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Abstract

This thesis solves a controversial physics problem that has existed in the litera-

ture for nearly a century – finding the radius of convergence of the perturbation

expansion for the ground state energy of the two-electron atom. This problem

is important to study because it makes progress towards finding the possible

structures that can exist in the quantum mechanical three-body problem. This

perturbation expansion is a convergent series and in physics these are rare to

work with. We usually refer to this perturbation expansion as the “1/Z expan-

sion”. There is still much to learn about finding effective methods of determining

the radii of convergence for convergent series. The first 1000 coefficients of the

1/Z expansion are calculated with very high precision and are compared to pre-

vious values in the literature. These coefficients are determined by using a new

type of basis set that is introduced in this work, the pyramidal basis set, which

is very useful in describing high-order wave functions generated by perturbation

theory. Using the series of ratios of the resulting coefficients along with a series

acceleration technique, the radius of convergence of the 1/Z expansion is found

to be λ∗ = 1.0975(2).
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Chapter 1

Introduction

It is important to know the basics of convergent series in order to understand

what a radius of convergence is. A convergent power series is a series of the

form

∞∑
n=0

an(x− x0)n (1.1)

in which the coefficients an are getting progressively smaller at a fast enough

rate with increasing n, such that when the entire series is added together the

sum is a finite number for some range of values a < x < b. x0 is referred to as the

point of expansion of the series and choosing different x0 will result in different

ranges of convergence for the series. Outside of the range of convergence, the

series will sum to ∞ and so the series diverges.

The range in which a power series converges is always symmetric about the

point of expansion – a convergent power series always converges within some

radius, determined by the singularity nearest to the expansion point of the series.

For example, the Taylor series for the function f(x) =
1

x− a
expanded about the

point x0 = a+1 will converge for all values of x in the range x0−1 < x < x0 +1.

We can think of this range of values as if it were the diameter of a circle. Thus

the diameter of the range x0 − 1 < x < x0 + 1 is 2 and so the power series
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expansion for f(x) =
1

x− a
at x0 = a+ 1 has a radius of convergence of 1.

This symmetric behaviour remains even for complex power series. A conver-

gent complex series will converge within some disc in the complex plane. Thus,

the radius of convergence for a general power series expanded about a point

z0 in the complex plane is simply the radius of this disc. It is important to

know the radius of convergence of a power series because beyond the radius of

convergence, the power series becomes divergent and mathematical techniques

must be used to make sense of the series. Usually it is the singular points of a

function that are the subject of interest and finding these points can be a diffi-

cult task. Knowledge of the radius of convergence of the Taylor series expansion

of a function helps to locate the singular points of the function in the complex

plane.

The perturbation expansion for the ground state energy of a two-electron

atom is a convergent power series and so all of the logic above applies to this

series. However, before we can define the perturbation expansion for the ground

state energy of a two-electron atom, we must first explain how systems of parti-

cles are analyzed in quantum mechanics. For any quantum mechanical system,

we are interested in solving the time independent Schrödinger equation (TISE)

Hψi = Enψi (1.2)

(where H is the quantum mechanical energy operator called the Hamiltonian

and will be explained more in section 3.1). To solve the TISE is to find the

energy eigenfunctions ψi (also referred to as eigenstates or eigenvectors) and the

energy eigenvalues Ei of a system of particles under the influence of a specific

potential energy field (such as a constant magnetic field). The eigenfunctions

are the possible states that the system can exist in after a measurement. The

eigenvalues are the energies of each of these states. Once the TISE is solved,

the time evolution of the system can be found by using the time dependent

Schrödinger equation (TDSE).

ih̄
∂Ψ

∂t
= HΨ (1.3)
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in which i is the imaginary unit, h̄ is Planck’s constant divided by 2π, and Ψ is

the wave function representing the state of the system of particles.

The full time-dependent wave function Ψ can be expanded as a linear com-

bination of the TISE eigenfunctions ψi. The ψi do not change with time (for

this reason they are also commonly referred to as stationary states) and so

Ψ(t) =

∞∑
i=1

ai(t)ψi (1.4)

where all of the time dependence of Ψ(t) comes from the coefficients of the

stationary states ai(t). If the Hamiltonian is assumed to be independent of

time then the solution to the TDSE is

Ψ(t) = e

−iHt
h̄


Ψ(t0) (1.5)

which shows explicitly how the initial state Ψ(t0) evolves into the state Ψ(t) at

a later time t.

The largest success of the Schrödinger equation is in its ability to accurately

describe the energy spectrum of the hydrogen atom. The Schrödinger equation

for the hydrogen atom can be solved analytically and the resulting spectrum of

eigenvalues agreed very well with the observed spectrum which was determined

experimentally in the early 20th century. The TISE was able to describe the

Lyman, Balmer, Paschen, etc. series of hydrogen (in fact some of these series

were observed after the Schrödinger equation predicted their existence). Solving

the TISE becomes rapidly more difficult as more complicated atoms and ions

are considered. Atomic physicists have been analyzing the TISE for the helium

atom ever since the late 1920’s and still today the helium atom remains a popular

system to study.

Neutral helium consists of two electrons electromagnetically bound to a nu-

cleus containing two protons and two neutrons. Treating the nucleus as a single

body, the TISE for a helium atom is reduced to a three-body problem. It is

a well known fact that three-body problems do not have closed-form solutions

3



– the motion of the bodies cannot be expressed in terms of elementary math-

ematical functions. This is why helium is the subject of so much study – it is

the simplest atom which has no closed-form to its corresponding Schrödinger

equation. By studying helium, we hope to learn more about the complications

that arise from inter-electron correlations and ultimately wish to find highly

accurate solutions to the Schrödinger equation for atoms with many electrons.

Today, we can find the eigenvalues for the nonrelativistic, infinite nuclear

mass (these simplifications will be explained in section 3.1) TISE for helium

to astonishing accuracy. Recent calculations of the eigenvalues of this equation

in reference [30] contain up to 20 significant decimal digits. However, there is

more to analyzing the helium atom than knowing the energy eigenstates and

eigenvalues for the TISE. If we were to continuously lower the nuclear charge

Z of a helium atom in its ground state (the state ψn with the lowest energy)

down from Z = 2, at what value of Z would the total energy of the system be

equivalent to a hydrogen atom of the same nuclear charge in its ground state?

This value of Z is deemed the critical nuclear charge Zc and has been recently

found to very high precision (see reference [23]). Another interesting question is

if we were again to continuously lower Z of a helium atom in its ground state,

at what point would one of the electrons become unbound from the helium

atom? This value of Z is denoted Z∗ and we usually refer to the inverse of Z∗

rather than Z∗ itself. λ∗ = 1/Z∗ denotes the radius of convergence of the 1/Z

expansion of the energy for two-electron atoms and accurately determining this

value is the main purpose of this work.

Finally, it would be interesting to compare the two values Zc and Z∗. Intu-

itively, it would make sense that they may be equivalent, but this relationship

is not the only possibility. For the two-electron atom, Zc 6= Z∗ would imply

that there is a continuous range Z∗ < Z < Zc in which the outer electron would

have enough energy to escape the atom, yet still would have a completely nor-

malizable wave function and thus remain bounded to the nucleus. Such a state

is called a bound state in the continuum. This work answers the question of

whether or not the ground state of a two-electron atom becomes a bound state

4



in the continuum as the nuclear charge Z is reduced below the critical charge

Zc.
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Chapter 2

Literature Review

Finding the radius of convergence λ∗ of the 1/Z expansion for two-electron

atoms has been a challenging problem dating back to the early 1930’s. Baker et

al. in reference [1] provide a very accurate account of the history of this problem

up to 1990. The first half of this literature review will be a simplified summary

of the history of λ∗ as described in their work.

The problem of finding λ∗ began with Hylleraas in the 1930’s from reference

[2]. He was the first to analyze the expansion

E(Z) =

∞∑
n=0

En
1

Zn
(2.1)

or equivalently

E(λ) =

∞∑
n=0

Enλ
n (2.2)

(λ =
1

Z
) and calculated approximations to the first five En. This series is

formally known as “the 1/Z expansion of the energy for two-electron atoms”

but will be referred to as “the 1/Z expansion” in this thesis.

The 1/Z expansion is derived from the application of perturbation theory

to the Z-scaled two-electron atom Schrödinger equation (perturbation theory is

explained in section 3.4 and the derivation of the 1/Z expansion is covered in

6



section 4.1). Once the En are known, equation (2.2) provides an approximation

to the true energy of a particular eigenstate for any value of Z which the series

remains convergent.

In 1951 in reference [3], Kato proved that the 1/Z expansion is convergent.

This proof can also be found in reference [4]. Convergent series are rare in

physics, so after Kato proved the convergence of the 1/Z expansion, there came

a great interest among many physicists to analyze the series and try to determine

λ∗ as accurately as possible.

The first attempt of finding a value for λ∗ came from Knight and Scherr’s

work in reference [5]. In 1962 Knight and Scherr calculated the coefficients in

2.2 from E2 up to E11 (E0 and E1 can be found analytically and are exactly

−1 and 5/8 respectively). From these coefficients, they constructed the ratios

rn =
En+1

En
(2.3)

The rn’s approach
1

λ∗
as n → ∞. Based off the observed behaviour of these

first few ratios Knight and Scherr supposed that λ∗ ∼ 1.33.

In 1965 Midtdal calculated the first 22 coefficients of 2.2 in reference [7].

Stillinger noticed that the series of ratios rn of Midtdal’s coefficients appeared

to be linear with respect to 1/n and so he performed a linear least squares fit

to the last 8 rn’s, concluding that

λ∗ = 1.1184 (2.4)

(see reference [8]). Midtdal later calculated the first 81 En’s in reference [11],

however, it was eventually discovered that only the first 20-30 of these coeffi-

cients are reliable. As Baker et al. stated in reference [1], this was most likely

due to the fact that the basis functions (basis functions and basis sets are ex-

plained in section 3.3) used to find the En’s were not in the correct region

of configuration space needed to describe the high-order behaviour of the 1/Z

expansion. This phenomenon is briefly discussed in section 4.2.

In 1970 Brändas and Goscinski used the first 20 coefficients calculated by

7



Midtdal et al. to find

λ∗ = 1.118 (2.5)

(see reference [12]). This was done by using a method known as Padé analysis

in which the power series expansion from equation (2.2) is replaced with the

more general expression

E[M/N ](λ) =

∑M
i=0 aiλ

i

1 +
∑N
j=1 bjλ

j
(2.6)

where [M/N ] is the order of the Padé approximant. In 1972, Brändas and

Goscinski used a slightly different analysis of the first 27 coefficients from Midt-

dal et al. to find

λ∗ = 1.119 (2.7)

(see reference [13]).

In 1977 in reference [16], Reinhardt proved that if λ∗ for a series E(λ) de-

scribing a normalizable eigenstate is determined by a singularity on the real Z

axis, then this singularity must occur at the exact point where E(λ) becomes

degenerate with a threshold. This means that if the singularity determining λ∗

for a given eigenstate is found to be on the real Z axis and further that the

eigenstate is normalizable at λc, then λ∗ = λc.

Arteca et al. in reference [18] analyzed the 1/Z expansion in 1986 using the

22 coefficients calculated by Midtdal from reference [7]. The technique they

used replaces equation (2.2) with a more general mathematical form, similar to

the Padé analysis used in reference [12]. E(λ) was assumed to behave like

E(λ) = f(λ)(1− λ

λ0
)a + h(λ) (2.8)

where f(λ) and h(λ) are analytic functions in the range |λ| < R with R > |λ0|.

λ0 is the location of the singularity which determines the radius of convergence

8



of the 1/Z expansion; |λ0| = λ∗. They found that

a = 1.07± 0.01

λ0 = 1.107± 0.003

h(λ0) = −0.995± 0.001

f(λ0) = −0.72± 0.01

(2.9)

(so their estimate to the radius of convergence was λ∗ = λ0 = 1.107 ± 0.003).

Arteca et al. also revisited Stillinger’s analysis of Midtdal’s 22 En’s from refer-

ence [8]. They performed a least squares fit to the rn’s that was parabolic in

1/n (Stillinger’s fit was only linear in 1/n) which yielded

λ∗ = 1.1056± 0.0040 (2.10)

Baker, Freund, Morgan and Hill, made huge progress towards finding λ∗ in

reference [1]. They used variational calculations (see section 3.2) with basis sets

consisting of 476 basis functions in conjunction with the HKS variational pertur-

bation method described in reference [6] to find the 1/Z expansion coefficients

up to 401st order. The last En’s before the work of Baker et al. were calculated

only up to 80th order by Midtdal et al. in reference [11] and were shown to be

unreliable for n > 30. In contrast, Baker et al. state in their work “even our

higher-order En’s are accurate to a few parts in 105 and our high-order rn’s to a

few parts in 106. The lower-order En’s are of course much more accurate.” The

convergence of the series of rn’s is very slow and so Baker et al. used Neville-

Richardson extrapolation (see section 3.5) to accelerate the convergence of the

series.

They calculated the critical nuclear charge to be Zc = 0.911 028 using simple

variational calculations. They also stated that their results from the Neville-

Richardson extrapolations of the rn series indicated λ∗ = 1/Zc. It should be

noted that a direct calculation of λ∗ was never performed in their work and

most of their results were obtained under the assumption that λ∗ = 1/Zc. Their

estimate of λ∗ was

9



λ∗ =
1

Zc
= 1.097 66(3) (2.11)

Finally, Baker et al. deduced that the 1/Z expansion has both a branch point

singularity and an essential singularity located at λ =
1

Zc
on the real axis, in

agreement with Reinhardt’s analysis in reference [16].

After the work of Baker et al. research into the 1/Z expansion continued

with the hopes of being able to find an even more precise estimate to λ∗. In

1995 Ivanov analyzed the coefficients of Baker et al. and found the most precise

estimate of λ∗ in the literature to date in reference [19]. Rather than finding the

radius of convergence of the series E(λ) directly, he constructed the function

f(λ) =
E(λ)− E0

E1
=

∞∑
i=1

Ei
E1

λi (2.12)

then analyzed the inverse function

λ(f) =

∞∑
k=1

fk

k!

[
dk−1

dλk−1

(
λ

f(λ)

)k]
λ=0

=

∞∑
k=1

λkf
k (2.13)

Ivanov used a few different techniques to accelerate the convergence of this series

and found the value

λ∗ = 1.097 660 79(1) (2.14)

It is important to notice that Ivanov’s result for λ∗ depends heavily on the ac-

curacy of the coefficients En which were provided by reference [1]. For example,

if these coefficients are found to be correct to 5 decimal digits, but are incorrect

at 6 decimal digits then Ivanov’s estimate to λ∗ should only contain 5 significant

digits. Ivanov also makes the assumption that the singularity determining λ∗

is located on the real axis. However, this assumption is most likely true as the

analysis of references [1, 8, 18] all independently provide evidence for this.

Recently, there has been some controversy over the results of Baker et al. In

2010 Zamastil et al. found

λ∗ = 1.1085(2) (2.15)
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(see reference [20]) which is distinct from the value of λ∗ = 1.097 66 that was

obtained by both Baker et al. and Ivanov. The authors arrive at this value of

λ∗ by using the first 19 En from reference [1] to construct a function describing

the large-order behaviour of the En. As they stated in reference [20]: “one has

to keep in mind that high coefficients of the convergent series are very difficult

to determine. Certainly, the coefficients from the interval n = 13 to n = 19 are

much more accurate than the coefficients from the interval n = 25 to n = 401.

Consequently, any analysis made on low coefficients is much more reliable than

that made on high coefficients”. This is in direct contrast to what Baker et al.

suggested of the series E(λ) in reference [1]. They stated “the range 10 ≤ n ≤ 20

is very, very far from the asymptotic region, and it is this circumstance which

is responsible for the discrepancy between λc and λ∗ found by Stillinger, by

Brandas and Goscinski, by Anno and Teruya, and by Arteca, Fernandez, and

Castro”.

In June 2015 in reference [21], Turbiner and Guevara used the 401 coefficients

from reference [1] to calculate the ground state energies for two-electron atoms

for many different values of Z. They compared these ground state energies

with those that were calculated directly by use of the variational method. They

found that for 2 ≤ Z ≤ 10 the resulting ground state energies from these two

different methods agreed up to 12 decimal digits. However, for Z = 1 they only

agreed to 10 decimal digits and for Z = Zc = 0.911028 . . . to just 6 decimal

digits. From this analysis Turbiner and Guevara concluded that even the first

significant digit in all of the coefficients En for n > 135 are not correct and hence

that the asymptotic behaviour of the 1/Z expansion in reference [1] cannot be

trusted. Turbiner and Guevara requested an independent recalculation of the

1/Z expansion coefficients.

In October 2015, Jean-Phillipe Karr found a value of Z∗ = 0.911 276(12) in

reference [22], corresponding to

λ∗ = 1.097 362(15) (2.16)

This was accomplished by using the complex scaling method (allowing the en-
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ergy E(λ) and Hamiltonian H to become complex). He derived a formula for

the imaginary part of the energy for values of Z near the singularity Z∗

Im(E) ∼ A
(

1− Z

Z∗

)P
exp

(
−c

1− Z
Z∗

)
(2.17)

with p = −2b− 3

2
and c =

a2

4
. Karr found the value of the parameters a and b

to be a = 0.26374 and b = −1.9896 by using a formula for the coefficients

En ∼ C(Z∗)nnbe−a
√
n (2.18)

and making a least squares fit of this formula to the coefficients from reference

[1]. He then made another least squares fit of equation (2.17) to the imaginary

part of E(Z) for 11 different points in the range 0.905 ≤ Z ≤ 0.91103 which

were calculated using the variational method.

Since the work of Baker et al. in 1990, there has been no attempt at re-

calculating the 1/Z expansion coefficients. Finding these coefficients is a very

important task as they have formed the basis of many recent theoretical pa-

pers in the literature. This work is dedicated to calculating the 1/Z expansion

coefficients, using them to find λ∗ and testing the hypothesis that λ∗ = 1/Zc.
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Table 2.1: Important estimates of the radius of convergence of the 1/Z expansion

year reference λ∗

1962 Knight and Scherr [5] 1.33

1966 Stillinger [8] 1.1184

1970 Brändas and Goscinski [12] 1.118

1972 Brändas and Goscinski [13] 1.119

1986 Arteca et al. [18] 1.1056(40)

1990 Baker et al. [1] 1.097 66(3)

1995∗ Ivanov [19] 1.097 660 79(1)

2010∗ Zamastil et al. [20] 1.1085(2)

2015∗ Karr [22] 1.097 362(15)

The ∗ indicates works that depend directly on the 1/Z expansion coefficients from

reference [1].
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Chapter 3

Theory

This chapter explains the main theories and concepts that were used in this

work. We derive the Hamiltonian for a two-electron atom and describe the

necessary approximation methods that were used to solve the corresponding

Schrödinger equation. The theories in this chapter are extremely useful and

will allow the reader to understand the procedure for obtaining the main results

of this work (section 4.1).

3.1 The Hamiltonian

The time independent Schrödinger equation (TISE) is arguably the most useful

equation in quantum mechanics

HΨi = EiΨi (3.1)

It is a differential equation (usually second order) with a wide range of possible

solutions depending upon the form of the differential operator H. The eigen-

functions and eigenvalues of this differential equation correspond to the states

that a given system of particles may be found in and the energy of each of these

states, respectively. Physically, the Ψi are wave functions that describe how

likely it is to find a type of particle (electrons, protons, muons, etc.) to be in
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a certain position in space; the square amplitude of a wave function, Ψ∗iΨi, de-

termines the probability of finding that type of particle for each point in space.

Ei is the energy a system of particles has if they were measured to be in the

corresponding state Ψi.

The Hamiltonian, H, in quantum mechanics is constructed the same way as

it is in classical mechanics; H = T +V where T is the kinetic energy and V the

potential energy of the system. The only difference is that the classical position

and momentum variables x and p respectively are replaced with their quantum

mechanical operators x→ x, p→ −ih̄∇.

The TISE can also be treated as an eigenvalue problem with Ψi as the

eigenvectors and Ei as the eigenvalues by using matrix mechanics in which the

Hamiltonian operator is represented by a matrix and the Ψi are represented by

vectors. The first step to solving the TISE is to construct the Hamiltonian for

the system under study.

For instance, the neutral helium atom consists of two electrons, two protons,

and two neutrons. The two protons and neutrons make up the nucleus of the

atom where most of the mass is located. The size of the nucleus is on the order

of femtometers (10−15 m) while the distance of the electrons from the nucleus

is on the order of Ångströms (10−10 m). Due to this large discrepancy between

relative distance scales, it is fair to treat the nucleus as a single point-particle

of nuclear charge Z = 2 in the case of neutral helium.

The protons and neutrons that make up the nucleus are each roughly 2000

times as massive as an electron. The electromagnetic forces that the electrons

apply to the nucleus will therefore not result in much movement of the nucleus

compared to the motion of the electrons resulting from the forces that the

nucleus applies to the electrons. A simple analogy of this situation is that of the

gravitational attraction between a person and the earth. Both the person and

the earth experience the exact same force due to the gravitational attraction

between them, however, the person moves much more than the earth because

he/she has much less mass than the earth. We can then justify the assumption

that the nucleus is stationary in comparison to the motion of the electrons.
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This is called the “infinite nuclear mass” approximation. Finally, the effects of

special relativity will be excluded in the Hamiltonian so that we are working in

the nonrelativistic regime of electron motion (the electrons are not moving at

an appreciable speed relative to the speed of light).

So, the physical situation that we are to describe is a three-body problem

consisting of an infinitely massive nucleus which has a nuclear charge Z which

we will ultimately allow to vary continuously, along with two nonrelativistic

electrons bound to the nucleus by the electromagnetic force. The Hamiltonian

which describes this system is

H = − h̄2

2m
(∇2

1 +∇2
2)− Ze2

r1
− Ze2

r2
+

e2

r12
(3.2)

where m and e are the mass and charge of an electron, r1 and r2 are the radial

positions of electrons 1 and 2 respectively, and finally

r12 = |~r1 − ~r2| (3.3)

This is the nonrelativistic, infinite nuclear mass Hamiltonian for a two-electron

atom with variable nuclear charge Z in electrostatic units and it can be simplified

by making the scale change

r′ =
Zr

a0
(3.4)

(a0 =
h̄2

me2
is the Bohr radius)

H ′ = −Z
2e2

a0
(∇′1

2
+∇′2

2
)− Z2e2

a0r′1
− Z2e2

a0r′2
+

Ze2

a0r′12

(3.5)

We then convert to atomic units (m = e = h̄ = 1
4πε0

= 1), divide by Z2 and

remove the primes (with the understanding we are still working with r′ =
Zr

a0

and not r – we have just renamed the variables so that we don’t have to use the

primes) to arrive at the Z-scaled two-electron Hamiltonian

H = −1

2
(∇2

1 +∇2
2)− 1

r1
− 1

r2
+
Z−1

r12
(3.6)
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The Schrödinger equation for this Hamiltonian is

Hψ =
E

Z2
ψ (3.7)

where the Energy E is in atomic units (a.u.) and the factor of 1
Z2 comes from

the division by Z2 that we applied in order to derive the Z-scaled two-electron

Hamiltonian. If we work in a set of units known as “Z-scaled atomic units” we

can get rid of the Z2 term in the Schrödinger equation. The energy in Z-scaled

atomic units ε is related to the energy in atomic units E by

ε =
E

Z2
(3.8)

and so in Z-scaled atomic units we have the more familiar Schrödinger equation

Hψ = εψ (3.9)

Now, we are interested in the behaviour of the electrons as the nuclear charge

is continuously varied down from Z = 2. From equation (3.6) it is seen that

decreasing Z will increase the strength of the repulsive Coulomb interaction

between the two electrons while the strength of the attractive nucleus-electron

interactions will not change. Eventually the repulsion between the two electrons

will dominate and the outer electron will be pushed away from the nucleus,

becoming unbound. At this point, the outer-electron is a free particle and so the

energy calculated by equation (3.9) should just be the energy of the remaining

electron-nucleus system in Z-scaled atomic units.

Zc is the critical nuclear charge and is defined to be the Z at which ε = −1

2
in

equation (3.6). This definition comes from the ground state energy of hydrogen-

like atoms (atoms with one electron). The energy eigenvalues of a hydrogen-like

atom with variable nuclear charge Z are En = −Z
2

n2
. Thus, the ground state

energy (n = 1) of a hydrogen-like atom is E1 = −1

2
in Z-scaled atomic units.

So Zc is the value of Z for which the ground state energy of the two-electron

atom and the hydrogen-like atom have the same energy.
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It has been proven by Hill in 1977 in reference [24] that the H− two-electron

atom (Z = 1) has only one state with both electrons bound to the nucleus. This

means that Zc ≤ 1, and also that the only bound state of the two-electron atom

as Z is decreased below one is the ground state.

3.2 Variational Method

The three-body problem cannot be solved analytically and so a method of ap-

proximating the solutions of the two-electron Hamiltonian is needed. We begin

by attempting to solve the TISE

Hφi = Eiφi (3.10)

with the goal of finding the eigenfunctions, φi and eigenvalues, Ei for a given

Hamiltonian, H. From the axioms of quantum mechanics we know that the

eigenfunctions must form a complete set of basis functions. This means any

trial wave function used to approximate one of the true eigenfunctions can be

expressed as a linear combination of the true eigenfunctions. The simple knowl-

edge that we can express the trial wave functions this way even though we

may know nothing about the true eigenfunctions themselves turns out to be

surprisingly useful.

