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Abstract

This thesis solves a controversial physics problem that has existed in the litera-
ture for nearly a century — finding the radius of convergence of the perturbation
expansion for the ground state energy of the two-electron atom. This problem
is important to study because it makes progress towards finding the possible
structures that can exist in the quantum mechanical three-body problem. This
perturbation expansion is a convergent series and in physics these are rare to
work with. We usually refer to this perturbation expansion as the “1/Z expan-
sion”. There is still much to learn about finding effective methods of determining
the radii of convergence for convergent series. The first 1000 coefficients of the
1/Z expansion are calculated with very high precision and are compared to pre-
vious values in the literature. These coefficients are determined by using a new
type of basis set that is introduced in this work, the pyramidal basis set, which
is very useful in describing high-order wave functions generated by perturbation
theory. Using the series of ratios of the resulting coefficients along with a series
acceleration technique, the radius of convergence of the 1/Z expansion is found

to be A* = 1.0975(2).

iv



Dedication

Dedicated to my family.



Acknowledgments

I would like to thank my supervisor Dr.Drake for giving me the opportunity
to work for him, for funding my research, and for sharing his knowledge of
atomic physics with me. I would also like to thank the Drake research group
for making the office a fun place to be. Thank you to my family in Windsor for
the countless meals we shared. I will definitely miss those! Last but not least,
thanks to my mom, dad and sister for all of the long-distance chats that always
brightened my days. This work would not be possible without the support I

received from all of these amazing people.

vi



Table of Contents

Author’s Declaration of Originality iii
Abstract iv
Dedication v
Acknowledgments vi
List of Figures ix
List of Tables xi
1 Introduction 1
2 Literature Review 6
3 Theory 14
3.1 The Hamiltonian . . . . . . ... ... ... ... .. ... 14
3.2 Variational Method . . . . . . . . . .. ... .. ... ... 18
3.3 BasisSets . . . . .. 22
3.3.1 Hylleraas Coordinates . . . . . . .. ... ... ... .. ..... 22
3.3.2 Hylleraas Basis Sets . . . . . . .. ... ... ... ... ..... 23
3.3.3 Pyramidal Basis Sets . . . . ... ... oL 27
3.4 Rayleigh-Schrodinger Perturbation Theory . . . . . . . .. .. .. .. 30
3.5 Neville-Richardson Extrapolation . . . . . .. ... ... ... .... 34
4 Results 37
4.1 The Procedure . . . . . . . . ... 37
4.2 Calculations . . . . . . . . .. 43
4.3 Imteresting Findings . . . . . . . ... ... L L oL 101
4.3.1 Diagonalization Scheme Comparison . . . . . . .. .. ... .... 101
4.3.2 Oscillating Coefficients . . . . . . . . ... ... ... ... ..... 101
4.3.3 Decay of Coefficients . . . . . ... .. ... ... . 105

vii



5 Conclusion

6 Future Work

Appendices

A Linear Variational Method
B  Hylleraas Undheim Macdonald Theorem
C  Matrix Diagonalization
C.1 Jacobi Method
C.2  Tridiagonalization

C.3 Power Method and Inverse Iteration Method . . . . . .. ... ..

D  Givens’ Method

E  Number of terms in a single Hylleraas basisset . . . . . .. ... ..

Bibliography

Vita Auctoris

viii

108

110

111
111
113
116
117
120
126
129
132

135

138



3.1
3.2
3.3

3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

List of Figures

Interleaving of variational energies as basis size is increased . . . 21
Image of Hylleraas coordinates taken from reference [26] . . . . . 22
Comparison of the triple and double basis sets’ rates of conver-

gence to the true energy E for the 1s2p! P state of neutral helium. 25

Spread of nonlinear parameters with increasing basis size . . . . 28
Least squares fit to the ratios from n =100 to 999 . . . . . . .. 87
Least squares fit to the ratios from n = 100 to 400 . . . . . . . . 88
Least squares fit to the s, from n =100 to 800 . . . . ... . .. 89
Least squares fit to the s, from n =100 to 300 . . . . ... ... 90
Least squares fit to the s, from n =100 to 400 . . . . ... ... 91
Least squares fit to the s, from n =100 to 500 . . . . . ... .. 92
Least squares fit to the ¢, from n =100 to 800 . . . ... .. .. 93
Least squares fit to the ¢,, from n =100to 300 . . .. ... ... 94
Least squares fit to the ¢, from n =100 to 400 . . . . .. .. .. 95
Least squares fit to the ¢,, from n =100 to 500 . . . .. ... .. 96
Least squares fit to the v,, from n =100 to 400 . . . . . .. ... 97
Least squares fit to the v, from n =100to 150 . . .. ... ... 98
The v, fromn=100t0 200 . . . . . . . ... ... ... ..... 99
Runtime for dall2016.f and dtridlz2016.f . . . . . . ... ... .. 102
PYC5TG974 vs. PYC5TGC68 . . . . . . . ..o oo oo 103
Baker vs. PYC5TGI974 . . . . . . ... ... 104
Baker vs. PYCS5TGC68 . . . .. ... ... ... ........ 104

ix



4.18 Helium F, rapid decrease . . . . . . . .. . .. .. ... .....
4.19 s, decay for different H~ triple basis set sizes . . . . . . . .. ..



2.1

3.1
3.2

4.1

4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9

5.1

List of Tables

Important estimates of the radius of convergence of the 1/Z ex-

PAnSION . ... 13
number of terms NV in a typical triple basis set for various Q. . . 26
Construction of a pyramidal basisset . . . . . . . ... ... ... 29

Highly accurate energies for helium ! P states achieved by double

basissets . . . . .. L L 40
Triple basis set optimized for H~ . . . . . .. . ... ... .... 45
Triple basis set optimized for He . . . . . . .. ... ... .... 45
Pyramidal basis with ag = 1.300, B9 = 1.450 and M =2.2 . . . . 46

A special pyramidal basis set with ag = 2.000, By = 2.200
and M = 2.0 containing a double basis set (a7 = 0.500,8; =

0.500), (g = 0.950,82 =0.200) . . . . . ... ... ... .. 46
E5 for the He triple basis set in table 4.3 . . . . ... ... ... 47
E5 for the optimized pyramidal basis set in table 4.4 . . . . . .. 48
Comparison of different E,,. D+01 represents 10'. . . .. .. .. 50
Accuracy of the series coefficients . . . . . .. ... L. 86

Important estimates of the radius of convergence of the 1/7 ex-

PAnSIoON . ... Lo 109

xi



Chapter 1

Introduction

It is important to know the basics of convergent series in order to understand
what a radius of convergence is. A convergent power series is a series of the

form

Zan(as—xo)n (1.1)
n=0

in which the coefficients a,, are getting progressively smaller at a fast enough
rate with increasing n, such that when the entire series is added together the
sum is a finite number for some range of values a < = < b. z is referred to as the
point of expansion of the series and choosing different zg will result in different
ranges of convergence for the series. Outside of the range of convergence, the
series will sum to co and so the series diverges.

The range in which a power series converges is always symmetric about the
point of expansion — a convergent power series always converges within some

radius, determined by the singularity nearest to the expansion point of the series.

For example, the Taylor series for the function f(z) = expanded about the

T —a
point g = a+1 will converge for all values of = in the range zo—1 < = < ¢+ 1.
We can think of this range of values as if it were the diameter of a circle. Thus

the diameter of the range g — 1 < z < zo + 1 is 2 and so the power series



expansion for f(z) =

. at £g = a + 1 has a radius of convergence of 1.

This symmetric behaviour remains even for complex power series. A conver-
gent complex series will converge within some disc in the complex plane. Thus,
the radius of convergence for a general power series expanded about a point
zo in the complex plane is simply the radius of this disc. It is important to
know the radius of convergence of a power series because beyond the radius of
convergence, the power series becomes divergent and mathematical techniques
must be used to make sense of the series. Usually it is the singular points of a
function that are the subject of interest and finding these points can be a diffi-
cult task. Knowledge of the radius of convergence of the Taylor series expansion
of a function helps to locate the singular points of the function in the complex
plane.

The perturbation expansion for the ground state energy of a two-electron
atom is a convergent power series and so all of the logic above applies to this
series. However, before we can define the perturbation expansion for the ground
state energy of a two-electron atom, we must first explain how systems of parti-
cles are analyzed in quantum mechanics. For any quantum mechanical system,

we are interested in solving the time independent Schrédinger equation (TISE)

(where H is the quantum mechanical energy operator called the Hamiltonian
and will be explained more in section 3.1). To solve the TISE is to find the
energy eigenfunctions v; (also referred to as eigenstates or eigenvectors) and the
energy eigenvalues F; of a system of particles under the influence of a specific
potential energy field (such as a constant magnetic field). The eigenfunctions
are the possible states that the system can exist in after a measurement. The
eigenvalues are the energies of each of these states. Once the TISE is solved,
the time evolution of the system can be found by using the time dependent

Schrédinger equation (TDSE).

ih— = HU (1.3)



in which ¢ is the imaginary unit, A is Planck’s constant divided by 27, and ¥ is
the wave function representing the state of the system of particles.

The full time-dependent wave function ¥ can be expanded as a linear com-
bination of the TISE eigenfunctions ;. The v; do not change with time (for

this reason they are also commonly referred to as stationary states) and so

U(t) = Zai(t)w (1.4)

where all of the time dependence of W(t) comes from the coefficients of the
stationary states a;(t). If the Hamiltonian is assumed to be independent of

time then the solution to the TDSE is

<th>
Ut)=e\ " )Wt (1.5)

which shows explicitly how the initial state ¥ (¢) evolves into the state W(t) at
a later time ¢.

The largest success of the Schrédinger equation is in its ability to accurately
describe the energy spectrum of the hydrogen atom. The Schrédinger equation
for the hydrogen atom can be solved analytically and the resulting spectrum of
eigenvalues agreed very well with the observed spectrum which was determined
experimentally in the early 20th century. The TISE was able to describe the
Lyman, Balmer, Paschen, etc. series of hydrogen (in fact some of these series
were observed after the Schrédinger equation predicted their existence). Solving
the TISE becomes rapidly more difficult as more complicated atoms and ions
are considered. Atomic physicists have been analyzing the TISE for the helium
atom ever since the late 1920’s and still today the helium atom remains a popular
system to study.

Neutral helium consists of two electrons electromagnetically bound to a nu-
cleus containing two protons and two neutrons. Treating the nucleus as a single
body, the TISE for a helium atom is reduced to a three-body problem. It is

a well known fact that three-body problems do not have closed-form solutions



— the motion of the bodies cannot be expressed in terms of elementary math-
ematical functions. This is why helium is the subject of so much study — it is
the simplest atom which has no closed-form to its corresponding Schrodinger
equation. By studying helium, we hope to learn more about the complications
that arise from inter-electron correlations and ultimately wish to find highly
accurate solutions to the Schrodinger equation for atoms with many electrons.

Today, we can find the eigenvalues for the nonrelativistic, infinite nuclear
mass (these simplifications will be explained in section 3.1) TISE for helium
to astonishing accuracy. Recent calculations of the eigenvalues of this equation
in reference [30] contain up to 20 significant decimal digits. However, there is
more to analyzing the helium atom than knowing the energy eigenstates and
eigenvalues for the TISE. If we were to continuously lower the nuclear charge
Z of a helium atom in its ground state (the state 1, with the lowest energy)
down from Z = 2, at what value of Z would the total energy of the system be
equivalent to a hydrogen atom of the same nuclear charge in its ground state?
This value of Z is deemed the critical nuclear charge Z. and has been recently
found to very high precision (see reference [23]). Another interesting question is
if we were again to continuously lower Z of a helium atom in its ground state,
at what point would one of the electrons become unbound from the helium
atom? This value of Z is denoted Z* and we usually refer to the inverse of Z*
rather than Z* itself. A* = 1/Z* denotes the radius of convergence of the 1/Z
expansion of the energy for two-electron atoms and accurately determining this
value is the main purpose of this work.

Finally, it would be interesting to compare the two values Z, and Z*. Intu-
itively, it would make sense that they may be equivalent, but this relationship
is not the only possibility. For the two-electron atom, Z. # Z* would imply
that there is a continuous range Z* < Z < Z. in which the outer electron would
have enough energy to escape the atom, yet still would have a completely nor-
malizable wave function and thus remain bounded to the nucleus. Such a state
is called a bound state in the continuum. This work answers the question of

whether or not the ground state of a two-electron atom becomes a bound state



in the continuum as the nuclear charge Z is reduced below the critical charge

Z..



Chapter 2

Literature Review

Finding the radius of convergence A* of the 1/Z expansion for two-electron
atoms has been a challenging problem dating back to the early 1930’s. Baker et
al. in reference [1] provide a very accurate account of the history of this problem
up to 1990. The first half of this literature review will be a simplified summary
of the history of \* as described in their work.

The problem of finding A* began with Hylleraas in the 1930’s from reference

[2]. He was the first to analyze the expansion

= 1
EZ)=S " E,— 2.1
@)= Fgy (21)
or equivalently
E(\) =) En\" (2.2)
n=0
1
(A = =) and calculated approximations to the first five E,. This series is

formally known as “the 1/Z expansion of the energy for two-electron atoms”
but will be referred to as “the 1/Z expansion” in this thesis.

The 1/Z expansion is derived from the application of perturbation theory
to the Z-scaled two-electron atom Schrodinger equation (perturbation theory is

explained in section 3.4 and the derivation of the 1/Z expansion is covered in



section 4.1). Once the E,, are known, equation (2.2) provides an approximation
to the true energy of a particular eigenstate for any value of Z which the series
remains convergent.

In 1951 in reference [3], Kato proved that the 1/Z expansion is convergent.
This proof can also be found in reference [4]. Convergent series are rare in
physics, so after Kato proved the convergence of the 1/Z expansion, there came
a great interest among many physicists to analyze the series and try to determine
A* as accurately as possible.

The first attempt of finding a value for \* came from Knight and Scherr’s
work in reference [5]. In 1962 Knight and Scherr calculated the coefficients in
2.2 from E5 up to E1; (Ep and E; can be found analytically and are exactly
—1 and 5/8 respectively). From these coefficients, they constructed the ratios

EnJrl
n = 2.
r E, (2.3)

The r,’s approach % as n — oo. Based off the observed behaviour of these
first few ratios Knight and Scherr supposed that A* ~ 1.33.

In 1965 Midtdal calculated the first 22 coefficients of 2.2 in reference [7].
Stillinger noticed that the series of ratios r, of Midtdal’s coefficients appeared

to be linear with respect to 1/n and so he performed a linear least squares fit

to the last 8 r,,’s, concluding that
A =1.1184 (2.4)

(see reference [8]). Midtdal later calculated the first 81 E,,’s in reference [11],
however, it was eventually discovered that only the first 20-30 of these coeffi-
cients are reliable. As Baker et al. stated in reference [1], this was most likely
due to the fact that the basis functions (basis functions and basis sets are ex-
plained in section 3.3) used to find the E,’s were not in the correct region
of configuration space needed to describe the high-order behaviour of the 1/Z
expansion. This phenomenon is briefly discussed in section 4.2.

In 1970 Brandas and Goscinski used the first 20 coefficients calculated by



Midtdal et al. to find
A =1.118 (2.5)

(see reference [12]). This was done by using a method known as Padé analysis
in which the power series expansion from equation (2.2) is replaced with the

more general expression

BN = iz N (26)
L4375 bjN
where [M/N] is the order of the Padé approximant. In 1972, Brindas and
Goscinski used a slightly different analysis of the first 27 coefficients from Midt-
dal et al. to find

A* =1.119 (2.7)

(see reference [13]).

In 1977 in reference [16], Reinhardt proved that if A\* for a series E(A) de-
scribing a normalizable eigenstate is determined by a singularity on the real Z
axis, then this singularity must occur at the exact point where E()\) becomes
degenerate with a threshold. This means that if the singularity determining \*
for a given eigenstate is found to be on the real Z axis and further that the
eigenstate is normalizable at \., then \* = A..

Arteca et al. in reference [18] analyzed the 1/Z expansion in 1986 using the
22 coefficients calculated by Midtdal from reference [7]. The technique they
used replaces equation (2.2) with a more general mathematical form, similar to

the Padé analysis used in reference [12]. F()\) was assumed to behave like

EO) = F(L - £)° + h(Y) (2.8)

where f()\) and h(\) are analytic functions in the range |A\| < R with R > |\

Ao is the location of the singularity which determines the radius of convergence



of the 1/Z expansion; |[A\g| = A*. They found that

a=1.07+0.01

Ao = 1.107 £ 0.003
h(Xo) = —0.995 & 0.001
F(Xo) = —0.72 4+ 0.01

(2.9)

(so their estimate to the radius of convergence was \* = \g = 1.107 £ 0.003).
Arteca et al. also revisited Stillinger’s analysis of Midtdal’s 22 E,,’s from refer-
ence [8]. They performed a least squares fit to the r,’s that was parabolic in

1/n (Stillinger’s fit was only linear in 1/n) which yielded
A" = 1.1056 £ 0.0040 (2.10)

Baker, Freund, Morgan and Hill, made huge progress towards finding A\* in
reference [1]. They used variational calculations (see section 3.2) with basis sets
consisting of 476 basis functions in conjunction with the HKS variational pertur-
bation method described in reference [6] to find the 1/Z expansion coefficients
up to 401st order. The last E,,’s before the work of Baker et al. were calculated
only up to 80th order by Midtdal et al. in reference [11] and were shown to be
unreliable for n > 30. In contrast, Baker et al. state in their work “even our
higher-order E,,’s are accurate to a few parts in 10°> and our high-order 7,,’s to a
few parts in 10%. The lower-order E,,’s are of course much more accurate.” The
convergence of the series of 1,’s is very slow and so Baker et al. used Neville-
Richardson extrapolation (see section 3.5) to accelerate the convergence of the
series.

They calculated the critical nuclear charge to be Z. = 0.911 028 using simple
variational calculations. They also stated that their results from the Neville-
Richardson extrapolations of the r, series indicated A\* = 1/Z.. It should be
noted that a direct calculation of A\* was never performed in their work and
most of their results were obtained under the assumption that \* = 1/Z.. Their

estimate of \* was



1
A= - = 1.09766(3) (2.11)

Finally, Baker et al. deduced that the 1/Z expansion has both a branch point
singularity and an essential singularity located at A = Zic on the real axis, in
agreement with Reinhardt’s analysis in reference [16].

After the work of Baker et al. research into the 1/Z expansion continued
with the hopes of being able to find an even more precise estimate to A*. In
1995 Ivanov analyzed the coefficients of Baker et al. and found the most precise

estimate of A* in the literature to date in reference [19]. Rather than finding the

radius of convergence of the series E()) directly, he constructed the function

EN—Ey =E;
A)=——F——— = —\ 2.12
R R (212)
then analyzed the inverse function
0 fk dk—1 Y k 0 .
Af) = — || = = A 2.1
=37 | aver () = (213)

Ivanov used a few different techniques to accelerate the convergence of this series

and found the value

A* = 1.097 660 79(1) (2.14)

It is important to notice that Ivanov’s result for \* depends heavily on the ac-
curacy of the coefficients E,, which were provided by reference [1]. For example,
if these coefficients are found to be correct to 5 decimal digits, but are incorrect
at 6 decimal digits then Ivanov’s estimate to A* should only contain 5 significant
digits. Ivanov also makes the assumption that the singularity determining \*
is located on the real axis. However, this assumption is most likely true as the
analysis of references [1, 8, 18] all independently provide evidence for this.
Recently, there has been some controversy over the results of Baker et al. In
2010 Zamastil et al. found
A* =1.1085(2) (2.15)

10



(see reference [20]) which is distinct from the value of A* = 1.09766 that was
obtained by both Baker et al. and Ivanov. The authors arrive at this value of
A* by using the first 19 E,, from reference [1] to construct a function describing
the large-order behaviour of the E,,. As they stated in reference [20]: “one has
to keep in mind that high coefficients of the convergent series are very difficult
to determine. Certainly, the coefficients from the interval n = 13 to n = 19 are
much more accurate than the coefficients from the interval n = 25 to n = 401.
Consequently, any analysis made on low coefficients is much more reliable than
that made on high coefficients”. This is in direct contrast to what Baker et al.
suggested of the series F(\) in reference [1]. They stated “the range 10 < n < 20
is very, very far from the asymptotic region, and it is this circumstance which
is responsible for the discrepancy between A, and A* found by Stillinger, by
Brandas and Goscinski, by Anno and Teruya, and by Arteca, Fernandez, and
Castro”.

In June 2015 in reference [21], Turbiner and Guevara used the 401 coefficients
from reference [1] to calculate the ground state energies for two-electron atoms
for many different values of Z. They compared these ground state energies
with those that were calculated directly by use of the variational method. They
found that for 2 < Z < 10 the resulting ground state energies from these two
different methods agreed up to 12 decimal digits. However, for Z = 1 they only
agreed to 10 decimal digits and for Z = Z. = 0.911028... to just 6 decimal
digits. From this analysis Turbiner and Guevara concluded that even the first
significant digit in all of the coefficients F,, for n > 135 are not correct and hence
that the asymptotic behaviour of the 1/Z expansion in reference [1] cannot be
trusted. Turbiner and Guevara requested an independent recalculation of the
1/Z expansion coefficients.

In October 2015, Jean-Phillipe Karr found a value of Z* = 0.911276(12) in

reference [22], corresponding to
A" =1.097 362(15) (2.16)

This was accomplished by using the complex scaling method (allowing the en-

11



ergy F()\) and Hamiltonian H to become complex). He derived a formula for

the imaginary part of the energy for values of Z near the singularity Z*

Im(E) ~ A (1 - ZZ)P exp (1__CZ> (2.17)

Z*

2

3
with p = —2b— 3 and ¢ = az' Karr found the value of the parameters a and b

to be a = 0.26374 and b = —1.9896 by using a formula for the coefficients

E, ~ C(Z*)"nbe~ V" (2.18)

and making a least squares fit of this formula to the coefficients from reference
[1]. He then made another least squares fit of equation (2.17) to the imaginary
part of E(Z) for 11 different points in the range 0.905 < Z < 0.91103 which
were calculated using the variational method.

Since the work of Baker et al. in 1990, there has been no attempt at re-
calculating the 1/Z expansion coefficients. Finding these coefficients is a very
important task as they have formed the basis of many recent theoretical pa-
pers in the literature. This work is dedicated to calculating the 1/Z expansion

coefficients, using them to find A* and testing the hypothesis that \* = 1/Z,.

12



Table 2.1: Important estimates of the radius of convergence of the 1/Z expansion

year reference ¥
1962 | Knight and Scherr [5] 1.33
1966 | Stillinger [8] 1.1184

1970 | Bréandas and Goscinski [12] | 1.118
1972 | Bréndas and Goscinski [13] | 1.119

1986 | Arteca et al. [18] 1.1056(40)
1990 | Baker et al. [1] 1.097 66(3)
1995* | Ivanov [19] 1.097 660 79(1)
2010* | Zamastil et al. [20] 1.1085(2)
2015* | Karr [22] 1.097 362(15)

The * indicates works that depend directly on the 1/Z expansion coefficients from

reference [1].

13



Chapter 3

Theory

This chapter explains the main theories and concepts that were used in this
work. We derive the Hamiltonian for a two-electron atom and describe the
necessary approximation methods that were used to solve the corresponding
Schrédinger equation. The theories in this chapter are extremely useful and
will allow the reader to understand the procedure for obtaining the main results

of this work (section 4.1).

3.1 The Hamiltonian

The time independent Schrodinger equation (TISE) is arguably the most useful

equation in quantum mechanics

HY; = E;7; (3.1)

It is a differential equation (usually second order) with a wide range of possible
solutions depending upon the form of the differential operator H. The eigen-
functions and eigenvalues of this differential equation correspond to the states
that a given system of particles may be found in and the energy of each of these
states, respectively. Physically, the ¥; are wave functions that describe how

likely it is to find a type of particle (electrons, protons, muons, etc.) to be in
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a certain position in space; the square amplitude of a wave function, ¥;V;, de-
termines the probability of finding that type of particle for each point in space.
FE; is the energy a system of particles has if they were measured to be in the
corresponding state ;.

The Hamiltonian, H, in quantum mechanics is constructed the same way as
it is in classical mechanics; H = T+ V where T is the kinetic energy and V the
potential energy of the system. The only difference is that the classical position
and momentum variables x and p respectively are replaced with their quantum
mechanical operators x — x, p — —ihV.

The TISE can also be treated as an eigenvalue problem with ¥; as the
eigenvectors and F; as the eigenvalues by using matrix mechanics in which the
Hamiltonian operator is represented by a matrix and the ¥; are represented by
vectors. The first step to solving the TISE is to construct the Hamiltonian for
the system under study.

