
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2006

Efficient combinator parsing for natural-language. Efficient combinator parsing for natural-language.

Rahmatullah Hafiz
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Hafiz, Rahmatullah, "Efficient combinator parsing for natural-language." (2006). Electronic Theses and
Dissertations. 7137.
https://scholar.uwindsor.ca/etd/7137

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7137?utm_source=scholar.uwindsor.ca%2Fetd%2F7137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Efficient Combinator Parsing for Natural-Language

by

Rahmatullah Hafiz

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through Computer Science
in Partial Fulfillment of the Requirements for

the Degree of Master of Computer Science at the
University of Windsor

Windsor, Ontario, Canada

2006

© Rahmatullah Hafiz, 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 Library and
Archives Canada

Published Heritage
Branch

3 9 5 Wellington Street
Ottawa ON K 1 A 0 N 4
C an ad a

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

3 95, rue Wellington
Ottawa ON K 1A 0N 4
C an ad a

Your file Votre reference
ISBN: 978-0-494-42328-8
Our file Notre reference
ISBN: 978-0-494-42328-8

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nntemet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Language-processors, that are constructed using top-down recursive-
descent search with backtracking parsing technique, are highly modular,
can handle ambiguity, and are easy to implement with clear and
maintainable code. However, a widely-held, and incorrect, view is that top-
down processors are inherently exponential for ambiguous grammars and
cannot accommodate left-recursive productions. It has been known for
many years that exponential complexity can be avoided by memoization,
and that left- recursive productions can be accommodated through a variety
of techniques. However, until now, memoization and techniques for
handling left-recursion have either been presented independently, or else
attempts at their integration have compromised modularity and clarity of
the code - this leads to the fact that there exists no perfect environment for
investigating many NLP-related theories. This thesis solves these
shortcomings by proposing a new combinator-parsing algorithm, which is
efficient, modular, accommodates all forms of CFG and represents all
possible resulting parse-trees in a densely-compact format.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENT

I would like to express my gratefulness to my advisor Dr. Richard Alan Frost for
his motivational and insightful suggestions, and patience. Dr. Frost’s enthusiasm as a
mentor and dedication as a researcher vastly inspired me to keep myself focused during
my graduate studies.

I would like to thank Dr. Paul Callaghan of the University of Durham for his
important remarks. I also wish to show my appreciation to my thesis committee members
Dr. Jianguo Lu, Dr. Richard J. Caron and Dr. Scott Goodwin for their valuable comments
regarding my thesis report and defense.

I am obliged to my wife, Sanjukta, for her continuous encouragement and kind
support.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENT
LIST OF FIGURES
LIST OF TABLES

CHAPTER
1. PREFACE

1.1 Introduction
1.2 Structure of the Thesis Report
1.3 Contribution by the Candidate

2. INTRODUCTION
2.1 Grammars and top-down Parsing
2.2 Natural-language Parsing

2.2.1 Ambiguity
2.2.2 Left-Recursion

2.3 The Problem
2.4 Thesis Statement

2.4.1 The Statement
2.4.2 Why This Thesis is Important
2.4.3 Why it is Not Obvious
2.4.4 How the Thesis will be Proven

2.5 Brief Description of the Solution

3. LAZY FUNCTIONAL PROGRAMMING
3.1 Introduction to Lazy Functional Languages
3.2 Elements of Lazy Functional-Programming
3.3 Haskell -A Purely-functional Language

4. COMBINATORY PARSING
4.1 General Concept

4.1.1 Example of a Simple Parser-Combinator
4.2 Use of Monads for Combinatory-Parsing

4.2.1 Monads to Structure Program
4.2.1.1 Definition of Monad
4.2.1.2 Example of Monadic Computation
4.2.1.3 Monads in Haskell

4.2.2 Monadic Parser-Combinators
4.3 Shortcomings of Combinatory-Parsing

4.3.1 Exponential Time-complexity
4.3.2 Non-Termination for Left-Recursion

iii
iv
vii
vii

1
1
1
2

3
3
7
7
7
9
11
11
11
11
12
13

15
15
16
18

20
20
21
24
24
24
26
28
29
30
30
31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. RELATED PREVIOUS WORKS 32
5.1 Use of memoization and monads to

accommodate ambiguity in polynomial time 32
5.1.1 Basic Concept of Memoization 32
5.1.2 Frost and Szydlowski -

Memoized Language-processors 34
5.1.3 Frost- State-Monadic Language-processors 3 7

5.2 Approaches to Accommodate Left-recursion 39

6. THE NEW ALGORITHM-FOR RECOGNITION 40
6.1 Basic Definitions 40
6.2 Overview of Basic Recognition 42
6.3 Accommodating Direct Left-Recursion 45

6.3.1 Condition for Curtailment 45
6.3.2 Modified Memoization for Direct Left-recursion 48

6.4 Accommodating Indirect Left-Recursion 50
6.4.1 The Problem 50
6.4.2 Context-Based Re-use, Modified Combinators

and Memoization 52
6.4.2.1 Generating and Passing

‘Reason for Curtailment’
and ‘Current-context’ 52

6.4.2.2 Storing the Result with
‘Left-rec-context’ During ‘Update’ 54

6.4.2.3. Condition for Re-using the
Saved Result During ‘Lookup’ 5 5

6.4.3 Results in Memo-table 56

7. THE NEW ALGORITHM-FOR PARSING 58
7.1 Overview 58
7.2 Concepts of Compact-representation 59
7.3 The Modified Algorithm 62

7.3.1 Type of Result and Memo-table 62
7.3.2. Modified Combinators 62
7.3.3. Modified Memoization 64

7.4 Memo-table as a Forest of n-ary Branches 66

8. IMPLEMENTATION IN HASKELL 68
8.1 Data-types and State-monadic Combinators 68
8.2 Forming ‘name-less’ n-ary branches for Parsers in Sequence 70
8.3 Lookup, Update and Computing New-result using Memoization 71

8.3.1 Lookup Operation 72
8.3.2 Update Operation 74
8.3.3 Grouping Ambiguities and Adding Pointers 76

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9. TERMINATION ANALYSIS 77
9.1 Basic Concept 77
9.2 Cases for Combinatory-Parsers’ Termination 78
9.3 Proof of Termination 79

10. COMPLEXITY ANALYSIS 84
10.1 Time Complexity of Recognition - w.r.t the length of input 84
10.2 Time Complexity of Parsing - w.r.t the length of input 88
10.3 Space Complexity - w.r.t the length of input 91

11. EXPERIMENTAL RESULTS 93

12. CONCLUSION 96

APPENDIX: EXPERIMENTAL OUTPUT OF
COMPACT REPRESENTATION 97
REFERENCES 102
VITA AUCTORIS 104

LIST OF FIGURES

Figure 2.1: An ambiguous grammar and some possible parses 7
Figure 2.2: Elimination of left-recursion and possible problem 8
Figure 4.1: A combinatory-parser representation of a CFG for NL 23
Figure 4.2: Simple monadic-combinators 29
F igure 5.1: Memoized computation of F ibonacci 3 3
Figure 6.1: ‘Condition for curtailment’ for left-recursive recognition 49
Figure 6.2: Faulty ‘out-of-context’ lookup 50
Figure 6.3 : Restricted re-use of result when recognizer is ‘out-of-context’ 56
Figure 6.4: Memo-table represents results of recognition using G_2 57
Figure 7.1: Basic idea of constructing a parse-tree 59
Figure 7.2: Example of a densely-compact representation 61
Figure 7.3: Memo-table represents results of parsing as a packed-forest 67
Figure 11.1: Time vs. length-of-input plot for memoized parsers 95

LIST OF TABLES

Table 2.1: Four types of grammars, where type 0 id type 1 id type 2 id type 3 3
Table 3.1: Use of Flaskell for constructing NLP-related systems 19
Table 11.1: Time and no of reductions for parser s 94
Table 11.2: Time and no of reductions for parser si 94
Table 11.3: Time and no of reductions for parser s2 94
Table 11.4: Time and no of reductions for parser s3 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1: PREFACE

1.1 Introduction
Although the elegant top-down parsing method closely resembles a Natural Language

Processing strategy, it has some short comings which make it less appealing for various

NLP-related tasks. A naive implementation may require exponential time and space and

do not provide any support for ambiguous left-recursion (note that converting left-

recursive grammar to non-left recursive form may cause missing parses). Modularity of

implementation is required so that individual components of a language-processor can be

tested separately and semantic-rules can be integrated naturally. As natural-language is

ambiguous, it is important to ensure that the language-processor is able to process

ambiguous left-recursive grammars in order to have the proper right-most and left-most

derivations, which is essential to retrieve all possible semantic meanings. Also the

computation-time needs to be reasonable, and the exponential number of parse-trees

should be represented within polynomial space. Many attempts have been made to

accomplish the above requirements but none has been able to accommodate all of them

within one algorithm.

In this thesis we develop a general top-down combinator-parsing algorithm that

accommodates ambiguous and left-recursive grammars, whilst maintaining polynomial

time-complexity, compact (polynomial) representation of exponential number of parse

trees and modularity of the implementation. We implement the algorithm in a lazy

functional language, Haskell, have analyzed it theoretically and have tested it with highly

ambiguous grammars to support the theoretical claims.

1.2 Structure of the Thesis Report
Chapter 2 introduces the basics of top-down parsing, the problem, the requirements and

how we will prove the thesis-statement. Chapter 3 and 4 briefly describes different

aspects of lazy-functional programming and combinator-parsing. Chapter 5 mentions

some related and motivational previous-work. Chapter 6 and 7 describe the new

algorithm in detail - for recognition and parsing respectively. Chapter 8 explains the

Haskell-implementation of the algorithm. Chapter 9 and 10 analyze the termination and

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complexity of the algorithm respectively. Chapter 11 presents some experimental results,

which support the analytic results of chapter 10. Chapter 12 concludes the report and the

appendix contains some example-output (densely packed parse-forests).

1.3 Contribution by the Candidate
In conducting the work described in this thesis-report, the candidate worked closely with

Dr. Frost, his supervisor, and he also collaborated with Dr. Callaghan of the University of

Durham.

The candidate and Dr. Frost jointly developed the algorithm to accommodate left-

recursion with top-down parsing in polynomial time and space. The candidate was

primarily responsible for implementing the algorithm in Haskell, with some suggestions

from Dr. Frost and Dr. Callaghan. The candidate was responsible for conducting the

experiments. The candidate also helped Dr. Frost to construct the proof of termination

and complexity. The results of the collaborative work have been published in two papers

co-authored by the candidate (Frost and Hafiz, 2006, [11]) and (Frost, Hafiz and

Callaghan, 2006, [12]).

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2: INTRODUCTION

2.1 Grammars and Top-Down Parsing
A ‘language’ is a set of finite-length sequences or strings, constructed over a finite-set of

entities known as alphabet. Any formal or natural-language can be specified or defined

with a finite-size specification (or generator) - formally known as ‘grammar’. A formal

grammar G is a 4-tuple (N, Z, P, S) where:

■ N is a finite-set o f non-terminals

■ Z is a finite-set of terminals (or alphabet - over which a language is defined)

■ P is a finite-set o f production-rules

■ S is a distinguished symbol (known as start symbol)

■ N n Z = 0, S e N and

(Vpi eP) (p i e (N u Z) * N (N u Z) * x (N u Z)*)

The language L (G), which is defined by G, is a set of ‘strings’ that consist only of the

terminals from Z and that can be derived starting from S and applying 3pi until no non­

terminal is present. This formal-grammar framework is the most expressive way to

specify a language. According to Chomsky (1956, [4]), this general framework of formal

orphrase-structure grammar can be divided into four ‘types’:

Grammar Properties
Types
Type 0- ■ Rules don’t have restrictions (in terms of number of symbols) on left
Unrestricted and right side of the productions.

■ Its most ‘unrestricted’ nature makes it less useful to linguists.
Type 1 - ■ Rules are of form aAp ->• a%P where A e N,
Context- a & p e (N u Z) * and % e (N u Z)+.
Sensitive ■ The derivation A —> % is determined by the “context” of a & p.

Type 2 - ■ Rules are of form A -»■ a where A e N, a e (N u Z)*.
Context-Free ■ Simple and ‘powerful’ enough to define most of the languages.

Type 3 - ■ Rules are of form A -> aB orA -> a where A & B e N and
Regular a, e Z .

■ Equivalent to ‘regular-expressions’ and the most restricted grammar.
Table 2.1: Four types of grammars, where type 0 3 type 1 3 type 2 3 type 3

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Out of the four types, the Context-Free Grammar (CFG)1, typically expressed in

Backus-Naur Form (BNF), is the most important type in terms of application to various

languages. The languages that can be specified by CFGs are known as Context-Free

Languages. CFGs are considered as ‘standard sets of rules’ for syntax-analysis or

parsing, which is a technique to determine whether a given input sequence’s

grammatical structure can be recognized and identified by the given CFG. The most

natural form of parsing is Top-Down Parsing, which is a method of attempting to find

the ‘left-most derivation’ of a given input sequence. The ‘attempt’ starts from the root-

symbol S and keeps expanding from the left-most position of S ’s definition. The

recursive-decent fully backtracking parsing is the most general form of top-down

parsing, where rules are implemented as ‘mutually-recursive’ procedures and if an

alternative of a rule ‘fails’ or ‘ends’, the parser backtracks to try another rule. Top-down

parsers are easy to construct and understand, compared to their bottom-up counter-parts.

An Example

In order to specify or generate a language L (G_1) = {0, 1, 00 , 01 , 10 , 11,

000, 001 , 010, 100}, we may use the following CFG G_l:

G _ 1 =

(N = {B_E, D},

2 = { 0 , 1 },
P =

j B_E : : = D | D B_E | s
[D : : = 0 | 1

S = B_E) (B_E = Binary Expression, D = Digit)

While determining the syntax-structure of an input “001” using top-down parsing

technique with G _l, a parser executes the start-symbol or the root rule B_E, which has

three alternatives. Each of the alternatives is individually (in a sequence from left)

applied on the original-input. If the alternatives have non-terminals, then they are

1 In this report, we represent a production-rule of a CFG as
Non-terminal ::= ... Non-terminal' te rm inal. . . I.. Non-terminal'' te rm in a l ' . . .
Where means the starting of a rule-definition, '|' separates
alternatives, t e r m i n a l s are in i t a l i c , Non-terminals start with capital-letter
and sequencing-symbols are written next to each other.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

expanded again recursively and their definitions (which may consist o f different

alternatives) are applied to the remaining input-sequence (if some left-most tokens were

previously consumed). The process ends if there are no more input-tokens left for

processing. For example:

1. B E is expanded to its first alternative B E : : = D and then D is expanded to its two

alternatives D: : = 0 and D: : = 1. The second alternative of D is a ‘failure’ as it derives

to ‘1 ’ whereas the input sequence starts with ‘O’.

other non-terminals left for expanding, it is a valid parse.

2. When the previous phase is done, B_E ‘backtracks’ to try its second alternative

B_E : : = D B_E, then D’s two alternatives are applied on “0 0 1 ” (as we know, only the

first one succeeds and recognizes “0”) and the rest o f the input “0 1 ” is processed by the

non-terminal B E (which is a part o f root B E’s recursive definition). In a similar way,

B_E is expanded again to its three alternatives and eventually returns a successful parse-

tree and also reports all failed attempts:

B E B E

Success Failure

The first alternative finds a match for the leftmost position of “001” and as there are no

B E B E B E

1
Success

8
Failure

0
Failure

(Note that the arrows are indicating the control-flow of the parsing-process.)

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. When the above phase is done, the first application o f B E ‘backtracks’ to try its third

alternative B _ E : : = s , which always succeeds:
B E

£
Success

In terms of functional-programming, combinators or higher-order functions are

ideally-suited for constructing top-down recursive-descent (with backtracking) parsers.

The combinators are ‘operators’ which are used to construct basic parsers from terminals,

and compound parsers from simpler parsers. Before examining any input-token, a

combinator-parser tries to execute a ‘rule’ - an executable-specification, to identify the

token. If this attempt fails, the parser recursively tries another rule and so on. Language-

processors, constructed using this parsing-technique, are able to provide many advantages

such as:

1. They are easy to implement in most of the programming languages that support

‘recursion’.

2. Associating semantic rules for recursive syntax-rules is straightforward (Frost [8]).

3. They are highly modular (Koskomies [22]), re-useable and each components can be

tested individually.

4. The structure of the code is closely related to the structure of the grammar of the

language to be processed and can be implemented as executable-specifications of

grammars, as shown by Frost and Launchbury (1989, [13]). Definite Clause

Grammars (DCGs) of logic-programming can also be used to achieve this.

A simplistic implementation of a top-down combinator-parser normally requires

exponential computation time, may sacrifice ‘ambiguity’ and it is not capable of handling

grammars having left-recursive production-rules, such as S: :=S a I a. Despite

having many advantages, these drawbacks of a general top-down parser turn it to a less-

attractive choice for practical uses. Consequently, all of the benefits of top-down parsing

have not been available to researchers working on natural-language processing.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Natural-Language Parsing

2.2.1 Ambiguity
As syntactic-ambiguity is a property of ‘human-spoken’ languages, a grammar that

defines a natural-language is naturally ambiguous. It is important that any parsing system,

which parses a natural-language, is able to identify all possible derivations or ‘parse-

trees’ for a given sentence. For example, the following grammar (similar to Chamiak,

1991) is ambiguous and a parsing-system that attempts to generate the syntactic structure

of the sentence “John sells the dog food” according to this CFG, should identify more

then one parse-tree:
Sent ::= NP VP
VP ::= Verb NP | Verb NP NP
NP ::= Del Noun I Noun | Del Noun Noun | NP NP
Noun ::= f o o d | d o g I c a t \ J o h n \ L i z
Det ::= t h e | a I an
Verb ::= s e l l s | b u y s | p l a y s

Parse 1
Sent

/ \
NP VP
I / I \

Noun Verb NP NP
I I I \ \

J o h n s e l l s Det Noun Noun
I I I

t h e d o g f o o d

[Semantically the meaning is
"John sells food to the dog"}

Parse 2
Sent

/ \
NP VP
I / \

Noun Verb NP_____
] I I \ \

J o h n s e l l s Det Noun Noun
I I I

t h e d o g f o o d

[Semantically the meeming is
"John sells food for dogs"}

Figure 2.1: An ambiguous grammar and some possible parses

2.2.2 Left-Recursion
There are several reasons why it is important for an NL-parsing system to accommodate

left-recursive CFGs:

1. If the parsing system can not process any grammar-rule written in left-recursive form

‘directly’, then the syntax-structure o f the derivation changes and as a result, causes

semantic misinterpretation. The text-book solution (Aho, Shethi and Ullman, 1986) for

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the left-recursion problem of top-town recursive-descent parsing is ‘eliminating a left-

recursive production-rule by converting it into a non-left-recursive one’. The following

example demonstrates missing valid-parses and semantic misinterpretations because of

this elimination technique:

Original Left-recursive Grammar
Expr
Term
Digit
Op

= Expr Op Term | Term
= Term Op Digit| Digit
= 0 | 19
= +1 *

[This grammar is also able to
generate a right-most parse-tree
like below]

Input: 3 * 4 + 2
Parse Tree :

Expr
/ I \

Expr Op Term
/ I \ \ \

Expr Op Term + Digit
I I I I

Term * Digit 2
I I

Digit 4

[The result of this derivation is
((3*4)+2) = 14]

Equivalent grammar after
eliminating left-recursive rules
Expr :
Expr':
Term :
Term':
Digit:
Op :

= Term Expr'
= Op Term Expr'
= Digit Term'
= Op Digit Term'
= 01 I 9
= + \ *

[This grammar is not able to
generate a left-most parse-tree
like above]

Input: 3 * 4 + 2
Parse Tree :

Expr
/ \

Term Expr'_____
/ \ / \

Digit Term' Op Term
I I

\
Expr'

I / \ \
3 E * Digit Term' e

I / I \
4 Op Digit Term'

I I I
+ 2 E

[The result of this derivation is
(3*(4 + 2)) = 18]

Figure 2.2: Elimination of left-recursion and possible problem

2. If the production rules of the grammar are in left-recursive form, sometimes it is

straight-forward and easier to add semantic-meanings or attributes to a grammar - that is

used in a language-processor. For example, attributes can be easily added to the

following left-recursive grammar, where as, there is no such simple way to add attributes

to an equivalent right-recursive grammar (bold fonts are attributes):

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Left-recursive attrihute-grammar
number ::= digit digit ::= '0'number.VAL = digit.VAL digit.VAL = 0 ^

| number' digit _ I '1'
number.VAL = (10 * number'.VAL + digit.VAL) digit.VAL = 1

Equivalent non-left recursive attribute-qrammar
number ::= digit
number.VAL = digit.VAL

I digit number'
number.VAL = ?????

3. As mentioned in [11], if left-recursive grammars could be used with top-down parsing,

they would provide a better framework for investigating NL theories in order to achieve

more efficient natural-language interfaces. For example, to test and investigate

compositional Montague-like theories (for processing verb adjuncts such as “When and

with what did Hall discover Phobos?”) the parsing-system needs to achieve all possible

ambiguous leftmost and rightmost derivations.

2.3 The Problem
To utilize the advantages of a ‘recursive-descent backtracking’ top-down combinatory

parser for natural-language parsing (and for other applications involving ambiguity), we

require a new algorithm to accommodate ambiguity and left-recursive production rules in

polynomial time. Many researchers have tried to address this problem with different

approaches, but none of them completely satisfies the requirements.

It is widely believed 1) that top-down parsers require exponential computational­

time, 2) that they fall into infinite-loop while processing left-recursive grammars, and 3)

that it is not practical to implement a modular top-down parser. However, the following

list of researchers’ work demonstrates that the above problem can be partially addressed:

1. Norvig (1991, [32]) showed that it is possible to achieve polynomial complexity for

top-down recognizers by use of the memoization technique.

2. Shiel [34] and Kuno’s [23] algorithms, though terminating for left-recursion by

utilizing the length of the input string, are based on the similarities between chart-

parsing and top-down parsing, but have exponential complexity.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Leermakers’ [24] claim to solve the problem using a “recursive ascent” functional

approach appears to be achieved compromising modularity and clarity of the code,

and is not really a top-down approach.

4. Frost’s [7] “guarded-attribute” approach solves the left-recursive problem, but

exhibits exponential time at worst case.

5. Nederhof and Koster’s approach of “cancellation parsing” [30] to process left-

recursive rules is exponential at the worst-case and the resulting code is less clear as

it contains additional production rules and code to insert the special tokens.

6. Lickman’s use of purely functional set-monadic fix-point parser-combinator

approach to accommodate left-recursion for recognition is exponential [27].

7. Johnson integrated memoization with continuous-passing style-programming [20]

to resolve the problem. It appears that this approach is too complicated for practical

use. Also, as pointed by the Johnson, this approach might be too difficult to modify

for compact-representation of resulting parse-trees.

8. Camarao, Figueiredo, and Oliveiro’s [3] monadic compiler-generator may

accommodate left-recursion but fails to accommodate ambiguity.

Even though the above approaches partially solve the well-known drawbacks of top-

down parsing, for last 40 years no one has been able to provide full support for all of the

following requirements within a single parsing-system:

1. Complete support for direct and indirect left-recursive grammar.

2. Accommodating ambiguity.

3. Accommodating any form of CFG (including empty, cyclic, ‘densely’ rules etc).

4. Maintaining at least polynomial time and space complexity at the worst case.

5. Clarity and modularity of the implementation for efficient practical use.

6. Not only recognition but also working as a complete parser - that is able to

represents the resulting parse-trees using least possible space.

This thesis fulfills the requirements above.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Thesis Statement
2.4.1 The Statement
“Top-down parsing can accommodate ambiguity and left-recursion and can create a

compact (polynomial-size) representation of parse trees in polynomial time at worst

case.”

