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ABSTRACT

Clustering approach is considered a management technology that arranged the distributed cog-

nitive radio users into logical groups to improve the sensing performance of the network. A lot of

works in this area showed that cluster-based spectrum sensing (CBSS) technique efficiently tackled

the trade-off between performance and overhead issue. By employing the tree structure of the clus-

ter, a multilevel hierarchical cluster-based spectrum sensing (MH-CBSS) algorithm was proposed

to compromise between the gained performance and incurred overhead. However, the MH-CBSS

iterative algorithm incurs high computational requirements. In this thesis, an energy-efficient low

computational hierarchical cluster-based algorithm is proposed which reduces the incurred compu-

tational burden. This is achieved by predetermining the number of cognitive radios (CRs) in the

cluster, which provides an advantage of reducing the number of iterations of the MH-CBSS algo-

rithm. Furthermore, for a comprehensive study, the modified algorithm is investigated over both

Rayleigh and Nakagami fading channels. Simulation results show that the detection performance of

the modified algorithm outperforms the MH-CBSS algorithm over Rayleigh and Nakagami fading

channels. In addition, a conventional energy detection algorithm is a fixed threshold based algo-

rithm. Therefore, the threshold should be selected properly since it significantly affects the sensing

performance of energy detector. For this reason, an energy-efficient hierarchical cluster-based co-

operative spectrum sensing algorithm with an adaptive threshold is proposed which enables the CR

dynamically adapts its threshold to achieve the minimum total cluster error. Besides, the optimal

threshold level for minimizing the overall cluster detection error rate is numerically determined.

The detection performance of the proposed algorithm is presented and evaluated through simulation

results.
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CHAPTER 1

Introduction

The emergence of new applications coupled with the demand for higher data rates

are growing because of the wide diversity of wireless devices and technologies. Radio

frequency spectrum is getting extensively more congested. On top of that, given the limi-

tations of the natural frequency spectrum, it becomes apparent that the existing static fre-

quency allocation policy result in spectrum scarcity (i.e., spectrum underutilization). Spec-

trum utilization can be improved substantially by making it possible for an unlicensed user

to exploit the unoccupied spectrum band (i.e., spectrum holes ) of the primary user dynam-

ically at a certain time and a specific geographic region.

A promising technique to deal with the problem of spectrum underutilization is cogni-

tive radio (CR) technology. An essential function of the CR is to be aware of the primary

user (PU) signals characteristics and, be able to learn and adapt its transmission parame-

ters based on its own observations from the surrounding environment along with the CR

users needs. Cognitive radio (CR) is a revolutionary technology proposed to perform dy-

namic spectrum access (DSA) techniques, which enables the unlicensed user to access the

licensed user band with flexibility and minimum disturbance [2, 3].

1



1. INTRODUCTION

Spectrum sensing is considered the most significant element to establish CR networks

through which the CR identify the existence of the PU signal to improve spectrum utiliza-

tion [2, 4]. When a particular frequency band is detected as unused by the licensed user

at a specific time and selected geographical position, the secondary users (SUs) can utilize

the spectrum (i.e., a spectrum opportunity can be found). Accordingly, spectrum sensing

can be executed across the domains of time, frequency, and space [1]. The detection per-

formance of CR user often critically deteriorates due to destructive radio circumstances

such as deep multipath fading and heavy shadowing. As result, CR user may not be able

to identify the existence of a primary transmitter (i.e., hidden terminal problem) [13]. Con-

sequently, individual spectrum sensing cannot guarantee the desired reliability. To ensure

accurate sensing results, cooperative detection approaches are implemented to alleviate this

problem. Cooperative detection refers to spectrum sensing methods that allow many cog-

nitive radios to share their local sensing information for more accurate primary transmitter

detection. Cooperative spectrum sensing (CSS) procedure enhances the accuracy and re-

liability of cooperation gain (i.e., detection performance improvement) and mitigates the

impact of harsh radio environment conditions. However, this improvement may also incur

numerous collaboration costs (i.e., additional energy consumption, time, and complexity),

which limit or even compromise the achievable cooperative gain. Thus, striking a bal-

ance between enhancing the collaboration gain and reducing the incurred overhead is an

essential objective in CSS.

Therefore, the principle of clustering was imposed to CSS to enhance the performance

while alleviating the overhead issue. Many works in this field revealed that cluster-based

spectrum sensing (CBSS) technique efficiently addressed the trade-off the between perfor-

2



1. INTRODUCTION

mance and overhead issue. However, the design of energy efficient CBSS system is still

considered a significant design issue in cognitive radio networks (CRNs).

1.1 Motivation and Research Objectives

Recently, the trend of research concentrates on designing an energy efficient CBSS system

to strike a stability between the performance and cost (i.e., overhead). An iterative algo-

rithm was introduced in [34] to develop multi-level hierarchical cluster based spectrum

sensing (MH-CBSS) algorithm to balance between the achieved performance and incurred

overhead. This performed by employing double fusion stages to reduce control overhead

for a cluster with a significant number of devices. However, the MH-CBSS iterative al-

gorithm incurs high computational burden. Moreover, most energy detection algorithms

assume fixed detection threshold to differentiate between the PU signal and the noise. The

performance of the energy detector depends considerably on the setting of the threshold.

Therefore, it is crucial to set a proper threshold for the energy detector to gain a reliable

and robust sensing ability.

The research work takes into consideration the following objectives.

1. Designing an energy efficient low computational hierarchical cluster-based CSS sys-

tem over Rayleigh and Nakagami fading channels.

2. Designing an energy efficient hierarchical cluster-based CSS system with an adaptive

threshold over Rayleigh fading channels.

3



1. INTRODUCTION

1.2 Research Contributions and Significances

The two main contributions of this thesis are provided as follows:

1. Energy-efficient low computational hierarchical cluster-based cooperative spectrum

sensing for CRNs.

In previous research an iterative algorithm was developed in [34] to construct a multi-

level hierarchical cluster based spectrum sensing MH-CBSS algorithm that compro-

mise between the gained performances and incurred overhead. The MH-CBSS al-

gorithm outperforms both the Conventional CBSS and MCMG algorithm in terms

of probability of detection, throughput and reporting overhead. However, the MH-

CBSS iterative algorithm incurs high computational requirements. In this thesis, we

propose a modified version of the MH-CBSS algorithm that reduces the incurred

computational burden. Moreover, we compare both versions over both Rayleigh and

Nakagami fading channels. Simulation results show that the detection performance

of the modified algorithm outperforms the MH-CBSS algorithm over Rayleigh and

Nakagami fading channels.

2. Energy-efficient adaptive threshold based on hierarchical CBSS for energy detection.

The second contribution developed the proposed MH-CBSS algorithm by consider-

ing the adaptive threshold instead of the conventional fixed threshold. A low compu-

tational energy-efficient hierarchical cluster-based spectrum sensing with an adaptive

threshold is proposed. The proposed algorithm enables the CR dynamically adapts its

4



1. INTRODUCTION

threshold to achieve the minimum total cluster error. Moreover, the optimal threshold

level for minimizing the overall cluster error rate is numerically determined. The de-

tection performance of the proposed algorithm has been investigated and compared

with the conventional fixed threshold over Rayleigh fading channels. The simula-

tion results have shown that the proposed algorithm can provide higher primary user

protection by improving the detection performance.

1.3 Outline of the Thesis

The thesis is organized as follows: Chapter 2 provides an overview and background of

spectrum sensing in cognitive radio networks used in this thesis including local spectrum

sensing, cooperative spectrum sensing (CSS), the gain and overhead trade-off in CSS, and

cluster-based CSS. An energy-efficient low computational hierarchical cluster-based spec-

trum sensing algorithm is introduced in Chapter 3 which reduces the complexity of the

MH-CBSS algorithm. The work in Chapter 4 considers the adaptive threshold instead

of the conventional fixed threshold which enables the CR dynamically adapts its energy

threshold to achieve the minimal total cluster error. Moreover, the optimal threshold level

for minimizing the overall cluster detection error rate is numerically determined. Conclu-

sions and recommendations are shown in Chapter 5 .

