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ABSTRACT 

Design-for-Test (DFT) techniques have been developed to improve testability of 

integrated circuits. Among the known DFT techniques, scan-based testing is 

considered an efficient solution for digital circuits. However, scan architecture can 

be exploited to launch a side channel attack. Scan chains can be used to access a 

cryptographic core inside a system-on-chip to extract critical information such as a 

private encryption key. For a scan enabled chip, if an attacker is given unlimited 

access to apply all sorts of inputs to the Circuit-Under-Test (CUT) and observe the 

outputs, the probability of gaining access to critical information increases. In this 

thesis, solutions are presented to improve hardware security and protect them against 

attacks using scan architecture. A solution based on tester authentication is presented 

in which, the CUT requests the tester to provide a secret code for authentication. The 

tester authentication circuit limits the access to the scan architecture to known 

testers. Moreover, in the proposed solution the number of attempts to apply test 

vectors and observe the results through the scan architecture is limited to make 

brute-force attacks practically impossible. A tester authentication utilizing a Phase 

Locked Loop (PLL) to encrypt the operating frequency of both DUT/Tester has also 

been presented. In this method, the access to the critical security circuits such as 

crypto-cores are not granted in the test mode. Instead, a built-in self-test method is 

used in the test mode to protect the circuit against scan-based attacks. Security for 

new generation of three-dimensional (3D) integrated circuits has been investigated 

through 3D simulations COMSOL Multiphysics environment. It is shown that the 

process of wafer thinning for 3D stacked IC integration reduces the leakage current 

which increases the chip security against side-channel attacks.    
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Chapter -1 

Background & Introduction 

1.1 Very Large Scale Integration (VLSI) 

Very large scale integration (VLSI) has been introduced in the early 1980s, with the 

integration of millions of transistors on one die Fig. 1. As a result, manufacturing tests for 

such a high density integrated circuit became a major problem to solve. Test engineers 

faced various challenges on how to perform manufacturing tests as VLSI technology 

evolved [1]. 

 

1.2 Why Testing ICs 

The steady increase in the number of transistors within a single chip resulted in the 

progression from small scale to very large sale. Most current VLSI design systems such as, 

smartphones, workstations and various electronic appliances, incorporate hundreds of 

millions of transistors. The reduction of feature sizes of transistors to sub-micron and the 

interconnect wires to tens of nanometers have increased the density of transistors per chip 

significantly.   

 

Figure -1 A wafer of 22nm Ivy Bridge CPUs containing more than a billion 

transistors [2] 
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The small feature sizes resulted in a substantial increase in the operating frequency of 

integrated circuits [1]. However, shrinking feature sizes and increasing the number of 

transistor on a single chip can increase the chance of defects. Considering sub-nanometer 

technology, defects may occur in manufacturing process that can lead to a faulty transistor 

or an interconnect wire.  Manufacturing defects of ICs are inevitable as it requires a single 

transistor or interconnect to break down the functionality of the entire chip or at least 

prevent the system from proper operation at the desired frequency. There is factor known 

as Part Per Million (PPM) which indicate the quality of the ICs launched to the market. 

PPM indicates how many ICs out of one million are faulty.  In general, a PPM of 50 is 

considered acceptable for commercial applications. For certain applications such as 

military projects, this rate much lower and falls below 4 PPM. Thus, it is highly required 

to test VLSI devices at different stages of device production Fig. 2.  

 

Testing ICs can potentially increase the production yield [3]. Enhancing the yield can occur 

at different steps of manufacturing by tracking the source of defects. Fast and reliable 

 

Figure -2 Different steps involved in the fabrication VLSI components 
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methods of testing integrated circuits are required to reduce the overall costs of IC 

fabrication prior to releasing them to the market [4]. 

According to Fig. 3 from Advanced Reliable System (ARES) Lab, the costs of testing per 

transistor has increased over the last two decades while the fabrication costs per transistor 

has declined [5].  

 

1.3 Testing ICs  

Testing digital circuits is usually performed based on the needs of consumers and design 

specifications using an Automatic Test Pattern Generator (ATPG) to generate test patterns 

[6]. In certain cases, Built-in Self-test (BIST) methods are used to generate the test stimuli 

to test a device without external equipment [4].  

In the test phase, the test stimuli are applied to the circuit under test (CUT) as shown in 

Fig. 4. The output responses are then captured and compared against the expected outputs 

to determine fault-free and faulty ICs. A circuit-under-test has to produce desired output 

responses during the test phase to pass the test, otherwise CUT is assumed to be faulty [7] 

 

Figure -3 Cost (cents/transistor) evolution fabrication and effort for testing [5] 
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1.4 Challenges in testing ICs [11-13 I]: 

Fig. 5 presents a physical illustration of a short channel Silicon on Insulator (SOI) 

fabrication technology with six levels of metals for interconnections. A typical chip in this 

technology can include more than 60 miles (100 kilometers) of copper wiring. Process 

variations can affect directly the internal characteristics of the fabricated transistor such us, 

threshold voltage and transit frequency.  The introduction of nanometer technology has 

increased the probability of parametric and catastrophic failure during ICs fabrication 

which is considerably high compared to the traditional CMOS technology. Sub-nanometer 

technology is characterized by high sensitivity to noise due to the lower current that can be 

delivered [8-10] 

 

 

Figure- 4 Testing of digital integrated circuits [7] 

Input

Test 

Stimuli

Circuit 

Under Test 

(CUT)

Output 

Response

Analysis

Pass/FailInput1

Input n

Output1

Output n

 

Figure- 5 Six levels copper metal interconnects of CMOS chip developed by IBM [11] 
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1.5 Categories of Testing Digital Circuits 

Testing of digital circuits is divided into three categories of (a) functional, (b) structural 

and (c) parametric tests. Testing integrated circuits starts with wafer level testing to mainly 

determine catastrophic faults and sort wafers.  

Once wafers are successfully passed the test, one of the three methods can be chosen to 

perform tests as illustrated in Fig. 4 [4].  

1. Functional test: as its name indicates used to check the functionality of the design. 

In this method, the test stimuli are chosen based on the functionality of the CUT. A 

set of test stimuli are applied to the CUT, and the responses are compared against 

the expected outputs. This method of testing can be very time consuming for 

modern integrated circuit and the fault coverage can be limited.  

2. Structural test: this is a time efficient method of testing. In this approach, fault 

models are considered to generate test patterns regardless of the functionality of the 

CUT.  

3. Parametric test: this method of testing, AC and DC parametric tests can be 

performed mainly on analog circuits. The DC parametric tests are commonly 

conducted to determine open paths, short paths, threshold voltage and leakage 

current. The AC parametric testing focuses more on the AC parameters such as, 

frequency, timing, noise, distortion and bandwidth. This approach relies on 

dedicated instrument (built-in digital signal processing) to perform testing. 

1.6 Three Dimensional Integration Circuits 3D (ICs) 

Three-dimensional (3D) integration refers to the integration of multiple layers of planar 

devices on a single chip. In such an architecture, the layers are stacked upon each other and 

connected using vertical connector called Through Silicon Vias (TSV) as shown in Fig. 6. 
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There are several manufacturing steps to design such an architecture including, TSV 

formation, wafer thinning, alignment and bonding [13]. 

 

(a)

(b) 

Figure. 6 (a) 3D IC integration using Through Silicon Vias (TSV) and (b) 16Gb 

NAND flash stack using TSV developed by Samsung [12] 



 

7 
 

 3D stacked IC integration can reduce the interconnect delay significantly taking advantage 

of the vertical interconnect using (TSV).  In 3D ICs, each layer is commonly assigned to a 

specific application. For example, the integration of CPUs, SRAM, logic IC, power and 

analog modules are designed on different layers. Fig. 7 presents the interconnections of 

embedded DRAM to a logic circuit using three different technologies.  