The true energy eigenfunctions φi obey

Ei = 〈φi|H|φj〉δij (3.11)

where the Ei are the exact energies. Let ψtr be a normalizable trial wave

function that approximates the true ground state φ0 and let Ẽtr be a variational

energy defined by

Ẽtr =
〈ψtr|H|ψtr〉
〈ψtr|ψtr〉

(3.12)

Assuming the trial ground state wave function, ψtr is normalized then
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Ẽtr = 〈ψtr|H|ψtr〉 (3.13)

Expand the unit operator
∑∞
i=1 |φi〉〈φi| = 1 on both sides of H

Ẽtr =

∞∑
ij=1

〈ψtr|φi〉〈φi|H|φj〉〈φj |ψtr〉 (3.14)

Inserting equation (3.11) into equation (3.14) leaves us with

Ẽtr =

∞∑
i=1

|〈ψtr|φi〉|2Ei (3.15)

Since we have assumed ψtr to be normalized, we can add and subtract E0 in

the following way

Ẽ0 = E0 +

∞∑
i=1

|〈ψtr|φi〉|2(Ei − E0) (3.16)

We know that both |〈ψtr|φi〉|2 ≥ 0 and (Ei − E0) ≥ 0 which leads us to the

conclusion of the variational method

Ẽtr ≥ E0 (3.17)

Any normalizable trial wave function will yield an upper bound to the exact

ground state energy of a given Hamiltonian. The lower the variational ground

state energy is, the more accurate it is!

The idea of the variational method is to start with an arbitrary trial wave

function with tunable parameters and optimize them to minimize the variational

energy, which will result in the best approximation to E0 that the chosen trial

wave function can provide. We usually treat these trial wave functions as vectors

in a vector space once we have chosen an appropriate basis set to expand ψtr

in.

A basis set B is complete on a vector space V (V could be Hilbert space

or Euclidean space for example) if every element of V can be expressed as a

linear combination of elements of B. Therefore, we can always express ψtr as a

finite linear combination of basis functions χi as long as we know the set of basis
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functions (the basis set) is complete in Hilbert space (the space of solutions φi

to the Schrödinger equation) in the limit lim
N→∞

(where N is the number of basis

functions being used in the basis set). χi(α, β, . . . ) will denote the ith basis

function of a basis set that is complete as N → ∞, with (α, β, . . . ) appearing

as tunable nonlinear parameters.

|ψtr〉 =

N∑
i=1

ci|χi(α, β, . . . )〉 (3.18)

Optimizing only the linear parameters ci in a trial wave function is equivalent

to solving

Hc = EOc (3.19)

(see Appendix A for proof) where H and O are the Hamiltonian and overlap

matrices respectively. The matrix elements of H are Hij = 〈χi|H|χj〉 and the

matrix elements of O are Oij = 〈χi|χj〉. c is the ordered column vector of coef-

ficients of the basis functions ci = 〈χi|ψtr〉. Equation (3.19) is the “generalized

eigenvalue problem”. This equation reduces to the Schrödinger equation when

the basis set being used is orthonormal (〈χi|H|χj〉 = δij =⇒ O = I).

As is explained in reference [27], to find upper bounds to not only the ground

state but the excited states as well, we can use the Hylleraas Undheim Mac-

Donald Theorem (HUM) from references [28, 29]. HUM states that as the

dimensions of H and O are increased, the N old eigenvalues are sandwiched

between the new N + 1 eigenvalues (See figure 3.1). HUM further states that

if the basis set being used is complete and if there is a lower bound E0 to the

energy spectrum, then each of the eigenvalues of the Hamiltonian matrix are

upper bounds to the exact energies Ei. This spectrum of energy eigenvalues

which approximates the true energy spectrum is called the “pseudospectrum”.

To summarize this section, by expanding a trial wave function in a truncated

basis set that is complete in Hilbert space as N →∞, we can solve the TISE and

find upper bounds to all of the exact energies in the spectrum. We can improve

the accuracy of these upper bounds by introducing adjustable parameters into
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Figure 3.1: Interleaving of variational energies as basis size is increased
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our basis set that can be optimized to minimize these upper bounds.

3.3 Basis Sets

This section describes the two different complete variational basis sets that were

used in this work. With these basis sets, the TISE for the two-electron Z-scaled

Hamiltonian can be solved with very high precision. Both of these basis sets

are expressed in Hylleraas coordinates and so before they are discussed it is

important to first understand Hylleraas coordinates.

3.3.1 Hylleraas Coordinates

Figure 3.2: Image of Hylleraas coordinates taken from reference [26]

The independent variables in Hylleraas coordinates are

(r1, r2, r12,Θ1,Φ1, χ) (3.20)

where ri corresponds to the distance of electron i from the origin and r12 =
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|r1 − r2|. When Hylleraas introduced these coordinates to solve the helium

atom, he initially used

s = r1 + r2, t = r12, u = r1− r2 instead of r1, r2, r12. However, both of these

bases are equivalent because there is an invertible linear transformation relating

the two basis sets.


s

t

u

 =


1 1 0

0 0 1

1 −1 0



r1

r2

r12

 (3.21)

The significance of Hylleraas coordinates is to include the r12 term as an inde-

pendent parameter. The inclusion of powers of r12 in the basis set generates

much more rapidly converging results compared to those of a configuration in-

teraction calculation (this is a very common method used in quantum chemistry

for finding the ground state energies of atoms and molecules).

3.3.2 Hylleraas Basis Sets

The variational basis sets used in this work are modified Hylleraas basis sets

Ψ =

Ω∑
ijk

cijk[ri1r
j
2r
k
12e
−αr1e−βr2 ± ri2r

j
1r
k
12e
−αr2e−βr1 ] (3.22)

i+ j + k ≤ Ω (3.23)

The above basis set is called a single Hylleraas basis set. The α’s and β’s that

appear in these basis sets are nonlinear parameters. Larger α’s and β’s will

describe states where the electrons are closer to the nucleus while smaller α’s

and β’s will describe states where the electrons are further from the nucleus.

The number of terms in a single Hylleraas basis set is

N =
(Ω + 1)(Ω + 2)(Ω + 3)

6
(3.24)

(see Appendix E for proof)

so the number of terms in a single basis set grows roughly like Ω3 which is very

rapid!
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The term on the right of the ± in (3.22) is the exchange term. The sign of the

exchange term is determined by the required symmetry of the state represented

by Ψ. Electrons are fermions and so any wave function describing electrons must

be antisymmetric under an interchange of the electrons (switching the states

of any two electrons must yield an overall minus sign in the wave function).

The total wave function is a product of the spatial and spin wave functions.

The ground state of helium (1s)2 1S0 has the two electrons in a spin singlet

configuration, so the spin part of the wave function is antisymmetric. Thus for

the ground state of helium the exchange term in Ψ would be added (+) in order

to make the spatial part of the wave function symmetric.

An extension of the basis sets used in this work are triple basis sets, which

are simply constructed from three individual single Hylleraas basis sets

Ψ =

q∑
p=1

Ωp∑
i,j,k

cpijk[ri1r
j
2r
k
12e
−αpr1e−βpr2 ± ri2r

j
1r
k
12e
−αpr2e−βpr1 ] (3.25)

with i + j + k ≤ Ωp for each basis set in the p sum. q = 2 corresponds to a

double basis set and q = 3 to a triple basis set. For a sufficiently large basis, a

triple basis set produces variational energies which converge faster to the true

energies than its double basis set counterpart. Figure 3.3 clearly shows this

difference in convergence rates.

Diagonalizing the Hamiltonian matrix is equivalent to optimizing the linear

coefficients in our Hylleraas basis set, cpijk (see Appendix A for a proof of this).

After diagonalizing the Hamiltonian matrix, only the nonlinear parameters that

appear in our basis sets will need to be optimized. However, this turns out to

be a time consuming task.

We choose initial nonlinear parameters αp = αp0 and βp = βp0 , then solve

the generalized eigenvalue problem (equation (3.19)) which yields an entire pseu-

dospectrum of energy eigenvalues which approximates the true energy spectrum.

We keep track of the variational eigenvalue we are interested Ẽn and repeat the

process using an adjusted set of nonlinear parameters. Newton’s method is used
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Figure 3.3: Comparison of the triple and double basis sets’ rates of convergence to the

true energy E for the 1s2p1P state of neutral helium.
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to find the nonlinear parameters that minimize Ẽn and so the generalized eigen-

value problem needs to be solved multiple times before the optimal nonlinear

parameters are found. Luckily, the nonlinear parameters can all be optimized

simultaneously so this entire procedure does not need to be repeated for each

individual nonlinear parameter one at a time (this is explained in reference [26]).

There is a simple way to increase the accuracy of the upper bounds to the

energies that does not involve optimizing the nonlinear parameters. Increasing

the size of a basis set by including more basis functions, guarantees lower and

thus improved upper bounds to the true energies (see Appendix B). When using

a triple basis set, we would generally start with Ω1 = 10, Ω2 = 10, Ω3 = 2 and

then end around Ω1 = 18, Ω2 = 18, Ω3 = 10, incrementing all of the Ωp’s by

1 each time. The optimal nonlinear parameter groups, (αp, βp), each increase

roughly linearly with respect to Ω as Drake et al. have explained in reference

[30]. In order to understand why this happens, we will analyze just a single
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Table 3.1: number of terms N in a typical triple basis set for various Ω.

Ω N

10 324

11 411

12 512

13 630

14 764

15 918

16 1098

17 1283

18 1495

The triple basis set used to create this table consisted of single basis set sectors of size

Ω1 = Ω2 = Ω, Ω3 = Ω − 8

.

Hylleraas basis set

Ψ =

Ω∑
ijk

cijkr
i
1r
j
2r
k
12e
−αr1e−βr2 (3.26)

We only need a general idea of how the nonlinear parameters vary with Ω so

the exchange term is left out in order to simplify the calculations. Taking the

derivative of 3.26 with respect to r1

∂Ψ

∂r1
=

Ω∑
ijk

cijk

(
i

r1
− α

)
ri1r

j
2r
k
12e
−αr1e−βr2 (3.27)

We will replace the above sum in 3.27 with only the dominant term

∂Ψ

∂r1
=

(
Ω

r1
− α

)
ri1r

j
2r
k
12e
−αr1e−βr2 (3.28)

Now we can find where Ψ peaks with respect to r1.
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(
Ω

r1
− α

)
ri1r

j
2r
k
12e
−αr1e−βr2 = 0

Ω

r1
− α = 0

r1 =
Ω

α
(3.29)

Ψ will be optimized to describe only a single energy eigenstate. Assuming

that the optimized Ψ can accurately approximate the true eigenstate, then a

sequence of Ψ(Ωn) describing this eigenstate should all have the same peak

location r1 =
Ωn
αn

. This means that if Ω is increased, the corresponding optimal

α must increase by the same amount. Exactly the same argument can be used

for
∂Ψ

∂r2
to arrive at an identical conclusion for β. There were some assumptions

and simplifications used to arrive at these conclusions and so the final result

of this analysis is that the optimized nonlinear parameters for a given wave

function should increase roughly linearly with Ω.

It is also interesting to note that the three sets of nonlinear parameters tend

to spread out at different rates as can be seen in figure 3.4. As Ω is increased,

each of these three sectors of the triple basis set will describe phenomenon at

different length scales due to this separation.

3.3.3 Pyramidal Basis Sets

A pyramidal basis stems from the success of the triple basis set, achieved by the

inclusion of multiple length scales, αq, βq into the basis set. A pyramidal basis

set has the form

Ψ =

pn∑
q=1

Ωq∑
ijk

c
(q)
ijk[ri1r

j
2r
k
12e
−αqr1e−βqr2 ± ri2r

j
1r
k
12e
−αqr2e−βqr1 ] (3.30)

A single pyramidal basis set includes pn single Hylleraas basis sets, each with

different numbers of terms determined by the Ωq and the different nonlinear

parameters αq, βq. Each of the single Hylleraas basis sets that compose the
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Figure 3.4: Spread of nonlinear parameters with increasing basis size
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overall pyramidal basis set are arranged in layers like that of a pyramid (see

table 3.2).

There are also restrictions on the Ωq’s and αq βq to give the basis sets more

structure thereby making them more consistent and removing some unnecessary

degrees of freedom as the basis size increases. The restrictions are

αq+1 = Mαq

βq+1 = Mβq

Ωq+1 = Ωq − 1

where M is a constant, predetermined multiplying factor and is a degree of

freedom along with α1, β1 and Ω1.

Here is an example to help the reader understand the components of a pyra-

midal basis set. To construct our very first pyramidal basis set in a pyramidal
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Table 3.2: Construction of a pyramidal basis set

Ω = 5;M3α0,M
3β0

Ω = 5;M2α0,M
2β0 Ω = 6;M2α0,M

2β0

Ω = 5;Mα0,Mβ0 Ω = 6;Mα0,Mβ0 Ω = 7;Mα0,Mβ0

Ω = 5;α0, β0 Ω = 6;α0, β0 Ω = 7;α0, β0 Ω = 8;α0, β0

The columns of this table contain the components of the pyramidal basis set at each

stage of its construction. Going from leftmost column to the rightmost we see how

each increase in the size of the pyramidal basis set includes another single Hylleraas

basis set.

basis set series, the degrees of freedom α1, β1 and Ω1 are chosen and we set

pn = 1. To make this example more concrete let’s set α1 = 1 β1 = 2 Ω1 = 5

and M = 2. The result is a single Hylleraas basis set (Just to clarify, we chose

M now, but it does not affect this first basis set. We could have chosen M in

the next step instead)

Ψ =

5∑
ijk

c
(1)
ijk[ri1r

j
2r
k
12e
−1r1e−2r2 ± ri2r

j
1r
k
12e
−1r2e−2r1 ]

Now, for the next pyramidal basis set in the series, we set pn = 2 and raise

Ω1 up to six from five, With M = 2, α2 = M × α1 = 2 and β2 = M × β1 = 4.

Then the next pyramidal basis set is the following double basis set

Ψ =

6∑
ijk

c
(1)
ijk[ri1r

j
2r
k
12e
−1r1e−2r2 ± ri2r

j
1r
k
12e
−1r2e−2r1 ]

+

5∑
ijk

c
(2)
ijk[ri1r

j
2r
k
12e
−2r1e−4r2 ± ri2r

j
1r
k
12e
−2r2e−4r1 ]

For the next basis set, Ω1 and pn would be incremented yet again by one, with

α3 = M × α2 = 4, β3 = M × β2 = 8 resulting in the triple basis set
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Ψ =

7∑
ijk

c
(1)
ijk[ri1r

j
2r
k
12e
−1r1e−2r2 ± ri2r

j
1r
k
12e
−1r2e−2r1 ]

+

6∑
ijk

c
(2)
ijk[ri1r

j
2r
k
12e
−2r1e−4r2 ± ri2r

j
1r
k
12e
−2r2e−4r1 ]

+

5∑
ijk

c
(3)
ijk[ri1r

j
2r
k
12e
−4r1e−8r2 ± ri2r

j
1r
k
12e
−4ar2e−8r1 ]

The advantage that these pyramidal basis sets have is that they are not

restricted to describing just a couple length scales. Each increase in size of a

pyramidal basis set includes another single Hylleraas basis set with larger non-

linear parameters. This corresponds to incorporating smaller distance scales

into the total wave function Ψ, ideally leading to improved numerical preci-

sion for the variational energy eigenvalues once the optimal linear parameters

c
(q)
ijk are found. The presence of these large nonlinear parameter terms in the

pyramidal basis sets also results in much larger highest energies in the pseu-

dospectra. Naturally, the question arises as to whether these pyramidal basis

sets are any better than the triple basis sets at retrieving accurate eigenvalues

for the two-electron TISE – does the inclusion of the extra length scales make

a significant difference in the variational energies? The answer to this question

will be discussed in the results chapter, section 4.2.

3.4 Rayleigh-Schrödinger Perturbation Theory

Perturbation theory is an important and useful method of finding an approxi-

mate solution to a difficult TISE. Most of the time the TISE for the Hamiltonian

we are interested in is either very difficult to solve, or it cannot be solved ana-

lytically (such is the case with our three-body Z-scaled Hamiltonian). In these

very common cases, perturbation theory is used to turn a single very difficult

problem (solving the full TISE) into an infinite series of easier problems in the

hope that the solutions to the easy problems can be pieced together to form an

approximate solution to the difficult problem.
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Perturbation theory begins by splitting the Hamiltonian into two parts. The

first part H0 is a known exactly solvable part and the second part is the rest of

the Hamiltonian which is denoted by λV where λ is a parameter controlling the

strength of the perturbation. The TISE for the latter part of the Hamiltonian

usually doesn’t have a simple or known solution and is called the “perturbation”.

In order to attain accurate results upon application of perturbation theory,

the perturbation should not be the dominant part of the Hamiltonian. To clarify

this condition, we require that the differences in the energy spectrum of H and

H0 be relatively small. Of course, it is difficult to guess if this condition is met

before the spectrum of H is found, so usually perturbation theory is applied

first and then the resulting spectrum is compared to the spectrum of H0 to see

if there are any large differences.

The Hamiltonian we have constructed is

H = H0 + λV (3.31)

The TISE then becomes

(H0 + λV )|ψm〉 = Em|ψm〉 (3.32)

λ is an auxiliary variable that plays the role of an expansion parameter. In the

case of the Z-scaled two-electron Hamiltonian, we set λ =
1

Z
at the end of the

calculation.

We assume the energies and wave functions have power series solutions

Em =

∞∑
i=0

λiEim (3.33)

|ψm〉 =

∞∑
i=0

λi|ψim〉 (3.34)

where the subscript m represents which state we are working with (m = 1 would

be the ground state) and the superscript i that appears above the coefficients

in the two separate series is called the “order” of the coefficient. Expanding
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these in equation (3.32) and equating powers of λ to zero gives us the following

sequence of equations

λ0 : H0|ψ0
m〉 = E0

m|ψ0
m〉 (3.35)

λ1 : H0|ψ1
m〉+ V |ψ0

m〉 = E1
m|ψ0

m〉+ E0
m|ψ1

m〉 (3.36)

λ2 : H0|ψ2
m〉+ V |ψ1

m〉 = E2
m|ψ0

m〉+ E1
m|ψ1

m〉+ E0
m|ψ2

m〉 (3.37)

λn : H0|ψnm〉+ V |ψn−1
m 〉 =

n∑
k=0

En−km |ψkm〉 (3.38)

Equation (3.35) is already solved – it is the Schrödinger equation for the known

piece of the Hamiltonian H0. Equation (3.36) and (3.37) are the first and second

order equations respectively. Equation (3.38) is the nth order equation for any

general n ≥ 1.

Now, we must decide how to normalize all of these wave functions. First,

we will require that both the zeroth order wave function |ψ0
m〉 and the full wave

function |ψm〉 be normalized to unity.

〈ψ0
m|ψ0

m〉 = 1 (3.39)

〈ψm|ψm〉 =

∞∑
i=0

∞∑
j=0

λi+j〈ψim|ψjm〉 = 1 (3.40)

These equations create a normalization condition to be satisfied for each order

of λ.

λn :

n∑
i=0

〈ψn−im |ψim〉 = δn0 (3.41)

In the absence of degeneracy (Ei 6= Ej ,∀i 6= j) the wave function can always be

taken to be real. In taking |ψm〉 to be real, equation (3.41) becomes
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λ0 : 〈ψ0
m|ψ0

m〉 = 1 (3.42)

λ1 : 〈ψ1
m|ψ0

m〉 = 0 (3.43)

λn, n ≥ 2 : 〈ψnm|ψ0
m〉 = −1

2

n−1∑
i=1

N∑
l=0

〈ψn−im |ψ0
l 〉〈ψ0

l |ψim〉 (3.44)

The second sum in the above equation is over all of the N members of the

variational basis set.

Now, we can apply 〈ψ0
m| to both sides of equation (3.38) to get the nth order

energy equation.

Enm = 〈ψ0
m|V |ψn−1

m 〉 −
n−1∑
i=1

〈ψ0
m|ψim〉En−im (3.45)

Finally, we can apply 〈ψ0
m′ | with m′ 6= m to equation (3.38) to get the nth order

wave function coefficients

〈ψ0
m′ |ψnm〉 =

〈ψ0
m′ |V |ψn−1

m 〉
E0
m − E0

m′
−
n−1∑
i=0

〈ψ0
m′ |ψim〉En−im

E0
m − E0

m′
(3.46)

Once the wave function coefficients 〈ψ0
m′ |ψnm〉 and the energy coefficients Enm

are calculated from n = 0 up to some integer n = K, then the true m’th

eigenfunction and eigenvalue of the TISE for the full Hamiltonian H can be

approximated by

Em ≈
K∑
i=0

λiEim (3.47)

|ψm〉 ≈
K∑
i=0

N∑
j=0

λi|ψ0
j 〉〈ψ0

j |ψim〉 (3.48)

where the j sum is over all of the N members of the variational basis set.

To conclude this section it will be shown that the calculated second order

energy coefficient for the ground state E2
0 is always an upper bound to its true

value. Using equation (3.45) we have
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E2
0 = 〈ψ0

0 |V |ψ1
0〉

=

N∑
m=1

〈ψ0
0 |V |ψ0

m〉〈ψ0
m|ψ1

0〉

Then we can use equation (3.46) to find

〈ψ0
m|ψ1

0〉 =
〈ψ0
m|V |ψ0

0〉
E0

0 − E0
m

(3.49)

so then

E2
0 =

N∑
m=1

〈ψ0
0 |V |ψ0

m〉〈ψ0
m|V |ψ0

0〉
E0

0 − E0
m

(3.50)

〈ψ0
0 |V |ψ0

m〉 is some complex number denoted by z and 〈ψ0
0 |V |ψ0

m〉〈ψ0
m|V |ψ0

0〉 =

zz∗ which is a positive number for all m. Also, E0
0 is the ground state energy of

the unperturbed Hamiltonian H0 for which we know that E0
0 < E0

m for all m.

Therefore, every term in the sum of equation (3.50) is negative. Increasing the

basis size N will always lower the value of E2
0 and so the value of E2

0 calculated

with any finite basis set is always an upper bound to its true value.

3.5 Neville-Richardson Extrapolation

Neville-Richardson extrapolation is a very useful technique for accelerating the

convergence of series. Given some series of converging coefficients, r0
n, we aim

to construct a new series, r1
n that consists of some combination of the r0

n se-

ries so that it converges to the same limit as the r0
n series but much faster.

This technique is usually used to calculate approximate values for derivatives

and integrals of functions (Romberg Integration) very accurately. In this work

Neville-Richardson extrapolation is used to accelerate the convergence of the

1/Z expansion, as was done by Baker et al.

Neville-Richardson extrapolation may be used when we can make an as-

sumption of the functional dependence of the series we are trying to accelerate.

For example, let
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r(0)
n = C0 +

C1

n
+
C2

n2
+ . . . (3.51)

with the 0 in r
(0)
n representing the unaltered initial sequence of numbers rn.

Assuming we have guessed the correct dependence for rn, it is clear that this

series converges to C0 and the dominant dependence on n comes from the 1/n

term. If we were to somehow drop the 1/n dependence in (3.51) then the series

would converge to the limit C0 faster. This can be done simply by finding the

right linear combination of the series r0
n and r0

n′ so the 1/n term gets canceled

out. For example, we can use

r
(0)
n+1 = C0 +

C1

n+ 1
+

C2

(n+ 1)2
+ . . .

(n+ 1)r
(0)
n+1 = (n+ 1)C0 + C1 +

C2

n+ 1
+ . . . (3.52)

along with

nr(0)
n = nC0 + C1 +

C2

n
+ . . . (3.53)

then by subtracting the two series (3.52),(3.53) we are left with

r(1)
n = (n+ 1)rn+1 − nrn = C0 −

C2

n(n+ 1)
+ . . .

where our new series r
(1)
n converges to C0 faster due to the elimination of the

1/n term. We can then go a step further by creating the r
(2)
n series from the

linear combination of r
(1)
n and r

(1)
n+1 which cancels out the

1

n(n+ 1)
dependence.

Theoretically this procedure could be repeated indefinitely, resulting in faster

convergence each time. However, in practice we lose some significant figures for

each higher-order series we find. Each term in a high-order series arises from

the accumulation of many subtractions between similar numbers resulting in a

net loss of significant figures. If Neville-Richardson extrapolation is carelessly

applied too many times without validating the numerical stability of the co-

efficients in the series, then untrustworthy extrapolations could be mistakenly
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assumed to yield accurate results. Thus, the Neville-Richardson extrapolation

should be thought of as a way of trading significant figures for enhanced accuracy

and should only be used until the desired balance is found.
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Chapter 4

Results

This chapter describes the entire process of obtaining an accurate estimate to

the radius of convergence of the 1/Z expansion in great detail. The meaning of

the value of λ∗ obtained is also explained.

