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ABSTRACT

Providing some techniques to enhance the performance of spectrum sensing in cog-

nitive radio systems while accounting for the cost and bandwidth limitations in practical

scenarios is the main objective of this thesis. We focus on an essential element of coop-

erative spectrum sensing (CSS) which is the data fusion that combines the sensing results

to make the final decision. Exploiting the advantage of the superior performance of the

soft schemes and the low bandwidth of the hard schemes by incorporating them in cluster

based CSS networks is achieved in two different ways. First, a soft-hard combination is

employed to propose a hierarchical cluster based spectrum sensing algorithm. The pro-

posed algorithm maximizes the detection performances while satisfying the probability of

false alarm constraint. Simulation results of the proposed algorithm are presented and com-

pared with existing algorithms over the Nakagami fading channel. Moreover, the results

show that the proposed algorithm outperforms the existing algorithms. In the second part,

a low complexity soft-hard combination scheme is suggested by utilizing both one-bit and

two-bit schemes to balance between the required bandwidth and the detection performance

by taking into account that different clusters undergo different conditions. The scheme

allocates a reliability factor proportional to the detection rate to each cluster to combine

the results at the Fusion center (FC) by extracting the results of the reliable clusters. Nu-

merical results obtained have shown that a superior detection performance and a minimum

overhead can be achieved simultaneously by combining one bit and two schemes at the

intra-cluster level while assigning a reliability factor at the inter-cluster level.
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CHAPTER 1

Introduction to cognitive radio networks

1.1 Cognitive radio overview

The plethora of emerging wireless devices and networks in recent years has proved the

excessive dependency of the modern society on the radio spectrum. Conventionally, The

Federal Communications Commission (FCC) allocates most of the spectrum to the licensed

users, also known as primary users (PUs) and restrains the unlicensed users or (SUs) from

exploiting the spectrum when it is being utilized by the PU. On the other hand, recent

studies by FCC have shown that a significant portion of the spectrum remains underuti-

lized. As a result, the cognitive radio (CR) technology has been introduced to overcome

the spectrum scarcity problem caused by the inefficient spectrum allocation and to satisfy

the ever-expanding demands for higher data rates [1]-[3]. The central concept of the cog-

nitive radio is to harness the underutilized spectrum while accounting for the PU activity

which accordingly defines the cognitive radio as an intelligent device that can sense the

spectrum and modify its operating parameters to adapt to the environment where it oper-

ates [2].

In CR systems, the primary users are defined as the authorized users who have the

precedence to access the spectrum while the secondary users or the unlicensed users are

defined as the users with lower priority that can detect the spectrum hole and access the

spectrum without interrupting the PU operation. The spectrum hole is defined as the portion

of the frequency band that is not being used by the PU at a specific time within a specific

geographical location as depicted in Figure 1.1 [3].
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1. INTRODUCTION TO COGNITIVE RADIO NETWORKS

Figure 1.1: Demonstration of the spectrum hole.

Most of the access technologies of the SUs that have been developed recently either

focus on spectrum utilization by exploiting the spectrum holes or on the coexistence be-

tween secondary and primary users which in turns classifies the cognitive radio networks

into three broad categories: Interweave, overlay and underlay networks [4]. In Interweave

networks; secondary users can only access the spectrum when the PU is absent, and they

should immediately vacate the channel once the PU resumes its operation. Underlay net-

works are those that allow coexistence between primary and secondary users while satisfy-

ing a predefined threshold called interference temperature which is determined by the FCC.

Different from underlay model, overlay networks allow the primary and secondary users

to transmit simultaneously in the same band by taking advantage of the coding strategies

and the knowledge of the primary user’s message to eliminate the interference between the

SUs and the PU [4]. Interweave network is the most favored in practical implementations

among the three paradigms due to its simple application and capability to adhere to the

FCC requirements by efficiently utilizing the heavily equipped bands without interfering

with the PU.

The two key features of CR are outlined in [3] and [5], as cognitive capability and re-

configurability. The cognitive capability allows the CR to gather the vital information about

2



1. INTRODUCTION TO COGNITIVE RADIO NETWORKS

the radio environment and thus detect the spectrum hole while the cognitive reconfigurabil-

ity is the ability of the CR to change its parameters to comply with the radio environment.

These two features are carried out through a cognition cycle that is regularly run by the CR

to adapt to the numerous variations of the radio spectrum.

