
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

10-5-2017

FPGA IMPLEMENTATION FOR ELLIPTIC CURVE CRYPTOGRAPHY FPGA IMPLEMENTATION FOR ELLIPTIC CURVE CRYPTOGRAPHY

OVER BINARY EXTENSION FIELD OVER BINARY EXTENSION FIELD

Che Chen
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Chen, Che, "FPGA IMPLEMENTATION FOR ELLIPTIC CURVE CRYPTOGRAPHY OVER BINARY EXTENSION
FIELD" (2017). Electronic Theses and Dissertations. 7243.
https://scholar.uwindsor.ca/etd/7243

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7243?utm_source=scholar.uwindsor.ca%2Fetd%2F7243&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

FPGA IMPLEMENTATION FOR ELLIPTIC CURVE CRYPTOGRAPHY OVER
BINARY EXTENSION FIELD

by

Che Chen

A Thesis
Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for
the Degree of Master of Applied Science

at the University of Windsor

Windsor, Ontario, Canada

2017

© 2017 Che Chen

FPGA IMPLEMENTATION FOR ELLIPTIC CURVE CRYPTOGRAPHY OVER

BINARY EXTENSION FIELD

by

Che Chen

APPROVED BY:

__
D. Wu

School of Computer Science

__
R. Rashidzadeh

Department of Electrical and Computer Engineering

__

H. Wu, Advisor
Department of Electrical and Computer Engineering

7 August, 2017

iii

AUTHOR'S DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted material

that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act,

I certify that I have obtained a written permission from the copyright owner(s) to include

such material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

iv

ABSTRACT

Elliptic curve cryptography plays a crucial role in network and communica t ion

security. However, implementation of elliptic curve cryptography, especially the

implementation of scalar multiplication on an elliptic curve, faces multiple challenges. One

of the main challenges is side channel attacks (SCAs). SCAs pose a real threat to the

conventional implementations of scalar multiplication such as binary methods (also called

doubling-and-add methods). Several scalar multiplication algorithms with

countermeasures against side channel attacks have been proposed. Among them,

Montgomery Powering Ladder (MPL) has been shown an effective countermeasure against

simple power analysis. However, MPL is still vulnerable to certain more sophisticated side

channel attacks. A recently proposed modified MPL utilizes a combination of sequence

masking (SM), exponent splitting (ES) and point randomization (PR). And it has shown to

be one of the best countermeasure algorithms that are immune to many sophisticated side

channel attacks [11]. In this thesis, an efficient hardware architecture for this algorithm is

proposed and its FPGA implementation is also presented. To our best knowledge, this is

the first time that this modified MPL with SM, ES, and PR has been implemented in

hardware.

v

DEDICATION

To my loving parents:

Father: Zhanming Chen

Mother: Chun Xu

vi

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Huapeng Wu for his patient instruction on

my thesis. Dr. Wu is the most knowledgably and kind professor I have ever met, and

offered many invaluable opinions and advices during my study and work. I also thank Dr.

Dan Wu for his feedbacks on the thesis, and Dr. Rashid Rashidzadeh for his detailed

comment to improve this thesis.

Additionally, I would like to appreciate my loving parents. Without their support

and encouragement, it is impossible for me to achieve such accomplishment.

I would also grateful to all my colleagues and friends for their support and time.

Finally, I wish to show my gratitude to everyone at the Faculty of ECE for the help I

received.

vii

TABLE OF CONTENTS

AUTHOR'S DECLARATION OF ORIGINALITY .. iii

ABSTRACT.. iv

DEDICATION ... v

ACKNOWLEDGEMENTS .. vi

LIST OF TABLES ... x

LIST OF FIGURES .. xi

LIST OF ALGORITHMS .. xii

LIST OF ACRONYMS ...xiii

CHAPTER I INTRODUCTION ..1

1.1 Motivation .. 1

1.2 Summary of Contribution .. 4

1.3 Thesis Organization... 5

CHAPTER II MATHEMATICAL BACKGROUND ..6

2.1 Finite Field ... 6

2.2 Elliptic Curve over 𝐺𝐹(2𝑚) ... 7

2.3 Elliptic Curve Public Key cryptography .. 10

2.3.1 System Setup .. 10

2.3.2 Generation of the Key Pairs ... 10

2.3.3 Elliptic Curve Integrated Encryption Scheme .. 11

2.3.4 Elliptic Curve Diffie–Hellman Key Exchange ... 12

2.3.5 Elliptic Curve Digital Signature Algorithm ... 13

CHAPTER III SIDE CHANNEL ATTACKS ...15

3.1 Timing Attack ... 16

3.2 Fault Attack .. 16

viii

3.3 Electromagnetic Attack.. 17

3.4 Power Analysis Attack... 18

CHAPTER IV EXISTING WORK REVIEW AND SECURITY ANALYSIS20

4.1 Classical Binary Algorithm .. 21

4.2 Double-and-Add Always Algorithm ... 23

4.3 Non Adjacent Form Method... 25

4.4 Montgomery Powering Ladder Algorithm... 27

4.4.1 Explanation of Algorithm .. 27

4.4.2 Advantage of MPL .. 28

4.4.3 Relative Doubling Attack against MPL... 29

4.4.4 M-Safe Error Attack against MPL .. 30

4.4.5 Comparative Power Analysis against MPL ... 31

4.4.6 MPL Based Hardware Implementation ... 30

CHAPTER V ANALYSIS OF MODIFIED MPL WITH COUNTERMEASURES .33

5.1 Existing Countermeasure Techniques ... 33

5.1.1 Coron’s three countermeasures to DPA .. 33

5.1.2 Exponent Splitting... 34

5.1.3 Blinded Fault Resistant Exponentiation .. 35

5.2 Security Analysis of Existing Countermeasure Techniques .. 36

5.2.1 High-Order Attack .. 36

5.2.2 Template Attack.. 38

5.3 Modified MPL with sequence masking and exponent splitting.. 39

5.3.1 Algorithm Explanation .. 39

5.3.2 Security Analysis .. 42

CHAPTER VI PROPOSED HARDWARE IMPLEMENTATION46

6.1 Hierarchical of ECC Architecture ... 46

6.2 Random Number Generation .. 47

6.3 Addition in 𝐺𝐹(2𝑚) .. 49

6.4 Multiplication in 𝐺𝐹(2𝑚) .. 49

6.5 Squaring in GF(2m) ... 50

ix

6.6 Inversion in 𝐺𝐹(2𝑚) ... 51

6.7 Elliptic Curve Group Operations .. 53

6.8 Scalar Multiplication ... 54

6.9 Synthesis Results... 56

CHAPTER VII DISCUSSION AND POSSIBLE FUTURE WORKS60

7.1 Discussion .. 60

7.2 Possible Future Work .. 60

REFERENCES ...62

APPENDICES ..68

VITA AUCTORIS ...76

x

LIST OF TABLES

1.1 Public key systems and the hard math problems ..2

1.2 A comparison of key sizes ..3

3.1 Category of SCAs. ..16

4.1 Doubling attack against double-and-add always algorithm......................................24

4.2 Doubling attack against NAF method ..26

4.3 Relative doubling attack against MPL..30

5.1 Probability transition ..37

5.2 An example of bit- level imbalance [36] ...38

6.1 NIST-recommended parameters ...46

6.2 Hardware usage of different algorithms implemented ...56

6.3 FPGA implementation complexity comparison between proposed design and

related works..57

6.4 Comparison of SCA countermeasure property between proposed work and existing

related works..58

xi

LIST OF FIGURES

2.1 Point addition on ECC. ..8

3.1 Traditional cryptosystem ...15

4.1 Vulnerability of binary method to SPA ...22

4.2 Comparative power analysis against MPL ..32

5.1 Resistance of Algorithm 5.2 to relative doubling attack ...43

6.1 Hierarchical architecture for computation involved in ECC47

6.2 233-bit LFSR ...48

6.3 Multiplication unit ...50

6.4 Squaring a polynomial ...51

6.5 Hardware architecture of point addition ..53

6.6 Hardware architecture of point doubling ...54

6.7 Architecture of proposed implementation ...55

6.8 Output waveform ...56

xii

LIST OF ALGORITHMS

4.1 Right to left version of double-and-add method ..20

4.2 Left to right version of double-and-add method. ...21

4.3 Double-and-add always method. ...23

4.4 Non adjacent form method ..25

4.5 Montgomery powering ladder ...28

5.1 Masked montgomery powering ladder ..35

5.2 Modified MPL with SM, ES and PR ...41

6.1 Extended euclidean method [42] ...52

xiii

LIST OF ACRONYMS

DPA Differential Power Analysis

ECC Elliptic Curve Cryptosystem

ECDHKE Elliptic Curve Diffie–Hellman Key Exchange

ECDLP Elliptic Curve Discrete Logarithm Problem

 ECDSA Elliptic Curve Digital Signature Algorithm

ECIES Elliptic Curve Integrated Encryption Scheme

 EM Electro Magnetic

FPGA Field-programmable Gate Array

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

LUT Look Up Table

MPL Montgomery Powering Ladder

MVN Multivariate Normal Distribution

RSA Rivest, Shamir, Adleman

SCA Side Channel Attack

SPA Simple Power Analysis

1

CHAPTER I

INTRODUCTION

1.1 Motivation

The Internet is increasingly important to the people all over the world who use it

for personal and business purposes. While the internet brings much convenience to people,

there still exist security risks and vulnerabilities in using the internet. For example, various

cyber-attacks, including side channel attacks, pose a great danger for the Internet users.

Network security, which provides physical and software countermeasures to protect the

network from unauthorized access and attacks, becomes a very active research area and

industry. Cryptography plays a critical role in providing essential and unique network

security services to the internet.

There are two main families of cryptography from the point of view of key

generation, symmetric-key cryptography and asymmetric-key cryptography. In symmetr ic-

key cryptography system, there is only one key used both for encryption and decryption.

This system requires that both parties involved in the communication share one secret key,

which has to be pre-arranged in advance in a procedure called key establishment. This is

regarded as a main drawback of symmetric-key cryptography system since it cannot

resolve the issue of key establishment without resorting to a third party.

Unlike symmetric-key cryptography system, the asymmetric-key cryptography

system (more popularly known as public-key system) uses two keys, one for encryption

and the other for decryption. The key used for encryption is the public key, which is

accessible to the public and can be distributed widely and easily. The other one used for

decryption is the private key, which must be kept secret and is only known to the owner of

2

the cryptosystem. By differentiating the encryption key and decryption key, the

asymmetric-cryptography system can provide very important and unique security services

such like key exchange and digital signature. A drawback of asymmetric-cryptography

systems is that they have higher computational complexity, compared to symmetrical key

systems.

 Since Diffie and Hellman proposed the Diffie-Hellman key exchange scheme as

the first asymmetric-cryptography system in 1976 [3], several asymmetric-key

cryptography systems have been presented, such like RSA, ElGamel, and Elliptic curve

cryptography. All these algorithms are based on some different hard mathematica l

problems. Based on their underlying mathematical problems, these algorithms can be

classified as follows.

Table 1.1 Public key systems and the hard math problems

 The security strength of the cryptosystem relies on the fact it is hard to solve these

mathematical problems. The Elliptic Curve Cryptosystem (ECC), first proposed by Miller

and Koblitz in 1985 [1], [2], can provide higher security strength per bit compared to other

asymmetric-cryptography system such like RSA. This is because elliptic curve discrete

logarithm problem (ECDLP) is much harder to solve than factorization of a product of two

large primes.

Public key system Hard Math Problems

RSA Integer factorization

ElGamal Discrete logarithm problem

Elliptic curve cryptosystem Elliptic curve discrete logarithm problem

3

Table 1.2 A comparison of key sizes

The large RSA key size requires long computation time and large VLSI area when

implemented in hardware. While ECC is based on the elliptic curve discrete logarithm

problem, the security of ECC relies on the difficulty of elliptic curve discrete logarithm

problem. ECC can provide same level security strength as RSA with much shorter keys.

Table 1.2 shows a comparison of key sizes needed to achieve equivalent level of security

strength. This feature of ECC makes it very suitable for smart cards, credit cards, pagers,

PDAs and mobile phones [4].

Other than solving the difficult ECDLP to break ECC mathematically, attackers

can take advantage of the physical implementation and retrieve secret parameters by

observing the information leaked during the computation. This method is referred to as

Side Channel Attacks (SCA) and discussed in [5], [6]. Scalar multiplication, which

multiplies a point on an elliptic curve by a scalar, is the main computation involved in ECC.

Unguarded scalar multiplication algorithms are vulnerable to SCAs. In order to protect

Security Level (bits) RSA Key Size (bits) ECC Key Size (bits)

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 512

4

ECC from SCA, the computation steps involved in the scalar multiplication algorithms

have to be regular so that less useful side channel information can be leaked to attackers.

There have been several existing algorithms for computing the scalar multiplication. A

classical algorithm is the binary algorithm or doubling-and-add., it can be easily cracked

by Simple Power Analysis (SPA) since it may consume different power in each iteration,

depending on binary bit of the scalar. To withstand SPA, a double and add always

algorithm is proposed by Coron in 1999 [7]. The idea is to add a dummy operation to make

every iteration consume same power, thus the computation is regular in each step. However,

this algorithm still remains insecure against a doubling attack proposed by Fouque in 2003

[8]. To provide further protection against various SCAs, Montgomery Powering Ladder

(MPL) is invented by Marc Joye and Sung-Ming Yen in 2003 [9]. Although MPL is highly

regular and efficient compared to the classical algorithms, it is still subject to SCAs such

like Differential Power Analysis (DPA). Introduced by Kocher in 1999 [10], Differentia l

Power Analysis focus on capturing the power consumption of the target device and by

analyzing the power consumption to get information of the secret key. Another Modified

Montgomery Power Ladder algorithm proposed by He in [11] can provide protection to

more SCAs than the regular MPL. To the best of our knowledge, scalar multiplica t ion

based on this algorithm has not yet been implemented. Thus an efficient implementa t ion

of ECC, which can resist more SCAs is needed for modern cryptographic applications.

1.2 A Summary of Contributions

In this thesis we propose an efficient hardware architecture for the modified MPL

with sequence masking (SM), exponent splitting (ES) and point randomization (PR)

5

algorithm [11]. More specifically we

 Proposed an efficient hardware architecture for the modified MPL with SM,

ES and PR algorithm [11].

 Presented a FPGA implementation for the modified MPL with SM, ES and

PR algorithm [11], which is the first time in literature.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter II provided mathematica l

background in finite field and elliptic curve which are important for understanding the

proposed work. The concept of SCA is introduced and then many types of SCAs are

reviewed in Chapter III. In Chapter IV an overview of existing related works is given.

Chapter V provides a detailed discussion on a modified MPL with SM, ES and PR. Chapter

VI proposes an efficient hardware architecture for the modified MPL with SM, ES and PR.

FPGA implementation of the proposed architecture is also presented and the FPGA results

are analyzed and discussed. Conclusive remarks are given and possible future works are

commented in Chapter VII.

6

CHAPTER II

MATHEMATICAL BACKGROUND

This chapter introduces the related mathematical background of the ECC based

systems. Definition of finite field and elliptic curve are given. Arithmetic over finite field,

point operations over elliptic curve is also curved. Finally, some ECC scheme is introduced.