4.1 The Procedure

As mentioned in the last chapter, the Schrödinger equation for the two-electron

atom Hamiltonian cannot be solved analytically and so an approximation method

must be used to generate the eigenvalues and eigenvectors. The Z-scaled Hamil-

tonian can be split into a solvable part H0 and a perturbation λV according

to

H = −1

2
(∇2

1 +∇2
2)− 1

r1
− 1

r2
+
Z−1

r12
(4.1)

H0 = −1

2
(∇2

1 +∇2
2)− 1

r1
− 1

r2
(4.2)

λV =
Z−1

r12
(4.3)
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where λ = Z−1 and V =
1

r12

H0 consists of two hydrogen atom Hamiltonians added together and V is

the potential energy due to the inter-electron Coulomb interaction in Z-scaled

atomic units. The TISE for this Hamiltonian is

(H0 + λV )ψn = Enψn (4.4)

We assume power series solutions for En and ψn

En =
∞∑
i=0

λiEin (4.5)

ψn =

∞∑
i=0

λiψin (4.6)

which breaks the TISE into an infinite sequence of equations indexed by the

“order” i. These equations are

λi : H0ψ
i
n + V ψi−1

n =

i∑
k=0

Ei−kn ψkn (4.7)

which come from section 3.4. We first must solve the zeroth order equation

H0ψn = Enψn (4.8)

which is a separable differential equation with solutions

ψn = ψn1l1m1
ψn2l2m2

En = − 1

n2
1

− 1

n2
2

(4.9)

where the ψnlm (n ≥ 1, l ≤ n − 1 and |m| ≤ l) are the eigenfunctions of the

Schrödinger equation for a single hydrogen atom Hamiltonian.

The variational method was used to generate a complete set of pseudostates

from the double hydrogenic TISE (4.8). Both the triple and pyramidal varia-

tional basis sets described in section 3.2 were used. Table 4.1 shows approx-

imations to the energies for some states of helium after using the variational
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method with a double basis set. The calculation of each one of these approx-

imate energies is an arduous process. We would start with a relatively small

double basis set of roughly 200 terms and optimize the nonlinear parameters so

that the variational energy of interest was minimized (recall that the variational

energies are all upper bounds to the true energies). Each optimization involved

multiple applications of the inverse iteration method (see Appendix C.3) for

different values of the αi and βi. Each run of the inverse iteration method takes

O(n3) operations to complete (where n is the number of terms in the basis set).

Once the optimal variational energy and nonlinear parameters were found for

a given basis set size, Ω1 and Ω2 were each incremented by one and the entire

process was repeated for the next larger basis set in the sequence. Basis sizes

of up to 2000 terms could successfully be used before encountering issues of

numerical stability. Finding the optimal nonlinear parameters for a 2000 term

basis set took over 8 hours of runtime on a UNIX system with an Intel Core2

quad Q9450 2.66Ghz CPU (all calculations were performed in quadruple preci-

sion arithmetic in f77). After the optimized variational energies were obtained

for many different basis sizes n these energies were extrapolated to infinite basis

size n→∞. The extrapolated energies are the values displayed in table 4.1.
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Table 4.1: Highly accurate energies for helium 1P states achieved by double basis sets

State Energy

1s2p1P -2.123843086498101362(7)

1s3p1P -2.05514636209194349(1)

1s4p1P -2.03106965045024067(1)

1s5p1P -2.019905989900846436(5)

1s6p1P -2.013833979671740067(8)

1s7p1P -2.0101693145293889(1)

1s8p1P -2.00778912713323586(2)

1s9p1P -2.00615638465285382(3)

1s10p1P -2.00498798380221815(4)

The numbers in the brackets are the uncertainties in the last recorded significant digits

Neither the triple nor the pyramidal basis sets are orthogonal basis sets.

Using an orthogonal basis set reduces the generalized eigenvalue problem to the

simpler TISE (see Appendix A) and so these basis sets were orthonormalized.

This was done by calculating and diagonalizing the overlap matrix

Oij = 〈φi|φj〉 (4.10)

where φk is the kth member of the chosen basis set. After O was diagonalized

a scale change matrix was applied so that O = I in the rescaled basis

O =


λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

→ StOS =


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 (4.11)

This new orthonormal basis set is a linear combination of the original basis set

elements.

The variational method was used via diagonalizing the double hydrogenic

Hamiltonian matrix H0 expressed in the orthonormalized basis sets. Three
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different matrix diagonalization procedures were used and are described in Ap-

pendix C. The exact ground state of the zeroth order TISE (equation (4.8))

ψ100ψ100 = e−r1e−r2 (4.12)

was included in all of the basis sets (it is omitted in the basis set tables). This

ensured a very accurate ground state wave function and ground state energy

upon application of the variational method.

The next step in the process was to progressively increase the size of the basis

sets. For example, for a triple basis set we would usually start with Ω1 = Ω2 =

10,Ω3 = 2 and progressively work up to Ω1 = Ω2 = 17,Ω3 = 9 in increments of

1. For each of these basis sizes the procedure of orthonormalizing the basis set

and then diagonalizing H0 was done. After the eigenvectors and eigenvalues of

H0 were found for a given basis set, Rayleigh-Schrödinger perturbation theory

was used to find En0 , of the 1/Z expansion. The appropriate equations derived

in section 3.4 are

En0 = 〈ψ0
0 |V |ψn−1

0 〉 −
n−1∑
k=1

〈ψ0
0 |ψk0 〉En−k0 (4.13)

〈ψ0
m|ψn0 〉 =

〈ψ0
m|V |ψn−1

0 〉
E0

0 − E0
m

−
n−1∑
k=0

〈ψ0
m|ψk0 〉En−k0

E0
0 − E0

m

(4.14)

where m 6= 0

These equations were used to sequentially calculate the 1/Z expansion co-

efficients for both the ground state energy and the ground state eigenfunction

up to 1000th order (n = 1000). With the 1/Z expansion coefficients calculated,

the radius of convergence of the series could be estimated with the ratio test

λ∗ = lim
n→∞

1

rn
(4.15)

where the rn are the ratios of the 1/Z series coefficients

rn =
En+1

0

En0
(4.16)
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The rn series were very slowly converging and so the Neville-Richardson

extrapolation technique (section 3.5) was used to accelerate the rate of conver-

gence. This method was used by Baker et. al. and so we could compare our

results with theirs. We assumed the rn had the form

rn = C0 +
C1/2

n1/2
+
C1

n
+
C3/2

n3/2
+
C2

n2
+ . . . (4.17)

because there was convincing evidence for this in reference [1] and also because

our own analysis of the rn’s showed agreement with this behaviour. For large n

this series converges to C0 = Z∗. Two different first order Neville-Richardson

extrapolations were used

sn = (n+ 1)rn+1 − nrn = C0 +
C1/2

2n1/2
−
C1/2 + 4C3/2

8n3/2
− C2

n(n+ 1)
+O(n−5/2)

(4.18)

(the 1/n dependence is canceled out in the sn series)

tn = 2[(n+
1

2
)rn+1−nrn] = C0−

C1

n+ 1
−

8C3/2 − C1/2

4n3/2
− 3C2

(n+ 1)2
+O(n−5/2)

(4.19)

Both of these series converge to C0 = Z∗ but faster than the original rn series.

A second order Neville-Richardson extrapolation was constructed

vn = (n+ 2)tn+1− (n+ 1)tn = C0 +
8C3/2 − C1/2

8n3/2
+

3C2

(n+ 1)(n+ 2)
+O(n−5/2)

(4.20)

but due to the loss of numerical precision in their calculation, only the vn which

were constructed from our most accurate En (En → rn → tn → vn) could be

used to determine λ∗.

A least squares fit was used to extrapolate rn, sn, tn and vn to 1/n = 0

(n→∞). The fits that were applied to each series were
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rn = a+
b

n1/2
+
c

n

sn = a+
b

n1/2
+
c

n

tn = a+
b

n

vn = a+
b

n3/2
+

c

n2

When these least square fits were plotted with respect to 1/n the y-intercept of

the best fit line would serve as the estimated value for a ≈ Z∗ =
1

λ∗
thereby

yielding an approximation to the radius of convergence of the 1/Z expansion

λ∗.

4.2 Calculations

The En were calculated up to 1000th order using various different basis sets.

Stability checks were used to estimate the precision of the En. These stability

checks were performed by changing all of the nonlinear parameters in the basis

set by a small amount and then recalculating the 1/Z expansion coefficients.

The two sets of En would be compared and the decimal digits that were in

agreement were assumed to be correct.

Tables 4.2 – 4.5 display the most important basis sets that were used to

calculate the 1/Z expansion coefficients. Both triple and pyramidal basis sets

were used to solve the Schrödinger equation (4.8) via the variational method.

Tables 4.2 and 4.3 display two of the triple basis sets that were used. Tables 4.4

and 4.5 show the two most useful pyramidal basis sets.

The solutions to equation (4.8) are known and the exact ground state is

ψ0 =
1

π
e−r1−r2 (4.21)

Basis sets that do not include the exact ground state result in inaccurate eigen-

vectors and eigenvectors and hence inaccurate En. The exact ground state was
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included in all of the variational basis sets used in this thesis (it is omitted in the

relevant tables). The inclusion of the exact ground state in a basis set not only

improved the accuracy of the variational eigenvalues and eigenvectors obtained

by applying the variational method to equation (4.8), but also provided a way

of estimating the numerical precision of the variational eigenvectors. Upon di-

agonalization of the Hamiltonian matrix H0 corresponding to the Hamiltonian

(4.1), the variational ground state eigenvector φ0 should be exactly

φ0 =


1

0
...

0

 (4.22)

For small basis sets of only a few hundred terms, φ0 would agree with ψ0 to

roughly 15 decimal digits. As basis sizes increased, the number of arithmetic op-

erations required to diagonalize H0 would rapidly increase, reducing the number

of significant figures in the resulting variational eigenvectors φn. It was required

that φ0 agree with ψ0 to at least 10 decimal digits in order to achieve apprecia-

bly accurate 1/Z expansion coefficients. The deviation of the variational energy

from the true energy δE is roughly proportional to the square of the deviation of

the variational wave function from the true wave function δψ. Therefore if the

variational wave function is accurate to 10 decimal digits we can be confident

that the variational energy is accurate to at least 20 decimal digits.

The first basis set that was used was the H− triple basis set shown in ta-

ble 4.2. This basis set used nonlinear parameters that were optimized for the

ground state of H−. The nonlinear parameters were found with a program

called dpoldl.f which used the inverse iteration method to find a single eigen-

value and eigenvector pair from a Hamiltonian matrix (see Appendix C.3). After

performing a stability check to the largest H− triple basis set, the resulting En

were found to be accurate to at least 4 decimal digits up to 200th order. The

resulting sn and tn series were fitted using n = 100 to n = 200 which yielded

λ∗ = 1.10143 and λ∗ = 1.09796 respectively. The vn series was numerically
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Table 4.2: Triple basis set optimized for H−

Ω α1 β1 α2 β2 α3 β3

10 0.94318 0.51190 2.41467 2.52594 5.22424 6.90106

11 0.96783 0.51624 2.32599 2.75018 7.60901 10.04987

12 0.96143 0.51984 2.68549 2.78174 9.11432 7.46344

13 0.98199 0.51904 2.50262 2.90271 10.28485 10.53516

14 0.98279 0.52069 2.56238 3.04138 10.75458 10.78339

15 0.98920 0.52222 2.85748 2.84436 11.00897 11.10162

16 1.00073 0.52576 3.23096 2.78528 13.33142 12.31256

17 1.02875 0.53302 3.03937 3.17322 13.12842 13.87701

Table 4.3: Triple basis set optimized for He

Ω α1 β1 α2 β2 α3 β3

10 1.23962 1.19568 2.44611 2.13763 5.86517 5.93225

11 1.27502 1.22772 2.61005 2.26721 6.40723 6.43719

12 1.29248 1.23926 2.75348 2.45520 6.89081 6.89404

13 1.31207 1.23779 3.06598 2.57349 9.14484 9.16608

14 1.32660 1.28516 2.88397 3.17126 11.19373 11.80603

15 1.34479 1.28821 2.96136 3.41583 12.26294 12.34119

16 1.36322 1.28998 3.10455 3.79791 14.28326 15.38464

17 1.38293 1.30011 3.30933 4.07678 17.85199 18.23389

unstable and could not be used to estimate λ∗.

The success of the H− triple basis set in finding accurate En necessitated a

comparison with the He triple basis set (table 4.3). This basis set used nonlinear

parameters optimized for the ground state of helium. It was constructed by

Drake et al. in reference [30] and so the optimal nonlinear parameters were

taken directly from this work. Even though the nonlinear parameters of the

H− and He triple basis sets are almost equivalent, the differences between their

En are astounding. The He En would begin oscillating between positive and
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Table 4.4: Pyramidal basis with α0 = 1.300, β0 = 1.450 and M = 2.2

basis set number: 1 2 3 4 5 6

α = 147.4, β = 164.4 9

α = 66.98, β = 74.72 9 10

α = 30.45, β = 33.97 9 10 11

α = 13.84, β = 15.44 9 10 11 12

α = 6.292, β = 7.018 9 10 11 12 13

α = 2.860, β = 3.190 9 10 11 12 13 14

α = 1.300, β = 1.450 10 11 12 13 14 15

The values in this table are the Ω’s for each of the single Hylleraas basis sets used to

construct the pyramidal basis set. The columns of this table show the components of

the pyramidal basis set at each stage in its construction. The smallest basis size is

represented by the left-most column and the largest basis size is represented by the

right-most column of this table

Table 4.5: A special pyramidal basis set with α0 = 2.000, β0 = 2.200 and M = 2.0

containing a double basis set (α1 = 0.500, β1 = 0.500), (α2 = 0.950, β2 = 0.200)

basis set number: 1 2 3 4 5 6 7 8

α = 128.0, β = 140.8 5

α = 64.00, β = 70.40 5 6

α = 32.00, β = 35.20 5 6 7

α = 16.00, β = 17.60 5 6 7 8

α = 8.000, β = 8.800 5 6 7 8 9

α = 4.000, β = 4.400 5 6 7 8 9 10

α = 2.000, β = 2.200 5 6 7 8 9 10 11

α = 0.950, β = 0.200 5 6 7 8 9 10 11 12

α = 0.500, β = 0.500 6 7 8 9 10 11 12 13
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negative values for n ≥ 100 while the H− En were all negative. Performing

a stability check to these En’s determined they were not accurate to even one

decimal for n > 50 which explained these oscillations. Meaningful sn and tn

series could not be constructed and so no estimation of λ∗ could be found from

the He basis sets. However, E2 for the He triple basis set is extremely accurate

compared to the E2 from the H− triple basis set.

The second order coefficient for the ground state energy E2 calculated using

a finite variational basis set is an upper bound to its true value (see 3.4. The

notation E2 is used and not E2
0 because only the ground state energy is of

interest and so the 0 label is unnecessary and hence is removed). One minor

accomplishment of this work was to find a very accurate value of E2. Using a

large He triple basis set (the last row in table 4.3) E2 was calculated to be

Table 4.6: E2 for the He triple basis set in table 4.3

basis size E2 Difference Ratio

324 -0.157 666 429 355 860 486

411 -0.157 666 429 446 395 895 -0.000 000 000 090 535 409

512 -0.157 666 429 465 780 973 -0.000 000 000 019 385 078 0.214

630 -0.157 666 429 468 841 650 -0.000 000 000 003 060 677 0.158

764 -0.157 666 429 469 129 725 -0.000 000 000 000 288 075 0.094

918 -0.157 666 429 469 147 824 -0.000 000 000 000 018 099 0.063

1089 -0.157 666 429 469 150 371 -0.000 000 000 000 002 547 0.141

1283 -0.157 666 429 469 150 850 -0.000 000 000 000 000 479 0.188

The difference column is simply d(i) = E(i) − E(i − 1) and the ratio column is the

ratio of the differences r(i) =
d(i)

d(i− 1)
where E(i) represents the ith E2 value in the

table.

Therefore the He triple basis set yields the result

E2 = −0.157 666 429 469 150 8(1) (4.23)

where the error in the 15th decimal digit is estimated from the convergence
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behaviour of E2 in table 4.6.

A pyramidal basis set was used in the attempt to find a more accurate

E2 (table 4.4). The first set of nonlinear parameters used in the pyramidal

basis set were found by using Newton’s method to minimize the resulting E2

obtained from a series of different runs using α1, β1 in the range (0.15, 2.00).

The values α1 = 1.3000 and β1 = 1.45000 were optimal. Some trial and error

was involved in finding the optimal M in the pyramidal basis set to minimize

E2
0 . M = 1.1 and M = 4 failed to provide E2 that were smaller than the He

triple basis E2 shown above. These basis sets failed for two different reasons.

For M = 1.1, the pyramidal basis sets quickly ran into numerical dependence

issues when using large basis sizes of 1000 terms or more. This would cause

negative eigenvalues in the overlap matrix (these should all be positive) during

the diagonalization procedure and would lead to very inaccurate En. For the

M = 4 case it seemed that the nonlinear parameters spread out too quickly and

missed some important ranges of values that needed to be included in the basis

sets. Thus, M was varied from the range (2.0, 3.0) in steps of 0.1 and it was

found that M = 2.2 provided the minimal E2. The E2 for this basis set can be

seen in table 4.7

Table 4.7: E2 for the optimized pyramidal basis set in table 4.4

basis size E2 Difference Ratio

125 -0.157 666 384 056 843 799

284 -0.157 666 429 437 046 212 -0.000 000 045 380 202 413

482 -0.157 666 429 468 960 486 -0.000 000 000 031 914 274 0.000 703

726 -0.157 666 429 469 140 498 -0.000 000 000 000 180 012 0.005 64

1020 -0.157 666 429 469 149 921 -0.000 000 000 000 009 423 0.0523

1372 -0.157 666 429 469 150 846 -0.000 000 000 000 000 925 0.0982

1786 -0.157 666 429 469 150 932 -0.000 000 000 000 000 086 0.093

Therefore our best estimate is

E2 = −0.157 666 429 469 150 932 (4.24)
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which is an improvement to the He basis set upper bound and is likely accurate

up to 16 decimal digits based off of the convergence behaviour displayed in table

4.7.

The main result so far is that the nonlinear parameters used in the He

triple basis set resulted in more accurate low-order En (only for n = 1 to

10) while those of the H− triple basis set yielded more accurate high-order

coefficients. The fact that the H− and He nonlinear parameters are almost

equivalent yet yield very different En emphasizes the importance of the nonlinear

parameters in accurately determining these coefficients. This suggested the use

of the pyramidal basis sets with their many adjustable nonlinear parameters.

As was explained in reference [1], the higher order terms in the 1/Z expan-

sion correspond to the atomic configuration with one electron localized near

the nucleus and the other electron very far from the nucleus. This meant the

pyramidal basis sets would need to incorporate a large number of terms with

nonlinear parameters α ∼ 1 and β ∼ 0. In reference [23] a Hylleraas double

basis set was used to find the variational eigenvectors and eigenvalues of the full

Z-scaled two-electron atom Hamiltonian

H = −1

2
(∇2

1 +∇2
2)− 1

r1
− 1

r2
+
Z−1

r12
(4.25)

at the critical charge Z = Zc = 0.911 028 224 077. The nonlinear parameters in

the double basis set were optimized to minimize the variational ground state

energy. The optimal values are

α1 = 0.95 β1 = 0.15

α2 = 1.20 β2 = 1.10

These values are important because they quantify the configuration of the

ground state of the two-electron atom at the critical nuclear charge. Many

different Hylleraas double basis sets were constructed using nonlinear parame-

ters in the range of α1, β1 ∈ (0.1, 1.5) and α2, β2 ∈ (0.5, 2.0) and their resulting

En were compared with stability checks. After much trial and error, it was
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found that the double basis set yielding the most numerically stable coefficients

had nonlinear parameters

α1 = 0.95 β1 = 0.20

α2 = 0.50 β2 = 0.50

The rest of the pyramidal basis set was also found by trial and error. When

the nonlinear parameters were too spread out (M ≥ 3) the En were inaccu-

rate and when the parameters were too close (M ≤ 1.5) the larger basis sets

would have numerical instability issues (the En couldn’t be calculated in this

case). The most accurately determined coefficients, deemed PYC5TGC68 (PY

- pyramidal basis set, C5 - 25th trial, T - tridiagonalization method, G - exact

ground state included, C68 - basis size of 1268 terms) were calculated using the

pyramidal basis set displayed in table 4.5. The corresponding stability check co-

efficients were calculated and named PYS5TGC68. PYC5TGC68, PYS5TGC68

and the En from reference [1] are all compared in table 4.8. The pyramidal basis

set is very different from the basis set used in reference [1], yet the coefficients

still agree with each other consistently to 4-5 decimal digits even at 400th or-

der. This is very strong evidence that both the coefficients of Baker et al. and

PYC5TGC68 are accurate to at least 4 decimal digits up to 400th order. Com-

paring PYC5TGC68 with PYS5TGC68 further suggests that the PYC5TGC68

coefficients are accurate to 7 decimal digits at 400th order then progressively

become less accurate as the order is increased until they are only accurate to a

single decimal digits place at 1000th order.

Table 4.8: Comparison of different En. D+01 represents 101.

Order PYC5TGC68 PYS5TGC68 Baker et al.

0 -0.100000000000000000D+01 -0.100000000000000000D+01 -0.1000000000D+01

1 0.625000000000000000D+00 0.625000000000000000D+00 0.6250000000D+00

2 -0.157666429469061186D+00 -0.157666429469064706D+00 -0.1576664295D+00

3 0.869903152779249933D-02 0.869903152779037790D-02 0.8699031528D-02

4 -0.888707284437038512D-03 -0.888707284433329529D-03 -0.8887072842D-03
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5 -0.103637184756255541D-02 -0.103637184753620836D-02 -0.1036371848D-02

6 -0.612940521568932322D-03 -0.612940521564856359D-03 -0.6129405205D-03

7 -0.372175573903726286D-03 -0.372175573965889527D-03 -0.3721755765D-03

8 -0.242877976036678087D-03 -0.242877976089230063D-03 -0.2428779732D-03

9 -0.165661052567637774D-03 -0.165661052500029343D-03 -0.1656610547D-03

10 -0.116179204053959596D-03 -0.116179203929500237D-03 -0.1161792026D-03

11 -0.833013504739943577D-04 -0.833013504751361453D-04 -0.8330135003D-04

12 -0.608802760204473510D-04 -0.608802761842094024D-04 -0.6088027632D-04

13 -0.452307186687347326D-04 -0.452307187968662226D-04 -0.4523072242D-04

14 -0.340796639345822576D-04 -0.340796638370494891D-04 -0.3407966122D-04

15 -0.259910694806446132D-04 -0.259910692345773488D-04 -0.2599106570D-04

16 -0.200330679807479729D-04 -0.200330678608721979D-04 -0.2003307002D-04

17 -0.155853719851208268D-04 -0.155853721498356486D-04 -0.1558537543D-04

18 -0.122258428235742841D-04 -0.122258431345964208D-04 -0.1222584280D-04

19 -0.966163863102110297D-05 -0.966163880023896400D-05 -0.9661636835D-05

20 -0.768616391755843100D-05 -0.768616379385725239D-05 -0.7686162634D-05

21 -0.615146876437470400D-05 -0.615146845611535897D-05 -0.6151468041D-05

22 -0.495016965946396487D-05 -0.495016940755158559D-05 -0.4950169803D-05

23 -0.400337907493542029D-05 -0.400337904207284131D-05 -0.4003380609D-05

24 -0.325250666715370080D-05 -0.325250683794070566D-05 -0.3252508668D-05

25 -0.265360278843842312D-05 -0.265360302499295538D-05 -0.2653603522D-05

26 -0.217340034515713548D-05 -0.217340050776406546D-05 -0.2173399140D-05

27 -0.178650897031053388D-05 -0.178650899865092201D-05 -0.1786506716D-05

28 -0.147340222369656894D-05 -0.147340214238070478D-05 -0.1473400370D-05

29 -0.121895780354291647D-05 -0.121895767931750076D-05 -0.1218957262D-05

30 -0.101138815584161237D-05 -0.101138805065657046D-05 -0.1011388955D-05

31 -0.841449816362077080D-06 -0.841449762350028223D-06 -0.8414513883D-06

32 -0.701853825814365217D-06 -0.701853824231400924D-06 -0.7018554629D-06

33 -0.586822576447746191D-06 -0.586822609834926538D-06 -0.5868237564D-06

34 -0.491754239400329644D-06 -0.491754285548133305D-06 -0.4917547384D-06
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35 -0.412966885458207460D-06 -0.412966926801937862D-06 -0.4129667397D-06

