
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

1-1-2006

Efficient test sequence generation for Web applications with Efficient test sequence generation for Web applications with

frames. frames.

Xiao Wang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Wang, Xiao, "Efficient test sequence generation for Web applications with frames." (2006). Electronic
Theses and Dissertations. 7145.
https://scholar.uwindsor.ca/etd/7145

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7145?utm_source=scholar.uwindsor.ca%2Fetd%2F7145&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

E fficient test sequence generation for w eb applications
w ith fram es

by

Xiao Wang

A Thesis
Submitted to the Faculty of Graduate Studies and Research

through the School o f Computer Science
in Partial Fulfillment o f the Requirements for

the Degree of Master of at the
University o f Windsor

Windsor, Ontario, Canada

2006

© 2006 Xiao Wang

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington S treet
O ttawa ON K1A0N4
C a n a d a

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
O ttawa ON K1A0N4
C a n a d a

Your file Votre reference
ISBN: 978-0-494-42336-3
Our file Notre reference
ISBN: 978-0-494-42336-3

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nntemet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Finite state machine based conformance testing techniques have been widely used in

various hardware and software systems. Such techniques can be applied to web

applications to check if the implementation demonstrates the desired navigational

behavior. We explain here how to specify the desired navigational behavior of a web

application in terms of extended finite state machine, and under which situations can such

a specification be directly given as a finite state machine. Our emphasis is on the

specification o f web frames which allows the web browser to display more than one

frame pages o f the same application at the same time. Based on this formalization, we

present a solution to generate test sequences from a given finite state machine using the

well-known transition coverage criterion, taking into account the reduction of testing

equivalent transitions, i.e. transitions describing the navigations triggered by the same

input event from the same frame page. Empirical study has been conducted to

demonstrate the efficiency of the proposed method in terms o f the lengths o f the

generated test sequences compared to the one without considering the reduction on

testing equivalent transitions.

Keyword: Hyperlink, Web Navigation, Web Frame, Conformance Testing,

T-method, Finite State Machine, Graph Theory

hi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

First o f all, I would like to thank my supervisor, Dr. Jessica Chen, for her invaluable

guidance and advices, for her enthusiastic encouragement and her great patience to me.

Without her help, the work presented here would not have been possible.

Next, I would like to thank my committee members, Dr Hu, Dr. Ezeife, and Dr. Lu, for

spending their precious time to read this thesis and putting on their comments,

suggestions on the thesis work.

My special thanks go to Miss. Lihua Duan for their ardent help.

Finally, I would like to give many thanks to family, my wife Guan Jing, my mother

Guangqi Liu, my father Yongju Wang, my younger brother Yan Wang and younger sister

Miao Wang for their patience, understanding and endless supporting.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT..iii

ACKNOWLEDGEMENTS..iv

TABLE OF CONTENTS... v

LIST OF TABLES...vii

LIST OF FIGURES..viii

I. INTRODUCTION AND PROBLEM DESCRIPTION..1

II. BACKGROUND... 12

2.1 WEB APPLICATIONS... 12

2.1.1 URL.. 12

2.1.2 SERVER PAGE, STATIC PAGE AND CLIENT PAGE...13

2.1.3 SESSION AND COOKIE..14

2.1.4 HYPERLINK AND DYNAMIC HYPERLIN..14

2.1.5 WEB FRAME...15

2.1.6 THE PROPERTIES OF A CLIENT PAGE... 16

2.1.7 ARCHITECUTRE OF WEB APPLICATIONS..17

2.2 MODELING FORMALISMS..18

2.2.1 FINITE STATE MACHINE (FSM)... 18

2.2.2 EXTENDED FINITE STATE MACHINE (EFSM).. 19

2.3 CONFORMANCE TESTING... 21

III. RELATED W ORKS... 23

IV. MODELING WEB APPLICATIONS WITH EFSM .. 28

4.1 A SPECIAL CASE.. 33

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 ADDING FRAMES.. 36

V. OUR TESTING METHOD..41

VI. IMPLEMENTATION... 42

6.1 THE IMPLEMENTION OF THE CPP ALGORITHM.. 42

6.2 IMPLEMENTATION OF THE ALGORTHM OF R PP..45

6.2.1 HEURISTIC ALGORITHM FOR RPP.. 46

6.2.2 AHO’S ALGORITHM FOR RPP..49

6 . 3 THE IMPLEMENTATION OF A GPP ALGORITHM... 51

VII. EXPERIMENTS AND EVALUATION..53

7.1 LENGTH OF TEST SEQUENCE...53

7.1.1 NUMBER OF VERTICES...54

7.1.2 NUMBER OF EDGES... 55

7.1.3 NUMBER OF SUBSETS... 57

7.2 TIME TO GENERATE TEST SEQUENCE...58

VIII. CONCUSION AND FUTURE W ORK...59

8.1 CONCLUSION.. 59

8.2 FUTURE WORK...59

REFERENCE..61

APPENDIX A ...64

VITA AUCTORIS... 123

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

TABLE4.1.1 THE DETAILED INFORMATION OF T .. 32

T a b l e 7 . 1 ...55

T a b l e 7 . 2 ...5 6

T a b l e 7 . 3 ...5 7

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

F ig u r e 1.1 s o m e w e b p a g e s o f t h e w e b s it e 1 .. 8

F ig u r e 1.2 p a r t o f t h e c o r r e s p o n d in g FSM ..9

F ig u r e 2 .1 S a m p le c o d e f o r w e b f r a m e ...16

F ig u r e 2 .2 a n e x a m p l e o f a c l i e n t p a g e ... 17

F ig u r e 2 .3 t h e s t r u c t u r e o f w e a p p l i c a t i o n .. 18

FIGURE2. 4 A SAMPLE OF FSM ... 19

FIGURE4.1 AN EXAMPLE OF E F S M OF THE WEB APPLICATION... 31

F ig u r e 4 .2 a n e x a m p l e o f t i m e t a b l e s e a r c h ... 3 5

Figure4.3 t h e EFSM o f t h e w e b a p p l i c a t i o n .. 35

F i g u r e 4 .4 a n e x a m p l e o f m o d e l i n g t h e w e b s i t e o f c o u r s e 2 8 0 ..3 9

FIGURE6.1 AN EXAMPLE OF THE CPP..45

F i g u r e 6 .2 a h e u r i s t i c a l g o r i t h m t o s o l v e t h e RPP ...4 9

F ig u r e 6 .3 E x a m p l e o f A h o ’s a l g o r i t h m .. 51

F ig u r e 6 .4 a n e x a m p l e t o i l l u s t r a t e t h e GPP a l g o r i t h m ... 5 2

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

INTRODUCTION AND PROBLEM DESCRIPTION

In recent years, information on the Internet has grown extraordinarily fast around the

world. Web systems have become the primary device for information sharing and

retrieval. Web technologies have been applied to all major areas. The contents o f web

applications is increasing rapidly, which means there are much more pages and

hyperlinks in a web application than before. The quality and reliability o f the web

applications become more and more important. It is necessary to find a suitable way to

check the correctness o f web applications.

A web system can be as simple as a web site that consists o f a set o f static pages like a

personal homepage. It can also be a complicated commercial web application like an

online-store system that can handle various kinds o f transaction requests from different

clients (computers) everywhere in the world. In such a web application, web pages must

be generated dynamically. The diversity and the intensive use o f the web systems are

supported by the advance o f the emerging technologies, such as cookies/sessions,

dynamic web pages, and web frames.

A cookie is a piece o f small text that record identification and some related information

o f a certain client and is stored in the web browser. Once the cookie is created on the

client’s side, for every further request made by the same user, the cookie will be sent

along with the request message until its expiration. Based on cookie technique, a web

application can overcome the shortcoming o f HTTP protocol to recognize a certain client

by establishing a session between the web browser and the web server and thus make the

web application stateful.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

Dynamic web pages are generated dynamically by web servers based on the requested

messages. A dynamic web page is the combination of a predefined page template and

dynamic contents that are obtained after a web server receives a specific web page

request. The server customizes the page content based on the client attributes and thus

dynamic web pages facilitate users to interact with web servers. A web page can be

generated from two different kinds of template pages: static page and server page, both

located in the web server. A server page can produce a dynamic web page while static

web page cannot because both its template and its contents are predefined. If a hyperlink

could be dynamically displayed on the web pages generated by the same server page, we

call such a hyperlink dynamic hyperlink. Here we are only interested in the texts and

hyperlinks o f the client pages. For a client page p generated by a static or server page, we

use O(p) to denote that the observable characteristics in p that we are interested in.

O(p) is represented as a pair < T ,H > o f a set T o f text symbols and a set H of

hyperlink symbols in p .

Web frame is the technology that divides a web page into two or more different frames. A

web frame is a rectangular area in a static HTML page where navigation can take place

independently. Moreover, the different web frames into which a page is decomposed can

interact with each other, in the sense that a hyperlink in a page loaded into a frame can

force the loading o f another page into a different frame. Web frame subdivision can be

recursive. Each web frame has a default page. We call a page that contains web frames a

frame page. A frame page is a list o f static or server pages and its characteristic is based

on all pages. For example, a client page p o f a frame page is a list o f pairs <Ti,H i >

where i e [1, A] and k is the number o f pages in the frame page.

We can model the specification a web application in terms o f Extend Finite State

Machine (EFSM) [10]. An EFSM is a basic mechanism in modeling reactive systems. It

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

is a six-tuple: EFSM = (S ,s0, I , O , T , V) , where s0 is the initial state and S , I , O, V

and T are finite set o f states, input symbols, output symbols, (state) variables, transitions

respectively. Each transition t in the set T is a six-tuple: t = (st , et , it , ot , Pt ,A t)

where st , et , i, and ot are the start (current) state, end (next) state, input symbols, and

—̂

output symbols, respectively. Pt(v) is a predicate on the current variable values and

At(v) gives an action on variable values. When there is no state variable in the EFSM

and no transition o f the EFSM includes a predicate or post action, the EFSM is simplified

as a Finite State Machine (FSM) [8].

Now, we show how to model web applications in EFSM. We assume that the

forward/backward buttons of the browsers are disabled and the user cannot type in a URL

in the address bar o f the browsers but can reset to homepage from any page using the

“home” button o f the browsers. When a web application under test (WAUT) has web

frames, we can use a state, transition, input symbol, output symbol and state variables to

represent a list of server or static pages, a page navigation from one page to another page,

the user’s action on clicking the hyperlink symbol with some inputs that satisfy certain

conditions, a list o f pairs <Tj, H j > where i e [1,&] and k is the number o f the pages in

the page list o f the corresponding state, and variables in a web application respectively.

Note that a state may represent either a frame page, where its list o f pages contains all

pages that are loaded into it, or a static or server page where its list o f pages only contains

this page itself. If there is no cookie/session in the WAUT, we can reduce the EFSM

model to an FSM model.

The EFSM model o f WAUT can be used for conformance testing with certain test

purposes. Conformance testing is to check if a given implementation that can be viewed

as a “black box” conforms to a given specification. In our context, the test purpose is to

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

check if all navigations conform to the specification of WAUT. Here we only discuss the

testing about the web application without cookies/sessions that can be modeled as an

FSM. For convenience, we call WAUT as implementation FSM and the FSM derived

from the specification o f WAUT as specification FSM.

A test sequence is generated from the specification FSM. In general, we apply test

sequence that satisfies a certain test criterion to the implementation to check its

correctness by comparing the actual output sequence with the expected one. Based on the

test purpose, a test criterion can be used to generate a test sequence to check for examples,

the correctness o f the output, the start or the end states o f each transition of the

implementation FSM triggered by a specific input. In the following, we adopt the well-

known transition coverage criterion, i.e., to test each transition at least once. Very often,

we apply results in graph theory to the specification FSM to generate a test sequence

because an FSM can be viewed as a directed graph G = (V,E) where V is a finite set of

vertices and E is a finite set o f edges. Each vertex stands for a state o f the FSM and an

edge represents a transition. Given a directed graph representing a specification FSM, we

can use an algorithm to resolve the Chinese Postman Problem (CPP) [7] to generate a test

sequence. The CPP is to find a least-cost walk to travel all edges in a directed graph.

Although a test sequence generated by the CPP satisfying the transition coverage

criterion can accomplish our test purpose, such a test sequence could cause redundant-

testing phenomenon when WAUT has web frame pages. A static or server page may be

contained in two or more web frame pages and represented by different states. Thus,

navigation from this page may be represented by two or more different transitions in the

corresponding FSM. For such transitions representing a same navigation, we assume that

the correct implementation of one o f them implies that o f all o f others. However, the test

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

sequence based on the CPP requires that we check all o f such transitions and therefore

introduces redundancy into the constructed test sequence.

Here we use the website o f Albany public library as an example to show redundancy-

testing phenomenon. This website is used to provide some on-line library services. In the

website, each frame page contains two frames: the right frame and the left one. Figure 1.1

shows some frame pages of this web site and Figure 1.2 gives an FSM for it. Figure 1.1(a)

is the home page o f the website and we call it Frame page 1. The left frame o f Frame

page 1 shows a static page Px that provides some hyperlinks o f main functions. Its right

frame shows a static page P2 which gives a simple introduction about the website. Z, and

L2 in Frame page 1 are the hyperlinks to the frame pages for basic services and young

people respectively. Figure 1.1(b) is Frame page 2 for basic services. The left frame of

Frame page 2 shows a static page P3 that provides some hyperlinks to frame pages for

related functions where Z3 in particular is the hyperlink to load static page P7 for

catalogue searching in the right frame. The right frame of Frame page 2 shows a static

page P4 which gives an introduction together with some hyperlinks about basic services.

Figure 1.1(c) is Frame page 3 that also has two frames. The right one displays the static

page P5 that shows some hyperlinks to frame pages for related functions and Z4 is the

hyperlink to load the web page P7 for catalogue searching in the right. The left frame of

Frame page 3 shows a static page P6 that gives some interesting contents and hyperlinks

for young people. After clicking the hyperlink Z3, Frame page 4 is shown in Figure 1.1

(d). The left frame of Frame page 4 shows static page P3 and the right frame o f Frame

page 4 displays static page P7 which provides some different ways to make catalogue

searching by author’s name and the name o f the article, etc. Frame page 5 is generated as

shown in Figure 1.1(e) after clicking the hyperlink of Z4. The right frame shows the

static page P5 and the left frame displays the static page P7. The hyperlink Z5 in P7 of

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

Frame page 4 and 5 is to load a server page in the right frame to provide searching

function by typing key words and turns Frame page 4, 5 into Frame page 6 and 7

respectively.

A * O M i t * s»a»eh #u> c
vmrm bun'wu* kuttwm&U

bOGtii.

ALBANY P U N IC U B ftA R Y A N D W l'O ftM A T T O tl S K W IC 8

Oyr lit jry h a fr-vndy, pfegce. prtsvlrinq m utlabk ae^es-s to » wmattii of infl'rWio* oral
h>eh tnrienM t t» I im s f pnp t m ear eotmmty,"

P

(a)

(b)

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

rovm m>? if

<♦«*»« fm C$&dm»

CATMPm^ $$mcH

PSTTSSSTI- «m̂ bH <r<* «r»g few- “4m, A«fca%
W 1 b q ; .
iftrtfrlW f*«**rl» %■* «r*A<lfr»**̂ r<n*» rlw*
!B&LJUk&Js* - iwsr* in* m * mr> * Ts* «r a*«*
TTaiii Ti ll m . tfc. fc I t f i , — «.

&*>«*«? ttetaft - vis** *c* tr** f,
fe»*c*«a ftai ini
aaaoJMMK *««» tm*v*4 »/ tlmt
fc*» 'mkt*.

(d)

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

CATALOGUE SEARCH

(e)

Figure 1.1 some web pages o f the website 1

Frame page 1, 2, 3, 4, 5, 6 and 7 are represented by states 5 0, s3, s2, s3, 5 4, s5, and s6

respectively. The transitions tx, t2, t3, r4, t5, and t6 represent six different navigations

in the web site triggered by clicking on hyperlinks Z,, L2, L3, L4, L5 and Z5 in states so,

so, Si, S2 , S3 , S4 respectively.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

Figure 1.2 part o f the corresponding FSM

With the corresponding FSM, if we use the algorithm of CPP to generate a test sequence

to test each transition at least once, transitions t5 and t6 should both be tested. But

actually it is sufficient to test only one of them because they represent the navigations

caused by the same hyperlink in the same client page.

The above example is illustrative. There may exist many server pages or static pages in

many different frame pages and a test sequence based on the algorithm o f CPP may cause

serious redundancy in testing.

Note that the redundant-testing phenomenon is caused by web frames. From the

viewpoint o f specification-based testing, we need to obtain a “good” model that can

represent the characteristic of web frames effectively. Second, we need a “good” testing

criterion to generate a testing sequence that can avoid the redundant-testing phenomenon.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

There are two main steps in our work. The first step is to model a web application in

terms o f FSM; The second step is to generate a test sequence with reduced length based

on the FSM model.