For instance, the neutral helium atom consists of two electrons, two protons,
and two neutrons. The two protons and neutrons make up the nucleus of the
atom where most of the mass is located. The size of the nucleus is on the order
of femtometers (1071 m) while the distance of the electrons from the nucleus
is on the order of Angstroms (10719 m). Due to this large discrepancy between
relative distance scales, it is fair to treat the nucleus as a single point-particle
of nuclear charge Z = 2 in the case of neutral helium.

The protons and neutrons that make up the nucleus are each roughly 2000
times as massive as an electron. The electromagnetic forces that the electrons
apply to the nucleus will therefore not result in much movement of the nucleus
compared to the motion of the electrons resulting from the forces that the
nucleus applies to the electrons. A simple analogy of this situation is that of the
gravitational attraction between a person and the earth. Both the person and
the earth experience the exact same force due to the gravitational attraction
between them, however, the person moves much more than the earth because
he/she has much less mass than the earth. We can then justify the assumption

that the nucleus is stationary in comparison to the motion of the electrons.

15



This is called the “infinite nuclear mass” approximation. Finally, the effects of
special relativity will be excluded in the Hamiltonian so that we are working in
the nonrelativistic regime of electron motion (the electrons are not moving at
an appreciable speed relative to the speed of light).

So, the physical situation that we are to describe is a three-body problem
consisting of an infinitely massive nucleus which has a nuclear charge Z which
we will ultimately allow to vary continuously, along with two nonrelativistic
electrons bound to the nucleus by the electromagnetic force. The Hamiltonian
which describes this system is

2 2 2
:‘5#“+V9‘%?‘%3+%; (32)
where m and e are the mass and charge of an electron, r; and ry are the radial

positions of electrons 1 and 2 respectively, and finally

rig = |11 — 73| (3.3)

This is the nonrelativistic, infinite nuclear mass Hamiltonian for a two-electron
atom with variable nuclear charge Z in electrostatic units and it can be simplified

by making the scale change

Zr
= — 34
- (3.4)
2
(ap = — is the Bohr radius)
me
Z%e? Z%e?  Z2%e? Ze?
H = = (V) 40 - = = o (3.5)
Qg a()T’l a()?"2 CL()T‘12
We then convert to atomic units (m = e = i = 47360 = 1), divide by Z? and
Z
remove the primes (with the understanding we are still working with ' = 2r
ao

and not r — we have just renamed the variables so that we don’t have to use the

primes) to arrive at the Z-scaled two-electron Hamiltonian

1 1 1 Z-1
H=-—-(Vi+V3)————+— 3.6
2( 1+V3) P + " (3.6)
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The Schrodinger equation for this Hamiltonian is

E

HY = (3.7)

where the Energy E is in atomic units (a.u.) and the factor of 5 comes from
the division by Z? that we applied in order to derive the Z-scaled two-electron
Hamiltonian. If we work in a set of units known as “Z-scaled atomic units” we
can get rid of the Z? term in the Schrodinger equation. The energy in Z-scaled
atomic units € is related to the energy in atomic units E by

E

€=—3 (3.8)

and so in Z-scaled atomic units we have the more familiar Schrodinger equation

Ho = et (3.9)

Now, we are interested in the behaviour of the electrons as the nuclear charge
is continuously varied down from Z = 2. From equation (3.6) it is seen that
decreasing Z will increase the strength of the repulsive Coulomb interaction
between the two electrons while the strength of the attractive nucleus-electron
interactions will not change. Eventually the repulsion between the two electrons
will dominate and the outer electron will be pushed away from the nucleus,
becoming unbound. At this point, the outer-electron is a free particle and so the
energy calculated by equation (3.9) should just be the energy of the remaining
electron-nucleus system in Z-scaled atomic units.

Z. is the critical nuclear charge and is defined to be the Z at which e = —% in
equation (3.6). This definition comes from the ground state energy of hydrogen-
like atoms (atoms with one electron). The energy eigenvalues of a hydrogen-like
atom with variable nuclear charge Z are F, = —n—j. Thus, the ground state
energy (n = 1) of a hydrogen-like atom is E; = —% in Z-scaled atomic units.
So Z, is the value of Z for which the ground state energy of the two-electron

atom and the hydrogen-like atom have the same energy.
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It has been proven by Hill in 1977 in reference [24] that the H~ two-electron
atom (Z = 1) has only one state with both electrons bound to the nucleus. This
means that Z. < 1, and also that the only bound state of the two-electron atom

as Z is decreased below one is the ground state.

3.2 Variational Method

The three-body problem cannot be solved analytically and so a method of ap-
proximating the solutions of the two-electron Hamiltonian is needed. We begin

by attempting to solve the TISE

Ho; = E;¢; (3.10)

with the goal of finding the eigenfunctions, ¢; and eigenvalues, E; for a given
Hamiltonian, H. From the axioms of quantum mechanics we know that the
eigenfunctions must form a complete set of basis functions. This means any
trial wave function used to approximate one of the true eigenfunctions can be
expressed as a linear combination of the true eigenfunctions. The simple knowl-
edge that we can express the trial wave functions this way even though we
may know nothing about the true eigenfunctions themselves turns out to be
surprisingly useful.

The true energy eigenfunctions ¢; obey

E; = (¢ilH|$5)0i; (3.11)

where the F; are the exact energies. Let ;. be a normalizable trial wave
function that approximates the true ground state ¢y and let E,, be a variational

energy defined by

- _ <wtr|H‘wtr>
EtT B <7/)tr|wtr>

Assuming the trial ground state wave function, 1y, is normalized then

(3.12)
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Etr = <wtr|H|wtr> (313)

Expand the unit operator Y .o, |#:){(¢;| = 1 on both sides of H

o0

Eie =Y (el di) (6i H65) (5 ]1r) (3.14)

ij=1

Inserting equation (3.11) into equation (3.14) leaves us with

By = Z |(er| i) |2 E (3.15)

i=1
Since we have assumed ;. to be normalized, we can add and subtract Ey in

the following way

Eo=Eo+ Y |(¢wle:)*(E; — Eo) (3.16)
=1

We know that both [(1)4.|¢;)|?> > 0 and (E; — Eg) > 0 which leads us to the

conclusion of the variational method

E,. > E, (3.17)

Any normalizable trial wave function will yield an upper bound to the exact
ground state energy of a given Hamiltonian. The lower the variational ground
state energy is, the more accurate it is!

The idea of the variational method is to start with an arbitrary trial wave
function with tunable parameters and optimize them to minimize the variational
energy, which will result in the best approximation to Ey that the chosen trial
wave function can provide. We usually treat these trial wave functions as vectors
in a vector space once we have chosen an appropriate basis set to expand )y,
in.

A basis set B is complete on a vector space V' (V could be Hilbert space
or Euclidean space for example) if every element of V' can be expressed as a
linear combination of elements of B. Therefore, we can always express 1, as a

finite linear combination of basis functions y; as long as we know the set of basis
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functions (the basis set) is complete in Hilbert space (the space of solutions ¢;
to the Schrodinger equation) in the limit A}l_r)noo (where N is the number of basis
functions being used in the basis set). x;(«,3,...) will denote the ith basis
function of a basis set that is complete as N — oo, with (o, 8,...) appearing

as tunable nonlinear parameters.

N

W) = cilxila, B,...) (3.18)

i=1
Optimizing only the linear parameters ¢; in a trial wave function is equivalent

to solving

Hc = EOc (3.19)

(see Appendix A for proof) where H and O are the Hamiltonian and overlap
matrices respectively. The matrix elements of H are H;; = (x;|H|x;) and the
matrix elements of O are O;; = (x;|x;). ¢ is the ordered column vector of coef-
ficients of the basis functions ¢; = (x;|¢s). Equation (3.19) is the “generalized
eigenvalue problem”. This equation reduces to the Schrodinger equation when
the basis set being used is orthonormal ({x;|H|x;) = d;; = O =1).

As is explained in reference [27], to find upper bounds to not only the ground
state but the excited states as well, we can use the Hylleraas Undheim Mac-
Donald Theorem (HUM) from references [28, 29]. HUM states that as the
dimensions of H and O are increased, the NV old eigenvalues are sandwiched
between the new N + 1 eigenvalues (See figure 3.1). HUM further states that
if the basis set being used is complete and if there is a lower bound Ejy to the
energy spectrum, then each of the eigenvalues of the Hamiltonian matrix are
upper bounds to the exact energies F;. This spectrum of energy eigenvalues

“pseudospectrum”.

which approximates the true energy spectrum is called the

To summarize this section, by expanding a trial wave function in a truncated
basis set that is complete in Hilbert space as N — oo, we can solve the TISE and
find upper bounds to all of the exact energies in the spectrum. We can improve

the accuracy of these upper bounds by introducing adjustable parameters into
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Figure 3.1: Interleaving of variational energies as basis size is increased
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our basis set that can be optimized to minimize these upper bounds.

3.3 Basis Sets

This section describes the two different complete variational basis sets that were
used in this work. With these basis sets, the TISE for the two-electron Z-scaled
Hamiltonian can be solved with very high precision. Both of these basis sets
are expressed in Hylleraas coordinates and so before they are discussed it is

important to first understand Hylleraas coordinates.

3.3.1 Hylleraas Coordinates

Figure 3.2: Image of Hylleraas coordinates taken from reference [26]
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The independent variables in Hylleraas coordinates are

(r1,72,712, 01, P1,X) (3.20)

where r; corresponds to the distance of electron i from the origin and ri; =
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|r1 — r2]. When Hylleraas introduced these coordinates to solve the helium
atom, he initially used

§$ =711 +re,t =7r12,u =11 — 7y instead of 71,79, 712. However, both of these
bases are equivalent because there is an invertible linear transformation relating

the two basis sets.

S 1 1 0 1
tl=10 0 1] (3.21)
u 1 -1 0 T12

The significance of Hylleraas coordinates is to include the r15 term as an inde-
pendent parameter. The inclusion of powers of r15 in the basis set generates
much more rapidly converging results compared to those of a configuration in-
teraction calculation (this is a very common method used in quantum chemistry

for finding the ground state energies of atoms and molecules).

3.3.2 Hylleraas Basis Sets

The variational basis sets used in this work are modified Hylleraas basis sets

Q
_ i J.k —ary —pBr i J. k —ars —pBr
U= g cighlrirdriye™ T e™h2 £ piplpk e T2 A (3.22)
ijk

i+ji+k<Q (3.23)
The above basis set is called a single Hylleraas basis set. The a’s and (’s that
appear in these basis sets are nonlinear parameters. Larger a’s and (8’s will
describe states where the electrons are closer to the nucleus while smaller a’s
and A’s will describe states where the electrons are further from the nucleus.
The number of terms in a single Hylleraas basis set is

(Q+1)(Q+2)(2+3)
6

N = (3.24)
(see Appendix E for proof)

so the number of terms in a single basis set grows roughly like % which is very

rapid!
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The term on the right of the + in (3.22) is the exchange term. The sign of the
exchange term is determined by the required symmetry of the state represented
by U. Electrons are fermions and so any wave function describing electrons must
be antisymmetric under an interchange of the electrons (switching the states
of any two electrons must yield an overall minus sign in the wave function).
The total wave function is a product of the spatial and spin wave functions.
The ground state of helium (1s)? 1Sy has the two electrons in a spin singlet
configuration, so the spin part of the wave function is antisymmetric. Thus for
the ground state of helium the exchange term in ¥ would be added (+) in order
to make the spatial part of the wave function symmetric.

An extension of the basis sets used in this work are triple basis sets, which

are simply constructed from three individual single Hylleraas basis sets

g Qp ) )
U= E E cfjk[rllr%r’fge_%”e_ﬁpm + ripd ek, e w2 Prm) (3.25)
p=14,5,k

with ¢ + 7 + k <, for each basis set in the p sum. ¢ = 2 corresponds to a
double basis set and ¢ = 3 to a triple basis set. For a sufficiently large basis, a
triple basis set produces variational energies which converge faster to the true
energies than its double basis set counterpart. Figure 3.3 clearly shows this

difference in convergence rates.

Diagonalizing the Hamiltonian matrix is equivalent to optimizing the linear
coefficients in our Hylleraas basis set, ¢} ik (see Appendix A for a proof of this).
After diagonalizing the Hamiltonian matrix, only the nonlinear parameters that
appear in our basis sets will need to be optimized. However, this turns out to
be a time consuming task.

We choose initial nonlinear parameters a,, = o, and 3, = f3p,, then solve
the generalized eigenvalue problem (equation (3.19)) which yields an entire pseu-
dospectrum of energy eigenvalues which approximates the true energy spectrum.
We keep track of the variational eigenvalue we are interested E,, and repeat the

process using an adjusted set of nonlinear parameters. Newton’s method is used
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Figure 3.3: Comparison of the triple and double basis sets’ rates of convergence to the

true energy E for the 1s2p' P state of neutral helium.
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to find the nonlinear parameters that minimize E,, and so the generalized eigen-
value problem needs to be solved multiple times before the optimal nonlinear
parameters are found. Luckily, the nonlinear parameters can all be optimized
simultaneously so this entire procedure does not need to be repeated for each
individual nonlinear parameter one at a time (this is explained in reference [26]).

There is a simple way to increase the accuracy of the upper bounds to the
energies that does not involve optimizing the nonlinear parameters. Increasing
the size of a basis set by including more basis functions, guarantees lower and
thus improved upper bounds to the true energies (see Appendix B). When using
a triple basis set, we would generally start with 2; = 10, Qs = 10, Q3 = 2 and
then end around ; = 18, Q2 = 18, Q3 = 10, incrementing all of the €,’s by
1 each time. The optimal nonlinear parameter groups, (o, p), each increase
roughly linearly with respect to Q as Drake et al. have explained in reference

[30]. In order to understand why this happens, we will analyze just a single
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Table 3.1: number of terms N in a typical triple basis set for various €.

Q| N

10 | 324
11 | 411
12 | 512
13 | 630
14 | 764
15 | 918
16 | 1098
17 | 1283
18 | 1495

The triple basis set used to create this table consisted of single basis set sectors of size

D =0=0Q B=0-38

Hylleraas basis set

Q
U = Z cijkrirgr]er_o‘“e_ﬁ” (3.26)
ijk
We only need a general idea of how the nonlinear parameters vary with € so

the exchange term is left out in order to simplify the calculations. Taking the

derivative of 3.26 with respect to rq

ov & i 0,0,k —ari —Brs
o Zcijk o a | rirdrise e (3.27)
ijk

We will replace the above sum in 3.27 with only the dominant term

ov Q i..J —ary —Br
e (7“1 - a) rirdrk,emar A (3.28)

Now we can find where ¥ peaks with respect to rq.
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Q o
( - a) rirdrkemome=Fr2 =
1

Q

——a=0

1
(3.29)

Ty =

°ID

¥ will be optimized to describe only a single energy eigenstate. Assuming
that the optimized ¥ can accurately approximate the true eigenstate, then a
sequence of W(S,) describing this eigenstate should all have the same peak
location | = %. This means that if Q is increased, the corresponding optimal
« must increasenby the same amount. Exactly the same argument can be used
for 37\11 to arrive at an identical conclusion for 8. There were some assumptions
and siinpliﬁcations used to arrive at these conclusions and so the final result
of this analysis is that the optimized nonlinear parameters for a given wave
function should increase roughly linearly with Q.

It is also interesting to note that the three sets of nonlinear parameters tend
to spread out at different rates as can be seen in figure 3.4. As (2 is increased,

each of these three sectors of the triple basis set will describe phenomenon at

different length scales due to this separation.

3.3.3 Pyramidal Basis Sets

A pyramidal basis stems from the success of the triple basis set, achieved by the
inclusion of multiple length scales, oy, 3, into the basis set. A pyramidal basis

set has the form

P g
U= E E cl(?,)c [rirdrke~@am1e=Par2 4 pipdpk g=aar2 g =Bar] (3.30)
q=1 ijk

A single pyramidal basis set includes p,, single Hylleraas basis sets, each with
different numbers of terms determined by the €2, and the different nonlinear

parameters a4, B,. Each of the single Hylleraas basis sets that compose the
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Figure 3.4: Spread of nonlinear parameters with increasing basis size
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overall pyramidal basis set are arranged in layers like that of a pyramid (see

table 3.2).

There are also restrictions on the €2,’s and o B4 to give the basis sets more
structure thereby making them more consistent and removing some unnecessary

degrees of freedom as the basis size increases. The restrictions are

g1 = Mag

Bg+1 = MpB,

Qg1 =04 -1
where M is a constant, predetermined multiplying factor and is a degree of
freedom along with aq, 61 and ;.

Here is an example to help the reader understand the components of a pyra-

midal basis set. To construct our very first pyramidal basis set in a pyramidal
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Table 3.2: Construction of a pyramidal basis set

Q= 5, MBOL(),MBBO

Q:S;M2a07M2ﬁ0 926;M2040,M250

Q=5 Mag, MBy | 2 =6; Moy, MBo Q="T7Mag, Mpy

Q=5;a0,B0 | ©=06;a0,53 Q= T7;0a9, 80 Q = 8; a9, B0

The columns of this table contain the components of the pyramidal basis set at each
stage of its construction. Going from leftmost column to the rightmost we see how
each increase in the size of the pyramidal basis set includes another single Hylleraas

basis set.

basis set series, the degrees of freedom a7, $; and €); are chosen and we set
pn = 1. To make this example more concrete let’'s set oy =15, =2 Q; =5
and M = 2. The result is a single Hylleraas basis set (Just to clarify, we chose
M now, but it does not affect this first basis set. We could have chosen M in

the next step instead)

—1ry —272 i,k —1lra —2r;
U= E Cuk r1r2r1 e + ryririse e |

ijk
Now, for the next pyramidal basis set in the series, we set p, = 2 and raise
Q7 up to six from five, With M =2, ao = M X a3 =2 and 8, = M x f; = 4.

Then the next pyramidal basis set is the following double basis set

6
= D) 100,k —1ry ,—2rs 0,0k —1rs —2r1
U= E cijk[rlrzrlge e + ryririse e |

ijk

(2) —2r; —4 i G ok —2ry —4
+E Ciik [rirdrk e 2r1e=4r2 4 pipdpk o= 2r2p=4m)

ijk
For the next basis set, 2; and p, would be incremented yet again by one, with

a3 =M x ay =4, 3 = M x Py = 8 resulting in the triple basis set
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—1ry  —2ro i J.k —1lry —2r
U = E c”k [rirdrk,e 1 +riririse” e ]

Uk

—27"1 —4ro i J.k _—2ry —4r,
+ g cwk [ririrk,e 2 Eriririae” e ]

z]k
+ Z cwk T1r2r126 —drig=8ra 4 rér{rﬁe“la”e_sﬁ]

ijk
The advantage that these pyramidal basis sets have is that they are not
restricted to describing just a couple length scales. Each increase in size of a
pyramidal basis set includes another single Hylleraas basis set with larger non-
linear parameters. This corresponds to incorporating smaller distance scales
into the total wave function ¥, ideally leading to improved numerical preci-
sion for the variational energy eigenvalues once the optimal linear parameters
ngl)c are found. The presence of these large nonlinear parameter terms in the
pyramidal basis sets also results in much larger highest energies in the pseu-
dospectra. Naturally, the question arises as to whether these pyramidal basis
sets are any better than the triple basis sets at retrieving accurate eigenvalues
for the two-electron TISE — does the inclusion of the extra length scales make
a significant difference in the variational energies? The answer to this question

will be discussed in the results chapter, section 4.2.

3.4 Rayleigh-Schrodinger Perturbation Theory

Perturbation theory is an important and useful method of finding an approxi-
mate solution to a difficult TISE. Most of the time the TISE for the Hamiltonian
we are interested in is either very difficult to solve, or it cannot be solved ana-
lytically (such is the case with our three-body Z-scaled Hamiltonian). In these
very common cases, perturbation theory is used to turn a single very difficult
problem (solving the full TISE) into an infinite series of easier problems in the
hope that the solutions to the easy problems can be pieced together to form an

approximate solution to the difficult problem.
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Perturbation theory begins by splitting the Hamiltonian into two parts. The
first part Hy is a known exactly solvable part and the second part is the rest of
the Hamiltonian which is denoted by AV where A is a parameter controlling the
strength of the perturbation. The TISE for the latter part of the Hamiltonian
usually doesn’t have a simple or known solution and is called the “perturbation”.

In order to attain accurate results upon application of perturbation theory,
the perturbation should not be the dominant part of the Hamiltonian. To clarify
this condition, we require that the differences in the energy spectrum of H and
Hj be relatively small. Of course, it is difficult to guess if this condition is met
before the spectrum of H is found, so usually perturbation theory is applied
first and then the resulting spectrum is compared to the spectrum of Hy to see
if there are any large differences.

The Hamiltonian we have constructed is
H=Hy+\V (3.31)

The TISE then becomes

(HO + /\V)|’(/)m> = Em|wm> (332)

A is an auxiliary variable that plays the role of an expansion parameter. In the
1

case of the Z-scaled two-electron Hamiltonian, we set A = - at the end of the

calculation.

We assume the energies and wave functions have power series solutions

En =Y XNEj, (3.33)
=0

() = D Nt (3.34)
=0

where the subscript m represents which state we are working with (m = 1 would
be the ground state) and the superscript ¢ that appears above the coefficients

in the two separate series is called the “order” of the coefficient. Expanding
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these in equation (3.32) and equating powers of A to zero gives us the following

sequence of equations

A0 Holug,) = Ep,[u,) (3.35)

A Holn,) + VI, = Enltn) + Enlén,) (3.36)

N Holug,) + VIdm) = Enlén) + Enltn) + Enlér,) (337)
X Holym) + Vi) = éE’:ﬂwm (3.38)

Equation (3.35) is already solved — it is the Schrédinger equation for the known
piece of the Hamiltonian Hy. Equation (3.36) and (3.37) are the first and second
order equations respectively. Equation (3.38) is the nth order equation for any
general n > 1.

Now, we must decide how to normalize all of these wave functions. First,
we will require that both the zeroth order wave function [0} and the full wave

function |¢,,) be normalized to unity.

WO Iwd,) =1 (3.39)
(Cmlthm) =D > NI bl,) =1 (3.40)
i=0 j=0

These equations create a normalization condition to be satisfied for each order

of \.

n

N (W ) = 6no (3.41)

i=0
In the absence of degeneracy (E; # E;, Vi # j) the wave function can always be
taken to be real. In taking |1),,) to be real, equation (3.41) becomes
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X () =1 (3.42)

AL (@ [0h,) =0 (3.43)
1 n—1 N )
X'n> 2 (g |uf,) = 522 (W@ 1) W1k (3.44)

1=0
The second sum in the above equation is over all of the N members of the

variational basis set.
Now, we can apply (9, | to both sides of equation (3.38) to get the nth order

energy equation.

n—1

Ep = (W VIvn ) = D (W) B (3.45)

i=1
Finally, we can apply (/0| with m’ # m to equation (3.38) to get the nth order

wave function coeflicients

< |V|,¢n 1 n—-1 ,lpO ‘wz >En i

(Y [om) = B0~ (3.46)

m/ i=0 m’

Once the wave function coefficients (¢0,[¢™) and the energy coefficients ET,
are calculated from n = 0 up to some integer n = K, then the true m’th
eigenfunction and eigenvalue of the TISE for the full Hamiltonian H can be

approximated by

K
En~) NEj, (3.47)
1=0
K N ) )
) = > > N (@I0r,) (3.48)
i=0 j=0

where the j sum is over all of the N members of the variational basis set.
To conclude this section it will be shown that the calculated second order
energy coefficient for the ground state EZ is always an upper bound to its true

value. Using equation (3.45) we have
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E§ = (4ol V o)
N

= D (WoIVIgm) (¥mlvo)

m=1

Then we can use equation (3.46) to find

U V[40
wivh) = L) (3.49)

so then

N
g = 30 WAIVIR) V1) (3.50)
m=1

E) — EY,
(IV [0} is some complex number denoted by z and (§|V |42 (w0 [V |48) =
2z* which is a positive number for all m. Also, E is the ground state energy of
the unperturbed Hamiltonian Hy for which we know that E§ < EY, for all m.
Therefore, every term in the sum of equation (3.50) is negative. Increasing the
basis size N will always lower the value of E2 and so the value of EZ calculated

with any finite basis set is always an upper bound to its true value.

3.5 Neville-Richardson Extrapolation

Neville-Richardson extrapolation is a very useful technique for accelerating the
0

n, We aim

convergence of series. Given some series of converging coefficients, r
to construct a new series, 71 that consists of some combination of the 0 se-
ries so that it converges to the same limit as the rQ series but much faster.
This technique is usually used to calculate approximate values for derivatives
and integrals of functions (Romberg Integration) very accurately. In this work
Neville-Richardson extrapolation is used to accelerate the convergence of the
1/Z expansion, as was done by Baker et al.

