
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

10-5-2017 

MIXING AND REACTIVITY CONTROL WITH BUTANOL AND MIXING AND REACTIVITY CONTROL WITH BUTANOL AND 

ETHANOL IN COMPRESSION IGNITION ENGINES ETHANOL IN COMPRESSION IGNITION ENGINES 

Tongyang Gao 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Gao, Tongyang, "MIXING AND REACTIVITY CONTROL WITH BUTANOL AND ETHANOL IN COMPRESSION 
IGNITION ENGINES" (2017). Electronic Theses and Dissertations. 7259. 
https://scholar.uwindsor.ca/etd/7259 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7259&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7259?utm_source=scholar.uwindsor.ca%2Fetd%2F7259&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 
 

                       

 

MIXING AND REACTIVITY CONTROL WITH BUTANOL AND ETHANOL IN 
COMPRESSION IGNITION ENGINES 

by 

Tongyang Gao 

 

A Dissertation 
Submitted to the Faculty of Graduate Studies  

through the Department of Mechanical, Automotive and Materials Engineering 
in Partial Fulfillment of the Requirements for 

the Degree of Doctor of Philosophy at the  
University of Windsor 

 

 

 

Windsor, Ontario, Canada 

2017 

 

©  2017 Tongyang Gao 



MIXING AND REACTIVITY CONTROL WITH BUTANOL AND ETHANOL IN 
COMPRESSION IGNITION ENGINES 

by 

Tongyang Gao 

APPROVED BY: 

______________________________________________ 
M. Xu, External Examiner  

Institute of Automotive Engineering, Shanghai Jiaotong University 

______________________________________________ 
X. (Iris) Xu 

Department of Civil and Environmental Engineering 

______________________________________________ 
D. Ting  

Department of Mechanical, Automotive and Materials Engineering 

______________________________________________ 
J. Tjong  

Department of Mechanical, Automotive and Materials Engineering 

______________________________________________ 
M. Zheng, Advisor 

Department of Mechanical, Automotive and Materials Engineering 

______________________________________________ 
G. Reader, Co-advisor 

Department of Mechanical, Automotive and Materials Engineering 

 

 

September 11th, 2017



DECLARATION OF ORIGINALITY 

iii 
 

 DECLARATION OF ORIGINALITY 
 
I hereby certify that I am the sole author of this dissertation and that no part of this 

dissertation has been published or submitted for publication. 

I certify that, to the best of my knowledge, my dissertation does not infringe upon 

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, 

quotations, or any other material from the work of other people included in my 

dissertation, published or otherwise, are fully acknowledged in accordance with the 

standard referencing practices. Furthermore, to the extent that I have included 

copyrighted material that surpasses the bounds of fair dealing within the meaning of the 

Canada Copyright Act, I certify that I have obtained a written permission from the 

copyright owner(s) to include such material(s) in my dissertation and have included 

copies of such copyright clearances to my appendix.  

I declare that this is a true copy of my dissertation, including any final revisions, as 

approved by my dissertation committee and the Graduate Studies office, and that this 

dissertation has not been submitted for a higher degree to any other University or 

Institution. 



ABSTRACT 

iv 
 

ABSTRACT 

The objective of the research reported in this dissertation was to achieve clean and 

efficient combustion in a compression ignition engine. Previous research and literature 

have indicated that the control of the in-cylinder mixture preparation and charge 

reactivity are critical to improve combustion performance and to reduce emission 

formations. This research work hence focused on the exploration of the desired fuel 

mixing process and charge reactivity to reduce the emissions of nitrogen oxides and 

smoke while maintaining the high engine efficiency. Neat n-butanol, ethanol, and ultra-

low sulfur diesel were used as the representative fuels to demonstrate the potential of 

using the significantly different physical and chemical properties to achieve the targets of 

combustion performance and emissions. Various fuel delivery strategies, assisted with 

intake boosting and EGR, were examined for the active control of charge mixing and 

reactivity.  

Extensive experiments were performed on the two compression ignition engine platforms 

to systematically study the effectiveness of various engine control parameters on the 

regulation of ignition, combustion rate, and emission formation. The insufficient mixing 

of the diesel injection was observed as the primary cause for the high smoke emissions 

with the application of exhaust gas recirculation, while the high peak pressure rise rate in 

the n-butanol combustion is the main constraint for the high load applications. A 

promising approach to tackle the emission challenge is using inert premixed fuel to 

substitute the direct injection fuel. The combustion with the ethanol premixed fuel 

demonstrated promising results in emissions and efficiency. The n-butanol combustion 

showed an improved control over the combustion phasing. 

With the knowledge obtained from the empirical analysis, the enhanced control of the in-

cylinder charge mixing and reactivity was demonstrated in the partially premixed 

combustion with alcohol fuels. The combustion with n-butanol direct injection and 

ethanol port fuel injection was found to have low smoke emissions. The combustion with 

n-butanol multiple injections improved the control flexibility with different fueling 

strategies. The optimal combustion was demonstrated with the active management of fuel 

delivery, intake properties, and exhaust gas recirculation in each of the fueling strategies.  
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The n-butanol high pressure injection was also characterized with the injection rate 

measurement and the optical visualization under various injection conditions. The 

differences between the n-butanol injection and the diesel injection were investigated. 

The observations potentially improve the understanding of the combustion performance 

with the n-butanol injections.   

 

Keywords: mixing, reactivity, low temperature combustion, clean combustion, engine 

efficiency, n-butanol, ethanol, diesel, high pressure injection, EGR 
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PM Particulate Matter [-] 

PPC Partially Premixed Combustion [-] 

ppm Parts per Million  [ppm] 

PREDIC Premixed Lean Diesel Combustion [-] 

PRF Primary Reference Fuel [-] 

PPRR Peak Pressure Rise Rate [bar/°CA] 
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ROI Rate of Injection [-] 
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SCCI Stratified Charge Compression Ignition [-] 
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T Temperature [°C], [K] 
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ULSD Ultra-low Sulfur Diesel [-] 

UNIBUS Uniform Bulky Combustion System [-] 

US United States [-] 

Vd Engine Displacement [m3], [L] 

VGT Variable Geometry Turbocharger [-] 

VVA Variable Valve Actuation [-] 

VVT Variable Valve Timing [-] 

WSD Wear Scar Diameter [μm] 
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CHAPTER I 

1. INTRODUCTION 

1.1 Diesel Engines 

Diesel engines have been used as the primary power systems for both mobile and 

stationary applications. The success of diesel engines can be attributed the exceptional 

fuel economy, mechanical durability, and robustness [1]. The high thermal efficiency of 

diesel engines is mainly attributed to the typically high engine expansion ratio and the 

overall fuel-lean operation. Additionally, the lack of intake throttling is also 

advantageous for fuel economy at partial engine loads. However, the harmful pollutions 

emitted from diesel engines create serious environmental problems. A primary focus of 

modern diesel engine development is the reduction of these pollutants without 

compromising the high fuel efficiency.  

Tremendous technical advancements in diesel engines have been made in the recent 

decades for cleaner combustion and better fuel economy, such as exhaust gas 

recirculation (EGR), intake air boosting, common rail fuel injection, and exhaust after-

treatment. The application of EGR has proven to be an effective method for suppressing 

the formation of nitrogen oxides during the diesel combustion [2]. Intake air boosting can 

significantly increase the engine power density and compensate for the oxygen 

displacement caused by the EGR application. The common rail fuel injection system can 

provide a stable fuel injection pressure and facilitate a flexible fuel injection scheduling. 

After-treatment techniques can further reduce the engine-out emissions to satisfy the 

increasingly stringent emission regulations. 
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The common operating process of a modern four-stroke diesel engine is demonstrated in 

Figure 1-1. The three essential elements to initiate the engine combustion include the 

diesel fuel, the intake air, and the energy for ignition. Traditionally, only fresh air is 

drawn into the combustion chamber during the engine intake stroke. The diesel fuel is 

then injected into the combustion chamber at the completion of cylinder compression, 

when the temperature of the in-cylinder charge is higher than the auto-ignition 

temperature of diesel. An engine compression ratio higher than that of gasoline engines, 

can be used without the constraint of premature combustion. The load control of a diesel 

engine is commonly implemented through the regulation of the amount of fuel delivered 

into the combustion chamber. The intake air amount is in excess of what is required for 

the stoichiometric combustion. Hence, the diesel engine is generally operated in the fuel-

lean conditions with excess oxygen left in the exhaust stream. 

The reduction of NOx emissions is a challenging task in diesel engines. The application 

of EGR decreases the NOx formation by reducing the intake oxygen level. However, 

extensive EGR may also reduce the combustion efficiency due to the increased emissions 

of partially oxidized products, such as particulate matter (PM), total hydrocarbons, and 

carbon monoxide. The after-treatment techniques, such as selective catalytic reduction 

(SCR) and lean NOx trap (LNT), are capable of suppressing the tailpipe NOx emissions. 

Nevertheless, a reducing agent is frequently required in both the techniques for the NOx 

conversion. Furthermore, additional systems for delivering the reducing agent are also 

necessary for the implementation of these after-treatment techniques.  
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Figure 1-1 Block diagram for typical diesel engine operation, adapted from [3] 
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1.2 Diesel Fuel 

Diesel fuel is a complex mixture of paraffinic, naphthenic, and aromatic hydrocarbons [4]. 

The overall diesel properties are determined by the characteristics of the individual 

hydrocarbons. The specific property of diesel can vary in a wide range because of the 

variations in the crude oil sources and the refinery processes. Various additives are also 

added to the commercial diesel fuel to improve the fuel quality, such as lubricity 

improvers and fuel stabilizers. 

The selected fuel standards from ASTM D975 for the US No. 2 ultra-low sulfur diesel 

(ULSD) [5] are listed in Table 1-1. The critical fuel properties that often affect engine 

combustion and operation include Cetane number, volatility, viscosity, and lubricity. 

Cetane number is a measure of the fuel reactivity to compression ignition. A fuel with a 

higher Cetane number typically has a shorter ignition delay under various engine 

operating conditions. Hence, the combustion of the fuel of high Cetane number tends to 

be closely coupled with the fuel injection event. The separation of the combustion event 

from the injection event, which is often required for improved in-cylinder charge mixing 

and low emissions, becomes challenging in diesel engines.  

The volatility of a fuel is often evaluated with T90 (the distillation temperature of 90% of 

the fuel by volume), if the fuel is a mixture rather than a pure substance. The minimum 

required T90 of No. 2 ULSD is higher than the typical engine intake temperature. The 

direct use of diesel port injection is thus challenging without additional intake heating. 

Furthermore, the diesel injections deployed early in the compression stroke may 

potentially lead to the wall impingement and lubrication oil dilution.   
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Table 1-1 Fuel standards for US No. 2 ULSD [5] 

Fuel Property ASTM D975 Effect of Property on Performance 

Cetane Number [-], min 40 
Measure of ignition quality – affects cold 
starting, combustion, and emissions 

Flash Point [°C], min 52 
Safety in handling and use – not directly 
related to engine performance 

T90 [°C], min 282 
Measure of fuel volatility – affects spray 
evaporation, smoke, and combustion 

T90 [°C], max 338 

KV1 [mm2/s], min 1.9 
Affects fuel spray atomization and fuel 
system leakage and lubrication. 

KV [mm2/s], max 4.1 

WSD2 @ 40 °C [μm], 
max 

520 
Affects fuel injection system (i.e. pump and 
injector) wear 

1. KV: kinematic viscosity @ 40 °C 

2. WSD: wear scar diameter from high frequency reciprocating rig test 

The viscosity of a fuel is a measure of the resistance to shear flow. This property affects 

the liquid film thickness in the diesel fuel systems. In a common rail fuel system, diesel 

fuel is the working fluid as well as the coolant and the lubricant. A thicker liquid film 

often provides better heat transfer and better protection between the moving metal 

components. Moreover, the viscosity also affects the fluid velocity through narrow gaps 

and orifices. A fuel with a higher viscosity often flows slower under a fixed differential 

pressure. The fuel jet also has a lower tendency to break up into small droplets. Therefore, 

the required viscosity of the ULSD is in a range of 1.9 to 4.1: the minimum threshold is 
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primarily required for the sufficient cooling and lubrication, while the maximum one is 

important for the flow performance and fuel spray atomization. 

The lubricity of a fuel is a direct measure of the lubrication performance. A common way 

to evaluate the lubricity is using a high frequency reciprocating rig (HFRR). In the 

experiment, a steel ball rubs for 75 minutes on a steel plate that is submerged in the test 

fuel. The diameter of the wear scar on the steel plate is used to evaluate the lubricity of 

the fuel. A smaller diameter indicates a better lubricity of the fuel.          

1.3 Combustion in Diesel Engines 

A simplified reaction, as shown in Eq. (1-1), can be employed to illustrate the 

combustion process in diesel engines. The three essential elements for combustion, as 

given in Figure 1-1, are included in this equation. A generic formula of hydrocarbon is 

used to represent the fuel. The fresh air is considered as a mixture of oxygen and nitrogen, 

while other minor compositions are disregarded. The ignition energy is provided from the 

high temperature generated during the engine compression stroke. The fuel is fully 

oxidized to carbon dioxides (CO2) and water (H2O). Pollutants other than CO2 are not 

taken into consideration due to their low concentrations, but the presence of these 

emissions should not be disregarded.  

 

ఉܪఈܥ ఊܱ  ߙሺߣ  ߚ 4⁄ െ ߛ 2⁄ ሻሺܱଶ  3.76 ଶܰሻ →

ଶܱܥߙ  ሺߚ 2⁄ ሻܪଶܱ  ሺߣ െ 1ሻሺߙ  ߚ 4⁄ െ ߛ 2⁄ ሻ ܱଶ  ߙሺߣ3.76  ߚ 4⁄ െ ߛ 2⁄ ሻ ଶܰ 

 

(1-1) 
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A quantitative analysis of combustion process is often conducted through the heat release 

estimation using the in-cylinder pressure data. A heat release rate (HRR) curve, as shown 

in Figure 1-2, is commonly used as the indication of the fuel energy released during 

combustion.  

 

Figure 1-2 Typical HRR of combustion in conventional diesel engines 

The HRR of conventional diesel combustion can often be categorized into four phases: 

ignition delay period (I), premixed combustion phase (II), diffusion combustion phase 

(III), and tail of combustion (IV) [6].  

I. Ignition delay period: the ignition delay period is defined as the duration from the start 

of injection (SOI) to the start of combustion (SOC). The SOC is commonly determined 

from the cumulative heat release, while the SOI can be determined with the injection 

command and injection opening delay. The ignition delay period is essential for the 

reactants to prepare for combustion. A liquid jet needs time to atomize, evaporate, and 
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mix with the surrounding air. When the local air to fuel ratio (AFR) and the temperature 

are sufficient for auto-ignition, the combustion initiates at the regions with the mixed 

charge.   

II. Premixed combustion phase: the heat released in this phase is mainly from the 

combustion of the premixed in-cylinder charge. The combustion can often be identified 

from the intense energy release. The portion of premixed combustion is primarily 

determined by the ignition delay and the fuel volatility. The premixed combustion often 

forms low smoke emissions.  

III. Diffusion combustion phase: the fuel that has not been consumed during the premixed 

combustion phase is oxidized in this phase. The fuel is often surrounded by the burnt gas 

from the premixed combustion. Although the local temperature is typically higher than 

the auto-ignition temperature of the fuel, the reaction is limited by the diffusion of fuel 

into the surrounding oxygen. In this heated environment, the combustion often continues 

in fuel-rich regions. High emissions of NOx and smoke are formed at this high 

combustion temperature.  

IV. Tail of combustion: the tail of combustion is identified from the lower HRR and the 

relatively long duration especially at a higher engine load. The majority of the fuel is 

burnt in the premixed and diffusion combustion phases. The partially reacted emissions 

may get oxidized in this phase if the in-cylinder temperature is sufficiently high and the 

oxygen is available for the reaction.  
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1.4 Exhaust Emissions from Diesel Engines  

The primary exhaust emissions from diesel engines, which are regulated by the 

regulatory authorities, consist of nitrogen oxides (NOx), particulate matter (PM), carbon 

monoxide (CO), and total hydrocarbons (THC) [7]. The concentrations of these 

pollutants are lower compared to the primary compositions in the exhaust gas from diesel 

engines, such as nitrogen (N2), oxygen (O2), H2O, and CO2. However, the impacts of the 

emissions on the environment and human health are more significant. The primary 

formation mechanisms and reaction pathways of these emissions are described in the 

following subsections.  

1.4.1 Nitrogen Oxides 

Nitrogen oxides are a group of chemicals that are composed of nitrogen and oxygen. The 

two most common NOx emissions from diesel engines are nitric oxide (NO) and nitrogen 

dioxide (NO2). NOx emissions are often regulated on a NO2 equivalent basis because it is 

the most prevalent form of NOx in the atmosphere that is generated by human activities 

[8]. NO2 can react in the atmosphere to form the tropospheric ozone (O3), as shown in 

Reaction (1-2). The tropospheric ozone is an essential reactant for smog.  

 

ܱܰଶ  ܱଶ ↔ ܱܰ  ܱଷ 

 

The primary NOx pollutants from conventional diesel engine exhaust are NO emissions. 

The NO formation in the conventional high temperature combustion of diesel can be 

explained with the Extended Zeldovich mechanism [8], as shown in Reactions (1-3), (1-

(1-2) 
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4), and (1-5). This mechanism is also referred to as the thermal mechanism because the 

majority of NO is formed at a temperature exceeding 2000 K. The single nitrogen radical, 

which is generated from Reaction (1-3), is essential for Reaction (1-4) and (1-5) to 

proceed to the side of NO production. Reaction (1-3) requires high activation energy 

(high temperature) to break the strong triple bonds in N2. Therefore, the local combustion 

temperature and the local flame temperature determine the formation rate of the thermal 

NOx. An effective emission control technique that suppresses the NOx formation during 

this stage, such as EGR, often reduces the combustion temperature.  

 

ଶܰ  ܱ ↔ ܱܰ  ܰ 

ܰ  ܱଶ ↔ ܱܰ  ܱ 

ܰ  ܪܱ ↔ ܱܰ   ܪ

 

1.4.2 Carbon Monoxide 

Carbon monoxide is produced by the incomplete oxidization of a hydrocarbon fuel. 

