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ABSTRACT 

 

 

The presence of azo-dyes in water bodies represents an environmental 

problem due to their recalcitrant, toxic and in some cases carcinogenic 

characteristics. In this dissertation, a more complete analysis is presented which 

includes color removal, dye conversion, total amines (as aniline) and product 

degradation. Enzymatic treatment with soybean peroxidase (SBP) was studied to 

decolorize and degradate two impure azo-dyes, Acid Blue 113 (AB113; a di-azo 

dye) and Direct Black 38 (DB38; a tri-azo dye). A single-step process (direct 

enzymatic treatment) and a two-step process (zero-valent iron (Fe°) reduction 

followed by enzymatic treatment) were compared to obtain the optimal conditions 

of pH, H2O2 concentration, enzyme concentration and reaction time for maximum 

decoloration, dye and products degradation as well as total amines removal. More 

than 95% decoloration and dye degradation was achieved for both dyes after 

single- and two-step processes.  A two-step process was preferred for DB38, 

because, after Fe° reduction, the products (aniline and benzidine) were SBP 

substrates which needed low SBP and H2O2 concentrations for 95% removal. The 

lowest KM value (data obtained from Michaelis-Menten plot) was for a simple and 

highly pure reference dye, Crocein Orange G (COG), followed by AB113 and then 

DB38. Evidence for azo-cleavage of COG due to direct enzymatic treatment was 

obtained, identified and quantified by high-performance liquid chromatography 

(HPLC) where aniline was produced. Mass spectrometry was used to confirm the 

presence of aniline after treatment. 
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An alternative for reducing the number of experimental runs during optimization 

and obtain valuable statistical parameters, response surface methodology (RSM; 

software program Minitab), was used to optimize and characterize the decoloration 

of AB113 and DB38. These methods showed that the parameters: pH, H2O2 and 

enzyme concentrations were statistically significant in the removal of azo-dye; in 

addition, the presence of curvature in the response surface, indicated a preference 

for a second-order model. Decoloration of more than 95% was obtained by the 

RSM model. For AB113 the optimal response obtained with Minitab model was 

5.7 % and the experimental value under the same conditions was 8.0% (2.3% 

difference) while for DB38 the optimal Minitab response was 3.6% and 5.1% for 

the experimental value (1.5% difference). Equations were obtained to determine 

percent color remaining within the study area (for AB113 pH 3.6-5.3; enzyme 1.0-

2.0 U/mL; H2O2 1.0-3.0 mM and for DB38 pH 3.0-5.0; enzyme 2.5-3.5 U/mL; 

H2O2 2.5-3.5 mM). A positive RSM result shows the reduction of experimental 

runs compared to the optimization of one-parameter-at-a-time which represent 

diminished analysis time. 
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Chapter 1. Introduction 

 

1.1 Synthetic dyes 
Synthetic dyes have been extensively used in different types of industries such as textiles, 

food, leather, and printing, among others. World trade organizations before 1960s used to 

give information about worldwide productions of dyes, however this doesn´t happen 

anymore (Zollinger, 2013). As some reviews reported, it is estimated that over 0.7 

million tons of synthetic dyes are produced worldwide, from which almost 200,000-

280,000 tons are released to the ecosystem from mainly dyeing and finishing operations 

in the industry (Ali et al., 2013; Chequer et. al., 2013; Husain, 2006). In Canada, there 

are 1085 textile-manufacturing plants specifically in Quebec and Ontario. The clothing or 

apparel industry (2465 plants) is the largest single consumer of textiles (Davidson, 2013).  

United States Environmental Protection Agency (EPA) estimates that 36 plants in the 

United States generate and  manage organic dyes (azo, triarylmethane and anthraquinone 

dyes) which generates approximately 36,000 metric tons of potentially dangerous waste 

(United States Environmental Protection Agency, 2005). 

Normally, 1 mg/L gives visible color to water bodies; however concentrations up to 300 

mg/L have been reported in textile manufacturing processes. Textile dyes represent the 

most problematic compounds in textile wastewater due to high toxicity, high water 

solubility, and recalcitrant nature (Pandey et al., 2007). Furthermore, some dyes are 

potentially carcinogenic, mutagenic and genotoxic (Ali et al., 2013; Kalsoom et al., 

2013), and they are aesthetically unacceptable. The possible breakdown products, such as 

aromatic amines, have a negative impact in the environment and in the living organisms 

(Weisburger, 2002). For all these reasons it is important to have adequate removal 

technologies. 

In textile industries, due to inefficient dyeing process, large amounts of dyes and other 

chemicals are released to the environment or to the system that will go to a wastewater 

treatment facility (Ventura-camargo et al., 2013). 
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A dye is a chemical which gives color to a material, the color imparted is due to the 

chromophore group of the dye. Based on this, chromophore group chemical structure, 

there are around 30 groups of dyes. Dyes can be classified into: azo (mono-azo, di-azo, 

tri-azo, poly-azo), anthraquinone, triarylrnethane, indigoid, and polycyclic aromatic 

carbonyl dyes (Figure 1). The azo-group is normally connected to an aromatic ring such 

benzene or naphthalene. There are several classes of azo-dyes, the most common are: 

acid, basic, reactive, direct, and mordant (Sudha et al., 2014). Based on the substituents 

of the dyes they can be water-soluble or insoluble. The reactive dyes are water soluble 

due to the sulfonate or carboxylate group in their molecule and are used for dyeing fibers 

like cotton, wool, silk and nylon. On the other hand, water insoluble dyes like disperse 

dyes contain chloro- or nitro-substituents; this type of dyes is usually used for nylon, 

acrylic, plastic and polyester (Nam, 1998; Gregory, 1990; Husain, 2006). Direct dyes are 

used for cotton, rayon, paper, leather and nylon, while acid dyes can be used for nylon, 

wool, silk, paper, inks, and leather (Husain, 2006). Marechal et al. (1997) estimates that 

around 3000 dyes are available to the industry where half of them belong to azo-dye 

group. 

 

Figure 1. Examples of chromophoric groups present in organic dyes 

IARC, 2010 

1.2 Textile industry 
The textile industry uses natural and man-made fibers to transform into yarns and threads, 

which will also be transformed into fabrics that will be subjected to dyeing and finishing. 

A common textile industrial facility includes the processes of: desizing, scouring, 
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bleaching, mercerizing and dyeing. During the dyeing process, color is added to the 

fibers, requiring a large amount of water and other compounds like metals, salts 

surfactants (United States Environmental Protection Agency, 1997; Carmen and Daniela, 

2012). During the dyeing of cotton, approximately 1450-4750 ADMI (American Dye 

Manufacturer’s Institute color index) color is discharge on wastewater (Cooper, 1995; 

Carmen and Daniela, 2012). The most coloured effluents are due to the presence of 

textile dyes, pigments and other colored compounds and come from dyeing and rinsing 

steps; they also have high variability in parameters like COD, BOD, pH, salinity and 

temperature (Carmen and Daniela, 2012). 

 

1.3 Treatment of azo-dyes 
 To remove color caused by dyes in effluents, several methods have been studied such 

as membrane filtration processes (including nanofiltration) biological treatment, 

coagulation/flocculation, reverse osmosis, electrodialysis, ion exchange, sorption 

techniques and liquid-phase extraction (LPE) (Crini, 2006; Akceylan and Erdemir, 

2015). As reviewed by Mohan et al. (2002) chemical and physicochemical treatments 

are effective in removing dyes, but represent a problem due to high cost and 

regeneration problems. For example, active carbon used in adsorption, results in a 

toxic sludge which presents a problem of disposal. On the other hand, biological 

treatment has been an attractive alternative due to several advantages such as lower 

cost, environmentally friendly, allowing complete mineralization of the dyes, as well 

as lower production of sludge compared to chemical or physical methods (Mohan et. 

al., 2002; Puvaneswari et al., 2006; Solis et al., 2012). Several microorganisms, such 

as bacteria, fungi or yeast have been investigated to decolorize textile wastewater, 

through the release of enzymes by which azo-dyes can be reduced to simpler 

compounds that can be mineralized easier. These enzymes can be peroxidases, 

reductases and laccases, among others (Sudha et al., 2014; Neifar et al., 2011). It has 

been reported that some algae species were able to reduce azo-dyes to aromatic 

amines which can be further treated. Mohan et al. (2002) demonstrate that a 

Spirogyra species was able to decolorize the azo-dye reactive, yellow 22 after 3 days; 
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the decoloration was done by biosorption, bioconversion and biocoagulation 

processes. For reductive bio-decolorization processes, the more electron-withdrawing 

groups an azo-dye has the faster the decoloration will be; also if they are in ortho-or 

para-position decoloration is faster than in meta-position, since it provides a stronger 

resonance effect (Solis et al., 2012; Zhang et al., 2012). For oxidative decoloration, 

the more electro-donating groups and less steric hindrance in the azo-dye favor the 

decoloration (Zhang et al., 2012). 

Physical methods include filtration (ultra-filtration, reverse osmosis) and adsorption 

processes. These methods are used when they have to be included in an already 

established plant water system. Adsorption methods, such as activated carbon, are not 

efficient in the decoloration of dye solutions since they require long times. However, 

bio-sorption is a promising method, which uses low-cost adsorbents to bind the 

compound of interest to biomass. Gimenez et al. (2014) used fungal biomass 

(Lentinus edodes) which possesses enzymes (lignin, and manganese peroxidases and 

laccase) inmobilized in loofa sponge to bio-sorb several synthetic dyes, where more 

than 90% removal of dyes was achieved. 

Chemical processes include coagulation and flocculation, oxidation or 

electrochemical methods. Processes involving ozone or photo-Fenton conditions are 

effective in the decoloration process and have been reported to achieve complete 

mineralization of dyes. However, such processes have high cost of installation such as 

ozone generator or high cost of chemicals involve in the coagulation process and it 

also has high production of sludge (Lokesh and Kiran, 2014).  Qiu et al. (2014), 

compare the efficiency of photo-Fenton and UV/TiO2 processes, both shown to be 

effective in the removal of an azo-dye (Reactive Black 5). However, the photo-Fenton 

process was more efficient and faster in the initial stages (before 45 minutes); 

efficiency depends on factors such as initial concentration of dye, iron, TiO2, 

hydrogen peroxide and pH. Ozonation of an azo-dye was investigated by Tizaoui et 

al. (2011) were the stoichiometric ratio was 3 mol O3/mol of dye. Moreover, when pH 

was increased to 11, 95% removal was achieved in 3 minutes. Also the ozone inlet 

concentration played an important role in the decoloration, for example at pH 7 for 
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90% removal at 25 mg/L of dye, it requires 20 g/m
3
 NTP in 3.4 minutes, while at 50 

mg/L of dye with the same ozone concentration, the time needed was 8.6 minutes 

(Tizaoui et al., 2011). 

A combination of processes has also been reported to increase the efficiency over an 

individual process. For example, zero-valent iron reduction combined with anaerobic 

sludge digestion has been proved to increase the efficiency of decoloration 

approximately 30% of an azo-dye compared to the sum of the individual systems 

(reactive blue 13). The presence of iron modifies the sludge morphology and st ructure 

of the microbial community, the increase of efficiency is due to the more favorable 

conditions of pH and anaerobic environment after adding zero-valent (ZV) iron as 

well as the direct chemical removal (Li et al., 2013). 

Enzymatic treatment has been successful for dye decoloration. Under mild condition, 

which is an advantage, besides being able to convert complex chemical compounds 

into insoluble compounds which can be subsequently removed by conventional 

filtration (Husain, 2006; Husain, 2010; Ali et al., 2013; Kalsoom et al., 2013). 

1.4 Toxicity of azo-dyes 
The presence of dyes in aquatic ecosystems presents a public health problem and it is 

an aesthetic problem. The presence of dyes in water streams results in a diminished in 

light flux for aquatic organisms (Ventura-Camargo B. et al., 2013). The potential 

carcinogenicity of azo-dyes is due to the dyes themselves or amines produced by their 

reduction (Nam, 1998). Most of the dyes can be absorbed through the skin or by 

inhalation. Benzidine-based dyes are carcinogenic as discussed later. Through 

discharge in wastewater they are readily available through the food chain (Sudha et 

al., 2014).  In general, azo-dyes are toxic, in terms of genotoxicity, mutagenicity and 

carcinogenicity to aquatic organisms. In mammals, hepatic azoreductases (liver or 

intestine flora) are able to reduce azo-dyes into amines which are carcinogenic. 

Furthermore, they can cause soil pollution and problems with plant growth when 

discharged on the soil (Puvaneswari et al., 2006). Maguire and Tkacz (1991) detected 

14 different dyes in the Yamaska River in Quebec during two year measurements, the 

first study that detected the presence of dyes in the environment. 
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1.5 Initiatives and objectives 
Decoloration of high purity azo-dyes has been studied using enzymatic treatment with 

horseradish peroxidase (Gholami-Borujeni et al., 2011; Onder et al., 2011), and soybean 

peroxidase (Ali et al., 2013: Kalsoom et al., 2013) as well as other processes, such as  

zero-valent iron reduction (Cao et al., 1999; Fan et al., 2009). However, an assessment in 

the product formation and total amines production should be done in order to determine 

and compare the effectiveness of both processes in terms of dye, product and color 

degradation and the concentrations of SBP and H2O2 as well as the pH required. 

Therefore, this dissertation used two impure model compounds of the azo-dyes which 

were subject to single-step process with SBP in  the presence of H2O2 and a two-step 

process using zero-valent iron reduction followed by SBP treatment, in order to 

determine which is the optimal process based on the parameter requirements and removal 

efficiency. 

Rather than one-parameter-at-a-time optimization, an alternative is to optimize the 

decoloration of azo-dyes using response surface methodology. This methodology has 

been used to study the decoloration of dyes with laccase (Daassi et al., 2012; Roriz et al., 

2009; Neifar, 2011), Pseudomonas (Jadhav et al., 2012; Senthilkumar et al., 2013) and 

the bacterium Bacillus subtilis (Sharma et al., 2009). An advantage of RSM is the lower 

number of experimental runs needed which represents time and cost savings. However, to 

our best knowledge RSM with SBP decoloration and comparison with optimization one-

parameter-at-a-time has not been done for AB113 and DB38. For this reason, this 

dissertation uses RSM to obtain optimization parameters for AB113 and DB38 and 

compare the number of experimental runs versus optimization one-parameter-at-a-time. 

An important consideration to any degradation study is the mechanistic pathways. For 

SBP treatment, mechanism pathways, with azo-dyes have not been extensively studied. 

The possibility of the azo-splitting by SBP has been qualitatively studied (Kalsoom et al., 

2013; Ali et al., 2013; Onder et al., 2011), however, there is no attempt in quantifying the 

release of the products resulting from azo-cleavage. In this study, an approach to quantify 

aniline as a product of COG azo-splitting by HPLC was made and the presence of it was 

confirmed with electro-spray mass spectrometry (EI-MS).  
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The objectives for this dissertation were: 

1. Optimize direct SBP decoloration and degradation in the presence of H2O2 of 

two impure azo-dyes: a di-azo dye, Acid Blue 113, and a tri-azo dye, Direct 

Black 38 

2. Optimize iron reduction followed by SBP-catalyzed degradation for both dyes 

3.  Develop an experimental design in Minitab 16, for direct decoloration of the 

azo-dyes 

4. Get evidence for azo splitting of a model compound (COG) after enzymatic 

treatment 

 

1.6 Scope 

 

The scope of this dissertation includes: 

1. Optimize direct SBP decoloration and degradation in the presence of H2O2 of two 

impure azo-dyes: a di-azo dye, Acid Blue 113, and a tri-azo dye, Direct Black 38 

 

 Investigate the SBP capability for direct decoloration and degradation of azo-dyes 

(AB113 and DB38) with pH, H2O2 and enzyme optimization to achieve ≤5% 

color/dye remaining 

 Estimate kinetic parameters (KM, Vmax and Vmax/ KM) for AB113, DB38 and COG 

with Michaelis-Menten and Lineweaver-Burk plots 

 Determine total organic carbon (TOC) and dye degradation under optimal 

conditions 

 Optimize total amines (as aniline) removal 

 

2. Optimize iron reduction followed by SBP-catalyzed degradation for both dyes 

 Determine the optimal parameters for ≤5% remaining: iron amount (for a fixed 

volume of solution treated), reaction time, color removal, reduction in product 
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concentrations and in total amines (as aniline) concentration, dye and TOC for 

AB113 and DB38 to assess the effectiveness of two-step process  

 Compare the optimal conditions for single-step process and two-step process and 

determine the optimal treatment to achieve ≤5% remaining of color, dye 

degradation and products with the lowest SBP and H2O2 concentrations. 

 

3. Develop an experimental design in Minitab 16, for direct decoloration of the azo-

dyes 

 Develop a RSM for AB113 and DB38 using Box-Behken design in order to 

compare the optimization results with those for optimization one-parameter at the 

time (objective 1), and obtain contour  and surface plots with the respective 

second-order equation that models the process and predicts percent color 

remaining in the area of study 

 

4. Get evidence for azo splitting of a model compound (COG) after enzymatic 

treatment 

 

 Determine, by HPLC, the formation (qualitative and quantitative analysis) of 

aniline as a product after single-step enzymatic treatment of the model compound 

COG (used due to simpler structure and high purity, 90%). 

 Use the optimal conditions for aniline formation in HPLC to confirm the presence 

by EI-MS. 

 Identify other possible products by EI-MS for azo-cleavage and/or radical 

polymerization 
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Chapter 2. Literature review 

2.1 Enzymatic treatment 

Aromatic compounds were treated with enzymes for the first time in the early 1980s 

using horseradish peroxidase (HRP) for the treatment of phenols and anilines compounds 

(Klibanov and Morris, 1981). Other studies were carried out using laccase for phenolic 

compounds (Bollag et al., 1979), and since that times studies of enzymatic treatment have 

increased with time. Enzymatic treatment has several advantages compared to 

conventional methods, such as simplicity and easy to control, is fast, therefore small 

footprint, lower sludge production and high activity over a broad range of pH and 

temperature, as well as the specificity of the enzyme to the substrate. On the other hand, 

one disadvantage of the enzymatic treatment is the cost of the enzyme; however, 

advances in the industry make the application of enzyme a practical alternative 

(Steevensz et al., 2014; Karam and Nicell, 1997). Enzymes are highly specific and can 

act under mild conditions of pH, temperature and pressure (Al-Ansari et al., 2011). 

Oxidoreductases have been found to act on an extensive range of substrates. The main 

oxidoreductases, laccases and peroxidases, are used to treat several classes of 

compounds, including colored compounds such as dyes. 

 

2.2 Peroxidases 

The enzymes generate free radicals that can undergo a series of coupling and/or cleavage 

reactions. The most common peroxidase is horseradish peroxidase (HRP) (Henriksen et 

al., 2001). 

 Peroxidases come from animal, plant, fungi or bacteria kingdoms. They are classified 

into three families based on their sequence homologies. Class I corresponds to the 

prokaryotic enzymes such as yeast or chloroplast. Class II peroxidases are secreted fungi, 

such as lignin or manganese enzymes. Class III are classical secretory plant peroxidases 

such as SBP, horseradish and peanut enzyme (Dunford, 1999; Al-Ansari et al., 2011).  

Peroxidases are hemoproteins which catalyze the oxidation of a broad range of organic 

and inorganic substrates in the presence of H2O2 (Cijzen et al., 1993).  The mechanism 

that they follow is a ping-pong mechanism (Dunford 1999): 
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1) Resting state + H2O2      Compound I + H2O 

2) Compound I  + AH                      Compound II +    

3) Compound II + AH              Resting state + H2O+    

From the first equation, native or resting state enzyme forms Compound I a 2-electron 

oxidation in reaction with H2O2 (electron acceptor). Compound I accepts an aromatic 

compound (AH) which undergoes a one-electron oxidation in the active site of the 

enzyme, releasing a free radical   . Compound I reduced to compound II which can 

oxidize another aromatic compound releasing a second free radical and the enzyme 

returns to the resting state. Non-enzymatic coupling of the free radicals forms dimers, 

trimers, tetramers and oligomers (Nicell et al., 1993; Ibrahim et al., 2001; Al-Ansari et 

al., 2011). The oligomers formed act as hydrogen donors that allows additional 

polymerization, forming compounds which are insoluble in water (Fersht, 1977). These 

compounds can be removed from the solution with processes such as sedimentation and 

filtration (Kilbanov and Morris, 1981). Peroxidases can catalyze a wide range of 

substrates in the presence of hydrogen peroxide, the H2O2 acts as the electron acceptor 

(Dunford and Stillman, 1976). 

The active site of the enzymes consist of a catalytic site and a binding site, the first one is 

where the reaction occurs and the second one is where the substrate is held to undergo the 

reaction (Fersht, 1977; Al-Ansari et al., 2011). 

Examples of enzymes used for dye degradation are lignin peroxidase, laccases, 

horseradish peroxidase, tyrosinase, manganese peroxidase, etc. (Kalsoom et al., 2013). 

Inactivation of peroxidase represents a disadvantage in the enzymatic treatment. One 

possible inactivation can be due to the free radicals present in the process which can 

return to the active site and forms a covalent bond not allowing the substrate to access the 

active site stopping the catalytic process (Klibanov et al., 1983). Another possibility is an 

excess of H2O2 or low reducing substrate concentration (Dunford, 1999). Also, the 

peroxidase can be adsorbed onto the polymerized substrate causing apparent inactivation 

(Nakamoto and Machida, 1992; Feng et al., 2013). 
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2.2.1 Soybean peroxidase (SBP) 

The soybean seed coats (hulls) are a by-product from crushing operations that are used as 

animal feed. After a washing process of these hulls with water, SBP can be extracted 

without compromising the feed value of the hulls.  The activity of the SBP varies among 

the cultivars and seed coats (Buttery and Buzzell, 1968; Buzzell and Buttery, 1969; 

Gijzen, 1993; Gijzen et al., 1997). Extraction of SBP can also be done with phosphate 

buffer (NaH2PO4/Na2HPO4, pH 6.0) followed by filtration and centrifugation (6000 rpm 

for 15 minutes) process to obtain the final supernatant (Ghaemmaghami et al., 2010).   

SBP has several applications, from polymer and resin industry, baking industry, medical 

(as a replacement for HRP in ELISA assays) as well as wastewater treatment (Al-Ansari 

et al., 2011; Sessa et al., 2004). The peroxidase extracted from the hulls has higher 

activity than the peroxidase found in the root of leaf (Geng et al., 2001). Organic solvents 

are used sometimes during enzymatic reaction in order to increase the solubility of 

substrates; however, Geng et al. (2001) found that the SBP activity decreases as the 

concentration of organic solvent increase. SBP is active in the presence of organic 

solvents such as acetronitrile, acetone, methanol or ethanol. Other authors have also 

demonstrated that SBP is active in organic solvents (acetone, methanol and ethanol) 

(Ghaemmaghami et al., 2010).   