 

The current (2D) scheme is a platform where layers are connected horizontally using long 

wires as shown in Fig. 7 a. System-on-chip (SOC) scheme Fig. 7b incorporates all aspects 

of system design on a single die. However, it has a negative impact on the silicon area and 

increases the length of interconnection wires, which in turn increases the path delays.  

Besides, (SOC) requires a higher material complexity to assemble different technologies 

in one chip. 3D integration technology can reduce the length of interconnect wires which 

results in lower power consumption, higher speed of operation and smaller form factor 

compared to the SOC technology. 3D stacked ICs include various layers on top of each 

other. Each layer is thinned down and aligned to another layer to form multiple layers with 

the same size as shown in Fig. 7c. As a result, a 3D integration scheme offers a higher 

performance and functionality compared to the traditional technologies (2D) and SOC as 

it permits integration of different technologies [14]. 

 

 

 

Figure- 7 Connecting DRAM to a logic. (a) Planar technology. (b) System on Chip 

(SOC). (c) 3D stacked IC [13] 

(a) (b) (c) 
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  1.7 Research Objectives 

One of the most power DFT techniques for digital circuit is the scan-based testing method 

which can increase the controllability and observability considerably. However, increasing 

the controllability and observability through scan architecture provides opportunities to 

attackers to use the scan architecture to access critical information such as a private key of 

an embedded crypto-core. Moreover, the scaling of transistors to a few nano-meter 

increases the leakage current considerably which can also be used to obtain critical 

information by hardware attacker. 

The objective of this research is to use a tester authentication technique to design a secure 

scan architecture. Moreover, the effect of wafer thinning on the security of 3D ICs will be 

investigated. The major focus is on designing area and cost efficient hardware solutions to 

protect the scan chain from side channel attacks. There is a dependency between the 

leakage current of a digital circuit on the status of its inputs. The switching of a digital gate 

from high to low level or vice versa affects the leakage current. Considering this 

correlation, an attacker can perform static power analysis on digital circuits to extract 

critical information. The process of wafer thinning reduce the leakage current and lowers 

the probability of a successful attacks by adversaries. 

1.8 Thesis contributions 

The research contributions of this thesis are summarized as follows which have been 

presented in three conference papers: 

1. A security solution against scan based attacks using a tester authentication 

technique has been developed. Unlike previously proposed methods where tester 

has unlimited access to the CUT, in this method after a certain number of trails the 

access is denied. The circuit under test (CUT) communicates with the tester 

requesting an identification key before allowing the tester to access the scan chain.  

2. A new security solution using a phase locking loop system (PLL) to obfuscate the 

running operating frequency of both CUT and tester has also been presented.  
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3. The effect of wafer thinning on security of 3D integrated circuits has also been 

studied. The results indicates that wafer thinning lowers the static power 

consumption improves the chip security.  

1.9 Thesis Overview 

This thesis is organized as follows: 

Chapter-1 Introduction and background, which provides a brief description of current VLSI 

systems, testing and challenges of testing these devices.  

Chapter -2 introduces three main Design for Testability techniques. Also, it provides details 

of “Scan Architecture” and hardware security threats due to scan chains.  

Chapter-3 presents the first published paper entitled” Secure Scan Chain using Test Port 

for Tester Authentication” in which a tester authentication technique has been presented. 

In this approach, access to the scan chain is restricted to only certified testers using a secret 

key in which the number of attempts is limited.  

Chapter-4 presents the second published paper entitled” A Secure Scan Chain using a PLL 

and  a Reconfigurable LFSR” in which two layers of security have been added to protect 

scan chain from side channel attacks. A tester authentication method based on a Phase 

Locked Loop (PLL) system to obfuscate the clock frequency, and a Built-In Self-Test 

(BIST) method using internal structure to generate the test patterns are presented. 

Chapter-5 presents the third paper entitled” Effect of Wafer Thinning on Hardware 

Security” in which COMSOL Multiphysics has been used to model two transistors with 

gate length of 45nm and 22 nm in order to evaluate and analyze the effect of wafer thinning 

on chip security.  

In this chapter, it is shown that wafer thinning process improves the chip security against   

leakage-based differential power analysis (LDPA) threats. 

Chapter-6 concludes the thesis and followed by future works.  
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Chapter -2 

Design for Testability 

In the past, designing and testing integrated circuits were considered two separate issues, 

handled by different groups of engineers. During that time, design engineers used to focus 

more on how to meet the prerequisite functionally rather than the testability of the circuits. 

Test engineers had to develop time and cost effective methods to test the designed ICs. 

With this method, manufacturers achieved high fault coverage for small-scale integrated 

circuits. The weakness of this method became apparent with the introduction of VLSI 

systems due to the complexity of VLSI designs. 

 Designing VLSI systems without test consideration increases the design complexity and 

the time required for testing. Modern circuit designs are developed based on the design-

for-testability (DFT) methods. Currently chip designers have access to powerful CAD tools 

developed based on efficient DFT techniques. This CAD tools can be readily used to ensure 

the testability of circuits and desired fault coverage [1].      

2.1 DFT 

Design-for-Test (DFT) techniques have been developed to improve testability and reduce 

the costs of testing integrated circuits [2]. DFT techniques help test engineers to save time 

and effort to develop test solutions for integrated circuits. DFT techniques can reduce the 

complexity of testing sequential circuits to a degree where the testing a sequential circuit 

becomes similar to that of a combinational logic. The main DFT methods are (a) Ad hoc, 

Built-in self-test (BIST) and scan based testing [1].  

2.2 AD hoc 

Ad hoc is considered a DFT technique dedicated to improving the testability of circuit parts 

that are unreachable directly. The basic principle of Ad hoc is to add extra circuitry to the 

original circuit to provide access to the internal nodes using Test Point Insertion. An 

example is illustrated in Fig. 8 where a 2-to-1 multiplexer has been added as a test point to 

support controllability and observability over an internal node [1]. 
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2.3 Built-in self-test (BIST): 

Built-in self-test is developed to perform an autonomous system testing where test patterns 

are internally generated without the need to any external device such as an ATPG [3].  BIST 

integrates a test-pattern generator (TPG) at its input and an output response analyzer (ORA) 

at its output to apply test vectors internally to the ICs and analyze the output responses 

respectively as illustrated in Fig. 9.  

 

 

 

Figure- 8 Ad hoc test using test point insertion [1] 

 

 

Figure- 9 Built-In Self-Test (BIST) based DFT testing [1] 



 

13 
 

2.4 Scan Based Test 

Scan based test methodology is considered as one of the most important and efficient DFT 

techniques. Using a scan-based test method, sequential circuits are converted to a 

combination of flip-flop chains and combinational logics as shown in Fig 10 a.  

 

Besides, each traditional flip-flop is converted to a scan flip-flop (SFF) as indicated in Fig. 

11. A scannable flip-flop has two distinct inputs sources to be selected through a 2-to-1 

multiplexer as shown in Fig. 10b. The flip-flops are connected properly together to create 

a shift register called scan chain. 

 

 

(a)                                                                                   (b) 

Figure- 10 Converting a sequential circuit into scan design. (a) Combinational logic 

with ordinary flip-flop. (b) Scan design [1] 

 

Figure- 11 Symbol of Scan Flip-flop (SFF) [1] 
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The Mux used in SFF permits the scan cell to operate in two different modes: 

1. Normal/ Capture mode: in this mode, the scan cell operates as a conventional flip-

flop where the first input (DI) is selected to update the output. 

2. Shift mode: in this mode it is possible to insert test patterns to all scan cell in the 

scan chain through one or more primary inputs. Also, the content of scan cells 

supplied by the combinational logic of circuit can be shifted out through one or 

more primary output as depicted in Fig. 12 

Scan architecture provides direct access into the internal nodes of modern VLSI designs 

including crypto-chips that could be unreachable without the scan architecture. 