2.4.2 Why This Thesis is Important
Much work has been done and many theories have been proposed to analyze, investigate

and compute different aspects and problems related to natural-language semantics. But all

of the existing syntax-analysis systems share some common shortcomings (as mentioned

in section 2.3); it is not completely possible to accommodate and easily investigate all

semantic-analysis theories within current platforms. The algorithm described in this

thesis will allow combinator-parsing to be used with any form of ambiguous left-

recursive CFGs whilst maintaining polynomial time and space complexity. Hence, this

work will enable the full potential of existing work on natural-language semantics to be

integrated with and investigated within syntactic-analysis, thereby providing a useful

environment for natural-language investigation. This work also allows constructing

natural-language processors as executable specifications by being highly modular,

structured and easily alterable. According to the proposed algorithm, the result of parsing

is represented as a densely-compact form, which will help the potential users to retrieve a

particular parse-tree by spending less time. Overall, investigating and implementing

different theories and aspects o f computational-linguistics will benefit significantly.

2.4.3 Why it is Not Obvious
As top-down parsing attempts to find the left-most derivation for a given input sequence,

it has been assumed that its ‘recursive-descent’ phase would never terminate while

processing a CFG that contains left-recursive production rule(s). As ‘backtracking’ is

important to achieve the desired ambiguity (especially for natural-language parsing) and

requires sophisticated care during implementation, an unstructured and naive

implementation may result loss of possible parses. Also, even if the CFG doesn’t have

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

any left-recursive production rules, top-down parsing is generally considered to exhibit

exponential time-complexity in the worst-case - mainly because of its ‘backtracking’

characteristic. Reviews from literature suggest that it’s been universally assumed in the

functional-programming community that combinator-parsing cannot accommodate left-

recursion at all - because the left-most ‘parser’ would always keep executing its own

definition again and again. Therefore, despite fulfilling some partial requirements (as

mentioned in section 2.3), for last 40 years no one has been able to accommodate

ambiguity and left-recursion within a complete top-down parsing system in polynomial

time.

2.4.4 How the Thesis will be Proven
The following steps have been taken to justify that the proposed algorithm satisfies the

thesis-statement:

■ Studying related-works thoroughly to identify whether they have addressed the

following all requirements or not:

1. Complete support for direct and indirect left-recursive grammar.

2. Accommodating ambiguity.

3. Accommodating any form of CFG (including empty, cyclic, ‘densely’ rules

etc).

4. Maintaining at least polynomial time and complexity at the worst case.

5. Not only recognition but also working as a complete parser - that is able to

represent the resulting parse-trees using least possible space.

6. Maintaining modularity, clarity and flexibility to accommodate different

theories and applications for NLP including integrating semantic-rules with

syntax-structure correctly.

■ Proposing a new algorithm to fulfill the above requirements.

■ Implementing the algorithm in a lazy-functional language - Haskell.

■ Termination-analysis of the algorithm.

■ Complexity-analysis - to justify the claim of polynomial time and space complexity.

■ Conducting experiments to test the practicality of the algorithm.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5 Brief Description of the Solution
Frost and Szydlowski [14] proposed a framework to the utilize memoization technique

for improving the complexity of purely-functional parser-combinators. Later, in 2003 [9],

Frost showed how recognition of natural-languages can be achieved in polynomial-time

by memoizing parser-combinators in a systematic way using ‘state- monads’. But the

basic drawback of this approach is that it doesn’t ‘terminate’ while processing left-

recursive grammars. The proposed algorithm of this thesis uses memoization in such a

way that it can accommodate indirect and direct left-recursive grammars. In order to do

so, the new algorithm keeps track of the depth of a particular parse and the length of the

input which is currently being processed. Each time a particular parser is being called

during recursive-descent while processing a particular input, a ‘counter’ (we call it ‘left-

rec-counter’) is incremented by one - indicating the depth of the parser. This parser is

‘curtailed’ when its left-rec-counter exceeds the length of the remaining input and the

process backtracks up the parse-tree to apply another alternative parse, if exists any.

When the parser computes a result, it saves it to a ‘memo-table’ along with a reference to

the position in current input.

Though this treatment solves the ‘direct left-recursive’ problem, the indirect or

hidden left-recursive productions may still skip some valid ‘parses’. This is mainly

because when an intermediate parser (of an indirect left-recursive parser) tries to look-up

a previously stored result in the ‘memo-table’, it may retrieve only a partial result which

is less then if the parser were applied again in the new context. The solution to this is to

provide ‘context-based’ update and lookup for memoization. Now, when a parser goes

down during recursive-descent, it keeps records of all others parses on its way and their

‘left-rec-count’ along with its own. If any parser is ‘curtailed’ at a particular position (i.e.

if a parser is left-recursive), it passes its ‘reference’ upward during recursive-ascent.

When a parser computes a result, it saves the result to ‘memo-table’ along with its

current-context w.r.t. the reference of the ‘curtailed’ parser(s), if any. Subsequently,

while performing a lookup, the current parser judges whether to reuse a saved result or

not by comparing the ‘saved-context’ with its ‘current-context’. If it finds that it has

recursively descended enough, then it is eligible to re-use, otherwise it has to perform

more recursive-descent operations.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The new algorithm stores the resulting parse-trees in the memo-table as a forest of

one-level depth, n-ary branches. Each branch has implicit pointers to determine ‘where to

go next’ in its nodes and is shared between ambiguous parses. This densely-compact

representation of resulting parse-trees ensures the cubic space-complexity, even though

the total number of parses could be exponential.

The detailed description of the algorithm is given in chapter 6 and 7. Section 11

contains experimental results (based on different grammars of the appendix with varying

number of inputs). The implementation is described in section 8 and theoretical analysis

is given sections 9 and 10.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3: LAZY FUNCTIONAL

PROGRAMMING

3.1 Introduction to Lazy Functional Languages
A functional-program, in general, consists of a set of function definitions - which follow

regular mathematical properties. Execution of a conventional program, written in a

conventional language, is based on processing a set of ‘hidden stores of named locations’

by sequences of assignment statements, whereas execution of a functional program is

based on computation of functions and application of them to data. Frost [10] has defined

pure functional programming as programming in an environment where “function

composition and function application are the only forms of control structure” and any

form of looping and iteration must be performed through recursive function calls. In the

purest form of functional programming (known as lazy functional-programming, LFP),

the languages are polymorphically typed and embedded with automatic type checkers,

“the evaluation of arguments to functions is delayed until those values are required” [10].

Assignment statements are not allowed in functional programs. So ‘variables’ don’t

change their values during the program-life. Hence, nothing changes the value of an

expression and function calls don’t have any other effects other than executing

themselves. In other words, lazy languages don’t have any “side-effects”. As a result, the

order of execution of any function is not important (i.e. functional programs have no

flow-control). The properties above reduce possible causes of errors in programs and

program-executions. As functional programs exhibit ‘natural-parallelism’ more than

conventional programs, they are well suited for the latest computer-architecture where

different processes operate simultaneously while communicating and cooperating with

each other. Well-structured and modularity (achieved through ‘higher-order functions’

and laziness) make a fimctional-language more efficient than conventional languages.

Commonly-used LFP languages are Haskell, Miranda and SML. Lisp and Scheme

represent strict-version of FL. Hughes’s paper [16] answers the question “Why
Functional Programming Matters?” in detail.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Elements of Lazy Functional-Programming
Important components and attributes of LFP are described below briefly:

1. Lambda Calculus

Church invented lambda-calculus in 1930 to demonstrate that it is impossible to find a

general algorithm which, for some given first-order statements, decides whether they are

universally valid or not. Since then, it has been used for investigating function-definition,

function-application, recursion and has influenced the basic implementation-mechanism

of LFP languages. The basic building block of lambda calculus is computable-function

formation (which is obtained by abstracting an expression), and variable substitution. A

simple lambda-expression or term is, for example Xx. (x3 + 1) , where Xx abstracts

the name-less expression (x3 + 1) w.r.t. x. We evaluate this L-term by substituting the

variable x with a given constant. For example, in (Xx. (x3 + 1)) 2 = 23 + 1 = 9

the variable x is replaced by the constant 2. A variable x is ‘bound’ if its occurrence in

the L-term is preceded by Xx, otherwise x is ‘free’. For example, in the expression

Xx. (x + y) , x is bound and y if free, ^.-calculus is considered as the ‘universal

programming language’. As any computable function can be expressed and evaluated

using L-calculus, it is the central issue of the LFP paradigm.

2. Higher-Order Function

A ‘higher-order function’ (FIOF) is a function which can take other function(s) as its

input-argument and also can produce some other function(s) as its output. For example,

most LFP languages provide a HOF map that receives a function and a list as its input

parameter and returns a list by applying the input function to each element of the input

list, for example, map (* 2) [1,2,3] => [2,4,6]. HOFs are ‘first-class object’ of

LFP language. Use of higher-order functions as infix-operators is the basic for

constructing parser-combinators as such use of functions can mimic the BNF notation of

a CFG. For example, a CFG rule 's: := a s | empty' can be interpreted in English

as

“s is either 'a then s' or empty”

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using higher-order functions ('o r ' and 'th e n ') , parser-combinators1 can be written as:

empty input = [input]
a (x:xs) = if x =='a' then [xs] else []
(p 'or' q) input = p input ++ q input
(p 'then' q) input = if r == [] then []

else map q r
where r = p input

and used, as for example:
s input = (a 'then' s 'or' empty) input

3. Pattern-matching

Pattern-matching enriches function-definitions’ readability and the structure of the

program a great deal. Standard patterns (such as variables, constants, wildcard-pattem,

patterns for tuples, lists, algebraic constructors etc) match against the syntactic-structure

of an argument while maintaining the iazy-evaluation’ attribute. LFP supports another

type of pattern - known as ‘application pattern’ or ‘n+k-pattem’, which matches the

semantic-structure of the arguments instead of syntactic-structure. As described in [33], a

pattern n+k, where k is a constant, matches against an actual function-argument - a, if a
can be considered as the result of an expression (A,n. n+k) b. If so, then n is bound to b.

Clearly, b can be calculated by evaluating the inverse expression (A,n. n -k) a.
4. Polymorphic Types

LFP languages are ‘strongly-typed’ - which prevents users to use ill-typed values in

function application, equipped with ‘statically type-checking’ system - that tries to detect

types automatically, checks for type-mismatch and identifies type-errors during

compilation. Also, in LFP, functions’ input and output arguments may have

‘polymorphic-type’ - that means these function-definitions are common for any type of

values. This facility makes function-definitions more general and reusable. For example,

a simple function ‘tail’ - which is defined to pick the last element of a list - works on lists

of integers, strings etc:

tail [1,2,3] => 3,
tail ["aa","bb","cc"] =3 "cc".

1 Explained in section 3.3

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5. Currying

Frege, in 1893, observed that it is sufficient to define any function with a single

argument. “Currying” (named after Haskell B. Curry) is a way that converts an n-

argument function to a 1-argument function and returns another function (if more

arguments are needed). Modem LFP languages use “currying” (and “uncurrying”) as a

default method of evaluation (by treating all functions as higher-order functions) and

provide abstraction to user through ‘syntactic-sugar’. For example, the function add (of

type add :: Int -> Int -» Int) adds two integers. When ‘add 2 3’ is

executed, first ‘add 2 ’ is evaluated and returns a function (of type Int -» Int). Then

this function is applied to 3 and returns 5 as the final result.

6. Lazy-evaluation

Lazy-evaluation delays the computation of a function until the result is required. This

unique feature allows LFP languages to process ‘infinite data-structure’. For example,

assume already defined pick_5th function selects 5th element of a list. When this

function is applied on an infinite list of integers, it doesn’t go into non-terminating state

but retunes the fifth element from the list. For example, pick_5th [1..] => 5
7. Monads

Monadic-computation is another unique feature of LFP languages. The underlying idea is

derived from categorical-theory. Using monads, a computation could be constructed as

sequential block of computations and the ‘block of computations’ may be constructed

using other sequential block of computations too. Monads make programs much

structural and modular by ensuring sequential execution of computations. A detailed

description of monadic-computation is described in section 4.2.

3.3 Haskell - A Purely-functional Language
Haskell (Hudak, 2000) is a purely-functional, lazy, polymorphically typed, widely used

programming language. The latest version Haskell 98 is the most stable implementation

and enriched with an expressive syntax, user-defined algebraic data-types and standard

libraries with a wide range of built-in primitive data-types, functions and type-classes.

Haskell 98’s features and functionalities are documented in “The Haskell 98 Report”

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Peyton-Jones, 2002). In addition to supporting all of the features mentioned in previous

section, it also provides a novel type-system that supports a systematic form of

‘overloading’. Different variations of Haskell are also introduce such as: GPH, pH (both

are parallelizable version of Haskell), Haskell++, O’Haskell (‘object-oriented’ Haskell),

Mondrian (a ‘mixture’ of Haskell and Java - can be used in .NET platform) etc. Haskell

has been used frequently in academia and in industry simultaneously. Many NLP-relates

systems have been implemented using Haskell. Following table summarizes Haskell’s

use in NLP:

System Implementer and Purpose
Year of

Implementation
LOLITA Garigliano, R., Natural Natural language processing

Language Engineering Content scanning
Group, University Of Implementing plausible reasoning model
Durham, 1989 Chinese language tutoring

Connexion to speech input and output
Natural language generation system for English and
Spanish
Discourse planner
Information extraction system for equity-derivation
trading_____________________________________

Grammatical
Framework

Ranta, A. 1998 Multilingual authoring/ Multilingual Syntax Editing
Proof text editor

(GF) Software specifications
Controlled language
Dialog system
Technical document editor

Ontology
Construction

Khun, W., 2001 Building ontologies for natural language text to
describe human activities

Functional
Morphology

Ranta, A. and Forsberg,
M„ 2004

Constructing morphologies of Swedish, Italian,
Russian, Spanish, and Latin

Combinator
Parsing for

NL

Frost, R and Hafiz, R,
2006

Accommodating ambiguity and left-recursion in
polynomial time
Compact-Representation of resulting parses

Table 3.1: Use of Haskell for constructing NLP-related systems

As the new algorithm - proposed and documented in this thesis-report - is implemented in

Haskell, knowledge of elementary Haskell notations [5, 16] would be useful for the better

understanding of the rest of the report.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4: COMBINATORY PARSING

4.1 General Concept
Use of a higher-order function as an infix operator in a function-definition is known as a

‘combinator’. A parsing method, which is constructed using these combinators, is called

‘combinatory-parsing’ (as higher-order functions ‘combine’ different parsers together). A

complete language-processor can be constructed by combining small processors with

combinators. Though the concept of combinatory-parsing was introduced by Burge in

1975 [2], it was Wadler (1985, [37]) who first popularized this form of parsing. Wadler

showed that results (success or failure) of a recognizer can be returned as a list. Multiple

entries of this list represent ambiguous results, whereas an empty list represents a

‘failure’. Most of time, parsers are generated automatically using tools like Lex and Yacc

(for imperative languages) or Happy (for functional language Haskell). One drawback of

this approach is the user needs to learn a new language (Lex, Yacc or Happy) to generate

a parser. Combinatory parsers are written and used within the same programming

language as the rest of the program. As function application in LFP is juxtaposition, a

language-processor written using combinators can represent BNF representation of any

CFG. By nature, a combinatory-parsing system is a top-down, recursive-descent (with

full backtracking), which is able to accommodate ambiguity. These parser-combinators

are straightforward to construct, ‘readable’, modular, well-structured and easily

maintainable and alterable. Semantic-meaning and extra functionalities can be added to

the respective production-rules effortlessly. Frost and Launchbury (1989, [13]) showed

how to construct Natural-Language Interpreters in Miranda1 using higher-order functions.

Based on this work, Frost later constructed an attribute grammar-programming

environment - W/AGE (Windsor attribute grammar-programming environment) (2002,

[10]). Huttton (1992, [19]) also used parser-combinators to demonstrate a complete

parser construction - that addresses parsing problems caused by white-space, special

characters etc. Koopman and Plasmeijer (1999, [21]) used continuation to improve the

efficiency and performance of parser-combinators.

1 Miranda is a trademark of Research Software Limited of Europe

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following step-by-step example demonstrates how a CFG can be represented as a

language-processor using parser-combinators.

4.1.1 Example o f a Simple Parser-Combinator
A production-rule of a CFG may have one or more ‘alternatives’ and each alternative

may consist of a sequence of non-terminal(s) and/or terminal(s), or the alternative may

consist of a single non-terminal or terminal or ‘empty’. In order to build a recognizer for

a CFG using parser-combinators, we need to construct some basic combinators and use

them to ‘glue’ different terminals and non-terminals to form a complete rule. These

combinators work as infix operators and non-terminals (and terminal) work as operands

to these operators. (Note that in this example we just work with ‘recognizers’ instead of

‘parsers’) Consider a CGF that generates a limited subset of natural-language:

Sentence ::= Noun_Phrase Verb_Phrase
Noun_Phrase ::= Del Noun | Adjective Noun | Del

Noun Verb
= Verb PP NP | Verb I empty
= the | a | an
= universe I planets Isolar-system
= earth-like \ finite
= the | a I an
= exist | finds | expands
= in I on

Verb_Phrase
Det
Noun
Adjective
Det
Verb
PP

This grammar recognizes a given sentence (or parts of it) if the sentence’s syntactic-

structures match some rules of the grammar. We denote the ‘sentence’ as a list of strings

(or tokens). If some parts of the sentence (starting from the beginning) have been

recognized, then the result of recognition is the ‘rest of the sentence’. That implies if the

whole sentence is recognized successfully, the result is just a list of an empty string. If the

recognition fails, the result is an empty list. If the same input can be recognized in more

then one ways, then the result contains multiple entries.

For example, application of Noun Phrase to ["the", "universe"] and

["the", "milky-way"] results [[]] (indicating‘success’) and [] (indicating

‘failure’) respectively.

So, the type of the basic recognizer is:

type Recognizer = [String] -> [[String]]

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We define four basic-combinators to construct the complete recognizer-set.

1. The empty recognizer always succeeds and simply returns the input.

empty input = [input]
2. Any terminal is constructed in terms of combinator - term, which matchers the first

token of the input-sequence with its own token. If a match is found, it returns the rest of

the input-sequence, otherwise returns an empty list.
term :: String -> Recognizer
term w [] = L
term w (t:ts) w == t = [ts]

otherwise = []

3. We call the ‘alternative’ combinator orelse, which is used as an infix operator between

two recognizers. The orelse applies both of the recognizers on the same input-sequence

and sums up the results returned by of both of the recognizers, which is eventually

returned as the final result. It can be defined as:
orelse:: Recognizer -> Recognizer -> Recognizer
(p 'orelse' q) inp = unite (p inp) (q inp)

We assume the function ' un i t e ' combines the results returned by the two

recognizers and removes the duplicate values.

4. The sequencing of recognizers is done with the then combinator. Like ‘orelse’, it is

also used as an infix operator between two recognizers. But it applies the first recognizer

to the input-tokens and if there is any successful result of this application, then the second

recognizer is applied to the result - returned by the first recognizer, otherwise the final

result is an empty list - indicating a failure. One way of defining it is:

then:: Recognizer -> Recognizer -> Recognizer
(p 'then' q) inp = apply_to_all q (p inp)

where
apply_to_all q [] = []
apply_to_all q (r:rs) = unite (q r)

(apply_to_all q rs)

The function a p p l y _ to _ a l l ensures that the second recognizer - q - is being applied

sequentially to all possible results returned by first recognizer - p.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using these four basic combinators, we now represent the previously mentioned

CFG as a combinatory-parser for simple subset of English. Basically the sequencing

terminal and/or non-terminals are glued together by then combinators, alternatives are

represented with orelse combinators, terminals and empty recognizers are created by

term and empty combinators. Each non-terminal definition works as an executable-

function, which is simple enough to construct, understand and modify.

Sentence = Noun Phrase 'then' Verb Phrase
Noun Phrase = Del 'then' Noun 'orelse' Adjective

'then' Noun 'orelse' Del 'then' Noun
'then' Verb

Verb Phrase = Verb 'then' PP 'then' NP 'orelse' Verb
'orelse' empty

Det = the 'orelse' a 'orelse' an
Noun = term "universe" 'orelse' 'orelse' term

"planets" 'orelse' term "solar-system"
Verb = term "exist" 'orelse' term "finds"

'orelse' 'term "expands"
Adjective
PP

= term "earth-like" 'orelse' "finite"
= term "in" 'orelse' term "on"

Figure 4.1: A combinatory-parser representation of a CFG for NL

Below is a list of sample applications of these recognizers to some natural-language
inputs:

1. Sentence ["earth-like", "planets", "exist", "in",
"the", "universe"] => [[""]]
(A completely successful recognition)

2. Sentence ["earth-like", "planets", "may", "exist"] =>
[["may", "exists"]]
(A partially successful recognition)

3. Noun_Phrase ["the","universe", "expands", "uniformly"]
=> [["expands", "uniformly"],["uniformly"]]

(Two different ways of recognitions for the same input - shows ambiguity)

4. Sentence ["andromeda", "is", "next", "to", "milky-
way"] => []
(A failed or unsuccessful recognition)

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Use of Monads for Combinatory-Parsing
4.2.1 Monads to Structure Program
As non-strict functional-programming languages do not permit ‘side-effects’ (such as:

assignments, exceptions, continuation etc), it is relatively complex to perform operations

like IO, maintaining states, raising exceptions, error handling etc. The monads appear as

an easy solution of these kinds of problems. The concept of ‘monad’ in computing is

derived from Category-Theory - a branch of mathematics, which abstractly describes

mathematical-structures (categories) and relations between them. Moggi [8, 9] showed

how monads can be used efficiently to structure semantic-computations. Moggi (1989)

and Spivey (1990) demonstrated that maintaining states, raising exceptions, error

handling, continuations etc can be performed structurally using monads. Inspired by their

works, Wadler established monads as a convenient tool for structuring functional

programs [38, 39].

4.2.1.1 Definition o f Monad

Our discussion about monads is restricted within its use in functional programming as a

software-engineering tool. A monad consists of a triple (M, unit, bind).
M is a polymorphic type constructor.

Function unit (of type a -» M a) takes a value and returns the computation of the

value. Function bind (of type M a -> (a -» M b) - » M b) applies the

computation (a -» M b) to the computation 'M a' and returns a computation 'M b'.
The bind ensures sequential building blocks of computations. To be considered as a

valid monad, the triple has to obey following three laws:

Left Unit :: unit a 'bind' k = k a
Right Unit :: a 'bind' unit = a
Associative:: a 'bind' (\b -> (k b) 'bind' (\c —> h c))

= (a 'bind' (\b —»• (kb)) 'bind' (\c -» h c)
By adding simple changes to an existing monadic-definition, one can perform complex

operations with added requirements in a fairly easier way. Monads, to some extent,

mimic an imperative-style programming environment within the scope of purely-

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

functional language. Monad helps programmers to construct a ‘bigger’ computation

combining sequential alterable blocks of ‘smaller’ computations. It abstracts the smaller

computations and the combination-strategies from the main computation. As monad

separates the type of computation from the type of resulting value, it’s easier to add new

changes to an existing monad to fulfill different computational requirements.

Two most commonly used monads are the identity-monad and the state-monad.

We are particularly interested in the ‘state-monad’ as this form of monad has been

employed in this thesis to construct the combinatory parsers.

Identity-Monad:

This simplest monad just returns the value without attaching any information to it.

type Id x = x
unit :: a -> Id a
unit x = x
bind:: Id a -> (a -> Id b) -> Id b
x 'bind' f = f x

State-Monad:

As maintaining updateable variables (in other words - ‘different states’) are not permitted

in LFP languages, eveiy function-definition, which requires latest state-value, must have

a ‘state’ as input-parameter. For complex functions, maintaining this explicit ‘state’ is

complicated, error-prone and results unstructured and cluttered code. By using state-

monads, function-definitions can ‘abstract away’ the updated ‘state’ as a function-

parameter implicitly. A continuously-changing state-variable can float around within a

monadic function-definition without forcing the function explicitly operates on it. One

way to define a state-monad is:

type State a = S -> (a, S)

unit :: a -> State a
unit x = \s -> (x, s)

bind :: State a -> (a -> State b)-> State b
m 'bind' k = \x -> let (p, y) = m x in

let (q, z) = k p y in
(q , z)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The u n i t takes a value of any type (along with an initial state of type S, which is

abstracted within the definition) and returns a pair that consists of the input-value and the

initial state. In other words, the type of the output of u n i t is 'State a'. The b in d

takes two parameters - the first one, m, is of type 'State a' and the second one, k,
which is a computation that takes a value of type a and returns a value of 'State a'.
The output of b in d is of type 'State a'. According to the type-definition of

'State a', when x of type S is supplied to m, it returns a pair (p , y) where p is the

value that ‘container’ m was holding and state y is of type S. Then b in d takes p and y

from the output o f 'm x ' , applies k on p, which returns something of type 'S t a t e a '

(which contains a value inside). When output of k is applied to the previously calculated

state y, it returns (q, z) - by following the definition of 'State a'. Here q is the

new value that the output of ' k p' was holding and z is the new state (of type S).