SBP (Enzyme Classification 1.11.1.7) is a heterogeneous glycoprotein that belongs to the 

family of class III (secretory plant peroxidases), is an oxidoreductase enzyme extracted 

from soybean seed coats (hulls) (Al-Ansari et al., 2011 Dunford, 1999). SBP shows 57% 

amino acid sequence identity to HRP. The high thermal stability and reactivity and 

stability at low pH are some of the advantages of SBP compared to other peroxidases. For 

example, inactivation temperature is 90.5°C compared to HRP that is 81.5°C. Also, 

Henriksen et al. (2001) have demonstrated that SBP has a higher affinity for the haem 

than HRP isoenzyme C. 

The use of soybeans represents an inexpensive source since the hulls are considered a 

low-value by product, it does not compete with animal feed or other land used, and also it 

is considered environmentally friendly replacing harsh chemicals (Nicell, 2003; Hailu et 

al., 2010). The isolation of crude SBP represents a cheaper option that can be used in 

several applications in bioremediation and biocatalysis (Hailu et al., 2010). 
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SBP has a molecular weight of 40660 Da, contains 17.7-18.2% carbohydrate, the 

secondary structure of the enzyme consists of 13 α-helices and 2 β-sheets.  Fe (III) 

protoporphyrin IX, also called heme, is the active site of SBP. The heme consist of four 

pyrrole rings joined by methene-bridge (carbon atoms labeled α, β, γ and δ) with iron 

(III) complex at  the center (Al-Ansari et al., 2011; Henriksen et al.,2001; Dunford 1999). 

SBP has been used to remove several compounds. Phenolic compounds have been found 

to be removed by SBP, achieving 95% removal (Caza et al., 1999). Anilines are other 

group of compounds that have been studied with SBP. Mantha et al. (2002) remove 

efficiently aromatic amines using a two-step process to remove anilines after iron zero-

valent treatment of nitroaromatic compounds (nitrobenzene), o-, m- and p-nitrotoluenes 

where enzymatic treatment was conducted at pH 5.5-8.0, 1.5 mM H2O2 and enzyme 

concentration from 0.01-0.2 U/mL (Mantha et al., 2002).  

 

2.2.2 Production of soybeans in Canada and other countries 

Soybeans are currently grown on an estimated 6% of arable land. The global production 

has increased almost 93% from 1960 to 2008 (17 million metric tons (MMT) to 230 

MMT) (Hartman et al., 2011). In Canada, USDA data available estimates that the area 

harvested up to February 2017 was more than 2,180,000 HA, with a production of 

6,450,000 MT (Figure 2).    

 

Figure 2.Area harvested for all years in Canada of soybean. Data reported on 2/2017 

USDA, 2017 
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Soybean production has grown in about 23% in the province of Ontario, Quebec, 

Manitoba and Saskatchewan (USDA, 2017).  Other countries production is shown in 

table 1. 

 

Table 1. Area harvested and production of various countries as February, 2017 (USDA, 2017) 

Country Area harvested (HA) Production (MT) 

United States 33,482,000 117,208,000 

Brazil 33,900,000 104,000,000 

Argentina 19,000,000 55,500,000 

Canada 2,180,000 6,450,000 

Bolivia 1,133,000 2,107,000 

Mexico 280,000 490,000 

 

 

2.3 Azo-dyes 
The azo-dyes are characterized by an azo-linkage (-N=N-) (Figure 3) and constitute more 

than 50% of all dyes produced in the world (Nam, 1998). These azo-dyes are used in 

several types of industries such as textile, food, printing, leather and paper among others. 

They are resistant to microbial degradation used in wastewater treatment plants, thus 

ending up sorbed on the flocs in the sludge (Bandala et al., 2007). They are resistant to 

degradation on exposure to soil, bacteria and sunlight (Ganesh et al., 1994). 
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Acid blue 113 is an azo-dye used for dyeing wool, nylon and silk, blended-rayon fabric, 

leather and biological coloring of paper (Gupta et al., 2011). 

Manufacturers stopped using benzidine-based dyes, such as Direct black 38, in the 1970s 

(Environment Canada, 2009), however, it is still being imported to the EU (less than 500 

kg). This represents a risk for consumers who are in contact with textiles which use this 

dye. These dyes can be used in dyeing cellulose, wool, silk, leather, plastics, vegetable-

ivory buttons, wood flour used as resin filler and aqueous inks. They have also reportedly 

been used in hair dyes (Echa, 2013). 

 

Direct black 38 (Chlorazol black) 
Acid blue 113 

Crocein Orange G 

Figure 3. Azo- dyes used for this thesis work 
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2.3.1 Benzidine-based dyes 

EPA recognizes the potential cancerogenic danger of dyes derived from benzidine.  

Benzidine is a constituent from the aromatic amines family which is a precursor of 

synthetic dyes. Dyes derived from benzidine are well-known carcinogens to which the 

consumer is exposed. Direct black 38 is a benzidine–based dye listed by EPA as a 

“Benzidine-Based and Congener-Based Dyes with Potential to Degrade to Carcinogenic 

Amines” (United States Environmental Protection Agency, 2015). Azo-reduction of 

benzidine-dyes occurs in the human body and the skin, which represent a health problem 

(Golka et al., 2004). 

EPA preliminary risk assessment of these types of derivatives of benzidine and its 

congeners demonstrate the main hazard concern was the carcinogenic effects to humans 

(United States Environmental Protection Agency, 1980). 

2.3.2 Benzidine 

Benzidine is an aromatic amine used since 1850 in the manufacturing process of several 

dyes, nowadays prohibited in some countries; however, there is still small production in 

countries such as Germany, India and USA (IARC, 2010). People can be exposed when 

they come in contact with goods that contain benzidine such as clothes or toys (Garrigós 

et al., 2002). Benzidine is classified as human carcinogenic by IARC (International 

Agency for Research of Cancer) (IARC, 2010; IARC 2012) in human bladder. 

 

2.3.3 Aniline 

Aniline is an aromatic amine (C6H7N). There isn´t production of aniline in Canada, 

nevertheless some is imported which is used mostly in the production of rubber and 

polymers. In USA it is also used for the production of dyes and in the pharmaceutical 

industry. It is not expected to last long in the environment due to the short half-life of few 

weeks (Health Canada, 2013). It is classified as B2 possible human carcinogenic on IRIS 

system. Acute exposure can affect lungs and cause congestion, chronic effects include 

formation of methemoglobin that causes cyanosis, can irritate eyes, skin and respiratory 

tract (United States Environmental Protection Agency, 2002).  Break down of azo-dyes to 

aromatic amines has been studied. Azo-reductase enzyme used to degrade Acid blue 113 

give some intermediate metabolites such as aniline and various other after treatment. 
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Senthilvelan et al. (2014) confirmed the presence of these metabolites using GC-MS and 

MS-ESI. 

2.4 Enzymatic treatment of textile dyes 
Several authors have investigated the enzymatic treatment of dyes with different enzymes 

such as bacterial culture of azo-reductases (Senthilvelan et al., 2014), laccase (Daassi et 

al., 2012), manganese peroxidase detected in culture of Phlebia tremellosa (Kirby et al., 

2000) and SBP (Ali et al., 2013; Kalsoom et al., 2013), among others. Aromatic dyes can 

be degraded or transformed using peroxidases from different sources such as soybean, 

radish, turnip, manganese peroxidase or lignin peroxidase, among others, through a 

precipitation process or opening the ring of the structure. The use of redox mediators 

have been used to improve the dye degradation (Husain, 2010). 

HRP has been used by several authors to degradate dyes. Ulson de Souza et al. (2007) 

studied decoloration of two dyes (Remazol Turquoise Blue  and  Lancet Blue 2 R) 

obtaining approximately 60 and 95% removal, respectively, achieving also a reduction in 

toxicity after enzymatic treatment, tested for toxicity towards Daphna magna. 

Kulshrestha and Husain (2007) investigate the decoloration of five acid dyes using turnip 

peroxidase achieving between 62 to 100 % color removal with HOBT (1-

hydroxybenzotriazole) as a mediator.  

For azo-dyes, Ali et al. (2013) studied the mechanism for degradation of azo-dye (Crystal 

Ponceau 6R, CP6R) with SBP complete degradation of 40 ppm azo–dye under optimal 

conditions (0.27 μM SBP, pH 5 , H2O2 0.175 mM). Sadhanandam et al. (2013) studied 

the color degradation of Acid blue 113 with HRP, achieving 80% degradation with 0.08 

U HRP (where U is measure as 1 μL of the enzyme solution contained 10 U) in 45 

minutes with pH 6.6, they also studied the immobilization of the HRP into beads which 

require more contact time (4 hours) for approximately 80% removal with a maximum 

recycle of 3 times. Mazloum (2014) studied the decoloration of two azo-dyes with SBP 

achieving, under optimal conditions, 85-95% color decoloration, with pH 8, 0.75 U/mL 

SBP and 3.5 mM H2O2. 
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2.5 Zero-valent iron reduction of azo-compounds 
The first application of zero-valent iron treatment is reported from 1972 by the patent of 

Sweeny and Fischer, were they used granular iron to degradate halogenated pesticides. 

The first studies using zero-valent process where focused on halogenated organics 

compounds mainly (Gillham and O´Hannesin, 1994; Orth and Gillham, 1995; Chuang et 

al., 1995). However, since this, other compounds have been studied using zero-valent 

iron reduction such as dinitrotoluenes and azo-dyes (Patapas et al., 2007; Biswas et al., 

2004; Nam and Tratnyek, 2000; Pereira and Freire, 2006). Zero-valent iron is considered 

an environmentally friendly reducing agent for these kinds of compounds which will be 

an adequate pre-treatment due to the resistance of azo-dyes to conventional treatment 

processes. Using zero-valent iron as pretreatment will allow cleaving the azo-molecules 

into products which are more suitable for treatment under biological processes. Where 

the dye molecule gets reduced and the iron is oxidized (Junyapoon, 2005). One advantage 

is the possibility of recycling the iron using magnetics techniques to recover it. New 

developments have been done trying to increase the surface area of the iron particles 

(increasing the activity of the Fe
0 

with more active sites per surface area) to decrease the 

reaction time (Fan et al., 2009); this has been done using nanoscale zero-valent iron 

(NZVI). Fan et al. (2009) demonstrated the effective decoloration of azo-dye methyl 

orange with synthesized NZVI with a size of 20-80 nm, which requires approximately 60 

minutes to achieve 90% decoloration. Formation of products such as sulfanilic acid, N,N-

dimethyl-p-phenylenediamine and N- methyl-p-phenylenediamine using GC-MS (Fan et 

al., 2009) was also demonstrated. Azo-bond cleavage results in loss of the visible 

absorbance band after iron treatment for azo-dyes due to the formation of aromatic 

amines after-bond breakage (Nam et al., 2000; Cao et al., 1999; Pereira and Freire 2006). 

For example, Cao et al. (1999) reported a decrease for Acid Orange II in absorbance at 

483 nm and an increase in the range from 191-228. These aromatic amines are toxic, thus 

requiring further treatment (Nam et al., 2000). For this reason, in this thesis work, the 

concentration of total aromatic amines and of the products after Fe° reductions were 

measured and SBP in the presence of peroxide was used to treat them. Iron reduction has 

been reported to efficiently decolorize dye solutions. Pereira and Freire (2006) achieved 

95% color removal and 70% TOC removal for Remazol Black B under acidic conditions 
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(pH 3) and 0.5 g/L of recycling iron (250 µm) for 15 minutes. Nam and Tratnyek (2000), 

studied reduction of 9 azo-dyes using zero-valent iron, for all dyes the reduction follows 

a first order kinetics.  

2.5.1 Fe0  reduction process 

 This has to be done under anaerobic conditions to prevent the corrosion of the iron, 

where it acts as a strong reducing agent and water is the oxidizing agent. This reaction 

produces Fe
2+

, OH
-
 and H2 gas (Reardon, 1995). As follows: 

 

                      

 

The redox couple of Fe0/Fe
2+

 (aqueous) has a standard reduction potential of –0.440 V.  

This reduction can be used with azo-dyes; the reduction of the azo-bond is 

thermodynamically favorable producing a colorless solution (Pereira and Freire, 2006). 

The reduction of azo-dyes results in the formation of aromatic amines which are toxic, 

for this reason is important to combine iron reduction with another wastewater technique 

to treat those toxic amines (Larson and Weber, 1994; Feng et al., 1999). It was found the 

decoloration of dyes under this process follows a first-order equation (Nam and Tratnyek, 

2000). Cao et al. (1999) determined that the two factors that most influenced the process 

were the acidity of the solution and the iron surface area. They also suggested that 

pretreating the iron with HCl increase the acidity and surface area which will improve the 

reduction process (Cao et al., 1999). 

Past studies discovered that it is a surface-mediated process, which is better at low pH 

and the higher the surface area better the reduction process (Weber, 1996). The reduction 

process is dominated by the mass-transfer of the dye to the surface of the iron, after 

reaching the surface they associate in the sites of the iron. Competition might be present 

between the substrate and other solutes. The sites on the iron surface can be of two types: 

reactive or non-reactive. The first ones are those were the molecule can break the bonds 

and a chemical reaction occurs. The non-reactive sites are those were the substrate is only 

absorbed but no reaction occurs (Junyapoon, 2005). 
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2.6 Response surface methodology (RSM) 
Compared to a conventional optimization method, which requires optimization of one 

parameter at the time, RSM is less time consuming and laborious (requires fewer 

experiments) (Roriz et al., 2009; Senthilkumar et al., 2013). Applying RSM to optimize 

the decoloration of a textile dye allows reduction in process variability, time and can 

reduce cost by reducing the number of experiments needed to obtain optimal conditions 

(Daâssi et al., 2012). A proper comparison between the two optimization techniques 

should be addressed which is one of the objectives in this dissertation work. 

The origin of RSM dated from the studies of Box and Wilson 1951, where it developed 

from theoretical aspects to real case scenarios (Cuesta, 2009). 

RSM is the experimental and analytical strategy that combines mathematical and 

statistical techniques to analyze the effects of several independent variables to find the 

optimum operating conditions of a process, i.e. those that result in "optimal values" of 

one or more characteristics of product quality. It is a strategy of sequential 

experimentation and modeling that allows estimation of the optimal conditions of 

operation of a process and to significantly improve it. The model has to explain at least 

70% of the behavior of the response, in terms of R
2
, otherwise is considered a bad 

prediction (Montgomery and Runger, 2010; Roriz et al., 2009). 

An advantage of the response surface is that it shows the estimates of the response at all 

possible levels of the factors studied. The response surface allows visualization of 

inspection of the average response for different levels of the factors of interest and 

evaluation of the sensitivity to them. Software such as Minitab allows easy analysis of 

polynomial models of first- or second-order and their effects (Montgomery and Runger, 

2010; Cuesta 2009).  

This methodology has been used by other authors for the decoloration of dyes, using a 

microbial consortium (Ayed et al., 2010), a fungal system (Papadopoulou et al., 2013) 

laccase (Daâssi et al., 2012) and other techniques such as electrocoagulation (Singh et al., 

2016). 

This methodology allows identification and optimization of all interactions, including 

quadratic effects, that can exist between the factors involved in the process, specifically 
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the Box-Behnken approach has demonstrated effectiveness in a study of decoloration of 

dyes requiring fewer points to run (Daâssi et al., 2012). The points of this design are 

located in the middle of the edges of the cube centered at the origin and, as had been 

pointed out, it does not include the vertices, such as (1, 1, 1) and (-1, -1, -1) Figure 4 

represents the points used for a Box-Behken methodology: 

 

 

 

 

 

 

The second-order model equation is: 

                                                         

          

Definitions: 

 Experimental region: is the space defined by experimentation ranges used by each 

factor. 

 Operability region: is defined by the set of points or conditions where the 

equipment or process can be operated. 

 The optimum point (optimum process performance) is the best possible 

combination in the entire region of operability (Montgomery and Runger, 2010) 

 

The objective of the RSM is to get the optimum operating conditions to determine the 

parameters with which the factors achieved the highest percentage of removal of dyes, 

through the implementation of response surface methodology. A graphical description of 

the process is shown below (Figure 5). 

 

Figure 4. Box-Behnken geometric 
representation 
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          Figure 5. RSM for dye decoloration 

 

 

Model and design 

 

There is a direct relationship between the type of model that is selected to be adjusted and 

type of design that should be run. The design depends on the type of behavior expected of 

the answer. The designs provide treatments for predicting data to fit a model that 

describes a variable response in an experimental region. For the model, the response 

surfaces are characterized by fitting it to experimental data. The adjusted model for each 

design represents an approximation to the unknown reality of the process.  

For the optimization process, the surface described by the model is explored, adjusted 

and validated, to find the combination of levels of the factors that result in the optimum 

value of the response (Montgomery and Runger, 2010). 

2.6.1 Second-order model 

The specific form taken by the surface depends on the signs and magnitudes of the 

coefficients in the model. The three basic types of surface plots are: 
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Maximum surface plot (mountain).  In this type of graph as the color gets darker the 

response increases (Figure 6) (Minitab 17 support (a), 2017). 

 

Figure 6. Maximum surface plot 

(Minitab 17 support (a), 2017). 

 

Surface with minimum (valley). The response decrease as it approaches the minimum 

point (Figure 7). 

 

Figure 7. Surface with valley 

ReliaSoft (2015) 

 

Surface saddle point (minimax). The intensity of color is related to the response, as the 

color gets darker the response increases (Figure 8). From the stationary point of the graph 

if both factors decrease or increase at the same time the response leads to decrease. On 

the other hand, if one of the factors decreases meanwhile the other increase the response 

tends to increase (Minitab 17 support (a), 2017). 
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Figure 8. Surface with minimax 

(Minitab 17 support (a), 2017). 
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Chapter 3. Materials and methods 

 

3.1 Materials 

3.1.1 Azo-dyes, aniline, benzidine, 3-aminobenzenesulfonic acid 

Acid blue 113 (AB113, 50% purity), direct black 38 (DB38, ≥45% purity), 3-

aminobenzesulfonic acid (97% purity) and aniline (99% purity) were purchased from 

Sigma-Aldrich Chemical Company (Oakville, ON). Crocein Orange G (COG, 90% 

purity) was purchased from MP Biomedicals (Solon, OH). Benzidine (>95% purity) was 

purchased from British drug houses Canada LTD (Toronto, ON).  

3.1.2 Enzymes 

Crude dry solid SBP (E.C. 1.11.1.7, Industrial Grade lot #18541NX, RZ = 0.750.10. 

activity 5 U/mg) was obtained from Organic Technologies (Coshocton, OH). Catalase 

from bovine liver (CAS 9001-05-2, lot #SLBB1797V, activity 2000-5000 U/mg protein) 

was purchased from Sigma Chemical Company Inc. (Oakville, ON). The enzyme and 

catalase were stored at -15°C; the solutions prepared were stored in the fridge at 4°C. 

3.1.3 Reagents 

Hydrogen peroxide (30% w/v) was purchased from ACP Chemicals Inc. (Montreal, QC). 

4-dimethylaminobenzaldehyde (99% pure) was purchased from Sigma-Aldrich (Oakville, 

ON). 

3.1.4 Buffer and solvents  

Analytical grade sodium acetate, monobasic and dibasic sodium phosphate, sodium 

bicarbonate, concentrated hydrochloric acid (HCl), glacial acetic acid were purchased 

from ACP Chemicals Inc. Sodium carbonate (>99.5% purity), sodium sulfite (>98% 

purity) were purchased from Sigma-Aldrich. HPLC grade acetonitrile was obtained from 

Fisher Scientific and ammonium acetate HPLC grade was purchased from sigma-Aldrich 

(Ottawa, ON).  

3.1.5 Others 

Filtropur S 0.2 syringe filters, for sterile filtration, 0.2 µm pore size were purchased from 

Sarstedt, Montreal. Iron filings (40-60 mesh, MSDS IX0210, for AB113 experiments), 
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cobalt chloride, Fisherbrand P8 Qualitative filter paper, magnetic stir bars in different 

sizes were obtained from Fisher Scientific Company (Ottawa, ON). Iron filings (40-60 

mesh, MSDS IX0210, for DB38 experiments) were purchase from Innovating science 

through Fisher Scientific. 

 

3.2 Analytical and laboratory equipment  
 

 3.2.1 UV-VIS Spectrophotometry  

An Agilent 8453 UV-Visible spectrophotometer (λ range of 190 -1100 nm and 1 nm 

resolution) controlled by a Hewlett Packard Vectra ES/12 computer was used. Quartz 

glass spectrophotometer cuvettes with 10 mm light path type 104-QS were purchased 

from Hellma (Concord, ON). 

3.2.2 HPLC (High Performance Liquid Chromatography)  

Product identification and dye degradation measurements were analyzed by an HPLC 

instrument from Waters Co. (Mississauga, ON) with a Model 2487 dual-wavelength 

absorbance detector, Model 1525 binary HPLC pump and Model 717 autosampler 

operated by Breeze 3.3 software. A Waters Symmetry C18 reverse-phase column (5 μm, 

4.6 X 150 mm) was used. For mobile phase ammonium acetate 5 mM and acetonitrile 

were used. 

3.2.3 Total Organic Carbon (TOC) analysis  

TOC was determined by a Shimadzu model TOC-L CPH Total Carbon Analyzer. The 

analyzer gives the TC, IC and TOC in mg/L. Adequate calibration curves were selected 

from TOC instrument done previously by Bill Middleton, Lab technician. 

 3.2.4 Sonicator  

Mixing during zero-valent iron treatment of azo-dyes was done using a Sonicator SC-

101TH (volts 110-120, 50 /60 Hz, 2.3 Amps) from Sonicor Instrument Corporation. 

3.2.5 Centrifuge and pH meter 

The centrifuge was Corning LSE compact centrifuge (New York, USA). The pH meter 

used an Oakton pH/CON 700 benchtop meter (pH range -1.99 to 16.00, pH resolution 
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0.01), with an Orion pH probe (9110DJWP, Ag/AgCl double junction, glass body) (IL., 

USA). 

3.2.6 Software 

For the response surface methodology and Michaelis-Menten kinetics adjustment Minitab 

17 was used for all dyes. 

 

3.3 Analytical methods 
All experiments were run in triplicates, unless otherwise stated, at room temperature and 

standard deviations were calculated and denoted as error bars (error bars that can´t be 

seen are hidden by the icons). 