In the first step, under certain assumptions, we give general discussions on the EFSM

formalization of generic web applications with most o f the characteristics such as sever

or static pages, hyperlinks, cookies/sessions, client pages etc. Then we focus on modeling

web applications with web frames that has no cookie/session and dynamic hyperlinks in

terms of FSM.

In the second step, we show how to search for optimal solution to generate an efficient

test sequence from a given FSM, avoiding the redundant-testing. We show how to use

GPP [4] solution to reach this. The GPP is to find a closed walk in a directed graph G

with minimum weight which traverses at least one edge of each subset o f the edges from

a given set o f subsets o f edges. We put all transitions in the specification FSM that

represent a same navigation in the web application into a same subset o f transitions and

then make use of the algorithm o f GPP to generate an efficient test sequence that can

avoid the redundant-testing phenomenon.

To evaluate the proposed method, we compare our testing method with the one based on

the algorithm o f CPP. To carry out this comparison, a java program has been developed to

provide experimental result.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

The rest o f this thesis is organized as follows: Section 2 gives a brief introduction to web

applications including web servers, dynamic hyperlinks. Section 3 introduces some

related works on modeling web applications and testing methods. Section 4 presents our

EFSM and FSM models for web applications. Section 5 presents our test method. Section

6 introduces main algorithms for CPP, RPP and GPP. Section 7 analyzes and evaluates

the result o f experiments based on two test methods. Section 8 gives the conclusion and

future work.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER II

BACKGROUND

In this section, we introduce some related concepts on web applications, such as the

architecture of web applications, URLs, web frames, web servers and dynamic hyperlinks.

This is followed by a brief introduction to EFSM and conformance testing.

2.1 WEB APPLICATIONS

2.1.1 URL

URL stands for Universal Resource Locator. It is used to locate any resources in the

Internet. URL typically consists of a URL scheme, an authority, and a path. An URL

scheme indicates a category of resources, such as http, https, and ftp. The authority

typically consists o f the name or IP address o f a server and the port number. A path is to

show the relative path o f the resource inside the host server in the Internet. The format of

an HTTP URL is often parameterized as: http://<host>: <port>/<path>? <request

parameters>. Here “http://” indicates the resource type is http, and the communication

protocol used to send this request is HTTP. <host> is the web server’s IP address. It

identifies a unique web server in the Internet address. <port> is the port number that the

web server uses for HTTP communication. <path> specifies the relative storage position

o f the request resource. <request parameters> consists o f request parameters a client

passes to the web server. They may come from the input o f the client and/or the

cookies/sessions. These parameters could be used to compute and generate a client page.

For example,

http://www.baidu.com/search?ie=gb2312

shows the basic elements o f a URL. “http://” indicates the resource type is HTTP.

“www.baidu.com” is the domain name and its corresponding IP address can be resolved

by querying a DNS (Domain Name Service) server. The port number is implicit and it is

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://%3chost
http://%e2%80%9d
http://www.baidu.com/search?ie=gb2312
http://%e2%80%9d

13

80 by default, “search” is a relative directory and “ie=gb2312” is the assignment o f a

request parameter.

2.1.2 SERVER PAGE, STATIC PAGE AND CLIENT PAGE

When a web server receives a request message that contains a URL and cookie

information(if provided) from a browser, which can be triggered by clicking on a

hyperlink or typing a URL in the address bar o f browser, it sends back a corresponding

HTML web page according to the request. We call such corresponding HTML web page

a client page. A client page is an HTML document with embedded scripts and is rendered

by the web browser on the client side. A client page can be generated from two different

template pages: static page and server page. Static pages are predefined page templates

that are stored in a local directory o f the web server. The web server can access these

static pages with their file name and file path. For a static page request, the web server

reads that HTML file, packs the file into the response message and sends the message

back to the requested web browser as a client page. A server page can be a Common

Gateway Interface (CGI) script, an Active Server Page (ASP), a Java Server Page (JSP),

or a servlet. If a server page is requested, the web server dynamically creates a client page

according to the information of the request message. After a client page has been

generated, it is packed in a response message like a client page in the form of a static

page and sent back to the requesting web browser.

Here we use the term “page” to stand for both o f static and server page. Each web page

has a page ID, to be uniquely identified in the web application. In practice, a web page is

identified by its URL including web server address, and relative directory. For simplicity,

we use numeric page ID instead o f the URL of the page.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

2.1.3 SESSION AND COOKIE

Since HTTP is a stateless protocol, an HTTP server cannot recognize two different

requests from the same client. After a response has been sent to a requested browser that

issued the request, the connection is closed. The web server does not keep any

information about the client. There are many cases that some sort o f relationship is

required between two requests made by the same client. In order to resolve the problem,

the concepts o f session and cookie are introduced into web technology.

A session is the time duration used to uninterruptedly browse client pages spent by a

certain user at a web site (application) from starting to browse the first client page to

closing the web browser. In some web applications, a session is setup after the login o f a

client and closed when the client logouts. The concept o f session puts a strong emphasis

on tracking the user’s history.

A cookie is a piece of small text that record identification and some related information

o f a certain client and is stored in the web browser. Once a cookie is created on the

client’s side, for every further request made by the same user, it is sent along with the

request message until the expiration o f the cookie. Based on cookie technique, a web

application can overcome the shortcoming o f HTTP protocol by recognizing a certain

client and establishing the session between a web browser and a web server.

2.1.4 HYPERLINK AND DYNAMIC HYPERLINK

All pages o f a web application are interconnected by hyperlinks. These hyper- links form

the navigation o f behavior of the web application. A hyperlink identifies a unique page

that will be requested by a web browser. The format of a hyperlink includes web server

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

address, relative directory that stores the page, and the file name. Here we give each

hyperlink in a certain static or server page a unique linkID which is used to identify the

link within the same page.

According to the different information of cookies/sessions, database or request

parameters, a hyperlink could be dynamically shown on a client page which is generated

from the same server page. Such a hyperlink is called a dynamic hyperlink. For example,

in the online student information system of University o f Windsor (SIS), after a current

student logged into the SIS, the student can see a hyperlink to view his/her transcript but

it is impossible for a prospective student to see such a hyperlink after login.

2.1.5 WEB FRAME

A web frame (simply called frame below) is a rectangular area in a static HTML page

where navigation can take place independently. Moreover, the different frames a page is

decomposed into can interact with each other, since a link in a page loaded into a frame

can force the loading o f another page into a different frame. Frame subdivision can be

recursive. Each frame has a default page within the page that contains this frame initially

loaded by the user.

<t it le>horaepage</li t le>
Cframeset cols=50%, 50%>

<frame src = "A. html* NAME^HD

<frame src = "B. html NAME="HELLO")

</fraieset>

(a)

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

<title>A</title>

<a h r e f ^ C . html*' target="HELLO">Linkl

(b)

Figure2.1 Sample code for web frame

The two pieces o f code above show an example of a web frame. The code in (a)

illustrates that a page entitled “homepage” has two frames. One is “Hi”; the other is

“HELLO”. A frameset is defined in a page with the frame tag “frameset” and “/frameset”.

When the homepage is initially loaded by the browser, two pages in A.html and B.html

are individually loaded into frames Hi and HELLO, respectively. The code in (b)

illustrates that when A.html is loaded into the frame of the homepage, the user’s click on

the hyperlink named Linkl can force the frame HELLO to load C.html. This activity will

not change the URL of the page.

2.1.6 THE PROPERTIES OF A CLIENT PAGE

On abstract level, a client page can be viewed as a list of pairs < Tt, H t > and i e [1, k] o f a

set Tt o f text symbols and a set H t o f hyperlink symbols where k is the number o f the

server or static pages that generate the client page. If the client page is generated by a

single server or a static page, k = 1 ; otherwise, the client page is generated by a frame

page and k > 1. A text symbol represents the information of some text. A hyperlink

symbol represents the existence o f a hyperlink: it means the user’s clicking on the

hyperlink symbol on a client page can trigger a request message to the server

Note that although the formats o f a hyperlink symbol and of a hyperlink are the same, a

hyperlink symbol is however different from a hyperlink used to retrieve a client page. A

hyperlink to retrieve a client page contains host address, request parameter which may

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

come from cookie or input variables. A hyperlink symbol is a hypertext displayed in a

web page. It does not contain the input from the client to this page. It may contain

however cookie information on this page.

Figure 2.2 shows an example of a client page that is generated by a single server page. It

is the homepage of the student web mail system of University o f Windsor. In this client

page, the black lines point out all the text and hyperlink symbols: the pair < T ,H >. The

hyperlink symbol “Sign in” cannot contain any input of the clients because the input of

current page has not yet been given.

FAQ
n*m*m
F»«g*r Yew P m w in l?
CfciWH Year P;mw««d
HWteAeceaM

U to«)r

Untftawf lirtiHiM iiifcjia

Hyperlink syb#ol

Figure2.2 an example o f a client page

2.1.7 ARCHITECTURE OF WEB APPLICATIONS

Figure 2.3 illustrates a generic architecture o f web applications. A web application is an

interactive system which contains web browser, the web application server and the

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

database. It is a typical 3-tier model. While realizing more complicated functions, the

modem web applications have expanded from a 3-tier model to an N-tier one.

Web
Browser

HTTP
Request.

 ►
<------

HTTP
Request

Server

HTTP
database

Figure2.3 the structure o f we application

A web browser is a standard window application and the users use it to visit the web

application by clicking hyperlinks or typing in URLs. After sending out a request

message for a client page, the browsers will receive a response message from the web

application server, the message contains the requested client page.

2.2 MODELING FORMALISMS

2.2.1 FINITE STATE MACHINE (FSM)

A finite state machine [8] can be represented as a 5-tuple M = (I , 0 , S , 8 , k) , where I , O

and S are finite and nonempty sets o f input symbols, output symbols and states

respectively.

8 : S x I -> S is the state transition function and

k : S x I -> O is the output function.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

When the machine is in current state s and receives an input a from I , it moves into the

next state specified byS(s, a) and produces an output given by X(s, a).

Figure 2.4 shows an example of an FSM where I = {a,b}, O - {0,1}, S = {s0,sx,s2} ,

S(s0,a) = sl ,S (s l ,b) = s2, X(s0,a) = l and X(st, b) = 0 . The initial state o f the FSM is s0 .

b/0a/1

Figure2.4 a sample o f FSM

2.2.2 EXTENDED FINITE STATE MACHINE (EFSM)

Finite state machines are widely used as modeling formalism for many applications such

as sequential circuits and control portions o f communication protocols. However, in

practice the systems which we are interested in usually include variables and operations

based on variable values; ordinary finite state machines are not powerful enough to

model them in a succinct way. Extended finite state machines, which are finite state

machines extended with variables, have emerged from the design and analysis o f this

kind o f systems.

In the following we denote a finite set o f variables by a vector: v = (v , , ..., v t). A

—► —¥

predicate P on variable values P (v) returns True or False; a set o f variable values v is

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

valid if P (v) = True. An action is an assignment: v := A (v) where A is a function of

->

V .

An extended finite state machine (EFSM) is a six-tuple:

EFSM = (S, s0, 1 ,0 , T, V)

where s0 is the initial state and S , I , O , V and T are finite sets o f states, input

symbols, output symbols, variables, and transitions respectively. Each transition t in the

set T is a six-tuple

t = {s„ e„ it , ot , Pt , A,)

where st, et , it and ot are the start (current) state, end (next) state, input, and output,

—¥ *4
respectively. Pt (v) is a predicate on the current variable value and At (v) gives an action

on variable values.

Initially, the machine is in its initial state s0 s S with initial variable values: v .

—>
Suppose that the current state is s and the current variable values are v . Upon input / , the

machine follows a transition t = (s, e, i, o, P , A,) if v is valid for P : P (v) = True.

In this case, the machine outputs o , changes the current variable values by

action v := A (v) , and moves to state e .

For each state s e S , let all the transitions with start state 5 and input j e l be:

tj = (s , ej, j , Oj, Pj ,A j) , 1 < j < r and r e N . In a deterministic extended finite state

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

machine (EFSM), the sets o f valid variable values of these r predicates are mutually

disjoint, i.e., VPt n Vp = 0 , 1 < k , , j < r , k ± j . Otherwise, the machine is

nondeterministic. In a deterministic EFSM there is at most one possible transition to

follow from a given state with given input. In the present work, we consider only

deterministic EFSM.

2.3 CONFORMANCE TESTING

Given a specification and an implementation which can be regarded as a “black box”, we

need to check if the implementation conforms to the specification. This is called the

conformance testing. The specification of a web application can be modeled as an FSM.

To conduct a conformance testing, a test sequence can be generated based on the FSM.

The test sequence can be applied on the web application to check whether the output is

consistent with the specification o f the web application.

In an FSM, two states st and Sj are equivalent if and only if for any input sequence the

finite state machine will produce the same output sequence. For two states in different

machines with the same input and output sets, equivalence is defined similarly. Two

machines M and M ' are equivalent if and only if for every state in M there is a

corresponding equivalent state in M ' and vice versa. Given an FSM, there may exist two

or more states equivalent. A machine is minimal if and only if no two states are

equivalent. All FSMs we refer to here are minimal. During the procedure o f test, the

WAUT itself can be considered as an FSM. Our conformance testing is to check whether

the two FSMs (the specification and implementation FSMs) are equivalent.

Generally speaking, each FSM can be considered as a directed graph. A state in FSM can

be represented as a vertex and a transition can be represented as an edge. If a directed

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

graph has a path from each node to every other node, it is strongly connected. We say an .

FSM is strongly connected if its corresponding directed graph is strongly connected. For

conformance testing, we assume that a) the specification FSM A is strongly connected

and minimal; b) the implementation FSM B has the same input and output alphabets as

A . If machine A is not strongly connected, there may exist some states that cannot be

reached during the test, thus we will not be able to tell with certainty if machine B is

correct.

Given a specification FSM, an essential task to conduct conformance testing is to

generate an effective test from this FSM. The effectiveness o f a test sequence is judged

by the criterion used to generate the test sequence. Here we adopt the well-used transition

coverage criterion which requires that the test sequence o f the FSM covers each transition

at least once. According to the literature [1], the problem of constructing a minimal-

length test sequence satisfying this criterion is resolved by solving CPP in the underlying

digraph o f the given FSM when it is strongly connected.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER III

RELATED WORKS

Our work is divided into three steps. The first step is to model the specification o f a

WAUT in terms of EFSM; The second step is to generate a test sequence with reduced

length based on the given model; The third step is to provide empirical study to evaluate

the performance o f our testing method. There are several approaches to modeling the

specifications of web applications for the purpose o f testing providing the corresponding

testing methods. We show the related modeling work and their corresponding testing

methods and present their key ideas here.

In [17], it has been presented a testing method and testing tools based on the analysis of

the structure o f a web application. In the first part, the authors consider that the central

entity in a web application is the web page. Based on this concept, they defined most o f

the related properties and associations o f the entities by UML, and an UML-based model

is built which can be exploited for analysis and testing. Two tools, Re Web and Retest,

have been developed to support the analysis and testing o f the web applications. Re Web

downloads and analyzes the pages o f a web application with the purpose o f building a

UML model of it. TestWeb generates and executes a set o f test cases for a web

application whose model was computed by Re Web. A test case generation engine inside

TestWeb is used to generate test cases, and the generation is based on a reduced graph by

removing static web pages without forms in a navigation paths.

In [11], the authors presented a methodology to support web application testing based on

the Web Test Model, called WTM, which can capture both structural and behavioral test

objects o f the web applications created by forward and reverse engineering tools. The

testing work is divided into three parts according to: object perspective, behavior

perspective and structure perspective. Each part is tested separately. From the object

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

perspective, entities o f a web application are described using ORD (Object Relation

Diagram) in terms o f objects and dependent relationships. From the behavior perspective,

the authors used PND (page navigation diagram) to depict the navigation behavior o f a

web application and PND can be derived from ORD. At the same time, a set o f OSDs

(Object State Diagram) is used to represent the state-dependent behavior o f interacting

objects. From the structure perspective, the authors use the BBD (Block Branch Diagram)

and FCD (Function Cluster Diagram) to capture the control and data flow information of

the scripts and functions in a web application. In the behavior testing, a navigation tree

from the home page is constructed to generate test cases.

In [15], the authors proposed an approach to integrating existing testing techniques with a

state-based testing which is to discover inconsistencies introduced by interactions with

web browser buttons. The authors call the approach as base-line testing strategy. The

authors considered the influence of the web browser on the navigations among web pages.

A user can force the browser to display and reload the previously visited page or refresh

the current web page by clicking on the related buttons, such as back, forward and fresh

buttons. In order to test a web application with the browsers, a state chart o f back and

forward and refresh buttons is constructed with four states, BDFD(Back Disable,

Forward Disable), BEFD(Back Enable, Forward Disable), BEFE(Back Enable, Forward

Enable), BDFE(Back Disable, Forward Enable). After flattening each baseline test case

with the state chart, the testing model is generated as a transition tree. The root o f the tree

is the home page o f the web application, and each path o f the tree is tested separately.