4 .2 .1 .2 E x a m p le o f M o n a d ic C o m p u ta tio n

The following simple-but-illustrative example shows how adding some changes to the

existing monadic-definition can perform different computational tasks.

With the non-monadic definition for reversing a list, it’s quite tedious to retrieve

other information about the list. But by converting the naive definition of ‘reverse list’ to

a monadic definition, we can perform additional tasks in a structured manner.

The original definition for reversing a list:

revList [] = []
revList (e:es) = revList (es) ++ [e]

Example 1:

This basic monadic-definition (using identity-monad) of reversing a list and the original

definition do not have any difference w.r.t. their functionalities. This monadic-definition

can be considered as the basic building block for the other monadic-definitions. The type-

constructor 'Ml a' has one data constructor - a. The unitl and bindl are defined

according to the previous identity-monad definition.

revListl [] = unitl []
revListl (e:es) = revListl (es) 'bindl' f

where f a = unitl (a ++ [e])

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sample output:
*Main> revListl [3,7,9,0]
[0,9,7,3]

Example 2:

This version of ‘monadic reverse-list’ uses ‘state-monad’ and is changed in such a way

that along with reversing a list, it is also able to return the length of the input list. It was

done by changing the type constructor 'M2 a' so that it can maintain a state of integer

type. The definition of bind was also changed to ensure that the recursive calls can have

the latest state.
type M2 a = Int -> (a, Int)
unit2 :: t -> M2 t
unit2 x = f where f t = (x,t)
bind2 :: M2 tl -> (tl -> M2 t2) -> M2 t2
m 'bind2 ' k = f’

where f' x = (b,z)
where (b,z) = k a y

where (a,y) = m x

revList2 [] c = unit2 [] c
revList2 (e:es) count = (revList2 es 'bind2' f)

(count+1)
where f a
= unit2 (a ++ [e])

Sample output:

*Main> revList2 [3,7,9,0] 0
([0,9, 7,3] ,4)

Example 3:

This version of ‘monadic reverse list’ is changed in such a way that along with reversing

a list, it is also able to detect if the input-list has multiple occurrences of one or more

elements. The same state-monad is used but the type constructor 'M3 a' is changed in

such a way that it can print some information. The monad gives us the chance to add

some helper functions like ‘findDup’ and ‘chkForDup’ for computational flexibility.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

type S = [Char]
type M3 a = S -> (a, S)

revList3 [] = unit3 []
revList3 (e:es) = (drevList3 es 'bind2' f)

where f a = unit2 (a ++ [e])

drevList3 lis str = findDup revList3 lis str
findDup revList3 lis str

= (out, chkForDup out)
where (out, none)
= revList3 lis str

chkForDup resList = if (resList == nub resList)
then "Has No Repetition"
else "Has Repetition"

Sample output:
*Main> drevList3 [3, 7, 4, 9] ""
([9,4,7,3],"Has No Repetition")
*Main> drevList3 [3,7,9,4,9] ""
([9,4,9,7,3],"Has Repetition")

4 .2 .1 .3 M o n a d s in H a s k e l l

Haskell is equipped with many built-in monads (such as: list, maybe, IO etc) and the

Prelude1 contains some monadic classes (such as: Monad, MonadPlus, Functor etc).

The standard monad class in Haskell is defined as

class Monad m where
return :: a -> m a
(»=) : : m a -> (a -> m b) -> m b

(where 'return' and ' (» =) ’ are equivalent to 'unit' and 'bind' of
previous discussion)

A basic monad can be constructed by creating an instance of this class. Haskell also

provides a special syntax for monad (the ‘do’ notation - an expressive short-hand

notation), which gives programmers a touch of imperative-style-programming in Haskell.

Instead of using the built-in monads, we shall use hand-written monads to maintain the

clarity of the function-definitions.

1 The standard library o f Haskell

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.2 Monadic Parser-Combinators
Wadler (1990, [38]) first noticed that using monads, combinatory-parsers can be

represented in an organized manner. Hutton (1996, [19]) described a step-by-step

procedure to form functional-combinators using monads. In 2003, Frost demonstrated

how monadic parser-combinators can be used to maintain updatable ‘state’ efficiently

during ‘memoization’. The main purpose of transforming regular combinators to monadic

combinators is to abstract out the underlying computation mechanism in order to add new

functionalities in a structured and modular way. In our case, however, the primary

requirement is maintaining a changing ‘state’ securely. We begin by transforming the

non-monadic combinators of section 4.1.1 to monadic combinators using identity-monad.

Though these definitions don’t serve any useful purpose except modularity for now, we

show in following sections, how we can systematically replace the identity-monad with a

state-monad to provide systematic method for memoization.

Identity-monad definition
type Recognizer x = x
unit :: a -> Recognizer a
unit x = x
bind:: Recognizer a -> (a -> Recognizer b) ->

Recognizer b
x 'bind' f = f x

Basic (identity) Monadic-combinators
term c [] = unit [""]
term c (r:rs)I r == c = unit [rs]

I otherwise = unit []
empty x = unit [x]

(p 'orelse' q) inp = p inp 'bind' f
where f m = q inp 'bind' g

where g k = unit(union m k)
(p 'then' q) inp = p inp 'bind' f

where f m = q m 'bind' g
where g k = unit k

Figure 4.2: Simple monadic-combinators

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In orelse, recognizers p and q are applied to the given input inp and their results are

bound to the variables m and k using bind. The union of m and k is added to a

‘container’ of computation through unit and returned as the result of o r e l s e . In

then, recognizer p is applied to the given input and its result is bounded to m with

bind. Then recognizer q is applied to m and its result is bounded to k, which ultimately

is returned as a computation using unit. The term and empty combinators’ results are

added to a ‘container’ of computation using unit and returned afterwards. Using these

combinators, we can form identical recognizers of figure 4.1.

4.3 Shortcomings of Combinatory-Parsing
Combinators are very effective for constructing modular top-down recursive-descent

backtracking language-processors and to accommodate ambiguity. But they exhibit

exponential time-complexity in worst-case and they don’t terminate when used to

represent a left-recursive production rule.

4.3.1 Exponential Time-complexity
If no precaution is taken, a top-down parser normally exhibits exponential time-

complexity while processing an ambiguous grammar. As combinator-parsing follows

recursive-descent with backtracking top-down parsing technique, it is inherently

exponential. The simple ambiguous grammar - G_1 from section 2.1 that can generate

binary numbers - can be expressed using combinators as:

B_E = D 'orelse' (D 'then' B_E) 'orelse' empty
D = term 0 'orelse' term 1

And when executed on input " 0 0 0 " , the execution tree with repeated computations

would look like: B E
/ T \

D (D B E) empty
/ \ /\ I \ \

0 1 0 1 D (D B E) empty
/\ /\ / I \

0 1 0 1 D (D B_E) empty
A A I
0 10 1 failed

(the bold parses are repeated computation)

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When a non-terminal e.g. B E (or D) is applied on the input, according to the definition

of 'orelse' combinator, all the alternatives of B E (or D) are being applied on the

current input without knowing whether the same operation for same input was performed

previously or not. For a highly ambiguous grammar, the rate of backtracked alternative

re-computations grows exponentially with respect to the length of the input.

4.3.2 Non-Termination for Left-Recursion
If we express the above grammar in a left-recursive form, then the combinator-parser

would be:

B_E = D 'orelse' (B_E 'then' D) 'orelse' empty
D = term 0 'orelse' term 1

The second alternative of the non-terminal B_E (B_E = B_E ' then' D) is a left-

recursive rule. When this particular rule is applied on an input "0 0 0 " the following

parse will be ever-growing:

When the non-terminal B E is executed on any input, according

1 ̂ to the definition of the combinator 'then', its left-mostB_E D
/ \ operand (which is the B E function itself) is being applied on

the input first. When this second B_E executes its definition, the

same scenario occurs again. As B E rewrites itself at the left-
B_E ~

most position and doesn’t introduce any ‘terminal’, the parser

doesn’t get the chance to ‘consume’ any input-token and

therefore the process never terminates.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5: RELATED PREVIOUS WORKS

5.1 Use of memoization and monads to accommodate

ambiguity in polynomial time
The technique of re-using ‘previously-stored results’ has been used to improve parsing

and recognition efficiency by many. Earley’s well-known chart-parsing algorithm [6],

which uses ‘dynamic-programming’, requires 0(n3) time in the worst case. Leermakers

and Augusteijn [25] used ‘memoization’ to improve their parsing-algorithm though their

explanations are slightly abstract in terms of modularity. It was Norvig [32] who first

demonstrated how to construct modular and efficient parser-combinators using a strict

functional language (Lisp) with the help of ‘memoization’. Inspired by his work, Frost

and Szydlowski (1995) constructed a purely-functional versions of memoized language-

processors. In 2003, Frost extended the previous work by changing the general-parser

combinators to state-monadic parser-combinators to ensure correct systematic

memoization. By using memoization, this approach also ensures cubic time-complexity at

worst case for recognition. In this section, we discuss Frost and Szydlowski [14] and

Frost’s [9] work briefly.

5.1.1 Basic Concept o f Memoization
Many recursive programs can be “memoized” to improve efficiency. Memoization (also

known as ‘top-down dynamic-programming’) computes a ‘sub-problem’ once, saves the

result in a storage (we shall refer this storage as ‘memo-table’) and reuses this result

(instead of re-computing it) when the identical sub-problem is required to be solved

again. Time-complexity of most of the recursive computations can be reduced from

exponential to linear or polynomial using memoization. The whole process is based on

two operations:

Update: whenever a result is computed for a sub-problem, it is saved in the memo-table

(with a unique identifier (id)) during recursive-ascent - only once.

Lookup: if the recursive-process meets the same sub-problem again somewhere during

recursive-descent, then the memo-table is being checked with this problem’s id and if a

match is found, then the saved result is returned, otherwise, the problem has to be

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computed. Different variant of ‘update’ and ‘lookup’ can be used - according to the

needs. For example, consider the recursive definition ‘fib’ (for computing Fibonacci

number) and the execution-tree for input 6:
fib n|n == 0 = 0

In == 1 = 1
I otherwise = fib (n-1) + fib (n-2)

fib 6__
I \

fib 5 + fib 4______
/ \

fib 4 + fin 3
/ \ / \

fib 3+fib 2 fib 2 + fib 1 fib 2
/

/
fib 3r

\
fib 2

\ I \
+ fib 1 fib 1+fib 0
\\ / \ / \ /

fib 2 + fib 1 fib 1 + fib 0 fib 1 + fib 0 fib 1 + fib 0
/ \

fib 1 + fib 0

Clearly, the time requires to compute ‘fib 6’ is exponential (0 (2n)). But, if the results of

sub-problems were saved in a memo-table for future use, then the required time would be

reduced to linear:
fib 6

t[update]
/ \

fib 5 + fib 4 4 [lookup]
T[update]

/ \
fib 4 +

t[update]
/ \

fib 3 + fib
T[update]

/ \
fib 2 + fib 1

T[update]
/ \

fib 1 + fib 0

Memo-table for ‘fib 6’

fin 3 4 [lookup]

2 4 [lookup]

n result
0 0
1 1
2 1
3 2
4 3
5 5
6 8

Figure 5.1: Memoized Computation of Fibonacci

In an imperative-programming (or in a strict-functional) language, a global

memo-table can be used to store the previously computed results, but as there are no

updatable variables in lazy-functional languages, the latest copy o f the memo-table has to

be passed-around as an input argument of recursive function-calls.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.2 Frost and Szydlowski - Memoized Language-processors
Frost and Szydlowski constructed memoized versions of basic combinators (as described

in section 4.1.1) for building polynomial-time language-recognizers. Their method differs

from Norvig’s approach by being implemented in a purely-fiinctional programming

language - Miranda. As Norvig used Lisp (a strict functional language), he was able to

maintain a globally accessible memo-table within the program-scope, which could be

updated or looked up by any function independently. But, as updatable dats-structure is

not permitted in LFP languages, Frost and Szydlowski implemented language-

recognizers in such a way that they can receive the recent memo-table as input-argument

and can also return it as a part of the output. Basically the whole memo-table is threaded

through the all recursive calls of the recognizers as an input-argument.

To illustrate their approach, we step-by-step construct memoized parser-combinators that

represents the CFG rule “S: : = a S S I e”. In their original paper, Frost and

Szydlowski described the recognition-procedure by identifying inputs as integer indices

for improved efficiency. For simplicity and better readability o f the function-definitions,

in this section we assume that

- input-tokens are represented as characters.

- unique-identifier of a recognizer is a string (i.e. recognizer’s name) and

- ‘result’ of recognition is a list of ‘remaining inputs’ (or a string).

So, the memo-table can be defined as:

type memo-table = [(String,[(String,[String])])]
which represents “memo-table = {(recognizer id,{(recognized input-token, {different

results o f recognition})})}”.

In order to perform a lookup or an update operation, recognizers are ‘memoized’ by

applying a higher-order function — memoize - to all recognizers. Through this

function, a recognizer first looks up the memo-table, if look-up fails, then the recognizer

executes its own definition and whenever it finds a result, it updates the memo-table with

appropriate id and newly-computed result. If a similar computation is required at some

point later, the recognizer just looks up the table to retrieve the result - instead of re­

computing it. The lookup and update functions can be defined as:

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lookup name inp table
Ires_in_table == [] = []
lotherwise = res|(i, res) <- (res_in_table !! 0),i == inp]

where
res_in_table = [pairs|(n,pairs) <- table,n == name]

update [] name inp res = [(name,[(inp,res)])]
update ((key, pairs):rest) name inp res
I key == name =(key, (inp,res):pairs) :rest
lotherwise =((key,pairs): update rest name inp res)

The 'lookup' function scans through the memo-table with given recognizer 'name'
and current input 'inp'. If there exists a result in memo-table, ' l o o k u p ' returns that,

otherwise it returns an empty list - indicating a lookup-failure. The 'update' function

adds a newly computed result 'res' to the end of the result-set for a particular

recognizer 'name' and specific input 'inp'.

memoize rec-name recognizer (inp, table)
Itable_res == [] =(res, update newtable rec-name inp res)
lotherwise = (table_res!!0 , table)

where
table_res = lookup rec-name inp table
(res, newtable) = recognizer inp table

The 'memoize' function takes a recognizer-name (unique id), recognizer function-

definition, input-string and a memo-table as its input-parameters. From the definition, it

is obvious that 'memoize' first performs a 'lookup', if 'lookup' returns an

empty list, it permits the 'recognizer' to compute new results. When a result is

found, it is updated to the memo-table for later use. To pass-around the memo-table as an

input-argument (or as the part of the output) of a recognizer, the definitions of basic

combinators can be modified as follows:

(p 'orelse' q) (inp, memo_tab) = (merge_result1 p_r q_r,n_tab)
where
(p_r, n_tab)= p (inp, memo_tab)
(q_r, n_tab)= q (inp, n_tab)

1 Assuming already-defined 'merge-result' function adds two sets of results by removing duplicates.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(p ' t h e n S ' q) (in p , m em o_tab)
I i f n _ ta b /= [] = q (p _ r , n _ ta b)
I o th e r w is e = ([] ,n _ t a b)

w here
(p _ r , n _ ta b) = p (in p , memo_tab)

em pty (in p , memo_tab) = ([i n p] , memo_tab)

te rm c ([] , m em o_tab) = ([] , memo_tab)
te rm c (in p , memo_tab)

I c — h e ad in p = ([t a i l i n p] , memo_tab)
I o th e r w is e = ([] , memo ta b)

In o r e l s e ' , recognizer p is applied to the given input and table pair whereas q is

applied to given input and table returned by p pair. Recognizers p and q ’s result-sets are

merged to form the result of ' o r e l s e ' . The combinator ' t h e n ' applies p to the

given (input, table) pair and q is applied to the output and table pair - returned by p. The

result of ' t h e n ' is simply the q ’s final result. Using these new combinators and the

memoize function, the CFG ‘S : : = a SS | s ’ may now be expressed as:

s = memoize " s " (a ' t h e n ' s ' t h e n ' s ' o r e l s e ' em pty)
a = te rm ' a '

This approach results in polynomial time-complexity when implemented correctly.

However, it was found in practice, that errors often were made in implementation,

resulting in unexpected exponential complexity.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1.3 Frost- State-Monadic Language-processors
Frost [9] solved the shortcomings of the previous work by transforming the basic-

combinators into state-monadic-combinators and this approach allows the systematic

threading of memo-table systematically throughout all recursive recognizer-executions.

In addition, use of the state-monad improves the modularity of the language-processor

and provides flexibility to add different functionalities (e.g. adding semantic meaning to

the production rules etc) to the recognizers. Experiments suggest that this monadic-

version is less error-prone and ensures cubic time-complexity for ambiguous grammars

flawlessly. To explain Frost’s approach, we can simply change definitions of the basic-

monad from section 4.2.2 to a state-monad for building basic-combinators. From the

discussion of last sections, we know that a memo-table has to be passed around as an

input-argument and output of all recognizer-executions for real-time ‘update’ and

‘lookup’ operations. By using same ‘type’ of the last memo-table (represented here as

' S ') we formulate the state-monad as:

type S = [(String, [(String, [String])])]
type State a = S -> (a, S)

unit :: a -> State a
unit x = \s -> (x , s)

bind :: State a -> (a -> State b)
-> State b

m 'bind' k = \x -> let (p, y) = m x in
let (q, z) = k p y in

(q , z)

Operations of 'unit' and 'bind' are identical to the description of state-monad in

section 4.2.1.1.We can now reuse the definitions from section 4.2.2 to build the state-

monadic combinators:

term c [] = unit [""]
term c (r:rs)I r == c = unit [rs]

I otherwise = unit []

empty x = unit [x]

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(p 'orelse' q) inp = p inp 'bind' f
where f m = q inp 'bind' g

where g n = units(union m n)

(p 'then' q) inp = p inp 'bind' f
where f m = apply_to_all q m

apply_to_all q [""] = unit [""]
apply_to_all q [] = unit []
apply_to_all q (r:rs) = q r 'bind' f

where f m = apply_to_all q rs 'bind' h
where h n = unit (union m n)

Beside the use of state-monad, the other change is the definition of ‘then’ combinator.

A function ‘apply_to_all’ is introduced in ‘then’ so that recognizer q is allowed to

be applied on all possible results returned by recognizer p. All the possible results

returned by q are united together, added to ‘container’ of computation through ‘unit’
and returned as the result of ‘then’. The combinator-recognizers, which represent a CFG

grammar can be ‘memoized’ identically using the same memoize, update and
lookup functions - defined in the last section.

For example, the CFG ‘S : : = a SS | e’ may again be expressed as:

s = memoize "s" (a 'then' s 'then' s 'orelse' empty)
a = term 'a'

A test-execution ‘s "aaa" [] ‘returns:

("a","aa","aaa"],
[("s", [("aaa", ["","a","aa","aaa"]),

/ - a " r » » ” t ! M I ! I !] \v / L / J) t

("a",["","a"]),
(" " , [" "])])])

Both of the above mentioned approaches are for ‘recognition’ of the given input-

sequence, no parsing system was constructed. Moreover, even though Frost’s last

approach ensures accommodation of ambiguity in polynomial, it is not capable of

processing any form of left-recursive grammar.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Approaches to Accommodate Left-recursion
Kuno (1965) appears to be the first to have used the length of the input to force-

termination of left-recursive descent in top-down processing. The minimal lengths of the

strings - generated by the grammar on the continuation stack - are added and when their

sum exceeds the length of the remaining input, expansion of the current non-terminal is

terminated. However, Kuno’s method is exponential in the worst case.

Lickman (1995, [27]) showed how Wadler’s (1992) idea of ‘using (monadic)

fixed-point operator to terminate left-recursive recognizer’ can be achieved practically.

He described a program that takes a BNF representation of a CFG as a input and

automatically converts it into a combinator-parser using fixed-point operator. However,

as mentioned by Lickman, this approach may not be able to result all possible results (i.e.

not complete) and exhibits exponential time-complexity with respect to the length of the

input during recognition.

Other attempts, includes Johnson’s approach (1995) of integrating memoization

with continuous-passing-style (CPS) programming to handle left-recursive grammars

appears to solve the problem for recognition in polynomial time. He mentioned that

simply memoizing a recognizer (as introduced by Norvig) doesn’t help to terminate a

left-recursive recognizer, as memoization is ‘delayed’ due to left-growing parse. His

approach to solve this problem, to some extent, is similar to the chart-parsing techniques -

developed by Shiel (1976) and Leermakers (1993). According to this approach, the

central idea of terminating a left-recursive memoized CPS recognizer is to make sure that

‘no un-memoized procedure is ever executed twice with the same arguments’. Johnson

mentioned that this approach may be too complicated to convert the recognizers into a

parsing-system and a straight forward implementation would not have enough

information for compact-representation of resulting parse-trees.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6: THE NEW ALGORITHM - FOR

RECOGNITION
The proposed-algorithm uses memoization to accommodate ambiguity and left-recursion

in polynomial time. It utilizes the state-monadic computation-technique (section 5.1.3,

Frost, 2003) for modular and structured construction of parser-combinators and for

threading the memo-table correctly trough out all parser-executions. The memoization

process has been defined in such a way that it may forcefully terminate a branch of a

parse by performing a ‘bound-check’ with respect to the length of the input-sequence and

the depth of the parse. Also, the ‘lookup’ process of memoization is strictly conditional,

which ensures proper re-use of the saved results. If a parser tries to retrieve a result from

the memo-table, its current ‘context’ is compared with its saved ‘context’ of memo-table

with respect to the ‘reason’ - that curtailed the underlying left-recursive parse, if any. The

memo-table is currently able to represent the resulting ambiguous parse-trees in a highly-

compact format, which can be viewed as a forest of directed-acyclic-graph (DAG). The

definitions of the basic-combinators are redefined (utilizing the flexibility of the state-

monad) to maintain n-ary branching of a non-terminal and to generate a list of reasons for

curtailment, if any. We first describe the algorithm for recognition (in this chapter) and

then parsing (in the next chapter) from a theoretic point o f view.

6.1 Basic Definitions
Some definitions - related to the algorithm - are discussed informally in this section:

Algorithm: An algorithm is a procedure (a ‘method’ of executing a series of finite

number of instructions) that halts or terminates (or runs out of instructions) after

executing a finite number of instructions in a finite time using finite effort on any number

of inputs. An algorithm may have any number of inputs and can produce any number of

outputs.

Recognizer: A recognizer simply indicates whether an input can be identified by a given

CFG or not. It can be viewed as a decision maker, which, if successfully identifies a part

of the input-sequence, points the beginning of the remaining input-sequence, otherwise

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

returns null. For example, a recognizer can identify the first three characters of the input

“abcde” using R: : = abc I xy, so as a result, recognizer returns {“de”}.
Parser: A parser not only indicates the how far of the input-sequence is identified using

a given CFG, but also tells ‘how’ it identifies the part or whole of the input. In other

words, a parser results parse-tree(s) as the output of parsing. For example, while

processing an input “abcde” using a CFG “R: : = Ac | xy, A: := be | pq” , a

parser returns:

R
A

A c
/ \

a b

(In this report, we generally refer to a definition of a non-terminal/terminal using

combinators, as a recognizer or parser)

Recursive Recognizer/Parser: A recognizer r is left-recursive if the left-most

recognizer in any of r’s ‘alternatives’ either immediately (direct left-recursive) or

through some other recognizer-execution (indirect/hidden left-recursive) rewrites to r

again without performing any ‘recognition’. For example, R : := R a | b is a direct

left-recursive recognizer, whereas R' : : = A a | s , A :: =R' a | b is an indirect left-

recursive recognizer. For a direct left-recursive recognizer, (1) at least one of the

alternatives has to rewrite to a terminal or ‘empty’ (through a terminal or a non-terminal)

at its left-most position. For an indirect left-recursive recognizer either (1) is true

and/or one of the ‘causing’ immediate non-terminal’s one of the alternatives has to

rewrite to a terminal or ‘empty’ (through a terminal or a non-terminal) at its left-most

position. Any other forms of recursive-recognizers are non left-recursive recognizer,

which recursively call themselves following some ‘other’ terminal(s)/non-terminal(s).