3.3.1 Soybean Peroxidase (SBP) Activity Assay 

A time-based colorimetric measurement developed by Caza et al., 1999 was used to 

determine the SBP activity, according to the reaction: 

 

                 
   
→                                 

 

SBP was mixed with 2.4 mM 4-AAP (4-aminoantipyrine), 10 mM phenol, 0.2 mM H2O2 

and pH=7.4 (phosphate buffer, 50 mM),   the mixture produce a pink chromophore with a 

maximum absorption at 510 nm and the enzyme activity can be measured through the 

absorbance increase over a certain time. As a definition, 1 unit of activity (U) is defined 

as the number of micromoles of H2O2 converted per minute at pH 7.4 at room 

temperature, under the conditions of the assay. 

The test consists of the addition of 50 μL diluted SBP to 950 μL reagent in the cuvette. 

The formation of the chromophore during the first 30 seconds (cycle time 5 seconds) was 

monitored by the spectrophotometer and the activity was calculated using the kinetic rate 

calculation function built into the software. 

3.3.2 Color reduction  

Stock solutions of DB38 and AB113 were made up at 1 and 2 mM with deionized water, 

respectively.  Then, a 1 mM (AB113) and 0.5 mM (DB38) stock solution were made.  
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For these new stock solutions, 40-fold and 20-fold dilutions were analyzed by UV-VIS 

spectrophotometer to determine λmax for maximum absorbance for both dyes.  For 

calculation of the color remaining after enzymatic treatment and two-step process, initial 

color (Ai) as well as final color (Af) were measured at λmax and percent color remaining 

was calculated as follows:   

                             
  

  
  

 

3.3.3 Anilines colorimetric assay 

A modified method of Oren et al. (1991) was used. Aniline was assayed colorimetric by 

reaction with p-dimethylaminobenzaldehyde.  

To 2.25 mL of sample (proper dilutions were made), 0.026 mL of 1 M HCl was added, 

and then 0.62 mL of ethanol, 0.26 mL of 5% p-dimethylaminobenzaldehyde in ethanol, 

and 0.26 mL of 15.7% citric acid in 6% NaOH were added. The samples were then 

measured at 440nm. Calibration curves were done with aniline to express the results as 

total amines as aniline. The spectrophotometer was blanked with the reagent blank (2.25 

mL of water, 0.026 mL of 1 M HCl, 0.62 mL ethanol, 0.26 mL of 5% p-

dimethylaminobenzaldehyde in ethanol, and 0.26 mL of 15.7% citric acid in 6% NaOH) 

and then measurements were done every minute until the maximum absorbance was 

reached, to determine the time of the reaction for color development (10 minutes). 

3.3.4 Product determination by HPLC 

Aniline determination was done with 1 mL/min flow, 60% of 5 mM ammonium acetate 

and 40% acetronitrile at 280 nm. For 3-aminobenzesulfonic acid, with 1 mL/min flow the 

mobile phase was 50% of 5 mM ammonium acetate and 50% acetronitrile at 235 nm. For 

COG with 1 mL/min flow, the mobile phase was 60% of 5 mM ammonium acetate and 

40% acetronitrile at 482 nm.  

For DB38 dye was 0.7 mL/min with 50% of 5 mM ammonium acetate 5 mM and 50% 

acetronitrile at 520 nm. For AB113 it was used 0.5 mL/min with 50% of 5 mM 

ammonium acetate 5 mM and 50% acetronitrile at 565 nm. 
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3.3.5 TOC analysis  

TOC analyses were done on batch reactor experiments run under the optimum conditions 

for direct enzymatic treatment and the two-step process in order to compare both 

processes. Since optimum pH was, for both dyes, in the low range (3.6 and 4.0) pH was 

adjusted with HCl to avoid the carbon from acetate-acetic acid buffers. Samples were 

collected and micro-filtered, after proper dilution they were measured. The instrument 

was allowed to run 3 milli-Q water injections. Three injections were used for each 

reading and the average was recorded. TOC of distilled water was measured before the 

sample analysis.  

3.3.6 Buffer preparation 

The buffers used in this study were prepared based on Gomori’s methods (Gomori, 

1955). Sodium phosphate buffer (pH range from 6.0-8.0) acetate buffer (pH from 3.0-

5.6), and carbonate-bicarbonate buffer (pH 9.2 and 10.0) were used. 

3.3.7 Enzyme stock solution preparation 

SBP stock solution was prepared by weighing 1.4 g solid enzyme and mixing with 100 

mL distilled water for 24 hours; then the mixture was centrifuged for 25 min at 4000 rpm. 

The supernatant was taken and stored at 4 ℃. Catalase stock was prepared as 0.5 g/100 

mL mixing for 4 hours then stored at 4 ℃. 

3.3.8 Batch reactors for color reduction and dye degradation. Single- step process 

A total volume of 20 mL was used for batch reactors to determine the decoloration and 

degradation of the dyes. Parameters optimized were: pH, H2O2 concentration, enzyme 

concentration, and reaction time. The initial concentrations of dye were 1 mM for AB113 

and 0.5 mM DB38. Buffer concentration was the same for all experiments, 40 mM, using 

acetate (pH 3.5-5.0) or phosphate buffers (pH 6.0-8.0). Reactors were continuously 

mixed during 3 hours, unless otherwise stated, using a Teflon-coated magnetic stir bar. At 

the end of the reaction, 100 µL of catalase solution was add to break down the H2O2 

remaining to stop the reaction. AB113 samples were microfiltered and measured, DB38 

samples where first centrifuged (25 minutes for 5000 rpm) then microfiltered and 

measured. TOC measurements were done only for samples obtained under optimal 

reaction conditions.  
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3.3.9 Iron preparation 

All the iron used in this research was pre-treated by soaking the filings with 10% HCl for 

20 minutes to remove metal oxides from the surface; this allows the substrate to have a 

higher surface area for contact during the process (Agrawal and Tratnyek, 1996).  Then, 

the iron was washed four times with 15 mM carbonate buffer (pH 9.5) and 1 mM sodium 

sulfite (to make the solution anaerobic) this to remove the metal oxides and all chlorides. 

After this, it was washed again four times with a 20 mM sodium sulfite solution (with 

0.1% w/w cobalt chloride with respect to sodium sulfite) to remove excess alkalinity and 

prevent contact with oxygen. The final iron was stored in the 20 mM sodium sulfite 

solution with 0.1% w/w cobalt chloride to preserve anaerobic conditions. 

3.3.10 Iron pretreatment- enzymatic treatment. Two- step process 

First, reactors were set up to decolorize AB113 and DB38 using iron filings (previously 

conditioned as described in 3.3.9) by azo cleavage obtaining products like aniline and 

benzidine for DB38 and 3-aminobenzesulfonic acid for AB113. The amount of iron was 

optimized for maximum decoloration; varying the amount of iron and reaction time in a 

40 mL glass vials with screw cap. The amount of iron (1, 1.5 or 2 g) was added to the vial 

and sodium sulfite (with 1%w/w cobalt chloride) to make anaerobic conditions. Since 

Fe
+2

 and sodium sulfite (Na2SO3) from the zero-valent iron reduction can interfere with 

the enzymatic treatment, the reaction solution was aerated before SBP treatment to 

precipitate Fe
+2

 as Fe
+3

 and Na2SO3 as Na2SO4. For these experiments tap water was 

used, taking advantage of its buffering capacity (it was left overnight to dissipate any 

chlorine). The samples were mixed in a sonicator water bath and samples were measured 

every 15 minutes. The vials were allowed to settle the iron by placing them on a magnet 

and then the experiment was microfiltered and measured to determine color remaining 

(UV-Vis spectrophotometer) aniline, benzidine and 3-aminobenzenesulfonic acid 

formation (HPLC), as well as total amines (as aniline) using the modified method of  

Oren et al. 1991 (section 3.3.3). 

Once the measurements were done, 20 mL batch reactors were set up with the products 

obtained before. The initial conditions were: for AB113, 0.85 mM of total amines and 0.8 

mM 3-aminobenzenesulfonic acid; for DB38, 0.33 mM aniline and 0.35 mM benzidine as 

well as 1.5 mM amines as aniline.  Optimization for pH, H2O2 and enzyme concentration 
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were done in order to remove aniline, benzidine, 3-aminobenzenesulfonic acid and total 

amines as aniline, the optimization process was done as described for the single-step 

process. TOC measurements were done only for samples obtained under optimal reaction 

conditions. 

3.3.11 Kinetics 

Initial velocities were measured for AB113, DB38 and COG varying the substrate 

concentrations and SBP but keeping the same H2O2 concentration. Individual batches 

with 10 mL total volume were run with 40 mM optimum buffer for each substrate (pH 

3.6, 4.0, and 8.0 for DB38, AB113 and COG, respectively). The monitoring was done 

until adequate data was obtained to determine the initial rate (around 10-15% 

conversion). Samples were measured in the spectrophotometer at optimum pH for each 

substrate; all samples were microfiltered before measured. Minitab 17 was used to 

calculate the Michaelis-Menten equation. Lineweaver-Burk plot was done with Microsoft 

excel 2010, to provide estimates KM and Vmax. 

3.3.12 Product identification after single-step process. 

COG (Figure 3) was used as a model azo-dye for product identification after enzymatic 

treatment for its high purity (90%) and simpler structure to avoid any interference. 

First, HPLC was used to identify a possible product from azo-cleavage of COG, aniline. 

Several concentrations of SBP and H2O2 were tested in order to determine the amount of 

aniline formed.  HPLC technique is described in section 3.3.4. Spiked solutions with pure 

aniline (1 mM) were compared to non-spiked solutions for aniline concentrations. 

Second, EI-MS (instrument Xevo G2-XS Tof) analysis was conducted in order to 

confirm the presence of aniline after enzymatic treatment; it was run in positive and 

negative modes with untreated and treated dye sample and appropriated blanks and 

standards samples. The measurements were completed using electrospray ionization in 

both positive and negative modes (ESI (+) and ESI (-)).  All measurements were of a 1 µL 

injection into a sample loop with a constant flow of 50:50 water: acetonitrile with 0.1% 

formic acid. For ESI (+), solutions were prepared in 50:50 H2O:CH3CN with 0.1% 

formic acid and for ESI (-) no acid was included for the sample solution. 
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3.3.13 Response-surface methodology 

First, a tentative first-order model (the first-order stage) was sought with the parameters 

defined by literature review as those most likely to significantly affect the color removal 

of azo-dyes by enzymatic treatment (pH, enzyme and H2O2 concentrations) (Mazloum, 

2014). This is to confirm the significant influence of the selected factors on the response 

variable to optimize and preliminarily characterize the surface type of response, running a 

first-order design with points to the center, to detect the presence of curvature, which will 

identify if the system is a second-order model.  

After this a more complete controlled study of the significant factors was done. This 

study will allow confirmation of the influence of the factors in maximizing the percent 

removal of the dye, and to estimate the regression model that best describes the behavior 

of the effect of these factors and their interactions, and to determine if the surface shows 

curvature. To achieve these objectives, a full factorial design by 2
3
 repetitions at the 

center was proposed and developed with 2 replicates of each treatment (as recommended 

for a design 2
3
) (Gutiérrez and De la Vara Salazar, 2008), with 3 repetitions at center and 

three levels for each factor . 

Due to the presence of curvature, the next step was to do the search II or second-order 

model, the main objective of this stage is to model the behavior of the process in a very 

precise and relatively small region, to determine the combination of factors most likely to 

be considered optimal. To characterize and analyze in more detail the curvature detected 

within the experimental region, the number of experiments were increased, for this, 

additional points which are located in the middle of the edges of the cube centered at the 

origin were selected and run, to study main effects, double interactions and quadratic 

effects to be included in the fitted model. The second-order model was obtained, 

according to the analysis of variance (ANOVA), the significant linear, quadratic and 

interaction effects were identified and those terms that were not significant were 

eliminated and the adjusted R
2
 of the model was calculated, then the one which has the 

best fit was chosen to represent the response surface. It is preferred to select the model 

with all terms because a hierarchical model provides greater stability. 

 A Box-Behnken design was used, since it requires fewer runs, compared to other designs 

like central composite design (CCD), and consequently resource consumption was 
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reduced and treatments levels were easier to obtain. After this, the model was analyzed 

with a confidence level of 95% for the 3 factors and their interactions, checking the p-

value as well as the capacity predictor (fitted R²).  Subsequently mathematical model was 

found. ANOVA was used to compare statistically the adjusted design against the 

previous second-order design and choose the one that best describes the surface of the 

experimental region. 

Once the model was properly fitted to the second-order model, debugged and validated, 

the surface described by the model was explored to find the combination of levels in 

which the factors result in an optimal value of the response. The response surface allows 

visual inspection of the average response in a certain area (the design area) of the factors 

of interest and evaluation of the sensitivity to these factors. Surface and contour plots for 

the experimental area were obtained and analyzed. 

Using the integrate option in Minitab 17 for response optimization, the best combination 

of values was found for the factors that are in the experimental region, following the 

fitted model, to obtain the lowest possible percent dye remaining. This function allows 

identification of the combination of factors that optimize the response (Minitab support 

(d), 2017) 

3.4 Sources of error 

The experiments done in this investigation are affected by systematic and random errors. 

All experiments were run in the presence of blanks as well as standards run in between 

samples to ensure precision of the machines. All experiments were run in triplicates, 

unless otherwise stated, to reduce human error. All graphs show the standard deviation as 

error bars, those graphs in which error bars that can´t be seen are hidden by the icons 

(standard deviation less than 1%). SBP activity was checked daily since it is affected by 

the room temperature and reagent age (the experiments were done 1 hour after preparing 

the enzyme reagent). Equipment such as pipettes, balance, pH meter were calibrated 

before use. 
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Chapter 4. Results and discussion 

 

4.1 Decoloration with single-step process 

A single-step process was developed to decolorize AB113 and DB38 (section 3.3.8) 

based on absorbance decrease at the maximum absorption wavelength. The maximum 

wavelength for AB113 was 565 nm in all buffers; with the exception of pH 3.6 at which 

it is 536 nm, therefore, a separate calibration curve was determined for this pH (see 

Appendix A, Figure A.1 and A.2). The maximum wavelength reported by the producer 

(Sigma-Aldrich) is 565 nm. For DB38 the maximum wavelength was 520 nm, 

independent of the buffer and pH, therefore the same calibration curve was used for all 

pHs (see Appendix A, Figure A.3). The optimization is done respect to efficiency in 

terms of color reduction. Optimizations for pH and peroxide concentration were done 

under stringent conditions with respect to enzyme concentration (where the % remaining 

was between 25% to 40%) to provide easier discerning of the optimal point or range for 

the varied parameter. The figures for pH, H2O2 and SBP optimizations for both azo-dyes 

show lines that do not represent a model fit but are simply a visual aid. 

 

4.1.1 pH optimization 

Dye degradation using enzymatic treatment has been proven to be pH dependent (Kalsom 

et al., 2013, Mazloum et al., 2014; Chiong et al., 2016) which is different for each 

enzymatic reaction, depending on the substrate and reaction conditions. The optimum pH 

is the one that satisfy the required ionization states of the critical amino acids residues 

(histidine and arginine) present in the enzyme, which value guarantees the best 

conformational state of the enzyme for the catalysis (Al-Ansari et al., 2011). For AB113, 

different pHs were tested (range 3.6 to 8.0) with the same concentration of enzyme, 

H2O2, and buffer. As be seen in Figure 9, the optimal pH is located in the range from 3.5 

to 4.5; specifically the optimum pH was 4.0. It was decided to study the pHs of 4.0 and 

4.6 since the difference of % remaining was only 2.7%, for enzyme and H2O2 

optimization. 



34 
 

 

 

Figure 9. pH optimization for 1 mM AB113 with 2.0 U/mL SBP, 2.5 mM H2O2, 3 hour reaction at room temperature 

 

For DB38, also different pHs were tested (range 2.6 to 8.0) seen in Figure 10. As it can 

be seen (Figure 10) the lowest percent remaining was obtained in the acidic pH range 

specifically 3.6 and 4.0. For further experiments a pH of 3.6 was chosen. 
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Figure 10. pH optimization for 0.5 mM DB38 with 2.0 U/mL SBP, 2.5 mM H2O2, 3 hour reaction at room 
temperature 

As seen in Figures 9 and 10, the behavior for both azo-dyes is similar, where the best 

performance is at acidic conditions. Other authors have found same tendency regarding 

pH optimization of azo-dyes with peroxidases: Kalsom et al. (2013) found that the 

optimum pH for Trypan Blue was in the acidic range using SBP. The optimum pH was 

4.0 but pH 3.0 and 5.0 showed almost the same behavior. Ulson de Souza et al. (2007) 

found that the optimum pH range for Remazol Turquoise Blue was 4.0–5.0 using 

HRP.  Sadhanandam et al. (2013) decolorize AB113 with HRP; it was found that the 

optimum pH was 6.6. However, pH 4.0 and 9.0 had similar results. Chiong et al. (2016) 

also studied an azo-dye (methyl orange) with SBP achieving a maximum of 81.4% 

decoloration pH 5.0, with higher pH the decoloration decreased. Thus the best 

performance was under acidic conditions (Kalsom et al., 2013; Ulson de Souza et al., 

2007; Sadhanandam et al., 2013; Chiong et al., 2016; section 4.1.1).  

4.1.2 H2O2 optimization 

H2O2 is a major factor in the enzymatic reaction, since it is a co-substrate that initiates the 

enzyme mechanism. If the H2O2 is in excess it can cause enzyme inhibition and if it is at 

low enough concentration, it acts as a limiting factor (Dunford, 1999). 
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For AB113, different concentrations of H2O2 were tested with 3 U/mL of enzyme at pH 

4.0 and 4.6 as shown in Figure 11. 

 

Figure 11. H2O2 optimization for 1 mM AB113 at pH 4.0 and 4.6 with 3.0 U/mL of SBP, 3 hour reaction at room 
temperature 

 

As seen in Figure 11 for AB113, the two different pHs, reached the lowest percent 

remaining and then a plateau phase is presented, meaning that after that point no more 

significant removal can be achieved, even at higher H2O2 concentrations the % remaining 

start to increase in around 2.5%. This can be explained because the H2O2 is a 

stoichiometric co-substrate of the SBP, when the concentration of H2O2 is low, it limits 

the extent of reaction but if it is too high the H2O2 (and the substrate concentration is low) 

can oxidize the enzyme causing its inactivation (Ali et al., 2013; Steevensz et al., 2014). 

The 10-20% dye remaining can also be due to an artifact of the colorimetric methods, the 

dyes DB38 and AB113 are only 45 and 50 % pure, respectively, which can lead to 

colored products interfering in the spectrometry measurement.  

For both pH 3.6 and 4.0 the lowest remaining percentage was achieved with 2.5 mM 

showing 9.0 and 14% color remaining, respectively. 
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For DB38, also different concentrations of H2O2 were tested with same amount of 

enzyme (3.0 U/mL) with pH 3.6.  As seen in Figure 12, the concentration required was 

2.5 mM for a 3% color remaining, after this, as for AB113, no significant increase was 

achieved. 

 

Figure 12. H2O2 optimization for 0.5 mM DB38 at pH 3.6 with 3.0 U/mL of SBP, 3 hour reaction at room temperature 

 

Kalsoom et al. (2013) found that when 64 µM H2O2 was used to decolorize 10-40 mg/L 

(0.011 mM- 0.046 mM) of dye, a maximum percent degradation of 60% was achieved. 

For more than 90% degradation a step-wise addition of H2O2 was required (total time 

required was 15 minutes with addition of H2O2 every 3 minutes).  Chiong et al. (2016), 

found for methyl orange dye (30 mg/L or 0.09 mM) an optimum of 2 mM H2O2 achieved 

approximately 80% decoloration. 

 4.1.3 Enzyme optimization 

As mentioned above, pH 4.0 and pH 4.6 (pH optimization; Figure 9) are the pH optima, 

with 2.7% difference; for this reason enzyme optimization was done at both pHs as for 

H2O2 optimization. 
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There is an optimal ratio of enzyme and substrate to achieve the maximum removal 

(Kalsoom et al., 2013). For AB113, different concentrations of enzyme were tested at 

pHs 4.0 and 4.5 and using the optimum H2O2 concentration found before (2.5 mM, 

respectively) (Figure 13).  The best performance, 6% remaining, was achieved. The 

striking feature of these curves is that the first 60-85% color removal was achieved with 

0.10 U/mL SBP, while additional color removal was only achieved to a plateau level with 

10-fold more enzyme concentration. 

 

 

Figure 13. Enzyme optimization with for 1 mM AB113 with pH 4.0 and 4.6 with 2.5 mM H2O2, respectively, 3 hour 
reaction at room temperature 

 

As it can be observed, as the enzyme concentration increase the color removal increase 

(% remaining decrease), but after certain concentration there is no change in the % 

remaining, this can be because there are not enough dye molecules to continue the 

reaction, which means there is no need to add more concentration of enzyme or as 

explain in section 4.1.2 due to the possible artifact cause by the impurities of the dye. 

A last experiment was run to confirm the optimum pH (due to the results in section 4.1.1) 

and, as seen in Figure 14, the optimum pH was again pH 4.0. 
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Figure 14. Second pH optimization for 1 mM AB113 with 2.0 mM H2O2 and 2 U/mL SBP, 3 hour reaction at room 
temperature 

 

For DB38, different concentrations of enzyme were tested (Figure 15) with 2.5 mM and 3 

mM H2O2 (as they were 1% different in the optimization), achieving 3% color remaining 

with 3 U/mL and 2.5 mM H2O2, higher concentration of enzyme does not modify the % 

color remaining in a linear manner. 

0

5

10

15

20

25

30

3.5 4.5 5.5 6.5 7.5 8.5

%
 c

o
lo

r 
 r

e
m

ai
n

in
g 

pH 



40 
 

 

Figure 15. Enzyme optimization for 0.5 mM DB38 with pH 3.6, 2.5 mM H2O2 or 3 mM H2O2, 3 hour reaction at room 
temperature 

Chiong et al. (2016) needed 0.186 U/mL (0.5 mL of 0.373 U/mL SBP) of SBP at pH 5 

with 2 mM H2O2 to treat 0.09 mM (30 mg/L) methyl orange dye during one hour reaction 

(where one unit of enzymatic activity (U) is the amount of enzyme that catalyses 

1.0 μmol of H2O2 per min at 25 °C and pH 6.0. The substrate concentration used in this 

thesis is 6 to 12 times more that the used by Chiong et al. (2016) which result in higher 

concentration of SBP needed. 