36 -0.347502102579374542D-06 -0.347502129764284332D-06 -0.3475015037D-06

37 -0.292973358770102559D-06 -0.292973369970461858D-06 -0.2929725474D-06

38 -0.247448248396153091D-06 -0.247448246660060455D-06 -0.2474474379D-06

39 -0.209356562300208768D-06 -0.209356552688809731D-06 -0.2093558999D-06

40 -0.177418158094906439D-06 -0.177418145552918507D-06 -0.1774177169D-06

41 -0.150586098165288325D-06 -0.150586086370653300D-06 -0.1505858883D-06

42 -0.128001623317019474D-06 -0.128001614355593100D-06 -0.1280016120D-06

43 -0.108958347790855267D-06 -0.108958342353736801D-06 -0.1089584800D-06

44 -0.928736731260952894D-07 -0.928736709389398067D-07 -0.9287388845D-07

45 -0.792658788264941337D-07 -0.792658791031522942D-07 -0.7926612330D-07

46 -0.677356963919785377D-07 -0.677356981989737419D-07 -0.6773592858D-07

47 -0.579514386551424347D-07 -0.579514411484426025D-07 -0.5795163168D-07

48 -0.496369594334234645D-07 -0.496369619758105314D-07 -0.4963709996D-07

49 -0.425618746801168234D-07 -0.425618768692747303D-07 -0.4256196029D-07

50 -0.365335969958006060D-07 -0.365335986376853048D-07 -0.3653363293D-07

51 -0.313908290401061753D-07 -0.313908300970292905D-07 -0.3139082506D-07

52 -0.269982344216686533D-07 -0.269982349557739864D-07 -0.2699820214D-07

53 -0.232420618280624620D-07 -0.232420619521830252D-07 -0.2324201270D-07

54 -0.200265431083002020D-07 -0.200265429493224362D-07 -0.2002648718D-07

55 -0.172709214903264584D-07 -0.172709211656304529D-07 -0.1727086666D-07

56 -0.149069942069114874D-07 -0.149069938119566339D-07 -0.1490694605D-07

57 -0.128770761282253124D-07 -0.128770757323751072D-07 -0.1287703797D-07

58 -0.111323088010161773D-07 -0.111323084486805442D-07 -0.1113228206D-07

59 -0.963125353458672737D-08 -0.963125324924175773D-08 -0.9631238139D-08

60 -0.833871860006730316D-08 -0.833871838936661720D-08 -0.8338713427D-08

61 -0.722477980486034278D-08 -0.722477966568529845D-08 -0.7224783083D-08

62 -0.626396112506875939D-08 -0.626396104788232871D-08 -0.6263970780D-08

63 -0.543454808391681159D-08 -0.543454805616024783D-08 -0.5434562009D-08

64 -0.471801143642781806D-08 -0.471801144494006589D-08 -0.4718027681D-08
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65 -0.409852268363810097D-08 -0.409852271621201413D-08 -0.4098539575D-08

66 -0.356254617090394743D-08 -0.356254621715140752D-08 -0.3562562376D-08

67 -0.309849516567166405D-08 -0.309849521737911556D-08 -0.3098509705D-08

68 -0.269644147319686601D-08 -0.269644152433504557D-08 -0.2696453705D-08

69 -0.234786992438430075D-08 -0.234786997090607519D-08 -0.2347879506D-08

70 -0.204547053062605147D-08 -0.204547057015378724D-08 -0.2045477367D-08

71 -0.178296230455110627D-08 -0.178296233602515444D-08 -0.1782966493D-08

72 -0.155494374000641995D-08 -0.155494376334150539D-08 -0.1554945518D-08

73 -0.135676576741796094D-08 -0.135676578319510258D-08 -0.1356765460D-08

74 -0.118442368277793996D-08 -0.118442369198560513D-08 -0.1184421664D-08

75 -0.103446511493911648D-08 -0.103446511876778550D-08 -0.1034461773D-08

76 -0.903911567084674087D-09 -0.903911566772909495D-09 -0.9039072781D-09

77 -0.790191460845980139D-09 -0.790191457572568186D-09 -0.7901865701D-09

78 -0.691082939189583036D-09 -0.691082934004594687D-09 -0.6910777500D-09

79 -0.604664958058827129D-09 -0.604664951845942807D-09 -0.6046597253D-09

80 -0.529275426006756198D-09 -0.529275419469469962D-09 -0.5292703540D-09

81 -0.463475343241838931D-09 -0.463475336906883963D-09 -0.4634705874D-09

82 -0.406018052846502340D-09 -0.406018047078796500D-09 -0.4060137233D-09

83 -0.355822852556487192D-09 -0.355822847580933030D-09 -0.3558190191D-09

84 -0.311952329654871943D-09 -0.311952325581360713D-09 -0.3119490281D-09

85 -0.273592877758075833D-09 -0.273592874606978336D-09 -0.2735901158D-09

86 -0.240037935473324460D-09 -0.240037933199568534D-09 -0.2400356987D-09

87 -0.210673555515960931D-09 -0.210673554030480709D-09 -0.2106718132D-09

88 -0.184965970911903613D-09 -0.184965970099796992D-09 -0.1849646810D-09

89 -0.162450874060698851D-09 -0.162450873795853660D-09 -0.1624499872D-09

90 -0.142724166105046664D-09 -0.142724166261305102D-09 -0.1427236294D-09

91 -0.125433969419854956D-09 -0.125433969878995606D-09 -0.1254337293D-09

92 -0.110273726082821028D-09 -0.110273726739765063D-09 -0.1102737305D-09

93 -0.969762307450737191D-10 -0.969762315107837627D-10 -0.9697643063D-10

94 -0.853084680777960385D-10 -0.853084688803484585D-10 -0.8530881854D-10
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95 -0.750671435116977509D-10 -0.750671442959861727D-10 -0.7506760448D-10

96 -0.660748118011126965D-10 -0.660748125275944872D-10 -0.6607534835D-10

97 -0.581765214465512599D-10 -0.581765220893895826D-10 -0.5817710380D-10

98 -0.512369045472992300D-10 -0.512369050921888721D-10 -0.5123750794D-10

99 -0.451376515234818643D-10 -0.451376519653831719D-10 -0.4513825588D-10

100 -0.397753185937754456D-10 -0.397753189347213487D-10 -0.3977590813D-10

101 -0.350594231312823748D-10 -0.350594233783711630D-10 -0.3505998589D-10

102 -0.309107882244509907D-10 -0.309107883880934620D-10 -0.3091131557D-10

103 -0.272601030936749282D-10 -0.272601031861291417D-10 -0.2726058924D-10

104 -0.240466705858466850D-10 -0.240466706200464684D-10 -0.2404711213D-10

105 -0.212173168978633322D-10 -0.212173168865271779D-10 -0.2121771238D-10

106 -0.187254420587727667D-10 -0.187254420137667610D-10 -0.1872579156D-10

107 -0.165301926079873521D-10 -0.165301925399082014D-10 -0.1653049741D-10

108 -0.145957404111681750D-10 -0.145957403291090789D-10 -0.1459600269D-10

109 -0.128906537134755920D-10 -0.128906536249376061D-10 -0.1289087625D-10

110 -0.113873483909567250D-10 -0.113873483018704124D-10 -0.1138753438D-10

111 -0.100616089668191522D-10 -0.100616088816449386D-10 -0.1006176182D-10

112 -0.889217034606795414D-11 -0.889217026794802856D-11 -0.8892293565D-11

113 -0.786035242013594706D-11 -0.786035235107528341D-11 -0.7860449467D-11

114 -0.694974072898588531D-11 -0.694974067004462498D-11 -0.6949814948D-11

115 -0.614590726422574101D-11 -0.614590721570952135D-11 -0.6145961819D-11

116 -0.543616627236756619D-11 -0.543616623400623991D-11 -0.5436204106D-11

117 -0.480936058905505987D-11 -0.480936056016354577D-11 -0.4809384397D-11

118 -0.425567461712506826D-11 -0.425567459674277833D-11 -0.4255686832D-11

119 -0.376647056599447881D-11 -0.376647055300189857D-11 -0.3766473360D-11

120 -0.333414500760534003D-11 -0.333414500081794379D-11 -0.3334140293D-11

121 -0.295200318408034152D-11 -0.295200318232116456D-11 -0.2951992627D-11

122 -0.261414883214388951D-11 -0.261414883429682633D-11 -0.2614133867D-11

123 -0.231538757597849070D-11 -0.231538758102481462D-11 -0.2315369423D-11

124 -0.205114218931389675D-11 -0.205114219635467049D-11 -0.2051121873D-11
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125 -0.181737824419410115D-11 -0.181737825246113338D-11 -0.1817356614D-11

126 -0.161053885235781373D-11 -0.161053886121566817D-11 -0.1610516602D-11

127 -0.142748736923636558D-11 -0.142748737817769320D-11 -0.1427465056D-11

128 -0.126545707344778894D-11 -0.126545708208396717D-11 -0.1265435134D-11

129 -0.112200695913970663D-11 -0.112200696718846274D-11 -0.1121985729D-11

130 -0.994982887023476976D-12 -0.994982894294866018D-12 -0.9949626143D-12

131 -0.882483434540491508D-12 -0.882483440922309801D-12 -0.8824642950D-12

132 -0.782829868121658619D-12 -0.782829873565110376D-12 -0.7828119767D-12

133 -0.694539732514489501D-12 -0.694539737020693448D-12 -0.6945231546D-12

134 -0.616303615021774209D-12 -0.616303618629501080D-12 -0.6162883760D-12

135 -0.546964697404201557D-12 -0.546964700179072223D-12 -0.5469507912D-12

136 -0.485500756173071795D-12 -0.485500758198317669D-12 -0.4854881522D-12

137 -0.431008313930139898D-12 -0.431008315298929174D-12 -0.4309969633D-12

138 -0.382688681074413727D-12 -0.382688681883675398D-12 -0.3826785214D-12

139 -0.339835659263986350D-12 -0.339835659609614857D-12 -0.3398266193D-12

140 -0.301824706080536660D-12 -0.301824706053829548D-12 -0.3018167088D-12

141 -0.268103384904734783D-12 -0.268103384589900225D-12 -0.2680963505D-12

142 -0.238182945516178309D-12 -0.238182944988745340D-12 -0.2381767935D-12

143 -0.211630899768106994D-12 -0.211630899094075874D-12 -0.2116255509D-12

144 -0.188064473191687556D-12 -0.188064472427268225D-12 -0.1880598504D-12

145 -0.167144827850588916D-12 -0.167144827042389954D-12 -0.1671408577D-12

146 -0.148571964449771053D-12 -0.148571963635318159D-12 -0.1485685773D-12

147 -0.132080222826102817D-12 -0.132080222034583276D-12 -0.1320773537D-12

148 -0.117434309707395685D-12 -0.117434308960542567D-12 -0.1174318984D-12

149 -0.104425791190741594D-12 -0.104425790503787811D-12 -0.1044237821D-12

150 -0.928699949091818796D-13 -0.928699942918292870D-13 -0.9286833743D-13

151 -0.826032734574548020D-13 -0.826032729148168974D-13 -0.8260192161D-13

152 -0.734805864462625452D-13 -0.734805859797509311D-13 -0.7347949878D-13

153 -0.653733636493007398D-13 -0.653733632574353261D-13 -0.6537250299D-13

154 -0.581676161849073647D-13 -0.581676158640383581D-13 -0.5816694939D-13
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155 -0.517622666104688029D-13 -0.517622663554049946D-13 -0.5176176429D-13

156 -0.460676722690567722D-13 -0.460676720735996473D-13 -0.4606730848D-13

157 -0.410043192722821872D-13 -0.410043191296691137D-13 -0.4100407125D-13

158 -0.365016671819417192D-13 -0.365016670852041234D-13 -0.3650151503D-13

159 -0.324971268102919182D-13 -0.324971267525360866D-13 -0.3249705326D-13

160 -0.289351556337917047D-13 -0.289351556084108475D-13 -0.2893514575D-13

161 -0.257664571421624380D-13 -0.257664571429890552D-13 -0.2576649809D-13

162 -0.229472720536636222D-13 -0.229472720750711729D-13 -0.2294735286D-13

163 -0.204387507449192743D-13 -0.204387507818817737D-13 -0.2043886209D-13

164 -0.182063974925726398D-13 -0.182063975406902081D-13 -0.1820653153D-13

165 -0.162195782247847681D-13 -0.162195782802824032D-13 -0.1621972836D-13

166 -0.144510844509379339D-13 -0.144510845106439494D-13 -0.1445124522D-13

167 -0.128767468935003332D-13 -0.128767469548100463D-13 -0.1287691379D-13

168 -0.114750931005943352D-13 -0.114750931614237407D-13 -0.1147526245D-13

169 -0.102270439834599175D-13 -0.102270440421932783D-13 -0.1022721285D-13

170 -0.911564481032873258D-14 -0.911564486576327267D-14 -0.9115810857D-14

171 -0.812582670655095309D-14 -0.812582675784116334D-14 -0.8125988120D-14

172 -0.724419516834964038D-14 -0.724419521495311399D-14 -0.7244350579D-14

173 -0.645884250153117458D-14 -0.645884254315737353D-14 -0.6458990909D-14

174 -0.575918145320335288D-14 -0.575918148976627088D-14 -0.5759322166D-14

175 -0.513579761963165618D-14 -0.513579765120698156D-14 -0.5135930200D-14

176 -0.458031849171645413D-14 -0.458031851850354261D-14 -0.4580442711D-14

177 -0.408529724552931277D-14 -0.408529726781804817D-14 -0.4085413044D-14

178 -0.364410960271819883D-14 -0.364410962086064173D-14 -0.3644217054D-14

179 -0.325086227773815969D-14 -0.325086229212475350D-14 -0.3250961563D-14

180 -0.290031169874551878D-14 -0.290031170978553101D-14 -0.2900403077D-14

181 -0.258779183921797080D-14 -0.258779184732378907D-14 -0.2587875633D-14

182 -0.230915013022931688D-14 -0.230915013580418738D-14 -0.2309226703D-14

183 -0.206069054084306487D-14 -0.206069054427185043D-14 -0.2060760285D-14

184 -0.183912301808142667D-14 -0.183912301972396706D-14 -0.1839186344D-14
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185 -0.164151856995225397D-14 -0.164151857013892891D-14 -0.1641575895D-14

186 -0.146526935646739952D-14 -0.146526935549652095D-14 -0.1465321098D-14

187 -0.130805322568956994D-14 -0.130805322382626186D-14 -0.1308099795D-14

188 -0.116780219568456059D-14 -0.116780219316081953D-14 -0.1167843994D-14

189 -0.104267443978846623D-14 -0.104267443680413172D-14 -0.1042711852D-14

190 -0.931029382669748890D-15 -0.931029379394148930D-15 -0.9310627789D-15

191 -0.831405559019936998D-15 -0.831405555594008334D-15 -0.8314352894D-15

192 -0.742500926003226425D-15 -0.742500922541941824D-15 -0.7425273210D-15

193 -0.663155355416590780D-15 -0.663155352011555338D-15 -0.6631787249D-15

194 -0.592335062372703400D-15 -0.592335059094808970D-15 -0.5923556954D-15

195 -0.529118754672786777D-15 -0.529118751574837468D-15 -0.5291369198D-15

196 -0.472685311287454887D-15 -0.472685308406697514D-15 -0.4727012569D-15

197 -0.422302819866158771D-15 -0.422302817226670002D-15 -0.4223167746D-15

198 -0.377318822264334377D-15 -0.377318819879231498D-15 -0.3773309961D-15

199 -0.337151633989827339D-15 -0.337151631863282098D-15 -0.3371622189D-15

200 -0.301282618472606313D-15 -0.301282616601651487D-15 -0.3012917896D-15

201 -0.269249310371816966D-15 -0.269249308747943469D-15 -0.2692572269D-15

202 -0.240639293944479805D-15 -0.240639292555028400D-15 -0.2406461000D-15

203 -0.215084752981077139D-15 -0.215084751810433566D-15 -0.2150905789D-15

204 -0.192257618115828987D-15 -0.192257617146434670D-15 -0.1922625813D-15

205 -0.171865245577253087D-15 -0.171865244790445834D-15 -0.1718694516D-15

206 -0.153646568775976740D-15 -0.153646568152677181D-15 -0.1536501123D-15

207 -0.137368670636529388D-15 -0.137368670157789472D-15 -0.1373716362D-15

208 -0.122823730360841649D-15 -0.122823730008271509D-15 -0.1228261934D-15

209 -0.109826303445670368D-15 -0.109826303201759431D-15 -0.1098283311D-15

210 -0.982108983370543422D-16 -0.982108981854017679D-16 -0.9821255006D-16

211 -0.878298171567851362D-16 -0.878298170822536560D-16 -0.8783114560D-16

212 -0.785512315360163358D-16 -0.785512315248224209D-16 -0.7855228316D-16

213 -0.702574677902996562D-16 -0.702574678300516849D-16 -0.7025828348D-16

214 -0.628434785135406827D-16 -0.628434785932355205D-16 -0.6284409414D-16
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215 -0.562154801955283179D-16 -0.562154803055154640D-16 -0.5621592713D-16

216 -0.502897387142140926D-16 -0.502897388461353368D-16 -0.5029004434D-16

217 -0.449914865512054853D-16 -0.449914866979168738D-16 -0.4499167467D-16

218 -0.402539573548532144D-16 -0.402539575103350613D-16 -0.4025404859D-16

219 -0.360175250545781079D-16 -0.360175252138378184D-16 -0.3601753722D-16

220 -0.322289361346375363D-16 -0.322289362936091329D-16 -0.3222888454D-16

221 -0.288406249248463869D-16 -0.288406250802898544D-16 -0.2884052269D-16

222 -0.258101028771276989D-16 -0.258101030265305799D-16 -0.2580996118D-16

223 -0.230994137855183846D-16 -0.230994139270014699D-16 -0.2309924213D-16

224 -0.206746477870208374D-16 -0.206746479192492895D-16 -0.2067445417D-16

225 -0.185055077635708865D-16 -0.185055078856717102D-16 -0.1850529890D-16

226 -0.165649224621322544D-16 -0.165649225736186765D-16 -0.1656470394D-16

227 -0.148287012700723261D-16 -0.148287013707753563D-16 -0.1482847770D-16

228 -0.132752261350030041D-16 -0.132752262250102200D-16 -0.1327500129D-16

229 -0.118851766097173868D-16 -0.118851766893188058D-16 -0.1188495354D-16

230 -0.106412844404122901D-16 -0.106412845100530527D-16 -0.1064106557D-16

231 -0.952811450600743484D-17 -0.952811456624692435D-17 -0.9527901728D-17

232 -0.853186926334208918D-17 -0.853186931481904511D-17 -0.8531664030D-17

233 -0.764021416204933830D-17 -0.764021420545247526D-17 -0.7640017543D-17

234 -0.684212176815551375D-17 -0.684212180419913825D-17 -0.6841934515D-17

235 -0.612773258064290682D-17 -0.612773261004701786D-17 -0.6127555180D-17

236 -0.548823074365138166D-17 -0.548823076712574962D-17 -0.5488063463D-17

237 -0.491573305161693202D-17 -0.491573306984866855D-17 -0.4915575981D-17

238 -0.440318981806574794D-17 -0.440318983170990534D-17 -0.4403042901D-17

239 -0.394429633332544562D-17 -0.394429634299821471D-17 -0.3944159397D-17

240 -0.353341377414866653D-17 -0.353341378042277636D-17 -0.3533286556D-17

241 -0.316549855100812853D-17 -0.316549855441008658D-17 -0.3165380719D-17

242 -0.283603918825355135D-17 -0.283603918926239954D-17 -0.2835930358D-17

243 -0.254099992987659586D-17 -0.254099992892389314D-17 -0.2540899681D-17

244 -0.227677035060671847D-17 -0.227677034807749533D-17 -0.2276678237D-17
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245 -0.204012032961281831D-17 -0.204012032584728151D-17 -0.2040035893D-17

246 -0.182815981324018271D-17 -0.182815980853597908D-17 -0.1828082589D-17

247 -0.163830285488423363D-17 -0.163830284949911013D-17 -0.1638232381D-17

248 -0.146823547510638896D-17 -0.146823546926111214D-17 -0.1468171296D-17

249 -0.131588693415821991D-17 -0.131588692803964112D-17 -0.1315828605D-17

250 -0.117940405284387838D-17 -0.117940404660805181D-17 -0.1179351144D-17

251 -0.105712825669273132D-17 -0.105712825046801059D-17 -0.1057080356D-17

252 -0.947575053246663351D-18 -0.947575047136718072D-18 -0.9475317669D-18

253 -0.849415683346044620D-18 -0.849415677432752559D-18 -0.8493766383D-18

254 -0.761460715031564318D-18 -0.761460709377746486D-18 -0.7614255588D-18

255 -0.682645373428329920D-18 -0.682645368080306033D-18 -0.6826137747D-18

256 -0.612016422066691860D-18 -0.612016417056642023D-18 -0.6119880706D-18

257 -0.548720430808897222D-18 -0.548720426157022580D-18 -0.5486950373D-18

258 -0.491993283148337312D-18 -0.491993278864818030D-18 -0.4919705785D-18

259 -0.441150791357398757D-18 -0.441150787444152142D-18 -0.4411305261D-18

260 -0.395580301984502117D-18 -0.395580298436747147D-18 -0.3955622457D-18

261 -0.354733186722453395D-18 -0.354733183530090505D-18 -0.3547171270D-18

262 -0.318118124850684875D-18 -0.318118121999501736D-18 -0.3181038664D-18

263 -0.285295093437718332D-18 -0.285295090910433590D-18 -0.2852824572D-18

264 -0.255869990406007555D-18 -0.255869988183165257D-18 -0.2558588125D-18

265 -0.229489823524038740D-18 -0.229489821584766483D-18 -0.2294799543D-18

266 -0.205838405502601643D-18 -0.205838403825245505D-18 -0.2058297087D-18

267 -0.184632501724841505D-18 -0.184632500287490522D-18 -0.1846248533D-18

268 -0.165618382814548771D-18 -0.165618381595461272D-18 -0.1656116705D-18

269 -0.148568739316836007D-18 -0.148568738294779489D-18 -0.1485628611D-18

270 -0.133279920294746704D-18 -0.133279919449262235D-18 -0.1332747842D-18

271 -0.119569461692308411D-18 -0.119569461003909712D-18 -0.1195649847D-18

272 -0.107273873930721426D-18 -0.107273873381038015D-18 -0.1072699811D-18

273 -0.962466614358466193D-19 -0.962466610077195075D-19 -0.9624328557D-19

274 -0.863565496830489279D-19 -0.863565493605865664D-19 -0.8635363038D-19
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275 -0.774858979264746471D-19 -0.774858976950759938D-19 -0.7748338107D-19

276 -0.695292780867566878D-19 -0.695292779331074919D-19 -0.6952711529D-19

277 -0.623922023332020808D-19 -0.623922022452497512D-19 -0.6239035038D-19

278 -0.559899837398328512D-19 -0.559899837067445887D-19 -0.5598840411D-19

279 -0.502467160425388421D-19 -0.502467160546470817D-19 -0.5024537447D-19

280 -0.450943599978758845D-19 -0.450943600466145120D-19 -0.4509322603D-19

281 -0.404719251612932998D-19 -0.404719252391275815D-19 -0.4047097181D-19

282 -0.363247370804009783D-19 -0.363247371807536650D-19 -0.3632394045D-19

283 -0.326037809521133659D-19 -0.326037810692890116D-19 -0.3260311994D-19

284 -0.292651137343767935D-19 -0.292651138634859501D-19 -0.2926456972D-19

285 -0.262693375455249603D-19 -0.262693376824095815D-19 -0.2626889416D-19

286 -0.235811279376801664D-19 -0.235811280788412671D-19 -0.2358077079D-19

287 -0.211688113044633918D-19 -0.211688114469917588D-19 -0.2116852779D-19

288 -0.190039862860268586D-19 -0.190039864275373968D-19 -0.1900376539D-19

289 -0.170611845736123393D-19 -0.170611847121824587D-19 -0.1706101666D-19

290 -0.153175669981991446D-19 -0.153175671323114394D-19 -0.1531744371D-19

291 -0.137526512193530972D-19 -0.137526513478424463D-19 -0.1375256528D-19

292 -0.123480677164978466D-19 -0.123480678385029599D-19 -0.1234801283D-19

293 -0.110873411303071980D-19 -0.110873412452265532D-19 -0.1108731187D-19

294 -0.995569431105600041D-20 -0.995569441850804854D-20 -0.9955685996D-20

295 -0.893987270740594633D-20 -0.893987280719341637D-20 -0.8939881327D-20

296 -0.802798697667253635D-20 -0.802798706875063165D-20 -0.8028009102D-20

297 -0.720937191918774898D-20 -0.720937200363600349D-20 -0.7209404633D-20

298 -0.647446003768186282D-20 -0.647446011467940856D-20 -0.6474500866D-20

299 -0.581466820010916005D-20 -0.581466826991314842D-20 -0.5814715059D-20

300 -0.522229604322809668D-20 -0.522229610615501405D-20 -0.5222347183D-20

301 -0.469043489647720254D-20 -0.469043495288682264D-20 -0.4690488862D-20

302 -0.421288613301641380D-20 -0.421288618329813641D-20 -0.4212941719D-20

303 -0.378408796879740891D-20 -0.378408801335874338D-20 -0.3784144188D-20

304 -0.339904983258786821D-20 -0.339904987184483234D-20 -0.3399105885D-20
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305 -0.305329352125742726D-20 -0.305329355562664532D-20 -0.3053348764D-20