The ‘other’ terminal(s)/non-terminal(s) must rewrite to a ‘terminal’ or ‘empty’. For

example, R ' ' : : = a R ' ' I s i s a non-left recursive recognizer. Any form of non left-

recursive recognizer’s one of the alternatives has to rewrite to a terminal or ‘empty’

(through a terminal or a non-terminal) at its right-most position. Same definitions are

applicable to the ‘parsers’ too.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Overview of Basic Recognition
For computational efficiency, we define the recognition-process in terms of integer-

indices. Assume that the sequence of input-token is represented by ' i n p u t ' and the

length of it is ' # i n p u t ' . Each input-token can be accessed by an integer-index or start-

position. The result of recognition is expressed with a set of a pair of integers (i , j) -

where i is the ‘start-position’ and j is the ‘end-position + 1’ of the character-sequence,

which has been ‘recognized’ by a particular recognizer. An ‘empty’ result-set indicates

that the recognizer has failed to recognize the given input-sequence successfully. For

example, if an in p u t of length 5 - " a b c d e " - is to be recognized by a recognizer r : : =

a b c | e, then the result of the recognition would be { (1, 4) , (1 , 1)} .

We now provide a set-theoretic definition of previously-discussed basic

recognizers in terms of using indices. We use set-theory notation to simplify proofs of

termination and complexity (given later). The simplest recognizer that recognizes a

single terminal (or a character, in our case) is 'term' that takes an integer i, which

indicates the i111 position of the input-sequence, and a terminal ‘c’ as input. If i is greater

than the length of the input, the recognizer returns an empty set. Otherwise, it checks to

see if the character at position i in the input is equal to the terminal ‘c’. If so, then it

returns a singleton-set containing a pair (i , i + 1), otherwise it returns the empty set.

The basic recognizer for any terminal ‘c’ is defined as follows:

te r m l i c = {} , i f i > t i n p u t
= { (i , i + 1)} , i f to k e n a t p o s i t i o n i == c
= {} , o th e r w is e

The next simpler recognizer is 'empty' that takes a single index i and returns a

singleton-set containing a pair (i , i) - indicating no-action.

em p ty l i = { (i , i) }

The next recognizer-operator 'orelse' is responsible for representing production-rules

having different alternatives (i.e. r : := p I q) in their definitions. The 'orelse'
takes two alternative recognizers (p and q) and an index i that indicates the start-position

as input-arguments, applies each recognizer individually to i and unites the results

returned by both recognizers. It can be defined as:

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(p orelsel q) i = (p i)u(q i)

The sequencing of one terminal or non-terminal after another in a production-rule (i.e.

r: : = p q) is achieved with the 'then' recognizer-operator. It takes two sequencing

recognizers (p and q) and an index i that indicates the start-position as input-arguments,

applies the first recognizer to i, then applies the second recognizer to a set o f end-

positions (which are paired with start-positions) returned by the first one - p. At the end

'then7 returns the union of each of the results returned by the applications o f the

second recognizer q. We can define it as:

(p thenl q) i = (J (map (q pick_2nd) (p i))

In order to avoid exponential behavior (caused by repeated same computation) of a

recognizer that represents an ambiguous CFG, we define the ‘memoization’ procedure (as

described in section s 5.1.1, 5.1.2, 5.1.3) as follows:

memoizel
Input : recognizer name, recognizer, start position i
Output: (a set of (start-pos, end-pos+1) pairs, memo-table)
Method: if lookup succeeds,

return memo-table result
else

apply recognizer to i update table with results
return (results, updated memo-table)

lookupl
Input : recognizer name, start position i
Output: a set of (start-pos, end-pos+1) pairs
Method: if memo-table has result for rec_name at i

return result
else

return empty set

update1
Input : recognizer name, new result, start position i
Method: if an entry exists in memo-table for

rec_name at i,
union (add the new-result to the end}

else
create new entry for rec-name with
new-result at i

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We assume, for now, that the memo-table of memoize procedure is globally-stored and

has a type of
{{recognizer name, {start position, {(start position, end position + 1)}}}}.

An update-procedure is only executed during the recursive-ascent phase - when

the recognizer has computed a result already and ready to pass the control to the next one.

And the lookup procedure is executed during recursive-descent phase - when the

recognizer checks the memo-table for previously saved results before ‘going down’.

Using these basic building-blocks and procedures, an example CFG 'S : : = a S S I
s ' can be expressed as

S = memoizel(((terml a thenl S) thenl S) orelsel emptyl)

and an execution o f S on an input-sequence "aaa" at the start-position 1 results:

{ (1 , 1) , (1 , 2) , (1 , 3) , (1 , 4) , (2 , 2) , (2 , 3) , (2 , 4) , (3 , 3) , (3 , 4) } .

As mentioned earlier, each pair is in the result-set has a type (start-
position, end-position + 1). For example, a pair (1, 3) implies that the

recognizer S has successfully identified first two characters of the input "sss". Notice

that, as we are performing recognition only, it is sufficient to have only one copy of the

(start, end) pair in the result set. But there might be more then one resulting (start, end)

pairs - in other words there could be ambiguous results, which are not necessary to detect

with the recognition-procedure. It is parser’s job to identify all possible combinations of

ways in order to detect different syntactic-structures of any given sequence of input. But

if the above mentioned CFG’s equivalent left-recursive version 'S : : = S S s I s ' is

expressed as a left-recursive recognizer -

S = memoizel (((S thenl S) then terml s) orelsel emptyl)
and is executed on the same input at the same start-position, then the procedure won’t

terminate (section 4.3.2).

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Accommodating Direct Left-Recursion
6.3.1 Condition for Curtailment
Our approach for handling left-recursion is to impose an upper-bound limit on the

number of recursive calls of a left-recursive recognizer at each start-position while

processing a particular input. More specifically, to retrieve all possible results, a

recognizer rj is only required to call itself at most n times at position j, where

j = any start-position of the input, input# > j > 1

n = input# - (j -1)

That implies, to curtail a recursively descending left-recursive recognizer t from ever­

growing when applied at a start position j, the following condition-check is sufficient:

if rij > n
then ri is 'curtailed'
else ri performs another recursive-descent operation
where rij = number of time ri has been called at position j .

it increases each time ri is called at the same
start-position. We shall refer this counter as
'left-rec-counter'.

We attach an revalue for every recognizer (non-terminal) of the grammar. For any non-

left recursive recognizer, the value of tj will never be more then one. This is because if a

recognizer r, is non-left recursive then it will never apply itself again at the same start

position, as either it will ‘fail’ to recognize the input-sequence or will ‘consume’ some

input-token from the input before applying itself again. Hence, a non-left recursive

recognizer will never be forcefully curtailed. These observations introduce the following

assumptions and lemmas:

Assumption 6.1

Iff every alternative of a recognizer is tried on each input-token then the recognizer’s

attempt to compute ambiguous-recognition is correct.

(This assumption stays valid for memoized recognizers too because re-using a result from

the memo-table for a particular recognizer r at a particular start-position j is equivalent to

computing a result by executing r on j.)

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 6.1

If any non-left recursive recognizer’s (r ' ,,) left-rec-counter value (r ' ij) at any start-

position (j) is 1, then the recognizer’s attempt to compute ambiguous-recognition is

correct.

Direct Proof:

Let a non left-recognizer, r ' i : : = | a r ' i | b r ' i be applied

to an in p u t of length n . So, the start-positions (j) of in p u t are

{1 , 2 ,..., i , ..., n} and initially r ' i j = 0 .

Regardless of the value of n and Vj e {1 , 2 , , i , , n }, initially r ' i goes ‘down’ one

step and sets r ' i j = 1. According to the definition of a non-left recursive

recognizer, r ' i then applies the left-most ‘symbol’ (a or b) of its definition on j

and this symbol (either a terminal or a non-terminal) does not introduce r ' i again

without ‘consuming’ at least one input-token. If a or b fails to consume any input at j ,

the process terminates, otherwise all next applications of any processor is applied to j +1

position, if any. That implies, at position j , control of the processor goes to a different

recognizer (a or b) or completely terminates leaving r ' i ’ s r ' ij value at 1 and other

alternatives are applied to j sequentially (definition of combinators). Hence,

recognizer’s attempt to compute ambiguous-recognition is correct (assumption 6.1). □

Lemma 6.2

If any left-recursive recognizer’s (r ±) left-rec-counter value (r i j) at any start-position (j)

is equal to n (where n = # i n p u t - t o k e n - that r i is currently processing), then

the recognizer’s attempt to compute ambiguous-recognition is correct.

Proof by induction on # i n p u t :

Let a left-recursive recognizer, r i : : = a r i I r ' | b r ' i be

applied to an input of length n . So, the start-positions (j) of n are

{1 , 2 ,..., i ,..., n } and initially r i j = 0 .

Base Case:

For n = 1 and Vj e {1 }, when r i is applied at j =1, initially r i goes ‘down’ one step

and sets r i j = 1 . According to the definition of a left-recursive recognizer and

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

parser-combinators, n then applies the left-most ‘symbol’ of one of its alternatives,

which is rewritten to r i again (directly or indirectly), if we let it go ‘down’ one more step

then r i j eventually would be 2 and at this point n ' s growth is curtailed by indicating

this alternative as ‘failed’ .This lets other alternatives of r i to be applied at j = l

(definition of combinators). As n = 1 and at least one of alternatives consumes the

input, there will no input-token be left for further processing. Hence, r i ’s attempt to

compute ambiguous-recognition is correct (assumption 6.1).

Hypothesis:

Assume that the claim be true for n = k. That implies, r i ' s rij-values Vj e

{1 , 2 ,..., i , , k } are equal to {k , k - 1 ,..., i ,..., 2 , 1 } respectively and this ensures

r i ' s attempt for ambiguous-recognition is correct. We now show that the claim is true

for n = k+1 .

Inductive Step:

For n = k+1, the start-positions are {1, 2 ,..., i , ..., k , k+ 1} and when j = 1, the

length of remaining input-token = k+1. Up to kth token, rij-value is k (hypothesis).

And then from the base-case, r i needs to go ‘down’ one more step (hence increasing r e ­

value by 1) for allowing other alternatives to recognize the (k+-l)th token. That implies, up

to kth token at j = l , rij-value of is k+1. It can be shown in the similar way that

r i ' s rij-values Vj e { 1 ,2 ,... , i , . . . , k , k+1} are equal to { k + l , k , k -

1 ,..., i ,..., 2 , 1 } respectively, which ensures r i ’s correct attempt for recognition.

Theorem 6.1

Any recursive-recognizer’s left-rec-count value at a particular start-position can be at-

most equal to the length of the input it is currently processing for its correct recognition

attempts.

Direct Proof:

Directly proven from Lemma 6.1 and Lemma 6.2, as all recognizers fall either one of

these two categories. □

[This theorem is applicable for parsers too, as number of recursive-calls remains same in

both cases]

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3.2 Modified Memoization for Direct Left-recursion
To accommodate theorem 6.1, we define the memoize procedure as follows:

memoize2
Input : recognizer name, recognizer (ri) , start position j
Output: ({(start-pos, end-pos)}, memo-table)
Method: if lookup2 succeeds,

return memo-table result
else

if rij > #input - (j -1)
return {}

else
increment r̂ j counter by 1
apply r± to j & update2 table with new-results
return (results, updated memo-table)

looku p2 = lo o k u p l

up date2
Input : recognizer name, new result, start position j
Method: if an entry exists in memo-table for

rec_name at j,
replace the old-entry with the new result

else
create new entry for rec-name with
new-result at j

We memoize every recognizer in order to check the ‘curtailment-condition’, which

ensures a recognizer’s attempt for recognition is correct. As the new-result is computed

on recursive-ascent - by applying all possible alternatives of a recognizer-definition, it

contains the older-results too (if any). Hence, it is sufficient to replace the older result

with the new result in u p date. Memoization reduces the number of recognizer-

execution at a same start-position from exponential to polynomial.

Example:

Consider the same left-recursive grammar ‘S: := S S a | s' that now can be

expressed as a memoized combinator-parser as

S = memoize2 "S" (((S thenl S) thenl terml a) orelsel
emptyl)

and when recognizer S is applied on input "aaa" at start-position j= 1 we have the

execution-tree of figure 6.2 .

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S lookup Sg Si2 a e recursive-descent 1

Curtailed
/

1. At j =1, S recursively descending until its left-rec value > n
= 3. At this point (S4), one alternative 'S->S S a' is
curtailed but S->£ is applied that returns a result {(1,1)}
for S at j = l and S3 u p d a te s this in memo-table.

2. On the way up, at S6 ,S lo o k s -u p the memo-table for j=l
and retrieves the result {(1,1)}. At S2, S computes new
result { (1 ,2),{1 ,1 }} and replaces the old result for j=l
in memo-table through u p d a te .

3. At S7, S has two start-positions j= 2,1. As there is no
result for j=2 in memo-table, S now goes recursive-
descent phase for j=2 and get curtailed at Sio. This lets
S->s rule to be executed and S u p d a te s {(2,2)} to memo-
table for j=2 .

4. At S1 2, S performs a successful lookup and at Sg, S
updates a new result { (2,2) , (2,3) } for j=2. At S1 3, S
lo o k s -u p for j= 2 successfully but goes to recursive-
descent again for j=3 and u p d a te s result {(3,3),(3,4)}.

5. This same process is performed repeatedly and at S7, S
u p d a te s {(2,2), (2,3), (2,4), (3,3), (3,4)} and eventually at
Si, s returns the final set of results:
{ (1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4)} .

Figure 6.1: ‘Condition for curtailment’ for left-recursive recognition

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 Accommodating Indirect Left-Recursion
6.4.1 The Problem
Though the ‘curtailment-condition’ ensures right growth of the correct applications of all

alternatives for recognition, for indirect left-recursive recognizers the process tends to do

too little work - which eventually causes some missing results (or parses - in terms of

parsing). This problem results from premature or out-of-place lookup-operations during

memoization. If there is no memoization involved in recognizer-executions, then there

wouldn’t be any problem.

Consider the recognizer

S = memoize2 "S" ((S thenl A) orelsel emptyl)
A = memoize2 "A" (S thenl terml a)

(which is the equivalent Chomsky Normal Form (CNF) of ' s = memoize2 (((S
thenl S) thenl terml a) orelse emptyl) '). The result of executing S on

input "aaa" at start-position j=l and according to section 6 .2 .2 .1, a part of the

execution-tree is:

/
 So_____

/ I \
Si Ai E

/ A \
update! S2 updatelAa £ faulty-lookup for j=l

1 \
\ S 3 A a y e S5 a

Curtailed lookup
1. According to the 'curtailment-condition', S is curtailed

at S3 .
2 . S2 computes a result {(1 ,1)} using 's->e' for j=l.
3. A2 computes a result {(1,2)} using 'A->((S-> lookup) a)' for

j=l and updates to memo-table.
4. Si updates { (1 ,1), (1 ,2)} for j=l.
5. Ai tries to compute for j=l,2 and for j=l, A already has

a result in memo-table (step 3). But that result {(1,2)}
was computed in a different context in terms of A's
curtailed left-recursive predecessor S. To get the right
result { (1,2), (1,3)} at j=l, A needs to perform another
recursive-descent operation at Ai._______________________

Figure 6.2: Faulty ‘out-of-context’ lookup

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As a left-recursive recognizer’s attempts to find the ‘left-most derivation’ is

‘delayed’ until the curtailment-condition is satisfied, we can say its process of recognition

occurs on recursive-ascent. If a recognizer falls within the parse of a curtailing indirect

left-recursive recognizer and if it tries to re-use a result, it needs to make sure that its

parse has recursively descended enough when the result was stored to re-use the result

later. In the previous example (figure 6.2), when A saved a result {(1, 2)} at A2 for j =1,

its left-recursive predecessor S was called twice (at S0 and Si) and the same left-

recursive recognizer S was curtailed at S3 as A 's or any of its siblings’ successor. And

when A at Ai tries to re-use a result (which was computed at A2), A 's curtailed left-

recursive predecessor S was called only once (at So). Therefore A’s contexts are not

equal at Ai and A2 in terms of how many times A’s or any of its siblings’ curtailed-left-

recursive successor was called as A’s predecessor. It is obvious because at A2, when A

started to compute a result, it appeared a s S 0- > (S i -> (S2 A2)) and at Alf A

appeared as S0-> (Si A i) . Hence, it is not correct for A to re-use a result at Ax and in

order to re-use, Ai has to grow one more step down. On the other hand, when S computed

a result at S2, S (the curtailed-successor) was called twice (at So and Si) as predecessor

and when S5 performs a lookup, it should be allowed to re-use the result because S (the

curtailed successor) was called twice (at S0 and Si) too as the predecessor of S5. Hence,

S’s contexts at S2 and S5 are the same. This scenario doesn’t apply for a non left-

recursive parser’s attempt to re-use a result, because of its attempts to find the ‘left-most

derivation’ is not ‘delayed’ or is ‘at the right place’ and it won’t try to re-use a result

before growing correctly. That means, for a particular start-position, a non-left recursive

recognizer’s growth of parse is not context-dependent.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4.2 Context-Based Re-use, Modified Combinators and Memoization
From the previous-section’s analysis, it is understood that

1. We need to know a parse-result’s reason(s) - r for curtailment, if any. Also we

need to pass the current-context (of the current-recognizer) downwards during

recursive-descent.

2. If a result is to be saved, we need to save the context in which it was computed,

which we call the left-rec-context - Ic, with respect to the reason(s) for

curtailment, if any.

3. Before re-using any saved-result, we need to make sure that a recognizer’s

current-context - cc is appropriate or the recognizer is at right place - with

respect to left-rec-context.

6 .4 .2 .1 G e n e r a t i n g a n d P a s s i n g ‘R e a s o n f o r C u r ta i lm e n t ’ a n d ‘C u r r e n t - c o n te x t ’

During recursive-descent, a recognizer needs to pass down its id and left-rec-count

(which we call a context) so that at a particular position, any recognizer can have its

predecessors’ ‘context’. For a specific start-position, a recognizer’s predecessors’ context

and its own context form current-context - cc for this recognizer. A subset of this

context (if applicable) will be stored with the recognizer’s computed-result as left-rec-

context - lc (explained later).

current-context - cc
= { (start-position, {(recognizer- name,

left-rec-counter)})}

The memo-table is also changed to accommodate the reason and the saved results’ left-

rec-context.

memo-table = {(recognizer name,
{ (start-position,

(left-rec-context,
{(start position, end position + 1)}))}}

reasons = { recognizer-name }

For each result, which is computed by a recognizer with sequencing and alternating

combinators, we need to know if its successor(s) or siblings’ successor(s) contains left-

recursive recognizer(s) - that has been curtailed according to the ‘condition for

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

curtailment’, and if so, which recognizer(s) caused the curtailment. Each result should be

paired with a list of recognizer-ids (i.e. reasons - r) which caused any curtailment in the

sub-tree below the result. The reason is passed up on recursive-ascent together with the

result as a pair. As memoization enforces the curtailment-condition, we have to modify

the memoize procedure for producing the reason after curtailing a parse.

memoize3
Input : recognizer name, recognizer (ri) , start-position(j),

current-context (cc)
Output: ((reasons,{(start-pos, end-pos + 1)}), memo-table)
Method: if lookup3 succeeds,

return memo-table result
else

if rij > #input - (j -1)
return {({recognizer-name}, {})}

else
increment rij counter by 1

apply g to j & update3 memo-table with
results and left-rec-context (if applicable)

return ((reason, results), updated memo-table)

We also need to modify the definitions of the sequencing and alteration combinators for

allowing them to ‘pass-up’ the reason. The combinators merge the recognizer-ids, which

caused curtailment, as follows:

(p orelseS q) i cc = (reason_p u reason q,
result_p u result_q)
where
(reason_p, result_p) = p i cc
(reason_q, result_q) = q i cc

(p then3 q) i cc =
(reason_p u reason_q, result_q)
where
(reason_q, result_q)

• jover first= fold (II and second) ({},{}) map (q * cc) result^set of th©
result-pair
respectively

where
q' cc i = q i cc
(reason_p, result_p) = p i cc

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Recognizers consist of term and empty don’t have any underlying ‘reasons’, hence the

reason-part of their result is empty:

empty3 i cc = ({}, {(i, i) })

6 .4 .2 .2 S t o r i n g t h e R e s u l t w i th ‘L e f t - r e c - c o n t e x t ’ D u r i n g ‘U p d a te ’

Whenever a recognizer computes a result at a specific start-position, the reasons for

curtailment (if any) of the result - generated during the computation (comes from

recursive-ascent) and the current recognizer’s current-context (computed during

recursive-descent) are examined. If any ‘reason’ exists in the current recognizer’s

‘current-context’ at current position, then that context (the left-rec-context - lc, which

includes the recognizer-id(s) and respective left-rec-counts at current position) is updated

to the memo-table with the newly computed result. The new update operation consists

of the following procedure:

left-rec-context - lc
= {(recognizer- name, left-rec-counter)}

update3
Input : recognizer_name, (reason - r, new result - res),

start position j, current-context - cc, memo-table

if (there is any r paired with res)
then (Vx e {cc.j.recognizer-name} at position j)

if x == 3 y e {r. recognizer-name}
then (x,x.left-rec-count): left-rec-context
else -- do nothing

else — do nothing

if an entry exists in memo-table for
recognizer_name at j,

then replace the old-entry with
(left-rec-context, res)

else create new entry for rec-name with
(left-rec-context, res) at j

term3 i c cc = ({},{})
= <{},{(!, i + 1)})

({ } ,{ })

if i > #input
if token at
position i == c
otherwise

Method: let left-rec-context = {}

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The only part of the current-context which is stored with a ‘result’, is a list of those

recognizers and their left-rec-counts that had an effect on curtailing the result.

6 .4 .2 .3 . C o n d i t io n f o r R e - u s i n g t h e S a v e d R e s u l t D u r i n g ‘L o o k u p ’

Whenever a memo-table result is being considered for re-use by a recognizer at a

particular start-position j, the left-rec-context - lc - saved with the result - is compared

with the current-context - cc of the current recognizer at j for start-position j. The result

is reused if, every recognizer-id of lc exists in cc (for j) and all of the left-rec-count of

lc’s recognizer-id is equal or greater to the left-rec-count of cc’s recognizer-id. If

there were no curtailments (in case of non-left recursive recognizers), the left-rec context

of a result would be empty and that result can be reused irrespective of the current-

context. So, the changed lookup procedure is:

lookup3
Input : recognizer-name, start position j, memo-table

(contains left-rec-context - lc and result - res) ,
current-context (at j) - cc

Method:
if memo-table has entry for recognizer-name at j
then

if lc == {}
then re-use the result res
else (Vx e {lc.j.parser-id)),(3y e {cc.j.parser-id})

If (x == y a x .left-rec-count >= y.left-rec-count)
then re-use the result res
else recognizer goes to 'recursive-descent' phase

by returning empty-set
else return empty-set

This makes sure that a result - stored for some recognizer at start-position j - is only

reused by a subsequent application of the same recognizer, at the same position, if the

left-rec context of the later executions of the recognizer would constrain the result

equally as much as it has been constrained by the left-rec context for the previous

application of the same recognizer at j.