Sufficiently high temperature and available oxygen are the two essential conditions for 

the CO emissions to be further oxidized to CO2 [15]. Therefore, the CO emissions, which 

are initially formed in the fuel-rich regions, are often further oxidized by the excess 

oxygen in the conventional high temperature combustion. In stark contrast, the CO 

emissions have a lower tendency to be oxidized in the low temperature combustion that is 

implemented to lower the emissions of NOx and smoke. Because of the lowered 

combustion temperature and the reduced intake oxygen level, the CO emissions at these 

(1-3) 

(1-4) 

(1-5) 
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combustion modes are often higher than that from the conventional diesel high 

temperature combustion. 

1.4.3 Total Hydrocarbon 

The majority of the total hydrocarbon emissions are the unburned fuel and the light 

hydrocarbons from the fuel cracking reactions. The THC emissions may also include 

some oxygenated hydrocarbons, such as alcohol and aldehydes. A small portion of THC 

emissions are from the evaporation and oxidization of the engine lubricating oil.  

The diesel engines operated under the high temperature combustion mode often produce 

low THC emissions because of the fuel-lean combustion, high combustion temperature, 

high compression ratio, and in-cylinder direct fuel injection. However, the THC 

emissions are typically higher when the engine is running under the low temperature 

combustion mode due to the prolonged ignition delay and the increased portion of 

premixed charge [15]. 

1.5 Emission Regulations 

The emission standards from major regulatory authorities over the world have become 

more stringent in the recent several decades. The emission regulations for heavy-duty 

diesel engines from the United States (US) Environmental Protection Agency (EPA) are 

shown in Figure 1-3 as an example. The standards for the NOx and PM emissions have 

been reduced by more than 90% over the past 30 years. The emission standards for these 

emissions remain at the same level as the 2012 standards. The greenhouse gas (GHG) 

emissions of carbon dioxide have been regulated since 2014. [7, 10] 
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Figure 1-3 Emission standards summary for US EPA heavy duty diesel engines 

 

The emission requirements for NOx, PM, and GHG have significantly increased the 

challenges in diesel engine development, because the typical emission reduction 

strategies for NOx and PM often have conflicting impacts on engine efficiency and GHG 

emissions. For example, simultaneously low NOx and smoke emissions can be achieved 

with a high EGR rate in diesel low temperature combustion [11]. However, the engine 

thermal efficiency is often reduced by the lowered combustion efficiency (high emissions 

of CO and THC).  

1.6 Mixing and Charge Reactivity in Compression Ignition Engines 

The mixing of a direct fuel injection in compression igntion engines occurs when the fuel 

at a high pressure is injected into the compressed air inside the combustion chamber. The 

injected liquid fuel atomizes, evaporates, and mixes with the surrounding air to prepare 

the combustible mixing [6]. The liquid fuel may evaporate completely before the onset of 
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combustion, as in homogeneous charge compression ignition (HCCI) [12]. The fuel 

evaporation and mixing may still continue during the combustion process, as in the 

diffusion phase of conventional diesel combustion.  

The charge reactivity in compression ignition engines is mainly regulated from thermal 

impacts and compositional impacts [13]. The thermal impacts are mainly determined by 

the temperature of the in-cylinder charge that varies continuously during the engine 

compression and expansion stroke. The compositional impacts are primarily from the 

AFR gradient and the oxygen concentration [13]. Moreover, a fuel with a higher Cetane 

number potentially increases the overall charge reactivity [14].  

1.7 Research Objective and Dissertation Contribution 

The objective of the research presented in this dissertation is to achieve clean and 

efficient combustion in a compression ignition engine. Neat n-butanol, ethanol, and diesel 

are used as the representative fuels to demonstrate the potential of using the significantly 

different physical and chemical properties to achieve the targets of combustion 

performance and emissions. Various fuel delivery strategies, assisted with intake boosting 

and EGR, are examined for their effects on combustion characteristics and emissions.  

The specific objectives of this dissertation can be summarized as follows:  

1. To control the mixing process of the in-cylinder charge with direct fuel injection 

of diesel and n-butanol, and to investigate the trade-off between the emissions of 

NOx and smoke. 
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2. To actively modulate the reactivity in a premixed charge using port fuel injection 

(PFI) of ethanol and n-butanol, and to study the control effectiveness of various 

fuel delivery strategies under the applications of EGR and intake boosting. 

3. To develop clean combustion strategies using n-butanol and ethanol, and to 

explore the potential engine load range with high efficiency and low emissions of 

NOx and smoke.   

4. To examine the correlations between the injector control parameters (i.e. injection 

duration and injection pressure) and the actual injection characteristics (i.e. 

injection rate, injection opening delay, and injection closing delay) of the direct 

injection (DI) of n-butanol.  

The dissertation contributions include: 

1. Identified that the primary explanation for the emission trade-off in diesel 

combustion is the insufficient mixing of diesel at high fuel reactivity. 

2. Enhanced the mixing process with n-butanol direct injection and demonstrated 

ultra-low emissions of NOx and smoke with the prolonged ignition delay. 

3. Improved the ignition quality of n-butanol direct injections (DI) with a higher 

intake pressure and a high intake temperature on the two engine research 

platforms. 

4. Achieved the reactivity control with direct injection of diesel in a premixed 

charge of ethanol. The fuel ratio between the port injected fuel and the directly 

injected fuel is identified as a critical factor for combustion performance and 

emission formations.  
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5. Conducted a detailed analysis on the effectiveness of various fuel delivery 

strategies on the control of mixing and charge reactivity with a high intake 

pressure and the application of EGR. 

6. Proposed an injection strategy with multiple injections of diesel to increase the 

reactivity of the premixed ethanol charge, and reduce the THC and CO emissions. 

7. Demonstrated the HCCI combustion with n-butanol port fuel injection, and 

identified the control challenges in combustion rate and combustion phasing.  

8. Demonstrated combustion with n-butanol and ethanol at comparable engine loads 

and fuel efficiencies of diesel with considerably lower emissions of NOx and 

smoke. 

9. Quantified the injection rate of the n-butanol high pressure injection, visualized 

the n-butanol high pressure injection in a constant volume chamber under a high 

background pressure, and measured the fuel droplet velocity and diameter with 

laser phase Doppler anemometry. 

1.8 Dissertation Organization 

The dissertation structure is schematically illustrated in Figure 1-4. In Chapter 1, the 

research motivations, research objectives, and primary dissertation contributions are 

outlined with the brief introduction of the combustion process in diesel engines and the 

emission regulations. A literature review is conducted in Chapter 2 for an overview of the 

previously published research work related to the control of charge mixing and reactivity 

with various engine control parameters. The research methodology and experimental 

setup are given in Chapter 3. These three chapters are categorized as the preparatory 

work for this dissertation.   
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The core of this dissertation is the empirical investigation of the control of the in-cylinder 

charge preparation and charge reactivity. Chapter 4 presents the characterization of the n-

butanol high pressure fuel injections with the measurement of the injection rate, injection 

opening and closing delays, as well as the performance of multiple fuel injections. The 

differences between the diesel DI and n-butanol DI are highlighted. Chapter 5 describes 

the results of using direct fuel injection of diesel and n-butanol to control the mixing 

process. The trade-off between the emissions of NOx and smoke is overcome by the 

enhanced mixing of n-butanol DI. The high combustion rate and the low ignition ability 

in the n-butanol combustion are also investigated. The charge reactivity modulation is 

studied in Chapter 6 with a premixed charge formed with the port injection of ethanol and 

n-butanol. A systematic analysis of the fuel delivery impacts is conducted at various 

intake pressures and EGR levels. The HCCI combustion of n-butanol is also investigated 

in this chapter. Based on the knowledge gained from the previous chapters, the partially 

premixed combustion with n-butanol and ethanol is shown in Chapter 7.  

Finally, the significant research findings are summarized in Chapter 8. The 

recommendations for the future work are also given in this chapter.  
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Figure 1-4 Dissertation organization 
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CHAPTER II 

2. LITERATURE REVIEW 

This chapter provides a review of the previously published work related to the control of 

charge mixing and reactivity in CI engines with conventional diesel fuel and 

unconventional alternative fuels, such as ethanol and n-butanol. It covers the main 

techniques which have been used to achieve the combustion control, including the fuel 

delivery method, the management of intake gas property, and engine hardware 

improvement. In addition, a summary of the representative combustion strategies for 

simultaneous reduction of NOx and smoke emissions is also included. The salient 

features and limitations of each strategy are highlighted.      

2.1 Fuel Delivery Technique in CI Engines 

The fuel delivery technique is critical, which significantly affects the engine combustion 

characteristics [16]. It controls the in-cylinder fuel distribution, the mixing process, and 

the charge reactivity. The primary fuel delivery methods in modern compression ignition 

engines include port fuel injection and direct fuel injection. 

2.1.1 Port Fuel Injection 

Port fuel injection is a technique of delivering fuel through the intake port of an engine 

cylinder. A relatively simple fuel supply system working at a low pressure can be used in 

the application of port fuel injection [17]. The mixing of the fuel and air begins inside the 

intake manifold and continues in the engine cylinder. A fully premixed in-cylinder charge 

is often formed during the engine intake stroke and the compression stroke, before the 
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onset of combustion. Hence, the impact of PFI on the combustion event is mainly through 

the fuel injection quantity rather than the injection timing.  

2.1.2 Direct Fuel Injection 

Direct fuel injection in diesel engines refers to the process of supplying fuel directly into 

the compressed charge inside the combustion chamber. This injection technique has been 

recognized as an effective technique to generate the stratified charge and thus to broaden 

the engine operation limit of clean combustion [18-22]. With a common rail fuel injection 

system, the fuel injection timing, injection amount, and injection events can be precisely 

implemented to generate the reliable ignition [23, 24], to prevent the premature 

combustion [25, 26], and to regulate the burn rate [27].  

The direct fuel injection provides the essential gradient in AFR for auto-ignition. A 

conceptual model for the combusting spray has been proposed by Dec [28] to explain the 

diesel combustion during the mixing-controlled burn (diffusion combustion). Before the 

onset of combustion in a diesel engine, the direct injection of the liquid fuel atomizes, 

evaporates, and then mixes with the surrounding air. The AFR gradient of the in-cylinder 

mixture can cover a wide range from fuel-rich to fuel-lean, as shown in Figure 2-1. The 

emission formation regions for NOx and smoke are illustrated based on the equivalence 

ratio and temperature (Φ-T) diagram proposed by Kamimoto et al. in [30]. The possible 

operation pathways for high temperature combustion (HTC) and low temperature 

combustion (LTC) are also shown in Figure 2-1. The management of the DI strategy is 

capable of producing the desired equivalence ratio and temperature for low emissions of 

NOx and smoke. The combustion with low NOx and smoke emissions has been 
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demonstrated with direct injection of diesel in [31-37], assisted by EGR and intake 

boosting. 

 
Figure 2-1 Pathways for low temperature combustion 

The characterization of the DI event (i.e. penetration, cone angle, droplet size distribution, 

and injection rate) can provide important insights to interpret the combustion and 

emission characteristics from an engine [39], as well as valuable guidance for developing 

advanced injection strategies and optimizing the engine hardware [40, 41]. Offline 

injection measurement with the constant volume chamber [42, 43], the laser phase 

Doppler anemometry [44], the long tube [45], the momentum sensor [46], and the 

optical-accessible engines [28] have been employed in the past to study the 

characteristics of the direct fuel injection.  
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Additional fuel delivery systems can be employed to supply different fuels in the 

combustion research with compression ignition engines. A single fuel and the single fuel 

delivery system are often not sufficient to optimize the combustion performance and 

emissions in advanced combustion modes. Dual fueling systems have been used in the 

literature [18, 25, & 33]. Moreover, a single injector with dual-fuel capability [53] and 

dual injectors inside a single cylinder [50] have also been tested. 

2.2 Fuel Property Impact on Combustion and Emissions 

The primary reference fuels (PRF), such as n-heptane and iso-octane, are commonly 

employed to study the fuel property impacts on combustion in diesel engines. Lu et al. 

[48] have explored various combinations of n-heptane and iso-octane in a single cylinder 

engine under stratified charge compression ignition (SCCI). With the two-stage PFI of n-

heptane and iso-octane, and DI of n-heptane, the stratification of the in-cylinder fuel is 

created. Thus, the heat release rate and in-cylinder temperature distribution can be 

controlled. Sjoberg et al. [50] have examined a single-stage ignition fuel (iso-octane) and 

a two-stage ignition fuel PRF80 (a mixture of 80% iso-octane and 20% n-heptane) in a 

homogeneous charge compression ignition (HCCI) engine. The combustion of PRF80 

exhibits lower cycle-to-cycle variations with a retarded combustion phasing, and the 

combustion is more sensitive to the changes of the EGR temperature and the 

concentrations of hydrocarbon species in the EGR. 

Alternative fuels have also been tested in CI engines to study the engine performance and 

emissions. Ojeda et al. [47] have reported nine diesel fuels for advanced combustion 

engines (FACE) with different fuel properties. These FACE fuels have been used as the 

DI fuels in a common rail fuel injection system. The empirical results have revealed that 
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a lower Cetane number (CN) is beneficial for a longer ignition delay, while a higher 

volatility enhances the fuel mixing. Alptekin [49] has tested the biodiesel produced from 

canola oil and safflower oil in a multi-cylinder diesel engine. Compared with the 

combustion baseline of diesel, the combustion of biodiesel emits more NOx emissions at 

similar operating conditions. Zheng et al. [51] have investigated the direct injection of 

neat n-butanol under the LTC strategy. The oxygen content in the fuel, the lower 

reactivity, and the higher volatility of n-butanol are found to be beneficial for lower 

emissions of NOx and smoke. McTaggart-Cowan et al. [52] have used a diesel pilot to 

ignite natural gas blended with ethane, propane, hydrogen, and nitrogen. An increased 

heat release rate has been observed with the enhanced charge mixing and the increased 

fuel reactivity. 

2.3 Management of Intake Gas Properties for Clean Combustion 

The enabling of clean combustion in CI engines requires the precise management of the 

intake gas properties. The controlled intake gas properties discussed in this section 

include intake pressure, intake temperature, and intake compositions.  

Intake heating is a technique that can be implemented to improve the ignition consistency 

and control the timing of the start of combustion for the fuel with low reactivity [59]. 

Nevertheless, the air density and the charging efficiency are often reduced at a higher 

intake temperature. 

The application of EGR is a widely employed technique to vary the intake compositions 

by introducing the burnt exhaust gas back into the engine intake. The effects of EGR on 

combustion have been summarized by Sjoberg et al. [61] as thermodynamic retarding 
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(specific heat capacity increase), chemical retarding (oxygen dilution), and chemical 

enhancing (additions of H2O and partially oxidized species). It has been revealed that the 

CO2 dilution is the most effective method to delay the start of combustion among the 

tested techniques. 

The application of EGR is a primary technique to suppress NOx emissions in CI engines 

[51]. The NOx reduction is achieved mainly because of the lowered flame temperature 

and the diluted intake oxygen concentration. The combustion efficiency and emissions 

are sensitive to the EGR rate when the engine is operated the low temperature 

combustion mode [62]. A small fluctuation in the EGR rate at a high EGR rate (more 

than 50%) may increase the emissions and reduce the combustion efficiency when the 

EGR rate is  [63]. The in-cylinder charge composition and compression temperature may 

also be affected by the EGR fluctuations.  

2.4 Piston Bore Geometry Optimization 

Piston bore geometry optimization is an indispensable aspect for CI engines to achieve 

the clean combustion [64]. A lowered engine compression ratio can reduce the emissions 

of NOx and smoke but increase the emissions of HC and CO in the premixed charge 

compression ignition, as reported in [65]. An open-bowl piston is preferable for premix-

dominated combustion [66]. The open geometry reduces the squish volume that is 

beneficial to lower the HC and CO emissions, and it can tolerate relatively early fuel 

injections to reduce the potential wall impingement.  
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2.5 Clean Combustion Strategies 

The reduction of NOx emissions in CI engines is challenging because of oxygen in the 

engine exhaust that limits the application of the Three-way Catalyst [69]. Lowering the 

combustion temperature is beneficial for the reduction of NO emissions, because the NO 

formation requires the high activation energy to break the triple bonds in N2, as discussed 

in Section 1.4.1. The combustion temperature is often regulated through the modulation 

of the two reactants (i.e. oxidant and fuel) in the combustion reaction. Based on the 

various management techniques of the oxidant and fuel, different concepts are proposed 

to reduce the in-cylinder NOx and smoke emissions while maintaining the high thermal 

efficiency in CI engines. 

2.5.1 Diesel LTC 

The diesel LTC can be achieved with various fuel injection strategies assisted with high 

EGR rates [67, 68]. Historically, high fuel injection pressure, multiple fuel injections, 

high intake pressure, low intake temperature, and medium EGR rate have been applied to 

diesel combustion to satisfy emission standards before model year 2004 (Figure 1-3) with 

a minimal assistance of the after-treatment devices [70]. However, these techniques are 

insufficient to further reduce the emissions as the emission regulations become more 

stringent.  

Kumar [71] has researched three strategies to enable the enhanced premixed combustion 

with diesel fuel: early multiple injections, EGR assisted single injection, and split 

combustion. Simultaneously low NOx and smoke emissions have been achieved but with 

a high penalty in the thermal efficiency. Kimura et al. [72] have proposed the modulated 

kinetics (MK) combustion that can be enabled with retarded injection timings and 
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reduced intake oxygen concentrations. The NOx and smoke emissions have been 

suppressed, but the thermal efficiency has been reduced. Similar combustion strategies 

have been proposed but named differently, such as uniform bulky combustion system 

(UNIBUS) [73], premixed lean diesel combustion (PREDIC) [74], homogeneous charge 

intelligent multiple injection combustion system (HiMICS) [75], and premixed charge 

compression ignition (PCCI) [76].  

A common feature of these diesel LTC strategies is the conversion of the conventional 

high temperature combustion partially to premixed combustion to lower smoke emissions 

when EGR is applied to suppress NOx emissions. However, the diesel fuel has a high 

boiling temperature and high reactivity to compression ignition. A high EGR rate is 

typically required to withhold the onset of combustion, which also reduces the oxygen 

availability and limits the engine load range.  