2.1 Finite Field

Finite field, also known as Galois Field (GF), is proposed by Galois in 1832. Galois

Theory emphasis a relation between groups and fields. Finite field was introduced as an

example of a field. A finite field is a finite set of numbers in which addition and

multiplication are defined. It is an additive group under the addition operation. All the

nonzero elements in a finite field form a multiplicative group under multiplica t ion

operation. Primitive element is the generator of the multiplicative group. For a finite field

𝐹, if n is the smallest integer satisfying that 𝑛𝑎 = 0 for every field element a in the finite

field 𝐹, then n is the characteristic of 𝐹.

Prime finite field 𝐺𝐹(𝑝) consists of elements {0,1,2… 𝑝− 1}, where p is a prime

number. Arithmetic in 𝐺𝐹(𝑝) can be described as follows. Addition is defined as modulo-

𝑝 addition. Multiplication is defined as modulo-𝑝 multiplication. 𝑝 is the characteristic of

𝐺𝐹(𝑝).

Extension finite field 𝐺𝐹(𝑝𝑚), where p is a prime and m is a positive integer greater

than 1, the elements of 𝐺𝐹(𝑝𝑚) are polynomials of degree up to 𝑚− 1 with coefficients

belonging to 𝐺𝐹(𝑝),

𝐺𝐹(𝑝𝑚) = {𝑎𝑚−1𝑥
𝑚−1 + 𝑎𝑚−2𝑥

𝑚−2 + ⋯+ 𝑎2𝑥
2 +𝑎1𝑥 + 𝑎0}

where 𝑎𝑖 ∈ 𝐺𝐹(2), irreducible polynomial is 𝑓(𝑥). 𝑝 is a prime and m is a positive integer

7

greater than 1, the elements of 𝐺𝐹(𝑝𝑚) are polynomials of degree up to 𝑚− 1 with

coefficients belonging to 𝐺𝐹(𝑝). The irreducible polynomial 𝑓(𝑥) cannot be factored into

product of polynomials that has degree less than m.

 Binary Extension finite field 𝐺𝐹(2𝑚) is a special case of 𝐺𝐹(𝑝𝑚) , where is

consists of 2𝑚 elements and its characteristic is 2.

𝐺𝐹(2𝑚) = {𝑎𝑚−1𝑥
𝑚−1 + 𝑎𝑚−2𝑥

𝑚−2 + ⋯+ 𝑎2𝑥
2 + 𝑎1𝑥 + 𝑎0},

where 𝑎𝑖 ∈ 𝐺𝐹(2) , irreducible polynomial is 𝑓(𝑥) . Elements in this field can be

represented as (𝑚 − 1) degree polynomial, for example if 𝐴 is an element in 𝐺𝐹(2𝑚), 𝐴

can be represented as

𝐴 = 𝑎𝑚−1𝑥
𝑚−1 +𝑎𝑚−2𝑥

𝑚−2 +⋯+𝑎2𝑥
2 +𝑎1𝑥 + 𝑎0, 𝑤ℎ𝑒𝑟𝑒 𝑎𝑖 ∈ 𝐺𝐹(2)

It can also be represented as an m bits binary string (𝑎𝑚−1, 𝑎𝑚−2 ,…, 𝑎1, 𝑎0), where 𝑎𝑖 ∈

𝐺𝐹(2) . This representation is defined as the polynomial basis representation. This

representation is beneficial in hardware implementation since its operations like addition

and multiplication can be realized using AND logic gate and XOR logic gate. The additio n

operation over binary extension field is modulo 2 addition. The multiplication is modulo

𝑓(𝑥), modulo 2 multiplication.

2.2 Elliptic Curve over GF(2m)

Let p be a prime number greater than 3, and coefficients 𝑎, 𝑏 in the field 𝐺𝐹(𝑝),

then the elliptic curve E over 𝐺𝐹(𝑝) is defined with equation:

E: 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏

This equation is a simplified Weierstrass equation. The points on the curve satisfy

that both the 𝑥-coordinate and 𝑦-coordinate are both elements over 𝐺𝐹(𝑝). Assume there

8

two points 𝑃 (𝑥1,𝑦1) and 𝑄 (𝑥2,𝑦2) on the curve. The group operator point addition obeys

the following rules. Draw a line through point 𝑃 and 𝑄, if there exists a third point

𝑅 (𝑥3,𝑦3) which intersects with the curve. The mirror reflection of 𝑅 about the 𝑥-axis is

defined as the addition result. If such an intersection point does not exist, we consider the

result as infinity. The point at infinity 𝑂, defined by 𝑃+ 𝑂 = 𝑂 , exists for every ellipt ic

curve. The additive inverse of point 𝑃 is its reflection across the 𝑥-axis. All the points on

curve E and the point at infinity forms a group 𝐺 defined by the point addition operator. 𝐺

is an abelian group sine the group operator addition is commutative.

 Figure 2.1 Point addition on ECC

If 𝑃 and 𝑄 satisfy 𝑥1 ≠ 𝑥2, then we have point addition computed using the

following equation.

9

{

 𝜆 =
𝑦1 + 𝑦2
𝑥1 + 𝑥2

𝑥3 = 𝜆2 + 𝑥1 + 𝑥2
𝑦3 = (𝑥1 + 𝑥3)𝜆+ 𝑦1

 If 𝑃 and 𝑄 satisfy 𝑃 = 𝑄 and 𝑦1 ≠ 0, then point doubling is defined below.

{

 𝜆 =

3𝑥1
2 + 𝑎

2𝑦1
𝑥3 = 𝜆

2 + 2𝑥1
𝑦3 = (𝑥1 + 𝑥3)𝜆+ 𝑦1

 For an integer 𝑘, scalar multiplication 𝑘𝑃 is defined as repeated addition like

𝑘𝑃 = 𝑃 + 𝑃 +⋯𝑃

repeated for 𝑘 times.

 The order n of point P is defined as the minimal integer satisfies 𝑛𝑃 = 𝑂.

 Let a and b be elements in 𝐺𝐹(2𝑚) . An elliptic curve E over 𝐺𝐹(2𝑚) can be

defined by the equation

E: 𝑦2 +𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏

 Points over elliptic curve defined in 𝐺𝐹(2𝑚) have similar operations to that defined

in 𝐺𝐹(𝑝). Consider two points 𝑃 (𝑥1,𝑦1) and 𝑄 (𝑥2,𝑦2) on the curve, and 𝑅 (𝑥3,𝑦3) be

the result of 𝑃 + 𝑄. If 𝑃 = 𝑄, point addition is computed as follows.

{

 𝜆 =
𝑦1 + 𝑦2
𝑥1 + 𝑥2

𝑥3 = 𝜆2 + 𝜆 + 𝑥1+ 𝑥2 +𝑎
𝑦3 = (𝑥1 + 𝑥3)𝜆 + 𝑥3 + 𝑦1

 If 𝑃 ≠ 𝑄, point doubling is performed as below.

{

 𝜆 =
𝑦1
𝑥1
+ 𝑥1

𝑥3 = 𝜆
2 + 𝜆 + 𝑎

𝑦3 = 𝑥1
2 + 𝜆𝑥3 + 𝑥3

10

All the addition, multiplication and inversion involved in there equations are finite

field arithmetic. The most time consuming operations are finite field multiplication and

inversion.

2.3 Elliptic Curve

For a given field 𝐺𝐹(𝑝) and curve E over the field, it is easy to calculate 𝑘𝑃 for a

point 𝑃 on the curve. However, if 𝑘𝑃 and 𝑃 is known, it is considered very difficult to

calculate integer 𝑘. This is called the ECDLP problem, and the security strength of ECC

relies on it.

2.3.1 System Setup

To setup a secure elliptic curve cryptography system, the parameters of the curve

has to be chosen very carefully. The elliptic curve used in the system need to be non-

singular since singular curves are easy to crack.

The parameters needed to construct an elliptic curve cryptography system includ ing

the following. Finite field 𝐺𝐹(𝑝) defined by 𝑝, elliptic curve E defined by 𝑎 and 𝑏, base

point 𝑃, the order of the base point 𝑛 and the factor ℎ. The parameter set is known to the

public.

If the system is over 𝐺𝐹(𝑝) , the parameter set is 𝐷 = {𝑝, 𝑎, 𝑏, 𝑃, 𝑛, ℎ} . The

parameters are defined as above stated. If the cryptography system is built over 𝐺𝐹(2𝑚),

the parameter set is 𝐷 = {𝑚, 𝑓(𝑥),𝑎, 𝑏, 𝑃, 𝑛, ℎ} where 𝑓(𝑥) is the irreducible polynomia l

define the field. To calculate factor ℎ, first count all the points and the point at infinity to

get the order of the elliptic curve #E, then h is #E divided by 𝑛.

2.3.2 Generation of the key pairs

After the system is set up, assume Bob is trying to communicate with Alice. Alice

11

will choose the keys as introduced below.

Step 1: Choose a random integer 𝑑 ∈ [1,𝑛 − 1]

Step 2: Computes point 𝑄 = 𝑑𝑃

 The public key is point 𝑄, and private key is integer 𝑑.

2.3.3 Elliptic Curve Integrated Encryption Scheme (ECIES)

The most extended encryption and decryption scheme based on ECC is the Ellip t ic

Curve Integrated Encryption Scheme (ECIES). This scheme is a variant of the ElGamal

scheme proposed in [12]. This scheme is described as follows:

System Setup:

Step 1: Alice sets the ECC system parameter sets 𝐷 = {𝑝, 𝑎, 𝑏, 𝑃, 𝑛, ℎ}

Step 2: Computes Key Pair (𝑄, 𝑑)

Encryption:

Step 1: Bob selects a random number 𝑘 ∈ [1, 𝑛 − 1]

Step 2: Computes 𝑅 = 𝑘𝑃, and 𝑍 = ℎ𝑘𝑄.

Step 3: 𝑋 -coordinate of 𝑍 and 𝑅 is converted to (𝑘1,𝑘2) using a key derivation hash

function

Step 4: Message m is encrypted with 𝑘1 using a symmetrical key cipher to get 𝐶 =

𝐸𝑁𝐶 (𝑚)

Step 5: Computes 𝑡 = 𝑀𝐴𝐶 (𝐶) using 𝑘2, where 𝑀𝐴𝐶 is a message authentication code

Step 6: Cipher text (𝑅, 𝐶, 𝑡) is sent to Alice

Decryption:

Step 1: Alice computes 𝑍 = ℎ𝑑𝑅

Step 2: 𝑋 -coordinate of 𝑍 and 𝑅 is converted to (𝑘1,𝑘2) using a key derivation hash

12

function

Step 3: Computes 𝑡 = 𝑀𝐴𝐶 (𝐶) using 𝑘2, where 𝑀𝐴𝐶 is a message authentication code

Step 4: Message m is decrypted with 𝑘1 using a symmetrical key cipher to get 𝑚 =

𝐷𝐸𝐶 (𝐶)

 This scheme works since when Alice generates 𝑍, it follows that,

𝑍 = ℎ𝑑𝑅 = ℎ𝑑 (𝑘𝑃) = ℎ𝑘(𝑑𝑃) = ℎ𝑘𝑄

So both the encryption and decryption generate the same key pair (𝑘1, 𝑘2).

2.3.4 Elliptic Curve Diffie–Hellman Key Exchange (ECDHKE)

ECDHKE is the generic key exchange scheme based on the Diffie-Hellman

mechanism applied to elliptic curves [13]. The information available to the public is the

elliptic curve E over 𝐺𝐹(𝑝), and a point 𝑃 with order n on the curve. The computations are

described as follows:

Computation of Alice:

Step 1: Alice chooses random number 𝑎 ∈ [1, 𝑛 − 1]

Step 2: Computes 𝑎𝑃 and it is sent to Bob

Step 3: After receiving 𝑏𝑃 form Bob, Alice computes scalar multiplication 𝑎(𝑏𝑃) to get

𝑎𝑏𝑃

Computation of Bob:

Step 1: Bob chooses random number 𝑏 ∈ [1,𝑛 − 1]

Step 2: Computes 𝑏𝑃 and it is sent to Alice

Step 3: After receiving 𝑎𝑃 form Alice, Bob computes scalar multiplication 𝑏 (𝑎𝑃) to get

𝑏𝑎𝑃

The secret key shared by the two parties is 𝑘 = 𝑎𝑏𝑃. By applying this scheme, the

13

secret key is securely exchanged.

2.3.5 Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA is the elliptic curve variant of the Digital Signature Algorithm [14]. This

scheme can be introduced as the following steps:

System Setup:

Step 1: Alice sets the ECC system parameter sets 𝐷 = {𝑝, 𝑎, 𝑏, 𝑃, 𝑛, ℎ}

Step 2: Computes Key Pair (𝑄, 𝑑)

Signing of the message:

Step 1: Alice calculates 𝑒 = 𝐻 (𝑚), where H is a hash function.

Step 2: Chooses random number 𝑘 ∈ [1,𝑛 − 1]

Step 3: Calculates point 𝑅 = 𝑘𝑃 (𝑥1,𝑦1).

Step 4: Calculates 𝑠𝑖𝑔1 = 𝑥1 mod 𝑛. If 𝑠𝑖𝑔1 = 0, Alice chooses another 𝑘.

Step 5: Calculates 𝑠𝑖𝑔2 = 𝑘
−1(𝑒 + 𝑑𝑥1) mod 𝑛.

Step 6: The signature is the pair (𝑠𝑖𝑔1 , 𝑠𝑖𝑔2).

Verification of the signature:

Step 1: Bob calculates 𝑒 = 𝐻 (𝑚), where 𝐻 is a hash function.

Step 2: Calculates 𝑤 = 𝑠𝑖𝑔2
−1 mod 𝑛.

Step 3: Calculates 𝑢1 = 𝑒𝑤 mod 𝑛 and 𝑢2 = 𝑠𝑖𝑔1𝑤 mod 𝑛.

Step 4: Calculates point 𝑋 = 𝑢1𝑃 + 𝑢2𝑄 and retrieve the 𝑥-coordinate of 𝑋 denoted by

𝑥2

Step 5: The signature is valid if 𝑠𝑖𝑔1 = 𝑥2 mod 𝑛, if not the signature is rejected.

14

To prove the correctness of the algorithm, the following equation can be performed.

𝑋 = 𝑢1𝑃 + 𝑢2𝑄

= 𝑢1𝑃 + 𝑢2𝑑 × 𝑃

= (𝑢1 + 𝑢2d) × P

= (𝑒 × 𝑠𝑖𝑔2
−1 + 𝑠𝑖𝑔1 × 𝑠𝑖𝑔2

−1 𝑑) × 𝑃

= (𝑒 + 𝑠𝑖𝑔1𝑑)𝑠𝑖𝑔2
−1 × 𝑃

= (𝑒 + 𝑠𝑖𝑔1𝑑) (𝑒 + 𝑠𝑖𝑔1𝑑)
−1(𝑘−1)−1 × 𝑃 = 𝑘𝑃

 Thus from the computation it is verified 𝑠𝑖𝑔1 = 𝑥2 mod n from point 𝑋 = 𝑘𝑃.

From all the above algorithms, it can be seen that scalar multiplication is the main

computation involved in elliptic curve cryptography. SCAs mainly target the scalar

multiplication in ECC to compromise partial or the full secret key.