5



CHAPTER 2

An Overview of Spectrum Sensing in

Cognitive Radio Networks

2.1 Introduction

Recently, the growth of wireless technologies and services has contributed to the insuffi-

cient utilization of available wireless resources and has increased the demands for extra

bandwidths and higher data rates. This is exacerbated by the unexpected evolution of mul-

timedia technologies and excessive development of its applications and subscribers which

has led to the recent spectrum scarcity problem. Moreover, it becomes noticeable that the

fixed spectrum assignment policies that are enforced by regulatory bodies and the gov-

ernment agencies are unable to satisfy the requirements of increasing number of higher

data rate devices [1]. Consequently, innovative approaches that can offer new methods of

exploiting the available spectrum are required.

A promising approach to tackle the problem of spectrum underutilization is cognitive

radio CR technology. A fundamental function of the CR is to be able to sense, learn,

6



2. AN OVERVIEW OF SPECTRUM SENSING IN COGNITIVE RADIO NETWORKS

and be aware of the PU signals characteristics. It is intended to take advantage of the

underutilized licensed spectrum by dynamically exploiting the local vacant spectrum bands

of the primary users (i.e., licensed users) during their inactive periods by secondary users

(i.e., unlicensed users). Cognitive radio (CR) is a revolutionary technology proposed to

perform dynamic spectrum access (DSA) techniques, which enables unauthorized user to

access licensed user band with flexibility and minimum interference [2, 3].

2.2 Local Spectrum Sensing

Spectrum sensing is considered the most important functional element to establish CR net-

works through which the CR identify the existence of the PU signal to improve spectrum

utilization [2, 4]. Detecting the presence of the PU is mainly based on spectrum sensing

hypotheses, which are defined as:

Testing hypotheses =


H0 (idle channel) y(n) = w(n)

H1 (occupied channel) y(n) = h(n)× x(n) + w(n)

(2.1)

where H0 and H1 , are the hypotheses for absence and presence of the PU, respectively.

y(n) is a signal received by the CR, x(n) is the PU transmitted signal, w(n) is the received

noise, and h(n) is the channel gain between the CR and PU. n = 1, 2...,Ms , where Ms is

the number of sensing samples [5].

Different methods have been suggested to perform local spectrum (LSS) sensing such

7



2. AN OVERVIEW OF SPECTRUM SENSING IN COGNITIVE RADIO NETWORKS

as energy detectors [5], cyclostationary detectors [7], matched filter [1], and eigenvalue-

based detectors. However, while each method has its advantages, there are disadvantages.

2.2.1 Energy Detector

Energy detector is the most widely used technique in spectrum sensing due to its simple

hardware implementation, low computational, and execution requirements as it requires no

prior knowledge of PU signal’s characteristics. In the energy detection method, CR users

detect the existence/absence of a primary user through the energy of a received PU signal.

First, the energy detector filters out the desired signal from the unwanted frequency band.

Then, the received signal samples from the filter are squared and summed. Eventually, the

accumulated energy of theMs observation samples is compared with a predefined threshold

to decide whether a primary user is present or not. The energy detector block diagram is

given in Fig. 2.1, and the test statistic of the energy detector T (y) is determined as follows

[5]:

T (y) =
Ms∑
n=1

|y(n)|2 (2.2)

There are three main drawbacks to the energy detector scheme : (1) its setting of detection

threshold, which should be selected carefully since it significantly affects the sensing per-

formance of energy detection; (2) its poor performance at low signal-to-noise ratio (SNR)

values; and (3) its inability to determine the presence of the signal in another wards it

cannot distinguish among PU signals, secondary user signals and noise [6].

8



2. AN OVERVIEW OF SPECTRUM SENSING IN COGNITIVE RADIO NETWORKS

Figure 2.1: Diagram of energy detector.

2.2.2 Matched Filter

Its distinctive feature is the low execution time, but it demands full knowledge about the PU

signal properties. Furthermore, perfect synchronization between the primary transmitter

and cognitive radio user is needed. However, the main impairment of this method is the

fact that its hardware implementation is complicated and it requires high computational

complexity [1, 8].

2.2.3 Cyclostationarity Feature Detection

If partial knowledge about the primary user PU signal existed, feature detection might be

employed. It usually exploits the periodicity in the received PU signal, which is frequently

caused by the sine waves, pulse sequences or cyclic prefixes during modulation. Moreover,

the statistical parameter of the primary user modulated signal, such as mean and autocor-

relation, may also vary periodically, therefore, such statistical periodicity can be applied

to identify the occupation of PUs signal. Unlike the energy detector, the feature detector

is more effective with respect to noise uncertainty. In addition, it can distinguish between

the noise and the PU signal which requires more computational complexity and hardware

implementation [7].

9



2. AN OVERVIEW OF SPECTRUM SENSING IN COGNITIVE RADIO NETWORKS

2.2.4 Maximum-Minimum Eigenvalue (MME) Detector

MME detector is considered a blind spectrum sensing technique where the PU signal char-

acteristics (i.e., expected received SNR, the typical values of the occupied bandwidth, and

on top of that, the noise energy inside the band of interest ) are concealed for the CR

user. The distribution of the eigenvalues of the covariance matrix of the received signal

has recently provided an attractive research topic. MME detection begins by estimating the

sample covariance matrix (SCM) of the received signal. Then, the ratio of the maximum

eigenvalue to the minimum eigenvalue can be utilized to detect the presence/absence of

the PU signal. High probability of detection can be accomplished using MME detector,

particularly at low SNR. However, this will be at the price of higher hardware complexity

[9, 10].

A crucial factor in the success of cognitive transmission is the reliability of the obtained

results from the spectrum sensing process. However, the detection performance of cogni-

tive radio CR often harshly deteriorates due to adverse radio conditions (i.e., multipath

fading and shadowing) [11]. Consequently, individual spectrum sensing cannot guarantee

the desired reliability. To ensure accurate sensing results, CSS was proposed as an effective

approach to mitigate the consequence of radio environment conditions and to improve the

detection performance of the CRs.

2.3 Models of Cooperative Spectrum Sensing

To improve the performance of spectrum sensing especially when CR users experience

unfavorable radio conditions, different secondary users allowed to collaborate by sharing

10
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Figure 2.2: Models of cooperative spectrum sensing: (a) centralized, (b) distributed, and
(c) relay-assisted.

their information. As a result, the participation greatly improves the probability of detection

and the throughput while reducing the required sensing time [13]. There are three popular

models for CSS networks that are classified based on how the collaborative SUs share the

sensing information in the network: centralized CSS, decentralized CSS, and relay assisted

CSS, as shown in Fig. 2.2, [2].

2.3.1 Centralized Cooperative Spectrum Sensing

In centralized cooperative spectrum sensing (CCSS), a central unit (i.e., Fusion Center,

Base station) accumulates the sensing information from cognitive radio devices. First,

every single cooperating CR performs local sensing autonomously to measure the signal of

PU user. CR makes its decision about the existence of PU signal based on its local sensing

information. Second, each CR reports its decision to the fusion center (FC) via reporting

channel. The decision can be done in either one-bit form (i.e., hard-based scheme) or as

large quantized number of bits form (i.e., soft-based scheme). Third, the central unit fuses

all the received local decisions of collaborating CRs and then diffuses the final decision
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back, which is made according to a predefined rule, called fusion rule (FR) [2, 13].

In the case of a hard decision fusion scheme, the most well-known FR is the K-out-of-

N rule, where CRs report their local decisions as one bit (i.e., ui = 0, 1). if ui = 1, then

the CR decides that the spectrum is used. Otherwise, the spectrum is recognized as unused

by the ith CR. In this rule, N is the total number of reported local decisions, and K is a

predefined integer between 1 and N . The concept of this rule is to compare the number of

CRs whose local decisions have been received as 1 to K. If it is larger than or equal to K,

then the spectrum is defined as used. Otherwise, the spectrum is determined to be unused.

The following equation describes the function of K-out-of-N rule.

Final decision =


used If

∑N
i=1 ui ≥ K

unused If
∑N

i=1 ui < K

(2.3)

OR and AND rule are considered special cases of the general K-out-of-N rule when

K is 1 or N respectively [12, 14].