306 -0.274280043645912472D-20 -0.274280046635142272D-20 -0.2742854365D-20

307 -0.246396427211272852D-20 -0.246396429792803974D-20 -0.2464016496D-20

308 -0.221354858771305228D-20 -0.221354860983646128D-20 -0.2213598813D-20

309 -0.198864876125026296D-20 -0.198864878004903121D-20 -0.1988696777D-20

310 -0.178665786815867689D-20 -0.178665788398010778D-20 -0.1786703531D-20

311 -0.160523607984846469D-20 -0.160523609301848008D-20 -0.1605279303D-20

312 -0.144228321759622708D-20 -0.144228322841854061D-20 -0.1442323961D-20

313 -0.129591413539026555D-20 -0.129591414414605101D-20 -0.1295952397D-20

314 -0.116443663920516170D-20 -0.116443664615312651D-20 -0.1164472446D-20

315 -0.104633168053021233D-20 -0.104633168590699703D-20 -0.1046365085D-20

316 -0.940235589166276469D-21 -0.940235593187111645D-21 -0.9402666621D-21

317 -0.844924134665887862D-21 -0.844924137525448866D-21 -0.8449529608D-21

318 -0.759298227617642711D-21 -0.759298229491051071D-21 -0.7593249020D-21

319 -0.682371091532467152D-21 -0.682371092576395227D-21 -0.6823957166D-21

320 -0.613256753613253585D-21 -0.613256753967095734D-21 -0.6132794363D-21

321 -0.551159718392567828D-21 -0.551159718179647482D-21 -0.5511805679D-21

322 -0.495365702295508284D-21 -0.495365701624295636D-21 -0.4953848284D-21

323 -0.445233319796312940D-21 -0.445233318761632738D-21 -0.4452508314D-21

324 -0.400186623140149168D-21 -0.400186621824362173D-21 -0.4002026273D-21

325 -0.359708407731960466D-21 -0.359708406206105751D-21 -0.3597230084D-21

326 -0.323334204374316368D-21 -0.323334202699204703D-21 -0.3233475019D-21

327 -0.290646887675200951D-21 -0.290646885902452156D-21 -0.2906589785D-21

328 -0.261271837242454243D-21 -0.261271835415473626D-21 -0.2612828133D-21

329 -0.234872594821806637D-21 -0.234872592976697516D-21 -0.2348825433D-21

330 -0.211146966398630907D-21 -0.211146964565041754D-21 -0.2111559697D-21

331 -0.189823523540004127D-21 -0.189823521741910173D-21 -0.1898316592D-21

332 -0.170658462966416586D-21 -0.170658461222836728D-21 -0.1706658038D-21

333 -0.153432787567916981D-21 -0.153432785893567683D-21 -0.1534394015D-21

334 -0.137949775868196097D-21 -0.137949774274084572D-21 -0.1379557263D-21
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335 -0.124032710337375098D-21 -0.124032708831334558D-21 -0.1240380561D-21

336 -0.111522838000657080D-21 -0.111522836587827176D-21 -0.1115276336D-21

337 -0.100277539521878386D-21 -0.100277538205134174D-21 -0.1002818354D-21

338 -0.901686853909359342D-22 -0.901686841712688436D-22 -0.9017252806D-22

339 -0.810811600412595537D-22 -0.810811589181138824D-22 -0.8108459233D-22

340 -0.729115366941023172D-22 -0.729115356656707699D-22 -0.7291459792D-22

341 -0.655668874938792387D-22 -0.655668865573609553D-22 -0.6556961370D-22

342 -0.589637150841040322D-22 -0.589637142359284549D-22 -0.5896613926D-22

343 -0.530269931954838028D-22 -0.530269924315035958D-22 -0.5302914547D-22

344 -0.476893050933084522D-22 -0.476893044089645292D-22 -0.4769121294D-22

345 -0.428900698755415156D-22 -0.428900692660030606D-22 -0.4289175829D-22

346 -0.385748476395407823D-22 -0.385748470998229650D-22 -0.3857633936D-22

347 -0.346947154562644382D-22 -0.346947149813263372D-22 -0.3469603110D-22

348 -0.312057069170470655D-22 -0.312057065018721255D-22 -0.3120686518D-22

349 -0.280683087593272747D-22 -0.280683083989884328D-22 -0.2806932654D-22

350 -0.252470087428319612D-22 -0.252470084325433986D-22 -0.2524790131D-22

351 -0.227098895445223566D-22 -0.227098892796796507D-22 -0.2271067068D-22

352 -0.204282639761235838D-22 -0.204282637523338693D-22 -0.2042894609D-22

353 -0.183763473086041915D-22 -0.183763471217077773D-22 -0.1837694156D-22

354 -0.165309629192048681D-22 -0.165309627652896063D-22 -0.1653147934D-22

355 -0.148712778636114457D-22 -0.148712777390210065D-22 -0.1487172545D-22

356 -0.133785653231776576D-22 -0.133785652245147349D-22 -0.1337895213D-22

357 -0.120359911888094893D-22 -0.120359911129348395D-22 -0.1203632442D-22

358 -0.108284223228858654D-22 -0.108284222669139697D-22 -0.1082870842D-22

359 -0.974225429169286950D-23 -0.974225425298491221D-23 -0.9742498999D-23

360 -0.876525658623529429D-23 -0.876525656239005356D-23 -0.8765465015D-23

361 -0.788643355160120435D-23 -0.788643354044437151D-23 -0.7886610250D-23

362 -0.709589942666145851D-23 -0.709589942623382596D-23 -0.7096048434D-23

363 -0.638476605891189502D-23 -0.638476606745678649D-23 -0.6384890957D-23

364 -0.574504200561750665D-23 -0.574504202156776360D-23 -0.5745145965D-23
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365 -0.516954186380561771D-23 -0.516954188577040338D-23 -0.5169627687D-23

366 -0.465180478961310088D-23 -0.465180481636473673D-23 -0.4651874949D-23

367 -0.418602127339754508D-23 -0.418602130385855386D-23 -0.4186077948D-23

368 -0.376696733210901822D-23 -0.376696736533951236D-23 -0.3767012438D-23

369 -0.338994536579576336D-23 -0.338994540098128661D-23 -0.3389980583D-23

370 -0.305073100177809835D-23 -0.305073103821800231D-23 -0.3050757802D-23

371 -0.274552531886213344D-23 -0.274552535595854781D-23 -0.2745544990D-23

372 -0.247091190577926703D-23 -0.247091194302670345D-23 -0.2470925570D-23

373 -0.222381826354720356D-23 -0.222381830052281668D-23 -0.2223826898D-23

374 -0.200148111129819262D-23 -0.200148114765270864D-23 -0.2001485562D-23

375 -0.180141519988893296D-23 -0.180141523533824492D-23 -0.1801416202D-23

376 -0.162138527781341899D-23 -0.162138531213083906D-23 -0.1621383464D-23

377 -0.145938089005101109D-23 -0.145938092306016311D-23 -0.1459376805D-23

378 -0.131359372291551757D-23 -0.131359375448384733D-23 -0.1313587833D-23

379 -0.118239723710257215D-23 -0.118239726713544882D-23 -0.1182389942D-23

380 -0.106432835729912349D-23 -0.106432838573450269D-23 -0.1064319996D-23

381 -0.958071010222970597D-24 -0.958071037026587109D-24 -0.9580618691D-24

382 -0.862441324073573526D-24 -0.862441349234630923D-24 -0.8624316452D-24

383 -0.776374321341657939D-24 -0.776374344868981365D-24 -0.7763643068D-24

384 -0.698911953963297284D-24 -0.698911975881915925D-24 -0.6989017717D-24

385 -0.629192345110709132D-24 -0.629192365458835236D-24 -0.6291821333D-24

386 -0.566440115663371105D-24 -0.566440134489743229D-24 -0.5664299870D-24

387 -0.509957685757653591D-24 -0.509957703119212911D-24 -0.5099477310D-24

388 -0.459117452913210688D-24 -0.459117468873080452D-24 -0.4591077439D-24

389 -0.413354758207576469D-24 -0.413354772833316207D-24 -0.4133453509D-24

390 -0.372161560931456168D-24 -0.372161574293563823D-24 -0.3721524975D-24

391 -0.335080750209056109D-24 -0.335080762379692902D-24 -0.3350720613D-24

392 -0.301701029302934111D-24 -0.301701040354848654D-24 -0.3016927360D-24

393 -0.271652314824316395D-24 -0.271652324829946211D-24 -0.2716444300D-24

394 -0.244601598912195492D-24 -0.244601607942925806D-24 -0.2445941287D-24
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395 -0.220249227694774095D-24 -0.220249235820335339D-24 -0.2202421727D-24

396 -0.198325554065106651D-24 -0.198325561353093718D-24 -0.1983189105D-24

397 -0.178587927043141772D-24 -0.178587933558639556D-24 -0.1785816874D-24

398 -0.160817983807311364D-24 -0.160817989612612538D-24 -0.1608121378D-24

399 -0.144819213903934453D-24 -0.144819219058336810D-24 -0.1448137490D-24

400 -0.130414768221157583D-24 -0.130414772780829503D-24 -0.1304096702D-24

401 -0.117445488081108798D-24 -0.117445492099012627D-24 -0.1174407416D-24

402 -0.105768132290991785D-24 -0.105768135816855984D-24

403 -0.952537822293715084D-25 -0.952537853097034625D-25

404 -0.857864070533990874D-25 -0.857864097315314005D-25

405 -0.772615729190973755D-25 -0.772615752352613348D-25

406 -0.695852817306585380D-25 -0.695852837220792184D-25

407 -0.626729263944799677D-25 -0.626729280954881566D-25

408 -0.564483508659969895D-25 -0.564483523081537592D-25

409 -0.508430044571859032D-25 -0.508430056694162391D-25

410 -0.457951809333203408D-25 -0.457951819420527538D-25

411 -0.412493338812185791D-25 -0.412493347105280995D-25

412 -0.371554606886481497D-25 -0.371554613604005139D-25

413 -0.334685482454877247D-25 -0.334685487794829330D-25

414 -0.301480741704294309D-25 -0.301480745845431818D-25

415 -0.271575579902959773D-25 -0.271575583006177669D-25

416 -0.244641572595086650D-25 -0.244641574804755905D-25

417 -0.220383041112216579D-25 -0.220383042557471807D-25

418 -0.198533781848393254D-25 -0.198533782644364355D-25

419 -0.178854122821841090D-25 -0.178854123070824953D-25

420 -0.161128274710904584D-25 -0.161128274503474244D-25

421 -0.145161946848079404D-25 -0.145161946264129231D-25

422 -0.130780201620267497D-25 -0.130780200729993942D-25

423 -0.117825523389381381D-25 -0.117825522254199636D-25

424 -0.106156080445190510D-25 -0.106156079118588089D-25
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425 -0.956441606588876491D-26 -0.956441591872164287D-26

426 -0.861747634455659736D-26 -0.861747618687746519D-26

427 -0.776443323884926034D-26 -0.776443307408018777D-26

428 -0.699596144473891125D-26 -0.699596127579120956D-26

429 -0.630366330845479613D-26 -0.630366313778585419D-26

430 -0.567997639124067521D-26 -0.567997622090587086D-26

431 -0.511809026084479565D-26 -0.511809009254476936D-26

432 -0.461187158708281064D-26 -0.461187142220638981D-26

433 -0.415579671125103117D-26 -0.415579655091409156D-26

434 -0.374489094232563084D-26 -0.374489078740617662D-26

435 -0.337467390769616742D-26 -0.337467375886590416D-26

436 -0.304111035348823496D-26 -0.304111021124090090D-26

437 -0.274056585008485368D-26 -0.274056571476156398D-26

438 -0.246976691293795522D-26 -0.246976678474980254D-26

439 -0.222576509778029381D-26 -0.222576497682843640D-26

440 -0.200590467345312621D-26 -0.200590455974658185D-26

441 -0.180779351524962197D-26 -0.180779340872097346D-26

442 -0.162927689738208391D-26 -0.162927679790128867D-26

443 -0.146841389531190324D-26 -0.146841380269838684D-26

444 -0.132345613759381043D-26 -0.132345605162701142D-26

445 -0.119282867290336543D-26 -0.119282859333188641D-26

446 -0.107511274132923711D-26 -0.107511266787874532D-26

447 -0.969030260080931423D-27 -0.969030192460940828D-27

448 -0.873429852723258742D-27 -0.873429790632914567D-27

449 -0.787274268112385184D-27 -0.787274211245361898D-27

450 -0.709629050564958262D-27 -0.709628998613572123D-27

451 -0.639652336612598048D-27 -0.639652289271226288D-27

452 -0.576585666132891131D-27 -0.576585623100781353D-27

453 -0.519745706843355126D-27 -0.519745667826900503D-27

454 -0.468516801221200815D-27 -0.468516765935749314D-27
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455 -0.422344253981154210D-27 -0.422344222152413228D-27

456 -0.380728286406917572D-27 -0.380728257772009022D-27

457 -0.343218591179741473D-27 -0.343218565487956585D-27

458 -0.309409427961649175D-27 -0.309409404974946901D-27

459 -0.278935205944518498D-27 -0.278935185437806561D-27

460 -0.251466504935544585D-27 -0.251466486696777741D-27

461 -0.226706491374018568D-27 -0.226706475204144603D-27

462 -0.204387690017346184D-27 -0.204387675730126497D-27

463 -0.184269075943922834D-27 -0.184269063365651128D-27

464 -0.166133455040184026D-27 -0.166133444009323640D-27

465 -0.149785104307832465D-27 -0.149785094674590174D-27

466 -0.135047646179974241D-27 -0.135047637805825936D-27

467 -0.121762133603235477D-27 -0.121762126360416978D-27

468 -0.109785324955278322D-27 -0.109785318726252644D-27

469 -0.989881299490508773D-28 -0.989881246259615606D-28

470 -0.892542095495924771D-28 -0.892542050337110758D-28

471 -0.804787146169761791D-28 -0.804787108181506502D-28

472 -0.725671495086370989D-28 -0.725671463447466745D-28

473 -0.654343482426783401D-28 -0.654343456390994171D-28

474 -0.590035520558597564D-28 -0.590035499449464436D-28

475 -0.532055782994444403D-28 -0.532055766200266174D-28

476 -0.479780716151321832D-28 -0.479780703120332489D-28

477 -0.432648292329553314D-28 -0.432648282565312361D-28

478 -0.390151930431584070D-28 -0.390151923488590656D-28

479 -0.351835018236472665D-28 -0.351835013716010250D-28

480 -0.317285976616048709D-28 -0.317285974162263437D-28

481 -0.286133811995560875D-28 -0.286133811291773827D-28

482 -0.258044108690293678D-28 -0.258044109455544733D-28

483 -0.232715417548655969D-28 -0.232715419534474969D-28

484 -0.209876001654366552D-28 -0.209876004641765866D-28
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485 -0.189280903733052163D-28 -0.189280907529733455D-28

486 -0.170709303414566670D-28 -0.170709307852333704D-28

487 -0.153962135660114102D-28 -0.153962140592482703D-28

488 -0.138859944507453439D-28 -0.138859949807449205D-28

489 -0.125240948849269496D-28 -0.125240954407403551D-28

490 -0.112959299267293959D-28 -0.112959304989706879D-28

491 -0.101883507023238530D-28 -0.101883512830002524D-28

492 -0.918950281798250534D-29 -0.918950340033945845D-29

493 -0.828869875116652237D-29 -0.828869932954664017D-29

494 -0.747630283849140797D-29 -0.747630340820634007D-29

495 -0.674362761531186399D-29 -0.674362817252619504D-29

496 -0.608284038494733527D-29 -0.608284092657362454D-29

497 -0.548687900662558208D-29 -0.548687953022970445D-29

498 -0.494937599126870598D-29 -0.494937649498469192D-29

499 -0.446459008437706702D-29 -0.446459056683067998D-29

500 -0.402734459646581022D-29 -0.402734505670614160D-29

501 -0.363297181466273773D-29 -0.363297225210114153D-29

502 -0.327726289498336751D-29 -0.327726330933909830D-29

503 -0.295642269417821109D-29 -0.295642308543017005D-29

504 -0.266702905354613611D-29 -0.266702942189016997D-29

505 -0.240599609530937022D-29 -0.240599644112060667D-29

506 -0.217054113557553515D-29 -0.217054145937527579D-29

507 -0.195815485704318537D-29 -0.195815515946991319D-29

508 -0.176657441986579908D-29 -0.176657470164989169D-29

509 -0.159375922085885416D-29 -0.159375948280062638D-29

510 -0.143786903986124311D-29 -0.143786928281197356D-29

511 -0.129724433785725271D-29 -0.129724456270287772D-29

512 -0.117038849470916432D-29 -0.117038870235634998D-29

513 -0.105595179529590210D-29 -0.105595198666023055D-29

514 -0.952716991727682845D-30 -0.952717167723712831D-30
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515 -0.859586286315344147D-30 -0.859586447848327925D-30

516 -0.775569595300654879D-30 -0.775569743259714115D-30

517 -0.699773967166840043D-30 -0.699774102419422393D-30

518 -0.631394041796680878D-30 -0.631394165184136442D-30

519 -0.569703447963925521D-30 -0.569703560298058589D-30

520 -0.514047046754027172D-30 -0.514047148814493487D-30

521 -0.463833937622023532D-30 -0.463834030154456950D-30

522 -0.418531152007433370D-30 -0.418531235722198223D-30

523 -0.377657966827342638D-30 -0.377658042398819512D-30

524 -0.340780776839542546D-30 -0.340780844905865493D-30

525 -0.307508470879887404D-30 -0.307508532043060030D-30

526 -0.277488262397033453D-30 -0.277488317223359865D-30

527 -0.250401929592032888D-30 -0.250401978612807152D-30

528 -0.225962424872719022D-30 -0.225962468585123765D-30

529 -0.203910817301031107D-30 -0.203910856169202169D-30

530 -0.184013535288283294D-30 -0.184013569744502934D-30

531 -0.166059880017531448D-30 -0.166059910463517663D-30

532 -0.149859782978461633D-30 -0.149859809786725660D-30

533 -0.135241783619998506D-30 -0.135241807135246585D-30

534 -0.122051205487391608D-30 -0.122051226027950654D-30

535 -0.110148511339367606D-30 -0.110148529198617622D-30

536 -0.994078196600034753D-31 -0.994078351078023129D-31

537 -0.897155667099760768D-31 -0.897155799940646337D-31

538 -0.809692998214295383D-31 -0.809693111688076559D-31

539 -0.730765890466825341D-31 -0.730765986649477367D-31

540 -0.659540455385219076D-31 -0.659540536171647923D-31

541 -0.595264361825500046D-31 -0.595264428942015211D-31

542 -0.537258850322752980D-31 -0.537258905339023995D-31

543 -0.484911530264493240D-31 -0.484911574604965348D-31

544 -0.437669883055528298D-31 -0.437669918010281878D-31
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545 -0.395035401993290571D-31 -0.395035428728336612D-31

546 -0.356558306379719777D-31 -0.356558325946730214D-31

547 -0.321832773533206094D-31 -0.321832786878683269D-31

548 -0.290492637897838541D-31 -0.290492645871732504D-31

549 -0.262207511436695079D-31 -0.262207514800481138D-31

550 -0.236679283994757119D-31 -0.236679283428988957D-31

551 -0.213638966373541500D-31 -0.213638962484897469D-31

552 -0.192843842517264734D-31 -0.192843835845106699D-31

553 -0.174074900508541755D-31 -0.174074891531007132D-31

554 -0.157134515045659852D-31 -0.157134504185308350D-31

555 -0.141844356755256020D-31 -0.141844344384293134D-31

556 -0.128043506112517702D-31 -0.128043492557617223D-31

557 -0.115586751921744918D-31 -0.115586737468492732D-31

558 -0.104343056276624787D-31 -0.104343041173606000D-31

559 -0.941941696929443998D-32 -0.941941541554954479D-32

560 -0.850333817056974149D-32 -0.850333659193443066D-32

561 -0.767643936647459925D-32 -0.767643777883491839D-32

562 -0.693003017638194478D-32 -0.693002859324451473D-32

563 -0.625626795105815670D-32 -0.625626638381184860D-32

564 -0.564807499033273511D-32 -0.564807344848670904D-32

565 -0.509906385338897911D-32 -0.509906234478882016D-32

566 -0.460346996967477973D-32 -0.460346850069837783D-32

567 -0.415609083603238479D-32 -0.415608941176711706D-32

568 -0.375223115563359531D-32 -0.375222978003628186D-32

569 -0.338765333742993246D-32 -0.338765201347095035D-32

570 -0.305853283175997037D-32 -0.305853156155282530D-32

571 -0.276141782910608280D-32 -0.276141661402365577D-32

572 -0.249319289530836834D-32 -0.249319173608697409D-32

573 -0.225104615831869266D-32 -0.225104505515100986D-32

574 -0.203243969925824185D-32 -0.203243865187610079D-32
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575 -0.183508283452955153D-32 -0.183508184227749423D-32

576 -0.165690800639101296D-32 -0.165690706829147345D-32

577 -0.149604902705511403D-32 -0.149604814186600236D-32

578 -0.135082144631580724D-32 -0.135082061258122058D-32

579 -0.121970483521112564D-32 -0.121970405130585253D-32

580 -0.110132679852411614D-32 -0.110132606269254655D-32

581 -0.994448547234423117D-33 -0.994447857624426411D-33

582 -0.897951878549314439D-33 -0.897951233241600466D-33

583 -0.810827426042348585D-33 -0.810826823075782984D-33

584 -0.732164055868736352D-33 -0.732163493262040240D-33

585 -0.661139297151700699D-33 -0.661138772921926820D-33

586 -0.597010705572704393D-33 -0.597010217750846447D-33

587 -0.539108069066569419D-33 -0.539107615710628561D-33

588 -0.486826373425121172D-33 -0.486825952630923413D-33

589 -0.439619453644635070D-33 -0.439619063554665413D-33

590 -0.396994264098348714D-33 -0.396993902908842131D-33

591 -0.358505707152569410D-33 -0.358505373119075155D-33

592 -0.323751965742851687D-33 -0.323751657184465749D-33

593 -0.292370290747936039D-33 -0.292370006050376667D-33

594 -0.264033198800086809D-33 -0.264032936417769875D-33

595 -0.238445040502068910D-33 -0.238444798959323303D-33

596 -0.215338902929194695D-33 -0.215338680820742790D-33

597 -0.194473813821087487D-33 -0.194473609811902021D-33

598 -0.175632218049421905D-33 -0.175632030874058050D-33

599 -0.158617699818626565D-33 -0.158617528280116704D-33

600 -0.143252926646783686D-33 -0.143252769615172111D-33

601 -0.129377793511165653D-33 -0.129377649921751167D-33

602 -0.116847747651757892D-33 -0.116847616503103919D-33

603 -0.105532276429054405D-33 -0.105532156780818715D-33

604 -0.953135423495158115D-34 -0.953134333201452011D-34
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605 -0.860851509215171183D-34 -0.860850516858463251D-34

606 -0.777510384027730957D-34 -0.777509481895618278D-34

607 -0.702244677618986375D-34 -0.702243858513357438D-34

608 -0.634271223152786408D-34 -0.634270480364781503D-34

609 -0.572882875278206018D-34 -0.572882202563305330D-34

610 -0.517441123932999464D-34 -0.517440515486413954D-34

611 -0.467369426466778606D-34 -0.467368876899288822D-34

612 -0.422147188158109088D-34 -0.422146692472470642D-34

613 -0.381304328013537493D-34 -0.381303881581548785D-34

614 -0.344416372885739790D-34 -0.344415971426047219D-34

615 -0.311100028497415121D-34 -0.311099668054113410D-34

616 -0.281009180965795085D-34 -0.281008857887864933D-34

617 -0.253831286942529366D-34 -0.253830997864141401D-34

618 -0.229284114562913235D-34 -0.229283856384615851D-34

619 -0.207112801079952285D-34 -0.207112570950751176D-34

620 -0.187087196381423447D-34 -0.187086991681752414D-34

621 -0.168999464586906498D-34 -0.168999282912482136D-34

622 -0.152661918628323648D-34 -0.152661757774870736D-34

623 -0.137905065160347370D-34 -0.137904923109176999D-34

624 -0.124575839351844743D-34 -0.124575714256263345D-34

625 -0.112536011099534824D-34 -0.112535901272059188D-34

626 -0.101660746001191594D-34 -0.101660649901542525D-34

627 -0.918373060469317530D-35 -0.918372222707772527D-35

628 -0.829638764504417520D-35 -0.829638037188592871D-35

629 -0.749485063628146570D-35 -0.749484435124412526D-35

630 -0.677081524038754411D-35 -0.677080983777138689D-35

631 -0.611678150220082303D-35 -0.611677688608574227D-35

632 -0.552597586648730223D-35 -0.552597194993509829D-35

633 -0.499228076202210458D-35 -0.499227746633488910D-35

634 -0.451017101774999637D-35 -0.451016827178162877D-35
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635 -0.407465644753967580D-35 -0.407465418705722259D-35

636 -0.368123000454007262D-35 -0.368122817163236356D-35

637 -0.332582096436532466D-35 -0.332581950689577361D-35

638 -0.300475264888962875D-35 -0.300475151999058813D-35

639 -0.271470424987536515D-35 -0.271470340748138949D-35

640 -0.245267635448556313D-35 -0.245267576090306783D-35

641 -0.221595981339418728D-35 -0.221595943490510161D-35

642 -0.200210762711036981D-35 -0.200210743360749680D-35

643 -0.180890955764156991D-35 -0.180890952229347980D-35

644 -0.163436920106602447D-35 -0.163436930000942147D-35

645 -0.147668328226490068D-35 -0.147668349432251379D-35

646 -0.133422295624836140D-35 -0.133422326267051919D-35

647 -0.120551692144019209D-35 -0.120551730566834746D-35

648 -0.108923616918193777D-35 -0.108923661663251183D-35

649 -0.984180210777538779D-36 -0.984180708644552244D-36

650 -0.889264638801842909D-36 -0.889265175876899345D-36

651 -0.803509893302329057D-36 -0.803510459810606146D-36

652 -0.726031116078427939D-36 -0.726031703529420675D-36

653 -0.656028987558327117D-36 -0.656029588610170706D-36

654 -0.592781451027674458D-36 -0.592782059363954351D-36

655 -0.535636238205179629D-36 -0.535636848423211735D-36

656 -0.484004118503375671D-36 -0.484004726013011416D-36

657 -0.437352801845959398D-36 -0.437353402778037940D-36

658 -0.395201431714912138D-36 -0.395202022838545863D-36

659 -0.357115611242084153D-36 -0.357116189890023627D-36

660 -0.322702910705266554D-36 -0.322703474706647561D-36

661 -0.291608809795893249D-36 -0.291609357415721463D-36

662 -0.263513032546699290D-36 -0.263513562431477751D-36

663 -0.238126236890113636D-36 -0.238126748019064542D-36

664 -0.215187024504496776D-36 -0.215187516145872453D-36
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665 -0.194459239934017426D-36 -0.194459711606035680D-36