2.5.2 Homogeneous Charge Compression Ignition 

The HCCI combustion has been recognized as an ideal combustion mode for both spark 

ignition engines and CI engines [16, 29]. This combustion mode generates inherently low 

NOx and smoke emissions at low to medium engine loads, and high NOx emissions at 

higher engine loads [16]. However, the implementation of HCCI combustion has some 

fundamental challenges. First, the preparation of the homogeneous charge is demanding 

for using the fuels with the properties similar to diesel. The fuel evaporation has to be 

promoted while the pre-ignition and wall impingement has to be prevented. It has been 

reported that the use of volatile fuels, such as ethanol, improves the charge preparation 

for the HCCI combustion [79]. Moreover, the generation of the reliable and controllable 

ignition is another challenge for HCCI operations [80]. The ignition of HCCI combustion 
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is mainly determined by the chemical kinetics of the in-cylinder charge, which is 

sensitive to the in-cylinder temperature and AFR. Therefore, unstable ignition can occur 

at cold start and at low engine loads in HCCI combustion, while pre-ignition and rough 

combustion are the potential challenges at high engine loads. When the engine is operated 

at low loads, the charge is often excessively lean for complete combustion of the fuel, 

and thus the combustion tends to form high emissions of THC and CO; while at high 

engine loads, the instantaneous, rapid, and intensive combustion generates excessively 

high pressure rise rate and combustion noise [81], which limits the high load application.  

2.5.3 Reactivity Controlled Compression Ignition 

The aforementioned challenges of HCCI combustion have been addressed with various 

strategies of fuel injections and in-cylinder charge management. Kokjohn et al. [33] have 

proposed the reactivity controlled compression ignition (RCCI) for improved 

controllability in the premixed combustion. The port injection of gasoline has been used 

to generate the majority of the engine load, while multiple injections of diesel have been 

employed to modulate the charge reactivity and control the ignition. Inagaki et al. have 

also reported a similar approach but using the primary reference fuels [82]. Partial fuel 

stratification (PFS) is another approach to control the mixing and distribution of the fuel, 

and thus to generate the reactivity stratification [35]. Dec et al. have used gasoline direct 

injection and gasoline port fuel injection to generate the partially stratified in-cylinder 

charge. The intake temperature is regulated to control the combustion phasing [35].  

The common feature of RCCI and PFS is the long ignition delay (longer than 40 °CA), in 

stark contrast to the short ignition delay of conventional DI diesel combustion. This long 

ignition delay enhances the mixing of the direct injections to prevent soot formation. 
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Moreover, the premixed in-cylinder charge is lean and diluted, which reduces the flame 

temperature, resulting in low NOx emissions. However, the combustion of RCCI and 

PFS is still highly sensitive to the charge temperature and compositions. The variations of 

charge temperature, combustion chamber wall temperature, and EGR distribution 

between engine cycles often reduce the combustion stability [83, 84]. 

2.5.4 Partially Premixed Combustion 

Partially premixed combustion (PPC) is developed to enhance the control of ignition 

using a direct fuel injection to trigger the combustion event. The feature of low emissions 

is maintained due to the majority of premixed combustion [85]. A fuel with similar 

properties as gasoline (i.e. high volatility and low Cetane number) is favorable for PPC 

[86]. The separation of the injection event from the combustion event is critical for the 

successful enabling of the PPC. Hence, the PPC with a single fuel injection often 

generates excessive pressure rise rate owing to the highly premixed combustion, which 

requires a high EGR rate to reduce the combustion rate [87]. The high intake pressure, 

high EGR rate, cooled EGR, and low compression ratio are found to be beneficial for 

lowering the pressure rise rate and maintaining the simultaneously low emissions of NOx 

and smoke [88].  

2.6 Summary 

In general, the mixing of the fuel with air affects the trade-off between NOx and smoke 

emissions. A premixed or partially premixed in-cylinder charge is essential for low 

emissions of NOx and smoke. To prepare this in-cylinder charge, an appropriate fuel 

delivery method has to be employed according to the different fuel properties. Volatile 
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fuels delivered through port fuel injection are beneficial to reduce the challenges in the 

process of charge preparation.  

The controls of ignition and burning rate can be controlled with various fuel delievery 

strategies. The ignition can be initiated transiently with a high reactivity DI pilot as 

needed. The premixed fuel is then ignited by the initial flame. The premixed charge may 

also auto-ignite when the temperature is elevated. The burning rate of the combustion is 

primarily controlled by the reactivity of the premixed charge and the reactivity gradient 

generated from multiple fuel injections.  
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CHAPTER III 

3. METHODOLOGY AND EXPERIMENTAL SETUP 

The primary research methodology is schematically shown in Figure 3-1. The research 

motivations are identified based on the present emission regulations and the working 

principles of CI engines. The research approaches for high efficiency and low in-cylinder 

emissions are formulated from the literature review of the past research findings. The 

applied techniques to achieve the clean and efficient combustion are systematically 

studied through engine experiments. The empirical results and the effectiveness of these 

techniques on modulating the in-cylinder charge reactivity are analyzed with different 

fuels under various combustion modes.  
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3.1 Advanced Engine Research Platforms 

The investigation of the mixing and reactivity control is primarily conducted through the 

systematic engine experiments. Two fully instrumented engine research platforms are 

employed in this research. The critical systems of the two platforms are introduced in this 

section. These systems include the research engines, the air handling system, the EGR 

implementation and control system, the fuel delivery and injection control system, and 

the emission measurement system.  

3.1.1 Research Engines 

The major engine specifications of the two research engines are illustrated in Table 3-1. 

The Ford PUMA Duratorq engine is a four-cylinder four-stroke production engine. It is 

set up with an Eddy-current water-cooled dynamometer. The first cylinder is separated 

from the original inline four-cylinder engine configuration by using independent systems 

of intake, exhaust, and fueling for this cylinder. All the research applications are 

conducted with this cylinder on the PUMA engine platform, while the other three 

cylinders are still operated under conventional diesel high temperature combustion mode 

with natural aspiration. The detailed setup of this engine platform can be found in [89]. 

The relatively high compression ratio of 18.2:1 of this engine provides the advantage of 

igniting fuels of low reactivity due to the relatively high compression temperature.  

The single cylinder research engine (SCRE) is a single-cylinder research engine that is 

connected to a direct current (DC) motoring dynamometer. This engine is designed to 

resemble the performance of modern medium-duty to heavy-duty CI engines. The 

tolerable peak cylinder pressure is higher than that of the PUMA engine. An Omega-

shaped piston is installed in this engine to obtain a compression ratio of 16.5:1. This 
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compression ratio is in a similar range as the ones used in the prevalent production CI 

engines.  

Table 3-1 Engine specifications of the research engines 

Research Engine Ford PUMA Duratorq SCRE1 

Displacement (liter) 1.998 0.744 

Bore × Stroke (mm × mm) 86 × 86 95 × 105 

Connecting Rod Length (mm) 144 176 

Compression Ratio (-) 18.2:1 16.5:1 

Max. Cylinder Pressure (bar) 180 200 

Swirl Ratio (-) ~1.7 ~1.5 

Primary Injection System  
Delphi Common Rail DI 

System 
Siemens Common Rail 

DI System 

DI Injector 

Solenoid Drive  
6 holes 

Umbrella angle 155° 
Hole diameter 160 μm 

Piezo Drive 
7 holes 

Umbrella angle 156° 
Hole diameter 200 μm 

Secondary Injection System 
Inhouse Low Pressure 

PFI2 System 
Inhouse Low Pressure 

PFI System 

PFI Injector 
Gasoline Injector  

4 holes 
Gasoline Injector  

4 holes 

      1single cylinder research engine 
      2port fuel injection 
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3.1.2 Air Handling System 

The air handling system on the CI engine research platform includes the intake system, 

the exhaust system, and the EGR system, as shown in Figure 3-2. The two employed 

engine platforms use similar setups. The engine intake gas is supplied from an external 

air source. The pressure of the intake air is regulated with an electronically-controlled gas 

regulator. The volumetric flowrate of the intake gas is measured with a Dresser Roots 

rotary meter. The intake mass flowrate is then calculated by multiplying the volumetric 

flowrate with the air density at the local intake pressure and temperature. Two large 

buffer volumes (more than 100 times of the engine displacement) are used in the intake 

and exhaust loops to damp the flow pulsations caused by engine valve actions [90]. An 

electrical cartridge heater is installed between the air flow meter and the intake surge tank 

on the SCRE platform. The rated power for the heater is 1500 W using 120 VAC power 

supply. The heater is enabled when the engine compression temperature is not 

sufficiently high for reliable ignitions. A series of filters and conditioning units are 

equipped along the intake air path to reduce dust, water, and oil contents. Manual bypass 

gas loops, flame arrestors, and pressure relief valves are installed to improve the safety 

during the engine operation.  
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the valve to throttle the exhaust stream and build up the backpressure. When a high EGR 

rate is required, the actual exhaust flow is significantly reduced. The opening area of the 

throttle valve in the exhaust loop may be reduced by more than 99% to obtain the desired 

backpressure in the case of high EGR rates (e.g. higher than 60% EGR).  

 
Figure 3-3 EGR application modifies the intake properties 

The flowrate of EGR is determined by the pressure difference between engine intake and 

exhaust, and the flow resistance in the EGR loop. As shown in Figure 3-2, a production 

EGR valve, which has 32 discrete opening positions, is used on this platform. The EGR 

valve can achieve the coarse adjustment of EGR rate. However, the ultra-fine adjustment 

of EGR, such as a 1% increment, is typically not achievable with this valve alone. The 

actual EGR is implemented through the control of both the EGR valve and the 

backpressure valve. The flow chart of a typical adjustment of EGR rate is demonstrated 

in Figure 3-4. The opening position of the EGR valve is fixed at a lower percentage of 

opening at first. The exhaust backpressure is gradually increased to achieve the required 

EGR rate. If the desired EGR rate can not be achieved when the backpressure is at its 

maximum, the opening of the EGR valve is increased to a higher percentage. An ultra-

fine increment of EGR rate is realized with the control of both the backpressure valve and 

• EGR Compositions
• CO2

• H2O
• O2

• EGR Temperature
• Cooled EGR
• Hot EGR

• Property Changes
• Intake Compositions
• Diluted O2 Concentration
• Increased Heat Capacity

• Mixing
• Temperature Stratification
• Composition Stratification
• Reactivity Stratification

EGR

Exhaust Intake
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the EGR valve. The targeted pressure drop from the exhaust backpressure to intake 

pressure is maintained within 10 kPa. 

 

Figure 3-4 Flow chart of the EGR rate control 

3.1.4 Fuel Delivery and Injection Control System 

Both of the two engine platforms are equipped with dual fuel-delivery systems for the 

applications of PFI and DI. The schematic diagram of the simplified system setup is 

shown in Figure 3-5. For the DI system, the method of supplying fuel to the high pressure 

fuel pump can be swapped between the gravity fuel feed with a raised fuel tank and the 

pump feed with a low pressure fuel pump. The method of supplying fuel by gravity is 

generally preferred for the relatively stable fuel flow that is critical for the fuel flowrate 

measurement, especially in the single cylinder setup with a relatively low fuel 

consumption. However, if the flowrate of the gravity feed is insufficient for the high 

pressure pump, a low pressure pump can be used to increase the fuel flow. A series of 

fuel filters are used for particle filtrations in front of the critical components (e.g. fuel 

flow meter, high pressure pump). The filters are also served as damping plenums for the 

pressure fluctuations in the fuel flow.  

The PFI system is implemented on a portable cart. This system is employed to provide 

low pressure fuel (about 8 bar absolute) to the port injectors. An inline gasoline pump is 
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Table 3-2 Intake and exhaust analyzer systems 

Intake Analyzers 

Analyzer Model Measurement Principle Measured Species 

CAI 200 Paramagnetic O2 

CAI 200 Non-Dispersive Infrared CO2 

Exhaust Analyzers 

Analyzer Model Measurement Principle Measured Species 

CAI 602P Non-Dispersive Infrared CO2  

CAI 300 Non-Dispersive Infrared CO  

CAI 602P Paramagnetic O2  

CAI 600 HCLD Chemiluminescence NOx  

CAI 300M-HFID Heated Flame Ionization THC  

AVL 415S 
Photoelectric Blackness 
Measurement 

Smoke  
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3.2 Fuel Injection Characterization  

The fuel injection characterizations to be conducted in this research include the 

measurements of injection rate, injection opening and closing delays, and the 

distributions of velocity and diameter of the spray droplets. The employed instruments 

include the EFS injection bench, Bosch type long-tube bench [91], high speed camera, 

and laser phase Doppler anemometry (PDA) system.   

3.2.1 EFS Injection Bench 

The EFS injection bench can be used to measure the injection rate and injected mass. An 

important component in the EFS injection bench is the flowrate sensor, as shown in 

Figure 3-7. The flowrate sensor contains a micro piston. When a liquid is injected via the 

injector into the injection chamber that is maintained at a fixed backpressure, the increase 

of the volume moves the micro piston. The distance of the piston movement is 

proportional to the injection volume. With the measured total flowrate and the known 

injection frequency, the injection mass and the injection rate of an injection event can be 

derived. A surrogate of diesel is used in the EFS injection bench.  

The EFS injection bench also includes a complete auxiliary system. An AC motor of 18 

kW is installed in the EFS injection bench to drive the high pressure fuel pump. The 

motor speed can be precisely controlled to simulate the desired engine speed. The 

temperature of the fuel supplied to the high pressure pump, and the temperature of the 

measuring chamber are closely monitored. The backpressure inside the injection chamber 

is also regulated. 
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3.4 Test Fuels 

The fuels used in this research program included diesel, n-butanol, and ethanol. The 

selected fuel properties are illustrated in Table 3-3. Diesel was delivered through high 

pressure direct injection, while ethanol was supplied with port fuel injection. N-butanol, 

due to its favorable properties, were used with both the DI application and the PFI 

application according to the actual requirement of combustion. Various combinations of 

the fuel delivery methods for the three fuels were tested. The benefits and limitations of 

the fuel injection strategies are discussed in the subsequent chapters. 
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Table 3-3 Fuel properties of the tested fuels 

Fuel Properties Diesel n-Butanol Ethanol 

Fuel Formula CnH1.78n [93] C4H10O C2H6O 

Density @ 15 °C, (kg/m
3
) 858 813 788 

Viscosity @ 40 °C, (cSt) 2.7 3.6 1.5 

Speed of Sound @ 25 °C, (m/s) 1350 [94] 1239 [95] 1142 [96] 

Boiling Temp @ 1 bar (°C) Variable 117.5 78.3 

Cetane Number 46.5 ~25 ~10 

Octane Number ~25 ~87 ~110 

Lower Heating Value (MJ/kg) 43.5 33.1 26.8 

Carbon Content (% mass) 86.8 64.8 52.1 

Hydrogen Content (% mass) 13.2 13.6 13.1 

Oxygen Content (% mass) 0 21.6 34.8 

Lubricity (μm) from HFRR 315 [97] 591 [97] 1057 [97] 

Purity -  99.7 [98]  99.5 [99] 
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CHAPTER IV 

4. BUTANOL HIGH PRESSURE INJECTION 

In this chapter, the characteristics of the high pressure injection of diesel and n-butanol 

are studied with the EFS injection bench, the Bosch long-tube bench, and the optical 

equipment. The tested fuel injector is a solenoid injector with the same model number as 

the one used in the Ford PUMA engine. The measured parameters include injection 

volume, injection opening delay, injection closing delay, and spray structure. The results 

of n-butanol high pressure injection are compared to that of diesel high pressure injection. 

The study in this chapter improves the understanding of the engine combustion 

performance with n-butanol high pressure direct injections. 

4.1 Injection Rate Measurement  

A high injection pressure is required for direct fuel delivery in CI engines to effectively 

distribute fuel inside a cylinder within a reasonable time [105]. The n-butanol fuel is used 

in the application of high pressure injection with a commercial common rail fuel system. 

A lubricity improver (OLI-9070.x) is added to n-butanol at a volumetric concentration of 

500 parts per million (ppm) for the protection of moving components in the fuel system.   

The fuel injection rate of n-butanol is studied with the Bosch type long tube injection 

bench. The measurement schematic has been given in Figure 3-8. The injection rate 

curves of n-butanol and diesel at the same injection pressure and injection duration are 

compared in Figure 4-1. The raw injection rate of n-butanol is lower than that of diesel. 

Based on the Bosch theory [91], the raw pressure rise should be corrected with the speed 

of sound and density of the fuel to show the actual injection rate. After this correction, the 
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injection rate curves are compared in Figure 4-2. It is observed that the injection rate of 

n-butanol is close to that of diesel. A marginal difference is that the closing time of the n-

butanol injection is slightly later than the one of diesel.  

The effect of the injection duration on injection rate is shown in Figure 4-3. Various 

injection durations were tested at a constant injection pressure of 1200 bar. As the 

injection duration was increased, the peak injection rate increased. The injection rate 

curves of different injection durations overlapped during the injector opening process. 

For the injection with a shorter duration, the injection rate curve shows a sharp transition 

from opening to closing, while the one with a longer duration displays a smooth 

transition. The injection pressure effect on injection rate is shown in Figure 4-4. The peak 

of the injection rate increased with the injection pressure. The area covered by the 

injection rate curve enlarged, which was an indication of an increased injection volume.  

 
Figure 4-1 Injection rate of n-butanol: raw data 

0

5

10

15

20

25

30

35

40

0 1000 2000 3000 4000

In
je

ct
io

n
 C

om
m

an
d

 (
-)

R
aw

 In
je

ct
io

n
 R

at
e 

(m
m

3
/m

s)

Time after Injection Command (μs)

Test Conditions:
pinj: 1200 bar
Command duration: 1000 µs
Backpressure: 20 bar
Fuel: n-butanol vs diesel

Injection Command

N-butanol 
Diesel

Test Fuel



CHAPTER IV: BUTANOL HIGH PRESSURE INJECTION 

49 
 

 
Figure 4-2 Injection rate of n-butanol: corrected injection rate 

 
Figure 4-3 Injection rate of n-butanol: injection command effect 
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Figure 4-4 Injection rate of n-butanol: injection pressure effect 

The volume of injection can be calculated from the area under the injection rate curve. 

The injection volume is calculated for an injection duration sweep at 900 bar injection 
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Figure 4-5 Injection volume with varied command durations 

The relative injection volumes with both diesel and n-butanol are compared in Figure 4-6. 
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Figure 4-6 Injection volume comparison between n-butanol and diesel 
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Figure 4-7 Definitions of injection opening and closing delay 
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Figure 4-8 Injection opening delay comparison between n-butanol and diesel 

 

Figure 4-9 Injection closing delay comparison between n-butanol and diesel 
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4.3 Multiple Fuel Injections 

The oscillation of the fuel pressure inside the common rail is considerably increased after 

a fuel injection, as shown in Appendix D. This fluctuated fuel injection pressure 

potentially affects the injection rate and the injection volume of the subsequent fuel 

injections. In this section, the effects of the dwell time between multiple injection events 

are evaluated based on the comparisons of the injection rate and injection volume. 