Although scan based test techniques have been widely adopted for modern circuit 

testing, it can open a back door for hackers to perform side channel attacks and retrieve 

secure information. Therefore, novel techniques to protect ICs in the test mode are 

required to fulfill the requirements of both testability and security [4]. 

 

 

 

Figure- 12 A typical example of a scan chain [4] 
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Chapter -3 

Secure Scan Chain using Test Port for Tester Authentication 

3.1 Introduction 

Test engineers seek for greater controllability and observability in order to manage test 

stimuli and observe the responses. Scan architecture is known as an effective DFT measure 

for digital circuits. Scan chains are used to increase the testability of circuits to apply test 

vectors and observe their responses. However scan architecture can also be used as a back 

door for hackers to break down a chip security [2]. Scan architecture has been used to hack 

various crypto hardware implementations such us AES, RSA etc. A secure scan 

architecture to protect CUT against scan-based attacks while maintaining a high 

controllability and observability has become a design requirement. There are two 

commonly used methods to provide security for scan architecture against potential attacks. 

First, the access to the scan chain is restricted using a private controller. Second, the access 

to the scan chain is open; however, the data are encrypted [3].  

3.1.1 Related Works 

Many solutions to protect crypto cores against the scan chain attacks have been reported in 

the literature. In [4] access to the scan chain is granted only if a predetermined key is 

entered. Test patterns are used as the authentication keys to allow access to the scan chain 

[5]. A function/test mode control method has been proposed in [6]. It limits the transitions 

between normal function mode and the test mode for crypto cores. However, this method 

is not suitable for at-speed online testing.  

The second secure scan architecture method allows access to the scan chain but during the 

scan-out phase, the data is encrypted. In this method, the scan structure is modified using 

different methods such as adding gates like invertor, XORs, XNORs or scrambling the scan 

chain. Various encryption methods are used to encrypt the actual scanned output and make 

the output data as random as possible so that the attacker is unable to deduce the secret 

keys of the crypto cores. A secure scan architecture using the second method is the flipped 
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scan technique [7]. In this technique, inverters are randomly placed in the scan chain to 

confuse the attacker, as the locations of the invertors in the scan chain are not known to the 

attacker. Although, it is difficult to guess the location of the invertors but a “reset” attack 

on the system can reveal the location of the invertors. When the flip flops are reset, the 

scan out become a stream of zeroes with ones indicating the locations of invertors.  

Another secure scan architecture is the random placement of XORs between scan cells [8]. 

This serves to confuse attacker as the nature of the gates inserted would be unclear and the 

attacker might not consider the possibility. This method offers better security than the 

above technique since this method passes the “reset” attack. Most of the available solution 

for a secure scan architecture allow the testers to access the scan chain, apply test vectors 

and observe the output responses. Moreover, the access to the scan chain is not limited and 

tests can be performed any number of times. Therefore, there is a possibility of access to 

critical information through analysis of applied inputs and corresponding outputs.  

3.1.2 Class of attackers 

Depending on the required level of security and the possible class of attackers, different 

measures can be taken. The solutions range from a basic security solution to a full fledge 

encryption method.  An attacker can be categorized as follows [4]: 

1. Beginners: As the name indicates, someone who is new in the field.  

Independents: The hackers of this class are experienced. An independent attacker has large 

resources, a good knowledge of the field and can easily hack basic security systems. 

2. Business: Hackers in this class are performing business secret activities. They 

commonly work in organized groups with highly qualified attackers. They have 

access to sophisticated hardware and software packages to wage attacks.  These 

activities are commonly supported by governments trying to access security 

information.  If we consider a novice hacker, the designer has a little to concern about 

when designing a circuit.  



 

18 
 

3. The next two levels of the hacker categories require much more effort to prevent an 

attack. It is extremely difficult to secure a design against government hacking because 

of the vast resources available to them. 

3.2 Proposed Tester Authentication Based Security Measure Against Scan Based 

Attack  

The proposed method consists of two layers of security against hackers (a) tester 

authentication and (b) scan protection. The proposed internal structure of a CUT is shown 

in Fig. 13. The CUT consists of a tester authentication block and a scan-chain security 

block.  

 

In the proposed solution, unlike previously implemented methods, where the tester can 

apply test vectors to the scan chain, the CUT requests the tester identification code before 

allowing the tester to apply test vectors to the scan chain as shown in Fig. 14. The number 

of attempts for the tester authentication is limited and exceeding the maximum number will 

result in denying further authentication attempts. 

3.2.1 Tester Authentication Block 

The steps for tester authentication by CUT are described below: 

  Step 1: Once the connection between the CUT and the tester is established, the CUT 

applies a Clk signal to the tester to obtain the serial key from the tester through Dout as 

shown in Fig. 2a.  

 

Figure -13 Tester authentication block diagram 



 

19 
 

Step 2: The tester receives the Clk signal and sends the serial key to the CUT as 

indicated in Fig. 2b. 

Step 3: The CUT receives the serial key and compares it with a preloaded serial key 

in the authentication register. 

Step 4: If the authentication is successful, the second layer of security is activated. 

Else, the CUT sends an authentication failure message to the tester. 

Step 5: When the authentication fails, the trial counter is incremented. If the count 

reaches a predefined number, the pass/fail logic is disabled which in turn blocks the access 

to the secure scan chain. 

 

 

The authentication block in Fig. 15 mainly consists of n-bit authentication register, a key 

comparator, a pass/fail logic and a counter. The authentication register stores a predefined 

 

(a) 

 

(b) 

Figure -14 Two phases of test port for authentication 
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n-bit serial key to authenticate the tester. The key comparator compares the tester key and 

the authentication key and sends the result to pass/fail logic. The counter is used to 

determine the number of authentication failures and blocks further authentication attempts 

once a predetermined number of failures has been reached. 

 

 

3.2.2 Scan based attacks 

Scan chains are designed to provide access to the circuit-under test through test access port 

in order to apply test data to CUT during the test mode. The responses obtained from CUT 

are also captured by the scan chain for evaluation. A scan-based attack incorporates four 

operations as follows:  

1. Scan-in 

This step is divided into two phases as well. First, test data are serially loaded into the scan 

flip-flops connected to the input pins. Second, the loaded data is applied as a test vector to 

the CUT.  

2. Response capture  

The CUT response to the applied test vector is captured by the scan flip-flops at the output 

pins.      

 

Figure -15 Tester Authentication Block constitution 
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3. Scan-out:  

Shifting out the responses captured by the scan-flip to make the data available serially at 

Test Data Output (TDO).  

4. Response evaluation 

The CUT response to the applied test vectors is analyzed to unfold the internal circuitry 

and to determine the position of the secret registers. 

 To counter the steps involved in the scan-based attack, and make the data obtained from 

scan chain many solutions have been presented in the literature.  

3.2.3 Secure Scan Chain 

After tester authentication, access to the scan chain is granted and the tester can apply test 

vectors to the scan chains and observe the output responses. An authenticated user can 

encrypt the scan output. There are various encryption methods to prevent the use of scan 

architecture by attacker.  In [11] the flip-flops in a scan chain are dynamically reordered to 

protect the secrets. However, the scan chain structure can be revealed by statistical analysis 

of the information scanned out from chips. In [4] a lock and key security solution that is 

based on a test key to secure the on-chip information is presented. This technique suffers 

from the problem of large area overhead. A method proposed in [12] where a secure scan 

chain architecture, based on Mirror Key Register (MKR), is used to maintain testability 

and security. In this method, the encryption key is used for functional mode of operation 

however; a fake mirror key is loaded in the test mode to protect the genuine key against 

unauthorized access. 

In this work to protect against the scan-based attacks, the solution presented in [12] is used 

as the second layer of security for the proposed tow-layer security solution. To ensure 

protection against scan-based attacks, the encryption key in [12] is generated by an array 

of flip-flops. The flip-flops are hardwired to generate a private encryption key at the power 

on state as shown in Fig. 16. To protect the secret code against scan-based attacks, the 

direct access to the flip-flops has not been provided in the test mode. Instead, a Built-In 
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Self-Test (BIST) method using a Linear Feedback Shift Register (LFSR) is implemented. 