While in the case of a soft decision fusion scheme, CR users forward the entire sens-

ing decision to the central unit as energy. Equal gain combination (EGC), maximal ratio

combination (MRC), and square law combination (SLC) are the most widely adopted soft

combining procedures. Though the soft scheme improves the reliability of centralized CSS

decision, it may increase the overhead (i.e., bandwidth and power consumption) during

reporting to central unit [15].

Many approaches were aimed at enhancing the detection performance such as the prob-

ability of detection and throughput which defined as the average successfully transmitted

12
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data by the involved CRs in CSS. As a result, a trade-off between the detection performance

and the incurred overhead (i.e., energy consumptions, time costs and bandwidth occupa-

tion) should be analyzed carefully before designing the centralized CSS model. Therefore,

many researchers have studied the trade-off between performance and overhead. Some

researchers focused on optimizing different parameters of K-out-of-N rule targeting dif-

ferent objectives. For example, the researchers in [16] optimize theN (i.e., the total number

of CRs) following two different scenarios: an energy-efficient setup and a throughput op-

timization setup. Moreover, a novel report scheme was introduced in [17], and it reduces

the power consumption considerably by decreasing the number of reporting CRs without

affecting the detection accuracy. A double thresholds fusion scheme was proposed in [18]

to reduce the transmitted information and the incurred overhead while keeping the required

detection performance.

2.3.2 Decentralized Cooperative Spectrum Sensing

This model implies the establishment of the CRs network without need for a central unit. In

this model, each CR takes part to make the cooperative decision. At first, each CR senses

the spectrum autonomously and regularly. Then every CR builds up a communication

link with other CRs and shares the information about the present or absence of PU. Next,

each cognitive radio makes its final decision based on the gathered information from other

CRs and its local decision. Finally, if a definitive agreement about the PU existence is not

achieved, the procedure is repeated until a final agreement is accomplished [19]. Compared

with the centralized model, the distributed scheme is more favorable as there is no need for

13



2. AN OVERVIEW OF SPECTRUM SENSING IN COGNITIVE RADIO NETWORKS

a backbone infrastructure and because it can reduce costs [1].

2.3.3 Relay Assisted Cooperative Spectrum Sensing

The cooperative relay is regarded as a key technology to develop spectrum diversity in the

cognitive radio network and combat the influence of fading and shadowing in wireless com-

munication networks. The underlying mechanism is to exploit the space diversity available

among cooperating CRs. Some CR users do not require the entire accessible spectrum due

to the low traffic demands (i.e., strong reporting channel and weak sensing channel). Those

CR users can serve as relays or helpers that assist in forwarding the sensing results from

the CR users who observe strong PU signal and low reporting channel [2, 20].

In this model, two relaying schemes are used most often: the amplify and forward (AF)

protocol, and the decode and forward (DF) protocol. In AF scheme, CR simply ampli-

fies and retransmits the noisy version of the received primary user signal to another CR

in the network [21]-[23]. The relay based CSS was considered in [22] over Rayleigh fad-

ing channels. The relay CRs used an amplify-and-forward relaying strategy to deliver the

information from primary user to cognitive center. Both single relay and multiple relays

procedures are utilized. Moreover, two phenomena were evaluated: the impact of relays

location between the primary user and cognitive receiver, and the effect of path loss by

measuring the probability of false alarm and probability of detection. In [23], the authors

analyzed the performance of the amplify-and-forward (AF) relay-based cooperative spec-

trum sensing system with generalized selection combining (GSC) over a Rayleigh fading

channel. In addition, they derived a novel mathematical formulae for the average detection
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Figure 2.3: Cooperative Spectrum Sensing detection under highly faded and shadowed
environment.

probability. The results were compared with the conventional diversity-combining schemes

such as maximal-ratio-combining (MRC) and selection-combining (SC) schemes. It was

shown that the GSC receivers achieve a more balanced compromise between the receiver

performance and the implementation complexity compared to the MRC receivers.

2.4 Gain and Overhead Trade-off in CSS

Cooperative spectrum sensing CSS has been proposed to improve spectrum sensing capa-

bilities over wireless channels. This procedure enhances the accuracy and reliability of co-

operation gain (i.e., detection performance improvement) and mitigates the impact of harsh

radio environment conditions. However, this improvement may also incur various collab-
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oration costs (i.e., additional energy consumption, time, and complexity), which limit or

even compromise the achievable cooperative gain. Therefore, striking a balance between

enhancing the cooperation gain and reducing the incurred overhead is a crucial purpose in

CSS. For the sake of achieving a compromise between the gain and the cost, many factors

should be taken into account. One of these important factors is channel impairments.

2.4.1 Channel Impairments

In broadcast communication networks, as the radio waves travel from the transmitter to

the receiver, the signal power could severely weaken due to harsh radio conditions, such

as heavy shadowing and deep multipath fading. As a result, detection performance (i.e.,

cooperation gain) becomes progressively worse. At this point, the cooperative gain can be

achieved by employing the concept of cooperative spectrum sensing to combat such effect.

The constructive and destructive combination of reflected, scattered and diffracted sig-

nal components of the PU signal creates a multipath fading effect. This impact results in

multiple replicas of the transmitted signal that experience different attenuation and vari-

ations (i.e., envelope and phase fluctuations) at the receiver side. In addition, the fading

caused by obstacles (i.e., natural or human-made features) in the radio bath affects the

wave propagation between the PU transmitter and CRs. This is referred to as shadowing.

Both of these effects can be seen in Fig. 2.3, [24].
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2.4.2 Models of Fading Channels

The nature of the radio propagation environment can influence how effectively different

models describe the statistical behavior of the multipath fading envelope.

2.4.2.1 Rayleigh Fading Channel

In the Rayleigh fading scheme the magnitude of a signal that has transmitted through a com-

munications channel will fluctuate randomly according to a Rayleigh distribution. Also,

Rayleigh fading is considered the most applicable model when there is no direct line of

sight (LOS) path (i.e., radio waves travel in a direct path from the transmitter to the re-

ceiver).

The probability density function (pdf) of the signal-to-noise ratio (SNR), γ, over a

Rayleigh fading channel is given by

f(γ) =
1

γ̄
e−

γ
γ̄ , γ ≥ 0 (2.4)

where γ̄ is the average SNR [25].

2.4.2.2 Rician Fading Channel

It is usually utilized to model scattering environment consisting of one strong direct LOS

component and several random contributions with less amplitude. In this situation, the

fading channel of the received signal is characterized by a Rician distribution. Its pdf is

given by
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f(γ) =
K̄ + 1

γ̄
e

(
−K̄− (K̄+1) γ

γ̄

)
I0

√K̄(K̄ + 1)γ

γ̄

, γ ≥ 0 (2.5)

where K̄ is the Rice factor and I0 is the 0th order modified Bessel function of the first

kind [26].

2.4.2.3 Nakagami Fading Channel

The Nakagami-m distribution was introduced by Nakagami in the early 1940s to describe

the rapid fading in long-distance high-frequency (HF) channels. It provides greater flexi-

bility and accuracy in matching some empirical data than the Rayleigh and Rician distri-

butions. The Nakagami-m distribution describes the magnitude of the received envelope

which follows the gamma distribution [28]. Hence, the pdf of Nakagami-m channel is:

f(γ) =
1

Γ (m)

(
m

γ̄

)m
γm−1 e(−m

γ̄
)γ, γ ≥ 0 (2.6)

where m is the Nakagami parameter and Γ (m) is the Gamma function.

The Nakagami-m distribution can represent different models of fading environments.

It is a general case that includes the one-sided Gaussian distribution (m = 1/2) and the

Rayleigh distribution (m = 1) as special cases. Furthermore, when m > 1 a close ap-

proximation can be used to obtain a Rician distribution. When the limit of (m → ∞),

the Nakagami-m fading channel converges to a non-fading additive white gausain noise

(AWGN) channel [26].

The performance of energy detector was presented in [29] for an unknown transmitted

signal under both AWGN and different multipath fading channels. Closed form expressions
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for the probability of detection and the probability of false alarm over Rayleigh and Nak-

agami fading channels were proposed. The work also investigated the impact of diversity

on Rayleigh channels. The results revealed an improvement in detection capability, espe-

cially for relatively low power applications when soft decision fusion rules, such square

law combining (SLC), and square law selection (SLS) were employed.

