

AT s

a2 —p — 1

a3 —» .

43 reg_file

ClK o i (2
WIte_8n wegm

Figure 3.10: The TLNS Register File

Both register read and register write processes, reg_write and reg_read, in the
architecture body contain an array of words to implement the register file storage.
Since register r0 always represents zero, it never written to, and is excluded. When
read, it returns the value zero, and when written, the data is discarded. The constant
all_zeros represents the value returned when r0 is read. Having separate register
read and register write processes ensure that a concurrent read and write of the same

register returns the previously stored data word, not the recently written data word.

3.5.4 The Multiplexers

There are two multiplexers in the TLNS CPU data path. They have the same ports as
shown in Fig. 3.11, but the different input data types of inputs causes a change in the
selected signal assignment statement. By using these multiplexers, memories are also
addressable by the controller. When the select input is ‘0’, input i0 is transmitted to

the output, when it is ‘1’, il is transmitted to the output.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

[2
P i MUX s §
se| ——p

Figure 3.11: The TLNS Multiplexers

3.5.5 The Extenders

The CPU data path includes one extender and one extender / director block. The
main use of these modules is to extend immediate values from the instruction to 24
bits. The extender block is shown in Fig. 3.12. The input port d is the data word
containing the field to be extended, and q is the 24-bit output port. If the control
input immed _size_18 is ‘1’, the rightmost 18 bits of d are selected for extension,
otherwise the rightmost 10 bits are selected. If immed_unsigned is ‘1’, the field
is treated as an unsigned binary number and zero extended. Otherwise it is treated
as a two’s-complement signed number and sign extended. Finally, the immed_en
controls when the extended value is used to drive the output, and when the output

is disabled.

T
immed_size_18 —»
immed_unsigned —p
immed_en i

extender e

Figure 3.12: The TLNS Extender

The extender / director block as shown in Fig. 3.13 has an extra input port, direct.
When data is read from the instruction memory, it should be directly transmitted
to the s2_bus. In this case no extension is needed. Therefore, in this module, first
the direct signal is checked, if it is ‘1’, the d directed to the q, otherwise the same

function as in the extender module is performed.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

d—

immed_size 18 —
immed_unsigned —» extender / director —»q
immed_en «p»)

direct e

Figure 3.13: The TLNS Extender / Director

3.5.6 The Binary / 2DLNS Converter (BTC)

The BTC component of TLNS CPU data path consists of two blocks. The main block
of this converter is a Verilog program, the serial2digithighlow module. This code
obtained from [13], converts a binary value to its equivalent 2DLNS representation.
Since there is no functional relationship between binary and 2DLNS representations,
look-up tables should be used. Although a look-up table offers a simple and fast
conversion scheme, the implementation of these tables can become very large and
impractical as their size is exponentially dependent on the input binary dynamic range
[8]. Therefore, a hardware realizable method of converting has been introduced in [14]
using Range Addressable Look-Up Tables (RALUT). This converter is implemented
using the serial method. The input port to this module as shown in Fig. 3.14, is i,
which is the binary value. This converter uses two reset and activate control signals.
The port reset should be set to ‘O’ to start the conversion. The activate signal is
also needed to set to ‘1’ only for the first clock cycle of operation. The number of
clock cycles for each conversion operation needed, varies based on the binary input
value. When the conversion is accomplished, the ready signal is asserted.

The output of this module is the concatenation of signs, output_sign, first
base exponents, output_first, and second base exponents, output_second of both
2DLNS digits. Therefore, another block is considered in order to split these outputs
into separate digits. The inputs of this block are directly connected to outputs of the

converter. This block is shown in Fig. 3.15. whenever its input ready signal is ‘1,

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

e — ready
cik — . —= output_sign
reset ———jm: BTC_Converter e Otitput_first
activate e e GUEPUE_SeCcONnd

Figure 3.14: The TLNS Binary / 2DLNS Converter

all other inputs get reordered to form the appropriate 2-digit 2DLNS representation.

ready —
output_sign — .

output_first —3» BTC_reg

output_second i

i tiNs_output

Figure 3.15: The TLNS Binary / 2DLNS Conversion Register

3.5.7 The Multiply and Accumulate unit (MAC)

Many Digital Signal Processing (DSP) algorithms, such as digital demodulation, fil-
tering and equalization, make use of MACs. A MAC operates on two sequences of
numbers, X; and Y;, multiplies corresponding elements of the sequences and accumu-

lates the sum of the products. The result is

N

in.iq

i=1

Where N is the length of the sequences. The MAC unit in the CPU data path is a
fundamental feature and is composed of several components. Thus, the architecture

of this unit is discussed in detail.

The x and y inputs to the MAC unit are 2-digit 2DLNS numbers. They are both

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

represented in 1-bit sign mode. Therefore, the sign bit is ‘0’ for a positive number
and is ‘1’ for a negative number. Their multiplication is a summation of four 2DLNS
digits. Two small parallel adders are used to add corresponding exponents of each
base to form each partial product. Since addition in 2DLNS is not an easy operation,
these partial products are converted to binary representations for addition. Two
partial products are added in a single adder, and therefore three adders are used to
add all partial products [15]. The final sum can be accumulated with the previous
results and form the output signal p. The MAC unit is used to multiply two 2DLNS
values, as well as multiply and accumulate the result in case of multiple sequences
of data. The input signal clr clears the accumulator to zero whenever a new MAC
operation commences. TLNS also uses MAC unit in order to perform a 2DLNS /
Binary conversion. In this application, one operand is the 2DLNS value, which is
read from a register, and the other one is 2DLNS representation of 1, which is the
content of register r14. The converted binary value is written to the destination

register. The external ports of the MAC unit are shown in Fig. 3.16.

X i

y —

clk —»

Clr —p MAC —p p
channel_mux_sel s
coef _num ———iw
evensym ——p»

Figure 3.16: The TLNS Multiply and Accumulate unit (MAC)

The other input signals are considered in order to use MAC unit in a filter appli-
cation. The MAC is the fundamental unit in Finite Impulse Response (FIR) filters.
In symmetric filters, coefficients are duplicate in magnitude and based on even or
odd symmetry, every other coefficient should be negated. Since only the sign of the
coefficients may be different (depending on the symmetry of the filters) only the final

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

binary accumulator needs to be duplicated to generate output of each filter.

The implemented MAC unit multiplies each pair of data/coefficients as absolute
values, and accumulates the results with the final sign separately. Therefore, it is
capable to process dual filters at the same time. The evensym port is used to deter-
mine the type of symmetry. If the dual filter has been designed with even symmetry,
evensym is set to ‘1’, otherwise it is set to ‘0’. The input port coefnum is used to de-
termine if the current coeflicient is of an even order, which means it should be negated
for the symmetric filter computations. Finally, the input signal channel_mux_sel is
used to select the proper accumulator output to be sent to the destination bus. Since
all the components, except for accumulator registers, are combinatorial in design, the
MAC operation is performed in one clock cycle. This fact makes it appropriate for

filter applications.

The organization of the MAC unit is shown in Fig. 3.17. All these components
are instantiated in the RTL design of the MAC unit. When the clr signal is ‘07,
the 24-bit accumulated value is placed on the output bus, otherwise the output is
disabled. A brief description of its components, including entities and their behavioral

architecture, are given in subsequent sections.

3.5.7.1 The Exclusive-or unit

In the first MAC stage, 2-digit 2DLNS numbers are multiplied and four partial prod-
ucts are generated. The sign of each partial product simply is determined by xoring
the signs of the operands. Since these signs are inputs to the adder / subtracter units,

a separate component is considered to compute them. Fig. 3.18 shows this unit.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

< hy x %
& & & &
»N e] -

5 o g 1 [-] o]

i
o N

» X X x
o o [*]]
X 3 b3 o

m M w M w ™ ®p "
ge 2 gs e gz §s
3"z iz 3%z 3 §
g | [|a e | | |2
Al
3 % £
i ;
g g
. B
z »
e 3]
3 A
¥

Lt
Y
Bay-uBiy

g

s

Figure 3.17: The MAC unit Organization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

@ el
xor —_—
b —

Figure 3.18: The MAC Exclusive-or unit

3.5.7.2 The First Exponent Adders

Since exponents are in two’s-complement representations, this unit executes a behav-
ioral code for a two’s-complement adder. One extra bit is considered for the result,

so an overflow is managed properly. Fig. 3.19 shows the adder ports.

B e
adder e 55
b —

Figure 3.19: The MAC unit First Exponent Adder

3.5.7.3 The Second Exponent Adders

Although the ports of these adders seem the same as the first exponents adders, as
shown in Fig. 3.20, they are different in two aspects. First of all, the operands are not
of the same size. Since in the 2DLNS computations, the size of the second exponent
determines the size of RALUTS, it needs to be kept as small as possible. Thus, in
addition to considering different sizes for operands, the range of values may also be
limited. In this case, the limit is adjusted from -16 to 15 (R = 5) to -12 to 12, so that
an overflow never occurs when the data is multiplied with the other operand with (R
= 3). By limiting the indices in this way, the representation is used to its fullest [13].

On the other hand, the most negative second base exponent is considered as
2DLNS representation for zero. Therefore, if either of the second base exponents

show the most negative two’s-complement representation, the result of multiplication

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

@ i
adder_r ——
b ——p

Figure 3.20: The MAC unit Second Exponent Adder

should be zero as well, therefore the sum is also represented as the most negative

second base exponent.

3.5.7.4 The 2DLNS / Binary Converter

This converter is Verilog code found in [13], which converts a 2DLNS value to its
equivalent binary representation. As Fig. 3.21 shows, sign, first base exponent, and
the second base exponent of the 2DLNS value are entered through separate ports. The
converter parameters are set to generate the signed magnitude representation of a 16-
bit binary value. Four extra bits are considered to increase the conversion precision,
thus, the output is a 20-bit binary representation. The magnitude, binaryout, is

treated as an absolute value in the next step of the MAC operation.

SIgNin g g RiNAryoUt
firstbaseindex —» TBC_Converter
secondbaseindex —» —p Signout

Figure 3.21: The MAC unit 2DLNS / Binary Converter

3.5.7.5 20-bit Adder / Subtracter

Two 20-bit adder / subtracters are used to add the outputs of converters. The
implemented MAC unit adder / subtracter considers each pair of operands as absolute

values, and the operands’ signs are simply xored to determine if the operands should
y

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

be added or subtracted. One extra bit is considered for each Adder/Subtracter unit,

so an overflow never occurs. The Fig. 3.22 shows the ports of this module.

a —»
b ——
SignT e
SIGN2 mwiiper

adder_subtracter_20 g

Figure 3.22: The MAC unit 20-bit Adder Subtracter

3.5.7.6 21-bit Adder / Subtracter

As it is shown in Fig. 3.23, this adder / subtracter is similar to the previous one
with regards to its input and output ports. The structures are the same as well. The
only difference is that this unit operates on 21-bit operands and the result is a 22-bit
number. Thus, both operands are sign extended by one bit. The important point
to notice is that the sign ports for this unit are the signs of the first and the third

converter outputs.

a4~
b —-
signt ——
SIGN2 i

adder_subtracter_21 s

Figure 3.23: The MAC unit 21-bit Adder / Subtracter

3.5.7.7 23-bit Adder / Subtracter

There are two 23-bit Adder / Subtracter components in the MAC unit. One is used to
accumulate the multiplication of the input pair of sequences, which is named channel

low accumulator. The other one is only used in filter applications, specifically when

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

a dual symmetric filter exists. This accumulator is named channel high accumulator.
Again these two have the same behavioral architecture as previous ones. Since they
are the final accumulators in MAC unit, and one of the operands is the accumulated
value of previous multiplications, two extra bits are considered for the result, in order
to avoid an overflow. While the accumulated operand is a 24-bit value, the other one is
signed extended by two bits and the adder / subtracter operates on 23 bits operands.
This time for the channel low, only the sign of the first converter determines if the
new value should be added to the accumulator, or subtracted from it. The Fig. 3.24

shows the block diagram of channel low adder / subtracter.

P e o .
b . adﬁe;§s¥btraMer R
signt —m _ow

Figure 3.24: The MAC unit 23-bit Low-Channel Adder / Subtracter

For the channel high accumulator, there are two more input ports. The sym
signal shows the type of symmetry. If this signal is set to ‘1’, it means that an even
symmetry exits, meaning that the products of sequences of an even order should be
negated before being added to the accumulator. Therefore, another input port, num,
is needed, which determines the order of current sequence. This signal is set by the
CPU controller unit. This time, an exclusive-or of these two signals is xored with the
sign of the first converter output, in order to determine whether the result should be
added to the accumulator, or subtracted from it. Input and output ports of this unit

are shown in Fig. 3.25.

3.5.7.8 Accumulator Register

There are two registers in feedback loops of low and high channels accumulators.

These registers are completely similar. An input signal, clr, is considered to re-

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

a —p»
sig“;’ ™ adder_subtracter s
num --«-.L 23_high
SY i

Figure 3.25: The MAC unit 23-bit High-Channel Adder / Subtracter

set the accumulators to zero, whenever a new multiply and accumulation operation

commences. The block diagram of this register is shown in Fig. 3.26.

oo
clk - accumulater_regp —»q
clr —»

Figure 3.26: The MAC unit Accumulator Register

3.5.7.9 High Channel Register

This is an ordinary register which latches the output of the channel high accumulator
for a single clock cycle. The output of this register is directly connected to a multi-
plexer input. Therefore, when the controller sets the evensym, input signal of the
MAC unit to ‘1’, the output of channel high is ready to sent out, exactly one clock
cycle later than the output of channel low. The Fig. 3.27 shows the block diagram of

this register.

d —p
channelhigh_reg |—»q
clik —m

Figure 3.27: The MAC unit High Channel Register

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

3.5.7.10 Channel Multiplexer

As above mentioned, A multiplexer is used in the last stage of the MAC unit to send
the output to the destination bus of the CPU. By default the signal sel is set to ‘0.
So, it transfers the output of channel low to the outside. When MAC unit is used
in a filter application with a symmetric filter, the controller switches the sel signal
to ‘1’ after the first output and gives the MAC unit another clock cycle to place the
output of channel high on destination bus. When none of the outputs are ready to
send out, the multiplexer output is disabled. The ports of the multiplexer are shown

in Fig. 3.28.

LR
i1 muxlowhigh e
se| ——m

Figure 3.28: The MAC unit Channel Multiplexer

3.5.8 The Controller

The controller is a state machine which handles all CPU operations. Most of the
input and output ports to this unit, as shown in Fig. 3.29, are control signals to
other CPU components. The design of this unit is not exactly based on the classi-
cal microcoded method. The controller activates control signals to cause the data
path components to act on the data, and manages these signals mostly by executing
procedures. The controller behavioral architecture is implemented by the process
sequencer. The input port current_instruction represents the current instruction
read from the instruction memory. The aliases declared in the process represent the
fields of this instruction. The variables result_of set_is_1 and branch_taken are

used for the intermediate state when sequencing relational and branch instructions.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

The remaining variables, are all defined for use in procedures which realize the “fil-
ter” instruction. Following these declarations are a number of local procedures that

implement various stages of instruction sequencing.

The sequencer process begins by initializing the CPU’s external control signals,
and the internal data path control signals. All control signals are set to default values.
The sequencer also disables its constant data output, and sets the starting state to
sl. It then waits until reset is ‘0’ on a rising clk edge before proceeding. Then
sequencer uses a case statement to select among different alternatives, based on the
instruction opcode. For each instruction or class of instructions, the sequencer calls
local procedures to control the data path operations for the required stages, including
execution, memory access, or register write back. The action for the case statement
alternative corresponding to the op_special includes further case statement using
the special opcode extension field to select alternative for the instruction subclass.
The procedures which are used in Fetch and Decode stages, have been already de-

scribed. The other procedures are briefly described in later sections.

Procedures to Execute Load and Store Instructions

The procedure do_EX _load_store.1 sequences the calculation of the effective ad-
dress for the load and store instructions during the Execute stage. The effective
address is formed by adding the 10-bit displacement from the immediate value in
the instruction to the source register operand. The procedure first enables the A
register output onto the s1_bus, and the sign extended immediate value onto the
s2_bus. The ry has already written to A register during the Decode stage. The
procedure also sets the ALU function control signal to cause the ALU to add its

operands, and enables the MAR register input to accept the result. After one clock

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

current_instruction

clk

bte_ready

pc_enable -
pc_out_en -

ir_immed1_size_18 w—
ir_immed1_unsigned -s—
ir_immed1i_en -

ir_immed2_size_18 -
ir_immed2_unsigned g
ir_immed2_en
ctrl_direct -

mem_enable -
ctri_mem_a --—
ma_mux_sel -

CONSL2 g

bic_reset -
btc_activate -

b_enable e
b_out_en w—

in_reg_enable -
in_reg_out_en s

Controller

i halt
g [fetch

—# ir_mem_enable
— GErl_ir_mem_enable
e fr_ma_mux_sel

g altl_function
—= alu_zero

—p alu_negative
L alu_overflow

g reg_s1_addr
— reg_s2_addr
— reg_dest_addr
g TRQ_Write

g a_enable
—— a_out_en

i MAc_clr

g mMac_ch_mux_sel
g mac_coefnum
- MAC_avensym
g~ mar_enable

g out_reg_enable

s1_bus_content

reset

s2_bus_content

Figure 3.29: The TLNS Controller

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

cycle, when the effective address has been stored in MAR, in the next state, the pro-
cedure do_EX _load_store_2 disables the A register and X2 extender outputs from
the source buses, and disables the MAR input.

The memory reference for a load instruction is sequenced by the do_MEM _load_1
procedure. This procedure accesses data memory to read a word. The read data is
transferred onto the s1_bus. The procedure sets the ALU function to alu_pass_s1,
so that the data will be available on dest_bus directly. One clock cycle later, in
the next procedure, do_MEM _load_2, the data is written to destination register, 4
in the register file. This procedure also removes the operand from the s1_bus and
disables the access signal to the memory.

The corresponding procedure that sequences the store memory reference is procedure
do_MEM store_1. This procedure accesses data memory to write a word. The 74
has already written to B register during the Decode stage. The contents of the B regis-
ter are placed onto the s2_bus. The procedure sets the ALU function to alu_pass_s2,
so that the data will be available on dest_bus, and sets the mem_write_en signal
to ‘1’. Therefore, the data is written into the memory cell with the effective address

which has been determined in the do_EX _load_store_1 procedure.

Procedures to Execute Arithmetic and Logic Instructions

The procedure do_EX _arith_logic_1 sequences the Execute stage of the arithmetic
and logic instructions that draw both source operands from registers. The proce-
dure first enables the two source operands from the A and B registers onto the sl
and s2 buses. It uses the opcode extension field to select which function the ALU
should perform and sets the ALU function control signal accordingly. It also enables

the destination register to accept the ALU result. In the next state, the procedure

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

do_EX_arith_logic_2 is called, which disables the A and B register outputs and the
register file input.

'The procedure do_EX _arith_logic_immed_1 performs a similar process when one of
the operands is an immediate value. For arithmetic operations, the 10-bit immediate
value is sign extended. Then, in a case statement, the alu_function is determined.
When the ALU result is written to the destination register, in the next state, the
do_EX_arith_logic_immed_2 procedure, disables the A register and the extender
inputs and the register file input.

The other CPU instruction which uses ALU functions during execution is the “lhi”
instruction. As mentioned above, this instruction is used to load a 10-bit immediate
value into the most significant 10 bits of the destination register. The controller calls
procedure do_EX 1hi_1 to perform the “lhi” instruction. The immediate value is
unsigned extended by the extender, and is transferred onto the S1_bus. The shift
amount is determined by the const2 signal, which is set to 14. The ALU function is
specified in order to perform the shift left operation, and the result is written to the
register file. In the next clock cycle, when the destination register is updated with

the result, procedure do_EX _1hi_2 disables all corresponding control signals.

Procedures to Execute Branch Instructions

The data path operations for the branch instructions are sequenced by four proce-
dures. The do_.EX _branch_1 procedure enables the A register output and sets the
ALU function control signal to cause the ALU to pass the source value through un-
changed. The value itself is not used. Instead, the act of passing it through the ALU
causes the alu_zero flag to be set, depending on whether the source value is zero or
not. The flag is used to determine the branch outcome. After one clock cycle, when

the value of the alu_zero flag has settled, procedure do_EX_branch_2 is executed.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

This procedure controls the testing of the source register to determine whether the
branch is taken. The A register output is also disabled. The branch opcode is used
to determine whether a zero or non-zero source value should cause the branch to be
taken, and the Boolean variable branch_taken is set accordingly.

If the branch is taken, the procedure do_MEM _branch_1 is called. The procedure
controls the addition of the 10-bit immediate value from the instruction to the PC.
It begins this sequence by enabling the PC register output and the sign-exteﬁded
displacement onto the source buses. The procedure sets the ALU function to cause
it to add its operands and enables the PC register input to accept the result. After
one clock cycle, when the branch target address has been stored in the PC, the pro-
cedure do_-MEM _branch_2 is called. This procedure disables the PC and extender
outputs, and the PC input.

Procedures to Execute Jump Instructions

The jump instructions are performed by adding the immediate value from the in-
struction to the PC’s current value. Thus, corresponding procedures are similar to
the procedures which execute branch instructions with a single difference. The jump
instruction is done unconditionally. The procedure do_MEM_jump_1, enables the
PC output onto the S1_bus, and the signed extended immediate value onto the
S1_bus. The ALU function is set to add the data operands. The ALU result is once
again written to the PC. In the next state, the procedure do_MEM _jump_2 disables
the extender and PC control signals.

In jump and link instructions, before procedure do_ MEM_jump_1, the procedure
do_EX_link_1 is called. This procedure writes the current PC address into register
r15. The ALU passes the PC contents to the register file, and the destination register
is enabled. After one clock cycle, the do_EX_link_2 procedure disables PC output

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

and register file input. In the next state the jump procedure commences.

There are two jump register instructions in the CPU Instruction Set. These instruc-
tions cause a jump to the address which is specified by a register. The procedure
do_MEM_jump_reg_1 enables the register A output onto S1_bus. The ALU func-
tion is set to pass this value to the destination bus, in order to be written to the PC
register. When the PC is updated with this new address, in the next state proce-
dure do_MEM _jump_reg_2 disables both the register A output and the PC input.
Again, the previous value of the PC can be kept in a link register, using a jump

register and link instruction.

Procedures to Execute Relational Instructions

The controller includes two series of procedures for signed and unsigned operands
that implement the Execute stage of relational instructions. These procedures are
similar, only the setting of extender for signed and unsigned immediate values is dif-
ferent. The procedure do_EX _set_unsigned.1 is called with an immed parameter
which indicates whether the second operand of the instruction is an immediate value
or a register operand. The procedure enables the A register output onto the s1_bus
as the first source operand. If the second operand is an immediate value, it is ex-
tended and enabled onto the s2_bus, otherwise, the procedure enables the B register
output as the second source operand. In either case, the procedure sets the ALU
function code to cause the ALU to perform the subtraction function. The result of
subtraction is not used. The status flags from the ALU are used to determine the
relationship between the source operand values. It takes one clock cycle for ALU
status signals to stabilize. Then, the procedure do_EX _set_unsigned_2 is called.
It disables the source operands from the source buses and uses either the instruction

opcode or opcode extension to determine which relation is to be tested and sets the

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

Boolean variable result_of_set_is_1 to the result of the test.

The relational instructions must set the destination register to the binary represen-
tation of the number 1 or 0, depending on the relation test. Then, it sets the ALU
function code to pass the value on s2_bus to the destination bus. The register file in-
put is enabled. When the result is written to the destination register, in the next state
the procedure do_EX _set_unsigned_3 removes the result value from the s2_bus and

disables the register file input.

Procedures to Execute the Input Data Instruction

Reading the external data into the CPU is performed using an input register. The
input data is latched to this register and when the register output signal is enabled,
it is placed onto the S1_bus. The ALU passes the data onto the destination bus in
order to be written to the register file. The procedure do_ EX_input_1 receives the
destination register as an argument. The in_reg_enable and in_reg_out_en signals
of the register are set to ‘1’ at the same time. The alu_function signal is set to pass
the data unchanged, and the destination register is enabled to be written.

In the next state, when the data is settled in the register file, procedure do_EX _input_2

disables control signals to the input register and the register file.

Procedures to Execute the BTC Instruction

For a Binary to 2DLNS conversion, the binary data is read from a register. The
first procedure, do_EX _btconvert_1, enables the A register output onto S1_bus.
Meantime, btc_reset is set to ‘0’ and btc_activate is asserted to ‘1’, to start the
conversion process. The btc_activate signal is needed to be ‘1’ for a single clock cy-

cle. Procedure do_EX_btconvert_2 is called at the next rising edge of clock . This

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

procedure disables the btc_activate signal, and the A register output. This proce-
dure also determines the destination register, and enables reg_write to be written.
The conversion might take a variable number of clock cycles, so the controller waits
for the btc_ready to be asserted to ‘1’ and then executes the do_EX _btconvert_3
procedure. This procedure simply disables the register write signal. In the next clock
cycle, when the destination register is updated with the converted value, procedure
do_EX btconvert_4 is executed, which resets the converter and releases the data

buses.

Procedures to Execute the MAC Instruction

Both Multiplication and 2DLNS to Binary conversion use the MAC instruction. This
instruction performs the do_EX_mac_1 procedure to read data operands from reg-
isters by enabling A and B registers output onto data buses. It also activates the
MAC unit to perform the multiply and accumulation operation. The result is written
into the destination register. This procedure also enables the register file, by setting
the reg_write signal to ‘1’. The multiply and accumulate is performed in a single
clock cycle, thus in next state, procedure do_EX_mac_2 is executed, which sets all

corresponding control signals to their default values.

Procedures to Execute the OQutput Data Instruction

The TLNS CPU has an output register, in order to send out the processed data. The
output instruction reads a register’s contents and writes it to the output register. The
procedure do EX _output_1 is called by the controller to execute this instruction.
This procedure simply enables the B register output onto S2_bus and allows the

output register to be written to. One clock cycle later, procedure do . EX_output_2

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

disables these signals.

Procedures to Execute the Filter Instruction

A brief discussion of the filter instruction seems necessary before the procedures to
execute this instruction are explained. The filter instruction is mainly designed for
FIR filters. FIR is a type of digital signal filter, in which every sample of output is
the weighted sum of past and current samples of input, using only some finite number

of past samples. In FIR filters:
y[n + 1] = y[n] + he(n).ha(n)

Here h. represents the coefficient and hg the data. In the TLNS CPU archi-
tecture, separate memories have been considered as instruction memory and data
memory, both of which are addressable through the controller unit. In filter appli-
cations, coefficients and data are stored in separate memories, therefore they can be
read into the MAC unit and processed in one clock cycle. The filter coefficients are
preloaded into instruction memory and input data are stored in data memory, both
in consecutive memory locations. In a real time application, input data samples are
entered at specific time intervals. These samples are seated in a certain range of mem-
ory addresses. In order to maintain flexibility, these memory addresses are specified
by the programmer. The TLNS controller should be aware of all of these addresses.
The filter instruction transfers memory address information as well as other filter
specifications to the controller.

As mentioned in previous sections, the filter instruction is an I-type instruction. In
this case, instruction fields are particularly used in order to transfer some informa-
tion with regards to the filter application. The filter instruction fields are shown in

Fig. 3.30.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

fiter poef

sym |sym order

opcode Fs1 Fs2

Figure 3.30: The TLNS Filter Instruction

41 IS the register which contains the data and coefficient start addresses. The con-
tents of r, is the data address range in the data memory. The 10-bit immediate value
field is split into three fields. The 2-bit filter_sym field shows if the filter has a dual,
which is a symmetric filter. The value of this field also shows the type of symmetry,
if a dual filter exists. In symmetric filters, coefficients are duplicate in magnitude,
and based on even or odd symmetry, every other coefficient should be negated. The
1-bit coef_sym field shows if the coefficients are symmetric, which means symmetric
coefficients about a middle point have the same value. The remaining 7-bit field,
determines the order of the filter. Therefore in a FIR filter application, a filter of

maximum order 128 can be implemented.

When a filter instruction is decoded, first of all, coef_sym is checked. If the de-
signed filter has an even symmetry, the signal mac_evensym is set to ‘1’, and if it
has an odd symmetry, the specified value for mac_evensym is ‘0’. IF the filter has
no dual, this signal has no effect on operation, so is set to its default value. Then the
procedure do_EX _filt_start_1 is called. In this procedure, the contents of registers
A and B are concurrently read to S1_bus and S2_bus. In the next clock cycle, when
the do_EX filt_start_2 procedure is executed, the bus contents are read to some
variables in the controller unit. The controller sets the addressing multiplexers to get
the address from the controller, and using these variables specifies access addresses to
the memories, and enables them both. Thus, two sequences of data and coeflicients
are ready to be read into the MAC unit. The MAC unit also needs to know the order

of the coefficient which is being read. Therefore, the signal mac_coefnum is set to

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

‘1’ or ‘0’, based on the type of symmetry. This signal is toggled whenever a coeflicient

is read. A counter is also initiated in the controller, to count filter iterations.

The next procedure is do_EX _filt_mac, which is called in the next state. In this
procedure, the extender directs the coefficient read from instruction memory onto
the S2_bus. The data memory also sends the corresponding data onto the S1_bus.
Then, the MAC unit is enabled to read the data bus contents, and to commence
the multiply and accumulation operation. The next coefficient address is determined
based on the symmetry of filter. The next data address is also checked to be in the
specified range of data memory. Finally, the next data and coefficient addresses are
sent to the multiplexers, to address memories, and the iteration counter increments
by one. As long as the iteration counter is less than order of the filter, this procedure
is executed repetitively, and when the counter shows the order of filter, procedure
do_EX filt_last is called.

When do_EX _filt last procedure is executed, the output data is ready to be written
to the destination register. The register r12 has been specified as destination register
by default. The memory control signals are also disabled in this procedure.

As previously explained in the MAC operation, the output for the dual filter is com-
puted in a parallel accumulator. In the next state, firstly the filter symmetry is
checked. If it is a single filter, the final procedure, which is do_Ex_filt_out, is called,
otherwise, an extra clock cycle is provided for the MAC unit to write the output of
the other accumulator into register r13, and then procedure do_Ex_filt _out is exe-
cuted. In this procedure, all control signals are set to their default values, including
extender control signals, multiplexers selectors, MAC control ports, and register file

control signals.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

3.6 TLNS CPU Test

As usual, testing the RTL model of a design is performed by providing a test bench
model. Since the function performed by the CPU is to execute a machine language
program stored in memory, the CPU can be tested by including a memory in the
test bench. The instruction memory is preloaded with a program, which has been
written using the instructions in the TLNS Instruction Set. The data memory is
implemented in a similar way and loaded with proper data. It is also necessary to
include a clock generator in the test bench to drive the clk and reset ports of the
CPU. Another component is considered to read the external data from a file. By
executing a program in instruction memory, CPU ports can be monitored to verify
that it is fetching and executing the program instructions correctly.
The block diagram in Fig. 3.31 shows the test bench components and their connec-
tions.