The injection rate curve of two fuel injections with the same injection duration is shown 

in Figure 4-10. The command dwell time between the two fuel injections is defined as the 

time from the command of closing of the first injection to the command of opening of the 

second injection, while the actual dwell time is affected by the closing delay of the first 

injection and the opening delay of the second injection. Because of these delays, the two 

injection events can possibly merge into one event before the command dwell time is 

shortened to zero, such as the example given in Figure 4-11. The two injections start to 

merge when the command dwell time is reduced to about 500 μs. 

The effects of the dwell time on the total injection volume are investigated in Figure 4-12 

and Figure 4-13, respectively. A relatively long injection duration of 600 μs is used for 

both the injections in Figure 4-12, while a relatively short duration of 250 μs is used in 

Figure 4-13. With the longer injection duration, the total injection volume of the double 

injections is in a similar range of doubled the volume with a single injection at the same 

injection duration. In stark contrast, with a short injection duration, the total injection 

volume changes significantly. As shown in Figure 4-13, the injection volume is increased 

by more than 1500% compared with that of a single injection at 250 μs duration.  
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Figure 4-10 Comparison of command dwell time and actual dwell time 

 

Figure 4-11 Example of double injections merging into one injection 
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Figure 4-12 Injection volume of double injections with varied dwell time 

 
Figure 4-13 Injection volume of double injections with varied dwell time 
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4.4 Butanol Spray Visualization and PDA Measurement 

The n-butanol high pressure spray was studied with the constant volume chamber and the 

high speed camera. The background gas inside the constant volume chamber was N2 

pressurized to 40 bar gauge pressure. The background temperature was maintained at 

room temperature. The fuel injections of both n-butanol and diesel with 1200 bar 

injection pressure and 1000 μs injection duration were applied to this high density 

background inside the constant volume chamber. The process of the spray development 

was recorded with the high speed camera capturing 21,000 frames per second with an 

image resolution of 512 × 256 pixels. Backlight shadowgraph was used. The image plane 

was parallel to the spray axis. A piezo injector was used in this test. The multiple nozzle 

orifices were pluged except one was left for the spray experiment. The orifice diameter is 

140 μm. The same injector was used for both diesel and n-butanol. 

Several representative images are illustrated in Figure 4-14 from the camera recording for 

the injections with both n-butanol and diesel. The liquid tip reached the border of the 

image in about 300 µs from the command of injector opening for both the n-butanol and 

diesel cases. The cone angle of the n-butanol injection is slightly smaller than that of the 

diesel injection within the image range. Overall, the spray structure of n-butanol is 

similar to that of diesel. The experiment was conducted at ambient temperature, thus the 

evaporation rate difference between the two fuels could not be revealed. 
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Figure 4-15 Droplet velocity at different measurement locations 

 
Figure 4-16 Droplet size at different measurement locations 
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4.5 Summary 

The work presented in this chapter can be summarized as follows: 

 The injection rate and the injection delays of injector opening and injector 

closing with the n-butanol fuel are compared with the ones of diesel. The 

volumetric injection rate of n-butanol is similar to that of diesel. The opening 

delays are at the same level for both the fuels, while the closing delays of the n-

butanol injection are slightly longer than that of the diesel injection. 

 The dwell time between the injection events is a critical parameter in multiple 

injections. A short dwell time may lead to a merged event of fuel injections. The 

total injection volume increases drastically when multiple injections are merged 

into one for the case with short injection durations. 

 The macro structures of the fuel sprays with n-butanol are similar to that of diesel 

in the constant volume chamber. The fuel droplets close to the injector nozzle 

have the velocity of approximately 330 m/s detected by the PDA measurement. 

The majority of the droplet diameters are in a range from 10 μm to 20 μm. 
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CHAPTER V 

5.   MIXING CONTROL WITH SINGLE DIRECT FUEL INJECTION 

The results presented in this chapter are the mixing control with diesel and n-butanol via 

direct fuel injections examined to determine the effectiveness of various engine 

parameters (i.e. fuel injection scheduling, intake pressure, intake temperature, and EGR). 

The ignition delay is used to indicate the mixing period for the direct fuel injection. Heat 

release rate is derived for the combustion rate comparisons. The smoke and NOx 

emissions are also reported at different engine operating conditions.    

5.1 Mixing Control with Diesel Direct Injection 

In this section, the conventional trade-off between emissions of NOx and smoke is 

analyzed for diesel combustion. The possible methodologies to enhance the fuel mixing 

are investigated. The injection strategy is limited to a single injection to eliminate the 

potential inferences of multiple injections. 

5.1.1 NOx and Smoke Trade-off with Diesel DI 

Three EGR sweeps, with different CA50 values, are conducted with diesel direct 

injection. The NOx emissions and ignition delays from the EGR sweeps are shown in 

Figure 5-1. The smoke emissions are shown in Figure 5-2. It is observed that the 

application of EGR is effective to suppress the formation of NOx emissions for the three 

EGR sweeps with different combustion phasing. As the CA50 is retarded, lower NOx 

emissions are observed at the same intake oxygen level. The smoke emissions at 370 °CA, 

reach 0.5 g/kW-hr when the intake oxygen is reduced to approximately 11.5%. In 
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contrast, the smoke emissions arrive at 0.3 g/kW-hr and 0.03 g/kW-hr when the 

combustion phasing is retarded to 375 °CA and 380 °CA, respectively. 

 
Figure 5-1 CA50 effect: NOx emissions and ignition delay in diesel combustion 
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Figure 5-2 CA50 effect: smoke emissions in diesel combustion 
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Figure 5-3 EGR effect: indicated thermal efficiency in diesel combustion 

 
Figure 5-4 EGR effect: CO and THC emissions in diesel combustion 
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5.1.2 Injection Scheduling Effect on Ignition Delay and Combustion Rate 

The scheduling of a direct fuel injection includes the control of injection timing, injection 

pressure, and injection duration. The studies of the impacts of the fuel scheduling on the 

mixing process are reported in this subsection.  

An injection timing sweep with diesel DI is conducted at a nominal IMEP of 6.5 bar to 

study the effect of injection timing on ignition delay. The injection pressure is maintained 

at 600 bar. Natural aspiration is used in this experiment. No EGR is applied to the engine 

intake gas flow. The CA5 and CA50 are shown in Figure 5-5 together with the ignition 

delay. The CA5 is used as the indication for the onset of combustion, while the CA50 is 

used for the combustion phasing indication. Longer ignition delays, calculated with the 

injection command and CA5, are observed from the tests with both the early and late 

injection timings. The short ignition delays are obtained from the combustion with the 

CA5 close to TDC. The ignition delays are in the range from 1 ms to 1.4 ms at this 

engine load.  
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Figure 5-5 Diesel injection timing sweep: ignition delay, CA5 and CA50 
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the compression stroke, compared to the one at the same in-cylinder temperature in the 

expansion stroke. 

  
Figure 5-6 Mean in-cylinder temperature and distillation window 
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diffusion combustion in conventional diesel engines. The low auto-ignition temperature 

of diesel can tolerate early and late timings of fuel injections. However, the relatively 

high ability of ignition also increases the challenge to separate the fuel injection event 

from the combustion event as required by the advanced combustion strategies [88]. 

Three data points from the EGR sweep in Figure 5-5 are selected to analyze the 

variations of combustion rate at different levels of ignition delay values. The cylinder 

pressure and heat release rate curves of the three data points are shown in Figure 5-7. The 

data point with the injection timing at 340 °CA has the shortest overall combustion 

duration among the three. The relatively low compression temperature at this injection 

timing enables the long ignition delay. The long ignition delay enhances the fuel mixing. 

Furthermore, the trend of the temperature rise in the engine compression stroke increases 

the rate of combustion and shortens the combustion duration.  

The peak pressure rise rate (PPRR) and IMEP of this test are shown in Figure 5-8. The 

lowest PPRR is achieved with the injection timing at approximately 355 °CA. When the 

injection timing is advanced, the PPRR is significantly increased mainly due to the 

enhanced in-cylinder charge mixing and the temperature rise in the compression stroke. 

When the injection timing is delayed from 355 °CA, the combustion occurs in the engine 

expansion stroke. The slightly increased PPRR is primarily attributed to the longer 

ignition delay, as shown in Figure 5-5. The IMEP is not significantly affected within the 

range of injection timings from 340 °CA to 360 °CA. 
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Figure 5-7 Cylinder pressure and HRR for selected injection timings with diesel 

 
Figure 5-8 Diesel injection timing sweep: PPRR and IMEP 
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The effect of the fuel injection pressure on the ignition delay is shown in Figure 5-9. As 

the injection pressure is increased from 600 bar to 900 bar, the IMEP is maintained by 

using a shorter injection duration (530 μs instead of 650 μs). It is observed that the trend 

of ignition delay remains similarly for both the injection pressures. The ignition delays at 

900 bar injection pressure are shorter than the ones at 600 bar pressure given the same 

injection timings. A high injection pressure increases the spray penetration and enhances 

the atomization of the fuel spray [42]. Hence, more small fuel droplets are typically 

generated at the high fuel injection pressure. The large surface area of the small droplets 

increases the heat transfer from hot air to fuel and accelerates the fuel evaporation 

process. Thus, the mixing of the in-cylinder charge can be enhanced at the higher 

injection pressure in diesel combustion. 

 
Figure 5-9 Diesel injection pressure effect on ignition delay 
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Three data points denoted as 1, 2, and 3 are selected from Figure 5-9. The ignition delay 

values are in a similar range for data points 1 and 2, while the injection timings are close 

to each other for data points 1 and 3. The heat release rate is normalized with the total 

heat release, to investigate the combustion rate. The normalized heat release rate curves 

are shown in Figure 5-10. The crank angle is shifted to align the start of combustion for 

the three data points. Compared to data point 1, data point 2 has a considerably higher 

portion of premixed combustion. Within a similar duration of ignition delay, the fuel 

mixing is improved with the elevated injection pressure. Data point 3 has a shorter 

ignition delay than data point 1, but the HRR still shows a higher portion of premixed 

combustion. This phenomenon suggests that a shorter ignition delay at a higher fuel 

injection pressure may still lead to enhanced mixing of the in-cylinder charge.    

 
Figure 5-10 Normalized heat release rate of selected data points of diesel combustion 
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The effects of the injection duration on the combustion characteristics are shown in 

Figure 5-11. The duration of injection command is gradually increased from 320 μs to 

880 μs while a constant combustion phasing is maintained. A higher amount of fuel is 

typically delivered with a longer injection duration, as shown in Figure D-1. As a result, 

the IMEP is increased from 1 bar to 11.5 bar. The ignition delay is only slightly 

prolonged (from 0.5 ms to 0.6 ms) with the considerably increased fuel amount. The 

diffusion burning with a longer injection duration is expected to increase due to the 

limited duration of ignition delay. The short ignition delay also demonstrates the mixing 

challenge when a large amount of fuel is employed at a high engine load. 

 
Figure 5-11 DI duration sweep: ignition delay, Injection timing, CA5, and CA50 
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elevated. This phenomenon supports the previous assumption of increased diffusion 

burning at higher engine loads.  

 
Figure 5-12 Heat release rate at varied injection durations of diesel combustion 
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5.2 Mixing Control with Butanol Direct Injection 

5.2.1 Ignition Delay with Butanol DI 

The injection timing effect of n-butanol DI on ignition delay is studied with a fixed 

injection duration at 900 bar injection pressure. The nominal IMEP is at 4.5 bar. Two 

different intake pressures, 1.8 bar absolute (abs) and 2.0 bar abs, are used. The range of 

injection timing is limited by the excessively reduced engine load, the high peak cylinder 

pressure (PCP), and the high peak pressure rise rate (PPRR). 

The ignition delay value and the CA5 are shown in Figure 5-13. Compared with the 

ignition delays in the diesel baseline in Figure 5-5, the ignition delays of n-butanol 

combustion (2~5 ms) are much longer than the ones in the diesel combustion 

(approximately 1 ms). The ignition delay of the n-butanol combustion increases when the 

injection timing is away from the timing of the shortest ignition-delay. The injection 

timing later than 350 °CA is infeasible due to the significant reduction in the engine load.  
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Figure 5-13 N-butanol injection timing effect: ignition delay and CA5 
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330 °CA to 350 °CA. The window for low CO emissions (less than 4000 ppm) is even 

narrower. The high emissions of these incompletely oxidized products indicate the low 

combustion temperature when the injection timing is excessively advanced or delayed.  

 
Figure 5-14 N-butanol injection timing effect: THC and CO emissions 
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Figure 5-15 N-butanol injection timing effect: NOx and smoke emissions 

With the prolonged ignition delay, the impact of injection pressure on the mixing process 

becomes less significant in the n-butanol combustion. The experiment in Figure 5-13 is 

extended by testing two more injection pressures at the same intake pressure and engine 

load. The ignition delays and PCP values from the test with the three injection pressures 

are summarized in Figure 5-16. The differences between the results of 400 bar and 600 

bar injection pressures are marginal over the injection timing sweep, for both the ignition 

delay and CA5. Furthermore, at 900 bar injection pressure, the ignition delay is slightly 

shortened while the PCP is increased. Three data points at the same injection timing of 

337 °CA are selected to study the impact of injection pressure on cylinder pressure and 

HRR, as shown in Figure 5-17. The combustion event is slightly advanced towards TDC 

with the increased injection pressure of 900 bar. The PPRR is increased due to the 

potentially higher compression temperature close to TDC.  
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Figure 5-16 N-butanol injection pressure effect: ignition delay and PCP 

 
Figure 5-17 N-butanol injection pressure effect: cylinder pressure and HRR 
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5.2.2 Combustion Rate Control with Butanol DI 

The combustion rate control is a common challenge for the combustion with premixed in-

cylinder charge. A highly premixed charge is typically formed with the n-butanol DI due 

to the long ignition delay, at the tested conditions in the previous sub-section. Therefore, 

the combustion rate control of n-butanol DI is studied in this subsection.  

The PPRR of the n-butanol injection timing sweep is given in Figure 5-18. It is observed 

that the PPRR can be reduced from approximately 15 bar/°CA to 3 bar/°CA with either 

advanced or retarded injection timings. However, the mechanisms for the PPRR 

reduction are different. With the advanced DI timing, the ignition delay is considerably 

prolonged. The homogeneity of the in-cylinder charge is improved. The decreased PPRR 

is primarily caused by the combustion with an overall leaner in-cylinder charge. In 

contrast, with the retarded DI timing, the change in mixing time is limited (Figure 5-13) 

but both the SOC and combustion phasing are significantly delayed into the engine 

expansion stroke due to the long ignition delay. The PPRR reduction is mainly caused by 

the cylinder volume expansion. The PPRR with a lower intake pressure follows a similar 

trend as the one at a higher intake pressure. Moreover, the PPRR at a lower intake 

pressure is generally lower at similar injection timings.  
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Figure 5-18 N-butanol injection timing effect: PPRR at varied injection timing 

The same set of data is plotted against IMEP in Figure 5-19. The PPRR reduces with the 

decreased IMEP following two different slopes. The two different slopes support the 

aforementioned assumption of different reduction mechanisms for PPRR. When the 

PPRR is suppressed through the mixing control (Slope 1 in Figure 5-18), the PPRR and 

IMEP are closely coupled. The IMEP reduces with the decreased PPRR. In contrast, the 

PPRR and IMEP are decoupled when the PPRR is reduced primarily by the retarded 

combustion phasing (Slope 2 in Figure 5-18). This phenomenon suggests that PPRR can 

be drastically reduced with only slightly decreased IMEP within a certain range of 

injection timings (Slope 2). It is beneficial to operate the engine in this range with a low 

PPRR and a low loss in IMEP.  
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Figure 5-19 N-butanol injection timing effect: PPRR and IMEP 

Three data points as highlighted in Figure 5-18 are selected from the injection timing 

sweep at 2.0 bar intake pressure. The cylinder pressure and HRR are compared in Figure 

5-20. Data point 1 has the highest PCP and peak HRR, among the three. Data point 2 has 

the lowest overall HRR that is generated from the lean combustion of a highly premixed 

in-cylinder charge. Data point 3 has the higher HRR but retarded combustion phase. The 

PCP and PPRR of data point 3 are at similar levels as the ones of data point 2, but the 

IMEP is considerably higher than that of data point 2. The higher IMEP of data point 3 is 

obtained from the mixing control of the in-cylinder charge. The ignition delay of data 

point 3 (2.05 ms) is much shorter than the one of data point 2 (3.89 ms). The over-mixing 

tendency is reduced with the short ignition delay.  
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Figure 5-20 N-butanol injection timing effect: cylinder pressure and HRR 

The PPRR controlled with DI timing is closely coupled with the combustion efficiency 

and the thermal efficiency in the n-butanol combustion. A reduction in PPRR is often 

associated with the reduced IMEP. The injection timing on the second slope (Figure 5-18) 

shows certain benefits of less reduction in IMEP. However, the combustion efficiency is 

still reduced by the high emissions of CO and THC (Figure 5-14). Therefore, the 

application of EGR is investigated for the combustion rate control. 
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progressively reduced. A significant IMEP drop (20%) is detected when the intake 

oxygen concentration is reduced to approximately 18%.  

 
Figure 5-21 EGR effect: normalized IMEP, PCP, and PPRR in n-butanol combustion 

The CA5 and CA50 of this EGR sweep are shown in Figure 5-22 together with the 

ignition delay. As the intake oxygen concentration is decreased, the ignition delay is 

prolonged. The CA5 and the CA50 are both retarded. The reductions in IMEP, PCP, and 

PPRR can be primarily attributed to the retarded combustion phasing.  

Another experiment is conducted with a fixed combustion phasing but varied injection 

timings. The normalized IMEP value, PCP, and PPRR are shown in Figure 5-23. As the 

intake oxygen level is reduced to approximately 16% by the EGR application, the relative 

IMEP value, PCP, and PPRR all remain at the same levels, respectively. With a fixed 

combustion phasing, the PPRR is insensitive to the EGR application.  
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Figure 5-22 EGR effect: ignition delay, CA5 and CA50 in n-butanol combustion 

 
Figure 5-23 EGR effect: normalized IMEP, PCP, and PPRR in n-butanol combustion 
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To summarize, the control of combustion rate can be achieved via the modulation of 

injection timing and the application of EGR. The common mechanism is the retardation 

of the combustion phasing. If the combustion phasing is fixed, the effectiveness of EGR 

on the control of combustion rate is limited. Furthermore, a delayed combustion phasing 

is often associated with a lower combustion efficiency. The low charge reactivity delays 

the ignition, increases the combustion duration, and reduces the combustion temperature.  