According to this modified context-based memoization, the example-recognition of

figure 6.2 now can be computed correctly as follows:

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

out-of-context lookup failed
and forced recursive-descent

/
 S0_

/ _
update T S i________

/ /
updatet S 2 updatetA2_E

J - L ^ \ / \
(S3 A 3 j s S 5 a lookup
> ----------- ^ I

Cur-bailed lookup
For example:
S at j=l
S2's lc = { (1,{ (S,2) }) }, (r, res) = ({S} , { (1, 1) })
S5's cc = { (1, { (S, 2) }) }
As lc.S.left-rec-counter == j.cc.S.left-rec-counter,
re-uses S2's result
A at j=l
A2's lc = { (1,{ (S , 2) }) }, (r, res) = ({s},{ (1,2)})
Ai's cc = { (1, { (S, 1) }) }
As lc.S.left-rec-counter + j.cc.S.left-rec-counter
for A at Ai, instead of 'lookup', A goes to
'recursive-descent' phase and eventually computes
new result for j=l and updates to memo-table:

{ (1 , 2) , (1 , 3) }

Figure 6.3: Restricted re-use of result when recognizer is ‘out-of-context’

6.4.3 Results in Memo-table
Up to this point, our discussion is limited to only ‘recognition’. An application of a

memoized-recognizer

S = memoize3 "S"
A = memoize3 "A"

((S then3 A) orelse3 empty3)
(S then3 a)
(term3 a)

G 2

to the input-sequence “a a a” saves all possible ways to recognize “aaa” in the memo-

table by indicating the starting and ending position of the recognized-tokens (as a pair of

(start- position, end-position +1)).

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start positions

2?ID00
iQ0H-
NIDh

1 2 3
s (1,1) (2,2) (3,3)

(1,2) (2,3) (3,4)
(1,3) (2,4)
(1,4)

A (1,2) (2,3) (3,4)
(1,3) (2,4)
(1,4)

a (1,2) (2,3) (3,4)

Figure 6.4: Memo-table represents results of recognition using G_2

A sample “snapshot” of the memo-table is shown in figure 6.4. As this

representation only informs us how far the input-token has been recognized using which

recognizer, in the next chapter we transform the algorithm in to a parser to indicate the

syntax-structure(s) of the recognized input-tokens i.e. the parse-trees. Note that as we

have united the results obtained through sequencing and alteration, the duplicate results

(more then one result having same start and end position) are not indicated in the memo-

table for recognition.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7: THE NEW ALGORITHM - FOR

PARSING

7.1 Overview
Recognition is not sufficient to identify the grammatical-structure of an input sentence.

From NLP point-of-view, parse-trees generated by a parser, are essential to incorporate

semantic-meanings or theories to the syntax-structures of an input-sentence. It is also

important for a parser to generate all possible ambiguous parse-trees so that all possible

‘meanings’ of a sentence can be retrieved. For example, an application of

S = memoize3 "S" (S then3 term3 a orelse3 empty3) to input "aaa"
would generate { (1 , 1) , (1, 2) , (1, 3) , (1, 4)} . Instead of this, we

would like to have a set of parse-trees:

S (1,1) S (1 ,2) S (1 ,3) S___ (1 ,3)
I /\ \ /\ \ / \ \
8 S S a S S _ a S _ S a

I I I /\\ /\ \ \
8 8 s S S a S S a s

8 8

We need to add some extra information to the memo-table for constructing a parse-tree.

A memoized-recognizer - constructed using alteration and sequencing - descends

downwards until it recognizes some tokens and then ascends upwards to recognize

another token. Throughout this interchanging recursive-process, a recognizer actually

visits all required ‘nodes’ to construct a parse-tree. The extra pointing-information should

be able to indicate ‘where to go next’ from one point of a parse. A parser can keep track

of this pointing-information by saving some information about its ‘previously-visited’

nodes during recursive-ascent, along with the information about the end-points. For

example, consider the 4th parse-tree of the above example again:

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Si (1,3)_________________________

/ \ \
S 2 (1 , 2) _________ S 5 (2 , 2) a 2 (2 , 3)

/ \ \ \
S3 (1,1) S4 (1,1) ai(l,2) 8 (2 ,2)
I I

8 (1 , 1) 8 (1 , 1)

1. At S2, non-terminal S tries its one of the alternatives
"S -> S S a " . When S recognizes "empty" at S3 (for
start-position 1) , it can store a reference of the
rule it used on its way up with its recognition-result
in form of 'S (1, l)->e (1,1)'. It then uses same rule
again to recognize another "empty" at S 4 (for start-
position 1), hence as entry 'S (1, l)->s (1,1)' can be
stored. In the sequence, "a" is recognized by "term3
a " . So, at the end of the rule "S -> S S a", S can
save an entry 'S (1, 2) -> S (1, 1) S (1, 2) a (1, 2)'
where each pointer attached with a terminal or non­
terminal keeps the information of 'where to go next'
if we look at from top-down.

2. Similarly, at the end of recursive-ascent when S
reaches at Si, it can save an entry 'S (1, 3) -> S (1,
2) S (2, 2) a (2, 3)' .

3. The stack of saved results, according to the order of
computation, would be:

5. S (1, 3) -> S (1, 2) S (2, 2) a (2, 3)
4. S (1, 1) -> s (1,1)
3. S (1, 2) -> S (1, 1) S (1, 2) a (1, 2)
2. S (1, 1) -> 8 (1,1)
1. S (1, 1) -> 8 (1,1)

And if we follow the pointers from top (S (1, 3)),
we'll have the above-mentioned parse-tree.

Figure 7.1: Basic idea of constructing a parse-tree

7.2 Concepts of Compact-representation
It is desired that a top-down parser should identify an exponential number of parse-trees

for an ambiguous grammar. If no precaution is taken, the space-requirement for

representing ambiguous-parses would be exponential, which is inefficient for practical

uses. To avoid this, we represent the resulting parse-trees as a forest of n-aiy one-level-

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

depth branches (and leaves) with pointers attached at each sub-node, which ensures

polynomial space-complexity by sharing common sub-trees and grouping ambiguities.

The overall representation acts as a directed-graph (to some extent similar to the Tomita’s

[35] compact-representation for general LR parsing algorithm). A branch of an example

non-terminal

(R: := Ai A2 A3 | bi B2 I Ci) represents one of R’s alternatives’ (which has been

used recently to compute a result) terminals and/or non-terminals in a sequence. Each of

the nodes of the branch has pointers to their own entries in the memo-table. If one of R’s

alternatives “Ai A2 A3” is used to recognized part of current input (for example, start-

position = 2 to end-position+1 = 8), we represent it as:

Node R (2, 8)
4

Branch [Sub-node Ax (2, 3) Sub-node A2 (3,4) Sub-node A3 (4,8)]

For the same start-end position, R may have more (ambiguous) parses with the same

alternative and/ or with different alternatives:

Node R (2, 8)
4

Branch [Sub-node Ax (2, 4) Sub-node A2 (4, 5) Sub-node A3 (5, 8)]
Node R (2, 8)

4
Branch [leaf bx (2, 3) Sub-node B2 (3, 8)]
Node R (2, 8)

4
Sub-node Cx (2, 8)]

Each of the non-terminals (pointed sub-nodes) has its own entry in the memo-table under

the particular start-end position. The terminals (leaves) indicate the “bottom” of a parse.

If another non-terminal (for example D : : = R | A2 A3) also parses from start-position =

2 to end-position+1 = 8 at the upper level of R, then D needs to have four different entries

in the memo-table to point to R’s four different results.

Node D (2, 8) Node D (2, 8) Node D (2, 8)
4 4 4

Sub-node R (2, 8)] Sub-node R (2, 8)] Sub-node R (2, 8)]
Node D (2, 8)

4
Sub-node R (2, 8)]

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Though this representation is still ‘compact’, we can achieve a more densely-compact

form by grouping branches of a non-terminal together, which have been used to parse a

specific start-end position, also merging the common branches (of a same non-terminal

for same start-end position) in to a single one. This representation reduces the space-

requirement significantly.__

Node D (2, 8)

/ JSub-node R (2, 8)

i ,.Branch [Sub-node A2 Sub-node A3 (4, 8)]
_ v 4 _____ ___
/'•^Node R (2, 8)

[Branch [Sub-node Ai (2, 3) Sub-node A2 (3, 4) Sub-node A3 (4, 8)]

.ranch [Sub-node Ax (2, 4) Sub-node A2 (4, 5) Sub-node A3 (5, 8)]

^Branch [leaf bi (2, 3) Sub-node B2 (3, 8)]

Sub-node Cx (2, 8)]
t
t

Node R (2, 6)
\ /[Branch [Sub-node Ax (2, 3) Sub-node A2 (3, 4) Sub-node A3 (4, 6)]

Branch [leaf bx (2, 3) Sub-node B2 (3, 8)]]
\ --
Node A3 (4, 8)
/[Branch [Sub-node Ax (4, 5) Sub-node A2 (5, 7) leaf bx (7, 8)]

> Branch [Sub-node A2 (4, 7) leaf bx (7, 8)]]

Figure 7.2: Example of a densely-compact representation

If it is required to retrieve parse-trees for start-position = 2 to end-position+1 = 8, one has

to just follow the pointing notations of sub-nodes, from the root, until all leaves are

reached. We shall discuss formally how this representation ensures polynomial space-

requirement in chapter 11

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 The Modified Algorithm
In this section we modify the recognition-algorithm (described in chapter 6) step-by-step

to accommodate parsing. We replace all occurrences of the term ‘recognizer’ of the last

version of the algorithm with term ‘parser’.

7.3.1 Type of Result and Memo-table
Instead of having only pairs of start-end positions as the results saved in memo-table, it is

also required to save the n-ary sub-nodes (sequences of terminal/non-terminals) of one-

level-depth branches for a node (non-terminal) at a specific start-end position. So the new

memo-table type is:

memo-table = {(parser name, {(start-position,(left-
rec-context1, {result}))}}

result = ((start-position, end-position + 1), {tree})
tree = leaf or sub-node or branch
leaf = terminal name
sub-node = (non-terminal name, (start-position, end-

position + 1))
branch = {tree}

A ‘tree’ can be considered as a ‘name-less’ leaf, sub-node or a set of leaves and/or sub­

nodes (a branch), where each nodes have pointers to indicate ‘where to go next’. The

‘name’ of a tree is added during the memoization process - as a part of the pointing-

reference.

7.3.2. Modified Combinators
When a parser - constructed using an alternative combinator - is applied to the current

start-position of the input, it may return multiple one-level-depth trees - indicating

different or same ending-positions, which were computed using different alternatives. So

the alternative combinator simply unites the returned results of the two operands of

'orelse', which is - as before - paired with the united reasons of two operands of

1 If not pointed out, then any previously-mentioned procedure or data-type’s definition remains same. For
example, the type o f ‘left-rec-context’ is same as section 6.4.2.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'orelse'. So the definition remains same for the alternative combinator - only the

type of result has changed.

(p orelse4 q) i cc = (p orelse3 q) i cc

The sequence combinator 'then' is responsible for creating one-level-depth n-ary

branches of the terminal and/or non-terminals (which are in a sequence) of an altemative-

defmition of a non-terminal. It ensures that all the sub-nodes of a branch are properly

pointed (i.e. having appropriate start-end position). The left-operand of 'then' , p,
is applied on start-position i, it returns a result-set { ((start-pos, end-pos+1
) , {tree}) }. Then right-operand of 'then', q, is applied on every 'end-
pos+1' returned by p. Every application of q returns a result-set { ((start-pos,
end-pos+1) , {tree}) }. As mentioned before, the type of tree is leaf or

sub-node or branch. For every element ' ((start-posp, end-pos + lp) ,
{treep}) ' of the result-set of p and for each element ' ((start-posq, end-
pos + lq) , {treeq}) ' of the respective result-set of q, we form a new result
'((start-posp, end-pos+lq), name-less one-level-depth branches
involving {treep} and {treeQ})'. At the end, all newly created one-level-depth
n-ary branches are united and returned.

(p then4 q) i cc
= (reason_p u reason_q, result_p-q)

where
(reason_q, result_p-q)

U over firstand second) ({},{}) (map (q1 cc) result p)
set of the J- — i
result-pair
respectively

where
q 1 cc (end-pos_of_p,tree_p)

= (reason_q1,create-branch (end-pos_of_p,
tree_p) result_q')

where
(reason_p, result_p) = p i cc
{(end-pos_of_p,tree_p)} = result_p
(reason_q', result_q') = (q end-pos_of_p cc)
where
result_q'is of type
{(end-pos_of_q,tree_q_at-end-pos_of_p)}

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

create-branch
Input : (end _ p, tp) set_tq
Method: l e t s e t _ t p _ t q = {}

(V(end _ q, tq) e s e t _ t q)
(form n a m e - le s s b r a n c h a s

(t p ' s p o i n t e r a s l e f t - n o d e ,
t q ' s p o i n t e r a s r i g h t - n o d e) and add

((end_p, e n d _ q) , (l e f t - n o d e t p , r i g h t - n o d e tq)
t o s e t _ t p _ t q)

r e t u r n set__tp__tq

Parsers which consist of t e r m and empty return a t r e e of type l e a f and other

functionalities remain same:

te rm 4 i c cc = ({ } , { }) , i f i > # i n p u t
= ({ } , { ((i , i + 1) , { l e a f V)) })

, i f t o k e n a t
p o s i t i o n i == c

= ({ } , { }) , o t h e r w i s e

empty4 i cc = ({}, { ((i , i) , { l e a f " e m p ty " })})

Note that, for all combinators, the functionalities related to ‘context’ and ‘reason’ remain

unchanged.

7.3.3. Modified Memoization
When a memoized-parser (r i) computes a ‘result’ using one of its alternatives (which

may have sequences of terminals and/ or non-terminals) for the current start-position, the

set of result may have multiple entries for an identical start-end position - due to

ambiguous parsing. Each of these entries has the same start-end positions but will have

different ‘name-less’ trees. As mentioned before, when this parser (r x) is referred by

another parser (r 2) for this same start-end position, r 2 needs to refer r i multiple times -

for each ambiguous result individually. To avoid this extra space-requirement, we group

these multiple ambiguous trees of r i as a ‘set of trees’ having only one start-end pointer.

This grouping also unites the identical trees into one tree so that this single ‘common-

tree’ can be shared by any parser that has a reference to it. Now r 2 needs to refer r i only

once for this specific start-end position. This grouping takes place when a parser

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computes a result for a specific start-position for the first time. The grouped ambiguous

result-set is a set of ‘name-less trees with pointers’ and it is updated in the memo-table

under current parser’s name and start-position. During recursive-ascent, when current-

parser rx passes the control to a preceding-parser (either after successfully performing a

‘lookup’ or freshly computing and updating a new result), it only requires to pass-up its

own reference (pointer) of the memo-table entry, instead of returning the actual entry of

the memo-table. In other words, for the other parsers to refer r i ’s entry in the memo-

table, it is required to point the r i ’s computed set of result as r i ’s name and start-end

position. This requirement ensures the one-level-depth structure of the trees, which

eventually reduces the space-requirement. Hence, during the creation of branches in the

sequencing-combinator, it is only required to refer to this added ‘pointing’ node of the

current parser, instead of the whole set of results. To accommodate these requirements,

we modify the memoize procedure as follows:

memoize4
Input : parser name, parser (ri) , start-position(j),

current-context (cc)
Output: ((reasons,{((start-pos, end-pos),{tree})}), memo-
table)
Method: if lookup4 succeeds,

return (create_pointer parser name memo-table
result)

else
if rij > #input - (j -1)

return {({ parser-name}, {})}
else

increment rij counter by 1
apply ri to j (that returns new__results)
update4 memo-table (grouping_ambiguity
new_results) with left-rec-context (if
applicable)

return ((reason, create_pointer parser name
new results), updated memo-table)

grouping_ambiguity
Input : result-set = {(start-pos,end-pos+1), trees)}
Method: unite the trees of identical (start-pos,end-pos+1)

pairs as a new set of trees under a single (start-
pos , end-pos+1) pair.
Return the altered result-set.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

create_pointer
Input : pa r s e r name (p_name), result - s e t = {(s t a r t - p o s ,end-

pos+1), trees),
Method: let pointer_set = {}

(V((s,e),t) e result-set)
add ((s,e),{sub-node (p_name, (s,e))} to

pointer_set
return pointer_set

lookup4 = lookup3, update4 = update3

The other functionalities (i.e. creating context and reason, comparing contexts w.r.t

reason etc) remain the same in m e m o iz a t io n , u p d a t e and lookup , the only

difference in new update and lookup procedure is the new type of the ‘result’.

7.4 Memo-table as a Forest of n-ary Branches
For secured and correct operations on the memo-table, we use a state-monad to thread the

memo-table within different recursive parser-calls (section 4.2.2 and 5.1.3).

According to the modified parsing-algorithm, an application of a memoized-parser

S = memoize4 "S" ((S then4 A) orelse4 empty4)
A = memoize4 "A" (S then4 (term4 a))

to the input-sequence “a a a ” saves ambiguous and common ‘results’ under a parser’s

start-position entry as a set of n-ary branches of ‘sub-trees’, where each sub-node

(represents another non-terminal) of a branch has appropriate pointers to its own entry in

the memo-table (figure 7.3).

To retrieve a complete parse-tree (for example, based on some semantic-

interpretations) one has to follow the directed-pointers of a node - starting from the root

and continuing expanding from its left-most sub-node - until all ‘leaves’ are retrieved.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Start positions

>opiH(0(DH

(D
to

l 2 3

s S(l,l) S (2,2)
|

S(3,3)
|

£ 6 e
S (1,2)

/\
S(l,l) A(l,2)

S (1,3)
A

S(l,l) A(l,3)
S (1, 3)
A

S (1, 2) A(2,3)

S (2,3)
A

S (2,2) A (2, 3)

S <1,4)
A

S (1,1) A(l, 4)
S(l,4)
A

S (1, 2) A (2, 4)
S(l,4)
A

S (1,3) A(3,4)

S (2,4)
A

S (2,2) A(2,4)
S (2,4)
A

S (2, 3) A(3,4)

S (3, 4)
A

S (3, 3) A(3,4)

A A (1,2)
/\

S(l,l) a (1, 2)

A (2, 3)
A

S (2,2) a (2,3)
A (1,3)

/\
S (1,2) a (2, 3)

A (2, 4)
A

S (2,3) a (3, 4)

A (3, 4)
/\

S(3,3) a (3, 4)
A(l,4)
A

S (1, 3) a (3, 4)

Figure 7.3: Memo-table represents results of parsing as a packed-forest

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8: IMPLEMENTATION IN HASKELL
Haskell has been used for the implementation of the algorithm described in the previous

chapters. (See the [41] for basic notation of Haskell). The description in this section

covers both recognition and parsing. The algorithm is implemented mostly in self-

explanatory descriptive fashion.

8.1 Data-types and State-monadic Combinators
As discussed before, we have utilized Frost’s (section 5.13) approach of constructing

combinators using state-monads for secure threading of the memo-table. For

convenience, we repeat the definition of state-monad according to the description of

section 4.2 :

units :: t -> StateM t
units x = f where f t = (x,t)

binds :: StateM tl -> (tl -> StateM t2) -> StateM t2
m 'bindS' k = f

where f x = (b,z)
where (b,z) = k a y

where (a,y) = m x

The state or memo-table Mtable keeps a record of a parser’s results at every start-

position of the input. The general-term Context is a pair of reason for curtailing a left-

recursive parser (a list of parser-names) and left-recursive-context - a list of

(parser, parser’s left-recursive count) pairs at different start-positions. An element of the

list of Result consists of a pair of (start-position, end-position + 1) and a list of trees.

type State = Mtable
type StateM t = State -> (t, State)
type Mtable = [(String, [(Int, (Context, [Result]))])]
type Context = (Reason, Left-recursive-context)
type Reason = [String]
type Left-recursive-context

= [(Int, [(String, Int)])]
type Result = ((Start, End),[Tree String])

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We define a tree data-type utilizing Haskell’s facility of constructing user-defined

algebraic and recursive data-type. The data-type Tree could be either a Leaf (represents

a terminal), a SubNode (represents a non-terminal with pointer - node name and start-

end position in the memo-table) or a Branch (consists of a list of any form of trees) to

represent sequencing.

data Tree a =
1
1

Leaf a
Branch [Tree a]
SubNode (NodeName, (Start,End))
deriving (Eq,Ord,Show)

type NodeName = String
type Start = Int
type End = Int

The combinator empty simply returns a tree of type Leaf - with the same start-end

position. But combinator term checks whether the token at given input’s start-position

(r) has a match with its own. If so, then it returns a Leaf with (r, r+l) that makes the

next parser move-ahead to parse next token. Either empty or term has no effect on the

current descending lef t-reccontext (1) and none of them produce any reason.

empty x 1 = units (([],[]),[((x,x), [Leaf "empty"])])
term c r 1 |r - 1 == length input = units (([],[]),[])

i input !! (r - 1) == c =
units (([],[]), [((r,r+l),[Leaf [c]])])

I otherwise = units (([],[]),[])

The orelse combinator individually applies parsers p and q to the given start-position

inp and current-context cc and returns back the united reasons with 'union (f st
11) (fst 12)' and summed results with ' (m ++ n)'. Note that as both 11

and 12 are pairs o f type (Reason, Lef t-recursive-context), we just need to unite

the Reasons to pass upwards. The then combinator first applies p to the given start-

position inp, which returns a set of results. Then parser q is applied to every end-

positions returned by p sequentially using apply_to_all.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(p 'orelse' q) inp cc
= p inp cc 'binds' f
where f (11,m) = q inp cc 'binds' g

where g (12,n) = units ((union (fst 11)
(fst 12) , []) , (m ++ n))

(p 'thenS' q) inp cc
= p inp cc 'binds' f

where f (l,m) = apply to all q m 1 cc
apply_to_all q [] 1 cc = units ((fst 1,[]), [])
apply to all q (r:rs) 1 cc
= (q 'add P' (r,cc,l)) 'bindS' f

where f (11,m) = ((apply to all q rs 1 cc) 'binds' h)
where h (12,n)
= units ((union (fst 11) (fst 12),[]) , (m ++ n))

8.2 Forming ‘name-less’ n-ary branches for Parsers in

Sequence
With add_P function of apply_to_all, the end-positions of the p ’s result-set are

selected and individually passed to q for sequencing applications of q on them, which

returns (((s2, e2), t2) : restQ) on each application. At the end, add_P unites

reasons of current p and current q and with addp function (of add_P) , current result of

p - ((s i , el) , tl) - creates branches with every results of q by executing

addToBranch function . The addToBranch function creates sequencing results of p

and q as ((p's start-position, q's end-position), p's result as

left-node & q's result as right-node) . At the end apply_to_all function

unites all reasons with ' (union (fst 11) (fst 12) , []) ' and sums all sequencing

results with ' (m ++ n) ' o f every q ’s application on p ’s result-set. Like orelse,

only reasons for curtailments are united.

q 'add P' (rp,cc,l)
= (q (pickEnd rp) cc) 'binds' f

where f (11,m)
= units ((union (fst 1) (fst 11),(]),(addP ra rp))

pickEnd ((s,e),t) = e — selecting the end-position

addP [] ((si,el),tl) = []
addP (((s2,e2),t2):restQ) ((sl,el),tl)
= ((sl,e2), addToBranch ((s2,e2),t2) (si,el),tl))

: addP restQ ((sl,el),tl)

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For creating ‘name-less’ n-aiy branching with addToBranch function, there could be 9

cases. If a branch already exists (either p or q ’s result), we just add the new candidate to

the end. If two candidates are two branches, we append them. Otherwise, we form a new

branch with non-branch candidates.

addToBranch ((st2,en2),((SubNode (name2,(s2,e2))):ts2))
{(stl,enl),((SubNode (namel,(si,el))): tsl))

= [Branch [(SubNode (namel,(stl,enl))),(SubNode (name2,(st2,en2)))]]
addToBranch ((st2,en2),((Branch t2):ts2))

((stl,enl), ((Branch tl) :tsl))
= [Branch (tl++t2)j
addToBranch ((st2,en2),((Branch t2):ts))

((stl,enl),((SubNode (namel, (si,el))): tsl))
= [Branch ((SubNode (namel,(stl,enl))):t2)]
addToBranch ((st2,en2),((SubNode (name2,(s2,e2))): ts2))

((stl,enl), ((Branch tl) :ts))
= [Branch (tl++[(SubNode (name2,(st2,en2)))])]
addToBranch ((st2,en2), ((SubNode (name2, (s2,e2))) :ts2))

((stl, enl),[Leaf x])
= [Branch [(SubNode (("Leaf "++x), (stl,enl))),

(SubNode (name2,(st2,en2)))]]
addToBranch ((st2,en2),[Leaf x])

((stl,enl),((SubNode (namel,(si,el))): tsl))
= [Branch [(SubNode (namel,(stl,enl))),

(SubNode (("Leaf "++x),(st2,en2)))]]
addToBranch ((st2,en2),((Branch t2):ts)) ((stl,enl),[Leaf x])
= [Branch ((SubNode (("Leaf "++x),(stl,enl))):t2)]
addToBranch ((st2,en2),[Leaf x]) ((stl,enl),((Branch tl):ts))
= [Branch (tl++ [(SubNode (("Leaf "++x),(st2,en2)))])]
addToBranch ((st2,en2), [Leaf x2]) ((stl,enl), [Leaf xl])
= [Branch [(SubNode (("Leaf "++xl),(stl,enl))),

(SubNode (("Leaf "++x2),(st2,en2)))]]

8.3 Lookup, Update and Computing New-result using

Memoization
When a memoized-parser is executed, the function memoize is applied with the parser-

name (name), the parser-definition (f), starting input-position (inp), the descending-

down context (context) and the initial memo-table (mTable).