The VHDL code of test bench and its components are all included in Appendix

A. The test bench features are described in following sections.

3.6.1 The Test Bench Clock Generator

The clock generator entity has a generic constant, Tclk, that is used to specify the
clock period. The architecture body contains two processes, one to generate the reset
signal, and the other to generate the clk signal. The process reset_driver generates
a single pulse on reset, starting at the beginning of a simulation and lasting three
and a half clock periods. The process clock._driver initializes the clk signals to ‘0’,
then waits for a clock period. It then enters an infinite loop, in which it schedules

the clock transitions for the next cycle, and then waits for a cycle.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

clk
Clock > > hat
reset
Generator | o0t L ifotch
> -
Input Data |input_data TLNS > output_data
r eaaer — output_enable
-
out_en ir_mem_address(a) _ | Instruction
irﬁmemﬁmadmdata(m* B > Memory
ir_mem_enable
mem_a
-
mem.d_out
mem_d_in mem_en > Data
mem_write_en Mﬁmory
-
—

Figure 3.31: The TLNS Test Bench Organization

3.6.2 The Test Bench Instruction Memory

There are some generic constants in the entity declaration of instruction memory.
The first constant, mem_size, is used to determine the amount of storage imple-
mented within the memory. The remaining generic constants control the timing be-
havior. The Tac_first constant, is the access time for a single word in memory, and
Tpd_clk_out is the propagation delay between a clock edge and a resulting output
transition. The ports of the memory entity correspond to those of the CPU. They

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

include the clock signal clk, the address bus a, the data read bus d, and the control
signal ir_mem_enable.

The behavioral architecture of the memory is implemented by the mem_behavior
process. The constant high_address defines the range of addresses to which the
memory responds, based on the size of the memory. Next, the process declares an
array type memory_array, and a variable mem of the array type to represent the
memory storage. Each element of the array is a one word bit vector. The procedure
load is used to “preload” the memory. The array aggregate which is written in the
declaration of the constant in load contains the binary representation of program.
The procedure copies the program into the memory array, starting at address 0.
The process begins by calling the load procedure to preload the memory. The pro-
cess then initializes the memory output port and enters a loop to handle memory
access cycles. The start of a cycle is indicated by the rising edge of clk. Then, the
process converts the byte address input to a numeric value and determines whether
the address is within the memory address bounds. When this is detected, if the
ir_mem_enable port is ‘1’, the process performs a read access. It simply reads the

memory word, places it on the data bus port, and lets the CPU to read it.

3.6.3 The Test Bench Data Memory

The only generic constant data_memory_size in the data memory entity declara-
tion shows the amount of available storage locations. Again, the memory component
ports, including the clock signal clk, memory address mem_a, data which is written
to memory mem._d_in, data which is read from memory mem_d_out, and the con-
trol signals mem_write_en and mem_enable match with the CPU’s.

The process data_memory_behavior implements the behavioral architecture. The

constant high_address, array type data_memory_array, and variable data_.memory

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

are defined similarly to those in instruction memory. The procedure load is defined
to preload the data memory.

The process data_memory_behavior commences by calling the load procedure,
then initializes its data port and enters a loop to handle memory read and write cy-
cles. The start of a cycle is indicated by the mem_enable port being ‘1’ on a rising
edge of clk. When this is detected, the process converts the byte address to an integer
value, and determines whether the requested access is a read or write. If the address
is within the memory address bounds, the memory proceeds with the access cycle. In
the case of a write, the process writes corresponding data into data_memory, and
disables the data output port. The word address is used as an index to determine
which memory array element to update. In a read cycle, the memory content of

specified address, is placed on the data bus mem_d_out.

3.6.4 The Test Bench Input Data Reader

In some applications, the TLNS CPU needs to process external data. The input data
reader component of test bench provides facility for reading input data from a file.
The predefined package textio in the library std is used for reading from and writing
to text files. These operations make it possible to read files which are produced by
other sources, and write files that can be read by other software tools. The com-
ponent has an input port out_en which specifies when data should be read, and an
output port data_in which is used to transfer the read data. The file containing data
is defined in the process read_input and is opened in read mode. On the rising edge
of the clock, the out_en signal is checked. Whenever this signal is ‘1’, data is read
from the input file to the data_in port. The CPU instance in the test bench receives

this data to perform further processes.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. TLNS CPU DESIGN

3.6.5 The TLNS CPU Test Bench

The TLNS CPU test bench is composed of several components. The test bench
architecture includes component declarations corresponding to the clock generator,
instruction memory, data memory, an input data reader, and the TLNS CPU entities
previously described, as well as an instance of each of the components. In component
declaration, the value of generic constants are also specified. For the clock generator,
a period of 20 ns is considered. This corresponds to a clock frequency of 50 MHz.
Both memory sizes are specified as 1024 bytes. The clock-to-output propagation de-
lay for both memories and the CPU is 2 ns and access time is determined as 70 ns.

A process write_output implemented in the architecture body of test bench entity
writes the result of the CPU function to an output file. This facility is particularly
used in the filter application of the TLNS CPU. Upon the rising edge of the clock

signal clk, if the out_en port is ‘1’, the value of data_out port is written into a file.

The description of TLNS CPU test bench components, ends this chapter. The
designed CPU has been tested with a number of programs including all instructions
in the Instruction Set. The test program, which is attached in Appendix A, is the
program which has been written for the filterbank application. This program will be

discussed in the next chapter.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Filterbank Application

4.1 Filterbank Introduction

Digital Signal Processing (DSP) increasingly permeates most science and engineering
fields. Digital signals can be generated, received, or analyzed through electronic
components, test equipment, data acquisition devices, sensors, simulation hardware,
and so on.

A fundamental operation in DSP is filtering. By filtering a signal, unwanted
portions of the signal spectrum can be removed, or the signal can be modified and
reshaped [8].

Having different frequency characteristics in some digital signals, may lead to dif-
ferent processes, such as amplification and attenuation, in separate frequency ranges.
These processes needs to be carried out in multiple frequency bands.

A filterbank is an array of band-pass filters that separates the input signal into

several components, each one carrying a single frequency sub band of the original

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

signal. These bands are then processed with custom algorithms. It also is desirable
to design the filterbank in such a way that sub bands can be recombined to recover
the original signal. Most binary implementation either use a modulated DFT or
Interpolated FIR filter (IFIR) approach to perform the signal separation because they
reduce the number of multiplications. When using MDLNS, every multiplication
is converted to addition or subtraction, therefore, a simple FIR structure can be
implemented to split the input signal [13].

One of the most basic structures used in DSP is the Finite Impulse Response
(FIR) filter, or a non recursive filter. A FIR filter is a filter that does not depend
on any past output values of the filter. If it is assumed that the FIR filter is linear,
time-invariant, and causal, then the response of the filter, y(nT), can be expressed as

a difference equation:

y(nT) = Z a;.x(nT —iT)

where a; represents constants, and N is the order of the filter. Non recursive
filters are linear and guarantee a linear phase response. Therefore, for applications
that require a linear phase response, such as video and audio applications, FIR filters
are typically used. This is due to the guarantee of linear phase response, as well
as ease of design and stability. As it can be seen, FIR filtering requires the use of
inner product computations, which is based on MAC operations. Therefore, special-
ized DSP hardware, such as FIR filter microchips, heavily rely on optimized MAC
operations. Through the use of MDLNS, a MAC architecture is built exclusively
with adders, which provides a considerable reduction in hardware. MDLNS has a
non-linear number representation and also provides a reduction in size of the data
representation, that is advantageous in most systems. Thus, by using MDLNS a lower
cost (area x power) implementation in filterbank arithmetic operations is achieved.

On the other hand, MDLNS provides a logarithmic type of representation with the

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

added advantage of allowing orthogonal implementations of the index computation in
each base. Considering these all properties makes MDLNS an ideal candidate number

system to implement a filterbank application [12].

4.2 Filterbank Design

Recently a research project has been conducted into next generation digital hearing
instruments [17], and has been followed through further research on current digital
filterbank algorithms, architecture, and hardware implementation [12].

In the latter, a custom filterbank architecture, based on 2DLNS, has been designed to
be implemented in a hearing aid instrument. Later, in [13], this filterbank design has
been considerably improved and implemented in a serial structure. In this research
project, the same filterbank specifications are used. In this regard, some auxiliary
programs which have already been written can be used as well.

The filterbank is one of the core parts of the digital hearing instrument. Its per-
formance determines the frequency resolution of the instrument and the gain limits
in each frequency band [17]. The main specifications for a filterbank design are its
frequency range, number of bands, and stop band attenuation. Although its group
delay, power consumption, and its size are also important.

The frequency range of human hearing is from 20 Hz to 20 kHz. Because of the octave
band characteristic of the human hearing, good quality sound can still be achieved
with half of the frequency range coverage. In this filterbank design, 16 kHz is taken
as sampling frequency, assuming that the input is band limited to 8 kHz. Monitoring
audio grams have shown that, considering 8 bands for filterbank provides an accept-
able resolution for hearing instruments.

The stop band attenuation in each band determines the gain range of the hearing
instrument, and the order of the filter is proportional to stop band attenuation and

pass band ripple. These specifications of the filterbank require a 0.01 dB pass band

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

ripple and a 60 dB stop band attenuation for all the filters. In order to avoid any
destruction in sound signal, the group delay is kept as small as possible, and 10 ms
is determined as the border.

To minimize both power consumption and size, the minimum number of digital el-
ements should be used in a filterbank architecture, and it can be realized by using
MDLNS. It was explored that if equal bandwidths are considered for all filters with
the same overlap margins, symmetrical filters could be designed. The advantage of
generating symmetrical filters is that the overall magnitude response of the filters is
perfectly flat (0 dB) across the entire frequency range, and there are duplicate coef-
ficients (in magnitude) between the low and high bands. Since only the sign of the
coefficients may be different, only the final binary accumulator needs to be duplicated
to output each band. Using symmetric filters saves resources over non-symmetrical
filters in a MDLNS FIR filterbank implementation. By using enough filter bands,
filterbank custom-tailoring for the individual user will not be necessary. A general
filterbank can be used for all users. Therefore, allowing the coefficients to be fixed

which will also further improve the hardware implementation [13].

As previously mentioned, an improved design for a two-digit 2DLNS filterbank
has been recently implemented [15]. In this research, 2DLNS was applied to the
construction of a FIR filterbank. Using 8 separate and equal bands, filters were
designed in MATLAB. Eight 75-tap filters were deemed acceptable with a 0.0128 dB
pass band ripple and 58.9 dB stop band attenuation. Finding the optimal value for
the second base is the next step. The optimal base is the value for the second base
with the minimum number of bits for its corresponding exponent (R) that satisfies
the filterbank specifications. In order to minimize the size of RALUTSs, R needs to
be kept as small as possible. Only 152 of 600 coefficients are unique in magnitude,

which simplifies the search for an optimal base with a minimum value of R.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

The 16-bit signed binary input data is converted to 2DLNS via a high/low serial
implementation [16]. Considering a 6-bit first base index (B = 6) and 5-bit second
base exponent (R = 5), provides a reasonably precise 2DLNS representations for
input data. If the filter coefficients are represented with fewer bits for R, (R = 3),
and the second base indices of input data limited to -12 to 12, an overflow never
occurs when the input data is multiplied with the coefficients. With R = 3, the
range of the coeflicient’s second base is from -3 to 3 which improves the filterbank
responses to 0.0137 dB for the pass band ripple, and 58.2 dB for the stop band
attenuation. With these specifications, the optimal base has been determined as D =
0.92024380912663017. Assuming that in this design the sampling frequency is 16 KHz
and two of the 600 coefficients are processed each cycle, an operating clock of 16000
Hz x 600/2 = 4.8 MHz is required. The details of improved filterbank architecture
design can be found in [13].

In the next part of this research work, the filterbank application is considered to show
the processing capabilities of the TLNS CPU. In this regard, a filterbank architecture
with the same specifications is implemented. Here, the hearing instrument processing

tasks are microcodes running on the TLNS processor.

4.3 Filterbank TLNS Program

As mentioned in previous sections, in a filter application, precomputed coefficients
are stored in the instruction memory. On the other hand, the input samples reside
in consecutive addresses of data memory. Each pair of data and coefficient are read
through data buses, placed onto the MAC unit input ports, and processed in one
clock cycle. The accumulated results of MAC unit are written to the register file.
When the output samples are tagged properly to identify the corresponding filter,
they are transferred to the CPU output port.

The most important factor to be specified in the “filter” instruction is the order of

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

filter. This factor determines the number of instruction memory locations to store
coeflicients. The number of iterations for the multiply and accumulation operation is
also specified by the order of filter. In order to achieve more flexibility, the program-
mer can manage both memories, and specify memory address ranges to store filter
coeflicients and input data. For a symmetric FIR filter design, symmetric coefficients
are duplicated. Thus, storing half of the coefficients in memory is sufficient. In addi-
tion, the same “filter” instruction can be used to process a set of filters in a filterbank,
as well as a single filter, where only corresponding fields should be set properly. In
the case of processing dual filters, the type of symmetry should be specified, if there
is any. Therefore, the program is dynamic, which will allow run time loading of the
parameters such as filter order, symmetry of filters, symmetry of coefficients, and the
addresses of data and coefficients in memory.

The TLNS program for the filterbank application consists of several parts. This code
is preloaded to instruction memory and executed as a part of processor test bench.

The first 8 instructions of this program write memory addresses to registers:

X"201404", -1 addi 10, r5, dstart registering addresses

X"2429F F”, -2 addi r0, r10, dend
X"3C11FF", -3 lhi 10, r4, dend
X"0114E5", ~4 or r4d r5, r3
X"20044E", -5 addi 0, rl, data_address
X"200840", —6 next addi 10, r2,coef_address
X"50600E, -7 sli - 11,18, B
X"0208A5", -8 or r8, 12, 12

In the first instruction, dstart is added to register r0 content, which is zero, and

the result is written to register r5. This is a more convenient way to write an im-

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

mediate value into a register. The value of dstart shows the start location of the
memory range to store the input data. The last location is specified by dend, which
is written to register r10 in the second instruction. These two addresses, dstart and
dend, are concatenated into a single register for the “filter” instruction. Thus again,
in the third instruction, dend is also written to the leftmost 10 bits of register r4. In
the fourth instruction, the or operation is used to concatenate the contents of r4 and
r5, and write the result to register r3.

Instruction 5 of the program writes data_address to register r1. data_address is
the start address of the data in memory, and is an address in the range specified
by dstart and dend. In the next instruction, the start address of the coefficients,
coef_address, is placed in register r2. This instruction is labeled “next”, just to show
that, later, in the jump instruction of the program, the control is transferred to this
instruction. Again, the content of rl is shifted to the leftmost 10 bits of register r8,
and the next instruction concatenates registers r2 and r8, and writes the result to r2.
Now, registers r2 and r3 contain the address information which should be transferred
to the CPU controller unit.

The next four instructions are codes for entering the quantized input sample to the
CPU, converting it to 2DLNS representation, storing the converted value into the

memory, and finally executing the filtering process:

X"401800", -9 inpt 10, 16, 0 Entering Data
X"199C00", -a btc 6, r7 Converting Data
X"AC5C00", -b sw M]r1], £7 Storing Data
X"548DC B’ —C filter r2, r3, coef sym, even, 75 Filters 0,7

In instruction 9 of the program, input data is written to register r6. The next in-

struction, “btc”, reads the r6 contents to the binary / 2DLNS converter and the result

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

is written to register r7. The contents of r7 are stored to the data memory address
which is determined by the contents of register r1. This register still contains the
value of data_address. Then the “filter” instruction is executed. In the filterbank
application, 8 even-symmetric filters are considered. The coefficients of dual filters
are symmetric, and all filters are of 75th order. When this instruction is decoded
by the CPU, information regarding the symmetry and order of filter are directed to
the controller. Registers r2 and r3 are also read, and their contents placed onto data
buses.

The next group of instructions tag the output sample in order to show the corre-

sponding filter, and write the data to the CPU output port:

X"202400”, —d addi r0, r9, band_tag Writing output
X"533004", —e slli r12, r12, 4

X"027325", —f or r9, r12, r12

X"443000”, 10 oupt 10, r12, 0

X"202C07", -11 addi 0, r11, dual_band_tag

X"537404", -12 slli r13, r13, 4

X"02F765", -13 or rll, r13, ri13

X"443400", ~14 oupt 10, rl3,0

band_tag is a 4-bit number, which shows what filter output is written. This
value is added to the contents of register r0, which is zero, and written to register
r9. As previously mentioned, the outputs of the “filter” instruction are registered in
r12 and r13. Then, in next instruction, the 20-bit value of register r12 is shifted left
for 4 bits. By oring registers r12 and r9, r12 contains a 24-bit value, including the
output sample, and its corresponding filter number. The next instruction writes the

contents of r12 to the output register. The same operations are done for the dual

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

filter. This time, dual_band_tag is written to register r11, then the contents of r11

are ored with the shifted contents of r13. Next, register 13 is read to output register.

X"208826", -15 addi 12, r2, next_coef_address Next Coefficients
X"548DC B”, -16 filter 12, r3, coef sym, even, 75 Filters 1,6
X"202401”, -17 addi 10, r9, band_tag Writing output
X"533004”, 18 slli 12, r12, 4

X"027325", -19 or r9, r12, r12

X"443000", ~la oupt 10, rl2, 0

X"202C06", -1b addi r0, r11, dual_band._tag

X"537404", -lc slli rl3, r13, 4

X"02F765", -1d or rll, r13, r13

X"443400”, ~le oupt 10, rl3, 0

The TLNS test bench writes the output port of the processor to a file. The tag
part of the entries to this file is used to split the corresponding output samples of
each filter to a separate file. These files will be used later in a MATLAB program to
plot the filterbank outputs.

It also worth mentioning that the result of filtering might be stored into memory for
further processes, or might even be transferred to output ports in a different way. In
this program, the outputs of each filter are merged with its corresponding tag to one
register, and then this register’s content has been transferred to the output register.
Therefore, we are able to split the corresponding outputs for each filter and plot the
result. In any other filterbank application, another appropriate way may be consid-
ered for output data.

When the output of filters 0 and 7 are computed, the contents of r2 are replaced with

the memory address of next set of coefficients for filters 1 and 6. Since in filterbank

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

design symmetric coeflicients of each filter are duplicated, only 38 unique coeflicients
reside in memory. Therefore, in order to specify the memory address of next set of
coefficients, only the immediate value of 38 is added to the current value of register
2.

When the “filter” instruction with the new r2 contents is executed, the results for
filters 1 and 6 are ready to output. Again, the same process for writing output data

cominences.

The next group of instructions executes the same procedure for filters 2 and 5:

X"208826", —1f addi r2, r2, next_coef_address Next Coeflicients
X"548DC B’ -20 filter r2, r3, coef sym, even, 75 Filters 2,5
X"202402", -21 addi r0, r9, band_tag Writing output
X"533004", -22 slli rl2,r12, 4

X"027325", -23 or 19, r12, r12

X"443000", —-24 oupt 10,112, 0

X"202C05", -25 addi r0, r11, dual_band_tag

X"537404", —26 slli rl3, rl13, 4

X"02F765", =27 or rll, r13, r13

X"443400", —28 oupt r0,rl3, 0

And finally, the next set of instructions, by computing the outputs of filters 3 and
4 and writing the results to CPU output port, complete the filtering operation for

one input sample of data.

When the processor is done with an input sample, the program should specify the

next memory address, data_address, for the input data. Since the memory addresses

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

X"208826",
X"548DCB",
X"202403",
X"533004”,
X"027325",
X"443000",
X"202C04",
X"537404",
X"02F765",
X"443400",

addi
filter
addi
slli
or
oupt
addi
slli
or

oupt

r2, r2, next_coef_address Next Coefficients
r2, 13, coef sym, even, 75 Filters 3,4

r0, r9, band_tag

rl2, r12, 4

r9, r12, r12

r0, r12, 0

r0, r11, dual_band_tag
rl3, rl3, 4

rll, r13, r13

r0, r13, 0

Writing output

are considered consecutively, register 1, which contains the data address, increments

by 1. The new address should not exceed the upper range of data in memory, which

is dend. Hence, it is compared to the contents of register r10. If data_address is

still less than dend, the CPU branches to instruction 6 of program, and continues the

operation. When data_address is equal to dend, the next data address in memory

will be dstart . Thus, this value, which are the contents of register r5 is written to

register r1. Then, the CPU jumps to instruction 6 of program and resumes execution:

X"204401",
X"0069AB",
X"118001",
X"'214400",
X"0BFFCE"

9

cont

addi rl, rl, 1 Next Data address
sgt rl, r10, r6

beqz 16, cont

addi r5,rl, 0

j next

This program is run for a prespecified simulation time, unless a “halt” instruction

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

terminate the program.

4.4 Filterbank Results

As it can be seen, this program has been written in 55 words and just with 12 dif-
ferent instructions from the CPU Instruction Set. While writing addresses including
dstart, dend, data_address and coef_address into registers takes 41 clock cycles,
this program needs 177 clock cycles for processing one input sample. Executing the
“filter” instruction requires 82 clock cycles for 75th order filters. These numbers of
clock cycles include 1 cycle for fetch the instruction, 4 cycles to access data and coef-
ficients in memory, 76 cycles for multiply and accumulation, and another clock cycle

to reset the control signals.

Operations Number of Clock-Cycles
Registering Addresses 41

Entering Data)

Converting Data 16

Storing Data 5

Filtering 82 x 4

Writing Output 40 x 4

Addressing Coefficients 5% 3

Addressing Data 24

Total 594

Table 4.1: Filterbank Timing Results

The remaining 95 clock cycles out of 177, are used for entering data to the CPU,

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

performing Binary / 2DLNS conversion, storing data into data memory, writing the
results, and finally specifying next addresses for data and coeflicients.
The table 4.1 summarizes these results.

In order to keep the CPU generic, no special purpose commands are designed
to generate the filterbank outputs. As a special instruction, all “inpt”, “btc”, “sw”
instructions or a combination of them could be merged together, in order to signifi-

cantly reduce the total number of clock cycles.

In order to test this program, filter coefficients are generated in MATLAB. By
executing the optimal base software, in [13], the optimal base is specified. Once
the optimal base is determined, the coefficients are mapped to that base. Then, a
chirp signal is applied to input port of TLNS CPU. A chirp is a signal in which the
frequency increases or decreases with time. In our sinusoidal chirp signal, which has
been generated in MATLAB, the frequency increases with time. The same chirp gen-

erator in [8] has been used. Fig. 4.1 shows this signal.

Another MATLAB program has been used to display the filterbank results. Exe-
cuting this program generates the output graphs. These graphs show that the filter-
bank operates properly. All codes used to generate the coefficients and input data, as
well as the programs used to split the output data and convert it to decimal values and

plot the graphs, have already been written and used in improved filterbank design [13].

Considering that TLNS requires 594 clock cycles to process one input sample, and
sampling frequency is 16 KHz, the minimum clock frequency will be 16000 Hz x 594
= 9.5 MHz. The TLNS CPU has been successfully synthesized using 0.18 um CMOS
technology. In both filterbank custom design and improved design, just cell area and

interconnects have been considered. Since, in our design, the total area consists of

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

=
P
©
e
<
i
(=
2
w

Output Signal (16-Bit)

-

0

-

o

1
-

x 10* Chirp Input

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (s)

Figure 4.2: The Filterbank Output of Filters 0 and 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

4. FILTERBANK APPLICATION

x10% Filterbank Output (1 & 8) for Chirp Input

Output Signal (16-Bit)

0.5 0.6 0.7 0.8
Time (s)

Figure 4.3: The Filterbank Output of Filters 1 and 6

x 10* Filterbank Output (2 & 5) for Chirp Input

Output Signal (16-Bit)

Time (s)

Figure 4.4: The Filterbank Output of Filters 2 and 5

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

x10* Filterbank Qutput (3 & 4) for Chirp Input

Output Signal (16-Bit)
I
- o

U
N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (s)

Figure 4.5: The Filterbank Output of Filters 3 and 4

x 10* Total Filterbank Output for Chirp Input

Output Signal (16-Bit)

0 0.1 0.2 03 04 0.5 0.6
Time (s)

0.8 0.9

Figure 4.6: The Filterbank Output of all filters

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. FILTERBANK APPLICATION

all CPU components, particularly including conversion tables, the results can not be
compared properly. Therefore, the table 4.2 only shows the synthesis results of TLNS
CPU for two cases, optimization for area and when a 10 MHz clock-frequency has

been specified. In both cases, the total number of ports is 154.

Specification

Optimized for area

Clock-frequency 10 MHz

Number of Nets
Number of Cells

Total Cell Area (um)?

Combinational Area (um)?

Noncombinational Area (um)?

5406

4829
306686.47
79811.84
386501.13

5875

5146
497615.16
80425.82
578064.94

Table 4.2: TLNS Synthesis Results

Nevertheless, a comparison between the number of necessary clock cycles just for
filtering operation is possible. In filterbank custom design with the same design spec-
ifications [12], filtering is accomplished in 313 clock cycles and in improved filtarbank
design [13], it has been reduced to 300 clock cycles. As it is been stated in table 4.1,
filtering operation in TLNS filterbank application is performed in 328 clock cycles.
It worth to mention that, the objective of this design is just to implement an appro-
priate potential application on the TLNS CPU. Therefore, this implementation has
not been optimized and some recommendations for future work are suggested in next

chapter to improve and speed up this application.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this research work a 2DLNS processor has been developed. This CPU will have
some applications in the practical implementation of most of DSP algorithms. An-
other application of this CPU is in any other research work based on MDLNS. The
CPU architecture has been designed based on its 2DLNS characteristics and its po-
tential applications.

In order to maintain consistency, the CPU interface with external world has been
considered through binary ports. The organization of CPU components has been
developed based on the most profitable operation in 2DLNS, which is multiplication.
Therefore, in addition to general features, some special components have been also
implemented. Since TLNS performs addition and subtraction in binary representa-
tion, two special features for converting data between binary and 2DLNS have been

included.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. CONCLUSIONS AND FUTURE WORK

In the TLNS processor organization, two separate memories have been considered,
both of which can also be addressed by the CPU controller. By the virtue of having
two separate data buses, data can be read from both memories concurrently, which

makes TLNS CPU suitable for some real time DSP applications. The TLNS CPU

has been tested with several programs including different sets of instructions.

After reviewing past and improved MDLNS filterbank designs, a TLNS program
has been coded to implement a filterbank application on the CPU. The same specifica-
tions for the filterbank design have been considered, therefore some of their ancillary
codes could be used. The program has been written in considerably less time, without
any need to know either HDL programming or details about MDLNS. Programming
the TLNS CPU, like any other assembly language programming, requires a prelimi-
nary knowledge of the CPU Instruction Set. The functional results of this program

are similar to those of the original filterbank design.

5.2 Suggestions for Future Work

The implemented filterbank uses FIR filters. There is a possibility to improve this
design, in order to use Infinite Impulse Response (IIR) filters. An IIR filter uses past
outputs to influence the current response of the filter. Recursive filters usually require
a much lower order of filter to produce the same magnitude response of a FIR filter,
but IIR filters are not guaranteed to be stable or have a linear phase. The output

response, y(nT), of a recursive filter can be described by the difference equation:

y(nT) = Z a;.x(nT —iT) — Z b;.y(nT —iT)

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. CONCLUSIONS AND FUTURE WORK

where a; and b; represent constants. Therefore, at any given moment, the response of
the filter is dependent on the past N values of the input and the past M values of the
output. The first term is the same as FIR filter equation, which can be realized using
the TLNS MAC unit. The last M values of output can also be stored in memory.
Thus, by considering a special subtracter, or MDLNS divider, in the CPU data path,
an IR filter could be implemented.

Some compound instructions can be added to the Instruction Set. At present,
there are separate instructions for entering data to the CPU, converting it to 2DLNS
representation, and storing a word in memory. In order to speed up applications which
require these instructions consecutively, some instructions like “input and convert”,

or “convert and store”, or even “input and convert and store” might be developed.

One of the computational advantages of MDLNS is calculating the square root of
numbers. In order to calculate the square root of a 2DLNS number, all exponents are
simply divided by 2. A comparison with the volume of work for the same calculation
in binary based CPUs makes this advantage clear. As a suggestion, a special instruc-

tion can be added to the CPU Instruction Set in order to calculate the square root.

Another potential improvement is implementing some more special purpose in-
structions. This CPU may have some applications in modular exponentiation. There-
fore, any instructions which ease corresponding operation may be added to the TLNS

Instruction Set.

And Finally, the controller state machine may be improved. The controller pro-

cedures include micro codes to perform instructions. These microcodes may be opti-

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. CONCLUSIONS AND FUTURE WORK

mized to reduce the number of states for each instruction execution and as a result,

increase the speed of processing.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] P. J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann Publishers,
San Diego, 2002. :

[2] J. D. Carpinelli. Computer Systems Organization and Architecture. Addison
Wesley, 2001.

[3] V.S. Dimitrov and G. A. Jullien. A New Number Representation with Applica-
tions. IEEE Clircuits and Systems Magazine, Second Quarter:6-23, 2003.

[4] V. S. Dimitrov, G. A. Jullien, and W. C. Miller. An Algorithm for Modular
Exponentiation. In Information Processing Letters, volume 36, pages 155-159,
May 1998.

[5] V.S. Dimitrov, G. A. Jullien, and W. C. Miller. Theory and Applications of the
Double-Base Number System: IFEE Transactions on Computers, 48(10):1098-
1106, October 1999.

[6] V. S. Dimitrov, G. A. Jullien, and K. Walus. Digital filtering using the multidi-
mensional logarithmic number system. Advanced Signal Processing Algorithms,
Architectures, and Implementations XII, Proceedings of the SPIE, 4791:412-423,
December 2002.

[7] V.S. Dimitrov, S. Sadeghi-Emamchaie, G. A. Jullien, and W. C. Miller. A Near
Canonical Double-Base Number System with Applications in DSP. In SPIE
Conference on Signal Processing Algorithms, volume 2846, pages 14-25, 1996.

[8] S. J. Eskritt. Inner Product Computational Architectures Using the Double Base
Number System. M.A.Sc. Thesis,, University of Windsor, 2001.

[9] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, San Fransisco, 1995.

[10] N. G. Kingsbury and P. J. Rayner. Digital Filtering Using Logarithmic Arith-
metic. FElectronics Letters, 7:56-58, 1971.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[11]) D. M. Lewis. 114 MFLOPS Logarithmic Number System Arithmetic unit for
DSP Applications. IEEE J. Solid-State Circusts, 30:1547-1553, 1995.

[12] H. Li. A 2-digit Multi-dimensional Logarithmic Number System Filterbank Pro-
cessor for a Digital Hearing Aid. M.A.Sc. Thesis,, University of Windsor, 2003.

[13] R. Muscedere. Difficult Operations in the Multi-Dimensional Logarithmic Num-
ber System. Ph.D. Thesis,, University of Windsor, 2003.

[14] R. Muscedere, G. A. Jullien V. S. Dimitrov, and W. C. Miller. Efficient Conver-
sion From Binary to Multi-Digit Multi-Dimensional Logarithmic Number Sys-
tems using Arrays of Range Addressable Look-Up Tables. Proceedings of the 2002
IEEFE conference on Application-Specific Systems, Architectures, and Processors,
pages 130-138, 2002.

[15] R. Muscedere, V. Dimitrov, G. Jullien, and W. Miller. A Low-Power Two-Digit
Multi-dimensional Logarithmic Number System Filterbank Architecture for a
Digital Hearing Aid. EURASIP Journal on Applied Signal Processing, 18:3015—
3025, 2005.

[16] R. Muscedere, V. S. Dimitrov, G. A. Jullien, and W. C. Miller. Efficient Tech-
niques for binary-to-multidigit multidimensional logarithmic number system con-
version using range addressable look-up tables. IEEE Trans. Comput. Special
Issue on Computer Arithmetic, 54(3):257-271, 2005.