In the test mode as shown in Fig. 4 an LFSR is formed using the first three flip-flops in the 

chain of flip-flops. The test patterns generated by the LFSR are applied to the hardwired 

flip-flops in the test mode. Using such a BIST solution for the flip-flops containing the 

encryption key eliminates the chance of obtaining the key through the scan architecture. 

 

3.2.4 Implementation 

The proposed solution of the tester authentication for scan chain has been implemented 

with Cadence design tools using CMOS 0.18µm technology as shown in Fig. 17. The area 

overhead including: test key comparator, counter, 32-bits register and trial counter is 

reported in table I. The area overhead for the scan protection block depends on the number 

of bits in the register and the counter. When the register test key size increases, the counter 

size increases as well. The size of the test key comparator does not change with the 

variations of the register test key size. The trial counter’s operation is mostly independent 

of the size of the register test key, which is based on the number of attempts.  

For the implementation in work, a 32-bit test key is used. The number of bits in the test 

register is dependent on the degree of the complexity required to prevent a scan chain 

against attacks. Increasing the size of the register test key increases the security of scan 
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Figure -16 Hardwired flip-flops with BIST to store encryption key 
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architecture at the cost of a higher area overhead due. A large size test key register make a 

brute force attack impossible in practice. 

 

 In the proposed solution, the number of unsuccessful attempts is limited to four times. 

After four unsuccessful attempts, the circuit is locked and it has to receive a power on reset 

to restart. This by default takes about two seconds.  Assuming a tester with a clock 

frequency of 2.9GHz is used to break a 64-bit user identification key through a brute force 

attack, the estimated time to apply test vectors thorough a brute force attack exceeds more 

than 15 years.  It is assumed that each cycle of applying an input test vector and observing 

the output response takes 20 clock cycles, 

The attacker may try to use a side channel attacks such as power analysis [13] timing 

analysis [14], or fault injection attacks [15] [16] to obtain the critical information. To 

perform these side channel attacks, the operation mode for the CUT has to be changed to 

the test mode. In the test mode, an attacker can apply inputs and observe corresponding 

outputs. The correlation between the inputs and outputs can provide the required data to 

extract the security critical information. In the proposed solution, the content of the 

encryption key registers are protected against side channel attacks in the test mode.  

Revealing the encryption key in the proposed solution becomes extremely difficult as the 

number of bits in the register test key increases.  

 

Figure -17 Area overhead of the authentication block 

55 µm

110 µm
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An unauthorized tester will be able to apply test data for one of the following cases: 

• An unauthorized user must first determine the technique used to protect scan chain 

• An unauthorized user has to figure out that there is a limited number of trail for 

tester authentication  

• If an unauthorized user figures out that there is a tester authentication, the user still 

cannot access the critical security information due to the implemented BIST for the 

encryption key.  

The proposed solution is scalable and depending on the desired security level, the level of 

the security can be determined. It is clear that a higher level of security requires more 

resources and more silicon area for implementation. 

3.2.5 Comparative Analysis 

There is a range of solutions in the literature for security against scan-based attacks [4, 7]. 

The proposed approach, presents tester authentication to prevent unauthorized tester from 

gaining access to the scan chain. In [11] 31234 gates are used to implement a secure scan 

architecture using a mirror key register. The area occupied by the secure scan architecture 

is 412 gates that is 1.32% of the original area.   

The area overhead for implementation of Lock and Key security solution [4] on a chip is 

relatively low for 4 bits (327 gates). However, increasing the number of bits to 12 bits has 

a significant effect on the area overhead (5817 gates) due to the use of linear shift registers 

(LFSR’s) and decoders. The proposed solution uses a minimum number of components 

including resulting in an area overhead of about 2200 gate using CMOS 0.18 µm 

technology. 
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3.3 Conclusion 

This paper presents a new approach to protect scan architecture against attacks. The 

proposed solution has two layers of security. First, the circuit-under-test identifies testers 

by requesting an identification code through test access port. The tester authentication 

process limits the access to the scan chain only to known testers. Once the tester is 

successfully identified, it is allowed to carry out tests however, the tester still cannot access 

critical security information in the circuit-under-test due to the second layer of security. 

The private encryption key, which is the target for attackers, is not accessible through the 

scan architecture. In the proposed solution, a built-in self-test measure is used to test the 

private key generator rather than the scan architecture.    

 The proposed solution has been implemented using Cadence design tools in CMOS 

0.18μm technology. A comparative analysis was also performed in order to evaluate the 

area overhead for the different solutions verses the proposed method in this work. 

 

 

 

 

TABLE. I  AREA OVERHEAD MESUREMENTS 

32 bits of 

register test key 

Element  Size (µm x µm) 

A counter  18 × 189.8 

An XOR  5.8 × 6.6 

A trial counter  6 × 73.8 

Total Area overhead 55 × 110 
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Chapter -4 

A Secure Scan Chain Using a Phase Locking System and a Reconfigurable LFSR 

4.1 Introduction 

Design for Test (DFT) has been introduced to enhance the testability by improving 

controllability and observability. Scan based test methodology is widely known as the 

dominant DFT technique to improve the testability of digital circuits. The testability is 

enhanced by adding additional logic to each flip-flop in the circuit to build a shift register, 

or scan chain. While the scan architecture is indispensable for testing integrated circuits, it 

can be utilized by attackers to access critical information within secure chips [1]. Scan 

chains are susceptible to various attacks such as differential power analysis [2], timing 

analysis [3], fault injection attacks [4, 5]. Scan chains have been utilized to access valuable 

data such as a secret key [6] of a crypto core.  Enhancing both testability and security is a 

difficult task and commonly a trade-off is maintained between the requirements for 

testability and security [7]. In the scan mode, attackers can monitor the circuit behavior to 

obtain the secret key. 

4.1.1 Related works  

Many attacks utilizing scan chains have been reported in previous works. It is shown how 

scan chains can be used to extract the characteristics of the circuit under test and gather a 

considerable number of signatures [8-10]. Yang et al. in [11] have demonstrated that the 

conventional scan chains are susceptible to reveal critical information of advanced 

encryption standard (AES). As a remedy for this information leakage, a mirror key register 

(MKR) method has been proposed where the path to the secret key is separated from the 

data path. The MKR method protects the secret key from unauthorized access by loading 

the scan chain with a fake secret key. 

 The chip secret information such as a cryptographic key can be obtained through a scan 

chain if enough test patterns are applied to the CUT and responses are captured. The steps 

required to grant access to the secret key through a scan chain are presented in [12]. The 
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solutions reported in the literature to protect crypto cores against the scan-based attacks 

can be classified into two techniques of (a) limiting the access to prevent attackers from 

observing the scan data [7] and (b) concealing the secret information while providing 

access to all users.  

The first method commonly leads to a high timing overhead. In [11] secure-scan DFT 

architecture has been presented in which two modes of operation insecure/insecure are 

defined and switching between the test mode and the normal mode is controlled. The 

transition from test mode to normal mode is authorized as long as the circuit is at the 

insecure mode. Conversely, the transition is not allowed at the secure mode, and the circuit 

is kept in the normal of operation. Furthermore, there is no condition to switch between the 

modes of operation. This scheme requires a power-OFF/reset to return from the secure 

mode that might affect the critical information within the scan cells [13]. In [6] the 

conventional scan chain is changed to control the output data. The output information is 

altered by adding inverter gates randomly to the scan cells. However, the location of 

inverters can be determined if proper inputs are applied to the scan chain.  

Another approach adding XORs randomly into the scan chains has been presented in [14]. 

This method overcomes the issue of static configuration of scan cells in which the location 

of the inverter gates is fixed after fabrication. A low-cost solution has also been introduced 

that involves adding dummy flip-flops to the scan design. If the right key associated with 

the location of these flip-flops is not entered, a random data will be shifted out [15]. 

