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ABSTRACT 

Elliptic curve cryptography plays a crucial role in network and communica t ion 

security. However, implementation of elliptic curve cryptography, especially the 

implementation of scalar multiplication on an elliptic curve, faces multiple challenges. One 

of the main challenges is side channel attacks (SCAs). SCAs pose a real threat to the 

conventional implementations of scalar multiplication such as binary methods (also called 

doubling-and-add methods). Several scalar multiplication algorithms with 

countermeasures against side channel attacks have been proposed. Among them, 

Montgomery Powering Ladder (MPL) has been shown an effective countermeasure against 

simple power analysis. However, MPL is still vulnerable to certain more sophisticated side 

channel attacks. A recently proposed modified MPL utilizes a combination of sequence 

masking (SM), exponent splitting (ES) and point randomization (PR). And it has shown to 

be one of the best countermeasure algorithms that are immune to many sophisticated side 

channel attacks [11]. In this thesis, an efficient hardware architecture for this algorithm is 

proposed and its FPGA implementation is also presented. To our best knowledge, this is 

the first time that this modified MPL with SM, ES, and PR has been implemented in 

hardware. 
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CHAPTER I 

INTRODUCTION 

1.1 Motivation 

The Internet is increasingly important to the people all over the world who use it 

for personal and business purposes. While the internet brings much convenience to people, 

there still exist security risks and vulnerabilities in using the internet. For example, various 

cyber-attacks, including side channel attacks, pose a great danger for the Internet users. 

Network security, which provides physical and software countermeasures to protect the 

network from unauthorized access and attacks, becomes a very active research area and 

industry. Cryptography plays a critical role in providing essential and unique network 

security services to the internet.  

There are two main families of cryptography from the point of view of key 

generation, symmetric-key cryptography and asymmetric-key cryptography. In symmetr ic-

key cryptography system, there is only one key used both for encryption and decryption. 

This system requires that both parties involved in the communication share one secret key, 

which has to be pre-arranged in advance in a procedure called key establishment. This is 

regarded as a main drawback of symmetric-key cryptography system since it cannot 

resolve the issue of key establishment without resorting to a third party. 

Unlike symmetric-key cryptography system, the asymmetric-key cryptography 

system (more popularly known as public-key system) uses two keys, one for encryption 

and the other for decryption. The key used for encryption is the public key, which is 

accessible to the public and can be distributed widely and easily. The other one used for 

decryption is the private key, which must be kept secret and is only known to the owner of 
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the cryptosystem. By differentiating the encryption key and decryption key, the 

asymmetric-cryptography system can provide very important and unique security services 

such like key exchange and digital signature. A drawback of asymmetric-cryptography 

systems is that they have higher computational complexity, compared to symmetrical key 

systems. 

 Since Diffie and Hellman proposed the Diffie-Hellman key exchange scheme as 

the first asymmetric-cryptography system in 1976 [3], several asymmetric-key 

cryptography systems have been presented, such like RSA, ElGamel, and Elliptic curve 

cryptography. All these algorithms are based on some different hard mathematica l 

problems. Based on their underlying mathematical problems, these algorithms can be 

classified as follows. 

 

Table 1.1 Public key systems and the hard math problems 

 The security strength of the cryptosystem relies on the fact it is hard to solve these 

mathematical problems. The Elliptic Curve Cryptosystem (ECC), first proposed by Miller 

and Koblitz in 1985 [1], [2], can provide higher security strength per bit compared to other 

asymmetric-cryptography system such like RSA. This is because elliptic curve discrete 

logarithm problem (ECDLP) is much harder to solve than factorization of a product of two 

large primes.  

Public key system Hard Math Problems 

RSA Integer factorization 

ElGamal Discrete logarithm problem  

Elliptic curve cryptosystem Elliptic curve discrete logarithm problem 
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Table 1.2 A comparison of key sizes 

The large RSA key size requires long computation time and large VLSI area when 

implemented in hardware. While ECC is based on the elliptic curve discrete logarithm 

problem, the security of ECC relies on the difficulty of elliptic curve discrete logarithm 

problem. ECC can provide same level security strength as RSA with much shorter keys. 

Table 1.2 shows a comparison of key sizes needed to achieve equivalent level of security 

strength. This feature of ECC makes it very suitable for smart cards, credit cards, pagers, 

PDAs and mobile phones [4]. 

Other than solving the difficult ECDLP to break ECC mathematically, attackers 

can take advantage of the physical implementation and retrieve secret parameters by 

observing the information leaked during the computation. This method is referred to as 

Side Channel Attacks (SCA) and discussed in [5], [6]. Scalar multiplication, which 

multiplies a point on an elliptic curve by a scalar, is the main computation involved in ECC. 

Unguarded scalar multiplication algorithms are vulnerable to SCAs. In order to protect 

Security Level (bits) RSA Key Size (bits) ECC Key Size (bits) 

80 1024 160 

112 2048 224 

128 3072 256 

192 7680 384 

256 15360 512 
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ECC from SCA, the computation steps involved in the scalar multiplication algorithms 

have to be regular so that less useful side channel information can be leaked to attackers. 

There have been several existing algorithms for computing the scalar multiplication. A 

classical algorithm is the binary algorithm or doubling-and-add., it can be easily cracked 

by Simple Power Analysis (SPA) since it may consume different power in each iteration, 

depending on binary bit of the scalar. To withstand SPA, a double and add always 

algorithm is proposed by Coron in 1999 [7]. The idea is to add a dummy operation to make 

every iteration consume same power, thus the computation is regular in each step. However, 

this algorithm still remains insecure against a doubling attack proposed by Fouque in 2003 

[8]. To provide further protection against various SCAs, Montgomery Powering Ladder 

(MPL) is invented by Marc Joye and Sung-Ming Yen in 2003 [9]. Although MPL is highly 

regular and efficient compared to the classical algorithms, it is still subject to SCAs such 

like Differential Power Analysis (DPA). Introduced by Kocher in 1999 [10], Differentia l 

Power Analysis focus on capturing the power consumption of the target device and by 

analyzing the power consumption to get information of the secret key. Another Modified 

Montgomery Power Ladder algorithm proposed by He in [11] can provide protection to 

more SCAs than the regular MPL. To the best of our knowledge, scalar multiplica t ion 

based on this algorithm has not yet been implemented. Thus an efficient implementa t ion 

of ECC, which can resist more SCAs is needed for modern cryptographic applications. 

 

1.2 A Summary of Contributions 

In this thesis we propose an efficient hardware architecture for the modified MPL 

with sequence masking (SM), exponent splitting (ES) and point randomization (PR) 
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algorithm [11]. More specifically we 

 Proposed an efficient hardware architecture for the modified MPL with SM, 

ES and PR algorithm [11]. 

 Presented a FPGA implementation for the modified MPL with SM, ES and 

PR algorithm [11], which is the first time in literature. 

1.3 Thesis Organization 

The rest of the thesis is organized as follows. Chapter II provided mathematica l 

background in finite field and elliptic curve which are important for understanding the 

proposed work. The concept of SCA is introduced and then many types of SCAs are 

reviewed in Chapter III. In Chapter IV an overview of existing related works is given. 

Chapter V provides a detailed discussion on a modified MPL with SM, ES and PR. Chapter 

VI proposes an efficient hardware architecture for the modified MPL with SM, ES and PR. 

FPGA implementation of the proposed architecture is also presented and the FPGA results 

are analyzed and discussed. Conclusive remarks are given and possible future works are 

commented in Chapter VII. 
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CHAPTER II 

MATHEMATICAL BACKGROUND 

This chapter introduces the related mathematical background of the ECC based 

systems. Definition of finite field and elliptic curve are given. Arithmetic over finite field, 

point operations over elliptic curve is also curved. Finally, some ECC scheme is introduced. 

2.1 Finite Field 

Finite field, also known as Galois Field (GF), is proposed by Galois in 1832. Galois 

Theory emphasis a relation between groups and fields. Finite field was introduced as an 

example of a field. A finite field is a finite set of numbers in which addition and 

multiplication are defined. It is an additive group under the addition operation. All the 

nonzero elements in a finite field form a multiplicative group under multiplica t ion 

operation. Primitive element is the generator of the multiplicative group. For a finite field 

𝐹, if n is the smallest integer satisfying that 𝑛𝑎 = 0 for every field element a in the finite 

field 𝐹, then n is the characteristic of 𝐹. 

Prime finite field 𝐺𝐹(𝑝) consists of elements {0,1,2… 𝑝− 1}, where p is a prime 

number. Arithmetic in 𝐺𝐹(𝑝) can be described as follows. Addition is defined as modulo-

𝑝 addition. Multiplication is defined as modulo-𝑝 multiplication. 𝑝 is the characteristic of 

𝐺𝐹(𝑝). 

Extension finite field 𝐺𝐹(𝑝𝑚), where p is a prime and m is a positive integer greater 

than 1, the elements of 𝐺𝐹(𝑝𝑚) are polynomials of degree up to 𝑚− 1 with coefficients 

belonging to 𝐺𝐹(𝑝),  

𝐺𝐹(𝑝𝑚) = {𝑎𝑚−1𝑥
𝑚−1 + 𝑎𝑚−2𝑥

𝑚−2 + ⋯+ 𝑎2𝑥
2 +𝑎1𝑥 + 𝑎0} 

where 𝑎𝑖 ∈ 𝐺𝐹(2), irreducible polynomial is 𝑓(𝑥). 𝑝 is a prime and m is a positive integer 
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greater than 1, the elements of 𝐺𝐹(𝑝𝑚) are polynomials of degree up to 𝑚− 1 with 

coefficients belonging to 𝐺𝐹(𝑝). The irreducible polynomial 𝑓(𝑥) cannot be factored into 

product of polynomials that has degree less than m.  

 Binary Extension finite field 𝐺𝐹(2𝑚)  is a special case of 𝐺𝐹(𝑝𝑚) , where is 

consists of 2𝑚 elements and its characteristic is 2.  

𝐺𝐹(2𝑚) = {𝑎𝑚−1𝑥
𝑚−1 + 𝑎𝑚−2𝑥

𝑚−2 + ⋯+ 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0}, 

where 𝑎𝑖 ∈ 𝐺𝐹(2) , irreducible polynomial is 𝑓(𝑥) . Elements in this field can be 

represented as (𝑚 − 1) degree polynomial, for example if 𝐴 is an element in 𝐺𝐹(2𝑚), 𝐴 

can be represented as  

𝐴 = 𝑎𝑚−1𝑥
𝑚−1 +𝑎𝑚−2𝑥

𝑚−2 +⋯+𝑎2𝑥
2 +𝑎1𝑥 + 𝑎0, 𝑤ℎ𝑒𝑟𝑒 𝑎𝑖 ∈ 𝐺𝐹(2)  

It can also be represented as an m bits binary string (𝑎𝑚−1, 𝑎𝑚−2 ,…, 𝑎1, 𝑎0), where 𝑎𝑖 ∈

𝐺𝐹(2) . This representation is defined as the polynomial basis representation. This 

representation is beneficial in hardware implementation since its operations like addition 

and multiplication can be realized using AND logic gate and XOR logic gate. The additio n 

operation over binary extension field is modulo 2 addition. The multiplication is modulo 

𝑓(𝑥), modulo 2 multiplication. 

2.2 Elliptic Curve over GF(2m) 

Let p be a prime number greater than 3, and coefficients 𝑎, 𝑏 in the field 𝐺𝐹(𝑝), 

then the elliptic curve E over 𝐺𝐹(𝑝) is defined with equation: 

E: 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏 

This equation is a simplified Weierstrass equation. The points on the curve satisfy 

that both the 𝑥-coordinate and 𝑦-coordinate are both elements over 𝐺𝐹(𝑝). Assume there 
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two points 𝑃 (𝑥1,𝑦1) and 𝑄 (𝑥2,𝑦2) on the curve. The group operator point addition obeys 

the following rules. Draw a line through point 𝑃 and 𝑄, if there exists a third point 

𝑅 (𝑥3,𝑦3) which intersects with the curve. The mirror reflection of 𝑅 about the 𝑥-axis is 

defined as the addition result. If such an intersection point does not exist, we consider the 

result as infinity. The point at infinity 𝑂, defined by 𝑃+ 𝑂 = 𝑂 , exists for every ellipt ic 

curve.  The additive inverse of point 𝑃 is its reflection across the 𝑥-axis. All the points on 

curve E and the point at infinity forms a group 𝐺 defined by the point addition operator. 𝐺 

is an abelian group sine the group operator addition is commutative.  

 

                                Figure 2.1 Point addition on ECC 

If 𝑃 and 𝑄 satisfy 𝑥1 ≠ 𝑥2, then we have point addition computed using the 

following equation. 



 
 

9 
 

{
 

 𝜆 =
𝑦1 + 𝑦2
𝑥1 + 𝑥2

𝑥3 = 𝜆2 + 𝑥1 + 𝑥2
𝑦3 = (𝑥1 + 𝑥3)𝜆+ 𝑦1

 

 If 𝑃 and 𝑄 satisfy 𝑃 = 𝑄 and 𝑦1 ≠ 0, then point doubling is defined below. 

{
 
 

 
 𝜆 =

3𝑥1
2 + 𝑎

2𝑦1
𝑥3 = 𝜆

2 + 2𝑥1
𝑦3 = (𝑥1 + 𝑥3)𝜆+ 𝑦1

 

 For an integer 𝑘, scalar multiplication 𝑘𝑃 is defined as repeated addition like  

𝑘𝑃 = 𝑃 + 𝑃 +⋯𝑃 

repeated for 𝑘 times.  

 The order n of point P is defined as the minimal integer satisfies 𝑛𝑃 = 𝑂. 