Cognitive radio cycle consists of four functions described as spectrum sensing, spec-

trum decision, spectrum mobility and spectrum sharing as illustrated in Figure 1.2 [5].

First, in the spectrum sensing process, the CR identifies the available portion of the spec-

trum that can be utilized. It can also detect the PU presence when it comes back into

operation in a way that ensures an efficient track of the system. Second, in the spectrum

decision process, the CR selects the proper frequency band based on the user’s quality of

service requirements (QoS) and spectrum characteristics. During the third process which is

known as spectrum sharing, the spectrum usage is coordinated between the secondary and

primary users in a way that maintains the interference below a certain threshold. Lastly, the

CR vacates the channel when the PU starts using it during the spectrum mobility process

[5].

Figure 1.2: Cognitive radio cycle.

Spectrum sensing is the first step towards efficient spectrum utilization. Different tech-

niques have been developed including energy detection, eigen value detection, cyclosta-

3



1. INTRODUCTION TO COGNITIVE RADIO NETWORKS

tionary detector and matched filter. Probability of detection (pd) and probability of false

alarm (pf ) are the common metrics used to evaluate the performance of the different tech-

niques [1]- [13]. Cooperative spectrum sensing (CSS) was proposed to achieve a reliable

detection which is a critical issue that arises in practice via local spectrum sensing in the

conditions of fading, shadowing and noise uncertainty [1]-[89].

In CSS, multiple users share their observations to detect the PU signal in centralized or

distributed manner. CRs share their results as either one bit or energy form regardless of

the adopted technique and topology in a process known as data fusion which is a key ele-

ment of CSS. A numerous research has focused on the fusion schemes in CSS [13], [15],

[20], [24], [29]-[31], [38]-[41], [44], [48]-[56]. The selection of the data fusion scheme

depends on the bandwidth requirement and the desired performance gain. The schemes are

classified as hard combining, where the one bit binary decisions generated by the SUs are

transmitted to the FC, which employs a counting rule to make a decision about the PU ac-

tivity [13], [15], [20], [24], [30], [31], [38]-[41], [44], [48]-[52] ; and soft combining where

the SUs forwards their entire observations to the FC that employs a soft scheme such as

equal gain combining (EGC), maximal ratio combining (MRC) and selection combining

(SC) or a quantized soft scheme for combining the results [29], [49], [55]-[56].

User selection is another important element that has been emphasized in the context

of CSS [15], [31] [43], [71]-[82]. In spite of the detection performance gain achieved by

CSS, the incurred overhead and energy consumption, particularly in the case of densely

deployed areas, have motivated the design of cluster-based CSS (CBCSS). CBCSS has

been developed to combat the effect of the reporting errors caused by fading channels and

to reduce the number of the users reporting to the fusion center. The design of CBCSS

networks has been considered to compromise between the performance and overhead.

4



1. INTRODUCTION TO COGNITIVE RADIO NETWORKS

1.2 Thesis Contributions

The main objective of this thesis is to investigate the design of CBCSS by incorporating

both soft and hard combining schemes at different levels to balance between performance

and overhead. The contributions of the thesis are as follows:

a) Soft and hard combining techniques are employed at two levels by grouping the users of

one cluster based on an iterative algorithm that maximizes the detection gain. The users at

the group level use different soft fusion schemes while a hard combining counting rule is

employed at the cluster level. This scheme aims to improve the detection performance by

integrating soft and hard schemes while minimizing the overhead.

b) The detection performance is enhanced by combining a 4-level quantization scheme

and 2-level hard scheme in CBCSS. Clusters with low signal-to-noise-ratio (SNR) employ

the 4-level quantization scheme while the clusters with high SNR employ a 2-level hard

rule. This scheme enhances the performance with the minimum increase of the required

bandwidth.

1.3 Thesis organization

The fundamentals of spectrum sensing including the performance metrics, hypothesis test-

ing, and spectrum algorithms are presented in Chapter two. The chapter focuses on CSS

providing a brief overview about three main elements: centralized and distributed topolo-

gies, soft and hard combining schemes and user selection algorithms. CBCSS is also out-

lined by addressing its primary methods and models. Combining soft data rules such as