The authors of [26] examined the performance of cooperative spectrum sensing CSS

over different multipath fading channels such as Rayleigh, Nakagami, and Rician fading

channels. Closed-form expressions of the average detection probability are employed to

provide a comprehensive study of cooperative energy detection in various fading channels.

It has been found that the cooperative among cognitive radios guarantees the enhancement

of the detection performance by employing different data fusion rules. A comparison be-

tween the performances in these channels was presented and showed that spectrum sensing

performance is lower in the presence of Rayleigh, Ricean, and Nakagami fading when com-

pared to an AWGN channel. Further, because of the LoS path, the sensing performance of

a Ricean channel is better than the other fading channels.

The influence of shadowing on the performance of the CSS system was viewed in [27].

In the study, an analytical framework was provided for the analysis and design of coopera-

tive spectrum sensing methods over correlated log-normal shadowing by using the energy-

based detector in each collaborative user. Approximation methods were proposed, and

their accuracy was analyzed to compute the detection probability over correlated LogNor-

mal shadowing. Consequently, the proposed framework provided reliable estimates that

can overcome the impact of the correlated shadow fading on the system performance.
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2.5 Cluster-Based Cooperative Spectrum Sensing

Clustering technique is considered a management technology that arranged the scattered

cognitive radio users into logical groups to enhance the sensing performance of the net-

work. In the conventional CSS systems, the reporting process of a vast number of partic-

ipating CRs incurs high cooperation cost (i.e., energy consumption, control and transmis-

sion overhead). In addition, when the CRs are assigned in different radio circumstances the

global decision by the base station BS may not include all the participating CRs which in

turn will be reflected on the sensing performance [30, 31]. Hence, the main objectives of

the cluster- based spectrum sensing technique (CBSS) is to improve sensing performance

and address the overhead matters.

In CBSS technique (Fig. 2.4), CRs are separated into small groups (i.e., clusters) ac-

cording to their geographical area and spectral circumstance. Each cluster has a cluster

head (CH) and cluster members (CMs). Spectrum sensing is executed in a hierarchical

framework. The collaboration process has two levels: the low level is carried out within

the cluster, and the high level is performed between CHs. The CH is usually chosen as a CR

with the greatest reporting channel gain in the cluster. The CMs (i.e., the lowest coopera-

tion level) in a cluster detect the existence of the PU, and then forward their local sensing

outcomes to the CH. The CH combines its observation with the aggregated observations to

extract an accurate decision on the existence of the PU [30].

Lately, the research trend focuses on designing an energy efficient CBSS system in

order to strike a stability between the performance and overhead.
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Figure 2.4: Cluster-based spectrum sensing technique (CBSS) structure

2.5.1 Strategies of Cluster-Based Spectrum Sensing Technique

Multiple approaches and algorithms have been recommended to form the clusters for CBSS

scheme. The CBSS system can be classified into three main categories based on their

objective: performance gain oriented models, overhead reduction oriented models, and

combined metrics based models [30, 31].

2.5.1.1 Performance Gain-Oriented Strategy

The optimal number of clusters is achieved in [32] by balancing the trade-off between the

cooperation cost and sensing reliability. A clustering approach has been proposed to group

cognitive users with similar locations into the same cluster. The strategy has two phases;
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cluster head election and cluster formation. Moreover, a closed form expression for a

probability of detection based on polling rule was also derived. A multi-clusters multi-

groups (MCMG) based CSS algorithm was introduced in [33] to improve the detection

performance. By separating a cluster into various groups, the optimal number of groups is

obtained by using K-out-of-N fusion rule which minimizes the error rate of a cluster.

An iterative algorithm was developed in [34] to construct suboptimal number of groups

and subgroups in a multi-level hierarchical cluster based spectrum sensing (MH-CBSS)

algorithm. This was done by employing double fusion stages to reduce the control overhead

for a cluster with a great number of CRs. The idea of the algorithm is to split the CRs in

one cluster into groups. Each group is then divided into subgroups. Each group has a

group head (GH), and each subgroup has a subgroup head (SGH). The subgroup head

polls the received PU signal with maximum strengths of its subgroup members and makes

a subgroup decision, which is then forwarded to the GH of its group. The aggregated

observations from subgroups will be combined by GHs using K-out-of-N rule first, and

then the CH collects decisions from GHs and fuses them to the FC to extract clusters

decision about PU presence also using K-out-of-N rule. A novel dynamic clustering based

cooperative spectrum sensing (CSS) scheme with improved energy detectors (lEDs) was

considered. In [35] a novel expression for dynamic clustering was proposed under the

Rayleigh fading channels. Only the CRs with the best quality links and distinct access point

(AP) were selected to make a cluster. In addition, the performance of clustered networks

was also compared with the non-clustered network.

22



2. AN OVERVIEW OF SPECTRUM SENSING IN COGNITIVE RADIO NETWORKS

2.5.1.2 Overhead Reduction Oriented Strategy

Many paradigms for the development of CBSS were adopted to overcome the incurred

sensing overhead. Clustering technique was developed in [36] to save energy consumption

during the reporting and exchanging information stages. Also, frequency reuse distance

was considered to reduce the transmission delay especially when the cluster CRs number

is significant.

The minimal dominating set (MDS) clustering algorithm was proposed in [37] to achieve

the minimal number of clusters that maintain the network connectivity. The recommended

approach was pointed toward reducing the bandwidth required for reporting the results to

the fusion center (FC) by decreasing the number of reporting CRs. Furthermore, sensing

efficiency, sensing accuracy and throughput were also investigated by employing differ-

ent parameters of the clustering system such as cluster size, a number of clusters, and a

reporting channels error. It was revealed that throughput of cluster-based cooperative sens-

ing system using MDS algorithm outperforms the conventional cooperative sensing system

particularly when the reporting channels are subjected to a high probability of error. In

addition to previous works, a new censoring method [18] was applied in the clusters to

decrease the number of the transmission bits and saving the bandwidth. Two thresholds

were given to measure the reliability of the CR information. Only the users with reliable

information were allowed to give their local binary results, and the others will not make any

decision. It was shown that the new method reduced the sensing bit number considerably

at the cost of a little performance deterioration.
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2.5.1.3 Combined Metric Based Strategy

Considering the trade-off between improvement of sensing performance and the reduction

of incurred sensing overhead to reach a compromise is a significant goal of this type of

CBSS schemes. The work in [38] aimed at a trade-off between the number of clusters

and the detection performance in the cluster based cooperative spectrum sensing scheme.

By characterizing the trade-off as an optimization problem, the optimal number of clusters

was obtained. Base on the optimal cluster number the CR users are separated into different

clusters according to the received signal power (RSP) from the CH. CR users choose the

closest CH to join it according to the RSP. Moreover, the approximation of the optimal

number of clusters was also derived, and simulation results proved the superiority of the

suggested approach.

2.6 Conclusions

This chapter introduced a brief introduction to spectrum sensing in cognitive radio net-

works. Different methods have been presented to perform local spectrum sensing. More-

over, we present some fundamental models and fusion rules that can be adopted in coopera-

tive sensing systems. A trade-off between the detection performance and incurred overhead

has been discussed. Different models that are describing the multipath fading channels are

briefly explained. Eventually, some information about the models of cluster-based spec-

trum sensing strategies has also been provided.
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CHAPTER 3

Low Computational Hierarchical

Cluster-Based CSS for CRNs

3.1 Introduction

Cooperative spectrum sensing (CSS) was proposed as an effective solution to minimize the

impact of radio environment conditions and to enhance the detection performance of the

collaborating cognitive radios [1]. On the other hand, the gained improvement attained by

the CSS technique causes cooperative cost called overhead (i.e., bandwidth requirements,

extra sensing time, delay, and energy consumption. Therefore, the principle of clustering

was imposed to CSS to improve the performance while reducing the overhead [2].