666 -0.175729530973728108D-36 -0.175729982409704823D-36

667 -0.158805145025601889D-36 -0.158805576142888686D-36

668 -0.143511938582239419D-36 -0.143512349454606709D-36

669 -0.129692579208203294D-36 -0.129692970041339201D-36

670 -0.117204921387559108D-36 -0.117205292497382681D-36

671 -0.105920539411030863D-36 -0.105920891204543860D-36

672 -0.957234021060205018D-37 -0.957237350644459391D-37

673 -0.865086756845780347D-37 -0.865089903485557777D-37

674 -0.781816423135715383D-37 -0.781819392702015756D-37

675 -0.706567232116376994D-37 -0.706570030831805238D-37

676 -0.638565961614918139D-37 -0.638568595955526056D-37

677 -0.577113983051258999D-37 -0.577116459661651006D-37

678 -0.521580059735138666D-37 -0.521582385355413281D-37

679 -0.471393841008733832D-37 -0.471396022411966674D-37

680 -0.426039984946120192D-37 -0.426042028885217047D-37

681 -0.385052848833109575D-37 -0.385054761995970494D-37

682 -0.348011692532456968D-37 -0.348013481504495219D-37

683 -0.314536345151250551D-37 -0.314538016384404204D-37

684 -0.284283290224694280D-37 -0.284284850012154031D-37

685 -0.256942128963328806D-37 -0.256943583419283825D-37

686 -0.232232385024037230D-37 -0.232233740067812134D-37

687 -0.209900617799604852D-37 -0.209901879143625699D-37

688 -0.189717814413860097D-37 -0.189718987554946274D-37

689 -0.171477033492670393D-37 -0.171478123706202757D-37

690 -0.154991276385239585D-37 -0.154992288721803765D-37

691 -0.140091563862287665D-37 -0.140092503146435382D-37

692 -0.126625198442202558D-37 -0.126626069273013608D-37

693 -0.114454194415184473D-37 -0.114455001168347950D-37

694 -0.103453859368665269D-37 -0.103454606199831054D-37
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695 -0.935115125828582565D-38 -0.935122034320390484D-38

696 -0.845253270794149851D-38 -0.845259656762454531D-38

697 -0.764032833834982956D-38 -0.764038732531816127D-38

698 -0.690622242133680071D-38 -0.690627686831612561D-38

699 -0.624270003537764309D-38 -0.624275025598854114D-38

700 -0.564296989108863179D-38 -0.564301618056573185D-38

701 -0.510089459968083014D-38 -0.510093723561196179D-38

702 -0.461092766600179765D-38 -0.461096690907875270D-38

703 -0.416805655718107720D-38 -0.416809265195482407D-38

704 -0.376775126057714836D-38 -0.376778443621141535D-38

705 -0.340591780134646217D-38 -0.340594827236455705D-38

706 -0.307885624110530700D-38 -0.307888420812588153D-38

707 -0.278322272536198905D-38 -0.278324837582019934D-38

708 -0.251599518913828823D-38 -0.251601869798945494D-38

709 -0.227444236790722733D-38 -0.227446389831067303D-38

710 -0.205609579503892490D-38 -0.205611549902016667D-38

711 -0.185872449771999239D-38 -0.185874251680990509D-38

712 -0.168031213111279349D-38 -0.168032859696273810D-38

713 -0.151903631563632247D-38 -0.151905135060856172D-38

714 -0.137324996494008399D-38 -0.137326368267308974D-38

715 -0.124146441264065872D-38 -0.124147691858915651D-38

716 -0.112233416440941774D-38 -0.112234555635921916D-38

717 -0.101464311873042135D-38 -0.101465348728826755D-38

718 -0.917292114762711429D-39 -0.917301543821495798D-39

719 -0.829287679397079294D-39 -0.829296246576936770D-39

720 -0.749731857934961114D-39 -0.749739635000809025D-39

721 -0.677813023963747330D-39 -0.677820077219940904D-39

722 -0.612797574073541015D-39 -0.612803964736367956D-39

723 -0.554022422159189773D-39 -0.554028206707974867D-39

724 -0.500888216272126676D-39 -0.500893446779751240D-39
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725 -0.452853208413992954D-39 -0.452857932857656699D-39

726 -0.409427714374786565D-39 -0.409431976927852745D-39

727 -0.370169106781590453D-39 -0.370172948087360375D-39

728 -0.334677290002298265D-39 -0.334680747430559533D-39

729 -0.302590610498648526D-39 -0.302593718385833870D-39

730 -0.273582160695319020D-39 -0.273584950569100221D-39

731 -0.247356438472910403D-39 -0.247358939262035448D-39

732 -0.223646328043998434D-39 -0.223648566274160386D-39

733 -0.202210371270672150D-39 -0.202212371247175978D-39

734 -0.182830301463082161D-39 -0.182832085441051450D-39

735 -0.165308814392198260D-39 -0.165310402735037852D-39

736 -0.149467553683953344D-39 -0.149468965010756976D-39

737 -0.135145289961287590D-39 -0.135146541283851805D-39

738 -0.122196275087939802D-39 -0.122197381938017254D-39

739 -0.110488754663613402D-39 -0.110489731211010263D-39

740 -0.999036235428494532D-40 -0.999044827049433593D-40

741 -0.903332106162619438D-40 -0.903339641594888396D-40

742 -0.816801804178131404D-40 -0.816808390516437717D-40

743 -0.738565403191556423D-40 -0.738571137830553528D-40

744 -0.667827431540540277D-40 -0.667832402978931083D-40

745 -0.603868760936459485D-40 -0.603873049520021170D-40

746 -0.546039274768601091D-40 -0.546042953376298530D-40

747 -0.493751240987570236D-40 -0.493754375664685570D-40

748 -0.446473321811019873D-40 -0.446475972352995057D-40

749 -0.403725159015311065D-40 -0.403727379505778812D-40

750 -0.365072479469282116D-40 -0.365074318775548768D-40

751 -0.330122670891447515D-40 -0.330124173120488982D-40

752 -0.298520782624343732D-40 -0.298521987542182715D-40

753 -0.269945910568795482D-40 -0.269946853985944757D-40

754 -0.244107929351236190D-40 -0.244108643476718485D-40
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755 -0.220744538349218296D-40 -0.220745052115508162D-40

756 -0.199618591410341919D-40 -0.199618930771418731D-40

757 -0.180515683000949627D-40 -0.180515871205503132D-40

758 -0.163241966142840743D-40 -0.163242023984531265D-40

759 -0.147622179865842742D-40 -0.147622125912386789D-40

760 -0.133497866045639435D-40 -0.133497716848367879D-40

761 -0.120725757431753902D-40 -0.120725527717173707D-40

762 -0.109176320419860225D-40 -0.109176023264641618D-40

763 -0.987324377035820989D-41 -0.987320846942907510D-41

764 -0.892882173698304749D-41 -0.892878187486284099D-41

765 -0.807479162931780305D-41 -0.807474810906272493D-41

766 -0.730249668519961498D-41 -0.730245030080150714D-41

767 -0.660410970440465860D-41 -0.660406115179910329D-41

768 -0.597255350327297030D-41 -0.597250339034970179D-41

769 -0.540142900170081499D-41 -0.540137785739948278D-41

770 -0.488495020969726700D-41 -0.488489849226523436D-41

771 -0.441788545110694332D-41 -0.441783355558988960D-41

772 -0.399550422573719237D-41 -0.399545249076778528D-41

773 -0.361352916864672962D-41 -0.361347788259151974D-41

774 -0.326809261734225351D-41 -0.326804202386219380D-41

775 -0.295569734462184288D-41 -0.295564764769742864D-41

776 -0.267318105727960429D-41 -0.267313242574754168D-41

777 -0.241768429927951005D-41 -0.241763687092403391D-41

778 -0.218662143271024052D-41 -0.218657531794869505D-41

779 -0.197765440120193055D-41 -0.197760968640098079D-41

780 -0.178866900884068606D-41 -0.178862575929652726D-41

781 -0.161775347324739486D-41 -0.161771173586055320D-41

782 -0.146317903465563182D-41 -0.146313884032838895D-41

783 -0.132338242376607811D-41 -0.132334378954818821D-41

784 -0.119695001008578958D-41 -0.119691294109197784D-41
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785 -0.108260346957323169D-41 -0.108256796069395396D-41

786 -0.979186825879017472D-42 -0.979152863304109985D-42

787 -0.885654733455701890D-42 -0.885622296028846808D-42

788 -0.801061883450569884D-42 -0.801030943870935218D-42

789 -0.724553424722145133D-42 -0.724523950608116985D-42

790 -0.655356302650772867D-42 -0.655328257479374507D-42

791 -0.592771427751509623D-42 -0.592744771685886658D-42

792 -0.536166594538966106D-42 -0.536141285155202029D-42

793 -0.484970078724817361D-42 -0.484946071648321299D-42

794 -0.438664847727258820D-42 -0.438642097188030376D-42

795 -0.396783325708106879D-42 -0.396761785023324883D-42

796 -0.358902659991114720D-42 -0.358882281982711430D-42

797 -0.324640440811882511D-42 -0.324621178166046560D-42

798 -0.293650830957445363D-42 -0.293632636532340324D-42

799 -0.265621066019189243D-42 -0.265603893106575048D-42

800 -0.240268289748627770D-42 -0.240252092294524992D-42

801 -0.217336692410146152D-42 -0.217321425199183929D-42

802 -0.196594923102769835D-42 -0.196580541910403246D-42

803 -0.177833749805700175D-42 -0.177820211522068440D-42

804 -0.160863943418120579D-42 -0.160851206146940248D-42

805 -0.145514364338234865D-42 -0.145502387473779136D-42

806 -0.131630232182814886D-42 -0.131618976467718396D-42

807 -0.119071561107642215D-42 -0.119060988673987571D-42

808 -0.107711744870054005D-42 -0.107701819265939432D-42

809 -0.974362772944535695D-43 -0.974269634980081850D-43

810 -0.881415951755868770D-43 -0.881328595981891466D-43

811 -0.797340318965970362D-43 -0.797258423768610694D-43

812 -0.721288711619879602D-43 -0.721211969519096773D-43

813 -0.652494912610803857D-43 -0.652423030055796659D-43

814 -0.590265911956562874D-43 -0.590198609066104867D-43
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815 -0.533974908355980722D-43 -0.533911918613354469D-43

816 -0.483054980168772830D-43 -0.482996050079846127D-43

817 -0.436993361748642974D-43 -0.436938250470602406D-43

818 -0.395326267195138412D-43 -0.395274746142472291D-43

819 -0.357634209137672595D-43 -0.357586061571166823D-43

820 -0.323537765181392200D-43 -0.323492785785160119D-43

821 -0.292693749180207559D-43 -0.292651743631110384D-43

822 -0.264791748603401835D-43 -0.264752533136622447D-43

823 -0.239550992970442882D-43 -0.239514393944446000D-43

824 -0.216717521681604886D-43 -0.216683375145244715D-43

825 -0.196061622603814266D-43 -0.196029773867931129D-43

826 -0.177375515512549647D-43 -0.177345818728024773D-43

827 -0.160471256969480523D-43 -0.160443574713388404D-43

828 -0.145178845456985734D-43 -0.145153048328192103D-43

829 -0.131344507617500575D-43 -0.131320473842797265D-43

830 -0.118829148278368224D-43 -0.118806763330010411D-43

831 -0.107506948600113181D-43 -0.107486104825426660D-43

832 -0.972640981846245005D-44 -0.972446944481778499D-44

833 -0.879976483348361367D-44 -0.879795896735221440D-44

834 -0.796144748828644875D-44 -0.795976721741048847D-44

835 -0.720303401116359313D-44 -0.720147097548109694D-44

836 -0.651690442970451575D-44 -0.651545079081530434D-44

837 -0.589616583037870704D-44 -0.589481424232559668D-44

838 -0.533458294873860392D-44 -0.533332653008916419D-44

839 -0.482651538959111355D-44 -0.482534769679943409D-44

840 -0.436686084349237829D-44 -0.436577584551543734D-44

841 -0.395100372651445073D-44 -0.394999578065369353D-44

842 -0.357476872502872402D-44 -0.357383255396424570D-44

843 -0.323437877680437998D-44 -0.323350944678656980D-44

844 -0.292641706453268528D-44 -0.292560996469424462D-44
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845 -0.264779263841351937D-44 -0.264704346116333780D-44

846 -0.239570932108941692D-44 -0.239501404354881246D-44

847 -0.216763758135571105D-44 -0.216699244779695154D-44

848 -0.196128909304859093D-44 -0.196069059829535970D-44

849 -0.177459372261942717D-44 -0.177403859636892954D-44

850 -0.160567871341790569D-44 -0.160516390544459103D-44

851 -0.145284985687641249D-44 -0.145237252307777123D-44

852 -0.131457446083804171D-44 -0.131413195008359476D-44

853 -0.118946594340339620D-44 -0.118905578514879536D-44

854 -0.107626989707043195D-44 -0.107588978969950861D-44

855 -0.973851482772826019D-45 -0.973499282631437699D-45

856 -0.881184026835704397D-45 -0.880857737922315787D-45

857 -0.797338705998680564D-45 -0.797036470277757836D-45

858 -0.721475216627671411D-45 -0.721195304933152547D-45

859 -0.652833334159784729D-45 -0.652574137657099256D-45

860 -0.590725277800004720D-45 -0.590485299976342964D-45

861 -0.534528803605136259D-45 -0.534306652758900730D-45

862 -0.483680956431522985D-45 -0.483475338633124253D-45

863 -0.437672417862599256D-45 -0.437482130359978522D-45

864 -0.396042393237445868D-45 -0.395866318280910206D-45

865 -0.358373986332851454D-45 -0.358211085394990275D-45

866 -0.324290015163790145D-45 -0.324139323531398708D-45

867 -0.293449226810318893D-45 -0.293309848526383045D-45

868 -0.265542873197536830D-45 -0.265413976332430097D-45

869 -0.240291613390005845D-45 -0.240172425622113136D-45

870 -0.217442711249597163D-45 -0.217332515736607254D-45

871 -0.196767500279285376D-45 -0.196665631802385800D-45

872 -0.178059090164968276D-45 -0.177964931529130480D-45

873 -0.161130291960087398D-45 -0.161043270634546677D-45

874 -0.145811741058205034D-45 -0.145731326042118673D-45
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875 -0.131950199088956464D-45 -0.131875897988064877D-45

876 -0.119407017673016912D-45 -0.119338373973936667D-45

877 -0.108056748600057641D-45 -0.107993339129602709D-45

878 -0.977858864665355609D-46 -0.977273190241945305D-46

879 -0.884917311424168292D-46 -0.884376422948100459D-46

880 -0.800813586410089218D-46 -0.800314116678114344D-46

881 -0.724706900561154655D-46 -0.724245730375602619D-46

882 -0.655836492167207610D-46 -0.655410732533931196D-46

883 -0.593514006012933662D-46 -0.593120981574923165D-46

884 -0.537116598605578406D-46 -0.536753832230358467D-46

885 -0.486080700273494304D-46 -0.485745898717476286D-46

886 -0.439896371522901302D-46 -0.439587412100649200D-46

887 -0.398102197011557738D-46 -0.397817115202444363D-46

888 -0.360280665899569098D-46 -0.360017643828563599D-46

889 -0.326053992223709848D-46 -0.325811347957058922D-46

890 -0.295080333361599360D-46 -0.294856510961953886D-46

891 -0.267050368650358698D-46 -0.266843928939466071D-46

892 -0.241684203841232058D-46 -0.241493815821672878D-46

893 -0.218728570343492107D-46 -0.218553003234098479D-46

894 -0.197954291170692367D-46 -0.197792407013254131D-46

895 -0.179153988179767731D-46 -0.179004734977422155D-46

896 -0.162140007615557296D-46 -0.162002412965876638D-46

897 -0.146742543164400783D-46 -0.146615708352649790D-46

898 -0.132807937702582953D-46 -0.132691032222923527D-46

899 -0.120197146718507180D-46 -0.120089403193088566D-46

900 -0.108784348009604045D-46 -0.108685057477501978D-46

901 -0.984556837224359837D-47 -0.983641912723010099D-47

902 -0.891081221320002484D-47 -0.890238228540512477D-47

903 -0.806484277572067075D-47 -0.805707629918674869D-47

904 -0.729922294959874897D-47 -0.729206833580188809D-47
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905 -0.660631774464030302D-47 -0.659972736048365476D-47

906 -0.597921799693223429D-47 -0.597314786648601699D-47

907 -0.541167133527102585D-47 -0.540608086355258499D-47

908 -0.489801971653341472D-47 -0.489287143373934965D-47

909 -0.443314290461192441D-47 -0.442840222932499859D-47

910 -0.401240732710493824D-47 -0.400804234710182600D-47

911 -0.363161979784119608D-47 -0.362760106722353635D-47

912 -0.328698564207347319D-47 -0.328328599353463525D-47

913 -0.297507080528536053D-47 -0.297166517640918608D-47

914 -0.269276756646141390D-47 -0.268963283902737202D-47

915 -0.243726351277513450D-47 -0.243437836411717341D-47

916 -0.220601346531372665D-47 -0.220335823084797278D-47

917 -0.199671407501122571D-47 -0.199427062111088831D-47

918 -0.180728083469900495D-47 -0.180503244115369693D-47

919 -0.163582727737317415D-47 -0.163375852872464245D-47

920 -0.148064615266470847D-47 -0.147874283776194769D-47

921 -0.134019239329987930D-47 -0.133844141246403260D-47

922 -0.121306770125435159D-47 -0.121145698048791849D-47

923 -0.109800659951387229D-47 -0.109652501122976605D-47

924 -0.993863810020379982D-48 -0.992501099804515181D-48

925 -0.899602831651694476D-48 -0.898349550608232272D-48

926 -0.814285604088753135D-48 -0.813133046350070620D-48

927 -0.737063154287023364D-48 -0.736003299301074146D-48

928 -0.667167132097137036D-48 -0.666192591333292886D-48

929 -0.603902150472483972D-48 -0.603006118213341122D-48

930 -0.546638853747598739D-48 -0.545815061658736921D-48

931 -0.494807644751314608D-48 -0.494050319943742677D-48

932 -0.447893008105792910D-48 -0.447196834426923785D-48

933 -0.405428373022665731D-48 -0.404788455331249345D-48

934 -0.366991464300366564D-48 -0.366403295498978782D-48
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935 -0.332200095106289410D-48 -0.331659525721826730D-48

936 -0.300708359542587157D-48 -0.300211569660844017D-48

937 -0.272203186989413692D-48 -0.271746660364307656D-48

938 -0.246401223834237431D-48 -0.245981724005678029D-48

939 -0.223046011466702150D-48 -0.222660559733546577D-48

940 -0.201905432378131546D-48 -0.201551287484204881D-48

941 -0.182769398882795269D-48 -0.182444038284639352D-48

942 -0.165447761401282498D-48 -0.165148863996196801D-48

943 -0.149768415439017799D-48 -0.149493845641124060D-48

944 -0.135575588377046542D-48 -0.135323381437599079D-48

945 -0.122728288987567435D-48 -0.122496637463591874D-48

946 -0.111098904211260898D-48 -0.110886145493881064D-48

947 -0.100571929203507061D-48 -0.100376534024055197D-48

948 -0.910428179868111512D-49 -0.908633798250499376D-49

949 -0.824169432504623536D-49 -0.822521685750148329D-49

950 -0.746086549276832347D-49 -0.744573542041027834D-49

951 -0.675404281661729250D-49 -0.674015075730213997D-49

952 -0.611420921998640295D-49 -0.610145459977314770D-49

953 -0.553501324368179531D-49 -0.552330359394390770D-49

954 -0.501070588085445997D-49 -0.499995619090707966D-49

955 -0.453608340869507828D-49 -0.452621552960454957D-49

956 -0.410643564732029363D-49 -0.409737774289641059D-49

957 -0.371749913040109076D-49 -0.370918517168076620D-49

958 -0.336541472106090150D-49 -0.335778402087691890D-49

959 -0.304668925089217672D-49 -0.303968603538397797D-49

960 -0.275816080004826269D-49 -0.275173381421498203D-49

961 -0.249696727266315867D-49 -0.249106941728382961D-49

962 -0.226051795469765164D-49 -0.225510595215107742D-49

963 -0.204646777103447374D-49 -0.204150185774294804D-49

964 -0.185269398554434630D-49 -0.184813762894243127D-49
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965 -0.167727511218766214D-49 -0.167309475028067954D-49

966 -0.151847182724616489D-49 -0.151463662897395558D-49

967 -0.137470969271523935D-49 -0.137119133747604429D-49

968 -0.124456351892934246D-49 -0.124133599374723148D-49

969 -0.112674321082076133D-49 -0.112378262375869691D-49

970 -0.102008095698823944D-49 -0.101736536551836321D-49

971 -0.923519634124521057D-50 -0.921028887268286892D-50

972 -0.836102311453962690D-50 -0.833817904597956239D-50

973 -0.756962750783794487D-50 -0.754867692163070480D-50

974 -0.685316807684647961D-50 -0.683395495604735672D-50

975 -0.620454648286475062D-50 -0.618692758228358448D-50

976 -0.561733704294440678D-50 -0.560118085114285053D-50

977 -0.508572296176743954D-50 -0.507090874674351851D-50

978 -0.460443861125882912D-50 -0.459085554313221455D-50

979 -0.416871728412926237D-50 -0.415626362866949893D-50

980 -0.377424390200897030D-50 -0.376282627933637810D-50

981 -0.341711220812703895D-50 -0.340664491136534627D-50

982 -0.309378601910311641D-50 -0.308419038817701333D-50

983 -0.280106415079493750D-50 -0.279226799694739405D-50

984 -0.253604866968791910D-50 -0.252798574664379916D-50

985 -0.229611615438640351D-50 -0.228872567241294948D-50

986 -0.207889168169949717D-50 -0.207211786111280614D-50

987 -0.188222527890610414D-50 -0.187601693984774491D-50

988 -0.170417060830358369D-50 -0.169848079386484519D-50

989 -0.154296567233672132D-50 -0.153775130234132615D-50

990 -0.139701534768943538D-50 -0.139223690066045696D-50

991 -0.126487557490089035D-50 -0.126049679593551781D-50

992 -0.114523904652148961D-50 -0.114122667897952062D-50

993 -0.103692225171641384D-50 -0.103324579079614789D-50

994 -0.938853748703230965D-51 -0.935485215132915766D-51
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995 -0.850063548609818248D-51 -0.846977280825014938D-51

996 -0.769673505380852079D-51 -0.766845968688992902D-51

997 -0.696888616355341918D-51 -0.694298227709246865D-51

998 -0.630989147183583381D-51 -0.628616114296598897D-51

999 -0.571323502939502490D-51 -0.569149676576982070D-51

1000 -0.517301774695132233D-51 -0.515310513070892705D-51
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We applied Neville-Richardson Extrapolation to the ratios rn of the PYC5TGC68

and PYS5TGC68 coefficients in table 4.8 and performed linear least squares fits

to the resulting series as was described in section 4.1. The rn agreed with

Baker’s to 5 decimal digits, the sn to 4 decimal digits and the tn to 3-4 decimal

digits for all n up to n ∼ 400. A simple calculation can be done to estimate

the precision of the Neville-Richardson extrapolations. For example, at 100th

order we know the PYC5TGC68 En are accurate to 8 decimal digits from the

comparison with the stability check PYS5TGC68 coefficients. This means

r100 =
E101

E100
=
−0.350594231× 10−10

−0.397753186× 10−10
= 0.881436638 (4.26)

where the underline denotes the last significant digit of a number. So the rn are

accurate to 8 decimal digits at 100th order. Now the sn and tn are calculated

s100 = (101)r101 − (100)r100

= 101× 0.881668476− 100× 0.881436638

= 89.048516076− 88.143663800

= 0.904852276

t100 = 2[(100 +
1

2
)r101 − (100)r100]

= 2[100.5× 0.881668476− 100× 0.881436638]

= 2[88.607681838− 88.143663800]

= 0.928036076

Lastly the vn are calculated

v100 = (102)t101 − (101)t100

= 102× 0.9278726− (101)× 0.9280361

= 94.6430052− 93.7316461

= 0.9113591 (4.27)
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Table 4.9: Accuracy of the series coefficients

Order En rn sn tn vn

100 8 8 6 6 4

200 8 8 6 6 3

300 7 7 5 5 2

400 7 7 4 4 1

600 6 6 2 2 0

800 4 4 1 1 0

1000 1 1 0 0 0

So the 100th order En are accurate to 8 decimal digits, the rn to 8 decimal

digits, the sn and tn to 6 decimal digits and the vn to 4 decimal digits. Table

4.9 shows the estimated accuracy of the coefficients of each of these series for a

range of different orders.