EGC and MRC by dividing the cluster into groups is considered in Chapter three while a

quantized soft fusion and hard fusion is discussed in Chapter four by classifying the clusters

based on their average SNR. Finally, conclusions and future works are shown in Chapter

five.
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CHAPTER 2

Fundamentals of spectrum sensing in

cognitive radio networks and overview

2.1 Introduction

One of the most critical functions of CR is the ability to measure the spectral content of the

spectrum and extract the required information about the available frequency bands which

is attained by considering two approaches: spectrum sensing and database. The latter ap-

proach is considered as an alternative to spectrum sensing, the principle of this scheme is

to store the information about the primary system including time, frequency, location and

interference range in a centralized data base. The SUs task is to periodically check the

data stored in the database to obtain the information about the channel occupancy and to

circumvent the harmful interference to the PU [1]. The Radio Environment Maps (REM)

is an emerging technology in the context of spectrum awareness that imposes the database

approach and offers a functional facility of boosting the network functions by incorporat-

ing the environmental information and historical knowledge [6]. The former method is the

most renowned in cognitive radio systems because of its simple framework architecture

and wide range of applications; it allows the cognitive radio to learn, measure and be aware

of the surrounding environment [1] .

In CR systems, the secondary users should achieve two objectives dynamically and

efficiently; one is to find the spectrum holes when the channel is idle and the other is

to detect the activity of the primary user when the channel is occupied to refrain from
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transmitting data and interfering with the PU. Thus, secondary users should have spectrum

sensing capability to achieve these two basic purposes. The PU transmission might be

detected over a particular frequency band at a specific time slot, but there might be another

vacant frequency band at the same time available for use. For this reason, spectrum sensing

should be performed in multiple dimensions including the time, frequency and space [1].

This chapter is dedicated to discussing the spectrum sensing preliminaries, techniques,

cooperative spectrum sensing including its models, stages and reporting schemes and the

clustering models and methods.

2.2 Hypothesis testing

Spectrum sensing aims to decide whether a particular part of the spectrum is being occupied

or not - that is, differentiating between the presence and absence of the PU, which can be

practically illustrated by formulating a binary hypothesis testing problem defined by (2.1)

as described in [1]-[7]:


H0 : y(n) = w(n)

H1 : y(n) = h(n).x(n) + w(n),

(2.1)

where y (n) is the received signal at the CR, x (n) is the primary signal transmitted over

a channel with channel gain h (n) and w (n) represents an additive white Gaussian noise

(AWGN) with zero mean and variance σ2, that is w (n) ∼ N (0, σ2
w) where n = 0,. . . , Ms,

and Ms is the total number of samples. H0 indicates that the channel is idle while H1

corresponds to the presence of the PU (i.e., channel is occupied).

2.3 Performance metrics

The detection performance of the applied spectrum sensing algorithm is measured by two

probabilities: the probability of detection (pd) and the probability of false alarm (pf ). On

one hand, the probability of detection is the probability that the secondary user success-
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fully detects the presence of the primary user when it is present. On the other hand, the

probability of false alarm is the probability that the secondary user detects the primary user

presence given that the primary user is absent. Therefore, it is preferred to attain a high

probability of detection as it reflects the sensing reliability (i.e., primary user protection);

it is also desired to achieve a low probability of false alarm to limit the spectrum underuti-

lization and increase the gained throughput for the secondary users. Pd and Pf are defined

by (2.2) and (2.3), respectively as follows [1]:

pd = pr (T > λ | H1) (2.2)

pf = pr (T < λ | H0), (2.3)

where λ is the detection threshold and T is the test statistic which is generated from the

received data y (n).

Another important performance metric to consider is the total probability of error which

is defined as the probability of giving a false decision on the spectrum occupancy and it is

given by the weighted sum of the probability of detection and false alarm as follows [8]:

pe = p (H0) pf + p (H1) (1− pd), (2.4)

where p (H0) and p (H1) denote the probabilities of absence and presence of the PU, re-

spectively and (1 − pd) represents the probability of miss detection which identifies the

spectrum as idle when it is present.

2.4 Spectrum sensing techniques

As stated in the previous sections, the main goal of spectrum sensing is to be able to detect

the primary user activity at very low SNR ratio and to provide an adequate level of protec-

tion to the PU. As a result, the research of spectrum sensing algorithms has been evolving,

and different methods have been developed depending on the system requirements and
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specifications. The algorithms are categorized as blind methods that do not require any

prior information about the primary user system like energy detection and eigenvalue de-

tection and non blind methods that require some or full information about the primary user

system like matched filter and cyclostationary detection [1]-[5].