In conventional cluster-based cooperative sensing (CBSS) scheme [40], all cooperating

CRs are arranged according to their geographic locations into groups called clusters. Each

cluster has a cluster head (CH) and cluster members (CMs). The CMs in a cluster detect

the existence of the PU, and then forward their local sensing outcomes to the CH. The CH
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Figure 3.1: System model of the MH-CBSS algorithm.

combines its observation with the aggregated observations to extract an accurate decision

on the existence of the PU. Lately, the trend of research focuses on designing an energy

efficient CBSS system in order to strike a balance between the performance and overhead.

An iterative algorithm with low complexity was proposed in [41] to extract the optimal

number of CRs in a cluster that maximizes the probability of detection while satisfying the

probability of false alarm constraint.

Multi-clusters multi-groups (MCMG) based CSS algorithm was introduced in [33], to

improve the detection performance. An iterative algorithm was developed in [34] to con-

struct multi-level hierarchical cluster based spectrum sensing (MH-CBSS) algorithm to

compromise between the gained performances and incurred overhead. The MH-CBSS al-

gorithm outperforms both the Conventional CBSS and MCMG algorithm in terms of prob-
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ability of detection, throughput and reporting overhead. However, the MH-CBSS iterative

algorithm incurs high computational requirements as shown in Fig. 3.1.

In this chapter, a modified version of the MH-CBSS algorithm that reduces the in-

curred computational burden is proposed. Moreover, we compare both versions over both

Rayleigh and Nakagami fading channels. Simulation results show that the detection per-

formance of the modified algorithm outperforms the MH-CBSS algorithm over Rayleigh

and Nakagami fading channels.

This chapter is organized as follows: The MH-CBSS algorithm system model is de-

scribed in Section 3.2. The modified version of the MH-CBSS algorithm is presented in

Section 3.3. Simulation outcomes are presented and discussed in Section 3.4. while the

conclusion is provided in Section 3.5.

3.2 System Model for MH-CBSS Algorithm

Assume a cluster with N CRs is separated into M groups. Each group is also divided into

Sub- groups, each with H CRs. In subgroup level, H of CRs are considered to be very

close to each other, therefore, they almost experience the same radio environment condi-

tions such as SNR and fading. In group level, each group hasR of SGHs; one SGH between

other SGHs in the group is selected to be a GH. In cluster level, each cluster has M GHs;

one of the GHs is chosen to be a CH. The probability of detection, Pd, and probability of

false alarm, Pf , for any CR are provided in [42] as

pd = Q

(
(
λ

σ2
w

− γi − 1)

√
L

2γi + 1

)
(3.1)

27



3. LOW COMPUTATIONAL HIERARCHICAL CLUSTER-BASED CSS FOR CRNS

pf = Q

(
(
λ

σ2
w

− 1)
√
L

)
(3.2)

where γi is the signal-to-noise ratio (SNR) at the i-th sensor, λ is sensing threshold, σ2
w

is noise variance, L is the number of samples and Q(·) is Q-function.

According to MH-CBSS algorithm [34], the cluster is divided into M groups, each

group has R subgroups, and each subgroup has H CRs. Moreover, in practice, the sensing

channels between the CRs and the PU may experience multi-path fading. For the jth sub-

group, with Hj CRs, the probability density function of Rayleigh fading is provided in [29]

as

f(γmax,j) =
Hj

γ
e−

γmax,j
γ

(
1− e−

γmax,j
γ

)Hj−1

(3.3)

where γmax,j is the largest received SNR in the jth subgroup.

For the jth subgroup, the SGH polls a subgroups observation and then reports it to the

GH The probability of detection of the SGH PdSG, is calculated as:

PdSG =

∫ ∞
0

Pd(γmax,j)f(γmax,j)dγmax,j (3.4)

where PdSG is numerically calculated using adaptive Gauss-Kronrod Quadrature technique

[43].

For the nth group with R subgroups, considering a perfect channel, the probability of de-

tection, qdG , and the probability of false alarm, qfG, are computed as [34].
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qdG =
R∑

r=k1

(
R

r

)
P r
dSG(1− PdSG)R−r (3.5)

qfG =
R∑

r=k1

(
R

r

)
P r
f (1− Pf )R−r (3.6)

where k1 = dR
2
e for majority rule, and dxe is ceiling function.

The global probability of detection (Qd) and global probability of false alarm (Qf ) for

a cluster with M groups are formulated as:

Qd =
M∑

m=k2

(
M

m

)
βmd (1− βd)M−m (3.7)

Qf =
M∑

m=k2

(
M

m

)
βmf (1− βf )M−m (3.8)

where k2 = dM
2
e, βf = (1− qfG)P̄e + qfG(1− P̄e),βd = (1− qdG)P̄e + qdG(1− P̄e), and

P̄e is the probability of reporting error [34].

The criterion of designing MH-CBSS algorithm is provided in [6] as

max
M,R,k1,k2

Qd

subject to R ≥ 1,M ≥ 1

k1 ≥ 1, k2 ≥ 1

Qf ≤ β.

(3.9)

where β is the global probability of false alarm constraint, R is the number of sub-
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groups, M is the number of groups, k1 is the fusion rule parameters at the group level and

k2 is the fusion rule parameters at the cluster level.

The required number of reporting CRs, B, in the cluster has been computed in [44] as

B = MR− 1 =
N −H
H

(3.10)

3.3 Modified MH-CBSS Algorithm

Let ψ represents the percentage of reporting CRs in the cluster to the total number CRs in

the cluster, which is computed as:

ψ =
B

N
=
N −H
NH

(3.11)

In this section, in order to reduce the number of required iterations (i.e., computational

runs) to compute M,R, and H (i.e., number of hierarchical levels), we initially specify the

required ψ. Therefore,

H =

⌈
N

1 +Nψ

⌉
(3.12)

The required ψ will be initially predefined. Then, the number of CRs in the subgroups

will be determined using (3.12), which provides an advantage of reducing the number of

the iterations of MH-CBSS algorithm by around 30%, since only two parameters (i.e.,

R and M ) will be determined using the proposed algorithm instead of determining three

parameters (i.e., H,R and M ) as in MH-CBSS algorithm. For a cluster with N CRs, the

30



3. LOW COMPUTATIONAL HIERARCHICAL CLUSTER-BASED CSS FOR CRNS

proposed modified iterative algorithm is as follows:

Algorithm 3.1. Proposed Low Computational MH-CBSS algorithm
1: Specify Ψ , and compute H .
2: Specify β, P̂f ,let λ = σ2

w ( 1√
L
Q−1(P̂f ) + 1)

3: Find Factorization of N an determine its divisors {1, a1, a2, · · · , an}
4: Let M1 = {1, a1, a2, · · · , an}
5: p=1

For i=1:n
M = M1(i)
R = N

M(i)×H
If R = fix(R), compute PdSG, PdG, Qd, PfSG, PfG and Qf .
If Qf ≤ β
M2(p, :) = [Qd M R H]
p = p+ 1
ELSE
END If
END If
END

6: [i1, i2] = max(M2(:, 1))
7: M = M2(i2, 2), R = M2(i2, 3)

As an extended study of the characteristics of the MH-CBSS algorithm, we consider the

case of Nakagami fading channel. Therefore, for the nth subgroup, the fading probability

density function (pdf) of the largest received SNR among Hn CRs is given as [29].

f(γmax,n) =
Hn m

mγm−1

γ̄m ΓHn m
ΓHn−1

(
m,m(

γmax,n
γ̄

)

)
e−m(

γmax,n
γ̄

) (3.13)

where Γ (m) is the Gamma function which is defined as Γ (m) =
∫∞

0
xm−1e−xdx , while

Γ (a, b) is the incomplete Gamma function which is defined as Γ (a, b) =
∫ b

0
xa−1e−xdx.

The Nakagami-m distribution can represent different models of fading environments. It

is the general case which includes the one-sided Gaussian distribution (m = 1/2) and

the Rayleigh distribution (m = 1) as special cases. When the limit of (m → ∞), the
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Nakagami-m fading channel converges to a non-fading AWGN channel [26].