[17] E. Onat. DSP Algorithms for Digital Hearing Instruments. M.A.Sc. Thesis,,
University of Windsor, 2001.

[18] E. E. Swartzlander and A. G. Alexopoulos. The Sign/Logarithm Number System.
IEEFE Transactions on Computers, 42:1238-1242, 1975.

[19] F. J. Taylor, R. Gill, J. Joseph, and J. Radke. A 20 Bit Logarithmic Number
System Processor. IEEE Transactions on Computers, 37:190-200, 1988.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A

Hardware Description Codes

A.1 TLNS Packages

A VHDL package contains subprograms, constant definitions, and/or type definitions
to be used through one or more design units. TLNS makes use of some IEEE stan-
dard packages as well as a few special user defined packages which have been written
particularly for this program.

VHDL standard packages include STANDARD package which contains basic type
definitions and TEXTIO package which regards to ASCII input/output data types
and subprograms. These packages are fully standard and not described here. In
addition, another IEEE package, numeric_bit has been used in this program. This
package defines numeric types and arithmetic functions for use with synthesis tools. In
this research work, the original version of this package, Standard VHDL Synthe-
sis Package (1076.3, NUMERIC_BIT), has been used with some minor changes.

Since the package code is too long to be included here, just the modified portions

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

are described. This appendix also contains VHDL codes for other packages which are

specifically written for this CPU and used by all other modules.

A.1.1 The TLNS Types Package

This package defines the types for the CPU ports and some other types that are useful

in this design.

library ieee;
use ieee.std_logic_1164.all;

use work.numeric_bit. all;
package tlns_types is

— little —endian addresses
subtype tlns_address is unsigned (23 downto 0);

— big—endian data words
subtype tlns_word is unsigned(23 downto 0);

type tlns_word.array is array (natural range <>) of tlns_word;

- word for driving a bus

subtype tlns_-bus.word is std-logic_vector(23 downto 0);

subtype mem_bus_addr is std_logic_vector (9 downto 0);

subtype external_data is std_logic_vector (15 downto 0);

type tlns_bus_word_array is array (natural range <>) of tlns_bus_.word;
— tristate bus driving value

constant disabled.-tlns_word : tlns_bus.word := (others => 'Z’);

constant disabled_mem_addr : mem_bus.addr := (others => ’Z’);

end package tlns_types;

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

A.1.2 The TLNS Instruction Set Package

This package represents the details of TLNS instruction set. These details include

type definitions and constant encoding specifications.

use work.numeric_bit.all,
work. tlns_types.all;

package tlns_instr is

—— bit—vector types for the fields
tlns_opcode is unsigned(5 downto 0);
tlns_sp_-func is unsigned(5 downto 0);
tlns_reg_addr is unsigned(3 downto 0);
tlns_.immed10 is unsigned (9 downto 0);
tlns.immed18 is unsigned(17 downto 0);
tlns_shamt is unsigned(3 downto 0);
tlns_addr is unsigned(9 downto 0);

subtype
subtype
subtype
subtype
subtype
subtype
subtype

in an instruction

— defining the opcode values for instructions

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

op_special
op-tbe
op-j
op-jal
op-beqz
op-bnez
op-btc
op-filter
op-addi
op-addui
op-subi
op-subui
op-andi
op_ori
op-xori
op-lhi

op-inpt
op-oupt
op.jr

op_jalr
op.slli
op-filt
op-srli
op_srai
op-seqi
op-snei

tlns_opcode

tlns_opcode :

tlns_opcode
tlns_opcode

tlns_opcode :

tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode

tlns_opcode :

tlns_opcode
tlns_opcode
tlns_opcode

tlns.opcode :

tlns_opcode
tlns.opcode
tlns_opcode
tlns.opcode

tlns_opcode :
tlns_opcode :

It

il

il

i

Il

Il

B” 000000” ;
B” 000001” ;
B” 000010 ;
B”000011” ;
B”000100” ;
B”000101”
B”000110” ;
B”000111”
B”001000”
B”001001” ;
B”001010” ;
B”001011” ;
B” 0011007 ;
B”001101” ;
B” 0011107 ;
B 0011117 ;

B”010000” ;
B”010001” ;
B”010010” ;
B”010011” ;
B”010100” ;
B”010101” ;
B”010110" ;
B”010111” ;
B”011000” ;
B”011001” ;

Reproduced with permission of the copyright owner

. Further reproduction prohibited without permission.

85

A. HARDWARE DESCRIPTION CODES

constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant
constant
constant
constant

op-slti
op-sgti
op.slei
op.sgei
op-undef_1E
op-undef_1F

op_undef_20
op-undef_21
op-undef_22
op.lw

op-undef_.24
op-undef_25
op-undef_26
op_undef_27
op-undef_28
op.undef. 29
op.undef.2A
op._sw

op.-undef_2C
op-undef.2D
op-undef_2E
op.undef 2F

op-sequi
op-sneui
op-sltui
op-sgtui
op-sleui
op-sgeui
op-undef_36
op-undef_37
op_undef_38
op-undef_39
op-undef_3A
op-undef_3B
op-undef_3C
op-undef_3D
op-multi
op.-divi

sp-func_nop
sp-func_.halt
sp-func.mult
sp_func_div
sp-func_sll

sp_-func_undef_05

sp_func_srl
sp_-func_sra

tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode

tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tins_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tins_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_.opcode

tlns_opcode :

tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode
tlns_opcode

tlns_opcode :

tlns_opcode

tlns_opcode :

tins_opcode
tlns_opcode
tlns_opcode

i

(I

I I

| 1 A [(N T I |

B”011010”
B”011011”
B”011100”
B”011101”
B”011110” ;
B”011111”

B”100000”
B”100001”
B”100010”
B”100011” ;
B”100100”
B”100101”
B”100110”
B”100111”
B”101000”
B”101001”
B”101010” ;
B”101011” ;
B”101100” ;
B”101101” ;
B”101110" ;
B"101111";

B”110000” ;
B” 1100017 ;
B”110010” ;
B” 1100117 ;
B” 1101007 ;
B”110101” ;
B” 1101107 ;
B”110111";
B” 1110007 ;
B”1110017”;
B”1110107;
B”1110117;
B”111100”;
B”1111017;
B”111110”;
B 1111117 ;

tlns_sp_func
tlns_sp_func
tlns_sp-func
tlns_sp.func
tlns_sp-func
tlns_sp-func
tlns_sp-func
tlns_sp.-func

I

Il

B” 0000007 ;
B”000001” ;
B”000010” ;
B” 0000117 ;
B”000100” ;
B”000101” ;
B”000110” ;
B” 0001117 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

A. HARDWARE DESCRIPTION CODES

constant
constant
constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant
constant

sp-func_-undef. 08
sp-func_undef_09
sp-func_undef_0A
sp-func.undef_0B
sp-func_undef_0C
sp-func_.undef_0D
sp-func_undef_OE
sp-func.undef_OF

sp-func_sequ
sp-func_sneu
sp-func.sltu
sp_-func_sgtu
sp-func.sleu
sp-func_sgeu
sp_-func_undef_16
sp_-func_undef_17
sp-func_undef_18
sp-func_undef_19
sp-func_undef.1A
sp-func.undef_1B
sp-func_undef_1C
sp-func.undef_1D
sp-func_undef_1E
sp-func.undef_1F

sp-func_add
sp-func_addu
sp-func.sub
sp-func.subu
sp-func.and
sp-func_or
sp-func_xor
sp-func.undef.27
sp-func_seq
sp-func_sne
sp-func_slt
sp-func.sgt
sp_func_sle
sp-func_sge
sp-func_undef_2E
sp-func._.undef_2F

sp-func_undef.30
sp-func.undef_31
sp-func_undef_32
sp-func.undef_33
sp-func_undef.34
sp-func.undef_35

tlns.sp_func
tlns_sp-func
tlns_sp_func
tlns_sp_-func
tlns.sp_-func
tIlns_sp_func
tlns_sp_func
tlns_sp_func

tIlns_sp_func
tlns_sp.func
tlns_sp.func
tlns_sp_func
tlns_sp.func
tlns_sp-func
tlns_sp-_func
tlns_sp_func
tlns_sp_func
tlns_sp-func
tlns_sp_func
tlns_sp-func
tlns_sp_func
tlns_sp_func
tIns_sp_func
tlns_sp_func

tlns_sp-func
tlns_sp_func
tlns_sp.func
tlns_sp_-func
tlns_sp_func
tlns_sp_func
tlns_sp_func
tlns.sp.-func
tlns_.sp-func
tIlns_sp_func
tlns_sp_func
tlns_sp_func
tlns_sp.func
tlns.sp_func
tlns_sp-.func
tlns_sp.func

tlns_sp_func
tlns_sp_func
tlns_sp.-func
tlns_sp_func
tlns_sp-func
tlns_sp-func

1]

fi

i

]

I

I

Il

{

Il

B”001000” ;
B”001001” ;
B”001010” ;
B”001011” :
B”001100” ;
B”001101” ;
B”001110” ;
B” 0011117 ;

B”010000” ;
B”010001” ;
B”010010";
B”010011” ;
B”010100” ;
B”010101” ;
B”010110”;
B”010111” ;
B”011000” ;
B”011001”;
B"011010" ;
B"011011”;
B”011100” ;
B"0111017;
B”011110”
B”011111”

B” 100000”
B” 100001 ;
B”100010” ;
B”100011” ;
B”100100” ;
B”100101” ;
B”100110” ;
B” 1001117 ;
B” 101000” ;
B”101001” ;
B”101010” ;
B”101011” ;
B” 1011007 ;
B”101101";
B”101110”;
B”101111”;

B” 110000” ;
B”110001” ;
B”110010” ;
B”110011” ;
B”110100” ;
B”110101” ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

A. HARDWARE DESCRIPTION CODES

constant sp.func_undef_36 : tlns.sp_func := B”1101107;
constant sp_func_undef_37 : ¢tlns_sp_func := B”110111”;
constant sp_func_undef_38 : tlns_.sp_func := B”111000”;

constant sp_func_undef_39 : tlns_sp_funec := B”111001";
constant sp_func_.undef_.3A : tlns_sp.func := B”111010”;

constant sp_func_undef_ 3B : tlns_sp_func := B”111011”;
constant sp_func_undef_3C : tlns.sp_func := B"111100”;
constant sp_func_undef_3D : tlns_.sp_func := B”1111017;
constant sp_func_undef_ 3E : tlns_.sp_func := B”1111107;
constant sp_func_undef_3F : tlns_sp_func := B”111111”;

— numeric values for register numbers
subtype reg_index is natural range 0 to 15;

constant output.reg.l : reg.index := 12;
constant output_reg-2 : reg.index := 13;
constant unity_reg : reg.index := 14;
constant link_reg : reg.index := 15;

end package tlns_instr;

A.1.3 The TLNS ALU Types Package

The particular function to be performed by the ALU at any time is determined by
the controller. Hence, the ALU has an input port to select the function. The type
and allowable values for this port are described in a separate package, so they are

accessible both in the ALU and the controller descriptions.

package alu_-types is
subtype alu_func is bit_vector (3 downto 0);

— encoded values for the ALU function

constant alu_add : alu_func := 70000”;
constant alu_addu : alu_func := "0001”;
constant alu_sub : alu_func := 700107 ;
constant alu.subu : alu_func := ”00117;
constant alu_.and : alu_func := 70100”;
constant alu_.or : alu_func := "01017;
constant alu_xor : alu_func := 701107
constant alu.sll : alu_func := ”71000”;
constant alu.srl : alu_func := ”710017;
constant alu.sra : alu_func := 710107 ;

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

— iddentity operations
constant alu_pass_sl : alu_func := ”1100”;
constant alu_pass_s2 : alu_func := ”1101”;

end package alu_types;

A.1.4 The NUMERIC _BIT Package

The following VHDL file shows the differences between modified numeric_bit pack-
age and its original copy. This file clearly shows the lines which have been changed or
added to the package. Most of these changes return back to initial values of variables.
In whole package, initial values have been removed from declaration statements and
have been assigned to the variables later. The definition of functions RISING_EDGE
and FALLING_EDGE have had conflicts with other standard libraries. Therefore,
the defined functions in this package have been ignored. Some other changes are
just minor corrections regard to VHDL syntax. The core shift functions, XSLL and
XSRL, have been modified based on the TLNS requirements. In this regard, the code
for a barrel shifter has been entirely rewritten. Finally, the function RESIZE has

been changed due to some errors.

801,805c801,805

< — Id: E.1

< function RISING.EDGE (signal S: BIT) return BOOLEAN;

< — Result subtype: BOOLEAN

< — Result: Returns TRUE if an event is detected on signal S and the

< - value changed from a 0’ to a ’'1°.

>— — Id: E.1

> — function RISING.EDGE (signal S: BIT) return BOOLEAN;

> — — Result subtype: BOOLFAN

> — —— Result: Returns TRUE if an event is detected on signal S and
the

> —— - value changed from a 0’ to a 1.

807,811¢807,811

< —— Id: E.2

< function FALLINGEDGE (signal 8: BIT) return BOOLEAN;

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

< —— Result subtype: BOOLEAN

< — Result: Returns TRUE if an event is detected on signal S and the

< — value changed from a ’1’ to a 0.

>— — Id: E.2

> — function FALLING_EDGE (signal S: BIT) return BOOLEAN;

> — — Result subtype: BOOLEAN

> — — Result: Returns TRUE if an event is detected on signal S and
the

> — - value changed from a ’1° to a ’0°.

823,824¢823,824
< constant NAU: UNSIGNED(0 downto 1) := (others => ’0’);
< constant NAS: SIGNED(0 downto 1) := (others => ’07);

> constant NAU: UNSIGNED(0 to 1) := (others => ’0’);
> constant NAS: SIGNED(0 to 1) := (others => ’0’);

886c386

< variable CBIT: BIT := C;

> variable CBIT: BIT; —:= C;

8872888

> CBIT := C;

904¢c905

< variable CBIT: BIT := C;

> variable CBIT: BIT; — := C;

905a907

> CBIT := C;

952,953¢954,960

< alias XARG: BIT.VECTOR(ARG.L downto 0) is ARG;
< variable RESULT: BIT.VECTOR(ARGL downto 0) := (others => ’0’);
> variable RESULT: BIT_VECTOR(ARG.L downto 0);

> variable temp: integer;

> variable arg_1: bit_vector (ARG.L downto 0);

> variable arg_-12: bit_vector (ARG.L downto 0);

> variable arg_124: bit_vector (ARGL downto 0);
> variable shift: bit_vector (3 downto 0};

>

955,956¢962,975

< if COUNT <= ARGL then

< RESULT (ARG.L downto COUNT) := XARG(ARG.L-COUNT downto 0);
>

> temp := count;

> for index in 0 to 3 loop

> if (temp rem 2) = 0 then shift(index) := ’07;
> else shift(index) := ’'17;
> end if;

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

> temp := temp / 2 ;

> end loop;

>

> if shift (0) = ’0’ then arg.l := arg ;

> else arg.l := arg(ARGL-1 downto 0) & "0” ;

> end if;

> if shift(l) = ’0’ then arg.12 := arg.l ;

> else arg.12 := arg_1(ARGIL-2 downto 0) & 700" ;

957a977,983

> if shift(2) = ’0’ then arg.124 := arg.12 ;

> else arg_ 124 := arg_12 (ARGL—4 downto 0) & ”0000”

> end if;

> if shift (3) = ’0’ then RESULT := arg._124 ;

> else RESULT := arg.-124(ARGL-8 downto 0) &
”00000000” ;

> end if;

>

963,964c989,995

68a1012,1018
if shift(2) = 0’ then arg_124 := arg.12 ;

< alias XARG: BIT.VECTOR(ARG.L downto 0) is ARG;

< variable RESULT: BIT.VECTOR(ARGL downto 0) := (others => ’0’);
> variable RESULT: BIT VECTOR(ARG.L downto 0);

> variable temp: integer;

> variable arg_1: bit_vector (ARGL downto 0);

> variable arg_12: bit_vector (ARGL downto 0);

> variable arg_124: bit_vector (ARGL downto 0);

> variable shift: bit_.vector (3 downto 0);

>

966,967c997,1010

< if COUNT <= ARG.L then

< RESULT (ARG I1-COUNT downto 0) := XARG{ARGL downto COUNT) ;
>

> temp := count;

> for index in 0 to 3 loop

> if (temp rem 2) = 0 then shift (index) := ’07;

> else shift(index) := ’17;

> end if,;

> temp := temp / 2 ;

> end loop;

>

> if shift (0) = '0’ then arg.l := arg ;

> else arg.1 := "0” & arg(ARGL downto 1) ;
> end if;

> if shift (1) = ’0’ then arg.12 := arg.l ;

> else arg 12 := "00” & arg_-1(ARGL downto 2) ;
9

>

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

> else arg_124 := ”0000” & arg_-12(ARG.L downto 4) ;

> end if;

> if shift (3) = 0’ then RESULT := arg-124 ;

> else RESULT := ”00000000” &

arg-124 (ARGL downto 8) ;

> end if;

>

976¢1026

< variable XCOUNT: NATURAL := COUNT;

> variable XCOUNT: NATURAL; —— := COUNT;

97721028

> XCOOUNT := COUNT;

991c1042

< variable RESULT: BIT_VECTOR(ARGL downto 0) := ;

> variable RESULT: BIT VECTOR(ARG.L downto 0); —:= XARG;

993a1045

> RESULT := XARG;

1005¢1057

< variable RESULT: BIT_VECTOR(ARG.L downto 0) := XARG;

> variable RESULT: BIT_VECTOR(ARG.L downto 0); — := XARG;

100721060

> RESULT := XARG;

1100c1153

< variable CBIT: BIT := ’'1’;

> variable CBIT: BIT; —:= 17

1101al155

> CBIT := ’'17;

1219¢1273

< variable RESULT: UNSIGNED((L’LENGTH{R’LENGTH-1) downto 0) :=
(others => ’0’);

> variable RESULT: UNSIGNED((L’'LENGTHHR’LENGTH-1) downto 0);
— := (others = ’0°);

1221a1276

> RESULT := (others => ’0’);

1239¢1294

< variable RESULT: SIGNED ((L_LEFT+R LEFT+1) downto 0) :=
(others => ’07);

> variable RESULT: SIGNED ((L.LEFT+R.LEFT+1) downto 0);
—— = (others = '0°);

1241a1297

> RESULT := (others = ’07);

1301c¢1357

< variable QNEG: BOOLEAN := FALSE;

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

> variable QNEG: BOOLEAN; ——:= FALSE;

1302a1359

> QNEG := FALSE;

1353al411

> null;

1387a1446

> null;

1411¢1470

< variable RNEG: BOOLEAN := FALSE;

> variable RNEG: BOOLEAN; ——:= FALSE;

1412a1472

> RNEG := FALSE;

1446a1507

> null;

1482al1544

> null;

1500a1563

> null;

1524¢1587

< variable RNEG: BOOLEAN := FALSE;

> variable RNEG: BOOLEAN; — .= FALSE;

1525a1589

> RNEG := FALSE;

1581a1646

> null;

159921665

> null;

1617al684

> null;

1626¢1693

< variable SIZE: NATURAL := MAX(L’LENGTH, R’LENGTH);
> variable SIZE: NATURAL; — := MAX(L’LENGTH, R’LENGTH);
1627a1695

> SIZE := MAX(L’LENGTH, R’LENGTH);

1639¢1707

< variable SIZE: NATURAL := MAX(L’LENGTH, R’LENGTH) ;
> variable SIZE: NATURAL; —— := MAX(L’LENGTH, R’LENGTH);
1640a1709

> SIZE := MAX(L’LENGTH, R’LENGTH);

1710¢1779

< variable SIZE: NATURAL := MAX(L’LENGTH, R’LENGTH);
> variable SIZE: NATURAL; — := MAX(L’LENGTH, R’LENGTH);
1711al1781

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

A. HARDWARE DESCRIPTION CODES

> SIZE := MAX(L’LENGTH, R’LENGTH);

1723¢1793

< variable SIZE: NATURAL := MAX(L’LENGTH, R’LENGTH);

> variable SIZE: NATURAL; — := MAX(L’LENGTH, R’LENGTH);
1724a1795

> SIZE := MAX(L’LENGTH, R’LENGTH) ;

1794c1865

< variable SIZE: NATURAL := MAX(L’LENGTH, R’LENGTH);

> variable SIZE: NATURAL; — := MAX(L’LENGTH, R’LENGTH);
1795a1867

> SIZE := MAX(L’LENGTH, R’LENGTH);

1807c1879

< variable SIZE: NATURAL := MAX(L’LENGTH, R’LENGTH);

> variable SIZE: NATURAL; —— := MAX(L’LENGTH, R’LENGTH);
1808a1881

> SIZE := MAX(L’LENGTH, R’LENGTH);

1878¢1951

< variable SIZE: NATURAL := MAX(L’'LENGTH, R’LENGTH) ;

> variable SIZE: NATURAL; — := MAX(L’LENGTH, R’LENGTH);
1879241953

> SIZE := MAX(L’LENGTH, R’LENGTH);

1891c1965

< variable SIZE: NATURAL := MAX(L’LENGTH, R’LENGTH);

> variable SIZE: NATURAL; — := MAX(L’LENGTH, R’LENGTH);
1892a1967

> SIZE := MAX(L’LENGTH, R’LENGTH);

1962c¢2037

< variable SIZE: NATURAL := MAX(L ’LENGTH, R’LENGTH) ;

> variable SIZE: NATURAL; — := MAX(L’LENGTH, R’LENGTH),
196322039

> SIZE := MAX(L’LENGTH, R’LENGTH);

1975¢2051

< variable SIZE: NATURAL := MAX(L’LENGTH, R’LENGTH) ;

> variable SIZE: NATURAL; — := MAX(L’LENGTH, R’LENGTH);
197622053

> SIZE := MAX(L’LENGTH, R’LENGTH) ;

2046¢2123

< variable SIZE: NATURAL := MAX(L’LENGTH, R’LENGTH);

> variable SIZE: NATURAL; —— := MAX(L’LENGTH, R’LENGTH);
2047a2125

> SIZE := MAX(L’LENGTH, R’LENGTH);

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

2059¢2137
< variable SIZE: NATURAIL := MAX(L’LENGTH, R’LENGTH) ;
> variable SIZE: NATURAL; — := MAX(L’LENGTH, R’LENGTH);
2060a2139
> SIZE := MAX(L’LENGTH, R’LENGTH);
2314¢2393
< variable RESULT: NATURAL := 0;
> variable RESULT: NATURAL; -— := 0;
2315a2395
> RESULT := 0;
2350¢2430
< variable I_.VAL: NATURAL := ARG;
> variable I_VAL: NATURAL; — := ARG;
2351a2432
> I.VAL := ARG;
2364a2446
> null;
2372,2373c2454,2455
< variable B.VAL: BIT := 0’
< variable I_.VAL: INTEGER := ARG;
> variable B.VAL: BIT; — := '07;
> variable I_VAL: INTEGER; — := ARG;
2374a2457,2458
> B VAL := ’'0’;
> I.VAL := ARG;
2392a2477
> null;
2402c¢2487
< variable RESULT: SIGNED(NEW.SIZE-1 downto 0) := (others => '0’);
> variable RESULT: SIGNED(NEW_SIZE-1 downto 0); — := (others =
0°);
240422490
> RESULT := (others => ’0’);
2418,2420¢2504,2506
< constant ARG LEFT: INTEGER := ARG’LENGTH-1;
< alias XARG: UNSIGNED(ARGLEFT downto 0) is ARG;
< variable RESULT: UNSIGNED(NEW_SIZE-1 downto 0) := (others => ’0’);
> alias INVEC: UNSIGNED(ARG’LENGTH-1 downto 0) is ARG;
> variable RESULT: UNSIGNED(NEW._SIZE—-1 downto 0);
— := (others = ’0’);
> constant BOUND: INTEGER := MIN(ARG’LENGTH, RESULT’LENGTH) —1;
2421a2508

> RESULT := (others => ’0’);

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

2424¢2511

< if XARG'LENGTH =0 then return RESULT;

> if (ARG’LENGTH =0) then return RESULT;
2426,2430¢2513,2514

< if (RESULT’LENGTH < ARG’LENGTH) then

< RESULT (RESULT’LEFT downto 0) := XARG(RESULT’LEFT downto 0);
< else

< RESULT (RESULT’LEFT downto XARG'LEFT+1) := (others => ’0’);
< RESULT (XARG’'LEFT downto 0) := XARG;

> if BOUND >= 0 then

> RESULT (BOUND downto 0) := INVEC(BOUND downto 0);
2434¢2518

<

>

2559,2563¢2643,2651

< — Id: E. 1

< function RISING.EDGE (signal S: BIT) return BOOLFAN is
< begin

< return S’EVENT and S = '17;

< end RISING.EDGE;

>-— — Id: E.1

> — function RISING.EDGE (signal S: BIT) return BOOLEAN is
> — begin

> — return S’EVENT and § = '17;

> — if (S’EVENT and S = ’17)

> — then return true;

> — else return false;

> — end if;

> — end RISING_EDGE;

2565,2569¢2653,2657

< — Id: E.2

< function FALLINGEDGE (signal S: BIT) return BOOLEAN is
< begin

< return S’EVENT and S = ’0’;

< end FALLINGEDGE;

>-— — Id: E.2

> — function FALLING-EDGE (signal S: BIT) return BOOLEAN is
> — begin

> - return S’EVENT and § = ’'07;

> — end FALLING EDGE;

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

A.2 The TLNS CPU Modules

The TLNS CPU data path consists of several features. All features are declared as
components in the CPU top level file. The RTL architecture body of the CPU is

constructed using these all data path components.

A.2.1 The TLNS CPU

The VHDL description of “tlns” entity and its RTL level architecture body is shown
in this section. This is the top level file in CPU organization. All CPU components

are declared and instantiated in this file.

library ieee;
use ieee.std_-logic.1164.all;

library work;

use work. tlns_instr.all,
work . alu_types.all,
work.numeric_bit . all,
work. tlns_types.all;

entity tlns is
port { clk : in std_logic;

reset : in std_logic;
halt : out std_logic;
input_data : in external_data;
output_data : out tlns_bus_word;
a : out tlns_bus_word;
d : in tlns_.bus.word;
ifetch : out std_logic;
ir_.mem_enable : out std_logic;
mem a : out mem_bus_addr;
mem_d.out : in tlns_bus_word;
mem-_d.in : out tlns_bus_word;
mem_write_en : out std.logic;
output.enable : out std_logic;
mem_enable : out std_logic);

end entity tlins;

architecture rtl of tlns is

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

— The TLNS Output Register
component output.reg is
port (clk : in std_logic;
d : in tlns_bus_word;
q : out tlns_bus_word;
out_enable : out std_logic;
enable : in std_logic);
end component output.reg;

~— The TLNS Input Register
component input.reg is
port (d : in external.data;
q : out tlns_bus_word;
enable : in std_logic;
out_en : in std_logic);
end component input._reg;

—— The TLNS Binary / 2DLNS Converter
component serial2digithighlow is
port (CK : in std_logic;
reset : in std_logic;
activate : in std_logic;
i : in std_-logic-vector (15 downto 0);
ready : out std_logic;
output.sign : out std_logic_vector(l downto 0);
output_first : out std_logic.vector (11 downto 0);
output_second : out std_logic_-vector (9 downto 0));
end component;

—— The TLNS Binary / 2DLNS Conversion Register
component conv_out.reg is
port (ready : in std_logic;

output.sign : in std_logic_vector (1 downto Q);
output_first : in std.logic.vector (11 downto 0);
output_second : in std_logic.vector (9 downto 0);
tlns.output : out tlns_bus_word);

end component;

— The TLNS Multiply and Accumulate unit
component mac is
port (clk,clr : in std.logic;
channel mux_sel : in std.logic;
coefnum : in std_logic;
evensym : in std.logic;
x : in tlns_bus.word;
y : in tlns_bus_word;
p : out tlns_bus.word);
end component mac;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

A. HARDWARE DESCRIPTION CODES

—— The TLNS Arithmetic and Logic Unit
component alu is

port (sl in tlns_word;
s2 in tlns_word;
result : out tlns.bus_word;
func in alu_func;
zero, negative, overflow : out bit;
clr in std_logic);

end component alu;

— The TLNS Register File
component reg_file is
port (clk : in std_ulogic;

al : in tlns_reg_addr;
ql : out tlns_word;
a2 : in tlns_reg_addr;

q2 : out tlns_word;

a3 : in tlns_reg_addr;

d3 : in tlns_bus_word;

write.en : in std_logic);
end component reg._file;

—— The TLNS Ezxtender
component ir_extender is
port (d : in tlns_word;

q @ out tlns_bus.word;
immed_size.18 : in bit;
immed._unsigned : in bit;
immed_en : in bit);

end component ir_extender;

~— The TLNS Director / Extender
component ir.extender_director is
port (d : in tlns.word;
q : out tlns.bus_word;
immed_size_18 : in bit;
immed_unsigned : in bit;
immed.en : in bit;
direct : in bit);
end component ir_extender.director;

— The TLNS A and B registers
component reg is
port (d : in tlns_word;
q : out tlns_bus_word;
clk, enable : in std.logic;
out_en : in std.logic 7);
end component reg;

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

— The TLNS Program Counter
component reg._multiple_plus_one_out_reset is
port (d : in tlns_bus_word;
q0 : out tlns_word;
q : out tlns_bus_word;
clk , enable : in std_logic;
out_en : in std_logic;
reset : in std_logic);
end component reg_multiple_plus_one.out_reset;

— The TLNS Memory Address Register
component mar.reg is
port (d : in tlns.bus_word;
q : out tlns_bus_-word;
clk, enable : in std._logic);
end component mar._reg;

— The TLNS Instruction Memory Multiplexer
component mux2 is
port (i0 : in tlns_bus_word;
il : in tlns_bus_word;
y : out tlns_bus_word;
sel : in bit);
end component mux2;

— The TLNS Data Memory Multiplezer
component mux2_ma is
port (i0 : in tlns-bus.word;
il : in tlns_address;
y : out tlns_bus_word;
sel : in bit);
end component mux2 ma;

— The TLNS Controller
component controller is
port (clk : in std.logic;
reset : in std_logic;
halt : out std_logic;
ir_mem_enable : out std.logic;
ifetch : out std.logic;

alu_function : out alu_func:

alu_zero, alu_negative, alu_overflow : in bit;

reg-sl.addr, reg_s2.addr, reg._dest_addr : out tlns.reg._addr;
reg_write : out std_logic;

a_enable : out std_logic;
a_out_en : out std._logic;
b_enable : out std_logic;
b_out_en : out std_logic;
pc-enable : out std_logic;

