
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2007

A statistic approach of multi-factor sensitivity analysis for service-A statistic approach of multi-factor sensitivity analysis for service-

oriented software systems. oriented software systems.

Chunjiao Ji
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Ji, Chunjiao, "A statistic approach of multi-factor sensitivity analysis for service-oriented software
systems." (2007). Electronic Theses and Dissertations. 7132.
https://scholar.uwindsor.ca/etd/7132

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7132?utm_source=scholar.uwindsor.ca%2Fetd%2F7132&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Statistic Approach of Multi-factor Sensitivity

Analysis for Service-oriented Software Systems

by

Chunjiao Ji

A Thesis

Submitted to the Faculty o f Graduate Studies and Research

through Computer Science

in Partial Fulfillment o f the Requirements for

the Degree o f Master o f Science at the

University o f Windsor

Windsor, Ontario, Canada

2007

© 2007 Chunjiao Ji

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-42323-3
Our file Notre reference
ISBN: 978-0-494-42323-3

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nntemet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The performance aspect of a service-oriented system is of paramount

importance. As system architecture determines the quality of software systems,

performance effects of architectural decisions can be evaluated at an early stage

by constructing and analyzing quantitative performance models that capture the

interactions between the main components of the system as well as the

performance attributes of the components themselves. But accurate

performance analysis results need sensitivity analysis be taken into account.

This thesis proposes and implements a statistic approach of multi-factor in

sensitivity analysis. It carries out a quantitative sensitivity analysis of service-

oriented system with better accurateness due to considering more factors as

input and simultaneously, got multi-pairs of interactions between factors. Also

two different methods of optimizing the software architectural design of a web

service-based system are developed.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DEDICATED

To my parents, my family, my sisters, brothers,

and all who love me and beloved

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I am very grateful to my supervisor, Professor Xiaobu Yuan, for his invaluable

guidance, constant encouragement and patience throughout the research period.

I feel lucky that he supervised my thesis. I would also like to thank my thesis

committee members, Dr. Jianwen Yang, Dr. Joan Morrissey and Dr. Arutina

Jaekel, who have been all generous and patient. Their confidence in my abilities

has been unwavering, and has helped to make this thesis a solid work.

I wish to express my affectionate gratitude to my husband Caishi Wang, my mom

Yulan Liu, my parents-in-law Junda Wang and Shuying Jiao, my sisters Fengjiao

and Sanjiao, for their love and support, for never doubting in me, always being

proud of me and never letting me forget it. Without their encouragement and

support, I would not go this far. Their love is one of the most important parts in

my life. Deep appreciation also goes to other relatives and close friends who

encourage me to make great dreams come to true, though I cannot list their

names one by one here.

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

ABSTRACT... Ill

DEDICATION...IV

ACKNOWLEDGEMENTS ..V

TABLE OF CONTENTS..VI

LIST OF TABLES..VIII

LIST OF FIGURES.. IX

1. INTRODUCTION... 1

1.1 M o t iv a t io n ..2

1.2 Co n t r ib u t io n s ... 4

1.3 Or g a n iz a t io n s .. 5

2. LITERATURE REVIEW.. 6

2.1 Co m po n ent-B ased So ftw are En g in e e r in g (CB SE)...6

2.1.1 Co m po nent D e f in it io n ... 7

2.1.2 C o m po nent-B ased Softw are L ife Cyc le (C S LC).. 8

2.2 Ser v ic e -O r ien ted Softw are Sy s te m s ..9

2.2.1 Se r v ic e -O r ien ted A r c hitec tu r e (S O A)..10

2.2.2 W eb-Servtce Based Sy s t e m s ... 12

2.3 Softw are Perfo r m an c e En g in e e r in g (SPE).. 15

2.3.1 Perform ance M o d e l s .. 16

2.3.2 Perform ance A n a ly s is of So ftw a r e A r c h it e c t u r e 20

2.3.2.1 Perfo rm ance A ssessment of So ftw are A r c h ite c tu r e (P A S A).............. 21

2.3.2.2 U M L Profile for Sc h e d u l a b il it y , Per fo r m anc e a n d T im e (SPT)...........23

2.3.2.3 Perfo rm ance a n a ly sis w it h th e A n n o ta te d U M L m o d e l24

3. A STATISTIC APPROACH.. 29

3.1 Pr o b lem D o m a in ..29

3.2 Se n s it iv it y A n a ly s is (SA) a n d D esign of Ex p e r im e n t (D oE)29

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Sta tis t ic A p p r o a c h ..30

3.3.1 T w o -fa cto r Fa c to r ia l T r e a tm e n t D e s ig n ...31

3.3.1.1 T w o -facto r A n a ly sis of V a r ia n c e ..34

3.3.1.2 M u ltiple Com pariso ns-SN K Ra n g e T e s t .. 37

3.3.2 M u l t i-facto r Fa c to r ia l T r e a tm e n t D e s ig n ... 40

3.3.2.1 T hree-fa cto r A n a ly s is of V a r ia n c e .. 42

4. EXPERIMENTS AND DISCUSSION.. 48

4.1 Ex p e r im e n ta l En v ir o n m e n t Ov e r v ie w ..48

4.2 Ex p e r im e n ts ...49

4.2.1 D a t a c o llec tin g a n d q u a n t it a t iv e a n a l y s is ..52

4.2.1.1 Case 1 ...52

4.2.1.2 Co m pa r in g to T w o -facto r Fa c to r ia l T r e a tm e n t D e s ig n58

4.2.1.3 Case 2 ...60

5. CONCLUSIONS AND FUTURE WORK... 66

5.1 Co n t r ib u t io n of th e Res ea r c h ...66

5.2 D irectio ns of Fu tu r e W o r k .. 67

BIBLIOGRAPHY... 69

VITA AUCTORIS... 76

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 3.1 Pressure Inside a Vacuum Tube...32

Table 3.2 Formulized Table Pressure Inside a Vacuum Tube............................... 33

Table 3.3 The Analysis of Variance Table for Two-Factor Factorial Treatment

Design... 36

Table 3.4 Analysis of Variance for Vacuum Tube Pressure Experiment.............. 37

Table 3.5 Data for Power Requirement...41

Table 3.6 Formulized Table for Power Requirement...42

Table 3.7 The Analysis of Variance Table for Three-Factor Factorial Treatment

Design... 46

Table 3.8 Analysis of Variance for Power Requirement.. 47

Table 4.1 System Response Time(s) for Case 1 ... 53

Table 4.2 Analysis bf Variance for Case 1 ..53

Table 4.3 Data for B=0.5... 58

Table 4.4 Analysis of Variance for Table 4 .3 .. 58

Table 4.5 Data for B =1.. 59

Table 4.6 Analysis of Variance for Table 4 .5 .. 59

Table 4.7 Data for B =2..60

Table 4.8 Analysis of Variance for Table 4 .7 ..60

Table 4.9 System Response Time(s) for Case 2 ...61

Table 4.10 Analysis of Variance for Case 2 ..62

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES
Figure 2.1 Service-Oriented Architecture..10

Figure 2.2 Web Service Architecture..14

Figure 2.3 Basic Service Description...15

Figure 2.4: Interface in UML... 15

Figure 2.5: Typical queuing network..17

Figure 2.6 An example of simple LQN model... 18

Figure 2.7 A simple sequence diagram...25

Figure 2.8Layered system example of a web-based ticket reservation system...27

Figure 4.2 Annotated UML Sequence Diagram for Web Services Invocation 51

Figure 4.3 Layered Queuing Network Model for Web Services Invocation..........52

Figure 4.4 Response Time(s) for Case 1 ..57

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction

Since the naissance of the first computer, software industry has been searching

for effective techniques to deal with the difficulties of software development. In

the past decades, the complexity of software systems has increased dramatically,

and productivity and time-to-market become the major concerns of software

industry. Traditional approaches of software development failed to cope with

sophisticated applications of computer systems. In comparison, Component-

Based Development (CBD) allows software systems to be developed from pre­

produced parts, thus improving not only productivity but also the quality and

maintainability of software products. In CBD, pre-produced parts can be easily

maintained and customized to produce new functions and features for them to be

reused in different applications [HC01]. CBD promises increased productivity and

reduced development efforts through larger-grained software reuse [Kim02].

In addition, Service-Oriented Architectures (SOA) has gained a lot of momentum

in software engineering in recent years [TJ05]. As a new technology of dealing

with the challenge of interoperability of systems in heterogeneous environments,

SOA helps IT organizations to support alignment with business requirements that

are changing at an increasing rate. Other benefits of SOA include reuse of

components, improved reliability, and reduced development and deployment

costs [KKL+05]. A service-oriented architecture consists of a collection of

services that communicate with each other [TJ05]. It must also provide the

mechanism to support the functionality for service description and publishing,

service discovery, and service consumption/interaction. When services use the

Internet for the means of communication, the inter-service infrastructure

becomes web services-based. Component-Based Development provides a tried

and tested foundation for the implementation of a SOA [BJK02].

l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The remaining of this chapter first introduces performance analysis of SOA and

web services-based systems as the motivation of the proposed thesis research.

Afterwards, contributions of this thesis research are explained with highlights of

sensitivity analysis for service-oriented software systems. The structure of the

thesis proposal is also given in the section of organizations.

1.1 Motivation

As a key factor that determines the success of software development, software

performance is considered extremely important in the practice of component-

based and web service-based software systems [BJK02]. The performance

aspect of a service-oriented system is of paramount importance. While SOA has

gained its popularity, the actual performance of SOA systems is still

unpredictable. As system architecture determines the quality of software systems,

performance effects of architectural decisions can be evaluated at an early stage

by constructing and analyzing quantitative performance models that capture the

interactions between the main components of the system as well as the

performance attributes of the components themselves. It is more cost-effective to

push performance analysis back to a very early stage of architectural design.

J

Typical performance analysis of software architectures involves three steps

[PS02]: firstly, the UML (Unified Modeling Language) model of the software

architecture is translated into a performance model, such as Queuing Network

model (QN) [Buz71], Layered Queuing Network model (LQN) [RS95], and

Stochastic Rendezvous Network model (SRVN) [WNP95]. In the second step, a

performance analysis tool, such as the LQN solver, conducts experiments on the

performance model. Finally, the experiment results are fed back into the UML

model to refine the architecture design.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Before the experiment results are fed back into the UML model, the studying of

sensitivity of performance of systems due to the effects of system factors are

very important.

Unfortunately, The sensitivity analysis for service-oriented software systems

does not catch enough attention. Much of the software industry’s focus is

currently on the underlying technology for the design, implementation, and

application of Web services and their interactions [ABG+01] [MMF02] [HL03]

[GH02] [GDH05] [LGH05]. How can we design a system to meet the

performance requirement while take advantage of service-oriented architecture?

There is a growing body of research that studies performance analysis. In [AG97]

[SG96], the authors focus on the studies of the role of software architecture in

determining different quality characteristics in general, while in [SG98] [WS98],

authors focus on performance characteristics in special. In [LK98] [GT02] [GT01]

the robustness and reliability of analysis methods are discussed. But accurate

performance analysis results need sensitivity analysis be taken into account. V.S.

Sharma and K.S. Trivedi introduced security and cache behavior into architecture

reliability analysis as an effort to produce accurate analysis results [ST05].

However, none of the above quantitatively takes into account the interaction

between factors that effects system performance.

In [KL98] a statistic technique is used for performance analysis to reduce

perturbation and data volume while retaining interesting characteristics of

performance data. A statistical framework for analyzing the performance

sensitivity of designs to various timing related effects, noise and variations are

proposed in [LKC+00]. But Statistic method used on performance analysis for

service-oriented systems is new.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As described above, there are three steps in performance analysis. Between

step 2 and step 3, studying the sensitivity of performance of a system due to the

effect of system factors is very important. However, little research has been done

in service-oriented software systems. In [Hua04], the author did an effort to

consider interactions. But it took into account only two factors and one

observation per treatment condition, where there is not a clear-cut way to

separate the effect of the interaction of the two factors from the experimental

error [LM74], its further discussion based on that there is no interaction between

factors. So a more accurate approach, multi-factor sensitivity analysis approach

with multi-observation per cell, is proposed.