3.4 Simulation Results

In this section, the simulation results of the proposed algorithm are presented. The simu-

lation results of the modified algorithm are compared with the conventional CBSS using

majority rule in [40], and the MH-CBSS algorithm in [34]. Simulation settings are assumed

as, N = 24 CRs, sampling frequency fs = 6 MHz, bit rate Rb = 250 kbps, time frame

T = 10 ms, Pf = 0.1, and β = 0.01, while the reporting channel gain ξ = 1 dB.
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Figure 3.2: Global probability of detection for the modified algorithm compared to con-
ventional and MH-CBSS algorithms over Rayleigh fading channel.

The proposed iterative algorithm is examined to assess its performance under different

radio conditions, different fading channels. For a predefined percentage of reporting CRs,
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ψ = 0.15, and using (3.12), the number of CRs in the subgroups, H , is 6. The best values

for M and R obtained by the modified algorithm are 2 and 2, respectively.

It is shown in Fig. 3.2 that the proposed algorithm outperforms both the MH-CBSS and

the conventional algorithms in terms of the global probability of detection over Rayleigh

fading channel, especially, in low SNR scenarios, while it has almost the same total proba-

bility of detection of both algorithms in higher SNR (i.e., γ > 2 dB).

It can be observed from Fig. 3.3 that the modified algorithm outperforms both conven-

tional and MH-CBSS algorithms over Nakagami-m fading channel at m = 3.
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Figure 3.3: Global probability of detection for the modified algorithm, conventional algo-
rithm and MH-CBSS algorithm over the Nakagami-m fading channel .

For a comprehensive study, we investigate the performance of the modified algorithm

over the Nakagami fading for different values of Nakagami parameter, m, as depicted in

33



3. LOW COMPUTATIONAL HIERARCHICAL CLUSTER-BASED CSS FOR CRNS

Fig.3.4.

It is noticeable from Fig. 3.4, that the detection performance of the modified algorithm

slightly decreased as Nakagami parameter, m, increased. For the particular case at m = 1

the sensing performance of modified MH-CBSS algorithm will be exactly the same as the

performance over Rayleigh fading channel.
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Figure 3.4: Global probability of detection for the modified algorithm over Nakagami fad-
ing channel with different values for m.

Figure 3.5 shows the complementary receiver operating characteristics (CROC) for the

three available algorithms at SNR of 1 dB (i.e., γ = 1 dB) and reporting channel gain

ξ = 1 dB. The figure shows that the modified algorithm has better detection performance

than both the MH-CBSS and the conventional algorithms.
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Figure 3.5: Complementary receiver operating characteristics for the three algorithms over
Rayleigh fading channel.
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Figure 3.6: A comparison in global probability of detection between the conventional, the
MH-CBSS algorithms and the modified algorithm at different values of ψ.
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The impact of selecting the predefined percentage of reporting CRs, ψ, on the detection

performance of the modified algorithm is investigated and illustrated in Fig. 3.6. It is

shown in the figure that increasing the value of ψ degrades the detection performance of

the modified algorithm.

3.5 Conclusions

A modified MH-CBSS algorithm has been proposed to reduce the computational com-

plexity of the MH-CBSS algorithm. Moreover, the detection performance of the modified

algorithm has been investigated and compared with the conventional and the MH-CBSS

algorithms over the Nakagami and Rayleigh fading channels. The simulation results have

shown that the modified algorithm provides higher primary user protection while maintain-

ing the required reporting overhead.
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CHAPTER 4

Hierarchical CBSS Based on Adaptive

Threshold for Energy Detection

4.1 Introduction

A conventional energy detection algorithm is a fixed threshold based algorithm. Setting

a detection threshold is of crucial importance in the performance of an energy detector.

Therefore, it is essential to set a proper detection threshold value for the energy detector to

achieve a reliable and robust sensing capability.

Unlike the conventional fixed threshold based detection algorithm, some current works

investigate the adaptive sensing threshold. In [46], an adaptive threshold was determined

according to the signal to interference plus noise ratio (SINR) for energy detection based

spectrum sensing for individual CR user. The detection threshold was dynamically adjusted

as a linear increasing function of the CRs SINR. The main goal is to maximize the CRs

average transmission rate using an optimized policy function while keeping the average in-
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terference to the PU within a target level. Moreover, the policy function was obtained using

very simple real-time linear calculation which maps the instantaneous SINR to a proper en-

ergy threshold. Simulation results revealed that the proposed method achieves a higher SU

throughput compared to the fixed threshold based energy detector, while maintaining great

stability in the probability of detection and probability of false alarm. In addition, the pro-

posed algorithm in [47] was considered the detection error rate as a criterion to assess the

performance of spectrum sensing algorithm. An optimal adaptive threshold level was de-

termined to minimize the spectrum sensing error for given spectrum sensing constraint for

a single CR. However, the individual CR user may not give accurate sensing results due to

shadowing, multipath fading and hidden terminal problems of the wireless communication

channel. Therefore, in [48] to deal with these problems, the proposed adaptive threshold

approach had been analyzed under the cooperative spectrum sensing (CSS). Simulation re-

sults showed that the probability of detection clearly improved when more than one CR

involved in the spectrum sensing. However, all previously mentioned algorithms did not

consider a compromise between detection performance and incurred energy consumption

for CSS system.

In this chapter, a low computational energy-efficient hierarchical cluster-based CSS

with an adaptive threshold is proposed. The proposed algorithm enables the CR to dy-

namically adapt its detection threshold to meet the minimal overall cluster detection error.

Moreover, the optimal threshold level for minimizing the overall cluster detection error

rate is determined. The detection performance of the proposed algorithm is presented and

evaluated through simulation results.

This chapter is organized as follows: Threshold Setting is described in Section 4.2.

38



4. HIERARCHICAL CBSS BASED ON ADAPTIVE THRESHOLD FOR ENERGY DETECTION

The system model is presented in Section 4.3. The proposed algorithm for the adaptive

threshold is introduced in 4.4. Simulation results are presented and discussed in Section

4.5 while the conclusion is provided in Section 4.6.

4.2 Threshold Setting

Before explaining the concept of adaptive threshold, the methods of fixed threshold will

be discussed in this Section. Consider, the test statistic of the energy detector T (y) is

determined as follows.

T (y) =
Ms∑
n=1

|y(n)|2 (4.1)

where y(n) is the signal received by the CR and Ms is the observation samples [5].

The performance metric of spectrum sensing can be determined by the detection prob-

ability Pd and the false alarm probability Pf .

Pd(λ, γ) = P (T (y) > λ | H1) = Q

(
(
λ

σ2
w

− γ − 1)

√
L

2γ + 1

)
(4.2)

Pf (λ) = P (T (y) > λ | H0) = Q

(
(
λ

σ2
w

− 1)
√
L

)
(4.3)

where γ is the signal-to-noise ratio (SNR) at the CR, λ is the sensing threshold, σ2
w is the

noise variance, L is the number of samples, Q(·) is Q-function and, H0 and H1, are the

testing hypotheses for absence and presence of the PU, respectively.

Setting an optimal threshold is one of the most critical challenges to implement detec-
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tion techniques. Therefore, it should be selected carefully; since it significantly affects the

sensing performance of energy detector. The threshold can be set as either fixed or dynamic

(i.e., adaptive threshold); two methods can be used to set a fixed threshold: (1) constant

false alarm rate (CFAR) and (2) constant detection rate (CDR).

(1) The threshold λPf can be set for CFAR as

λPf = σ2
w (

1√
L
Q−1(P̂f ) + 1) (4.4)

(2) The threshold λPd can be set for CDR as

λPd = σ2
w (

√
2γ + 1

L
Q−1(P̂d) + γ + 1) (4.5)

where P̂d and P̂f are the targeted detection probability and targeted false alarm probability,

respectively.

If the cognitive radio user is expected to guarantee PU’s safely utilize of the spectrum,

the probability of detection should be set to satisfy a predefined probability of detection

called targeted probability of detection (P̂d) and the probability of false alarm should be

minimized as much as possible. This condition is referred to as CDR method. From the

other perspective, if the CR user aims to ensure the spectrum efficiency of the SUs, the

probability of false alarm should be set to satisfy a predefined targeted probability of false

alarm (P̂f ), and the detection probability should be maximized as much as possible. This

condition is referred to as CFAR method [39]. Therefore, a compromise between the two

methods can be achieved in the best possible way by using an adaptive threshold.
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4.3 System Model for MH-CBSS Algorithm

In the MH-CBSS model, the PU is assumed to be static, a cluster with N CRs is arranged

into M groups. Each group is also separated into R subgroups. Each subgroup has H CRs.