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

pc-out.en : out std_logic;
mar_enable : out std._logic;
ir.immedl._.size.18, ir.immed2_size.18 : out bit;
ir_.immed1_unsigned , ir.immed2_unsigned : out bit;
ir.immedl_en, ir_immed2.en : out bit;
current_instruction : in tlns_word;
const2 : out tlns_bus.word;
mem_write_en : out std_logic;
mem.enable : out std_-logic;

mac.clr : out std.logic;

alu_clr : out std_logic;

btc_reset : out std.logic;

btc.ready : in std_.logic;
btc.activate : out std_logic;
in.reg_enable : out std_-logic;
in_reg_out.en : out std_logic;
out_reg_enable : out std.logic;
ctrl_mem_a : out tlns.bus._word;
ctrl_ir_mem_a : out tlns_bus_word;
ma_mux.-sel ; out bit;

ir.ma_mux.sel : out bit;

ctrl_direct : out bit;
mac.ch_mux_sel : out std.logic;
mac.coefnum : out std_logic;
mac-evensym : out std_logic;
sl_bus_content : in tlns_bus_word;
s2_bus-content : in tlns_bus_word);

end component controller;

signal sl_bus, s2_bus : tlns.bus_word;

signal dest_bus : tlns_bus_.word;

signal sl.in, s2.in, ir.in : tlns_word;

signal reg_file_outl , reg_file_out2 : tlns_word;
signal current_instruction : tlns.word;

signal alu_function : alu_func;

signal alu_zero, alu_negative, alu_overflow : Dbit;
signal reg.sl_addr, reg.s2_addr, reg_-dest.addr : tlns_reg_addr;
signal reg._write : std-logic;

signal a.out_en : std.logic;

signal a_enable : std_logic;

signal b_out.en : std_logic;

signal b._enable : std.logic;

signal pc_out_en : std_logic;

signal pc_enable : std_logic;

signal mar_enable : std_logic;

signal ir.immedl_size_ 18, ir_.immed2_size-18 : bit;
signal ir_immedl_unsigned, ir.immed2_unsigned : bit;
signal ir_immedl_en, ir_immed2_en : bit;

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

signal a_out : tlns_bus.word,;

signal pc_out : tlns.address;

signal mem.addr : tlns_bus_word;

signal mac_clr : std_logic;

signal alu_clr : std_logic;

signal btc_reset : std_.logic;

signal btc.ready : std_logic;

signal btc_activate : std-logic;

signal in_reg.enable : std_logic;

signal in_reg_out.en : std-logic;

signal out_reg_enable : std.logic;

signal ctrl.mem.a : tlns_bus_word;

signal din_demux_sel : bit;

signal ma_mux.sel : Dbit;

signal mem.data_in : tlns_bus_word:

signal mem_data_ out : tlns_bus_word;

signal mar_.a : tlns_bus_-word;

signal ctrl_ir_mem_a : tlns_.bus_word;

signal ir_ma_mux_sel : bit;

signal ctrl_direct : bit;

signal mac_ch_.mux_sel : std_logic;

signal mac_coefnum : std_logic;

signal mac_evensym : std_logic;

signal sl_bus.content : tlns_bus_.word;

signal s2_bus_content : tlns_bus.word;

signal output_sign : std_logic_vector (1l downto 0);
signal output-first : std_logic.vector (11 downto 0);
signal output_second : std_logic.vector (9 downto 0);

begin

~— Input / Output ports connections

sl.in <= tlns_word (To_bitvector(sl_bus));

§2_in <= tlns_word (To_bitvector(s2_bus));
current.instruction <= tlns_word(To_bitvector(d));
a <= a-out;

mem_a <= mem_addr(9 downto 0);

mem_d.in <= dest_bus;

sl_bus <= mem_d_out;

~— The component instantiations

output_register : output-reg
port map { clk => clk, d = s2.bus, q => output_data,
out_enable => output_enable, enable => out_reg_enable);

input_register : input_reg
port map (d => input_data, q => sl_bus, enable => in_reg_enable,
out_en => in_reg_out.en);

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

BTC_converter : serial2digithighlow
port map (CK => clk, reset => btc_reset, activate => btc_activate,
i = sl_bus(15 downto 0), ready => btc_ready,
output_sign => output_sign,
output_first => output_first,
output_second => output_second);

BTCreg : conv_out.reg
port map (ready => btc_ready,
output_sign => output_sign,
output.first => output_first,
output_second => output_second,
tlns_output => dest.bus);

multiplier_accumulater : mac
port map (clk => clk, clr = mac_clr,
channel_mux._sel => mac_.ch_.mux_sel, coefnum => mac.coefnum
?
evensym => mac._evensym, x => sl_bus, y => s2_bus,
p = dest_bus);

the_alu : alu
port map (sl => sl.in, s2 => s2_.in, result => dest_bus,
func => alu_function , zero => alu_zero,
negative => alu_negative , overflow => alu.overflow,
clr => alu_clr);

the_reg_file : reg.file
port map (clk => clk, al => reg.sl.addr, ql => reg_-file_outl ,
a2 => reg.s2_addr, q2 = reg_file_out2 ,
a3 => reg_dest_addr, d3 => dest_bus,
write_.en => reg_write);

a.reg : reg
port map (d = reg_file.outl, q => sl_bus, clk = clk,
enable => a_enable, out_en => a_out_en);

b_reg : reg
port map (d => reg_file_out2, q => s2_bus, clk => clk,
enable => b_enable, out_en => b_out_en);

pc_reg : reg.multiple_plus_one_out_reset
port map { d => dest_bus, q => sl_bus, q0 => pc.out, clk = clk,
enable => pc.enable, out_en => pc_out_en, reset => reset

)

mar._register : mar_reg
port map (d => dest_bus, q => mar.a, clk => clk,

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

enable => mar_enable);

ma.mux : mux2
port map (i0 => ctrl.mem.a, il => mar.a, y => mem_addr,
sel => ma_mux_sel);

ir.ma.mux : mux2_ma
port map (i0 => ctrl_ir.mem.a, il => pc_out, y => a_out,
sel = ir_ma_mux_sel);

ir.extenderl : ir.extender
port map (d => current_instruction, q => sl_bus,
immed_size_18 => ir.immedl_size_18,
immed_unsigned => ir_-immedl_unsigned ,
immed_en => ir.immedl_en);

ir_extender2 : ir_extender_director
port map (d => current_instruction , q => s2_bus,
immed_size_18 => ir.immed2_size_18,
immed_unsigned => ir_immed2_unsigned,
immed.en => ir.immed2_en, direct => ctrl_direct);

the_controller : controller

port map (clk => clk, reset => reset, halt => halt,
ir mem.enable => ir_mem_enable
ifetch = ifetch, alu_function => alu_function ,
alu_zero => alu_zero, alu_.negative => alu_negative,
alu_overflow => alu-overflow, reg_sl_addr => reg.sl_addr,
reg.s2_addr => reg.s2_addr,
reg_-dest_addr => reg.dest_addr, reg.write => reg_write
a_enable => a_enable, a_out_en => a_out_en,
b_enable => b_enable, b_out_en => b_out_en,
pc_enable => pc_enable, pc_out_en => pc_out_en,
mar_enable => mar_enable,
ir_-immedl_size_18 => ir.immedl_size_18,
ir.immed2_size_18 => ir_immed2_size_18,
ir.immedl_unsigned => ir.immedl.unsigned,
ir.-immed2.unsigned => ir_.immed2_unsigned,
ir_.immedl_en => ir_.immedl_en, ir_.immed2_en =>

ir.immed2_en ,

current-instruction => current.instruction ,
const2 => s2_bus, mem._write_.en => mem_write_en,
mem_enable => mem_enable, mac_clr => mac_clr,
alu_clr => alu.clr,
btc.reset => btc_reset ,
btc.ready => btc_ready,
btc_activate => btc_activate,
in.reg_enable => in_reg_enable
in_reg_out_en => in.reg_out_en,

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

out.reg_enable => out_reg_enable,

ctrl.mem_a => ctrl.mem_a, ctrl.ir_mem_a => ctrl.ir_.mem._a ,
ma-mux.sel => ma.mux_sel,

ir.ma.mux_sel => ir_.ma.mux_sel,

ctrl_direct => ctrl_direct ,

mac_-ch_mux.sel = mac_-ch.mux_sel,

mac.-coefnum => mac-coefnum ,

mac_evensym => mac-evensym,

sl_bus.content => sl_bus,

s2_bus_content => s2_bus);

end architecture rtl;

A.2.2 The Arithmetic and Logic Unit (ALU)

This VHDL code describes the ALU in behavioral level.

library ieee;
use ieee.std-logic_1164.all;

use work. tlns_types.all,
work. alu-types.all,
work. numeric_bit . all;

entity alu is
port { sl : in tlns_word;

s2 : in tlns._word;
result : out tlns_bus.word;
func : in alu_.func;
zero, negative, overflow : out bit;
clr : in std_logic);

end entity alu;

architecture behavior of alu is
begin

alu_op: process (sl, s2, func) is

—— bit by bit adder

procedure add (L, R : in tlns_word;
result : out tlns_.word;
overflow : out bit;
carry.in : in bit;
signed : in boolean) is

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

variable carry : bit ;

variable carry_prev : bit;
begin
carry := carry-in;
for index in result 'reverse_.range loop
carry_prev := carry; — of previous bit
result (index) := L(index) xor R(index) xor carry;

carry := (L(index) and R(index))
or (carry and (L(index) xor R(index)));

end loop;
if signed then
overflow := carry xor carry_prev;
else
overflow := carry;
end if;
end procedure add;
variable temp_result : tlns_word;
variable temp_overflow : bit;
begin
temp_overflow = ’07;

— determines the ALU result based on the ALU function
case func is
when alu.pass_sl =>

temp_result := sl;
when alu_pass_s2 =>
temp._result = s2;
when alu.and =>
temp.result := sl and s2;
when alu_or =>
temp.result := sl or s2;
when alu_xor =>
temp_result := sl xor s2;
when alu.sll =>
temp_result := sl sll to.integer(s2(3 downto 0));
when alu.srl =>
temp.result := sl srl to_integer(s2(3 downto 0));
when alu.sra =>
temp_result := sl sra to_integer(s2(3 downto 0));

when alu_add =
add(sl, s2, temp.result, temp_overflow,
carry.in => ’0’, signed => true);
when alu_addu =
add(sl, s2, temp.result, temp_overflow,
carry-in => ’'0’, signed => false);
when alu_sub =>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

A. HARDWARE DESCRIPTION CODES

add(sl, mot s2, temp.result, temp.overflow,
carry_in => ’1’, signed => true);
when alu_subu =>
add(sl, not s2, temp_result, temp_overflow,
carry_in => ’'1’, signed => false);
when others =>
null;
end case;

— disables output, if ALU is not in use
if (clr = ’0’) then
result <= to_X01(bit-vector(temp.result));
else
result <= disabled_tlns_word;
end if;

— sets the ALU zero flag
if (temp_result = X"000.000”) then

zero <= ’17;
else

zero <= ’'07;
end if;

—— sets the ALU sign flag
negative <= temp._result (23) ;

— sets the ALU overflow flag
overflow <= temp_overflow ;

end process alu_.op;

end architecture behavior;

A.2.3 The A and B registers

This is the VHDL code for registers which transfer data from register file to the data

buses.

library ieee;
use ieee.std_logic.1164.all,;

use work.tlns_types.all;
entity reg is

port (d : in tlns_word;

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

q : out tlns_bus.word;

clk, enable : in std_logic;

out_en : in std_logic);
end entity reg;

architecture behavior of reg is
signal stored.value : tlns_word;
begin

— stores the input data
reg: process (clk) is

begin
if rising_edge(clk) then
if enable = ’1’ then
stored_value <= d;
end if;
end if;
end process reg;

— disables the output, when register is not out enabled
q <= to.X01(bit_vector (stored.value)) when out_en = ’1’
else disabled_tlns_word;

end architecture behavior;

A.2.4 The Memory Address Register (MAR)

Whenever the data memory address is determined, MAR copies the input address

directly to its output.

library ieee;
use ieee.std_logic_-1164.all;

use work. tlns_types.all,
work . numeric_bit . all;

entity mar_reg is
port (d : in tlns_bus_word;
q : out tlns._bus.word;
clk, enable : in std_logic);
end entity mar_reg;

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

architecture behavior of mar_reg is
begin

— directs input data to the output when is enable
reg: process (clk) is
begin
if rising_edge(clk) then
if enable = 1’ then
q <= d;
end if;
end if;
end process reg;

end architecture behavior;

A.2.5 The Program Counter (PC)

The reset port of this register is connected to the reset signal of CPU. Therefore,
program counter starts from zero, when CPU is reset. This register has two outputs,
the first one always is connected to the data bus and is incremented in ALU, and
the second one, when is enabled, transfers the address to the instruction memory

multiplexer.

library ieee;
use ieee.std.logic.1164.all;

use work.tlns_types.all,
work. numeric_bit . all;

entity reg.multiple_plus.one_out.reset is

port (d : in tlns_bus_word;
q0 : out tlns_word;
q : out tlns_bus_word;
clk, enable : in std_logic;
out_en : in std_logic;
reset : in std_.logic);
end entity reg.multiple_plus_one_out_reset;

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

architecture behavior of reg_multiple_plus_one_out-reset is

signal stored_value : tlns.bus.word;
begin

— the register reset to zero based on CPU reset signal
reg: process (clk, reset) is
begin
if reset = ’1’ then
stored.value <= X"000.000";
elsif rising_edge{clk) then
if enable = ’1’ then
stored.value <= d;
end if;
end if;
end process reg;

—— this output always goes to sl_bus
q0 <= unsigned(to_bitvector(stored_value)) ;

— places the address onto memory multiplezer , when is enabled
q <= stored.value when out.en = ’1°’
else disabled_tlns_word ;

end architecture behavior;

A.2.6 The Input Register

When the enable port of register is ‘1’, data is stored and when the output is enabled

the stored value is written to its output port.

library ieee;
use ieee.std.logic_1164.all;

use work. tlns_types.all,
work. numeric.bit . all;

entity input_reg is
port (d : in external_data;
q ! out tlns_bus.word;
enable : in std_logic;
out_en : in std_logic);
end entity input_reg;

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

architecture behavior of input._reg is

signal stored_-value : tlns_bus_word;
begin

—— data is stored when input is enabled

input : process (d, enable) is

begin

if enable = '1’ then
stored_value <= "00000000” & d;
end if;

end process input;

— stored data is written to output when output is enabled
q <= stored-value when out_en = ’'1’ else
disabled_tlns_word ;

end architecture behavior;

A.2.7 The Output Register

While the enable port of register controls its output, the out_enable signal is set to
be used by the controller. The controller makes use of this signal to read the output,

one clock cycle after it has been written.

library ieee;
use ieee.std.logic.1164.all;

use work.tlns_types.all,
work. numeric_bit . all;

entity output_reg is
port (clk : in std_logic;
d : in tlns_bus_word;
q : out tlns_bus_word;
out_enable : out std.logic;
enable : in std_logic);

end entity output_reg;

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

architecture behavior of output_reg is
begin
output_data : process (d, enable) is
begin

— enable signal controls the output
if enable = 1’ then

q<=d ;
else

q <= disabled_tlns.word;
end if;

end process output-data;

— the out_enable port is set to be used by the controller
output_en : process { clk) is

begin
out_enable <= enable;
end process output._en;

end architecture behavior;

A.2.8 The Register File

This VHDL file includes two processes for writing to and reading from register file.

Register r0 is an exception, it never be written and returns zero, when it is read.

library ieee;
use ieee.std_logic_1164.all;

use work.tlns.types.all,
work. tlns_instr.all,
work. numeric._bit . all;

entity reg_file is
port (clk : in std_logic;
al : in tlns_reg_addr;
ql : out tlns_word;
a2 : in tlns_reg_-addr;
q2 : out tlns.word;

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

a3 : in tlns_reg_addr;

d3 : in tlns_bus.word;

write.en : in std_-logic);
end entity reg._file;

architecture behavior of reg._file is
subtype register_array is tlns_word_array(l to 15);
constant all_zeros : tlns_word := X”000.000";
signal register.file : register_array;

begin

— 10 is an exception for both read and write
reg_write: process (a3, d3, write_en, clk) is

variable reg_index3 : reg_index;

begin
— does write if enabled
if rising_edge(clk) then
if write_en = ’1’ then
reg_index3 := to_integer (a3);
if reg_index3 /= 0 then
register_file (reg_index3) <= unsigned(to_bitvector(d3));
end if;
end if;
end if;

end process reg.write;

reg-read: process (al, a2) is

variable reg.indexl, reg.index2 : reg.index;
begin

— read port 1

reg.indexl := to_integer (al);

if reg_indexl /= 0 then

ql <= register_file (reg.indexl) ;
else

gl <= all_zeros ;
end if;

— read port 2
reg_index2 := to.integer (a2);
if reg_index2 /= 0 then
q2 <= register_file(reg.index2) ;
else

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

q2 <= all_zeros ;
end if;
end process reg.read;

end architecture behavior;

A.2.9 The Multiplexers

There are two multiplexers to address the memories. The only difference between
these two is the different data types of inputs. Here is the code which describes the

instruction memory multiplexer.

library ieee;
use ieee.std_logic_1164.all;

use work.tlns_types.all,
work. numeric_bit . all;

entity mux2 is
port (i0 : in tlns_bus_.word;
il : in tlns_bus_word;
y : out tlns_bus_word:
sel : in bit);
end mux?2;

architecture behavior of mux2 is
begin

— selects the input based on sel
with sel select
y <= i0 when ’0’,
il when ’1’,
disabled.tlns.word when others;

end architecture behavior;

And, this file shows the multiplexer description for the data memory.

library ieece;
use ieee.std_logic_1164.all;

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

use work. tlns_types.all,
work . numeric_bit.all;

entity mux2_ma is
port (i0 : in tlns_bus_word;
il : in tlns_address;
y : out tlns_bus_word;
sel : in bit);
end mux2.ma;

architecture behavior of mux2_ma is
begin

— selects the input based on sel
with sel select
y <= i0 when 0’7,
To.X01(bit_vector(il)) when '1’,
disabled_tlns_word when others;

end architecture behavior;

A.2.10 The Extender

If the immed_en port is asserted to high, this module extends the immediate value

in instruction to 24 bits.

library ieee;
use ieee.std_logic.1164.all;

use work. tlns_types.all,
work. numeric.bit . all;

entity ir_extender is
port (d : in tlns.word;
q : out tlns.bus_word;
immed.size_18 : in bit;
immed_unsigned : in bit;
immed-en : in bit);
end entity ir_extender;

architecture behavior of ir_extender is
begin

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

extender : process (d, immed_en, immed_size 18, immed_unsigned) is

begin
— extends the input value when is enabled
if immed.en = ’1’ then
if immed.size.18 = ’1’ then
— 18— bit immediate value
if immed.unsigned = ’1’ then
— resize and signed are functions in numeric_bit package
q <= to_X01(bit_vector(resize(d(17 downto 0), 24))) ;
else
q <= to_X01(bit_vector(resize(signed (d(17 downto 0)), 24)))
end if;
else
— 10-bit immediate value
if immed_unsigned = ’1’ then
q <= t0_-X01(bit_vector(resize(d(9 downto 0), 24)}) ;
else
q <= to_X01(bit_vector(resize(signed (d(9 downto 0)), 24))) ;
end if;
end if;
— disables the output if the extender is not enabled
else
q <= disabled_tlns_word ;
end if;

end process extender;

end architecture behavior;

A.2.11 The Extender / Director

This module also directs the immediate value to the output port when an extension

is not necessary. It happens when a data is read from the instruction memory.

library ieee;
use ieee.std_logic_1164.all;

use work. tlns_types.all,
work.numeric.bit. all;

entity ir_extender_director is
port (d : in tlns_word;
q : out tlns_bus.word;
immed_size_18 : in bit;

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

immed_unsigned : in Dbit;
immed_en : in bit;
direct : in bit);

end entity ir_extender_director;

architecture behavior of ir_extender_director is
begin

ext_dir : process (d, immed_en, immed_size.18, immed_unsigned) is

begin
— first checks for a direction request
if direct = ’1’ then
q <= to_X01(bit_vector(d));

else
—— extends the input value when is enabled
if immed_en = ’'1’ then
if immed_size_18 = ’1’ then
— 18— 0bit immediate value
if immed._unsigned = ’'1’ then
— restze and signed are functions in numeric_bit package
q <= to.X01(bit_vector(resize (d(17 downto 0), 24)))
else
q <= to-X01(bit_vector (resize (signed (d(17 downto 0)), 24)))
end if;
else
—— 10-bit immediate value
if immed._.unsigned = ’1’ then
q <= to_-X01(bit-vector(resize(d(9 downto 0), 24))) ;
else
q <= to_X01(bit.vector(resize (signed (d(9 downto 0)), 24)))
end if;
end if;
— disables the output if the extender is not enabled
else
q <= disabled_tlns_word ;
end if;
end if;

end process ext.dir;

end architecture behavior;

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

A.2.12 The Binary / 2DLNS Converter (BTC)

For the binary / 2DLNS conversion, the Verilog code in [13] is used. The HDL code
has been written fully parametrized and the parameters should be set when the shell
script which generates Verilog module is run. The definition of these parameters were
also included in [13]. Before running this script, the optimal base has been computed
and stored in an ASCII file, 32768-13mn2unz.out. The binary / 2DLNS converter
module in TLNS CPU has been generated by setting the parameters as:

makeserial2digithighlow.sh 32768-13mn2unz.out 16 6 5 3 2 1 -nz > myconverter.v

The name of generated module is serial2digithighlow which is instantiated, as

an component, in the TLNS top module. This Verilog file is shown here.

‘ifdef DC
‘else
‘timescale 1ns/10ps

// Define serial simulation module
module simulate_serial;

parameter inputbits = 16;
parameter firstbasebits = 6;
parameter secondbasebits = j5;
parameter twobitmode = 0;
parameter digits = 2;
parameter starter = —32768;
parameter stopper = 32767,

// Define systm clock
reg CK;

// Test bench registers, just one
reg [31:0] 1i;

// Interfacing registers
reg reset;

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

reg activate,

reg [inputbits — 1 : 0] i0;

wire ready;

wire [(digits * (twobitmode + 1)) — 1 : 0] output_sign;
wire [(firstbasebits * digits) — 1 : 0] output_first;
wire [(secondbasebits * digits) — 1 : 0] output_second;

// Reordered converter results

reg | twobitmode : 0] final.sign|[0 : digits — 1];

reg [firstbasebits — 1 : 0] final_first[0 : digits — 1];
reg [secondbasebits — 1 : 0 | final_second[0 : digits — 1];

// Temporary registers

reg | (digits * (twobitmode + 1)) — 1 : 0 | output-sign2;
reg [(firstbasebits * digits) — 1 : 0] output_first2;
reg [(secondbasebits x digits) — 1 : 0 | output_-second2;

// Conversion operates on rising edge
serial2digithighlow
serial(
CK,
reset ,
activate ,
i0,
ready ,
output_sign ,
output_first ,
output_second

)
integer q;
time starttime;

// Initialization routine
initial
begin

// Disable verilog input logging
$nokey ;

// Disable verilog output logging
$nolog ;

// Initialize clock
CK = 0;

// Set initial input
i = starter — 1;

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

// Disable converter
activate = 0;

// Reset converter
reset = 1;

end

// Set up the clock to pulse every 10 wunits
always #10 CK = !CK;

// On the rising edge
always @(posedge CK)
begin

// When conversion is done, read converter results
if(ready = 1 && activate = 0)
begin

$display (”!total_time=%t” , $time — starttime);

// Copy the conerter results
output_sign2 = output.sign;
output_first2 = output_-first;
output_second2 = output.second;

// Write out the input for comparison
$write("+%b”, i0);

// Loop through all the digits to extract the sign and indices
// We can not use a wvariable in the indexing, so we use shifts

instead
for(q =0 ; q < digits ; gq=q+ 1)
begin

// Eztract the sign

final_sign| q] = output.sign2| twobitmode : 0 |;
// Shift it down for the next extraction
output_sign2 = output-sign2 >> (twobitmode + 1);

// Eztract the first index

final_first|[q] = output_first2| firstbasebits — 1 : 0];
// Shift it down for the next extraction

output._-first2 = output.first2 >> firstbasebits;

// Eztract the second index
final.second[q | = output_second2| secondbasebits — 1 : 0 |;
// Shift it down for the next extraction

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

output.second2 = output.second2 >> secondbasebits;

// Write out the sign and indices

$write (”\t%b\t%b\t%b”, final_sign| q |, final.first|[q],
final_second| q]);

end

// Write a new line
$write(”"\n”);

// Increment the test input
1=1i+ 1;

// Stop simulations when it reaches the last input
if(i — 1 = stopper)
begin

$finish;

end

// Set the input
i0 <= i[inputbits — 1 : 0];

// Request a conversion
activate <= 1;

// Record start time
starttime = $time;

end
else
begin

// Conversion 1is either busy or in reset

// Turn off conversion
activate <= 0;

// Take out of reset
reset <= 0;

end
end

endmodule

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

‘endif
// Define Serial 2 Digit High/Low Conversion Module

module serial2digithighlow (
CK,
reset ,
activate ,
i7
ready ,
output._sign ,
output_first ,
output_second

// Define parameters

// inputbits: Input word size in bits

// internalbits: Internal working bit size (>= inputbits)

// firstbasebits: Number of bits for the first base indezx

// secondbasebits: Number of bits for the second base index
// secondbasereservedbits : Number of bits for exzclusion on the
// secondbase index

// normalizerbits: Number of bits for shift from normalizer
// twobitmode: Sign mode (1 for two—bits, 0 for one—bit)

parameter inputbits = 16;

parameter internalbits = 17;
parameter firstbasebits = 6;
parameter secondbasebits = 5;
parameter secondbasereservedbits = 3;
parameter normalizerbits = 5;
parameter twobitmode = 0;

// Dummy parameter, should be for the number of digits
parameter dummy = 2;

// This is a two digit 2DLNS converter
parameter digits = 2;

// Internal comparitor accuracy, this should be adjusted after
simulation
parameter shiftdifference = 20;

// Define ports

// Data is processed on rising edge
input CK;

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

// Reset is active high
input reset;

// Input word in 2’s complement
input [inputbits — 1 : 0] i;

// Set to 1 to run conwverstion on input
input activate;

// Is set to 1 when output data is ready
output ready;
reg ready;

// Output Signs (concatenated)
output [(twobitmode + 1) * digits — 1 : 0] output_sign;
reg [(twobitmode + 1) % digits — 1 : 0] output-sign;

// Output Binary exponent (concatenated)
output [(firstbasebits = digits) — 1 : 0] output.first;
reg | (firstbasebits % digits) — 1 : 0 | output_first;

// Output OtherBase exponent (concatenated)
output [(secondbasebits % digits) — 1 : 0 | output_second;
reg [(secondbasebits * digits) — 1 : 0] output-second;

reg [inputbits — 1 : 0 | sep_manin;
wire [internalbits — 1 : 0] sep-manout;
wire [twobitmode : 0 | sep.signout;

separatesign.noclk
#(
inputbits
internalbits ,
twobitmode

)

ss
sep_manin ,
sep-manout ,
sep_signout

)5

reg [internalbits — 1 : 0] norm_manin;
reg [twobitmode : 0] norm._signin;

wire [internalbits — 1 — twobitmode : 0] norm_manout;
wire [twobitmode : 0 | norm_signout;
wire [normalizerbits — 1 : 0] norm_shift;

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

normalizer_noclk
#(
internalbits ,
normalizerbits ,
twobitmode

)

no

(
norm._manin ,
norm._signin ,
norm.manout ,
norm._signout ,
norm.shift

);
reg [internalbits — 1 — twobitmode : 0] ralut_manin;
wire internalbits — 1 — twobitmode : 0] ralut-manlow;
wire | internalbits : 0] ralut_manhigh;

[

[
wire | firstbasebits — 1 : 0 | ralut_firstlow , ralut_firsthigh;
wire | secondbasebits — 1 : 0 | ralut_secondlow , ralut.secondhigh;

ralut6.178605502_2106.noclk
#(

internalbits — twobitmode,
firstbasebits ,
secondbasebits
internalbits + 1,
firstbasebits ,
secondbasebits ,
internalbits — twobitmode

)

ralut

(
ralut.manlow ,
ralut_firstlow ,
ralut_secondlow ,
ralut_manhigh
ralut_firsthigh ,
ralut_secondhigh ,
ralut_.manin

)

reg [twobitmode : 0] final_sign| 0 : digits — 1];
reg | firstbasebits — 1 : 0] final_first[0 : digits — 1 J;
reg | secondbasebits —~ 1 : 0 | final_second| 0 : digits — 1];

reg | twobitmode : 0] other_sign;
reg [firstbasebits — 1 :0] other_first[0 : digits — 1];
reg [secondbasebits — 1 :0] other_second[0 : digits — 1 |];

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

reg | internalbits : 0] error.low, error_high, other_error;

reg | normalizerbits : 0 | other_shiftdifference, best_shiftdifference;

reg | normalizerbits — 1 : 0] other_lastshift , best_lastshift;

reg [internalbits — 1 + shiftdifference : 0 | other_errorcompare,
best_errorcompare;

best_error;

reg [internalbits — 1 : 0]
] best_shift , other.shift;

reg [normalizerbits : 0

// State machine register
reg [3 : 0] state;

‘ifdef DC
‘else

// For simulation optimize the barrel shifter
integer max_shiftdifference;

// Initialization routine
initial
begin

// Reset the shiftdifference mazimum
max_shiftdifference = 0;

// Stop if more than 2 digits were passed
if(dummy != digits) $stop;

end
‘endif

// Reset integer
integer j;

// Give Synopsys some hints on the synthesis
//synopsys state_vector state
//synopsys sync_set_reset "reset”

always @Q(posedge CK)
begin: main

// Synchronous Reset active high
if(reset)
begin

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

// Reset state machine
state <= 0;

// Set output to invalid
ready <= 0;

// Set all MDLNS output to zeros
for(j=0;j<2;j=j+1)
begin

final_sign[j] <= 0;
final_first[j] <= 0;
final_second [j] <= 0;

end

end
else
begin

// Process each state
case(state)

0:
begin

// Conversion starts if activate line is high
if(activate)
begin

// Load input data into sign separator
sep.manin <= 1i;

// Invalidate output
ready <= 0;

$display(” Conversion.starts.for .%d”, i);

// Set all MDLNS output to zeros incase conwversion finishes
early
for(j=0; j<2;j=j+1)
begin
final_sign| j] <= 0;
final_first[j | <= 0;
final_second| j | <= 0;

end

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

.// Move to next state
state <= state + 1;

end
else
begin

// No conversion signal, continue looping
ready <= 1;

end
end
1: begin

// Get sign and data from sign separator, put it in to the
normalizer

norm-signin <= sep_signout;
norm.-manin <= sep_manout;

// Move to next state
state <= state + 1;

end

2:
begin

if (twobitmode && norm_signout = 0)
begin

// input is zero, end conversion
ready <= 1
state <= 0;

end
else
begin

// Get shift and sign from normalizer
final_sign|[0] <= norm.signout;
other_shift <= norm_shift;

// Load RALUT with the mantissa
ralut_.manin <= norm.manout;

// Move to next state
state <= state + 1;

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

end

end

3:
begin

// Determine the error between the two RALUT outputs and the
input

if (twobitmode)

begin

error_low = { 2’b01, ralut-manin } — { 2’b01, ralut.manlow };
other_error <= ralut_manhigh — { 2’b01, ralut_manin };

end
else
begin

error-low = { 1’b0, ralut.manin } — { 1°b0, ralut.manlow };
other_error <= ralut.manhigh — { 1’b0, ralut_manin };

end

// Load normalizer with low error and sign of input (to
determine

// if it is
zero)

norm_manin <= error_low | internalbits — 1 : 0];

norm._signin <= final_sign[0];

// Save the low approzimation as the current result
final_first [0] <= ralut_firstlow — other_shift;
final_second| 0] <= ralut_secondlow;

// Remember the high approzimation for later
other_first|[0] <= ralut_firsthigh — other_shift;
other_second| 0] <= ralut.secondhigh;

// Move to mnext state
state <= state + 1;

end

4:
begin

// Find the second digit for the low approzimation

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

if (twobitmode && norm_signout == 0)
begin

// Error is zero, end conversion

ready <= 1;
state <= 0;
end
else
begin

// Set output sign

final_sign|[1] <= norm.signout;