4.1.2 The proposed method 

The proposed method in this paper consists of device authentication and Built-In Self-Test 

(BIST) based reconfigurable Linear Feedback Shift Register LFSR. The first stage has been 

constrained in terms of attempts, and surpassing a certain number of trail will result in 

denying further verification endeavors. The circuit under-test in this study functions as an 

authentication module by requesting a secret key before permitting users to apply test 

patterns to the scan chain as indicated in Fig. 18.  Moreover, the actual operating frequency 

of both CUT and Tester is obfuscated using a PLL based synthesizer for extra level of 

security. In the second stage of the proposed solution, the immediate access to the scan 
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chain is not permitted to test the circuit. However, a self-test method (BIST) is introduced 

to test the circuit. In addition, various sizes of test patterns are applied to the scan chain by 

configuring the existing flip-flops as a reconfigurable (LFSR). 

 

4.1.3 Paper’s organization 

The paper is organized as follows. The device authentication based security solution is 

presented in Section II. Section III explains the proposed secure scan design. The proposed 

method implementation and the area overhead comparison are given in section IV. The 

conclusions are covered in Section V. 

4.2 Device Authentication Security Measure 

The proposed solution for authentication includes: a PLL based synthesizer and 

authentication controller. 

 

 

 

Figure -18 Two phases of test port for authentication Sequences 
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4.2.1 Synthesizer 

The block diagram of a typical PLL consists three blocks of (a) Phase Frequency Detector 

(PFD), (b) Low Pass Filter (LPF) and (c) Voltage Controlled Oscillator (VCO) as shown 

in Fig. 19a. The PFD compares the phase and the frequency of the reference input and the 

VCO output to generate an output that is linearly proportional to the phase difference (ΔΦ). 

An (LPF) filter is required to suppress the ripples of the control voltage. When the control 

voltage is zero, the VCO frequency is set to a center frequency that varies linearly 

proportional to the control voltage. The PLL block can readily be modified by adding 

divider to design a synthesizer as shown in Fig. 19b. In this case, the relationship between 

the frequency of the input reference signal, and the VCO output signal is given by: 

inout F
N

M
F             (1) 

 

4.2.2 Authentication Controller Block Constitution 

The authentication controller presented in this study Fig. 20 is constituted of the following: 

an n-bit register, XOR gate, n-bit counter and trial counter. The controller functions as 

follows. An n-bit secret key is defined by the designer and stored in the n-bit register in 

 

Figure -19 Block diagram of (a) a Conventional PLL and (b) a PLL based Synthesizer 
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order to be compared against the n-bit tester input using the XOR gate. If the two keys 

match each other, pass flag will be raised and the access to the scan chain is granted. 

However, in the case of mismatch, a trial counter is incremented. The trail counter is 

dedicated to track the number of failures and prevents further attempts after a preloaded 

maximum number of trails. 

 

4.2.3 Tester Authentication sequences 

The tester authentication is performed in two phases as described below: 

1. Phase 1: 

The CUT is equipped with a PLL system to synthesize a new frequency equal to Fin (M/N). 

Where M and N are two constants known by the designer and Fin is the frequency of the 

Voltage Controlled Oscillator (VCO) within the PLL. The CUT sends an interrupt signal 

via Dout and waits for the tester to provide the authentication information through Din as 

shown in Fig. 18. 

2. Phase 2: 

The tester receives the synthesized clock signal running at Fin (M/N) frequency. The PLL 

has to be able to lock on the signal and generate a clock running at Fout frequency. 

Otherwise, the tester and the CUT will operate at different frequencies. As a result, the data 

 

Figure -20 Tester Authentication Module 
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applied to the scan chain by the tester will not propagate within the scan chain properly 

due to synchronization problem.  

Once the tester successfully captures the lock and synchronizes with the CUT, it sends its 

authentication key, which is compared against the content of a preloaded authentication 

register to verify the tester. The access to the scan chain will only be provided if the tester 

is successfully authenticated. Otherwise, the CUT requests for a valid authentication key. 

Contrarily to the reported methods where limitless attempts are allowed to apply input test 

pattern to the CUT and observe its responses, the number of attempts is limited in the 

proposed solution in this work. 

4.3 The Proposed Secure Scan Chain Architecture 

In the proposed solution, we define two modes of operation safe mode and test mode. At 

the safe mode of operation, the secret key is produced by a group of flip-flops within the 

scan chain as shown in Fig. 21. Note that, after the tester has been authenticated, access to 

the scan chain is granted. However, to protect the scan chain against possible attacks, the 

access to the scan cells is not directly granted in the test mode. This will protect the CUT 

from fault injection attacks where the CUT operation mode is abruptly changed from the 

test mode to the safe mode to scan out critical information. 

 

 

 

Figure -21 Proposed architecture of N-bit secret key at the safe mode 
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Switching the mode of operation to the test one will provide an opportunity for an 

unauthorized access. Therefore, a reset signal is proposed to clear the secret key held by 

the flip-flops in order to protect it from access by an attacker and to overcome the issue of 

power-OFF in [11].  

 In order to test the circuit, a reconfigurable LFSR is proposed to implement a Built-In Self-

Test (BIST) method. The proposed architecture of reconfigurable LFSR in the test mode 

is shown in Fig. 21.  The N flip-flops of the scan chain are converted to an n-bit 

reconfigurable LFSR to act as an Automatic Test Pattern Generator (ATPG) for the array 

of flip-flops configured in the test mode. 

The access to the output of the shift register is granted through the scan-chain. This allows 

the tester to use the scan chain to capture the data and perform evaluation of the responses. 

The data captured is compared against the golden response of the circuit to determine 

whether it is fault-free or faulty. The length of the key needed for testing is mainly 

determined by the number of the D-flip-flops implemented for the required operation 

 

The proposed reconfigurable LFSR consists of the following: a Multiplexer and an XOR 

gate.  

 

Figure -22 Proposed architecture at the test mode in which a reconfigurable LFSR is 

formed using scan chain flip-flops. 
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As shown in Fig. 22, the circuit can be configured for four different lengths of LFSR. The 

control bits C1/C2 will determine the length of the LFSR through a 4×1 multiplexer. 

However, the configuration might be extended further using a larger multiplexer depending 

upon the nature of application required. 

4.4 Implementation 

Cadence design environment using TSMC CMOS 65nm technology has been used to 

implement the proposed solution to secure a scan chain. The level of the complexity 

depends on the size of the key register. The total area overhead for implementation of the 

proposed solution to secure the scan chain using128-bit secure key and a 32-bits register 

for tester authentication is about 1847.05 µm2 as shown in Fig. 23. If the size of the register 

key increases, the security of the encryption key increases at the cost of extra area overhead. 

 

4.4.1 Area Overhead 

Various solutions have been reported in previous works to secure conventional scan chain 

[17, 6]. The area overhead of Lock and Key security solution [17] is reported moderately 

low (327 gates) for 4-bit. However, a noteworthy impact on the area overhead (5817 gates) 

is reported if the number of bits increases to 12-bit due to the LFSRs and decoders.  

 

Figure -23 Area overhead of the proposed solution using TSMC 65nm CMOS 

technology 
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In the proposed approach in this work, the area overhead is limited since a reconfigurable 

LFSR is utilized.  

A 128-bit LFSR and a 32-bits authentication module are implemented using 1436 gates. 

To implement the LFSR, N flip-flops of the scan chain are converted to an n-bit 

reconfigurable LFSR. The LFSR is used as an ATPG in the test mode. 

The gate overhead of the proposed method compared to the LCCS method [15] for ISCAS 

benchmark 1989 is shown in Table II. The second column shows the total number of gates 

and flip flops for each benchmark’ series before the secure-scan architecture is 

implemented. The third column shows the number of gates and flip flops for both 32-bit 

tester authentication and 128-bit secure key generator. The fourth and fifth column indicate 

the area overhead incurred by (LCSC) and the proposed secure-scan architecture 

respectively. 