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memoize name f inp context mTable
I table res /= []
= ((fstl table res,(addNode name inp (sndl table_res))), mTable)

| (funccount (snd context)) > ((length input) - (inp-1))
= ((([name],[]),[]), mTable)

I table res == []
= ((11 ,(addNode name inp newRes)),udtTab)

where
fstl [(a,b)] = a
sndl [(a,b)] = b

8.3.1 Lookup Operation
The memoize first looks in the memo-table to find whether there already exists a

reusable-result for name at inp by checking the content of table_res, which in terns

executes lookupT operation.

The lookupT fails if:

1. there is no entry for name-inp in mTable (failure 1 & 2)1,
2. the saved-entry’s reason (re in c h e c k u s a b il i ty) is not empty but left-rec-context is

empty at inp (failure 3) or

3. some entries in saved left-rec-context are not present or have less left-rec-counter value

(failure 4 & 5).
The lookupT succeeds if:

1. the saved-entry’s reason (re in checkusability) is empty (success 1),
2. the descending current-context or saved left-rec-context is empty (success 2 & 3)
or

3. all members of saved left-rec-context exists in current left-rec-context and all of them

have equal or greater number of lefl-rec-count (towards success 4 to 10).

1 All possible failures and successes are marked in the code of the next page

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

table_res = lookupT name inp (snd context) mTable
lookupT name inp context mTable
| res_in_table == [] = [] — failure 1
I otherwise = checkusability inp

context (lookupRes (res_in_table !! 0) inp)
where res_in_table = [pairs|(n,pairs) <- mTable,n == name]

lookupRes [] inp = []
lookupRes ((i,res):rs) inp I i == inp = [res]

I otherwise = lookupRes rs inp

checkusability inp context [] = [] — failure 2
checkusability inp context [((re,sc),res)]
I re == [] = [((re,sc),res)] — success 1
I otherwise = checkUsability_ (findlnp inp context) (findlnp inp sc)

[((re,sc),res)]
findlnp inp [] = []
findlnp inp ((s,c):sc) I s == inp = c

| otherwise = findlnp inp sc

checkUsability_
checkUsability_
checkUsability_
checkUsability_
I and (memCheck

I otherwise = []

[] [] [(sc,res)] = [(sc,res)]
((n,cs):ccs) [] [(sc,res)] = []
[] ((nl,csl):scs) [(sc,res)] = [(sc,res)]
((n,cs):ccs) ((nl,csl):scs) [(sc,res)]
((n,cs):ccs) ((nl,csl):scs)) = [(sc,res)]

— towards success 4,

-success 2
-failure 3
-success 3

if true for all
— failure 4

memCheck [] ((nl,csl):scs) = [] — towards_success 5
memCheck ((n,cs):ccs) ((nl,csl):scs)
= condCheck (n,cs) ((nl,csl):scs) ++ memCheck ccs ((nl,csl):scs)

condCheck (n,cs) ((nl,csl):scs)
I (notElemCheck (n,cs) ((nl, csl):scs)) == [] = [] — towards_success 6
I any (==(n,cs)) ((nl,csl):scs) = [] — towards_success 7
I otherwise = [False] — failure 5

notElemCheck (n,cs) [] = [] — towards_success 8
notElemCheck (n,cs) ((nl,csl):scs) | n /=nl = notElemCheck (n,cs) scs

— towards_success 9
I otherwise = [False]

— towards success 10

If the lookupT fails, memoize then checks the ‘condition for curtailment’

' (funccount (snd context)) > ((length input) - (inp-1)) ' in the descending-

context.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

funccount [] = 0
funccount ((key,funcp):rest) | key == inp = findf funcp

1 otherwise = funccount rest
where
findf [] = 0
findf ((tk,fc) :rx) | tk == name = fc

I otherwise = findf rx
((l,newRes),mft) = ((fst res,packAmb $ sort (snd res)),newtable)
where
(res, newtable) = f inp ([],(incContext (snd context) name inp)(mTable

incContext [] name inp = [(inp,[(name,1)])]
incContext ((st, ((n,c):nc)):sn) name inp

I st == inp = ((st, (addNT ((n,c):nc)) name inp) :sn)
I otherwise = ((st,((n,c):nc)): incContext sn name inp)

addNT [] name inp = [(name,1)]
addNT ((n,c):nc) name inp 1 n == name = ((n,(c + 1)):nc)

I otherwise = ((n,c):addNT nc name inp)

If the current parser is left-recursive and if the ‘condition for curtailment’ fails (3rd

guarded condition of memoize function), then the left-rec-counter of the current parser is

increased by one for the current starting position of the input. At this point the left-

recursive parser starts recursively descending with 'f inp ([], (incContext (snd

context) name inp)) mTable' until it satisfies th e ‘condition for curtailment’.

8.3.2 Update Operation
When the ‘condition for curtailment’ is satisfied, the left-recursive parser is curtailed (2nd

guarded condition of memoize function) by adding its name to the ‘reason for

curtailment’ and on the recursive-ascent, eventually computes a new result (res,
newtable) for the current starting-position. This new-result res is added to the recent

memo-table newtable with function udtTab. Before saving any result, we need to

group and unite the ambiguous result-set - res (described next section) and also have to

make sure that the correct left-rec-context is saved w.r.t the ‘reasons for curtailment’

' (fst 1)' for res. With the function makeContext, we compare the current parser’s

descending current-context (findContext (snd context)) at current start-position

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inp with (fst 1) . We only keep entries from the (findContext (snd

context)) which has a match in (fst 1) and remove the other entries. These selected

entries are then placed at the appropriate position (w.r.t inp) and paired with (fst 1).

These operations are carried through makeContext, makeContext_ and

makeContext functions. When the appropriate left-rec-context 11 is created, it is

paired with grouped and united result-set newRes and updated to the latest memo-table

mf t with function ud t .
udtTab = (udt ((11,newRes),mft) name inp)

11 = makeContext (fst 1) (findContext (snd context))
where
findContext [] = []
findContext ((st,rest):sr) | st == inp = [(st,rest)]

I otherwise = findContext sr
makeContext [] [(st,((n,c):ncs))] = ([],[])
makeContext (r:rs) (] = ((r:rs) , [])
makeContext [] [] =([],[])
makeContext (r:rs) [(st,((n,c):ncs))] = ((r:rs), [(st,makeContext_

(r:rs) ((n,c):ncs))])

makeContext_ [] ((n,c):ncs) = []
makeContext_ (r:rs) ((n,c):ncs) = makeContext__ r ((n,c):ncs) ++

makeContext_ rs ((n,c):ncs)

makeContext r [] = []
makeContext r ((n,c):ncs) I r == n = (n,c): makeContext r ncs

I otherwise = makeContext r ncs
udt (res, mTable) name inp

= update mTable name inp res
update [] name inp res = [(name, [(inp, res)])]
update ((key, pairs):rest) name inp res

| key == name = (key,my_merge inp res pairs):rest
I otherwise = ((key, pairs): update rest name inp res)

my_merge inp res (] = [(inp, res)]
my_merge inp res ((i, es):rest)

Iinp == i = (i, res):rest
I otherwise = (i, es): my_merge inp res rest

The update-function udt simply searches through the memo-table to find an entry for

name at inp, and if there exits a previous result, udt replaces that with the new result.

Otherwise udt creates a new entry for name at inp and places the new result in it.

These operations are performed with update and my_merge respectively.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.3.3 Grouping Ambiguities and Adding Pointers
When a memoized-parser creates a new-result, according to the algorithm, multiple trees

(either identical or different) for a specific start-end position are grouped into a list of

trees - with a single entry indicating the whole set’s start-end position. The newly-created

result (snd re s) is first sorted1 and passed to the function packAmb, which searches

for the common start-end positions (s i , e l) == (s2 ,e2) , and if found, it then groups

their respective results (which are name-less list of one-level-depth trees) together. If for

identical start-end position, there exists some identical trees, they are also united into a

single one - under a single start-end position - so that they can be shared by other parsers

with a single reference. This grouped-result - newRes - is used in the update-operation,

which was described in the last section.___
{— repeted segment of code - for convenience
((1,newRes),mft) = ((fst res,packAmb $ sort (snd res)),newtable)
where (res, newtable) = f inp ([],(incContext (snd context) name
inp))mTable — }
packAmb [] = []
packAmb [((si,el),tl)] = [((si,el),tl)]
packAmb [((si,el),tl), ((s2,e2),t2)]

I (si,el) == (s2,e2) = [((s2,e2), tl++t2)]
I otherwise = [((si,el),11), ((s2,e2),t2)]

packAmb (((si,el) ,tl) :((s2,e2) ,t2):xs)
I (si,el) == (s2,e2) = packAmb (((s2,e2), tl++t2):xs)
I otherwise = {(si,el),tl):packAmb {((s2,e2),t2):xs)

On ascending, the memoized-parser, which either computes a new result or successfully

looks up a previous result, returns a pointer (consists of its name and the start-end

position) to upwards - instead of returning the complete set of results. It does so by

simply replacing every trees of the result-set with its name and start-end position -

through the function addNode.
{— repeted segment of code - for convenience
memoize name f inp context mTable
I table_res /= []
= ((fstl table_res,(addNode name inp (sndl table_res))), mTable

I table_res == [] = ((11 ,(addNode name inp newRes)),udtTab)— }
addNode name inp [] = []
addNode name inp (((s,e) ,t):rs)

= ((s,e),[SubNode (name,(s,e))]):addNode name inp rs

1 For sorting, we have used Haskell’s library-function sort and its definition varies depending on the use
of a particular interpreter or compiler i.e. Hug 98 uses a variation of inset-sort and GHCi uses stable quick­
sort.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9: TERMINATION ANALYSIS

9.1 Basic Concept
In the following, the terminations of recursively-defined procedures are described in

terms of ‘parsers’ - which also justifies the terminations of recognizers, as recursively-

defined recognizers and parsers have same number of recursive calls for a particular

input. We discuss termination analysis of the algorithm by adopting a well-practiced

technique for ‘termination analysis of recursive functions’ - where the central idea is to

ensure that there exits a well-founded ordering so that the argument of each recursive call

is ‘smaller’ (or ‘greater’) then the corresponding inputs. This comparison is done in terms

of a ‘measure’ (an element of the well-founded set), which decreases (or increases) after

each recursive-procedure execution. A ‘measure-function’ needs to be defined so that it

can map a data-object (which is related to the corresponding recursive-function’s input)

to a member of a well-founded ordered set. For example, consider a recursive function

definition:

f U 1) = f t x 1)

To show f terminates, the first task would be to define a measure function (|| . ||) that

maps some type of data-object (in this example, the input to f) to a ‘measure’ (the output

of | . ||, which is a natural-number). The next step is to define a well-founded order1 of

decreasing ‘measures’ for all executions of f until f (xk) , which is the last recursive

call:

l l * i > > 11x11 > > ||xk||

If the above inequality holds, then the function f terminates. The inequality could

be formed the other way around too (based on the ‘semantic’ of the recursive function).

The important property is that every two consecutive ‘measures’ must be related with a

well-founded order. For example, in the case of the above inequality, x 1+1 < x 1 holds

for each pair of consecutive measures - that ensures termination. Giesl (1997, [15])

employed this basic approach to establish an automated termination-proof technique for

1 In this case, the standard ordering < of the Natural-number - that contains the ‘least element’ and ensures
there exists no infinitely decreasing sequence of non-negative Integers.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nested and/or mutual recursive algorithms. But as we already know how our algorithm

works (i.e. the semantics of the algorithm), we have the flexibility to prove the

termination by following four ‘general-steps’ [15]:

1. Generating a measure-fiinction | | . || and a well-founded ordering -<

2. Generating an Induction Lemma I L : || x || -< || g (x) ||

3. Proving the Induction Lemma

4. Proving the inequality || x l M l x ' l

The induction lemma is required for the recursive parsers of the form f (t)

.... g (x)...., where parsers f and g are both recursively defined (but can be different).

9.2 Cases for Combinatory-Parsers’ Termination
Non-recursive basic parsers constructed with te rm , em pty or other non-recursive

parsers (constructed with te rm and em pty) - terminate for a finite input in case of

success or failure, as they are not recursively calling themselves or other functions again.

Tf a memoized nested and/ or mutually recursive parser (p) has a previously-

computed re-usable entry in the memo-table for the current start-position (j) , then

instead of recursively descending, it simply retrieves the result and terminates (definition

of lo o k u p operation). If there is no entry in the memo-table, then the parser is bound to

descend downwards and uses its alternatives to parse the current input. At this point, the

following cases may occur:

Case 1: p is a non-left recursive parser.

a. If the memoized p fails to parse the input-token at j using all of its alternatives,

then it terminates, without trying other sequential parsers of its alternatives

(definition of te rm , th e n and o r e l s e) .

b. If memoized p parses the input-token at j successfully using any of its

alternatives’ first symbol, then the next parser (which could be recursive w.r.t p)

is applied at start-position (j +1) as the input-token at j is consumed by now.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case 2: p is a left-recursive parser.

Memoized p has to call itself (directly or indirectly) n (length of the input) times

before determining a success or failure. This growth is tracked with a counter -

left-rec-counter, which increases by one after each left-recursive call at

same start-position. After descending down n times, the left-recurring branch is

curtailed and the next alternative is being applied on the input-token at starting-

position j (definition of condition for curtailment). If the next-

available symbol consumes the current input, the start-position changes to (j + 1)
- indicating a success (hence, all subsequence parser-applications are on (j+ D) .

Otherwise, the alternative fails - indicating a failure.

A measure-function needs to be defined so that it can map the start-position and

left-rec-counter (of each recursive call of a parser) to a natural-number (which is

increased by at least one or remains the same after each recursive call) in order to form a

well-founded order. From the above discussion, it is sufficient to show the termination of

Case l.b and Case 2 to prove that any recursively-defined parser terminates if it follows

the algorithm described in chapter 6 and 7.

9.3 Proof of Termination
Definitions

9.1 The length of the finite sequence of input-tokens is input#.
9.2 P is a finite set of recursively-defined memoized parsers of size P# which have been

constructed by finite application of empty, term, orelse, and then. The

members of P are denoted b y p i, l<i<Pr
9.3 R is a finite set of left-rec-counters, the members of which are denoted by

r i j where l^i<P# and l<j<input#. The counter r i j represents the left-rec-
counter for parser p± applied to the input at the start-position given by the

index j. The r i j ' s value is passed down only during the recursive-descent phase and

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

temporarily saved within the second element of context (section 6.4.2.1 and 8.1)1. For

left-recursive parsers, r i j is incremented by 1 during each recursive call up to input#
- (j -1) and j remains unchanged till this point. For non-left recursive parsers, r i j

stays to 1 and j is incremented by 1 after successfully parsing each input-token.

9.4 The measure-function | | . || maps a memoized recursive parser (p i)’s input-argument

(start-position (j), context, memo-table2) to a natural-number as follows:

|| j, context,memo-table | = 0 , if context's second element
doesn't have any entry for pi
(i.e. rij = null)

= rij, if j = null
= j + rij , otherwise

9.5 The well-founded order, -< is formed by relation h on natural-numbers, which has the

least element = 0 and greatest element = input# + 1.

Assumptions

9.1 All parser applications are memoized and the initial parser is applied to start-
position, j = 1 with an empty context ({},{}) and an empty memo-table {}.

9.2 An application of p at (j context memo-table) returns (result, memo-
table'), were result = {((start-position (j), end-position + 1
(j')), {Tree})}. The end-position, (j'-l) indicates how far the parser has

parsed the input starting from start-position, j i.e. j' = start-position for
next parser in sequence (if exists any).

9.3 All non-recursive parsers terminate, (as there is no recursion involved)

9.4 If a non-left recursive parser fails to parse an input-token then it terminates, (as there

won’t be a case to introduce any recursion and definition of term, then and orelse)

1 The second-element of context has a type of { (start-position (j) , { (parser-name
(Pi) , left-rec-count (rij)))}}.
2 Type o f memo-table = {(parser-name, { (start-position, (Context', {Result})) }) }
Context' = part o f left-rec-context that has a match with ‘reason’ (section 6.4.2)

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemmas

9.1 (V s t a r t - p o s i t io n , j) l < j < input#. It directly follows from the

definition of te rm , which increases j by 1 until in p u t# upon each successful parsing.

9.2 (V le f t - r e c - c o u n te r , rij) 0 ^ ^ input# - (j -1) . It directly

follows from the definition of m em o iz a tio n , which, according to c o n d itio n o f

c u r ta ilm e n t (section 6.3.1), increments p i ’s r^j by one if r Xj < input# - (j -

1) •

9.3 The measure-function | | . || ensures a well-founded ordering -< as it has minimum

value = 0 (1st alternative of the definition of | | . || = 0) and maximum value = in p u t#

+ 1 (2nd alternative of the definition of | | . | = j + = input# + 1 (definition

9.3, 9.4 and lemma 9.1, 9.2)).

Induction Lemma IL P

(Vpi e P)
memoize (pi s t a r t - p o s i t i o n (j) c o n te x t m em o-table) returns (r e s u l t ,
m e m o -tab le ') and the corresponding r±j is updated in c o n t e x t ' through
memo i z a t i on during recursive-descent
=>
IL (1) . r e s u l t = {} v
((j - ^ e maP p ic k _ 2 nd r e s u l t) a (r i j e c o n te x t (i f any)

^ r ' i j e c o n t e x t ')) .
[w here p ic k _ 2 nd (a , b) = b]

IL (2) . map (|| s t a r t - p o s i t i o n (j) c o n te x t memo-1 a b le ||<)
(map (I . || c o n t e x t ' m e m o - ta b le ') map p ic k _ 2 nd r e s u l t)

IL (1). Proof by Induction on P#

Base Case

IL (1) P = {em pty, te rm any} (definition of em pty and te rm)

Hypothesis

Assuming IL (1) P = S is true.

Inductive step

Have to show IL (1) P = s u {p±}.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(3 pi, p2, p3 6 S) (pi = memoize "Pi" (pi then p2) orelse p3) .T h e IL

(Pi) directly follows from base-case, hypothesis, definitions of then, orelse,
memoization and definition 9.2, 9.3. In practice, a parser may be defined in terms of

various combinations of other parsers using then and orelse combinators. But as the

total number of parsers is constant (definition 9.2), this lemma still holds for any parser

constructed over any combination of then and orelse. Also, from definition 9.3,

assumption 9.2, lemma 9.1 and 9.2, this lemma is applicable for any left-recursive and

non left-recursive parser. Hence, IL (1) P = S u {pi}. □

IL (2). Direct Proof

|start-position (j) context memo-table|| = j + r'ij....... b
Mapping | . || context' andmemo-table' to (map pick_2nd result) returns

a set of values B ={(j'i + r'iji), (j ' 2 + r'ij2),.... , (j'input# +
r' ijn) } (definition of | | . | |) . It follows from lemma 9.1, 9.2, induction lemma 1,

definition 9.2 and 9.3 that b ^ Vb' e B. Hence mapping (b <) to B results

map (|| start-position (j) context memo-table || <)
(map (| • || context' memo-table') map pick_2nd result). □

Proof of Termination

Theorem 9: We have to show that, using the induction-lemma, any recursively defined

parser terminates.

Direct proof

Let a recursive parser p± e P such that p± = p±' then pi-* and parsers p± and pi-
are applied on ' j context memo-table' (definition of then and semantically

Pi inp = (pi- then pi") inp = p t inp = p i., (pi- inp)). Suppose pi*
returns (result, memo-table') and updates its left-rec-counter at context'
during recursive-descent. According to IL (1) (which includes both left and non-left

recursive parsers):

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Case 1: r e s u l t = {} i . e . pi- fails - that implies pi< and eventually p± fails

too (definition of then). From assumption 9.4, IL (2) and definition of | | . ||

| p i ' s a rg u m en t || < || p i - ' s a rg u m e n t || < || p i " ' s a rg u m en t | | ,

where minimum value of | | . || = 0 (if j = 1 and r i j = n u l l) and maximum

value of | . || = 1 (if p± is non left-recursive) or in p u t# - (j -1) (if p i is left-

recursive , lemma 9.2). Hence,
|| p i ' s a rg u m en t || -k || p i ' ' s a rg u m e n t || -k || p i " ' s a rg u m e n t ||

(definition 9.5 and lemma 9.3) .

Case 2: r e s u l t + {} i . e . p ±> succeeds. From the definition of th e n , -k and

| | . | | , | p i ' s a rg u m en t || -< || P i ' ' s a rg u m en t ||

o (j + r ±j) < (j + r i j + 1) c

As pi- succeeds, p i" is applied to V j ' e (map p ic k _ 2 nd r e s u l t) with

m e m o -ta b le ' (definition of th e n) . According to IL (2) , definition of | | . | | , the

following is true for

V j ' e (map p ic k _ 2 nd r e s u l t) :

map (| | j ' c o n t e x t ' m e m o -ta b le ' ||<)
(map (I . || c o n t e x t ' m e m o - ta b le ') map p ic k _ 2 nd r e s u l t)

map ((j ' + r ±j') <)
(map (| . | c o n t e x t ' (p ± " ' a rg u m en t)))

map ((j ' + r i;j ') <) | | (p i " ' a rg u m e n t) ! d

But as pi- succeeds, j <V j ' a n d (rij + 1) <V r i j ' (lemma 9.1 and 9.2).

Therefore, from c and d , lemma 9.3, definition of | | . || and -k :

(j + r i j) -k (j + n j + 1) -k || (p ± " ' a rg u m en t) ||

=>

| |p i ' s a rg u m en t || -k || P i ' ' s a rg u m e n t || -k || p i " ' s a rg u m en t ||

Well-founded order of any number of parser-sequencing of p i with th e n can be shown

according to the above argument and if p i has more then one alternative, all of their

individual termination ensures p i 's complete termination.

Hence, all recursive parsers terminate. □

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 10: COMPLEXITY ANALYSIS
10.1 Time Complexity of Recognition - w.r.t the length of input
In this section, we show that the worst-case complexity of recognizing an input-sequence

(of length n) is 0 (n3) for a non-left recursive recognizer and 0 (n4) for a left-recursive

recognizer - w,r.t n. The complexities of individual building blocks are analyzed first in

order to prove the complexity of a complete recognizer (proof by construction).

Assumptions

10.1 R = non-terminals, nts u terminals, ts - is a finite set of recognizers

of a given grammar and size of this set is R#. Vri e nts applications are memoized

and the initial recognizer is applied on (start-position j = 1, context
({},{}) r memo-table {}). An application of a recognizer returns (result, memo-
table'), were result ={ (start-position (j), end-position + 1 (j'))},
where j' = start-position for next recognizer in sequence (if exists any). On

ascending, this result is paired with a set of reasons for curtailment (first element

of context), if any (section 6.4.2).