 Let a and b be elements in 𝐺𝐹(2𝑚) . An elliptic curve E over 𝐺𝐹(2𝑚) can be 

defined by the equation 

E: 𝑦2 +𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏  

 Points over elliptic curve defined in 𝐺𝐹(2𝑚) have similar operations to that defined 

in 𝐺𝐹(𝑝). Consider two points 𝑃 (𝑥1,𝑦1)  and 𝑄 (𝑥2,𝑦2) on the curve, and 𝑅 (𝑥3,𝑦3) be 

the result of 𝑃 + 𝑄. If 𝑃 = 𝑄, point addition is computed as follows. 

{
 

 𝜆 =
𝑦1 + 𝑦2
𝑥1 + 𝑥2

𝑥3 = 𝜆2 + 𝜆 + 𝑥1+ 𝑥2 +𝑎
𝑦3 = (𝑥1 + 𝑥3)𝜆 + 𝑥3 + 𝑦1

 

 If 𝑃 ≠ 𝑄, point doubling is performed as below. 

{
 

 𝜆 =
𝑦1
𝑥1
+ 𝑥1

𝑥3 = 𝜆
2 + 𝜆 + 𝑎

𝑦3 = 𝑥1
2 + 𝜆𝑥3 + 𝑥3
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All the addition, multiplication and inversion involved in there equations are finite 

field arithmetic. The most time consuming operations are finite field multiplication and 

inversion. 

2.3 Elliptic Curve 

For a given field 𝐺𝐹(𝑝) and curve E over the field, it is easy to calculate 𝑘𝑃 for a 

point 𝑃 on the curve. However, if 𝑘𝑃 and 𝑃 is known, it is considered very difficult to 

calculate integer 𝑘. This is called the ECDLP problem, and the security strength of ECC 

relies on it. 

2.3.1 System Setup 

To setup a secure elliptic curve cryptography system, the parameters of the curve 

has to be chosen very carefully. The elliptic curve used in the system need to be non-

singular since singular curves are easy to crack.  

The parameters needed to construct an elliptic curve cryptography system includ ing 

the following. Finite field 𝐺𝐹(𝑝) defined by 𝑝, elliptic curve E defined by 𝑎 and 𝑏, base 

point 𝑃, the order of the base point 𝑛 and the factor ℎ. The parameter set is known to the 

public. 

If the system is over 𝐺𝐹(𝑝) , the parameter set is 𝐷 = {𝑝, 𝑎, 𝑏, 𝑃, 𝑛, ℎ} . The 

parameters are defined as above stated. If the cryptography system is built over 𝐺𝐹(2𝑚), 

the parameter set is 𝐷 = {𝑚, 𝑓(𝑥),𝑎, 𝑏, 𝑃, 𝑛, ℎ} where 𝑓(𝑥) is the irreducible polynomia l 

define the field. To calculate factor ℎ, first count all the points and the point at infinity to 

get the order of the elliptic curve #E, then h is #E divided by 𝑛. 

2.3.2 Generation of the key pairs 

After the system is set up, assume Bob is trying to communicate with Alice. Alice 
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will choose the keys as introduced below. 

Step 1: Choose a random integer 𝑑 ∈  [1,𝑛 − 1] 

Step 2: Computes point 𝑄 = 𝑑𝑃  

 The public key is point 𝑄, and private key is integer 𝑑. 

2.3.3 Elliptic Curve Integrated Encryption Scheme (ECIES) 

The most extended encryption and decryption scheme based on ECC is the Ellip t ic 

Curve Integrated Encryption Scheme (ECIES). This scheme is a variant of the ElGamal 

scheme proposed in [12]. This scheme is described as follows: 

System Setup: 

Step 1: Alice sets the ECC system parameter sets 𝐷 = {𝑝, 𝑎, 𝑏, 𝑃, 𝑛, ℎ} 

Step 2: Computes Key Pair (𝑄, 𝑑) 

Encryption: 

Step 1: Bob selects a random number 𝑘 ∈  [1, 𝑛 − 1] 

Step 2: Computes 𝑅 =  𝑘𝑃, and 𝑍 =  ℎ𝑘𝑄. 

Step 3: 𝑋 -coordinate of 𝑍  and 𝑅  is converted to (𝑘1,𝑘2)  using a key derivation hash 

function 

Step 4: Message m is encrypted with 𝑘1  using a symmetrical key cipher to get 𝐶 =

𝐸𝑁𝐶 (𝑚) 

Step 5: Computes 𝑡 =  𝑀𝐴𝐶 (𝐶) using 𝑘2, where 𝑀𝐴𝐶 is a message authentication code 

Step 6: Cipher text (𝑅, 𝐶, 𝑡) is sent to Alice 

Decryption:  

Step 1: Alice computes 𝑍 =  ℎ𝑑𝑅 

Step 2: 𝑋 -coordinate of 𝑍  and 𝑅  is converted to (𝑘1,𝑘2)   using a key derivation hash 
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function  

Step 3: Computes 𝑡 =  𝑀𝐴𝐶 (𝐶) using 𝑘2, where 𝑀𝐴𝐶 is a message authentication code  

Step 4: Message m is decrypted with 𝑘1  using a symmetrical key cipher to get 𝑚 =

𝐷𝐸𝐶 (𝐶) 

 This scheme works since when Alice generates 𝑍, it follows that, 

𝑍 = ℎ𝑑𝑅 = ℎ𝑑 (𝑘𝑃) = ℎ𝑘(𝑑𝑃) = ℎ𝑘𝑄  

So both the encryption and decryption generate the same key pair (𝑘1, 𝑘2).  

2.3.4 Elliptic Curve Diffie–Hellman Key Exchange (ECDHKE) 

ECDHKE is the generic key exchange scheme based on the Diffie-Hellman 

mechanism applied to elliptic curves [13]. The information available to the public is the 

elliptic curve E over 𝐺𝐹(𝑝), and a point 𝑃 with order n on the curve. The computations are 

described as follows: 

Computation of Alice: 

Step 1: Alice chooses random number 𝑎 ∈  [1, 𝑛 − 1] 

Step 2: Computes 𝑎𝑃 and it is sent to Bob  

Step 3: After receiving 𝑏𝑃 form Bob, Alice computes scalar multiplication 𝑎(𝑏𝑃) to get                   

𝑎𝑏𝑃 

Computation of Bob: 

Step 1: Bob chooses random number 𝑏 ∈  [1,𝑛 − 1] 

Step 2: Computes 𝑏𝑃 and it is sent to Alice  

Step 3: After receiving 𝑎𝑃 form Alice, Bob computes scalar multiplication 𝑏 (𝑎𝑃) to get 

𝑏𝑎𝑃 

The secret key shared by the two parties is 𝑘 =  𝑎𝑏𝑃. By applying this scheme, the 
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secret key is securely exchanged. 

2.3.5 Elliptic Curve Digital Signature Algorithm (ECDSA) 

ECDSA is the elliptic curve variant of the Digital Signature Algorithm [14]. This 

scheme can be introduced as the following steps: 

System Setup: 

Step 1: Alice sets the ECC system parameter sets 𝐷 = {𝑝, 𝑎, 𝑏, 𝑃, 𝑛, ℎ} 

Step 2: Computes Key Pair (𝑄, 𝑑) 

Signing of the message: 

Step 1: Alice calculates 𝑒 =  𝐻 (𝑚), where H is a hash function.  

Step 2: Chooses random number 𝑘 ∈  [1,𝑛 − 1]  

Step 3: Calculates point 𝑅 =  𝑘𝑃 (𝑥1,𝑦1).  

Step 4: Calculates 𝑠𝑖𝑔1 = 𝑥1 mod 𝑛. If 𝑠𝑖𝑔1 = 0, Alice chooses another 𝑘. 

Step 5: Calculates 𝑠𝑖𝑔2  =  𝑘
−1(𝑒 +  𝑑𝑥1) mod 𝑛. 

Step 6: The signature is the pair (𝑠𝑖𝑔1 , 𝑠𝑖𝑔2). 

Verification of the signature: 

Step 1: Bob calculates 𝑒 =  𝐻 (𝑚), where 𝐻 is a hash function.  

Step 2: Calculates 𝑤 =  𝑠𝑖𝑔2
−1  mod 𝑛. 

Step 3: Calculates 𝑢1  =  𝑒𝑤 mod 𝑛 and 𝑢2  =  𝑠𝑖𝑔1𝑤 mod 𝑛. 

Step 4: Calculates point 𝑋 =  𝑢1𝑃 +  𝑢2𝑄 and retrieve the 𝑥-coordinate of 𝑋 denoted by 

𝑥2 

Step 5: The signature is valid if 𝑠𝑖𝑔1  =  𝑥2 mod 𝑛, if not the signature is rejected. 
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To prove the correctness of the algorithm, the following equation can be performed. 

𝑋 = 𝑢1𝑃 + 𝑢2𝑄 

= 𝑢1𝑃 +  𝑢2𝑑 ×  𝑃 

= (𝑢1 + 𝑢2d) ×  P 

= (𝑒 × 𝑠𝑖𝑔2
−1  +   𝑠𝑖𝑔1 × 𝑠𝑖𝑔2

−1  𝑑) ×  𝑃 

= (𝑒 +  𝑠𝑖𝑔1𝑑)𝑠𝑖𝑔2
−1 ×  𝑃 

= (𝑒 + 𝑠𝑖𝑔1𝑑) (𝑒 + 𝑠𝑖𝑔1𝑑)
−1(𝑘−1)−1 × 𝑃 =  𝑘𝑃 

 Thus from the computation it is verified  𝑠𝑖𝑔1  =  𝑥2 mod n from point 𝑋 =  𝑘𝑃. 

From all the above algorithms, it can be seen that scalar multiplication is the main 

computation involved in elliptic curve cryptography. SCAs mainly target the scalar 

multiplication in ECC to compromise partial or the full secret key. 
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CHAPTER III 

SIDE CHANNEL ATTACKS  

To consider a cryptosystem under mathematically circumstances, a black-box 

model is usually used. In the black-box scheme, attackers cannot get any intermed iate 

computation results [15]. The only information available to the attackers are plaintext and 

cipher text. Thus in order to break the cryptosystem, the attackers need to solve the hard 

math problem such like ECDLP in ECC.  

 

Figure 3.1 Traditional cryptosystem 

However, such model is not adequate under most scenarios in practice. When a 

cryptosystem is implemented on hardware, there will be unintended information leaked 

during the execution of the algorithm. The attackers thus can try to find correlation between 

the leaked information and the secret key. Side Channel can be classified based on the types  

of side channel information. Information can be extracted from timing, power consumption 

or electromagnetic radiation features. Hardware or software faults, computational errors, 

and changes in frequency or temperature can also lead to leak of information. Table 3.1 

shows the relation between leaked information and type of side channel attacks. 
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Table 3.1 Category of SCAs 

3.1 Timing Attack 

Many of the implementations of cryptographic algorithms perform the 

computations in a non-constant time. The time variations sometimes can become a 

breakthrough point of the system. If the difference of time is correlated to the secret 

parameters, then a statistical analysis can reveal enough information to access the key. 

Timing attack was first introduced by Kocher in [5].  

The working principle of timing attack is to capitalize on the time difference, thus 

an easy countermeasure is to make the implementation on the hardware equalize the 

computation time in each step.  

3.2 Fault Attack 

The idea of fault attack is to inject a fault and force the system to leak information 

related to the secret parameter. Fault attack was first introduced in [16]. Consider a 

hardware implementation of a cryptosystem, the execution of a fault attack usually two 

steps [17]. The first step is to inject a fault and the second step is to do a cryptanalys is 

based on the erroneously result.  

Side Channel Information Side Channel Attacks 

  

Power traces 

Simple power analysis(SPA) 

Differential power analysis 

Comparative power analysis 

Time Timing attack 

Faults and error Fault attack 

Electromagnetic radiation EM attack 



 
 

17 
 

Among the many fault attacks, differential fault attack (DFA) caught most attention 

of the scientists and researchers. To initialize DFA, a bit error is enforced into the hardware 

before or during the computation. By analyzing the correct result and the erroneous result, 

the information of the secret key is compromised. Biehl and Műller proposed an effective 

DFA against ECC in 2000 [18]. The main idea is to construct a reference elliptic curve Er 

and choose a reference point 𝑃𝑟 on the Curve. By inputting this reference point into the 

tamper-proof hardware, the reference result 𝑑 × 𝑃𝑟  on the curve is 𝐸𝑟  computed. Since 

curve 𝐸𝑟 is carefully chosen that the order of the curve has a factor 𝑟 equals to the order of 

𝑃𝑟, the ECDLP is deduced to the subgroup of order 𝑟. Next another reference point is 

carefully chosen and the whole process is duplicated. The secret parameter 𝑑  can be 

revealed. 

Yen and Joye introduced another fault attack scheme in [19], this attack targets the 

algorithms with dummy operations. By carefully timing a fault injection, the attacker can 

distinguish whether this fault causes an error in the result. Thus it can be known whether a 

redundant operation is executed.  By repeating the procedure, the whole secret key can be 

retrieved. This attack is called safe-error attack. 

3.3 Electromagnetic Attack 

Electromagnetic (EM) attack [20] is based on the fact that all electrical device 

radiates electromagnetic waves when operating. An adversary examines the changes of the 

electromagnetic field first and then an electromagnetic analysis is executed trying to extract 

the secret information. 

Wu and Yu introduced an EM attack against scalar multiplication in [21]. The 

attacker is targeting a classical binary algorithm. The electromagnetic traces captured have 
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significant difference when different computation is executed. Thus it is easy to access the 

secret key by comparing the power traces. 