Neville-Richardson extrapolation may be used when we can make an as-

sumption of the functional dependence of the series we are trying to accelerate.

For example, let
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c,  C
r® =Co+ =+ 2 +... (3.51)
n n

with the 0 in 7’7(10) representing the unaltered initial sequence of numbers r,,.
Assuming we have guessed the correct dependence for r,, it is clear that this
series converges to Cy and the dominant dependence on n comes from the 1/n
term. If we were to somehow drop the 1/n dependence in (3.51) then the series
would converge to the limit Cy faster. This can be done simply by finding the
right linear combination of the series r0 and r, so the 1/n term gets canceled

out. For example, we can use

© _ o Ch Co
Tn+1 0+n+1+(n+1)2 :
0 Cs
(n+1)rfl+>1:(n+1)co+cl+n+l+... (3.52)
along with
(0) Co
nry,” =nCo+ C1 + . +... (3.53)

then by subtracting the two series (3.52),(3.53) we are left with

C
8 = 0+ D =i = Co—

where our new series 1"511) converges to Cy faster due to the elimination of the

1/n term. We can then go a step further by creating the 7*7(12) series from the

1
7(11_21 which cancels out the m dependence.

Theoretically this procedure could be repeated indefinitely, resulting in faster

. .. 1
linear combination of rﬁl ) and r

convergence each time. However, in practice we lose some significant figures for
each higher-order series we find. Each term in a high-order series arises from
the accumulation of many subtractions between similar numbers resulting in a
net loss of significant figures. If Neville-Richardson extrapolation is carelessly
applied too many times without validating the numerical stability of the co-

efficients in the series, then untrustworthy extrapolations could be mistakenly
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assumed to yield accurate results. Thus, the Neville-Richardson extrapolation
should be thought of as a way of trading significant figures for enhanced accuracy

and should only be used until the desired balance is found.
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Chapter 4

Results

This chapter describes the entire process of obtaining an accurate estimate to
the radius of convergence of the 1/Z expansion in great detail. The meaning of

the value of A\* obtained is also explained.

4.1 The Procedure

As mentioned in the last chapter, the Schrodinger equation for the two-electron
atom Hamiltonian cannot be solved analytically and so an approximation method
must be used to generate the eigenvalues and eigenvectors. The Z-scaled Hamil-

tonian can be split into a solvable part Hy and a perturbation AV according

to
o les e 11z
H = 2(V1 +V53) . + - (4.1)
1 1 1

Hy = —=(V? - — - = 4.2
0 2(V1+V2) P (4.2)

Zfl
AV = — (4.3)

12

37



where \=Z"land V = R
r12

Hj consists of two hydrogen atom Hamiltonians added together and V is
the potential energy due to the inter-electron Coulomb interaction in Z-scaled

atomic units. The TISE for this Hamiltonian is

We assume power series solutions for E,, and ¢,

E, = i NE! (4.5)
=0

U= N, (4.6)
=0

which breaks the TISE into an infinite sequence of equations indexed by the

“order” i. These equations are

X: Hothy + Vit = " EiFgk (4.7)
k=0

which come from section 3.4. We first must solve the zeroth order equation

HOwn = n'l/}n (48)

which is a separable differential equation with solutions

wn = wnlllml w’ILngmQ

1 1
ny  ng

where the ¥y, (n > 1,1 < n—1and |m| <) are the eigenfunctions of the
Schrodinger equation for a single hydrogen atom Hamiltonian.

The variational method was used to generate a complete set of pseudostates
from the double hydrogenic TISE (4.8). Both the triple and pyramidal varia-
tional basis sets described in section 3.2 were used. Table 4.1 shows approx-

imations to the energies for some states of helium after using the variational
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method with a double basis set. The calculation of each one of these approx-
imate energies is an arduous process. We would start with a relatively small
double basis set of roughly 200 terms and optimize the nonlinear parameters so
that the variational energy of interest was minimized (recall that the variational
energies are all upper bounds to the true energies). Each optimization involved
multiple applications of the inverse iteration method (see Appendix C.3) for
different values of the «; and ;. Each run of the inverse iteration method takes
O(n?) operations to complete (where n is the number of terms in the basis set).
Once the optimal variational energy and nonlinear parameters were found for
a given basis set size, {23 and )y were each incremented by one and the entire
process was repeated for the next larger basis set in the sequence. Basis sizes
of up to 2000 terms could successfully be used before encountering issues of
numerical stability. Finding the optimal nonlinear parameters for a 2000 term
basis set took over 8 hours of runtime on a UNIX system with an Intel Core2
quad Q9450 2.66Ghz CPU (all calculations were performed in quadruple preci-
sion arithmetic in {77). After the optimized variational energies were obtained
for many different basis sizes n these energies were extrapolated to infinite basis

size n — oco. The extrapolated energies are the values displayed in table 4.1.
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Table 4.1: Highly accurate energies for helium ! P states achieved by double basis sets

State Energy

1s2p'P -2.123843086498101362(7)
1s3p'P -2.05514636209194349(1)
1sdp'P  -2.03106965045024067(1)
1s5pt P -2.019905989900846436(5)
1s6p' P -2.013833979671740067(8)
1s7p'P  -2.0101693145293889(1)
1s8p' P -2.00778912713323586(2)
1s9p' P -2.00615638465285382(3)
1s10p' P -2.00498798380221815(4)

—~

The numbers in the brackets are the uncertainties in the last recorded significant digits

Neither the triple nor the pyramidal basis sets are orthogonal basis sets.
Using an orthogonal basis set reduces the generalized eigenvalue problem to the
simpler TISE (see Appendix A) and so these basis sets were orthonormalized.

This was done by calculating and diagonalizing the overlap matrix

Oij = (¢ild;) (4.10)
where ¢y, is the kth member of the chosen basis set. After O was diagonalized

a scale change matrix was applied so that O =1 in the rescaled basis

M O ... 0 10 ... 0
0 X ... O 01 ... 0

o=|(. = | —>stos=| . _ (4.11)
0 0 ... X\ 00 ... 1

This new orthonormal basis set is a linear combination of the original basis set
elements.
The variational method was used via diagonalizing the double hydrogenic

Hamiltonian matrix Hg expressed in the orthonormalized basis sets. Three
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different matrix diagonalization procedures were used and are described in Ap-

pendix C. The exact ground state of the zeroth order TISE (equation (4.8))

P100Y100 = € e (4.12)

was included in all of the basis sets (it is omitted in the basis set tables). This
ensured a very accurate ground state wave function and ground state energy
upon application of the variational method.

The next step in the process was to progressively increase the size of the basis
sets. For example, for a triple basis set we would usually start with ; = Qs =
10,3 = 2 and progressively work up to 7 = Qs = 17,3 = 9 in increments of
1. For each of these basis sizes the procedure of orthonormalizing the basis set
and then diagonalizing Hg was done. After the eigenvectors and eigenvalues of
Hy were found for a given basis set, Rayleigh-Schrédinger perturbation theory
was used to find E, of the 1/Z expansion. The appropriate equations derived

in section 3.4 are

n—1
= WIVIvg ") = > (W6 Eg " (4.13)
k=1
1% — VED™
(mlg) = % Z EL% (4.14)
where m # 0

These equations were used to sequentially calculate the 1/Z expansion co-
efficients for both the ground state energy and the ground state eigenfunction
up to 1000th order (n = 1000). With the 1/Z expansion coeflicients calculated,

the radius of convergence of the series could be estimated with the ratio test

N = lim — (4.15)

n—00 Ty,

where the r,, are the ratios of the 1/Z series coefficients

n+1
EO
n
EO

(4.16)

Ty =
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The r, series were very slowly converging and so the Neville-Richardson
extrapolation technique (section 3.5) was used to accelerate the rate of conver-
gence. This method was used by Baker et. al. and so we could compare our
results with theirs. We assumed the r,, had the form

Cip2 C1 Cspn O

Tn:CO+n1/2+;+n3/2+ﬁ+~-- (417)

because there was convincing evidence for this in reference [1] and also because
our own analysis of the r,’s showed agreement with this behaviour. For large n
this series converges to Cy = Z*. Two different first order Neville-Richardson

extrapolations were used

_ _ Ciz Ciyp+4GC5), & 572
sn= (4 Drngs —nrm = Co+ pt/z 8n3/2 B n(n+1) +oln )
(4.18)

(the 1/n dependence is canceled out in the s, series)

Cq 8C3/5 — C/2 _ 3Cy

_ —5/2
n+1 4n3/2 (n+1)2 +O0(n™)

(4.19)

1
t, =2[(n+ i)rn+1 —nry] =Co—

Both of these series converge to Cy = Z* but faster than the original r,, series.

A second order Neville-Richardson extrapolation was constructed

8C3/2 — C1/2 3C,
8n3/2 (n+1)(n+2)

+0(n="?)
(4.20)

U =(n+2)tpt1 —(n+1)t, =Co+

but due to the loss of numerical precision in their calculation, only the v,, which
were constructed from our most accurate E,, (E, — r, — t, — v,) could be
used to determine \*.

A least squares fit was used to extrapolate r,, $n,t, and v, to 1/n = 0

(n — 00). The fits that were applied to each series were
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B b c
=t ety
s b +c
Sp = a 777/1/2 E
b
t, =a+ —
n
_ b c
=0t Tt e

When these least square fits were plotted with respect to 1/n the y-intercept of
1

the best fit line would serve as the estimated value for a ~ Z* = I thereby

yielding an approximation to the radius of convergence of the 1/Z expansion

A"

4.2 Calculations

The FE,, were calculated up to 1000th order using various different basis sets.
Stability checks were used to estimate the precision of the E,,. These stability
checks were performed by changing all of the nonlinear parameters in the basis
set by a small amount and then recalculating the 1/Z expansion coeflicients.
The two sets of E, would be compared and the decimal digits that were in
agreement were assumed to be correct.

Tables 4.2 — 4.5 display the most important basis sets that were used to
calculate the 1/Z expansion coefficients. Both triple and pyramidal basis sets
were used to solve the Schrodinger equation (4.8) via the variational method.
Tables 4.2 and 4.3 display two of the triple basis sets that were used. Tables 4.4
and 4.5 show the two most useful pyramidal basis sets.

The solutions to equation (4.8) are known and the exact ground state is

Yo=—e "7 (4.21)

Basis sets that do not include the exact ground state result in inaccurate eigen-

vectors and eigenvectors and hence inaccurate E,,. The exact ground state was
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included in all of the variational basis sets used in this thesis (it is omitted in the
relevant tables). The inclusion of the exact ground state in a basis set not only
improved the accuracy of the variational eigenvalues and eigenvectors obtained
by applying the variational method to equation (4.8), but also provided a way
of estimating the numerical precision of the variational eigenvectors. Upon di-
agonalization of the Hamiltonian matrix Hgy corresponding to the Hamiltonian

(4.1), the variational ground state eigenvector ¢ should be exactly

b= | (422

0

For small basis sets of only a few hundred terms, ¢y would agree with g to
roughly 15 decimal digits. As basis sizes increased, the number of arithmetic op-
erations required to diagonalize Hg would rapidly increase, reducing the number
of significant figures in the resulting variational eigenvectors ¢,,. It was required
that ¢g agree with ¥y to at least 10 decimal digits in order to achieve apprecia-
bly accurate 1/Z expansion coefficients. The deviation of the variational energy
from the true energy d E' is roughly proportional to the square of the deviation of
the variational wave function from the true wave function d1. Therefore if the
variational wave function is accurate to 10 decimal digits we can be confident
that the variational energy is accurate to at least 20 decimal digits.

The first basis set that was used was the H~ triple basis set shown in ta-
ble 4.2. This basis set used nonlinear parameters that were optimized for the
ground state of H~. The nonlinear parameters were found with a program
called dpoldl.f which used the inverse iteration method to find a single eigen-
value and eigenvector pair from a Hamiltonian matrix (see Appendix C.3). After
performing a stability check to the largest H ™ triple basis set, the resulting F,
were found to be accurate to at least 4 decimal digits up to 200th order. The
resulting s, and t,, series were fitted using n = 100 to n = 200 which yielded

A* = 1.10143 and A* = 1.09796 respectively. The v, series was numerically
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Table 4.2: Triple basis set optimized for H™

0 ay B1 1% B2 as B3

10 0.94318 0.51190 2.41467 2.52594 5.22424 6.90106
11 0.96783 0.51624 2.32599 2.75018 7.60901 10.04987
12 0.96143 0.51984 2.68549 2.78174 9.11432 7.46344
13 0.98199 0.51904 2.50262 2.90271 10.28485 10.53516
14 0.98279 0.52069 2.56238 3.04138 10.75458 10.78339
15 0.98920 0.52222 2.85748 2.84436 11.00897 11.10162
16 1.00073 0.52576 3.23096 2.78528 13.33142 12.31256
17 1.02875 0.53302 3.03937 3.17322 13.12842 13.87701

Table 4.3: Triple basis set optimized for He

Q0 ay B1 1% B2 as B3

10 1.23962 1.19568 2.44611 2.13763 5.86517 5.93225
11 1.27502 1.22772 2.61005 2.26721 6.40723 6.43719
12 1.29248 1.23926 2.75348 2.45520 6.89081 6.89404
13 1.31207 1.23779 3.06598 2.57349 9.14484 9.16608
14 1.32660 1.28516 2.88397 3.17126 11.19373 11.80603
15 1.34479 1.28821 2.96136 3.41583 12.26294 12.34119
16 1.36322 1.28998 3.10455 3.79791 14.28326 15.38464
17 1.38293 1.30011 3.30933 4.07678 17.85199 18.23389

unstable and could not be used to estimate A*.

The success of the H ™ triple basis set in finding accurate F,, necessitated a
comparison with the He triple basis set (table 4.3). This basis set used nonlinear
parameters optimized for the ground state of helium. It was constructed by
Drake et al. in reference [30] and so the optimal nonlinear parameters were
taken directly from this work. Even though the nonlinear parameters of the
H~ and He triple basis sets are almost equivalent, the differences between their

FE,, are astounding. The He F, would begin oscillating between positive and
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Table 4.4: Pyramidal basis with ap = 1.300, 8o = 1.450 and M = 2.2

basis set number: 11213 |4]5]|6
a=1474,5 = 164.4 9
a=66.98,5 = T74.72 9 |10
a = 3045, =33.97 9 | 10 | 11
a=13.84,5 =15.44 9 |10 | 11 | 12
o =6.292, 8 = 7.018 9 | 10| 11|12 13
a=2860,=3190 || 9 | 10 | 11| 12| 13 | 14
a=1.300,=1450 || 10 | 11 | 12| 13 | 14 | 15

The values in this table are the 2’s for each of the single Hylleraas basis sets used to
construct the pyramidal basis set. The columns of this table show the components of
the pyramidal basis set at each stage in its construction. The smallest basis size is
represented by the left-most column and the largest basis size is represented by the

right-most column of this table

Table 4.5: A special pyramidal basis set with ay = 2.000, o = 2.200 and M = 2.0
containing a double basis set (a1 = 0.500, 31 = 0.500), (a2 = 0.950, B2 = 0.200)

basis set number: 1123|456 |78
a=128.0, = 140.8 5
a = 64.00, 8 = 70.40 516
a = 32.00,8 = 35.20 516 |7
a =16.00, 8 = 17.60 516 | 7|8
a = 8.000, 8 = 8.800 516 | 7819
a = 4.000, 8 = 4.400 5(6| 781|910
a = 2.000, 8 = 2.200 516|781 9 |10]11
a=0.950,=0200 5|6 |7|8] 9 |10 11|12
a=0.500,=0500 6|7 |8|9|10| 11 | 12|13
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negative values for n > 100 while the H~ FE,, were all negative. Performing
a stability check to these FE,’s determined they were not accurate to even one
decimal for n > 50 which explained these oscillations. Meaningful s,, and ¢,
series could not be constructed and so no estimation of A* could be found from
the He basis sets. However, Fs for the He triple basis set is extremely accurate
compared to the Fs from the H~ triple basis set.

The second order coefficient for the ground state energy Fs calculated using
a finite variational basis set is an upper bound to its true value (see 3.4. The
notation Fy is used and not EZ because only the ground state energy is of
interest and so the 0 label is unnecessary and hence is removed). One minor
accomplishment of this work was to find a very accurate value of Es. Using a

large He triple basis set (the last row in table 4.3) F5 was calculated to be

Table 4.6: E» for the He triple basis set in table 4.3

basis size Es Difference Ratio
324 -0.157 666 429 355 860 486

411 -0.157 666 429446 395895  -0.000 000 000 090 535 409

512 -0.157 666 429465 780973  -0.000 000000019 385078  0.214
630 -0.157 666 429 468 841 650  -0.000 000 000 003 060677  0.158
764 -0.157666 429469129 725 -0.000 000 000 000 288075  0.094
918 -0.157 666 429469 147824  -0.000 000 000000018099  0.063
1089 -0.157 666 429469 150 371 -0.000 000 000 000 002 547  0.141
1283 -0.157 666 429469 150850  -0.000 000 000 000 000479  0.188

The difference column is simply d(i) = E(i) — E(i — 1) and the ratio column is the

i
ratio of the differences r(i) = a0 (_Z)l) where E(i) represents the ith Fs value in the

table.

Therefore the He triple basis set yields the result
E; = —0.157666 429 469 150 8(1) (4.23)

where the error in the 15th decimal digit is estimated from the convergence
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behaviour of Fy in table 4.6.

A pyramidal basis set was used in the attempt to find a more accurate
E, (table 4.4). The first set of nonlinear parameters used in the pyramidal
basis set were found by using Newton’s method to minimize the resulting Ey
obtained from a series of different runs using «y, ;1 in the range (0.15,2.00).
The values oy = 1.3000 and 7 = 1.45000 were optimal. Some trial and error
was involved in finding the optimal M in the pyramidal basis set to minimize
E2. M = 1.1 and M = 4 failed to provide Fy that were smaller than the He
triple basis F5 shown above. These basis sets failed for two different reasons.
For M = 1.1, the pyramidal basis sets quickly ran into numerical dependence
issues when using large basis sizes of 1000 terms or more. This would cause
negative eigenvalues in the overlap matrix (these should all be positive) during
the diagonalization procedure and would lead to very inaccurate F,. For the
M = 4 case it seemed that the nonlinear parameters spread out too quickly and
missed some important ranges of values that needed to be included in the basis
sets. Thus, M was varied from the range (2.0,3.0) in steps of 0.1 and it was
found that M = 2.2 provided the minimal F5. The F5 for this basis set can be

seen in table 4.7

Table 4.7: E, for the optimized pyramidal basis set in table 4.4

basis size FEy Difference Ratio
125 -0.157 666 384 056 843 799

284 -0.157 666 429437046 212 -0.000 000 045 380 202 413

482 -0.157 666 429468 960 486  -0.000 000 000031914274  0.000 703
726 -0.157 666 429469 140498  -0.000 000 000 000180012  0.005 64
1020 -0.157 666 429469 149921  -0.000 000 000 000 009423  0.0523
1372 -0.157 666 429469 150846  -0.000 000 000 000000925  0.0982
1786 -0.157 666 429469 150932  -0.000 000 000 000 000086  0.093

Therefore our best estimate is

Ey = —0.157666 429 469 150 932 (4.24)

48



which is an improvement to the He basis set upper bound and is likely accurate
up to 16 decimal digits based off of the convergence behaviour displayed in table
4.7.

The main result so far is that the nonlinear parameters used in the He
triple basis set resulted in more accurate low-order E, (only for n = 1 to
10) while those of the H~ triple basis set yielded more accurate high-order
coefficients. The fact that the H~ and He nonlinear parameters are almost
equivalent yet yield very different F,, emphasizes the importance of the nonlinear
parameters in accurately determining these coefficients. This suggested the use
of the pyramidal basis sets with their many adjustable nonlinear parameters.

As was explained in reference [1], the higher order terms in the 1/Z expan-
sion correspond to the atomic configuration with one electron localized near
the nucleus and the other electron very far from the nucleus. This meant the
pyramidal basis sets would need to incorporate a large number of terms with
nonlinear parameters o ~ 1 and 8 ~ 0. In reference [23] a Hylleraas double
basis set was used to find the variational eigenvectors and eigenvalues of the full
Z-scaled two-electron atom Hamiltonian

1, o o, 1 1 z7t
H:—i(V1+V2)————+

1 T2 T12

(4.25)

at the critical charge Z = Z, = 0.911 028 224 077. The nonlinear parameters in
the double basis set were optimized to minimize the variational ground state

energy. The optimal values are

ay =0.95 B1 =0.15

g = 1.20 B2 =1.10

These values are important because they quantify the configuration of the
ground state of the two-electron atom at the critical nuclear charge. Many
different Hylleraas double basis sets were constructed using nonlinear parame-
ters in the range of a1, 81 € (0.1,1.5) and g, B2 € (0.5,2.0) and their resulting

E,, were compared with stability checks. After much trial and error, it was
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found that the double basis set yielding the most numerically stable coefficients

had nonlinear parameters

a1 = 0.95 B1 = 0.20

az = 0.50 B2 =0.50

The rest of the pyramidal basis set was also found by trial and error. When
the nonlinear parameters were too spread out (M > 3) the E, were inaccu-
rate and when the parameters were too close (M < 1.5) the larger basis sets
would have numerical instability issues (the F,, couldn’t be calculated in this
case). The most accurately determined coefficients, deemed PYC5TGC68 (PY
- pyramidal basis set, C5 - 25th trial, T - tridiagonalization method, G - exact
ground state included, C68 - basis size of 1268 terms) were calculated using the
pyramidal basis set displayed in table 4.5. The corresponding stability check co-
efficients were calculated and named PYS5TGC68. PYC5TGC68, PYS5TGC68
and the E,, from reference [1] are all compared in table 4.8. The pyramidal basis
set is very different from the basis set used in reference [1], yet the coefficients
still agree with each other consistently to 4-5 decimal digits even at 400th or-
der. This is very strong evidence that both the coefficients of Baker et al. and
PYC5TGC68 are accurate to at least 4 decimal digits up to 400th order. Com-
paring PYC5TGC68 with PYSSTGC68 further suggests that the PYC5TGC68
coefficients are accurate to 7 decimal digits at 400th order then progressively
become less accurate as the order is increased until they are only accurate to a

single decimal digits place at 1000th order.

Table 4.8: Comparison of different E,. D+01 represents 10*.

Order PYC5TGC68 PYS5TGC68 Baker et al.