Figures 4.1 - 4.13 are plots of the coefficients of the various Neville-Richardson

extrapolations and their least squares fits. Each of the series began at 100th

order because only the asymptotic behaviour of the 1/Z expansion was of in-

terest in this work. Multiple different ranges of coefficients (e.g. n = 100 to

n = 400) were analyzed for each series in order to estimate the uncertainty in

the resulting λ∗. In order to have λ∗ accurate to 4 decimal digits, the coeffi-

cients in the series must be accurate to about 4 decimal digits and so naturally

the coefficient ranges n = 100 to 300, n = 100 to 400 and n = 100 to 500 were

analyzed for the sn and tn series. Figures 4.1, 4.3, 4.7 and 4.11 display all of the

coefficients in the series rn sn tn respectively which contain at least 1 significant

figure. The values of the parameters used in the fits are displayed below each

of the figures and the radius of convergence of the 1/Z expansion is estimated

by λ∗ = 1/a. Only every 10th series coefficient was plotted in order to allow

the fit lines to be clearly visible. All of the uncertainties recorded below are

only from the least squares fitting procedure. The largest source of error comes

from the assumption that the true asymptotic behaviour of each of the series is
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fully revealed within the range of terms that were analyzed and thus that the

fit lines can be trusted as n→∞. There is no estimate to this error and so the

uncertainties displayed below serve only as a testament to how well the fit lines

agree with the data.

Figure 4.1: Least squares fit to the ratios from n = 100 to 999
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rn
a+b/n^(1/2)+c/n

The key in the top right corner of the graph shows the fit function that was used to

fit the coefficients. For this graph and those that follow, the intersection of the fit line

and the y-axis yields an estimate to Z∗ =
1

λ∗ .

a = 0.911 213± 2× 10−6 =⇒ λ∗ = 1.097 438± 2× 10−6

b = −0.128 62± 6× 10−5

c = −1.6898± 0.0005
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Figure 4.2: Least squares fit to the ratios from n = 100 to 400
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a = 0.911 076± 1× 10−6 =⇒ λ∗ = 1.097 603± 1× 10−6

b = −0.124 56± 3× 10−5

c = −1.7183± 0.0002
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Figure 4.3: Least squares fit to the sn from n = 100 to 800
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a = 0.911 389± 4× 10−6 =⇒ λ∗ = 1.097 226± 5× 10−6

b = −0.068 90± 0.0001

c = 0.407± 0.008
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Figure 4.4: Least squares fit to the sn from n = 100 to 300

 0.904

 0.905

 0.906

 0.907

 0.908

 0.909

 0.91

 0.911

 0.912

 0  0.02  0.04  0.06  0.08  0.1

sn

1/n^(1/2)

PYC5TGC68 sn n=100-300

sn
a+b/n^(1/2)+c/n^(3/2)

a = 0.911 030± 6× 10−6 =⇒ λ∗ = 1.097 659± 7× 10−6

b = −0.0614± 0.0001

c = −0.024± 0.007
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Figure 4.5: Least squares fit to the sn from n = 100 to 400
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a = 0.911 156± 6× 10−6 =⇒ λ∗ = 1.097 506± 7× 10−6

b = −0.0638± 0.0001

c = 0.104± 0.007
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Figure 4.6: Least squares fit to the sn from n = 100 to 500
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a = 0.911 243± 5× 10−6 =⇒ λ∗ = 1.097 402± 6× 10−6

b = −0.0657± 0.0001

c = 0.205± 0.008
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Figure 4.7: Least squares fit to the tn from n = 100 to 800
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Figure 4.8: Least squares fit to the tn from n = 100 to 300

 0.91

 0.912

 0.914

 0.916

 0.918

 0.92

 0.922

 0.924

 0.926

 0.928

 0.93

 0  0.002  0.004  0.006  0.008  0.01

tn

1/n

PYC5TGC68 tn n=100-300

tn
a+b/n

a = 0.911 130± 2× 10−6 =⇒ λ∗ = 1.097 538± 2× 10−6

b = 1.6951± 0.0004

94



Figure 4.9: Least squares fit to the tn from n = 100 to 400
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Figure 4.10: Least squares fit to the tn from n = 100 to 500
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Figure 4.11: Least squares fit to the vn from n = 100 to 400
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The fits for this range of coefficients were not consistent and so there is no fit line

plotted in the above image. The fits tended to be more unreliable for the vn series

because it has many less significant figures and spans a much smaller range of values

than the sn and tn series.
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Figure 4.12: Least squares fit to the vn from n = 100 to 150
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Figure 4.13: The vn from n = 100 to 200
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It is interesting to compare the values of fit parameter b for the above rn and

sn plots to the value of b found by Baker et al. in reference [1]. Their estimated

value is b = −0.124 and they state that the true value of b might be exactly

− 1
8 but the accuracy of their fits did not allow them to say for certain if this

was the case. The fit of rn from n = 100 to 400 in figure 4.2 resulted in b =

−0.124 56±3×10−5 which on its own would seem to be conclusive evidence that

b 6= − 1
8 . However, using different ranges of n in the fitting procedure resulted in

many estimates for b which all varied from each other by an appreciable amount.

Although each of the best fit lines fit the respective data sets very well, the

values for the fitting parameters had significant differences. For instance, the
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value for b in the range n = 100 to 999 from figure 4.1 is b = −0.128 62±6×10−5.

This is close to the value b = −0.124 56±3×10−5 from rn in the range n = 100

to 400 yet these two values are in disagreement. It does make sense that this

value for b could differ from the b found using n = 100 to 400 because the rn

series dropped in significant figures from 7 at n = 400 to roughly 1 at n = 999

so the tail end of this series was not very accurate (meaning that even a very

good fit to this series may be completely incorrect in predicting what the true

values of the series coefficients should be and therefore is untrustworthy). The

value of b obtained in the sn series should be exactly double the value of b in

the rn series. This results in the following estimates for b

n = 100− 300 : b = −0.1314± 0.0002

n = 100− 400 : b = −0.1228± 0.0002

n = 100− 500 : b = −0.1276± 0.0002

Clearly we still cannot say that b is exactly equal to − 1
8 , however we learned

something important from this analysis. We can conclude that the largest error

in the fitting parameters comes not from the least squares fitting procedure, but

in choosing the range of series coefficients to fit, and that this quirk is due to

the fact that even at 500th order the behaviour of the En is still changing very

gradually.

All of the independent estimates of λ∗ from each of the above fits suggest

that

λ? = 1.0975(2) (4.28)

Thus we find that our results agree with those of references [1] and [19]. Recall

from reference [23] that λc =
1

Zc
= 1.097 66 and so λ? = λc agree to all 4 decimal

digits within the estimated uncertainty. Thus this work concludes that λ∗ and λc

are equivalent. This means that as Z is continuously reduced, the ground state of

the two-electron atom is no longer a bound state when Z < Z∗ = Zc. Therefore
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the ground state cannot exist as a bound state embedded in the continuum for

Z < Zc. However, it is still possible that the ground state becomes a resonant

state at Z = Zc as the work of Drake et al. in reference [23] strongly suggests.

4.3 Interesting Findings

This section explains some results that are not directly relevant to determining

the radius of convergence of the 1/Z expansion, but are still intriguing or useful

to know.

4.3.1 Diagonalization Scheme Comparison

In calculating the eigenvalues and eigenvectors with the variational method,

the Hamiltonian was diagonalized using two different techniques – the Jacobi

method (Appendix C.1) and the Tridiagonalization method (Appendix C.2).

The Jacobi method takes O(n4) operations to complete while the tridiagonal-

ization method takes O(n3) operations with n being the dimension of the Hamil-

tonian matrix. The computation times of each of these methods for different

matrix dimensions are compared in figure 4.14

Dall2016.f used the Jacobi method and dtridlz2016.f used the tridiagonaliza-

tion method. Both programs needed to perform two separate diagonalizations

among many other necessary calculations. The diagonalization procedures take

the majority of the runtime for larger basis sets and can safely be assumed to

take the full time for n > 500. The tridiagonalization method was found to

have the same numerical stability as the Jacobi method, but take much less

time for large n. The tridiagonalization method should always be implemented

for computations involving matrix diagonalization with large matrices.

4.3.2 Oscillating Coefficients

As was explained in reference [1] the coefficients of a perturbation expansion can

exhibit oscillatory behaviour even when no such behaviour should be present.
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Figure 4.14: Runtime for dall2016.f and dtridlz2016.f
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This is a result of using a finite size basis set in the perturbation theory proce-

dure to calculate the En. Baker et al. showed that a Hamiltonian matrix with

a perturbation, when expanded in a basis set of size two

a11 0

0 a22

+ λ

b11 b12

b21 b22

 (4.29)

have eigenvalues E± with perturbation expansion coefficients that behave like

En± = ±λ−n0

[
(

2

πn
sin θ)1/2 sin((n− 1

2 )θ − π
4 )

n− 1
2

+O(n−5/2)

]
(4.30)

for large n where n is the order of the perturbation expansion and λ0 and θ

are the modulus and argument of the complex conjugate pair of values λ =

λ0e
iθ, λ∗ = λ0e

−iθ for which E+ = E− (a singularity occurs at these two points

in the λ plane). From this equation it is seen that the perturbation expansion

coefficients for E+ and E− oscillate with constant period 2π/θ. Of course for

basis sizes larger than two the asymptotic behaviour of the eigenvalues of the
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Hamiltonian matrix may differ from that of equation (4.30). The purpose of

equation (4.30) is simply to show that oscillations in perturbation expansion

coefficients naturally occur as a result of using finite size basis sets to diagonalize

a Hamiltonian matrix.

The 1/Z expansion coefficients were found to oscillate with increasing pe-

riod as n → ∞. The following figures are plots of the absolute value of the

differences between the 1/Z expansion coefficients En that were calculated us-

ing three different sizes of basis sets. Baker et al. used a 450 term basis set

while PYC5TG974 and PYC5TGC68 from this work used 974 and 1268 terms

respectively.

Figure 4.15: PYC5TG974 vs. PYC5TGC68
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A graph of the absolute value of the differences between the 1/Z expansion coefficients

calculated using the PYC5TG974 basis set and those of the PYC5TGC68 basis set.

In order to make the oscillatory behaviour more clear, a smooth line was used to plot

this data instead of a series of data points.
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Figure 4.16: Baker vs. PYC5TG974
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Figure 4.17: Baker vs. PYC5TGC68
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It can be clearly seen from these graphs that all of the calculated coefficients

exhibit oscillatory behaviour. Although the amplitude of the oscillations has a

very similar dependence on n regardless of the basis set being used, the period of

the oscillations differ. Most notably, we can conclude from these graphs that the

oscillations in the coefficients of Baker et al. had much longer periods than the

larger pyramidal basis sets. The oscillations are most likely a result of the finite

basis size, and so it seems that by increasing the number of terms in the basis set

the gradual increase in the period of oscillations in the coefficients is decreased.

Thus, if these oscillations are not identifiable at higher orders then it may be an

indication that either the perturbation coefficients need to be calculated with

higher precision (coefficients with errors larger than the amplitude of oscillations

would mask the underlying oscillatory behaviour) or the size of the variational

basis sets must be increased (as we have seen from the graphs, increasing the

basis size decreases period of coefficient oscillations).

4.3.3 Decay of Coefficients

When a basis set did not include the correct long range behaviour to describe

the higher order terms, there would be a point in the sequence of En after which

these coefficients would begin to rapidly decrease in magnitude. This can be

clearly seen in the En that were calculated using the He basis sets.

At 200th order, the He En are 2 orders of magnitude smaller than the

PYC5TGC68 En and at 400th order they are 6 orders of magnitude smaller.

This separation continues to increase rapidly as n is increased.

A similar phenomenon can be seen from comparing the En calculated from

different basis set sizes. A larger basis set will allow for higher order terms in

the 1/Z expansion to be found more accurately than those calculated with a

smaller basis set. Increasing basis size does not have as large an effect on the

En as changing the nonlinear parameters within the basis set. The differences

in the various En are small, but can be seen clearly by plotting the respective

accelerated series sn for the different basis sizes together as was done in figure
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Figure 4.18: Helium En rapid decrease
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Figure 4.19: sn decay for different H− triple basis set sizes
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Chapter 5

Conclusion

The 1/Z expansion coefficients of Baker et al. in reference [1] were shown to be

accurate to 5 decimal digits even at high orders as they had originally claimed.

This proves that Turbiner and Guevara’s assertion that these En contain no

significant figures once n ≥ 135 (from reference [21]), is incorrect. The pyramidal

basis sets employed in this work successfully found more accurate En that still

contained a single significant figure even at 1000th order. Using these coefficients

the radius of convergence was found λ∗ = 1.0975(2) in agreement with references

([1, 19, 22]). Table 5.1 lists the previous determinations of λ∗ up to and including

this work. Some of the errors in various λ∗ have been adjusted from what

the original authors claimed due to the knowledge obtained in this work, of

the accuracy of the coefficients in reference [1] which were used in many other

works. The estimate of λ∗ from Baker et al. in reference [1] was not included

in table 5.1 because it was not calculated but instead came directly from their

assumption that λ∗ = λc (this assumption was still uncertain at the time). The

result of Zamastil et al. disagrees with this work because they analyzed only

the first 20 coefficients of the 1/Z expansion whereas this work analyzed the

coefficients from 100th order up to 1000th order. While it is true that the first

20 coefficients are more accurate than the higher order coefficients, the 1/Z

expansion is a very slowly converging series and so the first 20 coefficients do
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Table 5.1: Important estimates of the radius of convergence of the 1/Z expansion

year reference λ∗

1962 Knight and Scherr [5] 1.33

1966 Stillinger [8] 1.1184

1970 Brändas and Goscinski [12] 1.118

1972 Brändas and Goscinski [13] 1.119

1986 Arteca et al. [18] 1.1056(40)

1995∗ Ivanov [19] 1.0976(1)

2010∗ Zamastil et al. [20] 1.1085(2)

2015∗ Karr [22] 1.0973(1)

2017 This work 1.0975(2)

The ∗ indicates works that used the 1/Z expansion coefficients from reference [1] and

thus needed to have their error’s readjusted. Only the order of magnitude of the errors

is known in these cases (and so the real errors are most likely larger than 1 × 10−4).

not capture the proper asymptotic behaviour of the series. Any analysis on just

the first 20 coefficients is bound to yield inaccurate estimates of λ∗.

The critical nuclear charge Zc has recently been calculated to very high

precision Zc = 0.911 028 224 077 255 73(4) by Drake et al. in reference [23] corre-

sponding to
1

Zc
= 1.097 660 833 738 559 80(5). The main result is that λ∗ =

1

Zc
for up to 4 decimal digits and within the estimated uncertainty and thus it is

concluded that the ground state cannot become a bound state embedded in the

continuum as Z is reduced below Z∗ = Zc∗.
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Chapter 6

Future Work

The Hamiltonian used in this work was the nonrelativistic, infinite nuclear mass

Z-scaled two-electron atom Hamiltonian. In reference [33] the critical nuclear

charge in the finite nuclear mass case was found for a range of different values

of reduced mass. It would be interesting to investigate whether the radius of

convergence of the 1/Z expansion of the ground state energy for the finite mass

Hamiltonian is equivalent to
1

Zc
for these different values of reduced mass.

There has not been much research into the three-electron atom critical val-

ues (Zc and λ∗) due to both the complexity of this problem and the greater

interest in the two-electron atom critical values. λ∗ has been found to appre-

ciable accuracy for two-electron atoms and so the next logical step is to analyze

three-electron atoms to see if the result λ∗ =
1

Zc
still holds (Zc in this case

would be the charge at which the three-electron atom ground state would have

the same energy as the two-electron atom ground state).

Lastly, a more precise determination of λ∗ could be attempted by either

trying different basis sets, increasing the size of the existing basis sets, or by

using a different series acceleration technique. The En were determined with

high accuracy in this thesis and so it is likely the best of these options would be

to use a different series acceleration technique such as those applied in reference

[19].
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Appendices

A Linear Variational Method

We start off assuming that the trial wave function, ψtr depends only linearly on

a known, complete set of basis functions, χi

|ψtr〉 =

N∑
i=0

ci|χi〉 (6.1)

We will inspect the more general case that the complete set of basis functions

is not orthonormal. The expectation value of the energy of ψtr is

Ẽtr =
〈ψtr|H|ψtr〉
〈ψtr|ψtr〉

=

∑N
i,j=0 c

∗
i cjHij∑N

i,j=0 c
∗
i cjOij

=
f

g
(6.2)

where Hij and Oij are the matrix elements of H and O in the χ basis, i.e.

Hij = 〈χi|H|χj〉 and Oij = 〈χi|χj〉.

Now, we want to minimize (6.2) with respect to the linear variational pa-

rameters, c∗i (minimizing with respect to the ci’s independently yields the same

final result, so we are free to chose either the c∗i ’s or ci’s)

∂Ẽtr
∂c∗k

=
∂

∂c∗k

f

g

=

∂f

∂c∗k
g − ∂g

∂c∗k
f

g2
= 0

g = 〈ψtr|ψtr〉 is nonzero so we can multiply both sides by g
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∂Ẽtr
∂c∗k

=

∂f

∂c∗k
g − ∂g

∂c∗k
f

g

=
∂f

∂c∗k
− ∂g

∂c∗k
Ẽtr (6.3)

=

N∑
j=0

cjHkj − Ẽtr
N∑
j=0

cjOkj (6.4)

=

N∑
j=0

cj(Hkj − ẼtrOkj) = 0 (6.5)

In order to transition from (6.3) to (6.4) we used the fact that the ci’s are

independent of each other and thus,
∂c∗i
∂c∗k

= δik. Equation (6.5) is what results

after requiring that the energy be minimized with respect to only the k’th

coefficient c∗k. Requiring a full optimization over all linear parameters produces

equation (6.5) for all k, which is equivalent to solving the following familiar

matrix equation

H|ψtr〉 = ẼtrO|ψtr〉 (6.6)

Equation 6.6 is called the generalized eigenvalue problem. This is a more general

Schrödinger equation which is used when the chosen basis set is not orthogonal.

If O = I then we are working in an orthonormal basis set. In this case (6.6)

reduces to the regular Schrödinger equation. The energy, Ẽtr, are found by

looking for nontrivial solutions to this equation (|ψtr〉 is nonzero) which is done

by solving

|H− ẼtrO| = 0 (6.7)

Solving the above equation is equivalent to finding the orthonormal basis in

which H is diagonal. The eigenvectors of a Hamiltonian matrix which cor-

respond to different eigenvalues are always orthogonal (this is a property of

Hermitian matrices in general). The orthonormal basis which solves 6.7 is sim-

ply the basis of normalized eigenvectors of H. Recall that we arrived at this

112



equation by trying to find the optimal linear parameters which minimized the

variational energy for a general trial wave function. Therefore we have shown

that applying the variational method to a trial wave function that only depends

on linear parameters is equivalent to diagonalizing the Hamiltonian matrix.

B Hylleraas Undheim Macdonald Theorem

The goal of this section is to help the reader understand what the HUM theorem

is and what it implies. We begin by proving that the N old eigenvalues of a

Hermitian matrix H fall between the N + 1 new eigenvalues. Let’s assume

H(n) is a Hamiltonian matrix of dimension n which is in diagonal form with

eigenvalues ordered from smallest to largest, E1 < E2 < . . . En.

H(n) =


E1 0 . . . 0

0 E2 . . . 0
...

...
. . .

...

0 0 . . . En

 (6.8)

Now we add a row and column onto H(n) (which is the same as increasing

the size of the basis in which we are describing H by one). Recalling that the

Hamiltonian is Hermitian

H(n+1) =



E1 0 . . . 0 v1

0 E2 . . . 0 v2

...
...

. . .
...

...

0 0 . . . En vn

v1 v2 . . . vn vn+1


(6.9)

We need to find the eigenvalues of this new matrix. To do this we solve the

characteristic equation

D = |H(n+1) − λI| = (E1 − λ)M
(n)
1,1 + (−1)(n)v1M

(n)
1,n+1 = 0 (6.10)
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with Mn
i,j being the determinant of the matrix of size n × n that results from

removing the ith and jth rows and columns of H(n+1) respectively. That is

M
(n)
(1,1) =

∣∣∣∣∣∣∣∣∣∣∣∣

E2 − λ 0 . . . v2

0 E3 − λ . . . v3

...
...

. . .
...

v2 v3 . . . vn+1

∣∣∣∣∣∣∣∣∣∣∣∣
(6.11)

M
(n)
(1,n+1) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 E2 − λ 0 . . . 0

0 0 E3 − λ . . . 0
...

...
...

. . .
...

v1 v2 . . . vn

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)(n−1)v1

n∏
i=2

(Ei − λ) (6.12)

To find the determinant of M
(n)
(1,1) we use the same expansion as was done in

calculating the determinant of H(n+1)

M
(n)
(1,1) = (E2 − λ)M

(n−1)
(11) + (−1)(n−1)v2M

(n−1)
(1,n) (6.13)

where M
(n−1)
(i,j) is the determinant of the (n − 1) × (n − 1) dimensional matrix

resulting from removing the ith row and jth column of M
(n)
(1,1) respectively. Once

again we can end up with a formula for one of the determinants

M
(n−1)
(1,n) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 E3 − λ 0 . . . 0

0 0 E4 − λ . . . 0
...

...
...

. . .
...

v2 v3 . . . vn

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)(n−2)v2

n∏
i=3

(Ei − λ) (6.14)

but we are left to expand the M
(n−1)
(1,1) determinant. After finishing this sequence

of determinant expansions, the end result is

D(λ) = (v(n+1) − λ)

n∏
i=1

(Ei − λ)−
n∑
i=1

v2
i

n∏
j 6=i

(Ej − λ) (6.15)

where D is a function of λ. If we put λ = Ek in equation (6.15) we find that
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D(Ek) = −v2
k

n∏
j 6=k

(Ej − Ek) (6.16)

If we put λ = Ek+1 in then

D(Ek+1) = −v2
(k+1)

n∏
j 6=k

(Ej − Ek+1) (6.17)

We know that E1 < E2 · · · < En, so equations (6.16) and (6.17) show

that the products
∏n
j 6=k(Ej − Ek) and

∏n
j 6=k(Ej − Ek+1) will have opposite

signs (while −v2
k and −v2

(k+1) are both negative). This implies that D(Ek+1)

is guaranteed to have the opposite sign of D(Ek) for all k. Then D(λ) has at

least one root in each of the intervals (E1, E2), (E2, E3) . . . (En−1, En).

We know the characteristic equation for a Hermitian matrix of size (n× n)

always has n real roots. For our n+1 dimensional matrix we have found n−1 of

these roots so we must find the last two. To do this, we analyze the behaviour

of D(λ) as the magnitude of λ grows large. Looking at (6.15) it is clear that

lim
|λ|→∞

D(λ) = (−λ)(n+1) (6.18)

so if λ→ −∞ then D(λ) is positive. If λ→∞ then D(λ) is a product of (n+1)

negative numbers. Using equation (6.16) we can see that

D(E1) = −v2
1(E2 − E1)(E3 − E1) · · · (En − E1) (6.19)

which is a product of (n− 1) positive numbers and one negative number, −v2
1 .

Thus D(E1) and lim
λ→−∞

D(λ) have opposite signs therefore there is a root of

D(λ) in the range (−∞, E1). Similarly

D(En) = −v2
n(E1 − En)(E2 − En) · · · (En−1 − En) (6.20)

which is a product of (n) negative numbers so that D(En) and lim
λ→∞

D(λ) have

opposite sign, and thus there is a root of D(λ) in (En,∞). Therefore we have

found all of the (n + 1) eigenvalues of our Hamiltonian matrix H(n+1) and

115



have also seen that the n eigenvalues Ei of the old matrix H(n) are sandwiched

between the n+ 1 eigenvalues λi of H(n+1)

λ1 < E1 < λ2 < E2 < · · · < En < λn+1 (6.21)

If the basis set used to construct the Hamiltonian matrix is complete in the

limit limn→∞ (where n is the basis set size) then we must reproduce the exact

energy spectrum as n→∞. Also, the i’th eigenvalue of the Hamiltonian matrix

can only decrease in value as n is increased as we have just shown (6.21). This

implies the λi’s cannot decrease past the true energies E?i for any basis size n or

else they would not be able to converge to the correct values as n → ∞ which

is required by the completeness of the basis functions. Therefore, the HUM

theorem states that all of the variational energies λi, not just the ground state

λ0, are upper bounds to the true energies E∗i as long as the basis set being used

is complete as limn→∞. Each increase in n is guaranteed to yield smaller upper

bounds to the energies and so by simply increasing the size of our basis sets we

will find a more accurate approximation to the entire spectrum (disregarding

issues of numerical stability in trying to find the spectrum of course).

C Matrix Diagonalization

For large Hamiltonian matrices, it is not feasible to solve the characteristic

equation to find the eigenvalues and eigenvectors. Instead, we can apply a

known matrix diagonalization method to put the Hamiltonian in diagonal form.