5.2.3 Ignition Enhancement for Butanol DI 

Elevated intake pressure and intake temperature are commonly employed to enhance the 

ignition ability when a low reactivity fuel is used in a compression ignition engine. On 

the PUMA engine platform, only the increased intake pressure is required for the 

combustion with n-butanol DI due to the relatively high compression ratio. However, 

both high intake pressure and high intake temperature are needed to initiate the 

combustion on the SCRE engine platform. The impact of intake pressure and temperature 

on combustion characteristics and emissions are studied with both the engine platforms in 

this subsection. 

The intake pressure effects on ignition delay and combustion rate have been 

demonstrated in the previous tests, such as in Figure 5-13 and Figure 5-18. The ignition 

delay is generally reduced, and the PPRR is increased, at a higher intake pressure. In this 

experiment, three intake pressures (1.5 bar, 1.8 bar, and 2.0 bar) are used to explore the 

potential operating limit of intake pressure for the n-butanol combustion. The injection 

pressure is fixed at 900 bar during the test. Injection timing sweeps are conducted at each 

of the intake pressures to examine the operating window of the injection timing.  
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The ignition delay and CA5 are shown in Figure 5-24 for the three intake pressure levels. 

Generally, a shorter ignition delay is witnessed for a higher intake pressure at the same 

injection timing, which is consistent with the previous observation (Figure 5-13). The 

ignition delays for the test at 2.0 bar and 1.8 bar intake pressures are close to each other, 

while the ones at 1.5 bar intake pressure are approximately 1 ms longer. The CA5 values 

are all in the engine expansion stroke. Hence, a longer ignition delay retards the 

combustion phasing further into the expansion stroke. The combustion temperature is 

lower and the volume expansion is higher. Both the lower temperature and faster 

expansion decrease the ignition ability of the charge and reduce the combustion 

temperature. The longer ignition delay for the 1.5 bar intake pressure case is an indication 

that the intake pressure approaches the low limit at this operating condition.  

 
Figure 5-24 Intake pressure effect: ignition delay and CA5 of n-butanol combustion 
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The thermal efficiency and PCP are calculated, and the results are shown in Figure 5-25. 

An obvious benefit of using the lower intake pressure is the lower PCP at a similar engine 

load. However, it is observed that the thermal efficiency is also lower at a lower intake 

pressure for the combustion with n-butanol single DI. Furthermore, the window of the 

injection timing to reach a relatively high thermal efficiency (35%) is also considerably 

narrower at 1.5 bar intake pressure. Both advancing the injection timing and delaying it 

retard the combustion phasing and reduce the thermal efficiency.  

 
Figure 5-25 Intake pressure effect: thermal efficiency and PCP  

Three data points with the same injection timing at 337 °CA are selected, as highlighted 

in Figure 5-25. The cylinder pressure and HRR are compared in Figure 5-26. With the 

fixed injection timing, the combustion event is delayed as the intake pressure is lowered. 

It is observed that the CA5 values for the cases of intake pressure at 1.8 bar and 2.0 bar 

(CA5 at 363.9 °CA and 364.7 °CA) are close to TDC, while the one for 1.5 bar case 

60

90

120

150

180

210

240

-10

0

10

20

30

40

50

325 330 335 340 345 350 355

P
C

P
 (

b
ar

)

T
h

er
m

al
 E

ff
ic

ie
n

cy
 (

%
)

Injection Timing (°CA)

Intake Pressure

2.0 bar abs
1.8 bar abs
1.5 bar abs

Test Conditions in Fig. 5-30



CHAPTER V: MIXING CONTROL WITH SINGLE DIRECT FUEL INJECTION 

89 
 

(371.7 °CA) is away from TDC. The peak of HRR with 1.8 bar intake pressure is the 

highest among the three, which corresponds to the highest PPRR. The lower peak of 

HRR at 2.0 bar may be caused by the relatively less premixed combustion. However, the 

degrees of mixing for all the three cases are high due to the long ignition delays. It should 

be noted that the thermal efficiency at 1.5 bar intake pressure is higher than 35%, but the 

combustion event is excessively late to be used as an ignition source to trigger another 

combustion event (e.g. ignite a premixed charge).  

 
Figure 5-26 Intake pressure effect: cylinder pressure and HRR  

Both a high intake pressure and a high intake temperature are used to enable the ignition 

of n-butanol combustion on the SCRE platform due to the relatively low compression 

temperature (Figure 5-6). The intake pressure effect is studied first with the constant 

intake temperature, fuel injection timing, and fuel injection duration. The emissions of 

CO and THC, combustion efficiency, and thermal efficiency are shown in Figure 5-27. 
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As the intake pressure is gradually reduced from 2.25 bar to 2.0 bar, the indicated thermal 

efficiency is decreased approximately 5%. The causes of the reduced thermal efficiency 

are primarily the reduced combustion efficiency with the elevated emissions of 

incompletely oxidized products (CO and THC) and the delayed combustion phasing as 

shown in the heat release curves in Figure 5-28. The heat release rate curve with 2 bar 

intake pressure on the SCRE platform shows a similar combustion phasing as the one 

with 1.5 bar intake pressure in the PUMA engine. This indicates that 2 bar intake 

pressure approaches the low threshold for intake pressure on the SCRE engine platform. 

 
Figure 5-27 Emissions of CO and THC, combustion thermal efficiencies 
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Figure 5-28 Intake pressure effect: cylinder pressure and HRR 

The effect of intake temperature on the combustion characteristics is then investigated at 

2.25 bar intake pressure. The cylinder pressure and HRR traces at varied intake 

temperatures are shown in Figure 5-29. The intake temperature is gradually reduced from 

66.5 °C to 50.7 °C. No EGR is applied in this test for the relatively simple intake gas 

compositions and temperature distribution.  
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combustion event are clearly separated. The timings of the fuel evaporation are in a 
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rate and higher in-cylinder volume expansion leads to a lower combustion temperature 

that further delays the combustion phasing until misfire occurs. 

 
Figure 5-29 Intake temperature effect: cylinder pressure and HRR 

The emissions of CO and THC, indicated thermal efficiency, and combustion efficiency 

are compared in Figure 5-30 for the combustion with different intake temperatures. As 

the intake temperature reduces, the combustion efficiency is significantly suppressed 

because of the elevated emissions of CO and THC. The indicated thermal efficiency is 

also reduced. A reduction in the intake temperature (from 66.7 °C to 50.7 °C) decreases 

the indicated thermal efficiency by approximately 25%. Hence, a precisely controlled 

intake temperature is required to maintain the high thermal efficiency. It should be noted 

that the combustion temperature is generally low for NOx formation even with the 

highest intake temperature of 66.7 °C. Lower than 10 ppm of NOx emissions and ultra-
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Figure 5-30 Emissions of CO and THC, combustion and thermal efficiencies 

The mean in-cylinder temperatures are calculated using the measured cylinder pressures 

(Figure 5-29) for different intake temperature cases. The results are shown in Figure 5-31 
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Figure 5-31 Mean in-cylinder temperature calculated with cylinder pressure  

In general, both higher intake pressure and higher intake temperature enhance the charge 

reactivity and advance the combustion phasing. The increased charge reactivity and 

ignition ability by the higher intake pressure and temperature make the combustion more 

tolerable to higher EGR rates. A comparison test with and without intake heating are 

shown in Figure 5-32. The IMEP is 12 bar, which is achieved with double n-butanol 

injections. The strategy of double injections of n-butanol will be discussed in Chapter 7 

for the high load operations. It is noted that at a higher engine load, the challenge of 

igniting the n-butanol charge is reduced. The n-butanol combustion can be initiated with 

the intake air at ambient temperature when the engine is fully warmed up.   
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Figure 5-32 Intake temperature and ignition delay at varied EGR rate 

The applicable EGR rate is limited to below 25% for the combustion with a lower intake 

temperature (~30 °C). Misfire occurs when the reactivity of the in-cylinder charge is 

excessively reduced by the EGR. When the intake temperature is elevated (~67 °C), the 

EGR rate can be extended to more than 40%. However, the low EGR rate becomes 

infeasible due to the high PPRR.  
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ultra-low smoke emissions at this engine load. The emissions of this combustion mode 
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Figure 5-33 NOx and smoke emissions at varied EGR rate 

5.3 Summary 

The effects of various engine control parameters on ignition delay and combustion rate 

have been analyzed in this chapter. Both the diesel fuel and n-butanol fuel are supplied 

with the high pressure single DI. The following observations can be summarized. 

 The ignition delay of n-butanol DI is longer than the that of diesel DI. The trend 

of ignition delay is related to the compression temperature.  

 The DI timing has limited control over combustion phasing in the n-butanol 

combustion primarily due to the long mixing period. The applicable DI timing 

window is narrower in the n-butanol combustion than that in the diesel 

combustion because of the low fuel reactivity and over-mixing.  
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 A longer injection duration mainly increases the combustion duration in the diesel 

combustion, while it advances the combustion phasing and enhances the 

combustion rate in the n-butanol combustion, under the confined test conditions. 

 With a fixed injection pressure, elevated intake pressures and temperatures 

enhance the charge reactivity.  
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CHAPTER VI 

6. REACTIVITY MODULATION WITH PREMIXED CHARGE 

The results in this chapter are used to study the effects of engine control parameters on 

the modulation of charge reactivity. A systematic study is performed on the fuel delivery 

strategies commensurate with the fuel properties. Ethanol and n-butanol are delivered 

through the intake port of the engine to form a premixed charge. Diesel is injected 

directly into the cylinder to initiate the ignition in the ethanol case and to extend the 

engine load in the n-butanol case, respectively. 

6.1 Combustion with Ethanol Port Fuel Injection 

Ethanol is injected into the intake port at the beginning of the intake stroke. The liquid 

ethanol droplets are tranported by the intake air flow into the cylinder. The evaporation of 

the liquid ethanol occurs primarily inside the cylinder. Therefore, the time for ethanol 

mixing with air contains the entire intake stroke and a large portion of the compression 

stroke before SOC. A highly premixed in-cylinder charge is formed before the diesel 

injection that is used as an ignition source. The potential mixing control over this ethanol 

premixed charge is limited to the regulation of the fuel amount that changes the AFR.  

6.1.1 Diesel Injection Timing Effect on Ignition  

The diesel injection timing effect is studied at 10 bar IMEP. The intake pressure is 

maintained at 2 bar absolute, and the diesel injection pressure is set to 1200 bar. In this 

test, the energy contribution from the diesel injection is about 50%. The intake oxygen 

concentration is at 20.8%. The CA5 and CA50 are shown in Figure 6-1 together with the 

ignition delay. The ignition delay remains at a similar level as that of the pure diesel 
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combustion (Figure 5-1), and prolongs gradually when the diesel injection timing is 

retarded. The CA5 and CA50 are delayed progressively with the postponed injection 

timing. This observation suggests that the diesel injection timing controls the onset of 

combustion and combustion phasing in this combustion mode.  

 
Figure 6-1 Diesel injection timing effect: ignition delay, CA5 and CA50 

The burn rate in the combustion with diesel and ethanol is significantly increased over 

that of the combustion with diesel DI only. An example is given in Figure 6-2, in which 

the timing and duration of the diesel injection command are the same. A longer 

combustion duration is observed at a higher engine load that is achieved with a longer 

diesel injection duration (Figure 5-12). In stark contrast, the combustion duration remains 

in a similar range when the engine load is increased with the ethanol PFI (Figure 6-2). 

When the diesel fuel auto-ignites, multiple ignition spots are generally formed [28] to 
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burn the highly premixed charge of ethanol. Therefore, HRR, PCP, and PPRR are all 

increased for the combustion with the premixed charge of ethanol.  

 
Figure 6-2 Cylinder pressure and HRR change after enabling ethanol PFI 

The effectiveness of the control on PCP and PPRR with the diesel injection timing is 

studied at two different intake oxygen concentrations. The PCP and PPRR are shown in 

Figure 6-3. The overall trends for PCP and PPRR are similar for different intake oxygen 

levels: higher PCP and PPRR are observed with the early diesel injection timings. With a 

lowered intake oxygen concentration, both the PCP and PPRR are suppressed, which 

makes it possible to advance the diesel injection timing. However, the slopes of the PCP 

and PPRR curves remain at a similar level for the two intake oxygen levels. 
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Figure 6-3 Diesel injection timing effect: PCP and PPRR at varied intake O2 

6.1.2 PFI Fuel Ratio Effect on Combustion Rate 

The PFI fuel ratio (ζ) is defined in Eq. (6-1), which is based on the energy contributions 

from the PFI fuel and the DI fuel.  

 

ሺ%ሻߞ ൌ
ሶ݉ ிூ ൈ ܪܮ ܸிூ

ሶ݉ ிூ ൈ ܪܮ ܸிூ  ሶ݉ ூ ൈ ܪܮ ܸூ
ൈ 100 

 

where ζ, PFI fuel ratio (%); ሶ݉ ிூ, PFI fuel flowrate (kg/cycle); ܪܮ ܸிூ, Lower heating 

value of PFI fuel (J/kg); ሶ݉ ூ, DI fuel flowrate (kg/cycle); ܪܮ ܸூ, Lower heating value of 

DI fuel (J/kg).  
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The effect of the PFI fuel ratio on heat release rate is studied at a constant IMEP level. As 

the injection duration of the PFI ethanol increases, the diesel injection duration decreases 

accordingly to maintain the IMEP. The diesel injection timing and injection pressure are 

fixed. The cylinder pressure and HRR curves are shown in Figure 6-4 for the cases with 

four different PFI fuel ratios. A low EGR rate is applied to slightly reduce the charge 

reactivity, and to constrain the PPRR for the combustion with a high PFI fuel ratio.  

 
Figure 6-4 PFI fuel ratio effect: cylinder pressure and HRR with fixed IMEP 

Both the cylinder pressure and HRR are affected by the PFI fuel ratio. First, the 

compression pressure at TDC is lowered with the high fuel ratio. This observation can be 

explained by the heat absorption during the ethanol fuel evaporation. The charge 

temperature and pressure are lower slightly when more ethanol fuel is evaporated in the 

engine combustion chamber. The SOC is retarded with a higher concentration of the 

premixed ethanol. The delayed SOC may be explained by two causes: the reduced 
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quantity of the diesel injection reduces the ignition ability (e.g. shorter penetration), and 

the increased ethanol quantity decreases the charge reactivity (e.g. lowered charge 

temperature caused by the evaporative cooling, and oxygen dilution with the ethanol 

vapor).  

The HRR in Figure 6-4 shows similar dual-hump shape as the high load one of diesel 

(11.5 bar case in Figure 5-12). The first stage of combustion is predominantly the 

premixed combustion with both ethanol and diesel. The two fuels form a relatively 

reactive mixture through in-cylinder blending to start the initial combustion. This 

premixed combustion becomes more significant when a higher PFI fuel ratio is used. In 

contrast to the diffusion-controlled combustion of diesel, the results indicate that the 

second stage of combustion may be from the auto-ignition of the premixed ethanol fuel.     

The PCP, PPRR, indicated NOx emissions, and indicated smoke emissions are illustrated 

in Figure 6-5 for various PFI fuel ratios. The PCP is maintained at the same level, while 

the PPRR increases considerably, as the PFI fuel ratio increases. The increased PPRR is 

mainly caused by the enhanced premixed combustion (Figure 6-4). The NOx emissions 

are slightly reduced because the amount of diesel injection is reduced. The smoke 

emissions remain at a low level due to the high portion of premixed combustion and the 

high concentration of intake oxygen.   
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Figure 6-5 PFI fuel ratio effect: PCP, PPRR, NOx emission, and smoke emission 

The effects of the PFI fuel ratio are further examined with the constant diesel injection 

timing and duration. The duration of ethanol port injection is gradually increased to raise 

the engine load. The cylinder pressure and HRR curves are shown in Figure 6-6. The 

initial stage of HRR overlaps on each other for different PFI fuel ratios. This 

phenomenon indicates that the increased ethanol concentration has a negligible impact on 

the SOC with the test conditions. For the HRR, the increased PFI fuel ratio significantly 

enhances the intensity of the second stage of combustion but only marginally increases 

the burning rate of the first stage. The results suggest that the second stage of combustion 

is primarily generated from the burning of the ethanol premixed fuel, while the first stage 

of combustion is mainly the burning of the DI diesel.  
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Figure 6-6 PFI fuel ratio effect: cylinder pressure and HRR with fixed diesel DI 

6.1.3 Intake Pressure Effect on Ignition 

The impact of intake pressure on ignition is studied with ethanol ignited by diesel. Figure 

6-7 shows a comparison of ignition delay and IMEP at two intake pressures (1.5 and 2.0 

bar absolute) with an increasing PFI fuel ratio. The diesel injection timing and duration 

are the same as the ones in Figure 6-6. Since the total energy is increasing with the 

increasing PFI fuel ratio, the CA5 provides an delayed SOC. Therefore, the ignition 

delays are calculated assuming a 50 Joule threshold for the cumulative heat release rate as 

the indication for the SOC. The 2 bar intake pressure shortens the ignition delay by about 

0.2 ms from 1.5 bar. This difference is similar to the impact of intake pressure on the 

diesel combustion that has been discussed in Figure 5-9. It is also noted that the increased 

PFI fuel ratio has a limited impact on ignition delay at both the intake pressures, with the 

confined test conditions. 
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Figure 6-7 Intake pressure effect: ignition delay and IMEP 

The effect of the intake pressure is further examined with a fixed PFI fuel ratio of 50%. 

The combustion with a single injection of diesel (without the ethanol port injection, ζ = 

0%) is selected as the baseline. The intake pressure is gradually decreased from 2.0 bar to 

1.2 bar absolute, while the injection timing and duration of the diesel injection are kept 

constant. The same sweep of intake pressure is conducted again with the same diesel 

injection and port injection of ethanol (ζ = 50%). The minimum tested intake pressure is 

1.3 bar instead of 1.2 bar due to the high PPRR at the lower intake pressure.  

The ignition delay and IMEP at various intake pressure levels are shown in Figure 6-8. 