0 -0.100000000000000000D+01  -0.100000000000000000D+01  -0.1000000000D+01
1 0.625000000000000000D400  0.625000000000000000D+00  0.6250000000D+-00
2 -0.157666429469061186D+00 -0.157666429469064706D+00 -0.1576664295D+00
3 0.869903152779249933D-02 0.869903152779037790D-02 0.8699031528D-02
4 -0.888707284437038512D-03  -0.888707284433329529D-03  -0.8887072842D-03
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-0.103637184756255541D-02
-0.612940521568932322D-03
-0.372175573903726286D-03
-0.242877976036678087D-03
-0.165661052567637774D-03
-0.116179204053959596D-03
-0.833013504739943577D-04
-0.608802760204473510D-04
-0.452307186687347326D-04
-0.340796639345822576D-04
-0.259910694806446132D-04
-0.200330679807479729D-04
-0.155853719851208268D-04
-0.122258428235742841D-04
-0.966163863102110297D-05
-0.768616391755843100D-05
-0.615146876437470400D-05
-0.495016965946396487D-05
-0.400337907493542029D-05
-0.325250666715370080D-05
-0.265360278843842312D-05
-0.217340034515713548D-05
-0.178650897031053388D-05
-0.147340222369656894D-05
-0.121895780354291647D-05
-0.101138815584161237D-05
-0.841449816362077080D-06
-0.701853825814365217D-06
-0.586822576447746191D-06
-0.491754239400329644D-06

o1

-0.103637184753620836D-02
-0.612940521564856359D-03
-0.372175573965889527D-03
-0.242877976089230063D-03
-0.165661052500029343D-03
-0.116179203929500237D-03
-0.833013504751361453D-04
-0.608802761842094024D-04
-0.452307187968662226D-04
-0.340796638370494891D-04
-0.259910692345773488D-04
-0.200330678608721979D-04
-0.155853721498356486D-04
-0.122258431345964208D-04
-0.966163880023896400D-05
-0.768616379385725239D-05
-0.615146845611535897D-05
-0.495016940755158559D-05
-0.400337904207284131D-05
-0.325250683794070566D-05
-0.265360302499295538D-05
-0.217340050776406546D-05
-0.178650899865092201D-05
-0.147340214238070478D-05
-0.121895767931750076D-05
-0.101138805065657046D-05
-0.841449762350028223D-06
-0.701853824231400924D-06
-0.586822609834926538D-06
-0.491754285548133305D-06

-0.1036371848D-02
-0.6129405205D-03
-0.3721755765D-03
-0.2428779732D-03
-0.1656610547D-03
-0.1161792026D-03
-0.8330135003D-04
-0.6088027632D-04
-0.4523072242D-04
-0.3407966122D-04
-0.2599106570D-04
-0.2003307002D-04
-0.1558537543D-04
-0.1222584280D-04
-0.9661636835D-05
-0.7686162634D-05
-0.6151468041D-05
-0.4950169803D-05
-0.4003380609D-05
-0.3252508668D-05
-0.2653603522D-05
-0.2173399140D-05
-0.1786506716D-05
-0.1473400370D-05
-0.1218957262D-05
-0.1011388955D-05
-0.8414513883D-06
-0.7018554629D-06
-0.5868237564D-06
-0.4917547384D-06



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64

-0.412966885458207460D-06
-0.347502102579374542D-06
-0.292973358770102559D-06
-0.247448248396153091D-06
-0.209356562300208768D-06
-0.177418158094906439D-06
-0.150586098165288325D-06
-0.128001623317019474D-06
-0.108958347790855267D-06
-0.928736731260952894D-07
-0.792658788264941337D-07
-0.677356963919785377D-07
-0.579514386551424347D-07
-0.496369594334234645D-07
-0.425618746801168234D-07
-0.365335969958006060D-07
-0.313908290401061753D-07
-0.269982344216686533D-07
-0.232420618280624620D-07
-0.200265431083002020D-07
-0.172709214903264584D-07
-0.149069942069114874D-07
-0.128770761282253124D-07
-0.111323088010161773D-07
-0.963125353458672737D-08
-0.833871860006730316D-08
-0.722477980486034278D-08
-0.626396112506875939D-08
-0.543454808391681159D-08
-0.471801143642781806D-08

92

-0.412966926801937862D-06
-0.347502129764284332D-06
-0.292973369970461858D-06
-0.247448246660060455D-06
-0.209356552688809731D-06
-0.177418145552918507D-06
-0.150586086370653300D-06
-0.128001614355593100D-06
-0.108958342353736801D-06
-0.928736709389398067D-07
-0.792658791031522942D-07
-0.677356981989737419D-07
-0.579514411484426025D-07
-0.496369619758105314D-07
-0.425618768692747303D-07
-0.365335986376853048D-07
-0.313908300970292905D-07
-0.269982349557739864D-07
-0.232420619521830252D-07
-0.200265429493224362D-07
-0.172709211656304529D-07
-0.149069938119566339D-07
-0.128770757323751072D-07
-0.111323084486805442D-07
-0.963125324924175773D-08
-0.833871838936661720D-08
-0.722477966568529845D-08
-0.626396104788232871D-08
-0.543454805616024783D-08
-0.471801144494006589D-08

-0.4129667397D-06
-0.3475015037D-06
-0.2929725474D-06
-0.2474474379D-06
-0.2093558999D-06
-0.1774177169D-06
-0.1505858883D-06
-0.1280016120D-06
-0.1089584800D-06
-0.9287388845D-07
-0.7926612330D-07
-0.6773592858D-07
-0.5795163168D-07
-0.4963709996D-07
-0.4256196029D-07
-0.3653363293D-07
-0.3139082506D-07
-0.2699820214D-07
-0.2324201270D-07
-0.2002648718D-07
-0.1727086666D-07
-0.1490694605D-07
-0.1287703797D-07
-0.1113228206D-07
-0.9631238139D-08
-0.8338713427D-08
-0.7224783083D-08
-0.6263970780D-08
-0.5434562009D-08
-0.4718027681D-08



65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

-0.409852268363810097D-08
-0.356254617090394743D-08
-0.309849516567166405D-08
-0.269644147319686601D-08
-0.234786992438430075D-08
-0.204547053062605147D-08
-0.178296230455110627D-08
-0.155494374000641995D-08
-0.135676576741796094D-08
-0.118442368277793996D-08
-0.103446511493911648D-08
-0.903911567084674087D-09
-0.790191460845980139D-09
-0.691082939189583036D-09
-0.604664958058827129D-09
-0.529275426006756198D-09
-0.463475343241838931D-09
-0.406018052846502340D-09
-0.355822852556487192D-09
-0.311952329654871943D-09
-0.273592877758075833D-09
-0.240037935473324460D-09
-0.210673555515960931D-09
-0.184965970911903613D-09
-0.162450874060698851D-09
-0.142724166105046664D-09
-0.125433969419854956D-09
-0.110273726082821028D-09
-0.969762307450737191D-10
-0.853084680777960385D-10

93

-0.409852271621201413D-08
-0.356254621715140752D-08
-0.309849521737911556D-08
-0.269644152433504557D-08
-0.234786997090607519D-08
-0.204547057015378724D-08
-0.178296233602515444D-08
-0.155494376334150539D-08
-0.135676578319510258D-08
-0.118442369198560513D-08
-0.103446511876778550D-08
-0.903911566772909495D-09
-0.790191457572568186D-09
-0.691082934004594687D-09
-0.604664951845942807D-09
-0.529275419469469962D-09
-0.463475336906883963D-09
-0.406018047078796500D-09
-0.355822847580933030D-09
-0.311952325581360713D-09
-0.273592874606978336D-09
-0.240037933199568534D-09
-0.210673554030480709D-09
-0.184965970099796992D-09
-0.162450873795853660D-09
-0.142724166261305102D-09
-0.125433969878995606D-09
-0.110273726739765063D-09
-0.969762315107837627D-10
-0.853084688803484585D-10

-0.4098539575D-08
-0.3562562376D-08
-0.3098509705D-08
-0.2696453705D-08
-0.2347879506D-08
-0.2045477367D-08
-0.1782966493D-08
-0.1554945518D-08
-0.1356765460D-08
-0.1184421664D-08
-0.1034461773D-08
-0.9039072781D-09
-0.7901865701D-09
-0.6910777500D-09
-0.6046597253D-09
-0.5292703540D-09
-0.4634705874D-09
-0.4060137233D-09
-0.3558190191D-09
-0.3119490281D-09
-0.2735901158D-09
-0.2400356987D-09
-0.2106718132D-09
-0.1849646810D-09
-0.1624499872D-09
-0.1427236294D-09
-0.1254337293D-09
-0.1102737305D-09
-0.9697643063D-10
-0.8530881854D-10



95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

-0.750671435116977509D-10
-0.660748118011126965D-10
-0.581765214465512599D-10
-0.512369045472992300D-10
-0.451376515234818643D-10
-0.397753185937754456D-10
-0.350594231312823748D-10
-0.309107882244509907D-10
-0.272601030936749282D-10
-0.240466705858466850D-10
-0.212173168978633322D-10
-0.187254420587727667D-10
-0.165301926079873521D-10
-0.145957404111681750D-10
-0.128906537134755920D-10
-0.113873483909567250D-10
-0.100616089668191522D-10
-0.889217034606795414D-11
-0.786035242013594706D-11
-0.694974072898588531D-11
-0.614590726422574101D-11
-0.543616627236756619D-11
-0.480936058905505987D-11
-0.425567461712506826D-11
-0.376647056599447881D-11
-0.333414500760534003D-11
-0.295200318408034152D-11
-0.261414883214388951D-11
-0.231538757597849070D-11
-0.205114218931389675D-11

o4

-0.750671442959861727D-10
-0.660748125275944872D-10
-0.581765220893895826D-10
-0.512369050921888721D-10
-0.451376519653831719D-10
-0.397753189347213487D-10
-0.350594233783711630D-10
-0.309107883880934620D-10
-0.272601031861291417D-10
-0.240466706200464684D-10
-0.212173168865271779D-10
-0.187254420137667610D-10
-0.165301925399082014D-10
-0.145957403291090789D-10
-0.128906536249376061D-10
-0.113873483018704124D-10
-0.100616088816449386D-10
-0.889217026794802856D-11
-0.786035235107528341D-11
-0.694974067004462498D-11
-0.614590721570952135D-11
-0.543616623400623991D-11
-0.480936056016354577D-11
-0.425567459674277833D-11
-0.376647055300189857D-11
-0.333414500081794379D-11
-0.295200318232116456D-11
-0.261414883429682633D-11
-0.231538758102481462D-11
-0.205114219635467049D-11

-0.7506760448D-10
-0.6607534835D-10
-0.5817710380D-10
-0.5123750794D-10
-0.4513825588D-10
-0.3977590813D-10
-0.3505998589D-10
-0.3091131557D-10
-0.2726058924D-10
-0.2404711213D-10
-0.2121771238D-10
-0.1872579156D-10
-0.1653049741D-10
-0.1459600269D-10
-0.1289087625D-10
-0.1138753438D-10
-0.1006176182D-10
-0.8892293565D-11
-0.7860449467D-11
-0.6949814948D-11
-0.6145961819D-11
-0.5436204106D-11
-0.4809384397D-11
-0.4255686832D-11
-0.3766473360D-11
-0.3334140293D-11
-0.2951992627D-11
-0.2614133867D-11
-0.2315369423D-11
-0.2051121873D-11



125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

-0.181737824419410115D-11
-0.161053885235781373D-11
-0.142748736923636558D-11
-0.126545707344778894D-11
-0.112200695913970663D-11
-0.994982887023476976D-12
-0.882483434540491508D-12
-0.782829868121658619D-12
-0.694539732514489501D-12
-0.616303615021774209D-12
-0.546964697404201557D-12
-0.485500756173071795D-12
-0.431008313930139898D-12
-0.382688681074413727D-12
-0.339835659263986350D-12
-0.301824706080536660D-12
-0.268103384904734783D-12
-0.238182945516178309D-12
-0.211630899768106994D-12
-0.188064473191687556D-12
-0.167144827850588916D-12
-0.148571964449771053D-12
-0.132080222826102817D-12
-0.117434309707395685D-12
-0.104425791190741594D-12
-0.928699949091818796D-13
-0.826032734574548020D-13
-0.734805864462625452D-13
-0.653733636493007398D-13
-0.581676161849073647D-13

99

-0.181737825246113338D-11
-0.161053886121566817D-11
-0.142748737817769320D-11
-0.126545708208396717D-11
-0.112200696718846274D-11
-0.994982894294866018D-12
-0.882483440922309801D-12
-0.782829873565110376D-12
-0.694539737020693448D-12
-0.616303618629501080D-12
-0.546964700179072223D-12
-0.485500758198317669D-12
-0.431008315298929174D-12
-0.382688681883675398D-12
-0.339835659609614857D-12
-0.301824706053829548D-12
-0.268103384589900225D-12
-0.238182944988745340D-12
-0.211630899094075874D-12
-0.188064472427268225D-12
-0.167144827042389954D-12
-0.148571963635318159D-12
-0.132080222034583276D-12
-0.117434308960542567D-12
-0.104425790503787811D-12
-0.928699942918292870D-13
-0.826032729148168974D-13
-0.734805859797509311D-13
-0.653733632574353261D-13
-0.581676158640383581D-13

-0.1817356614D-11
-0.1610516602D-11
-0.1427465056D-11
-0.1265435134D-11
-0.1121985729D-11
-0.9949626143D-12
-0.8824642950D-12
-0.7828119767D-12
-0.6945231546D-12
-0.6162883760D-12
-0.5469507912D-12
-0.4854881522D-12
-0.4309969633D-12
-0.3826785214D-12
-0.3398266193D-12
-0.3018167088D-12
-0.2680963505D-12
-0.2381767935D-12
-0.2116255509D-12
-0.1880598504D-12
-0.1671408577D-12
-0.1485685773D-12
-0.1320773537D-12
-0.1174318984D-12
-0.1044237821D-12
-0.9286833743D-13
-0.8260192161D-13
-0.7347949878D-13
-0.6537250299D-13
-0.5816694939D-13



155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

-0.517622666104688029D-13
-0.460676722690567722D-13
-0.410043192722821872D-13
-0.365016671819417192D-13
-0.324971268102919182D-13
-0.289351556337917047D-13
-0.257664571421624380D-13
-0.229472720536636222D-13
-0.204387507449192743D-13
-0.182063974925726398D-13
-0.162195782247847681D-13
-0.144510844509379339D-13
-0.128767468935003332D-13
-0.114750931005943352D-13
-0.102270439834599175D-13
-0.911564481032873258D-14
-0.812582670655095309D-14
-0.724419516834964038D-14
-0.645884250153117458D-14
-0.575918145320335288D-14
-0.513579761963165618D-14
-0.458031849171645413D-14
-0.408529724552931277D-14
-0.364410960271819883D-14
-0.325086227773815969D-14
-0.290031169874551878D-14
-0.258779183921797080D-14
-0.230915013022931688D-14
-0.206069054084306487D-14
-0.183912301808142667D-14

96

-0.517622663554049946D-13
-0.460676720735996473D-13
-0.410043191296691137D-13
-0.365016670852041234D-13
-0.324971267525360866D-13
-0.289351556084108475D-13
-0.257664571429890552D-13
-0.229472720750711729D-13
-0.204387507818817737D-13
-0.182063975406902081D-13
-0.162195782802824032D-13
-0.144510845106439494D-13
-0.128767469548100463D-13
-0.114750931614237407D-13
-0.102270440421932783D-13
-0.911564486576327267D-14
-0.812582675784116334D-14
-0.724419521495311399D-14
-0.645884254315737353D-14
-0.575918148976627088D-14
-0.513579765120698156D-14
-0.458031851850354261D-14
-0.408529726781804817D-14
-0.364410962086064173D-14
-0.325086229212475350D-14
-0.290031170978553101D-14
-0.258779184732378907D-14
-0.230915013580418738D-14
-0.206069054427185043D-14
-0.183912301972396706D-14

-0.5176176429D-13
-0.4606730848D-13
-0.4100407125D-13
-0.3650151503D-13
-0.3249705326D-13
-0.2893514575D-13
-0.2576649809D-13
-0.2294735286D-13
-0.2043886209D-13
-0.1820653153D-13
-0.1621972836D-13
-0.1445124522D-13
-0.1287691379D-13
-0.1147526245D-13
-0.1022721285D-13
-0.9115810857D-14
-0.8125988120D-14
-0.7244350579D-14
-0.6458990909D-14
-0.5759322166D-14
-0.5135930200D-14
-0.4580442711D-14
-0.4085413044D-14
-0.3644217054D-14
-0.3250961563D-14
-0.2900403077D-14
-0.2587875633D-14
-0.2309226703D-14
-0.2060760285D-14
-0.1839186344D-14



185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

-0.164151856995225397D-14
-0.146526935646739952D-14
-0.130805322568956994D-14
-0.116780219568456059D-14
-0.104267443978846623D-14
-0.931029382669748890D-15
-0.831405559019936998D-15
-0.742500926003226425D-15
-0.663155355416590780D-15
-0.592335062372703400D-15
-0.529118754672786777D-15
-0.472685311287454887D-15
-0.422302819866158771D-15
-0.377318822264334377D-15
-0.337151633989827339D-15
-0.301282618472606313D-15
-0.269249310371816966D-15
-0.240639293944479805D-15
-0.215084752981077139D-15
-0.192257618115828987D-15
-0.171865245577253087D-15
-0.153646568775976740D-15
-0.137368670636529388D-15
-0.122823730360841649D-15
-0.109826303445670368D-15
-0.982108983370543422D-16
-0.878298171567851362D-16
-0.785512315360163358D-16
-0.702574677902996562D-16
-0.628434785135406827D-16

o7

-0.164151857013892891D-14
-0.146526935549652095D-14
-0.130805322382626186D-14
-0.116780219316081953D-14
-0.104267443680413172D-14
-0.931029379394148930D-15
-0.831405555594008334D-15
-0.742500922541941824D-15
-0.663155352011555338D-15
-0.592335059094808970D-15
-0.529118751574837468D-15
-0.472685308406697514D-15
-0.422302817226670002D-15
-0.377318819879231498D-15
-0.337151631863282098D-15
-0.301282616601651487D-15
-0.269249308747943469D-15
-0.240639292555028400D-15
-0.215084751810433566D-15
-0.192257617146434670D-15
-0.171865244790445834D-15
-0.153646568152677181D-15
-0.137368670157789472D-15
-0.122823730008271509D-15
-0.109826303201759431D-15
-0.982108981854017679D-16
-0.878298170822536560D-16
-0.785512315248224209D-16
-0.702574678300516849D-16
-0.628434785932355205D-16

-0.1641575895D-14
-0.1465321098D-14
-0.1308099795D-14
-0.1167843994D-14
-0.1042711852D-14
-0.9310627789D-15
-0.8314352894D-15
-0.7425273210D-15
-0.6631787249D-15
-0.5923556954D-15
-0.5291369198D-15
-0.4727012569D-15
-0.4223167746D-15
-0.3773309961D-15
-0.3371622189D-15
-0.3012917896D-15
-0.2692572269D-15
-0.2406461000D-15
-0.2150905789D-15
-0.1922625813D-15
-0.1718694516D-15
-0.1536501123D-15
-0.1373716362D-15
-0.1228261934D-15
-0.1098283311D-15
-0.9821255006D-16
-0.8783114560D-16
-0.7855228316D-16
-0.7025828348D-16
-0.6284409414D-16



215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

-0.562154801955283179D-16
-0.502897387142140926D-16
-0.449914865512054853D-16
-0.402539573548532144D-16
-0.360175250545781079D-16
-0.322289361346375363D-16
-0.288406249248463869D-16
-0.258101028771276989D-16
-0.230994137855183846D-16
-0.206746477870208374D-16
-0.185055077635708865D-16
-0.165649224621322544D-16
-0.148287012700723261D-16
-0.132752261350030041D-16
-0.118851766097173868D-16
-0.106412844404122901D-16
-0.952811450600743484D-17
-0.853186926334208918D-17
-0.764021416204933830D-17
-0.684212176815551375D-17
-0.612773258064290682D-17
-0.548823074365138166D-17
-0.491573305161693202D-17
-0.440318981806574794D-17
-0.394429633332544562D-17
-0.353341377414866653D-17
-0.316549855100812853D-17
-0.283603918825355135D-17
-0.254099992987659586D-17
-0.227677035060671847D-17
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-0.562154803055154640D-16
-0.502897388461353368D-16
-0.449914866979168738D-16
-0.402539575103350613D-16
-0.360175252138378184D-16
-0.322289362936091329D-16
-0.288406250802898544D-16
-0.258101030265305799D-16
-0.230994139270014699D-16
-0.206746479192492895D-16
-0.185055078856717102D-16
-0.165649225736186765D-16
-0.148287013707753563D-16
-0.132752262250102200D-16
-0.118851766893188058D-16
-0.106412845100530527D-16
-0.952811456624692435D-17
-0.853186931481904511D-17
-0.764021420545247526D-17
-0.684212180419913825D-17
-0.612773261004701786D-17
-0.548823076712574962D-17
-0.491573306984866855D-17
-0.440318983170990534D-17
-0.394429634299821471D-17
-0.353341378042277636D-17
-0.316549855441008658D-17
-0.283603918926239954D-17
-0.254099992892389314D-17
-0.227677034807749533D-17

-0.5621592713D-16
-0.5029004434D-16
-0.4499167467D-16
-0.4025404859D-16
-0.3601753722D-16
-0.3222888454D-16
-0.2884052269D-16
-0.2580996118D-16
-0.2309924213D-16
-0.2067445417D-16
-0.1850529890D-16
-0.1656470394D-16
-0.1482847770D-16
-0.1327500129D-16
-0.1188495354D-16
-0.1064106557D-16
-0.9527901728D-17
-0.8531664030D-17
-0.7640017543D-17
-0.6841934515D-17
-0.6127555180D-17
-0.5488063463D-17
-0.4915575981D-17
-0.4403042901D-17
-0.3944159397D-17
-0.3533286556D-17
-0.3165380719D-17
-0.2835930358D-17
-0.2540899681D-17
-0.2276678237D-17



245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

-0.204012032961281831D-17
-0.182815981324018271D-17
-0.163830285488423363D-17
-0.146823547510638896D-17
-0.131588693415821991D-17
-0.117940405284387838D-17
-0.105712825669273132D-17
-0.947575053246663351D-18
-0.849415683346044620D-18
-0.761460715031564318D-18
-0.682645373428329920D-18
-0.612016422066691860D-18
-0.548720430808897222D-18
-0.491993283148337312D-18
-0.441150791357398757D-18
-0.395580301984502117D-18
-0.354733186722453395D-18
-0.318118124850684875D-18
-0.285295093437718332D-18
-0.255869990406007555D-18
-0.229489823524038740D-18
-0.205838405502601643D-18
-0.184632501724841505D-18
-0.165618382814548771D-18
-0.148568739316836007D-18
-0.133279920294746704D-18
-0.119569461692308411D-18
-0.107273873930721426D-18
-0.962466614358466193D-19
-0.863565496830489279D-19
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-0.204012032584728151D-17
-0.182815980853597908D-17
-0.163830284949911013D-17
-0.146823546926111214D-17
-0.131588692803964112D-17
-0.117940404660805181D-17
-0.105712825046801059D-17
-0.947575047136718072D-18
-0.849415677432752559D-18
-0.761460709377746486D-18
-0.682645368080306033D-18
-0.612016417056642023D-18
-0.548720426157022580D-18
-0.491993278864818030D-18
-0.441150787444152142D-18
-0.395580298436747147D-18
-0.354733183530090505D-18
-0.318118121999501736D-18
-0.285295090910433590D-18
-0.255869988183165257D-18
-0.229489821584766483D-18
-0.205838403825245505D-18
-0.184632500287490522D-18
-0.165618381595461272D-18
-0.148568738294779489D-18
-0.133279919449262235D-18
-0.119569461003909712D-18
-0.107273873381038015D-18
-0.962466610077195075D-19
-0.863565493605865664D-19

-0.2040035893D-17
-0.1828082589D-17
-0.1638232381D-17
-0.1468171296D-17
-0.1315828605D-17
-0.1179351144D-17
-0.1057080356D-17
-0.9475317669D-18
-0.8493766383D-18
-0.7614255588D-18
-0.6826137747D-18
-0.6119880706D-18
-0.5486950373D-18
-0.4919705785D-18
-0.4411305261D-18
-0.3955622457D-18
-0.3547171270D-18
-0.3181038664D-18
-0.2852824572D-18
-0.2558588125D-18
-0.2294799543D-18
-0.2058297087D-18
-0.1846248533D-18
-0.1656116705D-18
-0.1485628611D-18
-0.1332747842D-18
-0.1195649847D-18
-0.1072699811D-18
-0.9624328557D-19
-0.8635363038D-19



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

-0.774858979264746471D-19
-0.695292780867566878D-19
-0.623922023332020808D-19
-0.559899837398328512D-19
-0.502467160425388421D-19
-0.450943599978758845D-19
-0.404719251612932998D-19
-0.363247370804009783D-19
-0.326037809521133659D-19
-0.292651137343767935D-19
-0.262693375455249603D-19
-0.235811279376801664D-19
-0.211688113044633918D-19
-0.190039862860268586D-19
-0.170611845736123393D-19
-0.153175669981991446D-19
-0.137526512193530972D-19
-0.123480677164978466D-19
-0.110873411303071980D-19
-0.995569431105600041D-20
-0.893987270740594633D-20
-0.802798697667253635D-20
-0.720937191918774898D-20
-0.647446003768186282D-20
-0.581466820010916005D-20
-0.522229604322809668D-20
-0.469043489647720254D-20
-0.421288613301641380D-20
-0.378408796879740891D-20
-0.339904983258786821D-20
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-0.774858976950759938D-19
-0.695292779331074919D-19
-0.623922022452497512D-19
-0.559899837067445887D-19
-0.502467160546470817D-19
-0.450943600466145120D-19
-0.404719252391275815D-19
-0.363247371807536650D-19
-0.326037810692890116D-19
-0.292651138634859501D-19
-0.262693376824095815D-19
-0.235811280788412671D-19
-0.211688114469917588D-19
-0.190039864275373968D-19
-0.170611847121824587D-19
-0.153175671323114394D-19
-0.137526513478424463D-19
-0.123480678385029599D-19
-0.110873412452265532D-19
-0.995569441850804854D-20
-0.893987280719341637D-20
-0.802798706875063165D-20
-0.720937200363600349D-20
-0.647446011467940856D-20
-0.581466826991314842D-20
-0.522229610615501405D-20
-0.469043495288682264D-20
-0.421288618329813641D-20
-0.378408801335874338D-20
-0.339904987184483234D-20