In [14], the authors exploited an object-oriented test model of a web application in terms

of UML class diagrams. The test model includes each component o f the web application

relevant for testing purposes together with the relationship among them. The paper

proposed a definition o f the unit level for testing web applications. Based the model, the

authors separately discussed both unit level testing and integration testing. For unit

testing, the authors used decision table to generate test cases for client and server page.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test case is selected in order to assure that the decision table variants are assumed both

true or false. For integration testing, test case can be derived by use case diagram. For

each use case o f a web application, web pages collaborating to its implementation are

taken into account and functional test cases are generated and executed for each of them.

In [13], the authors extended the data flow testing techniques to web applications and

used web application test model (WATM) to capture the test object o f web applications.

The key of this paper is to test the dataflow of HTML and XML document in web

applications so that the elements of an HTML or XML document are considered as

structured variables within an object of WATM. In the WATM, test cases of the data flow

are derived from three different perspectives: intra-object, inter-object and inter-client.

From the intra-object perspective, test paths are selected for the variables that have def­

use chains within an object. A test case can be obtained from the dataflow graph of

related functions in an object. From the inter-object perspective, test path should traverse

across objects. It means that a test case can be derived from the data interactions across

objects in WATM. From the inter-client perspective, an object often contains variables

that are shared by multiple clients so that test cases should be derived from the data graph

which depicts the data interactions among the clients.

In [1], the authors describe a technique for generating an optimal (minimal in time) test

sequence for an implementation of a protocol. A protocol can be specified as a

deterministic finite state machine, where the state o f the protocol is defined as a stable

condition in which the protocol rests until an input is applied and to undergo a transition

from the current state to a new state, where it stays until the next input. The purpose of

this paper is to present a method to test whether there is a discrepancy between the

specification and implementation o f an FSM. In this paper, the technique is based on an

optimization technique that has been developed to solve a class o f problem, such as the

CPP (Chinese Postman Problem) on directed graphs. The algorithm described in this

paper finds a minimum-cost input sequence for exercising a given set o f transitions of an

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FSM. Furthermore, a concept called a Unique Input/Output Sequence is used in place of

an more cumbersome distinguishing sequence, so that both the controllability and

observability problems of the protocol testing problem are resolved simultaneously.

In [3] and [19], although the authors don’t mention modeling work for web applications,

they offer algorithms that are accessible to implement and produce reduced testing

sequences based on most of models. Especially in [3], although many pseudo-code

descriptions o f the CPP exist, no executable algorithm for it is available. The aim o f this

paper is to motivate and exhibit a clear working algorithm rather than efficient algorithm

and the author make use o f negative canceling algorithm replacing matching algorithm to

improve the feasibility of the CPP algorithm significantly. The RPP (Rural Postman

Problem) is NP-complete problem and the author [3] presents a branch and bound

algorithm (an heuristic algorithm) for the exact solution o f the RPP based on bounds

computed from Lagrangean Relaxation and on the fathoming o f some o f the nodes by the

solution o f minimal cost problem.

We do our work following previous pattern: modeling web applications first and then

producing test sequences based on test methods. In most o f previous papers

[17][11][15][14], the authors consider web pages and components as central entities and

then define the relationship between them in models, here we follow this idea, but the

authors don’t use an formal method to model web applications, on the contrary, we use

FSM as [1], even EFSM, to model web applications in our work. Most o f testing methods

in previous work are simple to exhaust all possible paths in models but don’t mention that

web frame can cause redundant-testing phenomenon. For example, in [11], the authors

presented a method to transform the behavior model from PND to FSM with a

corresponding testing method that generates test case based on the derived navigation test

tree, but they did not discuss that web frames may introduce the redundant-testing

phenomenon. In [17], web frame is discussed but such discussion only aims at analyzing

the structure o f web applications instead o f improving the efficiency of testing with the

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

property in web frames. In our work, we put an emphasis on solving this problem by

generating a reduced test sequences based on a heuristic algorithm.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VI

MODELING WEB APPLICATIONS WITH EFSM

We assume that the forward/backward buttons o f the browsers are disabled and the user

cannot type in a URL in the address bar o f the browsers but can reset to homepage from

any page using the “home” button of the browsers.

For a web application without web frame, a state represents a server page or a static page.

In practice, the homepage of the web application is represented as an initial state. An

input symbol represents the user’s action on clicking the hyperlink symbol with some

inputs that satisfy certain condition. When there is no input, we simply use the hyperlink

symbol as input. An output symbol is a pair < T ,H > of a set T of text symbols and a set

H o f hyperlink symbols. Let O be a mapping from the set o f client pages to the set of

< T ,H > pairs.

The variables in an EFSM of a web application are put into three different categories:

cookie variable, database variable and hyperlink variable. A variable used to record login

status o f a user in a certain session is a cookie variable.

—̂

A transition < sx, s2 ,h, < T ,H > , P(v), A > represents a page navigation from the page

represented by s, to the page represented by s2 , trigged by the user’s action on

hyperlink h . The observation o f this navigation is the texts in T and hyperlinks in H

appeared in the page represented b y s2. This navigation is enabled when P(v) returns

true with the values o f v in s ,. A is the post action on the variables v . For example, we

use a Boolean cookie variable x to represent the login state o f a user in a certain session.

If x is true, it means that the user has logged in. Otherwise, the user has not. When a user

clicks the hyperlink symbol “logoff’ on a client page, a transition can be triggered. The

input o f this transition is the hyperlink symbol “logoff’. The predicate o f the transition is

x = true . The post action o f the transition is an assignment: x = false

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A dynamic hyperlink is a hyperlink whose presence in a page depends on the history of

reaching the page. A transition for clicking on a dynamic hyperlink symbol is not always

enabled. Here we use a Boolean hyperlink variable v to record such status o f a transition

and we add v = true to the predicate o f the transition. Thus, if a hyperlink variable is true,

the corresponding transition can be triggered.

Recall that we have both hyperlink and hyperlink symbols in a web application, and that

a hyperlink symbol may contain cookie information. In our setting, i) a hyperlink symbol

is only used for checking the output o f a transition, i.e., the existence o f a hypertext in the

pair o f the properties o f the target page o f the transition, ii) Cookies are represented

separately as state variables and thus to check the correctness o f a cookie in the target

page o f a navigation, we need to check the value o f the corresponding cookie variable.

We use an example o f a part o f SIS to explain how to model a web application with

EFSM. Figure 4.1(a) is a client page generated by the login page (static page). Each user

uses this client page to input her/his ID and password to login the system. After login, the

web application records some relative identity and navigation information and goes to a

client page generated by the function panel page (a server page). Figure 4.1(b) illustrates

the client page of the function panel page. Figure 4.1(c) illustrates the function o f viewing

transcript where various students can view the transcript information.

\
m T Y O F

D S O R |

Please enter your Student Number mid Access Code
Student Number p — —--j
Personal Access Code j j

I Enter |

Enter GUEST If you dont have a student Id.
No password required

(a) Login page o f SIS

29

• ----

Student Inform ation S \ s t e m '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

What's New
• View Student Evaluation of Teaching (SET) Results

Personal Information
• Change vour Access Coda

Registration Information
• Check vour registration time
• Register / Add or Drop Courses
• Search for a course to take
• Show details about a course
• View vour transcript
• Application to Graduate

• CourseiExam Timetables

• Update vour address

• View vour Schedule & Grades
• View vour exam details
• Check progress towards vour degree
• Exam Numbers d m orM
• Request printed transcript.
• Other Post Secondary School Transcripts
• Request an Enrollment Certificate for this term

(b) Function panel page o f SIS

Courea Dslails

Your schedule
and Grades

Your transcript

Decree Audit

Your Account

Main SISweb menu

End Session

View Transcript

2005 W iacer— - - —

H3C- C om puter S c ie n c e

COHPSCI SiO L i t e r a t u r e Review e n d S u rv e y IP t 3 .0 0)

COHPSCI 520 P r e s e n t a t i o n s e n d T o o ls IP { 3 .0 0)

COHPSCI 539 D& erging N o n - t r a d i t i o n a l D a ta b a se s y s te m S 3 .0 0

COHPSCI 569 S e m an tic Web X- 3 .0 0

(c) Viewing transcript page o f SIS

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

So; i»gin page (s ta t ic page)

S (: fu n c tio n panel page(set-v<» page)

S 2: transcript page (server page)

S 3 ‘- logoff p ageiserve r page)

(d) The corresponding EFSM of SIS

Figure4 1 an example o f EFSM of the web application

First o f all, note that the hyperlink to the transcript page is a dynamic hyperlink. To

model this part of the SIS, we need three Boolean variables. The first one is a cookie

variable Session to record user’s login status; the second one is a hyperlink variable

T transcript to represent the availability o f the transition corresponding to the

hyperlink to the transcript page; the third one is a cookie variable status to record the

user’s status: current or prospective student. If the variable status and T_transcript are

true, it means the user’s login is successful and the transition to the transcript page can be

enabled. If variable status is false, it means that the use o f the transition to the transcript

page is not available.

The corresponding EFSM of the SIS is machine M (Figure4.1). SM ={s0, s2, s3} ,

s0 is initial state, I = {a, b, c, d) , O = {o,, o2, o3} , T = {/,, t2, t3 t4, t5} ,

V = {Session, T_transcript, status} and the initial value o f Session, T_transcript and

status are false, false and null respectively. ,y0 is the login page (a static page), s1 is the

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

function panel page (a server page), s2 is the transcript page (a server page) and s3 is the

logoff page (server page), a is clicking on the hyperlink o f ‘view transcript’, b is

clicking on the hyperlink of ‘Main SISweb menu’, c is clicking on the hyperlink of

‘logoff, d is clicking on the hyperlink of ‘Enter’ with the input o f user’s ID, password

satisfying the condition such that the user is a current student. o1 is the pair o f a set o f the

hyperlink symbols in the client transcript page and the related transcript content (text

symbol). o2 is the pair o f a set o f the hyperlink symbols in the client function page and

some text symbols. o3 is the pair o f a set of the hyperlink symbols in the client logoff

page (here the set is empty) and the related text content symbols o f logoff. Table4.1.1

shows the detailed information of T .

Name Sstate Estate Input Output Predicate Action

h s2 a Session= true

Status = current

T_transcript=true

*2 s2 Sl b °2 Session = true

h s2 S3 c 03 Session = true Session = false

U Si S3 c <>3 Session = true Session = false

5̂ S0 Si d 02 Session = true;

Status = current;

T transcript = true.

Table4.1.1 the detailed information o f T

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1 A SPECIAL CASE

When a web application server does not have sessions/cookies, web frames or databases

that are used to record the history o f the path, nor dynamic hyperlinks, we can test each

server page or static page separately by providing a set o f URLs with parameters as input.

Instead o f writing a specific test driver, we can browse all server pages to find all those

containing a hyperlink to this server page under test, type in those hyperlinks and get to

the server page under test by providing all typical request parameters. As we do not

assume the availability o f the navigation diagram, we need to analyze the typical request

parameters in order to gain confidence in all possible behavior of this server page under

test.

Alternatively, we can assume that the abstract behavior o f the web application is

described as an EFSM. We also assume that hyperlinks are predefined and these

hyperlinks cannot be generated dynamically. According to this assumption, all hyperlinks

contained in static or server pages are defined at the design stage o f a web application.

We use a simple timetable search example to illustrate a web application that meets the

above conditions. Figure 4.2(a) is a homepage of an airline company. In this homepage, a

user can fill in the form to look up the related timetable. The information of departure city,

arrival city and departure date should be given by the user in the form. After clicking

‘submit’ hyperlink, a result is shown in another client page o f the result page. There are

two kinds o f results, one contains the related timetable and the back hyperlink as shown

in the client page (Figure 4.2(b)); the other contains sorry information and the back

hyperlink in the client page because no timetable satisfies the user’s requirement (Figure

4.2(c)). Figure 4.3 shows the corresponding EFSM M o f the web application. In the

EFSM, SM = {s05 , s0 is the initial state, I M ={a, b, c} , 0 M = {ox, o2, o3} and

T = {tv t2, t3}. Input a is clicking on the hyperlink o f ‘submit’ with the input variables

o f departure city, arrived city and departure date that can make the condition on the

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

existence of the timetable true, b is clicking on the hyperlink of ‘submit’ such that that

input request results in no information found, c is clicking on the hyperlink o f ‘back’. ox

is the pair o f the form of the related timetable (text symbols) and the hyperlink symbol of

‘submit’, o2 is the pair o f the sorry information and the hyperlink symbol o f ‘back’, o3 is

the pair o f the user form and the hyperlink symbol o f ‘submit’. V = </> and no predicate

and post action exists in any transition o f the EFSM. If no predication, post action or state

variable exists in an EFSM, such EFSM is in fact an FSM. Figure 4.3 shows the

corresponding FSM of the web application.

% Online tim etable

U P * . - ,f l bk
ikrrWftf Obt

.d ■
UtMMOjUU_. __ \

1
T

departure date * * * city
0 Printable tim etable S llb e it '

(a)

Timetables
Flight: M N nyCaentyW J'ttBfe
(tato; MoMsy Mtreh 2S, 2007

IK *

Text Content

Back hyperlink

(b)

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mmmmggmmmmm

Timetables
FB9I*: Abbo»t1ftrd^C)-VXXlc 811^9 W -P E K
IM&& Suflflty 300(5

W *cant provld* a tjm tu b le fo rth * n fM M d r*ui*.Pl«a*«tty a 4ffiMMt(*M.

Figure4.2 an example of timetable search

a : submit hyperlink with input S.T.
tim etable does not ex is ts fc o n d itio n)

tim etable e x is ts (c o n d it io n)
C : back h yperlink

O p the re la ted tim etable and back hyperlink

O^: the sorry information and back hyperlink

O^: the user form and the hyperlink o f submit

Figure4.3 the EFSM of the web application

back hyperlinksorry information

(c)

S o : homepage (s ta t ic page)

S j : resu ltpage (server page)

b : submit hyperlink with input S ,t ,

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 ADDING FRAMES

Here a web application we refer to stands for a web application without cookies/sessions,

dynamic hyperlinks or databases. If a page contains a frameset, actually the page consists

of two or more static or server pages. Each frame of the frameset displays the client pages

in a certain area o f the page containing the frameset. We call a page that contains

frameset as initial frame page which corresponds to a URL. As we explained before, each

frame o f an initial frame page can load any page by hyperlink. After loading another page

into any frame by hyperlink, an initial frame page turns into a derived frame page. An

initial frame page is from a static or server page but a derived frame page does not really

exist on server side. Here we use the term “frame page” to stand for both o f initial and

derived frame page.

For FSM derived from a web application with frame, we consider each state representing

a list o f pages. If a server or static page does not have a frameset, a state represents the

server or static page and its list o f pages only contain this page itself. If a page has a

frameset, it should be a frame page and a state representing it has a list o f pages contains

all pages that are loaded into the frame page.

We use the website o f University o f Windsor course 60-280 as an example to explain how

to model a web application with frame into an FSM. Figure 4.4(a) shows the initial frame

pagel and its URL is http://cs.uwindsor.ca/~xichen/60280. Pagel has two frames: index,

info window. Each frame contains one page. Index and info window frames contain the

pages ‘framel.htmT and ‘home.html’ respectively. Figure 4.4(b) shows a derived frame

page2 and still has the same frames as pagel. Index and info window frames contain the

pages ‘frameLhtmP and ‘lab.html’ respectively. Figure 4.4(c) shows another derived

frame page3 with the same frames. Index and info window frames contain pages

‘framel.html’ and ‘assignmenthtmT. The hyperlink ‘laboratory’ is one o f the hyperlinks

in ‘framel. html’, which allows the frame ‘info window’ to load page ‘lab.html’. For

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://cs.uwindsor.ca/~xichen/60280

simplicity, we call ‘framel.html’, ’home.html’, ‘lab.html’, ‘assignment.html’, frame

index, frame info window, hyperlink ‘laboratory’ as P I, P2, P3, P4, F I, F2, LI

respectively. We use P1:P2, P1:P3, and P1:P4 to represent Frame pagel, Frame page2

and Frame page3. Figure 4.4(d) shows the abstract structure o f the part of the web site.

■r iiw. !irf- -X?

■zwa-'U'A.-HWl

?***«.

»'>*.■■■ij «■*

t *?.«*/ ij;

P2

W
g H L .

\ V
FI F 2

(a) Frame pagel

<v>»i

■J *u h

I Laboratory fo r 60-280 W tatfr 2 0 «

|u> i t ft 5 safari Mb #9

Mb #11 ft.5m*rlu
ilabfttfflSmnfcri Mb#12ft.5awk*

F2

(b) Frame page2

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FI

As»lor»tn*n<s

m wm. P4
migpans&M
asagaaeai#?