Energy detection is the most attractive spectrum sensing scheme because of its mea-

ger resources requirement and simple computational analysis. Energy detector is a non-

coherent detector that doesn’t require any prior information about the primary user signal

as well as it only needs to measure the energy of the signal to detect the presence of the

primary user. Using energy detection, its output which acts as the test statistic is compared

with a predefined threshold that depends on the noise power [1]-[3]. With this in mind,

we can conclude that in practical situations, if the noise power is known and the primary

signal features are unknown, then energy detection will be the most favorable candidate for

spectrum sensing [1]-[9].

Although energy detector has the advantage of simple implementation without any pri-

mary system requirements, it is worth mentioning the significant drawbacks that make it

less robust and reliable than other spectrum sensing algorithms. First, energy detector can’t

discriminate between the different types of signals which degrade the spectrum utilization

when the received signal is combined with other interfering signals. Also, energy detec-

tor is prone to noise uncertainty which is inevitable in practical situations and leads to the

phenomenon of SNR walls that is defined as the minimum SNR below which the primary

signal can’t be detected no matter how many samples are used or how complex the system

might be [10]. Further, the threshold selection in energy detector depends on the noise

variance that can not be accurately estimated in practical scenarios resulting in unreliable

detection. Finally, energy detector is know to be optimal for detecting independent and

identically distributed signals (i.i.d) but it can not identify correlated signals [1]-[9].

Eigenvalue detection is a blind spectrum sensing method that is developed to overcome

the deficiencies of energy detection by using the minimum and maximum eigenvalues of
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the covariance matrix of the received signal samples [11]. In eigenvalue detection, the co-

variance matrix is deduced from the received signal samples, the maximum and minimum

eigenvalues are extracted from the matrix where the ratio of the maximum to minimum

eigenvalues serves as the test statistic that is compared to a predefined threshold to detect

the PU signal. Different from energy detection, the threshold using eigenvalue detection

does not depend on the noise variance and can only be computed by computer simulation

or mathematical derivation, and thus eigenvalue detection can show a superior performance

relative to energy detection. However, this comes at the cost of high computational com-

plexity which is caused by covariance matrix formulation and eigenvalue decomposition of

the covariance matrix [11].

The cyclostationary detector has been proposed to exploit the signal features provided

that all the signals in practical situations contain cyclostationary features that are generated

from modulation, coding and signaling schemes. The PU signal is detected by capturing

the periodicity of the it’s statistical parameters like mean and autocorrelation [1]-[4], [7].

Also, cyclostationary detectors are acknowledged to be able to differentiate between noise

and PU signals and to have an optimal performance at very low SNR ratio as they deal

with the periodicity of the signal and its statics when in fact the noise is wide sense station-

ary (WSS). Despite the outstanding performance of the cyclostationary detector under low

SNR regimes, there is a high computational complexity because of the long sensing time

required to extract the cyclostationary features from the signal.

The simple hardware requirement of the energy detector and the superior performance

of the cyclostationary detector in low SNR regions has inspired the authors in [12] to pro-

pose a two-stage sensing. In two-stage sensing, energy detection is utilized at the first

level, and cyclostationary detection is applied at the second level to harness the advantages

of both schemes by increasing the reliability at low SNR while keeping the detection time

as short as possible.

10



2. FUNDAMENTALS OF SPECTRUM SENSING IN COGNITIVE RADIO NETWORKS AND OVERVIEW

Matched filter can be used when a full knowledge about the primary user signal is avail-

able [1]-[7], it is known to be the optimum coherent detection method since it maximizes

the received SNR and needs a short sensing time to detect the PU signal [3]. In realistic

situations, most of the primary systems have pilots, preambles and synchronization signals

that facilitate the PU detection. However, the estimation errors at low SNR might degrade

the performance besides that the matched filter requires full knowledge about the PU signal

for demodulation which leads to large incurred overhead.

A comparison between the four spectrum sensing techniques in terms of complexity,

performance under noise uncertainty and prior knowledge about the PU signal is shown in

Table 2.1.

Table 2.1: Comparison of the sensing algorithms.