The IMEP levels remain in a similar range as the intake pressure is reduced, which 

suggests that the thermal efficiencies are also similar for the two fuel ratios and are not 

affected by the varied intake pressure. The ignition delays are at the same level at high 

intake pressures (e.g. 1.8 bar and 2.0 bar), and progressively prolong as the intake 
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pressure is further reduced. The same trend is observed for both the fuel ratios. However, 

the slope of the ignition delay curve with 50% fuel ratio is steeper than that with diesel 

only. The results indicate that the combustion with an increased ethanol fuel ratio is more 

sensitive to the change of intake pressure. With the same fuel ratio, the ignition delay is 

more significantly prolonged at a lower intake pressure. When the intake pressure is 

higher than 1.8 bar absolute, further increase of intake pressure only marginally shortens 

the ignition delay.   

 
Figure 6-8 Intake pressure effect: ignition delay and IMEP  

The PCP and PPRR at different intake pressures are shown in Figure 6-9. The PCP 

increases, while the PPRR decreases, with the elevated intake pressure levels. The 

increased ethanol concentration increases the peak of HRR in the premixed combustion. 

The engine load with the premixed ethanol charge is also considerably higher than that 
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with diesel only. Therefore, the PCP and the PPRR of 50% PFI ratio are higher than that 

of the diesel-only case.  

 
Figure 6-9 Intake pressure effect: PCP and PPRR at various intake pressures 

The benefit of using the premixed ethanol fuel is demonstrated in Figure 6-10, together 

with the emissions of NOx and THC. It is observed that the indicated NOx emissions 

from the combustion with 50% PFI fuel ratio are significantly lower than that from the 

combustion with diesel only. The engine load extension with the PFI ethanol can reduce 

the indicated NOx emissions. Moreover, the NOx emissions from the diesel-only 

combustion increase with the intake pressure. The increase NOx emission is mainly 

because of the potentially higher combustion temperature with a shorter ignition delay. In 

contrast, the NOx emissions remain at the same level for the combustion with 50% 

ethanol. The NOx emissions become insensitive to the change of intake pressure with the 

premixed ethanol charge. Meanwhile, the THC emissions drastically increase in the 
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combustion with the ethanol port injection. This is a common feature with PFI 

applications. The background fuel often cannot be oxidized completely, especially for the 

regions close to the cold walls of the combustion chamber. Higher THC emissions are 

detected at a higher intake pressure because of the potentially leaner premixed charge that 

is challenging to oxidize.  

 
Figure 6-10 Intake pressure effect: NOx and THC at various intake pressures 

The mass-based emissions of NOx and THC are shown in Figure 6-11 to compare the 

absolute formations of NOx and THC with different ethanol fuel ratios. It is observed that 

the NOx formation in the combustion with 50% ethanol fuel ratio is higher than that with 

diesel only over the entire range of intake pressures. The higher NOx formation can be 

attributed to the potentially higher combustion temperature at a higher engine load. 

However, the increase rate of NOx is less than that of IMEP. Hence, the indicated NOx 

emissions are lower in the 50% ethanol case. 
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Figure 6-11 Intake pressure effect: absolute emissions of NOx and THC  

6.1.4 EGR Effect on NOx and Smoke Emissions 

The effects of EGR on the emissions of NOx and smoke are studied at different fuel 

ratios. The net IMEP is maintained at 10 bar, while the PFI fuel ratio is increased 

progressively from 24.3% to 79.5%. The CA50 is approximately 369 °CA for all the test 

points. The constant combustion phasing is achieved by advancing the diesel injection 

timing during each of the EGR sweeps. 

The general trends of lower NOx emissions with reduced intake oxygen concentrations 

are similar for all the fuel ratios (Figure 6-12). The slopes of the NOx emission curves are 

steeper when the intake oxygen concentration is higher than 16%, and becomes flatter 

thereafter. At similar intake oxygen levels, the cases with lower fuel ratios of 24.3% and 

38.5%, and the cases with higher fuel ratios of 57.0% and 79.5%, have similar NOx 
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79.5%), produces lower NOx emissions, which is consistent with the observation in 

Figure 6-5.  

 
Figure 6-12 EGR effect: NOx emissions at different fuel ratios 

The smoke emissions at various fuel ratios are given in Figure 6-13. Similar to the diesel 

baseline shown in Figure 5-2, the smoke decreasing slope is detected for all the four fuel 

ratios as the intake oxygen concentration is reduced. The peak smoke emissions in each 

of the EGR sweeps reduce as the PFI fuel ratio increases. The emissions of smoke are 

reduced by the increased PFI fuel ratio, instead of the retarded combustion phasing in the 

diesel baseline. Furthermore, with the high PFI fuel ratio (ζ = 79.5%), simultaneously low 

emissions of NOx and smoke are achieved when the intake oxygen is reduced to about 

15%. However, the low emissions are achieved within a very narrow range of intake 

oxygen concentration, which necessitates a precise control of EGR. The EGR rate that is 

out of this range would result in either high emissions of NOx or smoke.  
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Figure 6-13 EGR effect: smoke emissions at different fuel ratios 

Simultaneously low emissions of NOx and smoke can also be achieved when the intake 

oxygen is reduced to lower than 9% for the four tested fuel ratios. The concept is similar 

to the diesel LTC enabled with heavy EGR. As shown in Figure 6-14, the normalized 

IMEP reduces by about 30% when the intake oxygen concentration is decreased to about 

9%. The highest IMEP (100% normalized IMEP) is often achieved without EGR or with 

a low EGR rate. The trends of the normalized IMEP for different fuel ratios are similar. 

The IMEP starts to drop when the intake oxygen concentration is lower than 14%, at this 

test condition. When the IMEP drops, the emissions of smoke, CO, and THC are 

increased. The increased emissions of partially oxidized products are closely related to 

the combustion temperature that is suppressed with a higher rate of EGR. 
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Figure 6-14 EGR effect: normalized IMEP at different fuel ratios 

The ignition delays are prolonged for the EGR sweeps with different fuel ratios, as shown 

in Figure 6-15. At the higher intake oxygen level of 16% to 18%, the fuel ratio has a 

limited impact on the ignition delay, which is consistent with the observation in Figure 

6-7. However, when the intake oxygen is further lowered, the impact of the fuel ratio on 

the ignition delay becomes pronounced. A higher PFI fuel ratio drastically increases the 

ignition delay at a lower intake oxygen level.  

The effects of EGR on cylinder pressure and HRR are shown in Figure 6-16 using a 

selected fuel ratio of 57% as an example. As the EGR rate is increased, the intake oxygen 

concentration is reduced from 18.8% to 9.7%. To maintain the combustion phasing, the 

diesel injection timing is advanced. The engine efficiency often reduces with a longer 

combustion duration [104]. This is the potential cause for the IMEP drop in Figure 6-14.  
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Figure 6-15 EGR effect: ignition delay at different fuel ratios 

 
Figure 6-16 EGR effect: cylinder pressure and HRR at a selected fuel ratio 
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6.1.5 Diesel Micro Pilot to Increase Charge Reactivity 

In the previous subsections, it has been discussed that the application of EGR is often 

essential to suppress the NOx emissions from the combustion with ethanol PFI and diesel 

DI. However, the smoke emissions are elevated at medium to high EGR levels, at the 

tested conditions. The further increase of EGR may eventually reduce the smoke 

emissions, but at the ultra-high rate of EGR, the thermal efficiency often reduces. The 

combustion efficiency is also reduced as evidenced from the high emissions of THC and 

CO. The emission results shown in Figure 6-13 suggest that a higher PFI fuel ratio might 

help to reduce the NOx-smoke trade-off on the PUMA platform.  

Two high PFI fuel ratios are tested to demonstrate the need of enhancing the charge 

reactivity. The emissions of NOx and smoke at 95% fuel ratio are compared to the ones 

at 79.5% fuel ratio in Figure 6-17. The intake pressure is maintained at 2 bar absolute. 

The net IMEP is set to 10 bar. The higher PFI fuel ratio is achieved by increasing the PFI 

fuel amount and reducing the DI fuel amount at the same time. In order to keep the 

combustion phasing constant, the diesel injection timing is advanced when a higher EGR 

rate is used for both the fuel ratios. 

The differences in NOx emissions between the two PFI fuel ratios are negligible. The 

general trend is that lower NOx emissions are achieved at a lower intake oxygen 

concentration. The smoke emissions at a PFI fuel ratio of 95% remain at an ultra-low 

level when the intake oxygen is reduced from approximately 21% to 13.5%. The NOx 

and smoke trade-off is overcome at the high fuel ratio of 95%. With the prolonged 

ignition delay as shown in Figure 6-18, and the reduced diesel DI amount, the mixing of 

the diesel DI is considerably improved at the high fuel ratio. Hence, the smoke emissions 
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remain at a low level. However, the normalized IMEP drops drastically when the intake 

oxygen is reduced to below 14%. The drastic drop of IMEP occurs when the overall 

charge reactivity is not sufficient to sustain the combustion. This phenomenon shows the 

benefits of using a high PFI fuel ratio on smoke and NOx emissions. Moreover, the low 

charge reactivity limits the range of the EGR application for the further reduction of NOx 

emissions. 

   
Figure 6-17 Diesel micro-pilot: NOx and smoke emissions at varied fuel ratios     
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Figure 6-18 Diesel micro-pilot: normalized IMEP and ignition delay 
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The cylinder pressure and heat release rate curves are shown in Figure 6-19 to investigate 

the impacts of the double micro-pilot diesel injections on combustion performance. With 

a single injection of 270 μs injection duration, the combustion duration is long, and the 

majority of the heat is released after 370 °CA. This observation indicates that the single 

injection of 270 μs is not sufficient to ignite the premixed charge of ethanol at low 

reactivity. The diesel single DI is increased to 300 μs at the same injection timing. The 

heat release rate is considerably enhanced, and the combustion duration is shortened. The 

double micro-pilot injections, 250 μs at 300 °CA and 270 μs at 355.5 °CA, are then tested. 

Based on the offline injection rate measurement, the combined fuel mass delivered by the 

double micro-pilot injections is similar to the mass delivered by a single 300 μs duration 

pilot injection at 900 bar injection pressure. It is observed that the combustion duration of 

the double-micro-pilot case is close to the one of 300 μs single pilot injection case.  

 
Figure 6-19 Diesel micro-pilot: cylinder pressure and HRR 
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The heat release rate curves are further analyzed to investigate the impact of the double 

micro-pilots. The dual-hump heat release is observed for all the three injection strategies. 

As previously mentioned, the first peak of the heat release is related to the diesel ignition, 

while the second peak is determined by the reactivity of the premixed charge. It is 

observed that the heat release rate curve with the single DI of 300 μs has the strongest 

ignition ability (highest first peak), while the double micro-pilot injections have the 

strongest premixed combustion (highest second peak). The stronger premixed 

combustion with double micro-pilot injections suggests that the early diesel pilot 

effectively enhances the charge reactivity. 

The emissions of NOx, CO, and THC with the three different injection strategies are 

compared in Figure 6-20. The volumetric concentrations of the emissions are reported in 

this subsection instead of the indicated emissions to eliminate the potential effects from 

the changes in engine load at different injection timings and intake oxygen levels. The 

highest CO and THC emissions are detected from the combustion with the 270 μs single 

injection. The high emissions of the partially oxidized products can be explained by the 

low combustion temperature caused by the low charge reactivity and long combustion 

duration. When a longer injection duration of 300 μs is used for ignition, the combustion 

temperature is increased, which is indicated by the increased NOx emissions. In the 

double-micro-pilot case, the THC emissions reduce by about 300 ppm, while the CO 

emissions drop to less than half of that from the single-micro-pilot case. The significant 

reduction in the CO emissions supports the assumption of enhanced charge reactivity.  
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Figure 6-20 Emissions of NOx, CO, and THC with various injection strategies 
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Figure 6-21 Diesel micro pilot: Smoke and NOx emissions 
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premixed charge of n-butanol can auto-ignite in the PUMA engine without the need of 

additional intake heating. Hence, the benefits and challenges of the HCCI combustion of 

n-butanol are investigated on that platform. The direct injection of diesel is also used with 

the n-butanol port fuel injection. The impacts of diesel injection timing and PFI fuel ratio 

on combustion characteristics and emissions are studied at various EGR rates.     

6.2.1 Butanol HCCI 

The HCCI combustion of n-butanol is presented in this sub-section. N-butanol can auto-

ignite without additional intake heating on the PUMA platform, and with intake heating 

on the SCRE platform. However, the direct application of PFI n-butanol is often 

unsuccessful to ignite during the initial engine start due to the relatively low temperature 

in the engine combustion chamber. Although the engine oil and coolant are preheated to 

80 °C in this setup, the temperature is still not sufficient for consistent ignition. A 

promising method is to start the engine with diesel DI and n-butanol PFI. When the 

engine is fully warmed up, the diesel DI is gradually reduced until it is stopped 

completely. Stable neat n-butanol HCCI combustion is thereafter achieved with the PFI 

only. 

In the HCCI combustion enabled by n-butanol port fuel injection, the control of mixing 

and reactivity through direct fuel injection is not available. The primary control methods 

that can be used on this engine platform to control the HCCI combustion of n-butanol are 

intake pressure and EGR. A higher intake pressure has been observed to enhance the 

charge reactivity (Sections 5.2 and 6.1). However, a higher intake pressure may generate 

two contrary effects in the HCCI combustion. The reactivity may be enhanced as 

suggested in the previous observations, or it may be suppressed because of the potentially 
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leaner combustion (more air is charged into the engine at a higher intake pressure, but the 

PFI injection duration is constant). Therefore, the actual effect of intake pressure on 

HCCI combustion is examined in detail in this subsection. 

The effect of intake pressure on the onset of combustion is illustrated in Figure 6-22 at 

various engine loads. The SOC timings in this figure are calculated with the 50 Joule 

threshold. As discussed in Section 6.1.2, a fixed energy amount is more suitable than a 

fixed percentage (CA5) to indicate the start of combustion when the total energy amounts 

(engine loads) are varied significantly. The calculated excess AFR values are also 

overlaid in the same figure. The intake oxygen level is maintained at 20.8% in this set of 

tests. 

 
Figure 6-22 Intake pressure effect: SOC at various intake pressures 
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The general trend of SOC is similar at different intake pressures. As the IMEP increases, 

the SOC advances. A higher level of IMEP is produced from a higher amount of fuel 

supplied via the PFI application. At the same intake pressure, the mass of the fresh air 

intake is at a similar level. Therefore, the in-cylinder charge is richer at a higher IMEP. 

The SOC is advanced due to the relatively higher reactivity for the richer mixture of fuel 

and air. However, when the SOC values are compared at a similar IMEP level, the in-

cylinder charge is richer at a lower intake pressure, but a delayed SOC is still detected. 

The results suggest that for the HCCI combustion, intake pressure has stronger impacts 

on the SOC than the AFR. This observation also explains the misfire condition at 1.3 bar 

absolute intake pressure. When the intake pressure is lower than a certain limit, the 

charge reactivity becomes more sensitive to the changes in AFR. A slight increase of the 

excess air ratio (λ) from 2 to 2.3 causes misfire. 

The PCP and PPRR are shown in Figure 6-23 for the same set of tests. At the same intake 

pressure, the PCP reduces as the IMEP is lowered. At a lower IMEP, the total combustion 

energy is reduced, and the combustion phasing is also retarded. Both the effects suppress 

the PCP. Similar trends are observed at different intake pressures. The gradient of PPRR 

is smaller at a higher intake pressure than at a lower intake pressure, with respect to 

IMEP. When the PPRR increases from 5 bar/°CA to 15 bar/°CA at 2 bar absolute intake 

pressure, the IMEP difference is about 5 bar (from 2 bar to 7 bar). For the same PPRR 

increase at 1.5 bar intake pressure, the IMEP difference is only 2 bar (from 5 bar to 7 bar). 

This observation suggests that it is beneficial to use a lower intake pressure for the lower 

PCP and PPRR at the same IMEP if the reactivity of the in-cylinder charge is sufficient 

for reliable ignition. However, when the mixture approaches the stoichiometric 
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combustion, the increase rate in PPRR accelerates. Therefore, the primary limitation of 

achieving a higher engine load at a lower intake pressure is the PPRR, while it is often 

the PCP at a higher intake pressure.  

 
Figure 6-23 Intake pressure effect: PCP and PPRR at various intake pressures 
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The NOx emissions at various intake pressures follow similar trends. The absolute 

volumetric concentrations of the NOx emissions are consistently approximately 10 ppm 

at different engine loads and intake pressure levels. The indicated NOx emissions are 

elevated mainly due to the reduction in the engine load. It should be noted that the smoke 

emissions are always lower than 0.005 g/kW-hr in this set of tests.  

 
Figure 6-24 Intake pressure effect: efficiency and NOx emissions 
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to reduce the peak cylinder pressure at a lower intake pressure. As previously discussed, a 

higher intake pressure increases the charge reactivity, while a higher EGR rate reduces 

the charge reactivity. The high intake pressure and the high EGR rate counteract each 

other, and thus reduce their individual effectiveness. A higher IMEP and a higher intake 

pressure are the two primary causes for the higher PCP values in HCCI combustion. It is 

critical to match the intake pressure with the desired engine load to explore the potential 

of load extension. A higher than necessary intake pressure often reduces the efficacy of 

EGR for the regulation of PCP.  

 
Figure 6-25 EGR effect: peak cylinder pressure at varied intake pressure 
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application of EGR is effective to decrease PPRR at different IMEP levels and intake 

pressures. The EGR application is more effective at the lower intake pressure. 

 
Figure 6-26 EGR effect: PPRR at varied intake pressure 
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Figure 6-27 EGR effect: cylinder pressure and HRR at varied intake oxygen levels 
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Figure 6-28 EGR effect: NOx emissions at varied fuel ratios 
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internal EGR. Hence, the smoke emissions are elevated under the high temperature and 

internal EGR.     

 
Figure 6-29 EGR effect: smoke emissions at varied fuel ratios 
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tested after the first stage of combustion of the PFI n-butanol. The results will be 

discussed in Chapter 7. 

The normalized IMEP values of the combustion with various PFI fuel ratios are 

compared in Figure 6-30. The general trend of the combustion with ethanol shown in 

Figure 6-14 is also included in this figure. The relative IMEP remains in a range of higher 

than 90% when the intake oxygen concentration is reduced from 20% to 13%. The 

relative IMEP level is also similar to the one with ethanol PFI in a similar range of intake 

oxygen concentration. The applicable rate of EGR is mainly limited by the high smoke 

emissions as shown in Figure 6-29 for the three tested PFI fuel ratios. 

 
Figure 6-30 EGR effect: normalized IMEP at varied fuel ratios 
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fixed timing for the three cases. The cylinder pressure and HRR curves are shown in 

Figure 6-31. The intake oxygen level is gradually reduced in an interval of 2% with the 

increased EGR rate. The first stage of combustion is drastically retarded at a lower intake 

oxygen concentration. The peak HRR of the first stage is also reduced. The PCP and 

PPRR, which are closely related to the first-stage heat release, are also decreased. 