3.4 Power Analysis Attack 

Similar to EM attacks, power consumption is often leaked during the running 

process of the cryptographic device. By observing the power traces, attackers can get 

access to the information on where a certain operation happened and what secret parameter 

is involved. Since power analysis attacks usually use little resources, power constrained 

applications such like smart cards are primary targets of it [22]. 

Power analysis attack can be generally categorized into two types, simple power 

analysis (SPA) and differential power analysis (DPA). SPA attacker examines the power 

traces of cryptography computations and distinguish the power consumption caused by the 

secret key. The attacker tries to get secret information by observation of repetitive patterns 

in the obtained power traces. If power consumptions are distinguishable the information of 

secret key is leaked. DPA relies on the statistical analysis to reveal the correlation between 

the secret bit and power consumption. It is usually executed in two steps. First the power 

traces are captured, then analysis regarding the captured information is carried out. Among 

all the various SCAs, DPA is being regarded as one of the strongest. The difference lies in 

that despite merely observation of the power spectrum, DPAs employ more statistica l 

methods to guess the secret key.  

Coron shows in [7] how DPAs work against scalar multiplication, which is the main 

computation in ECC. Since in many scalar multiplication algorithms, the result is computed 

by continuous point addition chain. That is, given a point 𝑃 and scalar 𝑑, 𝑑𝑃 is calculated 

as: 
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𝑃 → 𝑑0𝑃 → 𝑑1𝑃 → 𝑑2𝑃 → 𝑑3𝑃 → ⋯ → 𝑑𝑃 

The attacker starts guessing from 𝑑0 = 1 to 𝑑. For each 𝑑𝑖, a set 𝐴𝑖 with all possible 𝑑𝑖 =

 𝑑𝑗 + 𝑑𝑘  where 0 ≤  𝑗 ≤ 𝑘 <  𝑖 is built. For each element 𝑑𝑖 in the set 𝐴𝑖, the correlation 

of power consumption and 𝑑𝑖𝑃 is computed. When the peak is achieved in the computation, 

the desired 𝑑𝑖  is recovered. By repeating the same pattern for 𝑑0 = 1 to 𝑑, the secret key 

𝑑 will be compromised at last. 
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CHAPTER IV 

EXISTING WORK REVIEW AND SECURITY ANALYSIS  

There have been different scalar multiplication algorithms existing to improve the 

overall performance for efficient or security. In this chapter we introduce the different 

algorithms and their implementations. Also the security strength of these algorithms will 

be analyzed. 

4.1 Classical binary algorithm 

 The binary algorithm is also known as the “square and multiply method” to do 

exponentiation calculation. It is a very old algorithm which has over 2000 year’s history 

[23].   While in the scalar multiplication scenario, it is very simply adapted as the double 

and add algorithm.  

 The basic idea of double and add algorithm is to make full use of the binary form 

of the scalar. Consider a point 𝑃 and scalar 𝑘, rather than add point 𝑃 to itself 𝑑 times to 

get the result 𝑘𝑃, the double and add method will obviously reduce number of addition 

operation needed.   

 The binary algorithm has two versions, one is from the least significant bit to the 

most significant bit shown in Algorithm 4.1.  

Algorithm 4.1.Right to left version of double-and-add method 

Input: 𝑃 𝜖 𝐸, 𝑘 = (𝑘𝑛−1 , … , 𝑘1, 𝑘0)2 ,𝑘𝑖𝜖 0,1 

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸 

Step 1: 𝑥 = 𝑂, 𝑦 = 𝑃; 

Step 2: 𝑓𝑜𝑟 𝑖=0 𝑡𝑜 𝑛−1 𝑑𝑜 
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Step 3:    𝑖𝑓 𝑘𝑖 = 1, 𝑡ℎ𝑒𝑛 𝑥 = 𝑥 + 𝑦 

Step 4:    𝑒𝑛𝑑 𝑖𝑓 

Step 5:𝑦 = 2𝑦 

Step 6:𝑒𝑛𝑑 𝑓𝑜𝑟 

Step 7:𝑅𝑒𝑡𝑢𝑟𝑛 𝑥 

  

The other is calculating from the most significant bit to the least significant bit, as 

shown in algorithm 4.2. 

Algorithm 4.2.Left to right version of double-and-add method 

Input: 𝑃 𝜖 𝐸, 𝑘 = (𝑘𝑛−1 , … , 𝑘1, 𝑘0)2 ,𝑘𝑖𝜖 0,1 

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸 

Step 1: 𝑥 = 𝑃; 

Step 2: 𝑓𝑜𝑟 𝑖=𝑛−2 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜 

Step 3:     𝑥 = 2𝑥 

Step 4:     𝑖𝑓 𝑘𝑖 = 1, 𝑡ℎ𝑒𝑛 𝑥 = 𝑥 + 𝑃 

Step 5:     𝑒𝑛𝑑 𝑖𝑓 

Step 6: 𝑒𝑛𝑑 𝑓𝑜𝑟 

Step 7: 𝑅𝑒𝑡𝑢𝑟𝑛 𝑥 

 

Although the addition operation is significantly reduced in the double-and-add 

algorithm, the drawbacks of this algorithm is crucial. Comparing the operations carried out 

when the secret bit 𝑘𝑖  is different, it is clear that more computations are executed when 
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𝑘𝑖  = 1. In every iteration, the doubling operation is always performed, while addition only 

happens when 𝑘𝑖  = 1. This variation responses directly into the power consumption.  As 

shown in Figure 4.1, D denotes doubling operation and A represents addition operation. 

The secret bit is chosen as 𝑘 =  (0101)2. The length of the power peak is different, thus 

the attacker can observe the power traces and distinguish the secret bits. This figure shows 

exactly how the double-and-add algorithm is vulnerable to the SPA attack. Because of this 

major drawback, many other algorithms is have been developed.  

 

 

 

 

 

 

 

 

 

Figure 4.1 Vulnerability of binary method to SPA 

A high speed ECC processor is implemented by Hossain and Kong in 2015 [24]. 

Over field 𝐺𝐹(2233), their ECC processor can perform scalar multiplication 2.66 ms at 

255.66 MHz in on a Xilinx Kintex-7 devices. This design features to speed up the overall 

computation time. They applies the double-and-add algorithm to the design in a trade-off 

for speed. As stated previously, this design can be easily crack by SCA attacks. 

      

     A: Addition 

     D: Doubling    

 

 

     Power Trace 

          

     Secret Bit              0               1                    0                   1   

A 

D 

A 

D 

D D 



 
 

23 
 

4.2 Double-and-Add Always Algorithm 

In order to achieve more security strength against SPA, Coron proposed a double-and-add 

always algorithm in 1999 [7]. The main idea of this algorithm is to add a dummy operation 

to standard double-and-add to equalize the power consumption of each cycle. As illustrated 

in   Algorithm 4.3, a dummy addition is executed when the processing bit is zero. In this 

way, the algorithm is performing a doubling followed by an addition in every iteration. 

Since the algorithm is regular now, it has resistance to SPA attacks.  

Algorithm 4.3.Double-and-add always method 

Input: 𝑃 𝜖 𝐸, 𝑘 = (𝑘𝑛−1 , … , 𝑘1, 𝑘0)2 ,𝑘𝑖𝜖 0,1 

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸 

Step 1: 𝑥 = 𝑂, 𝑦 = 𝑂; 

Step 2: 𝑓𝑜𝑟 𝑖=𝑛−1 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜 

Step 3:     𝑥 = 2𝑥; 

Step 4:     𝑦 = 𝑥 + 𝑃; 

Step 5:    𝑖𝑓 𝑘𝑖 = 1, 𝑡ℎ𝑒𝑛 𝑥 = 𝑦; 

Step 6:    𝑒𝑛𝑑 𝑖𝑓 

Step 7:𝑒𝑛𝑑 𝑓𝑜𝑟 

Step 8:𝑅𝑒𝑡𝑢𝑟𝑛 𝑥 

 

However, another fault attack called c-safe error attack [9] can easily crack this 

algorithm. When the secret bit is zero, the addition result won’t affect the final result. When 

the attacker altered one bit of the secret key to zero, the result can be compared with the 

original output. If the result remains the same, the attacker knows that the secret bit is zero. 
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In the case the result changed, the attacker will figure that the secret bit is one and it is quite 

easy to locate. This algorithm is taking as an unsuccessful sequence mask example since 

the countermeasure takes to prevent SPA benefits other attacks [26]. 

Another attack threatening this algorithm is the doubling attack, which proposed by 

Fouque and Valette in [25]. The name is from the fact this attack is based on the doubling 

operation in the scalar multiplication. This type of attack only works when using left to 

right algorithms. To better explain it, consider two points 𝑃, 2𝑃 and secret 𝑘 =  9 =

(1001)2 as input. Double-and-add always method is used to compute 𝑘𝑃 and 𝑘 (2𝑃). As 

illustrated in Table 4.1, if we focus the doubling operation in each iteration, some of them 

shares the same pattern. To be more specific, doubling operation at iteration 2 calculat ing 

𝑘 (2𝑃) is the same as doubling operation at iteration 3 calculating 𝑘𝑃. Thus two zeros is 

overserved by the adversary. This attack reveals all the bits with the value zero and using 

these information, the whole secret bits can be revealed consequently. 

Table 4.1 Doubling attack against double-and-add always algorithm 

Iteration 𝑖  𝑘𝑖 𝑘𝑃 𝑘(2𝑃) 

3 1 2 ×  0 
0 +  𝑃 

2 ×  0 
0 +  2𝑃 

2 0 2 ×  𝑃 

2𝑃 +  𝑃 

2 ×  2𝑃 

4𝑃 +  2𝑃 

1 0 2 ×  2𝑃 
4𝑃 +  𝑃 

2 ×  4𝑃 
8𝑃 +  2𝑃 

0 1 2 ×  4𝑃 

8𝑃 +  𝑃 

2 ×  8𝑃 

16𝑃 +  2𝑃 

 

To the best knowledge, implementation for double-and-add always algorithm is 

very few since it is not efficiency compared to classical double-and-add. Although it has 
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more resistance to SPA, it is still vulnerable to many other attacks such like safe error  

attack. This method later stimulated development of more advanced algorithms such like 

MPL. 

4.3 Non Adjacent Form Method 

As stated in previous chapter, a point 𝑃 (𝑥,𝑦) on elliptic curve E over binary field, 

has additive inverse in the form – 𝑃 =  (𝑥, 𝑥 + 𝑦). Thus subtraction of point is actually the 

same as point addition on an elliptic curve. The non-adjacent form (NAF) is a signed digit 

representation [27] inspired by this fact. In NAF method, the secret key is represented by 

the following equation.  

 

𝑘 =∑ 𝑘𝑖2
𝑖

𝑙−1

𝑖=0

, 𝑤ℎ𝑒𝑟𝑒 𝑘𝑖 ∈ {0, ±1}, 𝑘𝑙−1 ≠ 0 

In this expression, there is no two continuous nonzero digits. The advantage of this 

representation is that generally it has fewer nonzero bits [23], which leads to a reduction of 

addition operation needed in the algorithm. The NAF method is shown in Algorithm 4.4. 

  

Algorithm 4.4. Non Adjacent Form method 

Input: 𝑃 𝜖 𝐸, 𝑁𝐴𝐹(𝑘) = ∑ 𝑘𝑖2
𝑖

𝑙−1

𝑖=0

, 𝑘𝑖𝜖 {0, ±1} 

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸 

Step 1: 𝑥 = 𝑃, 𝑦 = 𝑂; 

Step 2: 𝑓𝑜𝑟 𝑖=l−2 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜 

Step 3:     𝑥 = 2𝑥; 
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Step 4:    𝑖𝑓 𝑘𝑖 = 1, 𝑡ℎ𝑒𝑛 𝑥 = 𝑥 +𝑃; 

Step 5:    else 𝑖𝑓 𝑘𝑖 = −1,𝑡ℎ𝑒𝑛 𝑥 = 𝑥 + (−𝑃); 

Step 6:    𝑒𝑛𝑑 𝑖𝑓 

Step 7:𝑒𝑛𝑑 𝑓𝑜𝑟 

Step 8:𝑅𝑒𝑡𝑢𝑟𝑛 𝑥 

 

The doubling attack mentioned in previous section still applies to the NAF method. 

Taking an integer 𝑘 =  29, and 𝑁𝐴𝐹 (𝑘) =  (1, 0,0 − 1, 0, 1) . Then if the adversary 

calculates 𝑘𝑃  and takes 𝑘 (2𝑃)  as a reference. From Table. 4.2, it is shown that the 

intermediate value at iteration i when computing 𝑘 (2𝑃) equals the result at iteration i-1 

when computing 𝑘𝑃 . All the secret bits with value zero is thus revealed. Since 

approximately two third of the bits in NAF representation is zero [28], most bits are 

retrieved applying doubling attack. 

Table 4.2 Doubling attack against NAF method 

Iteration 𝑖 𝑘𝑖 𝑘𝑃 𝑘(2𝑃) 

4 0 2 × 𝑃 2 × 2𝑃 

3 0 2 × 2𝑃 2 × 4𝑃 

2 −1 2 ×  4𝑃 

8𝑃 +  (−𝑃) 
2 ×  8𝑃 

16𝑃 +  (−2𝑃) 

1 0 2 × 7𝑃 2 × 14𝑃 

0 1 2 ×  14𝑃 

28𝑃 +  𝑃 

2 ×  28𝑃 

56𝑃 +  2𝑃 
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Wang introduced his implementation of an ECC coprocessor over  𝐺𝐹(2233) in 

2005 [29]. In this paper, a digit-serial multiplier which can achieve half or quarter clock 

cycles compared to the full-serial multiplier is proposed. With proper precomputation, this 

design can reduce the total calculating time by applying the projective coordinates. The 

coprocessor can perform a scalar multiplication in 2.28 ms at 80 MHz. However, the 

implementation algorithm chosen by the author is NAF method which vulnerable to attacks 

like doubling attack. 