 

The area overhead of the proposed solution is not significant for the circuits in the ISCAS 

benchmark. The area overhead of the proposed technique compared with the existing 

methods such as LCCS is much lower as shown in the column four of Table I. Moreover, 

as the circuit become larger, the area overhead becomes less significant as long as the scan 

size is fixed. 

TABLE. II  GATE AREA OVERHEAD MESUREMENTS 

 

Benchmark 

Name 

Total # of Gates Overhead (%) 

 

Benchmark 

 

Proposed scheme 

 

LCSS 

 

Proposed scheme 

S13207 8620 1436 22.4 16.65 

S15850 10369 1436 19.2 13.84 

S35932 17793 1436 18.1 8.07 

S38584 20705 1436 15.6 6.93 

S38417 23815 1436 18.1 6.02 
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4.5 Conclusion 

Scan architecture is widely used to develop an efficient design-for-test methodology for 

digital circuit. It increases the observability and controllability of the circuit-under-test 

significantly. While scan architecture is considered an indispensable tool for test engineers, 

it is almost equally a great tool in the hands of attackers to obtain secret information within 

the device under test. This paper presents a new approach to protect the scan architecture 

using two layers of security. The proposed solution prevents unauthorized testers from 

getting access to the scan chain while limiting the number of attempts.  

In addition, a PLL synthesizer has been utilized to obfuscate the actual operating frequency 

of the CUT. As a result, the data applied to the scan chain by a tester will not propagate 

within the scan chain if the tester is not authenticated. Moreover, a built-in self-test method 

using the scan flip-flops as a reconfigurable LFSR has been developed to test the scan cells. 

Cadence design tools are used to implement the proposed solution using TSMC CMOS 

65nm technology. The area overhead of the proposed method is lower than the area 

overhead of the existing solutions. 

 

 

 

 

 

 

 

 

 



 

38 
 

4.6 References 

[1] B. Yang, K. Wu, and R Karri. "Scan based side channel attack on dedicated hardware 

implementations of data encryption standard." In Test Conference, pp. 339-344. IEEE, 2004. 

[2] P. Kocher, J. Jaffe, and B. Jun, "Differential Power Analysis," Lecture Notes in Computer Science, 

vol. 1666, pp. 388–397, 1999. 

[3] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side Channel Cryptanalysis of Product Ciphers," 

in Proc. Of the European Symposium on Research in Computer Security, pp. 97–110, Sept. 1998. 

[4] D. Boneh, R. A. Demillo, and R. J. Lipton, “On the Importance of Checking Cryptographic 

Protocols for Faults,” Lecture Notes in Computer Science, vol. 1233, pp. 37–51, 1997. 

[5] E. Biham and A. Shamir, "Differential Fault Analysis of Secret Key Cryptosystems," Lecture Notes 

in Computer Science, vol. 1294, pp. 513–527, 1997. 

[6] G. Sengar, D. Mukhopadhyay, and D. R. Chowdhury, "Secured flipped scan-chain model for crypto-

architecture," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, 

no. pp. 2080-2084, 2007. 

[7] Y. Atobe, Y. Shi, M. Yanagisawa, & N. Togawa, "Dynamically changeable secure scan architecture 

against scan-based side channel attack," in SoC Design Conference (ISOCC), pp. 155-158. IEEE, 2012. 

[8] B. Niewenhuis, R. D, Blanton, M. Bhargava, and K. Mai, "SCAN-PUF: A low overhead physically 

unclonable function from scan chain power-up states," In Test Conference (ITC), 2013 IEEE International, 

pp. 1-8. IEEE, 2013. 

[9] Y. Zheng, A. R. Krishna, and S. Bhunia, "ScanPUF: Robust ultralow-overhead PUF using scan 

chain," In Design Automation Conference (ASP-DAC), 2013 18th Asia and South Pacific, pp. 626-631, 2013. 

[10] Y. Zheng, F. Zhang, and S. Bhunia, "DScanPUF: A delay-based physical unclonable function built 

into scan chain," IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, no. 3, pp. 1059-

1070, 2016. 

[11] B. Yang, K. Wu, and R. Karri, "Secure scan: A design-for-test architecture for crypto chips," IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, no. 10, pp. 2287-2293, 2006. 

[12] A. Mehta, D, Saif, and R. Rashidzadeh, "A hardware security solution against scan-based attacks," 

In Circuits and Systems (ISCAS), 2016 IEEE International Symposium on, pp. 1698-1701. IEEE, 2016. 



 

39 
 

[13] Y. Shi, T. Nozomu, Y. Masao, and O. Tatsuo, "Robust secure scan design against scan-based 

differential cryptanalysis," IEEE Transactions on Very Large Scale Integration (VLSI) Systems 20, pp. 176-

181, 2012. 

[14] H. Agrawal, S. Karmakar, and D. Saha, and D. Mukhopadhyay, "Scan based side channel attacks 

on stream ciphers and their counter-measures," International Conference on Cryptology in India. Springer 

Berlin Heidelberg, 2008. 

[15] J. Lee, M. Tebranipoor, and Jim Plusquellic, "A low-cost solution for protecting IPs against scan-

based side-channel attacks," In 24th IEEE VLSI Test Symposium, pp. 6-pp, 2006.  

[16] R. Behzad, Design of analog CMOS integrated circuits, McGraw-Hill, pp. 532-562, 2001. 

[17] J. Lee, M, Tehranipoor, C, Patel, and J. Plusquellic "Securing Scan Design using Lock and Key 

Technique," 20th ternational Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 51-62, 2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

40 
 

Chapter-5 

Effect of Wafer Thinning on Hardware Security 

5.1 Introduction 

Semiconductor industry is currently confronting a defining moment on how to realize the 

next generation of large-scale integrated circuits [1]. Three-dimensional integration has 

been widely studied and considered as a promising technology with potential to improve 

system performance, well beyond the traditional two-dimensional integration [2]. 3D-ICs 

which contain multiple layers of active devices can enhance chip performance, 

functionality, and device packing density significantly. However, the introduction of the 

third dimension has elevated the complexity of the integrated circuit design.  

Wafer thinning is considered an important step in 3D integration which affects the overall 

thickness of the 3D stack layers, TSV aspect ratio and the final form factor [5].  As a result, 

thinner wafers allow higher density of vertical interconnect, reduce the stress on the TSVs 

and improve the operating frequency. In wafer thinning process, the final wafer thickness 

is commonly about 5-10 % of the original thickness with less than 1-2µm uniformity. 

Currently, most 3D processes require wafers with less than 100µm thickness [4].  

In bulk Si based 3D integration, the typical thicknesses for a robust process has been 

defined to be in the range of 20-40µm. Unlike bulk process, in SOI based 3D ICs, less than 

10nm surface uniformity can be achieved. The main advantage of SIO 3D integration is 

the minimal thickness across the wafer that supports high density interlayers [17].  

5.1.1 Related Works 

Research studies have been conducted using current-voltage I-Vs curves to assess the 

performance of transistors, using numerical device simulations. These simulations provide 

a method to not only extract the electrical properties of different transistors but also 

evaluate their security. The studies in [6, 7] have been projected on the performance of 

InAs and GaAs versus Si n-MOSFETs with a gate length of 13nm. Various metrics were 

presented such as, current, capacitance and delay to evaluate the material features, and 
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detect where III-V n-MOSFETs have an improved performance over Si material. In [10] a 

scaling scheme for short channel thin-body SOI MOSFETs is developed to investigate the 

intrinsic parameters due to the variations in substrate thickness. M. Luisier, et al. have 

studied the impact of the gate oxide thickness Tox on the intrinsic threshold voltage in deep 

sub-micrometer [11]. Tunneling issues on performance of ultra-scaled transistors have 

been discussed in [12]. Authors stated in this study that the transistor turn-on current (Ion) 

degrades when scaling transistor gate length. In [13-15], I–V characteristics comparison at 

low and medium drain voltage have been considered, in contrary to previous studies where 

only comparison at high drain voltage are presented.  