1.2 Contributions

Sensitivity analysis that replies upon human sense on graphical analysis to

decide the quality of architecture designs unavoidably reduces the quality of

analysis results. This thesis applies a statistic approach of multi - factor in

sensitivity analysis. It provides a quantitative sensitivity analysis of service-

oriented system. In regard to two factors approach, it has better accurateness

due to considering more factors as input and simultaneously, got multi-pairs of

interactions between factors, not only one pair between two factors. Also two

different methods of optimizing the software architectural design of a web

service-based system are developed, one is based on having interactions and

the other for no interaction. Introducing multi-factors sensitivity analysis in

performance analysis in early design stage will lead to robust architecture design

because it produces more accurate quantitative feedback to software designers,

and help them to optimize the development of sen/ice-oriented software systems.

No doubt it helps to reduce the cost of software development and improve quality

too.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Organizations

In the following part of this thesis, the background of all the related fields, i.e.

component-based software engineering (CBSE), Service-oriented Software

Systems, Web-service based systems and software performance engineering

(SPE), the analytic model - Layered Queuing Network (LQN) model for

performance evaluation will be introduced. In particular, PASA, a method for

performance assessment of software architecture will be described in detail in

Chapter 2. Chapter 3 presents problem domain, introduces sensitivity analysis

and proposed statistic approach in detail. Chapter 4 describes experiments and

discussions of sensitive analysis based on a service-oriented system - Web

services-based Clinical Decision Support System (CDSS). Finally, the

conclusions, restates the contributions of this thesis and points to future research

directions are presented in Chapter 5.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Literature Review

2.1 Component-Based Software Engineering (CBSE)

In the past decades, as system complexity is increasing sharply, time-to-market

and productivity become key concerns in software industry. Traditional

approaches failed to cope with more sophisticated hardware and software

technologies. Software industries are striving for new techniques and approaches

that could improve software developer productivity, reduce time-to-market,

deliver excellent performance and produce systems that are flexible, scalable,

secure, and robust. Software reuse not only improves productivity but also has a

positive impact on the quality and maintainability of software products.

Component-Based Development (CBD) is an appealing technology that can

meet these demands and following this with providing increased productivity and

reducing development efforts through larger-grained software reuse [Kim02].

And Component-Based Software Engineering (CBSE) has emerged, which has

raised great interest in software industries. CBSE primarily concerns with three

functions [HC01]:

1) Developing software from pre-produced parts

2) The ability to reuse those parts in other applications

3) Easily maintaining and customizing those parts to produce new functions

and features

Component-based software engineering encourages reuse of pre-developed

system pieces rather than building from scratch. It provides managers with

opportunities to streamline their software development process all through its

phases, from analysis to maintenance, and from project planning to project

tracking [Bha98] [BW98].

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Although component-based development offers many potential benefits, such as

greater reuse and reduced time-to-market (and hence software production cost).

It also raises several issues that developers need to consider [BBOO] [Lau06]. In

other words, there are still many areas that researchers can work on in this field.

2.1.1 Component Definition

There are still many debates about the definition of component. The following

definitions of software component are commonly cited throughout the literature

[GH03]:

• A component is a language neutral, independently implemented package of

software services, delivered in an encapsulated and replaceable container,

accessed via one or more published interfaces [SpaOO].

• A software component is a coherent package of software artifacts that can be

independently and delivered as a unit and that can be composed, unchanged,

with other components to build something larger. (D’Souza)

• A software component is a physical packaging of executable software with a

well-defined and published interface [HopOO].

• A business component represents the software implementation of an

“autonomous” business concept or business process. It consists of the software

artifacts necessary to express, implement, and deploy the concept as a reusable

element of a larger business system [Koz98].

• A software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component can be

deployed independently and is subject to third-party composition [Szy98]

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By analyzing the above definitions of software component, we can derive that a

software component is a coherent package of software implementation; it carries

out a set of related services or functions and offers well-defined and published

interfaces; also it offers services that are accessible through its interfaces only;

finally it is reusable and can be independently developed and delivered.

The software components can be commercially available off the shelf (COTS),

developed in-house, or developed contractually. Modern programs are likely to

be made up of thousands or millions of parts distributed globally, executing

whenever called, and acting as parts of one or more complex systems. Thus,

predicting the performance of an application taking into account sensitivity

analysis is absolutely essential.

2.1.2 Component-Based Software Life Cycle (CSLC)

A typical life cycle of software components consists of the following phases:

design, deployment and run-time [Lau06].

In the design phase, components are constructed, catalogued and stored in a

repository where they can be retrieved later when needed. Components in the

repository can be both source and binary code.

In the deployment phase, components are retrieved from the repository, and

compiled to binary code. These binary components can be composed to a

system that is ready for execution.

In the run-time phase, there is no new composition, but components of a system

are instantiated with data and then executed.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CSLC is * the life cycle process for a software component with an emphasis on

business rules, business process modeling, design, construction, continuous

testing, deployment, evolution, and subsequent reuse and maintenance.”[CH01]

Comparing with a traditional software development life cycle, the analysis and

design phases for a CSLC are significantly longer. Much more time is spent in

business rules, business process modeling, analysis and design. Much less time

is devoted to development.

2.2 Service-Oriented Software Systems

In recent times, the use of a service-oriented approach to software engineering

has become popular. Service-Oriented Architectures (SOA) has gained a lot of

momentum in software engineering [TJ05]. Service-Oriented Architectures have

emerged as the main approach for dealing with the challenge of interoperability

of systems in heterogeneous environments, address pressures of IT

organizations to support alignment with business requirements that are changing

at an increasing rate. One aspect of such service-oriented systems is that their

component services can usually be composed and used in a variety of

unplanned-for ways.

When the services use the Internet as the communication mechanism, the inter­

service infrastructure becomes web services-based. Component-Based

Development provides a tried and tested foundation for the implementation of a

SOA [BJK02].

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2.1 Service-Oriented Architecture (SOA)

A web service is “ a software module deployed on network accessible platforms

provided by the service provider.” [CF02] It may be invoked by or to interact with

a service requestor and May also function as a requestor, using other web

services in its implementation.

A Service-Oriented architecture is a collection of services that communicate with

each other. As shown in Fig. 2.1 [CF02], service-oriented architectures involve

three different kinds of actors: service providers, service requesters and

discovery agencies.

Find Publish

Interact

Figure 2.1 Service-Oriented Architecture

• Service requester -- requests the execution of a service. This is the

application that is looking for and invoking or initiating an interaction with a

service. Its role in the client-server message exchange patters is that of a

client.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Service provider -- processes a service request. It has been referred to as

a service execution environment or a service container. Its role in the

client-server message exchange patterns is that of a server.

• Discovery agency -- agency through which a service description is

published and made discoverable. This is a searchable set of service

descriptions where service providers publish their service descriptions.

The service discovery agency can be centralized or distributed.

The service provider exposes some software functionality as a service to its

clients. Such a service could, e.g., be a SOAP based web service for electronic

business collaborations over the Internet. In order to allow clients to access the

service, the provider also has to publish a description of the service. Since

service provider and service requester usually do not know each other in

advance, the service descriptions are published via specialized discovery

agencies. The discovery agencies work as a “match-maker”. They can categorize

the service descriptions and provide them in response to a query issued by one

of the service requesters. As soon as the service requester finds a suitable

service description for its requirements at the agency, it can start interacting with

the provider and using the service. There are some critical characteristics for

effective use of services recommended by [BJK02]:

o Interface-based design: Services implement separately defined interfaces

o Discoverable: Services need to be found at both design time and run time,

not only by unique identity but also by interface identity and by service

kind.

o Loosely coupled: Services are connected to other services and clients

using standard, dependency-reducing, decoupled message-based

methods such as XML document exchanges.

o Coarse-grained: Operations on services are frequently implemented to

encompass more functionality and operate on larger data sets, compared

with component-interface design.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Single instance: Unlike component-based development, which instantiates

components as needed, each service is a single, always running instance

that a number of clients communicate with.

o Asynchronous: In general, services use an asynchronous message

passing approach; however, this is not required.

2.2.2 Web-Service Based Systems

Component-based development makes it possible to assemble an application

from a repository of components developed in various languages by

homogeneous or heterogeneous composition. Web Services provides an easy

way to extend component-based development by adopting open Internet

standards. Web services allow the open and flexible interaction of applications

over the Internet. Web services standards provide a high level of interoperability

across platforms, programming languages and applications. Web services are

invoked over a network, however they do not have to reside on the World Wide

Web; they can be located on an Intranet, or anywhere on the network.

A Web service is “a software system identified by a URI, whose public interfaces

and bindings are defined and described using XML. Its definition can be

discovered by other software systems. These systems may then interact with the

Web service in a manner prescribed by its definition, using XML based

messages conveyed by internet protocols” [CF02]

A software agent in the Web services architecture can act in one or multiple roles,

acting as requester or provider only, both requester and provider, or as requester,

provider, and discovery agency. A service is invoked after the description is

found, since the service description is required to establish a binding

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Currently, Web Services technology implements SOA by means of standard

XML-based initiatives. Three initiatives are used in order to support interactions

among Web Sen/ices: SOAP (a way to communicate) [13], WSDL (a way to

describe services) and UDDI (a name and directory server).

There are three key components of web service systems [Gra02]:

• wire: Comprises all technologies required to transport a service request from

client to server; including XML for message encoding, and the Simple Object

Access Protocol (SOAP) for handling data transmission capabilities.

• Description: A web service interface provides a collection of operations accessible

through standardized XML messaging. This interface is described using the Web

Services Description Language (WSDL), which specifies the operations provided

by a web service, including the kinds of objects that are expected as input and

the output of the operations.

• Discovery: The service requestor discovers the web service via discovery agencies

that allow service descriptions to be published and discovered. From a

performance perspective this involves the time to look up the service in the web

services directory using Universal Description Discovery and Integration (UDDI).

Figure 2.2 shows how XML messaging (SOAP), WSDL, UDDI and network

protocols can be used as the basis of the web services architecture.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.2 Web Service Architecture

As mentioned in section 2.2.1, the design of the interfaces is a critical

characteristic in successful design of service-oriented system. A service interface

definition is an abstract or reusable service definition that may be instantiated

and referenced by multiple service implementation definitions. In WSDL, the

service interface contains elements that comprise the reusable portion of the

service description: binding, portType, message and type elements as depicted

in Figure 2.3 - Basic Service Description below.

The service implementation definition describes how a particular service interface

is implemented by a given service provider. It also describes its location so that a

requester can interact with it

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SaiĤ ice :.
Service

Implementation
Definition Port

Service
Interface

Definition

Binding

PortType

Message

Type

Figure 2.3 Basic Service Description

Unified Modeling Language (UML) is used as a tool to describe both logical and

implementation designs, as well as specific patterns for both component and

service design. Figure 2.4 gives a Security interface in UML.

*interface»
Security

+ Logonllser ([in] UID : String , [in] token : Token)
+ GetllserName () ; String
+ GetUserDomain () : String

Figure 2.4: Interface in UML

2.3 Software Performance Engineering (SPE)

Software Performance Engineering (SPE) is “a method for constructing software

systems to meet performance objectives.” [Smi90] This technique proposes to

use quantitative methods and performance models in order to assess the

performance effects of different design and implementation alternatives, from the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

earliest stages of software development throughout the whole lifecycle.

Performance refers to the response time or throughput as seen by users. With

software systems becoming more complex, and handling diverse and critical

applications, the need for their thorough evaluation has become ever more

important.

Currently there are three kinds of performance evaluation techniques:

measurement, simulation and analytic modeling. Measurement technique applies

only to existing systems, so it is not suitable for performance evaluation in the

early stage of software development. While an analytic model captures the

essence of the modeled system as a set of mathematical equations, a simulation

model "mimics" the structure and behavior of the real system. The simulation

models are less constrained in their modeling power, so they can capture more

details. However, simulation models are, in general, harder to build and more

expensive to solve. In this thesis, analytic modeling is chosen due to the fact that

its cost (in terms of time and money) is lowest among the three. The Layered

Queuing Network (LQN)- the analytic model - will be used in the quantitative

performance analysis during the architectural design. LQN modeling is very

appropriate for such a use, due to fact that the model structure can be derived

systematically from the high-level architecture of the system.

2.3.1 Performance Models

Analytic models are easily solved, often interactively and provide initial feedback

on whether or not planned software is likely to meet performance goals by

producing the estimates of a set of values about the system under study with a

given set of execution conditions. These conditions may be fixed permanently in

the model, or set at runtime with free variables or parameters of the model.