15

CHAPTER III

SIDE CHANNEL ATTACKS

To consider a cryptosystem under mathematically circumstances, a black-box

model is usually used. In the black-box scheme, attackers cannot get any intermed iate

computation results [15]. The only information available to the attackers are plaintext and

cipher text. Thus in order to break the cryptosystem, the attackers need to solve the hard

math problem such like ECDLP in ECC.

Figure 3.1 Traditional cryptosystem

However, such model is not adequate under most scenarios in practice. When a

cryptosystem is implemented on hardware, there will be unintended information leaked

during the execution of the algorithm. The attackers thus can try to find correlation between

the leaked information and the secret key. Side Channel can be classified based on the types

of side channel information. Information can be extracted from timing, power consumption

or electromagnetic radiation features. Hardware or software faults, computational errors,

and changes in frequency or temperature can also lead to leak of information. Table 3.1

shows the relation between leaked information and type of side channel attacks.

16

Table 3.1 Category of SCAs

3.1 Timing Attack

Many of the implementations of cryptographic algorithms perform the

computations in a non-constant time. The time variations sometimes can become a

breakthrough point of the system. If the difference of time is correlated to the secret

parameters, then a statistical analysis can reveal enough information to access the key.

Timing attack was first introduced by Kocher in [5].

The working principle of timing attack is to capitalize on the time difference, thus

an easy countermeasure is to make the implementation on the hardware equalize the

computation time in each step.

3.2 Fault Attack

The idea of fault attack is to inject a fault and force the system to leak information

related to the secret parameter. Fault attack was first introduced in [16]. Consider a

hardware implementation of a cryptosystem, the execution of a fault attack usually two

steps [17]. The first step is to inject a fault and the second step is to do a cryptanalys is

based on the erroneously result.

Side Channel Information Side Channel Attacks

Power traces

Simple power analysis(SPA)

Differential power analysis

Comparative power analysis

Time Timing attack

Faults and error Fault attack

Electromagnetic radiation EM attack

17

Among the many fault attacks, differential fault attack (DFA) caught most attention

of the scientists and researchers. To initialize DFA, a bit error is enforced into the hardware

before or during the computation. By analyzing the correct result and the erroneous result,

the information of the secret key is compromised. Biehl and Műller proposed an effective

DFA against ECC in 2000 [18]. The main idea is to construct a reference elliptic curve Er

and choose a reference point 𝑃𝑟 on the Curve. By inputting this reference point into the

tamper-proof hardware, the reference result 𝑑 × 𝑃𝑟 on the curve is 𝐸𝑟 computed. Since

curve 𝐸𝑟 is carefully chosen that the order of the curve has a factor 𝑟 equals to the order of

𝑃𝑟, the ECDLP is deduced to the subgroup of order 𝑟. Next another reference point is

carefully chosen and the whole process is duplicated. The secret parameter 𝑑 can be

revealed.

Yen and Joye introduced another fault attack scheme in [19], this attack targets the

algorithms with dummy operations. By carefully timing a fault injection, the attacker can

distinguish whether this fault causes an error in the result. Thus it can be known whether a

redundant operation is executed. By repeating the procedure, the whole secret key can be

retrieved. This attack is called safe-error attack.

3.3 Electromagnetic Attack

Electromagnetic (EM) attack [20] is based on the fact that all electrical device

radiates electromagnetic waves when operating. An adversary examines the changes of the

electromagnetic field first and then an electromagnetic analysis is executed trying to extract

the secret information.

Wu and Yu introduced an EM attack against scalar multiplication in [21]. The

attacker is targeting a classical binary algorithm. The electromagnetic traces captured have

18

significant difference when different computation is executed. Thus it is easy to access the

secret key by comparing the power traces.

3.4 Power Analysis Attack

Similar to EM attacks, power consumption is often leaked during the running

process of the cryptographic device. By observing the power traces, attackers can get

access to the information on where a certain operation happened and what secret parameter

is involved. Since power analysis attacks usually use little resources, power constrained

applications such like smart cards are primary targets of it [22].

Power analysis attack can be generally categorized into two types, simple power

analysis (SPA) and differential power analysis (DPA). SPA attacker examines the power

traces of cryptography computations and distinguish the power consumption caused by the

secret key. The attacker tries to get secret information by observation of repetitive patterns

in the obtained power traces. If power consumptions are distinguishable the information of

secret key is leaked. DPA relies on the statistical analysis to reveal the correlation between

the secret bit and power consumption. It is usually executed in two steps. First the power

traces are captured, then analysis regarding the captured information is carried out. Among

all the various SCAs, DPA is being regarded as one of the strongest. The difference lies in

that despite merely observation of the power spectrum, DPAs employ more statistica l

methods to guess the secret key.

Coron shows in [7] how DPAs work against scalar multiplication, which is the main

computation in ECC. Since in many scalar multiplication algorithms, the result is computed

by continuous point addition chain. That is, given a point 𝑃 and scalar 𝑑, 𝑑𝑃 is calculated

as:

19

𝑃 → 𝑑0𝑃 → 𝑑1𝑃 → 𝑑2𝑃 → 𝑑3𝑃 → ⋯ → 𝑑𝑃

The attacker starts guessing from 𝑑0 = 1 to 𝑑. For each 𝑑𝑖, a set 𝐴𝑖 with all possible 𝑑𝑖 =

 𝑑𝑗 + 𝑑𝑘 where 0 ≤ 𝑗 ≤ 𝑘 < 𝑖 is built. For each element 𝑑𝑖 in the set 𝐴𝑖, the correlation

of power consumption and 𝑑𝑖𝑃 is computed. When the peak is achieved in the computation,

the desired 𝑑𝑖 is recovered. By repeating the same pattern for 𝑑0 = 1 to 𝑑, the secret key

𝑑 will be compromised at last.

20

CHAPTER IV

EXISTING WORK REVIEW AND SECURITY ANALYSIS

There have been different scalar multiplication algorithms existing to improve the

overall performance for efficient or security. In this chapter we introduce the different

algorithms and their implementations. Also the security strength of these algorithms will

be analyzed.

4.1 Classical binary algorithm

 The binary algorithm is also known as the “square and multiply method” to do

exponentiation calculation. It is a very old algorithm which has over 2000 year’s history

[23]. While in the scalar multiplication scenario, it is very simply adapted as the double

and add algorithm.

 The basic idea of double and add algorithm is to make full use of the binary form

of the scalar. Consider a point 𝑃 and scalar 𝑘, rather than add point 𝑃 to itself 𝑑 times to

get the result 𝑘𝑃, the double and add method will obviously reduce number of addition

operation needed.

 The binary algorithm has two versions, one is from the least significant bit to the

most significant bit shown in Algorithm 4.1.

Algorithm 4.1.Right to left version of double-and-add method

Input: 𝑃 𝜖 𝐸, 𝑘 = (𝑘𝑛−1 , … , 𝑘1, 𝑘0)2 ,𝑘𝑖𝜖 0,1

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸

Step 1: 𝑥 = 𝑂, 𝑦 = 𝑃;

Step 2: 𝑓𝑜𝑟 𝑖=0 𝑡𝑜 𝑛−1 𝑑𝑜

21

Step 3: 𝑖𝑓 𝑘𝑖 = 1, 𝑡ℎ𝑒𝑛 𝑥 = 𝑥 + 𝑦

Step 4: 𝑒𝑛𝑑 𝑖𝑓

Step 5:𝑦 = 2𝑦

Step 6:𝑒𝑛𝑑 𝑓𝑜𝑟

Step 7:𝑅𝑒𝑡𝑢𝑟𝑛 𝑥

The other is calculating from the most significant bit to the least significant bit, as

shown in algorithm 4.2.

Algorithm 4.2.Left to right version of double-and-add method

Input: 𝑃 𝜖 𝐸, 𝑘 = (𝑘𝑛−1 , … , 𝑘1, 𝑘0)2 ,𝑘𝑖𝜖 0,1

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸

Step 1: 𝑥 = 𝑃;

Step 2: 𝑓𝑜𝑟 𝑖=𝑛−2 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜

Step 3: 𝑥 = 2𝑥

Step 4: 𝑖𝑓 𝑘𝑖 = 1, 𝑡ℎ𝑒𝑛 𝑥 = 𝑥 + 𝑃

Step 5: 𝑒𝑛𝑑 𝑖𝑓

Step 6: 𝑒𝑛𝑑 𝑓𝑜𝑟

Step 7: 𝑅𝑒𝑡𝑢𝑟𝑛 𝑥

Although the addition operation is significantly reduced in the double-and-add

algorithm, the drawbacks of this algorithm is crucial. Comparing the operations carried out

when the secret bit 𝑘𝑖 is different, it is clear that more computations are executed when

22

𝑘𝑖 = 1. In every iteration, the doubling operation is always performed, while addition only

happens when 𝑘𝑖 = 1. This variation responses directly into the power consumption. As

shown in Figure 4.1, D denotes doubling operation and A represents addition operation.

The secret bit is chosen as 𝑘 = (0101)2. The length of the power peak is different, thus

the attacker can observe the power traces and distinguish the secret bits. This figure shows

exactly how the double-and-add algorithm is vulnerable to the SPA attack. Because of this

major drawback, many other algorithms is have been developed.

Figure 4.1 Vulnerability of binary method to SPA

A high speed ECC processor is implemented by Hossain and Kong in 2015 [24].

Over field 𝐺𝐹(2233), their ECC processor can perform scalar multiplication 2.66 ms at

255.66 MHz in on a Xilinx Kintex-7 devices. This design features to speed up the overall

computation time. They applies the double-and-add algorithm to the design in a trade-off

for speed. As stated previously, this design can be easily crack by SCA attacks.

 A: Addition

 D: Doubling

 Power Trace

 Secret Bit 0 1 0 1

A

D

A

D

D D

23

4.2 Double-and-Add Always Algorithm

In order to achieve more security strength against SPA, Coron proposed a double-and-add

always algorithm in 1999 [7]. The main idea of this algorithm is to add a dummy operation

to standard double-and-add to equalize the power consumption of each cycle. As illustrated

in Algorithm 4.3, a dummy addition is executed when the processing bit is zero. In this

way, the algorithm is performing a doubling followed by an addition in every iteration.

Since the algorithm is regular now, it has resistance to SPA attacks.

Algorithm 4.3.Double-and-add always method

Input: 𝑃 𝜖 𝐸, 𝑘 = (𝑘𝑛−1 , … , 𝑘1, 𝑘0)2 ,𝑘𝑖𝜖 0,1

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸

Step 1: 𝑥 = 𝑂, 𝑦 = 𝑂;

Step 2: 𝑓𝑜𝑟 𝑖=𝑛−1 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜

Step 3: 𝑥 = 2𝑥;

Step 4: 𝑦 = 𝑥 + 𝑃;

Step 5: 𝑖𝑓 𝑘𝑖 = 1, 𝑡ℎ𝑒𝑛 𝑥 = 𝑦;

Step 6: 𝑒𝑛𝑑 𝑖𝑓

Step 7:𝑒𝑛𝑑 𝑓𝑜𝑟

Step 8:𝑅𝑒𝑡𝑢𝑟𝑛 𝑥

However, another fault attack called c-safe error attack [9] can easily crack this

algorithm. When the secret bit is zero, the addition result won’t affect the final result. When

the attacker altered one bit of the secret key to zero, the result can be compared with the

original output. If the result remains the same, the attacker knows that the secret bit is zero.

24

In the case the result changed, the attacker will figure that the secret bit is one and it is quite

easy to locate. This algorithm is taking as an unsuccessful sequence mask example since

the countermeasure takes to prevent SPA benefits other attacks [26].

Another attack threatening this algorithm is the doubling attack, which proposed by

Fouque and Valette in [25]. The name is from the fact this attack is based on the doubling

operation in the scalar multiplication. This type of attack only works when using left to

right algorithms. To better explain it, consider two points 𝑃, 2𝑃 and secret 𝑘 = 9 =

(1001)2 as input. Double-and-add always method is used to compute 𝑘𝑃 and 𝑘 (2𝑃). As

illustrated in Table 4.1, if we focus the doubling operation in each iteration, some of them

shares the same pattern. To be more specific, doubling operation at iteration 2 calculat ing

𝑘 (2𝑃) is the same as doubling operation at iteration 3 calculating 𝑘𝑃. Thus two zeros is

overserved by the adversary. This attack reveals all the bits with the value zero and using

these information, the whole secret bits can be revealed consequently.

Table 4.1 Doubling attack against double-and-add always algorithm

Iteration 𝑖 𝑘𝑖 𝑘𝑃 𝑘(2𝑃)

3 1 2 × 0
0 + 𝑃

2 × 0
0 + 2𝑃

2 0 2 × 𝑃

2𝑃 + 𝑃

2 × 2𝑃

4𝑃 + 2𝑃

1 0 2 × 2𝑃
4𝑃 + 𝑃

2 × 4𝑃
8𝑃 + 2𝑃

0 1 2 × 4𝑃

8𝑃 + 𝑃

2 × 8𝑃

16𝑃 + 2𝑃

To the best knowledge, implementation for double-and-add always algorithm is

very few since it is not efficiency compared to classical double-and-add. Although it has

25

more resistance to SPA, it is still vulnerable to many other attacks such like safe error

attack. This method later stimulated development of more advanced algorithms such like

MPL.

4.3 Non Adjacent Form Method

As stated in previous chapter, a point 𝑃 (𝑥,𝑦) on elliptic curve E over binary field,

has additive inverse in the form – 𝑃 = (𝑥, 𝑥 + 𝑦). Thus subtraction of point is actually the

same as point addition on an elliptic curve. The non-adjacent form (NAF) is a signed digit

representation [27] inspired by this fact. In NAF method, the secret key is represented by

the following equation.

𝑘 =∑ 𝑘𝑖2
𝑖

𝑙−1

𝑖=0

, 𝑤ℎ𝑒𝑟𝑒 𝑘𝑖 ∈ {0, ±1}, 𝑘𝑙−1 ≠ 0

In this expression, there is no two continuous nonzero digits. The advantage of this

representation is that generally it has fewer nonzero bits [23], which leads to a reduction of

addition operation needed in the algorithm. The NAF method is shown in Algorithm 4.4.

Algorithm 4.4. Non Adjacent Form method

Input: 𝑃 𝜖 𝐸, 𝑁𝐴𝐹(𝑘) = ∑ 𝑘𝑖2
𝑖

𝑙−1

𝑖=0

, 𝑘𝑖𝜖 {0, ±1}

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸

Step 1: 𝑥 = 𝑃, 𝑦 = 𝑂;

Step 2: 𝑓𝑜𝑟 𝑖=l−2 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜

Step 3: 𝑥 = 2𝑥;

26

Step 4: 𝑖𝑓 𝑘𝑖 = 1, 𝑡ℎ𝑒𝑛 𝑥 = 𝑥 +𝑃;

Step 5: else 𝑖𝑓 𝑘𝑖 = −1,𝑡ℎ𝑒𝑛 𝑥 = 𝑥 + (−𝑃);

Step 6: 𝑒𝑛𝑑 𝑖𝑓

Step 7:𝑒𝑛𝑑 𝑓𝑜𝑟

Step 8:𝑅𝑒𝑡𝑢𝑟𝑛 𝑥

The doubling attack mentioned in previous section still applies to the NAF method.