To explain the possible artifact of the color remaining, an HPLC analysis was done at the 

optimal conditions for both dyes. Under HPLC (for AB113) with pH 4, 2.5 mM H2O2 and 

1.5 U/mL it was achieve 3 % dye remaining while by spectroscopy, under the same 

conditions, it was 6% color remaining. For DB38 at pH 3.6, 3 mM H2O2, 3 U/mL the dye 

degradation by HPLC was less than 2% remaining while by spectroscopy was 2.39%, 

since this percentage remaining where lower than 5%, other conditions were tested to 

prove that the percentage dye degradation was higher (HPLC) than the color reduction 

(spectroscopy). For pH 3.6, 3 U/mL and 1.0 mM H2O2 HPLC dye degradation was 26.3% 

and spectroscopy was 28.1 % remaining (See Appendix A, Figures A.4 and A.5) 
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There was no color removal by the enzyme in the absence of hydrogen peroxide, for both 

dyes. This situation indicates that the decolorization occurs exclusively as a function of 

the catalytic activity of the enzyme.  

4.1.4 Time dependence 

Figure 16, shows the time dependence for AB113 decoloration using 2.5 mM H2O2 and 

1.5 U/mL SBP as well as 0.05 U/mL SBP with pH 4. For the optimal conditions, with 1.5 

U/mL, the decoloration is done under the first minutes of reaction, for this reason 

stringent condition of SBP was used. Under these conditions reactions is complete at 60 

minutes, after this time there is no change in the percent remaining presumably due to 

enzyme inactivation as seen in Figure 16. 

 

Figure 16. Time dependence for 1 mM AB113 using 2.5 mM H2O2 and 0.05 U/mL or 1.5 U/mL at pH 4.0, at room 
temperature 

 

As done for AB113, for DB38 2.5 mM H2O2 and 2.0 U/mL and 2.5 mM H2O2 and 3.0 

U/mL were used to determine the time dependence of the reaction (Figure 17); is seen,  

the reaction was largely complete in the first minutes of the reaction. At 120 minutes with 

2.0 U/mL SBP, another small decrease was observed, after that it remains stable under 

stringent conditions; this 3% decrease might be a systematic error. For optimal 

conditions, after 4 minutes᾽ reaction, less than 5% color was achieved. 
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Figure 17. Time dependence for 0.5 mM DB38 with 2.5 mM H2O2 and 2.0 U/mL or 3 U/mL at pH 3.6, at room 
temperature 

 

Figure 17 and 18 show that the reactions are faster in the first stages. Onder et al. (2011) 

studied the decoloration of naphthol blue black by HRP, founding that the decoloration 

was fast, during the first 5 minutes 80-90% of dye was decolorize. Chiong et al. (2016), 

found that after 60 minutes reaction there was no further increase in dye degradation, 

caused by the saturation of enzyme active sites. Gholami-borujeni et al. (2013) found that 

after 70 minutes there was not significant change in the dye degradation of Acid Blue 25 

with HRP. 

4.1.5 Initial rates, first-order model for decoloration 

The apparent first-order rate constant and half-life of AB113 was calculated by plotting 

the percent color remaining during the first seconds of the reaction against the Ln of 

percent remaining. As seen in Figure 18 the reaction can be fit to a first-order reaction 

with a R
2 

of 0.9844. The equation of best fit was: 
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Half-life of the substrate means the time at which the substrate is decreased by half of the 

original value and can be calculated for both dyes using the first order reaction. The half 

–life for AB 113 was calculated with the formula: 

           

Where t1/2 was 525 ± 35.6 seconds or 8.76 ± 0.594 minutes 

 

Figure 18. First-order reaction for 1 mM AB113  

Conditions: 0.05 U/mL, 2.5 mM H2O2 and pH 4. At room temperature. Obtained value: k = -0.00132 ± 0.000063 

 

For DB38, Figure 19, the reaction can be also fit to a first-order reaction with a R
2 

of 

0.9835. The half-life for DB38 was 127 ±11.8 seconds or 2.12 ±0.196 minutes. The 

equation of best fit was: 
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Figure 19. First-order reaction for 0.5 mM DB38 

Conditions: 2.0 U/mL SBP, 2.5 mM H2O2 and pH 3.6, at room temperature. Obtain value: k= -0.00544 ± 0.00035 

 

Gholami-Borujeni et al. (2011) determined that the enzymatic reaction of HRP with and 

azo-dye (acid orange 7), was a first-order reaction with an R
2
=0.93. The half-life of 

DB38 is 2.12 minutes which is faster than for AB113 (8.76 minutes) with more enzyme 

concentration for DB38 (40 times more). Table 2 shows the final conditions for 

maximum direct enzymatic treatment. 
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Table 2. Single-step enzymatic process. Optimal conditions for both dyes 

Dye Initial 

concentration 

H2O2 

(mM) 

SBP (U/mL) % 

remaining 

Optimum 

pH 

AB113 1 mM 2.5 1.5 5.20 4.0 

DB38 0.5 mM 2.5 3 3.16 3.6 

 

 

4.1.6 Michaelis-Menten kinetic studies 

Kinetic parameters allow having an understanding of the affinity of SBP for the different 

dyes (substrates). Initial velocities were calculated from the plots of different initial 

concentrations (mM) against time (seconds) (progress curves, Figures 20-22). The curves 

were adjusted to polynomials of second-order using Microsoft Excel program. All 

reactions were done at the optimum pH for each dye AB113, DB38 and COG. For 

AB113 and DB38 the measurements were done every 30 seconds and for DB38 and for 

COG every 60 seconds. 

 

Figure 20. Initial velocities for AB113. Reactions with 0.125 mM H2O2, 0.0015 U/mL SBP and pH 4.0, at room 
temperature 
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Figure 21.Initial velocities for DB38. Reactions with 0.125 mM H2O2, 0.0015 U/mL SBP and pH 3.6, at room 
temperature 

 

 

Figure 22.Initial velocities for COG. Reactions with 0.125 mM H2O2, 0.0025 U/mL SBP and 40 mM pH 8.0, at room 
temperature 

 

Once the initial velocities were obtained, the rate (µM/s) was plotted against the initial 

substrate concentration and fitted to the Michaelis-Menten model directly (Figures 23-25) 
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and to its Lineweaver-Burk lineal transform (Figures 26-28) to obtain the kinetic 

parameters KM and Vmax.  

 The Michaelis-Menten equation is as follows: 

 

  
       

     
 

 

 

Where υ is the velocity of the reaction, Cs is the concentration of the substrate, Vmax 

(maximum initial velocity) which is maximum rate achieve when the enzyme is saturate 

with the substrate, KM (Michaelis-Menten constant) is the concentration of the substrate 

at half of the rate Vmax. 

One transformation of the Michelis-Menten equation to facilitate the calculation of the 

kinetics factors is the Lineweaver-Burk plot which equation is: 

 

 
 (

 

    
)           (

 

  
) 

For this equation it was necessary to plot the reciprocal of the initial velocity against the 

reciprocal of the substrate concentration and adjust to a straight line, Vmax was 

determined as the reciprocal of the intercept of the line in the 1/υ axis and KM was 

determined by multiplying the slope of the line KM /Vmax by Vmax. 
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Figure 23. Michaelis-Menten plot for AB113 

Obtained values: Vmax= 0.11093 (µM/s) ± 0.0055, KM = 20.758 µM ± 2.78 S= 0.0027995 (reactions with 0.125 mM 

H2O2, 0.0015 U/mL and pH 4, at room temperature) 
 

 
Figure 24. Michaelis-Menten plot for DB38. 

Obtained values: Vmax= 0.193(µM/s) ± 0.009, KM = 36.4 µM ± 4.3, S= 0.0029712(reactions with 0.125 mM H2O2, 

0.0015 U/mL and pH 3.6, at room temperature) 
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Figure 25. Michaelis-Menten plot for COG 

Values obtained: Vmax= 0. 0142 (µM/s) ± 0.0004, KM  = 4.66 µM ± 0.45,S= 0.0003568 (reactions with 0.125 mM H2O2 

, 0.0025 U/mL and 40 mM pH 8, at room temperature) 

 

 
Figure 26. Lineweaver-Burk plot for AB113 

Obtained values: Vmax=0.126 ±0.014, KM = 26.3, R2=0.9763(reactions with 0.125 mM H2O2, 0.0015 U/mL and 40 mM 

pH 4, at room temperature) 
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Figure 27. Lineweaver-Burk plot for DB 38. 

Obtained values: Vmax=0.198 ±0.0099, KM = 35.7,  R2=0.9919(reactions with 0.125 mM H2O2, 0.0015 U/mL and 40 

mM pH 3.6, at room temperature) 
 

 

 

 

 
Figure 28. Lineweaver-Burk plot for COG. 

 Obtained values: Vmax=0.015 ±0.00077, KM =5,  R2=0.9918(reactions with 0.125 mM H2O2, 0.0025 U/mL and 40 mM 

pH 8, at room temperature) 
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Table 3 and 4 show the summary of the kinetic parameters for Michaelis-Menten and 

Lineweaver-Burk plot, respectively. 

 

 

 
Table 3.Kinetic parameter for Michaelis-Menten for azo-dyes 

Summary of kinetic parameters fit to Michaelis-Menten equation 

Dye KM (µM) Vmax (µM/s) Vmax/ KM (s) 
enzyme 
(U/mL) 

H2O2 

(mM) s pH 

COG 4.7 ± 0.45 0.014 ± 0.00045 
0.0030 ± 
0.00030 0.0025 0.125 0.00036 8.0 

AB113 21 ± 2.8 0.11 ± 0.0055 
0.0053 

±0.00074 0.0015 0.125 0.0028 4.0 

DB38 36 ± 4.3 0.19 ± 0.0090 
0.0053 

±0.00067 0.0015 0.125 0.00297 3.6 
 

 

 

 

 
Table 4.Kinetic parameters for Lineweaver-Burk plot for azo-dyes 

Summary of  kinetic parameters with Lineweaver–Burk  plot 

Dye KM (µM) Vmax (µM/s) Vmax/ KM (s) 
enzyme 
(U/mL) H2O2 (mM) R2 pH 

COG 5.1±0.34 0.015± 0.0008 0.0029 0.0025 0.125 0.9918 8.0 

AB113 27±3.9 0.13 ± 0.016 0.0046 0.0015 0.125 0.9782 4.0 

DB38 39± 2.7 0.20 ±0.0094 0.0051 0.0015 0.125 0.9919 3.6 

 

The kinetic parameter of KM is an indicator of the affinity of the SBP to the substrate, in 

this case, the azo-dyes. The lower the KM value the higher the affinity (better binding of 

enzyme to the respective substrate). Also, higher the Vmax indicates the reaction is faster. 

Based on direct Michaelis-Menten plots it can be observed that the lowest KM value is for 

COG followed by AB113 and then DB38. Using a double-reciprocal plot, Lineweaver-

Burk plot, has the same trend, and the values are close to those predicted by Michaelis-

Menten equation. The KM value for AB113 if the one that deviates from 21 to 27 for 

Michaelis-Menten and Lineweaver-Burk, respectively. DB38 has the higher catalytic 
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efficiency (Vmax/ KM), using Lineweaver–Burk plot. The R
2 

values ranges from 0.9782-

0.9919.  It can be observed a good correlation between both types of analysis. For 

Michaelis-Menten equation the “s value” is presented. “S value” is calculated by Minitab 

software. This value is known as “standard error of the regression or the standard error of 

the estimate”, which represents the distance from the observed values to the regression 

line. Studies such as the ones performed by Spiess and Neumeyer (2010), that shows how 

using R
2
 or R

2
adj values for non-linear models can lead to wrong conclusions, where only 

between 28-43% of the time is the true model selected. Packages like Minitab does not 

calculate R
2
 for non-linear models, instead it use the “s value” (Spiess and Neumeyer, 

2010). The smaller the “s value” is the best (Minitab support 17 (b), 2017). Lineweaver-

Burk plots introduce error by taking reciprocals, for this it is not the best option for 

parameter estimation. 

Preethi et al. (2013) determined the kinetic parameters for AB113 for free and 

immobilized HRP, using the Lineweaver-Burk plots, the KM value for free HRP was 

0.068 mmol/L, and for immobilized was 0.425 mmol/L .The Vmax value for free HRP was 

0.067 mmol/L.min and for immobilized was 0.048 mmol/L.min. Free HRP has higher 

affinity to AB113 than immobilized which can be due to the lower enzyme activity of 

immobilized HRP. Other authors have studied the kinetic parameters of azo-dyes. 

Rodriguez et al. (1999), determined that the KM value for Reactive Blue dye was 3500-

3900 µM using laccase, the variation depends on the purified enzyme activity (168/170 

U/mg). Others authors, have also investigated other azo-dyes with laccase. With crude 

enzyme, direct black 22, KM value was 102 µM and Vmax was 0.001 μmol/min 

(Michniewicz et al., 2008). 
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4.2 Two-step process. Products and total amines removal for azo-dyes 
 

A two-step process was conducted, for both azo-dyes, in order to compare the 

effectiveness and requirements against the single-step process (described in section 4.1). 

After zero-valent iron treatment three parameters were measured: a product from azo-

splitting (depending on the dye), total amines (as aniline) (see Appendix A. Figure A.6) 

and dye decoloration. Dye degradation by HPLC and TOC were measured under the 

optimal conditions to confirm the level of mineralization of the dye. 

 

4.2.1. Color reduction after zero-valent iron reduction AB113 

For the two-step process, iron reduction (as described in section 3.3.10) was done, 

followed by enzymatic treatment where the parameters pH, H2O2 and SBP concentrations 

were optimized. First, color reduction was optimized using different concentrations of 

zero-valent iron (Fe⁰) (Figure 29). 

 

Figure 29. Color reduction after zero-valent iron treatment of 1 mM AB113 using different Fe⁰ concentrations in the 
presence of 1 mM sodium sulfite. 
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After this optimization, it was decided to choose the conditions around 90% color 

removal. It was chosen for AB113, 1.5 g of iron and 60 minutes reaction time for this 

first stage (11.7 % color remaining). 

For AB113, after iron reduction, three parameters were measured: 3-

aminobenzenesulfonic acid also named metanilic acid (3-ABS) (see Appendix A. Figures 

A.5 and A.6), which is produced after azo-cleavage of AB113 with zero-valent iron 

(Figure 30) (see Appendix A, Figures A.7 and A.8), total amines (as aniline) and color 

reduction. 

 

Figure 30.Azo-cleavage of AB113 by zero-valent iron reduction 

 

The formation of 3-ABS and the dye concentration were measured with time, as seen in 

Figure 31, the concentration of 3-ABS was proportional to the color removal of azo-dye 
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AB113. The mass balance between AB113 and 3-ABS produced, reached 99% after 120 

minutes, suggesting the disappearance of AB113 due to reduction by Fe⁰. 

 

Figure 31.Time course for decoloration of 1 mM AB113 and formation of 3-ABS (mM) after iron reduction using 1g 
Fe° 

 

Similar behavior has been reported by other authors. Nam and Tratnyek (2000) reported 

the formation of sulfanilic acid as a product from iron reduction of Orange II by Fe⁰ in 10 

minutes, result of the azobenzene reduction of the dye (reductive cleavage of the azo-

bond). This reaction might be a step-wise reaction. Where two electrons will be first 

transferred, from the Fe⁰, to transform the azo-dye into a hydrazo-intermediate, then the 

azo-linkage will be further reduced with two more electrons, generating the substituted 

aniline (Nam, 2000; Weber, 1996; Gooding et al., 1996) as seen below: 
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4.2.2 pH optimization, second-step of two-step process. Enzymatic treatment for 

AB113 

 

After iron reduction of 1 mM AB113, with 1.5 g Fe⁰ for 60 minutes, the concentrations 

obtained where: 1.14 mM of 3-ABS, 0.10-0.15 mM AB113, 1.2 mM of total amines. For 

enzymatic treatment (starting with 11.7% color remaining), batch reactor concentrations 

where, on average: 0.80 mM initial concentration of 3-ABS, 0.85 mM of total amines as 

aniline and 0.10 mM of AB113, all parameters were measured every time and the percent 

remaining was calculated based on those measurements. Figure 32 shows the pH 

optimization for the enzymatic-step, based on the 3-ABS formation. As seen in Figure 32, 

the optimum pH was 4.0, based con decoloration and 3-ABS remaining. Optimum pH of 

pure 3-ABS was found to be in the range of 3.6-4.0 (see Appendix B). All the 

optimizations were done under stringent conditions as established on section 4.1. 

 

Figure 32. pH optimization for 0.8 mM 3-ABS with 1.5 U/mL SBP and 2.5 mM H2O2 

 

As seen in Figure 33, pH optimization based on the total amines was also done. The 

optimum pH was also 4.0 for AB113 under those conditions. For this reason, further 

experiments were done at pH 4.0. 
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Figure 33. pH optimization for 0.85 mM total amines with 1.5 U/mL SBP and 2.5 mM H2O2 

 

4.2.3 H2O2 optimization, second-step of two-step process. Enzymatic treatment for 

AB113 

Figures 34 and 35 show the H2O2 optimization for 3-ABS and total amines, respectively. 

As seen in these figures, the color remaining is (with exception of 1.5 mM H2O2) less 

than 5% which is the target percent for this thesis work. However, the lowest 3-ABS 

percent remaining was with 2.5 mM H2O2 to achieve 25% and for total amines 2.5-3.0 

mM H2O2 to achieve 0.2 mM final concentration of total amines (26.2% amines 

remaining). 
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Figure 34. H2O2 optimization for 0.8 mM 3-ABS with 1.5 U/mL SBP at pH 4.0 

 

Figure 35. H2O2 optimization for 0.85 mM total amines with 2.5 U/mL SBP at pH 4.0 

 

The optimum concentration for H2O2 for both parameters was 2.5 mM H2O2, same as for 

the single-step process. 
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4.2.4 Enzyme optimization, second-step of two-step process. Enzymatic treatment for 

AB113 

 

For enzyme optimization, several concentrations of enzyme were tested at optimum pH 

and H2O2 concentration.  As seen in Figure 36, the minimum percent remaining for 3-

ABS was 21% with 1.5 U/mL. 

 

Figure 36.Enzyme optimization for 0.8 mM 3-ABS with 2.5 mM H2O2 at pH 4.0 

 

For total amines, Figure 37 shows the lowest percent remaining achieved was 26% 

remaining with 2.5 U/mL. 
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Figure 37. Enzyme optimization for 0.85 mM total amines using 2.5 mM H2O2 at pH 4.0 

 

In summary, the two-step process for AB113 requires pH 4.0, with 2.5 mM H2O2 and 1.5 

U/mL SBP for 21% remaining of 3-ABS. For total amines, optimal conditions were pH 

4.0 with 2.5 mM H2O2 and 2.5 U/mL for 26% remaining based on total amines (0.2 mM). 

For both conditions, color reduction and dye degradation are at less than 5% remaining. 

Even though the optimum color reduction is reached with this two-step process, the 

appearance of products after iron reduction, such as 3-ABS and total amines are high and 

even under optimal conditions  approximately 20% is remaining for both components. 

The product 3-ABS is a substrate which requires high amounts of SBP and H2O2 and 

does not reach high removal efficiencies; pure 3-ABS (1 mM) required 1 mM H2O2 and 3 

U/mL to achieve around 26% remaining (see Appendix B). Another consideration is that 

after the single-step process the final concentration of total amines is 0.7 mM under 

optimal conditions for color removal, less than 5% color remaining (1.5 U/mL and 2.5 

mM H2O2 at pH 4.0). The starting dye has a concentration of 0.5 mM total amines, which 

means that after enzymatic reaction some product compounds are formed as amines, this 

can be due a possible azo-bond breakage during the enzymatic treatment. Other 

processes, like anaerobic decoloration of Disperse Blue 79, have shown a similar 

behavior of an increase of total amines after treatment indicating the azo-bond cleavage 
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for that process (Melgoza et al., 2004). To obtain more amine removal with a single-step 

process, higher enzyme concentration should be used (Figure 38). At pH 4.0, 2.5 mM of 

H2O2 and 2.5 U/mL SBP lowest amines remaining can be achieved (0.17 mM). It should 

be noted, that the azo-dye concentrations used in this thesis for AB113 and DB38 is in 

the high range (682 mg/L and 391 mg/L). Studies using real wastewater have found 

concentrations in the range of 0-600 mg/L from a cotton textile dyeing wastewater 

treatment plant at Yixing, Jiangsu Province, China (Dai et al., 2016). Concentrations of 

200 mg/L were used in another study, where the concentration was selected as 

approximately the same found in real wastewater in Argentina (Durruty et al., 2015). As 

reviewed by Pandey et al. (2007) and Lade et al. (2015), wastewater containing 10–

200 mg/L of dyes are high colored wastewater.  

 

Figure 38. Total amines after single-step process for 1 mM AB113 with 2.5 mM H2O2 at pH 4.0 

 

4.2.5. Color reduction after zero-valent iron reduction DB38 
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Figure 39. Color reduction after iron zero-valent of 0.5 mM DB38 using different Fe⁰ concentrations in the presence 
of 1 mM sodium sulfite. 

 

For DB38, 2.0 g and 120 minutes for 0.5 mM DB38 were selected, followed by 

enzymatic treatment where pH, H2O2 and enzyme optimizations were done. After iron 

reduction aniline and benzidine are produced as result of the azo-reduction process 

(Figure 40) (see Appendix A.9 and A.10). 
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Figure 40. Azo-cleavage for DB38 after zero-valent iron reduction 

 

After iron reduction process the color remaining was 5.6%, 0.45 mM aniline, 0.48 mM 

benzidine and 2.0 mM total amines. Thus for enzymatic treatment the initial conditions 

were 0.33 mM for aniline, 0.35 mM for benzidine and 1.5 mM total amines. Figure 41 

shows the aniline and benzidine produced after azo-cleavage of DB38 with Fe⁰. This 

behavior is the same as describe by AB113 in this dissertation work and other authors 

(Nam, 2000; Samar 2014) 
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Figure 41.  Time course of decoloration of 0.5 mM DB38 and formation and subsequent formation of aniline and 
benzidine after iron reduction using 1 g Fe° 

 

4.2.6. pH optimization, second step enzymatic treatment for DB38 

 

Color removal is not presented for DB38 graphs as the initial concentration (for the 

enzymatic process) was already 5% color remaining. Figure 42 shows the pH 

optimization based on total amines. 
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Figure 42. pH optimization of 1.5 mM total amines with 0.5 U/mL SBP and 1 mM H2O2 

 

As seen in Figure 42, for pH 5.0, 6.0, 7.0 and 8.0 the total amines remaining are less than 

5% , for this reason another pH optimization was done to create more stringent conditions 

and determinate the optimum pH (Figure 43). 

 

Figure 43. pH optimization of 1.5 mM total amines from 0.5 mM DB38 with 0.5 U/mL SBP and 0.5 mM H2O2 
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It can be observed that the optimum pH for total amines was 5.0. Authentic aniline and 

benzidine optimum pHs have been reported as pH 5.0 (Mazloum, 2014; Altahir et al., 

2015). 