4.4 Montgomery Powering Ladder Algorithm 

4.4.1 Explanation of Algorithm 

The Montgomery powering ladder is first proposed in [9] to provide a 

countermeasure to SPA. For a given 𝑘 = ∑ 𝑘𝑖2
𝑖𝑙−1

𝑖=0 , in order to compute 𝑘𝑃, the MPL is 

constructed based on the following relationships. Define 𝐿𝑗 = ∑ 𝑘𝑖2
𝑖𝑙−1

𝑖=𝑗  and 𝐻𝑗 = 𝐿𝑗 + 1. 

𝐿𝑗 and 𝐻𝑗can then be represented as 

{
𝐿𝑗 = 2𝐿𝑗+1 +𝑘𝑗 = 𝐿𝑗+1 +𝐻𝑗+1 + 𝑘𝑗 − 1.

𝐻𝑗 = 𝐿𝑗+1 +𝐻𝑗+1 + 𝑘𝑗
 

So at iteration 𝑗, it is easy to express 𝐿𝑗 and 𝐻𝑗 using the previous values from iteration 𝑗 +

1 

(𝐿𝑗, 𝐻𝑗) = {
(2𝐿𝑗+1, 𝐿𝑗+1 +𝐻𝑗+1) 𝑤ℎ𝑒𝑛 𝑘𝑗 = 0 

(𝐿𝑗+1 + 𝐻𝑗+1, 2𝐻𝑗+1) 𝑤ℎ𝑒𝑛 𝑘𝑗 = 1
 

The above equations implies the structure of MPL. The calculations are very similar to 

each other and in each iteration one doubling is performed with one addition. Recall that 

the main computation of scalar multiplication is point doubling and point addition, the 

following algorithm is obtained.  
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Algorithm 4.5. Montgomery Powering Ladder 

Input: 𝑃 𝜖 𝐸, 𝑘 = (𝑘𝑛−1 , … , 𝑘1, 𝑘0)2 ,𝑘𝑖𝜖 0,1 

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸 

Step 1: 𝑥 = 0, 𝑦 = 𝑃; 

Step 2: 𝑓𝑜𝑟 𝑖=𝑛−1 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜 

Step 3:     𝑖𝑓 𝑘𝑖 = 0, 𝑡ℎ𝑒𝑛 𝑦 = 𝑥 + 𝑦;  𝑥 = 2𝑥 

Step 4:    𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘𝑖 = 1, 𝑡ℎ𝑒𝑛 𝑥 = 𝑥 + 𝑦;𝑦 = 2𝑦 

Step 5:    𝑒𝑛𝑑 𝑖𝑓 

Step 6:𝑒𝑛𝑑 𝑓𝑜𝑟 

Step 7:𝑅𝑒𝑡𝑢𝑟𝑛 𝑥 

 

4.4.2 Advantage of MPL 

In algorithm 4.5, it is obvious that the computations for point addition and point 

doubling are independent. Thus they can be calculated parallel. This feature results in faster 

calculation speed. Moreover, since in every circle, MPL executes the same operation, it is 

considered highly regular. This structure makes it invulnerable to SPA.  

Another c safe-error attack introduced in previous section also has no effect to MPL. 

Unlike the double-and-add always algorithm, there is no dummy operation in MPL. So any 

fault injected will lead an error in the result.  

The doubling attack is considered ineffective. Assume there are two registers 𝑅0 

and 𝑅1 to store the intermediate values. It could be the value stored in 𝑅0 or 𝑅1 performs 

the doubling, depending on the secret bit. While the previous algorithms which are 
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vulnerable to doubling attack all shares the fixed doubling pattern, the attacker cannot see 

a repeated doubling operation when there is no continuous bits with the same value one or 

zero. But if there exists successive bits carrying the same value, the algorithm is vulnerab le 

to a relative doubling attack proposed in [30]. 

4.4.3 Relative Doubling Attack against MPL 

While the doubling attack mainly focus on finding the 0 bits, the relative doubling 

attack compares the value of two adjacent secret key bits. Let registers 𝑅0 store the value 

of 𝐿 𝑖, and registers 𝑅1 store the value of 𝐻𝑖. If 𝑘𝑖  =  𝑘𝑖−1  =  0, the following doubling 

computation is observed.  

{
𝑅0 ← 2× 𝐿 𝑖𝑃: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 − 1 𝑤ℎ𝑒𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑘𝑃

𝑅0 ← 𝐿 𝑖+1 × 2𝑃: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 𝑤ℎ𝑒𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑘(2𝑃)
 

Since 𝐿𝑖 = 2𝐿𝑖+1  when obviously the above equations are doing the same 

computation. Thus, if such collisions are observed, the attacker get the information  

𝑘𝑖  =  𝑘𝑖−1  =  0. 

Similar situation applies to when 𝑘𝑖  =  𝑘𝑖−1  =  1. Then in register 𝑅1, 

{
𝑅1 ← 2× 𝐻𝑖𝑃: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 − 1 𝑤ℎ𝑒𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑘𝑃

𝑅1 ← 𝐻𝑖+1 × 2𝑃: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 𝑤ℎ𝑒𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑘(2𝑃)
 

same computations will be carried because that 𝐻𝑖 = 2𝐻𝑖+1. While when ki is not equal to 

𝑘𝑖−1 , there is no collision detected. 

Taking 𝑘 =  105 =  (1101001)2, the adversary computes 𝑘𝑃 and 𝑘(2𝑃) as the 

pattern shown in Table. 4.3. It is very clear that at iteration 1 and 2, collisions in register 

𝑅0 is detected. This fact leads to secret key bits 𝑘2  =  𝑘1  =  0. Taking iteration 5 and 6 as 

another example, the operations regarding values in register 𝑅1  is the same, thus the 

attacker figures 𝑘6  =  𝑘5  =  0. When there is no collision happened, that means the two 
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adjacent secret bits are holding different values. Then the whole secret key is revealed from 

the collision location bit by bit. 

                     Table 4.3 Relative doubling attack against MPL 

Iteration 𝑖  𝑘𝑖 𝑘𝑃 𝑘(2𝑃) 

6 1 𝑅0 = 0 +  𝑃  

𝑅1 = 2×  𝑃 

𝑅0 = 0 + 2𝑃  

𝑅1 = 2× 2𝑃 

5 1 𝑅0 = 𝑃 +  2𝑃  

𝑅1 = 2× 2𝑃 

𝑅0 = 2𝑃 +  4𝑃  

𝑅1 = 2× 4𝑃 

4 0 𝑅0 = 2× 3𝑃  
𝑅1 = 3𝑃+ 4𝑃 

𝑅0 = 2× 6𝑃  
𝑅1 = 6𝑃 + 8𝑃 

3 1 𝑅0 = 6𝑃 +  7𝑃  

𝑅1 = 2× 7𝑃 

𝑅0 = 12𝑃 +  14𝑃  

𝑅1 = 2 × 14𝑃 

2 0 𝑅0 = 2× 13𝑃  

𝑅1 = 13𝑃+ 14𝑃 

𝑅0 = 2× 26𝑃  

𝑅1 = 26𝑃 + 28𝑃 

1 0 𝑅0 = 2× 26𝑃  

𝑅1 = 26𝑃+ 27𝑃 

𝑅0 = 2× 52𝑃  

𝑅1 = 52𝑃 + 54𝑃 

0 1 𝑅0 = 52𝑃 +  53𝑃  

𝑅1 = 2× 53𝑃 

𝑅0 = 104𝑃 +  106𝑃   

𝑅1 = 2× 106𝑃 

 

4.4.4 M-safe Error Attack against MPL 

Despite the relative doubling attack, another fault attack M safe-error attack 

introduced in [19] is also proven to be effective against MPL. In this scheme, the fault 

induced by the attacker is temporary memory fault and it is very carefully timed. M safe-

error attack takes advantage of the two distinct operations carried out in each cycle of MPL. 

Consider the different computation when 𝑘 𝑖  is different. When 𝑘 𝑖 =  1 , the two 

operations are 𝑅0 = 𝑅0 + 𝑅1 and 𝑅1  = 2𝑅1. Any fault injected into 𝑅1 will change the 

value of the result, thus it is not a safe error. If 𝑘 𝑖 =  0, then 𝑅0 =  2𝑅0 and 𝑅1 =  𝑅0 +

 𝑅1 will be computed, error inputted into more significant bits of 𝑅1 will be erased after the 
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resigning of value in 𝑅1. In other words, the result still remains and the error is regarded a 

safe-error. The attacker can retrieve the secret bit 𝑘 𝑖 based on the above fact.  

4.4.5 Comparative Power Analysis against MPL 

Comparative Power Analysis is proposed by Homma in 2010 [31]. It is a more 

powerful attack which can compromise multiple scalar multiplication algorithms such like 

double-and-add algorithm, double-and-add always algorithm and MPL algorithm. While 

the original attack introduced is aiming at implementation of exponentiation, it also applies 

to scalar multiplication. 

Similar to the relative doubling attack, the basic idea of comparative power analysis 

is also generating collisions by inputting a pair of carefully chosen message. More 

specifically, the chosen inputs are set to satisfy the equation 𝛼𝑃 = 𝛽𝑄, where 𝛼 and 𝛽 are 

integer. The input 𝑃  is computed with the target operation 𝛼𝑃  while the input 𝑄  is 

illustrates the reference power trace. When the collision happens, the doubling operation 

of the two input will have very similar power trace. By comparison of the power traces, the 

target secret key bit is leaked. Unlike doubling attack, the collision can be retrieved from 

different time frames. 

Figure 4.2 shows an example how the attack scheme works. The input condition is 

chosen as 15𝑃 =  2𝑄. Consider the first four bits of the secret key is known to the attacker, 

the target bit is the fifth bit. The attacker then make an assumption that the target bit is 1, 

and illustrates the power traces. Then he examines the reference power traces at the time 

frame 2𝑄 doubling is computing,  if the power trace shares similarity with the target power 

trace at the time frame computing 15𝑃 doubling, the target secret bit is 1. The assumption 

made at the beginning is correct. If there is no similarity detected in the target and reference 
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power trace, the secret bit is 0. Note that the collision is generated at different timeframe 

of the two power traces. By repeating the attack pattern, all the bits of the secret key will 

be known. 

 

Figure 4.2 Comparative power analysis against MPL 

4.4.6 MPL based hardware implementation 

Deschamps and G.Sutter implemented EC scalar multiplication over 𝐺𝐹(2163) in 

2008 [32]. This design is implemented using MPL algorithm. The computation time is 1ms 

at 100MHz and a comparison with binary algorithm implementation has been made. As 

stated previously, implementation on unprotected MPL is still vulnerable to some SCAs, 

thus an implementation on a more secure algorithm is proposed in the next chapter.  
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CHAPTER V 

ANALYSIS OF MODIFIED MPL WITH COUNTERMEASURES 

In this chapter we introduce a modified MPL with sequence masking, exponent 

splitting and point randomization proposed in [11]. A small modification has been done to 

this algorithm to make it suitable for ECC scalar multiplication since it is origina l ly 

invented for exponentiation operation. 

5.1 Existing countermeasure techniques 

In previous Chapters, it has been stated that unprotected MPL is still vulnerable to 

a lot of side channel attacks. To offer protections in algorithm level, He, Huang and Wu 

proposed a highly secure MPL for exponentiation operation [11]. Several countermeasures 

had been applied to enhance its security strength.  

5.1.1 Coron’s three countermeasures to DPA 

Coron has proposed three countermeasures against DPA to improve the origina l 

MPL [7]. The first is to randomize the secret private exponent. The main idea is to change 

the representation of the secret exponent. Denote #ε as the number of all the points on the 

curve E, and select a random number k. Then the following computation is carried out to 

calculate 𝑑′ = 𝑑 + 𝑘#𝜀, the computation Q = dP is replaced by 𝑄 = 𝑑′𝑃. The correctness 

of this transform is based on the fact that #𝜀𝑃 = 0.  To expand this equation in detail, we 

get the following proof.  

𝑄 = 𝑑′𝑃 = (𝑑 + 𝑘. #𝜀)𝑃 = 𝑑𝑃 + 𝑘. #𝜀. 𝑃 = 𝑑𝑃 + 𝛰 = 𝑑𝑃 

The size of the random number k is suggested to be 20 for better security performance. By 

applying this countermeasure, the compute process is changed while the result 𝑄 still 

remains the same.  
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The second countermeasure is to blind the point 𝑃. Choose a random 𝑅 on the same 

curve as point 𝑃. Point 𝑅 is used as a mask to provide protection to the point 𝑃. Another 

point 𝑆  is computed as 𝑆 =  𝑑𝑅 . The cryptographic system then performs the scalar 

multiplication 𝑑(𝑅+ 𝑃). In order to retrieve 𝑄 =  𝑑𝑃, a subtraction will be applied the 

previous result. Since 𝑆 is already known, the final result will be recovered by 𝑑(𝑅+ 𝑃) −

𝑆. Point 𝑅 and 𝑆 will be updated in every initialization of the scalar multiplication. 

 The third countermeasure is to randomize to projective representation [33] of the 

point 𝑃 (𝑥,𝑦). Point 𝑃 can be represented in projective coordinates as (𝑋, 𝑌, 𝑍). Since it is 

not the only projective representation point P has, it can be written as (𝜆𝑋, 𝜆𝑌, 𝜆𝑍) where 

𝜆 ≠ 0. The binary representation of point 𝑃 is then guarded. Since this thesis mainly focus 

on implementation in affine coordinates, this countermeasure will not be discussed in detail.  