Every group and subgroup have group head GH and sub-group head SGH, respectively.

The heads are selected to have the greatest reporting channel gain between their neighbors.

In other words, the nearest CR to FC usually has the largest reporting channel gain and the

FC is in charge of clustering and choosing the CH [34]. For more details about the system

model please refer to Section 3.2.

The overall cluster detection error rate ϕe is calculated as

ϕe = P (H1) Qm + P (H0) Qf (4.6)

where is Qm = 1−Qd the global probability of missed detection and, P (H1) and P (H0),

are the probabilities of presence and absence of the PU, respectively.

An accurate performance improvement cannot be attained by blindly increasing or de-

creasing the sensing threshold. Therefore, to satisfy the target total error rate, an optimal

detection threshold must be determined. Moreover, identifying the optimal threshold con-

tributes to improving the probability of detection and the usage level of the unused spec-

trum. The optimal threshold is determined by minimizing the total error as provided in

(4.7).
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λopt = arg min
λ

(ϕe) (4.7)

The solution to this problem is the threshold value that makes the derivative of the

overall cluster error equal to zero as described in (4.8).

∂ ϕe(λ)

∂λ
|λ=λopt= P (H0)

∂ Qf (λ)

∂λ
− P (H1)

∂ Qd(λ)

∂λ
= 0 (4.8)

The optimization problem for MH-CBSS is formulated based on minimizing the overall

detection error as

min
λ

(ϕe)

subject to R ≥ 1,M ≥ 1

k1 ≥ 1, k2 ≥ 1.

(4.9)

where R is the number of subgroups, M is the number of groups, k1 and k2 are the fusion

rule parameters at the group level and fusion rule parameters at the cluster level, respec-

tively.

4.4 The Proposed Algorithms

In this section, the main objective is to propose a low computational algorithm that opti-

mizes the detection performance of the MH-CBSS algorithm by minimizing the total error

of the system. The idea is to compute the H (i.e., the number of CRs in a subgroup) that

can satisfy the objective. The H is determined based on the required percentage of saved
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energy (∆E), as computed in [34]:

∆E =
N(H − 1)

H(N − 1)
(4.10)

where N is the total number of CRs in the cluster.

In order to reduce the number of required iterations (i.e., computational runs) to com-

pute M,R, and H (i.e., the number of hierarchical levels), it is assumed that ∆E ≤ α,

based on (4.10), the number of CRs in a subgroup H can be calculated as

H =

⌈
N

N + α−Nα

⌉
(4.11)

Using (4.11), the number of CRs in the subgroups will be determined by initially specifying

the required percentage of saved energy, ∆E, which will reduce the number of the itera-

tions of the MH-CBSS algorithm by approximately 30%. As a first step, we investigate the

case of energy efficient adaptive hierarchical structure with adaptive detection threshold to

achieve the minimum total error. For this purpose, after determining H , all possible com-

binations of M and R will be determined based on the computed H , using (4.11). Then,

the overall detection error for all combinations will be calculated by using (4.6). Finally,

at each single threshold, the best combination will be obtained based on the minimum total

error rate.

Based on the aforementioned step, for a predefined percentage of saved energy, α =

60%, and using (4.11), the number of CRs in the subgroup, H , is 3. It is shown in Fig. 4.1

for a cluster with 24 CRs at γ = 1 dB. These are all possible combinations (i.e., hierarchi-

cal levels) of M and R. Figure 4.2 illustrates the comparison between the total error rate

43



4. HIERARCHICAL CBSS BASED ON ADAPTIVE THRESHOLD FOR ENERGY DETECTION

0 1 2 3 4 5
10

−4

10
−3

10
−2

10
−1

10
0

Sensing threshold

D
et

ec
tio

n 
er

ro
r

 

 

M=1 R=8 H=3
M=2 R=4 H=3
M=4 R=2 H=3
M=1 R=8 H=3

Figure 4.1: Error detection rate vs. sensing threshold for a cluster with 24 CRs at γ = 1 dB
and α = 60%.

and detection threshold for the two and three levels hierarchy. It is observed that at higher

values of detection threshold the three levels considerably outperforms the two levels by

achieving lower detection error ; in other words, a higher detection probability. On the other

hand, the two levels perform greater at lower values of detection threshold at the expense of

some sensing performance loss. It can also be noticed that the difference in the minimum

total error rate at the optimal threshold values for two levels (i.e., ϕe(λopt = 1.6) = 0.0015)

and three levels (i.e., ϕe(λopt = 2) = 0.0007) hierarchy is very small. Therefore, the local

minimum detection threshold will be selected as a reference. Furthermore, designing an

energy efficient adaptive hierarchical structure with adaptive sensing threshold could be a

computational burden. Accordingly, a suboptimal algorithm is proposed to design an en-
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Figure 4.2: A comparison in total error rate between 2 and 3 levels hierarchy with 24 CRs
at γ = 1 dB and α = 60%.

ergy efficient fixed hierarchical structure with adaptive detection threshold that minimizes

the total error rate.

4.4.1 The Proposed Iterative Algorithm for Threshold Optimization

By determining the value of, λ, that solves (4.8) the optimal threshold that minimize the

spectrum sensing error can be determined. However, it is hard to extract a closed-form

expression for the optimal threshold, therefore, it is better to be determined numerically

using line search methods such as bisection method. As a result, an iterative algorithm is

proposed to determine the optimal threshold (λopt) as provided in Algorithm 4.1.
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Algorithm 4.1. The proposed iterative algorithm to determine the optimal threshold
1: Specify α, and compute H using (4.11).
2: Provided P0 and P1.
3: Determine all possible combinations of (M,R).
4: Compute ϕe for all combinations using (4.6).
5: Determine the hierarchical structure according to the local minimum ϕe.
6: Use Bisection method to find optimal λopt ∈ (0, λmax)

(i.e., λmax is arbitrarily selected).
let n = 100,∆λ = λmax

n

7: For i = 1 : n
If ϕe(i+ 1) ≤ ϕe(i)
λi+1 = λi + ∆λ
else λi+1 = λi −∆λ
end If
end For

8: Return λopt = λi+1 , QD(Suboptimal) = Qd(λopt) , QF (Suboptimal) = Qf (λopt)
and ϕe(Suboptimal) = ϕe(λopt).
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Figure 4.3: Complementary receiver operating characteristic of the proposed iterative al-
gorithm (4.1), for N = 24, γ = 1 dB and α = 70%.

For instance, if the predefined percentage of saved energy is α = 70%. Using (4.11), the
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number of CRs in the subgroup, H , will be 4. The cluster structure is selected as (M = 1,

R = 6, H = 4) based on the local minimum error. Based on Algorithm 4.1, the opti-

mal threshold level for the energy detector at the minimum error (i.e., ϕe(min) = 0.0016)

equals to (λopt = 1.7). The corresponding optimal global probability of missed detection

Qm and false alarm Qf are 0.0018 and 0.0015, respectively. Besides, the optimal global

probability of detection can be calculated as (Qd = 1 − Qm = 0.9982). Figure 4.3 repre-

sents the complementary receiver operating characteristic (CROC) for the aforementioned

example at N = 24 and signal-to-noise ratio (i.e., γ = 1 dB). It is shown that the global

false alarm and missed detection probabilities are monotonically increased and decreased,

respectively.

4.4.2 The Proposed Algorithm for Hierarchical CBSS with an Adap-

tive Threshold

If each cognitive user in the cluster dynamically adjusts its threshold to minimize the over-

all cluster error this will enhance the performance of energy detector, and hence improve

spectrum efficiency. In Algorithm 4.2, the SNR is changed through a set of values in the

range [SNRmin : SNRmax], and the corresponding optimal threshold λopt is simultaneously

determined for each SNR value by using Algorithm 4.1.