5-*Md jwar wugttetxt a» m xlm aa feefats «r <m <&e 4a» » SQ280@*»*KtoM'.t» owtt
If yea fans# laara shso ea* 8* 8sr sn a sag rsn e it. y«« efeotf4«S<o **ad * nadtaie.BS i

pr»*uoi.

F2

(c) Frame page3

"t

P. Pi

17

p, p3
17

Fs

p. p4
77

(d)

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a : C lick in g on L]

o : The p ro p erties o f the
c l i e n t pages o f PI and P4

corresponding to FI;
page l i s t :pagel, page2

^ 2; corresponding to F2;
page 1is t ;p a g e l , page3

3: corresponding to F3;
page 1 i s t ;page1, paged

(e)

Figure4.4 an example o f modeling the website o f course 280

Figure 4.3.1(e) shows the corresponding part o f FSM M o f the web application. Each

state in the FSM corresponds to a frame page or a list o f pages. Input a (a e Im) is

clicking on the hyperlink o f Z4, Output o (o e Om) is a pair o f a set o f hyperlink symbols

and a set o f related text symbols inP4, s1,s2,s3(s l ,s2,s3 e SM) are states in F S M M ,

S(s{,a) = s2,S (s3,a) = s2, A(sy,a) = o and A(s3,a) = o . The initial state o f the FSM is ̂ .

Clearly, given such an FSM as the specification o f a web application with web frames,

we can use CPP algorithm on its digraph to generate a test sequence that covers each

transition at least once. Note that in such a formalism, transitions from the same web

page (but possibly in different frame page and thus represented by different states in the

FSM) triggered by the same action event actually represent the same hyperlink. We call

such transitions equivalent. Figure 4.3.1(b) shows two equivalent transitions in the above

example. It is natural to assume that the covered implementation o f one transition implies

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the covered implementation o f all others equivalent to it. Under this hypothesis, the

traditional method o f using CPP algorithm to generate a test sequence that covers each

transition at least once apparently introduces redundant resting. Our goal is to remove

such redundant testing in the test sequence generation

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER V

OUR TESTING METHOD

Let G = < V ,E > be a strongly-connected digraph. Q = {El,E 1,...,Ek} where E, cz E for

i e[l,&]. The generalized Chinese Postman Problem is to find a minimal-weight tour z

in G such that for each Et , z covers at least one edge in Et at least once. The

complexity o f this problem is known as NP-hard [4] while heuristic solutions have been

discussed in the literature [6].

As we explained before, a specification FSM A can be regarded as a strongly connected

digraph and a state in FSM A can be represented as a vertex and a transition can be

represented as an edge. Now given an FSM describing the navigational behavior o f a web

application with web frames, let G be its digraph and Q = {E],E 2,...,Ek} for

E: ^ E (i e [1, A]) corresponds to the partition o f the transitions in the FSM induced by

the equivalence relation defined on the transitions. Then we can adopt the GPP algorithm

to find minimal-length test sequence that covers one equivalent transition at least once by

setting the weight o f each edge in E to be 1. Empirical study has been conducted to

compare the lengths o f the test sequences generated by our method and the one using

CPP algorithm in order to quantitatively evaluate the effectiveness o f our solution.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VI

6. IMPLEMENTATION

The purpose o f this section is to discuss the implementation o f the main algorithms in our

work: CPP, Rural Postman Problem (RPP) [12], GPP.

We view a directed graph as G = (V, E) where V = {vpVj,...,^}, i e V is a finite set o f

vertices and E = {el ,e2,...,el}, i e E is a finite set o f edges. For each etJ e E ,

ey =<lable,vj,vj ,c ,u> where lable is an identifier for an edge from v, to vj t ctj and utj

are the cost and capacity [18] associated with it. Let / -» j denote a least cost path from

v, to V j . If there are multiple edges between adjacent vertices, the least cost path will

obviously take the cheapest edge of those available. We use (/, j) to denote the cheapest

edge from vertex v, to vy.

6.1 THE IMPLEMENTATION OF THE CPP ALGORITHM

CPP is a very famous problem: finding the shortest route for the Chinese postman who

wishes to travel along every road to deliver letters, i.e., in a directed graph (here we only

discuss the directed weighted CPP), we need to find a closed walk with minimum weight

which covers each edge at least once.

To well understand the algorithm to solve the CPP, we introduce some graph-theoretic

terms first. The number o f edges going into a vertex v is the in-degree written d~(v) , and

the number o f edges pointing out o f a vertex v is the out-degree written d +(v) . Let 6 be

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the difference between the in and out degrees: S(v) = d +(v)-d ~ (v) . If S(v) = 0, we say

the vertex v is balanced. Otherwise, let D + = { v | S(v) >0} be the set o f unbalanced

vertices with an excess o f out-going edges, and D~ - {v | S(v) <0} the set of unbalanced

vertices with an excess o f in-going edges.

An Eulerian graph [7] is a graph that has a circuit traversing each edge exactly once, and

returning to the start vertex. A standard theorem is that a graph has an Euler circuit if and

only if every vertex is balanced. If a graph is Eulerian, we can easily find an Euler circuit

in the graph. An Euler circuit o f a graph is an optimal Chinese Postman Tour (CPT), since

each edge is traversed exactly once. If a graph is not Eulerian, there should exist

nonempty D + and D~ in the graph. Thus the CPT will have to walk extra paths to ‘join

up’ the unbalanced vertices in D~ and D + to make each vertex balance and the number

o f extra paths is equal to k = . For an optimal CPT, the extra path taken

between D~ and D + will be chosen to have least total cost. In general, a CPT may take

some of the D~ -> D + paths more than once. Let f l} be the number o f times the path

i —» j must be taken to be added to the original graph as an edge to make the graph

Eulerian. We use 0 = ' ^ C jjf ij to represent the additional cost o f traversing the chosen

additional paths. The key idea of the algorithm of CPP is to find an optimal <j>.

If we want an optimal <j> in a directed graph, we need to find an optimal set o f extra paths.

Generally speaking, the number o f extra paths is equal to k = 'YUveD+8{v) ■ The first of

these k paths might go to any of the (at most) k vertices in D +, the second can be any of

the remaining k - 1 , and the third to any o f the remaining k - 2 , and so on. In the worst

case there are k \ choices. Clearly it would be an inefficient algorithm to examine all the

choices and pick the one with least cost. We use the algorithm of cycle canceling [9] to

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

find the optimal extras paths. This algorithm starts with an approximate solution, and

then iteratively improves it.

In [19], an algorithm of CPP can be sketched as:

Step 1: determine <5 of each vertex in graph G . I f <5 — 0, go to Step 5;

Step 2: determine D + and D~ in G .

Step 3: For each vertex in G , find the shortest paths p y and minimal costs cy to all

vertices by the Floyd-Warshall algorithm [18].

Step 4: find / to minimize ^ = S£ C yf y by the algorithm o f cycle canceling, where

f y > 0 should be integer, = ~S (i) m d T »eD- f ‘j =

Step 5: Construct an Eulerian circuit by Fleury’s algorithm [20] based on least cost paths

i —» j and each path repeated f y > 0 times.

The complexity o f this algorithm is 0 (n 2m3{logn}) . We have implemented a Java

program for these five steps and the code is given in Appendix A.

Here we use Figure 6.1 to show the algorithm to solve the CPP. In this figure, the weight

o f each edge is ‘1’. In Step 1, £(0) = 1, <5(1) = 1, <5(2) = -1 and <5(3) = -1 are computed.

From the result o f Step 1, we can determine that D + = {0,1} and D~ = (2,3} in Step 2. In

Step 3, we determine p y and minimal costs cy . In Step 4, based on D +, D~, p (J and cy ,

we find that there are two ways to choose the set o f extra paths. If one path is 2 -» 0 , then

the other path is 3 -» 1 ; the alternative is to use the paths 2 -»1 (from vertex 2, pass by

vertex 3, 0, to vertex 1) and 3 -> 0 . As it happens, the choices have the equal cost

(c2 i + c 3o = 3 + l,c20 + c3, = 2 + 2), and both can be used for an optimal CPT. Finally, we

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

choose the paths 2 -> 1 and 3 -» 0 . In Step 4, an Eulerian circuit is found:

0 ,1 ,3 ,0 ,1 ,2 ,3 ,0 ,2 ,3 ,0 .

0

Figure6.1 an example o f the CPP

6.2 IMPLEMENTATION OF THE ALGORITHM OF RPP

The RPP is to find a shortest close tour for a postman who has to travel along some

specified roads to deliver letters, i.e., in a directed strongly-connected graph G = (V, E) ,

we need to find a closed walk in G within minimum weight which traverses at least once

each edge in a specified subset R of A . A simple case occurs when the subset R is equal

to A and we can resolve it by the algorithm of CPP.

The difference between the directed RPP and the directed CPP is that the desired tour in

the directed CPP is required to include all edges o f G whereas the desired tour in the

directed RPP is only required to include the edges o f R . Finding the optimal tour that

solves RPP is a harder problem than finding the optimal tour that solves the directed CPP.

The directed CPP can be solved in polynomial time but the directed RPP is NP-complete

so there are only some heuristic algorithms for the directed RPP. Aho gave an algorithm

[1] that can find an optimal rural postman tour in G based on R in polynomial time

based on the following two assumptions: two assumptions: 1) R is a spanning subgraph

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

whose vertex set is V ; 2) R is a weakly connected subgraph and its undirected graph is

connected. Here we introduce a heuristic algorithm of RPP and the algorithm of RPP for

finding optimal tour based on the algorithm of CPP.

6.2.1 HEURISTIC ALGORITHM FOR RPP

One of the heuristic algorithms of RPP is proposed by Christofides [3]. It starts with the

graph G '=(V ',R) where V'= {all v(,v7 e V and (v,,^.) e R} . The graph G' contains the

basic edges and vertices. We need to add some additional edges to G' and find a shortest

closed tour to cover each edges o f R at least once in the augmentation graph G" . There

are two steps to add additional edges. Very often, in the graph G ' , the subset R induces

p connected components Gl,...,Gp with respective vertex sets Vl,...,Vp forming a

partition o f N ' . The first step o f adding additional edges to G' is to construct a shortest

spanning tree T based on G that can connect Gx,...,Gp with minimal^ = . In the

second step, if the graph G 'u T is Eulerian, we do nothing on it. Otherwise, we need to

add some edges to G 'u T between D~ and D + o f G 'u T based on G , and then obtain

an augmentation graph G" that is Eulerian. Finally, we can find a Eulerian circuit in G"

as final result.

This algorithm for the directed RPP can be sketched as:

Step 1: Construct the directed minimum spanning tree (DMST) [5] T , rooted at an

arbitrary vertex, and connecting Gl,...,Gp . Let G = T u R be the resulting graph.

Step 2: As for the directed CPP, derive an Eulerian graph from G by adding edges in a

least-cost manner so that the number o f incoming edges o f each vertex is equal to the

number o f outgoing edges.

Step 3: Determine an Eulerian circuit on the augmented graph.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the first step, we use the algorithm of Depth First Search (DFS) [18] to find the

strongly-connect components and the algorithm of DMST (directed minimum spinning

tree) to construct a directed shortest spinning tree T . In the second step, we use the

algorithm of cycle canceling to find the additional edges to make the augmented graph

Eulerian as we mentioned before. All the algorithms associated with the RPP are shown

in Appendix A. As the complexity o f algorithm of cycles canceling is dominant, the

complexity o f this heuristic algorithm is 0 (n 2m3 {\ogn}) [9].

Here we use Figure 6.2 to illustrate the execution of the heuristic algorithm to solve the

RPP. Figure 6.2(a) shows the graph G = (V , E) and the edges o f R are shown by bold

line. Figure 6.2(b) shows the graph G = (V ',R) and the subset R induces 3 connected

components GX,G 2,G3 with respective vertex sets Fj = {0,1} , V2 = {2,4} and

V3 = (3,5} forming a partition o f V '. Figure 6.2(c) shows the shortest spanning tree T

rooted at V3 and the su b se ts . In the graphR u T , there are D + = {1,5} and D~ = {0,4}.

We find that there are two ways to choose the set of extra paths. If one path is 0 -»1

(from vertex 0, pass by vertex 4, 5, and 3, to vertex 1), then the other path is 4 —» 5 ; the

alternative is to use the paths 0 -» 5 (from vertex 0, pass by vertex 4, to vertex 5) and

4 -»1 (from vertex 4, pass by vertex 5 and 3, to vertex 1). As it happens, the choices

have the equal cost (c01 + c45 = 4 + l,c05 + c41 = 2 + 3), and both can be used. We choose

the extra path (0,1) and (4, 5) to R u T and obtain the final result graph. The CPT in the

graph is 0 ,4 , 5 ,3 ,1 ,2 ,4 , 5 ,3 ,1 .

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) The graph G = (V ,E)

0- 0

(b) The graph G '=(V',R)

(c) The graph i ? u T

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(d) The resulting graph

Figure6.2 a heuristic algorithm to solve the RPP

6.2.2 AHO’S ALGORITHM FOR RPP

Aho’s algorithm is used to find an optimal RPP tour in G based on the two assumptions

we mentioned before. In [1], it is shown that if these assumptions hold then finding

optimal RPP is equivalent to finding a rural symmetric augmentation graph G , which can

be reduced to a minimum-cost maximum flow problem on a graph GF = (VF, E F)

constructed from G . Define the index % o f a vertex v, e G to be the difference o f the

number o f edges in R going into v, and the number o f edges in R leaving v,. Let VF -

F u { i , /} , where s and t are the source and sink o f GF , and let EF =

E u {(.M): v, e C} u {(v7, t) : v7 e D), where C c VF (D c VF) is the set o f vertices in G

with positive (negative) indices. Let each edge (^,v.) have cost zero and

capacity y{s, v,) = <̂ (vi) . The remaining edges in E F have the same cost in GF as in G

and infinite capacity. For simplicity, self-loop in E are omitted in E F, and when there are

multiple edges between v, and v; in G , only an edge with the minimum cost is included

in EF.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

According to [1], given a minimum-cost maximum flow F on GF , we can obtain

symmetric augmentation graph G based on F and define a function % on E u R :

f^(v,>vy) + l, if(Vj,Vj) e R

if(v„ vJ) e E

A

The graph G formed by replicating each edge (v,.,vy.) in E vjR z (vn vj) times is

symmetric and contains each edge in R at least once. Here we use cycle canceling

algorithm [2] to find a minimum-cost maximum flow F on GF . In Aho’s algorithm, the

complexity of cycle canceling is dominant so the complexity o f this algorithm is

0(nm 3C)(C = max{c;;/: C < oo and (i , j) e A})

(a) An graph G = (V, E)

* J f,

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(b) Graph GF =(VF,EF)

(c) Graph G

Figure6.3 Example o f Aho’s algorithm

We use Figure 6.3 to show Aho’s algorithm for RPP. Figure 6.3(a) shows a strongly-

connected graph G = (V, E) and the cost of each edge’s is 1. The bold lines are the edges
A

o f R. Figure 6.3(a) and (c) show the graphs GF and G . In Figure 6.3(c), the number

beside each edge shows how many times the edge is covered in RPP tour.

6. 3 THE IMPLEMENTATION OF A GPP ALGORITHM

For a directed weighted graph G = (V ,E) , all edges are partitioned into different edge

subsets E1,...,Ek (k e N) . The GPP is to find a closed walk in G and with minimum

weight which traverses at least one edge from each of the subsets Et (i = l,...,k) at least

once. Since the complexity of GPP is NP-hard, we present a heuristic algorithm for the

problem: we simply pick up one edge from each subset and then this problem is reduced

to RPP. Here we use random way to select one edge from each subset. That is, for each

subset, one edge is selected from it randomly.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This algorithm can be sketched as followings:

Step 1: Choose one edge from each subset randomly.

Step 2: follow the heuristic algorithm of RPP we presented in Section 6.2.1.

0

32

Figure6.4 an example to illustrate the GPP algorithm

Here we use Figure 6.4 to show the algorithm of GPP. There are three subsets of edges in

graph G \ Ex = {(0,1), (4,0)}, E2 ={(1,3),(1,4)}, E, = {(2,0), (3,4)} and E, = {(1,2), (2,3)}.