5.1.2 Exponent Splitting 

Exponent Splitting technique is first proposed in [34]. While it is used in 

exponentiation is the paper, the idea is the same in scalar multiplication. The basic thought 

is based on the simple observation that  

𝑑𝑃 =  (𝑑 − 𝑎)𝑃 +  𝑎𝑃 

 In this splitting technique, the scalar d can be split into two parts as the above 

equation indicated. First a random number 𝑟 is generated, where r is smaller than 𝑑. 𝑟’ is 

then calculated by 𝑟’ =  𝑑 − 𝑟. The scalar multiplication then become 

𝑑𝑃 =  𝑟𝑃 +  𝑟’𝑃 

since 𝑑 =  𝑟 +  𝑟’, it is obvious that the result is the same without scalar splitting. 

 Since we can see from the equation, the splitting technique is basically transforming 

a single scalar multiplication into two separate computations, thus it will be more time 
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consuming to put this technique into practice. Usually it takes two times the original time. 

But considering the security strength, sometimes the trade-off is worthy. This technique 

offers enhanced protection against SPA, and the randomization also helps to prevent some 

differential attacks.  

5.1.3 Blinded Fault Resistant Exponentiation 

This technique is first proposed by Fumaroli and Vigilant in [35]. It is an extension 

of Coron’s second countermeasure [7].  The main idea is to add a mask to the base point 𝑃 

to construct a masked MPL. The algorithm is originally for exponentiation operation, but 

by a small modification, it can be also applied to scalar multiplication. 

Algorithm 5.1. Masked Montgomery Powering Ladder 

Input: 𝑃 𝜖 𝐸, 𝑘 = (𝑘𝑛−1 , … , 𝑘1, 𝑘0)2 ,𝑘𝑖𝜖 0,1 

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸 

Step 1: 𝑆𝑒𝑙𝑒𝑐𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡 𝑅 𝑜𝑛 𝐸; 

Step 2: 𝑅0 = 𝑅, 𝑅1 = 𝑃 + 𝑅, 𝑅2 = −𝑅 

Step 3: 𝑓𝑜𝑟 𝑖=𝑛−1 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜 

Step 4:     𝑖𝑓 𝑘𝑖 = 0, 𝑡ℎ𝑒𝑛 𝑅1 = 𝑅0 + 𝑅1; 𝑅0 = 2𝑅0; 𝑅2 = 2𝑅2 

Step 5:    𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘𝑖 = 1, 𝑡ℎ𝑒𝑛 𝑅0 = 𝑅0 + 𝑅1;𝑅1 = 2𝑅1; 𝑅2 = 2𝑅2 

Step 6:    𝑒𝑛𝑑 𝑖𝑓 

Step 7:𝑒𝑛𝑑 𝑓𝑜𝑟 

Step 8:𝑅𝑒𝑡𝑢𝑟𝑛 𝑄 = 𝑅0 + 𝑅2 

 

 In Algorithm 5.1, at the beginning of the operation, a random point 𝑅 is picked. 𝑅 

is acting as a mask to the base point 𝑃. Three registers 𝑅0 , 𝑅1 , 𝑅2  are needed for the 
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algorithm. 𝑅0 is initialised with the mask 𝑅, 𝑅1 is initialised with 𝑃 + 𝑅 and 𝑅2 is given 

the anti-mask –𝑅. The mask is updated at each iteration. The intimidate values in 𝑅0 and 

𝑅1 are blinded with the updated mask 2𝑛−𝑖𝑅. The anti-mask value is also updated at every 

iteration. The value in register 𝑅2  is following the pattern 2𝑛−𝑖(−𝑅). At the end of the 

computation, the final unmask step will be executed to recover the original desired result.   

 This algorithm can provide resistance to more attacks while still keeps the feature 

that regular MPL offers. Since the regular MPL is highly regular, the algorithm is 

insensitive to SPA. As the mask technique is applied in this algorithm, the intermed iate 

values are independent from the input and output according to [35]. Thus the attacker 

cannot exploited the secret key by DPA. Moreover, since any fault injected during any time 

of the computation will cause the change of the temporary result. The adversary cannot 

retrieve valuable information regarding the secret key bit. 

5.2 Security Analysis of Existing Countermeasure Techniques 

Although the techniques introduced in previous section are great improvement to 

the strength of existing algorithms.  They still face security challenge stand alone. 

5.2.1 High-Order Attack 

The high-order attack is first proposed by Muller and Valette in [36]. This attack is 

specifically derived from the statistical property of the exponent splitting. Although 𝑟 is a 

randomly selected number, the pair (𝑟,𝑟’) is not uniformly distributed since they satisfy 

𝑑 =  𝑟 +  𝑟’.  

 If the 𝑖 − 𝑡ℎ bits of 𝑟, 𝑟’ and 𝑑 is denoted as 𝑟𝑖  , 𝑟𝑖 ’ and 𝑑𝑖, 𝐶𝑖 representing the carry 

bit generated at the 𝑖 − 𝑡ℎ iteration. The following equation is satisfied. 

𝐶𝑖⨁𝑟𝑖⨁𝑟𝑖
′ = 𝑑𝑖 
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Let 𝑃𝑖 be the probability that the carry bit is zero, and 𝑃𝑟  is set to be the probability the pair 

(𝑟𝑖  , 𝑟𝑖 ’)  be a certain value. In the case 𝑑𝑖 =  0  and 𝐶𝑖 =  0 , the probability for the pair 

(𝑟𝑖  , 𝑟𝑖 ’)  holds the value (0,0) or (1,1) is the same. When the value is (0,0), it is easy to 

get 𝐶𝑖+1 =  0. On the contrary, 𝐶𝑖+1 =  1. The same rules apply when 𝑑𝑖 =  1 . Table. 5.1 

shows the transition of the probability. The probabilities of iteration 𝑖 is generated from the 

previous iteration 𝑖 − 1. It is a Markov chain. 

 

Table 5.1 Probability transition when di = 0 or 1 

𝑃𝑟(𝑟𝑖 , 𝑟𝑖 ’) 𝑑𝑖 = 0 𝑑𝑖 = 1 

𝑃𝑟(0,0) 0.5 × 𝑃𝑖 0.5 × (1 − 𝑃𝑖) 

𝑃𝑟(0,1) 0.5 × (1 − 𝑃𝑖) 0.5 × 𝑃𝑖 

𝑃𝑟(1,0) 0.5 × (1 − 𝑃𝑖) 0.5 × 𝑃𝑖 

𝑃𝑟(1,1) 0.5 × 𝑃𝑖 0.5 × (1 − 𝑃𝑖) 

𝑃𝑖+1 0.5 × 𝑃𝑖 0.5 × (1 + 𝑃𝑖) 

 

 An example in [36] illustrates the idea of how this attack works. A secret 𝑑 with 

length 24 bits is chosen and the probability distribution of the pair (𝑟𝑖 , 𝑟𝑖 ’) is computed in 

Table.5.2. The table shows whenever the secret bit d has a long run of 0s or 1s, it is very 

likely the randomly generated pair (𝑟𝑖 , 𝑟𝑖 ’)  hold different value. Taking the probability 

transition illustrated in Table.5.1 into account, the probability of 𝑃𝑖 can be calculated. In 

the case the secret bit is running long 0s (from 𝑑7 to 𝑑11  in the table), 𝑃𝑖 is approaching 0  
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Table 5.2 An example of bit-level imbalance [36] 

 𝑑0 𝑑1 𝑑2 …… 𝑑7 𝑑8 𝑑9 𝑑10  𝑑11  …… 𝑑18  𝑑19 𝑑20  𝑑21  𝑑22  𝑑23  

(𝑟𝑖 , 𝑟𝑖’) 0 1 0 …… 0 0 0 0 0 …… 0 1 1 1 1 1 

𝑃𝑟(0,0) 50 25 38 …… 16 8 4 2 1 …… 8 47 23 11 5 2 

𝑃𝑟(1,0) 0 25 12 …… 34 41 46 48 49 …… 42 3 27 39 45 48 

𝑃𝑟(0,1) 0 25 13 …… 33 42 46 49 49 …… 43 4 28 40 46 49 

𝑃𝑟(1,1) 50 25 37 …… 17 9 4 1 1 …… 7 46 22 10 4 1 

 

indicating that there is no carry bit generated. While in the case of continuous 1s (from d19 

to d23  in the table), 𝑃𝑖 gets very close to 1, shows that the carry bit is propagating as the 

computation runs. If the attacker can launch an attack revealing the probabilities of the pair 

(𝑟𝑖 , 𝑟𝑖 ’), he can proceed to find information regarding the secret bit. The secret bit will no 

longer be secret.  

5.2.2 Template Attack 

Template attack [37] is based on the fact that power consumptions can be 

characterized by a multivariate normal distribution during the computations. Normally, it 

can be executed in two steps. The first step is to setup the templates and the second step is 

using the template to initialise attacks.  

 The multivariate normal distribution is defined by a covariance matrix C and a 

mean vector m. Where C holds the covariance of the targeting point and m is the mean of 

all the point on the trace. The pair (𝑚, 𝐶) is called the template. By sending in different 

data and key bit, a group of power trace is generated by the adversary. Until then, every 

data and key pair leads to a template. Then as stated above, in the second step, the attacker 
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compares the power trace from the target device with all the templates, and determine 

which one has the highest probability to be the correct template. After the correct template 

is recovered, the key is then retrieved. 

 Since in ECC scalar multiplication, the base point P is fixed. This observation offers 

template attack a great opportunity. In [38], Herbst and Medwed proposed a template attack 

scheme against masked MPL. In the scenario of scalar multiplication, the attacker set up 

the templates by running the scalar multiplication several times using different input data. 

The hamming weight of some intimidate values are also correlated. The power trace is then 

obtained to match with the template. In order to simplify the matching process, the first 

two multiplication of the base point are usually taken out to do the match. The template 

with highest matching probability indicates the first bit. The mask technique only blinds 

the point, but still by means of template attack, partial bits of secret k is recovered. The 

attacker can then focus on the masking operation to determine the mask 𝑅 . Since the 

hamming weight is known by the matching process. The mask 𝑅 will not be safe. 

5.3 Modified MPL with SM, ES and PR 

Since all the countermeasures listed in previous section is vulnerable to different 

attacks stand alone. He, Huang and Wu burrowed some of the ideas mentioned before and 

combined them to create a more secure algorithm [11].  

5.3.1 Algorithm Explanation 

 The new algorithm is illustrated as algorithm 5.2. The new algorithm is a 

combination of three ideas. The sequence masking technique [11], exponent splitting [34] 

and randomization of the message [35].  The combination of these three techniques greatly 

improved the security strength of the MPL. Further protections are provided to the 
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vulnerabilities stated in previous sections. 

 This algorithm works as follows, in the pre-computation phase, a random number 

𝑘0 smaller than secret bit k is generated. The secret bit 𝑘 is divided into two parts, the first 

part is the random number 𝑘0, the second part is calculated as 𝑘1 = 𝑘 − 𝑘0 . After that a 

random point 𝑅 on the same curve with point 𝑃 is generated. The point 𝑅 is acting as a 

mask, it is initialized to all the registers and the value is updated in each iteration. Another 

random number 𝑆  with the same bit size of secret key 𝑘  is generated afterwards. The 

introduction of random number 𝑆 is acting as a switch, it determines which computation to 

be executed. The original scalar multiplication is computed following each bit of 𝑘 

sequentially. With the random number 𝑆, it turns into a randomly computed process.  

Moving to the main iteration part of the algorithm, registers 𝑅0 and 𝑅1 holds the 

values related to the secret bit 𝑘0. While 𝑅2  and 𝑅3 store the values computed using 𝑘1. As 

introduced above, two scalar multiplications take turns to compute according to the current 

bit of 𝑆. When the main iteration part is finished, a final adjustment adding the values in 

𝑅0 and 𝑅2 is carried out to get the desired output.  

The following observations proved the correctness of the algorithm easily. Let 𝑖 

denotes the iteration number, the mask is updated following a pattern 2𝑖𝑅. The first scalar 

multiplication generates the intermediate value 2𝑖𝑅 + 𝑘0𝑃 , the second scalar 

multiplication holds that 2𝑖(−𝑅) + (𝑘 − 𝑘0)𝑃.  Adding them up, we get the value of 𝑘𝑃. 
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Algorithm 5.2. Modified MPL with SM, ES and PR 

Input:𝑃 𝜖 𝐸, 𝑘 = (𝑘𝑛−1,… , 𝑘1, 𝑘0)2 , 𝑘𝑖𝜖 0,1 

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸 

Step 1: 𝑆𝑒𝑙𝑒𝑐𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡 𝑅 𝑜𝑛 𝐸; 

Step 2: 𝑆𝑒𝑙𝑒𝑐𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑘0 = (𝑘𝑛−1
(0)

…𝑘0
(0)
)2  𝑡ℎ𝑎𝑡 𝑘0𝜖 (1, 𝑘)  

               𝑙𝑒𝑡 𝑘1 (𝑘𝑛−1
(1)

…𝑘0
(1)
)2 = 𝑘− 𝑘0 ; 

               𝑘0 𝑎𝑛𝑑 𝑘1 𝑎𝑟𝑒 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑠ℎ𝑖𝑓𝑡 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 

               𝐷0 = (𝑑𝑛−1
(0)

…𝑑0
(0)
)2 𝑎𝑛𝑑 𝐷1 = (𝑑𝑛−1

(1)
…𝑑0

(1)
)2  

Step 3:𝐺𝑒𝑛𝑎𝑟𝑎𝑡𝑒 𝑛 𝑏𝑖𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 S = (𝑠𝑛−1,… , 𝑠1, 𝑠0)2 

Step 4: Set 𝑅0 = 𝑅,𝑅1 = 𝑃 +𝑅, 𝑅2 = −𝑅,𝑅2 = 𝑃+ (−𝑅) 

Step 5: 𝑓𝑜𝑟 𝑖=𝑛−1 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜 

Step 6:     𝑖𝑓 𝑠𝑖 = 0, 𝑡ℎ𝑒𝑛  

Step 7:       𝑖𝑓 𝑑𝑛−1
(0)

= 0, 𝑡ℎ𝑒𝑛 𝑅1 = 𝑅0+ 𝑅1; 𝑅0 = 2𝑅0; 

Step 8:            𝑒𝑙𝑠𝑒  𝑅0 = 𝑅0+ 𝑅1; 𝑅1 = 2𝑅1; 

Step 9:       𝑒𝑛𝑑 𝑖𝑓; 𝐷0 𝑠ℎ𝑖𝑓𝑡𝑠 𝑙𝑒𝑓𝑡 𝑏𝑦 1 𝑏𝑖𝑡.       