Method complexity performance under noise
uncertainty prior PU knowledge

Energy detection low low no knowledge needed

Eigenvalue detection high high no knowledge needed

Cyclostationay detection high high partial knowledge needed

Matched filter high medium full knowledge needed

2.5 Energy detection

In spite of the merits of low complexity and simple utilization of the energy detector, it has

various limitations in practical scenarios. However, energy detection remains the most fea-

sible spectrum sensing scheme especially in the case of stringent system hardware require-

ments [1]. That’s why extensive research strategies focus on enhancing energy detection

performance by employing cooperative spectrum sensing and diversity techniques [9] and

[13]. Some other works include modifications on the energy detector like the improved en-

ergy detector which is proposed in [14] by replacing the squaring operation of the received
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signal amplitude of the conventional energy detector with a power of (p). In energy detec-

tion, the signal passes through a bandpass filter that only allows the frequencies within a

particular range to pass. Then a square law device that is followed by summation yields the

energy content; in Ms samples of the received signal y(n); known as the test statistic given

by (2.5). The block diagram of energy detector is shown in Figure 2.1 [15].

T (y) =
Ms∑
n=1

|y (n)|2 (2.5)

Figure 2.1: Block diagram of Energy detector.

2.5.1 Design elements

2.5.1.1 Threshold selection

A core problem in spectrum sensing is the threshold (λ) selection which stems from the fact

that all the performance metrics pd, pf and pe are functions of the threshold (λ). Selecting

a high threshold value increases both pf and pd which leads to low spectrum utilization

and high protection level provided to the primary user. In contrast, a low threshold value

results in high spectrum utilization and low PU protection. For this reason, a trade off be-

tween spectrum usage and PU protection should be taken into account while determining

the threshold value [1], [2], [9].

The IEEE standards specify the acceptable range of pd and pf . For example, the IEEE

802.22 which is known as the first standard based on cognitive radio, requires the detec-

tion of spectrum hole while sustaining the probability of false alarm beyond 10% and the

probability of detection above 90% [16]. Consequently, several works have addressed the

issue of threshold selection, in [17], an iterative algorithm has been proposed to optimize
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the detection threshold by minimizing the spectrum sensing error. The authors in [18] have

investigated the threshold selection optimization under low SNR regime by employing a

criterion that minimizes the detection error while certain levels of the probability of detec-

tion and the probability of false alarm are ensured. The problem of noise uncertainty has

been analyzed in [19] as the threshold varies according to the noise power that is estimated

from the covariance matrix of the received signal samples; the simulation results confirmed

that the adaptive threshold has better performance than the fixed threshold value especially

in realistic environments where the noise uncertainty is unavoidable. The previous recent

works in [17]-[19] have considered the error probability as an optimization criterion while

in practice it usually desired to determine the threshold by maximizing pd and fixing pf at

small value which is referred as constant false alarm rate (CFAR) principle to alleviate the

interference effect [1]. It is important to point out that the receiver operating characteristics

(ROC) curves are widely used to examine the relationship between the reliability (pd) and

spectrum efficiency (pf ) for different threshold values which helps to choose the optimal

threshold value based on the system requirements [1].

2.5.1.2 Number of samples

The number of samples is a substantial design parameter of the energy detector since its

related to the sensing time. As M = τfs where τ is the sensing time and fs is the sampling

frequency, the longer the sensing time, the better the detection performance. However,

there is always a restriction on the maximum detection time. For example, the maximum

detection time specified by the IEEE 802.22 standard is two seconds [18]. Moreover, the

cognitive radio can’t perform simultaneous sensing and transmission. Therefore, the sens-

ing time should be optimized to give the cognitive radio more time for data transmission

and to achieve the desired throughput. It is also shown in [20] that the number of samples

is a function of the SNR ratio and the equation of the minimum number of samples has

been derived in terms of the targeted pd and pf . An experimental study was conducted by

the authors in [21] to analyze the credibility of energy detection in low SNR, and it was

observed that the number of samples required to meet the required specifications scales as

1/SNR2.
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2.5.2 Fading channels

The radio channel between the receiver and transmitter is known to be affected by three

main factors; path loss, multipath fading, and shadowing. These channel impediments can

severely deteriorate the performance of the energy detector by introducing randomness into

the received signal power [22]. Path loss refers to the decay of the received signal power

with distance as it propagates from the transmitter to the receiver. On the other hand, shad-

owing is caused by the rapid fluctuations of the received signal power about the path loss

due to obstacles in the propagation path.

While path loss and shadowing are characterized as large scale fading in that they cause

the variations over comparatively large distances. Multipath fading is described as small

scale fading that occurs when the signal reaches the receiver via different paths due to

scattering, reflection and diffraction which results in multiple replicas with different time

delays and gains [23]. Multipath fading can be modeled as AWGN, Rayleigh, Rician or

Nakagami distribution according to the type of the radio channel.