// Save accumulated shift

best_shift <= other_shift 4+ norm._shift;
// Load RALUT

ralut.manin <= norm_manout;

// Move to next state
state <= state + 1;

end

end

5:
begin

// Determine the error between the two RALUT outputs and the
input

// We do this since we only have one RALUT, we have to find if
the

// low or the high approxzimation is best

if (twobitmode)

begin

error_-low = { 2°b01, ralut_manin } — { 2’b01, ralut-manlow };
error_high = ralut_manhigh — { 2’b01l, ralut_-manin };

end
else

begin

error_low = { 1’b0, ralut_manin } — { 1’b0, ralut_manlow };
error.high = ralut_manhigh — { 1°b0, ralut-manin };

end

// Set the current result as the best approzximation

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

if (error_.low < error_high)
begin

final _first[1 | <= ralut_firstlow — best_shift;
final_second[1] <= ralut.secondlow;
best_error <= error_low;

end
else
begin

final_first| 1] <= ralut_firsthigh — best_shift;
final_second| 1]| <= ralut_secondhigh;
best_error <= error_high;

end

// Load normalizer with high error from before and sign of —1
norm.-manin <= other_error| internalbits — 1 : 0];

if (twobitmode)
begin

if(final_sign[0 | = 1)
begin

norm.signin <= 2’bll;
end
else
begin
norm.signin <= 2’b01;
end
end
else
begin
norm.signin <= “final_sign[0];

end

// Move to next state
state <= state + 1;

end

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

6:
begin

// Sove accumulated shift and sign
other_shift <= other_shift + norm_shift;
other_sign <= norm_signout;

// Load RALUT

ralut_manin <= norm_manout;

// Move to next state
state <= state + 1;

end

7:
begin

// Determine the error between the two RALUT outputs and the
input

if (twobitmode)

begin

error.low = { 2’b01, ralut-manin } — { 2’b01, ralut.manlow };
error_high = ralut.manhigh — { 2’b01, ralut_manin };

end
else
begin

error_low = { 1’b0, ralut_manin } — { 1’b0, ralut_manlow };
error_high = ralut.manhigh — { 1’b0, ralut_manin };

end

// Store this result temporarily
if (error.low < error_high)
begin

other_first[1] <= ralut_firstlow — other_shift;
other_second| 1 | <= ralut_secondlow;
other_error <= error_.low;

end
else
begin

other_first|[1] <= ralut_firsthigh — other_shift;
other_second|[1] <= ralut_secondhigh;

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

other_error <= error_high;

end

// Move to next state
state <= state + 1;

end

8:
begin

// Find the difference in shifts between the two approzimations
other_shiftdifference = other_.shift — best_shift;

best.shiftdifference = best_shift — other_shift;

if(other_shiftdifference| normalizerbits] = 1’b0)
begin

// high approzimation must be shifted right
other_lastshift <= other_shiftdifference;
best_lastshift <= 0;

end
else
begin

// low approzimation must be shifted right
other_.lastshift <= 0;

best.lastshift <= best_shiftdifference;

end

// Move to next state
state <= state + 1;

end

9:
begin

‘ifdef DC
// For synthsis do not do this

‘else

// Find the mazimum shift to minimize the hardware

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

A. HARDWARE DESCRIPTION CODES

if(best_shift != 0)

begin
if(other_lastshift > max_shiftdifference)
begin
max_shiftdifference = other_lastshift;

$display ("!max_shiftdifference=%d”, max_shiftdifference);

end

if(best_lastshift > max_shiftdifference)
begin

max._shiftdifference = best_lastshift;
$display (”!max_shiftdifference=%d”, max_shiftdifference);

end

end

‘endif
// Shift both errors accordingly
other_errorcompare = (other_error << shiftdifference) >>
other_lastshift ;
best_errorcompare = (best_error << shiftdifference) >>
best_lastshift;

// Compare

if(other_errorcompare < best.errorcompare)

begin
// Higher approzrimation is better, move into output results
final_first[0] <= other_first|[0];
final_second| 0 | <= other_second|[0];
final_sign|[1] <= other_sign;
final_first[1 | <= other_first[1];
final_second|[1 | <= other_second|[1];

end

// Conversion complete

ready <= 1;

state <= 0;

end

// All other cases, reset the state machine
default:

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

begin
state <= 0;
ready <= 0;
end
endcase

end
end // always
‘ifdef DC

// For synthesis
always

‘else

// For simulation
always @(posedge ready)

‘endif

begin

// Concatinate outputs for universal access
output.sign = { final_.sign[1], final_sign[0] };
output_first = { final_first[1], final_first[0 | };
output_second = { final_second| 1], final_second[0] };

end

endmodule

// Module for separating an integer into a number and a sign
// This module doesn 't generate a zero sign, simply a 1 or —1
module separatesign._noclk (i, o, os);

// Default parameters

// Input word size in bits
parameter inputbits = 16;

// Output word size in bits (must be equal to or greater than inputbits)
parameter outputbits = 15;

// twobit sign indicator

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

parameter twobitmode = 1;
// Define ports

// Input of module in 2’s complements form
input [inputbits — 1 : 0]| i;

// Output number of module in binary form
output [outputbits — 1 : 0] o;
reg [outputbits — 1 : 0] o;

// Output sign of module
output [twobitmode : 0 | os;
reg | twobitmode : 0 | os;

‘ifdef DC
‘else

initial
begin

// Stop simulation if output is smaller than input
if (outputbits < inputbits) $stop;

end
‘endif

// Two intermediate registers to expand word length
reg [31 : 0] tl, t2;

always @Q(i)
begin

// Generate negative value of input, but extend the sign too
t1 =0—- { { (31 — inputbits) { i[inputbits — 1] } },
i[inputbits — 2 : 0] };

// Copy input
12 = i,

// Check the high bit of the input, if it is one, then input
// is megative

if(i| inputbits — 1 | = 1’bl)

begin

// Set output to negated input
o = t1[outputbits — 1 : 0 |;

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

// Set sign to —1, 1 for one bit sign mode
if (twobitmode)
begin
os = 2°bll;
end
else
begin
os = 1’bl;

end

end
else
begin

// Set output to extended input
o = t2[outputbits — 1 : 0];

// Set sign to 1, 0 for ome bit sign mode
if (twobitmode)
begin
os = 2’b01;
end
else
begin
os = 1’b0;
end
end
end
endmodule
// Module for mormealizing and integer and possibly setting the sign to
zero
module normalizer_noclk(i, is, o, 0os, s };

// Default parameters

// inputbits is the input number of bits, the output will be inputbits—1I

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

// bits since the first 7”1”7 will be omitted
parameter inputbits = 16;

// shiftbits is the number of bits to describe the shift of the
// mormalization
parameter shiftbits = 4,

// two bit mode
parameter twobitmode = 1;

// Define ports

// input

input | inputbits — 1 : 0 | i;

// input sign
input [twobitmode : 0] is;

// output of normalization,
output [inputbits — 1 — twobitmode : 0 | o;
reg [inputbits — 1 — twobitmode : 0 | o;

// output sign, will be zero is input sign is also
output [twobitmode : 0] os;
reg | twobitmode : 0 | os;

// output shift
output [shiftbits — 1 : 0 | s;
reg [shiftbits — 1 : 0 | s;

// temporary variables
reg [inputbits — 1 : 0] t;
reg z;

// internal counter
integer c;

always @(i or is)
begin

// there are other ways to do this procedure, but through synthesis
// this turns out to be the smallest

// set shift to zero
s = 0;

// set loop control
z = 0;

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

// loop through all bits from left to right
for(¢ = inputbits — 1 ; ¢>=0 ; c=c¢— 1)
begin

// if the bit is zero and no ones have been encountered,
// keep updating this shift

if(i[¢] = 1'b0&& z = 1’b0)

begin

// record the size
s = inputbits — c;

// set the loop to keep going
z = 0;

end
else

begin

// don’t infer any latches

s = 8;
// a one has been spotted, no more updates
z = 1;

end

end

// check for twobit mode
if(twobitmode)
begin

// check the loop control bit
if(z=0)
begin

// if zero, set the output sign to zero
os = 0;
s = 0;

end
else

begin

// if mot, pass the input sign through
os = is;

end

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

end
else
begin

// pass the input sign through
is;

08 =

// check the loop control bit

if(z=0)

begin

end

end

// shift temporary register

0;

t =1 << 83

// set output from temporary register (we can not do this in one step)

o = t[inputbits — 1 — twobitmode

end

endmodule

module ralut6.178605502.2106-noclk(

ol,
02,
03,
od,
05,
06,

i);

// Default parameters

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

// Define

olbits = 17,
02bits = 6;
o3bits = 5;
odbits = 18;
o5bits = 6;
obbits = 5;
ibits = 17;
rasize = 26;
ports

// data to match

0];

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

input [ibits — 1 : 0] i;

// datas to output

output [olbits — 1 : 0] ol;
output [o2bits — 1 : 0 | 02;
output [o3bits — 1 : 0 | 03;
output [o4dbits — 1 : 0] o4;
output [obbits — 1 : 0] 05;
output [o6bits — 1 : 0] o06;
reg [olbits — 1: 0] ol;
reg [o2bits — 1: 0 | o02;
reg [o3bits — 1: 0] 03;
reg [o4dbits — 1: 0 | o4;
reg [obbits — 1: 0 | ob;
reg [o6bits — 1: 0] of;
reg | rasize — 1 : 0 | d;

reg [rasize : 0] c;

reg [ibits — 1 : 0] romAddr|[rasize — 1 : 0 J;
reg [olbits — 1 : 0] romOutl| rasize — 1 : 0];
reg [o2bits — 1 : 0 | romOut2[rasize — 1 : 0];
reg | o3bits — 1 : 0] romOut3| rasize — 1 : 0];
reg [o4bits — 1 : 0] romOut4| rasize — 1 : 0 };
reg [obbits — 1 : 0 | romOuts[rasize — 1 : 0];
reg [o6bits — 1 : 0] romOut6[rasize — 1 : 0 |;
reg [30 : 0] high;

wire [olbits — 1 : 0 | fin_ol;

wire [o2bits — 1 : 0] fin_02;

wire [o3bits — 1 : 0] fin_03;

wire [o4bits — 1 : 0 | fin_o4;

wire [obbits — 1 : 0] fin_o5;

wire [o6bits — 1 : 0] fin_06;

reg [olbits — 1 : 0] tri_ol[rasize — 1 : 0 |;
reg [o2bits — 1 : 0 | tri_o2[rasize — 1 : 0 |;
reg [o3bits — 1 : 0] tri-o3[rasize — 1 : 0 |;
reg [o4bits - 1 0] tri.o4| rasize — 1 : 0 |;
reg [obbits — 1 : 0] tri.o5[rasize — 1 : 0 |;
reg [o6bits — 1 : 0 | tri_o6[rasize — 1 : 0 |;
integer p;

integer j;

integer k;

‘ifdef DC

‘else

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

initial
begin

// include data information here

romAddr [0]=17°b00000000000000000;
romAddr [1]=17"510000000000000000;
romAddr [2]=17"b10000011101010011;
romAddr [3]=17"b10000111001110010;
romAddr [4]=17"b10001011000101111;
romAddr [5]=17"b10001111000100101;
romAddr [6]=17"b10010010111100011;
romAddr[7]=17"b10010111001001100;
romAddr[8]=17"b10011011011110010;
romAddr [9]=17"b10011111101011011;
romAddr [10]=17"b10100100001111111;
romAddr[11]=17"b10101000111100101;
romAddr[12]=17"b10101101100001001;
romAddr[13]=17"b10110010011110111;
romAddr{14]=17"b10110111100101110;
romAddr [15]=17"b10111100110110000;
romAddr{16]=17"b11000001111100111;
romAddr [17]=17"b11000111100000001;
romAddr [18]=17’b11001101001101100;
romAddr [19]=17"b11010010110000110;
romAddr [20]=17"b11011000110010110;
romAddr [21]=17"b11011110111111110;
romAddr{22]=17"b11100101000001110;
romAddr[23]=17"b11101011100101010;
romAddr[24]=17"b11110010010100101;
romAddr [25]=17"b11111000111000001;

romOutl{0]=17"b00000000000000000;
romOut2[0]=6"b010000;
romQOut3[0]=5"b10000;
romOut4{0]=18’b000000000000000000;
romOut5[0]=6"b010000;
romOut6{0]=5"b10000;
romOutl[1]=17"b10000000000000000;
romOut2[1]=6’b010000;
romOut3[1]=5"b00000;
romOut4([1]=18"1010000011101010011;
romQut5{1]=6"b010001;
romQOut6{1]=5"b01000;
romOutl[2]=17’b10000011101010011;
romOut2([2]=6"b010001;
romQOut3[2]=5’b01000;
romOut4[2]=18’b010000111001110010;

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

romOut5[2]=6"b001111;

romQut6{2]=5"b10111;

romQut1{3]=17"b10000111001110010;

romOut2([3]=6"b001111;

romQOut3[3]=5'b10111;

romQut4[3]=18’b010001011000101111;
)

romOut5[3]=6’b010000;
romOut6[3]=5’b11111;
romOutl[4]=17"b10001011000101111;
romQOut2[4]=6"b010000;
romQOut3[4]=5"b11111;
romOut4[4]=18’b010001111000100101;
romOut5{4]=6"b010001;
romQut6(4]=5"b00111;
romOutl[5]=17"b10001111000100101;
romQOut2[5]=6"b010001;
romOut3[5]=5"b00111;
romOut4[5]=18’b010010010111100011;
romOut5{5]=6"b001111; ‘
romOut6{5]=5"b10110;
romOutl{6]=17"b10010010111100011;
romOut2[6]=6’b001111;
romOut3{6]=5"b10110;

romOutd [6]=18’b010010111001001100;
romOut5[6]=6’b010000;
romOut6{6]=5’b11110;
romOutl{7]=17"b10010111001001100;
romQut2[7]=6"b010000;
romQOut3[7]=5"b11110;
romQOut4[7]=18’b010011011011110010;
romQOut5{7]=6'b010001;
romOut6[7]=5"b00110;
romOut1[8]=17"b10011011011110010;
romOut2[8]=6"'b010001;
romOut3{8]=5’'b00110;
romQut4[8]=18’b010011111101011011;
romQOut5[8]=6"b001111;
romOut6[8]=5"b10101;
romOutl[9]=17"b10011111101011011;
romOut2[9]=6'b001111;
romOut3[9]=5"b10101;
romQut4[9]=18"b010100100001111111;
romOut5[9]=6"b010000;
romQut6[9]=5"b11101;
romQOutl1[10}=17’b10100100001111111;
romOut2[10}=6"b010000;
romQut3[10]=5"b11101;
romOut4[10]=18"b010101000111100101;
romQOut5[10]=6’b010001;

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

romOut6{10]=5"b00101 ;
romQOutl1[11}=17"b10101000111100101;
romQut2[11]=6"b010001;
romOut3[11]=5"b00101;
romOut4{11]=18"b010101101100001001;
romOut5{11]=6"b001111;
romOut6{11]=5"b10100;
romOutl{12]=17"b10101101100001001;
romOut2{12]=6"b001111;
romOut3[12]=5"b10100;
romOut4[12]=18"b010110010011110111;
romQOut5[12]=6'b010000;
romOut6{12]=5"b11100;
romOutl{13]=17"b10110010011110111;
romQOut2{13]=6'b010000;
romOut3({13]=5"b11100;
romOut4(13]=18"b010110111100101110;
romQut5{13]=6’b010001;
romQOut6[13]=5"b00100;
romOutl1{14]=17"b10110111100101110;
romOut2[14]=6"b010001;
romOut3[14]=5"b00100;
romQOut4[14]=18"b010111100110110000;
romQOut5[14]=6"b010010;
romQOut6{14]=5"001100;
romOut1[15]=17"b10111100110110000;
romOut2[15]=6"b010010;
romOut3[15]=5"b01100;
romQOut4[15]=18"b011000001111100111;
romQOut5[15]=6"b010000;
romOut6[15]=5"b11011 ;
romQOutl[16]=17"b11000001111100111;
romQOut2[16]=6’b010000;
romOut3[16]=5"b11011;
romOut4{16]=18’b011000111100000001;
romQOut5[{16]=6"b010001;
romOut6[16]=5"b00011 ;
romQOutl[17]=17"b11000111100000001;
romOut2[17]=6"b010001;
romOut3[17]=5"b00011 ;
romOut4[17]=18’b011001101001101100;
romQOut5[17]=6"b010010;
romQOut6{17]=5"b01011;
romOut1{18]=17"b11001101001101100;
romOut2[18]=6"b010010;
romOut3{18]=5"b01011;
romOut4{18]=18"b011010010110000110;
romOut5[18]=6"b010000;
romOut6[18]=5"b11010;

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

romQutl{19]=17’b11010010110000110;
romOut2{19]=6"b010000;
romQOut3[19]=5"b11010;
romOut4[19]=18"b011011000110010110;
romOut5[19]=6"b010001;
romOut6{19]=5"b00010;
romOutl1[20]=17"b11011000110010110;
romOut2{20]=6'b010001;
romQOut3[20]=5"b00010;
romOut4[20]=18"b011011110111111110;
romOut5[20]=6"b010010;
romOut6[20]=5"b01010;
romOutl{21]=17"b11011110111111110;
romQOut2[21]=6"b010010;
romOut3[21]=5’b01010;
romOut4[21]=18"b011100101000001110;
romOut5{21]=6’b010000;
romQut6{21]=5"b11001;
romQutl1({22]=17'b11100101000001110;
romQOut2[22]=6'b010000;
romOut3[22]=5"b11001;
romQut4[22}=18"b011101011100101010;
romOut5[22]=6'b010001;
romOut6[22]=5"b00001 ;
romOutl1{23]=17"b11101011100101010;
romQOut2[23]=6"b010001;
romOut3{23]=5"b00001 ;
romQOut4({23]=18"b011110010010100101;
romQut5[23]=6'b010010;
romQut6[23]=5"b01001;
romQOutl{24]=17"b11110010010100101;
romOut2[24]=6’b010010;
romQut3{24]=5"b01001;
romOut4[24]=18"b011111000111000001;
romQOut5{24]=6"b010000;
romOut6{24]=5"b11000;
romOutl[25]=17"b11111000111000001;
romQOut2[25]=6"b010000;
romQOut3[25]=5"b11000;
romQut4{25}=18"b100000000000000000;
romOut5[25]=6’b010001 ;
romQOut6[25]=5"b00000;

Py — ——

high = 31°bz;

c[rasize] = 0;
end
‘endif

// include line shorting here

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

fin_ol
fin_o2
fin_o3
fin_o4
fin_o5
fin_o6
fin_ol
fin_o2
fin_03
fin_o4
fin_ob
fin_o6
fin_ol
fin_o2
fin_o3
fin_.o4
fin_o5
fin_o6
fin_ol
fin_o2
fin_.o3
fin_o4
fin_o5b
fin_o6
fin_ol
fin_o2
fin_o3
fin_o4
fin_.o5
fin_o6
fin_ol
fin_o2
fin_o3
fin_o4
fin_ob
fin_o6
fin_ol
fin_o2
fin_o3
fin_o4
fin_ob
fin_o6
fin_ol
fin_o2
fin_o3
fin_.o4
fin_ob
fin_o6

o

O I T

[T

| | [T

i

[I T |

| | | [(B

tri_o4

tri_ob

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

fin_ol
fin_o2
fin_o3
fin_o4
fin_o5
fin.o6
fin_ol
fin_o2
fin_o3
fin_o4
fin_ob
fin_o6
fin_ol
fin_o2
fin_o3
fin_o4
fin_o5

= tri_ol [8];

F

(]

[T T I

fin_o6 =

fin_ol
fin_o2
fin_o3
fin_o4
fin_oj
fin_o6
fin_ol
fin_o2
fin_o3
fin_o4
fin_.o5
fin_o6
fin_ol
fin_o2
fin_o3
fin_o4
fin_ob
fin_o6
fin_o1l
fin_o2
fin_o3
fin_o4
fin_o5
fin_o6
fin_ol
fin_o2
fin.o3
fin_o4
fin_ob5
fin_o6
fin_ol

[l

[T | I T |

Il

L | (| | | [| O 1 O 1 1

(]

thon

i

tri.o2 [8];
tri_o3 [8];
tri_o4 [8];
tri.ob [8];
tri_o6 [8];
tri_ol [9];
tri_o2 [9];
tri_o3 [9];
tri_o4 [9];
tri_ob [9];
tri.o6 [9];
tri.ol [10];
tri_o2 [10
tri_o3
tri.o4

tri.o6 |
tricol |
tri_o2 |
tri_o3 [1
tri_o4 [1
tri_o5 (1
tri_o6 [12
tri_ol [13
tri_o2 [13];
tri_o3 [13
tri_o4 |
tri_ob |
tri_o6 |
tri_ol |

[

tri_o4 |
tri_ob [
tri_o6 [1
tri_ol [15];
tri.o2[15];
tri_o3 [15];
tri.o4 [15];
tri_ob5[15];
tri_o6 [15];
tri_ol [16];

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

assign fin_02 = tri_o2
assign fin.o03 = tri.o3
assign fin_o4 = tri_o4
assign fin_o5 = tri_ob

[
[
[
[
assign fin_o6 tri_o6 [
assign fin_ol |
assign fin_o2 tri_o2 |
[

[

[

[

[

[

[

Il

Il
o+
Lo
e
Q
[y

assign fin.o3 tri-o3

I

assign fin_ol tri_ol |
assign fin_o2 = i

16]

16]

16]

16]

16]

17]

17]

17]
assign fin_04 = tri.o4[17]
assign fin_o05 = tri_ob[17]
assign fin_o06 = tri_o6[17]
assign fin.ol = tri.ol [18]
assign fin.02 = tri.o2 [18]
assign fin_o03 = tri_o3[18]
assign fin.o4 = tri_o4 [18]
assign fin_o5 = tri_o5 [18]
assign fin_06 = tri_o6 [18]
assign fin_ol = tri_ol [19]
assign fin_02 = tri_o2 [19]
assign fin_03 = tri-o3[19];
assign fin_o4 = tri_o4[19];
assign fin_o5 = tri_o5[19];
assign fin_06 = tri_o6[19];
assign fin_ol = tri_ol [20];
assign fin_02 = tri_o2[20];
assign fin_03 = tri_o3[20];
assign fin_o4 = tri_o4{20];
assign fin_o5 = tri_ob5[20];
assign fin_o06 = tri_o6 [20];
assign fin_ol = tri_-ol [21];
assign fin_02 = tri.o2[21];
assign fin_03 = tri_o3[21];
assign fin.o4 = tri_o4 [21];
assign fin_o5 = tri_o5[21];
assign fin.o6 = tri_o6[21];
assign fin_ol = tri.ol [22];
assign fin_02 = tri_o2 [22];
assign fin_03 = tri_o3[22];
assign fin_o4 = tri_o4[22];
assign fin_o5 = tri-ob5[22];
assign fin_06 = tri.o6[22];
assign fin_ol = tri_ol [23];
assign fin_02 = tri.o2[23];
assign fin_03 = tri.o3 [23];
assign fin_o4 = tri.o4 [23];
assign fin_o5 = tri.o5 [23];
assign fin_o6 = tri.o6[23];

24]

24]

I
o+
=
—
o
[\V]

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

assign fin.03 = tri_o3 [24];
assign fin_o4 = tri_o4 [24];
assign fin_o5 = tri_ob [24];
assign fin_o6 = tri_o6 [24];
assign fin_ol = tri_ol [25];
assign fin_02 = tri_o2[25];
assign fin_o3 = tri_o3[25];
assign fin_o4 = tri_.o4 [25];
assign fin_o5 = tri_o5 [25];
assign fin_o6 = tri_o6[25];

always @(i)

begin

‘ifdef DC

romAddr [0]=17’b00000000000000000;
romAddr[1]=17’b10000000000000000;
romAddr [2]=17"b10000011101010011;
romAddr[3]=17’b10000111001110010;
romAddr [4]=17’b10001011000101111;

romAddr[5]=17’b10001111000100101;

romAddr[6]=17’b10010010111100011;

romAddr[7]=17’b10010111001001100;

romAddr[8]=17"010011011011110010;

romAddr[9]=17’b10011111101011011;

romAddr[10]=17’b10100100001111111;
romAddr[11]=17"b10101000111100101;
romAddr(12]=17’b10101101100001001;
romAddr[13]=17"b10110010011110111;
romAddr[14]=17’b10110111100101110;
romAddr [15]=17"b10111100110110000;
romAddr [16]=17"b11000001111100111;
romAddr{17]=17"b11000111100000001;
romAddr[18]=17"b11001101001101100;
romAddr[19]=17’b11010010110000110;
romAddr[20]=17"b11011000110010110;
romAddr[21]=17"b11011110111111110;
romAddr[22]=17"b11100101000001110;
romAddr[23]=17"b11101011100101010;
romAddr[24]=17"b11110010010100101;
romAddr{25]=17"b11111000111000001;

c| rasize | = 0;
‘endif

for(p=0; p<= (rasize — 1) ; p=p+ 1)
begin

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

cl p] =1(1i>=romAddr|[p]);
end

for(j =0 ; j<=(rasize — 1) ; j =3+ 1)
begin

dil j Il <=C(ecljl!=cl[j+1]);
end
end
‘ifdef DC
always
‘else
always @(d)
‘endif
begin
‘ifdef DC
// include data information here

romQut1[0]=17"b00000000000000000;
romQOut2{0]=6’b010000;
romOut3[0]=5"b10000;
romQOut4[0]=18"b000000000000000000;
romOut5{0]=6’b010000;
romOut6{0]=5"b10000;
romOut1{1]=17"b10000000000000000;
romOut2[1]=6"b010000;
romOut3[1]=5"b00000;
romQut4[1]=18"b010000011101010011;
romOut5[1]=6"b010001;
romOut6[1]=5"b01000;
romQOut1[2]=17"b10000011101010011;
romQut2{2]=6"b010001;
romOut3[2]=5"b01000;
romQut4[2]=18’b010000111001110010;
romOut5{2]=6"b001111;
romQOut6({2]=5’b10111;
romOut1[3]=17’b10000111001110010;

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

romOut2[3]=6"b001111;
romOut3[3]=5"b10111;
romQOut4[3]=18"b010001011000101111;
romOut5[3]=6"b010000;
romOut6({3]=5"b11111;
romOut1[4]=17"b10001011000101111;

romOut2[4]=6"b010000;
romOut3[4]=5"b11111;

]
romOut4[4]=18" b010001111000100101
romQOut5[4]=6"b010001;
romOut6{4]=5"b00111;
romOutl[5]=17"b10001111000100101;
romOut2[5]=6’b010001;
romOut3[5]=5"b00111;
romOut4[5]=18"b010010010111100011;

romOut5{5]=6"b001111;
romOut6[5]=5"b10110;
romOut1[6]=17"b10010010111100011;
romOut2[6]=6"b001111;
romOut3[6]=5"b10110;
romOut4{6]=18"b010010111001001100;
romOut5{6]=6"b010000;
romOut6[6]=5"b11110;
romOutl[7]=17"b10010111001001100;
romOut2{7]=6"b010000;
romOut3[7]=5"0b11110;
romOut4[7]=18"b010011011011110010;
romOut5{7]=6"b010001;
romOut6{7]=5"b00110;
romOut1{8]=17"b10011011011110010;
romQOut2[8]=6"b010001;
romOut3[8]=5"b00110;
romOut4[8]=18"b010011111101011011;
romOut5[8}=6"b001111;
romQOut6{8]=5"b10101;
romOutl[9]=17"b10011111101011011;
romQOut2[9]=6"b001111;
romOut3[9]=5"b10101;
romOut4{9]=18"b010100100001111111;
romOut5[9]=6'b010000;
romOut6{9]=5"b11101;
romOut1[10]=17"b10100100001111111;
romOut2[10]=6’b010000;
romOut3[10]=5"b11101;
romOut4[10]=18b010101000111100101;
romOut5[10]=6"b010001;
romOut6{10]=5"b00101;
romOuti[11]=17"b10101000111100101;
romOut2{11]=6"b010001;

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

romOut3[11]=5"b00101 ;
romQOut4[{11]=18"b010101101100001001;
romOut5{11]=6"b001111;
romQOut6{11]=5"b10100;
romQutl1[12]=17"b10101101100001001;
romOut2{12]=6"b001111;
romOut3[12]=5"b10100;
romQOut4[12]=18’b010110010011110111;
romOut5[12]=6"b010000;
romOut6[12]=5"b11100;
romQOut1[13]=17"b10110010011110111;
romOut2({13]=6"b010000;
romOut3{13]=5"b11100;
romOut4{13]=18"b010110111100101110;
romOut5[13]=6’b010001;
romQut6{13]=5’b00100;
romOutl[14]=17"b10110111100101110;
romQOut2{14]=6"b010001;
romOut3[14]=5"b00100 ;
romOutd[14]=18"b010111100110110000;
romOut5[14]=6"b010010;
romOut6{14]=5"b01100;
romQOutl1[15]=17"b10111100110110000;
romQut2[15]=6"b010010;
romOut3[15]=5"b01100;
romQOut4[15]=18"b011000001111100111;
romOut5{15]=6"b010000;
romOut6{15]=5"b11011;
romOutl{16]=17"b11000001111100111;
romOut2{16]=6"b010000;
romOut3[16]=5"b11011;
romOut4({16}=18"b011000111100000001 ;
romOut5[16]=6"b010001;
romOut6{16]=5"b00011;
romQutl[17]=17"b11000111100000001;
romOut2[17]=6"b010001;
romOut3[17]=5"b00011;
romQut4{17]=18"b011001101001101100;
romQOut5[17]=6"b010010;
romOut6[17]=5"b01011;
romOut1[18]=17"b11001101001101100;
romOut2{18]=6"b010010;
romQut3[18]=5’b01011;
romOut4[18]=18"b011010010110000110;
romOut5[18]=6"b010000;
romOut6[18]=5"b11010;
romOutl{19]=17"b11010010110000110;
romOut2[19]=6b010000;
romOut3[19]=5’b11010;