The eigenvalues and eigenvectors become trivial once the Hamiltonian is in

this form. Diagonalization of a Hamiltonian is equivalent to applying linear

variational method as is shown in Appendix A and so it is critical to know how

to diagonalize a Hamiltonian. The Hamiltonian matrices used in this work were

real symmetric matrices, so in all of the following sections H will be assumed

to be a real symmetric matrix. Most of the information from reference [25] was

used in the sections on the Jacobi method, the tridiagonalization method and
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Given’s method.

C.1 Jacobi Method

In linear algebra, it is a well known and very useful fact that if we rotate any

matrix A with a rotation matrix R i.e.

A′ = RtAR (6.22)

then the rotated matrix, A′, will have the same eigenvectors and eigenvalues as

the original matrix. The idea of the Jacobi method is to make use of this fact by

applying a series of rotations to H that sequentially zero the off-diagonal matrix

elements until it is in diagonal form. Then the eigenvectors and eigenvalues of

this transformed matrix will be the same as those for H except they will be

trivial to find.

H′ = Rt
nRt

n−1 . . .R
t
1HR1 . . .Rn−1Rn = VtHV = Λ (6.23)

Λ is a diagonal matrix which contains the eigenvectors λ1 = Λ11, λ2 = Λ22 . . . .

The eigenvalues are contained in the columns of V; vnm = Vmn. So we see that

once we have diagonalized H by applying this set of rotation matrices, we will

have found the eigenvalues and eigenvectors we were looking for. Now we must

ask the question: which rotations do we use to diagonalize H? Lets define a

general Jacobi rotation matrix as

J(p, q, θ)ii = 1∀ i 6= p, q

J(p, q, θ)ij = 0∀ i, j 6= p, q

J(p, q, θ)pp = J(p, q, θ)qq = cos(θ)

J(p, q, θ)pq = −J(p, q, θ)qp = sin(θ)

(6.24)

This matrix looks like
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J(p, q, θ) =



1 0 . . .

0
. . .

... . . . cos(θ) . . . sin(θ) . . .
...

...

. . . − sin(θ) . . . cos(θ) . . .
...

...
...

. . . 0

. . . 0 1



(6.25)

which is just an identity matrix except for the matrix elements Jpp, Jpq, Jqp, Jqq.

J(p, q, θ) is the matrix operator representing a rotation by θ in the (ep, eq) plane

(where ei is a unit vector in the i’th direction). After applying one of these

rotations to H, the new matrix elements are

H ′ij = Hij ∀ i, j 6= p, q

H ′ip = H ′pi = cHip − sHiq ∀ i 6= p, q

H ′iq = H ′qi = cHiq + sHip ∀ i 6= p, q

H ′pq = H ′qp = (c2 − s2)Hpq + cs(Hpp −Hqq) (6.26)

H ′pp = c2Hpp + s2Hqq − 2csHpq

H ′qq = s2Hpp + c2Hqq − 2csHpq

(c = cos(θ) and s = sin(θ))

We know that rotations do not change the determinant of a matrix, but we

need to check if the Frobenius norm is invariant under rotations

||H|| =
N∑
i,j

H2
ij (6.27)

The squares of the rotated matrix elements are
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H ′ij
2

= H2
ij ∀ i, j 6= p, q

H ′ip
2

= H ′pi
2

= c2H2
ip + s2H2

iq − 2cs(HipHiq)∀ i 6= p, q

H ′iq
2

= H ′qi
2

= c2H2
iq + s2H2

ip + 2cs(HipHiq)∀ i 6= p, q

H ′pq
2

= H ′qp
2

= (c2 − s2)2H2
pq + c2s2(Hpp −Hqq)

2 + 2cs(c2 − s2)[Hpq(Hpp −Hqq)]

H ′pp
2

= c4H2
pp + s4H2

qq + 4c2s2H2
pq + 2c2s2(HppHqq)− 4cs[Hpq(c

2Hpp + s2Hqq)]

(6.28)

H ′qq
2

= c4H2
qq + s4H2

pp + 4c2s2H2
pq + 2c2s2(HppHqq) + 4cs[Hpq(c

2Hqq + s2Hpp)]

(6.29)

From these equations, it is easy to see that

H ′ip
2

+Hiq′2 = H2
ip +H2

iq

H ′pi
2

+Hqi′2 = H2
pi +H2

qi

where the second equation can be found just by using the fact that both H′

and H are symmetric matrices. After some tedious algebra, we can find the

relationship

H ′pp
2

+H ′qq
2

+H ′pq
2

+H ′qp
2

= H2
pp +H2

qq +H2
pq +H2

qp (6.30)

combining this with the previous two expressions, we discover that the Frobenius

norm for our real symmetric matrix, H, is invariant under rotations

N∑
ij

H ′ij
2

=

N∑
ij

H2
ij (6.31)

Finally, we notice that for each Jacobi rotation, we have the freedom to zero two

of the off-diagonal elements by finding the θ such that H ′pq = H ′qp = 0. From

(6.26) we find

tan(2θ) =
(2Hpq)

Hqq −Hpp
(6.32)
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Using (6.28) and (6.29) we have

H ′pp
2
+H ′qq

2
= (c4+s4)(H2

pp+H
2
qq)+8c2s2H2

pq+4c2s2(HppH
?
qq)+4cs[Hpq(c

2−s2)(Hqq−Hpp)]

(6.33)

Inserting (6.32) into (6.33) results in

H ′pp
2

+H ′qq
2

= H2
pp +H2

qq + 2 sin2(2θ)H2
pq +

1

2
sin2(2θ)(Hqq −Hpp)

2

= H2
pp +H2

qq + ε, ε ≥ 0

=⇒ H ′pp
2

+H ′qq
2 ≥ H2

pp +H2
qq (6.34)

Equation (6.34) states that the diagonal elements will increase while (6.31)

states that the sum of the magnitudes of all the elements in the matrix must

stay the same after each rotation matrix is applied. Therefore with each Jacobi

rotation, the off-diagonal terms must gradually diminish while the diagonal

terms become larger. Given that we are retaining enough significant figures

in the matrix elements to avoid large numerical cancellations, we can continue

applying these rotations until the off-diagonal elements are all zero to within

the desired precision and thus we will have obtained our diagonal matrix.

The Jacobi method is a slow but reliable procedure requiring arithmetic

operations O(n4) to complete (where n is the dimension of the matrix being

diagonalized). The convergence of the Jacobi method can be accelerated by

finding the largest off-diagonal matrix before each iteration and applying the

corresponding Jacobi matrix to zero it.

C.2 Tridiagonalization

The code used in the programs for diagonalizing matrices with the tridiago-

nalization method was taken from reference [31], and can be found online using

reference [32] (we used the TRED2 and IMTQL2 subroutines in F77). The code

and was modified from double precision (∼ 16 decimal digits) to quadruple pre-

cision (∼ 30 decimal digits).
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We begin the tridiagonalization method with the real symmetric matrix, H.

We need to put our matrix in tridiagonal form

A =


a11 a12

a21 a22 a23

a32 a33 a34

. . .
. . .

. . .

 (6.35)

(All unlabeled elements are assumed to be 0)

This is what we refer to as tridiagonalizing a matrix and we used the House-

holder method for this purpose. A Householder matrix has the form

P = I− 2wwt (6.36)

where I is the identity matrix and w is an arbitrary unit vector. P is symmetric

Pt = It − 2(wwt)t

= I− 2(wt
t
wt)

= P

and is orthogonal

P2 = (I− 2(wwt))(I− 2(wwt))

= I2 − 4(wwt) + 4(wwt)(wwt)

= I− 4(wwt) + 4w(wtw)wt

= I− 4(wwt) + 4wwt

= I

=⇒ P = P−1 = Pt (6.37)

Let a vector, x, be orthogonal to w, i.e. wtx = 0. Then

Px = (I− 2wwt)x = x− 2w(wtx) = x (6.38)

121



Now let u be a vector in the direction of the unit vector w. Then wtu = |u| and

w|u| = u, hence

Pu = (I− 2wwt)u = u− 2u = −u (6.39)

Equations (6.38) and (6.39) illuminate the action of P on a general vector q.

P will leave any components of q orthogonal to w invariant while reversing the

sign of any components of q that align with the w unit vector. P is a reflection

operator.

A series of P’s can be used to put a real symmetric matrix H in tridiagonal

form. We can define P1 using the following vectors, u,v and w

u =


H21

H31

...

Hn1

 (6.40)

i.e. u is the vector such that

H =

H11 ut

u H(n−1)

 (6.41)

where H(n−1) is the bottom right (n− 1)× (n− 1) submatrix contained in H.

v =


|u|

0
...

0

 (6.42)

w =
u− v
|u− v|

(6.43)

With these vectors we can construct an (n× n) matrix,

A1 =

1 0t

0 P1

 (6.44)
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so that when A1 is applied to H, the first row and column of the resulting

matrix H′ will be in tridiagonal form

H′ = At
1HA1 =

H11 vt

v P1H
(n−1)P1

 (6.45)

To put the second row and column of H′ in tridiagonal form we use

u =


H32

H42

...

Hn2

 (6.46)

v =


|u|

0
...

0

 (6.47)

then calculate P = I−2wwt (recall that w = u−v
|u−v| ) for the new u and v vectors

A2 =

I2 0t

0 P2

 (6.48)

I2 is the 2× 2 unit matrix. This procedure can be repeated column by column

until H is in tridiagonal form.

The Householder method tridiagonalizes a real symmetric matrix with just

O(n3) arithmetic operations. Of course, the end goal is to put H in diagonal

form. Why then, do we not use Householder reflection matrices P that zero all

of the elements below the diagonal instead of putting the matrix in tridiagonal

form? Attempting to diagonalize the first row and column of H makes answers

this question. First, we set

u =


H11

H21

...

Hn1

 (6.49)
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so that

H =


u1 u2 . . . un

u2 H22 . . . H2n

...
...

...
...

un Hn2 . . . Hnn

 (6.50)

and as usual

v =


|u|

0
...

0

 (6.51)

w =
u− v
|u− v|

(6.52)

The corresponding Householder reflection matrix, P = I − 2wwt will be a full

(n × n) matrix; A1 = P. Now we can calculate the transformed matrix H′ =

PHP. Multiplying on the left by P yields

PH =

|u| xt

0 P(n−1)H(n−1)

 (6.53)

where P(n−1) and H(n−1) are the matrices resulting from removing the first row

and column from H and P respectively. The components of the vector, x are

xi = P11ui +
∑n
j=2 P1jHji defined from i = 2, n.

At this point, the problem is apparent. Although we have successfully zeroed

the off-diagonal elements of the first column of PH, we have also altered the

first row so that it is no longer equal to ut. When the P matrix is applied on

the right side, it will not zero the off-diagonal elements in the first row. Worse

yet, upon application of P from the right the elements in the first column will

be adjusted in the same way as the elements in the first row were, thereby

becoming nonzero. Therefore the diagonalization process is not as simple as

applying n− 1 Householder reflection matrices.
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Now that we have a tridiagonal matrix H0 resulting from the application of

the Householder method to H, we can use another procedure to find the eigen-

vectors and eigenvalues of H0. The programs used in this work implemented

the implicit QL factorization method for this purpose. First, the tridiagonal

matrix is factored into an orthogonal matrix, Q0 and a lower triangular matrix

L0.

H0 = Q0L
0 (6.54)

which can be done by applying a series of n− 1 Givens rotations (see Appendix

D) to H0. If the sequence

Qt
0 = G(2, 2)G(3, 3) . . .G(n, n) (6.55)

is applied to H0 on the left, the result is a lower triangular matrix L0 (each

G(i, i) zeros a single superdiagonal element of H0). Thus from this sequence of

Givens rotations we obtain both L0 and Q0 = G(n, n) . . .G(3, 3)G(2, 2). Now

we can find H1 using

H1 = L0Q0 = Qt
0H

0Q0 (6.56)

Q0 is orthogonal (any composition of Givens rotation matrices will be orthogonal

because the Givens rotations themselves are orthogonal), so H1 is similar to H0

and therefore they share the same eigenvectors and eigenvalues. This transfor-

mation also preserves the tridiagonal form of H0 – if H0 is a tridiagonal matrix

then H1 will also be a tridiagonal matrix. The implicit QL method is continued

by factoring H1 into a new orthogonal matrix Q1 and a new lower triangular

matrix L2 then uses these to find the next tridiagonal matrix H2 = L1Q1. The

sequence of matrices Hk gradually become diagonalized as k is incremented (k

is the number of iterations of the implicit QL algorithm).

Each iteration of the implicit QL method, when applied to a tridiagonal ma-

trix, takes O(n) operations to perform. Depending on the precision requirement

for which the off-diagonal elements must agree with zero, each eigenvalue and
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eigenvector found take roughly 1 to 2 iterations on average. Thus, finding all

of the eigenvalues and eigenvectors of a tridiagonal matrix with the implicit QL

algorithm is of O(n2) operations. For large n the slowest part of the tridiago-

nalization method is putting the initial matrix H in tridiagonal form and is of

O(n3) operations (if the Householder method is used). Givens’ method can also

be used to tridiagonalize a matrix (Appendix D) but it takes about 50% more

operations to complete than the Householder method for large matrices.

C.3 Power Method and Inverse Iteration Method

The information from reference [26] was used to complete this section. The

power and inverse iteration methods are very simple and effective ways to solve

the generalized eigenvalue problem. The power method begins with a single

arbitrary starting vector, χ that can be expanded as a linear combination of the

true eigenvectors ψi of the Hamiltonian matrix H

χ =

N∑
i=0

ciψi (6.57)

Then we can write

Hχ =

N∑
i=0

ciHψi =

N∑
i=0

ciEiOψi (6.58)

where O is the overlap matrix. Left multiply both sides by O−1 to get

O−1Hχ =

N∑
i=0

ciEiψi (6.59)

Now, if O−1H is applied n times to χ the result is

(O−1H)nχ =

N∑
i

(Eni )ciψi (6.60)

Repeated application of O−1H to χ will make the sum on the right hand side

of (6.60) converge to
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lim
n→∞

(O−1H)nχ = (Ej)
ncjψj (6.61)

where Ej is the largest eigenvalue in the spectrum. One would think that there

might be a way we could find all the eigenvalues and eigenvectors using the

power method. Certainly we could find the next largest eigenvalue and the cor-

responding eigenvector by using an initial vector χ2 that is orthogonal to ψj

so that cj = 0. Repeated application of O−1H on χ2 would isolate the second

largest eigenvector and eigenvalue of the spectrum of H. The next starting vec-

tor χ3 would use an initial vector that is orthogonal to the first two eigenvectors

allowing the discovery of the third largest eigenvalue and eigenvector upon re-

peated application of O−1H. In theory, we could continue this procedure all

the way down to the ground state, but in practice this most likely would not

work due to issues with numerical stability. As we continue the algorithm, the

number of vectors that the initial vector χi must be orthogonal to increases.

Eventually, the orthogonalization routine will begin to become inaccurate and

there will be small components of the higher eigenvectors left in χi. Even if

the surviving components of the higher eigenvectors are small, the correspond-

ing eigenvalues are large and so using the power method would not guarantee

convergence to the desired eigenvalue and eigenvector pair.

The power method works but may have slow convergence in the case that

the eigenvalues are all close together. Also, as we have just shown above, it is

also only useful for finding the largest eigenvalue and eigenvector in a spectrum.

The inverse power method is an improvement of the power method. From

reference [26]

Hψi = EiOψi

(H− EgO)ψi = (Ei − Eg)Oψi

Gψi =
1

Ei − Eg
ψi

with G = (H − EgO)−1O and Eg is a guessed value for the energy eigenvalue
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that is desired. The idea is that the eigenvalue closest to Eg, which we will

denote by Ej , will result in a much larger value for
1

Ei − Eg
than the rest of

the Ei so that the sequence

χ1 = Gχ

χ2 = Gχ1

χ3 = Gχ2

... (6.62)

will quickly converge to

χn ≈ cj
(

1

Ej − Eg

)n
ψj (6.63)

By varying Eg, eventually all of the eigenvalues and eigenvectors of H can be

found.

There are two minor details to be aware of when using the inverse power

method. First, if the initial energy guess is exactly equal to one of the true

eigenvalues then the inverse matrix G becomes singular. This issue almost

never occurs and can easily be avoided by using a slightly adjusted Eg for the

next attempt. Second, if by chance cj = 0 in the trial wave function χ then the

sequence will not converge to the desired results, Ej , ψj but instead to the next

closest eigenvalue and eigenfunction with ck 6= 0. This highly unlikely event

can be handled by trying different initial wave functions for the same Eg and

making sure the final values Ej for each different χ are consistent.

In the inverse power method a matrix inversion needs to take place in order

to obtain the G matrix. In fact each time Eg is changed the G matrix will

need to be recalculated. The inverse iteration method is almost the same as the

inverse power method except it replaces matrix inversion with solving a matrix

equation. We start by constructing the sequence

Fχn = (E − Eg)Oχn−1
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with F = (H−Eg)O. This is equivalent to the sequence we had from the inverse

power method, but now there is no inverse matrix to calculate. We can simplify

this further by noting that the factor of (E−Eg) only affects the normalization

of χn. So we can instead solve

Fχn = Oχn−1

which will provide the eigenvector χn ≈ ψj . The corresponding Ej is found by

solving

Ej =
〈χn|H|χn〉
〈χn|χn〉

The inverse iteration method was used in one of the programs (dpoldl.f)

which found the optimal nonlinear parameters for our Hylleraas basis sets. It is

a quick method for finding a single eigenvalue and eigenvector pair and is very

useful for finding the optimal nonlinear parameters for a variational basis set

in a reasonable amount of time. The Jacobi and Tridiagonalization methods

generally take more time to complete than the inverse iteration method. Also,

the optimal nonlinear parameters corresponding to different eigenvectors are

distinct from each other. This means that if we are trying to minimize a single

variational energy there is no benefit in calculating all of the eigenvectors and

eigenvalues of the Hamiltonian matrix – a single nonlinear parameter set can

only be used to minimize one eigenvalue at a time. For these reasons, the

inverse iteration method is chosen for finding the optimal nonlinear parameters

of a variational basis set.

D Givens’ Method

Givens’ method is a method used to tridiagonalize a matrix. The Givens rotation

matrices introduced in this section are commonly used in the implicit QL method

as was done in this work.

The tridiagonalization of a real symmetric matrix H using Givens’ method
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is similar to the Jacobi method for diagonalizing matrices. We apply a series of

Jacobi matrices J(p, q, θ) to H, but instead of setting θ so that H ′pq = H ′qp = 0

we use θ such that H ′q(p−1) = H ′(p−1)q = 0. From equations (6.26) in section

C.1 we have

H ′iq = H ′qi = cHiq + sHip ∀ i 6= p, q (6.64)

and so the θ used in J(p, q, θ) required to zero H ′q(p−1) and H ′(p−1)q is

tan(θ) = −
Hq(p−1)

Hp(p−1)
(6.65)

which is easily found by setting i = (p − 1) in equation (6.64). To simplify

the notation, we can define the Jacobi rotation matrices that use the θ from

equation (6.65) to be Givens rotation matrices and denote these by G(p, q).

The Givens rotation matrices are orthogonal because the Jacobi matrices are

orthogonal. Also, as can be seen from equations (6.26) in Appendix (C.1), when

transforming a matrix H with a Jacobi rotation matrix (or a Givens rotation

matrix) only rows and columns p and q are altered in the transformed matrix

H′. So if we have a matrix H which already has Hij = 0, ij 6= p, q then after

applying G(p, q) to H, H ′ij = 0, ij 6= p, q. Allowing the following series of Givens

rotations

Q = G(2, 3)G(2, 4) . . .G(2, n) (6.66)

to act on H

H′ = QtHQ (6.67)

will result in H ′31 = H ′41 = · · · = H ′n1 = 0. H′ is a symmetric matrix (because

H was assumed to be symmetric) so H ′13 = H ′14 = · · · = H ′1n = 0 and thus both

the first row and column of H are in tridiagonal form.

To put the second row and column in tridiagonal form we use the next series

of Givens rotations
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G(3, 4)G(3, 5) . . .G(3, n) (6.68)

Now the second rows and columns are in tridiagonal form, but we have to double-

check that any zeros in the first row and column of the transformed matrix are

not undone. Using

H ′pi = cHpi − sHqi (6.69)

from equations (6.26) and setting i = 1, it is clear that the H ′p1’s that are not

tridiagonal elements remain zero since the Hn1’s were all zeroed from applying

the previous sequence of Givens rotations Q.

To put an entire real symmetric matrix in tridiagonal form we use the se-

quence of Givens rotations

G(2, 3)G(2, 4) . . .G(2, n)

×G(3, 4)G(3, 5) . . .G(3, n)

...

×G(n− 2, n− 1)G(n− 2, n)

×G(n− 1, n)

where each individual Givens rotation matrix zeros a single element in the trans-

formed matrix. This procedure ends up resulting in O(n4) total floating point

operations as opposed to the O(n3) operations the Householder method takes.

Although it is slower than the Householder method when computing in series,

unlike the Householder method, it has the advantage that it can be computed

in parallel. However, even with parallel computing Givens’ method takes about

the same runtime as the Householder method and so the Householder method

is more commonly used.
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E Number of terms in a single Hylleraas basis

set

Recall that a single Hylleraas basis is

Ψ =

Ω∑
cijk[ri1r

j
2r
k
12e
−αr1e−βr2 ± ri2r

j
1r
k
12e
−αr2e−βr1 ] (6.70)

with the truncation

i+ j + k ≤ Ω (6.71)

We can write out a matrix of the sums of all possible combinations for the first

two numbers, i and j

M0 =


0 1 . . . Ω

1 2 . . . (Ω + 1)
...

...
...

Ω (Ω + 1) . . . 2Ω

 (6.72)

where the row number minus 1 represents the value of i, the column number

minus 1 represents the value of j, and the elements M0
ij are the corresponding

sums i + j. Only the upper left triangle (including the diagonal part) of this

matrix is permitted by the restriction (6.71). The number of elements in a

triangular section of a (n× n) matrix is

N =
n(n+ 1)

2
(6.73)

which comes from taking half of all the n2 elements in a (n × n) matrix and

adding the missing half of the n diagonal elements to complete the triangle. M0

is a ((Ω + 1) × (Ω + 1) matrix and therefore it contains N0 =
(Ω + 1)(Ω + 2)

2
possible basis set terms.

If we include the third index k we get a rank 3 tensor containing all of the

possible permutations of i, j, and k. This rank 3 tensor can be represented by
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a set of matrices of the same form as M0 in equation (6.72) – each k will have

a unique Mk associated with it

Mk =


k k + 1 . . . k + Ω

k + 1 K + 2 . . . k + (Ω + 1)
...

...
...

k + Ω k + (Ω + 1) . . . k + 2Ω

 (6.74)

So all we need to do now is add up all of the allowed terms in each of these Mk

matrices. We have already analyzed M0 so the next step is to look at M1.

M1 =


1 2 . . . 1 + Ω

2 3 . . . 1 + (Ω + 1)
...

...
...

1 + Ω 1 + (Ω + 1) . . . 1 + 2Ω

 (6.75)

By equation (6.71), the only allowed terms contained in M1 are within the

upper left triangular part of M1 with its bottom row and right-most column

removed. The following is a (Ω+1)×(Ω+1) matrix illustrating the possible i, j

combinations for k = 1. The 1’s represent the location of allowed permutations

and the 0’s are the prohibited permutations.



1 1 . . . 1 0

1 1 . . . 0 0
...

...
...

...

1 0 . . . 0 0

0 0 . . . 0 0


(6.76)

By equation (6.73), M1 provides N1 =
Ω(Ω + 1)

2
terms to the Hylleraas basis

set.

For the M2 matrix, the possible i and j permutations appear in the upper

left triangle of M2 after removing its bottom two rows and right-most two

columns. Then we get N2 =
(Ω− 1)Ω

2
terms from M2. The crucial pattern to
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notice here is that Mk provides Nk =
Ω + 1− k
Ω + 2− k

more terms to the basis set.

The total number of terms is

N =

Ω∑
k=0

Nk

=

Ω∑
k=0

(Ω + 1− k)(Ω + 2− k)

2

=

Ω∑
k=0

(Ω2 + 3Ω + 2) + (k2 − 2kΩ− 3k)

2

=
(Ω + 1)(Ω2 + 3Ω + 2)

2
+

1

2

[
Ω∑
k=0

k2 − (2Ω + 3)

Ω∑
k=0

k

]
(6.77)

There are formulas for the last two sums that appear in equation (6.77)

n∑
i=0

i =
n(n+ 1)

2
(6.78)

n∑
i=0

i2 =
n(n+ 1)(2n+ 1)

6
(6.79)

putting these into (6.77)

N =
(Ω + 1)(Ω2 + 3Ω + 2)

2
+

1

2

[
Ω(Ω + 1)(2Ω + 1)

6
− (2Ω + 3)

Ω(Ω + 1)

2

]
=

(Ω + 1)

2

[
6(Ω2 + 3Ω + 2) + Ω(2Ω + 1)− 3Ω(2Ω + 3)

6

]
=

(Ω + 1)

2

[
2Ω2 + 10Ω + 12)

6

]
=

(Ω + 1)(Ω + 2)(Ω + 3)

6

and we have the formula for the total number of terms in a single Hylleraas

basis set.
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