Varying the input values indicates how the outputs vary with changing conditions.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Typical representations used for performance models include queuing networks

(QN), Petri nets, and a variety of proprietary simulation languages and notations.

Among them, QN model and related extensions are widely adopted by

researchers.

> Queuing Network Model (QN)

In 1971, Buzen proposed system modeling with Queuing Network (QN) model

and published some efficient algorithms [Buz71]. The model is constructed from

information on the computer system configuration and measurements of

resource requirements for each of the workloads modeled. The computer system

resources are represented as queues and servers. A service represents a

component of the environment that provides certain service to the software. The

queue represents jobs waiting for services and the job represents a computation

entering the system, makes requests of computer system resources. This

technique has ever since been used to represent computer system performance.

Figure 2.5 illustrates the QN model with four queues including CPU queue,

database queue, SCSI disk array and disk array

CPU SCSI

♦moo ►ztnD-J

Figure 2.5: Typical queuing network

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One of the simplest QN models with some restrictions is called product-form

models. A product-form model has computationally efficient solutions such as

Mean Value Analysis (MVA). In a product-form QN model, a request is not

allowed to hold more than one resource at the same time.

> The Layered Queuing Network Model (LQN)

LQN was an extension of QN model. LQN extends the QN model to reflect

interactions between client and server processes. The processes can be shared

devices and software servers. It combines the contention of both software and

hardware component, such as processors, disks, networks. The main difference

of LQN with respect to QN is a server that receives client request and blocks

client process in the service queue. The server can also be a client to other

servers from which it requires nested services while serving its own clients. The

successive two layers form a potential sub-model of QN and the model is solved

by Mean Value Analysis (MVA) techniques. In particular, to solve the problem in

the system being modeled caused by nested calling patterns, MVA techniques

partition the input layered queuing network model into a set of smaller MVA sub

models, and then iterate among these sub models until convergence in waiting

times.

Zatem u // / CM«L2 //
Z—

Figure 2.6 An example of simple LQN model

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A LQN model is represented as an acyclic graph. Nodes (also named tasks) refer

to software entities and hardware devices and arcs denote service requests.

Figure 2.6 shows an example of simple LQN model for a three-tiered

client/server system. The software entities are drawn as parallelograms and the

hardware devices as circles. The nodes with outgoing and no incoming arcs play

the role of pure clients. The intermediate nodes with incoming and outgoing arcs

play both the role of client and of server and usually represent software

components. The leaf nodes are pure servers and usually represent hardware

servers (such as processors, I/O devices, communication network, etc.). Nodes

that do not receive any requests are special and they are called reference tasks

and represent load generators or users of the system.

In Figure 2.6, at the top there are two reference tasks (Client_1 and Client_2).

Each client sends requests for a specific service offered by a task named

Application, which represents the business layer of the system. Each Application

entry requires services from two different entries of the Database task, which

offers in total three kinds of services. Every task has a host processor, which

models the physical entity that carries out the operations. In Figure 2.6, P ro d ,

Proc2, Proc3, Diski and Disk2 are host processors. An arrow from an entry of

one task, say “Client_1”, to an entry of another task, say “Application”, represents

a call. A task has one or more entries that represent different operations it may

perform. A so-called entry is drawn as a parallelogram “slice”.

LQN was applied to a number of concrete industrial systems (such as database

applications, web servers, telecommunication systems, etc.) and was proven to

be useful for providing insights into performance limitations at software and

hardware levels, for suggesting performance improvements in different

development stages, for system sizing, and for capacity planning.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

> Stochastic Rendezvous Network Model (SRVN)

The Stochastic Rendezvous Network (SRVN) model [WNP+95] extends the

queuing networks to model the system with rendezvous delay. Client-server

systems with RPC calls cannot be modeled by classic queuing network model

due to the restriction to use one resource at a time.

A SRVN Model consists of the inputs tasks, entries, and phases, and the output,

throughput. Tasks represent hardware and software objects that may execute

concurrently, entries differentiate service demands at the tasks and phases

denote different intervals of service within entries. Requests for service are made

from entry to entry through send-receive-reply message interactions. Tasks do

not possess internal concurrency. The core of a SRVN model is a directed graph

whose nodes are service entries and whose arcs represent requests from one

entry to another. The SRVN model is special because it incorporates the notions

of phases and included service [FHM+95]. The execution of an entry is divided

into phases. Included service refers to the time a task is blocked waiting for a

reply after sending a request to a lower level server. However, the SRN model

has a limited capability of expression. The behavior of the system is modeled as

a task that provides service to requests in a queue. It is difficult to express the

inter task protocol.

2.3.2 Performance Analysis of Software Architecture

Software Architecture (SA) influences the achievement of quality attributes (such

as performance, security, maintainability and usability) in a software system. In

[WS02], Smith noted, “While a good architecture cannot guarantee attainment of

quality goals, a poor architecture can prevent their achievement.” Kazman further

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

comments that, “quality attributes of large software systems are principally

determined by the system’s software architecture.” [KKB+98]

Architecture evaluation is considered an effective technique to address quality-

related issues early in the development lifecycle. Architectural decisions are

made very early in the software development process, therefore, it would be

helpful to be able to assess their effect on software performance as soon as

possible.

According to [AG97], software architecture represents a collection of

computational components that perform certain functions, together with a

collection of connectors that describe the interactions between components.

A number of methods, such as Architecture Tradeoff Analysis Method (ATAM)

[KBK+99], Software Architecture Analysis Method (SAAM) [KBA+94],

Architecture-Level Maintainability Analysis (ALMA) [LBB+02], and Performance

Assessment of Software Architecture (PASA) [WS02] have been developed to

evaluate quality-related issues at the software architecture level. PASA, SAAM

and ATAM are “scenario-based” where scenarios are used to provide insight into

how the architecture satisfies quality objectives. However, PASA explicitly uses

performance patterns and anti-patterns as analysis tools and for making

recommendations for improvements. The steps in the PASA method lead directly

to the construction of performance models as described in [SW02]

2.3.2.1 Performance Assessment of Software Architecture (PASA)

PASA is a method for the performance assessment of software architectures. It

uses the principles and techniques of SPE to identify potential areas of risk within

the architecture with respect to performance and other quality objectives. If a

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

problem is found, PASA also identifies strategies for reducing or eliminating

those risks.

The PASA process consists of ten steps [WS02]:

i. Process Overview—The assessment process to familiarize both

managers and developers with the reasons for an architectural

assessment, the assessment process, and the outcomes.

ii. Architecture Overview— In this step, the development team

presents the current or planned architecture.

iii. Identification of Critical Use Cases —The externally visible

behaviors of the software that are important to responsiveness or

scalability are identified.

iv. Selection of Key Performance Scenarios— For each critical use

case, the scenarios that are important to performance are identified.

v. Identification of Performance Objectives— Precise, quantitative,

measurable performance objectives are identified for each key

scenario for each situation or performance study of interest.

vi. Architecture clarification and discussion— Participants conduct a

more detailed discussion of the architecture and the specific features

that support the key performance scenarios. Problem areas are

explored in more depth.

vii. Architectural Analysis—The architecture is analyzed to determine

whether it will support the performance objectives.

viii. Identification of Alternatives— If a problem is found, alternatives for

meeting performance objectives are identified.

ix. Presentation of Results— Results and recommendations are

presented to managers and developers.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x. Economic Analysis—The costs and benefits of the study and the

resulting improvements.

Among all the above steps, step vii is critical. In this step, several techniques are

brought to bear in analyzing the performance of software architecture. They

include [WS02]:

* Identification of the underlying architectural style(s)

■s Identification of performance anti-patterns

v' Performance modeling and analysis: portions of the architecture

may require more quantitative analysis. So quantitative

performance analysis is conducted and performance annotations

(such as stereotypes, tagged values defined in UML profile for SPT)

are added. The models used are deliberately simple so that

feedback on the performance characteristics of the architecture can

be obtained quickly and inexpensively.

2.3.2.2 UML Profile for Schedulability, Performance and Time (SPT)

Software Performance Engineering promotes the integration of performance

evaluation into the software development process from the early stages and

continuing throughout the whole software life cycle. Different kinds of analysis

techniques may require additional annotations to the UML model. OMG's solution

to this problem is to define standard UML profiles for different purposes. The

UML Profile for Schedulability, Performance and Time (SPT) [OMG02] adopted

for UML 1.4 defines an notations regarding schedulability and performance the

SPT Profile enables the application of the SPE methodology to systems

developed with UML for assessing the performance effects of different design

and implementation alternatives as early as possible.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The SPT Profile contains the Performance Subprofile that identifies the main

basic abstractions used in performance analysis including stereotypes, tagged

values and constraints to represent performance requirements, the resources

used by the system and so on.

A simple example [BFW04] is given in Figure 2.7. The «P A con text» stereotype

indicates that this diagram is a scenario involving some resources (software

objects in this case) driven by a workload. The objects are a server (an active

object, indicated by the heavy box), and a lock. The annotation on the lifeline of

the user object has a «PA openLoad» stereotype indicating that it is a workload,

i.e. it defines the intensity of the demand made on the system by the users of this

scenario; in this case there is an unbounded number of requests, with the interval

between requests being exponentially distributed with a mean of 20 ms. A

requirement that the mean response time is 70 ms is given, along with a

placeholder variable ($Resp) for the predicted value that will be determined by

simulation. The server offers a single operation, which requires the lock to be

acquired and released — each of these operations takes 10 ms on average.

2.3.2.3 Performance analysis with the Annotated UML model

As discussed in section 2.3.2.1, in the key step vii of PASA - Architectural

Analysis, several techniques are brought to bear in analyzing the performance of

software architecture. In the last step, performance modeling and analysis,

quantitative performance analysis based on an annotated UML model is

conducted. Three steps are involved:

• Firstly, the UML model of the software architecture is translated into a

performance model, such as Queuing Network model (QN) [Buz71],

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Layered Queuing Network model (LQN) [RS95], and Stochastic

Rendezvous Network model (SRVN) [WNP95] - discussed in 2.3.1.

requests)

«PAstep»
{PAdemand=(‘assm’,

'disf,{‘exp’,10),'ms')}

«PAresource»

l.Lock

«PAresource»

*«PAopenLoad»
{PAoccurencePattem = (‘unbounded’,

‘exp', 20, ‘ms’),
PArespT«ne={freq,,’mesan,,70;ms'),

(•pred7mean’,$Resp}}}

Figure 2.7 A simple sequence diagram

• In the second step, a performance analysis tool, such as the LQN solver,

conducts experiments on the performance model.

• Finally, the experiment results are fed back into the UML model to refine

the architecture design.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The UML diagrams that provide the key information required for performance

analysis are those that describe behavior and resources:

Sequence or activity diagrams can be used to express those

scenarios that have performance requirements.

Statechart diagrams describe the behavior of active objects, and

the time required to respond to stimuli.

- Deployment diagrams define how active objects are mapped onto

processing resources.

The formalism used for building performance models in this thesis is the Layered

Queuing Network (LQN) model

The LQN model structure is generated from the high-level software architecture

that shows the high-level architectural components and their relationships, and

from deployment diagrams that indicates the allocation of software components

to hardware devices. The LQN model parameters are obtained from annotated

UML models of key performance scenarios.

The UML to LQN transformation is realized in two big steps [PZG+05]. In the first

step, the LQN model structure (i.e., the software tasks, hardware devices and

connecting arcs) is generated from the software architecture and deployment

diagrams. In the second step, the entries (which correspond to task services),

phases, activities and their parameters are derived from scenario descriptions.

Figure 2.8 [Woo02] shows an example system, representing a web-based ticket

reservation system. It uses the UML notation for the software in part (a) and the

deployment in part (b). The layered model in part (c) combines these two.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

browser

-interaet() {delay = 5 sec}

Webserver

- connect()
- display()
- reserveQ
- confirm()

TicketDB

queryTDBQ
■ updateTDB()

^UserNode"

Browser

« L A N »

ServerNode

W ebserver

TicketDB'

(a) UML class diagram (b) UML deployment diagram

Browserinteract

[Z = 5 s]

display confirmconnect reserve UserCP

licketDB

ServerCBU

(c) Layered Queueing model

Figure 2.8Layered system example of a web-based ticket reservation system

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A performance analysis tool to solve the performance model has to be used in

the following step. Layered Queueing Network Solver (LQNS) is one of such

tools. LQNS combines the strengths of SRVN and MOL (Method of Layers)

solvers to broaden the modeling scope and improve the accuracy of solutions to

layered quequeing networks. The input of LQN solver is the demands at various

components such as disk, processors. The outputs of LQN solver produce are

the service time, utilizations, and throughputs of the software system.