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

romOut4[19]=18"b011011000110010110;
romOut5{19]=6"b010001;
romOut6[19]=5"b00010;
romQOut1[20]=17"b11011000110010110;
romOut2[20]=6"b010001;
romQOut3[20]=5"b00010;
romQOut4[20]=18"b011011110111111110;
romOut5{20]=6"b010010;
romOut6{20]=5"b01010;

romOutl[21]=17"b11011110111111110;
romQOut2({21}]=6’b010010;
romOut3[21]=5"b01010;

romOut4{21]=18"'b011100101000001110;
romOut5[21]=6’b010000;
romOut6[21]=5"b11001;
romOutl{22]=17"b11100101000001110;
romOut2[22]=6"b010000;
romQut3[22]=5"b11001;
romOut4[22]=18"b011101011100101010;
romOut5[22]=6"b010001;
romOut6[22]=5"b00001;
romOut1[23]=17’b11101011100101010;
romOut2[23]=6"b010001;
romQOut3{23]=5"b00001;
romQOut4[23]=18’b011110010010100101;
romOut5{23]=6’b010010;
romOut6({23]=5"b01001;
romOutl{24]=17"b11110010010100101;
romOut2[24]}=6"b010010;
romOut3[24]=5"b01001;
romOut4[24]=18"b011111000111000001;
romOut5[24]=6"b010000;
romQOut6({24]=5"b11000;
romOut1{25]=17"b11111000111000001;
romQut2[25]=6’b010000;
romOut3[25]=5b11000;
romQOut4[25]=18"b100000000000000000;
romOut5[25]=6"b010001;
romOut6{25]=5"b00000 ;

high = 31°bz;
‘else
‘endif

for(k=0 ; k<= (rasize - 1) ; k=k + 1)
begin

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

if(dl k])
begin
tri_ol [k] = romOutl[k];
trico2[k] = romOut2| k];
tri—o3[k | = romOut3| k];
tri_o4[k | = romOut4[k |;
tri_o5[k] = romOut5[k];
trio6[k] = romOut6| k |;
end
else
begin
tricol [k | = high[olbits ~ 1 : 0];
tri_.o2[k | = high[o2bits — 1 : 0 |;
tri—03[k | = high| o3bits ~ 1 : 0];
tricod[k | = high[odbits — 1 : 0 [;
tri_o5[k] = high[obbits —~ 1 : 0 |;
tri.0o6] k] = high|[o6bits ~ 1 : 0 [;
end
end
end
‘ifdef DC
always ol = fin.ol;
always 02 = fin_o02;
always 03 = fin.o3;
always o4 = fin_o4;
always o5 = fin_ob5;
always 06 = fin_o06;
‘else
always @(fin_ol) ol = fin_ol;
always @(fin_02) 02 = fin_o02;
always @(fin_o3) 03 = fin_03;
always @(fin_o4) o4 = fin_o4;
always @(fin_o5) o5 = fin_o5;
always @(fin_06) o6 = fin_o06;
‘endif
endmodule
// RALUT contents (address, output(s) ...)
/*

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

00000000000000000
010000 10000
10000000000000000
010001 01000
10000011101010011
001111 10111
10000111001110010
010000 11111
10001011000101111
010001 00111
10001111000100101
001111 10110
10010010111100011
010000 11110
10010111001001100
010001 00110
10011011011110010
001111 10101
10011111101011011
010000 11101
10100100001111111
010001 00101
10101000111100101
001111 10100
10101101100001001
010000 11100
10110010011110111
010001 00100
10110111100101110
010010 01100
10111100110110000
010000 11011
11000001111100111
010001 00011
11000111100000001
010010 01011
11001101001101100
010000 11010
11010010110000110
010001 00010
11011000110010110
010010 01010
11011110111111110
010000 11001
11100101000001110
010001 00001
11101011100101010
010010 01001
11110010010100101

00000000000000000

10000000000000000

10000011101010011

10000111001110010

10001011000101111

10001111000100101

10010010111100011

10010111001001100

10011011011110010

10011111101011011

10100100001111111

10101000111100101

10101101100001001

10110010011110111

10110111100101110

10111100110110000

11000001111100111

11000111100000001

11001101001101100

11010010110000110

11011000110010110

11011110111111110

11100101000001110

11101011100101010

11110010010100101

010000

010000

010001

001111

010000

010001

001111

010000

010001

001111

010000

010001

001111

010000

010001

010010

010000

010001

010010

010000

010001

010010

010000

010001

010010

10000

00000

01000

10111

11111

00111

10110

11110

00110

10101

11101

00101

10100

11100

00100

01100

11011

00011

01011

11010

00010

01010

11001

00001

01001

000000000000000000
010000011101010011
010000111001110010
010001011000101111
010001111000100101
010010010111100011
010010111001001100
010011011011110010
010011111101011011
010100100001111111
010101000111100101
010101101100001001
010110010011110111
010110111100101110
010111100110110000
011000001111100111
011000111100000001
011001101001101100
011010010110000110
011011000110010110
011011110111111110
011100101000001110
011101011100101010
011110010010100101

011111000111000001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

A. HARDWARE DESCRIPTION CODES

010000 11000
11111000111000001 11111000111000001 010000 11000 100000000000000000
010001 00000

*/

A.2.13 The TLNS Binary / 2DLNS Conversion Register

This register reorders the output of the binary / 2DLNS converter.

library ieee;
use ieee.std_logic_1164.all;

use work. tlns_types.all,
work.numeric._bit . all;

entity conv_out.reg is
port (ready : in std-logic;
output_sign : in std._logic_vector (1l downto 0);
output_first : in std_logic_vector(l1l downto 0);
output-second : in std_logic-vector (9 downto 0);
tlns_output : out tlns_bus_ word);
end entity conv_out_reg;

architecture behavior of conv_out_reg is
signal stored_value : tlns_bus_word;
begin

— extracts the data related to each digit from inputs

— and merges them as an stored wvalue

conv_output : process { output.sign,output_first ,output_second) is

begin

stored.value <= output_sign(1l) & output-first (11 downto 6) &

output_second (9 downto 5) & output_sign(0) &
output_first (5 downto 0) &
output_second (4 downto 0);

end process conv_output;

— stored wvalue enabled to output based on ready signal
tlns_output <= stored.value when ready = ’1’ else

disabled.tlns.word;

end architecture behavior;

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

A.2.14 The Multiply and Accumulate unit (MAC)

The MAC unit consists of several components. All components are instantiated in a

top module which is shown here. The consecutive subsections include the HDL codes

of all components.

library ieee;
use ieee.std_logic_1164.all;

use work.tlns_types.all,
work.numeric_bit . all;

entity mac is
port {(clk,clr : in std_logic;

channel_mux_sel : in std_logic;
coefnum : in std_logic;
evensym : in std.logic;

x : in tlns_bus_word;

y : in tlns_bus_word;

p : out tlns_bus_word);
end entity mac;

architecture rtl! of mac is

— The zor wunit
component x.or
port (a, b : in std.logic;
¢ : out std_logic);
end component ;

—— The first exponent adder
component adder
port (a, b : in std_logic.vector (5 downto 0);
s : out std_logic_vector (6 downto 0));
end component;

—— The second ezponent adder
component adder.r
port (a : in std_logic_vector(4 downto 0);
b : in std.logic_.vector (2 downto 0);
s : out std-logic_vector (4 downto 0) };
end component;

—— The 2DLNS / Binary Converter
component convert2dlnstobinary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

A. HARDWARE DESCRIPTION CODES

port (signin : in std_logic;
firstbaseindex : in std_logic_vector (6 downto 0);
secondbaseindex: in std_logic.vector (4 downto 0);
binaryout : out std_logic_vector (19 downto 0);
signout : out std_logic);
end component;

— The 20-bit adder_subtracter
component adder.subtracter.20
port (a, b : in std.logic.vector (19 downto 0);
s : out std.logic_vector (20 downto 0);
signl, sign2 : in std_logic);
end component;

— The 21-bit adder_subtracter
component adder_subtracter_21
port (a, b : in std_logic-vector (20 downto 0);
s : out std_logic.vector (21 downto 0);
signl, sign2 : in std.logic);
end component ;

—— The 28— bit adder_subtracter for low channel
component adder_subtracter_23_low
port (a : in std_logic_vector (21 downto 0);
b : in std.logic.vector (23 downto 0);
s : out std_logic_vector (23 downto 0);
signl : in std.logic);
end component;

— The 23— bit adder_subtracter for high channel
component adder.subtracter-23_high
port (a : in std_logic_vector (21 downto 0);
b : in std_logic_vector (23 downto 0);
s : out std_logic_vector (23 downto 0);
signl : in std_logic;
num : in std_logic;
sym : in std_logic);
end component;

— The register in feedback loop of accumulator
component accumulator_regp
port (clk, clr : in std_-logic;
d : in std_logic_vector (23 downto 0);
q : out std_logic.vector (23 downto 0));
end component;

—— The output multiplexer of channels
component muxlowhigh
port (i0 : in std_logic_vector (23 downto 0);

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

il : in std.logic.vector (23 downto 0);
y : out std_logic_vector (23 downto 0);
sel : in std_logic);

end component;

— The register which latches the high channel output
component channelhigh_reg is
port (clk in std_logic;
d : in std.logic-vector (23 downto 0);
q : out std-logic_vector (23 downto 0));
end component channelhigh_reg;

signal p.pl.digl : std.logic_vector (12 downto 0);
signal p_pl.dig2 : std_logic.vector (12 downto 0);
signal p_p2.digl : std_logic_vector (12 downto 0);
signal p_p2_.dig2 : std_logic_vector (12 downto 0);
signal p_pl_bl : std logic.vector (19 downto 0);
signal p.pl.b2 : std._logic_vector (19 downto 0);
signal p_p2_bl : std_logic_vector (19 downto 0);
signal p.p2.b2 : std.logic_vector (19 downto 0);
signal p.pl.b : std logic-vector (20 downto 0);
signal p.p2.b std_logic_vector (20 downto 0);
signal p_b std_logic_vector (21 downto 0);

signal channellow
signal channelhigh
signal channelhigh_out
signal acc.channellow
signal acc.channelhigh
signal outchannel
signal sl, s2, 83, s4

begin

std-logic_vector (23 downto 0);
std_logic_vector (23 downto 0);

std_logic_vector (23 downto 0);

std_logic.vector (23 downto 0);

std-logic.vector (23 downto 0);

std_logic_vector (23 downto 0);
std_logic ;
signal dummy.sl, dummy.s2, dummy.s3, dummy.s4 :

std_logic;

— The component instantiations

p-pl_digl_s : x.or

port map { a => x(23),

sl <= p_pl.digl(12);

p-pl.dig2.s : x_or

port map (a => x(11),

$2 <= p-pl.dig2(12);

p-p2.digl.s : x_or

port map (a => x(11),

b = y(19), ¢ = p-pl_digl(12));

b => y(9), ¢ = p.pl.dig2(12));

b = y(19), ¢ = p-p2.digl(12));

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

s3 <= p-p2.digl (12);

p-p2.dig2_.s : x_or
port map {(a = x(23), b = y(9), ¢ = p-p2.dig2(12));

s4 <= p_p2.dig2(12);

p-pl_digl.a : adder
port map (a => x(22 downto 17), b => y(18 downto 13),
s => p-pl_-digl (11 downto 5));

p-pl-digl_b : adder.r
port map (a => x(16 downto 12), b => y(12 downto 10),
s => p.pl.digl(4 downto 0));

p-pl-dig2.a : adder
port map (a => x(10 downto 5), b => y(8 downto 3),
s = p-pl_.dig2(11 downto 5));

p-pl_dig2_b : adder.r
port map (a => x(4 downto 0), b => y(2 downto 0),
s => p-pl-dig2(4 downto 0));

p-p2_-digl_a : adder
port map (a => x(10 downto 5), b => y(18 downto 13),
s => p-p2-digl (11 downto §5));

p-p2_-digl_.b : adder.r
port map (a = x(4 downto 0), b => y(12 downto 10),
s => p-p2-digl (4 downto 0));

p-p2_dig2_a : adder
port map (a => x(22 downto 17), b => y(8 downto 3),
s => p.p2.dig2(11 downto 5));

p-p2.dig2_.b : adder-r
port map (a => x(16 downto 12), b => y(2 downto 0),
s => p.-p2.dig2 (4 downto 0));

p-pl_bl_con : convert2dlnstobinary
port map (signin => p_pl.digl(12),
firstbaseindex => p.pl_digl (11 downto
secondbaseindex => p_pl_digl (4 downto 0)
binaryout => p_pl_bl(19 downto 0),
signout => dummy._sl);

ot
~—

p-pl_-b2_con : convert2dlnstobinary

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

port map (signin => p_pl-dig2(12),
firstbaseindex => p.pl.dig2(11 downto 5),
secondbaseindex => p_pl_-dig2(4 downto 0),
binaryout => p._pl1.b2(19 downto 0),
signout => dummy_s2);

p-p2.-bl_con : convert2dinstobinary
port map (signin => p_p2.digl(12),
firstbaseindex => p_p2.digl (11 downto 5),
secondbaseindex => p_p2_digl (4 downto 0),
binaryout => p_p2_bl(19 downto 0),
signout => dummy_s3);

p-P2_-b2_con : convert2dlnstobinary
port map (signin => p.p2.dig2(12),
firstbaseindex => p-p2.dig2(11 downto 5),
secondbaseindex => p.p2.dig2(4 downto 0),
binaryout => p.p2_.b2(19 downto 0),
signout => dummy.s4);

pl.bin_add_sub : adder_subtracter_20
port map (a => p_pl.bl, b => p.pl_b2,
s => p_pl.b, signl => sl, sign2 => s2);

p2_bin_add_sub : adder_subtracter_20
port map (a => p_p2_.bl, b = p_p2.b2,
s => p-p2-b, signl => 53, sign2 => s4);

p-bin_add_sub : adder_subtracter_21
port map (a => ppl.b, b = pp2.b, s = p.b, signl => sl,
sign2 => 83);

add_sub.low : adder.subtracter_23_low
port map (a = p.b, b => acc.channellow, s => channellow,
signl => sl);

channellow_accumulator.reg : accumulator_.regp
port map (clk => clk, clr = clr, d = channellow,
q => acc.channellow);

add_sub_.high : adder_-subtracter-23_high
port map (a = p_.b, b => acc_channelhigh, s => channelhigh,
signl => sl, num => coefnum, sym => evensym);

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

channelhigh_accumulator.reg : accumulator_regp
port map (clk => clk, clr => clr, d => channelhigh,
q => acc_channelhigh);

channelhigh.out_reg : channelhigh_reg
port map (clk => clk, d => channelhigh, q => channelhigh_.out);

mux : muxlowhigh
port map (i0 => channellow, il => channelhigh_out,
y => outchannel, sel => channel_mux_sel);

— removes the repeatative bits and disables output based on clr
signal
with clr select
p <= outchannel(23) & outchannel(23) & outchannel(23) & outchannel
(23) &
outchannel (23 downto 4) when ’0°’,
disabled_tlns_word when others;

end architecture rtl;

A.2.14.1 The Exclusive-or unit

This code, simply makes an exclusive-or of its inputs.

library ieee;
use ieee.std.logic_1164.all;

entity x_or is
port (a,b : in std_logic;
c : out std.logic);
end entity x.or;

architecture behavioral of x_or is
begin
¢c <= a xor b;

end architecture behavioral;

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

A.2.14.2 The First Exponent Adders

This code shows a two’s-complement bit by bit adder. The MAC unit makes use of
this adder to add the first base exponents.

library ieee;
use ieee.std_logic_1164.all;

entity adder is
port { a, b : in std_logic_vector (5 downto 0);
s out std._logic_vector (6 downto 0));
end entity adder;

architecture behavioral of adder is
begin

behavior : process (a, b) is

variable carry_in : std_logic;
variable carry.out : std_logic;

begin
— carry in to the first bit
carry-out := ’07;

— computes sum and carry for all bits
— carry out of each order is carry in for the mnext one
for index in 0 to a’left loop

carry-in := carry_out;
s(index) <= a(index) xor b(index) xor carry._in ;
carry-out := (a(index) and b(index))

or (carry.in and (a(index) xor b(index)));
end loop;

— one eztra bit is considered for sum
s(a’left + 1) <= a(a’left) xor b(a’left) xor carry_out ;

end process behavior;

end architecture behavioral;

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

A.2.14.3 The Second Exponent Adders

Since the size of operands of this adder are different, the smaller operand is sign
extended before addition. In our design, the most negative second base exponent is

used to represent zero. Therefore, if either multiplicand or multiplier are zero, the

product will be set to zero.

library ieee;
use ieee.std_logic_1164.all;

entity adder.r is
port (a : in std_logic_vector (4 downto 0);
b : in std_logic-vector (2 downto 0};
s : out std.logic_vector (4 downto 0));
end entity adder.r;

architecture behavioral of adder_r is

begin
behavior : process (a, b) is
variable carry.in : std.logic;
variable carry_out : std_logic;
variable ext.b : std.-logic.vector (4 downto 0);
begin

—— checks if either of inputs represents zero,
— the product should also be set to zero
if a = ”710000” or b = 7100” then
s <= ”10000” ;
else
—— carry in to the first bit
carry.out := ’07;

— operand b is sign extended
ext-b(4 downto 0) := b(2) & b(2) & b(2 downto 0);

— computes sum and carry for all bits
—— carry out of each order is carry in for the nezt one
for index in 0 to a’left loop

carry-in := carry.-out;

s(index) <= a(index) xor ext_b(index) xor carry.in ;

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

carry_-out := (a(index) and ext._b(index))
or (carry.in and (a(index) xor ext_-b(index)));
end loop;
end if;

end process behavior;

end architecture behavioral;

A.2.14.4 The 2DLNS / Binary Converter

The Verilog code in [13], is used for the 2DLNS / binary conversion. This HDL code
has also been written fully parametrized and the parameters should be set when the
shell script which generates Verilog module is run. The definition of these parame-
ters were also included in [13]. Before running this script, the optimal base has been
computed and stored in an ASCII file, 32768-13mn2unz.out. The 2DLNS / binary

converter module in TLNS CPU has been generated by setting the parameters as:
makeconvert2dlnstobinary.sh 32768-13mn2unz.out 16 7 5 4 -nz -ns > converter.v

The name of generated module is convert2dlnstobinary which is instantiated,

as an component, in the MAC top module. This Verilog file is shown here.

‘timescale 1ns/10ps

module convert2dinstobinary (
signin ,

firstbaseindex ,
secondbaseindex ,

binaryout ,

signout

);

// Default parameters
parameter firstbasebits = 7;
parameter secondbasebits = 5;
parameter outputbits = 16;
parameter extrabits = 4;
parameter memfirstbasebits = 6;
parameter subbits = 8;
parameter twobitmode = 0;

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

parameter nosignmode = 0;

// Define ports

input | twobitmode : 0 | signin;

input [firstbasebits — 1 : 0] firstbaseindex;
input | secondbasebits — 1 : 0 | secondbaseindex;
output [nosignmode + outputbits + extrabits — 1 : 0] binaryout;
reg [nosignmode + outputbits + extrabits — 1 : 0] binaryout;
output signout;

reg signout;

reg | subbits — 1 : 0 | argl, arg2, sum;

reg | outputbits + extrabits — 1 : 0] absolute;
wire [outputbits + extrabits — 1 : 0] mantissa;
wire [memfirstbasebits — 1 : 0 | shift;
lut2.452845339.1088_noclk

lut

(

mantissa ,

shift ,

secondbaseindex

);

// Perform shift

always @(mantissa or shift or firstbaseindex)
begin

// Extend signs on each argument

if(subbits > memfirstbasebits)

begin
argl = { { (subbits — memfirstbasebits) { shift| memfirstbasebits — 1

}, shift [memfirstbasebits — 1 : 0] };

end

else

begin

argl = shift;

end

if(subbits > firstbasebits)

begin

arg2 = { { (subbits — firstbasebits) { firstbaseindex| firstbasebits —
1]

} }, firstbaseindex [firstbasebits — 1 : 0 | };

end

else

begin

arg2 = firstbaseindex;

end

sum = argl — arg2;

absolute = mantissa >> sum;

if(twobitmode)

begin

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARFE DESCRIPTION CODES

if(signin = 0)

begin

absolute = 0;

end

end

if(nosignmode)

begin

if(signin| twobitmode |)
begin

binaryout <= — absolute;
end

else

begin

binaryout <= absolute;
end

end

else

begin

binaryout <= absolute;

signout <= signin| twobitmode |;

end

// 8display (7@Q %b %b %b %b %b %b %b7,mantissa, shift ,argl, firstbaseindex

// arg2,sum, binaryout);

end

endmodule

module 1ut2_452845339.1088_noclk(
ol,

02,

id

);

// Default parameters
parameter olbits = 20;
parameter o2bits = 6;
parameter idbits 5;
parameter rasize 32;

Il

// Define ports

// direct data access line
input [idbits — 1 : 0] id;

// datas to output
output [olbits — 1 : 0] ol;
output [o2bits — 1 : 0] o02;
reg [olbits — 1 : 0 | ol;
reg [o2bits — 1 : 0]

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

reg [rasize — 1 : 0] d;

reg [idbits — 1
reg | olbits — 1
reg | o2bits — 1

| romAddr|[rasize — 1 : 0];
romQutl| rasize — 1 : 0 |];
| romOut2|[rasize — 1 : 0];

OO O

reg [30 : 0 | high;

wire [olbits — 1 : 0] fin_ol;
wire [o2bits - 1 : 0] fin_o02;
reg [olbits — 1 : 0] tri_ol| rasize — 1 : 0
reg | o2bits — 1 : 0] tri_o2[rasize — 1 : 0

I;
E
integer p;
integer j;
integer k;

‘ifdef DC

‘else

initial
begin

// include data information here

romAddr [0]=5"b00000;
romAddr [1]=5’b00001;
romAddr [2]=5"b00010;
romAddr[3]=5"b00011;
romAddr [4]=5’b00100;
romAddr [5]=5"b00101;

romAddr[6]=5"b00110;
romAddr[7]=5"b00111;
romAddr [8]=5"'b01000;
romAddr [9]=5"b01001;
romAddr [10]=5"b01010;
romAddr[11]=5’b01011;

]
romAddr [12]=5"b01100;
romAddr[13]=5"b01101;
romAddr[14]=5"b01110;
romAddr[15]=5"b01111;
romAddr[16]=5’b10000;

romAddr[17]=5’b10001;
romAddr[18]=5"b10010;
romAddr[19]=5’'b10011;
romAddr [20]=5"b10100;
romAddr{21]=5"b10101;
romAddr[22]=5b10110;

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

romAddr[23]=5"b10111;
romAddr[24]=5"b11000;
romAddr[25]=5"b11001;
romAddr{26]=5’b11010;
romAddr[27]=5"b11011;
romAddr{28]=5"b11100;
romAddr [29]=5"111101;

]
romAddr[30]=5’b11110;
romAddr[31]=5"b11111;
romOutl[0]=20"110000000000000000000;
romOut2{0]=6"b001111;
romOutl[1]=20"b11101011100101010001;
romOut2[1]=6"b010000;
romOut1[2]=20"b11011000110010110001;

romOut2{2]=6"b010000;
romOutl1[3]=20"b11000111100000001011;
romOut2[3]=6"b010000;
romOutl[4]=20"b10110111100101110101;
romOut2({4}=6"b010000;
romQOutl[5]=20"b10101000111100101101;
romOut2[5]=6"b010000;
romOutl[6]=20"b10011011011110010101;
romQOut2{6]=6'b010000;
romQutl{7]=20"b10001111000100101110;
romOut2{7]=6’b010000;
romQOut1[8]=20"b10000011101010011011;
romQOut2{8]=6"b010000;
romOut1[9]=20"b11110010010100101111;
romOut2[9]=6’b010001;
romQOutl1[10]=20"b11011110111111110100;
romOut2{10]=6"b010001;
romOut1[11]=20"b11001101001101100011;
romQOut2[11]=6"b010001;
romQOutl{12]=20"b10111100110110000100;
romQut2[12]=6"b010001;
romOutl1[13]=20"b10101101110010001000;
romQOut2[13]=6"b010001;
romQOutl1{14]=20"b10011111111011000100;
romOut2{14]=6"b010001;
romOut1[15]=20"b10010011001010110001;
romQut2[15]=6"b010001;
romOut1[16]=20"b00000000000000000000;
romQOut2[16]=6'b001111;
romQOutl1[17]=20"b11011110101010000010;
romQOut2{17]=6"b001110;
romQut1{18]=20"b11001100111001100000;
romQOut2[18]=6"b001110;
romQOut1{19]=20"b10111100100011100111;

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

romQut2([19]=6"b001110;
romQOutl1[20]=20’b10101101100001001001;
romQOut2{20]=6"b001110;
romQOut1{21]=20"b10011111101011011100;
romQut2{21]=6'b001110;
romOut1[22]=20"b10010010111100011000;
romOut2[22]=6’b001110;
romOutl[23]=20’b10000111001110010101;
romOut2{23]=6"b001110;
romOut1[24]=20"b11111000111000001100;
romOut2[24]=6"b001111;
romQut1[25]=20"b11100101000001110100;
romOut2[25]=6"b001111;
romOut1[26]=20"b11010010110000110001;
romQOut2[26]=6'b001111;
romQOutl1[27]=20"b11000001111100111101;
romOut2[27]=6'b001111;
romQOutl1{28]=20"b10110010011110111100;
romOut2{28]=6’b001111;
romOut1{29]=20"b10100100001111111001;
romOut2[29]=6"b001111; i
romOut1[30]=20"b10010111001001100000;
romOut2{30]=6’b001111;
romOut1{31]=20"b10001011000101111111;
romOut2[31]=6’b001111;

// Verify that the addresses are in order

for(p=0; p<= (rasize - 1) ; p=p+1)
begin

if(romAddr[p] !'=p)
begin

$stop;
end
end
high = 31°bz;

end
‘endif

// include line shorting here

assign fin_ol = tri_ol [0];
assign fin.o2 = tri.o2[0]};

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign
assign

fin_ol
fin_o2
fin_ol
fin.o2
fin.ol
fin.o2
fin_ol
fin_o2
fin_ol
fin_o2
fin.ol
fin_o2
fin_.o1l
fin_o2
fin_ol
fin_.o2
fin.ol
fin_o2
fin_ol
fin_.o2
fin_.ol
fin_o2
fin_ol
fin_o2
fin_.ol
fin_o2
fin_ol
fin_o2
fin_o1l
fin_o2
fin_ol
fin_.o2
fin_ol
fin_o2
fin_ol
fin_o2
fin_ol
fin_o2
fin_ol
fin_o2
fin_ol
fin_o2
fin_ol
fin_o2
fin_ol
fin_.o2
fin.ol
fin_o2
fin_ol

i1l

[

T T |

Ii

| | | e 1 R |

LI | | [A T I

Il

[|

tri_ol [1];
tri_o2 [1];
tri—ol [2];
tri_o2 [2];
tri—ol [3];
tri—o2 [3];
tri_ol [4];
tri_o2 [4];
tri-—ol [5];
tri_o2 [5];
tri.ol [6];
tri-o2 [6];
tricol [7];
tri_o2 [7];
tri_ol [8];
tri-o2 [8]
tri—ol [9];
tri.o2 [9];
tri_ol [10];
tri—02[10];
tri_ol [11];
tri_o2 [11];
tri_ol [12];
tri.o2 [12];
tri_ol [13];
tri_o2 [13];
tri_ol [14];
tri—o2 [14];
tri_ol [15];
tri_o2 [15];
tri—ol [16];
tri_o2 [16];
tri_ol [17];
tri_02 [17];
tri.ol [18];
trio2 [18];
tri_ol [19];
tri_02 [19];
tri-ol [20];
tri_o2 [20];
tri_ol [21];
tri-o02[21];
tri_ol [22];
tri_o2 [22];
tri_ol [23]
tri_02[23]
]
]
]

)

tri_ol [24
tri-02[24
tri.ol [25

H
b

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

assign fin_o02 = tri_o2[25];
assign fin_ol = tri-ol [26];
assign fin_02 = tri_o02[26];
assign fin_ol = tri_ol [27];
assign fin_02 = tri_o2[27];
assign fin_ol = tri.ol [28];
assign fin_o02 = tri-o2[28];
assign fin_ol = tri_ol [29];
assign fin_o02 = tri_o2[29];
assign fin_ol = tri_ol [30];
assign fin_o02 = tri.o2 [30];
assign fin_ol = tri_ol[31];
assign fin.o2 = tri-o2[31];
always @(id)

begin

‘ifdef DC

romAddr [0]=5"b00000;
romAddr[1]=5"b00001;
romAddr [2]=5"b00010;
romAddr [3]=5"b00011;
romAddr [4]=5b00100;
romAddr [5]=5 500101 ;
romAddr [6]=5"b00110;
romAddr {7]=5"b00111;
romAddr [8]=5"b01000;

romAddr [9]=5"b01001;
romAddr [10]=5"b01010;
romAddr[11]=5"b01011;
romAddr[12]=5"b01100;
romAddr[13]=5"b01101;
romAddr[14]=5"b01110;
romAddr{15]=5’b01111;
romAddr [16]=5b10000;
romAddr[17]=5’b10001;
romAddr{18]=5"b10010;
romAddr [19]=5"b10011;
romAddr [20]=5"b10100;
romAddr[21]=5’b10101;
romAddr[22]=5’b10110;
romAddr[23]=5"b10111;
romAddr [24]=5"b11000;
romAddr [25]=5"b11001;
romAddr [26]=5"b11010;
romAddr[27]=5"b11011;
romAddr [28]=5'b11100;
romAddr[29]=5"b11101;

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

romAddr[30]=5"b11110;
romAddr[31]=5’b11111;

‘endif

for(j =0 ; j<=(rasize — 1) ; j=j+1)
begin

dl j]<=(j=1id 71 : 0);
end
end
‘ifdef DC
always
‘else
always @Q(d)
‘endif
begin
‘ifdef DC
// include data information here

romOutl[0]=20"b10000000000000000000;
romQOut2{0]=6'b001111;
romOutl1[1]=20"b11101011100101010001;
romOut2[1]=6"b010000;
romOut1{2]=20"b11011000110010110001;
romOut2{2]=6"'b010000;
romQOut1{3]=20’b11000111100000001011;
romOut2[3]=6'b010000;
romQOutl1[4]=20’b10110111100101110101;
romOut2[4]=6'b010000;
romOutl[5]=20"b10101000111100101101;
romOut2[5]=6"b010000;
romOut1[6]=20"b10011011011110010101;
romQut2[6]=6"'b010000;
romOut1[7]=20"b10001111000100101110;
romQut2[7]=6"b010000;
romQOutl1[8]=20’b10000011101010011011;
romOut2[8]=6"b010000;
romOutl1{9]=20"b11110010010100101111;

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

romQut2{9]=6"b010001;
romQOut1[10}]=20"b11011110111111110100;
romQOut2{10]=6'b010001;
romOut1[11]=20"b11001101001101100011;
romOut2[11]=6"b010001;
romQOut1{12]=20"b10111100110110000100;
romQOut2[12]=6"b010001;
romOutl[13]=20"b10101101110010001000;
romQOut2{13]=6"b010001;
romOutl1{14]=20"b10011111111011000100;
romQOut2{14]=6"b010001;
romOut1[15]=20'b10010011001010110001;
romOut2([15]=6b010001;
romOutl1{16]=20"b00000000000000000000;
romQut2[16]=6"b001111;
romOut1[17]=20"b11011110101010000010;
romQOut2[17]=6’b001110;
romQOutl[18]=20"b11001100111001100000;
romOut2[18]=6"b001110;
romOut1[19]=20"b10111100100011100111;
romOut2{19]=6"b001110;
romQOut1[20]=20’b10101101100001001001;
romOut2{20]=6"b001110;
romOut1{21]=20"b10011111101011011100;
romQOut2{21]=6"b001110;

romOutl1{22]=20"b10010010111100011000;
romOut2{22]=6"b001110;
romOut1({23]=20°b10000111001110010101;
romOut2[23]=6"b001110;

romQut1[24]=20"b11111000111000001100;
romOut2[24]=6"b001111;
romQutl1[25]=20"b11100101000001110100;
romQut2[25]=6"b001111;
romQOutl[26]=20"b11010010110000110001;
romOut2{26]=6"b001111;
romQOutl[27]=20"b11000001111100111101;
romOut2{27]=6"b001111;
romOut1[28]=20" b10110010011110111100'
romOut2{28]=6b001111;
romOutl{29]=20" b10100100001111111001,
romOut2{29]=6"b001111;
romOutl{30]=20" b10010111001001100000
romOut2{30]=6'b001111;
romOutl[31]=20’b10001011000101111111;
romOut2[31]=6"b001111;

high = 31’bz;