In the first step, we calculate the numbers o f edges o f each vertex and the result is that

numbers ofv0, v ,, v2 ,v3 and v4 are 3, 4, 3, 3 and 3, respectively. In the second step, the

edges (0,1), (1,3), (2,0) and (1,2) are selected from each subset. After the third step

(follow the heuristic algorithm of RPP), the path is 01201340.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VII

EXPERIMENTS AND EVALUATION

To evaluate our method, we compare our testing method with the one based on Aho’s

algorithm for RPP. Given a strongly-connected digraph G from a specification FSM of a

web application, our method is to put all edges in G that are equivalent into a same

subset and then make use o f the algorithm of GPP to generate a reduced-length test

sequence. On the other hand, the method o f using Aho’s algorithm will generate an

optimal test sequence which can cover all required edges (do not contain the edges from

‘back home’ button) at least once. The reason we compare with Aho’s algorithm is that

the assumptions subset R used in this algorithm hold in our setting: we assume we can

reach all web pages from home page in web applications, and as a result, the subset R of

G from a specification FSM is a weekly connected spanning subgraph. Here we compare

the lengths o f test sequences that are generated by the two different methods and the time

to generate the test sequences. The FSM is input into our Java program as a directed

strongly connected graph to generate a test sequence. The length and time can be affected

by the number o f vertices, edges and subsets. In this section, we present our experimental

result for the effect o f the three factors on the length and time by fixing the value o f the

other two factors.

7.1 LENGTH OF TEST SEQUENCE

Any of the three factors: the number o f vertices, (selected) edges (in R) and subsets can

affect the lengths o f test sequences generated by the algorithm of RPP and GPP so we

change the value o f one of them and fix the others to observe the lengths o f test

sequences based on RPP and GPP and the ratio o f the lengths o f test sequences generated

by RPP to the lengths o f test sequences generated by GPP.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.1 NUMBER OF VERTICES

When the numbers o f the edges (in R) and the subsets are fixed, the lengths o f test

sequences, no matter they are generated by RPP or GPP, increase with the augmentation

o f the number of vertices. For the lengths o f test sequences generated by GPP, if the

number o f vertices increase (the number o f the edges in R and the subsets are fixed), it

makes the subgraph formed by selected edges from each subset more sparse so that more

edges is added into the subgraph to keep the augmentation o f the subgraph Eulerian. This

means that more edges are required to be traverses and thus the test sequences become

longer. This is also true for the lengths o f test sequences generated by RPP.

Table 7.1 shows the trend o f the ratio o f the lengths o f test sequences generated by GPP

to the lengths o f test sequences generated by RPP. The result indicates that the lengths o f

test sequences generated by GPP are generally shorter than the lengths o f test sequences

generated by RPP.

Vertices Edges Subsets Times LGPP LRPP Tratio Lratio

6 30 5 100 812 4138 1/1 0.1962

8 30 5 100 940 4348 1/1 0.2169

10 30 5 100 1062 4932 1/1 0.2153

12 30 5 100 1215 5339 4/4 0.2275

14 30 5 100 1362 5748 4/4 0.2369

16 30 5 100 1530 6360 4/3 0.2404

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18 30 5 100 1628 6384 3/2 0.2550

20 30 5 100 1769 6890 6/4 0.2567

22 30 5 100 1890 7224 12/6 0.2616

24 30 5 100 2074 7443 14/6 0.2786

Table7.1

* Vertices: the number o f vertices in G ; Edges: the number o f edges in R ; Subsets: the

number o f subsets; Times: the number o f graphs which meet the related requirements in

each tuple and are generated randomly; LGPP: the total lengths o f testing sequences

generated by GPP in all cases; LRPP: the total number o f testing sequence generated by

RPP in all cases. Tratio: the time (unit is second) to generate test sequence by GPP

divided by the time to generate test sequence by RPP; Lratio: the ratio o f the lengths of

test sequences generated by GPP to the lengths of test sequences generated by RPP.

7.1.2 NUMBER OF EDGES

When the numbers o f vertices and subsets are fixed, the augmentation on the number of

edges causes the increase o f the lengths o f test sequences generated by RPP while it has

little effect on the test sequence generated by GPP. Thus, the length ratio decreased. The

reason is that each additional edge can cause an additional edge required to traverse under

the algorithm of RPP but it does not do so under the algorithm o f GPP. Namely, the

number o f the edges required to traverse under the algorithm of GPP is equal to the

number o f subsets.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 7.2 shows the trend o f the ratio o f the lengths of test sequences generated by GPP

to the lengths o f test sequences generated by CPP with different number o f edges.

Vertices Edges Subsets Times LGPP LRPP Tratio Lratio

10 18 5 100 1153 3344 1/1 0.3447

10 20 5 100 1157 3696 1/1 0.3138

10 22 5 100 1166 3901 2/2 0.2988

10 24 5 100 1141 4163 1/2 0.2740

10 26 5 100 1115 4567 2/3 0.2452

10 28 5 100 1109 4673 2/4 0.2373

10 30 5 100 1132 4898 1/4 0.2311

10 32 5 100 1062 5163 2/4 0.2056

10 34 5 100 1067 5324 1/4 0.2004

10 36 5 100 1065 5511 3/4 0.1932

Table7.2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1.3 NUMBER OF SUBSETS

When the number o f edges and vertices in R are fixed, the lengths o f test sequences

generated by RPP only have little changes with the augmentation o f the subsets that

contain equivalent edges. On the other hand, the lengths of test sequences generated by

GPP increase with the augmentation o f the number o f edges because the augmentation of

the number o f subsets makes the number o f selected edges from each subset increase

under the algorithm o f GPP and more edges is required to be traversed. However, the

edges required to be traversed under the RPP is fixed. Thus the ratio o f lengths increases.

Table 7.3 shows the trend o f the ratio with different number o f subsets.

Vertices Edges Subsets Times LGPP LRPP Tratio Lratio

10 20 3 100 857 3642 1/1 0.2353

10 20 5 100 1203 3702 1/1 0.3249

10 20 7 100 1423 3678 1/1 0.3868

10 20 9 100 1687 3631 2/1 0.4646

10 20 11 100 1882 3689 2/1 0.5101

10 20 13 100 2121 3699 2/1 0.5733

10 20 15 100 2344 3643 3/1 0.6434

10 20 17 100 2638 3652 3/1 0.7223

10 20 19 100 2840 3721 3/1 0.7632

Table7.3

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 TIME TO GENERATE TEST SEQUENCE

Here we use the same method to show the effect o f the three factors on time to generate

test sequences. We fix the numbers of two factors to observe the time consumption to

generate test sequence caused by one factor. From the Table 7.1, Table 7.2 and Table 7.3,

we can obviously realize that the trend o f time consumption to generate test sequence is

basically the same as that o f the lengths o f testing sequence. This confirms that the time

complexities o f the two methods are comparable.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VIII

CONCUSION AND FUTURE WORK

8.1 CONCLUSION

In this thesis work, we have presented an approach for representing navigational behavior

o f web applications with web frames in terms of EFSM and FSM. Focusing on web

applications without cookies/sessions, databases that are used to record the navigation

information and dynamic hyperlinks, we have presented an FSM-based navigation model

considering web frames and it can model most o f the elements o f web applications, such

as web frames, hyperlinks, client pages, server/static pages, navigations.

Based on the FSM model, we have defined equivalent navigations (transitions) in the

FSM models o f the web applications. We have explained how to apply an algorithm of

GPP to the FSM model with equivalent transitions to generate test sequences with

reduced length.

A Java program is implemented to compare our method based on the algorithm of GPP to

the one that is based on Aho’s algorithm for RPP. The experiment results show that the

efficiency o f our method is high.

8.2 FUTURE WORK

The future work can be considered in three aspects:

• Looking for a better way to define equivalent navigations in terms o f equivalent

states following the literature and compare it with existing well-known

equivalence notions.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Improve the method that reduce the GPP into the RPP: It means that we need a

more efficient algorithm to pick up “good” arcs from each subset o f G .

• Extend the work on efficient test sequence generation to EFSMs.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1] A. V. Aho, A.T. Dahbura, D. Lee, and M. U. Uyar, An Optimization Technique fo r

Protocol Conformance Test Generation Based on UIO Sequences and Rural Chinese

Postman Tours, IEEE Trans, on Communications, Vol. 39, No. 11, Pages 1604-1615, Nov.

1991.

[2] R K. Ahuja, T. L. Magnanti and J. B. Orlin. Network flow. Prentice-Hall, 1993

[3] N., V. Christofides, C, A. Corberan and E. Mota. An algorithm fo r the Rural Postman

Problem on a Directed Graph. Math. Prog, Study 26,1986 pages 155-166

[4] M. Dror and M. Haouari, Generalized Steiner Problems and other variants, Journal of

Combinatorial Optimization, vol.4, No.4, pages 415-436,2000.

[5] J. Edmonds, Optimum Branching. J. Res. Natl. Bur. Stand., Section B. 71, pages 233-

240,1967

[6] H. A. Eiselt, M. Gendreau and G Laporte, Arc routing problems, part IP. The rural

postman problem, Operations Research 43 (1995), pages 399-414.

[7] A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, 1985.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[8] A. Gill, Introduction to the theory o f Finite-State Machines, Me Graw-Hill Book

Company,Inc, 1962.

[9] A. V. Goldberg, R. E. Tatjan, Finding Minium-cost Circulations by Canceling

Negative Cycles, Journal of the Acm, 36(4) pages: 873-886,1989.

[10] D.Hogrefe, ESFTELLE, LOTOS and SDL, Springer-Verlag, 1989

[11] D. C. Kung, C. Liu and R Hsia, An Object-Oriented Web Test Model for Testing

Web Applications, in The 1st Asia-Pacific Conference on Quality Software (APAQS

2000), pages 111-120, 2000.

[12] J. K. Lenstra and A. H. G Rinnooy Kan. On General Routing Problem. Networks 6,

pages 273-280,1976.

[13] C. Liu, D. Kung, P. Hsia, and C. Hsu. Structural testing o f web applications, in

Proceedings of the 11th IEEE International Symposium on Software Reliability,

Engineering, pages 84-96, Oct. 2000.

[14] G Di Lucca, A. Fasolino, F. Faralli, U. de Carlini, Testing Web Application, In IEEE

International Conference On software Maintenance (ICSM’ 02), 2002, pages: 0310-0319.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[15] G. D. Lucca and M. D. Penta, Considering Browser Interaction in Web Application

Testing, in Proceedings of the 5th IEEE International Workshop on Web Site Evolution

(WSE’03), 2003.

[16] S. Naito and M. Tsunoyama, Fault detection fo r sequential machines by transitions

tours, in Proceeding o f IEEE Fault Tolerant Comput. Symp., IEEE Computer Soc. Press,

pages 238-243,1981

[17] F. Riccva and P. Tonella, Analysis and testing o f web applications, in Proceeding O f

the 23rd Internal conference on Software Engineering, 2001, Toronto, Ontario, Canada,

pages: 25-34.

[18] R.E. Taijan, Data Structures and Network Algorithm. Philadelphia, PArSociety for

Industrial and Applied Mathematics, 1983.

[19] Harold W. Thimbleby. The directed Chinese Postman Problem, journal o f Software -

- Practice and Experience, 33(11) pages: 1081—1096, September 2003.

[20] S. Skiena, The Algorithm Design Manual, Springer Verlag, 1998.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A THE PROGRAM FOR GPP

import java.io.*;
import java.util.*;

public class GPP
{

int N; // number of vertices
int ND; // number of divisions
int NSV; // number of selected vertice
float FBC;
OpenCP G;
intv;
int w ;
int vw ;
int seqDFS[];
int parti [];
int tcost;
int knumber;
int Fnumber;
int cnumber;
int VChangeQ;
Vector nVChange[];
int visit[];
int DCQ;
int CD;
int cv;
int rl[];
int r2[];
int DN[];
int DS[];
int DE[];
int[][] AA;
int temple [];
int S2I [];
int CNofSA[]; // connection number o f selected arcs
int CN[]; // connection number of selected arcs
GPP GS;
GPP CG;
GPP CompleteG;
GPP MST[];
GPP Final;
GPP OpenFinal;
GPP OpenbestGraph;
GPP Tempi;
boolean overarcs;

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int NameNo[][];// for multiple arcs between two nodes.
String SelectedArcs[];
String selectedArcsQ; //selected Arcs
int selectedVertex[]; //selected vertetice
int delta[]; // deltas of vertices
int neg[], pos[]; // unbalanced vertices
int arcs[][]; // adjacency matrix, counts arcs between vertices
Vector label [][]; // vectors o f labels o f arcs (for each vertex pair)
Vector length[][];//recode the length o f each arcs
int f[][]; // repeated arcs in CPT
float c[][]; // costs o f cheapest arcs or paths
String cheapestLabel[][]; // labels of cheapest arcs
boolean defined[][]; // whether path cost is defined between vertices
int path[][]; // spanning tree o f the graph
float basicCost; // total cost o f traversing each arc once

int timestart;
int timeend;
int timecost;
int gv[];

void timecost(String tag)
{

String t - tag;

java.util.Date m_date = new java.util.Date();
int nowSecond = m_date.getSeconds();
int nowMinute = m_date.getMinutes();
int nowHour = m_date.getHours();
if (t = "start”)
{

timestart = nowHour*3600 + nowMinute*60 + nowSecond;
}
if (t = "end")
{

timeend = nowHour*3600 + nowMinute*60 + nowSecond;
timecost = timeend - timestart;

}

}

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GPP(int vertices)
{ if((N = vertices) <= 0) throw new Error("Graph is empty");

delta = new int[N];
defined = new boolean[N][N];
label = new Vector[N][N];
length = new Vector[N][N];
c = new float[N][N];
f = new int[N][N];
arcs = new int[N][N];
cheapestLabel = new String [N][N];
path = new int[N][N];
NSV = 0;
v = 0;
w = 0;
v w = 0;
CD = 0;
cv = 0;
cnumber = -1;
NameNo = new int [N][N];
CNofSA = new int [135];
CN = new int [N];

}

GPP addArc(String lab, int u, int v, int cost)
{

// String tempi = Stringtolnt(cost);

if(label[u][v] = null)
{

label[u][v] = new VectorO;
length[u][v] = new VectorO;

}
basicCost += cost;
label [u] [v] .addElement(lab);
length[u] [v] .addElement(" 1");

if(!defined[u][v] || c[u][v] > cost)
{ c[u][v] = cost;

cheapestLabel [u][v] = lab;
defined[u][v] = true;
path[u][v] = v;

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}
arcs[u][v]++;
delta[u]++;
delta[v]-;
CN[u]++;
CN[v]++;
return this;

void getselectedArcs()
{

int Number = 135;
boolean a[][|;
selectedArcs = new String[Number];

a = new boolean[N][N];

for(int i = 0; i < Number; i++)
{

selectedArcs [i] = "-1";
}

Random rl=new Random();
int v l;
int v2;
int j = 0;

while(j < Number)
{

v l =rl.nextInt(N);
v2 = rl.nextInt(N);

if(arcs[vl][v2] > 0 && !a[vl][v2])
{

selectedArcs [j] = cheapestLabel [v 1] [v2];
a[vl][v2] = true;
j++;

}

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(int h = 0; h < Number; h++)
{
// System.out.print(selectedArcs[h]);

}
// System.out.println("");

/*
selectedArcs = new String [9];
selectedArcs[0] = "21";
selectedArcs[l] = "12";
selectedArcs [2] = "02";
selectedArcs[3] = "14";
selectedArcs[4] = "01";
selectedArcs[5] = "03";
selectedArcs [6] = "42";
selectedArcs [7] = "10";
selectedArcs [8] = "43";
*/

///////////////////// pick up all sebsets and their arcs
void getArcl(int Number, int Subsets, int Vertices, int[][] A)

{

boolean a[] [];
boolean used[][][];
SelectedArcs = new String[Number];
used = new boolean[N][N] [Number];

AA = new intjVertices] [Vertices];
for(int k = 0; k < Vertices; k++)

for(int m = 0; m < Vertices; m++)
AA[k][m] = A[k][m];

a = new boolean[N][N];

for(int i = 0; i < Number; i++)
{

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SelectedArcs[i] = "-1";
}

Random rl=new Random();
int v l;
int v2;
int v3;
int j = 0;
int unit;

DN = new int[Subsets];
DS = new int[Subsets];
D E = new int[Subsets];

while(j < Number)
{

v l =rl.nextInt(N);
v2 = rl.next!nt(N);

if(arcs[vl][v2] > 0)
{

v3 = rl.nextInt(NameNo[vl][v2]);
if(!used[vl][v2][v3])
{

SelectedArcs [j] =
String. valueOf(v 1)+String. valueOf(v2)+String. valueOf(v3);

CNofSAD] = CN[vl] + CN[v2];
a[vl][v2] = true;
used[vl][v2][v3] = true;
AA[vl][v2]~;
j++;

}

}

}

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

unit = Number/Subsets;

// put the number o f arcs to each subset.
for(int i = 0, t = 0; i < Subsets; i++)
{

if(i = Subsets-1)
{

DN[i] = Number-t;
DS[i] = t;//?
DE[i]= Number-1; //?