Before the experiment results are fed back into the UML model (step three),

studying the sensitivity of performance of a system due to the effect of system

factors is very important. Sensitivity analysis (SA) can be done to study the

sensitivity of the performance (output) of a system due to the change of its

factors (input) and analyze the interaction between these factors and the effect of

each individual factor in a quantitative way. The goal of sensitivity analysis is to

optimize the software architectural design.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. A Statistic Approach

3.1 Problem Domain

There are growing researchers that study performance analysis. But accurate

performance analysis results need sensitivity analysis be taken into account. As

discussed in section 2.3.2.3 there are three steps in performance analysis.

Between step 2 and step 3, studying the sensitivity of performance of a system

due to the effect of system factors is very important. However, little research has

been done in service-oriented software systems and Web Service-based

systems. In [Hua04], the author did an effort. But it took into account only two

factors with one observation per treatment condition, where there is not a clear-

cut way to separate the effect of the interaction of the two factors from the

experimental error [LM74], its further discussion based on that there is no

interaction between factors. This thesis applies a statistic approach of multi -

factors in sensitivity analysis. Here factors refer to parameters that can have an

impact on the performance of the system, such as number of users, number of

CPUs, number of threads. It provides a quantitative analysis of service-oriented

system.

3.2 Sensitivity Analysis (SA) and Design of Experiment
(DoE)

Sensitivity analysis (SA) is the study of how the variation in the output of a model

(numerical or otherwise) can be apportioned, qualitatively or quantitatively, to

different sources of variation. Its purpose is to determine how sensitive the

results of a study or systematic review are to changes in how it was done. Design

of Experiment (DoE) refers to experimental methods used to quantify

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indeterminate measurements of factors and interactions between factors

statistically through observance of forced changes made methodically as directed

by mathematically systematic tables. DoE offers an empirical method of

sensitivity analysis.

Sensitivity analysis is an important aspect of performance analysis. It is very

useful for optimization of software systems and bottleneck analysis. It is common

in the early design stage that the exact values of the input parameters for the

model are unknown. Sensitivity analysis can then help in analyzing the influence

of the change in input parameters on the performance.

Design of Experiment (DOE) has been successfully used in many fields, e.g.,

physics, medicine, manufacturing. A Design of Experiment is a structured,

organized method for determining the relationship between factors (Xs) affecting

a process and the output of that process (Y). An experiment refers to a test or a

series of tests in which forced changes are made to the input variables of a

process or system on purpose so that an investigator can observe and identify

the reasons for changes that are observed in the output response.

Design of Experiments techniques provide an approach to efficiently designing

industrial experiments which will improve the understanding of the relationship

between product and process parameters and the desired performance

characteristic.

3.3 Statistic Approach

Our proposed statistic approach is a multi-factor factorial experiment. In order to

explain it more clearly, a number of terminologies and the experiment of two

factors need to be introduced first.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the further discussion, some terms related to experimentation are involved; the

following definitions are from [Bas96][Hic83]:

■ A hypothesis: is a tentative assumption made in order to draw out and test

its logical or empirical consequence

■ A study: is an act or operation for the purpose of discovering something

unknown or of testing a hypothesis

■ An experiment: is a study undertaken in which the investigator has control

over some conditions in which the study takes place and control over the

independent variables being studies

■ Controlled experiment: is an experiment in which the subjects are

randomly assigned to experimental conditions, the investigator

manipulates an independent variable, and the subjects in different

experimental conditions are treated similarly with regard to all variables

except the independent variable

■ Factorial treatment designs: refer to all possible combinations of the levels

of factors that are investigated in each complete trial or replication of the

experiment. It is an important type of design of experiment.

■ Factors: are defined as types of treatment such as exhaust index,

compaction method

■ Effect of a factor: is defined as the change in response caused by a

change in the level of the factor. This is also called a main effect since it

refers to the primary factors of interest in the experiment.

3.3.1 Two-factor Factorial Treatment Design

Example 3.1 is set up to demonstrate two-factor factorial treatment design

[Hic83].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This research is to determine the effect of factors exhaust index (in seconds) and

pump heater voltage (in volts) on the pressure inside a vacuum tube (in microns

of mercury), three exhaust indexes and two voltages are chosen at fixed levels.

The levels of the factors are defined as different categories of a factor. It was

decided to run two experiments at each of these six treatment conditions (three

exhaust indexes X two voltages)

Table 3.1 shows the resulting data.

Pump Heater
Voltage

Exhaust Index
y i . .60 90 150

127

48 28 7
18958 | 5 3 | 33 30.5 I 15 i i |

220

62 14 9
15554 5* 10 | 12 | 6 | 7.5

y ,„ . 222 85 37 y ... =344

Table 3.1 Pressure Inside a Vacuum Tube

In table 3.1, numbers in the square are called cell mean, they are the average of

the cell.

The result can be formulized in Table 3.2:

B Factor A
A 1 2 3 Means

y i.. = - * —(ym +
7 3 2

yii2+ yi2i+ yi22+ yi3i

1
ym yi2i yisi yi32)

y-112 yi22 V132

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2
y2n
Y212

y22t
V222

y23i
V232

y 2 . . = j * ^ (y 2n +

y 212+ Y221+ y 222+ y 231+

ym)

Factor B
Means

y - 1 =

1 J ,

yn 2+ y2 ii+

y2i2>

y-2 =

yi22+ Y221+

Y222)

y~ 3 =

yi32+ y231+

Y232)

_ 1 * 1 * 1
^ y "' 2 3 2
(y m + yn2+ yi2i+ y i22+

y m yi32+ y 2 ii + y2i2+

y 221+ y222+ y 231 + y 232t
Table 3.2 Formulized Table Pressure Inside a Vacuum Tube

For a two-factor factorial experiment with n observations per cell, run as a

completely randomized design, a general model would be:

Yyk = n +Ai+Bj+ABij+£ ijk (3.1)

Where A and B represent the two factors, i= 1,2,..., a level of factor A, j=1,2 b

levels of factor B, and k=1,2 n observations per cell. ^ is the population mean

which is the average of all observations, A is the effect of the /th level of the

factor A, is the effect of the /th level of the factor B, ABy is the effect of the

interaction between Ai and Bj, and e ijk is a random error component. In equation

(3.1) one tests the following hypotheses:

H0 : Aj=0 for all i
1

H0 :• Bj=0 for all j
2

Ho : ABy=0 for all i, j
3

Two-factor analysis of variance is used to test these hypotheses.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.1.1 Two-factor Analysis of Variance

Let y .. denote the total observations under the ith level of factor A, y.j. denote the

total of all observations under the jth level of factor B, yy denote the total of all

observations in the ijth cell, and y... denote the grand total of all the observations.

Define y \.. ,y . j ., y y. y y . , y ... as the corresponding marginal mean for factor A,

marginal mean for factor B, cell means, and population mean. Expressed

mathematically as follows:

b n

(3.2)
7=1 k=1

a n

/=1 k=1

n

b

a b n

abni=l 7=1 k=l

The total sum of squares can be written as

(3.3)
i= l 7=1 *=1 i= l 7=1 *= i

+(y,j. - y,.. - y.j.+ y...)+ (y^ - y«.)]2
a b n a b n

i=1 7=1 &=1 i=l 7=1 k=1

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+£ X X (y tj - y i . - y . j + y - y
2=1 j =1 k=l

a b n

+ ' L ' L ' L (y m - y t ,y
2=1 j =1 &=1

^ K x , - x ..)2 +an'£(y.J.. - x -) :
2=1 7=1

a b

+ « X X <X ~ y i - - y . j . + y - J '
2=1 7=1

a b n

X X I > i f t - > v) 2
2=1 7=1 k= 1

Equation 3.3 can be written symbolically as

SST = SSA + SSB + SSab + SSE

Where

a b n ,, ^2 y...ssT ->T - y* nhvt,=1 7=i *=i

S ^ - i P ' 2 - ^ b n

x , 4 2

S S B . 7^ abn

a b v 22 y...
s s - i S S * <*»

SSab=SSst-SSa-SSb

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SSe=SSt-S S ab-SSa-SSb (3.10)

For each sum of squares, there is a degree of freedom (df) associated with it. df

represents the number of independent variable. Each sum of squares divided by

its degrees of freedom is a mean square(MS)

We can either accept or reject the hypotheses using F test. The value of F0 test is

the ratio of mean squares, such as m Sa/m s e , m Sb/m s e , m s Ab/m s e. This value is then

compared with a Cumulative F Distribution table value Fa ,dfi.df2 where a is

confidence level, df1 is the degree of freedom associated with the numerator of

the mean square , df2 is the degree of freedom associated with the denominator

of the mean square. If the value of F test exceeds the table value, then we reject

the hypothesis; otherwise, we accept the hypothesis.

The results are summarized in table 3.3 as follows:

Source of
Variation SS df MS Fo

Factor A SSA a -1 F0= MSa/MSe

Factor B SSb b -1
Each SS divided by

its df F0= MSb/MSe

A X B (a -1)(b -
Interaction SSab 1) Fq= MSab/MSe

Error SSe ab(n-1)
Total SSt abn -1

Table 3.3 The Analysis of Variance Table for Two-Factor Factorial Treatment
Design

Now we use the data in table 3.1 to do the analysis of variance.

SSEi= (2 2 2)2 / 4 + (8 5) 2 / 4 + (3 7) 2 / 4 - (3 4 4) 2 /12=4608 .17

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SSV= (189)2 /6 + (1 5 5)2 /6 - (3 4 4) 2 /12 = 9 6 .33

SSei x v = SSst- SSei — SSv

=4987.67-4608.17-96.33= 283.17

Total results are displayed in table 3.4

Source of
Variation SS df MS Fo

Exhaust
Index(EI) 4608.17 2 2304.08 99.5

Voltage(V) 96.33 1 96.33 4.2
Interaction
(El x V) 283.17 2 141.58 6.1

Error 139.00 6 23.17

Total 5126.67 11
Table 3.4 Analysis of Variance for Vacuum Tube Pressure Experiment

In this final table, each main effect (El and V) and their interaction can be tested

for significance by comparing each mean square with the error mean square (F0).

Because Fo.05,2 ,6 = 5.14, and El’s F0 is 99.5>5.14, El x V’s F0 is 6.1 >5.14,

Exhaust Index is seen to be highly significant and the interaction is also

significant at the 5 percent level. Voltage is not significant at the 5 percent

significance level due to the fact that F0.o5, 1, e = 5.99, V’s F0 is 4.2<5.99.

3.3.1.2 Multiple Comparisons-SNK Range Test

Since the interaction is significant in this example, testing main effects is not

recommended because the results depend on how these main effects combine.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If one wishes to optimize the response variable, a reasonable procedure is to run

a Student-Newman-Keuls(SNK) test[Hic83] on the six means.

Student-Newman-Keuls range test takes the following steps:

1) Arrange the k means in order from low to high (here k refers to the total

number of cell means)

2) Take the MSe (Error Mean Square) from analysis of variance table with its

degrees of freedom (dfE)

3) Obtain the standard error of the mean for each treatment

4) Enter a Studentized range table of significant ranges at the a level

desired, using n^=degrees of dfEand p=2,3,...,/r, and list these k-1 ranges.

5) Multiply these ranges by Ss to form a group of k-1 least significant ranges

(LSR).

6) Test the observed ranges between means, beginning with largest versus

smallest, which is compared with the least significant range for p=k, then

test largest versus second smallest with the least significant range for p=k-

V, and so on. Continue this for second largest versus smallest, and so

forth, until all k(kA)!2 possible pairs have been tested.