Figure 44 and 45 shows the pH optimization for products aniline and benzidine. As seen 

in Figure 44, the optimum range was 5.0-7.0 with less than 8% remaining. As done for 

total amines, more stringent conditions were chosen to determinate the optimal pH. 

Figure 45 show that the optimum pH was 5.0.  

Since this pH (pH 5.0) was optimum for total amines, aniline and benzidine further 

experiments were done with this pH. 

 

 

Figure 44.pH optimization for 0.33 mM aniline and 0.35 mM benzidine with 0.5 U/mL SBP and 1 mM H2O2 
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Figure 45. pH optimization for 0.33 mM aniline and 0.35 mM benzidine with 0.5 U/mL SBP and 0.5 H2O2 

 

As seen under the conditions in Figure 45, benzidine appears as well as aniline after 

enzymatic treatment. However, benzidine is not the “limiting factor” (since it requires 

less enzyme and peroxide concentration than aniline). It is noticed that aniline is a 

substrate which requires more enzyme and H2O2 concentrations than benzidine. 

Benzidine has been proven to be an enzyme substrate where 0.1 mM pure benzidine 

requires 0.43 mU/mL SBP, and 0.15 mM H2O2 at pH 5 for single-step enzymatic 

treatment (Altahir et al., 2015). Aniline, has been proven to be also a SBP substrate 

where 0.6 U/mL of SBP and 1.5 mM H2O2 at pH 5.0 for around 95% removal.  In Figure 

45 seen to have run out H2O2, for this reason a final pH optimization was done with lower 

amount of enzyme and higher amount of H2O2, to prove the behavior mention above 

which indicates that the control factor will be aniline (Figure 46). 
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Figure 46.pH optimization for 0.33 mM aniline and 0.35 mM benzidine with 0.2 U/mL SBP and 1 mM H2O2 

 

Even though, the aniline is confirmed to be the “limiting factor”, benzidine will be 

measured after every experiment. 

Figure 47 shows the enzyme optimization for the products aniline and benzidine, where 

for all the concentrations benzidine were less than 5% remaining, as for aniline 0.6 U/mL 

is required. 

 

Figure 47. Enzyme optimization for 0.33 mM aniline and 0.35 mM benzidine with 1 mM of H2O2 at pH 5.0 
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As seen in Figure 48, the optimum enzyme concentration for total amines is in the range 

of 0.5-0.6 U/mL SBP for less than 5% remaining. However, with 0.1-0.3 the % remaining 

was close to 5% (5.9 % - 5.3 %). 

 

Figure 48. Enzyme optimization for 1.5 mM total amines with 1 mM of H2O2, pH 5.0 

 

Since for aniline the optimum enzyme concentration is 0.6 U/mL and for total amines is 

in that same range, 0.6 U/mL was chosen for H2O2 optimization for both parameters. 
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Figure 49. H2O2 optimization for 0.33 mM aniline and 0.35 mM benzidine with 0.6U/mL SBP 

 

Figure 50. H2O2 optimization for 1.5 mM total amines with 0.6U/mL of SBP 
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measured in this thesis work are amines as aniline which might be the reason for not 

achieving the 100% mass balance. A similar mass balance have been detected, Elisangela 

et al.(2009) measure aromatic amines as aniline-2-sulfonic acid, obtaining mass balance 

from 40-100% for mono and diazo dyes with Staphylococcus arlettae strain VN-11. 

However, a mass balance for AB113 and the 3-ABS produced was 110% and for DB38 

for aniline and benzidine produced were 90 and 96%, respectively. 

 

Table 5.Two-step process optimal conditions for AB113 and DB38 

Azo-
dye 

Fe⁰ 
conditions 

SBP 
(U/mL) 

H2O2 
(mM) 

pH Color 
remaining 

% 

Dye 
remaining 

% 

Total 
amines 

remaining 
% 

Product 
remaining 

% 

AB113 1.5 g 
/60min 

1.5 2.5 4.0 ≤ 5 ≤ 5 NA 21* 

AB113 1.5 g 
/60min 

2.5 2.5 4.0 ≤ 5 ≤ 5 26 31* 

DB38 2 g/ 120 
min 

0.6 1.1 5.0 ≤ 5 ≤ 3 ≤ 5 ≤ 5** 

* 3-  aminobenzenesulfonic acid 

** Aniline and benzidine 

4.3 TOC removal for single-step and two-step process 
 

The total organic carbon value is indicative of mineralization of the dyes under single 

(enzymatic treatment) or two-step process (iron reduction then enzymatic treatment). To 

confirm that some of the dye was being mineralized to CO2, TOC analyses were carried 

out on untreated solution as well as under the optimal conditions for decoloration and 

degradation with single and two-step processes. The TOC data was converted into TOC 

remaining using the initial % TOC value of the untreated samples for both processes (see 

Appendix, Figure A.11). 

 By one-step enzymatic reaction under the optimal conditions for dye decoloration and 

degradation, for AB113 the average TOC remaining was 70% while for DB38 was 

22.6%.  For the two-step process under optimal conditions, the TOC remaining for 

AB113 was 31.9 % and for DB38 was 10.4% (Figure 51). 
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Figure 51. TOC remaining for single and two-step processes for AB113 and DB38. 

Single-step: AB113 1.5 U/mL, 2.5 mM H2O2 and pH 4.0; DB38 3U/mL, 3mM H2O2 and pH 3.6. Two-step process: 

AB113, 2.5 U/mL, 3 mM H2O2 and pH 4.0; DB 38, 0.6 U/mL and 1.1 mM H2O2 and pH 5.0 

 

Ali et al. (2013) used SBP with a redox mediator to degrade the azo-dye Crystal Ponceau 

6R, CP6R. For a sample with 100% dye decoloration of 400 ppm CP6R (0.80 mM), 35% 

TOC remaining was achieved. Matto and Husain (2007) demonstrated the decoloration of 

direct dyes with salt fractionated turnip proteins in the presence of redox mediators 

Hydroxybenzotriazole and Violuric acid, achieving TOC remaining between 10-30%. 

Based on this thesis work and past work in the same research group (Mazloum, 2014), 

the two-step process is observed to work generally better for azo-dyes for which the 

purity is low and the products after iron reduction process are substrates for the enzyme. 

DB38 with purity ≥45% or AR4 (Acid Red 4) with 45% purity (Mazloum, 2014) worked 

better with iron reduction process as a pretreatment.  DB38 products aniline and 

benzidine are substrates of enzyme which requires low concentration of SBP and H2O2, 

similar behavior was seen for o-anisidine product of AR4. Even though AB113 purity 

was only 50%, the product like 3-ABS is not a good substrate for SBP. 
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4.4 COG azo-cleavage evidence 
 

Several authors have found evidence that suggests an azo-cleavage with peroxidases 

(Onder et al., 2011; Kalsoom et al., 2013; Ali et al., 2013; López et al., 2004).  Onder et 

al. (2011) used HPLC-UV-ESI-MS to identify possible products of the enzymatic 

reaction of HRP with azo-dye naphthol blue black. The results suggest that decoloration 

of the dye was via reductive cleavage of the azo-bond. Kalsoom et al. (2013) used 

HPLC-DAD and LC-MS/MS to develop a mechanism of degradation of a diazo Trypan 

dye with SBP. It was found that SBP degradation was via symmetrical azo-cleavage and 

following radical-initiated ring opening of the metabolites. Ali et al. (2013), studied 

mono-azo Crystal Ponceau 6R (CP6R azo-dye)  in the presence of a mediator HOBT, 

with SBP, using MS/MS they analyzed several metabolites finding that both symmetric 

and asymmetric azo-bond cleavage were involved in the dye degradation. López et al. 

(2004) used NMR and EI-MS and HPLC to identify the products (intermediates and final 

products) of the enzymatic reaction of azo-dye Orange II with MnP. The authors found 

products which suggest symmetrical and asymmetrical azo-cleavage occurred in their 

enzymatic system. In none of these cases was a mass balance attempted, thus there is no 

knowledge as to how important the azo- cleavage pathway is relative to phenolic/aniline 

polymerization. 

 In this thesis work, it was tried to identify a possible product for azo-cleavage for COG 

and determine under which conditions this product was produced and quantify it by 

HPLC and confirms it identity by EI-MS.  COG was used for this study since the purity 

was 90%, in order to avoid any interference of the impurities. Assuming a symmetrical 

azo-bond cleavage, aniline would be produced after treatment with SBP, thus for this, 

aniline was used as a target product. 
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4.4.1HPLC analysis 

 

Several concentrations of enzyme and H2O2 were tested with 1mM COG at pH 8 

detecting the amount of aniline released by HPLC, to get evidence of azo-splitting 

catalyzed by SBP during a 3-hour reaction. pH 8 has been demonstrated to be optimal for 

COG with SBP but not for aniline treatment (pH 5), which allowed detection of aniline 

after enzyme treatment (Mazloum, 2014). Aniline is a SBP substrate, which might be 

formed in greater amount but it reacts with the SBP, nevertheless the pH used (pH 8) is 

not optimal for aniline-SBP treatment which might be the reason why some aniline 

remain in the batch. As it can be seen (Figure 52) the highest amount of aniline released 

was around 0.025 mM, which was achieved during the first minutes of reaction persist for 

3 hours.  

 

 

Figure 52.Aniline produced after enzymatic treatment of 1 mM COG with different SBP and H2O2 concentrations 
(mM) at pH 8 

Figure 53 shows the degradation of COG under HPLC and spectroscopy techniques for 

the different concentrations of enzyme and H2O2 used in samples from Figure 52. The 

best conditions for aniline production in Figure 52, 0.75 U/mL and 0.5 mM H2O2 (0.026 
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mM aniline formed) are seen in Figure 53 to achieve dye degradation to about 41% and 

32% remaining by spectroscopy and HPLC, respectively. Similar final aniline 

concentration was achieved with 0.75 U/mL and 1 mM H2O2 (0.237 mM aniline formed) 

for 18% dye remaining by spectroscopy and 10 % by HPLC and 0.2 U/mL and 1 mM 

H2O2 (0.0252 mM aniline formed) for 21% and 12% dye remaining by spectroscopy and 

HPLC, respectively (Table 6). 

 

Figure 53. COG degradation under HPLC and spectroscopy for different SBP and H2O2 concentrations (mM) with pH 
8 
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Table 6. Optimal conditions for aniline formation after enzymatic treatment of 1 mM COG 

 
Sample 1 Sample 2  Sample 3 

Enzyme U/mL (SBP) 0.75 0.2 0.75 

H2O2 (mM) 0.5 1 1 

Color of dye using spectrophotometer (mM) 0.4126 0.2126 0.1886 

Dye concentration based on HPLC measurement  (mM) 0.3258 0.128 0.10051 

Concentration of aniline found using HPLC measurement 
(mM) 0.026 0.0252 0.0237 

 

For further experiments the conditions used were with the optimal conditions to achieve 

the highest release of aniline as well as the lowest COG concentration. 

A spiked initial solution containing the COG dye plus 1 mM aniline was also tested with 

0.75 U/mL SBP and 0.5, 1.0 and 1.5 mM H2O2.  First, Figure 54 shows the degradation 

estimated by spectroscopy and HPLC for COG. As it can be seen, 0.75 U/mL and 1.5 

mM H2O2 was needed to degrade more than 90% of dye and around 85% color removal. 

Increasing the amount of H2O2 enhanced the dye degradation.  

 

Figure 54. Degradation of COG with 1 mM spiked aniline with 0.75 U/mL and 0.5, 1.0 and 1.5 mM H2O2 at 180 
minutes reaction. 
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As seen in Figure 55 the removal of aniline from the spiked solution occurred in the first 

minutes of reaction and after that it remains constant, same behavior was observed in this 

thesis work for AB113. Also it should be noted that not all aniline was removed, proving 

that the conditions are not the optimal for aniline removal, as the pH used was pH 8. 

However, it is proven that the aniline was removed competition with COG. 

 

Figure 55. Aniline remaining by HPLC in spiked solutions.  

Initial concentrations: aniline 1 mM, 0.75 U/mL SBP and 0.5, 1.0 and 1.5 mM H2O2, 3 hour reaction 

 

Figure 56, compares the degradation of COG determined by HPLC and spectroscopy 

with a spiked and non-spiked aniline solution. 

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200

%
 r

e
m

ai
n

in
g 

Time (minutes) 

0.75 U/mL and 1.5 mM
H2O2

 0.75 U/mL and 1 mM H2O2

0.75 U/mL and 0.5 mM
H2O2



78 
 

 

Figure 56. COG degradation with spiked (1mM) and non-spiked aniline with 0.75 U/mL SBP and 0.5 mM H2O2 

 

From Figure 56 it can be seen, that the presence of aniline (a second substrate for SBP 

which competes with COG by HPLC diminished the removal efficiency for COG by 

20%, for color as well as dye degradation by HPLC. 

 

4.4.2 MS results 

 

EI-MS data shown below were taken for the samples which produced more aniline based 

on the HPLC results shown above as well as more dye decoloration and degradation 

(Table 6).  The sample used was 1 mM COG with pH 8, 1mM H2O2 and 0.75 U/mL SBP. 

First measurements showed the presence of aniline; however the phosphate buffer used, 

created some interference in the product peaks. For this reason, it was decided to lower 

the phosphate buffer concentration from 40 mM to 10 mM to avoid that interference. 

Figure 57 shows the mass spectrum for pure aniline in water. The figures shown in this 

chapter are the same mass spectrum with different peaks number of ions detected at the 

largest peak display. 
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Figure 57. ESI-MS (+) for pure aniline; m/z from 85 to 105. 

 

Figure 58 shows a mass chromatograph of the products after enzymatic treatment with 

1mM sample COG, pH 8 (40mM), 1mM H2O2 and 0.75 U/L, resulting in 18% color 

remaining, 10% color remaining degradation by HPLC and 0.0237 mM of aniline 

formation (based on HPLC measurement). 
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Figure 58. ESI-MS (+) for aniline produced after enzymatic treatment 

Conditions: 1 mM COG , pH 8 (40 mM), 1 mM H2O2 and 0.75 U/L 

 

Figure 59 shows the mass spectrum after enzymatic treatment of 1 mM COG with  0.2 

U/mL and 1 mM H2O2, getting 21% color remaining and 12.8% dye remaining (HPLC) 

with 0.0252 mM aniline formation (based on HPLC measurement). 
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Figure 59. ESI-MS (+) for aniline produced after enzymatic treatment 

Conditions:  1 mM COG under pH 8 (40 mM), 1 mM H2O2 and 0.2 U/L 

 

As it can been seen, there was evidence that support the premise that there is azo- 

splitting bond during enzymatic treatment, because aniline was present after the treatment 

as shown in HPLC analysis. The peaks from Figure 58 and 59 are weak peaks (low 

intensity) which created the need to modify the approach for the measurements in order 

to determine the possible presence of aniline after treatment. An approach is needed to 

reduce the amount of phosphate buffer (pH 8) present in the sample, because it interferes 

in the MS peaks, masking other possible products.  

Figure 60 shows the products after enzymatic treatment with the same conditions as for 

Figure 58 but in 10 mM buffer, the mass spectrum shows the presence of aniline after 

enzymatic treatment. The two panels show samples under the same conditions of SBP 

and H2O2 but they are different samples measured in different days.  
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Figure 60.ESI-MS (+) for aniline produced after enzymatic treatment 

Conditions:  1 mM COG, 1 mM H2O2, 0.75 U/mL SBP with 10 mM pH 8 phosphate buffer 

 

 

4.4.4 Other products identified 

  

Peaks were found that suggest the presence of other aniline compounds, however, this 

required further analysis. A possible product with m/z 184.0725 has been identified 

which suggest the presence of the compound C12H10NO which is the protonated 

hydrolysis product of aniline dimer (Figure 61). 
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Figure 61.ESI-MS (+) for product formed with m/z 184.0725 after enzymatic treatment 

Conditions: 1 mM COG, 1 mM H2O2, 0.75 U/mL SBP with 10 mM pH 8 phosphate 

 

A product with m/z 275.1168 suggests the presence of a compound with the formula 

C18H14N2O which can be the protonated hydrolysis product of aniline trimmer (Figure 

62). 

 

Figure 62. ESI-MS (+) for product with m/z 275.1168 after enzymatic treatment 

Conditions:  1 mM COG, 1 mM H2O2, 0.75 U/mL SBP with 10 mM pH 8 
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This same type of products has been found were the oxidation of aniline dimer and trimer 

is easy oxidize at bench scale or as a possible oxidation process in the ES emitter by the 

electrochemical process of the ESI, which can oxidize the dimer or trimer of aniline that 

can be subsequently hydrolyzed (Kertesz and Van Berkel, 2002). 

Some dye was still present on the samples after treatment as shown in Figure 63. 

 

Figure 63. ESI-MS (-) for dye remaining detected (m/z 327.0443) 

Conditions:  1 mM COG, 1 mM H2O2, 0.75 U/mL SBP with 10 mM pH 8 phosphate buffer 

 

The presence of a peak at 325.0283 shows the possibility of a dimer of the dye with 

molecular formula C32H20N4O8S2 with a charge state of -2 due to the sulphate groups 

present (Figure 64). 
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Figure 64. ESI-MS (-) for dimer of the dye product (m/z 325.0283) 

Conditions:  1 mM COG, 1 mM H2O2, 0.75 U/mL SBP with 10 mM pH 8 phosphate buffer 

 

As mentioned before the MS measurements should be considered as an evidence that 

suggest the presence of the products, however, it is required another technique such as 

MS-MS or HPLC/MS that increase the sensitivity of the instrument allowing the 

confirmation of any of the products. 
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4.5 Optimization for decoloration of azo-dyes using response surface 

methodology (RSM) 
 

RSM is a set of experimental strategies to explore the space between the process 

variables and the response. RSM allows development of an approximation of the 

relationship among the factors and finds the level of optimum response i.e., those that 

result in "optimal values" of one or more characteristics of product quality and describes 

the response near the optimum point (Myers et al., 2016); in this case the conditions for 

the maximum decoloration. It also allows for the interaction between/among parameters, 

in contrast to one-parameter-at-a-time optimization. This methodology is less time-

consuming and allows detection of the optimal point by evaluating all possible 

interactions in contrast to the conventional method where one parameter is modified at a 

time leaving the other parameters constant (Karthikeyan et al., 2010). In this chapter the 

decoloration of AB113 and DB38 was done using RSM methodology in the program 

Minitab 17. 

4.5.1. Factorial design for AB113 

 

The first step in the RSM was the screening of parameters that affect the response value 

(color remaining). It was done based on literature review (Mazloum, 2014; Ali et al., 

2013; Gholami-Borujeni et al., 2011). Flowcharts shown in Figure 64, 65 and 70 were 

prepared based on Montgomery and Runger, 2010. Essentially this step (screening step) 

consists in selecting from many factors those that most significantly affect the response 

variable or variables that are intended to be optimized (Figure 65). It is complicated and 

costly to manipulate many factors and it is known that when handling information with 

more than four factors the effects tend to get confused and it requires more experiments 

to be run (Natrella, 2010). Thus the parameters selected for optimization were: pH, H2O2 

and enzyme concentrations. 
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Figure 65. Flowchart with the general steps used for dimensional reduction step (screening step) 

 

After doing the screening, the first-order search was done following the steps in Figure 

66. The search I or first-order search applies when you have few factors (k ≤ 5) and it is 

known that they influence the response variable. The main objective of this stage is to 

confirm the significant influence of selected factors on the response variable to be 

optimized and to characterize the surface type response, running a first-order design with 
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center points, to detect the presence of curvature (Montgomery and Runger, 2010; Myers 

et al., 2016). 

 

Figure 66. Flowchart with the general steps used for search I or first-order search 
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The first-order search was proposed and developed with a full factorial design by 2
3
 with 

two replicates of each treatment (Gutiérrez and De la Vara Salazar, 2008), with three 

repetitions at the center and the levels of each factor were chosen as shown in Table 7 for 

AB113. Figure 67 shows the geometrical representation of the parameters. 

 

 

 

 

 

 

 

 

 

 

 

Table 7 shows the actual values for the 3 levels chosen for AB113, pH, H2O2 and 

enzyme. 

Table 7.Values for the three levels for AB113 

 

 

The Table 8 shows the combinations of the parameters for the different treatments (H2O2 

in mM, enzyme in U/mL). 

 

pH 

Enzyme 

H
2
O

2
 

(-1,-1,-1) (1,-1,-1) 

(-1,-1,1) (1,-1,1) 

(1, 1,-1) (-1, 1,-1) 

(1, 1,1) (-1,1,1) 

Figure 67. Geometrical representation of the parameters: pH, enzyme 
and H2O2 
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Table 8.Treatments and combinations for first-order research for AB113 (H2O2 in mM, enzyme in U/mL). 

 

The experimental runs were carried out in random order (see Appendix C, Table C.1) 

Figure 68 is a geometrical representation of the fitted means obtained for the steps in 

search I.  

 

Figure 68. Cube plot (fitted means) for the response (color remaining) 
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4.5.1.1. Variance analysis (ANOVA)  

 

In order to analyze the results of the first-order search an ANOVA was obtained in order 

to evaluate the statistical confidence of the model developed. Figure 69 shows the 

ANOVA analysis for the decoloration of AB113 for the search I. 

 

Figure 69. ANOVA analysis for AB113 (first-order search) 

 

In Figure 69, DF is the degrees of freedom, the Fit Ms is the fitted mean squares measure, 

the Fit SS fitted sums of squares and F-value is the is the Fisher value. For this thesis 

work the p-value will be analyze. 

The results presented are for the quantitative analysis of the experiment in which it is 

found statistically, with a significance level of 0.05 (α level) or confidence level of 95%, 

the hypothesis test is statistically significant, that means that the pH, H2O2 and enzyme 

factors are significantly influential on the % remaining dye in the solution, because of the 

values obtained from p-value of each factor was 0.000, less than 0.05 (significance level).  

Furthermore double interactions among these factors also obtained p-value = 0.000 thus 

prove to be significantly influential on the % remaining dye: likewise the double 
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interaction of pH and enzyme, due to its p-value=0.007, which is less than 0.05 

significance level. 

Another aspect of the p-value to consider is the curvature which also happens to be 

significant, since its value is 0.000, which indicates that curvature is present because at 

least one of the three quadratic terms is active. 

In addition, an R-Squared = 99.98% which indicates that the fitted model explains 

99.98% of the percentage remaining, which means that the model has a good fit; it has a 

high predictive capacity. Is necessary to validate if the effect of curvature (second-order 

stage) is present in the experimental region, meaning that towards the center of the 

experimental region, the % remaining is significantly higher or significantly lower than 

the rest of the experimental region. It has been recommended that the fitted R-Squared be 

at least 75% to continue consideration of the methodology; otherwise, it is very likely 

that the procedure will lead us by a wrong path and waste resources, this standard will be 

used for all the next sections (Montgomery and Runger, 2010). 