}
else
{

D S[i]= t;
DN[i] = unit;
t = unit+t;
DE[i] = t - l ;

}

////////////////pick up one possibility
String[] getArc2(int Number, int Subsets,int Vertices, int Arcs, int[][] AA)

{

int a, b,at;
int value = 1;

selectedArcs = new String[Subsets];
for(at = 0; at < Subsets; at++)
{

for(int i=DS[at]; i<= DE[at]; i++)
{

int maxCN = 0;
if(CNofSA[i] > maxCN)
{

selectedArcs [at] =
SelectedArcs[i];

}

}

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

// at++;
/*

for(int n = at; n < Arcs-Number+Subsets;)
{

for(int zz = 0; zz < Vertices; zz++)
for(int xx = 0; xx < Vertices;

x x + +)

{
if(AA[zz][xx] > 0)
{

selectedArcs [n] =String.valueOf(zz)+String.valueOf(xx);

}
}

}

*/

return selectedArcs;

}

n++;

void getMselectedArcs()
{

int Number = 135;
inta[][];
selectedArcs = new String[Number];

a = new int[N][N];

for(int i = 0; i < Number; i++)
{

selectedArcs [i] = "-1";
}

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Random rl=new Random();
int v l;
int v2;
int v3;
int j = 0;

while(j < Number)
{

vl =rl.nextInt(N);
v2 = rl .nextInt(N);

if(arcs[vl][v2] > 0 && a[vl][v2] <= arcs[vl][v2])
{

v3 = rl.nextlnt(arcs[vl][v2]);
selectedArcs[j] :

label[vl] [v2].elementAt(v3).toString();
a[vl][v2]++;
j++;

}

}

for(int h = 0; h < Number; h++)
{

//
System.out.print(selectedArcs[h]);

}
// System.out.println("");

/*
selectedArcs = new String[14];
selectedArcs[0] = "41";
selectedArcs[l] = "23";
selectedArcs[2] = "40";
selectedArcs[3] = "10";
selectedArcs[4] = "30";
selectedArcs[5] = "21";
selectedArcs[6] = "32";
selectedArcs[7] = "02";
selectedArcs[8] = "12";
selectedArcs[9] = "43";

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

selectedArcs[10] = "42";
selectedArcs[ll] = "03";
selectedArcs[12] = "13";
selectedArcs[13] = "24";
*/

void selectedGraph()
{

int flag = 0;
selected Vertex = new int[N];

for(int q = 0; q < N; q++)
{

selectedVertex[q] = -1;

}

////////////////count the number o f selectedvetice
for(int i=0; i < selectedArcs.length; i++)

for (int j =0; j < label.length; j++)
for (int k = 0; k < label[j].length; k++)

if(label[j][k]!= null)
{

for(int m = 0; m < label[j][k].size(); m++)
{

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if
(selectedArcs[i].equals(label[j][k].elementAt(m).toString()))

{

= = - 1)

selectedVertex[j] = j;

= - 1)

selectedVertex[k] = k;

if (selectedVertex[j]

{

}
NSV++;

if (selectedVertex[k]

{

NSV++;

}

}

}

visit = new int[NSV];
for(int z = 0; z < NSV; z++)

{

visit[z] = -1;

}

DC = new int[200];
for(int z = 0; z < 200; z++)

{

DC[z] = -1;

r l = new int[NSV];

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(int z = 0; z < NSV; z++)
{

rl[z] = - l;

}
seqDFS = new int[NSV];

for(int z = 0; z < NSV; z++)
{

seqDFS [z] = -1;

}

r2 = new int[NSV];
for(int z = 0; z < NSV; z++)
{

i2[z] = -l;

/////////////vertice change

VChange = new int[NSV];
for(int i = 0, j = 0; i < N; i++)

{
if

(selectedVertex[i] != -1)

{
VChange [j]

= i;
j++;

/////////////change end

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

////////////////construct the graph which just include the selected arcs.

GS = new GPP(NSV);
int a = 0, b = 0;
for(int i=0; i < selectedArcs.length; i++)

for (int j =0; j < label.length; j++)
for (int k = 0; k <

label[j].length; k++)

if(label [j] [k]! = null)
{

for(int m = 0; m <
label[j][k].size(); m++)

{
if

(selectedArcs[i].equals(label[j][k].elementAt(m).toString()))
{

for(int f = 0; f < VChange.length; f ++)

for(int f = 0; f < VChange.length; f ++)

GS.addArc(selectedArcs[i], a, b, 1);

}

}

}

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//////////////constructtion end

///////////// deep first research
int DFS(int x)

{

&& rlQ] 1)

visit[v] = x;
rl[x] = l;
v++;

for(int j = 0; j < NSV; j++)
{

if ((GS.arcs[x][j] >0 || GS.arcs[j][x]>0)

}

DFS(j);

seqDFS[NSV-w-l] = x;
w ++;
DC[CD] = x;
CD++;

return x;

////////////DFS end

///////////// reverse deep first research
void RDFS(int x)

{

r2[x] = 1;

for(int j = 0; j < NSV; j++)
{

if (GS.arcs[j][x] >0 && r2[j]
{

RDFS(j);
}

-1 && rl [j] = 1)

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

DC [CD] = x;
CD++;

}

////////////RDFS end

////////////strongly connected component
void CCO
{

if (NSV <= 0) throw new Error("select arcs firstly!");
boolean q = true;
int i;

while(q)
{

for(i = 0; i < NSV; i++) //try each vertice which is selected
{

if(rl[i] = -1) break;
}

DFS(i);
DC[CD]= -2;
CD++;

/*
for(int 1 = 0; 1 < NSV; 1++)

{
if(seqDFS[l] != -1 && r2[seqDFS[l]] != 1

&&rl[seqDFS[l]] = 1)
{

RDFS(seqDFS[l]);
DC[CD]= -2;
CD++;

}

}
*/

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

q = false;
for(int j = 0; j < NSV; j++)
{

if(seqDFS[j] == -1) q = true;
}

//I System.out.println(" 1111");

}
////////////cc end

////////////compacted graph
void CG()

{

int c l = 0, c2 = 0;
int k = 0;
int m = 0;
in ttf l = 1;
int t£2 = 0;
boolean tag = false;
S2I = new int[N];

for(int t = 0; t < N; t++)
S2I[t] = t;

for(int i = 0; i < 2*NSV; i++)
{

if(DC[i] != -2 && DC[i] != -1) cl++;
if(DC[i] = -2) c2++;

}

cv = N-cl+c2;

nVChange = new Vector [cv];
CG = new GPP(cv);

for(int s = 0; s < cv; s++)
{

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nVChange[s] = new Vector();

}

for(int i = 0; i < N; i+ +)
{

for (int j = 0; j < VChange.length; j++)
if(i = VChange[j])
{

tag = true;
}

if(tag != true)
{

nV Change[k].addElement(String.valueOf(i));
k++;

}
else tag = false;

}

knumber = k;

while(DC[m] != -1 && k < cv)
{

if (DC[m] != -2)
{

nVChange[k].addElement(String.valueOf(VChange[DC[m]]));
m++;

}
else
{

k++;
m++;

}

}

for(int n = 0; n < N; n++)
for(int b = 0; b < N; b++)
{

if(arcs[n][b] >= 1)

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(int h = 0; h <
nVChange.length; h++)

for(int f = 0; f <
nVChange[h].size(); f++)

{

if(nVChange[h].elementAt(f).toString().equals(String.valueOf(n)))
tfl = h ;

if(nVChange[h].elementAt(f).toString().equals(String.valueOf(b)))
tf2 = h;

}
for(int vi = 0; vi < arcs[n][b];

vi++)
if(tf l != tf2)
{

CG.addArc(label[n][b].elementAt(vi).toString(), tf l , tf2, 1);
}

}

}
CG.leastCostPathsQ;

}
////////////eg end
////////////complete graph

void CompleteG()
{

int n = nVChange.length - knumber;
CompleteG = new GPP(n);
for(int i = 0; i < n; i ++)

for(int j = 0; j < n; j++)
{

if(i !=j)
{

String name = String.valueOf(i)
+ String.valueOf(j);

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CompleteG.addArc(name,
(int)CG.c[knumber+i] [knumber+j]);

}

}
CompleteG.leastCostPaths();

}

////////////complete graph end
////////////MST

void MST()
{

if(CompleteG.N > 1)
{

MST = new GPP [100];
boolean circle = false;
boolean inter = false;
boolean M = false;
boolean FF = false;
boolean interl = false;
boolean inter2 = false;
int a;
int j = 0;
int kb = 0;
int ka = 0;
int m = 0;
int temp = -1;
int tempi = -1;
int x l = -1, x2 = -1;
in tr = -l;
int q = -1;
int recoder [];
intMUVQ;
int MN = 0;
int rmn = 0;
intv;

cnumber = -1;
recoder - new int[CompleteG.N];
MUV = new int[CompleteG.N];
for(int g - 0; g < CompleteG.N; g++)
{

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MUV[g] = -l;
}
for(int i = 0; i < 100; i++)

MST[i] = new GPP(CompleteG.N);

temp = (int)CompleteG.basicCost;

for(int b = 1; b < CompleteG.N; b++)
{

for(a = 0; a < CompleteG.N; a++)
{

if(CompleteG.c[a][b] <temp)
{

temp = (int)CompleteG.c[a][b];
kb = b;
ka = a;

}
}

MST[j].addArc(CompleteG.label[ka][kb].toString(), ka, kb, temp);
temp = (int)CompleteG.basicCost;

}

MST[j].leastCostPathsO;

for(int p =0; p < CompleteG.N; p++)
{

if(MST[j].c[p][p] !=0)
{

circle = true;
r = p;

}
}

while(circle)
{

circle = false;
FF = false;
recoder[m] = r;
rmn = MN;

for(int tt = 0; tt < CompleteG.N; tt++)
{

if(MUV[tt] = r) FF = true;
}

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(!FF){MUV[MN] = r;MN++;}

q = MST[j].path[r][r];
while(q != r)
{

M = false;
for(int gg = 0; gg < CompleteG.N; gg++)
{

if(q = MUV[gg])
{

M = true;
}

}

if(!M){MUV[MN] = q;MN++;}

m++;
recoder[m] - q;
q = MST[j].path[q][r];

}

tempi = (int)CompleteG.basicCost;

for(int w = 0; w <= m; w++)
for(int e = 0; e < CompleteG.N; e++)
{

inter = false;
interl = false;
inter2 = false;
if(templ >

CompleteG.c[e] [recoder[w]])
{

for(int p = 0; p <= m;
p + +)

{
if(recoder[p]

= = e)

{

inter - true;
}

}

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ram; pp++)

= e)

inter 1 = true;

recoder[w])

inter2 = true;

inter2)))

(int)CompleteG.c [e] [recoder [w]];

recoder [w];

for(int pp = 0; pp <=

{
if(MUV[pp]

{

}

if(MUV[pp]

{

}

}

if(! (inter 11 (inter 1 &&

{
tempi =

x l = e;
x2 =

jj != x2)

: x2)

}

for(int ii = 0; ii < CompleteG.N; ii++)
for(int jj = 0; jj < CompleteG.N; jj++)
{

if(MST[j].arcs[ii][jj] = 1 &&

{

MST[j+l].addArc(MST[j].label[ii][jj].toString(), ii, jj, MST[j].path[ii][jj]);
}

if(MST[j].arcs[ii][jj] = l&&jj

{

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MST[j+l].addArc(CompleteG.label[xl][jj].toString(), x l, jj, tem pi);
}

}
j++;
MST [j] .leastCostPaths();

for(int pp =0; pp < CompleteG.N; pp++)
{

if(MST[j].c[pp][pp] != 0)
{

circle = true;
r = pp;

}
}
m = 0;
//MN++;

}
MN = 0;
cnumber = j;

}
}

////////////MST end
////////////UNZIP end

void UNZIP()
{

int q;
int jj = 0;
int z = 0;
parti = new int[CG.N*CG.N];
int def[][];
String StrpartlQ;

def = new int[N][N];

for(int bb = 0; bb < CG.N*CG.N; bb++)
parti [bb] = -1;

if(cnumber != -1)
{

for(int i = 0; i < CompleteG.N; i++)

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(int j = 0; j < CompleteG.N; j++)
{

if(MST[cnumber].arcs[i][j] = 1)
{

q = knumber + i;
parti [w v] = q;
vw++;
while(knumber+j != q)
{

q =
CG.path[q] [knumber+j];

parti [vw] = q;
vw ++;

}
parti [vw] = -2;
vw++;

}
}

Final = new GPP(N);
OpenFinal = new GPP(N+1);
OpenbestGraph = new GPP(N+1);
Strpartl = new String[CG.N*CG.N];
for(int Q = 0; Q < CG.N*CG.N; Q++)

Strpartl [Q] = "-1";

while((partl[z+l] != -2 || partl[z+2] != -1) && z+1 <= partl.length)
{

if(partl [z+1] = -2) z = z+2;
Strpartl [jj] = CG.cheapestLabel[partl[z]][partl[z+l]];
z++;
jj++;

}

for(int i=0; i < selectedArcs.length; i++)
for (int j =0; j < label.length; j++)

for (int k = 0; k < label[j].length;
k++)

if(label[j][k]!= null)
{

for(int m = 0; m <
label[j][k].size(); m++)

{

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if
(selectedArcs [i] .equals(label [j] [k] .elementAt(m).toString()))

{

Final.addArc(selectedArcs[i], j, k, 1); ////l de wenti!

OpenFinal.addArc(selectedArcs[i], j, k, 1); ////l de wen ti!

def[j][k] = 1;

}

}

}

for(int i=0; i < Strpartl.length; i++)
for (int j =0; j < label.length; j++)

for (int k = 0; k < label [j], length; k++)

if(label[j][k]!= null)
{

for(int m = 0; m < label[j][k].size(); m++)
{

if
(Strpartl[i].equals(label[j][k].elementAt(m).toString()) && def[j][k] != 1)

{

Final.addArc(Strpartl[i], j, k, 1); ////l de wen ti!

OpenFinal.addArc(Strpartl[i], j, k, 1); ////l de wen ti!

}

}

}

}

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(cnumber = -1)
{

j++)

labelO].length; k++)

Final = new GPP(N);
OpenFinal = new GPP(N+1);
OpenbestGraph = new GPP(N+1);
for(int i=0; i < selectedArcs.length; i++)

for (int j =0; j < label.length;

for (int k = 0; k <

if(label[j][k]!= null)
{

for(int m = 0;

{
if

{

m < label[j][k].size(); m++)

(selectedArcs[i].equals(labelO][k].elementAt(m).toString()))

Final.
Open!
def[j]|

Final.leastCostPaths();
OpenFinal.leastCostPaths();
FBC = Final.basicCost;

}

////////////UNZIP end

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/////////// leastCostPath
void leastCostPathsO
{

for(int k = 0; k < N; k+ +)
for(int i = 0; i < N; i+ +)

if(defined[i][k])
for(int j = 0; j < N; j+ +)

if(defined[k][j]
&& (!defined[i][j] || c[i][j] >

c[i][k]+c[k][j]))
{ path[i][j] = path[i][k];

// stop on negative cycle

c[i][j] = c[i][k]+c[k]D];
defined[i][j] = true;

if(i = j && c[i][j] < 0) return;

}

/////////// end leastCostPath
11111111111 find Unbalanced vertetice

void findUnbalanced()
{ int nn = 0, np = 0; // number of vertices o f negative/positive

delta

for(int i = 0; i < N; i++)
if(delta[i] < 0) nn++;
else if(delta[i] > 0) np++;

neg = new int[nn];
pos = new int[np];
nn = np = 0;
for(int i = 0; i < N; i+ +) // initialise sets

if(delta[i] < 0) neg[nn++] = i;
else if(delta[i] > 0) pos[np++] = i;

}
//////////// end findUnbalanceed

////////////find a Feasible way
void findFeasibleO

{ // delete next 3 lines to be faster, but non-reentrant
int delta[] = new int[N];
for(int i = 0; i < N; i+ +)

delta[i] = this.delta[i];

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(int u = 0; u < neg.length; u+ +)
{ int i = neg[u];

for(int v = 0; v < pos.length; v + +)
{ in tj =pos[v];

f[i][j] = -delta[i] < delta[j]? -delta[i]: deltafi];
delta[i] += f[i][j];
delta[j] -= f[i][j];

}
}

//////////////end fmdFeasible

}

//////////////improvement
boolean improvements!)
{

int t = 0;
GPP residual = new GPP(N);
for(int u = 0; u < Final.neg.length; u+ +)
{ int i = Final.neg[u];

for(int v = 0; v < Final.pos.length; v + +)
{ int j = F inal.pos [v];

residual.addArc(null, i, j,(int)c[i][j]);
if(Final.f[i][j] != 0)
residual.addArc(null, j, i, -(int)c[i][j]);

}
}

residual.leastCostPathsO; // find a negative cycle

for(int i = 0; i < N; i+ +)
if(residual.c[i][i] < 0) // cancel the cycle (if any)
{ int k = 0, u, v;

boolean kunset = true;
u = i; do // find k to cancel
{ v = residual.path[u] [i];

if(residual.c[u][v] < 0 && (kunset || k >
Final.f[v][u]))