Now apply SNK test on example 3.1:

1. All means are arranged in order:

number - o f - observations
MSe

7.5 11 12 30.5 53 58
EM E2V2 E2Vi EM E M

2. MSe =23.17 and dfE =6

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23.17

2 =3.40

4. Forp: 2 3 4 5 6

5percent ranges: 3.46 4.34 4.9 5.31 5.63

5. LSR: 11.76 14.76 16.66 18.05 19.14

6. Checking means:

58-7.5=50.5>19.14

58-11=47>18.05

58-12=46>16.66

58-30.5=27.5>14.76

58-53=5<11.76 *

53-7.5=45.5>18.05

53-11=42>16.66

53-12=41 >14.76

53-30.5=22.5>11.76

30.5-7.5=23>16.66

30.5-11=19.5>14.76

30.5-12=18.5>11.76

12-7.5=4.5<14.76*

* indicates the two means do not have significant difference.

Hence there are three groups of means:

7.5. 11. 12 30.5 53. 58

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If one is looking for the lowest pressure, any one of the three combinations in the

first group will minimize the pressure in the vacuum tube. So one can

recommend a 150-second exhaust index at either voltage or a 90-second

exhaust index at 220 volts, whichever is cheaper.

3.3.2 Multi-factor Factorial Treatment Design

Two-factor factorial idea can be extended to multi-factor factorial treatment

design. Now consider a problem with three factors, example 3.2, which is

presented to show three-factor factorial treatment design. This experiment was to

study the effect of several factors on the power requirements for cutting metal

with ceramic tools. Some of the factors that might affect the deflection are tool

types, angle of tool edge bevel, type of cut, depth of cut, feed rate and spindle

speed. After discussion, it was agreed to hold depth of cut constant at 0.200in.,

feed rate constant at 0.012 in./min, and spindle speed constant at 1000rpm. The

main objective of the study was to determine the effect of the other three factors

(tool type, angle of edge bevel and type of cut) on the power requirements. Two

tool type, two angel of edge bevel and two type of cut are chosen at fixed levels.

It was decided to run four experiments at each of these eight treatment

conditions (two Tool Type TX two Bevel Angle B X two Type of Cut C)

Table 3.5 shows the results in millimeter deflection.

Table 3.6 shows the formulized results.

The mathematical model for this three-factor factorial experiment and design

would be:

Yypk = //+ A j+ B j+ C p +ABjj+BCjp +ACjp +ABCyp + £ ijpk (3.11)

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Where Yi]pk represents the measured variable, pi is the population mean which is

the average of all observations, A-, is the effect of the /th level of the factor A, Bj is

the effect of the yth level of the factor B, Cp is the effect of the pth level of the

factor C where p= 1,2,..., c level of factor C, j=1,2,...,b levels of factor B, and

k=1,2 n observations per cell, e ijpkis a random error in the experiment. The

other terms stand for interactions between the main factors A, B and C.

In equation (3.11) one tests the following hypotheses:

Ho
1

: Ai=0 for all i

Ho
2

: Bj=0 for all j

Ho

oIICL
O

for all i, j

Ho : ABjj-0, ACjP-0 , BCjP-0 , ABCyp —0 for all i, j,p
4

Tool Type T Bevel Angle B

Type o
Continuous

Cut C
Interrupted

29.0 28.0
26.5 25.0
30.5 26.5

1 15° 27.0 26.5
28.5 27.0
28.5 29.0
30.0 27.5

30° 32.5 27.5
28 24.5
28.5 25
28 28

2 15° 25 26

30°

29.5
32
29
28

27.5
28
27
26

Table 3.5 Data for Power Requirement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A B
C

1
\

2

1 1

ynn
ym2
ym3
ym4

yn2i ► benyn22
yn23 /
yn24 /

y1 X X X ^
y=iP= u = i

2

yi2n
y-1212
y-1213
yi2u

yi22i
yi222
yi223
yi224

a c n
T? X X X V'lpA

1 B i = l p = l H

2 1

y2m
y2H2
y2H3
y2ii4

Y2121 b- hen
y2122
y2i23 y
y2i24 / y2 . X X X

j= lp = l£ = l

2

y22n
y2212
y2213
y2214

y2221
y2222
y2223
y2224

a c n
y X X X ^

*2- /=1^=1A:=1

j \ - J 2 = a b c n

a b n a b n x . . = X X X X > > *

X 1 x > * X X x > *
/=! y=i /?=i a=i

i= l j —Xk=\ z=l j= \k = l
Table 3.6 Formulized Table for Power Requirement

This experiment and the mathematical model suggest a three-factor analysis of

variance.

3.3.2.1 Three-factor Analysis of Variance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let yi... denote the total observations under the ith level of factor A, y.j. denote the

total of all observations under the jth level of factor B, y..p. denote the total of all

observations under the pth level of factor C, yyp. denote the total of all

observations in the ijpth cell, and y.... denote the grand total of all the

observations. Define y l . ,y .j.., y ,.p. ,y yp. , y ... as the corresponding marginal

mean for factor A, marginal mean for factor B, marginal mean for factor C, cell

means, and population mean. Expressed mathematically as follows:

(3.12)

a c n

a b n y.

a b c n V

c

c

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

n

y- -Yym y- — i - i 2S s p . - Z f S J ' . j p . - ^ ’ ’

P = l,2 ,

The total sum of squares can be written as

a b c n „

ssT= X X X X (yijpk - y . J
i = 1 y = lp = l£ = l

= SSA + SSb + SSc + SSab + SSbc+ SSac

Where

^ b C Yl « i t ^

SSx=££ X X y y p k -----
/=l j=lp=\ k = \ abcn

i £ 2 y 2
ssA= ~ Z xben i-1

2 x . ;
SSB= 5 > .y . .— U L fL

2
1 y 2 X . /

c= abn j = \ " p ' abcn

44

• • * ̂ j 1 ?2̂ • * • jfo

. . . , c

(3.13)

+ SSabc + SSe

(3.14)

(3.15)

(3.16)

(3.17)

(3.17)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 a b - 2

1 1 - ' # . . ,
n c j = \ j = i

 y y v .. 2 _ 7
SSabST = (3-18)

2_ y y 2 y j
s s a c s t - n b ^ ̂ a b c n

14-4 2 y
2

n a p- \ j - \ abcn

\ a b c
I I I 7

2 X . . .
2

(3.19)

S S b c S T ^ ~ -jP' (3 2 0)

S S A B C S T = ^VP- abcn (3.21)

SSab = SSabST " SSa - SSb (3.22)

S Sac = S Sacst - S Sa - S Sc (3.23)

SSbc= SSbcst- SSc ~ SSb (3-24)

SSabc = SSabcst - SSA - SSB- SSC - SSAB - SSBC - SSAC (3.25)

SSE= SST - SSA - SSb- SSc - SSab- SSac- SSbc- SSabc

(3.26)

For each sum of squares, there is a degree of freedom (df) associated with it. df

represents the number of independent variable. Each sum of squares divided by

its degrees of freedom is a mean square{MS)

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We can either accept or reject the hypotheses using F test. The value of F0 test is

the ratio of mean squares, such as m Sa/m s e , m Sb/m s e , m s ab/m s e. This value is then

compared with a Cumulative F Distribution table value Fa ,dfi,dt2 where a is

confidence level, df1 is the degree of freedom associated with the numerator of

the mean square , df2 is the degree of freedom associated with the denominator

of the mean square. If the value of F test exceeds the table value, then we reject

the hypothesis; otherwise, we accept the hypothesis.

The results are summarized in table 3.7 as follows:

Source of
Variation SS df MS

Factor A SSA a -1

Factor B SSb b - 1

Factor C SSC c-1
A X B (a -1)(b -
Interaction SSab 1)
A X C
Interaction SSac (a-1)(c-1)
B X C
Interaction SSbc (b-1)(c-1)
A X BXC (a-1)(b-
Interaction SSabc 1)(c-1)

Error SSe abc(n-1)
Total SSt abcn -1

F0= MSa/MSe

Fo= MSb/MSe

F0= MSc/MSe

Fo= MSab/MSe

Fo= MSac/MSe

Each SS divided by
its df Fo= m s bc/MSe

Fq= MSabc/MSe

Table 3.7 The Analysis of Variance Table for Three-Factor Factorial Treatment
Design

Now we use the data in table 3.5 to do the three-factor analysis of variance,

which yields the results in table 3.8.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Source of
Variation SS df MS Fo

Tool Type T 2.82 1 2.82 1.27

Bevel B 20.32 1 20.32 9.13*

Type of Cut C 31.01 1 31.01 13.93*
T X B
Interaction 0.20 1 0.20 0.09
T X C
Interaction 0.01 1 0.01 0.00
B X C
Interaction 0.94 1 0.94 0.42
T X B XC
Interaction 0.19 1 0.19 0.09

Error 53.44 24 2.23

Total 108.93 31
Table 3.8 Analysis of Variance for Power Requirement

In testing the hypotheses that there is no type of tool effect, no bevel effet, no

type of cut effect and no interactions if all mean squares are tested against the

error mean square of 2.23 with 24 degrees of freedom (df), the proper test

statistic is the F Distribution table with 1 and 24 df. At the 5 percent significance

level (a =0.05), the critical region of F if F>=F0.05,i,24=4.26. Comparing each

mean square with the error mean square (F0) indicates that only two hypotheses

can be rejected: bevel has no effect on deflection, and type of cut has no effect

on deflection. None of other hypotheses can be rejected. It is concluded that only

the angle of bevel and type of cut affect power consumption as measured by the

y deflection on the dynamometer. Tool type appears to have little effect on the y

deflection and all interactions are negligible.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4. Experiments and Discussion

In this chapter, we will apply presented method to an existing Web Service-based

system -Clinical Decision Support System (CDSS) [CPF04].

4.1 Experimental Environment Overview

CDSS is a clinical system assisting medical decisions by processing multi­

domain medical data from neonatal, prenatal, and obstetrical areas. The goal of

the use of CDSSs, such as Artificial Neural Network (ANNs), Case-Based

Reasoning (CBR) tools, and alert detection systems is to reduce medical errors

and support the physician’s decision-making process [FW03]. Services in such a

system are categorized as being either core or composite web services. A core

web service offers basic functionality that will be invoked by multiple higher-level

applications. Composite web services represent high-level applications, which

are comprised of two or more core services to offer a complete system

composition scenario as seen from the physician’s perspective. The current web

services infrastructure for supporting CDSSs is called OPNI-Web. Three kinds of

major composite web services, outcome prediction, matching cases and aler

generation, can be invoked via the OPNI-Web. The UML (Unified Modeling

Language) deployment diagram in figure 4.1 [CPF04] depicts the system

architecture. All nodes are connected through the Hospital Information System

(HIS) intranet.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W_fl b S.e rv Ic e C o o rd In a to r C D S S

EZZD,
e r r i

S O A P 1 I X M L 1 X M L g

~Z5T
i l

<d eploy>>

I W e b S e r v i c e R e a u e s t o r

<< dep loy>>

<<dep loy » »=r=l
EPR

<<d«p loy>>

< < P A re s o u rc e > > I t] < < P A re s o u rc e > > i l < < P A h o s t> > g l < < P A h o s t> > M
W ireless D ev ice f j | U s e r W o rks ta t ion | l j D a tab a se C P U M

P r o c e s s o r H

Z

<< dep ioy>>

< ^ P A h o s t> >
App lica t ion

<<P A re s o u rc e > > in t ran e t

J
Figure 4.1 Deployment of the Web Services Infrastructure (OPNI-Web)

CDSS is a service-oriented system, and performance analysis plays a key role

for the adjustment of relationships between services. In particular, the sensitivity

of performance metrics to variations in the duplicates of services has a deep

impact on the performance after the basic infrastructure is built. Among all

performance metrics, the average response time is dominating. As a result, the

following subsection studies the sensitivity of response time to duplicates of

services.

4.2 Experiments

As discussed in section 2.3.2.3, in the key step vii of PASA - Architectural

Analysis, several techniques are brought to bear in analyzing the performance of

software architecture. In the last step, performance modeling and analysis,

quantitative performance analysis based on an annotated UML model is

conducted. Three steps are involved:

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Firstly, the UML model of the software architecture is translated into a

performance model, such as Queuing Network model (QN) [Buz71],

Layered Queuing Network model (LQN) [RS95], and Stochastic

Rendezvous Network model (SRVN) [WNP95] - discussed in 2.3.1.

• In the second step, a performance analysis tool, such as the LQN solver,

conducts experiments on the performance model.

• Finally, the experiment results are fed back into the UML model to refine

the architecture design.

Now we follow the step to conduct performance analysis for CDSS.