Step 10:  𝑒𝑙𝑠𝑒 𝑖𝑓𝑑𝑛−1
(1)

= 0, 𝑡ℎ𝑒𝑛 𝑅3 = 𝑅2+𝑅3;𝑅2 = 2𝑅2; 

Step 11:        𝑒𝑙𝑠𝑒 𝑅2 = 𝑅2+ 𝑅3; 𝑅3 = 2𝑅3; 

Step 12:    𝑒𝑛𝑑 𝑖𝑓; 𝐷1 𝑠ℎ𝑖𝑓𝑡𝑠 𝑙𝑒𝑓𝑡 𝑏𝑦 1 𝑏𝑖𝑡.  

Step 13: 𝑒𝑛𝑑 𝑖𝑓 

Step 14: 𝑒𝑛𝑑 𝑓𝑜𝑟 

Step 15:𝑓𝑜𝑟 𝑖 = 𝑛 − 1 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜 

Step 16:     𝑖𝑓 𝑠𝑖 = 1, 𝑡ℎ𝑒𝑛 

Step 17:       𝑖𝑓 𝑑𝑛−1
(0)

= 0, 𝑡ℎ𝑒𝑛 𝑅1 = 𝑅0 +𝑅1; 𝑅0 = 2𝑅0; 

Step 18:            𝑒𝑙𝑠𝑒  𝑅0 = 𝑅0 +𝑅1; 𝑅1 = 2𝑅1; 

Step 19:       𝑒𝑛𝑑 𝑖𝑓; 𝐷0 𝑠ℎ𝑖𝑓𝑡𝑠 𝑙𝑒𝑓𝑡 𝑏𝑦 1 𝑏𝑖𝑡.       

Step 20:  𝑒𝑙𝑠𝑒 𝑖𝑓𝑑𝑛−1
(1)

= 0, 𝑡ℎ𝑒𝑛 𝑅3 = 𝑅2+𝑅3;𝑅2 = 2𝑅2; 

Step 21:        𝑒𝑙𝑠𝑒 𝑅2 = 𝑅2+ 𝑅3; 𝑅3 = 2𝑅3; 
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Step 22:    𝑒𝑛𝑑 𝑖𝑓; 𝐷1 𝑠ℎ𝑖𝑓𝑡𝑠 𝑙𝑒𝑓𝑡 𝑏𝑦 1 𝑏𝑖𝑡.  

Step 23: 𝑒𝑛𝑑 𝑖𝑓 

Step 24: 𝑒𝑛𝑑 𝑓𝑜𝑟 

Step 25:𝑅𝑒𝑡𝑢𝑟𝑛 𝑅0 = 𝑅0+𝑅2 

 

5.3.2 Security Analysis 

As mentioned in previous sections, this algorithm provides enhanced protection to 

more attacks compared to existing algorithms. 

 Since algorithm 5.2 still holds the high regularity MPL offers, SPA is not effective 

against it. The main computation part always compute a doubling and an addition 

regardless the input bit. This it keeps all the resistance the regular MPL can provide. C-safe 

error attack is also eliminated because there is no dummy operation in this modified MPL.  

 Taking M-safe error into account. In M-safe error attack scheme, the induced 

memory fault need to be very carefully timed to determine whether it changed the result. 

Even if the attacker reveals a secret bit by a successfully inducing a safe error, the whole 

key pattern is not compromised since the key is divided into two parts. Moreover, the 

computation is executed in a random order. Thus M-safe error cannot threat the modified 

MPL. 

 Another attack mentioned above is the comparative power analysis, it also has little 

effect on the modified MPL with SM, ES and PR. This attack scheme is very similar to the 

relative doubling attack. Both the two attacks are trying to get two power traces and by 

comparing them to get valuable information of the secret key. Since the secret key is 

randomly divided into two parts in every initialization, the two power traces generated will 

follow different key pattern. It is very hard to make a meaningful comparison between 
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them. Even if a collision is observed, the mask applied to it in the precomputation will 

make the power trace totally different. An example listed below in Fig.5.1 will better 

explain the idea. The table above the power traces show the bits involved in the 

computation. The top row is the randomly generated sequence s, it is different in every 

initialization of the process. Below are the corresponding computation decided by sequence 

𝑠. Secret bit 𝑘0 will be processed when current bit of sequence 𝑠 holds 0. Otherwise, secret 

bit 𝑘1 will be computed. Only one of the two computations is carried out at the same time 

frame.  

 

Figure 5.1 Resistance of algorithm 5.2 to relative doubling attack 
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Taken the adjacent bits in the blue box as the first comparison bit, the computation 

involved is obviously different. But the adversary cannot easily say that the two bits are 

different since the two computations are carried out using different key 𝑘0 and 𝑘1, thus 

comparisons like this will become pointless, it provides no useful information regarding 

the secret bit. The second sample bits will be taken from the red boxes. Although the 

unmasked computations are all 2𝑃 → 4𝑃, the adversary will still observe different power 

traces since the mask is different as shown in Fig. 5.1. From above examples, the fact that 

comparison between adjacent bits cannot offer any useful information is easily obtained. 

Comparative power analysis shares similar scheme to relative doubling attack. It is also 

ineffective since Algorithm 5.2 breaks the hidden relationship it relies on. 

High-order attack is also worry free. When the attacker is trying to get enough 

samples to analysis the probability of the imbalance statistic property, the first thing he 

must do is to get access to the secret key. In the case of Algorithm 5.2, the secret key is 

randomly divided into two parts. The attacker need to know both parts to start collet 

samples and do the analysis, so high-order attack need to be combined with other attacks 

to be effective. As already stated above, SPAs are stopped by the property of highly regular. 

Relative doubling attack and comparative power analysis are of little use since every power 

trace generated are randomized by the random sequence s. Fault attack will also be stopped. 

Even though the attacker uses faults injected to one of the two scalar multiplications to 

make the two scalar multiplication distinguishable, it is hard for him to find a non-fault 

reference since all the intermediate values are masked. With above analysis, these attacks 

mentioned cannot threat Algorithm 5.2. That leaves the last one, template attack.  

By building Template attack can comparison the actual computation and the 
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template and in Section 5.2.2, we introduced how the mask 𝑅  will be compromised. 

Assume in Algorithm 5.2, the mask 𝑅 is known using template attack, then in order to 

reveal the secret key, the attacker need to get the intermediate values. In other words, he 

need to compute the updated mask 2𝑛−𝑖𝑅. For the two scalar multiplications, the iteration 

number 𝑖 is different. The iteration number is decided by the random sequence 𝑠, which 

doesn't participate in any computations. It only acts like a switch to decide which scalar 

multiplication to be computed. Thus even if the attacker retrieved the initial mask 𝑅, the 

updated mask is still a big challenge. Algorithm 5.2 will still be secure.  

With all the above analysis, we can see that Algorithm 5.2 is highly secure. It resists 

SCAs, relative doubling attack, comparative power analysis, high-order attack and 

template attack. It greatly enhanced the security strength of MPL from algorithm level. 

Thus it is chosen as the implementation algorithm. 
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CHAPTER VI 

PROPOSED HARDWARE IMPLEMENTATION  

In this chapter, based on previous Algorithm 5.2, an efficient hardware architecture 

is proposed and its FPGA implementation is presented. Very high speed integrated circuit 

(VHSIC) Hardware Description Language is chosen as the target implementa t ion 

language. A modern Xilinx Virtex 7 (XC7VX690TFFG1926-3) field-programmable gate 

array (FPGA) device is used in the implementation. The ECC parameters are NIST-

recommended elliptic curve for 𝐺𝐹(2233) in [39], as shown in Table. 6.1, where 𝑓(𝑥) is 

the irreducible polynomial, n is the order, 𝐺𝑥  and 𝐺𝑦 are base point coordinates. 

NIST-recommended elliptic curve for GF(2233) 

Elliptic Curve 𝐸:𝑦2 +𝑥𝑦 = 𝑥3 +𝑎𝑥2 +1, 𝑎 = 0 

𝑓(𝑥) = 𝑥233 +𝑥74 +1 

𝑛 = 8000000000000000000000000000069𝑑5𝑏𝑏915𝑏𝑐𝑑46𝑒𝑓𝑏1𝑎𝑑5𝑓173𝑎𝑏𝑑𝑓 

G𝑥 = 17232𝑏𝑎853𝑎7𝑒731𝑎𝑓129𝑓22𝑓𝑓4149563𝑎419𝑐26𝑏𝑓50𝑎4𝑐9𝑑6𝑒𝑒𝑓𝑎𝑑6126 

G𝑦 = 1𝑑𝑏537𝑑𝑒𝑐𝑒819𝑏7𝑓70𝑓555𝑎67𝑐427𝑎8𝑐𝑑9𝑏𝑓18𝑎𝑒𝑏9𝑏56𝑒0𝑐11056𝑓𝑎𝑒6𝑎3 

 

Table 6.1 NIST-recommended parameters 

 

6.1 Implementation Hierarchy of the ECC operations 

The building blocks of computation involved in ECC is illustrated in Fig. 6.1. Finite 

field arithmetic such as field addition, subtraction, multiplication, inversion and squaring 

are the fundamental computations. Both elliptic curve point addition and doubling are 

based on the finite field computations. As the figure shown, the upper layer computations 
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are constructed by the lower layers. Scalar multiplication is realized by different algorithms 

based on point addition and doubling. Elliptic curve cryptographic schemes such like 

ECDSA are on the top. 

 

Figure 6.1 Hierarchical architecture for computation involved in ECC 

 

The main components of this ECC design are: field multiplication, field squaring, 

field inversion, group operations and random number generation. Recall that we introduced 

the polynomial basis in Section. 2.1. All implementation module in this chapter are using 

the polynomial basis representation.  

 

6.2 Random Number Generation 

In the pre-computation part, there three random binary sequence need to be 

generated. This process is implemented with a linear feedback shift register (LFSR). A 

LFSR is s sequential shift register with combinational logic that causes it to pseudo-

ECC

Algorithm

Scalar multiplication

Point addtion

Point doubling

Finite Field Arithmatic 
(addition,multiplication,inversion,squaring)
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randomly cycle through a sequence of binary values. It has well-known applications in 

generating pseudo-random binary sequence. A pseudo-random binary sequence is 

considered pseudo because it will start to repeat the pattern after a certain number of states. 

In order to make the generation more close to a real random number, the LFSR need to 

reach its maximum length. In other words, an n bit LFSR need to generate all 2n -1 states 

before it starts to repeat itself. By carefully chosen the positions of the bits feeding back to 

the next state, a maximum length LFSR can be achieved.  

For the case of the 233 bit random sequence, the tap value is 233 and 159 [40]. 

There are two structures of the LFSR. One is one-to-many structure (also known as Galois 

LFSR). The other is many-to-one structure (also known as Fibonacci LFSR). As Fig.6.2 

illustrated, a 233-bit Galois LFSR is built. This structure is chosen rather the many-to-one 

structure, is because that Galois LFSR generates all the feedback bits parallel. In this way, 

the LFSR runs more efficiently.  

Figure 6.2 233-bit LFSR 

The LFSR will generate three random sequence. The first random number will 

continue generating until it is smaller than order of base point P, then it is assigned to k0 

according to Algorithm 5.2. The second random sequence will generate and then assigned 

to s, acting as the switch to determine which scalar multiplication is going to perform. The 

third random sequence will be 𝑟, it will be used in the precomputation to compute 𝑟𝑃. Since 
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𝑟 is random, 𝑟𝑃 will be random point. The computation will need the modules introduced 

in later sections. 

6.3 Addition in 𝐺𝐹(2𝑚) 

Field addition is very easy to implement in VHDL. As stated in Section. 2.1, field 

addition is simply a bit-wise exclusive-or in either hardware or software. Subtraction in 

𝐺𝐹(2𝑚) is the same as addition in 𝐺𝐹(2𝑚), since the additive inverse of an element is it-

self. All finite field addition is realized using simple x-or gate. 

6.4 Multiplication in 𝐺𝐹(2𝑚) 

The classical way to implement multiplication is the two-step computation. To 

perform a finite field multiplication, the first step is to do a multiplication and the second 

step is reduction. Pamula introduced another basic architecture in [41]. It is called the 

interleaved multiplication. In this method, the multiplication and reduction are interleaved. 