{ k = Final.f[v][u];
kunset = false;

}
} while((u = v) != i);
u = i; do // cancel k along the cycle
{ v = residual.path[u] [i];

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(residual.c[u][v] < 0) Final.f[v][u] -= k
else Final.f[u][v] += k;

} while((u = v) != i);
return true; // have another go

}

return false; // no improvements found

//////////////end improvement

//////////////improvement
boolean Openimprovements(GPP x)
{

int t = 0;
GPP residual = new GPP(N);
for(int u = 0; u < x.neg.length; u+ +)
{ int i = x.neg[u];

for(int v = 0; v < x.pos.length; v + +)
{ int j = x.pos[v];

residual.addArc(null, i, j,(int)c[i][j]);
if(x.f[i][j] != 0)
residual.addArc(null, j, i, -(int)c[i][j]);

}
}

residual.leastCostPathsQ; // find a negative cycle

for(int i = 0; i < N; i+ +)
if(residual.c[i][i] < 0) // cancel the cycle (if any)
{ int k = 0, u, v;

boolean kunset = true;
u = i; do // find k to cancel
{ v = residual.path[u] [i];

if(residual.c[u][v] < 0 && (kunset || k >
x.f[v][u]))

{ k = x.f[v][u];
kunset = false;

}
} while((u = v) != i);
u = i; do // cancel k along the cycle
{ v = residual.path[u] [i];

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(residual.c[u][v] < 0) x.f[v][u] -= k;
else x.f[u][v] += k;

} while((u = v) != i);
return true; // have another go

}

return false; // no improvements found
}

//////////////end improvement

/////////////fmdpath
int findPath(int from, int f[][]) // find a path between unbalanced vertices

{ for(int i = 0; i < N; i+ +)
if(f[from][i] > 0) return i;

return NONE;
}

/////////////End fmdpath

/////////////CPT
void printCPT(int startVertex)
{

arcs

int v = startVertex;
// delete next 7 lines to be faster, but non-reentrant
int arcs[][] = new int[N][N];
int f[][] = new int[N][N];
for(int i = 0; i < N; i++)

for(int j = 0; j < N; j++)
{ arcs[i][j] =this.arcs[i][j];

f!i]D] = this.fli]D];
}

while(tru e)
{ int u = v;

if((v - findPath(u, f)) != N O N E)
{ f[u][v]—; // remove path

for(int p; u != v; u = p) // break down path into its

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//I
" +cheapestLabel [u] [p]

//I

p = path[u][v];
System.out.println("Take arc

+" from "+u+" to "+p);

using bridge last

}
else
{

//I
"+label [u] [v] .elementAt(arc s [u] [v])

//I
label in turn

}
}

}

int bridge Vertex = path[u] [startVertex];
if(arcs [u] [bridge Vertex] = 0)

break; // finished if bridge already used
v = bridge Vertex;
for(int i = 0; i < N; i+ +) // find an unused arc,

if(i != bridgeVertex && arcs[u][i] > 0)
{ v = i;

break;
}

arcs[u][v]~; // decrement count o f parallel arcs
System.out.println("Take arc

+" from "+u+" to "+v); // use each arc

/////////////end CPT

//////////// Be a Eular graph
void EG()
{

for(int i = 0; i < N; i++)
for(intj = 0; j <N ;j+ +)
{

if(Final.f[i][j] > 0)
{

//Final.addArc(cheapestLabel[i][j], i, j,
(int)c[i][j]); ////l de wen ti!

for(int s = Final.f[i][j]; s > 0; s--)
{

Final.f[i][j]—;
int q = i;

Final.addArc(cheapestLabel[i][path[i][j]], i, path[i][j], (int)c[i][path[i][j]]);
q = path[q][j];

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

while(q !=j)
{

Final.addArc(cheapestLabel[q][path[q][j]], q, path[q][j], (int)c[i][q]); ////l de
wenti!

q = path[q]D];

}
}

}
}

Final.leastCostPaths();
}

////////////EG end

////////////OpenEG
void OpenEG(GPP x)
{

for(int i = 0; i < N; i++)
for(int j = 0; j <N ;j+ +)
{

if(x.f[i][j] > 0)
{

for(int s = x.f[i][j]; s > 0; s—)
{

int q = i;
x.addArc(cheapestLabel[i] [path[i][j]],

path[i][j], (int)c[i][path[i][j]]);
q = path[q][j];
while(q != j)
{

x.addArc(cheapestLabel[q][path[q][j]], q, path[q](j], (int)c[i][q]); ////l de wen ti!
q = path[q][j];

}

}
}

x.leastCostPaths();
}

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

////////////End OpenEG

////////////OpenEGl
void OpenEGl (GPP x)
{

for(int i = 0; i < N; i++)
for(intj = 0; j < N ;j+ +)
{

if(x.f!i]D] > 0)
{

path[i]D], (int)c [i] [path [i] D]])»

for(int s = x.f[i][j]; s > 0; s -)
{

int q = i;
x.addArc(cheapestLabel[i][path[i][j]],

q = path[q][j];
while(q !=j)
{

x.addArc(cheapestLabel[q][path[q][j]], q, path[q][j], (int)c[i][q]); ////l de wen ti!
q = path[q][j];

}

}
}

x.leastCostPaths();
}

////////////////OpenEGl

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/////////////CPP
void CPP()

{
//leastCostPaths();
// checkValid();

Final.findUnbalanced();
Final.findFeasible();
while(improvements());
tcost = (int)cost();
EG();
in tr = -1;
r = VChange[0];
if(r != -1)

Final.printCPT(r);

}
/////////////end cpp

/////////////OpenCPP
void OpenCPPO

{
//leastCostPathsO;
// checkValidO;

OpenFinal .findUnbalanced();
OpenFinal.findFeasibleO;
while(improvementsO);
EG();
OpenFinal.printCPT(O);

}
/////////////end openCPP

float costO
{ return FBC+phi();
}

float phiO
{ float phi = 0;

for(int i = 0; i < N; i++)
for(int j = 0; j < N; j+ +)

phi += c[i][j]*Final.f[i][j];
return phi;

}

float Opencost(GPP x)
{ return FBC+Openphi(x);

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

float Openphi(GPP y)
{ float phi = 0;

for(int i = 0; i < N; i++)
for(int j = 0; j < N; j+ +)

phi+=c[i]D]*y.f[i]D];
return phi;

float OpenbestGraphphi()
{ float phi = 0;

for(int i = 0; i < N; i+ +)
for(in tj = 0; j < N ;j+ +)

phi +=
e [i] [j] * OpenbestGraph.ffi] [j];

return phi;
}

void checkValid()
{

for(int i = 0; i < N; i++)
{

strongly connected");

cycle");

}
}

for(int j = 0; j < N ;j+ +)
if(!defined[i][j]) throw new Error("Graph is not

if(c[i][i] < 0) throw new Error(" Graph has a negative

void solve(int check)
{
// getselectedArcs();

if(check ==1)
{

}

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

void resultQ

selectedGraph();
CC();
CG();
CompleteG();
MST();
UNZIP();
CPPQ;

for(int i = 0; i < N; i++)
{

for(int j = 0; j< N; j++)
{

III System.out.print(arcs[i][j]);

}
III System.out.println("");

}

for(int u = 0; u < selectedArcs.length; u++)
{

III System.out.print("" +selectedArcs[u]+"

}
III System.out.println("");

}

float OpenprintCPT(int startVertex)
{

GPP OpenbestGraph = null;
int bestCost = 0, cost;
int i = 0;
int k = 0;
intng[];

ng = new int[N];

do

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GPP g = new GPP(N+1);
GPP Tempi = new GPP(N+1);
for(int ii = 0; ii < N; ii++)

for(int j = 0; j < N ;j ++)
{

if(OpenFinal.arcs[ii][j] > 0)
for(int s = OpenFinal.arcs[ii][j]; s > 0; s~)
{

g.addArc(OpenFinal.label[ii][j].elementAt(s-l).toString(), ii, j, 1); III 1 de wenti!

Templ.addArc(OpenFinal.label[ii][j].elementAt(s-l).toString(), ii, j, 1); III 1 de
wen ti!

}
}

g.leastCostPaths();
Templ.leastCostPathsQ;

int b = 0;
cost = (int)FBC;
g.findUnbalanced();
Templ.findUnbalanced();
OpenFinal.findUnbalanced();

for(int kk = 0; kk < g.neg.length; kk++)
ng[kk] = g.neg[kk];

g.addArc('"virtual start'", N, startVertex, cost);
Templ.addArc('"virtual start'", N, startVertex, cost);

if (k = 0)
{

g.addArc("'virtual end'",
//

graph is Eulerian if neg.length=0

g.neg.length = 0? startVertex: g.neg[0], N, (int)cost);

Templ.addArc('"virtual end'",
//

graph is Eulerian if neg.length=0

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Templ.neg.length = 0? startVertex: Templ.neg[0], N, (int)cost);

}
if (k > 0)

g.addArc("'virtual end1",

Templ.addArc("'virtual end'",

}

g.findUnbalanced();
Templ.findUnbalancedO;
g.findFeasible();
Templ.findFeasible();
g.leastCostPaths();
Templ.leastCostPaths();
while(Openimprovements(g));
while(Openimprovements(Templ));
OpenEG(g);
OpenEGl (Tempi);

Opencost(g))

k = k+l;
if(OpenbestGraph = null || bestCost >

{
bestCost = (int)Opencost(g);
OpenbestGraph = Tempi;

}

i++;

}
while(i < OpenFinal.neg.length);

//I System.out.println("Open CPT from "+startVertex+" (ignore virtual
arcs)");

//System.out.println(N);

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OpenbestGraph.leastCostPaths();
OpenbestGraph.printCPT (N);
return bestCost;

}

int OpenGPP()
{

int besti = 0;
float bestCost = 0;

// for(int i = 0; i < N; i++)

" <
// System.out.println(" Solve from "+i);

float c = OpenprintCPT(O);
III System.out.println("Cost = "+c);

// if(i = 0 || c < bestCost)
// {

bestCost = c;
besti = 0;

// }
// }

//OpenbestGraph.printCPT (0);

III System.out.println("the best way: solve from " + besti);
III System.out.println("bestcost = "+bestCost);

return (int)bestCost;

///////////////original constructed graph
GPP OCG(int vertices, int Arcs)
{

GPP g = new GPP(vertices);
g.G = new OpenCP(vertices);
g.overarcs = false;
Random rl=new RandomQ;

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int N = vertices;
int[][] define;
int v l;
int v2;
int a = 0;

define = new int[N][N];
for(int ab = 0; ab < N; ab++)

for(int ba = 0; ba < N; ba++)
{

define[ab][ba] = -1;
g.NameNo[ab][ba] = 0;

}

boolean unfinished = true;

while(unfinished || a < Arcs)
{

v l =rl.nextInt(N);
v2 = r l .nextInt(N);
if(!g.defined[vl][v2] && v l != v2)/// add arcs to a

dircted connected graph first
{

g.addArc(String.valueOf(vl)+String.valueOf(v2)+String.valueOf(g.NameNo[v
l][v2]), v l, v 2 ,1);

g.G.addArc(String.valueOf(vl)+String.valueOf(v2)+String.valueOf(g.NameNo
[v l] [v 2]) ,v l ,v 2 ,1);

//g.G.addArc(String.valueOf(vl)+String.valueOf(v2), v l, v 2 ,1);
define[vl][v2] = 1;
g.NameNo[vl][v2]++;// for naming.
a++;

III System.out.println(a);
}
unfinished = false;
g.leastCostPathsO;
for(int i = 0; i < N; i++)

{
for(int j = 0; j < N; j++)

if(!g.defined[i][j]) unfinished = true;

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(vl != v2 && ! unfinished && a < Arcs)// afer
constructing DCG,adding the rest arcs.

{

g.addArc(String.valueOf(vl)+String.valueOf(v2)+String.valueOf(g.NameNo[v
l][v2]), v l, v2, 1);

g.G.addArc(String.valueOf(vl)+String.valueOf(v2)+String.valueOf(g.NameNo
[vl][v2]), v l, v 2 ,1);

define[vl][v2] = 1;

g.NameNo[vl][v2]-H-;// for naming.
a++;

//I
System.out.println(a);

g.leastCostPaths();

if(a > Arcs)
{

g.overarcs = true;
}

}
/*
g.addArc("01", 0 ,1 , l).addArc("02", 0 ,2 , l).addArc("03", 0,

3, l).addArc("10", 1,0, l).addArc("12", 1,2, l).addArc(”14", 1,4, l).addArc("21", 2 ,1 ,
l).addArc("34", 3 ,4 , l).addArc("42", 4 ,2 , l).addArc("43", 4 ,3 ,1);

g.G.addArc(M01", 0 ,1 , l).addArc("02", 0 ,2 , l).addArc("03",
0 .3 , l).addArc("10", 1,0, l).addArc("12", 1,2, l).addArc(”14", 1,4, l).addArc("21", 2,
1, l).addArc("34", 3 ,4 , l).addArc("42", 4 ,2 , l).addArc("43", 4, 3,1);

g.leastCostPaths();
g.overarcs = false;
*/
return g;

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

///////////////OCG end

GPP ROCG(int Vertices, int[][] A)
{

int Aa[][];

i);

GPP g = new GPP(Vertices);
g.G = new OpenCP(Vertices);
Aa = new int [Vertices][Vertices];

for (int o = 0; o < Vertices; o++)
for(int p = 0; p < Vertices; p++)
{

Aa[o][p] = A[o][p];
}

for(int i= 0; i< Vertices; i++)
for(int j= 0; j< Vertices; j++)
{

while(Aa[i][j]>0)
{

Aa[i][j]--;

g.addArc(String.valueOf(i)+String.valueOf(j)+String.valueOf(Aa[i][j]), i, j

g.G.addArc(String.valueOf(i)+String.valueOf(j)+String.valueOf(Aa[i]|j]),

}

}

return g;

}

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

///////////////MOCG
///////////////original constructed graph

GPP MOCG(int vertices, int Arcs)
{

GPP g = new GPP(vertices);
g.G = new OpenCP(vertices);
g.overarcs = false;
Random rl=new Random();
String QQ;
int N = vertices;
int[][] define;
int v l;
int v2;
int a = 0;

define = new int[N][N];
for(int ab = 0; ab < N; ab++)

for(int ba = 0; ba < N; ba++)
define[ab][ba] = -1;

boolean unfinished = true;

while(unfinished || a < Arcs)
{

v l = r l .nextInt(N);
v2 = rl .nextInt(N);
if(!g.defined[vl][v2] && v l != v2)
{

QQ = String.valueOf(a);

g.addArc(String.valueOf(vl)+String.valueOf(v2)+QQ, v l, v 2 ,1);

g.G.addArc(String.valueOf(vl)+String.valueOf(v2)+QQ, v l, v 2 ,1);

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//g.G.addArc(String.valueOf(vl)+String.valueOf(v2), v l, v 2 ,1);
define[vl][v2] = 1;
a++;

// System.out.println(a);
}
unfinished = false;
g.leastCostPaths();
for(int i = 0; i < N; i++)

{
for(int j = 0; j < N; j++)

if(!g.defined[i][j])
unfinished = true;

}

if(vl != v2 && ! unfinished && a < Arcs)
{

QQ =
String.valueOf(a);

g.addArc(String.valueOf(vl)+String.valueOf(v2)+QQ, v l, v 2 ,1);

g.G.addArc(String.valueOf(vl)+String.valueOf(v2)+QQ, v l, v 2 ,1);
define[vl][v2] = 1;
a++;

// System.out.println(a);
}

g.leastCostPaths();

if(a > Arcs)
{

g.overarcs = true;
}

l).addArc("12",
l).addArc("24",
l).addArc("40",

l).addArc("12",
l).addArc("24",
l).addArc("40",

/*
g.addArc("02", 0 ,2 , l).addArc("03", 0, 3, l).addArc("10", 1, 0,

1.2, l).addArc("13", 1,3, l).addArc("21", 2 ,1 , l).addArc("23", 2 ,3 ,
2 .4 , l).addArc("30", 3 ,0 , l).addArc("31”, 3 ,1 , l).addArc("32", 3 ,2 ,
4 .0 , l).addArc("41", 4 ,1 , l).addArc("42", 4 ,2 , l).addArc("43", 4, 3,1);

g.G.addArc("02", 0 ,2 , l).addArc(”03", 0, 3, l).addArc("10", 1, 0,
1.2, l).addArc("13", 1,3, l).addArc("21", 2 ,1 , l).addArc("23", 2, 3,
2 .4 , l).addArc("30", 3 ,0 , l).addArc("31", 3 ,1 , l).addArc("32", 3 ,2 ,
4 .0 , l).addArc("41", 4 ,1 , l).addArc(”42", 4 ,2 , l).addArc("43", 4 ,3 ,1);