At first, a key performance scenario, an annotated UML sequence diagram, is

selected as shown in Figure 4.2 [CPF04], which encompasses the entire

functionality for web service invocation.

Then the UML model is translated into Layered Queuing Network (LQN) model

as shown in Figure 4.3 [CPF04].

Now an existing performance analysis tool, LQN solver and LQSIM is used to

collect data for further sensitivity analysis with proposed approach.

The LQN solver and LQSIM used in this experiment can be downloaded from he

Real-Time and Distributed Systems Group (RADS) web site at department of

Systems and Computer Engineering in Carleton University

(http://www.sce.carleton.ca/rads/index.html). They are performance modeling

tools that is available on a variety of operating systems, such as Linux, Unix, and

Windows. The input of LQN solver or LQSIM is the demands at various

components such as disks and processors. The outputs of the LQN solver

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.sce.carleton.ca/rads/index.html

produce are the service time, utilizations (e.g. CPU utilization) and throughputs of

the software system. We collect the experimental data from the LQN solver

output file.

«PAstep»
{PArespTime *<(‘req7pefcentie',100. (10, S’)),

CpredVpercentSe', 100‘..................
« P A c o n te x t»

«PAresource»
ws-

Requestor

«PAresource»
WS.

Coordinator

«PAresource»
SOAP1

«PAresource»
XML1

«PAresource»
CDSS

«rPAresource»
SOAP2

«PAresouree»
XM L2

«PAreso»jfce»
EPR

requestWS(L i
-\i-.{PA<Jeman(3=('a$mtf, ‘mean’, (25, 'ms')

(NUsers

«PAstep»
{PAdemand=Cpsmtf, ‘mean*. 0.03,

ms’)),
PAextOp = (rjetwork, (packets)}

transmiWVSR^quest ()----
^ , - -'<<PAstep»
ntPAdemaixKasmdt

•mean’, (12.5, 'ms’fy

unpack()

«PAstep»
(PAdemand*Casmtf,
“mean’, (0.7, ‘ms’))}

«PAstep»
,{PAdflmand*Casmcf,
‘mean’, (2.1,‘ms’))}

« P A s te p » i
{PAdemand*Ca$mcrt
■mean1, (12.5, Vns’))j»
parseXM LDocf) !

«PAresource»
DISK

«PA step»
{PAdemancKasmcT.
•mean’, (0.8, ’ma’))}

«PA step»
PAdemand»Casmcf,
mean’. (1&75, ‘mB*)))

«PAstep»
{PAdemand«Casm<r,
•mean’, (125, ‘ms’))}

W ebServiceDonq()

«PA 8tep» ^
(PAdeman**Ca$mtf, ‘mean’, 0.03,

mtf)),
PAextOp= (network, (packets)}

— [determ ine OutoutFc
^ I « P A s te q »

fPAdanandaVksmtf

'orm at ()

transmiWVSRes

4*display!

«PAstep»
(PAdemand-Casmtf
•mean’, (5, 'ms'))}validate [)

retriejeEPR () X

«PAstep>> ^
(PAdemancKasmtf,
‘mean’, (50. 'ms')),
PArep«8}

natlve.XML DB.Read ()
‘k

transformXl{lLDoc () o i------
] «PAstep»

{PAdemand=cAsmtf,
•mean’, (500, ‘ifs ’))}

CDSS.Procefesing ()i
parseXMLC|oc()

«PAstep»
'4 {PAdemand*Ca$mtf,

•mean’, (25, *ms'))}

{PAdemand*Casmcf,
mean’, (1.2, ms'))}

[n a tive XML DB V f rite ()

i
«PA step»

{PAdemandafasmtf,
mean', (60, ms')),
PArep-12}

Figure 4.2 Annotated UML Sequence Diagram for Web Services Invocation

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WS RequestorJ User |

(1 .0)1
protocolProcesslng T

[45,0] 1 SOAPO |

(1 .0) U
transmitWSRequest I -

. [1-03.0] , 1
Network p

userP

(1 . 0)

~*f NetP J

M-Q) ___________
" * < ? % * [WSCoordinator] ------------------ / w S P V

determ ineOutputForm at
[2 . 0] WSInterface (1 . 0)

pack
[25.0]

| 1, 0)
unpack j
[12.5.01 1 SOAP1

transmitwsHesuit I Networ(< I - f m ?) nrocessCDSS I" ---------
 H M 1 I y y °500 4 01 I CDSSContro1

1(1. 0) 1(1, 0) 1(1. 0) (1____
validate parse transform | YM| „ |

 & 0 J ______ [12.5,01 [18.75.01 I I (1 0) i

(1. 0)
parse

[12.5, 01

^ppliA
CPU 1

RetrieveEPR
[50.8, 0]

(1. 0)
UpdateEPR

[61.2, 0]

(8 , 0)

XML1

EPR Database

1 (12. 0)
I— bisir * ” i
■ (5,01____ I

Figure 4.3 Layered Queuing Network Model for Web Services Invocation

4.2.1 Data collecting and quantitative analysis

Intuitively, there are several factors that may impact system performance, such

as the web service processing time, e.g. processCDSS service time, the number

of visits made to the disk by the database task, which are variable and depend

on the web service’s processing time, the size of the XML-based record.

4.2.1.1 Casel
We choose three factors in the first case study: processCDSS service time

(ms)(also denoted factor A), multiplicity factor of SOAP1 execute time (also

denoted factor B), and number of EPRT thread (also denoted factor C). Three

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fixed levels are chosen for each of them. It was decided to run two experiments

at each of these 27 treatment conditions (three A X three B X three C). Table 4.1

shows the running results. System response time is in seconds.

A B 2
C

4 6
300 0.5 5.54

5.567
5.43
5.51

4.96
5.613

1 5.954
6.15

5.6
5.59

5.55
5.779

2 6.334
6.589

6.01
5.79

6.03
5.65

500 0.5 5.809
5.939

5.849
5.266

5.84
5.25

1 7.103
7.098

5.86
5.965

5.31
6.001

2 7.13
7.144

6.03
5.65

5.105
6.158

1000

Table 4.1

0.5 9.359
9.4

6.26
6.499

6.38
6.53

1 9.887
9.879

6.83
6.33

7.62
5.088

2

System F

10.92
10.83

Response

6.12
8.875

Time(s)

6.489
8.076

or Case 1

Apply the proposed approach in section 3.3.2, we got analysis of variance table

4.2.

Source of
Variation SS df MS F0

A 46.79609 2 23.398 38.554*
B 5.394474 2 2.697 4.444*
C 29.53809 2 14.769 24.336*
A X B 1.530214 4 0.383 0.630
A X C 18.56695 4 4.642 7.648*
B X C 1.068571 4 0.267 0.440
A X B X C 0.346414 8 0.043 0.071
Error 16.38596 27 0.607
Total 119.6267 53

Table A1.2 Analysis of Variance for Case 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In testing the hypotheses that there is no factor A effect, no factor B effect, no

factor C effect and no interactions, we got following conclusions (note that we

choose sinificance level at 5% when we select F value from the table):

1) Factor A, C have significant impact on system response time due to the

fact that F0 (38.554, 24.336) exceeds Fo.os,2,27=3.35. Factor A is significant

at 5% significance level due to the fact that F0 (4.44) exceeds

Fo.05,2,27=3.35, however is not significant at 1% level because Fo (4.44)<

F0.01,2,27=5.49

2) Factor A and factor C are significantly interactive to the response time

because F0 (7.648) exceeds F0.os,2,27=2.73.

3) Other hypotheses are rejected.

Since the interaction is significant in this case, testing main effects is not

recommended because the results depend on how these main effects combine.

So we run a Student-Newman-Keuls(SNK) test on the 27 means.

1.

1
5.28

15
6.05

2.

3.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All means are arranged in order:

2 3 4 5 6 7 8 9 10 11 12 13 14
5.47 5.54 5.55 5.55 5.6 5.63 5.66 5.66 5.84 5.84 5.87 5.9 5.91

16 17 18 19 20 21 22 23 24 25 26 27
6.35 6.38 6.46 6.4615 6.58 7.1005 7.137 7.283 7.498 9.38 9.883 10.88

MSe =0.607 and dfE =27

10.607

Ss= v 2 =0-551

4. Forp: 2 3 4 5 6 7 8 9 10 11 12 13 14

5percent ranges: 2.90 3.51 3.87 4.13 4.33 4.50 4.64 4.75 4.86 4.96 5.04 5.12 5.19

5. LSR: -I 60 1.93 2.13 2.28 2.39 2.48 2.55 2.62 2.68 2.73 2.78 2.82 2.86

15 16 17 18 19 20 21 22 23 24 25 26 27

5.26 5.32 5.38 5.43 5.48 5.53 5.58 5.63 5.69 5.74 5.79 5.84 5.89

2.90 2.93 2.96 2.99 3.02 3.05 3.07 3.10 3.13 3.16 3.19 3.22 3.24

6. Checking means:

7.

Because the table is too large, so it is spit into two parts shown as below.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.29 5.47 5.55 5.55 5.56 5.60 5.63 5.66 5.66 5.84 5.84 5.87 5.90 5.91 6.05 6.35

0.18 0.08 0.01 0.00 0.04 0.04 0.02 0.01 0.18 0.00 0.03 0.03 0.01 0.14 0.30
0.26 0.08 0.01 0.04 0.07 0.06 0.03 0.18 0.18 0.03 0.06 0.04 0.15 0.44

0.27 0.09 0.05 0.08 0.10 0.07 0.21 0.18 0.21 0.06 0.07 0.18 0.45
0.27 0.13 0.09 0.10 0.11 0.25 0.21 0.22 0.24 0.07 0.21 0.48

0.31 0.16 0.11 0.11 0.28 0.25 0.24 0.24 0.25 0.21 0.51
0.35 0.19 0.12 0.29 0.28 0.28 0.27 0.26 0.39 0.51

0.37 0.19 0.30 0.29 0.32 0.31 0.28 0.40 0.69
0.38 0.37 0.30 0.32 0.34 0.32 0.42 0.70

0.55 0.37 0.33 0.35 0.36 0.46 0.72
0.55 0.40 0.36 0.36 0.49 0.76

0.59 0.43 0.37 0.50 0.8C
0.61 0.44 0.51 0.80

0.63 0.58 0.81
0.77 0.8£

1.07

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17 18 19 20 21 22 23 24 25 26 27
6.38 6.46 6.46 6.58 7.10 7.14 7.28 7.50 9.38 9.88 10.88
0.03 0.08 0.01 0.12 0.52 0.04 0.15 0.22 1.88 0.5C 0.99
0.33 0.10 0.08 0.13 0.64 0.56 0.18 0.36 2.10 2.39 1.50
0.47 0.40 0.11 0.20 0.65 0.68 0.7C 0.40 2.24 2.60 3.38
0.48 0.54 0.41 0.23 0.72 0.68 0.82 0.92 2.28 2.75 3.59
0.51 0.56 0.55 0.53 0.75 0.76 0.83 1.04 2.80 2.78 3.74
0.54 0.58 0.56 0.67 1.05 0.78 0.90 1.04 2.92 3.30 3.77
0.54 0.62 0.59 0.68 1.19 1.09 0.93 1.12 2.93 3.42 4.30
0.72 0.62 0.62 0.71 1.20 1.22 1.23 1.14 3.00 3.43 4.41
0.72 0.79 0.62 0.74 1.23 1.24 1.37 1.45 3.03 3.50 4.42
0.75 0.80 0.80 0.74 1.26 1.26 1.38 1.59 3.33 3.53 4.5C
0.76 0.82 0.81 0.92 1.26 1.30 1.41 1.60 3.47 3.83 4.52
0.82 0.86 0.83 0.92 1.44 1.30 1.44 1.62 3.48 3.97 4.82
0.83 0.90 0.8r 0.95 1.45 1.47 1.44 1.66 3.51 3.98 4.9C
0.83 0.90 0.90 0.99 1.47 1.48 1.62 1.66 3.54 4.01 4.98
0.91 0.91 0.91 1.02 1.51 1.51 1.63 1.83 3.54 4.04 5.0C
1.09 0.99 0.92 1.03 1.54 1.54 1.65 1.84 3.72 4.04 5.04

1.17 0.99 1.04 1.55 1.58 1.69 1.87 3.72 4.22 5.04
1.18 1.11 1.56 1.58 1.73 1.90 3.75 4.23 5.21

1.29 1.63 1.59 1.73 1.94 3.79 4.25 5.22
1.81 1.67 1.74 1.94 3.82 4.29 5.24

1.85 1.81 1.95 3.83 4.33 5.28
2.00 2.03 3.84 4.33 5.32

2.21 3.91 4.34 5.32
4.09 4.41 5.33

4.60 5.41
5.59

Bold number indicates the two means do have significant difference. This table

should read from each column, which follows the step 6 of Student-Newman-

Keuls(SNK) test. For example, in column 27, from bottom to top, beginning with

largest versus smallest 10.88-5.29=5.59, which is compared with the least

significant range for p=27 in step 5, because LSR=3.24<5.59 so it means

difference is significant and is marked bold; then test largest versus second

smallest with the least significant range for p=26\ and so on.