10.2 For recognition, size of the memo-table = R#*n*n = 0(n2) and size of the second

element of context = n*R# = O(n) (definition of memo-table and context for

recognition (section 6.4.2)) .

10.3 The following operations have constant time-complexity:

comparison of two values, extracting a value from a tuple, adding an element to the front

of a list and retrieving i th value from a list whose length depends on R# not on n .

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemmas

10.1 Merging two result-sets, curtailment-condition check, incrementing left-rec-

counter requires O (n) time

Follows from the definition of (++) - which is the only operation used for merging

result-sets and from assumption 10.2 (as curtailment-condition check and incrementing

left-rec-counter are performed on second element of context).

10.2 Operations related to manipulating context and reason need O (n) time

According to section 6.4.2, forming the left-rec-context, comparison between

left-rec-context and current-context etc. take place at start-position j

of each context’s second element and actual operations are dependent on R#. Also,

creating reason for curtailment is independent of n too. Hence, time required for

manipulating context and reason is 0 (n) .

10.3 Basic Recognizers require O (n) time

Recognizers constructed with term require 0 (n) time at the worst case as the start-

position j could be the last index of the input (definition of term) and recognizers

constructed with empty need 0(1) time as its only purpose is to return { (j , j) }

(definition of empty).

10.4 Memo-table update and lookup require O (n) time

The lookup requires a search for the current recognizer’s set of saved results (which is

paired with reason and left-rec-context, if any) at the current start-position j in

the memo-table of size 0(n2) (assumption 10.2), which needs O(n) time. Then

lookup performs the re-usability test by comparing left-rec-context with

current-context w.r.t reason, if any (section 6.4.2). These operations are

sequential linear operations w.r.t the length of input n (lemma 10.2). Therefore the worst-

case complexity remains O (n).

The update operation constructs appropriate left-rec-context with 0(n) time

(lemma 10.2) and saves the newly computed result by replacing the old result in the

memo-table (it does so instead of merging so that there exists no duplicates), which

requires a search for the current recognizer and the current start-position j by spending

O (n) time (section 6.4.2). Hence the worst-case complexity remains 0 (n).

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10.5 Recognizer with Alteration requires O (n) time

Application of memoize (rp orelse rq) at start-position j involves the

following steps (assuming recognizers rp and rq had already been applied on j and their

results are available):

1. One memo-table lookup - requires 0 (n)

2. If the lookup fails

2.1 Condition for curtailment check - requires 0 (n)

2.2 If 2.1 permits

2.2.1 Merging two results and reason returned by rp and rq - requires

O(n) (merging reasons depends on R#)

2.2.3 Updating the new result to memo-table - requires 0 (n)

All the above time complexities follow from lemma 10.1 to 10.4. Hence, the worst case

complexity remains to 0 (n).

10.6 Recognizer with Sequencing requires O (n2) time

In case of memoize (rp then rq) at start-position j, at worst-case rp may

returns a set of results of length n and according to the definition of then, rq has to be

applied to every (end-position +1) of r p' s result-set. Application of memoize (rp

then rq) at start-position j involves following steps (assuming recognizers rp

and rq had already been applied on j and V j ' e (map pick_2nd rp' s result-set)

respectively and their results are available):

1. One memo-table lookup - requires O (n)

2. If the lookup fails

2.1 Condition for curtailment check - requires 0 (n)

2.2 If 2.1 permits

2.2.1 Application of rq on Vj' e (map pick_2nd rp' s result-set) and

merging their results and reasons to form new result - requires 0 (n*n)

= 0(n2)

2.2.2 Updating the new result to memo-table - requires 0 (n)

All the above time complexities follow from lemma 10.1 to 10.4. Hence, the worst case

complexity remains to O (n2).

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 10.1

Non-left recursive recognizers require O (n3) time at the worst case.
Direct proof:
Given an input of length n and a recognizer-set (grammar) R of size R#, each non-left

recognizer, r e R is applied to a particular start-position j e n at most once, as at

least one left-most input-token of current input would be consumed before recursive

execution of r again.

................................. a

In practice, a recognizer may have multiple combinations of then and orelse to form

a bigger recognizer. Multiple occurrences of then in a recognizer-definition (r x then

r2 then.... rx) doesn’t change the time complexity 0 (n2) of lemma 10.6 because each

subsequent recognizers (r2....ri) can be applied sequentially to at most n start-

positions and this cost of time depends on R# not on n. Also multiple occurrences of

orelse in a recognizer-definition (rx orelse r2 orelse....rx) maintains time

complexity 0 (n) of lemma 10.5 as all alternative recognizers are applied sequentially to

a same start-position and their underlying number of computations depend on the number

of alternatives not on n. Therefore, irrespective of how many times then and orelse

combinators have been used in a recognizer-definition, it’s worst-case time complexity

would be 0 (n2) when applied to one input (from lemma 10.3,10.5 and 10.6).

.......................b

Hence, from a and b, worst-cast time complexity of a non-left recursive recognizer =

n* O (n2) = O (n3) . □

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 10.2

Left recursive recognizers require O (n 4) time at the worst case.
Direct proof:
Given an input of length n and a recognizer-set (grammar) R of size R#, each direct left-

recognizer, r is applied to a particular start-position j e n at most n times - follows

from the definition o f‘condition for curtailment’(section 6.3.1).

.................................... a '

If r is an indirect left-recursive recognizer and its lookup fails due to re-usability

checking then at the very worst-case r may be applied to any j e n at most n*nt#

times, where nt# = is the number of non-terminals in R (section 6.4.2).

...................... a ' '

This worst-case may happen when every nt of R is involved within the path of a indirect

left-recursive recognizer towards its recursive call.

Hence, from a ' , a ' ' and b (of theorem 10.1), worst-cast time complexity of a left

recognizer= nt#*n*n*0 (n2) = 0(n4). □

It follows from lemma 10.3, theorem 10.1 and theorem 10.2 that Vr e R terminates. □

10.2 Time Complexity of Parsing - w.r.t the length of input
We gradually show that worst-case time complexity of parsing an input-sequence (of

length n) is O (n3) for a non-left recursive parser and 0{n4) for a left-recursive parser

w.r.t n - length of the input.

Assumptions

10.4 P = non-terminals, nts u terminals, ts - is a finite set of parsers of a

given grammar and size of this set is P#. Vpi e nts applications are memoized and

the initial parser is applied on (start-position j = 1, context ([], []) , memo-

table []). An application of a parser returns (result, memo-table'), were

result = {((start-position (j), end-position + 1 (j')), {tree1})},

1 From section 7.3.1
tree = leaf or sub-node o r branch
leaf = terminal name
sub-node= (non-terminal name, (start-position, end-position + 1))

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where j' = start-position for next recognizer in sequence (if exists any). On

ascending, this result is paired with a set of reason for curtailment (first element

of context), if any (section 6.4.2).

10.5 For parsing, size of the memo-table increases by a factor of n = R#*n*n*n =

O (n3) and size of the second element of context = n*R# = O(n) (definition of

memo-table and context for parsing (section 7.3.1)) .

Assumption 10.3 and Lemma 10.1, 10.2, 10.3 and 10.4 remain unchanged except the

term parser replaces the term recognizer.

Lemma 10.7 Functionalities for ‘creating pointers’ and ‘grouping ambiguity’ need

O(n) andO(n2) time respectively

From the discussion o f ‘modified memoization’ of section 7.3.2 and 7.3.3, the following

two sequential operations may need to be performed:

1. A pointer is being created for a set of results of the current parser at current start-

position that refers to the actual set of results in the memo-table. It basically

involves searching the result-set, which requires O(n) time (definition of

create_pointer).

2. Grouping ambiguity involves uniting the trees of identical (start-pos, end-pos+1)

pairs as a new set of trees under a single (start-pos, end-pos+1) pair. According to

current implementation of group_ambiguity (section 8.3.2), the new-results are

sorted first before the actual grouping (that requires 0 (n) time) takes place. As the

library function ‘sort’ is interpreter/ compiler dependent (i.e. worst case is 0 (n2)),

the overall worst-case complexity for ambiguity-grouping is O (n2) .

Lemma 10.8 Creating n-ary branches requires O (n) time

From the discussion of ‘modified combinators’ of section 7.3, creation of name-less n-ary

branches between a single pointer and a set of pointers (of length O (n)) requires O (n)

time in the worst-case.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lemma 10.9 Parsers with Alteration requires O (n2) time

Application of memoize (pp o re ls e pq) at s t a r t - p o s i t i o n j involves following

steps (assuming parsers pp and pq had already been applied on j and their results are

available):

1. One memo-table lookup + create pointer - requires 0 (n)

2. If the lookup fails

2.1 Condition for curtailment check - requires O (n)

2.2 If 2.1 permits

2.2.1 Merging two results and reason returned by pp and pq - requires

O(n) (merging reasons depends on R#)

2.2.3 Ambiguity packing of new result + updating the packed result to

memo-table + create pointer - requires 0 (n 2)

All the above time complexities follow from lemma 10.1 to 10.4 and 10.7. Hence, the

worst case complexity remains at 0 (n 2).

Lemma 10.10 Parser with Sequencing requires O (n2) time

In case of memoize (pp th en pq) at s t a r t - p o s i t i o n j , at worst-case pp may

returns a set of results of length n and according to the definition of th e n (of section

6.3.3), pq has to be applied on every (end-position +1) of pp' s result-set and each

pointers of pp' s result-set needs to create n-ary branch with pointer-set returned by

p q' s application on each (end-position + 1) of pp. Application of memoize (pp th en

pq) at s t a r t - p o s i t i o n j involves following steps (assuming Pp and pq had already

been applied on j and Vj ' e (map p ic k _ 2 nd r p' s result-set) respectively and their

results are available):

1. One memo-table lookup + create pointer - requires O (n)

2. If the lookup fails

2.1 Condition for curtailment check - requires O (n)

2.2 If 2.1 permits

2.2.1 Application of pq on Vj ' e (map p ic k _ 2 nd pp' s result-set) +

forming n-ary branching between each pointer of pp with corresponding

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pointer-set of p q on current j ' + merging their results and reasons to form

new result - requires 0 (n*n) = 0 (n 2)

2.2.2 Ambiguity packing of new result + updating the packed result to

memo-table + create pointer - requires 0 (n 2) .

All the above time complexities follow from lemma 10.1 to 10.4, 10.7 and 10.8. Hence,

the worst case complexity remains at 0 (n 2).

Applying same arguments of theorem 10.1 and 10.2, we can conclude that a non-left

recursive parse and a left-recursive parser require 0 (n3) and 0 (n 4) time respectively. □

10.3 Space Complexity - w.r.t the length of input
According to section 6.4.2, the memo-table used for recognition is of type
{ (r e c o g n iz e r - n a m e ,{ (s t a r t - p o s i t i o n , (l e f t - r e c - c o n t e x t , { (s t a r t -

p o s i t i o n , e n d - p o s i t i o n + 1) })) }}. As described in section 6.4.3 and shown in

figure 6.4, each recognizer has at most n entries and each of these entries may have at

most a result-set of size n. So the size of the final memo-table would be O (n2) after

complete recognition.

Similarly, according to section 7.3.1, the memo-table used for parsing is of type

{ (p a r s e r -n a m e ,{ (s t a r t - p o s i t i o n , (l e f t - r e c - c o n t e x t , { r e s u l t })) } } ,

r e s u l t is of type (s t a r t - p o s i t i o n , e n d - p o s i t i o n + 1) , { tree}) . As

described in section 7.4 and shown in figure 7.3, each parser has at most n memo-table

entries and each of them has a result-set of size at most n. But each entry of result-set can

be paired with a tree of size at most n * k (where k is a constant that depends on

number of symbols - r on the right-hand side of a rule). If the grammar is in Chomsky

Normal Form (i.e. r = 2) or r > n then k = 1. The reason is if r = 2 or r > n

then there could be at most n number of ambiguous results (branches) for a particular

start/ end pair. Hence, the size of the final memo-table would be O (n 3) (if r = 2 or r

> n) after complete parsing.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An Analysis for polynomial space requirement due to ambiguity-packing

Consider the grammar
S = memoize4 "S" ((S th en 4 A) o r e ls e 4 empty4)
A = memoize4 "A" (S th en 4 (term 4 s))
Say for start-position 1 and end-position 4 on input “s s s s ”, S creates 4 different parses.

Pointers with one-level depth branches but without ambiguity grouping, there would be 4

different memo-table entries for S:

"S", 1, { ((1 , 4) , t r e e l) ,
((1 , 4) , t r e e 2) ,
((1 , 4) , t r e e 3) ,
((1 , 4) , t r e e 4) }

If A is to refer S (1, 4) for its parses, then A creates 4 different entries in the memo-table

for S:

"A", 1, { ((1 , 4) , S (1 , 4) . .) ,
((1 , 4) , S (1 , 4) . .) ,
((1 , 4) , S (1 , 4) . .) ,
((1 , 4) , S (1 , 4) . .) }

If A (1,4) if needed to be referred by S again somewhere in the parse, each 4 o f A’s

entries has to be added to S ’s list. For total 64 complete parse-trees, space requirement is

12 cells - still compact

With ambiguity grouping. S ’s 4 ambiguous results are grouped together in a single list:

"S", 1, { ((1 , 4) , { t r e e l , t r e e 2 , t r e e 3 , t r e e 4 }) }

Now A needs to create only one entry that refers to S ’s memo-table entry (1, 4) cell:

"A", 1, { ((1 , 4) , S (1 , 4) . .) }

S now can now refer to A by adding only one entry to its list:

"S", 1, { ((1 , 4) , A (1 , 4) . .) }

Now, for 64 parse-trees space requirement is only 6 cells - densely compact. It is

needless to say that if there was no one-level depth pointing branches and no ambiguity-

grouping, it would take 64 cells in the memo-table.

(The example 5 o f the appendix contains the actual result)

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 11: EXPERIMENTAL RESULTS
To justify the complexity-analysis of the previous chapter, we have tested different

versions of a highly ambiguous grammar (s : : S s ' s ' | e) by applying our

implemented algorithm (chapter 8) on various lengths of inputs (n). According to Aho

and Ullman [l]’s equation

number of parses, for example:

vn j
/(n + 1), the above grammar generates enormous

Length of
input, n

No of parses

3 5
6 132
12 20,812
24 128,990,414,734
48 1.313278982422e+26

We have used four different parsers - representing four versions of the above grammar:

1. Un-memoized non-left recursive parser
s = (((term ' s ') 'thenS' s 'thenS' s) 'orelse' empty)
2. Memoized non-left recursive parser (example 2 of the appendix)
si = memoize "si" (((term ’s') 'thenS' si 'thenS' si) 'orelse' empty)
3. Memoized left-recursive parser (example 3 of the appendix)
s2 = memoize "s2" (s2 'thenS' s2 'thenS' (term ’ s ') 'orelse' empty)
4. Memoized left recursive parser in CNF1 (example 4 of the appendix)

As the algorithm is not restricted to only CNF, we memoize every components of the

previous parser to represent it in a CNF. This is only possible because of the modularity

of combinator-parsers.
s3 = memoize "s3" (s3 'thenS' memoize "s3'" (s3 'thenS' (term ’s'))

'orelse' empty)
Parsers s2 and s3 are equivalent, according [1].

It is worth mentioning that any practical grammar for a Natural Language would be much

less ambiguous than the above grammars.

1 In a CNF grammar, each rule has at most two symbols in sequence for each alternative.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We have collected ‘number of seconds’ and ‘number of reductions’ required for

generating compact-representation of packed forest per input-length - using built-in

functionalities of GHCi1 and Hugs’982. The experiments were performed on a PC with

0.5 GB of RAM and the results are listed in the following tables:

n =
No o f ‘s’
in input

Parser s

time required
(using GHCi)

No of reduction
(using Hugs)

nx where
x = log n (no of reductions)

3 0.05 secs 14470 8.719939617
6 1.22 secs 627678 7.450655517
12 1006.27 secs (out of space)

Table 11.1: Time and no of reductions for parser s

n =
No of ‘s’
in input

Parser si
time required
(using GHCi)

No of reduction
(using Hugs)

nx where
x = log n (no of reductions)

3 0.02 secs 7407 8.11039606
6 0.15 secs 36415 5.861688601
9 0.32 secs 106899 5.270121162
12 0.52 secs 240206 4.985801848
15 1.07 secs 457662 4.813014985
24 4.24 secs 1847653 4.540334278
30 7.66 secs 3628761 4.440907166
35 13.31 secs 5825128 4.381481436
40 20.96 secs 8769200 4.333770279
48 32.65 secs (out of space)

Table 11.2: Time and no of reductions for parser si

n =
No o f ‘s’
in input

Parser s2
time required
(using GHCi)

No of reduction
(using Hugs)

n* where
x = log n (no of reductions)

3 0.07 secs 12188 8.563719191
6 0.20 secs 102908 6.441484397
9 0.33 secs 486526 5.9598121
12 0.80 secs 1613858 5.752384358
15 1.38 secs (out of space)
24 5.84 secs
30 13.30 secs
35 24.02 secs
40 45.91 secs

Table 11.3: Time and no of reductions for parser s2

'Glasgow Haskell Compiler is the most widely used standard compiler for Haskell.
www.haskell.org/ghc
2 Hugs’ 98 is a standard interpreter for Haskell, www. haskell. org/hugs

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.haskell.org/ghc

n =
No o f ‘s’
in input

Parser s3
time required
(using GHCi)

No of reduction
(using Hugs)

n* where
x = log n (no of reductions)

3 0.08 secs 14483 8.720757018
6 0.18 secs 83260 6.323239093
9 0.41 secs 301298 5.741723089
12 0.71 secs 831423 5.485475268
15 1.17 secs 1880703 5.334892313
24 4.28 secs 11761465 5.122738612
30 8.88 secs 28636547 5.048279297
35 16.12 secs (out of space)
40 23.62 secs
48 68.21 secs

Table 11.4: Time and no of reductions for parser s3

From the above results, it is evident that the required time (using GHCi) increases in a

polynomial-rate (except the un-memoized parser, s - which fails, after exhibiting

exponential behavior, at n=12). It also suggests that, though parsers s2 (non-CNF)

and s3 (CNF) are equivalent left-recursive parsers, time-requirements of s 3 is much

less (which is almost equivalent to memoized non-left recursive parser’s time

requirements) then s2 . As Hugs 98 allocates less memory then GHCi for each session it

runs out-of-space much quicker then GHCi. Even though Hug 98’s ‘number of reduction

count’ is a rough-measure, it also suggests polynomial nature of the memoized parsers.

Time in sec (from G H C i)

 ----------time for s i time for s 2 ------------ tim e for s3

50

45

40

35

30

25

20

15

10

5

0
3 6 9 12 15 24 30 35 40

n = length o f input

Figure 11.1: time vs. length-of-input plot for memoized parsers

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 12: CONCLUSION
In this report we have proven the thesis-statement (section 2.4.2) by proposing a new

algorithm, analyzing its termination and complexity, implementing it in Haskell and

performing experiments on different Context-Free Grammars with variable length of

inputs. The experimental results of chapter 11 (that include highly-ambiguous left-

recursive grammar) suggest that the polynomial nature of the algorithm is correct as

proven in chapter 10. It is also evident that memoizing all component-parsers of a bigger

and highly ambiguous left-recursive parser requires almost the same time to generate a

complete parse-forest as it would require for a memoized non-left recursive parser. Our

experiments were not only restricted to proper and CNF grammars, but included

grammars with cyclic and empty rules. Though monadic facilities and the lazy-evaluation

of Haskell assisted to propagate the memo-table systematically, to share computed values

within different recursive calls, and facilitated the construction of the compact-

representation of parse trees, the described algorithm can be implemented using other

programming languages which support recursion and dynamic data-structures.

Future works related to this algorithm includes:

■ Analyzing the time and space complexity w.r.t variable length of grammars.

■ Improving the Haskell-code by following conventions according to the

existing libraries of Haskell and by accommodating ‘user-supplied’ input for

more general use.

■ Investigating the use of advanced programming techniques, such as those

proposed in [21] to optimize the implementation of the parser combinators.

■ Investigating the use of arrays instead of lists to access and search the memo-

table and to group ambiguous parses much faster.

■ Testing the algorithm on bigger and more practical NL grammars.

* Analyzing extraction-time of a complete parse from the compact

representation w.r.t variable length of input and variable size of the grammar.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX: EXPERIMENTAL OUTPUT OF

COMPACT REPRESENTATIONS
The Haskell implementation of the algorithm has been applied on different Context-Free

grammars with variable lengths of input. Some of those sample applications are listed

below:

Example 1: CFG for Natural Language
Following is a grammar (similar to the one mentioned in Tomita’s paper [35]) that
defines a subset of English and its equivalent combinator-parser - written according to
the algorithm of this report:
NL grammar
s ::= NP VP | S PP det ::= ' a ' 't'
NP ::= n| det n| NP PP noun ::- ‘ x ‘
PP ::= prep NP verb ::= 's'
VP : v NP prep ::= 'n' ' w'

where S stands for sentence, NP for noun-phrase, VP for verb-phrase, PP for
prepositional-phrase, p r e p for preposition, and d e t for determiner.