-0.7748338107D-19
-0.6952711529D-19
-0.6239035038D-19
-0.5598840411D-19
-0.5024537447D-19
-0.4509322603D-19
-0.4047097181D-19
-0.3632394045D-19
-0.3260311994D-19
-0.2926456972D-19
-0.2626889416D-19
-0.2358077079D-19
-0.2116852779D-19
-0.1900376539D-19
-0.1706101666D-19
-0.1531744371D-19
-0.1375256528D-19
-0.1234801283D-19
-0.1108731187D-19
-0.9955685996D-20
-0.8939881327D-20
-0.8028009102D-20
-0.7209404633D-20
-0.6474500866D-20
-0.5814715059D-20
-0.5222347183D-20
-0.4690488862D-20
-0.4212941719D-20
-0.3784144188D-20
-0.3399105885D-20



305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

-0.305329352125742726D-20
-0.274280043645912472D-20
-0.246396427211272852D-20
-0.221354858771305228D-20
-0.198864876125026296D-20
-0.178665786815867689D-20
-0.160523607984846469D-20
-0.144228321759622708D-20
-0.129591413539026555D-20
-0.116443663920516170D-20
-0.104633168053021233D-20
-0.940235589166276469D-21
-0.844924134665887862D-21
-0.759298227617642711D-21
-0.682371091532467152D-21
-0.613256753613253585D-21
-0.551159718392567828D-21
-0.495365702295508284D-21
-0.445233319796312940D-21
-0.400186623140149168D-21
-0.359708407731960466D-21
-0.323334204374316368D-21
-0.290646887675200951D-21
-0.261271837242454243D-21
-0.234872594821806637D-21
-0.211146966398630907D-21
-0.189823523540004127D-21
-0.170658462966416586D-21
-0.153432787567916981D-21
-0.137949775868196097D-21
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-0.305329355562664532D-20
-0.274280046635142272D-20
-0.246396429792803974D-20
-0.221354860983646128D-20
-0.198864878004903121D-20
-0.178665788398010778D-20
-0.160523609301848008D-20
-0.144228322841854061D-20
-0.129591414414605101D-20
-0.116443664615312651D-20
-0.104633168590699703D-20
-0.940235593187111645D-21
-0.844924137525448866D-21
-0.759298229491051071D-21
-0.682371092576395227D-21
-0.613256753967095734D-21
-0.551159718179647482D-21
-0.495365701624295636D-21
-0.445233318761632738D-21
-0.400186621824362173D-21
-0.359708406206105751D-21
-0.323334202699204703D-21
-0.290646885902452156D-21
-0.261271835415473626D-21
-0.234872592976697516D-21
-0.211146964565041754D-21
-0.189823521741910173D-21
-0.170658461222836728D-21
-0.153432785893567683D-21
-0.137949774274084572D-21

-0.3053348764D-20
-0.2742854365D-20
-0.2464016496D-20
-0.2213598813D-20
-0.1988696777D-20
-0.1786703531D-20
-0.1605279303D-20
-0.1442323961D-20
-0.1295952397D-20
-0.1164472446D-20
-0.1046365085D-20
-0.9402666621D-21
-0.8449529608D-21
-0.7593249020D-21
-0.6823957166D-21
-0.6132794363D-21
-0.5511805679D-21
-0.4953848284D-21
-0.4452508314D-21
-0.4002026273D-21
-0.3597230084D-21
-0.3233475019D-21
-0.2906589785D-21
-0.2612828133D-21
-0.2348825433D-21
-0.2111559697D-21
-0.1898316592D-21
-0.1706658038D-21
-0.1534394015D-21
-0.1379557263D-21



335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

-0.124032710337375098D-21
-0.111522838000657080D-21
-0.100277539521878386D-21
-0.901686853909359342D-22
-0.810811600412595537D-22
-0.729115366941023172D-22
-0.655668874938792387D-22
-0.589637150841040322D-22
-0.530269931954838028D-22
-0.476893050933084522D-22
-0.428900698755415156D-22
-0.385748476395407823D-22
-0.346947154562644382D-22
-0.312057069170470655D-22
-0.280683087593272747D-22
-0.252470087428319612D-22
-0.227098895445223566D-22
-0.204282639761235838D-22
-0.183763473086041915D-22
-0.165309629192048681D-22
-0.148712778636114457D-22
-0.133785653231776576D-22
-0.120359911888094893D-22
-0.108284223228858654D-22
-0.974225429169286950D-23
-0.876525658623529429D-23
-0.788643355160120435D-23
-0.709589942666145851D-23
-0.638476605891189502D-23
-0.574504200561750665D-23

62

-0.124032708831334558D-21
-0.111522836587827176D-21
-0.100277538205134174D-21
-0.901686841712688436D-22
-0.810811589181138824D-22
-0.729115356656707699D-22
-0.655668865573609553D-22
-0.589637142359284549D-22
-0.530269924315035958D-22
-0.476893044089645292D-22
-0.428900692660030606D-22
-0.385748470998229650D-22
-0.346947149813263372D-22
-0.312057065018721255D-22
-0.280683083989884328D-22
-0.252470084325433986D-22
-0.227098892796796507D-22
-0.204282637523338693D-22
-0.183763471217077773D-22
-0.165309627652896063D-22
-0.148712777390210065D-22
-0.133785652245147349D-22
-0.120359911129348395D-22
-0.108284222669139697D-22
-0.974225425298491221D-23
-0.876525656239005356D-23
-0.788643354044437151D-23
-0.709589942623382596D-23
-0.638476606745678649D-23
-0.574504202156776360D-23

-0.1240380561D-21
-0.1115276336D-21
-0.1002818354D-21
-0.9017252806D-22
-0.8108459233D-22
-0.7291459792D-22
-0.6556961370D-22
-0.5896613926D-22
-0.5302914547D-22
-0.4769121294D-22
-0.4289175829D-22
-0.3857633936D-22
-0.3469603110D-22
-0.3120686518D-22
-0.2806932654D-22
-0.2524790131D-22
-0.2271067068D-22
-0.2042894609D-22
-0.1837694156D-22
-0.1653147934D-22
-0.1487172545D-22
-0.1337895213D-22
-0.1203632442D-22
-0.1082870842D-22
-0.9742498999D-23
-0.8765465015D-23
-0.7886610250D-23
-0.7096048434D-23
-0.6384890957D-23
-0.5745145965D-23



365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

-0.516954186380561771D-23
-0.465180478961310088D-23
-0.418602127339754508D-23
-0.376696733210901822D-23
-0.338994536579576336D-23
-0.305073100177809835D-23
-0.274552531886213344D-23
-0.247091190577926703D-23
-0.222381826354720356D-23
-0.200148111129819262D-23
-0.180141519988893296D-23
-0.162138527781341899D-23
-0.145938089005101109D-23
-0.131359372291551757D-23
-0.118239723710257215D-23
-0.106432835729912349D-23
-0.958071010222970597D-24
-0.862441324073573526D-24
-0.776374321341657939D-24
-0.698911953963297284D-24
-0.629192345110709132D-24
-0.566440115663371105D-24
-0.509957685757653591D-24
-0.459117452913210688D-24
-0.413354758207576469D-24
-0.372161560931456168D-24
-0.335080750209056109D-24
-0.301701029302934111D-24
-0.271652314824316395D-24
-0.244601598912195492D-24
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-0.516954188577040338D-23
-0.465180481636473673D-23
-0.418602130385855386D-23
-0.376696736533951236D-23
-0.338994540098128661D-23
-0.305073103821800231D-23
-0.274552535595854781D-23
-0.247091194302670345D-23
-0.222381830052281668D-23
-0.200148114765270864D-23
-0.180141523533824492D-23
-0.162138531213083906D-23
-0.145938092306016311D-23
-0.131359375448384733D-23
-0.118239726713544882D-23
-0.106432838573450269D-23
-0.958071037026587109D-24
-0.862441349234630923D-24
-0.776374344868981365D-24
-0.698911975881915925D-24
-0.629192365458835236D-24
-0.566440134489743229D-24
-0.509957703119212911D-24
-0.459117468873080452D-24
-0.413354772833316207D-24
-0.372161574293563823D-24
-0.335080762379692902D-24
-0.301701040354848654D-24
-0.271652324829946211D-24
-0.244601607942925806D-24

-0.5169627687D-23
-0.4651874949D-23
-0.4186077948D-23
-0.3767012438D-23
-0.3389980583D-23
-0.3050757802D-23
-0.2745544990D-23
-0.2470925570D-23
-0.2223826898D-23
-0.2001485562D-23
-0.1801416202D-23
-0.1621383464D-23
-0.1459376805D-23
-0.1313587833D-23
-0.1182389942D-23
-0.1064319996D-23
-0.9580618691D-24
-0.8624316452D-24
-0.7763643068D-24
-0.6989017717D-24
-0.6291821333D-24
-0.5664299870D-24
-0.5099477310D-24
-0.4591077439D-24
-0.4133453509D-24
-0.3721524975D-24
-0.3350720613D-24
-0.3016927360D-24
-0.2716444300D-24
-0.2445941287D-24



395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

-0.220249227694774095D-24
-0.198325554065106651D-24
-0.178587927043141772D-24
-0.160817983807311364D-24
-0.144819213903934453D-24
-0.130414768221157583D-24
-0.117445488081108798D-24
-0.105768132290991785D-24
-0.952537822293715084D-25
-0.857864070533990874D-25
-0.772615729190973755D-25
-0.695852817306585380D-25
-0.626729263944799677D-25
-0.564483508659969895D-25
-0.508430044571859032D-25
-0.457951809333203408D-25
-0.412493338812185791D-25
-0.371554606886481497D-25
-0.334685482454877247D-25
-0.301480741704294309D-25
-0.271575579902959773D-25
-0.244641572595086650D-25
-0.220383041112216579D-25
-0.198533781848393254D-25
-0.178854122821841090D-25
-0.161128274710904584D-25
-0.145161946848079404D-25
-0.130780201620267497D-25
-0.117825523389381381D-25
-0.106156080445190510D-25

64

-0.220249235820335339D-24
-0.198325561353093718D-24
-0.178587933558639556D-24
-0.160817989612612538D-24
-0.144819219058336810D-24
-0.130414772780829503D-24
-0.117445492099012627D-24
-0.105768135816855984D-24
-0.952537853097034625D-25
-0.857864097315314005D-25
-0.772615752352613348D-25
-0.695852837220792184D-25
-0.626729280954881566D-25
-0.564483523081537592D-25
-0.508430056694162391D-25
-0.457951819420527538D-25
-0.412493347105280995D-25
-0.371554613604005139D-25
-0.334685487794829330D-25
-0.301480745845431818D-25
-0.271575583006177669D-25
-0.244641574804755905D-25
-0.220383042557471807D-25
-0.198533782644364355D-25
-0.178854123070824953D-25
-0.161128274503474244D-25
-0.145161946264129231D-25
-0.130780200729993942D-25
-0.117825522254199636D-25
-0.106156079118588089D-25

-0.2202421727D-24
-0.1983189105D-24
-0.1785816874D-24
-0.1608121378D-24
-0.1448137490D-24
-0.1304096702D-24
-0.1174407416D-24



425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

-0.956441606588876491D-26
-0.861747634455659736D-26
-0.776443323884926034D-26
-0.699596144473891125D-26
-0.630366330845479613D-26
-0.567997639124067521D-26
-0.511809026084479565D-26
-0.461187158708281064D-26
-0.415579671125103117D-26
-0.374489094232563084D-26
-0.337467390769616742D-26
-0.304111035348823496D-26
-0.274056585008485368D-26
-0.246976691293795522D-26
-0.222576509778029381D-26
-0.200590467345312621D-26
-0.180779351524962197D-26
-0.162927689738208391D-26
-0.146841389531190324D-26
-0.132345613759381043D-26
-0.119282867290336543D-26
-0.107511274132923711D-26
-0.969030260080931423D-27
-0.873429852723258742D-27
-0.787274268112385184D-27
-0.709629050564958262D-27
-0.639652336612598048D-27
-0.576585666132891131D-27
-0.519745706843355126D-27
-0.468516801221200815D-27

65

-0.956441591872164287D-26
-0.861747618687746519D-26
-0.776443307408018777D-26
-0.699596127579120956D-26
-0.630366313778585419D-26
-0.567997622090587086D-26
-0.511809009254476936D-26
-0.461187142220638981D-26
-0.415579655091409156D-26
-0.374489078740617662D-26
-0.337467375886590416D-26
-0.304111021124090090D-26
-0.274056571476156398D-26
-0.246976678474980254D-26
-0.222576497682843640D-26
-0.200590455974658185D-26
-0.180779340872097346D-26
-0.162927679790128867D-26
-0.146841380269838684D-26
-0.132345605162701142D-26
-0.119282859333188641D-26
-0.107511266787874532D-26
-0.969030192460940828D-27
-0.873429790632914567D-27
-0.787274211245361898D-27
-0.709628998613572123D-27
-0.639652289271226288D-27
-0.576585623100781353D-27
-0.519745667826900503D-27
-0.468516765935749314D-27



455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

-0.422344253981154210D-27
-0.380728286406917572D-27
-0.343218591179741473D-27
-0.309409427961649175D-27
-0.278935205944518498D-27
-0.251466504935544585D-27
-0.226706491374018568D-27
-0.204387690017346184D-27
-0.184269075943922834D-27
-0.166133455040184026D-27
-0.149785104307832465D-27
-0.135047646179974241D-27
-0.121762133603235477D-27
-0.109785324955278322D-27
-0.989881299490508773D-28
-0.892542095495924771D-28
-0.804787146169761791D-28
-0.725671495086370989D-28
-0.654343482426783401D-28
-0.590035520558597564D-28
-0.532055782994444403D-28
-0.479780716151321832D-28
-0.432648292329553314D-28
-0.390151930431584070D-28
-0.351835018236472665D-28
-0.317285976616048709D-28
-0.286133811995560875D-28
-0.258044108690293678D-28
-0.232715417548655969D-28
-0.209876001654366552D-28

66

-0.422344222152413228D-27
-0.380728257772009022D-27
-0.343218565487956585D-27
-0.309409404974946901D-27
-0.278935185437806561D-27
-0.251466486696777741D-27
-0.226706475204144603D-27
-0.204387675730126497D-27
-0.184269063365651128D-27
-0.166133444009323640D-27
-0.149785094674590174D-27
-0.135047637805825936D-27
-0.121762126360416978D-27
-0.109785318726252644D-27
-0.989881246259615606D-28
-0.892542050337110758D-28
-0.804787108181506502D-28
-0.725671463447466745D-28
-0.654343456390994171D-28
-0.590035499449464436D-28
-0.532055766200266174D-28
-0.479780703120332489D-28
-0.432648282565312361D-28
-0.390151923488590656D-28
-0.351835013716010250D-28
-0.317285974162263437D-28
-0.286133811291773827D-28
-0.258044109455544733D-28
-0.232715419534474969D-28
-0.209876004641765866D-28



485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

-0.189280903733052163D-28
-0.170709303414566670D-28
-0.153962135660114102D-28
-0.138859944507453439D-28
-0.125240948849269496D-28
-0.112959299267293959D-28
-0.101883507023238530D-28
-0.918950281798250534D-29
-0.828869875116652237D-29
-0.747630283849140797D-29
-0.674362761531186399D-29
-0.608284038494733527D-29
-0.548687900662558208D-29
-0.494937599126870598D-29
-0.446459008437706702D-29
-0.402734459646581022D-29
-0.363297181466273773D-29
-0.327726289498336751D-29
-0.295642269417821109D-29
-0.266702905354613611D-29
-0.240599609530937022D-29
-0.217054113557553515D-29
-0.195815485704318537D-29
-0.176657441986579908D-29
-0.159375922085885416D-29
-0.143786903986124311D-29
-0.129724433785725271D-29
-0.117038849470916432D-29
-0.105595179529590210D-29
-0.952716991727682845D-30

67

-0.189280907529733455D-28
-0.170709307852333704D-28
-0.153962140592482703D-28
-0.138859949807449205D-28
-0.125240954407403551D-28
-0.112959304989706879D-28
-0.101883512830002524D-28
-0.918950340033945845D-29
-0.828869932954664017D-29
-0.747630340820634007D-29
-0.674362817252619504D-29
-0.608284092657362454D-29
-0.548687953022970445D-29
-0.494937649498469192D-29
-0.446459056683067998D-29
-0.402734505670614160D-29
-0.363297225210114153D-29
-0.327726330933909830D-29
-0.295642308543017005D-29
-0.266702942189016997D-29
-0.240599644112060667D-29
-0.217054145937527579D-29
-0.195815515946991319D-29
-0.176657470164989169D-29
-0.159375948280062638D-29
-0.143786928281197356D-29
-0.129724456270287772D-29
-0.117038870235634998D-29
-0.105595198666023055D-29
-0.952717167723712831D-30



515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

-0.859586286315344147D-30
-0.775569595300654879D-30
-0.699773967166840043D-30
-0.631394041796680878D-30
-0.569703447963925521D-30
-0.514047046754027172D-30
-0.463833937622023532D-30
-0.418531152007433370D-30
-0.377657966827342638D-30
-0.340780776839542546D-30
-0.307508470879887404D-30
-0.277488262397033453D-30
-0.250401929592032888D-30
-0.225962424872719022D-30
-0.203910817301031107D-30
-0.184013535288283294D-30
-0.166059880017531448D-30
-0.149859782978461633D-30
-0.135241783619998506D-30
-0.122051205487391608D-30
-0.110148511339367606D-30
-0.994078196600034753D-31
-0.897155667099760768D-31
-0.809692998214295383D-31
-0.730765890466825341D-31
-0.659540455385219076D-31
-0.595264361825500046D-31
-0.537258850322752980D-31
-0.484911530264493240D-31
-0.437669883055528298D-31

68

-0.859586447848327925D-30
-0.775569743259714115D-30
-0.699774102419422393D-30
-0.631394165184136442D-30
-0.569703560298058589D-30
-0.514047148814493487D-30
-0.463834030154456950D-30
-0.418531235722198223D-30
-0.377658042398819512D-30
-0.340780844905865493D-30
-0.307508532043060030D-30
-0.277488317223359865D-30
-0.250401978612807152D-30
-0.225962468585123765D-30
-0.203910856169202169D-30
-0.184013569744502934D-30
-0.166059910463517663D-30
-0.149859809786725660D-30
-0.135241807135246585D-30
-0.122051226027950654D-30
-0.110148529198617622D-30
-0.994078351078023129D-31
-0.897155799940646337D-31
-0.809693111688076559D-31
-0.730765986649477367D-31
-0.659540536171647923D-31
-0.595264428942015211D-31
-0.537258905339023995D-31
-0.484911574604965348D-31
-0.437669918010281878D-31



545
546
547
548
549
550
551
552
953
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
5973
074

-0.395035401993290571D-31
-0.356558306379719777D-31
-0.321832773533206094D-31
-0.290492637897838541D-31
-0.262207511436695079D-31
-0.236679283994757119D-31
-0.213638966373541500D-31
-0.192843842517264734D-31
-0.174074900508541755D-31
-0.157134515045659852D-31
-0.141844356755256020D-31
-0.128043506112517702D-31
-0.115586751921744918D-31
-0.104343056276624787D-31
-0.941941696929443998D-32
-0.850333817056974149D-32
-0.767643936647459925D-32
-0.693003017638194478D-32
-0.625626795105815670D-32
-0.564807499033273511D-32
-0.509906385338897911D-32
-0.460346996967477973D-32
-0.415609083603238479D-32
-0.375223115563359531D-32
-0.338765333742993246D-32
-0.305853283175997037D-32
-0.276141782910608280D-32
-0.249319289530836834D-32
-0.225104615831869266D-32
-0.203243969925824185D-32

69

-0.395035428728336612D-31
-0.356558325946730214D-31
-0.321832786878683269D-31
-0.290492645871732504D-31
-0.262207514800481138D-31
-0.236679283428988957D-31
-0.213638962484897469D-31
-0.192843835845106699D-31
-0.174074891531007132D-31
-0.157134504185308350D-31
-0.141844344384293134D-31
-0.128043492557617223D-31
-0.115586737468492732D-31
-0.104343041173606000D-31
-0.941941541554954479D-32
-0.850333659193443066D-32
-0.767643777883491839D-32
-0.693002859324451473D-32
-0.625626638381184860D-32
-0.564807344848670904D-32
-0.509906234478882016D-32
-0.460346850069837783D-32
-0.415608941176711706D-32
-0.375222978003628186D-32
-0.338765201347095035D-32
-0.305853156155282530D-32
-0.276141661402365577D-32
-0.249319173608697409D-32
-0.225104505515100986D-32
-0.203243865187610079D-32



575
576
577
578
979
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
997
598
599
600
601
602
603
604

-0.183508283452955153D-32
-0.165690800639101296D-32
-0.149604902705511403D-32
-0.135082144631580724D-32
-0.121970483521112564D-32
-0.110132679852411614D-32
-0.994448547234423117D-33
-0.897951878549314439D-33
-0.810827426042348585D-33
-0.732164055868736352D-33
-0.661139297151700699D-33
-0.597010705572704393D-33
-0.539108069066569419D-33
-0.486826373425121172D-33
-0.439619453644635070D-33
-0.396994264098348714D-33
-0.358505707152569410D-33
-0.323751965742851687D-33
-0.292370290747936039D-33
-0.264033198800086809D-33
-0.238445040502068910D-33
-0.215338902929194695D-33
-0.194473813821087487D-33
-0.175632218049421905D-33
-0.158617699818626565D-33
-0.143252926646783686D-33
-0.129377793511165653D-33
-0.116847747651757892D-33
-0.105532276429054405D-33
-0.953135423495158115D-34

70

-0.183508184227749423D-32
-0.165690706829147345D-32
-0.149604814186600236D-32
-0.135082061258122058D-32
-0.121970405130585253D-32
-0.110132606269254655D-32
-0.994447857624426411D-33
-0.897951233241600466D-33
-0.810826823075782984D-33
-0.732163493262040240D-33
-0.661138772921926820D-33
-0.597010217750846447D-33
-0.539107615710628561D-33
-0.486825952630923413D-33
-0.439619063554665413D-33
-0.396993902908842131D-33
-0.358505373119075155D-33
-0.323751657184465749D-33
-0.292370006050376667D-33
-0.264032936417769875D-33
-0.238444798959323303D-33
-0.215338680820742790D-33
-0.194473609811902021D-33
-0.175632030874058050D-33
-0.158617528280116704D-33
-0.143252769615172111D-33
-0.129377649921751167D-33
-0.116847616503103919D-33
-0.105532156780818715D-33
-0.953134333201452011D-34



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

-0.860851509215171183D-34
-0.777510384027730957D-34
-0.702244677618986375D-34
-0.634271223152786408D-34
-0.572882875278206018D-34
-0.517441123932999464D-34
-0.467369426466778606D-34
-0.422147188158109088D-34
-0.381304328013537493D-34
-0.344416372885739790D-34
-0.311100028497415121D-34
-0.281009180965795085D-34
-0.253831286942529366D-34
-0.229284114562913235D-34
-0.207112801079952285D-34
-0.187087196381423447D-34
-0.168999464586906498D-34
-0.152661918628323648D-34
-0.137905065160347370D-34
-0.124575839351844743D-34
-0.112536011099534824D-34
-0.101660746001191594D-34
-0.918373060469317530D-35
-0.829638764504417520D-35
-0.749485063628146570D-35
-0.677081524038754411D-35
-0.611678150220082303D-35
-0.552597586648730223D-35
-0.499228076202210458D-35
-0.451017101774999637D-35

71

-0.860850516858463251D-34
-0.777509481895618278D-34
-0.702243858513357438D-34
-0.634270480364781503D-34
-0.572882202563305330D-34
-0.517440515486413954D-34
-0.467368876899288822D-34
-0.422146692472470642D-34
-0.381303881581548785D-34
-0.344415971426047219D-34
-0.311099668054113410D-34
-0.281008857887864933D-34
-0.253830997864141401D-34
-0.229283856384615851D-34
-0.207112570950751176D-34
-0.187086991681752414D-34
-0.168999282912482136D-34
-0.152661757774870736D-34
-0.137904923109176999D-34
-0.124575714256263345D-34
-0.112535901272059188D-34
-0.101660649901542525D-34
-0.918372222707772527D-35
-0.829638037188592871D-35
-0.749484435124412526D-35
-0.677080983777138689D-35
-0.611677688608574227D-35
-0.552597194993509829D-35
-0.499227746633488910D-35
-0.451016827178162877D-35