Hence there are two groups of means:

(Y311-) (y321 ■) (Y331-)
9.38. 9.88. 10.88 rest of the means

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From above quantitative result a conclusion can be reached: factor A and factor

C ‘s combination value A=1000(ms) and C=2 creates worst response time no

mater what is factor B. Other combinations are statistically no significant

difference. This conclusion is consistent with the conclusions from the following

visual analysis.

Figure 4.4 exhibits the variation of the response time according to the factor A, B

and C. the response time is sensitive to both processCDSS services processing

time, and the number of EPR database thread. From this visual analysis, it is not

difficult to conclude that when processCDSS service time increase to 1000ms,

EPRT thread number decrease to 2, the response time increase greatly, no

mater multiplicity factor of SOAP1 execute time is 0.5,1 or 2.

200 2
CDSSControl service time(ms) EPRT thread number

Figure 4.4 Response Time(s) for Case 1

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1.2 Comparing to Two-factor Factorial Treatment Design

Because three-factor factorial treatment design takes more factors into account,

it has advantage over two-factor factorial treatment design. Besides it could

provide more interaction effects analysis, its results are more complete and

accurate especially when there are significant interaction effects.

We take case 1 as a demonstration. If only two factors are chosen, let’s say

factor A, processCDSS service time (ms) factor C, number of EPRT thread. The

others are same: three fixed levels for each of then and run two experiments at

each treatment conditions (three A X three C). Then there will be three different

results when multiplicity factor of SOAP1 execute time (factor B) is set to 0.5,1

and 2. The results will be discussed in the following:

> B=0.5

C
A 2 4 6

300 5.54 5.43 4.96
5.567 5.51 5.61

500 5.809 5.849 5.84
5.939 5.266 5.25

1000 9.359 6.26 6.38
9.4 6.499 6.53

Table 4.3 Data for B=0.5

Source
of

Variation
SS df MS F0 F0.05,DF,DFe

A 13.941 2 6.970 102.864 3.199
C 5.326 2 2.663 39.301 3.199
AXC 6.592 4 1.648 24.324 4.415
Error 0.609 9 0.067
Total 26.47 17

Table 4.4 Analysis of Variance for Table 4.3

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that last column is the corresponding F value

From table 4.4 we can conclude that factor A, C have significant effect and A X C

also has significant interaction due to the fact that F0(24.324) exceeds

Fo.o5,4,9=4.415.

> B=1

C
A 2 4 6

300 5.954 5.6 5.55
6.15 5.59 5.779

500 7.103 5.86 5.31
7.098 5.96 6.001

1000 9.887 6.83 7.62
9.879 6.33 5.088

Table 4 .5 Data or B=1

Source
of

Variation
SS df MS F0 Fo.05.DF.Dfe

A 10.969 2 5.485 13.63 3.199
C 11.867 2 5.933 14.75 3.199
AXC 6.362 4 1.59 3.95 4.415
Error 3.62 9 0.402
Total 32.819 17

Table 4.6 Analysis of Variance for Table 4.5

From table 4.6 we can conclude that factor A, C have significant effect, but the

hypothesis of A X C has significant interaction is denied due to the fact that

F0(3.95) < F 0 .0 5 ,4 ,9 — 4.415.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

> B=2

A 2 4 6
6.334 6.01 6.03

300 6.589 5.79 5.65
7.13 6.03 5.105

500 7.144 5.65 6.158
10.92 6.12 6.489

1000 10.83 8.875 8.076
Table 4.7 Data for B=2

Source
of

Variation
SS df MS F0 F 0.05,DF,Dfe

A 23.416 2 11.708 18.124 3.199
C 13.414 2 6.706 10.382 3.199
AXC 5.957 4 1.489 2.305 4.415
Error 5.814 9 0.645
Total 48.602 1̂

Table 4.8 Analysis of Variance for Table 4.7

From table 4.8 conclusion is that factor A, C have significant effect, but the

hypothesis of A X C has significant interaction is denied due to the fact that

Fo(2.305) < Fo.o5.4,9=4.415.

From above we can find that when use two-factor factorial treatment design,

confliction may occur. In this case, when B=0.5, the analysis indicates that there

is significant interaction between factor A and C, however, when B=1 or 2, the

result is completely different, there is not significant interaction effect. When we

take the factor B into account by applying three-factor factorial treatment design

as shown in section 1.2.1.1, the problem is resolved. There is an interaction

between factor A and C.

4.2.1.3 Case 2

In this case, we choose: XML1 parse time (ms)(also denoted factor A),

processCDSS service time (ms)(also denoted factor B), multiplicity factor of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

database visits (also denoted factor C) to do experiment. Three fixed levels are

chosen for factor A and four fixed levels are chosen for factor B and C. It was

decided to run two experiments at each of these 32 treatment conditions (3 A X 4

B X 4 C). Table 4.3 We choose three factors in the first case study:

processCDSS service time (ms)(also denoted factor A), multiplicity factor of

SOAP1 execute time (also denoted factor B), and number of EPRT thread (also

denoted factor C). Three fixed levels are chosen for each of them. It was decided

to run two experiments at each of these 27 treatment conditions (three A X three

B X three C). Table 4.1 shows the running results. System response time is in

seconds.

C
A B 0.5 1 1.5 2

6.25 100 5.365
5.398

5.613
5.705

5.996
6.01

8.763
8.449

300 5.572
5.581

5.555
5.693

6.27
6.199

8.45
8.69

500 5.813
5.815

6.046
5.823

6.644
6.463

8.894
9.423

1000 6.248
6.215

6.485
6.562

6.962
6.918

9.46
9.53

12.5 100 5.273
5.52

5.472
5.455

6.192
6.108

8.602
8.812

300 5.73
5.856

5.648
5.61

6.271
6.187

8.74
8.735

500 5.825
5.78

5.873
5.845

6.354
6.429

8.952
8.99

1000 6.264
6.29

6.374
6.359

6.981
7.032

9.456
9.556

18.75 100 5.561
5.444

5.429
5.441

6.14
6.134

8.719
8.541

300 5.753
5.621

5.603
5.892

6.531
6.401

8.904
8.747

500 5.853
5.875

5.994
5.756

6.48^
6.437

9.423
9.11

1000 6.444
6.41

6.47
6.373

7.127
7.107

9.434
9.524

Table 4.9 System Response Time(s) for Case 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Apply the proposed approach in section 3.3.2, we got analysis of variance table

4.10.

Source of
Variation SS df MS Fo Fo.05.DF.Dfe

A 0.091505 2 0.046 4.02 3.19

B 10.84281 3 3.614 317.92 2.81

C 162.0628 3 54.021 4751.94 2.81

A X B 0.129401 6 0 . 0 2 2 1.89 2.29
A X C 0.110368 6 0.018 1.61 2.29

B X C 0.183403 9 0 . 0 2 0 1.79 2.08

A X B X C 0.216601 18 0 . 0 1 2 1.05 1.82
Error 0.545672 48 0 .0 1 1

Total 174.1826 95
Table 4.10 Analysis of Variance for Case 2

In testing the hypotheses that there is no factor A effect, no factor B effect, no

factor C effect and no interactions, we got following conclusions (note that we

choose significance level at 5% when we select F value from the table):

1) Factor B, C have significant impact on system response time due to the

fact that F0 (317.92,4751.94) exceeds Fo.o5,3,48=2.81. Factor A is

significant at 5% significance level due to the fact that F0 (4.02) exceeds

Fo.o5,2,48=3.19, however is not significant at 1 % level because Fo (4.02)<

Fo.01,2,48=5.08

2) Other hypotheses are rejected, no interactions because F0.05,6,48=2 .2 9 ,

F0.05,9,48=2.08, Fo.05,18,48=1 -82

Different from case 1, in this case, because there is no interactions and factor B,

C has significant effects. We can test main effects with Tukey test. Tukey test is

an analysisi of variance where interest lies in making all pairwise comparisons

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and finding the one that is significantly different from others. Tukey test declares

two means significantly different if the absolute value of their sample exceeds

T a = 9 a l <4 -1>

where (a, f) is a studentized distribution table value, a is the

significance level (usually 0.05), a is the sample size, and f is the degree of

freedom associated with MSe, and n is the number of observations, which equals

to 2 in case 2.

Otherwise, the difference is insignificant. The insignificant difference reveals the

fact of statistical equality of two values. Results from the test help to determine

the optimal value of parameters.

Now look back to table 4.3, for factor B (processCDSS service time) and factor C

(multiplicity factor of database visits), the list of means are as following:

Factor B

y.j.
100 6.42

300 6.59

500 6.83

1000 7.32

Factor C

y..,
0.5 5.81

1 5.88

1.5 6.47

2 8.996

Solving equation (4.1) with the experiment results:

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T t A A 0 \ MSE 0.011
0.05 = go.05(4 A 8) ^ ^ ^ = (3 .7 9)(^ j-^ —) = 0.286.

All possible pairwise comparisons between factor B treatment means are:

1000 vs 500: 0.487

1000 vs 300: 0.723

1 0 0 0 vs 1 0 0 : 0.893

500 vs 300: 0.236’

500 vs 100: 0.407

300 vs 100: 0.171

Differences with an asterisk indicate that the differences between the two

treatment means are not significant (since they are less than ?0.05 = 0.286). We

can conclude from the calculations above that if factor B is 1000ms, response

time increase significantly while 500ms, 300ms, and 100ms are statistical in the

same group, the performance is statistical equality of these three values. So one

can recommend one of these three values whichever is cheapest.

■ All possible pairwise comparisons between factor C treatment means are:

2 vs 1.5 : 2.522

2 vs 1 3.118

2 vs 0.5 3.183

1.5 vs 1 0.596

1.5 vs 0.5: 0.661

1 vs 0.5: 0.065

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Differences with an asterisk indicate that the differences between the two

treatment means are not significant (since they are less than ^ 0.05 = 0.286). We

can conclude from the calculations above that for factor C, the only pair of

treatment mean that is not significant is the one between 1 and 0.5. The

performance is statistical equality of the two values. In other words, the response

time is very sensitive to the number of database visits. So one can recommend

one of the two values whichever is cheapest.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Conclusions and Future Work

Software architecture plays an important role in determining software quality

characteristics, such as performance. Therefore, it would be very cost-effective to

push performance analysis back to a very early stage-architectural design stage.

It is especially true for web service-based software systems in today’s

competitive marketplace, in which system performance is extremely important.

Performance effects of architectural decisions can be evaluated at an early stage

by constructing and analyzing quantitative performance models, which capture

the interactions between the main components of the system as well as the

performance attributes of the components themselves

5.1 Contribution of the Research

There is a growing body of research that studies performance analysis. In [AG97]

[SG96], the authors focus on the studies of the role of software architecture in

determining different quality characteristics in general. But accurate performance

analysis results need sensitivity analysis be taken into account. During the

architectural analysis of a service-oriented architecture, quantitative performance

analysis is carried out. Before the results of performance analysis are imported

back into an annotated UML (Unified Modeling Language) model of the

architecture, sensitivity analysis can be used to study how system factors affect

the performance of the system and to quantify the sensitivity. However, little

research has been done in this area.

This thesis applies a statistic approach of multi - factor in sensitivity analysis for

service-oriented software systems. It provides a quantitative analysis of service-

oriented system. In regard to two factors approach, this approach has better

accurateness due to considering more factors as input and simultaneously, got

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multi-pairs of interactions between factors, not only one pair between two factors.