4.5.1.2. Estimate the model and lack-of-fit test 

 

The fitted equation for this step (first-order search) is as follows: 

                                                      

                                               

                                              

Where CtPt is the center point. An analysis of the residuals provides information that 

statistically validates the quality of the fit for the regression model and thus it is possible 

to check whether the model is appropriate. Graphics (Figure 70) are often used to 

complete the model diagnosis are as follows: 

 In the normal probability plot it can be seen that the normality assumption on the 

errors is reasonably well met, because the points in this chart tend to conform to 

the straight line. 
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 In the graph of residuals versus predicted (Versus FITS), points do not follow any 

pattern and, therefore, are distributed more-or-less randomly across the graph, 

which means that the model fits the same way along the Y values 

 As the plot of the residuals against the values of X (Versus Order), points show no 

pattern,  the pattern does not follow any trend over the values of X 

 The histogram shows a normal distribution with a classical bell-shape. The 

frequency counts are grouped in the middle and decrease in the tails 

 

 

Figure 70. Residual plot for % remaining for AB113 

 

After the first-order research the second-order model was done as shown in the next 

section. 
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4.5.1.3. Second-order search. Box-Behnken design 

 

Statistically it was confirmed (first-order stage) that the pH, H2O2 and enzyme are highly 

influential factors for decolorization and degradation of azo-dyes, corroborating the 

conclusion in the first-order stage of dimensional reduction. The primary objective of the 

second-order stage is to model the behavior of the process in a very precise and relatively 

small region, to determine the combination of factors most likely to be considered 

optimal candidates. This is indicated by the presence of curvature obtain in the first-order 

stage. It also allows to determine the interactions between/among parameters. Second-

order search was conducted as shown in Figure 71. 
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Figure 71. Flowchart for second-order model search steps 

It began by characterizing the behavior of the process, with detection of the interactions 

of the factors that influence the removal of the dye in solution, and thus the factors that 

should be considered within the model describing the expected behavior. The design 

proposed allowed detection of curvature within the experimental region, so it was 
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concluded that the process under study does not have a linear behavior, it has a quadratic 

behavior. This information permits moving to the next of stage Search II. 

 

4.5.1.4. Factorial design second order (Box-Behnken design) 

Second-order design was based on increasing the experiments developed in the previous 

step (Search I) using Box-Behnken design (Montgomery and Runger, 2010).  

This was defined from the levels set in the full factorial design with 2
3
 repetitions at the 

center, the model was fitted and validated in the previous stage, and the design points are 

located in the middle of the cube edges (Figure 72). Table 9 shows the combinations for 

the design. The runs were performed in random order (see Appendix C, Table C.2.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1,-1,0) 

pH 

Enzyme 
H

2
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(-1,0,-1) (1,0,-1) 

(0,1,1) 

(0,0,0) 

(-1,1,0) 

(-1,0,1) 

(-1,-1,0) 

 

 

(0,-1,1) 

(1,0,1) 

(0,1,-
1) 

(0,-1,-1) 

(1,1,0) 

Figure 72. Geometrical representation of the parameters for search II 
with Box-Behnken design 
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Table 9. Treatments used for Box-Behnken design for AB113 (H2O2 in mM, enzyme in U/mL) 

 

 

The Box-Behnken design requires fewer runs than other designs like central composite 

design (CCD) and consequently resource consumption is reduced and treatments levels 

are easy to obtain, unlike CCD axial points whose levels should be rounded to produce a 

range of variation (Daâssi et al., 2012; Minitab support (c), 2017). In summary, the Box-

Behnken design had a total of 30 runs with 6 center points. Other authors have done 

similar experiments using the Box-Behnken design: Daâssi et al. (2012) did a total of 52 

runs; Garg et al. (2015) did 17 experimental runs. 

 To estimate the best hierarchic model and test lack-of-fit the ANOVA analysis was done 

for the Box-Behnken design (Figure 73). 
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The analysis of variance of the second-order model with a confidence level of 95% shows 

the pH and H2O2 factors to be significantly influential on the % remaining of the dye in 

solution, likewise for the interactions that these two factors form and the quadratic effects 

(pH)
2
, (enzyme)

2
 and (H2O2)

2
, because to the p-values for each of the effects was  0.000 

and 0.001, less than 5% significance level . 

Otherwise, the main effect of the enzyme factor is not significant in the % remaining dye 

since a p-value of 0.069 greater than 0.05 was obtained, likewise for the interaction of the 

enzyme factor and the pH factor, which has a p-value of 0.453 and for the H2O2 and 

enzyme factors with a p-value of 0.813. But it is important to note, as seen in Figure 73, 

the value obtained for the pure quadratic effect of the enzyme which influences the 

amount of dye remaining in solution, with p-value of 0.001. Therefore, the influence of 

the enzyme factor in the percentage remaining cannot be ruled out. 

The model has a high predictive capacity, R² to 97.94% which indicates that the fitted 

model explains 97.94% of the amount of dye remaining, thus the model has a good fit. 

Daâssi et al. (2012) found correlation coefficient (R
2
) of 0.864, 0.663 and 0.776 using 

 

Source             DF   fit SS     fit MS    F      P 

Regression          9  2719.46     302.16   153.93  0.000 

  Lineal            3  2218.84     739.61   376.77  0.000 

    pH              1    12.98      12.98     6.61  0.018 

    H2O2             1  2198.63    2198.63  1120.01  0.000   

    enzyme          1     7.24       7.24     3.69  0.069 

2-interaction       3   483.01     161.00    82.02  0.000 

    pH*pH           1   110.50     110.50    56.29  0.000 

    H2O2*H2O2        1   344.51     344.51   175.50  0.000  

    enzyme*enzyme   1    28.43      28.43    14.48  0.001 

 Interaction        3    17.61       5.87     2.99  0.055 

    pH*H2O2          1    16.35      16.35     8.33  0.009  

    pH*enzyme       1     1.15       1.15     0.59  0.453 

    H2O2*enzyme      1    0.11       0.11     0.06   0.813 

Residual error     20   39.26       1.96 

  Lack-of-fit       3    36.64      12.21    79.34  0.000 

  Pure error       17     2.62       0.15 

Total              29   

 

S = 1.40109     R-squared. = 98.58%  R-squared (fitted) = 97.94% 

 

Figure 73. ANOVA analysis for Box-Behnken 
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Box-Behnken design for three different dyes: reactive black 5 (diazoic), indigo carmine 

(indigoid) and aniline blue (anthraquinone) using laccase with an HBT mediator system. 

In another paper, Jadhav et al. (2012), found a higher fitted R
2
 of 0.9984 for decoloration 

of Remazol Orange (a sulphonated azo-dye) by Pseudomonas aeruginosa BCH. 

According to the results of the analysis of variance, three terms could be eliminated from 

the model, the main factor of the enzyme and double interaction of pH and enzyme 

factors as well as H2O2 and enzyme, so the mathematical model equation is expressed as 

follows: 

 

 

 

 

 

 

 

The model is no longer hierarchical by eliminating one of the three simple terms (X3) that 

make up the higher-order terms that are in the model. 

In response surface models hierarchic is preferred as they have a more robust design that 

facilitates exploration of representing surfaces. Eliminating effects or terms of the model 

should be less strict than in analysis of variance, and allow some non-significant terms to 

remain in the model to achieve the hierarchy.  Since the double interaction of enzyme 

factor is significant it cannot be ruled out of the equation. 

If the “enzyme*pH” and “enzyme*H2O2” are eliminated, the ANOVA analysis is as 

shown in Figure 74. It is necessary to examine the ANOVA without those two terms and 

compare to the full design to select the one that fits best (Figure 74). 

𝑌   𝛽  𝛽 𝑥  𝛽 𝑥  𝛽  𝑥 
  𝛽  𝑥 

   𝛽  𝑥 
  𝛽  𝑥 𝑥  𝜀 

x
1
= pH 

x
2
= H2O2 (mM) 

x
3
= enzyme (U/mL)  

Y = % de remaining 

 

𝑌   𝛽  𝛽 𝑥  𝛽 𝑥  𝛽 𝑥  𝛽  𝑥 
  𝛽  𝑥 

   𝛽  𝑥 
  𝛽  𝑥 𝑥  𝛽  𝑥 𝑥  𝛽  𝑥 𝑥  𝜀 
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Analysis of variance was done to compare statistically the fitted design against the 

previous second-order design (Figure 73) and choose the one that best describes the 

surface of the experimental region is performed. 

As seen, both models (Figure 73 and 74) have the same adjustment quality because both 

R² values were 97.94% and 98.06%, respectively. 

Besides that, with a confidence level of 95%, all main effects of the factors, quadratic 

effects pure and double interactions are significantly influential on the % remaining dye 

solution, except the main effect of the factor of the enzyme, which also in the previous 

model was not influential in the response, however, the double interactions of enzyme are 

significant. 

So any model could be used to characterize the response surface, in this case study, the 

full quadratic model was taken, i.e, the first generated. Also, the pure quadratic effect of 

enzyme and interaction of this factor with H2O2 influence the amount of dye remaining in 

solution. For these reasons, it was decided to keep the X3 term. The % remaining of the 

dye is described by the second-order model 

 𝑌  𝛽  𝛽 𝑥  𝛽 𝑥  𝛽 𝑥  𝛽  𝑥 
  𝛽  𝑥 

   𝛽  𝑥 
  𝛽  𝑥 𝑥 

 β  𝑥 𝑥  𝛽  𝑥 𝑥  𝜀 

Source             DF     fit SS      fit MS       F      P 

Regression          7      2718.20     388.31   210.81   0.000 

  Lineal            3      2218.84     739.61   401.53   0.000 

    pH              1       12.98      12.98     7.04    0.014 

    H2O2            1      2198.63    2198.63   1193.61   0.000 

    enzyme          1        7.24       7.24     3.93    0.060 

  2-interaction     3      483.01     161.00    87.41    0.000 

    pH*pH           1       110.50     110.50    59.99   0.000 

    H2O2*H2O2        1       344.51     344.51   187.03   0.000 

    enzyme*enzyme   1       28.43      28.43    15.43    0.001 

  3-interaction     1       16.35      16.35     8.88    0.007 

    pH*H2O2         1        16.35      16.35     8.88    0.007 

Residual error     22       40.52       1.84 

  Lack-of- fit     5        37.91       7.58    49.24    0.000 

  Pure error       17       2.62       0.15 

Total              29   

 

S = 1.35720       R-squared = 98.53%    R-squared (fitted) = 98.06% 

 
Figure 74.ANOVA analysis without effect of interactions “enzyme*pH” and “enzyme*H2O2” 
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In the equation ɛ is the residual error.  

Where the following equation is valid for the experimental region studied: 

                                                        

                                               

                                               

             

4.5.1.5 Contour and surface plots for AB113 

 

Figure 75 shows the contour plots and Figure 76 the surface plots for AB113. Each figure 

demonstrates the effect of two factors while the other factors were fixed at different 

levels, pH at intermediate level (zero level; pH 5.3), and H2O2 and enzyme at the higher 

level (+1 level; 3.0 mM and 2.0 U/mL, respectively). 

 

Figure 75. Contour plots for AB113. Fixed values:  a) enzyme 2.0 U/mL, b) H2O2 3.0 mM, c) pH 5.3 

 

H2O2*pH

7.06.05.04.03.6

3.0

2.5

2.0

1.5

1.0

enzyme*pH

7.06.05.04.03.6

2.00

1.75

1.50

1.25

1.00

enzyme*H2O2

3.02.52.01.51.0

2.00

1.75

1.50

1.25

1.00

pH 5.3

H2O2 3

enzyme 2

Fixed value

>  

–  

–  

–  

–  

–  

–  

<  13

13 15

15 20

20 25

25 30

30 35

35 40

40

remaining



102 
 

 

Figure 76. Surface plots. Fixed values:  a) enzyme 2.0 U/mL, b) H2O2 3.0 mM, c) pH 5.3 

 

 

In this case study, the process of removal of an azo-dye from solution is significantly 

influenced by three factors (pH, H2O2 and enzyme) whereby the response surface cannot 

be graphed fully at once because they are in four dimensions. 

For k=3 factors, it is possible to plot the surface by the three graphs with two factors 

varied each time and with the third constant. 

We can analyze the results using the response surfaces and the respective contour graphs 

in order to locate on a three-dimensional region, calculated based on the fitted second-

order model and statistically validated. An advantage of the response surface is that an 

estimate of the response at all possible levels of the factors studied can be calculated. For 

each of the three combinations of the factors generated; pH-H2O2, pH-enzyme and H2O2–

enzyme, are plotted the estimated value of the average percentage of remaining dye 

solution. 

The response surface of the combination of pH and H2O2 factors, with constant enzyme 

at 2 U/mL take the form known as simple minimum, as the color gets darker the response 
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increase (the % color remaining decrease). As it can been seen in Figure 75, the 

maximum color removal is at acid pH, more specifically between 4.0 and 5.3 

approximately. Other studies of enzymatic treatment with SBP of azo-dyes have been 

also proven to have optimal color removal at acid pH, Ali et. al. (2013) demonstrates that 

SBP works better at pH 3.0-5.0 for the azo-dye CP6R, Kalsoom et al. (2013) demonstrate 

that the optimal pH for Trypan blue with SBP was pH 4.0. 

The combination of pH-enzyme with 3.0 mM H2O2 constant has a minimum point at acid 

pH and which increases as it goes to basic pH.  

Finally, the response surface represented by factors H2O2-enzyme, with pH 5.3 as 

constant takes the form of descending slope, the response has a minimum but this is 

outside the current experimental region, that is, it can be inferred that the true surface is a 

valley but its maximum depression is not observed, only one side. 

The graphs collectively show that the percentage of color remaining tends to be lower 

when the pH approaches the acidic range, H2O2 is approximately equal to 2.5 mM and 

enzyme approaches 2.0 U/mL. Notably, the expected average of the response variable 

obtained from the graphs is a function of two factors only, thus, to really know the 

optimal point it would be necessary to analyze the pattern of the second-order model and 

validate the surface, to consider the three factors simultaneously as is done in the next 

step of the process to get the optimal point. 

 

4.5.1.6 Optimized response for AB113 

 

The optimum response represents the best combination of values for the factors that are 

in the experimental region, following the fitted model, to obtain the lowest % remaining 

possible (Figure 77). 

The best point in the experimental region is given by: 

 

 

 

 

 

x
1
= pH = 4.5 

x
2
= H2O2 =  3.0 mM 

x
3
= Enzyme = 2.0 U/mL 

Y = 10.06 % remaining  
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To validate the model obtained, three validation runs at this point were done obtaining an 

average of 11 ± 0.2% remaining dye. The optimum conditions, give in section 4.1.5, with 

the optimization of one-factor at the time were: pH 4.0, 2.5 mM H2O2, 1.5 U/mL for 

5.2% color remaining. The second-order model is adequate to describe the response 

surface in the design space and equations can be used to predict response in the area 

explored. 

In already established processes such as this, it is expected that the optimal point is "not 

far" from the usual conditions of operation or possibly within the experimental region. 

Figure 77, shows the optimal point obtained, the graph shows the effect of each factor 

(columns) on the response (row), the red line represent the optimal value which are in red 

numbers, meanwhile the blue lines and numbers represents the response. 

 

Figure 77. Optimization graph for AB113 

 

 

 

A good approximation was achieved with the second-order design. However, 5% 

remaining is the goal, for this reason a new range of pH was used to find a lower color 

remaining by decreasing the area explored and moving the initial ranges of the 

parameters. 
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4.5.1.7 AB113 second-order design, second approach 

 

In order to get a lower color remaining response the parameters were redefined in the 

vicinity of the center point and the practical operational experimental area, the values for 

the parameters were changed as shown in Table 10. Where, the intermediate pH value 

from the first approach was taken as the highest value in order to reduce the experimental 

area. 

 

Table 10.Values for the three levels for AB113, second approach (H2O2 in mM, enzyme in U/mL) 

 

 

4.5.1.8 Analysis of variance ANOVA and estimate the model and lack-of-fit test 

 

First, as done before (section 4.5.1), the first-order search was conducted (Appendix C, 

Table C.3) and the ANOVA analysis in shown in Figure 78. 

 

 

 

 

 

 

 

 

 

 

Source                     DF    fit SS      fit MS        F  P 

Principal effects           3    2650.12     883.37      1389.84      0.000 

  pH                        1    115.50     115.50       181.73        0.000 

  H2O2                       1    2519.16    2519.16      3963.48       0.000 

  enzyme                    1      15.46      15.46      24.33         0.001 

2-Interactions         3    42.19      14.06        22.13         0.000 

  pH*H2O2                    1    38.80      38.80       61.04         0.000 

  pH*enzyme                 1     3.20       3.20        5.03          0.049 

  H2O2*enzyme                1     0.20       0.20        0.31         0.590 

3-Interactions              1     0.29       0.29         0.46        0.0513 

  pH*H2O2*enzyme             1     0.29       0.29        0.46         0.513 

  Curvature                 1   879.05     879.05       1383.05       0.000 

Residual error        10     6.36       0.64 

  Pure error               10     6.36       0.64 

Total                       18   

 

 

R-squared = 99.82%      R-squared (fitted) = 99.68% 

 

Figure 78. ANOVA analysis for AB113 (first-order search), second approach 



106 
 

The fitted equation for this first-order search was as follows: 

                                                        

                                                 

                                             

 

As seen in Figure 78, all the individual parameters were significant with 95% confidence 

(less than 5% significance level), except the double interaction of H2O2 and enzyme 

factors as well as the triple interaction. 

Figure 79 shows the analysis of the residuals for the first-order search. As seen in the 

graphs the points tend to follow a straight line (normal probability plot), the Gaussian 

form is present (histogram), the residuals against the values of X (versus order) points 

show no pattern, as well as the graph of versus fit the points which doesn´t follow any 

specific pattern but tend to cluster on the lower extreme which means that the model fits 

on the lower Y values. 

 

 

Figure 79. Residual plot for % remaining for AB113, second approximation 
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4.5.1.9 Second-order search. Box-Behnken design 

As done in section 4.5.1.3, a second-order search was conducted (Appendix C, Table 

C.4.).  Figure 80 shows the ANOVA analysis for Box-Behnken design 

 

 

 

 

 

 

 

 

 

 

 

As seen in Figure 80 the individual factors of enzyme as well as “pH * H2O2” and 

“H2O2*enzyme” were not significant since the p-values were more than 0.05. It was 

necessary to do the ANOVA analysis without these terms (as done in section 4.5.1.3), in 

this case enzyme was not ruled out since the double interaction “enzyme * enzyme” was 

significant (Figure 81). 

 

 

 

 

 

 

Source             DF  fit SS     fit MS        F      P 

Regression          9  3883.53     431.50   590.29   0.000 

  Lineal            3  2553.32     851.11  1164.30   0.000 

    pH              1    4.58      44.58    60.99    0.000 

    H2O2             1   2507.96    2507.96  3430.86  0.000 

    enzyme          1    0.78       0.78     1.06    0.315 

  2-interaction     3   1320.01     440.00   601.92  0.000 

    pH*pH           1    569.93     569.93   779.66  0.000 

    H2O2*H2O2        1   842.48     842.48   1152.51  0.000 

    enzyme*enzyme   1    39.70      39.70    54.31   0.000 

  Interaction       3    10.21       3.40     4.65   0.013 

    pH*H2O2          1    0.23       0.23     0.31    0.584 

    pH*enzyme       1     8.98       8.98    12.28   0.002 

    H2O2*enzyme      1   1.00       1.00      1.37    0.256 

Residual error     20  14.62       0.73 

  Lack-of-fit       3    8.77       2.92     8.50  0.001 

  Pure error       17    5.85       0.34 

Total              29   

 

R-squared = 99.62%     R-squared(fitted) = 99.46% 

 

Source             DF     fit SS    fit MS        F      P 

Regression          7   3765.52     537.93   496.94   0.000 

  Lineal            3   2478.33     826.11   763.16   0.000 

    pH              1    44.58      44.58    41.18    0.000 

    H2O2             1   2433.35    2433.35  2247.94   0.000 

    enzyme          1     0.40       0.40     0.37    0.550 

 2-interaction      3   1278.21     426.07   393.61   0.000 

    pH*pH           1   522.81     522.81   482.97    0.000 

    H2O2*H2O2        1   843.16     843.16   778.92    0.000 

    enzyme*enzyme   1    39.85      39.85    36.81    0.000 

  interaction       1     8.98       8.98     8.30    0.009 

    pH*enzyme       1     8.98       8.98     8.30    0.009 

Error residual     22    23.81      23.81     1.08 

  Lack-of-fit       5    15.45       3.09     6.28    0.002 

  Pure error       17     8.37       8.37       0.49 

Total              29   

 

R-squared = 99.37%   R-squared(fitted) = 99.17% 

 

Figure 80. ANOVA analysis for Box-Behnken, second approach 

Figure 81. ANOVA analysis without the non-significant interactions 
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Based on Figures 80 and 81, a full quadratic model is preferred as the R
2
 are almost the 

same (99.46 and 99.17, respectively). 

The equation for a full quadratic design is as follows: 

                                                        

                                             

                                          

                     

 

 

4.5.1.10  Contour and surface plots second approximation 

 

Figure 82 and 83 show the contour and surface plots, respectively. Each figure 

demonstrates the effect of two factors while the other factors were fixed at the respective 

intermediate levels (zero level) (pH 4.45, 2 mM H2O2 and 1.5 U/mL SBP). 

 

 

 

Figure 82. Contour plot for AB113.Fixed values:  a) enzyme 1.5 U/mL, b) H2O2 2.0 mM, c) pH 4.45 
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Figure 83.Surface plots. Fixed values:  a) enzyme 1.5 U/mL, b) H2O2 2.0 mM, c) pH 4.45 

As seen in Figures 82 and 83, the plot of H2O2 and pH with a fixed enzyme value of 1.5 

U/mL has a minimum value in the darker color and the % color remaining increases as it 

gets far from that zone which is in the acidic range of 4.0-4.8 and 2.0 mM H2O2 or lower 

concentrations. The same behavior, with presence of a minimum can be seen for enzyme 

against pH with 2.0 mM H2O2 as fixed value, where is more notably in the middle area, 

when the enzyme is in the range of 1.25- 1.75 U/mL the optimum response is reached. 