Taking an integer 𝑘 = 29, and 𝑁𝐴𝐹 (𝑘) = (1, 0,0 − 1, 0, 1) . Then if the adversary

calculates 𝑘𝑃 and takes 𝑘 (2𝑃) as a reference. From Table. 4.2, it is shown that the

intermediate value at iteration i when computing 𝑘 (2𝑃) equals the result at iteration i-1

when computing 𝑘𝑃 . All the secret bits with value zero is thus revealed. Since

approximately two third of the bits in NAF representation is zero [28], most bits are

retrieved applying doubling attack.

Table 4.2 Doubling attack against NAF method

Iteration 𝑖 𝑘𝑖 𝑘𝑃 𝑘(2𝑃)

4 0 2 × 𝑃 2 × 2𝑃

3 0 2 × 2𝑃 2 × 4𝑃

2 −1 2 × 4𝑃

8𝑃 + (−𝑃)
2 × 8𝑃

16𝑃 + (−2𝑃)

1 0 2 × 7𝑃 2 × 14𝑃

0 1 2 × 14𝑃

28𝑃 + 𝑃

2 × 28𝑃

56𝑃 + 2𝑃

27

Wang introduced his implementation of an ECC coprocessor over 𝐺𝐹(2233) in

2005 [29]. In this paper, a digit-serial multiplier which can achieve half or quarter clock

cycles compared to the full-serial multiplier is proposed. With proper precomputation, this

design can reduce the total calculating time by applying the projective coordinates. The

coprocessor can perform a scalar multiplication in 2.28 ms at 80 MHz. However, the

implementation algorithm chosen by the author is NAF method which vulnerable to attacks

like doubling attack.

4.4 Montgomery Powering Ladder Algorithm

4.4.1 Explanation of Algorithm

The Montgomery powering ladder is first proposed in [9] to provide a

countermeasure to SPA. For a given 𝑘 = ∑ 𝑘𝑖2
𝑖𝑙−1

𝑖=0 , in order to compute 𝑘𝑃, the MPL is

constructed based on the following relationships. Define 𝐿𝑗 = ∑ 𝑘𝑖2
𝑖𝑙−1

𝑖=𝑗 and 𝐻𝑗 = 𝐿𝑗 + 1.

𝐿𝑗 and 𝐻𝑗can then be represented as

{
𝐿𝑗 = 2𝐿𝑗+1 +𝑘𝑗 = 𝐿𝑗+1 +𝐻𝑗+1 + 𝑘𝑗 − 1.

𝐻𝑗 = 𝐿𝑗+1 +𝐻𝑗+1 + 𝑘𝑗

So at iteration 𝑗, it is easy to express 𝐿𝑗 and 𝐻𝑗 using the previous values from iteration 𝑗 +

1

(𝐿𝑗, 𝐻𝑗) = {
(2𝐿𝑗+1, 𝐿𝑗+1 +𝐻𝑗+1) 𝑤ℎ𝑒𝑛 𝑘𝑗 = 0

(𝐿𝑗+1 + 𝐻𝑗+1, 2𝐻𝑗+1) 𝑤ℎ𝑒𝑛 𝑘𝑗 = 1

The above equations implies the structure of MPL. The calculations are very similar to

each other and in each iteration one doubling is performed with one addition. Recall that

the main computation of scalar multiplication is point doubling and point addition, the

following algorithm is obtained.

28

Algorithm 4.5. Montgomery Powering Ladder

Input: 𝑃 𝜖 𝐸, 𝑘 = (𝑘𝑛−1 , … , 𝑘1, 𝑘0)2 ,𝑘𝑖𝜖 0,1

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸

Step 1: 𝑥 = 0, 𝑦 = 𝑃;

Step 2: 𝑓𝑜𝑟 𝑖=𝑛−1 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜

Step 3: 𝑖𝑓 𝑘𝑖 = 0, 𝑡ℎ𝑒𝑛 𝑦 = 𝑥 + 𝑦; 𝑥 = 2𝑥

Step 4: 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘𝑖 = 1, 𝑡ℎ𝑒𝑛 𝑥 = 𝑥 + 𝑦;𝑦 = 2𝑦

Step 5: 𝑒𝑛𝑑 𝑖𝑓

Step 6:𝑒𝑛𝑑 𝑓𝑜𝑟

Step 7:𝑅𝑒𝑡𝑢𝑟𝑛 𝑥

4.4.2 Advantage of MPL

In algorithm 4.5, it is obvious that the computations for point addition and point

doubling are independent. Thus they can be calculated parallel. This feature results in faster

calculation speed. Moreover, since in every circle, MPL executes the same operation, it is

considered highly regular. This structure makes it invulnerable to SPA.

Another c safe-error attack introduced in previous section also has no effect to MPL.

Unlike the double-and-add always algorithm, there is no dummy operation in MPL. So any

fault injected will lead an error in the result.

The doubling attack is considered ineffective. Assume there are two registers 𝑅0

and 𝑅1 to store the intermediate values. It could be the value stored in 𝑅0 or 𝑅1 performs

the doubling, depending on the secret bit. While the previous algorithms which are

29

vulnerable to doubling attack all shares the fixed doubling pattern, the attacker cannot see

a repeated doubling operation when there is no continuous bits with the same value one or

zero. But if there exists successive bits carrying the same value, the algorithm is vulnerab le

to a relative doubling attack proposed in [30].

4.4.3 Relative Doubling Attack against MPL

While the doubling attack mainly focus on finding the 0 bits, the relative doubling

attack compares the value of two adjacent secret key bits. Let registers 𝑅0 store the value

of 𝐿 𝑖, and registers 𝑅1 store the value of 𝐻𝑖. If 𝑘𝑖 = 𝑘𝑖−1 = 0, the following doubling

computation is observed.

{
𝑅0 ← 2× 𝐿 𝑖𝑃: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 − 1 𝑤ℎ𝑒𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑘𝑃

𝑅0 ← 𝐿 𝑖+1 × 2𝑃: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 𝑤ℎ𝑒𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑘(2𝑃)

Since 𝐿𝑖 = 2𝐿𝑖+1 when obviously the above equations are doing the same

computation. Thus, if such collisions are observed, the attacker get the information

𝑘𝑖 = 𝑘𝑖−1 = 0.

Similar situation applies to when 𝑘𝑖 = 𝑘𝑖−1 = 1. Then in register 𝑅1,

{
𝑅1 ← 2× 𝐻𝑖𝑃: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 − 1 𝑤ℎ𝑒𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑘𝑃

𝑅1 ← 𝐻𝑖+1 × 2𝑃: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖 𝑤ℎ𝑒𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑘(2𝑃)

same computations will be carried because that 𝐻𝑖 = 2𝐻𝑖+1. While when ki is not equal to

𝑘𝑖−1 , there is no collision detected.

Taking 𝑘 = 105 = (1101001)2, the adversary computes 𝑘𝑃 and 𝑘(2𝑃) as the

pattern shown in Table. 4.3. It is very clear that at iteration 1 and 2, collisions in register

𝑅0 is detected. This fact leads to secret key bits 𝑘2 = 𝑘1 = 0. Taking iteration 5 and 6 as

another example, the operations regarding values in register 𝑅1 is the same, thus the

attacker figures 𝑘6 = 𝑘5 = 0. When there is no collision happened, that means the two

30

adjacent secret bits are holding different values. Then the whole secret key is revealed from

the collision location bit by bit.

 Table 4.3 Relative doubling attack against MPL

Iteration 𝑖 𝑘𝑖 𝑘𝑃 𝑘(2𝑃)

6 1 𝑅0 = 0 + 𝑃

𝑅1 = 2× 𝑃

𝑅0 = 0 + 2𝑃

𝑅1 = 2× 2𝑃

5 1 𝑅0 = 𝑃 + 2𝑃

𝑅1 = 2× 2𝑃

𝑅0 = 2𝑃 + 4𝑃

𝑅1 = 2× 4𝑃

4 0 𝑅0 = 2× 3𝑃
𝑅1 = 3𝑃+ 4𝑃

𝑅0 = 2× 6𝑃
𝑅1 = 6𝑃 + 8𝑃

3 1 𝑅0 = 6𝑃 + 7𝑃

𝑅1 = 2× 7𝑃

𝑅0 = 12𝑃 + 14𝑃

𝑅1 = 2 × 14𝑃

2 0 𝑅0 = 2× 13𝑃

𝑅1 = 13𝑃+ 14𝑃

𝑅0 = 2× 26𝑃

𝑅1 = 26𝑃 + 28𝑃

1 0 𝑅0 = 2× 26𝑃

𝑅1 = 26𝑃+ 27𝑃

𝑅0 = 2× 52𝑃

𝑅1 = 52𝑃 + 54𝑃

0 1 𝑅0 = 52𝑃 + 53𝑃

𝑅1 = 2× 53𝑃

𝑅0 = 104𝑃 + 106𝑃

𝑅1 = 2× 106𝑃

4.4.4 M-safe Error Attack against MPL

Despite the relative doubling attack, another fault attack M safe-error attack

introduced in [19] is also proven to be effective against MPL. In this scheme, the fault

induced by the attacker is temporary memory fault and it is very carefully timed. M safe-

error attack takes advantage of the two distinct operations carried out in each cycle of MPL.

Consider the different computation when 𝑘 𝑖 is different. When 𝑘 𝑖 = 1 , the two

operations are 𝑅0 = 𝑅0 + 𝑅1 and 𝑅1 = 2𝑅1. Any fault injected into 𝑅1 will change the

value of the result, thus it is not a safe error. If 𝑘 𝑖 = 0, then 𝑅0 = 2𝑅0 and 𝑅1 = 𝑅0 +

 𝑅1 will be computed, error inputted into more significant bits of 𝑅1 will be erased after the

31

resigning of value in 𝑅1. In other words, the result still remains and the error is regarded a

safe-error. The attacker can retrieve the secret bit 𝑘 𝑖 based on the above fact.

4.4.5 Comparative Power Analysis against MPL

Comparative Power Analysis is proposed by Homma in 2010 [31]. It is a more

powerful attack which can compromise multiple scalar multiplication algorithms such like

double-and-add algorithm, double-and-add always algorithm and MPL algorithm. While

the original attack introduced is aiming at implementation of exponentiation, it also applies

to scalar multiplication.

Similar to the relative doubling attack, the basic idea of comparative power analysis

is also generating collisions by inputting a pair of carefully chosen message. More

specifically, the chosen inputs are set to satisfy the equation 𝛼𝑃 = 𝛽𝑄, where 𝛼 and 𝛽 are

integer. The input 𝑃 is computed with the target operation 𝛼𝑃 while the input 𝑄 is

illustrates the reference power trace. When the collision happens, the doubling operation

of the two input will have very similar power trace. By comparison of the power traces, the

target secret key bit is leaked. Unlike doubling attack, the collision can be retrieved from

different time frames.

Figure 4.2 shows an example how the attack scheme works. The input condition is

chosen as 15𝑃 = 2𝑄. Consider the first four bits of the secret key is known to the attacker,

the target bit is the fifth bit. The attacker then make an assumption that the target bit is 1,

and illustrates the power traces. Then he examines the reference power traces at the time

frame 2𝑄 doubling is computing, if the power trace shares similarity with the target power

trace at the time frame computing 15𝑃 doubling, the target secret bit is 1. The assumption

made at the beginning is correct. If there is no similarity detected in the target and reference

32

power trace, the secret bit is 0. Note that the collision is generated at different timeframe

of the two power traces. By repeating the attack pattern, all the bits of the secret key will

be known.

Figure 4.2 Comparative power analysis against MPL

4.4.6 MPL based hardware implementation

Deschamps and G.Sutter implemented EC scalar multiplication over 𝐺𝐹(2163) in

2008 [32]. This design is implemented using MPL algorithm. The computation time is 1ms

at 100MHz and a comparison with binary algorithm implementation has been made. As

stated previously, implementation on unprotected MPL is still vulnerable to some SCAs,

thus an implementation on a more secure algorithm is proposed in the next chapter.

33

CHAPTER V

ANALYSIS OF MODIFIED MPL WITH COUNTERMEASURES

In this chapter we introduce a modified MPL with sequence masking, exponent

splitting and point randomization proposed in [11]. A small modification has been done to

this algorithm to make it suitable for ECC scalar multiplication since it is origina l ly

invented for exponentiation operation.

5.1 Existing countermeasure techniques

In previous Chapters, it has been stated that unprotected MPL is still vulnerable to

a lot of side channel attacks. To offer protections in algorithm level, He, Huang and Wu

proposed a highly secure MPL for exponentiation operation [11]. Several countermeasures

had been applied to enhance its security strength.

5.1.1 Coron’s three countermeasures to DPA

Coron has proposed three countermeasures against DPA to improve the origina l

MPL [7]. The first is to randomize the secret private exponent. The main idea is to change

the representation of the secret exponent. Denote #ε as the number of all the points on the

curve E, and select a random number k. Then the following computation is carried out to

calculate 𝑑′ = 𝑑 + 𝑘#𝜀, the computation Q = dP is replaced by 𝑄 = 𝑑′𝑃. The correctness

of this transform is based on the fact that #𝜀𝑃 = 0. To expand this equation in detail, we

get the following proof.

𝑄 = 𝑑′𝑃 = (𝑑 + 𝑘. #𝜀)𝑃 = 𝑑𝑃 + 𝑘. #𝜀. 𝑃 = 𝑑𝑃 + 𝛰 = 𝑑𝑃

The size of the random number k is suggested to be 20 for better security performance. By

applying this countermeasure, the compute process is changed while the result 𝑄 still

remains the same.

34

The second countermeasure is to blind the point 𝑃. Choose a random 𝑅 on the same

curve as point 𝑃. Point 𝑅 is used as a mask to provide protection to the point 𝑃. Another

point 𝑆 is computed as 𝑆 = 𝑑𝑅 . The cryptographic system then performs the scalar

multiplication 𝑑(𝑅+ 𝑃). In order to retrieve 𝑄 = 𝑑𝑃, a subtraction will be applied the

previous result. Since 𝑆 is already known, the final result will be recovered by 𝑑(𝑅+ 𝑃) −

𝑆. Point 𝑅 and 𝑆 will be updated in every initialization of the scalar multiplication.

 The third countermeasure is to randomize to projective representation [33] of the

point 𝑃 (𝑥,𝑦). Point 𝑃 can be represented in projective coordinates as (𝑋, 𝑌, 𝑍). Since it is

not the only projective representation point P has, it can be written as (𝜆𝑋, 𝜆𝑌, 𝜆𝑍) where

𝜆 ≠ 0. The binary representation of point 𝑃 is then guarded. Since this thesis mainly focus

on implementation in affine coordinates, this countermeasure will not be discussed in detail.

5.1.2 Exponent Splitting

Exponent Splitting technique is first proposed in [34]. While it is used in

exponentiation is the paper, the idea is the same in scalar multiplication. The basic thought

is based on the simple observation that

𝑑𝑃 = (𝑑 − 𝑎)𝑃 + 𝑎𝑃

 In this splitting technique, the scalar d can be split into two parts as the above

equation indicated. First a random number 𝑟 is generated, where r is smaller than 𝑑. 𝑟’ is

then calculated by 𝑟’ = 𝑑 − 𝑟. The scalar multiplication then become

𝑑𝑃 = 𝑟𝑃 + 𝑟’𝑃

since 𝑑 = 𝑟 + 𝑟’, it is obvious that the result is the same without scalar splitting.