‘else

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

‘endif
for(k=0 ; k<= (rasize — 1) ; k=k+ 1)
begin
if(d[k])
begin
tri_ol[k] = romOutl| k];
tri—o2[k | = romOut2|[k |];
end
else
begin
tri_ol[k] = high[olbits — 1 : 0 |;
tri.o2[k | = high| o2bits — 1 : 0 |;
end
end
end
‘ifdef DC
always ol = fin.ol;
always 02 = fin_o2;
‘else

always @(fin_ol) ol = fin_ol;
always @(fin_02) 02 = fin_o02;
‘endif

endmodule
// LUT contents (address, output(s) ...)
Ve,

00000 10000000000000000000 001111
00001 11101011100101010001 010000
00010 11011000110010110001 010000
00011 11000111100000001011 010000
00100 10110111100101110101 010000
00101 10101000111100101101 010000
00110 10011011011110010101 010000
00111 10001111000100101110 010000
01000 10000011101010011011 010000
01001 11110010010100101111 010001

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

01010 11011110111111110100 010001
01011 11001101001101100011 010001
01100 10111100110110000100 010001
01101 10101101110010001000 010001
01110 10011111111011000100 010001
01111 10010011001010110001 010001
10000 00000000000000000000 001111
10001 11011110101010000010 001110
10010 11001100111001100000 001110
10011 10111100100011100111 001110
10100 10101101100001001001 001110
10101 10011111101011011100 001110
10110 10010010111100011000 001110
10111 10000111001110010101 001110
11000 11111000111000001100 001111
11001 11100101000001110100 001111
11010 11010010110000110001 001111
11011 11000001111100111101 001111
11100 10110010011110111100 001111
11101 10100100001111111001 001111
11110 10010111001001100000 001111
11111 10001011000101111111 001111

*/

A.2.14.5 20-bit Adder / Subtracter

In this module, the type of operands are converted to unsigned. Therefore, addition
or subtraction of unsigned values, are performed using the functions which have been

defined in the numeric_bit package.

library ieee;
use ieee.std_logic_1164.all,
work. numeric.bit . all;

entity adder.subtracter_20 is
port (a, b : in std_-logic_vector (19 downto 0);
s : out std_logic.vector (20 downto 0);
signl, sign2 : in std_logic);
end entity adder.subtracter_20;

architecture behavioral of adder_subtracter_20 is
begin

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

behavior : process (a, b) is

variable sign : std.logic;

variable ext_a : unsigned (20 downto 0);
variable ext.b : unsigned(20 downto 0);
variable result : unsigned(20 downto 0);
begin

— the sign is zor of input signs
sign := signl xor sign2;

— the operands are unsigned extended by one zero bit
ext.a := unsigned(to_bitvector (”0” & a(19 downto 0)));
ext_b := unsigned(to.-bitvector (70" & b(19 downto 0)));

— addition or subtraction is done based on the computed sign
if sign = ’'1’ then

result = ext_a — ext_b ;
else

result := ext_a + ext_b ;
end if;

s <= to_x01(bit_vector(result)) ;
end process behavior;

end architecture behavioral;

A.2.14.6 21-bit Adder / Subtracter

The only difference with the previous module is the size of operands and result.

library ieee;
use ieee.std_logic.1164.all,
work.numeric_bit . all;

entity adder_subtracter_21 is
port (a, b : in std.logic_vector (20 downto 0);
s : out std_logic_vector(21 downto 0);
signl, sign2 : in std_logic);
end entity adder_subtracter_21;

architecture behavioral of adder_subtracter.21 is

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

begin

behavior : process (a, b) is

variable sign : std.logic;

variable ext_a : unsigned(21 downto 0);

variable ext_b : unsigned (21 downto 0);

variable result : unsigned(21 downto 0);
begin

— the sign is zor of input signs
sign := signl xor sign2;

— the operands are signed extended by one bit

ext_a := unsigned(to_bitvector(a(20) & a(20 downto 0)));
ext_b := unsigned(to_bitvector(b(20) & b(20 downto 0)));

— addition or subiraction is done based on the computed sign
if sign = 1’ then

result := ext_.a — ext_b ;
else

result := ext_a + ext.b ;
end if;

s <= to_x01(bit_vector(result)) ;
end process behavior;

end architecture behavioral;

A.2.14.7 23-bit Adder / Subtracter

There are two 23-bit adder / subtracter in the MAC design. They differ in the way
that sign is determined. This is the VHDL code for 23-bit adder / subtracter of lower

channel.

library ieee;
use ieee.std_logic_1164.all,
work . numeric_bit . all;

entity adder_subtracter_23_.low is
port (a : in std_logic_vector (21 downto 0);
b : in std_-logic_vector (23 downto 0);

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

s : out std_logic_vector (23 downto 0);
signl : in std_logic);
end entity adder_subtracter.23_low;

architecture behavioral of adder_subtracter_23.low is
begin

behavior : process (a, b) is

variable sign : std_logic;

variable ext_a : unsigned(23 downto 0);

variable ext.b : unsigned (23 downto 0);

variable result : unsigned(23 downto 0);
begin

—— the sign is determined by input sign
sign := signl;

—— this operand is signed extended by two bits
ext.a := unsigned(to_bitvector(a(21) & a(21) & a(21 downto 0)));

— this operand does not need to be extended
ext.b := unsigned(to-bitvector(b(23 downto 0)));

— addition or subtraction is done based on the sign
if sign = ’1’ then

result := ext_b — ext_a ;
else

result ;= ext_b + ext_a ;
end if;

s <= to_x01(bit.vector(result)) ;
end process behavior;

end architecture behavioral;

This VHDL file shows the 23-bit adder / subtracter of higher channel.

library ieee;
use ieee.std_logic_1164.all,
work . numeric_bit . all;

entity adder.subtracter_23_high is
port (a : in std_logic-vector (21 downto 0);
b : in std_logic.vector (23 downto 0);

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

s : out std_logic_vector (23 downto 0);
signl : in std._.logic;
num : in std_logic;
sym : in std_logic);
end entity adder_subtracter_23_high;

architecture behavioral of adder.subtracter_23_high is
begin

behavior : process (a, b) is

variable sign : std_logic;

variable ext_a : unsigned(23 downto 0);
variable ext_b : unsigned(23 downto 0);
variable result : unsigned(23 downto 0);

begin
— the sign is determined by zoring of input sign and control
signals
gign := signl xor (num xor sym);

— this operand is signed extended by two bits
ext_a := unsigned(to_bitvector(a(21) & a(21) & a(21 downto 0)));

— this operand does not need to be extended
ext_-b := unsigned(to.bitvector(b(23 downto 0)));

—— addition or subiraction is done based on the computed sign
if sign = ’1’ then

result := ext_.b — ext_a ;
else

result := ext_b + ext_.a ;
end if;

s <= to_x01(bit_vector(result)) ;
end process behavior;

end architecture behavioral;

A.2.14.8 Accumulator Register

This register should be cleared whenever a MAC operation commences.

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

library ieee;
use ieee.std.logic.1164.all;

entity accumulator_regp is
port (clk : in std_logic;
clr : in std_logic;
d : in std_logic-vector (23 downto 0);
q : out std.logic.vector (23 downto 0));
end entity accumulator_regp;

architecture behavioral of accumulator.regp is
begin

— when register is cleared the output is zero
behavior : process (clk) is

begin
if rising_edge(clk) then
if ToX01(clr) = '1’ then
q <= (others = ’0’) ;
else
q<=d ;
end if;
end if;
end process behavior;

end architecture behavioral;

A.2.14.9 High Channel Register

This VHDL code shows a simple register behavior.

library ieee;

use ieee.std_logic.1164.all,
work. tlns_.types.all,
work. tlns_instr.all,
work. alu_types.all,
work . numeric_bit . all;

entity channelhigh_reg is
port { clk : in std_logic;
d : in std_logic_-vector (23 downto 0);
q : out std_logic.vector (23 downto 0));
end entity channelhigh._reg;

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

architecture behavioral of channelhigh_reg is
begin

— reads the input to output in the next clock edge
behavior : process (clk) is

begin
if rising_-edge(clk) then
q<=d ;
end if;

end process behavior,

end architecture behavioral;

A.2.14.10 Channel Multiplexer

This multiplexer specifies the data which MAC unit places onto the destination bus
of CPU.

library ieee;
use ieee.std_logic_1164.all;

use work. tlns_types.all,
work.numeric_bit . all;

entity muxlowhigh is
port (i0 : in std.-logic-vector (23 downto 0);
il : in std.logic-vector (23 downto 0);
y : out std_logic_vector (23 downto 0);
sel : in std_logic);
end muxlowhigh;

architecture behavioral of muxlowhigh is
begin

— selects inputs based on sel signal
— and disables output when MAC unit is not in use
with sel select
y <= i0 when '0’,
il when ’'1°,
disabled_tlns_word when others;
end architecture behavioral;

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

A.2.15 The Controller

The VHDL code for this unit, realizes a complicated state machine. This file is well

documented to be self explanatory.

library ieee;

use ieee.std_logic.1164.all,
ieee.std_logic_.unsigned. all;

use work. tlns_types.all,
work. tlns_instr.all,
work.alu_types.all,
work.numeric_bit . all;

entity controller is
port (clk : in std_logic;

reset : in std_logic;
halt : out std_logic;
ir_mem_enable : out std_logic;
ifetch : out std_logic;
alu_function : out alu.func;
alu_zero, alu_negative, alu_overflow : in bit;
reg-sl._addr, reg_s2_addr, reg.dest_addr : out tlns_reg.addr;
reg_write : out std.logic;
a_enable : out std_logic;
a_out_en : out std.-logic;
b_enable : out std_logic;
b_out.en : out std_logic;
pc-enable : out std_logic;
pc-out_en : out std_logic;
mar._enable : out std_-logic;
ir.immedl_size_18, ir.immed2._size.18 : out bit;
ir.immedl_unsigned, ir.immed2_unsigned : out bit;
ir_-immedl._en, ir.immed2_en : out bit;
current._instruction : in tlns.word;
const2 : out tlns_bus.word;
mem._write_en : out std_logic;
mem_enable : out std._logic;
mac_clr : out std.logic;
alu_clr : out std_logic;
btc.reset : out std._logic;
btc_.ready : in std_logic;
btc_activate : out std_logic;
in.reg_enable : out std_logic;
in.reg_out_en : out std_logic;
out_reg._enable : out std_logic;

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

ctrl. mem_a : out tlns_bus.word;
ctrl.ir.mem.a : out tlns.bus_.word;
ma_mux.-sel : out bit;

ir_ma_mux_sel : out bit;

ctrl_direct : out bit;
mac_ch_mux_sel out std_logic;
mac_coefnum : out std._logic;
mac._evensym out std._logic;
sl_bus_content in tlns.bus.word;
s2_bus_content in tlns.bus_word);

end entity controller;

architecture behavior of controller

type

is
state_type is (S1,S1.a,82,S2.a,S3,54,S4.a,S4.b,85,56,S7,S87.a,
58,58.a,89,89.a,89.b,89.¢,S11,S11_a,812,S12_a,
S12.b,S13,513.a,514,S14.a,S14.b,S15,S15.a,S15.b
h
S16,S17,817.a,518,818.a,519,519_a,520,520.a,521

522,523,524,525) ;

signal state state_type;
begin
sequencer process(clk , reset) is
alias IR.opcode tlns_opcode is current_.instruction (23 downto 18);
alias IR_sp.func tlns_.sp_-func is current_instruction (5 downto 0);
alias IR_rsl tlns.reg.addr is current_instruction (17 downto 14);
alias IR_rs2 tlns_reg_addr is current.instruction (13 downto 10);
alias IR_Itype.rd tlns_reg_addr is current_instruction(l3 downto
10);
alias IR.Rtype_rd tlns_reg_addr is current_instruction(9 downto 6)
alias IR_filter_order unsigned (6 downto 0) is
current_instruction (6 downto 0);
alias IR_filter_coef_sym bit is current_instruction (7);
alias IR_filter_bands_sym unsigned (1 downto 0) is
current_instruction (9 downto 8);
variable result_of_set_is_1 , branch_taken boolean;
variable filter_tap unsigned (6 downto 0);
variable filter_order unsigned (6 downto 0);
variable filter_coef_sym bit ;
variable filter_bands.sym : unsigned(l downto 0);
variable first_half bit ;

Reproduced with permission of the

183

copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

variable coef_address : unsigned(23 downto 0);
variable coef_end_address : unsigned (23 downto 0);
variable top.coef_address : unsigned (6 downto 0);

variable coef_number : std_logic;
variable filt_data_address : std_logic_vector (23 downto 0);
variable filt.coef_address : std_logic.-vector (23 downto 0);

variable filt_data_start : std_logic.vector (23 downto 0);
variable filt_data_end : std_logic_-vector (23 downto 0);

—— fetches the instruction
procedure bus_instruction_fetch.1l is
begin
— address is determined by PC
iroma_mux.sel <= ’17;

—— dnitialization
b.out_.en <= 0’ ;
mem.write_en <= 0’ ;
mem_enable <= 0’ ;
reg_write <= ’0’ ;
ifetch <= ’1’° ;

—— the instruction memory is enabled
ir_mem_enable <= ’1’ ;
end procedure bus_instruction_fetch.1;

procedure bus_instruction_fetch_2 is
begin
—— disables the instruction memory
ir.mem_enable <= 0’ ;
end procedure bus_instruction_fetch_2;

— decodes the instruction
procedure instruction._decode_-1{ rsl,rs2 : tlns.reg_addr ;
opcode : tlns_opcode) is
begin
reg_sl_addr <= rsl ;

—— for 2DLNS/Binary conversion rl4 must be read to register B
if opcode = op.tbc then
reg_s2_addr <= to_unsigned(unity_reg, 4) ;
else
reg_s2.addr <= rs2 ;
end if;

— filter specifications are read to wvariables
if opcode = op.filt then

filter.order := IR_filter_order;

filter coef_sym := IR_filter_coef_sym;

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

filter_bands.sym := IR_filter_bands_sym;
end if;

—— register file output registers are enabled
a_enable <= 1’ ;
b_enable <= 1’ ;

—— PC is incremented
pc-out_en <= 1’ ;

const2 <= X"000_.001” ;
alu_function <= alu_addu ;

— the new value is written to PC
pc-enable <= 17
end procedure instruction_.decode.l;

— disables A, B registers and PC
procedure instruction_decode_2 is
begin
a_enable <= 0’ ;
b_enable <= ’0’ ;
pc-out_en <= 07 ;
const2 <= disabled_tlns_word ;
pc-enable <= ’0’ ;
end procedure instruction_decode.2;

— reads the registers which contain addresses for filtering
procedure do_EX _filt_start_1 is
begin
a_out_en <= 1’7 ;
b_out_en <= ’1° ;
end procedure do_EX _filt_start_1;

— prepares addresses for filtering
procedure do_EX _filt_start_2 is
begin

—— disables registers

a_out_en <= ‘0’ ;

b_out_en <= "0’ ;

— writes addresses into variables

filt_data_address := ”00000000000000” & sl.bus_content (23 downto
14);

filt_coef_address := ”00000000000000” & sl_bus_content (9 downto 0)

filt _data_start := ”(00000000000000” & s2_bus.content (9 downto 0);

filt_data_-end := ”00000000000000” & s2_bus_.content (23 downto 14);

—— enables both memories

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

ir_mem.enable <= ’'1’ ;
mem.enable <= ’1’ ;

— memory addresses are determined by the controller
ma_mux.sel <= '0’
ir.ma_mux_sel <= 0’ ;

H

— determines the coefficients ’ address range

coef_address := unsigned(to_bitvector(filt.coef_address));
top.coef_address := filter_order srl 1 ;
coef_end_address := coef_address + top-coef_address;

filter_tap := B”0000000”;
first_half : 17

— specifies the coefficient symmetry signal for the MAC unit
if filter_bands_sym = 701" then

coef_number := ’'1° ;
else

coef.number := 07 ;
end if;

mac.coefnum <= coef_number;

—— addresses memories

ctrl.mem_a <= filt_data_address;

ctrl_ir_mem_a <= to.x01(bit_vector(coef_address));
end procedure do_EX_filt_start.2;

— performs MAC operations

procedure do.EX_filt_mac is

begin
— directs coefficients to the data bus
iriimmed2_en <= ’'1’ ;
ctrl_direct <= ’17;

— one MAC operation is performed
mac_clr <= ’0° ;
alu.clr <= ’1° ;

filter_tap := filter.tap + 1 ;

— toggles coefficient symmetry signal
coef_number := not coef_number ;
mac.coefnum <= coef_number ;

— specifies the next coefficient address

if filter_.coef.sym = ’0’ then
coef_address := coef_address + 1;
else

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

if coef_address < coef.end_address then
if first_half = ’1’ then
coef_address := coef.address + 1;
else
coef_address := coef_address — 1;
end if;
else
coef_address := coef_address — 1;
first_half := ’07;
end if;
end if;

—— determines the nexrt data address

filt _data_address := filt_data_address — 1 ;

if filt_data_.address = filt_data.start — 1 then
filt . data_address := filt_.data_end;

end if;

— addresses memories

ctrl.mem_.a <= filt_data_address;

ctrl_ir_.mem_a <= to_x01(bit_vector(coef_address));
end procedure do_EX _filt_mac;

— performs the last iteration of MAC operation
procedure do_ EX_filt_last is
begin
— output multiplexer is set and destination register is writien
mac_ch_mux_sel <= 0’ ;
reg_dest_addr <= to_unsigned (output_-reg-1, 4) ;
reg_write <= 1’ ;

— memories are disabled

ir_mem_enable <= 0’ ;

mem _enable <= 0’ ;

ctrl.mem_a <= disabled.tlns.word ;

ctrl_ir . mem_a <= disabled_tlns.word ;
end procedure do_EX_filt_last;

— all control signals are reset to their defaults
procedure do_EX_filt_out is
begin
mac_coefnum <= '0’;
ir.immed2_en <= 0’ ;
ctrl.direct <= '07;
reg_-write <= 0’ ;
mac_-ch_mux_sel <= '0’ ;
mac_clr <= 1’ ;
alu.clr <= 0’ ;
ir.ma_mux.sel <= ’1’ ;

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

ma_mux-sel <= 1’ ;
end procedure do_EX_filt_out;

— performs a subtraction for unsigned relational instructions
procedure do_EX_set_unsigned_1 (immed : boolean) is
begin
a_.out.en <= 1’ ;
if immed then
ir_-immed2_size_18 <= 0’ ;
ir.-immed2_unsigned <= 1’ ;
ir.immed2_en <= 1’ ;
else
b_out.en <= ’1’ ;
end if;
alu_function <= alu.subu ;
end procedure do.EX_set_unsigned._l;

— sets the result based on status flags
procedure do_EX_set_unsigned-2 (Rd : tlns_reg_addr ;
immed : boolean) is
begin
a_.out.en <= 0’ ;
if immed then
ir.-immed2_en <= 0’ ;
else
b_out.en <= 0’ ;
end if;

if immed then
case IR_opcode is
when op_sequi =>
result_of_set_is_1 := alu_zero = ’17;
when op.sneui =>
result_of_set_is_1 := alu_zero /= ’1’;
when op_sltui =>
result_of_set_is_1 := alu_overflow = ’'17;
when op._sgtui =>
result_of_set_is_.1 := alu_overflow /= ’1’ and alu_zero /=
717;
when op._sleui =>
result.of_.set.is_1 := alu_overflow = ’1l’ or alu.zero = ’'17;
when op._sgeui =>
result_of_set_is_1 := alu_overflow /= '1’;
when others =>
null;
end case;
else
case IR_sp.func is
when sp_func.sequ =>

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

result_of_set.is_1 := alu.zero = ’'1°;
when sp_func_sneu =>
result_of_set_is_1 := alu_zero /= ’'17;
when sp_func_sltu =>
result_of_set_is_1 := alu_.overflow = ’1°;
when sp_func_sgtu =>
result_of_set_is_1 := alu.overflow /= ’1’ and alu_zero /=
,1);
when sp_func.sleu =>
result_of_set_is_1 := alu.overflow = ’1’ or alu_zero = ’17;

when sp_func_sgeu =>
result.of_set_is.1
when others =>
null;
end case;
end if;

alu_overflow /= ’17;

— do_set_result;

if result_of_set_is_1 then
const2 <= X"000_.001" ;

else
const2 <= X”000.000” ;

end if;

alu_function <= alu_pass_s2 ;

reg_dest_addr <= Rd ;

reg_write <= 1’ ;

end procedure do_EX _set_unsigned_2;

— resets signals
procedure do_EX _set.unsigned.3 is
begin
const2 <= disabled_tlns_word ;
reg_write <= ’0’ ;
end procedure do_EX_set._unsigned.3;

— performs a subtraction for signed relational instructions
procedure do_EX_set_signed_1 (immed : boolean) is
begin
a_out_en <= 1’
if immed then
ir.immed2_size_.18 <= 0’ ;
ir_.immed2_unsigned <= 0’ ;
ir_.immed2_en <= 1’ ;
else
b_.out_en <= ’1’ ;
end if;
alu.function <= alu_sub ;
end procedure do_EX _set_signed.l;

1

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

—— sets the result based on status flags

procedure do_EX _set_signed-2 (Rd :

begin
a_out_en <= 0’ ;
if immed then
ir.immed2_en <= 0’ ;
else
b_out.en <= 0’ ;
end if;

if immed then
case IR_opcode is
when op_seqi =>
result.of_set_is_1
when op_snei =>
result.of_set.is.1
when op_slti =>
result_of_set_is_1
when op_sgti =
result.of_set_is_1
717;
when op.slei =>
result_of_set_is_1
when op.sgei =>
result_of_set_is_1
when others =>
null;
end case;
else
case IR_sp.func is
when sp_func_seq =
result_of_set_is_1
when sp_func._sne =>
result_of_set_is_1
when sp.func.slt =
result_of_set_is_1
when sp_func_sgt =>
result.of_set.is.1
1 :;
when sp._func_sle =>
result_of_set_is_1
when sp_func_sge =>
result_of_set_is_1
when others =>
null;
end case;
end if;

tlns_reg_addr ;

immed : boolean) is

alu.zero = ’17;

alu_zero /= ’17;
alu_negative = ’17;

alu_negative /= ’1’ and alu_zero /=

alu.negative = ’'1’ or alu.zero = ’'17;

alu_negative /= ’1’;

alu_zero = '17;

K .,
alu.zero /= ’17;
alu_negative = ’17;

alu.negative /= ’1’ and alu_zero /=

alu_negative = ’'1’ or alu.zero = '1’;

alu.negative /= '17;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

A. HARDWARE DESCRIPTION CODES

— do_set.result;

if result_of_set_is_1 then
const2 <= X7000.001” ;

else
const2 <= X”000.000” ;

end if;

alu_function <= alu_pass_s2 ;

reg_dest_addr <= Rd ;

reg_write <= ’1’ ;

end procedure do_EX_set_signed_2;

— resets signals
procedure do-EX_set_signed-3 is
begin
const2 <= disabled_tlns_.word ;
reg.-write <= 0’ ;
end procedure do_EX_set_signed_3;

— performs MAC operation
procedure do_EX_mac_1(Rd : tlns.reg-addr) is
begin

— reads operands from registers

a_out_en <= ’1’ ;

b_out_en <= 1’ ;

— activates the MAC unit
mac-clr <= ’0’° ;
alu_clr <= 1’7 ;

—— enables destination register
reg_dest_-addr <= Rd ;
reg_write <= ’1’ ;

end procedure do_.EX_mac_1;

— clears all signals to their defaults
procedure do.EX_mac.2 is
begin
a_out.en <= 0’ ;
b_out_en <= '0’ ;
reg_write <= 0’ ;
mac.clr <= ’1’ ;
alu.clr <= 0’ ;
end procedure do_.EX_mac_2;

— performs binary / 2DLNS conversion
procedure do_EX_btconvert.l is
begin
— reads binary data from register
a_out_.en <= 1’ ;

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

—— activates converter
alu_clr <= 17
btc_reset <= '0’° ;
btc_activate <= ’'17;

end procedure do_EX_btconvert_1;

—— prepares destination register
procedure do.EX_btconvert_2(Rd : tlns_.reg_addr) is
begin
a.out_en <= 0’ ;
reg-dest.addr <= Rd ;
reg-write <= 1’
btc_activate <= '0’;
end procedure do_EX_btconvert.2;

— disables register file
procedure do_EX_btconvert.3 is
begin

reg.write <= 0’ ;
end procedure do_EX_btconvert_3;

— resets control signals
procedure do_EX_btconvert.4 is
begin

btc_reset <= "1’

alu.clr <= 0’ ;
end procedure do_EX_btconvert_4;

— reads external data into register file
procedure do.EX_input_-1(Rd : tlns_reg.addr) is
begin
— input register is enabled to receive data
in.reg.enable <= 1’ ;

—~— date is directed through the ALU to register file
in_reg_out_en <= 1’ ;
alu_function <= alu_pass_sl ;
reg.dest_addr <= Rd ;
reg_write <= ’1’ ;
end procedure do.EX_input_1;

—— resets control signals
procedure do_EX_input.2 is
begin
in_reg_enable <= "0’ ;
in_reg_out_en <= 0’ ;
reg_write <= 0’ ;
end procedure do_EX_input_2;

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

— reads a register content to the output register
procedure do_EX _output_1l is
begin
b_out_en <= 17 ;
out_reg_enable <= 17 ;
end procedure do_EX_output.l;

— control signals are reset
procedure do.EX_output.2 is
begin
b_out_en <= 0’ ;
out_reg._enable <= 0’ ;
end procedure do_EX_output_2;

—— ezecutes arithmetic and logic operations on register contents
procedure do_EX_arith_logic_.1(Rd : tlns_reg-addr) is
begin

— reads operands from registers

a.out.en <= 1’ ;

b_out.en <= ’1’ ;

— specifies ALU function
case IR_sp.func is
when sp_func_add =>
alu_function <= alu.add ;
when sp._func.addu =
alu_function <= alu.addu ;
when sp_func_sub =>
alu_function <= alu_sub ;
when sp_func_.subu =>
alu_function <= alu_subu ;
when sp_func.and =>
alu_function <= alu_.and ;
when sp.func.or =
alu_function <= alu.or ;
when sp_func.xor =>
alu_function <= alu_xor ;
when sp_func_sll =
alu_function <= alu_sll ;
when sp_func._srl =
alu_function <= alu.srl ;
when sp_func.sra =>
alu_function <= alu.sra ;
when others =>
null;
end case;

— determines destination register

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

reg.dest_addr <= Rd
reg-write <= ’1’ ;

b

end procedure do_EX_arith_logic_1;

— resets control signals
procedure do_EX_arith_logic_2 is

begin
a.out_en <= 0’ ;
b_out_en <= 0’ ;
reg_write <= '0’ ;

end procedure do_EX_arith_.logic.2;

— ezecutes arithmetic and logic operations on an immediate value
procedure do.EX _arith_

begin

logic.immed_1(Rd :

—— reads one operand from register

a_out_en <= 1’ ;

— just for addition and subtraction

if IR_opcode = op.addi or IR_opcode = op_subi

then

ir_.immed2_unsigned <= 0’ ;

else

ir_.immed2_unsigned <= 1’ ;

end if:

— extends 10— bit immediate value

ir.immed2_size_18 <=

ir.immed2_en <= 1’

’0’ ;

)

— specifies ALU function

case IR_opcode is
when op_addi =>
alu_function <=
when op_subi =>
alu_function <=
when op_addui =
alu_function <=
when op_subui =>
alu_function <=
when op.andi =>
alu_function <=
when op_ori =>
alu.function <=
when op.-xori =>
alu_function <=
when op_slli =
alu_function <=
when op_srli =>

alu_add ;
alu_sub ;
alu.addu ;
alu_subu ;
alu.and ;
alu_or ;
alu_xor ;

alu.sll ;

tlns_reg_addr)

extension is signed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

A. HARDWARE DESCRIPTION CODES

alu_function <= alu_srl ;
when op.srai =>
alu_function <= alu_sra ;
when others =>
null;
end case;

— determines destination register
reg_dest_addr <= Rd ;
reg.write <= ’'1’ ;

end procedure do_EX_arith.logic.immed_1;

— resets control signals
procedure do_EX_arith_logic_.immed_2 is
begin
a.out_en <= 0’ ;
ir.-immed2.en <= '0’ ;
reg_write <= 0’
end procedure do_EX_arith_logic_.immed_2;

— writes the PC content to rl15
procedure do_EX_link.1 (Rd : tlns_reg.addr) is
begin
pc-out_en <= 1’ ;
alu_function <= alu_pass_sl ;
reg_dest_addr <= Rd ;
reg.write <= ’'1’ ;
end procedure do_EX_link.1;

— clears signals to their defaults
procedure do.EX_link_.2 is
begin
pc-out_en <= '0’ ;
reg_write <= 0’ ;
end procedure do_EX_link.2;

— loads a 10-bit immediate value to a register
procedure do_ EX_lhi.1(Rd : tlns_reg_addr) is
begin

— the immediate value is unsigned extended

ir_-immedl_size_18 <= 0’ ;

ir.immed1_unsigned <= 1’ ;

ir_.immedl_en <= '1’ ;

—— it is shifted to left by 14 bits
const2 <= X”000_00E” ;

alu_function <= alu.sll ;

— shifted wvalue is written to destination register

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

reg_dest_addr <= Rd ;
reg_-write <= 1’ ;
end procedure do_EX_lhi_1;

—— disables control signals
procedure do_EX_lhi_2 is
begin
ir.immedl.en <= 0’ ;
const2 <= disabled._tlns.word
reg_write <= ’0’ ;
end procedure do_EX_lhi 2;

7

—— reads a register content to the ALU
procedure do.EX_branch.l is
begin
a_out.en <= 1’ ;
alu_function <= alu_pass_sl ;
end procedure do_EX_branch.l;

—— branch is taken based on zero flag
procedure do.EX_branch_.2 is
begin

a_out_en <= 07 ;

if IR_opcode = op_beqz then

branch_taken := alu.zero = ’17;
else

branch_taken := alu.zero /= ’1’;
end if;

end procedure do_EX_branch.2;

— specifies memory address for load and store instructions
procedure do_EX_load_store.l is
begin

— reads the content of source register

a_out_en <= 1’ ;

— the immediate value is sign extended
ir_immed2_size_18 <= ’0’ ;
ir.immed2_unsigned <= 0’ ;
ir.immed2_en <= ’1’ ;

— the register content and extended value are added
alu_.function <= alu_.add ;

— memory address register receives the address
mar_enable <= 17 ;
ma.mux.sel <= ’1’ ;

end procedure do_EX_load_store.l;

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

— control signals are reset
procedure do.EX_load_store_2 is
begin
a.out_en <= ’0’
ir.-immed2_en <= ’0’
mar_enable <= 0’ ;
end procedure do_EX_.load_store.2;

y

— specifies a new address for PC
procedure do.MEM _jump.1 is
begin
—— reads the PC content
pc_out_en <= 1’
— the 18— bit immediate value is sign extended
ir.immed2._size_18 <= ’1’
ir_-immed2_unsigned <= ’0’
ir.immed2_en <= ’1°’

)
)

b

— the PC content and immediate value are added
alu_function <= alu.add ;
—— the new address is written to PC
pc_enable <= 1’ ;
end procedure do-MEM._jump._1;

— control signals are reset to their defaults
procedure do.MEM _jump_2 is
begin
pc-out.en <= 0’ ;
ir.immed2_en <= 0’
pc-enable <= 0’ ;
end procedure doMEM_jump.2;

k]