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

g.leastCostPathsO;
g.overarcs = false;
*/
return g;

}

//////////////MOCGend

//////////////CPP functions

void CPPsolve()
{

CPPleastCostPaths();
CPPcheckValid();
CPPfindUnbalancedO;
CPPfindFeasible();
while(CPPimprovements());

void CPPleastCostPaths()
{

for(int k = 0; k < N; k + +)
for(int i = 0; i < N; i++)

if(defined[i][k])
for(int j = 0; j < N; j+ +)

if(defmed[k][j]

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

&& (!defined[i][j] ||
C[i][j]>c[i][k]+c[k]D]))

{ path[i][j] = path[i][k];
c[i][j] = c[i][k]+c[k]D]
defined[i][j] = true;
if(i — j && c[i][j] <

0) return; // stop on negative cycle
}

}

void CPPcheckValid()
{

for(int i = 0; i < N; i++)
{

for(int j = 0; j < N ;j+ +)
if(! defined [i] D]) throw new

Error("Graph is not strongly connected");
if(c[i][i] < 0) throw new

Error("Graph has a negative cycle");

}
//add end

}

// </tex><tex file-'cost.tex">
float CPPcost(int cost)
{ return cost+CPPphi();
}

float CPPphiO
{ float phi = 0;

for(int i = 0; i < N; i+ +)
for(int j = 0; j < N; j++)

phi += c[i][j]*f[i][j];
return phi;

}
//</tex><tex file="degrees.tex">

void CPPfindUnbalanced()
{ int nn = 0, np = 0; // number o f vertices o f negative/positive delta

for(int i = 0; i < N; i+ +)

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if(delta[i] < 0) nn++;
else if(delta[i] > 0) np++;

neg = new int[nn];
pos = new int[np];
nn = np = 0;
for(int i = 0; i < N; i+ +) // initialise sets

if(delta[i] < 0) neg[nn++] = i;
else if(delta[i] > 0) pos[np++] = i;

}
//</tex><tex file="greedy.tex">

void CPPfindFeasibleO
{ // delete next 3 lines to be faster, but non-reentrant

int delta[] = new int[N];
for(int i = 0; i < N; i+ +)

delta[i] = this.delta[i];

for(int u = 0; u < neg.length; u+ +)
{ int i = neg[u];

for(int v = 0; v < pos.length; v++)
{ in tj = pos[v];

f[i][j] = -delta[i] < delta[j]? -delta[i]: delta[j];
delta[i] += f[i][j];
delta[j] -= f[i][j];

}

// </tex><tex file="iterate.tex">
boolean CPPimprovements()
{ GPP residual = new GPP(N);

for(int u = 0; u < neg.length; u + +)
{ int i = neg[u];

for(int v = 0; v < pos.length; v + +)
{ in tj = pos[v];

residual.addArc(null, i, j, (int)c[i][j]);
if(f[i][j] != 0) residual.addArc(null, j, i, -

(int)c[i][j3);
}

}
residual.leastCostPaths(); // find a negative cycle
for(int i = 0; i < N; i+ +)

if(residual.c[i][i] < 0) // cancel the cycle (if any)
{ int k = 0, u, v;

boolean kunset = true;

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

u = i; do // find k to cancel
{ v = residual.path[u][i];

if(residual.c[u][v] < 0 && (kunset || k >
m m)

{ k = f[v][u];
kunset = false;

}
} while((u = v) != i);
u = i; do // cancel k along the cycle
{ v = residual.path[u] [i];

if(residual.c[u][v] < 0) f[v][u] -= k;
else f[u][v] += k;

} while((u = v) != i);
return true; // have another go

}
return false; // no improvements found

}

// </tex><tex file-'printCPT.tex">
static final int NONE = -1; // anything < 0

int CPPfindPath(int from, int f[][]) // find a path between unbalanced vertices
{ for(int i = 0; i < N; i+ +)

if(f[from][i] > 0) return i;
return NONE;

}

void CPPprintCPT(int startVertex)
{ int v = startVertex;

// delete next 7 lines to be faster, but non-reentrant
int arcs[][] = new int[N][N];
int f[][] = new int[N][N];
for(int i = 0; i < N; i+ +)

for(in tj = 0; j < N ;j+ +)
{ arcs[i][j] =this.arcs[i][j];

f[i][j] = this.f[i][j];
}

while(true)
{ int u = v;

if((v = findPath(u, f)) != N O N E)
{ f[u][v]~; // remove path

for(int p; u != v; u = p) // break down path into its
arcs

{ p = path[u][v];

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ill System.out.println("Take arc
"+cheapestLabel[u] [p]

III +" from "+u+" to "+p);
}

}
else
{ int bridge Vertex = path[u][startVertex];

if(arcs[u][bridgeVertex] = 0)
break; // finished if bridge already used

v = bridgeVertex;
for(int i = 0; i < N; i+ +) // find an unused arc,

using bridge last
if(i != bridgeVertex && arcs[u][i] > 0)
{ v = i;

break;
}

arcs[u][v]~; // decrement count o f parallel arcs
III System.out.println("Take arc

"+label[u] [v] .elementAt(arcs[u] [v])
HI +" from "+u+" to "+v); // use each arc

label in turn
}

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/////////////////////////////CPPfunctions end
//main

static public void main(String args[])
{

int[] presetupArcs;
int[] presetupVertices;
int[] presetupSubsets;
int[] presetup number;
int[] presetuptim es;
int presetupofiiumber = 1; //number o f trying

presetup_Arcs = new int[presetupofhumber];
presetupVertices = new int[presetupofnumber];
presetupSubsets = new int[presetupofiiumber];
presetupnum ber = new int[presetupofhumber];
presetuptim es = new int[presetupofhumber];

//definitaion the data for running;
presetup_Arcs[0] = 40;
presetup_Vertices[0] = 10;
presetup_Subsets[0] = 20;
presetup_number[0] = 20;
presetup_times[0] = 100;

/*
presetup_Arcs[l] = 20;
presetup_Vertices[l] = 6;
presetup_Subsets[l] = 5;
presetup_number[l] = 20;
presetup_times[l] = 10;

presetup_Arcs[2] = 20;
presetup_Vertices[2] = 8;
presetup_Subsets[2] = 5;
presetup_number[2] = 20;
presetup_times[2] = 10;

presetup_Arcs[3] = 20;
presetup_Vertices[3] = 10;
presetup_Subsets[3] = 5;
presetup_number[3] = 20;
presetup_times[3] = 10;

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

presetup_Arcs[4] = 20;
presetup_Vertices[4] = 12;
presetup_Subsets[4] = 5;
presetupjiumber[4] = 20;
presetup_times[4] = 10;

presetup_Arcs[5] = 20;
presetup_Vertices[5] = 14;
presetup_Subsets[5] = 5;
presetup_number[5] = 20;
presetup_times[5] = 10;

presetup_Arcs[6] = 20;
presetup_Vertices[6] = 16;
presetup_Subsets[6] = 5;
presetup_number[6] = 20;
presetup_times[6] = 10;

presetup_Arcs[6] = 30;
presetup_Vertices[6] = 24;
presetup_Subsets[6] = 5;
presetup_number[6] = 30;
presetup_times[6] = 10;

presetup_Arcs[7] = 20;
presetup_Vertices[7] = 10;
presetup_Subsets[7] = 5;
presetup_number[7] = 20;
presetup_times[7] = 10;

presetup_Arcs[8] = 22;
presetup_Vertices[8] = 10;
presetup_Subsets[8] = 5;
presetup_number[8] = 22;
presetup_times[8] = 10;

presetup_Arcs[9] = 24;
presetup_Vertices[9] = 10;
presetup_Subsets[9] = 5;
presetup_number[9] = 24;
presetup_times[9] = 10;

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

presetup_Arcs[10] = 26;
presetup_Vertices[10] = 10;
presetup_Subsets[10] = 5;
presetup_number[10] = 26;
presetup_times[10] = 10;

presetup_Arcs[l 1] = 28;
presetup_Vertices[ll] = 10;
presetup_Subsets[ll] = 5;
presetup_number[l 1] = 28;
presetup_times[l 1] = 10;

presetup_Arcs[12] = 30;
presetup_Vertices[12] = 10;
presetup_Subsets[12] = 5;
presetup_nnmber[12] = 30;
presetup_times[12] = 10;

presetup_Arcs[13] = 32;
presetup_Vertices[13] = 10;
presetup_Subsets[13] = 5;
presetup_number[13] = 32;
presetup_times[13] = 10;

presetup_Arcs[14] = 34;
presetup_Vertices[14] = 10;
presetup_Subsets[14] = 5;
presetup_number[14] = 34;
presetup_times[14] = 10;

presetup_Arcs[15] = 10;
presetup_Vertices[15] = 20;
presetup_Subsets[15] = 5;
presetup_number[15] = 20;
presetup_times[15] = 10;

presetup_Arcs[16] = 10;
presetup_Vertices[16] = 20;
presetup_Subsets[16] = 7;

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

presetup_number[16] = 20;
presetup_times[16] = 10;

presetup_Arcs[17] = 10;
presetup_Vertices[17] = 20;
presetup_Subsets[17] = 9;
presetup_number[17] = 20;
presetup_times[17] = 10;

presetup_Arcs[18] = 10;
presetup_Vertices[18] = 20;
presetup_Subsets[18] = 11;
presetup_number[18] = 20;
presetup_times[18] = 10;

presetup_Arcs[19] = 10;
presetup_Vertices[19] = 20;
presetup_Subsets[19] = 13;
presetup_number[19] = 20;
presetup_times[19] = 10;

presetup_Arcs[19] = 10;
presetup_Vertices[19] = 20;
presetup_Subsets[19] = 15;
presetup_number[19] = 20;
presetup_times[19] = 10;

presetup_Arcs[20] = 10;
presetup_Yertices[20] = 20;
presetup_Subsets[20] = 17;
presetup_number[20] = 20;
presetup_times[20] = 10;

presetup_Arcs[21] = 10;
presetup_Vertices[21] = 20;
presetup_Subsets[21] = 19;
presetup_number[21] = 20;

presetup_times[21] = 10;

presetup_Arcs[22] = 10;
presetup_Vertices[22] = 20;
presetup_Subsets[22] = 20;
presetup_number[22] = 20;
presetup_times[22] = 10;
*/
for(int v =0; v < presetupofiiumber; v++)

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{

long OpenCPP = 0;
long OpenGPP = 0;
long TOpenCPP = 0;
long TOpenGPP = 0;
double result = 0;

System.out.println("No." + v);
System.out.println("Arcs =" + presetup_Arcs[v] + "

Vertices =" + presetup_Vertices[v] + " Subsets =" + presetup_Subsets[v]);

which does not belong to subsets.

for(int utral = 0; utral < presetup_times[v]; utral++)
{

int tem;
int In = 1;
int bests=1000000;
String[] SS;
int Arcs = presetup_Arcs[v];
int Vertices = presetup_Vertices[v];
int Subsets = presetup_Subsets[v];
int Number = presetup_number[v]; // the arcs

in RPP

a fit graph.

int ADD;
String SAD;

SS = new String[Arcs-Number+Subsets]; //the arcs

A = new int[V ertices] [V ertices];
SA = new String [Number];
GPP PP = new GPP(Vertices);
PP.overarcs = true;
PP.timecost("start");
int timetempl = PP.timestart;

while(PP.overarcs)
{

PP = PP.OCG(Vertices,Arcs); //consturct

}

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for(int a = 0; a < Vertices; a++)
for(int b = 0; b < Vertices; b++)
{

A[a][b] = PP.arcs[a][b];
}

PP.getArcl (Number, Subsets, Vertices, A);

//I System.out.println("hh ="+ hh);
SA =

PP.getArc2(Number,Subsets,Vertices,Arcs,PP.AA);
GPP GG = new GPP(Vertices);

GG = GG.ROCG(V ertices, A);
GG. selected Arcs = SA;
GG.overarcs = PP.overarcs;

if(!GG.overarcs)
{

GG.leastCostPaths();
GG.checkV alid();

// GG.leastCostPathsO;
GG.result();
GG.solve(l);
GG.OpenGPPO;

tem = GG.OpenGPP();
if(tem < bests)
{

SS = SA;
bests = tem;

}
}

GG.timecost("end");
GG.timecost = GG.timeend - timetempl;
TOpenGPP = GG.timecost + TOpenGPP;

GPP Q Q- new GPP(Vertices);

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

QQ = QQ.ROCG(Vertices,A);
QQ.selectedArcs = SS;

QQ.leastCostPaths();
QQ.checkValid();
QQ.leastCostPaths();

III System.out.println("");
HI System.out.println("");
III System.out.println("");
III

System out println("************************")'
III System.out.println("the bestone of

OpenGPP:");
QQ.result();
QQ.solve(l);

OpenGPP = QQ.OpenGPP()+OpenGPP;
III System.out.println(7////////////OpenCPP");

//QQ.timecost("start");
OpenCPP = OpenCPP + QQ.G.testO;
//QQ.timecost("end");
TOpenCPP = QQ.timecost + TOpenCPP;

}

System.out.println("Final result!");
result =(float)OpenGPP/(float)OpenCPP;

System.out.println("OpenGPP:"+OpenGPP+","+"OpenCPP:"+OpenCPP);
System.out.println(result);
float Tresult

=(float)T OpenGPP/(float)T OpenCPP;

System.out.println("TOpenGPP:"+TOpenGPP+","+"TOpenCPP:"+TOpenCPP);
System.out.println(Tresult);

III System.out.print("succeed!");

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}

class OpenCP
{ class Arc

{ String lab; int u, v; float cost;
Arc(String lab, int u, int v, float cost)
{ this.lab = lab;

this.u = u;
this.v = v;
this.cost = cost;

}
}
Vector arcs = new Vector();
intN ;

OpenCP(int vertices)
{ N = vertices;
}

OpenCP addArc(String lab, int u, int v, float cost)
{ if(cost < 0) throw new Error("Graph has negative costs");

arcs.addElement(new Arc(lab, u, v, cost));
return this;

}

float printCPT(int startVertex)
{

GPP bestGraph = null, g, tempi = null;
float bestCost = 0, cost;
int i = 0;
int k = 0;
int ng[];
int length;
ng = new int[N];

do
{ int b = 0;

g = new GPP(N+1);
for(int j = 0; j < arcs.size(); j+ +)
{ Arc it = (Arc) arcs.elementAt(j);

g.addArc(it.lab, it.u, it.v, (int)it.cost);
}
cost = g.basicCost;
g.CPPfindUnbalancedQ; // initialise g.neg on original graph

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

length = g.neg.length;
for(int kk = 0; kk < g.neg.length; kk++)

ng[kk] = g.neg[kk];

g.addArc('"virtual start'", N, startVertex, (int)cost);

if (k = 0)
{

g.addArc("'virtual end"

Eulerian if neg.length=0

== 0? startVertex: g.neg[0], N, (int)cost);
}
if (k > 0)

end'",

Eulerian if neg.length=0

= 0? startVertex: ng[i], N, (int)cost);

// graph is

g.neg.length

g.addArc('"virtual

// graph is

g.neg.length

}

//I
arcs)");

//</tex>

g.CPPsolve();
k = k+1;
if(bestGraph == null || bestCost > g.CPPcost((int)cost))
{ bestCost = g.CPPcost((int)cost);

bestGraph - g;
}

} while(++i < length);

System.out.println("Open CPT from "+startVertex+" (ignore virtual

bestGraph. CPPprintCPT (N);
return cost+bestGraph.CPPphi();

int test()
{

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I I create a graph of four vertices
// add the arcs for the example graph

//
//
III

III
II
II

II
II

III

III
III

}
// <tex file="open.tex">

}

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int besti = 0;
float bestCost = 0;
for(int i = 0; i < N; i+ +)
{

System.out.println(" Solve from "+0);
float c = this.printCPT(O);
System.out.println("Cost = "+c);
if(i = 0 || c < bestCost)
{

bestCost = c;
besti = 0;

}
}

System.out.println("// <tex file=\"open.tex\">");
this.printCPT (besti);

System.out.println("Cost = "+bestCost);
System.out.println("//</tex>");
return (int) bestCost;

VITA AUCTORIS

Name: Wang, Xiao

Place o f Birth: Chengdu, China

Year of Birth: 1974

Education: University o f Windsor, Windsor, Ontario, Canada

2002-2006 M.Sc. in Computer Science

Tsinghua University, Beijing, China

B.Eng. in Computer Science and Engineering

Working Experience:

Software Developer, I B M , Southbury CT, USA, 2006 ~ Present

Software Developer, Iconomics Inc, Toronto, Canada, 2004-2006

Software Developer, JCS Ltd. Yasu, Japan, 1998-2002

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Efficient test sequence generation for Web applications with frames.
	Recommended Citation

	tmp.1507664919.pdf.yqdC2