Evaluating the security of crypto-chips as transistors scale down to submicron technology 

has attracted the attention of many researchers.  A study of the susceptibility of CMOS 

crypto-chips to leakage current based on differential power analysis (LDPA) has been 

introduced in [16]. Simulations in regards of the leakage current dependence on input 

patterns using SPICE have been reported. The study has targeted three CMOS technology 

90nm, 65nm and 45nm. Authors have implemented a two-input NAND and demonstrated 

on DES cryptosystem that the leakage of the designed gate has a significant dependency 

on the input patterns. Also, similar conclusion regarding this static power consumption has 

been reported for various standard cells such as, inverters, NOR and XOR gates [18-19]. 

The leakage Power Analysis (LPA) procedure that relies on the measurement of leakage 

current of CMOS integrated circuit depending on their given inputs are presented in [20].  

Several attacks, using the static power rather than the dynamic power, have been presented 

to obtain the secret key from crypto-chips by attackers.  

5.1.2 Contributions 

 In this work 45nm and 22nm transistors are designed using COMSOL Multiphysics. 

Simulations have been conducted to plot the I-V characteristics and electrical properties at 

low and medium drain voltage (VD). The main objective of this study is to determine the 

impact of wafer thinning on the performance parameters of the device such as subthreshold 

leakage current (Ioff), threshold voltage and ON-current (Ion), while thinning down the Si 

wafer from 400µm to 6µm. Furthermore, the correlation between the leakage current and 
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the inputs of the device as the wafer is thinned down has been analyzed to determine the 

effects of wafer thinning on chip security. The rest of the paper is organized as follows. 

Chapter II presents the model definition. Chapter III explains the results and discussions 

and finally chapter IV concludes the paper. 

5.2 Model Definition and Parameters 

Fig. 24 shows a typical MOSFET with the main electrical connections highlighted. Such a 

transistor is implemented in the CMOSOL environment and used to perform simulations 

in this work. 

 

5.2.1 (3D) Model Structure 

The doping profiles are shown in Fig. 25-26. The modeled doping consists of three regions 

(n, p, n). The physical gate lengths are 22 and 45nm, and initial silicon body thickness is 

400um with a low p-type doping acceptor concentration of 1E11/cm3. The source and drain 

region are heavily doped with n-type doping acceptor concentration of 1.5E19/ cm3. 

 

n+n+

P- Substrate

Vd

DrainSource

Gate

Insulator

Base

 

Figure- 24 Schematic diagram of a typical MOSFET 
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It can be observed in Fig. 25 that the drain and source have the highest dopant concentration 

which decreases as we move towards the center of the MOSFET from both sides [15]. The 

simulated transistors 45/22nm have the same properties in terms of gate oxide (dox), Depth 

(D), Height (H), work function (ϕm), electron affinity χ, Temperature (T) and W/L ratio, 

but different channel length. The subthreshold current Ioff of both technologies is set to be 

less than 0.3uA for the initial thickness (H=400um) by adjusting ϕm of the metal gate 

contact, dox and χ. 

 

The device parameters used to perform simulations are given in Table III. 

 

 

Figure-26 Volume plot showing the total net dopant concentration of MOSFET 
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Figure -25 Volume plot of initial modeled doping  
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5.2.2 MOSFET I/V Characteristics Study 

In this section, DC characteristics are presented where the generation and transport of 

charges in 45 and 22nm transistors as a function of the terminal voltages are presented. The 

source and the base terminals are grounded and the voltages applied to the drain and the 

gate are varied.  Considering an n-MOSFET connected as shown in Fig. 1, as VG becomes 

more positive, a depletion region is created. As VG exceeds the threshold voltage (VTH), 

the transistor is “tuned on” and a “channel” of charge carriers is formed under the gate 

oxide between the source and the drain.  

Fig. 26 is the volume plot showing the electron concentration of an n-MOSFET. When a 

drain voltage of VD= 50mV and a gate voltage of VG=0 V are applied, the channel of 

carriers has not been created yet. Increasing VG up to 0.4 V, results in a small channel 

which is represented with yellow color. At VG =1.5 V, a complete channel explicitly 

appears which is represented in red color. The ID–VGS, ID-VDS characteristics 

comparison for both n-MOSFET 45 and 22nm at high/low drain voltages VD have been 

presented in Fig. 27-28 (a-d).  

        Table III. VALUES PARAMETERS USED IN THE DESIGN OF N-MOSFET 

Parameter Value [µm/nm] Definition 

GL 45 or 22 [nm]  Gate Length 

D 0.2     [um] n-MOSFET Depth 

W 90 or 45 [nm] n-MOSFET Width 

H 6-400 [um] n-MOSFET Height 

dox 1.2      [nm] Thin oxide gate 

ϕm 4.1 Work function of the gate 

χ 5.7 Semiconductor electron affinity 

T 295 [k] Absolute temperature  
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In this initial study, the Si wafer thickness is set to (H=400) for both 45 and 22nm 

technologies. Fig. 27_a represents ID-VG characteristic for VD equal to the power supply 

(VDD), while VG varies from 0 to 1.5 V. In addition, a log plot the current ID flowing 

between the source and the drain is used to observe the turn-on/off voltage of the device 

Fig. 27_b. It can be observed that the leakage current for both 45 and 22nm, obtained at 

VG=0 V and VD=VDD, is equal to 42 and 266nA respectively. The threshold voltage VTH 

has been determined by using the constant current method at 100nA × W/L [21]. Using 

this method, the VTH of both transistors 45 and 22nm is approximately 0.3V and 0.2V 

(a) 

(b) 

Figure -27 Simulation results for I-V characteristics for both 45/22 [nm] n-MOSFET; 

(a)-(b) ID versus VG for VD = VDD normal and logarithmic scale respectively.  
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respectively. As expected, the simulated results show lower Ioff and higher VTH for 45nm 

compared to 22nm due to subthreshold region (Vg < VTH) where weak inversion takes 

place. As the channel decreases, current from source to drain increases and consequently, 

VTH decreases. The ID-VG characteristics when the drain voltage ID sweeps from 0 to 

1.5 V at two different values of gate voltage VG (0.9 and 1.2 V) are shown in Fig. 28 (a, 

b) respectively.  

 

The three regions (linear, nonlinear and saturation) are distinguishable which validates the 

implemented model. The current flows along the channel increases for both transistors as 

 (a) 

 (b) 

Figure -28 Simulation results for I-V characteristics for both 45/22 [nm] n-MOSFET; 

(a)-(b) ID versus VD for VG=0.9 -1.2 V respectively. 
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the drain voltage rises to the saturation current. In Fig. 28_a, the maximum current ID 

obtained for 45 and 22nm at (VG =0.9V) is 466.57uA and 619.89uA respectively. The 

maximum current presented by 45 and 22nm at (VG= 1.2) is 950.49uA and 1.045mA 

respectively. 

5.3 Results and Discussion 

For a chip, on a Si wafer the device performance depends on the final wafer thickness. The 

simulated 45 and 22nm n- MOSFET transistors in Fig .24-25 have been investigated in 

terms of performance and security by scaling the Si body from 400um down to 6um. 

5.3.1 Performance Analysis 

From the I-V characteristic curves presented earlier in section II, key technology 

parameters such as, Ioff, Ion, VTH are extracted for each device as scaling down the wafer 

thickness from 400um to 12 um.  Fig. 29-32 show the variation of drain current as an effect 

of scaling the Si body. For these simulations, the gate voltages (VG) were chosen 0.9 and 

1.2 V. Simulation results show a decrease in the current ID for both 45 and 22nm.  

 

 

Figure -29 ID–VD characteristics comparison as function of the Si body thickness (H) 

from 400 to 6 [nm] for n-MOSFET 45 [nm] at medium VG voltage (0.9 V) 
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From these results, it is evident that the scaling of the wafer reduces the effect of channel 

length modulation. This is accounted for by the decrease of the leakage current. The effect 

the channel length modulation becomes almost negligible for Si body less than 25nm.  