Also two different methods of optimizing the software architectural design of a

web service-based system are developed, one is based on having interactions

(Student-Newman-Keuls(SNK) test) and the other for no interaction (Tukey test).

Introducing multi-factor sensitivity analysis in performance analysis in early

design stage will lead to robust architecture design because it produces more

accurate quantitative feedback to software designers, and no doubt it helps to

reduce the cost of software development and improve quality too.

5.2 Directions of Future Work

There are several directions that researchers can pursue in the future.

To provide a CASE (Computer-Aided Software Engineering) tool environment

In service-oriented architecture (SOA), sensitivity analysis (SA) for performance

analysis during the architectural design stage can be used to optimize the design

and substantially reduce the development cost due to performance problems. SA

also provides solid feedback to the software designers. Therefore, in the future, a

CASE tool environment that integrates different performance analysis

methodologies and related technologies such as LQN model and SRVN model

would provide much more powerful and quick feedback for users. The CASE

tools should have user-friendly graphical user interfaces for the ease of use by

the software designers.

To evolve the Design of Experiment Methodology

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sensitivity analysis using in this thesis is performed to analyze three factors. A

general model for two or more factors Factorial is :

Yijk = f l +Aj+Bj+ABjj+ 6 k(ij)

In future, researchers can formulize this general model into a practical analysis of

variance for any number of factors, each with multiple factor levels, and conduct

sensitivity analysis on these factors using DoE techniques.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[ABG+01] R. Agrawal, R. Bayardo, D. Gruhl, and S. Papdimitriou. Vinci:A

service-oriented architecture for rapid development of webapplications.

In WWW10, Hongkong, May 2001.

[AG97] R. Allen and D. Garlan, A Formal Basis for Architectural Connection,

ACM Trans. Software Eng. Methodology, vol. 6, no. 3, pp. 213±249,

July 1997.

[Bas96] Basili V.R., The Role of Experimentation in Software Engineering: Past,

Current,and Future, Proceedings of ICSE-18, IEEE, 442-449,1996

[BB00] B. Brereton, D. Budgen, Component-Based Systems: A Classification of

Issues. IEEE Computer Journal. November 2000, pp. 54-62.

[BFW04] A.J. Bennett, A.J.Field, and C.M. Woodside, Experimental Evaluation of

the UML Profile for Schedulability, Performance and Time, UML Oct.

2004

[Bha98] S. Bhatti, Management of Component-Based Software Engineering. In

Proceedings of International Workshop on Component-Based Software

Engineering, 1998.

[BJK02] A. Brown, S. Johnson, and K. Kelly, Using Service-Oriented Architecture

and Component-Based Development to Build Web Service

Applications. Rational Software Corporation-IBM, 2002

[BW98] A.W. Brown, K.C. Wallnau.The Current State of CBSE. IEEE Software

Journal, September/October 1998, pp. 37-46.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Buz71] J.P. Buzen, Queuing Network Models of Multiprogramming, Ph.D. Thesis,

Harvard University, Cambridge, MA, 1971

[CF02] M. Champion, C. Ferris, E. Newcomer, and D. Orchard. Web Service

Architecture, W3C Working Draft, 2002.

http://www.w3.org/TR/2002/WD-ws-arch-20021114/

[CH01] B. Councill and G.T. Heineman, Definition of a Software Component and

Its Elements, Addison-Wesley 2001

[CPF04] Catley C., Petriu D., and Frize M. Software Performance Engineering of

a Web Servie-Based Clinical Decision Support Infrastructure,

Proceedings of the fourth international workshop on software and

performance (WOSP2004), Redwood Shores, California, ACM,

January, pp 130 -138

[FHM+95] G. Franks, A. Hubbard, S. Majumdar, D. Petriu, J. Rolia, and C.M.

Woodside, A Toolset for Performance Engineering and Software

Design of Client-Server Systems, Performance Evaluation, vol. 24, nos.

1±2, pp. 117±135, Nov. 1995.

[FW03] Frize M., and Walker CR., Development of an Evidence-Based Ethical

Decision-Making Tool for Neonatal Intensive Care Medicine, Proc.

IEEE EMBS Conf. Sept. 2003

[GDH05] J.C. Grundy, G. Ding, and J.G. Hosking, Deployed Software

Component Testing using Dynamic Validation Agents, Journal of

Systems and Software: Special Issue on Automated Component-

based Software Engineering, vol. 74, no. 1, January 2005, Elsevier, pp.

5-14.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.w3.org/TR/2002/WD-ws-arch-20021114/

[GH02] J.C. Grundy and J.G. Hosking, Engineering plug-in software components

to support collaborative work, Software - Practice and Experience, vol.

32, Wiley, pp. 983-1013, 2002.

[Gil03] N.S. Gill, Component-Based Measurement:Few Useful Guidelines, ACM

SIGSOFT Software Engineering Notes, Vol 28, Nov. 2003

[Gra02] Graham S. Building Web Services with Java: Making Sense of XML,

SOAP, WSDL, and UDDI. SAMS Publishing, Indianapolis, 2002.

[GT01] K. Goseva-Popstojanova and K.S. Trivedi, Architecture based approach

to reliability assessment of software systems, Performance Evaluation,

June 2001,45(2-3)

[GT02] S.S. Gokhale, K.S. Trivedi, Reliability Prediction and Sensitivity Analysis

Based on Software Architecture, Proc. Of 13th Int’l Symposium on

Software reliability Engineering (ISSRE), 2002, p64

[HC01] G. T. Heineman, W. T. Councill, Component-Based Software Engineering,

Addison-Wesley 2001

[Hic83] Hicks C.R., Fundamental Concepts in the Design of Experiments, 3rd Ed.,

Holt Rinehart & Winston 1983.

[HL03] R. Heckel, R. and M. Lohmann, Towards Contract-based Testing of Web

Services, Electronic Notes in Theoretical Computer Science Vol. 82 No.

6, 2003.

[HopOO] J. Hopkins, Component Primer. Communications of the ACM, 43(10),

October 2000, pp. 28-30.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Hua04] T. Huang, Performance Analysis of Web Services-based Systems with

Sensitivity Analysis, Master thesis, University of Windsor, Canada

2004

[KBA+94] R. Kazman, L. Bass, G. Abowd, and M. Webb, SAAM: A Method for

Analyzing the Properties of Software Architectures. 16th Int'l Conf. o f

Software Eng., (1994).

[KBK+99] R. Kazman, M. Barbacci, M. Klein, and S.J. Carriere, Experience with

Performing Architecture Tradoff Analysis. Proc. o f the 21th International

Conference on Software Engineering, (New York, USA, 1999), ACM Press.

[Kim02] S. D. Kim, Lessons Learned from a Nationwide CBD Promotion Project,

Communications of the ACM, October 2002A/ol. 45, No.10

[KKB+98] Kazman R., Klein M., Barbacci M., Longstaff T., Lipson H., and

Carriere J., The architecture tradeoff analysis method, Proceedings of

the Fourth International Conference on Engineering of Complex

Computer Systems (ICECCS98), August, 1998.

[KKL+05] M. Kano, A. Koide, T.K. Liu and B. Ramachandran, Analysis and

simulation of business solutions in a service-oriented architecture, IBM

Systems Journal, 2005, Vol. 44

[KL98] L.A. Kulkarni, S. Li,Performance Analysis of a Rate-Based Feedback

Control Scheme IEEE/ACM TRANSACTIONS ON NETWORKING,

VOL. 6, NO. 6, DECEMBER 1998 797

[Koz98] W. Kozaczynski, Component-Based Software Engineering. IEEE

Software Journal, September/October 1998, pp. 34-36.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[LBB+02] Lassing, N., Bengtsson, P., Bosch, J. and Vliet, H.V. Experience with

ALMA: Architecture-Level Modifiability Analysis. Journal of Systems

and Software, 61 (1), 2002, pp. 47-57

[Lau06] Kung-Liu Lau, Software Component Models, ICSE’06 ACM 2006,

Shanghai, China

[LGH05] N. Liu, J.C. Grundy, J.G. Hosking, A visual language and environment

for composing web services, In Proceedings of the 2005 ACM/IEEE

International Conference on Automated Software Engineering, Long

Beach, California, Nov 7-11 2005, IEEE Press, pp. 321-324.

[LK98] C.H. Lung, K.Kalaichelvan, An Approach to Quantitative Software

Architecture Sensitivity Analysis, Proc. Of the 10th Internatioanl

Conference on Software Engineering and Knowledge Engineering,

June 1998, p185-192

[LM74] V.L. Anderson, R.A. McLean, Design of Experiments, Marcel Dekkerjnc.,

New York 1974

[MMF02] A. Mos and J. Murphy, A Framework for Performance Monitoring,

Modelling and Prediction of Component Oriented Distributed Systems,

Proc. of ACM 3rd International Workshop on Software and

Performance, pp. 235-236, ACM Press, Rome, Italy, July 2002.

[OMG02] OBJECT MANAGEMENT GROUP, UML Profile for Schedulability,

Performance and Time, OMG Adopted Specification ptc/02-03-02,

2002.

[PS02] Petriu D.C., Shen H., Applying the UML Performance Profile: Graph

Grammar based derivation of LQN models from UML specifications,

Computer Performance Evaluation - Modelling Techniques and Tools,

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lecture Notes in Computer Science 2324, pp. 159-177,Springer Verlag,

2002.

[PZG+05] D.C. Petriu, J. Zhang, G. Gu and H. Shen, Performance Analysis

based on UML SPT Profile, Department of Systems and Computer

Engineering, Carleton University, Ottawa, Canada 2005

[RS95] R.A. Rolia, K.C. Sevick, The Methods of Layers, IEEE Trans. On

Software Engineering, August 1995

[SG96] M. Shaw and D. Garlan, Software Architectures: Perspectives on an

Emerging Discipline. Prentice-Hall, 1996.

[SG98] B. Spitznagel and D. Garlan, Architecture-Based Performance Analysis,

Proc. Int'l Conf. Software Eng. and Knowledge Eng., SEKE '98, pp.

146±151, 1998.

[Smi90] Smith, C. U. Performance Engineering of Software Systems, Reading,

MA, Addison-Wesley, 1990.

[SpaOO] M. Sparling, Lessons Learned - Through Six Years of Component-

Based Development. Communications of the ACM Journal, Vol. 43 No.

10, October 2000, pp. 47-53.

[ST05] V.S. Sharma, K.S. Trivedi, Architecture Based Analysis of Performance,

Reliability and Security of Software Systems, Proc. of 5th international

workshop on Software and performance, WOSP’05, July 2005, p217-

227

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[SW02] C. U. Smith and L. G. Williams, Performance Solutions: A Practical

Guide to Creating Responsive, Scalable Software, Reading, MA,

Addison-Wesley, 2002.

[Szy98] C. Szyperski, Component Software-Beyond Object-Oriented

Programming, Addison-Wesley 1998

[TJ05] D.V. Thanh, I. Jorstad, A Service-Oriented Architecture Framework for

Mobile Services, Proceedings of the Advanced Industrial Conference

on Telecommunications/Service Assurance with Partial and

Intermittent Resources Conference/E-Learning on

Telecommunications Workshop, 2005 IEEE

[WNP+95] C.M. Woodside, J.E. Neilson, D.C. Petriu and S. Majumdar, The

Stochastic Rendezvous Network Model for Performance of

Synchronous Client-Server-Like Distributed Software, IEEE

Transactions on Computers, Vol. 44, No. 1, January 1995, pp. 20-34.

[VR99] J.S. Vetter, and D. A. Reed, Managing Performance Analysis with

Dynamic Statistical Projection Pursuitl, Proceedings of the ACM/IEEE

SC99 Conference (SC’99),1999 IEEE

[Woo02] Woodside M., Tutorial Introduction to Layered Modeling of Software

Performance, Carleton University, 2002.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

NAME:

PLACE OF BIRTH:

YEAR OF BIRTH:

EDUCATION:

Chunjiao Ji

Wuhan, Hubei, China

1967

National University of Defense Technology, China

1985-1989 B.Sc.

Wuhan Technical Univeristy of Surveying and Mapping,
China
19 89-1992 M.Sc.

University of Windsor, Windsor, Ontario
20 0 2 -2 0 0 6 M.Sc.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	A statistic approach of multi-factor sensitivity analysis for service-oriented software systems.
	Recommended Citation

	tmp.1507664919.pdf.Kp5ql