635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664

-0.407465644753967580D-35
-0.368123000454007262D-35
-0.332582096436532466D-35
-0.300475264888962875D-35
-0.271470424987536515D-35
-0.245267635448556313D-35
-0.221595981339418728D-35
-0.200210762711036981D-35
-0.180890955764156991D-35
-0.163436920106602447D-35
-0.147668328226490068D-35
-0.133422295624836140D-35
-0.120551692144019209D-35
-0.108923616918193777D-35
-0.984180210777538779D-36
-0.889264638801842909D-36
-0.803509893302329057D-36
-0.726031116078427939D-36
-0.656028987558327117D-36
-0.592781451027674458D-36
-0.535636238205179629D-36
-0.484004118503375671D-36
-0.437352801845959398D-36
-0.395201431714912138D-36
-0.357115611242084153D-36
-0.322702910705266554D-36
-0.291608809795893249D-36
-0.263513032546699290D-36
-0.238126236890113636D-36
-0.215187024504496776D-36

72

-0.407465418705722259D-35
-0.368122817163236356D-35
-0.332581950689577361D-35
-0.300475151999058813D-35
-0.271470340748138949D-35
-0.245267576090306783D-35
-0.221595943490510161D-35
-0.200210743360749680D-35
-0.180890952229347980D-35
-0.163436930000942147D-35
-0.147668349432251379D-35
-0.133422326267051919D-35
-0.120551730566834746D-35
-0.108923661663251183D-35
-0.984180708644552244D-36
-0.889265175876899345D-36
-0.803510459810606146D-36
-0.726031703529420675D-36
-0.656029588610170706D-36
-0.592782059363954351D-36
-0.535636848423211735D-36
-0.484004726013011416D-36
-0.437353402778037940D-36
-0.395202022838545863D-36
-0.357116189890023627D-36
-0.322703474706647561D-36
-0.291609357415721463D-36
-0.263513562431477751D-36
-0.238126748019064542D-36
-0.215187516145872453D-36



665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

-0.194459239934017426D-36
-0.175729530973728108D-36
-0.158805145025601889D-36
-0.143511938582239419D-36
-0.129692579208203294D-36
-0.117204921387559108D-36
-0.105920539411030863D-36
-0.957234021060205018D-37
-0.865086756845780347D-37
-0.781816423135715383D-37
-0.706567232116376994D-37
-0.638565961614918139D-37
-0.577113983051258999D-37
-0.521580059735138666D-37
-0.471393841008733832D-37
-0.426039984946120192D-37
-0.385052848833109575D-37
-0.348011692532456968D-37
-0.314536345151250551D-37
-0.284283290224694280D-37
-0.256942128963328806D-37
-0.232232385024037230D-37
-0.209900617799604852D-37
-0.189717814413860097D-37
-0.171477033492670393D-37
-0.154991276385239585D-37
-0.140091563862287665D-37
-0.126625198442202558D-37
-0.114454194415184473D-37
-0.103453859368665269D-37

73

-0.194459711606035680D-36
-0.175729982409704823D-36
-0.158805576142888686D-36
-0.143512349454606709D-36
-0.129692970041339201D-36
-0.117205292497382681D-36
-0.105920891204543860D-36
-0.957237350644459391D-37
-0.865089903485557777D-37
-0.781819392702015756D-37
-0.706570030831805238D-37
-0.638568595955526056D-37
-0.577116459661651006D-37
-0.521582385355413281D-37
-0.471396022411966674D-37
-0.426042028885217047D-37
-0.385054761995970494D-37
-0.348013481504495219D-37
-0.314538016384404204D-37
-0.284284850012154031D-37
-0.256943583419283825D-37
-0.232233740067812134D-37
-0.209901879143625699D-37
-0.189718987554946274D-37
-0.171478123706202757D-37
-0.154992288721803765D-37
-0.140092503146435382D-37
-0.126626069273013608D-37
-0.114455001168347950D-37
-0.103454606199831054D-37



695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724

-0.935115125828582565D-38
-0.845253270794149851D-38
-0.764032833834982956D-38
-0.690622242133680071D-38
-0.624270003537764309D-38
-0.564296989108863179D-38
-0.510089459968083014D-38
-0.461092766600179765D-38
-0.416805655718107720D-38
-0.376775126057714836D-38
-0.340591780134646217D-38
-0.307885624110530700D-38
-0.278322272536198905D-38
-0.251599518913828823D-38
-0.227444236790722733D-38
-0.205609579503892490D-38
-0.185872449771999239D-38
-0.168031213111279349D-38
-0.151903631563632247D-38
-0.137324996494008399D-38
-0.124146441264065872D-38
-0.112233416440941774D-38
-0.101464311873042135D-38
-0.917292114762711429D-39
-0.829287679397079294D-39
-0.749731857934961114D-39
-0.677813023963747330D-39
-0.612797574073541015D-39
-0.554022422159189773D-39
-0.500888216272126676D-39

74

-0.935122034320390484D-38
-0.845259656762454531D-38
-0.764038732531816127D-38
-0.690627686831612561D-38
-0.624275025598854114D-38
-0.564301618056573185D-38
-0.510093723561196179D-38
-0.461096690907875270D-38
-0.416809265195482407D-38
-0.376778443621141535D-38
-0.340594827236455705D-38
-0.307888420812588153D-38
-0.278324837582019934D-38
-0.251601869798945494D-38
-0.227446389831067303D-38
-0.205611549902016667D-38
-0.185874251680990509D-38
-0.168032859696273810D-38
-0.151905135060856172D-38
-0.137326368267308974D-38
-0.124147691858915651D-38
-0.112234555635921916D-38
-0.101465348728826755D-38
-0.917301543821495798D-39
-0.829296246576936770D-39
-0.749739635000809025D-39
-0.677820077219940904D-39
-0.612803964736367956D-39
-0.554028206707974867D-39
-0.500893446779751240D-39



725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
47
748
749
750
751
752
753
754

-0.452853208413992954D-39
-0.409427714374786565D-39
-0.370169106781590453D-39
-0.334677290002298265D-39
-0.302590610498648526D-39
-0.273582160695319020D-39
-0.247356438472910403D-39
-0.223646328043998434D-39
-0.202210371270672150D-39
-0.182830301463082161D-39
-0.165308814392198260D-39
-0.149467553683953344D-39
-0.135145289961287590D-39
-0.122196275087939802D-39
-0.110488754663613402D-39
-0.999036235428494532D-40
-0.903332106162619438D-40
-0.816801804178131404D-40
-0.738565403191556423D-40
-0.667827431540540277D-40
-0.603868760936459485D-40
-0.546039274768601091D-40
-0.493751240987570236D-40
-0.446473321811019873D-40
-0.403725159015311065D-40
-0.365072479469282116D-40
-0.330122670891447515D-40
-0.298520782624343732D-40
-0.269945910568795482D-40
-0.244107929351236190D-40

()

-0.452857932857656699D-39
-0.409431976927852745D-39
-0.370172948087360375D-39
-0.334680747430559533D-39
-0.302593718385833870D-39
-0.273584950569100221D-39
-0.247358939262035448D-39
-0.223648566274160386D-39
-0.202212371247175978D-39
-0.182832085441051450D-39
-0.165310402735037852D-39
-0.149468965010756976D-39
-0.135146541283851805D-39
-0.122197381938017254D-39
-0.110489731211010263D-39
-0.999044827049433593D-40
-0.903339641594888396D-40
-0.816808390516437717D-40
-0.738571137830553528D-40
-0.667832402978931083D-40
-0.603873049520021170D-40
-0.546042953376298530D-40
-0.493754375664685570D-40
-0.446475972352995057D-40
-0.403727379505778812D-40
-0.365074318775548768D-40
-0.330124173120488982D-40
-0.298521987542182715D-40
-0.269946853985944757D-40
-0.244108643476718485D-40



755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
e
775
776
T
778
779
780
781
782
783
784

-0.220744538349218296D-40
-0.199618591410341919D-40
-0.180515683000949627D-40
-0.163241966142840743D-40
-0.147622179865842742D-40
-0.133497866045639435D-40
-0.120725757431753902D-40
-0.109176320419860225D-40
-0.987324377035820989D-41
-0.892882173698304749D-41
-0.807479162931780305D-41
-0.730249668519961498D-41
-0.660410970440465860D-41
-0.597255350327297030D-41
-0.540142900170081499D-41
-0.488495020969726700D-41
-0.441788545110694332D-41
-0.399550422573719237D-41
-0.361352916864672962D-41
-0.326809261734225351D-41
-0.295569734462184288D-41
-0.267318105727960429D-41
-0.241768429927951005D-41
-0.218662143271024052D-41
-0.197765440120193055D-41
-0.178866900884068606D-41
-0.161775347324739486D-41
-0.146317903465563182D-41
-0.132338242376607811D-41
-0.119695001008578958D-41

76

-0.220745052115508162D-40
-0.199618930771418731D-40
-0.180515871205503132D-40
-0.163242023984531265D-40
-0.147622125912386789D-40
-0.133497716848367879D-40
-0.120725527717173707D-40
-0.109176023264641618D-40
-0.987320846942907510D-41
-0.892878187486284099D-41
-0.807474810906272493D-41
-0.730245030080150714D-41
-0.660406115179910329D-41
-0.597250339034970179D-41
-0.540137785739948278D-41
-0.488489849226523436D-41
-0.441783355558988960D-41
-0.399545249076778528D-41
-0.361347788259151974D-41
-0.326804202386219380D-41
-0.295564764769742864D-41
-0.267313242574754168D-41
-0.241763687092403391D-41
-0.218657531794869505D-41
-0.197760968640098079D-41
-0.178862575929652726D-41
-0.161771173586055320D-41
-0.146313884032838895D-41
-0.132334378954818821D-41
-0.119691294109197784D-41



785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

-0.108260346957323169D-41
-0.979186825879017472D-42
-0.885654733455701890D-42
-0.801061883450569884D-42
-0.724553424722145133D-42
-0.655356302650772867D-42
-0.592771427751509623D-42
-0.536166594538966106D-42
-0.484970078724817361D-42
-0.438664847727258820D-42
-0.396783325708106879D-42
-0.358902659991114720D-42
-0.324640440811882511D-42
-0.293650830957445363D-42
-0.265621066019189243D-42
-0.240268289748627770D-42
-0.217336692410146152D-42
-0.196594923102769835D-42
-0.177833749805700175D-42
-0.160863943418120579D-42
-0.145514364338234865D-42
-0.131630232182814886D-42
-0.119071561107642215D-42
-0.107711744870054005D-42
-0.974362772944535695D-43
-0.881415951755868770D-43
-0.797340318965970362D-43
-0.721288711619879602D-43
-0.652494912610803857D-43
-0.590265911956562874D-43

7

-0.108256796069395396D-41
-0.979152863304109985D-42
-0.885622296028846808D-42
-0.801030943870935218D-42
-0.724523950608116985D-42
-0.655328257479374507D-42
-0.592744771685886658D-42
-0.536141285155202029D-42
-0.484946071648321299D-42
-0.438642097188030376D-42
-0.396761785023324883D-42
-0.358882281982711430D-42
-0.324621178166046560D-42
-0.293632636532340324D-42
-0.265603893106575048D-42
-0.240252092294524992D-42
-0.217321425199183929D-42
-0.196580541910403246D-42
-0.177820211522068440D-42
-0.160851206146940248D-42
-0.145502387473779136D-42
-0.131618976467718396D-42
-0.119060988673987571D-42
-0.107701819265939432D-42
-0.974269634980081850D-43
-0.881328595981891466D-43
-0.797258423768610694D-43
-0.721211969519096773D-43
-0.652423030055796659D-43
-0.590198609066104867D-43



815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844

-0.533974908355980722D-43
-0.483054980168772830D-43
-0.436993361748642974D-43
-0.395326267195138412D-43
-0.357634209137672595D-43
-0.323537765181392200D-43
-0.292693749180207559D-43
-0.264791748603401835D-43
-0.239550992970442882D-43
-0.216717521681604886D-43
-0.196061622603814266D-43
-0.177375515512549647D-43
-0.160471256969480523D-43
-0.145178845456985734D-43
-0.131344507617500575D-43
-0.118829148278368224D-43
-0.107506948600113181D-43
-0.972640981846245005D-44
-0.879976483348361367D-44
-0.796144748828644875D-44
-0.720303401116359313D-44
-0.651690442970451575D-44
-0.589616583037870704D-44
-0.533458294873860392D-44
-0.482651538959111355D-44
-0.436686084349237829D-44
-0.395100372651445073D-44
-0.357476872502872402D-44
-0.323437877680437998D-44
-0.292641706453268528D-44

78

-0.533911918613354469D-43
-0.482996050079846127D-43
-0.436938250470602406D-43
-0.395274746142472291D-43
-0.357586061571166823D-43
-0.323492785785160119D-43
-0.292651743631110384D-43
-0.264752533136622447D-43
-0.239514393944446000D-43
-0.216683375145244715D-43
-0.196029773867931129D-43
-0.177345818728024773D-43
-0.160443574713388404D-43
-0.145153048328192103D-43
-0.131320473842797265D-43
-0.118806763330010411D-43
-0.107486104825426660D-43
-0.972446944481778499D-44
-0.879795896735221440D-44
-0.795976721741048847D-44
-0.720147097548109694D-44
-0.651545079081530434D-44
-0.589481424232559668D-44
-0.533332653008916419D-44
-0.482534769679943409D-44
-0.436577584551543734D-44
-0.394999578065369353D-44
-0.357383255396424570D-44
-0.323350944678656980D-44
-0.292560996469424462D-44



845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

-0.264779263841351937D-44
-0.239570932108941692D-44
-0.216763758135571105D-44
-0.196128909304859093D-44
-0.177459372261942717D-44
-0.160567871341790569D-44
-0.145284985687641249D-44
-0.131457446083804171D-44
-0.118946594340339620D-44
-0.107626989707043195D-44
-0.973851482772826019D-45
-0.881184026835704397D-45
-0.797338705998680564D-45
-0.721475216627671411D-45
-0.652833334159784729D-45
-0.590725277800004720D-45
-0.534528803605136259D-45
-0.483680956431522985D-45
-0.437672417862599256D-45
-0.396042393237445868D-45
-0.358373986332851454D-45
-0.324290015163790145D-45
-0.293449226810318893D-45
-0.265542873197536830D-45
-0.240291613390005845D-45
-0.217442711249597163D-45
-0.196767500279285376D-45
-0.178059090164968276D-45
-0.161130291960087398D-45
-0.145811741058205034D-45

79

-0.264704346116333780D-44
-0.239501404354881246D-44
-0.216699244779695154D-44
-0.196069059829535970D-44
-0.177403859636892954D-44
-0.160516390544459103D-44
-0.145237252307777123D-44
-0.131413195008359476D-44
-0.118905578514879536D-44
-0.107588978969950861D-44
-0.973499282631437699D-45
-0.880857737922315787D-45
-0.797036470277757836D-45
-0.721195304933152547D-45
-0.652574137657099256D-45
-0.590485299976342964D-45
-0.534306652758900730D-45
-0.483475338633124253D-45
-0.437482130359978522D-45
-0.395866318280910206D-45
-0.358211085394990275D-45
-0.324139323531398708D-45
-0.293309848526383045D-45
-0.265413976332430097D-45
-0.240172425622113136D-45
-0.217332515736607254D-45
-0.196665631802385800D-45
-0.177964931529130480D-45
-0.161043270634546677D-45
-0.145731326042118673D-45



875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

-0.131950199088956464D-45
-0.119407017673016912D-45
-0.108056748600057641D-45
-0.977858864665355609D-46
-0.884917311424168292D-46
-0.800813586410089218D-46
-0.724706900561154655D-46
-0.655836492167207610D-46
-0.593514006012933662D-46
-0.537116598605578406D-46
-0.486080700273494304D-46
-0.439896371522901302D-46
-0.398102197011557738D-46
-0.360280665899569098D-46
-0.326053992223709848D-46
-0.295080333361599360D-46
-0.267050368650358698D-46
-0.241684203841232058D-46
-0.218728570343492107D-46
-0.197954291170692367D-46
-0.179153988179767731D-46
-0.162140007615557296D-46
-0.146742543164400783D-46
-0.132807937702582953D-46
-0.120197146718507180D-46
-0.108784348009604045D-46
-0.984556837224359837D-47
-0.891081221320002484D-47
-0.806484277572067075D-47
-0.729922294959874897D-47

80

-0.131875897988064877D-45
-0.119338373973936667D-45
-0.107993339129602709D-45
-0.977273190241945305D-46
-0.884376422948100459D-46
-0.800314116678114344D-46
-0.724245730375602619D-46
-0.655410732533931196D-46
-0.593120981574923165D-46
-0.536753832230358467D-46
-0.485745898717476286D-46
-0.439587412100649200D-46
-0.397817115202444363D-46
-0.360017643828563599D-46
-0.325811347957058922D-46
-0.294856510961953886D-46
-0.266843928939466071D-46
-0.241493815821672878D-46
-0.218553003234098479D-46
-0.197792407013254131D-46
-0.179004734977422155D-46
-0.162002412965876638D-46
-0.146615708352649790D-46
-0.132691032222923527D-46
-0.120089403193088566D-46
-0.108685057477501978D-46
-0.983641912723010099D-47
-0.890238228540512477D-47
-0.805707629918674869D-47
-0.729206833580188809D-47



905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

-0.660631774464030302D-47
-0.597921799693223429D-47
-0.541167133527102585D-47
-0.489801971653341472D-47
-0.443314290461192441D-47
-0.401240732710493824D-47
-0.363161979784119608D-47
-0.328698564207347319D-47
-0.297507080528536053D-47
-0.269276756646141390D-47
-0.243726351277513450D-47
-0.220601346531372665D-47
-0.199671407501122571D-47
-0.180728083469900495D-47
-0.163582727737317415D-47
-0.148064615266470847D-47
-0.134019239329987930D-47
-0.121306770125435159D-47
-0.109800659951387229D-47
-0.993863810020379982D-48
-0.899602831651694476D-48
-0.814285604088753135D-48
-0.737063154287023364D-48
-0.667167132097137036D-48
-0.603902150472483972D-48
-0.546638853747598739D-48
-0.494807644751314608D-48
-0.447893008105792910D-48
-0.405428373022665731D-48
-0.366991464300366564D-48

81

-0.659972736048365476D-47
-0.597314786648601699D-47
-0.540608086355258499D-47
-0.489287143373934965D-47
-0.442840222932499859D-47
-0.400804234710182600D-47
-0.362760106722353635D-47
-0.328328599353463525D-47
-0.297166517640918608D-47
-0.268963283902737202D-47
-0.243437836411717341D-47
-0.220335823084797278D-47
-0.199427062111088831D-47
-0.180503244115369693D-47
-0.163375852872464245D-47
-0.147874283776194769D-47
-0.133844141246403260D-47
-0.121145698048791849D-47
-0.109652501122976605D-47
-0.992501099804515181D-48
-0.898349550608232272D-48
-0.813133046350070620D-48
-0.736003299301074146D-48
-0.666192591333292886D-48
-0.603006118213341122D-48
-0.545815061658736921D-48
-0.494050319943742677D-48
-0.447196834426923785D-48
-0.404788455331249345D-48
-0.366403295498978782D-48



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964

-0.332200095106289410D-48
-0.300708359542587157D-48
-0.272203186989413692D-48
-0.246401223834237431D-48
-0.223046011466702150D-48
-0.201905432378131546D-48
-0.182769398882795269D-48
-0.165447761401282498D-48
-0.149768415439017799D-48
-0.135575588377046542D-48
-0.122728288987567435D-48
-0.111098904211260898D-48
-0.100571929203507061D-48
-0.910428179868111512D-49
-0.824169432504623536D-49
-0.746086549276832347D-49
-0.675404281661729250D-49
-0.611420921998640295D-49
-0.553501324368179531D-49
-0.501070588085445997D-49
-0.453608340869507828D-49
-0.410643564732029363D-49
-0.371749913040109076D-49
-0.336541472106090150D-49
-0.304668925089217672D-49
-0.275816080004826269D-49
-0.249696727266315867D-49
-0.226051795469765164D-49
-0.204646777103447374D-49
-0.185269398554434630D-49
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-0.331659525721826730D-48
-0.300211569660844017D-48
-0.271746660364307656D-48
-0.245981724005678029D-48
-0.222660559733546577D-48
-0.201551287484204881D-48
-0.182444038284639352D-48
-0.165148863996196801D-48
-0.149493845641124060D-48
-0.135323381437599079D-48
-0.122496637463591874D-48
-0.110886145493881064D-48
-0.100376534024055197D-48
-0.908633798250499376D-49
-0.822521685750148329D-49
-0.744573542041027834D-49
-0.674015075730213997D-49
-0.610145459977314770D-49
-0.552330359394390770D-49
-0.499995619090707966D-49
-0.452621552960454957D-49
-0.409737774289641059D-49
-0.370918517168076620D-49
-0.335778402087691890D-49
-0.303968603538397797D-49
-0.275173381421498203D-49
-0.249106941728382961D-49
-0.225510595215107742D-49
-0.204150185774294804D-49
-0.184813762894243127D-49



965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994

-0.167727511218766214D-49
-0.151847182724616489D-49
-0.137470969271523935D-49
-0.124456351892934246D-49
-0.112674321082076133D-49
-0.102008095698823944D-49
-0.923519634124521057D-50
-0.836102311453962690D-50
-0.756962750783794487D-50
-0.685316807684647961D-50
-0.620454648286475062D-50
-0.561733704294440678D-50
-0.508572296176743954D-50
-0.460443861125882912D-50
-0.416871728412926237D-50
-0.377424390200897030D-50
-0.341711220812703895D-50
-0.309378601910311641D-50
-0.280106415079493750D-50
-0.253604866968791910D-50
-0.229611615438640351D-50
-0.207889168169949717D-50
-0.188222527890610414D-50
-0.170417060830358369D-50
-0.154296567233672132D-50
-0.139701534768943538D-50
-0.126487557490089035D-50
-0.114523904652148961D-50
-0.103692225171641384D-50
-0.938853748703230965D-51

83

-0.167309475028067954D-49
-0.151463662897395558D-49
-0.137119133747604429D-49
-0.124133599374723148D-49
-0.112378262375869691D-49
-0.101736536551836321D-49
-0.921028887268286892D-50
-0.833817904597956239D-50
-0.754867692163070480D-50
-0.683395495604735672D-50
-0.618692758228358448D-50
-0.560118085114285053D-50
-0.507090874674351851D-50
-0.459085554313221455D-50
-0.415626362866949893D-50
-0.376282627933637810D-50
-0.340664491136534627D-50
-0.308419038817701333D-50
-0.279226799694739405D-50
-0.252798574664379916D-50
-0.228872567241294948D-50
-0.207211786111280614D-50
-0.187601693984774491D-50
-0.169848079386484519D-50
-0.153775130234132615D-50
-0.139223690066045696D-50
-0.126049679593551781D-50
-0.114122667897952062D-50
-0.103324579079614789D-50
-0.935485215132915766D-51



995 -0.850063548609818248D-51
996 -0.769673505380852079D-51
997 -0.696888616355341918D-51
998 -0.630989147183583381D-51
999 -0.571323502939502490D-51
1000 -0.517301774695132233D-51

84

-0.846977280825014938D-51
-0.766845968688992902D-51
-0.694298227709246865D-51
-0.628616114296598897D-51
-0.569149676576982070D-51
-0.515310513070892705D-51



We applied Neville-Richardson Extrapolation to the ratios r, of the PYC5TGC68
and PYS5TGC68 coefficients in table 4.8 and performed linear least squares fits
to the resulting series as was described in section 4.1. The r, agreed with
Baker’s to 5 decimal digits, the s,, to 4 decimal digits and the ¢,, to 3-4 decimal
digits for all n up to n ~ 400. A simple calculation can be done to estimate
the precision of the Neville-Richardson extrapolations. For example, at 100th
order we know the PYC5TGC68 FE,, are accurate to 8 decimal digits from the

comparison with the stability check PYS5TGCG68 coefficients. This means

Ei91  —0.350594231 x 1010
Fioo  —0.397753186 x 10—10

where the underline denotes the last significant digit of a number. So the r, are

= 0.881436638 (4.26)
accurate to 8 decimal digits at 100th order. Now the s, and t,, are calculated

s100 = (101)7101 — (100)7100
=101 x 0.881668476 — 100 x 0.881436638
= 89.048516076 — 88.143663800

= 0.904852276

1
thO = 2[(100 + 5)7‘101 - (100)7“100]
= 2[100.5 x 0.881668476 — 100 x 0.881436638|
= 2[88.607681838 — 88.143663800]

= (0.928036076

Lastly the v,, are calculated

V100 — (102)t101 — (101)t100
=102 x 0.9278726 — (101) x 0.9280361
= 94.6430052 — 93.7316461

=0.9113591 (4.27)
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Table 4.9: Accuracy of the series coefficients

Order | E,, | 7 | Sn | tn | Un
100 8 8 |6 |6 |4
200 8 8§ |6 |6 |3
300 7 7T 15 |5 |2
400 7 7T 14 |4 |1
600 6 6 |2 |2 ]0
800 4 4 11 |10
1000 |1 1 /10 |0 |O

So the 100th order E, are accurate to 8 decimal digits, the r, to 8 decimal
digits, the s,, and t,, to 6 decimal digits and the v, to 4 decimal digits. Table
4.9 shows the estimated accuracy of the coeflicients of each of these series for a
range of different orders.