 Since we can see from the equation, the splitting technique is basically transforming

a single scalar multiplication into two separate computations, thus it will be more time

35

consuming to put this technique into practice. Usually it takes two times the original time.

But considering the security strength, sometimes the trade-off is worthy. This technique

offers enhanced protection against SPA, and the randomization also helps to prevent some

differential attacks.

5.1.3 Blinded Fault Resistant Exponentiation

This technique is first proposed by Fumaroli and Vigilant in [35]. It is an extension

of Coron’s second countermeasure [7]. The main idea is to add a mask to the base point 𝑃

to construct a masked MPL. The algorithm is originally for exponentiation operation, but

by a small modification, it can be also applied to scalar multiplication.

Algorithm 5.1. Masked Montgomery Powering Ladder

Input: 𝑃 𝜖 𝐸, 𝑘 = (𝑘𝑛−1 , … , 𝑘1, 𝑘0)2 ,𝑘𝑖𝜖 0,1

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸

Step 1: 𝑆𝑒𝑙𝑒𝑐𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡 𝑅 𝑜𝑛 𝐸;

Step 2: 𝑅0 = 𝑅, 𝑅1 = 𝑃 + 𝑅, 𝑅2 = −𝑅

Step 3: 𝑓𝑜𝑟 𝑖=𝑛−1 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜

Step 4: 𝑖𝑓 𝑘𝑖 = 0, 𝑡ℎ𝑒𝑛 𝑅1 = 𝑅0 + 𝑅1; 𝑅0 = 2𝑅0; 𝑅2 = 2𝑅2

Step 5: 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑘𝑖 = 1, 𝑡ℎ𝑒𝑛 𝑅0 = 𝑅0 + 𝑅1;𝑅1 = 2𝑅1; 𝑅2 = 2𝑅2

Step 6: 𝑒𝑛𝑑 𝑖𝑓

Step 7:𝑒𝑛𝑑 𝑓𝑜𝑟

Step 8:𝑅𝑒𝑡𝑢𝑟𝑛 𝑄 = 𝑅0 + 𝑅2

 In Algorithm 5.1, at the beginning of the operation, a random point 𝑅 is picked. 𝑅

is acting as a mask to the base point 𝑃. Three registers 𝑅0 , 𝑅1 , 𝑅2 are needed for the

36

algorithm. 𝑅0 is initialised with the mask 𝑅, 𝑅1 is initialised with 𝑃 + 𝑅 and 𝑅2 is given

the anti-mask –𝑅. The mask is updated at each iteration. The intimidate values in 𝑅0 and

𝑅1 are blinded with the updated mask 2𝑛−𝑖𝑅. The anti-mask value is also updated at every

iteration. The value in register 𝑅2 is following the pattern 2𝑛−𝑖(−𝑅). At the end of the

computation, the final unmask step will be executed to recover the original desired result.

 This algorithm can provide resistance to more attacks while still keeps the feature

that regular MPL offers. Since the regular MPL is highly regular, the algorithm is

insensitive to SPA. As the mask technique is applied in this algorithm, the intermed iate

values are independent from the input and output according to [35]. Thus the attacker

cannot exploited the secret key by DPA. Moreover, since any fault injected during any time

of the computation will cause the change of the temporary result. The adversary cannot

retrieve valuable information regarding the secret key bit.

5.2 Security Analysis of Existing Countermeasure Techniques

Although the techniques introduced in previous section are great improvement to

the strength of existing algorithms. They still face security challenge stand alone.

5.2.1 High-Order Attack

The high-order attack is first proposed by Muller and Valette in [36]. This attack is

specifically derived from the statistical property of the exponent splitting. Although 𝑟 is a

randomly selected number, the pair (𝑟,𝑟’) is not uniformly distributed since they satisfy

𝑑 = 𝑟 + 𝑟’.

 If the 𝑖 − 𝑡ℎ bits of 𝑟, 𝑟’ and 𝑑 is denoted as 𝑟𝑖 , 𝑟𝑖 ’ and 𝑑𝑖, 𝐶𝑖 representing the carry

bit generated at the 𝑖 − 𝑡ℎ iteration. The following equation is satisfied.

𝐶𝑖⨁𝑟𝑖⨁𝑟𝑖
′ = 𝑑𝑖

37

Let 𝑃𝑖 be the probability that the carry bit is zero, and 𝑃𝑟 is set to be the probability the pair

(𝑟𝑖 , 𝑟𝑖 ’) be a certain value. In the case 𝑑𝑖 = 0 and 𝐶𝑖 = 0 , the probability for the pair

(𝑟𝑖 , 𝑟𝑖 ’) holds the value (0,0) or (1,1) is the same. When the value is (0,0), it is easy to

get 𝐶𝑖+1 = 0. On the contrary, 𝐶𝑖+1 = 1. The same rules apply when 𝑑𝑖 = 1 . Table. 5.1

shows the transition of the probability. The probabilities of iteration 𝑖 is generated from the

previous iteration 𝑖 − 1. It is a Markov chain.

Table 5.1 Probability transition when di = 0 or 1

𝑃𝑟(𝑟𝑖 , 𝑟𝑖 ’) 𝑑𝑖 = 0 𝑑𝑖 = 1

𝑃𝑟(0,0) 0.5 × 𝑃𝑖 0.5 × (1 − 𝑃𝑖)

𝑃𝑟(0,1) 0.5 × (1 − 𝑃𝑖) 0.5 × 𝑃𝑖

𝑃𝑟(1,0) 0.5 × (1 − 𝑃𝑖) 0.5 × 𝑃𝑖

𝑃𝑟(1,1) 0.5 × 𝑃𝑖 0.5 × (1 − 𝑃𝑖)

𝑃𝑖+1 0.5 × 𝑃𝑖 0.5 × (1 + 𝑃𝑖)

 An example in [36] illustrates the idea of how this attack works. A secret 𝑑 with

length 24 bits is chosen and the probability distribution of the pair (𝑟𝑖 , 𝑟𝑖 ’) is computed in

Table.5.2. The table shows whenever the secret bit d has a long run of 0s or 1s, it is very

likely the randomly generated pair (𝑟𝑖 , 𝑟𝑖 ’) hold different value. Taking the probability

transition illustrated in Table.5.1 into account, the probability of 𝑃𝑖 can be calculated. In

the case the secret bit is running long 0s (from 𝑑7 to 𝑑11 in the table), 𝑃𝑖 is approaching 0

38

Table 5.2 An example of bit-level imbalance [36]

 𝑑0 𝑑1 𝑑2 …… 𝑑7 𝑑8 𝑑9 𝑑10 𝑑11 …… 𝑑18 𝑑19 𝑑20 𝑑21 𝑑22 𝑑23

(𝑟𝑖 , 𝑟𝑖’) 0 1 0 …… 0 0 0 0 0 …… 0 1 1 1 1 1

𝑃𝑟(0,0) 50 25 38 …… 16 8 4 2 1 …… 8 47 23 11 5 2

𝑃𝑟(1,0) 0 25 12 …… 34 41 46 48 49 …… 42 3 27 39 45 48

𝑃𝑟(0,1) 0 25 13 …… 33 42 46 49 49 …… 43 4 28 40 46 49

𝑃𝑟(1,1) 50 25 37 …… 17 9 4 1 1 …… 7 46 22 10 4 1

indicating that there is no carry bit generated. While in the case of continuous 1s (from d19

to d23 in the table), 𝑃𝑖 gets very close to 1, shows that the carry bit is propagating as the

computation runs. If the attacker can launch an attack revealing the probabilities of the pair

(𝑟𝑖 , 𝑟𝑖 ’), he can proceed to find information regarding the secret bit. The secret bit will no

longer be secret.

5.2.2 Template Attack

Template attack [37] is based on the fact that power consumptions can be

characterized by a multivariate normal distribution during the computations. Normally, it

can be executed in two steps. The first step is to setup the templates and the second step is

using the template to initialise attacks.

 The multivariate normal distribution is defined by a covariance matrix C and a

mean vector m. Where C holds the covariance of the targeting point and m is the mean of

all the point on the trace. The pair (𝑚, 𝐶) is called the template. By sending in different

data and key bit, a group of power trace is generated by the adversary. Until then, every

data and key pair leads to a template. Then as stated above, in the second step, the attacker

39

compares the power trace from the target device with all the templates, and determine

which one has the highest probability to be the correct template. After the correct template

is recovered, the key is then retrieved.

 Since in ECC scalar multiplication, the base point P is fixed. This observation offers

template attack a great opportunity. In [38], Herbst and Medwed proposed a template attack

scheme against masked MPL. In the scenario of scalar multiplication, the attacker set up

the templates by running the scalar multiplication several times using different input data.

The hamming weight of some intimidate values are also correlated. The power trace is then

obtained to match with the template. In order to simplify the matching process, the first

two multiplication of the base point are usually taken out to do the match. The template

with highest matching probability indicates the first bit. The mask technique only blinds

the point, but still by means of template attack, partial bits of secret k is recovered. The

attacker can then focus on the masking operation to determine the mask 𝑅 . Since the

hamming weight is known by the matching process. The mask 𝑅 will not be safe.

5.3 Modified MPL with SM, ES and PR

Since all the countermeasures listed in previous section is vulnerable to different

attacks stand alone. He, Huang and Wu burrowed some of the ideas mentioned before and

combined them to create a more secure algorithm [11].

5.3.1 Algorithm Explanation

 The new algorithm is illustrated as algorithm 5.2. The new algorithm is a

combination of three ideas. The sequence masking technique [11], exponent splitting [34]

and randomization of the message [35]. The combination of these three techniques greatly

improved the security strength of the MPL. Further protections are provided to the

40

vulnerabilities stated in previous sections.

 This algorithm works as follows, in the pre-computation phase, a random number

𝑘0 smaller than secret bit k is generated. The secret bit 𝑘 is divided into two parts, the first

part is the random number 𝑘0, the second part is calculated as 𝑘1 = 𝑘 − 𝑘0 . After that a

random point 𝑅 on the same curve with point 𝑃 is generated. The point 𝑅 is acting as a

mask, it is initialized to all the registers and the value is updated in each iteration. Another

random number 𝑆 with the same bit size of secret key 𝑘 is generated afterwards. The

introduction of random number 𝑆 is acting as a switch, it determines which computation to

be executed. The original scalar multiplication is computed following each bit of 𝑘

sequentially. With the random number 𝑆, it turns into a randomly computed process.

Moving to the main iteration part of the algorithm, registers 𝑅0 and 𝑅1 holds the

values related to the secret bit 𝑘0. While 𝑅2 and 𝑅3 store the values computed using 𝑘1. As

introduced above, two scalar multiplications take turns to compute according to the current

bit of 𝑆. When the main iteration part is finished, a final adjustment adding the values in

𝑅0 and 𝑅2 is carried out to get the desired output.

The following observations proved the correctness of the algorithm easily. Let 𝑖

denotes the iteration number, the mask is updated following a pattern 2𝑖𝑅. The first scalar

multiplication generates the intermediate value 2𝑖𝑅 + 𝑘0𝑃 , the second scalar

multiplication holds that 2𝑖(−𝑅) + (𝑘 − 𝑘0)𝑃. Adding them up, we get the value of 𝑘𝑃.

41

Algorithm 5.2. Modified MPL with SM, ES and PR

Input:𝑃 𝜖 𝐸, 𝑘 = (𝑘𝑛−1,… , 𝑘1, 𝑘0)2 , 𝑘𝑖𝜖 0,1

Output: 𝑄 = 𝑘𝑃 𝜖 𝐸

Step 1: 𝑆𝑒𝑙𝑒𝑐𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑖𝑛𝑡 𝑅 𝑜𝑛 𝐸;

Step 2: 𝑆𝑒𝑙𝑒𝑐𝑡 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑘0 = (𝑘𝑛−1
(0)

…𝑘0
(0)
)2 𝑡ℎ𝑎𝑡 𝑘0𝜖 (1, 𝑘)

 𝑙𝑒𝑡 𝑘1 (𝑘𝑛−1
(1)

…𝑘0
(1)
)2 = 𝑘− 𝑘0 ;

 𝑘0 𝑎𝑛𝑑 𝑘1 𝑎𝑟𝑒 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑠ℎ𝑖𝑓𝑡 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠

 𝐷0 = (𝑑𝑛−1
(0)

…𝑑0
(0)
)2 𝑎𝑛𝑑 𝐷1 = (𝑑𝑛−1

(1)
…𝑑0

(1)
)2

Step 3:𝐺𝑒𝑛𝑎𝑟𝑎𝑡𝑒 𝑛 𝑏𝑖𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 S = (𝑠𝑛−1,… , 𝑠1, 𝑠0)2

Step 4: Set 𝑅0 = 𝑅,𝑅1 = 𝑃 +𝑅, 𝑅2 = −𝑅,𝑅2 = 𝑃+ (−𝑅)

Step 5: 𝑓𝑜𝑟 𝑖=𝑛−1 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜

Step 6: 𝑖𝑓 𝑠𝑖 = 0, 𝑡ℎ𝑒𝑛

Step 7: 𝑖𝑓 𝑑𝑛−1
(0)

= 0, 𝑡ℎ𝑒𝑛 𝑅1 = 𝑅0+ 𝑅1; 𝑅0 = 2𝑅0;

Step 8: 𝑒𝑙𝑠𝑒 𝑅0 = 𝑅0+ 𝑅1; 𝑅1 = 2𝑅1;

Step 9: 𝑒𝑛𝑑 𝑖𝑓; 𝐷0 𝑠ℎ𝑖𝑓𝑡𝑠 𝑙𝑒𝑓𝑡 𝑏𝑦 1 𝑏𝑖𝑡.

Step 10: 𝑒𝑙𝑠𝑒 𝑖𝑓𝑑𝑛−1
(1)

= 0, 𝑡ℎ𝑒𝑛 𝑅3 = 𝑅2+𝑅3;𝑅2 = 2𝑅2;

Step 11: 𝑒𝑙𝑠𝑒 𝑅2 = 𝑅2+ 𝑅3; 𝑅3 = 2𝑅3;

Step 12: 𝑒𝑛𝑑 𝑖𝑓; 𝐷1 𝑠ℎ𝑖𝑓𝑡𝑠 𝑙𝑒𝑓𝑡 𝑏𝑦 1 𝑏𝑖𝑡.

Step 13: 𝑒𝑛𝑑 𝑖𝑓

Step 14: 𝑒𝑛𝑑 𝑓𝑜𝑟

Step 15:𝑓𝑜𝑟 𝑖 = 𝑛 − 1 𝑑𝑜𝑤𝑛 𝑡𝑜 0 𝑑𝑜

Step 16: 𝑖𝑓 𝑠𝑖 = 1, 𝑡ℎ𝑒𝑛

Step 17: 𝑖𝑓 𝑑𝑛−1
(0)

= 0, 𝑡ℎ𝑒𝑛 𝑅1 = 𝑅0 +𝑅1; 𝑅0 = 2𝑅0;

Step 18: 𝑒𝑙𝑠𝑒 𝑅0 = 𝑅0 +𝑅1; 𝑅1 = 2𝑅1;

Step 19: 𝑒𝑛𝑑 𝑖𝑓; 𝐷0 𝑠ℎ𝑖𝑓𝑡𝑠 𝑙𝑒𝑓𝑡 𝑏𝑦 1 𝑏𝑖𝑡.