Equivalent combinator-parser
s = memoize "s" ((np 'thenS' vp) 'orelse' (s 'thenS' pp))
np = memoize "np" (noun 'orelse' (det 'thenS' noun) 'orelse'

(np 'thenS' pp))
pp = memoize "pp" (prep 'thenS' np)
vp = memoize "vp" (verb 'thenS' np)
det = memoize "det" (term 'a' 'orelse' term 't1)
noun = memoize "noun" (term 'i' 'orelse' term ’m' 'orelse'

term 'p1 'orelse' term 'b')
verb = memoize "verb" (term ’ s ’)
prep = memoize "prep" (term 'n' 'orelse' term 'w')

The original grammar and the equivalent combinator-parser are structurally closely
related and each of the sub combinator-parsers can be tested individually. An application
of the root combinator-parser s on input " i s am n tp w ab " (which represents " i saw
a man i n th e p a r k w i t h a b a t ") results following result, in which
exponential numbers of parse-trees are represented in a polynomial space as a forest of
one level depth n-ary branches:
apply s at start-position 1 of input "isamntpwab" with empty comtext and empty memo-table
=>
"noun" 1 ((1,2),[Leaf "i"])

4 ((4,5), [Leaf "m"])
7 ((7,8),[Leaf "p"])
10 ((10,11),[Leaf "b"])

"det" 3 ((3,4),[Leaf "a"])
6 ((6,7),[Leaf "t"])
9 ((9,10),[Leaf "a"])

"np" 1 (["np"],[(1,[])])
((1,2),[SubNode ("noun", (1,2))])

3 (["np"], [])
((3,5),[Branch [SubNode ("det",(3,4)),SubNode ("noun", (4,5))]])

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

((3,8),[Branch [SubNode ("np", (3,5)),SubNode ("pp", (5,8))]])
((3,11),[Branch [SubNode ("np",(3,5)),SubNode ("pp", (5,11))],

Branch [SubNode ("np",(3,8)),SubNode ("pp", (8,11))]])
6 (["np"],[])

((6,8),[Branch [SubNode ("det",(6,7)),SubNode ("noun",(7,8))]])
((6,11),[Branch [SubNode ("np",(6,8)),SubNode ("pp",(8,11))]])

9 (["np"], [])
((9,11),[Branch [SubNode ("det",(9,10)),SubNode "noun",(10,11))]])

"prep" 5 ((5,6),[Leaf "n"])
8 ((8,9),[Leaf "w"])

"pp" 8 (["np"], [])
((8,11),[Branch [SubNode ("prep",(8,9)),SubNode ("np",(9,11))]])

5 <["np"],[])
((5,8),[Branch [SubNode ("prep",(5,6)),SubNode ("np",(6,8))]])
((5,11) , [Branch [SubNode ("prep", (5,6)),SubNode ("np", (6,11)}]])

"verb" 2 ((2,3),[Leaf "s"])
"vp" 2 (["np"],[])

((2,5),[Branch [SubNode ("verb",(2,3)),SubNode ("np",(3,5))]])
((2,8),[Branch [SubNode ("verb",(2,3)),SubNode ("np",(3,8))]])
((2,11),[Branch [SubNode ("verb",(2,3)),SubNode ("np",(3,11))]])

"s" 1 (["np","s"], [])
((1,5),[Branch [SubNode ("np", (1, 2)),SubNode ("vp",(2,5))]])
((1,8),[Branch [SubNode ("np",(1,2)),SubNode ("vp",(2,8))],

Branch [SubNode ("s",(1,5)),SubNode ("pp", (5, 8))]])
((1,11),[Branch [SubNode ("np",(1,2)),SubNode ("vp",(2,11))],

Branch [SubNode ("s",(1,5)),SubNode ("pp",(5,11))],
Branch [SubNode ("s",(1,8)),SubNode ("pp",(8,11))]])

Example 2: Highly ambiguous non-left recursive CFG

The following is a highly ambiguous non-left recursive grammar.
Original CFG
S::= 's' S S I £

Equivalent combinator-parser
s = memoize "s" {((term ' s ') 'thenS' s 'thenS' s) 'orelse' empty)
input = "ssss"
apply s at start-position 1 of input "ssss" with empty comtext and empty memo-table

((5, 5), [Leaf "empty'’])
((4,4), [Leaf "empty"])
((4,5),[Branch [SubNode ("Leaf s". (4,5)),SubNode ("s", (5,5)),SubNode ("s". (5,5))
((3,3),[Leaf "empty"])
((3,4), [Branch [SubNode {"Leaf s", (3,4) ,SubNode ("s",(4,4) ,SubNode ("s", (4,4))
((3,5), [Branch [SubNode ("Leaf s", (3,4) ,SubNode ("s",(4,4) ,SubNode ("s". (4,5))

Branch [SubNode ("Leaf s", (3,4) ,SubNode ("s",(4,5) ,SubNode ("s", (5,5))
((2,2), [Leaf "empty"])
((2,3), [Branch [SubNode ("Leaf s". (2,3) ,SubNode ("s",(3,3) ,SubNode (" s " , (3,3))
((2,4), [Branch [SubNode ("Leaf s". (2,3) ,SubNode <"s",(3,3) ,SubNode (" s " ,(3,4))

Branch [SubNode ("Leaf s", (2,3) ,SubNode ("s",(3,4) ,SubNode ("s", (4,4))
((2,5), [Branch [SubNode ("Leaf s", (2,3) ,SubNode ("s",(3,3) ,SubNode ("s", (3,5))

Branch [SubNode ("Leaf s", (2,3) ,SubNode ("s", (3,4) ,SubNode (" s " ,(4,5))
Branch [SubNode ("Leaf s",(2,3) ,SubNode ("s",(3,5) ,SubNode ("s". (5,5))

((1,1),[Leaf "empty"])
((1,2),[Branch [SubNode ("Leaf s". (1,2) ,SubNode ("s”, (2,2) ,SubNode ("s", (2,2))
((1,3),[Branch [SubNode ("Leaf s", (1,2) ,SubNode ("s",(2,2) , SubNode (" s " , (2,3))

Branch [SubNode ("Leaf s", (1,2) ,SubNode ("s",(2,3) , SubNode ("s", (3,3))
((1,4),[Branch [SubNode ("Leaf s", (1,2) ,SubNode ("s",(2,2) ,SubNode (" s " , (2,4))

Branch [SubNode ("Leaf s",(1,2) ,SubNode ("s",(2,3) ,SubNode (" s " ,(3,4))
Branch [SubNode ("Leaf s". (1,2) ,SubNode ("S",(2,4) ,SubNode ("s". (4,4))

((1,5),[Branch [SubNode ("Leaf s ”, (1,2) ,SubNode ("s",(2,2) ,SubNode ("s". (2,5))
Branch [SubNode ("Leaf S", (1,2) ,SubNode ("s", (2,3) , SubNode (" s " ,(3,5))
Branch [SubNode ("Leaf 3", (1,2) ,SubNode ("s", (2,4) , SubNode (" s " ,(4,5))
Branch [SubNode ("Leaf s", (1,2) ,SubNode ("s",(2,5) , SubNode ("s", (5,5))

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 3: Highly ambiguous left-recursive CFG

The following example is the equivalent highly ambiguous left-recursive version of the
grammar from example 2.
Original CFG
S::= S S 's' | s

Equivalent combinator-parser
s = memoize "s" (s 'thenS' s 'thenS' (term ’ s ’) 'orelse' empty)
input = "ssss"
apply s at start-position 1 of input "ssss" with empty comtext and empty memo-table
=>
"s" 1 (["s"], [])

((1,1),[Leaf "empty"])
((1,2),[Branch [SubNode <"s", (1,1)),SubNode ("s", (1,1)),SubNode ("Leaf s", (1,2))]])
((1,3),[Branch [SubNode ("s”.(1,1)),SubNode ("s", (1,2)),SubNode ("Leaf s", (2,3))],

Branch [SubNode ("s", (1,2)),SubNode ("s", (2,2)),SubNode ("Leaf S", (2,3))]])
((1,4),[Branch [SubNode ("s", (1,1)),SubNode ("s". (1,3)),SubNode ("Leaf s", (3,4))],

Branch [SubNode { " S " ,(1,2)),SubNode ("s", (2,3)),SubNode ("Leaf s", (3,4))],
Branch [SubNode ("s" ,(1,3)),SubNode ("s". (3,3)),SubNode ("Leaf s", (3,4))]])

((1,5),[Branch [SubNode ("s", (1,1)),SubNode ("s", (1,4)),SubNode ("Leaf 3", (4,5))],
Branch [SubNode ("s". (1,2)),SubNode ("s", (2,4)),SubNode ("Leaf s", (4,5))],
Branch [SubNode ("s", (1,3)),SubNode ("s", (3,4)),SubNode ("Leaf s", (4,5))] ,
Branch [SubNode ("s", (1,4)),SubNode ("sn,(4,4)),SubNode ("Leaf s", (4,5))]])

(["s"], [])
((2,2),[Leaf "empty"])
((2,3),[Branch [SubNode ("s". (2,2)),SubNode ("s", (2,2)),SubNode ("Leaf s", (2,3))]])
((2,4),[Branch [SubNode ("s", (2,2)),SubNode ("s", (2,3)),SubNode ("Leaf s", (3,4))],

Branch [SubNode ("3n, (2,3)),SubNode ("s", (3,3)),SubNode ("Leaf s", (3,4))]])
((2,5), [Branch [SubNode ("s”,(2,2)),SubNode ("s", (2,4)),SubNode ("Leaf s", (4,5))],

Branch [SubNode ("s", (2,3)),SubNode (" S " , (3,4)),SubNode ("Leaf s", (4,5))],
Branch [SubNode (" 3 " , (2,4)),SubNode ("S", (4,4)),SubNode ("Leaf s", (4,5))]])

(["s"j,[])
((3,3),[Leaf "empty"]}
((3,4), [Branch [SubNode ("3", (3,3)),SubNode ("s", (3,3)),SubNode ("Leaf s", (3,4))]])
((3,5),[Branch [SubNode ("s", (3,3)),SubNode (" s " ,(3,4)),SubNode ("Leaf s", (4,5))] ,

Branch [SubNode ("s", (3,4)),SubNode ("s", (4,4)),SubNode ("Leaf s", (4,5))]])
4 (["s"], [])

((4,4), [Leaf "empty"])
((4,5),[Branch [SubNode ("s",(4,4)),SubNode ("s",(4,4)),SubNode ("Leaf s”,(4,5))]])

5 (["s"], [])
((5,5),[Leaf "empty"])

Example 4: Memoizing components o f CFG

The following example is the equivalent ambiguous left-recursive version of the grammar
from example 3, but we memoized sub-components of the grammar for improved
performance. In this way any grammar can be represented in CNF.
Original CFG
S::= S S 's' i e
Equivalent combinator-parser
si = memoize "si" ((si 'thenS' memoize "s_" (si 'thenS' (term 's'))) 'orelse' empty)
input = "ssss"
apply s at start-position 1 of input "ssss" with empty comtext and empty memo-table
=>
" s i " 1 ([" s i "] , [])

((1,1),[Leaf "empty"])
((1,2),[Branch [SubNode ("si",(1,1)),SubNode ("s_",(1,2))]])
((1,3),[Branch [SubNode ("si",(1,1)),SubNode ("s_",(1,3))],

Branch [Sube ("si", (1,2)),SubNode ("s_",(2,3))]])
((1,4),[Branch [SubNode ("si", (1,1)),SubNode ("s_", (1, 4))] ,

Branch [Sube ("si",(1,2)),SubNode ("s_",(2,4))],

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Branch [SubNode ("si",(1,3)),SubNode ("s (3,4))]])
((1,5),[Branch [SubNode ("si",(1,1)),SubNode ("s_",(1,5))],

Branch [Sube ("si", (1,2)),SubNode ("s_”,(2,5))],
Branch [SubNode ("si",(1,3)),SubNode ("s(3,5))],
Branch [SubNode ("si", (1,4)),SubNode ("s_", (4,5))]])

2 (["si"],[(2, [])])
((2,2),[Leaf "empty"])
((2,3),[Branch [SubNode ("si", (2,2)),SubNode ("s_", (2,3))]])
((2,4),[Branch [SubNode ("si", (2,2)),SubNode ("s_". (2,4))] /

Branch [SubNode ("si", (2,3)),SubNode ("s_", (3,4))]])
((2,5),[Branch [SubNode ("si", (2,2)),SubNode ("s ", (2,5))] ,

Branch [SubNode ("si", (2,3)) , SubNode ("s_", (3,5))],
Branch [SubNode ("si", (2,4)),SubNode ("S_", (4,5))]])

3 (["si"],[(3, [])])
((3,3),[Leaf "empty"])
((3,4),[Branch [SubNode ("si", (3,3)),SubNode ("s_". (3,4))]])
((3,5),[Branch [SubNode ("si", (3,3)),SubNode ("S_", (3,5))],

Branch [SubNode ("si", (3,4)),SubNode ("s_", (4,5))]])
4 (["Si"],[(4, [])])

((4,4),[Leaf "empty"])
((4,5),[Branch [SubNode ("si". (4,4)),SubNode <”s_". (4,5))]])

5 (["si"], [(5, [])])
((5,5),[Leaf "empty"])

1 (["si"], [(1, [(’sl",l)])]
((1,2),[Branch [SubNode ("si", (1,1)),SubNode ("Leaf s",(1,2))]])
((1,3),[Branch [SubNode ("si", (1,2)),SubNode ("Leaf s ", (2,3))]])
((1,4),[Branch [SubNode ("si", (1,3)),SubNode ("Leaf s", (3,4))]])
((1,5),[Branch [SubNode ("si", (1,4)),SubNode ("Leaf s",(4, 5))]])

2 (["si"], [])
((2,3),[Branch [SubNode ("si", (2,2)),SubNode ("Leaf s", (2,3))]])
((2,4),[Branch [SubNode ("si", (2,3)),SubNode ("Leaf s", (3,4))]])
((2,5),[Branch [SubNode ("si", (2,4)),SubNode ("Leaf s",(4,5))]])

3 (["si"],[])
((3,4),[Branch [SubNode ("si", (3,3)),SubNode ("Leaf s",(3, 4))]])
((3,5),[Branch [SubNode ("si", (3,4)),SubNode ("Leaf s",(4, 5))]])

4 (["si"],[])
((4,5),[Branch [SubNode ("si". (4 , 4)) , SubNode ("Leaf s",(4 , 5))]])

5 (["si"], [])

Example 5: Direct CNF form of CFG

The following example is the equivalent ambiguous left-recursive Chomsky-Normal
Form (CNF) version of the grammar from example 3 and 4.
Original CFG
S: := S A | E
A::= S 's'
Equivalent combinator-parser
s = memoize "s" ((s 'thenS' a) 'orelse' empty)
a = memoize "a" (s 'thenS' (term ' s '))
input = "ssss"
apply s at start-position 1 of input "ssss" with empty comtext and empty memo-table
=>
"s" 1 (["s"], [])

((1,1),[Leaf "empty"])
((1,2),[Branch [SubNode ("s",(1,1)),SubNode ("a",(1,2))]])
((1,3),[Branch [SubNode ("s”,(1,1)),SubNode ("a",(1,3))],

Branch [SubNode ("s", (1,2)),SubNode ("a", (2,3))]])
((1,4), [Branch [SubNode ("s", (1,1)),SubNode ("a", (1,4))],

Branch [SubNode"s",(1,2)),SubNode ("a",(2,4))],
Branch [SubNode ("s",(1,3)),SubNode ("a",(3,4))])

((1,5), [Branch [SubNode ("s", (1,1)),SubNode ("a", (1,5))],
Branch [SubNode"s",(1,2)),SubNode ("a",(2,5))],
Branch [SubNode ("s",(1,3)),SubNode ("a",(3,5)),
Branch [SubNode ("s",(1,4)),SubNode ("a",(4,5))]])

2 (["s"], [(2, [])])
((2,2),[Leaf "empty"])

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

((2,3 , [Branch [SubNode ("s", (2,2)),SubNode ("a", (2,3))]])
((2,4 ,[Branch [SubNode ("s", (2,2)),SubNode ("a",(2,4))],

Branch [SubNode ("s", (2,3)),SubNode ("a",(3,4))]])
((2,5 ,[Branch [SubNode ("s". (2,2)),SubNode ("a",(2,5))],

Branch [SubNode ("s", (2,3)),SubNode ("a",(3,5))],
Branch [SubNode ("s", (2,4)),SubNode ("a", (4,5))])

3 (["s" , [(3, [])])
((3,3 ,[Leaf "empty"])
((3,4 ,[Branch [SubNode ("s", (3,3)),SubNode ("a",(3,4))]])
((3,5 ,[Branch [SubNode ("s", (3,3)),SubNode ("a",(3,5))],

Branch [SubNode ("s", (3,4)),SubNode ("a", (4,5))]])
4 (["s"

((4, 4
, [(4, [])])
,[Leaf "empty"])

((4,5 ,[Branch [SubNode ("s", (4,4)),SubNode ("a",(4,5))]])
5 (["s" ,[(5, [])])

((5,5 ,[Leaf "empty"])
1 (["s" ,[(1, t("s",1)])]>

((1,2 ,[Branch [SubNode (" s ", (1,1)),SubNode ("Leaf s",(1,2))]])
((1,3 ,[Branch [SubNode ("s". (1,2)),SubNode ("Leaf s",(2,3))]])
((1,4 ,[Branch [SubNode ("s". (1,3)),SubNode ("Leaf s", (3,4))]])
((1,5 ,[Branch [SubNode ("s", (1,4)),SubNode ("Leaf s", (4,5))]])

2 (["s" , [])
((2,3 , [Branch [SubNode ("s", (2,2)),SubNode ("Leaf s",(2,3))]])
((2,4 , [Branch [SubNode ("s", (2,3)),SubNode ("Leaf s",(3,4))]])
((2,5 , [Branch [SubNode ("s", (2,4)),SubNode ("Leaf s", (4,5))]])

3 (["s" , [])
((3,4 , [Branch [SubNode ("s", (3,3)),SubNode ("Leaf s", (3,4))]])
((3,5 , [Branch [SubNode ("s", (3,4)),SubNode ("Leaf s", (4,5))]])

4 (["s" , [])
((4,5 , [Branch [SubNode ("s", (4,4)),SubNode ("Leaf s", (4,5))]])

5 (["s" , m
Example 6: Cyclic Grammar

The following example is an application of the algorithm on a cyclic-CFG.
Oriqinal CFG
SI::= SI 'x'
Q : : = R
R : : = P
P ::= SI V
Equivalent combinator-parser
si = memoize "si" ((si 'thenS' (term 'x')) 'orelse' p 'orelse'

'x') 'orelse' (term 1y') 'orelse' q)
q = memoize " q " r
r = memoize "r" p
p = memoize "p" (si 'thenS' (term ’y 1))
input = "yyyy"
apply s at start-position 1 of input "ssss" with empty comtext and empty memo
=>
"p" 1 (["si"],[(1,[("si",1)])])

((1,3), [Branch [SubNode ("si", (1,2)),SubNode ("Leaf y", (2,3))]])
((1,4),[Branch [SubNode ("si",(1,3)),SubNode ("Leaf y",(3,4))]])
((1,5),[Branch [SubNode ("si",(1,4)),SubNode ("Leaf y", (4,5))]])

"r" 1 (["si"],[(1,[("si",1)])])
((1,3),[SubNode ("p",(1,3))])
((1,4), [SubNode ("p", (1,4))])
((1,5), [SubNode ("p", (1,5))])

"q" 1 (["si"], [(1, [("sl",l)])]>
((1,3), [SubNode ("r", (1,3))])
((1,4),[SubNode ("r",(1,4))])
((1,5),[SubNode ("r”,(1,5))])

" s i " 1 ([" s i "] , [])
((1,2),[Leaf "y"])
((1,3),[SubNode ("p", (1, 3)),SubNode ("q", (1,3))])
((1,4), [SubNode ("p", (1,4)),SubNode ("q", (1,4))])
((1,5),[SubNode ("p", (1,5)),SubNode ("q",(1,5))])

101

(term

-table

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES
1. Aho, A.V and Ullman, J. D. (1972) The Theory of Parsing, Translation, and

Compiling, Volume 1: Parsing. Englewood Cliffs, N.J.: Prentice-Hall.
2. Burge, W. H. (1975) Recursive Programming Techniques. Addison-Wesley, Reading,

Massachusetts.
3. Camarao, C., Figueiredo, L. and Oliveira, R.,H. (2003) Mimico: A Monadic

Combinator Compiler Generator. Journal o f the Brazilian Computer Society. Volume
9, Issue 1.

4. Chomsky, N. (1956) Three models for the description of language. IRE Transactions
on Information Theory, 2. Pages: 113-124 .

5. Daume, H. (2004) Yet Another Haskell Tutorial.
http://www.isi.edu/~hdaume/htut/tutorial.pdf.2003-2004.

6. Earley, J. (1970) An efficient context-free parsing algorithm. Communications o f the
Association for Computing Machinery, Volume 13, Issue 2. Pages:94-102. (52)

7. Frost, R. A. (1993) Guarded attribute grammars. Software Practice and Experience.
Volume 23, Issue 10, Pages: 1139-1156.

8. Frost, R. A. (2002) W/AGE The Windsor Attribute Grammar Programming
Environment. IEEE Symposia on Human Centric Computing Languages and
Environments. Pages: 96-98.

9. Frost, R. (2003) Monadic Memoization towards Correctness-Preserving Reduction of
Search. Canadian Conference on A I2003, Pages: 66-80

10. Frost, R. A. (2006) Non-strict functional programming and natural language
interfaces. ACM Computing Surveys Journal (in press).

11. Frost, R. and Hafiz, R. (2006) A New Top-Down Parsing Algorithm to Accommodate
Ambiguity and Left Recursion in Polynomial Time. SIGPLAN Notices Volume 41
Issue 5, Pages: 46 - 54 (May 2006 Article)

12. Frost, R., Hafiz, R. and Callaghan, P (2006) A General Top-Down Parsing
Algorithm, Accommodating Ambiguity and Left Recursion in Polynomial Time.
Tech Report 06-022. Department of Computer Science, University of Windsor.

13. Frost, R. A. and Launchbury, E. J. (1989) Constructing natural language interpreters
in a lazy functional language. The Computer Journal — Special edition on Lazy
Functional Programming Volume 32, Issue 2. Pages: 108-121.

14. Frost, R. A. and Szydlowski, B. (1996) Memoizing purely functional top-down back
tracking language processors. Science o f Computer Programming Volume 27, Pages:
263-288.

15. Giesl, J. (1997) Termination of Nested and Mutually Recursive Algorithms
Journal o f Automated Reasoning Volume 19, Pages: 1-29, 1997.

16. Hudak, P., Peterson, J. and Fasel, J. (2000) A gentle introduction to Haskell version
98. Technical Report, Department o f Computer Science, Yale University.

17. Hughes, J. (1989) Why functional programming matters. The Computer journal,
Volume 32 Issue 2, Pages: 98-107.

18. Hutton, G. (July 1992) Higher-order functions for parsing. Journal o f Functional
Programming, Volume 2 Issue 3, Pages: 323- 343.

19. Hutton, G. and Meijer, E. (1996) Monadic parser combinators. Technical Report
NOTTCS-TR-96-4, Department of Computer Science, University of Nottingham.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.isi.edu/~hdaume/htut/tutorial.pdf.2003-2004

20. Johnson, M. (1995) Squibs and Discussions: Memoization in top-down parsing.
Journal o f Computational Linguistics. Volume 21, Issue 3, Pages: 405—417.

21.Koopman, P. and Plasmeijer, R. (1999) Efficient combinator parsers. In
Implementation of Functional Languages, LNCS, 1595:122 138. Springer-Verlag.

22. Koskimies, K. (1990) Lazy recursive descent parsing for modular language
implementation. Software Practice and Experience, Volume 20 Issue 8, Pages: 749-
772.

23. Kuno, S. (1965) The predictive analyzer and a path elimination technique.
Communications o f the ACM. Volume 8, Issue 7. Pages: 453 — 462.

24. Leermakers, R. (1993) The Functional Treatment of Parsing. Kluwer Academic
Publishers, ISBN 0-7923-9376-7.

25. Leermakers, R., Augusteijn, L. and Aretz, F.E.J.K. (1992) A functional LR parser.
Theoretical Computer Science. Volume 104 , Issue 2 , Pages: 313-323.

26. Leijen, D, and Meijer, E. (2001) Parsec: Direct style monadic parser combinators for
the real world. Technical Report UU-CS-2001-35, Utrecht University

27. Lickman, P. (1995) Parsing With Fixed Points. Master’s Thesis, University of
Cambridge.

28. Moggi, E. Computational lambda-calculus and monads. In Symposium on Logic in
Computer Science, Asilomar, California; IEEE, June 1989. (A longer version is
available as a technical report from the University of Edinburgh.)

29. Moggi, E. An abstract view of programming languges. Course notes, University of
Edinburgh.

30. Nederhof, M. J. and Koster, C. H. A. (1993) Top-Down Parsing for Left-recursive
Grammars. Research Institute for Declarative Systems, Department of Informatics,
Faculty of Mathematics and Informatics, Katholieke Universiteit, Nijmege, Technical
Report 93-10.

31.Newbem, J. (2003) All About Monads. A comprehensive guide to the theory and
practice of monadic programming in Haskell, Version 1.1.0.

32. Norvig, P. (1991) Techniques for automatic memoisation with applications to
context-free parsing. Journal - Computational Linguistics Volume 17, Issue 1, Pages:
91-98.

33. Oosterhof, N., Holzenspies, P., and Kuper, J. (2005) Application patterns. A
presentation at Trends in Functional Programming.

34. Shiel, B. A. (1976) Observations on context-free parsing. Center for Research in
Computing Technology, Aiken Computational Laboratory, Harvard University.
Technical Report TR 12-76.

35. Tomita, M. (1985) Efficient Parsing for Natural Language. Kluwer, Boston, MA.
36. Wadler, P. (1985) How to replace failure by a list of successes, in P. Jouannaud (ed.)

Functional Programming Languages and Computer Architectures Lecture Notes in
Computer Science 201, Springer-Verlag, Heidelberg, 113, Pages: 113 -128 .

37. Wadler, P. (1990) Comprehending monads. ACMSIGPLAN/SIGACT/SIGART
Symposium on Lisp and Functional Programming, Nice, France, June 1990, Pages:
61-78.

38. Wadler, P. (1993) Monads for functional programming. In M. Broy, (ed), Program
Design Calculi, volume 118 ofNATOASI Series F: Computer and System Sciences,
Springer-Verlag, Pages 233-264.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA AUCTORIS

Rahmatullah Hafiz was bom in 1979 in Dhaka, Bangladesh. He graduated from
Government Laboratory High School and Dhaka City College, Dhaka, Bangladesh in
1995 and 1997 respectively. He studied Applied Physics and Electronics at the University
of Dhaka for two years before coming to the University of Windsor where he obtained
B.Sc. (Honours) in Computer Science in 2004. He is currently a candidate for the
Master’s degree in Computer Science at the University of Windsor.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Efficient combinator parsing for natural-language.
	Recommended Citation

	tmp.1507664919.pdf.KRTuy