Using Algorithm 4.2, we investigate the impact of SNR at three different values (i.e.,

SNR=−5, 0, 5.) on the sensing threshold. It has been recognized from Fig. 4.4 as the

SNR increase the optimal sensing threshold at each SNR monotonically increases. Conse-

quently, the overall detection error reduced which in turn will enhance the Qd.
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Algorithm 4.2. An adaptive threshold based algorithm for hierarchical CBSS
1: Specify α, and compute H using (4.11).
2: Provided P0 and P1.
3: Determine all possible combinations of (M,R).
4: Compute ϕe for all combinations using (4.6).
5: Determine the hierarchical structure based on the local minimum ϕe.
6: For i = SNRmin : SNRmax

7: Use algorithm (4.1) to find the λ(opt)i

8: Return λ(opt)i , QD(Suboptimal) = Qd(λ(opt)i) , QF (Suboptimal) = Qf (λ(opt)i)
and ϕe(Suboptimal) = ϕe(λ(opt)i).
end For
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Figure 4.4: Error detection rate vs. sensing threshold at three different SNR values.

The search for the optimal threshold will be considered only between (λ∗min, λ
∗
max),

where those values refer to the thresholds at the minimum and maximum SNR, respectively

as indicated in Fig. 4.4. This particular search will save computations that required to find

the optimal threshold in the conventional search (i.e., from 0 to λmax). As proposed in

Algorithm 4.3. In addition, from Fig. 4.5, it is noticeable that the detection performance
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starts to deteriorate after the sensing threshold reaches its optimal point. Using this fact,

we were motivated to modify Algorithm 4.2 to reduce the computational burden.
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Figure 4.5: Overall probability of detection vs. sensing threshold of three different SNR.

Algorithm 4.3. Low computational adaptive threshold based algorithm for hierarchical
CBSS

1: Specify α, and compute H using (4.11).
2: Provided P0 and P1.
3: Using Bisection method compute λ∗min at SNRmin and λ∗max at SNRmax .
4: Specify ϕe(λ∗min).

let n = 100,∆λ = (λ∗max − λ∗min)/n.
5: Use Bisection method to find optimal threshold λopt ∈ (λ∗min, λ

∗
max).

i = 1
6: While SNR > SNRmin

If ϕe(i+ 1) ≤ ϕe(i)
λ∗i+1 = λ∗i + ∆λ
end If

7: Return λopt = λ∗i+1 , QDi(Suboptimal) = Qd(λopt) , QFi(Suboptimal) = Qf (λopt)
and ϕei(Suboptimal) = ϕe(λopt).
end While
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4.5 Simulation Results

Simulation settings are assumed as, N = 24 CRs, sampling frequency fs = 6 MHz, bit

rate Rb = 250 kbps, time frame T = 10 ms, Pf = 0.1 for fixed threshold, and β = 0.01,

while the reporting channel gain ξ = 1 dB. We consider the predefined percentage of saved

energy is α = 60%. Using (4.11), the number of CRs in the subgroup, H , will be 3. The

cluster structure is selected as (M = 1, R = 8, H = 3) based on the local minimum

error. It is shown in Fig. 4.6 that the proposed adaptive threshold algorithm outperforms

the conventional fixed threshold algorithm in terms of the global probability of detection

over Rayleigh fading channel, especially, in low SNR scenarios, while it has almost the

same total probability of detection of both algorithms in higher SNR (i.e., γ > 1 dB).
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Figure 4.6: Overall probability of detection of the proposed algorithm compared to a fixed
threshold at α = 60%.
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Figure 4.7 depicts the total error detection rate vs. SNR of the proposed adaptive thresh-

old algorithm compared with the fixed threshold based algorithm. It can be seen that the

proposed algorithm minimizes the overall detection error noticeably compared with the

fixed threshold based algorithm. Moreover, at the high SNR the detection error of the fixed

threshold scheme is almost steady (i.e., ϕe = 2 × 10−5), because Qd approaches its max-

imum value (i.e., Qd = 1) at the high SNR, in this case, Qm will be zero. Therefore, the

dominant factor on the overall detection error is QF because the probability of false alarm

Pf for the CRs in the fixed threshold based algorithm is a predefined value.
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Figure 4.7: Error detection rate vs. SNR of the proposed algorithm compared to a fixed
threshold,at α = 60%.
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Figure 4.8: A comparison in a global probability of detection for adaptive threshold algo-
rithm at different values of α.

The impact of selecting the percentage of saved energy, α, on the detection performance

of the proposed adaptive threshold algorithm is investigated and illustrated in Fig. 4.8. It

is noted that increasing the value of α enhances the detection performance. The reason

behind that is increasing the percentage of saved energy means increasing the number of

CRs in the subgroups while reducing the number of reporting CRs.

4.6 Conclusions

In this chapter, the optimal threshold level that minimizes the overall cluster detection

error rate has been investigated. Moreover, an adaptive threshold MH-CBSS algorithm

has been proposed which allows the CR dynamically adjusts its energy threshold to attain
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the minimal total cluster error. The detection performance of the proposed algorithm has

been investigated and compared with the conventional fixed threshold over Rayleigh fad-

ing channels. The simulation results have shown that the proposed algorithm can provide

higher primary user protection by improving the detection performance.
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CHAPTER 5

Thesis Conclusions and

Recommendations

5.1 Conclusions

A low computational MH-CBSS algorithm has been proposed to reduce the complexity of

the MH-CBSS algorithm. Using the proposed algorithm the number of CRs in the sub-

groups has been determined based on the predefined ψ, which provides an advantage of

reducing the number of the iterations of MH-CBSS algorithm by around 30%, since only

two parameters (i.e., R andM ) will be determined using the proposed algorithm instead of

determining three parameters (i.e.,H,R andM ) as in MH-CBSS algorithm. Moreover, the

detection performance of the modified algorithm has been investigated and compared with

the conventional and the MH-CBSS algorithms over the Nakagami and Rayleigh fading

channels. The simulation results have shown that the modified algorithm provides higher

primary user protection while maintaining the required reporting overhead.
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Conventionally, most energy detection algorithms assume fixed detection threshold.

The performance of the energy detector depends considerably on the setting of the thresh-

old. Thus, it is essential to set a proper threshold for the energy detector to gain a credible

and robust sensing capability. Therefore, the work in chapter 4 developed to consider the

concept of the adaptive threshold. The number of CRs in the subgroups has been de-

termined by specifying the required percentage of saved energy, ∆E, which provides an

advantage of reducing the number of the iterations of the MH-CBSS algorithm. In addition,

the optimal threshold level that minimizes the overall cluster detection error rate has been

determined. An adaptive threshold MH-CBSS algorithm has been proposed which allows

the CR dynamically adjusts its energy threshold to attain the minimal total cluster error.

The detection performance of the proposed algorithm has been examined and compared

with the conventional fixed threshold over Rayleigh fading channels. Besides, the simu-

lation results have shown that the proposed algorithm noticeably improves the detection

performance which provides higher protection of the PU user.

5.2 Recommendations

Cooperative spectrum sensing has recently emerged as an attractive and versatile research

topic that interests many researchers. The recommendation for future works will be con-

sidered as follow

1. Energy detection is a widely adopted method for spectrum sensing because it has low

implementation complexity and it does not depend on any prior knowledge about
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primary signals. Most current works on energy detection assumed that the noise

power is perfectly and previously known. However, the fact is that the noise power

changes from time to time in a practical environment. Therefore, energy detection

has practical limitation. As a future research point, conventional detection methods

can be implemented using Software-Defined Radios (SDR) which can be employed

as a sensing unit for single CR instead of energy detection in a real environment.

2. In the previous point, the work can be extended to implement CSS in order to im-

prove detection performance of the system. Moreover, various radio environmental

conditions such as Rayleigh fading, and shadowing can be granted to have a compre-

hensive study. Also, the work can be continued to implement cluster-base spectrum

sensing (CBSS). Accordingly, the detection performance of the proposed algorithms

can also be investigated in real time world.

3. Furthermore, the effect of mobility on the detection performance of the proposed

algorithms in the thesis can be considered as a point for a future research.
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