It is based on the following observation. Given two polynomials, 

𝑎(𝑥) = 𝑎𝑚−1𝑥
𝑚−1 + ⋯𝑎1𝑥 + 𝑎0  

𝑏(𝑥) = 𝑏𝑚−1𝑥
𝑚−1 +⋯ 𝑏1𝑥 + 𝑏0 

and define the irreducible polynomial  

𝑓(𝑥) = 𝑥𝑚 + 𝑓𝑚−1𝑥
𝑚−1 + ⋯𝑓1𝑥 + 𝑓0  

the product will be given by  

𝑐(𝑥) = 𝑎(𝑥)𝑏(𝑥) 𝑚𝑜𝑑 𝑓(𝑥) = 𝑎(𝑥) ∑ 𝑏𝑖𝑥
𝑖

𝑚−1

0

𝑚𝑜𝑑𝑓(𝑥) 

𝑐(𝑥) = (𝑏0𝑎(𝑥)𝑥 + 𝑏1𝑎(𝑥)𝑥
2 +⋯+𝑏𝑚−1𝑎(𝑥)𝑥

𝑚−1)𝑚𝑜𝑑 𝑓(𝑥) 

𝑎(𝑥)𝑥 can be substituted by the following equation 

𝑎(𝑥)𝑥 = 𝑑 = 𝑎𝑚−1𝑥
𝑚 +⋯𝑎1𝑥

2 + 𝑎0𝑥 
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𝑑 = 𝑑𝑚−1𝑥
𝑚−1 + ⋯𝑑1𝑥 + 𝑑0  where {

𝑑0 = 𝑎𝑚−1𝑓0
𝑑𝑖 = 𝑎𝑖−1 + 𝑎𝑚−1𝑓𝑖

 

By applying these equations, the following structure is implemented. In the right 

part of Fig.6.3, a partial result interleaved with reduction is calculated.  The output is used 

as the input in next iteration and sent to the left to do the accumulation. The shift register 

holds the value of b and shifts right in every iteration. The left part accumulate the partial 

product in every iteration. And after m iterations, the result is computed.  

 

Figure 6.3 Multiplication unit 

6.5 Squaring in 𝐺𝐹(2𝑚) 

Polynomial basis squaring is relatively simple compared with multiplication. It is 

very similar to the classical two-step multiplication. The squaring operation can be done in 

two steps. The first step is to insert a 0 bit between consecutive bits of the binary 
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representation. The second step is also the polynomial reduction. In Fig.6.4, a pattern for 

squaring a polynomial 𝑎(𝑥) is shown. 

 Figure 6.4 Squaring a polynomial 

The reduction of it can however be achieved using a method called the reduction 

matrix [41]. The reduction matrix is constructed using the irreducible polynomial and can 

be computed when the operation starts. Since the polynomial representation of the squaring 

result before reduction is easy to get. Applying the reduction matrix method can greatly 

speed up the reduction process. 

6.6 Inversion in 𝐺𝐹(2𝑚) 

Inversion is the most time consuming operation among all the implementa t ion 

module. There are serval existing method to do the field inversion over 𝐺𝐹(2𝑚) , the 

Fermat’s method and the extended Euclidean algorithm. While the Fermat’s method takes 

lots of time to calculate the value, here we choose the extended Euclidean algorithm [42]. 

Euclid’s algorithm is for calculating the greatest common divisor of two polynomials. The 

algorithm is extended to find two polynomials satisfying that  

gcd(𝑎(𝑥),𝑏(𝑥)) = 𝑢(𝑥) × 𝑎(𝑥) +𝑤(𝑥)× 𝑏(𝑥) 

If 𝑎(𝑥) is an element of the field defined by irreducible polynomial 𝑓(𝑥), we had 

the relation that gcd (𝑎(𝑥),𝑓(𝑥)) =  1. By replacing 𝑏(𝑥) with 𝑓(𝑥), the above equation 

is deduced to 1 =  𝑢(𝑥) × 𝑎(𝑥) 𝑚𝑜𝑑 𝑓(𝑥). The inverse of 𝑎(𝑥) can then be calculated by  

𝑎(𝑥)−1 = 𝑢(𝑥) 𝑚𝑜𝑑 𝑓(𝑥) 
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Algorithm.6.1 illustrates how the inverse is calculated, the implementation is 

straight forward while the addition is done using x-or, division is done by right shift and 

multiplication is done by left shift. The result is outputted after 2m iterations. 

Algorithm 6.1. Extended Euclidean Method [42] 

Input: 𝑎(𝑥), 𝑓(𝑥) 

Output: 𝑢(𝑥) = 𝑎(𝑥)−1 

Step 1: 𝑙𝑒𝑡 𝑠(𝑥) = 𝑓(𝑥),𝑣(𝑥) = 0, 𝑟(𝑥) = 𝑎(𝑥),𝑢(𝑥) = 1, 𝑑 = 0; 

Step 2: 𝑓𝑜𝑟 𝑖=0 𝑡𝑜 2m 𝑑𝑜 

Step 3:    𝑖𝑓 𝑟𝑚 = 0, 𝑡ℎ𝑒𝑛 𝑟(𝑥) = 𝑥𝑟(𝑥), 𝑢(𝑥) = 𝑥𝑢(𝑥), 𝑑 = 𝑑 + 1 

Step 4:    𝑒𝑙𝑠𝑒 𝑖𝑓 𝑠𝑚 = 1, 

Step 5: 𝑡ℎ𝑒𝑛 𝑠(𝑥) = 𝑠(𝑥) − 𝑣(𝑥), 𝑣(𝑥) = 𝑣(𝑥) − 𝑢(𝑥) 

Step 6:𝑒𝑛𝑑 𝑖𝑓 

Step 7: 𝑠(𝑥) = 𝑥𝑠(𝑥) 

Step 8: 𝑖𝑓 𝑑 = 0, 

Step 9: 𝑡ℎ𝑒𝑛 𝑟(𝑥) = 𝑠(𝑥),𝑠(𝑥) = 𝑟(𝑥) 

Step 10: 𝑢(𝑥) = 𝑥𝑣(𝑥),𝑣(𝑥) = 𝑢(𝑥) 

Step 11: 𝑑 = 1 

Step 12: 𝑒𝑙𝑠𝑒 𝑢(𝑥) =
𝑢(𝑥)

𝑥
, 𝑑 = 𝑑 − 1 

Step 13:  𝑒𝑛𝑑 𝑖𝑓 

Step 14:𝑒𝑛𝑑 𝑖𝑓 

Step 15:𝑒𝑛𝑑 𝑓𝑜𝑟 
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6.7 Elliptic Curve Group Operations in GF(2m) 

The group operations in ECC are the point addition and point doubling operations.  

As illustrated in Section 2.2, the group operations are implemented using the previous 

modules. Fig. 6.5 shows the block diagram of the point addition operation.  

Figure 6.5 Hardware architecture of point addition 

 It can be seen that as the equation in Section 2.2 shows, the point addition operation 

module requires two multiplications, one squaring and one inversion.  

 Similarly, Fig 6.6 shows the architecture of point doubling module. It requires two 

multiplications, two squaring and one inversion. The main computation part of Algorithm 

5.2 is building using these two modules, in the next section. We will discuss how the 

modified MPL with SM, ES and PR is realized. 
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Figure 6.6 Hardware architecture of point doubling 

6.8 Scalar Multiplication 

As the main computation of the ECC, Algorithm 5.2 provides a whole new MPL 

with strong resistance to SCAs. During the pre-computation process, the first scalar random 

sequence 𝑘0 is generated. The second scalar 𝑘1  is computed by 𝑘 − 𝑘0  .Another random 

sequence s is produced and finally the random point 𝑅 =  𝑟𝑃 is acting as the mask. 

There four registers 𝑅0 , 𝑅1 , 𝑅2  and 𝑅3  holding 4 different intermediate values. 

They are initialized by the 𝑥, 𝑦 coordinates of the base point 𝑃 and mask 𝑅. 𝑅0 and 𝑅1 are 

given the value 𝑅 and 𝑃+ 𝑅 at the beginning. 𝑅2 and 𝑅3 are initialized with – 𝑅 and 𝑃 −

𝑅 . The anti-mask –𝑅  shares the same 𝑥  coordinate with 𝑅 . While the 𝑦 coordinate is 

calculated simply x-or the coordinates of mask 𝑅. Three shift registers to store the value of 

𝑠, 𝑘0, and 𝑘1. The control unit is the core unit to realize the algorithm. The input and the 
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output of the point addition and point doubling module is controlled by this unit. The 

control unit has 36 different states to decide which value from which register to be given 

as the input of point operation module, also at the same time, the specific register to store 

the output is decided. The states are controlled by the three random values in the shift 

register. Additionally, a counter aiming for m cycles is built in as to tell the whole process 

when to stop the computation. Fig. 6.7 illustrates the blocking diagram of the top main 

computation module. 

Figure. 6.7 Architecture of proposed implementation  
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6.9 Synthesis Results 

The VHDL code is synthesized for Xilinx XC7VX690 using Vivado 2017. The 

hardware resource usage is summarized in Table. 6.2. The computation time at 100 MHz 

is 4.43 ms. We can see Algorithm 5.2 doubles the computation time needed since it consist 

of two scalar multiplication. Fig. 6.8 shows the result of the output waveform. 

Algorithm 
Number 
of FFs 

Number 
of LUTs 

Number 
of IOs 

Clock 
Cycles 

Regular MPL 8317 8753 708 220,020 

Algorithm 5.2 11247 11405 708 442,493 

 

Table 6.2 Hardware usage of different algorithms implemented 

 

 

 

Figure 6.8 Output waveform 
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The hardware implementation results and performance comparisons with some 

existing implementations are listed in Table. 6.3. It is to be noted that since the result 

provided in literature are implemented on different FPGA technologies from out design. 

Thus, a straight forward comparison is hard to make.  

 

 

Table 6.3 FPGA implementation complexity comparison between proposed design and 

related works 

From the table, it is clear that there are very few implementation done with 

countermeasures, the main concern for most of the designs listed are speed. [4, 26, 41 and 

43] adapted the projective coordinates to reduce the amount of inversion operation and 

improve the calculation speed. Scalar multiplications in [32] uses MPL without any 

Work Algorithm Device Field FFs LUTs f(MH
z) 

Time Cycles 

[32] MPL Spartan-3 GF(2
163

) 3265 130 1 ms n.a. 

[44] Binary XC4VLX8
0 

GF(2
163

) 24,263 143 n.a. n.a. 

[45] Binary XC2V6000 GF(2
233

) 16970 19,440 100 n.a n.a.  

[46] MPL XCV2000E

-7 
GF(2

233
) 10632 35,800 67.9 n.a  n.a. 

[47] Binary XCV2000E GF(2
233

) 15,478  

  

37 13.2 

ms 

n.a.  

[29] NAF XC3S1000 GF(2
233

) n.a.   n.a. 80 2.28 
ms 

183000 

[24] Binary XC7K325T GF(2
233

) 9407 9151 255.6
6 

2.66 
ms 

679776 

Proposed MPL XC7VX690 GF(2233) 8317 8753 100 2.2 ms 220020 

Proposed Modified 

MPL 

XC7VX690 GF(2
233

) 11252 10405 246.1 1.8 ms 442493 
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countermeasure. Implementations in [21, 41 and 42] uses binary method for scalar 

multiplication. All these mentioned references are applying the algorithms without any 

further protections. 

 

Table 6.4 Comparison of SCA countermeasure property between proposed work and 

existing related works 

Our proposed implementation on scalar multiplication is not as efficient as some of 

the listed design such like [4 and 26]. But our implementation mainly focus to provide a 

protected power trace to eliminate potential SCA threat. And the clock cycle is comparable 

to some listed design such like [24]. Table. 6.4 shows that our implementation can resist 

Algorithm/Implementation Doublin

g [8] 

Relative 

doubling [30] 

Comparativ

e power 

analysis 

[31] 

M-

safe 

error 

[19] 

C-

safe 

error 

[9] 

High-

order 

[36] 

Template 

attack 

[37] 

Binary [21,41,42,44] n.a n.a n.a n.a n.a n.a n.a 

NAF [29] × n.a × n.a n.a n.a n.a 

MPL [29,43] √ × × × √ n.a n.a 

Masked MPL [11] √ n.a √ √ n.a n.a × 

Exponent Splitting [11] √ n.a √ √ n.a × n.a 

Proposed √ √ √ √ √ √ √ 
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most existing side channel attacks comparing with related implementations. Overall, our 

implementation can provide better protection against SCAs. 
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CHAPTER VII 

DISCUSSION AND POSSIBLE FUTURE WORKS 

7.1 Discussion 

In this thesis, an efficient architecture for the scalar multiplication algorithm [11] 

is proposed. A FPGA implementation of the algorithm [11] is presented. It is the first time 

that this algorithm is implemented in hardware.  

This implementation resistant to most existing side channel attacks such as 

doubling attack [8], relative doubling attack [30], comparative power analysis [31], m-safe 

error attack [19], c-safe error attack [9], high-order [36] and template attack [37]. As shown 

in Table 6.4, compared to the existing related works, the proposed implementation offers 

the best countermeasures to SCAs. 

7.2 Possible Future Work 

As a pseudo-random number generator, LFSR is simple and fast but its output does 

not have the property of very good randomness. It follows a pattern that can repeat after a 

certain number of states. Those sequences of numbers are random-like in some aspects. If 

the attacker knows the seed and also the tap values, the randomness of the generated 

sequence maybe compromised. A better random generator such like mentioned in [43] can 

further protect the implementation.  

In addition, since our design is implemented using affine coordinates, projective 

coordinates [29] can be adopted in the design. The advantage of using projective 

coordinates is that the amount of finite field inversion operation can be greatly reduced 

with proper pre-computation. Finite field inversion operation is considered as the most time 
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consuming module in ECC scalar multiplication. So the computation time may be 

shortened if projective coordinate systems is adopted. 