Finally, the response surface represented by factors H2O2-enzyme (same behavior as 

found in the first approach, Figure 75 and 76), at pH 4.45 as constant, takes the form of a 

descending slope, the response has a minimum but this is outside the current 

experimental region, that is, it can be inferred that the true surface is a valley but its 

maximum depression is not observed  only one side, where the optimal zone is after >2.0 

mM H2O2 which there is no further change in the % remaining. 
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4.5.1.11 Optimized response for AB113, second approximation 

 

The optimum response represents the best combination of values for the factors that are 

in the experimental region, following the fitted model, to obtain the lowest % remaining 

possible (Figure 84). As it can be seen, the factors (columns) have an optimum value to 

reach the lowest % remaining of 5.7% (row).  

The best point in the experiment region is given by: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To validate the model obtained, three validation runs at this point were done obtaining an 

average of 8.1 ± 0.13, difference of 2.4 % with Minitab model. 

 

 

x
1
= pH = 4.43 

x
2
= H2O2 =  2.57 mM 

x
3
= Enzyme = 1.52 U/mL 

Y = 5.67 % remaining  
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Figure 84. Optimization graph for AB113, second approximation 
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4.5.2. Factorial design for DB38  

 

As done for AB113, a full factorial design by 2
3
 repetitions at the center was completed 

for DB38 as seen in Table 11.  

Table 11.Values for the 3 levels for DB38 (H2O2 in mM, enzyme in U/mL) 

 

Table 12 shows the combinations of the parameters for the different treatment in this first 

step of analysis. 

 

Table 12. Treatments and combination for DB38 (H2O2 in mM, enzyme in U/mL) 

 

The experimental runs were conducted in random order (Appendix C, Table C.5) 
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4.5.2.1 Variance analysis (ANOVA) 

 

The experimental results were analyzed by an ANOVA. Figure 85 shows the ANOVA 

analysis for the first-order stage of the analysis for DB38.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was found statistically, with a confidence level of 95%, that the factors of pH and 

enzyme are significantly influential on the % remaining dye in the solution, because the 

p-value obtained for each factor was 0.000, less than 5% significance level (α level). The 

p-value of H2O2 was more than 0.05, which shows it is not significantly influential, 

however further analysis should be done as it is on the limit with a value 0.051, also the 

double interaction (H2O2)
2 

is significant, which indicates that the H2O2 cannot be 

eliminated as being non-significantly influential in the % remaining dye . In this first-

order stage, double interactions between pairs of factors also obtained  p-values of 0.000 

thus proving to be significantly influential on the % remaining dye; likewise with the 

triple interaction (less than 0.05 significance level).   

The curvature p-value 0.000 also happens to be significant, meaning that at least one of 

the three quadratic terms is active; causing the curvature. 

In addition, an R-squared of 99.34% for the fit indicates that the fitted model explains 

99.34% of the % remaining dye response; thus the model has a good predictive capacity. 

As mentioned for AB113, it is recommended than an R-squared value be at least 75% to 

continue with this methodology. It is, however, necessary to validate if there is an effect 

of curvature in the experimental region, meaning that towards the center of the 

Source                             DF      fit SS   fit MS       F         P 

Principal effects                   3      1653.61     551.20   460.55     0.000 

  ph                                1       110.60     110.60    92.41     0.000 

  enzyme                            1      1536.97    1536.97  1284.20     0.000 

  H2O2                               1        6.03       6.03     5.04   0.051 

2-Interactions      3       997.01     332.34   277.68     0.000 

  ph*enzyme                         1       949.24     949.24   793.12     0.000 

  ph*H2O2                            1       26.95      26.95    22.52      0.001 

  enzyme*H2O2                        1       20.83      20.83    17.40      0.002 

3-Interactions      1        83.82      83.82    70.03     0.000 

  ph*enzyme*H2O2                    1        83.82      83.82    70.03      0.000 

  Curvature                         1      338.02     338.02   282.43      0.000 

Residual error                       9       0.77       1.20 

  Pure error                        9       10.77       1.20 

Total                              17   

R-squared. = 99.65%    R-squared (fitted) = 99.34% 

 

Figure 85. ANOVA analysis for DB38 
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experimental region, the % remaining dye is higher or lower than the rest of the 

experimental region. 

 

4.5.2.2 Estimate the model and lack-of-fit test 

 
The results from the ANOVA were fitted to the equation for a first-order search as follows: 
 
 

                                                        
                                               
                                            

 
 

 

An analysis of the residuals, Figure 86, was done to validate the fit of the regression 

model. 

 The points in the normal probability plot tend to conform to a straight line which 

indicates that the assumption on the errors is reasonably well met 

 In the graph of residuals versus predicted (Versus FITS), points do not follow any 

pattern indicating a more or less random distribution  across the graph 

 As the plot of the residuals against the values of X (Versus Order), points show no 

pattern, so the pattern does not follow any trend over the values of X 

 The histogram is a type of bi-modal histogram, showing that the distribution of 

points has two peaks; this is due to % remaining values obtained which were in 

lower or higher extremes because of the ranges used. 
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Figure 86. Residual plots for % remaining for DB38 

 

 

After this step, the second-order model regression analysis was conducted using a Box-

Behnken design. 

 

4.5.2.3 Second-order search. Box-Behnken design 

 

Based on the results for AB113, Box-Behnken design model was used for the RSM to 

determine the optimal levels of the parameters involved.  A total of 30 runs were done 

with 6 center points. The treatments for DB38 are as shown in Table 13. 
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Table 13.Treatment used for Box-Behnken design for DB38 (H2O2 in mM, enzyme in U/mL) 

 

The runs were performed in random order (see Appendix C, Table C.6.). An ANOVA 

analysis was done to analyze significance of the different parameters (Figure 87). 

 

 

 

 

Standard 
order  

Treatments pH H2O2 Enzyme 

1 (-1,-1, 0) 
3.00 1.50 2.25 

2 ( 1, -1, 0) 
5.00 1.50 2.25 

3 (-1, 1, 0) 
3.00 3.00 2.25 

4 ( 1, 1, 0) 
5.00 3.00 2.25 

5 (-1, 0, -1) 
3.00 2.25 1.50 

6 ( 1, 0, -1) 
5.00 2.25 1.50 

7 (-1, 0, 1) 
3.00 2.25 3.00 

8 ( 1, 0, 1) 
5.00 2.25 3.00 

9 ( 0,-1,-1) 
4.00 1.50 1.50 

10 (0, 1, -1) 
4.00 3.00 1.50 

11 ( 0,-1, 1) 
4.00 1.50 3.00 

12 ( 0, 1, 1) 
4.00 3.00 3.00 

13 ( 0, 0, 0) 
4.00 2.25 2.25 

14 ( 0, 0, 0) 
4.00 2.25 2.25 

15 ( 0, 0, 0) 
4.00 2.25 2.25 
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The analysis of variance for the second-order model indicated statistically, with a 

confidence level of 95% (5% significance level), that the pH, enzyme and H2O2 factors 

were significantly influential on the % remaining dye in solution, likewise, interactions of 

pairs of these factors showed quadratic effects (pH)
2
 and (H2O2)

2
, from p-value obtained 

0.000. 

However, other pair of factors, “enzyme*enzyme” and “pH*H2O2” are not significantly 

influential on the % remaining dye, with p-value of 0.537 and 0.844. 

However, the main effects are significant which means an analysis should be conducted 

without these quadratic terms to determine which model fits better. As mentioned above 

for a response surface, an hierarchic model is preferred because it has more stable 

behavior in exploring the surface. 

The model has a high predictive capacity, R² for the fit of 96.42 %, thus indicating that 

the regression model explains 96.42 % of the % remaining response, which means that 

the model is a good fit. 

According to the results of the analysis of variance, the double interactions of 

enzyme*enzyme and pH *H2O2 factors could be eliminated from the model, so the 

mathematical model equation is expressed as follows: 

 

 

 

𝑌   𝛽  𝛽 𝑥  𝛽 𝑥  𝛽  𝑥 
  𝛽  𝑥 

   𝛽  𝑥 
  𝛽  𝑥 𝑥  𝛽  𝑥 𝑥  𝜀 

Source              DF   fit SS      fit MS       F      P 

Model               9    3347.59     371.95   87.81  0.000 

  Linear            3    1555.99     518.66  122.45  0.000 

    pH              1    1555.91    1555.91  367.32  0.000 

    Enzyme          1      74.84      74.84   17.67  0.000 

    H2O2             1      69.61      69.61   16.43  0.001 

 2-interaction      3    1617.81     539.27  127.31  0.000 

    pH*pH           1    1503.77    1503.77  355.01  0.000 

    Enzyme*enzyme   1       1.67       1.67    0.39  0.537 

    H2O2*H2O2        1     178.16     178.16   42.06  0.000 

  Interaction       3     265.18      88.39   20.87  0.000 

    pH*Enzyme       1     207.51     207.51   48.99  0.000 

    pH*H2O2          1      0.17       0.17    0.04  0.844 

    Enzyme*H2O2      1      57.50      57.50   13.57  0.001 

Error               20    84.72       4.24 

  Lack-of- fit      3      70.55      23.52   28.22  0.000 

  Pure error       17     14.17       0.83 

Total              29 

 

R-squared. = 97.53%   R-squared(fitted) = 96.42%  
 

 
Figure 87. ANOVA analysis for Box-Behnken for DB38 
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x1= pH  

x2= H2O2 concentration (mM) 

x3= Enzyme concentration (U/mL) 

Y = % color remaining 

 

 

 

For this reason it is necessary to re-analyze the results for this model without these effects 

(Figure 88). 

 

 

 

 

 

 

 

 

 

 

 

 

The ANOVA was done to compare the fitted design with the preceding second-order 

design (that including the two quadratic effects) and choose the one that best describes 

the surface of the experimental region. 

Both models have the almost the same R
2 

values for the 96.42 and 96.68, respectively. 

Furthermore, with a confidence level of 95%, all main effects of the factors, pure 

quadratic effects and double interactions are significantly influential on the % remaining 

dye solution as the full quadratic ANOVA. 

𝑌   𝛽  𝛽 𝑥  𝛽 𝑥  𝛽  𝑥 
  𝛽  𝑥 

   𝛽  𝑥 
  𝛽  𝑥 𝑥  𝛽  𝑥 𝑥  𝜀 

Source             DF  fit SS  fit MS F      P 

Regression          7  3345.76     477.97  121.49  0.000 

  Lineal            3  1770.54     590.18  150.01  0.000 

    pH              1   1723.29   1723.29  438.02  0.000 

    Enzyme          1  147.88      147.88   37.59  0.000 

    H2O2             1    86.86     86.86   22.08  0.000 

  Cuadrado          2  1616.14     808.07  205.39  0.000 

    pH*pH           1  1504.97    1504.97  382.53  0.000 

    H2O2*H2O2        1   176.56     176.56   44.88  0.000 

  Interaction        2   265.01     132.51   33.68  0.000 

    pH*enzyme       1   207.51     207.51   52.75  0.000 

    Enzyme*H2O2      1    57.50      57.50   14.61  0.001 

Residual error     22    86.55       3.93 

  Lack-of-fit       5    72.39      14.48   17.37  0.000 

 Pure error  17    14.17       0.83 

Total              29   

 

R-squared = 97.48 R-squared(fitted) = 96.68% 

 

Figure 88. ANOVA analysis without the effects of “enzyme*enzyme” and “pH *H2O2” factors 
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So either model could be used to characterize the response surface in this case study. 

Thus, as for AB113, a full quadratic model was taken as follows. 

 

                                                      
                                            
                                         
             

 

 

4.5.2.4. Countour and surface plos for DB38 

 

Figures 89 and 90 shows the contour and surface plots for DB38, as for AB113, two 

factors are demonstrated while the other is fixed at intermediate level (zero level). It can 

be seen that as the pH gets close to 4.0, enzyme 3.0 U/mL with 2.25 mM H2O2 the % 

remaining is below 10%.  

 

 

 

 

 
Figure 89. Contour plots for DB38. Fixed values:  a) enzyme 2.25 U/mL, b) H2O2 2.25 mM, c) pH 4.0 
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Figure 90. Surface plots. Fixed values:  a) enzyme 2.25 U/mL, b) H2O2 2.25 mM, c) pH 4.0 

 

The graph of pH against enzyme seems to have a minimum where the lowest % 

remaining point is reached in the experimental region, as it gets far from the middle point 

in the valley of the graph. The minimum point of the response is shown in the region of 

pH 4.0. For the surface plots, the pH against H2O2 graph has a minimum point in the 

experimental region showing a valley in the surface (where the optimum response as it 

represents is, because it represents the lowest % remaining). The graph of H2O2 against 

enzyme takes the form of descending slope; the response has a minimum outside the 

experimental region. The region has a maximum in the % remaining in the lower 

concentrations of enzyme and H2O2 and the response continues to decrease has it reaches 

3.0 U/mL of enzyme. 
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4.5.2.5. Optimum response for DB38 
 

The optimum response represents the best combination of values for the factors that are 

in the experimental region, from the regression model, to obtain the lowest % remaining 

possible (Figure 91). 

The best point in the experiment region is given by: 

 

x1= pH = 3.84 

x2= H2O2 =  2.74 mM 

x3= Enzyme = 3.0 U/mL 

Y = 5.6 % remaining 

 

To validate this data three experimental runs were done obtaining a % remaining of 

6.9±0.41% remaining using this values for the different factors.  

 

 

 

 

 
Figure 91.Optimization graph for DB38 

 

 

To study a different range of H2O2 and enzyme another design was done, to be able to see 

the behavior of the surface if the optimal points are not in the corner of the design space. 
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4.5.2.6. DB38 second-order design, second approach 

 

As done for the first approach (section 4.5.2), a full factorial design by 2
3
 repetitions at 

the center was completed. Table 14 shows the values for the 3 levels chosen, pH, H2O2 

and enzyme, where the lower and higher point of H2O2 and enzyme increase to avoid the 

optimal point to be on the corner of the experimental region. 

Table 14.Values for the 3 levels for DB38 (H2O2 in mM, enzyme in U/mL) 

 

Table 15 shows the combinations of the parameters for the different treatment in this first 

step of analysis. 

Table 15.Treatments and combination for DB38 (H2O2 in mM, enzyme in U/mL) 

 

The experimental runs were conducted in random order (see Appendix C, Table C.7) 
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4.5.2.7 Variance analysis (ANOVA) 

 

The experimental results were analyzed by an ANOVA. Figure 92 shows the ANOVA 

analysis for the first-order stage of the analysis for DB38.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

It was found statistically, with a confidence level of 95% that the main factors of pH, 

H2O2 and enzyme are significantly influential on the % remaining dye in the solution, 

because of the p-value obtained of each factor was 0.000, less than 5% significance level 

(α level). On the other side, double interactions of “pH* H2O2” and “H2O2 *enzyme” as 

well as the triple interaction were non-significant as the p-value was more than 0.05. 

The curvature p-value 0.000 also happens to be significant, meaning that at least one of 

the three quadratic terms is active; causing the curvature. 

In addition, an R-squared of 99.07% for the fitted indicates that the fitted model explains 

99.07 % of the % remaining dye response, thus the model has a good predictive capacity. 

As mentioned for AB113, it is recommended that an R-squared value be at least 75% to 

continue with this methodology.  

 

 

 

Source                        DF   fit SS fit MS        F  p 

Principal effects              3  2406.82     802.27    367.15  0.000 

  pH                           1   1340.65    1340.65   613.53  0.000 

  H2O2                          1    29.12      29.12     13.33  0.004  

  enzyme                       1   1037.04    1037.04    474.59  0.000 

2-Interactions       3    524.46     174.82     80.00  0.000 

  pH*H2O2                       1    8.24       8.24       3.77  0.081 

  pH*enzyme                    1   513.74     513.74     235.11  0.000 

  H2O2*enzyme                   1     2.49       2.49      1.14  0.311 

3-Interactions       1     0.10       0.10      0.05  0.833 

  pH*H2O2*enzyme                1     0.10       0.10      0.05  0.833 

  Curvature                    1   1256.38    1256.38     574.97  0.000 

Residual error                 10   21.85       2.19 

  Pure error                   10    21.85       2.19 

Total                          18   

 

R-squared = 99.48%   R-squared (fitted) = 99.07% 

 
Figure 92. ANOVA analysis for DB38 
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4.5.2.8. Estimate the model and lack-of-fit test 

 

The results from the ANOVA were fitted to the equation for a first-order search as 

follows: 

 

                                                       
                                                
                                               

 
 

 

An analysis of the residuals (Figure 93) was done to validate the fit of the regression 

model. 

 The points in the normal probability plot tend to conform to a straight line which 

indicates that the assumption on the errors is reasonably well met 

 In the graph of residuals versus predicted (Versus FITS), points tend to cluster on 

the extremes of the fitted value which means that the model fits on the extremes 

values of  Y  

 As the plot of the residuals against the values of X (Versus Order), points show no 

pattern, so the pattern does not follow any trend over the values of X 

 The histogram shows a type of bi-modal histogram, showing that the distribution 

of points has two peaks, as found in the first search (section 4.4.2.2.) 
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Figure 93.Residual plots for % remaining for DB38 

 

After this step, the second-order model regression analysis was conducted using a Box-

Behnken design. 

4.5.2.9 Second-order search. Box-Behnken 

 

Box-Behnken design was used as a design model for the RSM to determine the optimal 

levels of the parameters involved.  A total of 30 runs were done with 6 center points. The 

treatments for DB38 are as shown in table 16. 
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Table 16.Treatment used for Box-Behnken for DB38 (H2O2 in mM, enzyme in U/mL) 

Standard 
order  

Treatments pH H2O2 Enzyme 

1 (-1,-1, 0) 3.0 2.5 3.0 

2 ( 1, -1, 0) 5.0 2.5 3.0 

3 (-1, 1, 0) 3.0 3.5 3.0 

4 ( 1, 1, 0) 5.0 3.5 3.0 

5 (-1, 0, -1) 3.0 3.0 2.5 

6 ( 1, 0, -1) 5.0 3.0 2.5 

7 (-1, 0, 1) 3.0 3.0 3.5 

8 ( 1, 0, 1) 5.0 3.0 3.5 

9 ( 0,-1,-1) 4.0 2.5 2.5 

10 (0, 1, -1) 4.0 3.5 2.5 

11 ( 0,-1, 1) 4.0 2.5 3.5 

12 ( 0, 1, 1) 4.0 3.5 3.5 

13 ( 0, 0, 0) 4.0 3.0 3.0 

14 ( 0, 0, 0) 4.0 3.0 3.0 

15 ( 0, 0, 0) 4.0 3.0 3.0 

 

The runs were performed in random order (see Appendix C, Table C.8.). An ANOVA 

analysis was done to analyze the different parameters (Figure 94). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    

 

 

Source             DF  fit SS    fit MS      F      P 

Regression          9  1408.97    156.552  101.67  0.000 

  Lineal            3   888.84    296.281  192.41  0.000 

    pH              1   482.07    482.072  313.06  0.000 

    H2O2            1     1.72      1.722    1.12   0.303 

    enzyme          1   405.05    405.051  263.04  0.000 

  Double            3   444.98    148.327   96.32  0.000 

    pH*pH           1   375.60    375.602  243.92  0.000 

    H2O2 * H2O2      1    54.63     54.634   35.48  0.000 

    enzyme*enzyme   1    59.93     59.925   38.92  0.000 

  Interaction       3    75.15     25.049   16.27  0.000 

    pH* H2O2         1     1.57      1.566    1.02  0.325 

    pH*enzyme       1    73.03     73.029   47.43  0.000 

    H2O2*enzyme     1     0.55      0.552    0.36   0.556 

Residual error     20    30.80      1.540 

  Lack-of-fit        3    23.32      7.773   17.67  0.000 

  Pure error       17     7.48      0.440 

Total              29   

 

R-squared = 97.86%  R-squared (fitted) = 96.90% 

 

Figure 94.  ANOVA analysis for Box-Behnken for DB38 
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The analysis of variance of the second-order model was fitted statistically, with a 

confidence level of 95%, the pH and enzyme factors found to be significantly influential 

on the % remaining of the dye in solution; likewise for interactions of these two factors 

form and quadratic effects (pH)
 2

, (enzyme)
 2

 and (H2O2)
2
, due to the p-values of each 

being 0.000, implying >95% confidence in the interactions. 

Otherwise, the main effect of H2O2 as well as the interaction “pH*H2O2” and “enzyme 

*H2O2” are not significant in the % remaining dye since the respective p-values of 0.303, 

0.325 and 0.556 are greater than 0.05. However, the double interaction of H2O2 is 

significant which means that the main effect of H2O2 cannot be ruled out, however, an 

analysis without the interactions terms pH*H2O2” and “enzyme *H2O2” was done to 

determine which model fits better. As mention before for response surfaces, an hierarchic 

model is preferred because they are a more robust design. 

The model has a high capacity predictive, R² to 96.90%, indicating that the fitted model 

explains 96.90 % of the amount of remaining, which means that the model has a good fit 

According to the results of the analysis of variance, the double interaction of 

enzyme*enzyme and pH*H2O2 factors could be eliminated from the model, so the 

mathematical model equation is expressed as follows: 

 

 

 

 

 

 

 

 

 

 

x1= pH = pH 

x2= H2O2 concentration (mM) 

x3= Enzyme concentration (U/mL) 

Y = % color remaining 

For this reason it is necessary to analyze the results for this model without these effects 

(Figure 95). 

 

 

𝑌   𝛽  𝛽 𝑥  𝛽 𝑥  𝛽  𝑥 
  𝛽  𝑥 

   𝛽  𝑥 
  𝛽  𝑥 𝑥  𝜀 

𝑌   𝛽  𝛽 𝑥  𝛽 𝑥  𝛽 𝑥  𝛽  𝑥 
  𝛽  𝑥 

   𝛽  𝑥 
  𝛽  𝑥 𝑥  β  𝑥 𝑥  𝛽  𝑥 𝑥  𝜀 
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The ANOVA was done to compare the fit of the fitted design against the previous 

second-order design (Figure 94) and choose the one that best describes the surface of the 

experimental. 

Both models have the almost the same quality of fit 96.90 and 96.99%, respectively. 

In addition, with a confidence level of 95%, all main effects of the factors and the pure 

quadratic effects and double interactions, except for H2O2, are significantly influential on 

the % remaining dye solution as before. 

Thus, any model could be used to characterize the response surface in this case study, as 

for AB113 and the first approach of DB38, a full quadratic model was taken, the first 

generated. 