Step 20: 𝑒𝑙𝑠𝑒 𝑖𝑓𝑑𝑛−1
(1)

= 0, 𝑡ℎ𝑒𝑛 𝑅3 = 𝑅2+𝑅3;𝑅2 = 2𝑅2;

Step 21: 𝑒𝑙𝑠𝑒 𝑅2 = 𝑅2+ 𝑅3; 𝑅3 = 2𝑅3;

42

Step 22: 𝑒𝑛𝑑 𝑖𝑓; 𝐷1 𝑠ℎ𝑖𝑓𝑡𝑠 𝑙𝑒𝑓𝑡 𝑏𝑦 1 𝑏𝑖𝑡.

Step 23: 𝑒𝑛𝑑 𝑖𝑓

Step 24: 𝑒𝑛𝑑 𝑓𝑜𝑟

Step 25:𝑅𝑒𝑡𝑢𝑟𝑛 𝑅0 = 𝑅0+𝑅2

5.3.2 Security Analysis

As mentioned in previous sections, this algorithm provides enhanced protection to

more attacks compared to existing algorithms.

 Since algorithm 5.2 still holds the high regularity MPL offers, SPA is not effective

against it. The main computation part always compute a doubling and an addition

regardless the input bit. This it keeps all the resistance the regular MPL can provide. C-safe

error attack is also eliminated because there is no dummy operation in this modified MPL.

 Taking M-safe error into account. In M-safe error attack scheme, the induced

memory fault need to be very carefully timed to determine whether it changed the result.

Even if the attacker reveals a secret bit by a successfully inducing a safe error, the whole

key pattern is not compromised since the key is divided into two parts. Moreover, the

computation is executed in a random order. Thus M-safe error cannot threat the modified

MPL.

 Another attack mentioned above is the comparative power analysis, it also has little

effect on the modified MPL with SM, ES and PR. This attack scheme is very similar to the

relative doubling attack. Both the two attacks are trying to get two power traces and by

comparing them to get valuable information of the secret key. Since the secret key is

randomly divided into two parts in every initialization, the two power traces generated will

follow different key pattern. It is very hard to make a meaningful comparison between

43

them. Even if a collision is observed, the mask applied to it in the precomputation will

make the power trace totally different. An example listed below in Fig.5.1 will better

explain the idea. The table above the power traces show the bits involved in the

computation. The top row is the randomly generated sequence s, it is different in every

initialization of the process. Below are the corresponding computation decided by sequence

𝑠. Secret bit 𝑘0 will be processed when current bit of sequence 𝑠 holds 0. Otherwise, secret

bit 𝑘1 will be computed. Only one of the two computations is carried out at the same time

frame.

Figure 5.1 Resistance of algorithm 5.2 to relative doubling attack

44

Taken the adjacent bits in the blue box as the first comparison bit, the computation

involved is obviously different. But the adversary cannot easily say that the two bits are

different since the two computations are carried out using different key 𝑘0 and 𝑘1, thus

comparisons like this will become pointless, it provides no useful information regarding

the secret bit. The second sample bits will be taken from the red boxes. Although the

unmasked computations are all 2𝑃 → 4𝑃, the adversary will still observe different power

traces since the mask is different as shown in Fig. 5.1. From above examples, the fact that

comparison between adjacent bits cannot offer any useful information is easily obtained.

Comparative power analysis shares similar scheme to relative doubling attack. It is also

ineffective since Algorithm 5.2 breaks the hidden relationship it relies on.

High-order attack is also worry free. When the attacker is trying to get enough

samples to analysis the probability of the imbalance statistic property, the first thing he

must do is to get access to the secret key. In the case of Algorithm 5.2, the secret key is

randomly divided into two parts. The attacker need to know both parts to start collet

samples and do the analysis, so high-order attack need to be combined with other attacks

to be effective. As already stated above, SPAs are stopped by the property of highly regular.

Relative doubling attack and comparative power analysis are of little use since every power

trace generated are randomized by the random sequence s. Fault attack will also be stopped.

Even though the attacker uses faults injected to one of the two scalar multiplications to

make the two scalar multiplication distinguishable, it is hard for him to find a non-fault

reference since all the intermediate values are masked. With above analysis, these attacks

mentioned cannot threat Algorithm 5.2. That leaves the last one, template attack.

By building Template attack can comparison the actual computation and the

45

template and in Section 5.2.2, we introduced how the mask 𝑅 will be compromised.

Assume in Algorithm 5.2, the mask 𝑅 is known using template attack, then in order to

reveal the secret key, the attacker need to get the intermediate values. In other words, he

need to compute the updated mask 2𝑛−𝑖𝑅. For the two scalar multiplications, the iteration

number 𝑖 is different. The iteration number is decided by the random sequence 𝑠, which

doesn't participate in any computations. It only acts like a switch to decide which scalar

multiplication to be computed. Thus even if the attacker retrieved the initial mask 𝑅, the

updated mask is still a big challenge. Algorithm 5.2 will still be secure.

With all the above analysis, we can see that Algorithm 5.2 is highly secure. It resists

SCAs, relative doubling attack, comparative power analysis, high-order attack and

template attack. It greatly enhanced the security strength of MPL from algorithm level.

Thus it is chosen as the implementation algorithm.

46

CHAPTER VI

PROPOSED HARDWARE IMPLEMENTATION

In this chapter, based on previous Algorithm 5.2, an efficient hardware architecture

is proposed and its FPGA implementation is presented. Very high speed integrated circuit

(VHSIC) Hardware Description Language is chosen as the target implementa t ion

language. A modern Xilinx Virtex 7 (XC7VX690TFFG1926-3) field-programmable gate

array (FPGA) device is used in the implementation. The ECC parameters are NIST-

recommended elliptic curve for 𝐺𝐹(2233) in [39], as shown in Table. 6.1, where 𝑓(𝑥) is

the irreducible polynomial, n is the order, 𝐺𝑥 and 𝐺𝑦 are base point coordinates.

NIST-recommended elliptic curve for GF(2233)

Elliptic Curve 𝐸:𝑦2 +𝑥𝑦 = 𝑥3 +𝑎𝑥2 +1, 𝑎 = 0

𝑓(𝑥) = 𝑥233 +𝑥74 +1

𝑛 = 8000000000000000000000000000069𝑑5𝑏𝑏915𝑏𝑐𝑑46𝑒𝑓𝑏1𝑎𝑑5𝑓173𝑎𝑏𝑑𝑓

G𝑥 = 17232𝑏𝑎853𝑎7𝑒731𝑎𝑓129𝑓22𝑓𝑓4149563𝑎419𝑐26𝑏𝑓50𝑎4𝑐9𝑑6𝑒𝑒𝑓𝑎𝑑6126

G𝑦 = 1𝑑𝑏537𝑑𝑒𝑐𝑒819𝑏7𝑓70𝑓555𝑎67𝑐427𝑎8𝑐𝑑9𝑏𝑓18𝑎𝑒𝑏9𝑏56𝑒0𝑐11056𝑓𝑎𝑒6𝑎3

Table 6.1 NIST-recommended parameters

6.1 Implementation Hierarchy of the ECC operations

The building blocks of computation involved in ECC is illustrated in Fig. 6.1. Finite

field arithmetic such as field addition, subtraction, multiplication, inversion and squaring

are the fundamental computations. Both elliptic curve point addition and doubling are

based on the finite field computations. As the figure shown, the upper layer computations

47

are constructed by the lower layers. Scalar multiplication is realized by different algorithms

based on point addition and doubling. Elliptic curve cryptographic schemes such like

ECDSA are on the top.

Figure 6.1 Hierarchical architecture for computation involved in ECC

The main components of this ECC design are: field multiplication, field squaring,

field inversion, group operations and random number generation. Recall that we introduced

the polynomial basis in Section. 2.1. All implementation module in this chapter are using

the polynomial basis representation.

6.2 Random Number Generation

In the pre-computation part, there three random binary sequence need to be

generated. This process is implemented with a linear feedback shift register (LFSR). A

LFSR is s sequential shift register with combinational logic that causes it to pseudo-

ECC

Algorithm

Scalar multiplication

Point addtion

Point doubling

Finite Field Arithmatic
(addition,multiplication,inversion,squaring)

48

randomly cycle through a sequence of binary values. It has well-known applications in

generating pseudo-random binary sequence. A pseudo-random binary sequence is

considered pseudo because it will start to repeat the pattern after a certain number of states.

In order to make the generation more close to a real random number, the LFSR need to

reach its maximum length. In other words, an n bit LFSR need to generate all 2n -1 states

before it starts to repeat itself. By carefully chosen the positions of the bits feeding back to

the next state, a maximum length LFSR can be achieved.

For the case of the 233 bit random sequence, the tap value is 233 and 159 [40].

There are two structures of the LFSR. One is one-to-many structure (also known as Galois

LFSR). The other is many-to-one structure (also known as Fibonacci LFSR). As Fig.6.2

illustrated, a 233-bit Galois LFSR is built. This structure is chosen rather the many-to-one

structure, is because that Galois LFSR generates all the feedback bits parallel. In this way,

the LFSR runs more efficiently.

Figure 6.2 233-bit LFSR

The LFSR will generate three random sequence. The first random number will

continue generating until it is smaller than order of base point P, then it is assigned to k0

according to Algorithm 5.2. The second random sequence will generate and then assigned

to s, acting as the switch to determine which scalar multiplication is going to perform. The

third random sequence will be 𝑟, it will be used in the precomputation to compute 𝑟𝑃. Since

49

𝑟 is random, 𝑟𝑃 will be random point. The computation will need the modules introduced

in later sections.

6.3 Addition in 𝐺𝐹(2𝑚)

Field addition is very easy to implement in VHDL. As stated in Section. 2.1, field

addition is simply a bit-wise exclusive-or in either hardware or software. Subtraction in

𝐺𝐹(2𝑚) is the same as addition in 𝐺𝐹(2𝑚), since the additive inverse of an element is it-

self. All finite field addition is realized using simple x-or gate.

6.4 Multiplication in 𝐺𝐹(2𝑚)

The classical way to implement multiplication is the two-step computation. To

perform a finite field multiplication, the first step is to do a multiplication and the second

step is reduction. Pamula introduced another basic architecture in [41]. It is called the

interleaved multiplication. In this method, the multiplication and reduction are interleaved.

It is based on the following observation. Given two polynomials,

𝑎(𝑥) = 𝑎𝑚−1𝑥
𝑚−1 + ⋯𝑎1𝑥 + 𝑎0

𝑏(𝑥) = 𝑏𝑚−1𝑥
𝑚−1 +⋯ 𝑏1𝑥 + 𝑏0

and define the irreducible polynomial

𝑓(𝑥) = 𝑥𝑚 + 𝑓𝑚−1𝑥
𝑚−1 + ⋯𝑓1𝑥 + 𝑓0

the product will be given by

𝑐(𝑥) = 𝑎(𝑥)𝑏(𝑥) 𝑚𝑜𝑑 𝑓(𝑥) = 𝑎(𝑥) ∑ 𝑏𝑖𝑥
𝑖

𝑚−1

0

𝑚𝑜𝑑𝑓(𝑥)

𝑐(𝑥) = (𝑏0𝑎(𝑥)𝑥 + 𝑏1𝑎(𝑥)𝑥
2 +⋯+𝑏𝑚−1𝑎(𝑥)𝑥

𝑚−1)𝑚𝑜𝑑 𝑓(𝑥)

𝑎(𝑥)𝑥 can be substituted by the following equation

𝑎(𝑥)𝑥 = 𝑑 = 𝑎𝑚−1𝑥
𝑚 +⋯𝑎1𝑥

2 + 𝑎0𝑥

50

𝑑 = 𝑑𝑚−1𝑥
𝑚−1 + ⋯𝑑1𝑥 + 𝑑0 where {

𝑑0 = 𝑎𝑚−1𝑓0
𝑑𝑖 = 𝑎𝑖−1 + 𝑎𝑚−1𝑓𝑖

By applying these equations, the following structure is implemented. In the right

part of Fig.6.3, a partial result interleaved with reduction is calculated. The output is used

as the input in next iteration and sent to the left to do the accumulation. The shift register

holds the value of b and shifts right in every iteration. The left part accumulate the partial

product in every iteration. And after m iterations, the result is computed.

Figure 6.3 Multiplication unit

6.5 Squaring in 𝐺𝐹(2𝑚)

Polynomial basis squaring is relatively simple compared with multiplication. It is

very similar to the classical two-step multiplication. The squaring operation can be done in

two steps. The first step is to insert a 0 bit between consecutive bits of the binary

51

representation. The second step is also the polynomial reduction. In Fig.6.4, a pattern for

squaring a polynomial 𝑎(𝑥) is shown.

 Figure 6.4 Squaring a polynomial

The reduction of it can however be achieved using a method called the reduction

matrix [41]. The reduction matrix is constructed using the irreducible polynomial and can

be computed when the operation starts. Since the polynomial representation of the squaring

result before reduction is easy to get. Applying the reduction matrix method can greatly

speed up the reduction process.

6.6 Inversion in 𝐺𝐹(2𝑚)

Inversion is the most time consuming operation among all the implementa t ion

module. There are serval existing method to do the field inversion over 𝐺𝐹(2𝑚) , the

Fermat’s method and the extended Euclidean algorithm. While the Fermat’s method takes

lots of time to calculate the value, here we choose the extended Euclidean algorithm [42].

Euclid’s algorithm is for calculating the greatest common divisor of two polynomials. The

algorithm is extended to find two polynomials satisfying that

gcd(𝑎(𝑥),𝑏(𝑥)) = 𝑢(𝑥) × 𝑎(𝑥) +𝑤(𝑥)× 𝑏(𝑥)

If 𝑎(𝑥) is an element of the field defined by irreducible polynomial 𝑓(𝑥), we had

the relation that gcd (𝑎(𝑥),𝑓(𝑥)) = 1. By replacing 𝑏(𝑥) with 𝑓(𝑥), the above equation

is deduced to 1 = 𝑢(𝑥) × 𝑎(𝑥) 𝑚𝑜𝑑 𝑓(𝑥). The inverse of 𝑎(𝑥) can then be calculated by

𝑎(𝑥)−1 = 𝑢(𝑥) 𝑚𝑜𝑑 𝑓(𝑥)

52

Algorithm.6.1 illustrates how the inverse is calculated, the implementation is

straight forward while the addition is done using x-or, division is done by right shift and

multiplication is done by left shift. The result is outputted after 2m iterations.