— the new address for PC is a register content
procedure do-MEM._jump_reg.1l is
begin
a_out_en <= 1’ ;
alu_function <= alu.pass_sl
pc-enable <= 1’ ;
end procedure do_MEM_jump.reg.l;

)

— resets signals
procedure do.MEM_jump_reg_2 is
begin
a.out_en <= 0’ ;
pc_enable <= 0’
end procedure do_-MEM_jump.reg.2;

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

—— specifies a new address for PC
procedure do_MEM _branch_1l is
begin
— reads the PC content
pc.out-en <= ’1’ ;

— the 10—bit immediate value is sign extended
ir.immed2_size_18 <= 0’ ;

ir.immed2_unsigned <= '0’ ;

ir.immed2_en <= 1’ ;

—— the PC content and immediate value are added
alu_function <= alu.add ;

— the new address is written to PC

pc-enable <= 1’ ;
end procedure do.MEM_branch_1;

— control signals are reset to their defaults
procedure do_-MEM _branch.2 is
begin
pc-out.en <= 0’ ;
ir.immed2_en <= 0’ ;
pc-enable <= 0’ ;
end procedure do.MEM_branch 2;

— loads a register with a data which is read from memory
procedure do_MEM_load.l is
begin

ifetch <= 0’ ;

mem_write_.en <= 0’ ;

—— memory is enabled
mem_enable <= 1’ ;

— the ALU directs the read data to the destination bus

alu.function <= alu_pass_sl ;
end procedure do_MEM._load_1;

— destination register is written
procedure do.MEM_load.2{ Rd : tlns.reg.addr) is
begin
mem_enable <= ’0’ ;
reg_dest_addr <= Rd ;
reg_write <= ’1’ ;
end procedure do_MEM._load_2;

—- stores a register content into the date memory
procedure do.MEM._store_1l is

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

begin
— reads content of B register
b.out.en <= 1’ ;

— the ALU directs data to the destination bus
alu_function <= alu_-pass_.s2 ;

ifetch <= 0’ ;

— memory ts enabled to be written
mem_write.en <= "1’ ;
mem_enable <= ’'1° ;

end procedure do_MEM_store.l;

begin —— sequencer
if reset = ’1’ then

— initialize all control signals

halt <= 0’ ;

ir_mem_enable <= 0’ ;
ifetch <= 0’ ;
alu_function <= alu_add ;
reg_sl_addr <= B"0000” ;
reg.s2.addr <= B”0000” ;
reg_dest_addr <= B”0000” ;
reg_write <= ’0’ ;

a.enable <= ’0’ ;

a.out_en <= 0’ ;

b_enable <= ’0’ ;

b_out_en <= 0’ ;

pc.enable <= 0’ ;
pc-out.en <= 0’ ;
mar_enable <= 0’ ;
ir_.immedl_size_18 <= 0’ ;
ir_immed2_size.18 <= 0’ ;
ir.immedl_unsigned <= 0’ ;
ir-immed2_unsigned <= 0’ ;
ir.-immedl_en <= 0’ ;
ir_immed2.en <= 0’ ;
const2 <= disabled_tlns_word ;
mem._write_en <= 0’ ;
mem_enable <= 0’ ;
mac.clr <= ’1°;

alu_clr <= 0,

btc.reset <= '1’;
btc_activate <= ’0°;

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

in_reg_enable <= ’0°;
in_reg_out_en <= ’0°;
out_reg_enable <= ’0’;
ma.-mux-sel <= '17;

ir.ma_mux_sel <= '17;

ctrl.mem_a <= disabled_tlns_word ;
ctrl.ir.mem_a <= disabled_tlns.word ;
ctrl_direct <= ’0°;

mac.ch_mux_sel <= ’0’;
mac.coefnum <= ’07;
mac_evensym <= ’'07;

state <= sl ;

elsif rising.edge{clk) then

— control loop

case state is

— fetch next instruction (IF)

when sl => bus.instruction_fetch_.1l ;
state <= sl_a ;

when sl_.a => bus_instruction_-fetch_2 ;
state <= 82 ;

— instruction decode, source regisier read and PC increment (
ID)

when s2 => instruction_decode.l (IR_rsl, IR.rs2, IR_opcode)
state <= s2.a ;

when s2_.a => instruction_decode.2 ;

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

case IR_opcode is
when op._special =>
case IR_sp_func is

when sp_func_nop =>
null ;
state <= sl ;

when sp_func.mult =>
do-EX_mac_1(IR_Rtype_rd};
state <= s3 ;

when sp_func_halt =>
state <= s24 ;

when sp_func.add | sp-func.addu

| sp-func_sub | sp-func.subu

| sp-func_sll | sp_func_srl

| sp-func_sra | sp-func.and

| sp-func.or | sp-func_xor =>

do_EX_arith_logic_1(
IR _Rtype.rd);
state <= s6 ;

when sp_func.sequ | sp-func_sneu
| sp_func_sltu | sp_func_sgtu
| sp_func_sleu | sp-func._sgeu
=
do_EX_set_unsigned_1 (immed =>
false);
state <= s7 ;
when sp_func_seq | sp_func_sne
| sp_func.slt | sp_func_sgt
| sp-func_sle | sp_-func_sge =>
do_EX_set_signed._1 (immed =>
false);

state <= s8

when others =>
null;
state <= sl ;

‘end case;
when op_-btc =>

do_EX_btconvert_1;
state <= s4d ;

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

when

when

when

when

when

when

when

when

when

when

when

op-the =>
do_ EX_mac_1(IR_Itype_rd);
state <= 85 ;

op.-filt =>
~— the type of symmetry is specified
if filter_bands_sym = "01” then

mac_evensym <= ’'1° ;

elsif filter_bands_sym = "10” then
mac_evensym <= ‘0’ ;

end if;

do.EX_filt_start_1;
state <= s9 ;

op-j =
state <= sll ;

op-jal =>
do_EX_link.1(to_unsigned (link_reg, 4));
state <= s12 ;

op-jr =
state <= sl3 ;

op-jalr =
do.EX_link_1(to_unsigned (link_reg , 4));
state <= sl4 ;

op-beqz | op.bnez =>
do_EX_branch.1;
state <= slb ;

op-addi | op.subi | op-addui | op-subui
| op-slli | op.srli | op-srai

| op-andi | op-ori | op.xori =>
do.EX_arith_logic.immed_1 (IR.Itype.rd);
state <= sl6 ;

op.lhi =
state <= sl7 ;

op.sequi | op-sneui | op-sltui

| op-sgtui | op.sleui | op_-sgeui =>
do_EX_set.unsigned.1 (immed => true);
state <= sl8 ;

op-seqi | op.snei | op_slti

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

| op_sgti | op.slei | op_sgei =
do_-EX_set_signed.l (immed => true);
state <= s19 ;

when op_lw =>
do_-EX_load_store_1;
state <= s20 ;

when op_sw =>
do_EX_load_store_1;
state <= s21 ;

when op_.inpt =>
do.EX_input-1(IR_Itype.rd};
state <= s22 ;

when op-oupt =>
do_ EX_output_1;
state <= s23 ;

when others =>
null;

state <= sl ;

end case;

— exzecute instruction, (EX, MEM, WB)

when s3 => do.EX_mac_2;
state <= sl ;

when s4 => do.EX_btconvert.2(IR.Itype.rd);
state <= s4d_a;

when s4_a = — remains here while conversion is in process
if btc.ready = ’0’ then
state <= s4_a;
else
do.EX_btconvert_3;
state <= s4_b;
end if;

when s4_b = do_EX_btconvert.4;

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

state <= sl;

when s5 => do_.EX_mac_2 ;
state <= sl ;

when s6 => do_EX_arith_logic.2;
state <= sl ;

when s7 => do_EX_set_unsigned_-2 (IR_.Rtype.rd, false);
state <= s7_a ;

when s7.a => do.EX_set_unsigned.3;
state <= sl ;

when s8 => do.EX_set_signed.2 (IR_Rtype.rd, false);
state <= s8_a ;

when s8_a = do.EX_set_signed_3;
state <= sl ;

when s9 => do_EX_filt_start_2;
state <= s9.a ;

when s9_a => do.EX_filt_mac;

—— MAC operation continues for all
coefficients

if filter_tap < filter.order then
state <= s9_a ;

else
do_ EX_filt_last;
state <= s9.b ;

end if;
when s9_b => — checks if filters are symmetric
if filter_.bands_sym = 700” or
filter_bands_sym = ”11” then
do_Ex_filt _out;
state <= sl ;
else

— sets signals to write the dual filter
output

mac.ch_.mux_sel <= 1’ ;

reg_dest_.addr <= to.unsigned (output_reg_2,

4) ;
state <= s9_.c ;
end if;
when s9_c = do_Ex_filt_out;

state <= sl ;

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

when

when

when

when

when

when

when

when

when

when

when

when

when

when

sll

sll_a

812

s12_a

sl2_b

s13

sl3_a

sl4

sl4_a

sl4.b

515

sl5_a

s15_b

s1l6

do.MEM_jump_1;
state <= sll.a ;

do_MEM_jump_2;
state <= sl ;

do_EX _link_2;
state <= sl2_a ;

do-MEM _jump.1;
state <= sl2_b ;

do.MEM_jump.2;
state <= sl ;

do_MEM _jump_reg.1;
state <= sl3.a ;

do.MEM _jump_reg.2;
state <= sl ;

do_ EX_link_2;
state <= sl4.a ;

do-MEM_jump_reg._1;
state <= sl4_b ;

do_.MEM_jump.reg_2;
state <= sl ;

do_EX_branch._2;

— determines the next state in a branch

instruction
if branch_taken then
state <= slb_a ;
else
state <= sl ;
end if;

do.MEM_branch_1;
state <= s15_b ;

do.MEM _branch_2;
state <= sl ;

do_.EX_arith_logic.immed_2;
state <= sl ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205

A. HARDWARE DESCRIPTION CODES

when

when

when

s17

s17_a

s18

true);

when

when

9

when

when

when

when

when
when
when
when

when
end case;

end if;

s18.a

s19

s19_a

820

s20_a

s21

s22

s23

s24

§29

others

do EX_lhi_1(IR_Itype_rd);
state <= sl7.a ;

do_EX_lhi_2;
state <= sl ;

do_EX_set_unsigned_2 (IR_Itype.rd , immed =>
state <= sl8.a ;

do.EX _set_unsigned_3;
state <= sl ;

do.EX_set_signed.-2 (IR_Itype_rd , immed => true)
state <= sl9.a ;

do_EX_set.signed_3;
state <= sl ;

do.EX_load_store.2;
do_-MEM _load_1;
state <= s20.a ;

doMEM_load 2(IR _Itype_rd);
state <= sl ;

do_EX_load_store_2;
do_MEM _store_1;
state <= sl ;

do.EX_input_2;
state <= sl ;

do_EX_output_2;
state <= sl ;

null;
state <= sl ;

halt <= ’1’ ;
state <= 825 ;
null;

state <= sl ;

206

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

end process sequencer;

end architecture behavior;

A.3 TLNS CPU Test

This section contains the VHDL files of CPU test bench module and its components.
These files also include some structures which are added to the CPU test bench for

filterbank application.

A.3.1 The TLNS CPU Test Bench

This code is the top module of test bench model. The test bench includes instances
of the TLNS CPU, the instruction and data memories, the clock generator, and the

input data reader.

library ieee;
use ieee.std_logic_1164.all,
ieee.std_logic_textio.all;

library work;
use work. tlns_types.all,
work . numeric_bit . all;

use std.textio.all;
entity tlns.test is

end entity tlns_test;

architecture bench of tlns_test is

—— The Input Data Reader
component input.gen is
port (clk : in std_logic;
data_in : out external_data;
out_en : in std_logic);
end component input_gen;

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

— The Clock Generator
component clock_gen is
generic { Tclk : delay_length := 20 ns);
port (clk : out std_logic;
reset : out std.logic };
end component clock_gen;

— The Instruction Memory
component memory is
generic {(mem._size : positive := 1024;
Tac_first : delay_-length := 70 ns;
Tpd_clk_out : delay_length := 2 ns);
port (clk : in std.logic;
a : in tlns_bus.word;
d : out tlns_bus_word;
ir_mem_enable : in std_-logic);
end component memory;

—— The Data Memory
component data_memory is
generic (data.memory.size : positive := 1024);
port (clk : in std_logic;
mem_a : in mem._bus_addr;
mem_d_in : in tlns_bus_word;
mem_d.out : out tlns_bus.word;
mem_write_en : in std_logic;
mem_enable : in std_logic);
end component data_memory;

— The TLNS CPU
component tlns is
port (clk : in std_logic;

reset : in std_logic;
halt : out std_logic;
input.data : in external_.data;
output_data : out tlns_bus_word;
a : out tlns_bus_word;
d : in tlns_bus_word;
ifetch : out std_logic;
ir_.mem_enable : out std_logic;
mem._a : out mem_bus_addr;
mem_d_out : in tlns_bus_word;
mem_d_in : out tlns_bus_word;
mem._write.en : out std.logic;
output_enable : out std.logic;
mem _enable : out std_logic);

end component tlns;

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

signal clk std.logic;
signal reset std_logic;
signal a : tlns_bus_word;
signal d : tlns_bus.word;
signal halt std.logic;
signal ir_mem_enable, ifetch std_-logic ;
signal mem_a : mem_bus_addr;
signal mem._d_in tlns_bus_word;
signal mem._d._out tlns_bus_-word;
signal mem_enable, mem_write.en std_logic;
signal data_in external_data;
signal data.out tlns_bus.word;
signal out_.en std_logic;
signal sync std_logic;
begin
— The component instantiations
input component input_gen
port map (clk => clk, data_in => data_-in, out.en => sync);
cg : component clock._gen

port map (clk => clk, reset => reset);

mem

component memory

port map (clk = clk,

data_mem

port

proc
port

a=a, d=>d,
ir_mem-_enable => ir_mem_enable);

component data.memory

map (clk => clk,

mem_a => mem.a,

mem.d_in => mem_d_in,
mem_d_out => mem.d_out,
mem_write_en => mem_write_en
mem.enable => mem_enable);

component tlns

map (clk = clk,
reset => reset ,
halt => halt,
input_data => data_in,
output_data => data_out,
a => a,
d = d,
ifetch = ifetch ,
ir mem_enable => ir.mem_enable ,
mem.a => mem.a,

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

mem_d_in => mem._d_in,
mem.d_out => mem_d_out,
mem_write_en => mem_write_en ,
output_enable => out_en,
mem.enable => mem_enable);

— this process writes the output into a file
write.output: process(clk)

file output.file : text open write.mode is ”filter_.output”;
variable line_out : line;
begin

if rising_edge(clk) then
— writes the output when output is enabled
if out_en = ’'1’ then
write(line_out , data_out(3 downto 0));
write(line_out , string ’(”.”));
write(line_out , data-out(23 downto 4));
writeline (output_file, line_out);

— when a data s written to output, the next input data is read
if data_out(3 downto 0) = ”0000” then
syne <= ’17;
else
sync <= ’0’;
end if;
else
sync <= 07,
end if;

end if;
end process write_output;

end architecture bench;

A.3.2 The Test Bench Clock Generator

The VHDL code for this module, generates clock and reset signals for the CPU,

library ieee;
use ieee.std.logic.1164.all;

entity clock_gen is
generic (Tclk : delay_length);

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

port (clk : out std_logic;
reset : out std_.logic);
end entity clock_gen;

architecture behavior of clock.gen is
begin

— sets reset port of the CPU
reset_driver
reset <= ’1’, 0’ after 3.5 x Teclk;

— generates the clock signal
clock_driver : process is
begin
clk <= ’07;
wait for Teclk;
loop
clk <= ’1’, ’0’ after Tclk / 2;
wait for Tclk;
end loop;
end process clock_driver;

end architecture behavior;

A.3.3 The Test Bench Instruction Memory

This file shows the instruction memory for the TLNS CPU which is preloaded with

filterbank program. The coefficients of all filters are also stored in this memory.

library ieee;
use ieee.std_logic_1164.all;

library work;
use work. tlns_types.all,
work . numeric.bit.all;

entity memory is
generic (mem_size : positive := 1024;
Tac_first : delay-length;
Tpd_clk_out : delay.length);
port (clk : in std.logic;
a : in tlns_bus.word;
d : out tlns_bus.word;
ir_mem_enable : in std.logic);

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

end entity memory;
architecture preloaded of memory is
begin
mem_behavior : process is
constant high.address : natural := mem_size — 1;
type memory.array is array (natural range <>) of tlns_word;

variable mem : memory_array(0 to high_address)
:= (others => X”000000”);

variable byte_address, word.address : natural;
variable write_access : boolean;

—— The TLNS program and filter coefficients are loaded into memory
procedure load is

constant program : memory._array
= (X”8C3801”, —0 lw rl4,M[1]
— Writting addresses to
registers

X7201404” —1 addi r0, r&, dstart
X 2429FF” | —2 addi r0, r10, dend
X*"3C11FF” —3 lhi r0, r4, dend
X?”0114E5” , —4 or r4 ,r5, r3
X" 20044E” -5 addi r0, rl, data_address
X”200840” , —6 next addi r0, r2, coef_address
X”50600E” , —7 slli rl, r8, E
X”0208A5” —8 or r8, r2, r2

—_ Entering Data
X74018007, —9 inpt rg, r6, 0

— Converting Data
X"199C00” —a btc ré, r7

— Storing Data
X” AC5C00” , —b sw Mfr1], r7

— Filters 0,7
X” 548DCB” —c filter r2, r8, coef sym, even,

75

— Writing output
X”72024007 —d addi r0, r9, band_tag
X"533004” ——e slli r12, r12, 4
X7027325” —f or r9, ri12, ri2

X74430007 , —10 oupt rg, ri2, 0
X*202C07” —11 addi r0, r11, dual_band-tag
X”537404” , —12 slli rl8, r18, /4

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

X”02F765”
X” 4434007

X"208826”

X” 548DCB”
75

X”202401”
X"533004”
X" 027325”
X”443000”
X”202C06”
X”537404”
X" 02F765”7
X”443400”

X7208826”

X” 548DCB”
75

X7202402”7
X”533004”
X"027325”
X" 4430007
X”202C05”
X”537404”
X”02F765”
X" 4434007

X”208826”

X" 548DCB”
75

X”202403”
X”533004”
X7027325”
X" 4430007
X”202C04”
X”5374047
X?02F765”
X" 4434007

X7204401”
X" 0069AB”
X”118001”
X7214400”

or ril, r13, ri1s

oupt rg, r18, 0
Next set of Coefficients

addi 72, 12, next_coef_address
Filters 1,6

filter r2, r8, coef sym, even,
Writing output

addi r0, r9, band_-tag

slli riz, ri2, 4

or r9, ri2, ri2

oupt r0, ri2, 0

addi r0, ril1, dual_band.tag

slli rig, ri3, 4

or rll, r18, ri18

oupt rd, ri18, 0
Next set of Coefficients

addi r2, r2, next_coef.address
Filters 2,5

filter r2, r8, coef sym, even,
Writing output

addi r0, r9, band_tag

slli r12, ri2, 4

or r9, r12, ri2

oupt r0, ri2, 0

addi r0, r1l, dual_band_tag

sl rid, ri3, 4

or rll, r18, ri18

oupt r0, ri8, 0
Next set of Coefficients

addi r2, r2, next_coef_address
Filters 38,4

filter r2, r8, coef sym, even,
Writing output

addi r0, r9, band_-tag

slli r12, r12, 4

or r9, r12, ri2

oupt rg, ri2, 0]

addi r0, r1l, dual -band_tag

slid ri8, r18%, 4

or ril, rl3, ri18

oupt rg, ri3, 0

Next Data address

addi rl, r1, 1

sgt rl, r10, 16

beqz r6, cont

addi r5, r1, 0

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

X” 0BFFCE” , —37 cont j next

X”000000” , —38 null

X”000000” , —39 null

X”000000”, ——3a null

X” 0000007, —3b null

X” 0000007, —38¢c null

X”0000007 ——3d null

X”000000”, —3e null

X?000000” , —38f null
B”0000011001100001100011107, —40 07

B”000001101010011110100011”
B”000001101010011110010110”
B”000001101011111110001000”
B”000001101011110110010101”
B”000001101011100110011010”
B”000001101100101110011110”
B”000001101011011110001110”
B”000001101010111101111101”
B”000000000001000000000100”
B”000011101011111101111000”
B”000011101101010101111011”
B”000011101111110101111001”
B”000011110000010110101000”
B”000011110001110110010110”
B”000011110010010110111000”
B”000011110010111110011010”,
B”000011110010101110100101”
B”000011110010111110110101”,
B”000011110011100110111000”
B”000011110010100101111111”
B”000011110010010110111000”
B”000011110000111101110001”
B”000000000001000000000100”
B”000001110000100110101101”
B”000001110011110110100000”
B”000001110100011110010000”
B”000001110101100110111111”
B”000001110111111111001010”
B”000001110111110110101010”
B”000001111001111111011010”,
B”000001111000111110101011”
B”000001111000100110111001”
B”000001111000001110111111”
B”000001111000000110111101”
B”000001111001110110101101”
B”000001111000010111010010”
B”000001111000100111010110”
B”000011101000100101111101”, L6
B”000011101010011110000110”

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

B”000011101100010110011110”
B”000011101100011101101101”
B”000011101011011110011111”
B”000011101001101110000001”
B”0000011010010111011111106”
B”000001101110011110110111”
B”000001101010110110100110”
B”000000000001000000000100”
B”000011101100000101111010”
B”000011101110111110001111”
B”000011101100000110001110”
B”000001101110011110101010”
B”000001110001010110100011”
B”000001110011100110100010”
B”000001110100110110100010”
B”000001110100110110100101”
B”000001110011101110010110”
B”000001110000101110010110”
B”000011110000110110011010”
B”000011110010100110011011”
B”000011110001111110110101”
B”000000000001000000000100”
B”000001110010011110011010”
B”000001110101111111001011”
B”000001110010101110100000”
B”000011110011100110010110”
B’000011110101101111010000”
B”000011111000000110101110”
B”000011111011110111100010”
B”000011111011110111100011”
B”000011111001111110100101”
B”000011110111010111010010”
B”000001110110010110100011”
B”0000011110001101110111107,
B”000001111011111111001111”
B”000001111010100111011110”
B”000011100101100101101001”
B”000001101000110110011111”
B”000001101100011110011110”
B”000001101011011101110011”
B”000011101001111101111011”
B”000011101111110110110001”
B”000011101101101110010101”
B”000011101001110101101101”
B”000001101010001110001010”
B”000000000001000000000100”
B”000011101011101110011011”
B”000001101010000110010111”
B”000001110000001110011011”

25

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

B”000001110100001111001101”
B”000001101111101110101001”
B”000011110010100110011011”
B”000011110100111110100010”
B”(000011110011100110101110”
B”000001101111010110110011”
B”000001110011110111000110”
B”000001110100111110100111”
B”000001101110010110101111”
B”000011110000011110160010”
B”000000000001000000000100”
B”000001110001011110011010”
B”000011110000000110000101”
B”000011110110100110101101”
B”000011110111101110011101”
B”000011110100110110000000”
B”000001111000101111001101”
B”000001111011111111100010”
B”000001111000001110111110”
B”000011110110111101101011”
B”000011111010101111000011”
B”000011111010000111001000”
B”000011110110000110110011”
B”000001111001100111010001”
B”000001111010100111011110”
B”000001101001101101110001”
B”000011100110101110000011”
B”000011101100010110011110”
B”000011101000010101101111”
B”000001101101101110010001”
B”000001101100011110010010” ,
B”000011101111010110111010”
B”000011101101111101101101”
B”000001100111010101111111”,
B”0000000006001000000000100”
B”000011101000000101110110”
B”000001110000101110110111”
B”000001101111010110011111”
B”000011110000000110001000”
B”000011110001011110111101”
B”000001101111110110100010”
B”000001110100110110100010”
B”000001110000101110100001”
B”000011110100100101111010”
B”000011110011100110011101”
B”000001110011111110100000”
B”000001110011100110100010”
B”000011101101011110011010”
B”000000000001000000000100”

34

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

B”000001101110011110010011”
B”000011110100001110011001”
B”000011110100101111000110”
B”000001111010101111100101”
B”000001111000110110101111”
B”000011110100000110100101”
B”000011111011110111100010”
B”000011110101101111000011”
B”000001111001010111010110”
B”000001111001100110111011”
B”000011111001011110110001”
B”000011111011010111011110”
B”000001110110000110100010” ,
B”000001111010100111011110”
)i

begin
mem(program’range) := program;
end load;

begin
load ;
—-— initialize output
d <= disabled_tlns.word;

—— process memory read
loop
— wait for a command, valid on leading edge of clk
wait on clk until rising_edge{clk);
—— decode address and perform command if selected
word_address := to.integer (unsigned(to_bitvector(a)));
if word._address <= high_address then
if (ir_-mem_enable = ’1’) then
d <= ToX01(bit.vector(mem(word_address)));
end if;
end if;
end loop;
end process mem_behavior;

end architecture preloaded;

A.3.4 The Test Bench Data Memory

The VHDL code for the data memory includes memory addresses which have been

loaded with 2DLNS value of 1. Since the order of all filters in filterbank application

217

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

is 75, the last 75 locations of memory before the incoming input data, is filled with
1. Therefore, it is guaranteed that for the first 75 iteration of MAC operations, no

overflow occurs, although they are not valid values and should be ignored.

library ieee;
library work;

use ieee.std_logic_1164.all,
work. tlns_types.all,
work. numeric_bit . all;

entity data_memory is
generic (data.memory_size : positive := 1024);
port (clk : in std_logic;
mem.a : in mem_bus_addr;
mem_d_in : in tlns_bus.word;
mem_d_out : out tlns_bus_word;
mem_write_en : in std_logic;
mem-_enable : in std_logic);
end entity data_memory;

architecture behavior of data_memory is

begin
data_memory_behavior : process is
constant high_address : natural := data.memory_size — 1;

type data.memory._array is array (natural range <>) of
tlns_bus_word;

variable row_.address : natural;

variable write_access : boolean;

variable data.memory : data_memory_array(0 to high_address)
;= (others => X”000000”);

—— The filterbank input data are loaded into memory
procedure load is

constant data : data_memory.array
:= (B”000000000000000000000000” —
B”000000000000000000000000” —
B”0006000000000000000000000” —
B”000000000000000000000000” —
B”010000010100010000010100” S

W D

218

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

B”010000010100010000010100" — &

B”010000010100010000010100” , ~—— 6

B”010000010100010000010100” — 7

B”010000010100010000010100”, — 8

B”010000010100010000010100” , — 9

B”010000010100010000010100” — a

B”010000010100010000010100” , — b

B”010000010100010000010100” — ¢

B”010000010100010000010100” , — d

B”010000010100010000010100” , — e

B”010000010100010000010100” — f

B”010000010100010000010100” — 10
B”010000010100010000010100” , — 11
B”010000010100010000010100” , — 12
B”010000010100010000010100” , — 13
B”010000010100010000010100” , — 14
B”010000010100010000010100” , -— 15
B”010000010100010000010100” , — 16
B”010000010100010000010100” , — 17
B”010000010100010000010100” , — 18
B”010000010100010000010100” , — 19
B”010000010100010000010100” , — la
B”010000010100010000010100” , — 1b
B”010000010100010000010100” , — lc
B”010000010100010000010100” , — 1d
B”010000010100010000010100” , — le
B”0100000101000100000101007 , — 1f
B”010000010100010000010100” , -— 20
B”010000010100010000010100” — 21
B”010000010100010000010100” , — 22
B”010000010100010000010100” , — 28
B”010000010100010000010100” , — 24
B”010000010100010000010100” , — 25
B”010000010100010000010100”, — 26
B”010000010100010000010100” , — 27
B”010000010100010000010100” , — 28
B”010000010100010000010100”, — 29
B”010000010100010000010100” , -~ 2a
B”010000010100010000010100”, — 2b
B”010000010100010000010100” , — Zc
B”010000010100010000010100” , — 2d
B”010000010100010000010100” , — 2e
B”010000010100010000010100” — 2f
B"010000010100010000010100” , - 30
B”010000010100010000010100” , — 31
B”010000010100010000010100” , - 82
B”010000010100010000010100” , — 38
B”010000010100010000010100” , — 34
B”010000010100010000010100” , ~— 35

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

B”010000010100010000010100” , - 36
B”010000010100010000010100” , — 37
B”010000010100010000010100” , — 38
B”010000010100010000010100” , — 39

B”010000010100010000010100” —— 3a

B”010000010100010000010100” , — 3b
B”010000010100010000010100", — 3¢
B”010000010100010000010100” , — 3d
B”010000010100010000010100” , —~— Je
B”010000010100010000010100” — 3f
B”010000010100010000010100” , — 40
B”010000010100010000010100” , — 41
B”010000010100010000010100” — 42
B”010000010100010000010100” — 43
B”010000010100010000010100” , — 44
B”010000010100010000010100” , — 45
B”010000010100010000010100” — 46
B”010000010100010000010100” — 47
B”010000010100010000010100” — 48
B”010000010100010000010100” , — 49
B”0100000101000106000010100” , — ja
B”010000010100010000010100” , — 4b
B”010000010100010000010100" — 4c
B”010000010100010000010100” — 4d
)
begin
data_memory (data 'range) := data;
end load;
begin
load;

— initialize output
mem._d.out <= disabled_tlns_word;

—— process memory cycles
loop
— wait for a lw or sw instruction, valid on leading edge of clk
wait on clk until rising_edge(clk);
— decode address and perform command if selected
row_address := to_integer (unsigned(to_bitvector (mem.a)));
write_access := mem._write_.en = ’17;
if row_address <= high_address then
if (mem_enable = ’1’) then
if write_access then
—— write cycle

data_memory (row_address) := mem_d.in ;
mem_d_out <= disabled_tlns_word;
else

— read cycle

220

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

mem._d_out <= data_.memory(row_address);
end if;
else
mem-_d_out <= disabled_tlns_word;
end if;
end if;
end loop;

end process data.memory.behavior;

end architecture behavior;

A.3.5 The Test Bench Input Data Reader

This module reads the input data for the filterbank application from a file.

library ieee;

use ieee.std_logic_1164.all,
ieee.std_logic_textio.all,
work. tlns_types.all,
work. numeric_bit . all;

use std.textio.all;

entity input_gen is
port (clk : in std_logic;
data_in : out external.data;
out.en : in std_logic);
end entity input_gen;

architecture behavior of input_gen is

begin
—— this process reads the input from a file
read_input : process(clk) is
file input.file : text open read.mode is ”filter_input?”;
variable line_in : line;

variable data : external.data;

begin
if rising_edge(clk) then
— reads input when an output is completed
if out_en = ’1’ then

221

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A. HARDWARE DESCRIPTION CODES

readline (input_-file , line.in);
read (line_in , data);
data.in <= data;
if endfile(input_file) then
assert false report ”"Simulation.is.complete. . End.of.Stimulus.
File?”
severity note;

end if;

end if;

end if;

end process read_input;

end architecture behavior;

222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

Mahzad Azarmehr was born in Esfahan, Iran, on 1965. She received her B.A.Sc.
degree in electrical engineering in 1990 from Tehran University. She is currently a can-
didate in the electrical and computer engineering M.A.Sc. program at the University
of Windsor. Her research interests include VLSI circuit design, computer arithmetic,

HDL synthesis and digital signal processing.

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A Multi-Dimensional Logarithmic Number System based central processing unit.
	Recommended Citation

	tmp.1507664919.pdf.x9C6V