 

                                                        
                                             
                                            
                     

 

 
 
 

 

 

Source             DF  fit SS  fit MS      F      P 

Regression          7  1406.85    200.979  134.33  0.000 

  Lineal            3   888.84    296.281  198.02  0.000 

    pH              1   482.07    482.072  322.20  0.000 

    H2O2             1     1.72      1.722    1.15  0.295 

    enzyme          1   405.05    405.051  270.72  0.000 

  Squared           3   444.98    148.327   99.14  0.000 

    pH*pH           1   375.60    375.602  251.04  0.000 

    H2O2*H2O2        1    54.63     54.634   36.52  0.000 

    enzyme*enzyme   1    59.93     59.925   40.05  0.000 

  interaction       1    73.03     73.029   48.81  0.000 

    pH*enzyme       1    73.03     73.029   48.81  0.000 

Residual error     22    32.92      1.496 

  Lack-of-fit       5    25.44      5.088   11.57  0.000 

  Pure error       17     7.48      0.440 

Total              29   

R-squared. = 97.71%    R-squared(fitted) = 96.99% 

 

 

Figure 95.  ANOVA analysis without the main effect of “pH*H2O2” and “enzyme *H2O2” 
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4.5.2.10. Countour and surface plos for DB38 

 

Figures 96 ad 97 show the contour and surface plots for DB38, to demonstrate two 

factors while the other is fixed at low level (-1 level). 

 

 

 

Figure 96. Contour plots for DB38. Fixed values:  a) enzyme 2.5 U/mL, b) H2O2 2.5 mM, c) pH 3.0 

 

H2O2*pH

5.04.54.03.53.0

3.50

3.25

3.00

2.75

2.50

enzyme*pH

5.04.54.03.53.0

3.50

3.25

3.00

2.75

2.50

enzyme*H2O2

3.503.253.002.752.50

3.50

3.25

3.00

2.75

2.50

pH 3

H2O2 2.5

enzyme 2.5

Fixed values

>  

–  

–  

–  

–  

–  

–  

<  5

5 8

8 10

10 13

13 15

15 20

20 25

25

Remaining



129 
 

 

 
 

Figure 97.Surface plots. Fixed values:  a) enzyme 2.5 U/mL, b) H2O2 2.5 mM, c) pH 3.0 

                           
 

Analyzing Figures 96 and 97, for the contour and surface plots of H2O2 against pH, the 

graph have a minimum (lower % remaining) between pH 3.5 and 4.0 in the experimental 

region and the response increases as it moves away from that point. The graphs of 

enzyme against pH also seem to have a minimum point in the experimental region where 

the minimal remaining response is located in the left extreme of the region of acidic pH. 

As seen in Figure 96, the optimal enzyme region begins from 3.0 U/mL and shows no 

change in % remaining with higher values of enzyme. The graph of H2O2 against enzyme 

at pH 3.0 has the optimal values in the upper part of the graph as it can be observed in 

Figure 96 and 97 it has a simple maximum, independent of the H2O2 concentration if the 

optimal enzyme values are ≥3 U/mL. 
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4.5.2.11. Optimum response for DB38 
 

The optimum response represents the best combination of values for the factors that are 

in the experimental region, which is shown in Figure 98. 

The best point in the experiment region is given by: 

 

x1= pH = 3.68 

x2= H2O2 =  2.92 mM 

x3= Enzyme = 2.84 U/mL 

Y = 3.63 % remaining 

 

To validate this data experimental runs were done obtaining a % remaining of 5.1 ± 

0.13% remaining using these values for the different factors. The optimum conditions 

with the optimization of one factor at the time were pH 3.6, 2.5 mM H2O2, 3 U/mL, 

achieving 3% remaining. Thus, this second approach obtained a lower optimum % 

remaining for both the Minitab estimation as well as the experimental run. Figures 96 and 

97, also gives a better representation of the optimal region. 

 

 

 

 

 

 
Figure 98.Optimization graph for DB38 (H2O2 in mM, enzyme in U/mL) 
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Table 17 shows the summary of the Minitab model and the optimization one parameter at 

the time. The % remaining showed for Minitab model is the actual experimental value 

obtained from the conditions of Minitab, the values predicted for AB113 was 5.6% and 

3.6 % for DB38. 

Table 17. Summary for Minitab model and one parameter at the time for both azo-dyes 

Dye 

Minitab model One parameter at the time 

H2O2 

(mM) 
Enzyme 
(U/mL) 

pH 
%remaining 

* 
%remaining 

** 
H2O2 

(mM) 
Enzyme 
(U/mL) 

pH %remaining 

AB113 2.57 1.52 4.4 8.08 5.67 2.5 1.5 4 5.2 

DB38 2.92 2.84 3.68 5.1 3.63 3 3 3.6 3.16 

* Experimental value obtained using the Minitab model conditions 

** Value predicted by Minitab 
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Chapter 5. Summary and Conclusions 

 

5.1 Summary 

 

Enzymatic treatment with SBP in the presence of H2O2 is an effective method for 

decoloration and degradation of azo-dyes and their possible products as demonstrated 

with two impure azo-dyes. In this dissertation a single-step process and two-step process 

with Fe° reduction were conducted to compare the optimal conditions required for both 

processes. To determine the effectiveness a complete study of color, dye, total amines (as 

aniline) and product reductions were conducted by UV-spectroscopy and HPLC. For the 

single-step process, buffered batch reactions over 3 hour reaction at room temperature 

showed: AB113 at 1.0 mM required 2.5 mM H2O2 and 1.5 U/mL SBP at pH 4.0 to 

achieve 95% color reduction (spectroscopy), 97% dye conversion (HPLC) and 30% TOC 

removal; DB38 required 2.5 mM H2O2 and 3 U/mL SBP at pH 3.6 to achieve 98% color 

reduction (spectroscopy), 98% dye degradation (HPLC) and 70% TOC removal. A two-

step process was also conducted, where zero-valent iron (Fe°) was used as a pretreatment 

followed by enzymatic treatment. For the iron reduction step, unbuffered solutions were 

used and the parameters measured were: color reduction, dye degradation, TOC, total 

amines (as aniline), a representative Fe° product (by HPLC, 3-ABS for AB113 and 

aniline/benzidine for DB38) remaining. For AB113, 1.5 g Fe° (for 40 mL of 1 mM dye) 

and 60 minutes᾽ reaction with Fe° followed by 1.5 U/mL SBP and 2.5 mM H2O2 at pH 

4.0 were required for greater than 95% color and dye removal (spectroscopy and HPLC 

measurements) 69% TOC, and 80% of 3-ABS removal. For maximum removal of total 
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amines (74 %) the same conditions were needed as mentioned above, but a higher SBP 

concentration was needed (2.5 U/mL). 

For DB38, 2 g Fe°(for 40 mL of 0.5 mM dye) and 120 minutes᾽ reaction with Fe° 

followed by 0.6 U/mL SBP and 1.1 mM H2O2 at pH 5.0 were required for greater than 

95% color and dye removal (spectroscopy and HPLC, respectively) as well as total 

amines and aniline/benzidine removal, and 88% TOC removal. The improved conditions 

for DB38 in the two-step process are due to the formation of products such as aniline and 

benzidine which are good substrates of SBP, but not 3-aminobenzenesulfonic acid. Thus, 

in order to choose a single- or two-step process for a given dye, it is necessary to 

determine if the products of azo cleavage due to Fe° reduction are good SBP substrates 

(such as aniline/benzidine), otherwise a single-step process is preferred.  

With the one-step process, kinetic studies, fitting to the Michaelis-Menten model, were 

conducted (direct enzymatic treatment) for AB113, DB38 and COG. The lowest KM value 

was for COG (4.7 µM) followed by AB113 and DB38 (20.75 and 36.4 µM, respectively). 

For catalytic efficiency the order obtained was: AB113=DB38>COG, the lower 

efficiency for COG is due to the lower Vmax value compared to the other two-azo dyes.  

Possible azo-cleavage was detected and also quantified by HPLC and confirmed with 

ESI-MS for COG after direct enzymatic treatment. The evidence for azo-cleavage of 

COG to aniline after direct enzymatic treatment with different concentrations of H2O2 

and SBP was quantified by HPLC and found by the maximum aniline concentration of 

0.025 mM and 85%-90% COG degradation from 1.0 mM COG. Spiked and non-spiked 

solutions were analyzed to determine that the presence of aniline (alternative substrate of 
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the enzyme) diminished the removal efficiency of the azo-dye COG by around 20%, 

proving the competition of the two substrates. Evidence supporting the azo-cleavage and 

formation of aniline product was found by ESI-MS in positive mode, where the optimal 

conditions obtained by HPLC for the formation of aniline were analyzed, detecting a 

peak which supports the presence of aniline after treatment. Peaks suggesting the 

presence of hydrolysis products of the corresponding aniline dimers and trimers were also 

found supporting the azo-cleavage process. On the other hand, a peak was obtained that 

suggest the presence of a doubly charged COG dimer. With these results, it is suggested 

that both direct radical polymerization and azo-cleavage pathways occurred for COG 

with SBP. 

A RSM was developed to statistically analyze the relationship among the parameters that 

affect the percent color remaining, as well as to obtain the optimal response for the lowest 

concentration remaining (≤5%) and compared to an optimization one-parameter-at-a-time 

as established in objective 3 of this dissertation. For AB113 the optimal response 

(conditions: pH 4.4, 2.5 mM H2O2 and 1.52 U/mL SBP) obtained with the Minitab model 

was 2.4% above the experimental value (for the Minitab model the response was 5.7% 

and the experimental was 8.1 ± 0.13). For DB38 the optimal response (conditions: pH 

3.68, 2.92 mM H2O2 and 2.84 U/mL SBP) obtained was 1.5% above the experimental 

value (for the Minitab model the response was 3.6% and the experimental was 5.1 ± 

0.13%). Thus it was demonstrated that RSM is an effective methodology to statistically 

determine the optimal response for decoloration of azo-dye and proper experimental 

validation should be done as presented. Also, it demonstrates that RSM required a 

smaller number of experiments (49 experimental runs) to be conducted compared to a 
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conventional optimization of one-parameter-at-a-time (81 experimental runs) if the 

appropriate range of values for the parameters are chosen, which represents time and cost 

savings. Also, the RSM equation and contour/surface plots allow exploration of the 

interactions of parameters and their influence on the response in the area studied.  

 

5.2 Conclusions 

 

A more complete study compared to the literature review (with respect to the parameters 

measured) was done in order to determine the conditions where a single- or two-step 

process is preferred, determining important parameters such as total amines, dye, color 

and product reduction aiming to achieve 95% removal and seeking the treatment with 

lower concentration of SBP and H2O2. 

Enzymatic treatment with SBP was proven to effectively decolorize and remove azo-dyes 

and their possible toxic byproducts from water under optimal conditions. It can be 

concluded that a two-step process (with Fe° reduction as pretreatment) was determined to 

be preferable because the products of Fe° reduction, such as aniline and benzidine, were 

good SBP substrates showing more than 95% removal of the dye and products. On the 

other hand, a single-step process if preferred for azo-dyes which products after zero-

valent iron, such as 3-ABS, were poor enzyme substrates. This conclusion is useful in 

considering removal of other azo-dyes present in wastewater. 

In order to reduce time and cost based on the number of experimental runs, RSM, using 

Box-Behnken design, was found to be an appropriate and effective statistical technique to 

optimize the decoloration of azo-dyes. The reduction in the number of experimental runs, 

almost 50%, is an advantage of RSM when compared to an optimization of one factor at 

a time, also important statistics parameters were obtained such as contour/surface plots 

and model equations. 

Aniline formation during SBP treatment was determined under different H2O2 and SBP 

conditions for the mono-azo-dye, COG was quantified by HPLC. The confirmation of 
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azo-splitting was obtained by ESI-MS, showing the presence of products such as aniline, 

plus the protonated hydrolysis products of aniline dimer and trimer. At the same time, 

ESI-MS confirmed the existence of a radical polymerization pathway by showing the 

presence of doubly-charged COG dimer in the reaction mixture. 
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Chapter 6. Recommendations 

 

1. Toxicity studies after single enzymatic treatment and two-step process using Fe° 

pre-treatment are recommended to understand the possible impacts of the 

products from both processes and to determine the environmental impact.  

2. Other products after Fe° reduction of both dyes should be determined, analyzed 

and quantified if they are SBP substrates and to what extent. Due to the lack of 

standards for the other products they were not measured in this dissertation, 

however, a model compound with the highest structural similarities to represent 

the parent compound should be investigated. 

3. The azo-cleavage products by enzymatic treatment should be further investigated 

by identifying and analyzing the products in the solution and precipitate of 

enzymatic treatment by HPLC-MS and/or MS/MS which might increase the 

sensitivity for the compounds. A quantitative study should be carried out in order 

to obtain the mass balance and determine the ratio between the azo-cleavage 

pathway and the direct phenolic/anilino polymerization pathway. Qualitative 

evidence for both pathways was obtained with this dissertation. 

4. RSM was used for a single-step process measuring the decoloration of the azo-

dyes, obtaining a diminish in the number of experimental runs. However, the 

application of RSM was not studied for the two-step process. The RSM can be 

used to optimize the two-step process and compare with the optimization one-

parameter-at-a-time in order to decrease the number of experimental runs and 

obtain the mathematical models. 

5. For future industrial applications, the matrix effect of real wastewater should be 

analyzed at each site to optimize the parameters pH, H2O2 and enzyme 

concentrations. 

6. The effect of additives can be included in the enzymatic treatment to improve the 

processes. The literature has reported that the used of additives reduce the enzyme 

concentration. This would be necessary for future industrial applications. 

7. Cost analysis for both processes should be conducted to determine which can be 

more cost-efficient for industrial applications of the processes. 
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APPENDIX A. CALIBRATION CURVES 

 

 

 

Figure A. 1 Calibration curve for AB113 at 565 nm (spectroscopy) 

 

 

Figure A. 2 Calibration curve for AB11 at 536nm, pH 3.6 (spectroscopy) 
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Figure A. 3 Calibration curve for DB38 at 520 nm (spectroscopy) 

 

 

Figure A. 4 Calibration curve AB113 at 565 nm (HPLC) 
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Figure A. 5 Calibration curve DB38 at 520nm (HPLC) 

 

 

 

Figure A. 6 Calibration curve for total amine test as aniline at 440nm 
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Figure A. 7 Calibration curve for 3-ABS at 235nm (spectroscopy) 

 

 

Figure A. 8 Calibration curve 3-ABS at 235nm (HPLC) 
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Figure A. 9 Aniline calibration curve at 280 nm (HPLC) 

 

 

 

Figure A. 10 Benzidine calibration curve at 280 nm (HPLC) 
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Figure A. 11 TOC (mg/L) for different enzyme concentrations (U/mL) 
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APPENDIX B. 3-ABS ENZYMATIC TREATMENT 

 

 

Figure B. 1 pH optimization of 1 mM 3-ABS with 1 mM H2O2 and 1 U/mL 

 

 

Figure B. 2 Enzyme optimization of 1 mM 3-ABS with 1 mM H2O2, pH 3.6 
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Figure B. 3 H2O2 optimization of 1 mM 3-ABS with 3 U/mL, pH 3.6 
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APPENDIX C. MINITAB EXPERIMENTAL RUNS 

 

 

Table C. 1. Order for runs in first-order search for AB113 

 

 

 

 

 

 

 

 

 

 

Run order Central point pH H2O2 enzyme

1 1 3.6 3.0 1.0

2 1 3.6 3.0 1.0

3 1 7.0 3.0 1.0

4 1 7.0 1.0 2.0

5 1 3.6 1.0 1.0

6 0 5.3 2.0 1.5

7 1 3.6 1.0 1.0

8 1 3.6 3.0 2.0

9 1 3.6 1.0 2.0

10 1 7.0 1.0 1.0

11 0 5.3 2.0 1.5

12 1 7.0 1.0 1.0

13 1 3.6 3.0 2.0

14 1 7.0 3.0 2.0

15 1 7.0 1.0 2.0

16 1 7.0 3.0 1.0

17 1 7.0 3.0 2.0

18 1 3.6 1.0 2.0

19 0 5.3 2.0 1.5
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Table C. 2. Order for runs in Box-Behnken design with two replicates for AB113 

 

 

 

  

 

 

 

Run order pH H2O2 enzyme

1 5.3 2.0 1.5

2 7.0 2.0 2.0

3 5.3 1.0 1.0

4 5.3 2.0 1.5

5 5.3 2.0 1.5

6 5.3 3.0 1.0

7 5.3 2.0 1.5

8 5.3 3.0 2.0

9 3.6 2.0 1.0

10 3.6 3.0 1.5

11 7.0 3.0 1.5

12 7.0 2.0 2.0

13 5.3 1.0 2.0

14 3.6 1.0 1.5

15 7.0 3.0 1.5

16 5.3 2.0 1.5

17 7.0 2.0 1.0

18 3.6 2.0 2.0

19 3.6 2.0 2.0

20 3.6 1.0 1.5

21 7.0 2.0 1.0

22 3.6 2.0 1.0

23 3.6 3.0 1.5

24 7.0 1.0 1.5

25 5.3 1.0 2.0

26 5.3 3.0 2.0

27 5.3 2.0 1.5

28 5.3 1.0 1.0

29 5.3 3.0 1.0

30 7.0 1.0 1.5
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Table C. 3. Order for runs in first-order search for AB113, second approach 

Run order Central point pH H2O2 enzyme 

1 1 3.60 3.00 1.00 

2 1 4.45 2.00 1.50 

3 1 5.30 3.00 2.00 

4 1 5.30 3.00 1.00 

5 1 5.30 3.00 1.00 

6 0 3.60 3.00 1.00 

7 1 5.30 3.00 2.00 

8 1 5.30 1.00 1.00 

9 1 4.45 2.00 1.50 

10 1 3.60 1.00 2.00 

11 0 4.45 2.00 1.50 

12 1 5.30 1.00 2.00 

13 1 5.30 1.00 1.00 

14 1 3.60 3.00 2.00 

15 1 5.30 1.00 2.00 

16 1 3.60 1.00 2.00 

17 1 3.60 3.00 2.00 

18 1 3.60 1.00 1.00 

19 0 3.60 1.00 1.00 
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Table C. 4. Order for runs in Box- Behnken design with two replicates for AB113, second approach 

Run order pH H2O2 enzyme 

1 4.45 1.00 1.00 

2 5.30 1.00 1.50 

3 5.30 2.00 2.00 

4 4.45 1.00 2.00 

5 5.30 2.00 1.00 

6 3.60 1.00 1.50 

7 3.60 1.00 1.50 

8 4.45 3.00 2.00 

9 4.45 3.00 1.00 

10 5.30 2.00 1.00 

11 4.45 1.00 1.00 

12 4.45 1.00 2.00 

13 3.60 2.00 2.00 

14 4.45 2.00 1.50 

15 5.30 2.00 2.00 

16 3.60 3.00 1.50 

17 4.45 2.00 1.50 

18 4.45 3.00 2.00 

19 3.60 3.00 1.50 

20 4.45 3.00 1.00 

21 5.30 3.00 1.50 

22 5.30 1.00 1.50 

23 3.60 2.00 1.00 

24 4.45 2.00 1.50 

25 5.30 3.00 1.50 

26 4.45 2.00 1.50 

27 3.60 2.00 2.00 

28 4.45 2.00 1.50 

29 4.45 2.00 1.50 

30 3.60 2.00 1.00 
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Table C. 5. Order for runs first-order search for DB38 

RunOrder pH H2O2 Enzyme 

1 
3.00 3.00 3.00 

2 
3.00 3.00 1.50 

3 
4.00 2.25 2.25 

4 
3.00 1.50 1.50 

5 
3.00 3.00 1.50 

6 
5.00 1.50 3.00 

7 
3.00 1.50 3.00 

8 
5.00 3.00 1.50 

9 
5.00 3.00 3.00 

10 
5.00 1.50 1.50 

11 
4.00 2.25 2.25 

12 
5.00 3.00 3.00 

13 
5.00 1.50 3.00 

14 
3.00 3.00 3.00 

15 
5.00 1.50 1.50 

16 
3.00 1.50 1.50 

17 
3.00 1.50 3.00 

18 
5.00 3.00 1.50 
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Table C. 6 Order for runs in Box-Behnken design with two replicates for DB38 

Run order pH Enzyme H2O2 

1 3.00 2.25 1.50 

2 4.00 2.25 2.25 

3 4.00 2.25 2.25 

4 5.00 3.00 2.25 

5 4.00 2.25 2.25 

6 3.00 2.25 1.50 

7 4.00 1.50 1.50 

8 4.00 2.25 2.25 

9 4.00 1.50 3.00 

10 3.00 3.00 2.25 

11 5.00 2.25 3.00 

12 4.00 1.50 1.50 

13 4.00 3.00 3.00 

14 3.00 3.00 2.25 

15 3.00 2.25 3.00 

16 3.00 1.50 2.25 

17 5.00 1.50 2.25 

18 4.00 3.00 1.50 

19 4.00 2.25 2.25 

20 5.00 2.25 3.00 

21 5.00 2.25 1.50 

22 4.00 1.50 3.00 

23 3.00 2.25 3.00 

24 3.00 1.50 2.25 

25 4.00 3.00 3.00 

26 5.00 3.00 2.25 

27 4.00 2.25 2.25 

28 5.00 2.25 1.50 

29 5.00 1.50 2.25 

30 4.00 3.00 1.50 
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Table C. 7. Order for runs first-order search for DB38, second approach 

Run order Central point pH H2O2 enzyme 

1 1 3 3.5 2.5 

2 1 4 3 3 

3 1 3 3.5 3.5 

4 1 4 3 3 

5 1 5 3.5 2.5 

6 0 3 2.5 3.5 

7 1 3 2.5 2.5 

8 1 3 3.5 3.5 

9 1 5 2.5 2.5 

10 1 5 2.5 2.5 

11 0 4 3 3 

12 1 3 2.5 3.5 

13 1 5 3.5 3.5 

14 1 3 2.5 2.5 

15 1 5 2.5 3.5 

16 1 5 3.5 2.5 

17 1 3 3.5 2.5 

18 1 5 3.5 3.5 

19 0 5 2.5 3.5 
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Table C. 8. Order for runs in Box- Behnken design with two replicates for DB38, second approach 

 

 

 

 

 

 

 

Run order pH H2O2 enzyme

1 4 3 3

2 4 3 3

3 5 3 2.5

4 4 2.5 2.5

5 4 2.5 2.5

6 3 3.5 3

7 3 3 3.5

8 4 3 3

9 5 3 3.5

10 4 3.5 2.5

11 3 3 2.5

12 4 3 3

13 5 3 3.5

14 4 3.5 3.5

15 5 2.5 3

16 5 2.5 3

17 4 2.5 3.5

18 3 2.5 3

19 4 3 3

20 3 3 2.5

21 4 3.5 2.5

22 3 2.5 3

23 5 3.5 3

24 3 3.5 3

25 4 3.5 3.5

26 5 3.5 3

27 4 2.5 3.5

28 5 3 2.5

29 3 3 3.5

30 4 3 3
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