Algorithm 6.1. Extended Euclidean Method [42]

Input: 𝑎(𝑥), 𝑓(𝑥)

Output: 𝑢(𝑥) = 𝑎(𝑥)−1

Step 1: 𝑙𝑒𝑡 𝑠(𝑥) = 𝑓(𝑥),𝑣(𝑥) = 0, 𝑟(𝑥) = 𝑎(𝑥),𝑢(𝑥) = 1, 𝑑 = 0;

Step 2: 𝑓𝑜𝑟 𝑖=0 𝑡𝑜 2m 𝑑𝑜

Step 3: 𝑖𝑓 𝑟𝑚 = 0, 𝑡ℎ𝑒𝑛 𝑟(𝑥) = 𝑥𝑟(𝑥), 𝑢(𝑥) = 𝑥𝑢(𝑥), 𝑑 = 𝑑 + 1

Step 4: 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑠𝑚 = 1,

Step 5: 𝑡ℎ𝑒𝑛 𝑠(𝑥) = 𝑠(𝑥) − 𝑣(𝑥), 𝑣(𝑥) = 𝑣(𝑥) − 𝑢(𝑥)

Step 6:𝑒𝑛𝑑 𝑖𝑓

Step 7: 𝑠(𝑥) = 𝑥𝑠(𝑥)

Step 8: 𝑖𝑓 𝑑 = 0,

Step 9: 𝑡ℎ𝑒𝑛 𝑟(𝑥) = 𝑠(𝑥),𝑠(𝑥) = 𝑟(𝑥)

Step 10: 𝑢(𝑥) = 𝑥𝑣(𝑥),𝑣(𝑥) = 𝑢(𝑥)

Step 11: 𝑑 = 1

Step 12: 𝑒𝑙𝑠𝑒 𝑢(𝑥) =
𝑢(𝑥)

𝑥
, 𝑑 = 𝑑 − 1

Step 13: 𝑒𝑛𝑑 𝑖𝑓

Step 14:𝑒𝑛𝑑 𝑖𝑓

Step 15:𝑒𝑛𝑑 𝑓𝑜𝑟

53

6.7 Elliptic Curve Group Operations in GF(2m)

The group operations in ECC are the point addition and point doubling operations.

As illustrated in Section 2.2, the group operations are implemented using the previous

modules. Fig. 6.5 shows the block diagram of the point addition operation.

Figure 6.5 Hardware architecture of point addition

 It can be seen that as the equation in Section 2.2 shows, the point addition operation

module requires two multiplications, one squaring and one inversion.

 Similarly, Fig 6.6 shows the architecture of point doubling module. It requires two

multiplications, two squaring and one inversion. The main computation part of Algorithm

5.2 is building using these two modules, in the next section. We will discuss how the

modified MPL with SM, ES and PR is realized.

54

Figure 6.6 Hardware architecture of point doubling

6.8 Scalar Multiplication

As the main computation of the ECC, Algorithm 5.2 provides a whole new MPL

with strong resistance to SCAs. During the pre-computation process, the first scalar random

sequence 𝑘0 is generated. The second scalar 𝑘1 is computed by 𝑘 − 𝑘0 .Another random

sequence s is produced and finally the random point 𝑅 = 𝑟𝑃 is acting as the mask.

There four registers 𝑅0 , 𝑅1 , 𝑅2 and 𝑅3 holding 4 different intermediate values.

They are initialized by the 𝑥, 𝑦 coordinates of the base point 𝑃 and mask 𝑅. 𝑅0 and 𝑅1 are

given the value 𝑅 and 𝑃+ 𝑅 at the beginning. 𝑅2 and 𝑅3 are initialized with – 𝑅 and 𝑃 −

𝑅 . The anti-mask –𝑅 shares the same 𝑥 coordinate with 𝑅 . While the 𝑦 coordinate is

calculated simply x-or the coordinates of mask 𝑅. Three shift registers to store the value of

𝑠, 𝑘0, and 𝑘1. The control unit is the core unit to realize the algorithm. The input and the

55

output of the point addition and point doubling module is controlled by this unit. The

control unit has 36 different states to decide which value from which register to be given

as the input of point operation module, also at the same time, the specific register to store

the output is decided. The states are controlled by the three random values in the shift

register. Additionally, a counter aiming for m cycles is built in as to tell the whole process

when to stop the computation. Fig. 6.7 illustrates the blocking diagram of the top main

computation module.

Figure. 6.7 Architecture of proposed implementation

56

6.9 Synthesis Results

The VHDL code is synthesized for Xilinx XC7VX690 using Vivado 2017. The

hardware resource usage is summarized in Table. 6.2. The computation time at 100 MHz

is 4.43 ms. We can see Algorithm 5.2 doubles the computation time needed since it consist

of two scalar multiplication. Fig. 6.8 shows the result of the output waveform.

Algorithm
Number
of FFs

Number
of LUTs

Number
of IOs

Clock
Cycles

Regular MPL 8317 8753 708 220,020

Algorithm 5.2 11247 11405 708 442,493

Table 6.2 Hardware usage of different algorithms implemented

Figure 6.8 Output waveform

57

The hardware implementation results and performance comparisons with some

existing implementations are listed in Table. 6.3. It is to be noted that since the result

provided in literature are implemented on different FPGA technologies from out design.

Thus, a straight forward comparison is hard to make.

Table 6.3 FPGA implementation complexity comparison between proposed design and

related works

From the table, it is clear that there are very few implementation done with

countermeasures, the main concern for most of the designs listed are speed. [4, 26, 41 and

43] adapted the projective coordinates to reduce the amount of inversion operation and

improve the calculation speed. Scalar multiplications in [32] uses MPL without any

Work Algorithm Device Field FFs LUTs f(MH
z)

Time Cycles

[32] MPL Spartan-3 GF(2
163

) 3265 130 1 ms n.a.

[44] Binary XC4VLX8
0

GF(2
163

) 24,263 143 n.a. n.a.

[45] Binary XC2V6000 GF(2
233

) 16970 19,440 100 n.a n.a.

[46] MPL XCV2000E

-7
GF(2

233
) 10632 35,800 67.9 n.a n.a.

[47] Binary XCV2000E GF(2
233

) 15,478

37 13.2

ms

n.a.

[29] NAF XC3S1000 GF(2
233

) n.a. n.a. 80 2.28
ms

183000

[24] Binary XC7K325T GF(2
233

) 9407 9151 255.6
6

2.66
ms

679776

Proposed MPL XC7VX690 GF(2233) 8317 8753 100 2.2 ms 220020

Proposed Modified

MPL

XC7VX690 GF(2
233

) 11252 10405 246.1 1.8 ms 442493

58

countermeasure. Implementations in [21, 41 and 42] uses binary method for scalar

multiplication. All these mentioned references are applying the algorithms without any

further protections.

Table 6.4 Comparison of SCA countermeasure property between proposed work and

existing related works

Our proposed implementation on scalar multiplication is not as efficient as some of

the listed design such like [4 and 26]. But our implementation mainly focus to provide a

protected power trace to eliminate potential SCA threat. And the clock cycle is comparable

to some listed design such like [24]. Table. 6.4 shows that our implementation can resist

Algorithm/Implementation Doublin

g [8]

Relative

doubling [30]

Comparativ

e power

analysis

[31]

M-

safe

error

[19]

C-

safe

error

[9]

High-

order

[36]

Template

attack

[37]

Binary [21,41,42,44] n.a n.a n.a n.a n.a n.a n.a

NAF [29] × n.a × n.a n.a n.a n.a

MPL [29,43] √ × × × √ n.a n.a

Masked MPL [11] √ n.a √ √ n.a n.a ×

Exponent Splitting [11] √ n.a √ √ n.a × n.a

Proposed √ √ √ √ √ √ √

59

most existing side channel attacks comparing with related implementations. Overall, our

implementation can provide better protection against SCAs.

60

CHAPTER VII

DISCUSSION AND POSSIBLE FUTURE WORKS

7.1 Discussion

In this thesis, an efficient architecture for the scalar multiplication algorithm [11]

is proposed. A FPGA implementation of the algorithm [11] is presented. It is the first time

that this algorithm is implemented in hardware.

This implementation resistant to most existing side channel attacks such as

doubling attack [8], relative doubling attack [30], comparative power analysis [31], m-safe

error attack [19], c-safe error attack [9], high-order [36] and template attack [37]. As shown

in Table 6.4, compared to the existing related works, the proposed implementation offers

the best countermeasures to SCAs.

7.2 Possible Future Work

As a pseudo-random number generator, LFSR is simple and fast but its output does

not have the property of very good randomness. It follows a pattern that can repeat after a

certain number of states. Those sequences of numbers are random-like in some aspects. If

the attacker knows the seed and also the tap values, the randomness of the generated

sequence maybe compromised. A better random generator such like mentioned in [43] can

further protect the implementation.

In addition, since our design is implemented using affine coordinates, projective

coordinates [29] can be adopted in the design. The advantage of using projective

coordinates is that the amount of finite field inversion operation can be greatly reduced

with proper pre-computation. Finite field inversion operation is considered as the most time

61

consuming module in ECC scalar multiplication. So the computation time may be

shortened if projective coordinate systems is adopted.

Moreover, this design features a regular bit serial interleaved multiplier. Faster

method for implementation such like digit level multiplier in [44] can be utilized to further

speed up the elliptic curve scalar multiplication.

62

REFERENCES

[1] V.S. Miller, “Use of Elliptic Curves in Cryptography,” Advances in Cryptology Proc.

(CRYPTO’85), Springer-Verlag, LNCS 218, pp. 417-426, 1985.

 [2] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computation, vol. 148,

pp. 203-209, 1987.

[3] W. Diffie and M.E. Hellman, “New directions in cryptography,” IEEE Transaction of

Information Theory, vol. 22, pp. 444-454, 1976.

 [4] G. Sutter, J. Deschamps, and J. Imana, “Efficient elliptic curve point multiplica t ion

using digit-serial binary field operations,” IEEE Transactions on Industrial Electronics,

vol. 60, pp. 217-225, Jan. 2013.

 [5] P. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and

other systems,” Advances in Cryptology Proc. (CRYPTO’96), Springer-Verlag, LNCS

1109, pp. 104-113, 1996.

[6] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Advances in Cryptology

Proc. (CRYPTO’99), Springer-Verlag, LNCS 1666, pp. 388-397, 1999.

[7] J.S. Coron, “Resistance against Differential Power Analysis for Elliptic Curve

Cryptosystems,” Proc. Int’l Cryptographic Hardware and Embedded Systems (CHES ’99),

pp. 192-302, Aug. 1999.

[8] A.P Fouque and F. Valette, “The Doubling Attack: Why Upwards is Better than

Downwards,” Proc. Int’l Workshop Cryptographic Hardware and Embedded Systems

(CHES’03), pp.269-280, Sept. 2003.

[9] M. Joye and S.M. Yen, “The Montgomery Powering Ladder,” Cryptographic

Hardware and Embedded Systems (CHES’02), pp. 291-302, 2002.

63

[10] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Advances in Cryptology

Proc. (CRYPTO ’99), Springer-Verlag, LNCS 1666, pp. 388-397, 1999.

[11] Y. He, “Highly Secure Cryptographic Computations against Side-Channel Attacks,”

Master thesis, University of Windsor, 2012.

[12] M. Abdalla, M. Bellare, and P. Rogaway, “DHAES: An encryption scheme based on

the Diffie-Hellman problem,” IEEE P1363a, 1998.

[13] V. S. Miller, "Use of elliptic curves in cryptography," Abstracts for Crypto '85.

[14] D. Johnson and A. Menezes, “The elliptic curve digital signature algorithm

(ECDSA),” Technical report CORR 99-34, Dept. of C&O, University of Waterloo,

1999.

[15] Y. Li, M. Chen, and J. Wang, “Introduction to Side-Channel Attacks and Fault

Attacks,” Proc. Asia-Pacific Symp. Electromagn. Compat. (APEMC), vol. 1, pp. 573-575,

May. 2016.

[16] D. Boneh, R.A. DeMillo and R.J. Lipton, “On the Importance of Checking

Cryptographic Protocols for Faults,” Proc. of EUROCRYPT’ 97, LNCS 1233, pp. 37-51,

1997.

[17] Y. Zhou, and D. Feng, “Side-Channel Attacks: Ten Years after Its Publication and the

Impacts on Cryptographic Module Security Testing” IACR Cryptology ePrint Archive,

2005.

[18] I. Biehl, B. Meyer and V. Műller. “Differential fault attacks on elliptic curve

cryptosystems,” Advances in Cryptology Proc. (CRYPTO 2000), LNCS 1880, pp.131–146,

2000.

64

[19] S.M. Yen and Marc Joye, “Checking before Output May not be Enough Against Fault-

based Cryptanalysis,” IEEE Transactions on Computers, vol.49, pp.967-970, 2000.

[20] J. Quisquater and D. Samyde, "Electro Magnetic Analysis (EMA): Measures and

Countermeasures for Smart Card," E-smart 2001, pp.200-210, 2001.

[21] K. Wu, H. Li, T. Chen, and F. Yu, “Electromagnetic analysis on elliptic curve

cryptosystems: Measures and counter-measures for smart cards,” Proc. 3rd Int. Symp.

IITA, vol. 1, pp. 40–43, 2009.

[22] H. Mahanta, A. Azad, and A. Khan, "Power Analysis Attack: A Vulnerability to Smart

Card Security," Proc. Signal Processing and Communication Engineering Systems

(SPACES), 2015.

[23] D.M. Gordon. “A Survey of Fast Exponentiation Methods,” Journal of Algorithms,

vol. 27, pp. 129-146, 1998.

[24] M.S. Hossain, E. Saeedi, and Y. Kong, “High-Speed, Area-Efficient, FPGA-Based

Elliptic Curve Cryptographic Processor over NIST Binary Fields,” Proc.2015 IEEE

International Conference on Data Science and Data Intensive Systems, Dec, 2015.

[25] P.A. Fouque and F. Valette, “The doubling attack–why upwards is better than

downwards,” Proc. Int’l Workshop Cryptographic Hardware and Embedded Systems

(CHES’03). Springer, pp. 269–280, 2003

[26] S.M. Yen et al., “A Countermeasure against One Physical Cryptanalysis May Benefit

another Attack,” Information Security and Cryptology (ICISC’01), Springer-Verlag, LNCS

2288, pp. 417-427, 2002.

[27] F. Morain and J. Olivos, “Speeding up the computation on an elliptic curve using

addition-subtraction chains,” Inform Theory, vol. 24, pp.531–543, 1990.

65

[28] D. Hankerson, A. Menezes and S. Vanstone, “Guide to Elliptic Curve Cryptography, ”

Springer-Verlag, 2004.

[29] Y. B. Wang, X. J. Dong and Z.G. Tian, “FPGA based design of elliptic curve

cryptography coprocessor,” Third International Conference on Natural Computation,

ICNC 2007, pp. 185-189, Aug, 2007.

[30] S.M Yen et al., “Relative Doubling Attack Against Montgomery Ladder,” ICISC

2005 Springer-Verlag, LNCS 3935, pp. 117-128, 2006.

[31] N. Homma, A. Miyamoto, T. Aoki, A. Satoh, and A. Samir, “Comparative power

analysis of modular exponentiation algorithms,” Computers, IEEE Transactions on, vol.

59, no. 6, pp. 795-807, 2010.

[32] J. P. Deschamps and G.Sutter, “Elliptic-curve Point-Multiplication Over GF(2163),”

Proc. IEEE Conf. on PL, pp. 25-30, 2008.

[33] A.J. Menezes, “Elliptic Curve Public Key Cryptosystems”, Kluwer Academic

Publishers, 1993.

[34] C. Claver and M. Joye, “Universal Exponentiation Algorithm: a First Step towards

Provable SPA-Resistance,” Proc. Int’l Workshop Cryptographic Hardware and Embedded

Systems (CHES ’01), pp. 300-308, 2001.