Figures 4.1 - 4.13 are plots of the coeflicients of the various Neville-Richardson
extrapolations and their least squares fits. FEach of the series began at 100th
order because only the asymptotic behaviour of the 1/Z expansion was of in-
terest in this work. Multiple different ranges of coefficients (e.g. n = 100 to
n = 400) were analyzed for each series in order to estimate the uncertainty in
the resulting A\*. In order to have A* accurate to 4 decimal digits, the coeffi-
cients in the series must be accurate to about 4 decimal digits and so naturally
the coeflicient ranges n = 100 to 300, n = 100 to 400 and n = 100 to 500 were
analyzed for the s, and t,, series. Figures 4.1, 4.3, 4.7 and 4.11 display all of the
coefficients in the series 7, s, t, respectively which contain at least 1 significant
figure. The values of the parameters used in the fits are displayed below each
of the figures and the radius of convergence of the 1/Z expansion is estimated
by A* = 1/a. Only every 10th series coefficient was plotted in order to allow
the fit lines to be clearly visible. All of the uncertainties recorded below are
only from the least squares fitting procedure. The largest source of error comes

from the assumption that the true asymptotic behaviour of each of the series is
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fully revealed within the range of terms that were analyzed and thus that the
fit lines can be trusted as n — oo. There is no estimate to this error and so the
uncertainties displayed below serve only as a testament to how well the fit lines

agree with the data.

Figure 4.1: Least squares fit to the ratios from n = 100 to 999

PYC5TGC68 rn n=100-400

0.915 ‘
rn +
0.91 a+b/n~(1/2)+c/n
0.905 - _
0.9 + ‘% |
c .
fus 4}:}2
0.895 F+++ i
o
s
0.89 - . . ]
+
0.885 - =+ _
+
0.88 | | | | -1
0 0.002 0.004 0.006 0.008 0.01
1/n

The key in the top right corner of the graph shows the fit function that was used to

fit the coefficients. For this graph and those that follow, the intersection of the fit line
1

A

and the y-axis yields an estimate to Z* =

a=0911213+2x107% = \* =1.097438 +2 x 10~
b= —0.12862+6 x 107°

¢ = —1.6898 £ 0.0005
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rn

Figure 4.2: Least squares fit to the ratios from n = 100 to 400

PYC5TGC68 rn
0.915 \

rn

0.91 ~ a+b/n™(1/2)+c/n

0.905 |-

0.9 -

0.895 -
0.89 - R,

0.885 |- =+

0.88 | | | |

+

0 0.002 0.004 0.006 0.008
1/n

a=00911076+1x107% = X\ =1.097603+1 x 1076
b=—-0.12456 + 3 x 107°

c= —1.7183 £ 0.0002
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0.91

0.909
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0.907

0.906

0.905

0.904

Figure 4.3: Least squares fit to the s, from n = 100 to 800

PYC5TGC68 sn

T T
sn

L a+b/n™(1/2)+c/n™(3/2)

0 0.02 0.04 0.06 0.08
1/n"~(1/2)

a=0.911389+4x107% = X\ =1.097226+5 x 1076
b= —0.06890 £ 0.0001

¢ = 0.407 £ 0.008
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sn

0.912
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0.91
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0.908

0.907

0.906

0.905

0.904

Figure 4.4: Least squares fit to the s, from n = 100 to 300

PYC5TGC68 sn n=100-300

| | sn +
L a+b/n™(1/2)+c/n™(3/2) _
Jr
. +++++ ]
+
L - “+ |
1 1 1 1
0 0.02 0.04 0.06 0.08
1/n"~(1/2)

a=0.911030+6x 107 = X\ =1.097659+7 x 1076
b= —0.0614 + 0.0001

¢ = —0.024 £ 0.007
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0.912

0.911
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0.905

0.904

Figure 4.5: Least squares fit to the s, from n = 100 to 400

PYC5TGC68 sn n=100-400

I I
sn +

= a+b/n™(1/2)+c/n™(3/2) _

7 %+++ |
e

L T ++ |

+
+
1 1 1 1
0 0.02 0.04 0.06 0.08

1/n"~(1/2)

a=0911156+6 x 107 = X\ =1.097506+ 7 x 1076
b= —0.0638 + 0.0001

¢ = 0.104 £ 0.007
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Figure 4.6: Least squares fit to the s, from n = 100 to 500

PYC5TGC68 sn n=100-500

I I
sn +
L a+b/n™(1/2)+c/n™(3/2) _
7 M+++ |
L ‘++ _
Tt
+
1 1 1 1
0 0.02 0.04 0.06 0.08

1/n"~(1/2)

a=0911243+5x 107% = X\ =1.097402+6 x 1076
b= —0.0657 + 0.0001

¢ = 0.205 %+ 0.008
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Figure 4.7: Least squares fit to the ¢, from n = 100 to 800

PYC5TGC68 tn

0 0.002 0.004 0.006 0.008
1/n

a=0911248+3x 107% = X\ =1.097396 +4 x 1076

b =1.6746 + 0.0007
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Figure 4.8: Least squares fit to the ¢, from n = 100 to 300

PYC5TGC68 tn n=100-300
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+
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A
4 o
| \++++ |
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0 0.002 0.004 0.006 0.008

1/n

a=0911130+2x107% = X\ =1.097538 +2 x 1076

b =1.6951 + 0.0004
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Figure 4.9: Least squares fit to the t,, from n = 100 to 400

PYC5TGC68 tn n=100-400
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L . |
L e |
+
A=
L + |
A
L L |
+
et
| \j‘—++++ |
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1/n

a=0911143+2x107% = X\ =1.097522+2 x 1076

b =1.6932 £+ 0.0003
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Figure 4.10: Least squares fit to the ¢, from n = 100 to 500

PYC5TGC68 tn n=100-500
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b =1.6889 %+ 0.0004
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Figure 4.11: Least squares fit to the v, from n = 100 to 400

PYC5TGC68 vn
0.91135
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0.91105 |- + + -
+4 4+

0.911 ‘ ‘ ‘ ‘
0 0.002 0.004 0.006 0.008 0.01

The fits for this range of coefficients were not consistent and so there is no fit line
plotted in the above image. The fits tended to be more unreliable for the v, series
because it has many less significant figures and spans a much smaller range of values

than the s, and ¢, series.
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Figure 4.12: Least squares fit to the v, from n = 100 to 150
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Figure 4.13: The v, from n = 100 to 200

PYC5TGC68 vn n=100-200

vn  +
a+b/n™(3/2)+c/n"2

0.002 0.004 0.006
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b=-29=£0.1

c=29+1

0.01

It is interesting to compare the values of fit parameter b for the above r, and

sy, plots to the value of b found by Baker et al. in reference [1]. Their estimated

value is b = —0.124 and they state that the true value of b might be exactly

7% but the accuracy of their fits did not allow them to say for certain if this

was the case. The fit of r,, from n = 100 to 400 in figure 4.2 resulted in b =

—0.124 5643 x 10~5 which on its own would seem to be conclusive evidence that

b # fé. However, using different ranges of n in the fitting procedure resulted in

many estimates for b which all varied from each other by an appreciable amount.

Although each of the best fit lines fit the respective data sets very well, the

values for the fitting parameters had significant differences. For instance, the
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value for b in the range n = 100 to 999 from figure 4.1is b = —0.128 6246 x 107°.
This is close to the value b = —0.12456 +3 x 10~ from r,, in the range n = 100
to 400 yet these two values are in disagreement. It does make sense that this
value for b could differ from the b found using n = 100 to 400 because the r,
series dropped in significant figures from 7 at n = 400 to roughly 1 at n = 999
so the tail end of this series was not very accurate (meaning that even a very
good fit to this series may be completely incorrect in predicting what the true
values of the series coefficients should be and therefore is untrustworthy). The
value of b obtained in the s, series should be exactly double the value of b in

the r, series. This results in the following estimates for b

n =100 — 300 : b = —0.1314 £ 0.0002
n =100 — 400 : b = —0.1228 £ 0.0002

n =100 — 500 : b = —0.1276 £ 0.0002

Clearly we still cannot say that b is exactly equal to —%, however we learned
something important from this analysis. We can conclude that the largest error
in the fitting parameters comes not from the least squares fitting procedure, but
in choosing the range of series coefficients to fit, and that this quirk is due to
the fact that even at 500th order the behaviour of the E, is still changing very
gradually.

All of the independent estimates of A\* from each of the above fits suggest
that

A* = 1.0975(2) (4.28)

Thus we find that our results agree with those of references [1] and [19]. Recall
from reference [23] that A, = Zic = 1.097 66 and so A* = A. agree to all 4 decimal
digits within the estimated uncertainty. Thus this work concludes that A* and A,
are equivalent. This means that as Z is continuously reduced, the ground state of

the two-electron atom is no longer a bound state when Z < Z* = Z.. Therefore
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the ground state cannot exist as a bound state embedded in the continuum for
Z < Z.. However, it is still possible that the ground state becomes a resonant

state at Z = Z. as the work of Drake et al. in reference [23] strongly suggests.

4.3 Interesting Findings

This section explains some results that are not directly relevant to determining
the radius of convergence of the 1/Z expansion, but are still intriguing or useful

to know.

4.3.1 Diagonalization Scheme Comparison

In calculating the eigenvalues and eigenvectors with the variational method,
the Hamiltonian was diagonalized using two different techniques — the Jacobi
method (Appendix C.1) and the Tridiagonalization method (Appendix C.2).
The Jacobi method takes O(n*) operations to complete while the tridiagonal-
ization method takes O(n?) operations with n being the dimension of the Hamil-
tonian matrix. The computation times of each of these methods for different
matrix dimensions are compared in figure 4.14

Dall2016.f used the Jacobi method and dtridlz2016.f used the tridiagonaliza-
tion method. Both programs needed to perform two separate diagonalizations
among many other necessary calculations. The diagonalization procedures take
the majority of the runtime for larger basis sets and can safely be assumed to
take the full time for n > 500. The tridiagonalization method was found to
have the same numerical stability as the Jacobi method, but take much less
time for large n. The tridiagonalization method should always be implemented

for computations involving matrix diagonalization with large matrices.

4.3.2 Oscillating Coefficients

As was explained in reference [1] the coefficients of a perturbation expansion can

exhibit oscillatory behaviour even when no such behaviour should be present.
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Figure 4.14: Runtime for dall2016.f and dtrid1z2016.f
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This is a result of using a finite size basis set in the perturbation theory proce-
dure to calculate the F,,. Baker et al. showed that a Hamiltonian matrix with

a perturbation, when expanded in a basis set of size two

a 0 b b
11 A 11 012 (4.29)

0 a2 bar  boo

have eigenvalues F with perturbation expansion coefficients that behave like

)1/2 sin((n — %

2
B} = 22" |(—sin0 +0(n=%?) (4.30)

for large n where n is the order of the perturbation expansion and Ag and 6
are the modulus and argument of the complex conjugate pair of values A\ =
Aoe?, \* = Aoge™% for which E, = E_ (a singularity occurs at these two points
in the A plane). From this equation it is seen that the perturbation expansion
coefficients for Ey and E_ oscillate with constant period 27/6. Of course for

basis sizes larger than two the asymptotic behaviour of the eigenvalues of the
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Hamiltonian matrix may differ from that of equation (4.30). The purpose of
equation (4.30) is simply to show that oscillations in perturbation expansion
coefficients naturally occur as a result of using finite size basis sets to diagonalize
a Hamiltonian matrix.

The 1/Z expansion coefficients were found to oscillate with increasing pe-
riod as n — oo. The following figures are plots of the absolute value of the
differences between the 1/Z expansion coefficients E,, that were calculated us-
ing three different sizes of basis sets. Baker et al. used a 450 term basis set

while PYC5TG974 and PYC5TGC68 from this work used 974 and 1268 terms

respectively.
Figure 4.15: PYC5TG974 vs. PYC5TGC68
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A graph of the absolute value of the differences between the 1/Z expansion coefficients
calculated using the PYC5TG974 basis set and those of the PYC5TGC68 basis set.
In order to make the oscillatory behaviour more clear, a smooth line was used to plot

this data instead of a series of data points.
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|EnBaker-EnPYC5TGC68|

Figure 4.16: Baker vs. PYC5TG974
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Figure 4.17: Baker vs. PYC5TGC68
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It can be clearly seen from these graphs that all of the calculated coefficients
exhibit oscillatory behaviour. Although the amplitude of the oscillations has a
very similar dependence on n regardless of the basis set being used, the period of
the oscillations differ. Most notably, we can conclude from these graphs that the
oscillations in the coefficients of Baker et al. had much longer periods than the
larger pyramidal basis sets. The oscillations are most likely a result of the finite
basis size, and so it seems that by increasing the number of terms in the basis set
the gradual increase in the period of oscillations in the coefficients is decreased.
Thus, if these oscillations are not identifiable at higher orders then it may be an
indication that either the perturbation coefficients need to be calculated with
higher precision (coefficients with errors larger than the amplitude of oscillations
would mask the underlying oscillatory behaviour) or the size of the variational
basis sets must be increased (as we have seen from the graphs, increasing the

basis size decreases period of coefficient oscillations).

4.3.3 Decay of Coefficients

When a basis set did not include the correct long range behaviour to describe
the higher order terms, there would be a point in the sequence of E,, after which
these coefficients would begin to rapidly decrease in magnitude. This can be
clearly seen in the FE,, that were calculated using the He basis sets.

At 200th order, the He FE, are 2 orders of magnitude smaller than the
PYC5TGC68 E, and at 400th order they are 6 orders of magnitude smaller.
This separation continues to increase rapidly as n is increased.

A similar phenomenon can be seen from comparing the E,, calculated from
different basis set sizes. A larger basis set will allow for higher order terms in
the 1/Z expansion to be found more accurately than those calculated with a
smaller basis set. Increasing basis size does not have as large an effect on the
E,, as changing the nonlinear parameters within the basis set. The differences
in the various F, are small, but can be seen clearly by plotting the respective

accelerated series s, for the different basis sizes together as was done in figure
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Figure 4.18: Helium FE,, rapid decrease
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Figure 4.19: s, decay for different H ™ triple basis set sizes
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Chapter 5

Conclusion

The 1/Z expansion coefficients of Baker et al. in reference [1] were shown to be
accurate to 5 decimal digits even at high orders as they had originally claimed.
This proves that Turbiner and Guevara’s assertion that these FE,, contain no
significant figures once n > 135 (from reference [21]), is incorrect. The pyramidal
basis sets employed in this work successfully found more accurate E, that still
contained a single significant figure even at 1000th order. Using these coeflicients
the radius of convergence was found \* = 1.0975(2) in agreement with references
([1, 19, 22]). Table 5.1 lists the previous determinations of A* up to and including
this work. Some of the errors in various A\* have been adjusted from what
the original authors claimed due to the knowledge obtained in this work, of
the accuracy of the coefficients in reference [1] which were used in many other
works. The estimate of A* from Baker et al. in reference [1] was not included
in table 5.1 because it was not calculated but instead came directly from their
assumption that A* = A\, (this assumption was still uncertain at the time). The
result of Zamastil et al. disagrees with this work because they analyzed only
the first 20 coefficients of the 1/Z expansion whereas this work analyzed the
coefficients from 100th order up to 1000th order. While it is true that the first
20 coefficients are more accurate than the higher order coefficients, the 1/Z

expansion is a very slowly converging series and so the first 20 coefficients do
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Table 5.1: Important estimates of the radius of convergence of the 1/Z expansion

year reference ¥
1962 | Knight and Scherr [5] 1.33
1966 | Stillinger [8] 1.1184

1970 | Bréndas and Goscinski [12] | 1.118
1972 | Bréndas and Goscinski [13] | 1.119

1986 | Arteca et al. [18] 1.1056(40)
1995* | Ivanov [19] 1.0976(1)
2010* | Zamastil et al. [20] 1.1085(2)
2015* | Karr [22] 1.0973(1)
2017 | This work 1.0075(2)

The * indicates works that used the 1/Z expansion coefficients from reference [1] and
thus needed to have their error’s readjusted. Only the order of magnitude of the errors

is known in these cases (and so the real errors are most likely larger than 1 x 107%).

not capture the proper asymptotic behaviour of the series. Any analysis on just
the first 20 coefficients is bound to yield inaccurate estimates of \*.

The critical nuclear charge Z. has recently been calculated to very high
precision Z, = 0.911 028224 077255 73(4) by Drake et al. in reference [23] corre-
sponding to Zic = 1.097 660833 738 559 80(5). The main result is that A* = Zic
for up to 4 decimal digits and within the estimated uncertainty and thus it is

concluded that the ground state cannot become a bound state embedded in the

continuum as Z is reduced below Z* = Z_x.
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Chapter 6

Future Work

The Hamiltonian used in this work was the nonrelativistic, infinite nuclear mass
Z-scaled two-electron atom Hamiltonian. In reference [33] the critical nuclear
charge in the finite nuclear mass case was found for a range of different values
of reduced mass. It would be interesting to investigate whether the radius of
convergence of the 1/7 expansion of the ground state energy for the finite mass
Hamiltonian is equivalent to Zic for these different values of reduced mass.

There has not been much research into the three-electron atom critical val-
ues (Z. and \*) due to both the complexity of this problem and the greater
interest in the two-electron atom critical values. A* has been found to appre-
ciable accuracy for two-electron atoms and so the next logical step is to analyze
three-electron atoms to see if the result A* = Zic still holds (Z. in this case
would be the charge at which the three-electron atom ground state would have
the same energy as the two-electron atom ground state).

Lastly, a more precise determination of A* could be attempted by either
trying different basis sets, increasing the size of the existing basis sets, or by
using a different series acceleration technique. The F, were determined with
high accuracy in this thesis and so it is likely the best of these options would be

to use a different series acceleration technique such as those applied in reference

[19].
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Appendices

A Linear Variational Method

We start off assuming that the trial wave function, 1y, depends only linearly on

a known, complete set of basis functions, x;

N

[$er) =D eilxa) (6.1)

i=0
We will inspect the more general case that the complete set of basis functions
is not orthonormal. The expectation value of the energy of ¥, is

N fo H
= (Y| H|Yer) Zi,j:O ¢ty f
E,, = = =4 =7 (6.2)
<wtr|wtr> Zi,j:O C;FCjOij g

where H;; and O;; are the matrix elements of H and O in the x basis, i.e.
H;j = (xi|H|x;) and Oy; = (xi|x;)-

Now, we want to minimize (6.2) with respect to the linear variational pa-

rameters, ¢/ (minimizing with respect to the ¢;’s independently yields the same

final result, so we are free to chose either the ¢}’s or ¢;’s)

O, 0 f
ocj, n ocj, ;
of g
30,’;9 B dc;, /
= — =0

g = (4 |th4,) is nonzero so we can multiply both sides by ¢
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af dg

OFE;, B aczg ; ac,*;f
oci, o g
_of 9y =
- dc; Oc; i (6.3)
N N
= Z cjHy; — By Z ¢;Op;j (6.4)
Jj=0 j=0
N ~
= ¢j(Hij — EiOpj) =0 (6.5)
=0

In order to transition from (6.3) to (6.4) we used the fact that the ¢;’s are

ii = J;x. Equation (6.5) is what results
ocj,

after requiring that the energy be minimized with respect to only the k’'th

independent of each other and thus,

coefficient c;,. Requiring a full optimization over all linear parameters produces
equation (6.5) for all k, which is equivalent to solving the following familiar

matrix equation

H|¢tr> = Etro|wtr> (6-6)

Equation 6.6 is called the generalized eigenvalue problem. This is a more general
Schrédinger equation which is used when the chosen basis set is not orthogonal.
If O =1 then we are working in an orthonormal basis set. In this case (6.6)
reduces to the regular Schrodinger equation. The energy, E,,, are found by
looking for nontrivial solutions to this equation (|i¢,) is nonzero) which is done

by solving

H- E, 0| =0 (6.7)

Solving the above equation is equivalent to finding the orthonormal basis in
which H is diagonal. The eigenvectors of a Hamiltonian matrix which cor-
respond to different eigenvalues are always orthogonal (this is a property of
Hermitian matrices in general). The orthonormal basis which solves 6.7 is sim-

ply the basis of normalized eigenvectors of H. Recall that we arrived at this
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equation by trying to find the optimal linear parameters which minimized the
variational energy for a general trial wave function. Therefore we have shown
that applying the variational method to a trial wave function that only depends

on linear parameters is equivalent to diagonalizing the Hamiltonian matrix.

B Hylleraas Undheim Macdonald Theorem

The goal of this section is to help the reader understand what the HUM theorem
is and what it implies. We begin by proving that the NV old eigenvalues of a
Hermitian matrix H fall between the N + 1 new eigenvalues. Let’s assume
H™ is a Hamiltonian matrix of dimension n which is in diagonal form with

eigenvalues ordered from smallest to largest, £1 < Fy < ... E,.

E 0 0
0 By ... 0

12 (R (6.8)
0 0 E,

Now we add a row and column onto H™ (which is the same as increasing
the size of the basis in which we are describing H by one). Recalling that the

Hamiltonian is Hermitian

E, O 0 U1
0 Ey ... 0 Vg
B =0 (6.9)
0 o ... E, wv,
V] V2 ... Up  Upy1

We need to find the eigenvalues of this new matrix. To do this we solve the

characteristic equation

D= H™Y A1 = (B — MM + ()™M =0 (6.10)
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with M]"; being the determinant of the matrix of size n X n that results from

removing the ith and jth rows and columns of H("*1) respectively. That is

Ey— A 0 %)
M), = 0 B4 0 (6.11)
Vo U3 Un+1
0 Bo—X 0 0
o 0 0 By-A .. 0] (1) D, f[(EZ- ~N (6.12)
=2
o vy Up,

To find the determinant of M ((1" )1) we use the same expansion as was done in

calculating the determinant of H("+1)

M = (By = MY + (1) Dy Y

(1,1) — (1n1) (1,m) (6.13)

where M ((i";l) is the determinant of the (n — 1) x (n — 1) dimensional matrix

J
resulting from removing the ith row and jth column of M (171 )1) respectively. Once

again we can end up with a formula for one of the determinants

0 Bs—XA 0 ... 0
0 0 E;—X ... 0 n
n—1 n—
My = = PelE - 61
. =3
V2 V3 N Un

but we are left to expand the M ((1n 1_)1) determinant. After finishing this sequence

of determinant expansions, the end result is

n

D(A) = (v(sr) — N [ =2 =D o7 [[(E =N

i=1 i=1  j#i

(6.15)

where D is a function of A. If we put A = F} in equation (6.15) we find that
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D(Ey) = —vj, ﬁ(Ej - E) (6.16)

J#k
If we put A = E41 in then
D(Eg+1) = vy | [(EBj = Ersa) (6.17)
j#k

We know that By < Ey--- < E,, so equations (6.16) and (6.17) show
that the products [[}, (E; — Ex) and [}, (E; — Ex41) will have opposite
signs (while —v? and —U(ng) are both negative). This implies that D(Fxy1)
is guaranteed to have the opposite sign of D(F}) for all k. Then D()) has at
least one root in each of the intervals (Ey, Es), (E2, E3) ... (En—1, FEy).

We know the characteristic equation for a Hermitian matrix of size (n x n)
always has n real roots. For our n+ 1 dimensional matrix we have found n—1 of
these roots so we must find the last two. To do this, we analyze the behaviour

of D(A) as the magnitude of A grows large. Looking at (6.15) it is clear that

lim D(\) = (=\)"+D (6.18)

[A] =00
so if A = —oo then D(A) is positive. If A — oo then D()) is a product of (n+1)

negative numbers. Using equation (6.16) we can see that

D(E)) = —v}(By — Ey)(E3 — E1)--- (B, — E1) (6.19)

which is a product of (n — 1) positive numbers and one negative number, —v?.