Moreover, this design features a regular bit serial interleaved multiplier. Faster 

method for implementation such like digit level multiplier in [44] can be utilized to further 

speed up the elliptic curve scalar multiplication. 
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APPENDICES 

SELECTED VHDL PROGRAMMING CODES 

---------------------------------------------------------------------------- 
-- Top level: Introduces the point coordinates and k through the same port 
--Author: Che Chen 
---------------------------------------------------------------------------- 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic_unsigned.all; 

 
package my_package is 
constant m: natural := 233; 
constant logm: natural := 8; 
constant zero: std_logic_vector(m-1 downto 0) := (others => '0'); 
end my_package; 
 
library IEEE; 
use IEEE.std_logic_1164.all; 
use IEEE.std_logic_arith.all; 
use IEEE.std_logic_unsigned.all; 
use work.my_package.all; 

 
entity top_MaskedMont is 
port ( 
  inData: in std_logic_vector(m-1 downto 0);   
--  xP_data, yP_data, k_data: in std_logic; 
  clk, reset, start: in std_logic; 
  outxQ, outyQ: inout std_logic_vector(m-1 downto 0); 
--  xQ_or_yQ: in std_logic; 
  done: out std_logic 
  ); 
end top_MaskedMont; 

 
architecture circuit of top_MaskedMont is 
 
  component MaskedMont is 
  port ( 
    xP, yP, xR, yR, y_minus_R, x_pplusr, y_pplusr, x_pminusr, y_pminusr: in std_logic_vector(m-1 
downto 0); 
  k0, k1, s: in std_logic_vector (m-1 downto 0); 
    clk, reset, start: in std_logic; 
    xQ, yQ: inout std_logic_vector(m-1 downto 0); 
    done: out std_logic 

    ); 
  end component MaskedMont; 
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  component rand_gen is 
  Port (   clk : in  STD_LOGIC; 
     reset : in  STD_LOGIC; 

           start : in  STD_LOGIC; 
     K : in  std_logic_vector (m-1 downto 0); 
           k1,s,k0,r : out  std_logic_vector (m-1 downto 0); 
           done : out  STD_LOGIC); 
  end component rand_gen; 
   
  component EC_montgomery_multiplication is 
  port ( 
    xP, yP, k: in std_logic_vector(m-1 downto 0); 
    clk, reset, start: in std_logic; 
    xQ, yQ: inout std_logic_vector(m-1 downto 0); 

    Q_infinity: inout std_logic; 
    done: out std_logic 
); 
end component EC_montgomery_multiplication; 
 
component Point_add_v2 is 
port( 
  x1,y1,x2,y2: in std_logic_vector(m-1 downto 0); 
  clk, reset, start: in std_logic; 
  x3: inout std_logic_vector(m-1 downto 0); 
  y3: out std_logic_vector(m-1 downto 0); 

  done: out std_logic 
  ); 
end component Point_add_v2; 
 
  signal xP, yP, k0, k1, s, k, xQ, yQ, r, xR, yR, y_minus_R, x_pplusr, y_pplusr, x_pminusr, y_pminusr: 
std_logic_vector (m-1 downto 0); 
   
  signal start_ran, start_main, ran_done, main_done, xP_data, yP_data, k_data, start_r_point, 
r_point_done,  
  start_add1, add_done1, start_add2, add_done2: std_logic; 
   

  subtype states is natural range 0 to 14; 
 
  signal current_state: states; 
 
begin 
 ran: rand_gen port map( 
                    clk, reset, start_ran,k, 
                    k1, s, k0, r, ran_done ); 
         
randomR: EC_montgomery_multiplication port map( 
                  xP, yP, r, 

        clk, reset, start_r_point, 
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        xR, yR, 
        done => r_point_done); 
         
        y_minus_R <= xR xor yR; 

         
P_plus_R: Point_add_v2 port map(xP, yP, xR, yR, clk, reset, start_add1, x_pplusr, y_pplusr, 
add_done1); 
P_minus_R: Point_add_v2 port map(xP, yP, xR, y_minus_R, clk, reset, start_add2, x_pminusr, 
y_pminusr, add_done2); 
         
 
MaskedMont port map( 
                    xP, yP, xR, yR, y_minus_R, x_pplusr, y_pplusr, x_pminusr, y_pminusr,k0, k1, s,  
                    clk, reset, start_main, 
                    xQ, yQ, main_done ); 

         
registers: process(clk) 
  begin 
  if clk' event and clk = '1' then  
    if xP_data = '1' then xP <= inData; end if; 
    if yP_data = '1' then yP <= inData; end if; 
    if k_data = '1'  then k <= inData; end if; 
  end if; 
  end process; 
 
control_unit: process(clk, reset, current_state) 

begin 
 
end process;  
 
  outxQ <= xQ; outyQ <= yQ; 
 
end circuit;  
 
---------------------------------------------------------------------------- 
-- Random number generator 
---------------------------------------------------------------------------- 
entity rand_gen is 
    Port ( Clk : in  STD_LOGIC; 
     reset : in  STD_LOGIC; 
           start : in  STD_LOGIC; 
     K : in  std_logic_vector (232 downto 0); 
           k1,s,k0,r : out  std_logic_vector (232 downto 0); 
           done : out  STD_LOGIC); 
end rand_gen; 

 
architecture Behavioral of rand_gen is 
 
type state_type is (idle,s0,s1,s2); 
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signal state : state_type := idle; 
signal rand_out : unsigned(232 downto 0); 
 
component lfsr is 

port (clk,reset : in std_logic; 
      rand_out : out unsigned(232 downto 0)     
    ); 
end component; 
  
begin 
 
lfsr_inst : lfsr port map(Clk,'0',rand_out); --keep generating random numbers. 
  
process(Clk,reset) 
begin 

 if(reset = '1') then  
  state <= idle; 
  done <= '0'; 
 elsif(rising_edge(Clk)) then 
  case state is 
   when idle => 
    if(start = '1') then --start the fsm. 
     state <= s0; 
    end if; 
    done <= '0'; 
   when s0 => 

    if(rand_out < unsigned(K)) then --check if k0 is less than K 
     k0 <= std_logic_vector(rand_out); 
     k1 <= std_logic_vector(unsigned(K)-rand_out); --if yes, so 
the subtraction and assign it to k1. 
     state <= s1; 
    else 
     state <= s0; 
    end if;  
   when s1 =>  
    if(rand_out < unsigned(K)) then --check if k0 is less than K 
     r <= std_logic_vector(rand_out); 

     state <= s2; 
    else 
     state <= s1; 
    end if;  
   when s2 =>  
    s <= std_logic_vector(rand_out); --the next random number is 
assigned to s. 
    state <= idle;  
    done <= '1'; --done signal is asserted and goes back to idle state 
waiting for next start signal. 
  end case;   

 end if; 
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end process; 
 
end Behavioral;  
 

entity MaskedMont is 
port ( 
xP, yP, xR, yR, y_minus_R, x_pplusr, y_pplusr, x_pminusr, y_pminusr: in std_logic_vector(m-1 
downto 0); 
k0, k1, s: in std_logic_vector (m-1 downto 0); 
clk, reset, start: in std_logic; 
xQ, yQ: out std_logic_vector(m-1 downto 0); 
--Q_infinity: inout std_logic; 
done: out std_logic 
); 
end MaskedMont; 

 
architecture arch of MaskedMont is 
 
constant zero: std_logic_vector(m-1 downto 0) := (others => '0'); 
 
component Point_add_v2 is 
port( 
  x1,y1,x2,y2: in std_logic_vector(m-1 downto 0); 
  clk, reset, start: in std_logic; 
  x3: inout std_logic_vector(m-1 downto 0); 
  y3: out std_logic_vector(m-1 downto 0); 

  done: out std_logic 
  ); 
end component; 
 
component Point_double_v2 is 
port( 
  x1, y1: in std_logic_vector(m-1 downto 0); 
  clk, reset, start: in std_logic; 
  x3: inout std_logic_vector(m-1 downto 0); 
  y3: out std_logic_vector(m-1 downto 0); 
  done: out std_logic 

  ); 
end component; 
 
signal xR0, yR0, xR1, yR1, xR2, yR2, xR3, yR3, 
       next_xR0, next_yR0, next_xR1, next_yR1, next_xR2, next_yR2, next_xR3, next_yR3: 
std_logic_vector(m-1 downto 0); 
    
signal int_k0, int_k1, int_s: std_logic_vector(m-1 downto 0); 
 
signal add_in_x1, add_in_y1, add_in_x2, add_in_y2, dou_in_x, dou_in_y,  
       add_out_x, add_out_y, dou_out_x, dou_out_y: std_logic_vector(m-1 downto 0); 
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signal ce_R0, ce_R1, ce_R2, ce_R3, start_add, start_dou, add_done, dou_done, k_m_minus_1_0, 
k_m_minus_1_1, s_m_minus_1, 
       reset_counter, count_down, last_step: std_logic; 
 

signal step_number: std_logic_vector(logm-1 downto 0); 
 
signal sel_R0, sel_R1, sel_R2, sel_R3, sel_in_dou, sel_in_add: std_logic_vector(1 downto 0);  
 
subtype states is natural range 0 to 36; 
 
signal current_state: states; 
 
begin 
 
with sel_R0 select next_xR0 <= add_out_x when "01", dou_out_x when "10", xR when others; 

with sel_R0 select next_yR0 <= add_out_y when "01", dou_out_y when "10", yR when others;  
with sel_R1 select next_xR1 <= add_out_x when "01", dou_out_x when "10", x_pplusr when others;  
with sel_R1 select next_yR1 <= add_out_y when "01", dou_out_y when "10", y_pplusr when others; 
with sel_R2 select next_xR2 <= add_out_x when "01", dou_out_x when "10", xR when others;  
with sel_R2 select next_yR2 <= add_out_y when "01", dou_out_y when "10", y_minus_R when 
others; 
with sel_R3 select next_xR3 <= add_out_x when "01", dou_out_x when "10", x_pminusr when 
others; 
with sel_R3 select next_yR3 <= add_out_y when "01", dou_out_y when "10", y_pminusr when 
others; 
with sel_in_add select add_in_x1 <= xR0 when "00", xR2 when others; 

with sel_in_add select add_in_y1 <= yR0 when "00", yR2 when others; 
with sel_in_add select add_in_x2 <= xR1 when "00", xR0 when "11", xR3 when others; 
with sel_in_add select add_in_y2 <= yR1 when "00", yR0 when "11", yR3 when others;  
with sel_in_dou select dou_in_x <= xR0 when "00", xR1 when "01", xR2 when "10", xR3 when 
others;-- "11" 
with sel_in_dou select dou_in_y <= yR0 when "00", yR1 when "01", yR2 when "10", yR3 when 
others; 
 
register_R0: process(clk) 
begin 
if clk' event and clk = '1' then  

if ce_R0 = '1' then xR0 <= next_xR0; yR0 <= next_yR0; end if; 
end if; 
end process; 
 
register_R1: process(clk) 
begin 
if clk' event and clk = '1' then  
if ce_R1 = '1' then xR1 <= next_xR1; yR1 <= next_yR1; end if; 
end if; 
end process; 
 

register_R2: process(clk) 
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begin 
if clk' event and clk = '1' then  
if ce_R2 = '1' then xR2 <= next_xR2; yR2 <= next_yR2; end if; 
end if; 

end process; 
 
register_R3: process(clk) 
begin 
if clk' event and clk = '1' then  
if ce_R3 = '1' then xR3 <= next_xR3; yR3 <= next_yR3; end if; 
end if; 
end process; 
 
add: Point_add_v2 port map(add_in_x1, add_in_y1, add_in_x2, add_in_y2, clk, reset, start_add, 
add_out_x, add_out_y, add_done); 

 
double: Point_double_v2 port map(dou_in_x, dou_in_y, clk, reset, start_dou, dou_out_x, dou_out_y, 
dou_done); 
 
with step_number select last_step <= '1' when "00000000", '0' when others; 
 
shift_register_k0: process(clk) 
begin 
if clk'event and clk = '1' then 
if reset_counter = '1' then int_k0 <= k0; 
elsif count_down = '1' then 

for i in m-1 downto 1 loop int_k0(i) <= int_k0(i-1); end loop; 
int_k0(0) <= '0'; 
end if; 
end if; 
end process; 
 
k_m_minus_1_0 <= int_k0(m-1); 
 
 
shift_register_k1: process(clk) 
begin 

if clk'event and clk = '1' then 
if reset_counter = '1' then int_k1 <= k1; 
elsif count_down = '1' then 
for i in m-1 downto 1 loop int_k1(i) <= int_k1(i-1); end loop; 
int_k1(0) <= '0'; 
end if; 
end if; 
end process; 
 
k_m_minus_1_1 <= int_k1(m-1); 
 

shift_register_s: process(clk) 
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begin 
if clk'event and clk = '1' then 
if reset_counter = '1' then int_s <= s; 
elsif count_down = '1' then 

for i in m-1 downto 1 loop int_s(i) <= int_s(i-1); end loop; 
int_s(0) <= '0'; 
end if; 
end if; 
end process; 
 
s_m_minus_1 <= int_s(m-1); 
 
 
output_xQ: process(clk, last_step) 
begin 

if clk' event and clk = '1' then  
if last_step = '1' then 
for i in 0 to m-1  loop 
    xQ(i) <= xR0(i); 
  yQ(i) <= yR0(i); 
end loop; 
end if; 
end if; 
end process; 
 
end process; 

end; 
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