However, the second stage of combustion only changes slightly in the peak of the HRR. 

The slightly increased peak HRR is from the burning of partially oxidized products of the 

previous combustion. The combustion phasing of the second stage remains with the 

increased EGR rate. This phenomenon suggests that the mixing period of the diesel 

injection remains in a similar range at different intake oxygen levels. The EGR 

application has limited impacts to extend the mixing duration for the DI after the initial 

stage of combustion.  

 
Figure 6-31 EGR effect: cylinder pressure and HRR at fixed fuel ratio 
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6.3 Summary 

The combustion performance and emissions have been studied with ethanol and n-

butanol as the port injection fuels. A single DI of diesel has been used as the ignition 

source for ethanol. The premixed n-butanol fuel generates auto-ignition on the PUMA 

engine platform with a high compression ratio. However, the single DI of diesel is still 

added to study the reactivity modulation. The research observations can be summarized 

as follows: 

In the combustion with ethanol port fuel injection: 

 The diesel injection timing controls the start of combustion and combustion 

phasing without using extensive EGR. The ethanol premixed charge marginally 

contributes to the initial stage of heat release with the fixed close-to-TDC diesel 

injections. 

 The PFI fuel ratio is critical for the combustion with ethanol port fuel injection. A 

longer ignition delay is often detected at a higher PFI fuel ratio. This effect 

becomes more significant at lower charge reactivity (with a lower intake pressure 

and a higher EGR rate), when the diesel injection timing is fixed close to TDC. 

 The combustion with a higher PFI fuel ratio often generates lower emissions of 

NOx and smoke at similar engine operating conditions. The premixed combustion 

is enhanced by the increase in ethanol and reduction in diesel. 

 A high EGR rate and a high ethanol ratio are essential to regulate the emissions of 

NOx and smoke to below the emission standards. However, the charge reactivity 

with these conditions is often excessively low to effectively oxidize THC and CO, 

and thus the combustion efficiency reduces.  
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 Diesel micro-pilot injections are employed to improve the reactivity of the 

premixed ethanol charge. The oxidization of CO and THC is considerably 

enhanced while the ultra-low NOx and smoke emissions can be maintained with 

the application of EGR.  

In the combustion with n-butanol port fuel injection: 

 The HCCI combustion enabled with port injection of n-butanol is demonstrated in 

the PUMA engine. The control of intake pressure is an effective method to 

regulate the SOC in the HCCI combustion with n-butanol. However, the high 

intake pressure is often associated with the high PCP and PPRR. The application 

of EGR can delay the SOC, and reduce the PCP and PPRR. The impact of EGR is 

more significant at a lower intake pressure. 

 A higher n-butanol ratio increases the portion of premixed combustion and is 

beneficial for low NOx emissions in the combustion with n-butanol PFI and diesel 

DI. The smoke emissions remain at an ultra-low level without EGR. However, the 

smoke emissions increase significantly with EGR. The diffusion-dominated diesel 

burning in the second stage contributes the majority of the smoke emissions. The 

results suggest that high reactivity fuels, such as diesel, are not optimal to be used 

in the combustion with pre-ignition due to the insufficient mixing.   
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CHAPTER VII 

7. PARTIALLY PREMIXED COMBUSTION WITH ALCOHOL FUELS 

The results of the partially premixed combustion with alcohol fuels are presented in this 

chapter. In the first section, the effects of n-butanol injection timing and duration on 

combustion characteristics are investigated with ethanol port injection and n-butanol port 

injection. In the next section, multiple injections of n-butanol are employed to enhance 

the mixing control of the in-cylinder charge. The optimal combustion performance and 

emissions are demonstrated using selected fuel injection timings and durations. A high 

intake pressure is used to enhance the charge reactivity for the improved ignition, while 

EGR is applied to regulate the combustion rate and suppress the NOx emissions. 

7.1 Butanol DI with Premixed Charge 

The direct injection of n-butanol is used in the premixed charge generated via the port 

injection of ethanol or n-butanol. The main advantage of such an arrangement is that the 

combustion energy is supplied entirely by the alcohol fuels that could be produced from 

renewable resources. Furthermore, the combustion performance and emissions also 

benefit from the fuel properties of ethanol and n-butanol in compression ignition engines.  

7.1.1 Ethanol Port Fuel Injection with Butanol DI  

A single injection of n-butanol is typically not sufficient to ignite the bulk premixed 

charge of ethanol on the PUMA engine platform. The primary cause for that is the IMEP 

from the combustion of n-butanol DI is closely coupled with the peak pressure rise rate 

(PPRR), which has been discussed in Section 5.2.2. A lower IMEP is not sufficient to 
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ignite the ethanol charge of low reactivity, while a higher IMEP may exceed the PPRR 

limit when the premixed ethanol is ignited.  

Therefore, in this research, the double injections of n-butanol are employed to ignite the 

premixed ethanol charge. The first DI is employed to form the local stratification of 

reactivity through in-cylinder blending with the premixed ethanol. The gradient of charge 

reactivity thereafter determines the SOC and the combustion rate at the first stage. The 

second injection combusts in the heated environment generated from the initial 

combustion. The high temperature produced from the second stage of combustion is 

partially retained to the next engine cycle to enhance the charge reactivity and secure the 

first stage of ignition.  

The effects of the injection timings on ignition delay and combustion rate are studied 

with two independent injection timing sweeps. The test conditions are given in Table 7-1. 

The injection timings and injection durations shown in the table are command timings 

and command durations. In the first timing sweep, the second DI timing is kept constant 

while the first DI timing is changed. In the second timing sweep, the first DI timing is 

fixed while the second DI timing is changed. The nominal IMEP is 12 bar with a PFI fuel 

ratio of 35.5%. The injection durations for both the DI injections and the PFI are 

maintained constant. It should be noted that the ignition delay is defined as the duration 

from the first direct injection to the onset of combustion. The n-butanol flowrate is 

measured during both the injection timing sweeps. 
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Table 7-1 Test conditions of the injection timing sweeps 

Injection Timing Effect on Combustion Characteristics 
Fig. 7-1, Fig. 7-2, Fig. 7-3 

Engine Parameters Timing Sweep 1 Timing Sweep 2 

IMEP (bar) 12.3 12.0 

Intake Pressure (bar abs) 2.0 2.0 

Intake Temperature (°C) 33.0 32.8 

Intake O2 (%) 20.8 20.8 

Injection Pressure (bar) 900 900 

First Injection Timing (°CA) 330-350 334 

First Injection Duration (μs) 340 340 

Second Injection Timing (°CA) 366 360-374 

Second Injection Duration (μs) 650 650 

Port Injection Duration (μs) 3200 3200 

PFI Fuel Ratio (%) 35.5 35.5 
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In timing sweep 1, the ignition delay is shortened from 3.6 ms to 1.4 ms, as shown in 

Figure 7-1. This is mainly caused by the variations in the cylinder temperature during the 

engine compression stroke. When the timing of the first injection is close to TDC, the 

tendency of ignition is higher due to the relatively higher compression temperature. 

Therefore, a shorter ignition delay is observed. The higher peak cylinder pressure (PCP) 

and PPRR are also observed with the shorter ignition delay. 

 
Figure 7-1 Time sweep 1: ignition delay, PPRR, and PCP 

The effects of the second injection timing on the ignition delay, PCP, and PPRR are 

shown in Figure 7-2. When the timing of the second injection is retarded away from TDC, 

the ignition delay is prolonged from 2.8 ms to 3.0 ms. The impact of the injection timing 

on the ignition delay is secondary and is mainly achieved through the residual 

temperature that is partially retained to the next engine cycle. The PCP and PPRR have 
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similar trends as that in Figure 7-1. Overall, a shorter ignition delay is associated with a 

higher PCP and a higher PPRR in timing sweep 1 and timing sweep 2.  

 
Figure 7-2 Timing sweep 2: Ignition delay, PPRR, and PCP 

The injection timing impacts on CA5 and CA50 are shown in Figure 7-3. It is observed 

that the first DI timing has a limited control over both CA5 and CA50 in timing sweep 1. 

The changes in CA5 and CA50 are within 2 °CA when the timing of the first injection is 
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direct control on CA5 and CA50 in timing sweep 2.  
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Figure 7-3 Injection timing effects: CA5 and CA50 

Three data points are compared in Figure 7-4 to examine the effects of the PFI fuel ratios. 

When the duration of the port injection is increased, the durations of both the double DI 
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low Cetane number and thus delays the SOC. Moreover, it also increases the heat release 
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Figure 7-4 Varied PFI fuel ratios: cylinder pressure and HRR 

With the experience gained from the previous analysis of injection timings and PFI fuel 

ratios, the engine load is further extended to 16 bar with a PCP of 159.3 bar and a PPRR 

of 14.1 bar/°CA. The cylinder pressure and HRR traces are given in Figure 7-5. The 

ignition delay is prolonged, and the PPRR is suppressed by the advanced timing of the 

first injection. The duration of the first injection is also reduced to further suppress the 

PPRR. A longer duration of port injection and a longer duration of the second DI are used 

to extend the engine load. The timing of the second DI is delayed to potentially reduce 

the PCP and PPRR.  
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Figure 7-5 N-butanol DI with ethanol background: cylinder pressure and HRR  
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compared with that in dual fuel applications. Moreover, the flexible mixing control in the 

dual-fuel application is maintained because of the use of port fuel injection and direct 

injection.  

The cylinder pressure and HRR traces are shown in Figure 7-6 for the combustion with a 

port fuel injection at varied injection durations and a single direct injection at a constant 

injection duration. The first stage of combustion is generated from the HCCI combustion 

of the PFI of n-butanol. As the PFI amount increases, the phasing of the first stage of 

combustion is advanced, and the peak of heat release rate is elevated. The PCP and PPRR, 

which are closely related to the first stage of combustion, are also increased. The second 

stage of combustion is marginally affected by the first stage. The partially oxidized 

products that are formed in the first stage of combustion are combusted in the second 

stage of combustion. Hence, the HRR curve changes slightly in the second stage of 

combustion. 

The cylinder pressure and HRR curves of the combustion with varied DI durations are 

shown in Figure 7-7. The timing of the DI, the timing of the PFI, and the duration of the 

PFI are maintained at the same level. As the DI duration increases, the second stage of 

heat release becomes wider and higher. The heat release shape is similar to the diesel 

combustion shown in Figure 5-12, which suggests that the second stage of combustion is 

dominated by the diffusion combustion. The SOC tends to advance as the injection 

duration of the DI increases. This advancement may be related to the potentially higher 

residual temperature from the previous engine cycle.  
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Figure 7-6 N-butanol PFI and DI: cylinder pressure and HRR  

 
Figure 7-7 N-butanol PFI and DI: cylinder pressure and HRR  
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The mean cylinder temperatures are calculated in Figure 7-8 to investigate the 

temperature changes before the first stage of combustion in Figure 7-7. The mean 

cylinder temperature of the data point with 850 μs DI is about 6 °C higher than the 

temperature of the data point with 650 μs DI, at approximately 350 °CA before the onset 

of combustion. The intake temperature differences are within 0.1 °CA for the test in 

Figure 7-7, which contributes little to the temperature deviations during the engine 

compression stroke. Therefore, the higher temperature is attributed to the higher 

temperature in the residual gas and the higher heat transfer rate from the cylinder wall 

that is at a potentially higher temperature. The change in the first stage of combustion 

also demonstrates the high sensitivity of the HCCI combustion to the variations of 

cylinder temperature. 

 
Figure 7-8 N-butanol PFI and DI: mean cylinder temperature 
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The cylinder pressure and HRR curves with three selected DI timings are shown in 

Figure 7-9 to study the combustion control with the timing of direct injection. It is 

observed that the phasing of the second stage of combustion retards with the retarded DI 

timing. The phasing of the first stage of combustion is also postponed with the delayed 

DI timing.  

The mean cylinder temperatures are shown in Figure 7-10 to explore the mechanism of 

the indirect control of combustion phasing with the direct injection. With a retarded 

phasing of the second stage of combustion, the exhaust gas temperature is increased due 

to the late combustion phasing in the expansion stroke. The temperature in the residual 

gas is higher. However, the cylinder temperature at approximately 350 °CA is lower for 

the case with a retarded combustion phasing of the second stage. Hence, the lower rate of 

heat transfer from the cylinder wall is the primary cause for the lower temperature in this 

test. 
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Figure 7-9 N-butanol PFI and DI: cylinder pressure and HRR with varied DI timing 

 
Figure 7-10 N-butanol PFI and DI: mean cylinder temperature 
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The PCP and PPRR of the same EGR sweep are shown in Figure 7-11. The PCP and 

PPRR are obtained during the first stage of combustion. With the delayed combustion 

phasing of the first stage, both the PCP and the PPRR are suppressed. Higher reduction 

rates of PCP and PPRR are observed when the intake oxygen is lower than 17%.  

 
Figure 7-11 N-butanol PFI and DI: PCP and PPRR of an EGR sweep 
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reduced mixing duration with an advanced timing of the n-butanol DI increases the 

smoke emissions when the intake oxygen is lower than 17%. The NOx emissions are also 

higher with the early DI timing due to the potentially higher combustion temperature.  

 
Figure 7-12 N-butanol PFI and DI: NOx and smoke emissions of an EGR sweep 
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indirect impacts from the second stage of combustion and the application of EGR. In this 

approach, multiple direct injections of n-butanol are used to generate a partially premixed 

cylinder charge before auto-ignition. A subsequent direct injection is employed after the 

initial combustion to control the HRR shape and to extend the engine loads. With the 

multiple direct injections, the control flexibilities on the mixing process and charge 

reactivity are enhanced. The focus of this subsection is on medium to high engine loads.  

The injection timing effects on CA5 and CA50 with a double-injection strategy are 

shown in Figure 7-13 and Figure 7-14. The test conditions are given in Table 7-2. The 

injection timings and injection durations shown in the table are command timings and 

command durations. It is observed that the CA50 is mainly controlled by the second DI 

timing, while the CA5 is slightly affected by the second DI because of the potential 

variations in the gas temperature in the previous cycle.  

 
Figure 7-13 N-butanol multiple DIs: CA5 and CA50 of Timing sweep 3 

365

370

375

380

385

390

395

400

405

345

347

349

351

353

355

357

359

361

363

365

350 355 360 365 370 375

C
A

50
 (

°C
A

)

C
A

5 
(°

C
A

)

Second DI Timing (°CA)

Test Conditions:
Injection timing effect 
with multiple n-butanol DIs
pinj: 900 bar
pint: 2 bar abs
Int. O2: 20.8%

DI1:   420 μs
DI2: 1000 μs

DI Duration



CHAPTER VII: PARTIALLY PREMIXED COMBUSTION WITH ALCOHOL FUELS 

152 
 

Table 7-2 Test conditions of the injection timing sweeps 

Injection Timing Effect on Combustion Characteristics, n-butanol multiple injections 
Fig. 7-15, Fig. 7-16 

Engine Parameters Timing Sweep 3 Timing Sweep 4 

IMEP (bar) 9.9 10.4 

Intake Pressure (bar abs) 2.0 2.0 

Intake Temperature (°C) 33.0 33.0 

Intake O2 (%) 20.8 20.8 

Injection Pressure (bar) 600 600 

First Injection Timing (°CA) 336  320-350 

First Injection Duration (μs) 420 420 

Second Injection Timing (°CA) 352-370 359 

Second Injection Duration (μs) 1000 1000 

 

With a fixed second direct injection, the CA5 curve appears parabolic when it is plotted 

against the timing of the first DI. The early CA5 values are achieved with the injection 

timings in the range from 330 °CA to 340 °CA. The timing of the first DI has a very 

limited impact on the combustion phasing. This can be attributed to the low percentage of 
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energy contribution from the first DI, as indicated from the shorter injection duration of 

420 μs versus 1000 μs for the second DI. The majority of heat is released from the second 

DI which is fixed at a constant injection time during the test. 

The effects of the ratio between the two injections on HRR are examined at a constant 

IMEP level. The cylinder pressure and HRR curves are shown in Figure 7-15. The 

injection timings for the DI injections are fixed. It is observed that the phasing of the first 

stage of combustion remains in a similar range when the injection duration of the first DI 

is increased. The higher PCP and PPRR are detected with a longer duration of the first DI.  

 
Figure 7-14 N-butanol multiple DIs: CA5 and CA50 of Timing sweep 4 
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Figure 7-15 N-butanol multiple DIs: cylinder pressure and HRR 
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maintained for the two injections when the EGR rate is changed. The emissions of NOx 

and smoke in this EGR sweep are shown in Figure 7-16. A trade-off between NOx and 

smoke emissions is observed with the EGR application. When the intake oxygen level is 

lower than 17%, the NOx emissions are lower than 0.2 g/kW-hr, while the smoke 

emissions are slightly higher than 0.01 g/kW-hr. Further decrease of the intake oxygen 

increases the smoke emissions.  

 
Figure 7-16 N-butanol multiple DIs: NOx and smoke emissions 
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controlled. Hence, the mixing of the second DI and the emission formation during the 

second stage of combustion can be controlled. Nevertheless, it should be noted that this 

DI advancement might not be the most optimal operating condition.  

An example of a high engine load achieved with two direct injections of n-butanol is 

given in Figure 7-17. An IMEP of 14 bar is obtained with an increased injection duration 

of the second DI. The duration and timing of the first injection remain at similar levels 

due to the limitations of PCP and PPRR. The majority of energy is released in the second 

stage of combustion occurred in the early expansion stroke. A clear diffusion-dominated 

HRR curve is observed for the second stage of combustion. Low emissions of smoke, CO, 

and THC but high emissions of NOx are detected. The emission trade-off between NOx 

and smoke is primarily caused by the high temperature combustion in the second stage 

with a high intake oxygen concentration (20.8%).  

 
Figure 7-17 N-butanol multiple DIs: cylinder pressure and HRR 
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The engine load can be further extended to a higher level by using a longer duration of 

second DI and adding post injections. However, the mixing of the second injection with 

longer injection duration and the mixing of the post injections are even worse than the 

combustion in Figure 7-17. High emissions of NOx and smoke would be formed due to 

the insufficient mixing of the second injection. The high emissions of partially oxidized 

products, high exhaust temperature, and delayed combustion phasing would reduce the 

combustion efficiency and thermal efficiency. The high emissions of NOx and smoke are 

the main challenge for the high load clean combustion enabled with n-butanol multiple 

injections.  