Thus D(E;) and )\lim D(\) have opposite signs therefore there is a root of
——0c0

D()\) in the range (—oo, Ey). Similarly

D(Ey) = —vi(BEy — En)(Ey — Ep) -+ (En_y — Ep) (6.20)

which is a product of (n) negative numbers so that D(E,) and /\lim D()\) have
— 00
opposite sign, and thus there is a root of D(A) in (E,,00). Therefore we have

found all of the (n + 1) eigenvalues of our Hamiltonian matrix H(™*1 and
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have also seen that the n eigenvalues F; of the old matrix H(™ are sandwiched

between the n + 1 eigenvalues \; of H("+1)

M<Ei<X<B<---<E,<Ai (6.21)

If the basis set used to construct the Hamiltonian matrix is complete in the
limit lim,,_, (where n is the basis set size) then we must reproduce the exact
energy spectrum as n — oo. Also, the 7’th eigenvalue of the Hamiltonian matrix
can only decrease in value as n is increased as we have just shown (6.21). This
implies the A;’s cannot decrease past the true energies E for any basis size n or
else they would not be able to converge to the correct values as n — oo which
is required by the completeness of the basis functions. Therefore, the HUM
theorem states that all of the variational energies \;, not just the ground state
Ao, are upper bounds to the true energies E; as long as the basis set being used
is complete as lim,, ... Each increase in n is guaranteed to yield smaller upper
bounds to the energies and so by simply increasing the size of our basis sets we
will find a more accurate approximation to the entire spectrum (disregarding

issues of numerical stability in trying to find the spectrum of course).

C DMatrix Diagonalization

For large Hamiltonian matrices, it is not feasible to solve the characteristic
equation to find the eigenvalues and eigenvectors. Instead, we can apply a
known matrix diagonalization method to put the Hamiltonian in diagonal form.
The eigenvalues and eigenvectors become trivial once the Hamiltonian is in
this form. Diagonalization of a Hamiltonian is equivalent to applying linear
variational method as is shown in Appendix A and so it is critical to know how
to diagonalize a Hamiltonian. The Hamiltonian matrices used in this work were
real symmetric matrices, so in all of the following sections H will be assumed
to be a real symmetric matrix. Most of the information from reference [25] was

used in the sections on the Jacobi method, the tridiagonalization method and
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Given’s method.

C.1 Jacobi Method

In linear algebra, it is a well known and very useful fact that if we rotate any

matrix A with a rotation matrix R i.e.

A’ =R'AR (6.22)

then the rotated matrix, A’, will have the same eigenvectors and eigenvalues as
the original matrix. The idea of the Jacobi method is to make use of this fact by
applying a series of rotations to H that sequentially zero the off-diagonal matrix
elements until it is in diagonal form. Then the eigenvectors and eigenvalues of
this transformed matrix will be the same as those for H except they will be

trivial to find.

=R/R/_,...RIHR;...R,_ 1R, = V'HV = A (6.23)

A is a diagonal matrix which contains the eigenvectors A\; = A1, Ao = Aos .. ..
The eigenvalues are contained in the columns of V; v}, = V,,,,,. So we see that
once we have diagonalized H by applying this set of rotation matrices, we will
have found the eigenvalues and eigenvectors we were looking for. Now we must
ask the question: which rotations do we use to diagonalize H? Lets define a

general Jacobi rotation matrix as

J(p,q,0)ii =1Vi#p,q
J(p.q,0)ij =0Vi,j #p.q
J(p:q,0)pp = J (P, q,0)qq = cos(0)
J(p,q,0)pg = —J(p,q,0)qp = sin(6)

(6.24)

This matrix looks like
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cos(f) ... sin(f)

= (0) )

0

0
1

(6.25)

which is just an identity matrix except for the matrix elements J,p, Jpq, Jop; Jqq-

J(p,q,0) is the matrix operator representing a rotation by 6 in the (e,, e,) plane

(where e; is a unit vector in the i’th direction). After applying one of these

rotations to H, the new matrix elements are

Hj; = HyVi,j #p,q

Hj, = H); = cH;, — sHiq¥i # p,q
Hj,=H,; = cHi, +sHy,Yi# p,q

Hy, = Hy, = (¢* = s*) Hpq + cs(Hpp — Heg)
H), = c’Hyp + s°Hyq — 2csHy,

H,, = sHy, + *Hgq — 2csHpq

(c = cos(f) and s = sin())

(6.26)

We know that rotations do not change the determinant of a matrix, but we

need to check if the Frobenius norm is invariant under rotations

N
IH|| =) Hf
i

The squares of the rotated matrix elements are
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2 ..
Hj;™ = H3Vi,j #p,q
2 2 .
Hzfp = H1/7i = cszp + szHqu —2¢s(HipHig) Vi # p.q
2 2 .
H| =H =cH} +s°H;, + 2cs(Hy,Hig)Vi # p,q
oy = Ht/]pz = (¢~ 82)2H§q + 25 (Hpp — Hyq)? + 205(¢° — 8°) [Hpg (Hpp — Hyg)]
H.? =t H2 + s*H2, + 4cPs2 H2, + 267 5% (Hyp Hyg) — Acs[Hpg (P Hyy + 52 Hyg))
(6.28)
H!? = H2 + sTH2 + 422 H2, + 2628 (Hypy Hyg) + des[Hyg (P Hyq + s° Hyyp)]
(6.29)

From these equations, it is easy to see that

;2 2 172 2
Hip + Hiqy! _Hip—i-Hiq

;2 2 _ 172 2
H),”+ Hyr* = HY + H,

where the second equation can be found just by using the fact that both H’
and H are symmetric matrices. After some tedious algebra, we can find the

relationship

;2 ;2 ;7 2 ’ 2 12 2 2 2
pr +qu +Hpq +qu _pr+qu+Hpq+qu (6'30)

combining this with the previous two expressions, we discover that the Frobenius

norm for our real symmetric matrix, H, is invariant under rotations

N N
2
Sy (01
ij ij
Finally, we notice that for each Jacobi rotation, we have the freedom to zero two

of the off-diagonal elements by finding the 6 such that H, = H;, = 0. From
(6.26) we find

(QHPQ)

tan(20) = ———————
an(29) Hyq — Hpp

(6.32)
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Using (6.28) and (6.29) we have

2 2

H,,"+H,,~ = (c*+s*)(Hp,+H_,)+8c*s” H} +4¢s* (Hyp H} ) +4cs[Hyg (¢ — %) (Hgg— Hpp)]
(6.33)

Inserting (6.32) into (6.33) results in

1
H,,” + Hy,* = Hy, o+ Hoy o+ 2sin® (20)Hy, + 5 sin® (20) (Hyg — Hy)®

2 2
:pr+qu+e,620
;2 ;2 2 2
= H,, +H,”>H, +H (6.34)

Equation (6.34) states that the diagonal elements will increase while (6.31)
states that the sum of the magnitudes of all the elements in the matrix must
stay the same after each rotation matrix is applied. Therefore with each Jacobi
rotation, the off-diagonal terms must gradually diminish while the diagonal
terms become larger. Given that we are retaining enough significant figures
in the matrix elements to avoid large numerical cancellations, we can continue
applying these rotations until the off-diagonal elements are all zero to within
the desired precision and thus we will have obtained our diagonal matrix.

The Jacobi method is a slow but reliable procedure requiring arithmetic
operations O(n*) to complete (where n is the dimension of the matrix being
diagonalized). The convergence of the Jacobi method can be accelerated by
finding the largest off-diagonal matrix before each iteration and applying the

corresponding Jacobi matrix to zero it.

C.2 Tridiagonalization

The code used in the programs for diagonalizing matrices with the tridiago-
nalization method was taken from reference [31], and can be found online using
reference [32] (we used the TRED2 and IMTQL2 subroutines in F77). The code
and was modified from double precision (~ 16 decimal digits) to quadruple pre-

cision (~ 30 decimal digits).
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We begin the tridiagonalization method with the real symmetric matrix, H.

We need to put our matrix in tridiagonal form

A (6.35)

(All unlabeled elements are assumed to be 0)

This is what we refer to as tridiagonalizing a matrix and we used the House-

holder method for this purpose. A Householder matrix has the form
P=1I-2uwuw' (6.36)
where I is the identity matrix and w is an arbitrary unit vector. P is symmetric

P! =1 — 2(ww")’
=I- Q(wttwt)

=P

and is orthogonal

P? = (I - 2(ww"))(I - 2(wuw"))
= 1% — d(ww') + d(ww') (ww')
=1 - 4(ww') + dw(w'w)uw’
=1 - 4(ww") + dww’
=1

— P=P !=P! (6.37)
Let a vector, x, be orthogonal to w, i.e. wtx = 0. Then
Pz =(I-2wuw')zr =2 —2w(w'z) =2 (6.38)
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Now let u be a vector in the direction of the unit vector w. Then w'u = |u| and

wlu| = u, hence

Pu=(I-2ww'u=u—2u=—u (6.39)

Equations (6.38) and (6.39) illuminate the action of P on a general vector gq.
P will leave any components of ¢ orthogonal to w invariant while reversing the
sign of any components of ¢ that align with the w unit vector. P is a reflection
operator.

A series of P’s can be used to put a real symmetric matrix H in tridiagonal

form. We can define P; using the following vectors, u,v and w

Hoyy

Hs,
u= _ (6.40)

Hnl

i.e. u is the vector such that
H ut
H= " (6.41)
v H®D

where H(®~1) is the bottom right (n — 1) x (n — 1) submatrix contained in H.

[ul
0
v=1 (6.42)
0
uU—v
= — 6.43
o] (6.43)
With these vectors we can construct an (n x n) matrix,
1 o
A= (6.44)
0 Py
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so that when A is applied to H, the first row and column of the resulting

matrix H' will be in tridiagonal form

/ t Hi vt
H = A'HA, = (6.45)
v PlH(nil)Pl

To put the second row and column of H' in tridiagonal form we use

u= _ (6.46)

v=| (6.47)

then calculate P = I —2ww! (recall that w = ﬁ) for the new u and v vectors

L, o
A, = (6.48)
0 P,

I, is the 2 x 2 unit matrix. This procedure can be repeated column by column
until H is in tridiagonal form.

The Householder method tridiagonalizes a real symmetric matrix with just
O(n3) arithmetic operations. Of course, the end goal is to put H in diagonal
form. Why then, do we not use Householder reflection matrices P that zero all
of the elements below the diagonal instead of putting the matrix in tridiagonal
form? Attempting to diagonalize the first row and column of H makes answers

this question. First, we set

u= _ (6.49)
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so that

Ul (5 . Unp,
U H22 N Hgn
H=1 . . (6.50)
and as usual
|u|
0
v=| (6.51)
0
U — v
= — 6.52
il (6.52)

The corresponding Householder reflection matrix, P = I — 2ww! will be a full
(n x n) matrix; A; = P. Now we can calculate the transformed matrix H =

PHP. Multiplying on the left by P yields
|ul a!t

PH = (6.53)
0 P(nfl)H(nfl)

where P("=1 and H(®=1) are the matrices resulting from removing the first row
and column from H and P respectively. The components of the vector, x are
x; = Priu; + Z?:z Py;H;; defined from i = 2, n.

At this point, the problem is apparent. Although we have successfully zeroed
the off-diagonal elements of the first column of PH, we have also altered the
first row so that it is no longer equal to u‘. When the P matrix is applied on
the right side, it will not zero the off-diagonal elements in the first row. Worse
yet, upon application of P from the right the elements in the first column will
be adjusted in the same way as the elements in the first row were, thereby
becoming nonzero. Therefore the diagonalization process is not as simple as

applying n — 1 Householder reflection matrices.
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Now that we have a tridiagonal matrix HO resulting from the application of
the Householder method to H, we can use another procedure to find the eigen-
vectors and eigenvalues of H®. The programs used in this work implemented
the implicit QL factorization method for this purpose. First, the tridiagonal
matrix is factored into an orthogonal matrix, Qo and a lower triangular matrix

LO.

H° = QoL° (6.54)

which can be done by applying a series of n — 1 Givens rotations (see Appendix

D) to HY. If the sequence

Q= G(2,2)G(3,3)...G(n,n) (6.55)

is applied to HY on the left, the result is a lower triangular matrix L° (each
G(i,i) zeros a single superdiagonal element of H?). Thus from this sequence of
Givens rotations we obtain both LY and Qg = G(n,n)...G(3,3)G(2,2). Now

we can find H! using

H' =L°Q, = Q,H’Q, (6.56)

Qo is orthogonal (any composition of Givens rotation matrices will be orthogonal
because the Givens rotations themselves are orthogonal), so H! is similar to H®
and therefore they share the same eigenvectors and eigenvalues. This transfor-
mation also preserves the tridiagonal form of H? — if HY is a tridiagonal matrix
then H' will also be a tridiagonal matrix. The implicit QL method is continued
by factoring H' into a new orthogonal matrix Q; and a new lower triangular
matrix L2 then uses these to find the next tridiagonal matrix H2 = L'Q;. The
sequence of matrices H* gradually become diagonalized as k is incremented (k
is the number of iterations of the implicit QL algorithm).

Each iteration of the implicit QL method, when applied to a tridiagonal ma-
trix, takes O(n) operations to perform. Depending on the precision requirement

for which the off-diagonal elements must agree with zero, each eigenvalue and

125



eigenvector found take roughly 1 to 2 iterations on average. Thus, finding all
of the eigenvalues and eigenvectors of a tridiagonal matrix with the implicit QL
algorithm is of O(n?) operations. For large n the slowest part of the tridiago-
nalization method is putting the initial matrix H in tridiagonal form and is of
O(n?) operations (if the Householder method is used). Givens’ method can also
be used to tridiagonalize a matrix (Appendix D) but it takes about 50% more

operations to complete than the Householder method for large matrices.

C.3 Power Method and Inverse Iteration Method

The information from reference [26] was used to complete this section. The
power and inverse iteration methods are very simple and effective ways to solve
the generalized eigenvalue problem. The power method begins with a single
arbitrary starting vector, x that can be expanded as a linear combination of the

true eigenvectors v; of the Hamiltonian matrix H

N
X = Zcﬂﬂi (6.57)
i=0
Then we can write
N N
Hy =) cHy; = B0y, (6.58)
i=0 i=0

where O is the overlap matrix. Left multiply both sides by O~! to get

N
O 'Hx =) ciEit (6.59)
=0

Now, if O~'H is applied n times to x the result is

N

(O~ H)"y = S (B e (6.60)

Repeated application of O"'H to x will make the sum on the right hand side
of (6.60) converge to
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lim (O7'H)"x = (E;)"c;t; (6.61)

n=yco
where F; is the largest eigenvalue in the spectrum. One would think that there
might be a way we could find all the eigenvalues and eigenvectors using the
power method. Certainly we could find the next largest eigenvalue and the cor-
responding eigenvector by using an initial vector yo that is orthogonal to ;
so that ¢; = 0. Repeated application of O~'H on y; would isolate the second
largest eigenvector and eigenvalue of the spectrum of H. The next starting vec-
tor x3 would use an initial vector that is orthogonal to the first two eigenvectors
allowing the discovery of the third largest eigenvalue and eigenvector upon re-
peated application of O"'H. In theory, we could continue this procedure all
the way down to the ground state, but in practice this most likely would not
work due to issues with numerical stability. As we continue the algorithm, the
number of vectors that the initial vector x; must be orthogonal to increases.
Eventually, the orthogonalization routine will begin to become inaccurate and
there will be small components of the higher eigenvectors left in x;. Even if
the surviving components of the higher eigenvectors are small, the correspond-
ing eigenvalues are large and so using the power method would not guarantee
convergence to the desired eigenvalue and eigenvector pair.

The power method works but may have slow convergence in the case that
the eigenvalues are all close together. Also, as we have just shown above, it is
also only useful for finding the largest eigenvalue and eigenvector in a spectrum.

The inverse power method is an improvement of the power method. From

reference [26]

Hvy; = E;01);
(H— E,0)¢; = (E; — E4)O;
1
G%[/i = ﬁd’z

with G = (H — E,0)7'0 and E, is a guessed value for the energy eigenvalue
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that is desired. The idea is that the eigenvalue closest to Ey, which we will

1
denote by E;, will result in a much larger value for 7 than the rest of
i g
the F; so that the sequence
x1 = Gx
x2 = Gx1
xs = Gx2
(6.62)
will quickly converge to
e (1 )y, (6.63)
n=9\E-E) " '

By varying E,, eventually all of the eigenvalues and eigenvectors of H can be
found.

There are two minor details to be aware of when using the inverse power
method. First, if the initial energy guess is exactly equal to one of the true
eigenvalues then the inverse matrix G becomes singular. This issue almost
never occurs and can easily be avoided by using a slightly adjusted E, for the
next attempt. Second, if by chance c¢; = 0 in the trial wave function x then the
sequence will not converge to the desired results, F;,v; but instead to the next
closest eigenvalue and eigenfunction with ¢, # 0. This highly unlikely event
can be handled by trying different initial wave functions for the same E, and
making sure the final values E; for each different x are consistent.

In the inverse power method a matrix inversion needs to take place in order
to obtain the G matrix. In fact each time E, is changed the G matrix will
need to be recalculated. The inverse iteration method is almost the same as the
inverse power method except it replaces matrix inversion with solving a matrix

equation. We start by constructing the sequence

Fx, = (E - Eg)OXn—l
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with F = (H—E,)O. This is equivalent to the sequence we had from the inverse
power method, but now there is no inverse matrix to calculate. We can simplify
this further by noting that the factor of (E — Ej) only affects the normalization

of xn. So we can instead solve

Fxn = Oxn-1

which will provide the eigenvector x, ~ ;. The corresponding E; is found by

solving

(xnHxn)
(XnlXn)

The inverse iteration method was used in one of the programs (dpoldl.f)

E; =

which found the optimal nonlinear parameters for our Hylleraas basis sets. It is
a quick method for finding a single eigenvalue and eigenvector pair and is very
useful for finding the optimal nonlinear parameters for a variational basis set
in a reasonable amount of time. The Jacobi and Tridiagonalization methods
generally take more time to complete than the inverse iteration method. Also,
the optimal nonlinear parameters corresponding to different eigenvectors are
distinct from each other. This means that if we are trying to minimize a single
variational energy there is no benefit in calculating all of the eigenvectors and
eigenvalues of the Hamiltonian matrix — a single nonlinear parameter set can
only be used to minimize one eigenvalue at a time. For these reasons, the
inverse iteration method is chosen for finding the optimal nonlinear parameters

of a variational basis set.

D Givens’ Method

Givens’ method is a method used to tridiagonalize a matrix. The Givens rotation
matrices introduced in this section are commonly used in the implicit QL method
as was done in this work.

The tridiagonalization of a real symmetric matrix H using Givens’ method
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is similar to the Jacobi method for diagonalizing matrices. We apply a series of

Jacobi matrices J(p, ¢,0) to H, but instead of setting ¢ so that H,, = H,, =0

we use ¢ such that H}, , = H(, ;) = 0. From equations (6.26) in section
C.1 we have
H;, = Hy, = cHi,+ sHi, Vi # p,q (6.64)

and so the 6 used in J(p, ¢,0) required to zero H(’I(p_l) and H{p_l)q is

Hyp—1

Hp(p—l)

tan(f) = — (6.65)

which is easily found by setting ¢ = (p — 1) in equation (6.64). To simplify
the notation, we can define the Jacobi rotation matrices that use the 6 from
equation (6.65) to be Givens rotation matrices and denote these by G(p, q).
The Givens rotation matrices are orthogonal because the Jacobi matrices are
orthogonal. Also, as can be seen from equations (6.26) in Appendix (C.1), when
transforming a matrix H with a Jacobi rotation matrix (or a Givens rotation
matrix) only rows and columns p and ¢ are altered in the transformed matrix
H’. So if we have a matrix H which already has H;; = 0,ij # p,q then after
applying G(p, ¢) to H, Hl(j =0,1j # p, q. Allowing the following series of Givens

rotations

Q= G(2,3)G(2,4)...G(2,n) (6.66)

to act on H
H = Q'HQ (6.67)
will result in H%y = Hjy = --- = H); = 0. H' is a symmetric matrix (because
H was assumed to be symmetric) so Hy3 = Hy, = -+ = Hy,, = 0 and thus both

the first row and column of H are in tridiagonal form.
To put the second row and column in tridiagonal form we use the next series

of Givens rotations
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G(3,4)G(3,5)...G(3.n) (6.68)

Now the second rows and columns are in tridiagonal form, but we have to double-
check that any zeros in the first row and column of the transformed matrix are

not undone. Using

H!, = cH, — sHy; (6.69)

from equations (6.26) and setting 7 = 1, it is clear that the [,’s that are not
tridiagonal elements remain zero since the H,1’s were all zeroed from applying
the previous sequence of Givens rotations Q.

To put an entire real symmetric matrix in tridiagonal form we use the se-

quence of Givens rotations

G(2,3)G(2,4)...G(2,n)
xG(3,4)G(3,5)...G(3,n)

xG(n—2,n—1)G(n—2,n)
xG(n —1,n)

where each individual Givens rotation matrix zeros a single element in the trans-
formed matrix. This procedure ends up resulting in O(n?) total floating point
operations as opposed to the O(n?) operations the Householder method takes.
Although it is slower than the Householder method when computing in series,
unlike the Householder method, it has the advantage that it can be computed
in parallel. However, even with parallel computing Givens’ method takes about
the same runtime as the Householder method and so the Householder method

is more commonly used.
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E Number of terms in a single Hylleraas basis
set

Recall that a single Hylleraas basis is

Q
_ i .J.k —ary —pBr i..J .k —ars —pBr
U = g Cijrlriryrise” e Bra + ryririe” e B 1] (6.70)

with the truncation

i+j+k<Q (6.71)

We can write out a matrix of the sums of all possible combinations for the first

two numbers, ¢ and j

0 1 Q
1 2 o+

M= . . (6.72)
Q Q+1) ... 20

where the row number minus 1 represents the value of 4, the column number
minus 1 represents the value of j, and the elements M?j are the corresponding
sums ¢ + j. Only the upper left triangle (including the diagonal part) of this
matrix is permitted by the restriction (6.71). The number of elements in a

triangular section of a (n x n) matrix is

n(n+1)
2

N = (6.73)

which comes from taking half of all the n? elements in a (n x n) matrix and

adding the missing half of the n diagonal elements to complete the triangle. M°
Q+1)(Q+2)

isa ((Q+1) x (Q+ 1) matrix and therefore it contains Ny = 5

possible basis set terms.
If we include the third index k we get a rank 3 tensor containing all of the

possible permutations of i, j, and k. This rank 3 tensor can be represented by
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a set of matrices of the same form as M° in equation (6.72) — each k will have

a unique M¥ associated with it

k k+1 ... k+Q
k+1  K+2 ... k+(Q+41)

Mk=| . ' (6.74)
E+Q k+Q+1) ... k420

So all we need to do now is add up all of the allowed terms in each of these M¥

matrices. We have already analyzed MP° so the next step is to look at M?.

1 2 . 149
2 3 1 (Q41)

M = (6.75)
1+4Q 1+(Q+1) ... 1+20

By equation (6.71), the only allowed terms contained in M are within the
upper left triangular part of M?! with its bottom row and right-most column
removed. The following is a (Q241) x (24 1) matrix illustrating the possible 7, j
combinations for £ = 1. The 1’s represent the location of allowed permutations

and the 0’s are the prohibited permutations.

1 1 1 0
11 0 0
(6.76)
1 0 ... 00
00 ... 00
By equation (6.73), M?! provides N; = M terms to the Hylleraas basis

set.
For the M2 matrix, the possible i and j permutations appear in the upper
left triangle of M? after removing its bottom two rows and right-most two

Q-1

columns. Then we get Ny = terms from M2. The crucial pattern to
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Q+1-k
notice here is that M¥ provides Nj = m more terms to the basis set.

The total number of terms is

Q
N:ZNk

k=0

Q+1-k)(Q+2—Fk)
2

I
WE

k=0

(92 + 30+ 2) + (k* — 2kQ — 3k)
2

[
WE

0

QFDQ2+30+2) 1] &
_ (@41 2+3 * )+5 SR -0+ k (6.77)
k=0 k=0

—_

There are formulas for the last two sums that appear in equation (6.77)

i= w (6.78)

n
i=0

zn: 2 n(n + 1)6(2n +1) (6.79)
=0
putting these into (6.77)
N (Q+ 1)(922+ 3Q+2) N % {Q(Q + 12(29 +1) (20 + 3)9((224— 1)}

_(Q+1) [6((22 +30+2)+ Q20+ 1) — 3Q(2Q + 3)}

2 6

~(Q41) [20% 4 1002 + 12)

R O

Q+1)(Q+2)(2+3)

6

and we have the formula for the total number of terms in a single Hylleraas

basis set.
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