[35] G. Fumaroli and D. Vigilant, “Blinded Fault Resistant Exponentiation,” Fault

Diagnosis and Tolerance in Cryptography, Lecture Notes in Computer Science, vol. 4236,

pp. 62-70, 2006.

[36] F. Muller and F. Valette, “High Order Attack against Exponent Splitting Protection,”

Proc. Int’l Conference on Practice and Theory in Public-Key Cryptography (PKC ’06),

Springer-Verlag, LNCS 3958, pp. 315-329, 2006.

66

[37] M. Medwed and E. Oswald, “Template Attacks on ECDSA,” in Information Security

Applications, WISA, vol. 5379, pp. 14-27, 2008.

[38] C. Herbst and M. Medwed, “Using Templates to Attack Masked Montgomery Ladder

Implementations of Modular Exponentiation,” Proc. Int’l Workshop on Information

Security Application (ISA ’08), Springer-Verlag, LNCS 5379, pp. 1-13, 2009.

[39] P. FIPS, “186-3 Digital Signature Standard (DSS),”National Institute of Standards

and Technology (NIST), 2009.

[40] R. Ward and T. Molteno. “Table of Linear Feedback Shift Registers ,”

http://www.eej.ulst.ac.uk/~ian/modules/ EEE515/files/old_files/lfsr/lfsr_table.pdf, 2007.

[41] D. Pamula, “Arithmetic operators on GF(2m) for cryptographic applications :

performance - power consumption security tradeoffs,” PhD thesis, Silesian University of

Technology; University of Rennes 1, Poland, France, 2012.

[42] J.H. Guo and C.L. Wang, “Systolic array implementation of euclid’s algorithm for

inversion and division in GF(2m),” IEEE Trans. Comput.,vol. 47, no. 10, pp. 1161-1167,

Oct, 1998.

[43] K.Wold and C.H. Tan, “Analysis and Enhancement of Random Number Generator in

FPGA Based on Oscillator Rings,” International Journal of Reconfigurable Computing,

June, 2009.

[44] H. M. Choi, C. P. Hong and C. H. Kim, “High performance elliptic curve

cryptographic processor over GF(2163),” Proc.4th IEEE Int. Symp. Electron. Design, Test

Appl. (DELTA), pp. 290-295, Jan, 2008.

67

[45] C. Grabbe, M. Bednara, J. von zur Gathen, J. Shokrollahi and J. Teich, “A high

performance vliw processor for finite field arithmetic”, Reconfigurable Architectures

Workshop (RAW), 2003.

[46] C. Shu, K. Gaj and T. El-Ghazawi, “Low latency elliptic curve cryptography

accelerators for NIST curves on binary fields,” IEEE Field-Programmable Technology

(FPT), pp. 309–310, 2005.

[47] T. Kerins, E. M. Popovici and W. P. Marnane. “An FPGA Implementation of a

Flexible, Secure Elliptic Curve Cryptography Processor,” International Workshop on

Applied Reconfigurable Computing-ARC 2005, IADIS press, pp.22-30, 2005.

68

APPENDICES

SELECTED VHDL PROGRAMMING CODES

--
-- Top level: Introduces the point coordinates and k through the same port
--Author: Che Chen
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

package my_package is
constant m: natural := 233;
constant logm: natural := 8;
constant zero: std_logic_vector(m-1 downto 0) := (others => '0');
end my_package;

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
use work.my_package.all;

entity top_MaskedMont is
port (
 inData: in std_logic_vector(m-1 downto 0);
-- xP_data, yP_data, k_data: in std_logic;
 clk, reset, start: in std_logic;
 outxQ, outyQ: inout std_logic_vector(m-1 downto 0);
-- xQ_or_yQ: in std_logic;
 done: out std_logic
);
end top_MaskedMont;

architecture circuit of top_MaskedMont is

 component MaskedMont is
 port (
 xP, yP, xR, yR, y_minus_R, x_pplusr, y_pplusr, x_pminusr, y_pminusr: in std_logic_vector(m-1
downto 0);
 k0, k1, s: in std_logic_vector (m-1 downto 0);
 clk, reset, start: in std_logic;
 xQ, yQ: inout std_logic_vector(m-1 downto 0);
 done: out std_logic

);
 end component MaskedMont;

69

 component rand_gen is
 Port (clk : in STD_LOGIC;
 reset : in STD_LOGIC;

 start : in STD_LOGIC;
 K : in std_logic_vector (m-1 downto 0);
 k1,s,k0,r : out std_logic_vector (m-1 downto 0);
 done : out STD_LOGIC);
 end component rand_gen;

 component EC_montgomery_multiplication is
 port (
 xP, yP, k: in std_logic_vector(m-1 downto 0);
 clk, reset, start: in std_logic;
 xQ, yQ: inout std_logic_vector(m-1 downto 0);

 Q_infinity: inout std_logic;
 done: out std_logic
);
end component EC_montgomery_multiplication;

component Point_add_v2 is
port(
 x1,y1,x2,y2: in std_logic_vector(m-1 downto 0);
 clk, reset, start: in std_logic;
 x3: inout std_logic_vector(m-1 downto 0);
 y3: out std_logic_vector(m-1 downto 0);

 done: out std_logic
);
end component Point_add_v2;

 signal xP, yP, k0, k1, s, k, xQ, yQ, r, xR, yR, y_minus_R, x_pplusr, y_pplusr, x_pminusr, y_pminusr:
std_logic_vector (m-1 downto 0);

 signal start_ran, start_main, ran_done, main_done, xP_data, yP_data, k_data, start_r_point,
r_point_done,
 start_add1, add_done1, start_add2, add_done2: std_logic;

 subtype states is natural range 0 to 14;

 signal current_state: states;

begin
 ran: rand_gen port map(
 clk, reset, start_ran,k,
 k1, s, k0, r, ran_done);

randomR: EC_montgomery_multiplication port map(
 xP, yP, r,

 clk, reset, start_r_point,

70

 xR, yR,
 done => r_point_done);

 y_minus_R <= xR xor yR;

P_plus_R: Point_add_v2 port map(xP, yP, xR, yR, clk, reset, start_add1, x_pplusr, y_pplusr,
add_done1);
P_minus_R: Point_add_v2 port map(xP, yP, xR, y_minus_R, clk, reset, start_add2, x_pminusr,
y_pminusr, add_done2);

MaskedMont port map(
 xP, yP, xR, yR, y_minus_R, x_pplusr, y_pplusr, x_pminusr, y_pminusr,k0, k1, s,
 clk, reset, start_main,
 xQ, yQ, main_done);

registers: process(clk)
 begin
 if clk' event and clk = '1' then
 if xP_data = '1' then xP <= inData; end if;
 if yP_data = '1' then yP <= inData; end if;
 if k_data = '1' then k <= inData; end if;
 end if;
 end process;

control_unit: process(clk, reset, current_state)

begin

end process;

 outxQ <= xQ; outyQ <= yQ;

end circuit;

--
-- Random number generator
--
entity rand_gen is
 Port (Clk : in STD_LOGIC;
 reset : in STD_LOGIC;
 start : in STD_LOGIC;
 K : in std_logic_vector (232 downto 0);
 k1,s,k0,r : out std_logic_vector (232 downto 0);
 done : out STD_LOGIC);
end rand_gen;

architecture Behavioral of rand_gen is

type state_type is (idle,s0,s1,s2);

71

signal state : state_type := idle;
signal rand_out : unsigned(232 downto 0);

component lfsr is

port (clk,reset : in std_logic;
 rand_out : out unsigned(232 downto 0)
);
end component;

begin

lfsr_inst : lfsr port map(Clk,'0',rand_out); --keep generating random numbers.

process(Clk,reset)
begin

 if(reset = '1') then
 state <= idle;
 done <= '0';
 elsif(rising_edge(Clk)) then
 case state is
 when idle =>
 if(start = '1') then --start the fsm.
 state <= s0;
 end if;
 done <= '0';
 when s0 =>

 if(rand_out < unsigned(K)) then --check if k0 is less than K
 k0 <= std_logic_vector(rand_out);
 k1 <= std_logic_vector(unsigned(K)-rand_out); --if yes, so
the subtraction and assign it to k1.
 state <= s1;
 else
 state <= s0;
 end if;
 when s1 =>
 if(rand_out < unsigned(K)) then --check if k0 is less than K
 r <= std_logic_vector(rand_out);

 state <= s2;
 else
 state <= s1;
 end if;
 when s2 =>
 s <= std_logic_vector(rand_out); --the next random number is
assigned to s.
 state <= idle;
 done <= '1'; --done signal is asserted and goes back to idle state
waiting for next start signal.
 end case;

 end if;

72

end process;

end Behavioral;

entity MaskedMont is
port (
xP, yP, xR, yR, y_minus_R, x_pplusr, y_pplusr, x_pminusr, y_pminusr: in std_logic_vector(m-1
downto 0);
k0, k1, s: in std_logic_vector (m-1 downto 0);
clk, reset, start: in std_logic;
xQ, yQ: out std_logic_vector(m-1 downto 0);
--Q_infinity: inout std_logic;
done: out std_logic
);
end MaskedMont;

architecture arch of MaskedMont is

constant zero: std_logic_vector(m-1 downto 0) := (others => '0');

component Point_add_v2 is
port(
 x1,y1,x2,y2: in std_logic_vector(m-1 downto 0);
 clk, reset, start: in std_logic;
 x3: inout std_logic_vector(m-1 downto 0);
 y3: out std_logic_vector(m-1 downto 0);

 done: out std_logic
);
end component;

component Point_double_v2 is
port(
 x1, y1: in std_logic_vector(m-1 downto 0);
 clk, reset, start: in std_logic;
 x3: inout std_logic_vector(m-1 downto 0);
 y3: out std_logic_vector(m-1 downto 0);
 done: out std_logic

);
end component;

signal xR0, yR0, xR1, yR1, xR2, yR2, xR3, yR3,
 next_xR0, next_yR0, next_xR1, next_yR1, next_xR2, next_yR2, next_xR3, next_yR3:
std_logic_vector(m-1 downto 0);

signal int_k0, int_k1, int_s: std_logic_vector(m-1 downto 0);

signal add_in_x1, add_in_y1, add_in_x2, add_in_y2, dou_in_x, dou_in_y,
 add_out_x, add_out_y, dou_out_x, dou_out_y: std_logic_vector(m-1 downto 0);

73

signal ce_R0, ce_R1, ce_R2, ce_R3, start_add, start_dou, add_done, dou_done, k_m_minus_1_0,
k_m_minus_1_1, s_m_minus_1,
 reset_counter, count_down, last_step: std_logic;

signal step_number: std_logic_vector(logm-1 downto 0);

signal sel_R0, sel_R1, sel_R2, sel_R3, sel_in_dou, sel_in_add: std_logic_vector(1 downto 0);

subtype states is natural range 0 to 36;

signal current_state: states;

begin

with sel_R0 select next_xR0 <= add_out_x when "01", dou_out_x when "10", xR when others;

with sel_R0 select next_yR0 <= add_out_y when "01", dou_out_y when "10", yR when others;
with sel_R1 select next_xR1 <= add_out_x when "01", dou_out_x when "10", x_pplusr when others;
with sel_R1 select next_yR1 <= add_out_y when "01", dou_out_y when "10", y_pplusr when others;
with sel_R2 select next_xR2 <= add_out_x when "01", dou_out_x when "10", xR when others;
with sel_R2 select next_yR2 <= add_out_y when "01", dou_out_y when "10", y_minus_R when
others;
with sel_R3 select next_xR3 <= add_out_x when "01", dou_out_x when "10", x_pminusr when
others;
with sel_R3 select next_yR3 <= add_out_y when "01", dou_out_y when "10", y_pminusr when
others;
with sel_in_add select add_in_x1 <= xR0 when "00", xR2 when others;

with sel_in_add select add_in_y1 <= yR0 when "00", yR2 when others;
with sel_in_add select add_in_x2 <= xR1 when "00", xR0 when "11", xR3 when others;
with sel_in_add select add_in_y2 <= yR1 when "00", yR0 when "11", yR3 when others;
with sel_in_dou select dou_in_x <= xR0 when "00", xR1 when "01", xR2 when "10", xR3 when
others;-- "11"
with sel_in_dou select dou_in_y <= yR0 when "00", yR1 when "01", yR2 when "10", yR3 when
others;

register_R0: process(clk)
begin
if clk' event and clk = '1' then

if ce_R0 = '1' then xR0 <= next_xR0; yR0 <= next_yR0; end if;
end if;
end process;

register_R1: process(clk)
begin
if clk' event and clk = '1' then
if ce_R1 = '1' then xR1 <= next_xR1; yR1 <= next_yR1; end if;
end if;
end process;

register_R2: process(clk)

74

begin
if clk' event and clk = '1' then
if ce_R2 = '1' then xR2 <= next_xR2; yR2 <= next_yR2; end if;
end if;

end process;

register_R3: process(clk)
begin
if clk' event and clk = '1' then
if ce_R3 = '1' then xR3 <= next_xR3; yR3 <= next_yR3; end if;
end if;
end process;

add: Point_add_v2 port map(add_in_x1, add_in_y1, add_in_x2, add_in_y2, clk, reset, start_add,
add_out_x, add_out_y, add_done);

double: Point_double_v2 port map(dou_in_x, dou_in_y, clk, reset, start_dou, dou_out_x, dou_out_y,
dou_done);

with step_number select last_step <= '1' when "00000000", '0' when others;

shift_register_k0: process(clk)
begin
if clk'event and clk = '1' then
if reset_counter = '1' then int_k0 <= k0;
elsif count_down = '1' then

for i in m-1 downto 1 loop int_k0(i) <= int_k0(i-1); end loop;
int_k0(0) <= '0';
end if;
end if;
end process;

k_m_minus_1_0 <= int_k0(m-1);

shift_register_k1: process(clk)
begin

if clk'event and clk = '1' then
if reset_counter = '1' then int_k1 <= k1;
elsif count_down = '1' then
for i in m-1 downto 1 loop int_k1(i) <= int_k1(i-1); end loop;
int_k1(0) <= '0';
end if;
end if;
end process;

k_m_minus_1_1 <= int_k1(m-1);

shift_register_s: process(clk)

75

begin
if clk'event and clk = '1' then
if reset_counter = '1' then int_s <= s;
elsif count_down = '1' then

for i in m-1 downto 1 loop int_s(i) <= int_s(i-1); end loop;
int_s(0) <= '0';
end if;
end if;
end process;

s_m_minus_1 <= int_s(m-1);

output_xQ: process(clk, last_step)
begin

if clk' event and clk = '1' then
if last_step = '1' then
for i in 0 to m-1 loop
 xQ(i) <= xR0(i);
 yQ(i) <= yR0(i);
end loop;
end if;
end if;
end process;

end process;

end;

76

VITA AUCTORIS

Che Chen was born in 1989 in P.R.China. He received his Bachelor’s Degree from

Faculty of Science in Wuhan University of Technology in 2011. He received his Master of

Engineering degree from the Department of Electrical and Computer Engineering at

University of Windsor in 2013. He is currently a candidate for the Master of Applied

Science Degree in the Department of Electrical and Computer Engineering at Univers ity

of Windsor and hopes to graduate in Fall, 2017

	FPGA IMPLEMENTATION FOR ELLIPTIC CURVE CRYPTOGRAPHY OVER BINARY EXTENSION FIELD
	Recommended Citation

	Master thesis