In order to tackle the challenge of NOx and smoke emissions, the mixing process for the 

second direct injection needs to be optimized. Hence, the injection duration of the second 

DI should be limited for sufficient mixing. The first stage of combustion has to be 

increased to maintain the high engine load. Then the challenge shifts to the control of 

PCP and PPRR of the initial combustion. A lower engine compression ratio produces 

lower motoring PCP and PPRR. Moreover, the lower compression temperature can 

potentially lower the combustion temperature after the initial combustion. The lower 

combustion temperature is also beneficial for a better mixing of the second direct 

injection after the first stage of combustion.  

A strategy of n-butanol multiple DI injections is thereafter explored on the SCRE 

platform to benefit from the relatively lower compression ratio. The cylinder pressure and 

HRR curves of a high load operation are shown in Figure 7-18. The net IMEP is 14 bar 

with three direct injections of n-butanol. The HRR curve still displays the typical two-

stage combustion. However, because of the lower compression ratio and larger engine 
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displacement, a relatively more combustion energy can be released at the first stage. 

Therefore, two early injections are combined to generate the first stage of combustion. 

The first injection is used to form a lean premixed charge, while the second injection is 

employed to trigger the ignition. A relatively short duration of the third injection is added 

after the first stage of combustion to raise the engine load. Because of the significantly 

reduced second stage of combustion, the smoke emissions are suppressed at a higher 

EGR rate. When the intake oxygen is lowered to 14.4%, the NOx emissions are 

drastically suppressed, while the smoke emissions still remain at a relatively low level.  

 
Figure 7-18 N-butanol multiple injections: cylinder pressure and HRR  
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7.3 Summary 

The work reported in this chapter can be summarized as follows: 

Ethanol port injection with butanol direct injection: 

 The port delivered ethanol can be ignited with double n-butanol injections. A 

single injection of n-butanol was insufficient for ignition due to closely coupled 

IMEP with PPRR.  

 The CA5 was marginally affected by the injection timing of the first DI, but the 

mixing process of the first DI was controlled by the injection timing of the first 

DI. Therefore, the ignition delay of the first DI was used to control the 

combustion rate in the first stage of combustion. 

 The second n-butanol direct injection increased the engine load and the 

combustion temperature. The high combustion temperature transferred to the 

following engine cycle and secured the ignition in the cycle. The second injection 

also had an effective control on the combustion phasing.  

 An IMEP of 16 bar was achieved with this combustion strategy. The NOx 

emission is 454 ppm, and smoke emission is 0.18 FSN, without the application of 

EGR. 

Butanol port injection with butanol direct injection: 

 Port injection of n-butanol was used to initiate HCCI type of combustion. The 

addition of n-butanol DI was used to extend the engine load.   
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 The ratio between the port injection fuel and direct injection fuel was an effective 

parameter to control the shape of heat release rate, and thus the peak cylinder 

pressure (PCP) and peak pressure rise rate (PPRR). 

 The emissions of NOx and smoke were mainly generated from the second stage 

of combustion. The separation between the two stages of combustion was critical 

for low NOx and smoke emissions. 

Multiple direct injections of butanol:  

 The strategy with multiple injections of n-butanol was implemented to improve 

the control of the mixing process. With varied injection scheduling, the in-

cylinder fuel distribution and fuel reactivity can be actively modulated in 

accordance with the requirements at different engine conditions, such as 

generating a relatively rich local mixture for ignition. 

 The two-stage combustion was detected with the n-butanol multiple injections. 

The control approach was similar to the combustion with n-butanol PFI. The 

separation between the two stages of combustion was again identified to be 

critical for low NOx and smoke emissions. 

 An engine load of 14 bar IMEP was demonstrated on the SCRE engine platform 

with NOx emission of 26 ppm and smoke emission of 0.55 FSN. This ultra-clean 

combustion was achieved with triple fuel injections and approximately 14% 

intake oxygen concentration.  
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CHAPTER VIII 

8. CONCLUSIONS AND FUTURE WORK 

Empirical investigations on the impacts of mixing and charge reactivity have been 

conducted using diesel, ethanol, and n-butanol with the objective of clean and efficient 

combustion in CI engines. The conclusions and the recommendations are presented as 

follows. 

8.1 Mixing Control with Direct Fuel Injection 

The mixing process of the fuel and air was enhanced with the n-butanol direct injection in 

a heterogeneous in-cylinder charge, compared with the baseline results with the diesel 

direct injection. The empirical observations and analysis are summarized as follows: 

 The trade-off between NOx and smoke emissions in diesel combustion was 

primarily attributed to the insufficient mixing of the in-cylinder charge and the 

diffusion-dominated burning of the fuel. Varied injection timings, different 

injection pressures, and the application of EGR had limited effects to prolong the 

ignition delay due to the low volatility and high reactivity of diesel, at the 

confined test conditions. 

 The mixing process of the in-cylinder charge was enhanced with the n-butanol 

high pressure direct injection, indicated by the longer ignition delay (higher than 

3 ms) compared with the one of diesel (lower than 1 ms). The combustion 

exhibited simultaneously low emissions of NOx and smoke at low to medium 

engine load.  

 The peak pressure rise rate was increased in the n-butanol combustion due to the 

high combustion rate with improved homogeneity, which limited the engine load 
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to moderate levels. The application of EGR was effective to regulate the 

combustion rate. However, the combustion phasing and CO emissions were also 

sensitive to the EGR rate.  

 The ignition of the n-butanol DI was more demanding than the diesel DI due to 

the relatively low fuel reactivity and the over-mixed in-cylinder charge. A higher 

intake pressure was used to enhance the ignition ability. With the lower 

compression ratio in the SCRE engine, a higher intake temperature was essential 

to compensate the lower compression temperature for consistent ignition, under 

the confined testing condition. 

8.2 Reactivity Modulation in Premixed Charge 

The port fuel injections of ethanol and butanol were employed to generate the premixed 

in-cylinder mixture, while the direct injection of diesel was applied to modulate the 

charge reactivity. Under the confined empirical conditions, the results are summarized as 

follows: 

In the combustion with ethanol port fuel injection: 

 The diesel injection timing controls the start of combustion and combustion 

phasing.  

 The PFI fuel ratio was critical for the combustion with ethanol port fuel injection. 

A longer ignition delay was detected at a higher PFI fuel ratio. This effect became 

more significant at lower charge reactivity (with a lower intake pressure and a 

higher EGR rate), when the diesel injection timing is fixed close to TDC. 

 The combustion with a higher PFI fuel ratio generated lower emissions of NOx 

and smoke, compared with the combustion with a lower PFI fuel ratio at similar 
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engine operating conditions. The premixed combustion was enhanced by the 

increase in ethanol and the reduction in diesel. 

 A high EGR rate and a high ethanol ratio were found to be essential to regulate 

the emissions of NOx and smoke to below the emission standards. However, the 

charge reactivity with these conditions was excessively low to effectively oxidize 

THC and CO, and thus the combustion efficiency reduces.  

 Diesel micro-pilot injections were employed to improve the reactivity of the 

premixed ethanol charge. The oxidizations of CO and THC were considerably 

enhanced while the ultra-low NOx and smoke emissions can be maintained with 

the application of EGR.  

In the combustion with n-butanol port fuel injection: 

 The HCCI combustion enabled with port injection of n-butanol was demonstrated 

in the PUMA engine. The control of intake pressure was an effective method to 

regulate the SOC in the HCCI combustion with n-butanol. However, the high 

intake pressure was associated with the high PCP and PPRR. The application of 

EGR delayed the SOC, and reduced the PCP and PPRR. The impact of EGR was 

more significant at a lower intake pressure. 

 In the combustion with n-butanol PFI and diesel DI, a higher n-butanol ratio 

increased the portion of premixed combustion and was beneficial for low NOx 

emissions. The smoke emissions remained at an ultra-low level without EGR, 

while the smoke emissions increased significantly with EGR. The diffusion-

dominated diesel burning in the second stage contributed the majority of the 

smoke emissions. 
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8.3 Partially Premixed Combustion with Alcohol Fuels 

The partially premixed combustion with ethanol and n-butanol was formulated with 

accordance to the observations in the mixing and reactivity control with different fuel 

delivery methods assisted with intake boosting and EGR. The significant findings are 

concluded as follows: 

Ethanol port injection with butanol direct injection: 

 The port delivered ethanol was ignited with two direct injections of n-butanol. A 

single injection of n-butanol was insufficient for ignition due to closely coupled 

IMEP with PPRR.  

 The CA5 was marginally affected by the injection timing of the first DI, but the 

mixing process of the first DI was controlled by the injection timing of the first 

DI. Therefore, the ignition delay of the first DI was regulated to control the 

combustion rate in the first stage of combustion. 

 The second n-butanol direct injection increased the engine load and the 

combustion temperature. The high combustion temperature was transferred to the 

following engine cycle to secure the ignition in the cycle. The second injection 

also had an effective control on the combustion phasing.  

 An IMEP of 16 bar was achieved with this combustion strategy. The NOx 

emission was 454 ppm, and smoke emission was 0.18 FSN, without the 

application of EGR. 
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Butanol port injection with butanol direct injection: 

 Port injection of n-butanol was used to initiate HCCI type of combustion. The 

addition of n-butanol DI was used to extend the engine load.   

 The ratio between the port injection fuel and direct injection fuel was an effective 

parameter to control the shape of heat release rate, and thus the peak cylinder 

pressure and peak pressure rise rate.  

 The emissions of NOx and smoke were mainly generated from the second stage 

of combustion. The separation between the two stages of combustion was critical 

for low NOx and smoke emissions. 

Multiple direct injections of butanol:  

 The strategy with multiple injections of n-butanol was implemented to improve 

the control of the mixing process. With varied injection scheduling, the in-

cylinder fuel distribution and fuel reactivity were actively modulated in 

accordance with the requirements at different engine conditions. 

 The two-stage combustion was observed with the n-butanol multiple injections. 

The control approach was similar to the combustion with n-butanol PFI. The 

separation between the two stages of combustion was identified to be critical for 

low NOx and smoke emissions. 

 An engine load of 14 bar IMEP was demonstrated on the SCRE engine platform 

with NOx emission of 26 ppm and smoke emission of 0.55 FSN. This ultra-clean 

combustion was achieved with triple fuel injections and approximately 14% 

intake oxygen concentration.  
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8.4 Butanol High Pressure Injection 

The n-butanol high pressure fuel injection was characterized with the EFS injection 

bench and the Bosch type long-tube bench at various injection conditions. High speed 

camera and laser PDA were also employed for the optical measurement of the fuel spray. 

This study provided an essential guidance for understanding the combustion performance 

with n-butanol high pressure injection. The observations are summarized as follows: 

 The volumetric injection rate of n-butanol was similar to that of diesel at the 

same injection duration and injection pressure.  

 The injection opening delays with n-butanol were at the same level as the ones 

with diesel, while the injection closing delays were slightly longer, evaluated 

over various injection pressures and injection durations. 

 The dwell time between multiple DI injections was important for the total 

injection volume and injection rate. Closely scheduled injection events tended to 

merge into a single event, and the injection volume may increase drastically. 

 The macro n-butanol spray had similar penetration and cone angle as the one 

with diesel. The close-to-nozzle droplets had the velocity of approximately 330 

m/s detected by PDA. The diameters of the droplets were primarily in a range 

from 10 μm to 20 μm. 

8.5 Future Work 

The following recommendations are for the future work: 

 The fuel injector could be optimized for the application of early and small fuel 

pilots. For example, the spray umbrella angle could be narrowed to reduce the 
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wall impingement for the early injections; the nozzle-hole diameter could be 

reduced to enhance the repeatability of small pilots. With the improved injector 

hardware, the diesel micro-pilot strategy would extend its applicable load range. 

 The SCRE platform with a lower compression ratio has shown some promising 

results. However, it could be possible to further improve the combustion with the 

engine hardware refinements, such as different compression ratios and piston 

bowl geometries, variable valve timing, and intake air management.  

 Advanced optical investigations are recommended to reveal the in-cylinder 

interaction between the fuel spray and the environment (e.g. background gas 

composition, temperature, and the combustion chamber geometry). The detailed 

injection and combustion processes may provide some more insights on the 

process of emission formation, compared with the heat release analysis. 

 The control of charge stratification is critical to maintain the required reactivity 

for ignition, especially at a high intake pressure level. The with-in-the-cycle 

ignition feedback and injection control could be beneficial to reduce the misfire 

possibility and improve the smoothness of engine operation. 

 The n-butanol direct injection with ethanol or butanol port injection would be 

further explored on the SCRE engine platform with carefully designed fuel ratios 

and injection scheduling. The impact of injection pressure with the n-butanol fuel 

should be further studied. 
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APPENDICES 

APPENDIX A 

Image Processing for Injector Opening/Closing Delay 

A LabVIEW program is developed to process the large quantity of images from the high 

speed imaging test for injector opening/closing delay detection. The critical steps in the 

image processing are the image enhancement and the interested region definition in the 

image. The image enhancement is the process which converted the image to black and 

white according to a predefined threshold. The threshold value selection is critical to 

eliminate the image noise, maintain the useful information as well, and is highly 

dependent on the illumination status when the images are captured. A universal threshold 

for all data sets is often not feasible. The selection required a trail run for each set of 

images to find a reasonable value. 

The image interested region definition is a process to choose a region on the image to 

count the plume quantity of the sprays. As shown in Figure A-1, an annulus band is 

selected as the image interested region. The inner circle of the annulus is the projection 

circle of all the nozzle holes. The width of the annulus is 3 pixels. The plume quantity 

inside the annulus is the detection parameter used for identifying the images for injector 

opening and closing. The image processing is demonstrated in Figure A-2. In the 

calculations in this paper, the first image in which the plume quantity increases from 0 to 

more than 4 in the annular region is identified as the injector opening image, while the 

first image in which the plume quantity reduced from 8 to less than 4 is identified as the 
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APPENDIX C 

Injection Volume with Varied Dwell Time 

The supplemental data and analysis for sub-Section 4.4.2 are provided in APPENDIX C. 

The injection rate profile with relatively long dwell time is shown in Figure C-1. The 

repeatability of the first injection is high that the injection rate overlaps on each other. 

The variation of the second injection is mainly due to rail pressure fluctuation caused by 

the first injection.  

 

Figure C-1 Injection rate profile with relatively long dwell time 
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APPENDIX D 

Diesel Injection Rate Measurement 

D.1 Injection Duration Effect 

The injection volumes of different injection durations are measured with the EFS 

injection bench at different injection pressures, as shown in Figure D-1. The fuel injector 

delivers more fuel at a higher injection pressure with the same injection command 

duration, as expected. The fuel injector operated at a higher injection pressure also 

requires a shorter commanded duration to deliver the same amount of fuel. For example, 

to supply 40 mm3 of fuel which is equivalent to about 11 bar indicated mean effective 

pressure (IMEP) in the Ford PUMA engine, requires the injection command to be 

approximately 1050 μs for 1500 bar injection pressure, and about 1700 μs for 600 bar 

injection pressure.  

 
Figure D-1 Injection volumes at varied injection pressures 
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The use of too long injection duration is often disadvantageous in CI engines. First of all, 

it is challenging to prevent the potential wall impingement which tends to reduce the 

combustion efficiency and dilute lubrication oil. It is also demanding, e.g. requiring more 

EGR to withhold the combustion, to separate the combustion event from the injection 

event, which is critical for certain advanced combustion modes (e.g. partially premixed 

combustion [85]). Therefore, the increase of injection pressure is potentially beneficial to 

improve combustion efficiency, enhance the performance of combustion control, and 

extend engine operational load.     

D.2 Injection Timing Effect 

The injection timing is supposed to have a minimal effect on the fuel injection amount if 

the pressure remained constant in the fuel rail. An example of injection timing sweep is 

conducted with the EFS injection bench. The injection volumes and the selected rail 

pressures are shown in Figure D-2. The injection volume shows a negligible difference at 

varied injection timings. The primary reason is the consistent rail pressure before the 

injection event. However, a significantly increased variation in rail pressure is detected 

after the injection event. This pressure fluctuation is compensated with the dynamic 

close-loop control of the rail pressure before the next injection event. The injection 

frequency used is 10 Hz, which is equal to the injection frequency of 1200 revolution per 

minute (rpm) with a single injection per cycle. If a higher injection frequency is 

employed or multiple injections are used, the rail pressure fluctuation may affect the 

actual injection amount. The impacts of multiple fuel injections have been discussed in 

details in Section 4.3. 
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The EFS injection bench test condition is slightly different from the actual engine 

conditions. The background pressure of the injector is constant in the EFS injection bench, 

rather than varied with different crank angles as in engines. However, the variations in 

the pressure difference are still in a negligible range (< 2%) owing to the high fuel 

injection pressure. Therefore, the injection timing effect analyzed with EFS injection 

bench is relevant to the actual conditions in CI engines.  

 

Figure D-2 Injection volumes at varied injection timings 
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APPENDIX E 

Emission Comparison between Engine Platforms 

A series of EGR sweeps are conducted with the SCRE to compare the results to that with 

the PUMA engine platform. The test conditions are similar to the ones in Figure 6-12. 

The NOx emissions with different PFI fuel ratios are demonstrated in Figure E-1. The 

trend line of the NOx emissions (Figure 6-12) from the PUMA platform is shown as a 

dashed line in the figure for comparison. Lower NOx emissions are observed at lower 

intake oxygen levels, which is consistent with the trend from the PUMA platform. There 

are no distinct differences between the varied PFI fuel ratios. The NOx emissions from 

the SCRE platform are generally higher than the ones from PUMA at a similar intake 

oxygen concentration. With the increased PFI fuel ratio, the overall homogeneity is 

considerably enhanced (increased ethanol PFI, reduced diesel DI). However, the ignition 

of the premixed ethanol still relies on the diesel injection that is not uniformly distributed 

over the entire cylinder.     
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Figure E-1 Engine platform comparison: NOx emissions 
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Figure E-2 Engine platform comparison: smoke emissions, part 1 
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Figure E-3 Engine platform comparison: smoke emissions, part 2 
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retarded at these points, and cannot be maintained constant with the advanced diesel 

injection timing.  

Figure E-4 Engine platform comparison: normalized IMEP   
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unstable when the intake oxygen is lower than 15% for the case of 82.1% PFI fuel ratio. 

This unstable combustion further reduces the in-cylinder temperature and eventually 

leads to misfire. 

Figure E-5 Engine platform comparison: ignition delay 
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