 

 

Figure -30 ID–VD characteristics comparison as function of the Si body thickness (H) 

from 400 to 6 [nm] for n-MOSFET 45 [nm] at high VG voltage (1.2 V) 

 

 

Figure -31 ID–VD characteristics comparison as function of the Si body thickness (H) 

from 400 to 6 [nm] for n-MOSFET 22 [nm] at medium VG voltage (0.9V)  
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Fig. 33-36 show ID-VG characteristics comparison for both n-MOSFET 45nm Fig. 33-34 

and 22nm Fig. 35-36 as a function of Si thickness (H).  

 

Thinning down the wafer from 400um to 6um at low drain voltage (VD = 50mV) results 

in a decrease of the leakage current from 0.042e-6 A to 2.736e-12 A and 0.266e-6 A to 

1.550e-12 A in 45nm and 22nm technologies respectively. Moreover, there are 

 

Figure -32 ID–VD characteristics comparison as function of the Si body thickness (H) 

from 400 to 6 [nm] for n-MOSFET 22 [nm] at high VG voltage (1.2 V)  

 

 

Figure -33 ID–VD characteristics comparison as function of the Si body thickness (H) 

from 400 to 6 [nm] for n-MOSFET 22 [nm] at high VG voltage (1.2 V)  
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considerable changes in the threshold VTH which is approximately 1.5 times higher than 

the initial VTH. However, thinning below 12um increases the leakage current 

considerably. 

 

 

 

Figure -34 ID–VD characteristics comparison as function of the Si body thickness (H) 

from 400 to 6 [nm] for n-MOSFET 22 [nm] at high VG voltage (1.2 V)  

 

 

Figure -35 ID–VD characteristics comparison as function of the Si body thickness (H) 

from 400 to 6 [nm] for n-MOSFET 22 [nm] at high VG voltage (1.2 V)  
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5.3.2 Security Analysis 

As a consequence of the advent of VLSI designs and the introduction of sub nanometer 

technology, static power (leakage current) became the most dominant contributor to the 

power budget. So, we will discuss about the dependency of the leakage current on both the 

silicon wafer thickness and the applied input patterns in this section. An n-MOSFET 

transistor designed in COMSOL is configured with three input patterns as shown in Fig. 

37.  

 

 

Figure -36 ID–VD characteristics comparison as function of the Si body thickness (H) 

from 400 to 6 [nm] for n-MOSFET 22 [nm] at high VG voltage (1.2 V)  

 

 

Figure -37 commonly accepted leakage currents dependence based on input patterns of 

four terminals n-MOSFET on input patterns 
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Different leakage currents have been denoted for each configuration based on the input 

patterns applied. They are defined as follow: Tunneling current between gate and substrate 

(Igb), the current between gate and channel (Igc), the current between gate and source (Igs) 

and the current between gate and drain (Igd). These dependency can be verified for p-MOS 

transistor as well. 

Fig. 38 shows the leakage current for 45nm & 22nm CMOS transistors while thinning the 

wafer from thickness of H=400µ m to 6µm. Increasing VDD can improve Ion; however, a 

high VDD would rise the static power consumption. As the wafer thickness decreases, the 

leakage current decreases as well.  

Table. IV presents the leakage current versus the input patterns for three configurations as 

represented in Fig. 37. Simulations were conducted to obtain the leakage current for two 

different thicknesses using CMOS technologies 400/25um and 45/22nm respectively. 

 

 

 

Figure -38 (a)-(b) Leakage Current Ioff (µA) Vs Si thickness for n-MOSFET 45 and 

22nm respectively; 

 

a b
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5.4 Conclusion 

The effect of wafer thinning on the security and DC electrical characteristics of CMOS 45 

and 22nm technologies have been presented in this paper. COMSOL Multiphysics has been 

used to model a 3D semiconductor device and simulate the electrical characteristics of the 

transistors. Simulation results indicate that wafer thinning reduces the leakage current 

considerably and consequently improves chip security against   leakage-based differential 

power analysis (LDPA) threats. Through this study, it is shown that the leakage current 

(Ioff) and on current (Ion) have been improved by scaling the Si substrate, thus suppressing 

the short-channel effects and improving the chip security. 

 

 

 

 

 

 

Table IV. LEAKAGE CURRENT DEPENDENCE ON WAFER THICKNESS AND 

INPUT PATTERNS 

 

 

 

Configuration 

Leakage current (in µA) 

45nm n-MOSFET  22nm n-MOSFET 

Thickness 

400um 

Thickness 

25um 

Thickness 

400um 

Thickness 

25um 

A 0.04210 6.583E-7 0.26648 1.330E-6 

B 9.5425E-8 4.110E-9 1.1302E-4 2.018E-7 

C 1.0364E-7 3.0822E-7 7.5937E-5 3.535E-7 
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Chapter -6 

Conclusions and future works 

6.1 Conclusions  

Scan based testing is a powerful technique and has been widely used to test digital circuits. 

Scan architecture supports a strong controllability and observability in the test phase. 

However, the scan architecture can be utilized by hardware attackers to access critical 

information.  Test and security contradict one another and trade-offs have to be maintained. 

Therefore, new secure methods of testing are required to satisfy the requirements for secure 

testing.  

In this thesis, tester authentication techniques have been proposed to enhance the hardware 

security. The effect of wafer thinning process in 3D ICs on chip security has also been 

studied. Two solutions are presented to protect scan enabled microchips from side channel 

attacks. 

In the first solution, the tester is authenticated by the circuit-under-test (CUT) to limit the 

access to the scan architecture to known testers. Moreover, the number of attempts before 

granting access to the tester is limited to make brute-force attacks practically impossible. 

In the second security solution, a phase locked loop is utilized to protect CUT against scan 

based attacks. In this method, the operating frequency of both CUT/Tester is obfuscated. 

In this method, the direct access to the crypto-cores are not provided through the scan 

architecture. Instead, a built-in self-test method (BIST) is utilized to test crypto-core in the 

test mode. 

The transistor scaling to nano-meter technology has increased the circuit density and 

processing power significantly. However, the new fabrication technologies increase the 

leakage current considerably which raises the static power consumption. The elevated 

leakage current can be monitored by hardware attacker to extract security information 

through power analysis. The effect of leakage current on security of 3D ICs is investigated. 
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In this study, the effect of wafer thinning on the security and performance of n-channel 

MOSFET has been studied. COMSOL Multiphysics was used for numerical simulations 

to model a transistor in two technology nodes of 45nm and 22 nm. The substrate thickness 

was varied from 6µm and 400µm to analyze the effect of wafer thinning on the leakage 

current. Simulation results indicate that the process of wafer thinning not only improves 

the electrical characteristics but also offers a higher protection against side-channel attacks 

using power analysis. 

6.2 Future Works 

Three-dimensional 3D integration technology is a promising solution to meet the 

performance requirements for new generation of portable devices. This new technology 

supports as increased bandwidth, reduced latency, and lower power consumption.  

3D-ICs technology will not be fully adopted if the security related problems are not 

properly addressed. With the technology advancement, developing new solutions for 3D-

ICs to prevent them against potential attacks become more apparent.  

A hardware security enhancement for 3D ICs utilizing tester authentication techniques can 

be developed. Analysis of Through Silicon Vias (TSVs) on the hardware security of 3D 

ICs is a good topic for future work. COMSOL Multiphysics can be used for simulations to 

model TSVs with different sizes and their effect on the security of 3D stacked ICs.  
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