Recently, energy detection over fading channels has been the focus of many research

contributions [24], [25]- [27]. In [25], different multipath fading models are examined for

the energy detector including the Rayleigh and Nakagami models. Further, the performance

of the energy detector under log normal shadowing was assessed and compared with the

non-fading case in [24]. Besides, a practical channel model that combines both multipath

fading and shadowing was proposed with the analytical expressions and approximations in

[26].

Some other authors derived alternate expressions to simplify the detection probability

formulas that involve arduous operations of integrating the probability of detection over the

probability density function of the SNR over the fading channel [27]. Before elaborating

more on the various channel models, it should be stressed that under fading channels, the

probability of false alarm is computed using the same formula as the AWGN case since it
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is independent of SNR (i.e., no primary signal under H0). Alternatively, the probability of

detection is computed by averaging pd in the AWGN channel over the SNR distribution for

the corresponding fading channel with probability density function (PDF) of f (γ) as will

be shown below.

2.5.2.1 Sensing in AWGN channel

AWGN channel is the simplest model where the channel gain (h(n)) is deterministic and

considered as unity (h (n) = 1 ∀ n). Under this non-fading channel model, the signal is

affected by the thermal noise in the channel itself. The probability of false alarm is given

by (2.6) and the probability of detection is given by (2.7) for deterministic signal model or

(2.8) for random signal model as [28].

pf =
Γ (u, λ/2)

Γ (u)
, (2.6)

pd,d = Qu

(√
2uγd,

√
λ

σ2
w

)
, (2.7)

pd,r =
Γ
(
u, λ

2σ2
w(1+γr)

)
Γ (u)

, (2.8)

where u = M/2 is the time bandwidth product, λ is the threshold, Γ(.) and Γ(., .) denote

the Gamma function and incomplete Gamma function, respectively, σ2
w is the noise variance

and Qu (a, b) is the generalized Marcum Q-function. The SNR of the received PU signal

at the SU for the deterministic and random signal models is given by (2.9) and (2.10),

respectively, as [28]:

γd =
|h|2 |x|2

σ2
w

, (2.9)

γr =
|h|2 σ2

x

σ2
w

, (2.10)

where x is the deterministic signal’s amplitude.
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2.5.2.2 Sensing in Rayleigh channel

Rayleigh fading channel model describes the worst case multipath fading with no direct

line of sight (NLOS). The instantaneous SNR (γ) follows an exponential distribution given

by (2.11) [25]:

f (γ) =
1

γ̄
e

−γ
γ̄ . (2.11)

2.5.2.3 Sensing in Nakagami channel

Nakagami fading is the general case that represents a broad range of multipath channels

with the Nakagami parameter m which indicates the severity of fading (i.e, the fluctuations

of the signal reduce as m increases). Nakagami channel reduces to the worst case Rayleigh

when (m = 1) and converges to the non-fading case (AWGN) when (m → ∞ ) [23]. The

instantaneous SNR follows an exponential distribution given by [25]:

f (γ) =
1

Γ (m)

(
m

γ̄

)
γm−1e

−mγ
γ̄ . (2.12)

2.6 Cooperative spectrum sensing

As mentioned previously, the so-called local spectrum sensing which is performed by the

individual CR is associated with several challenges which make it vulnerable to detection

failure. The challenges include sensitivity requirements, receiver uncertainty, and hidden

terminal problem [32]. Detection sensitivity (γmin) was defined in [33] as the minimum

SNR at which the CR can precisely detect the presence of the PU. It was also shown that

γmin depends on the estimated noise power which is affected by calibration errors and ther-

mal noise fluctuations that cause noise uncertainty and introduce SNR wall problem [10].

The performance under noise uncertainty was explored in [34], and the results revealed

that even the small noise uncertainty values could remarkably obstruct the detection reli-

ability. Receiver uncertainty is another problem that occurs when the CR is outside the

transmission range of the PU which creates a harmful interference if the CR is unaware of

the PU transmission whereas the hidden terminal problem which is caused by multipath

fading and shadowing weakens the received signal and thus hinders the detection perfor-
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mance as discussed earlier. Spectrum sensing challenges have been illustrated in Figure 2.2

[32]. Cooperative spectrum sensing (CSS) has been devised to resolve the aforementioned

challenges of spectrum sensing.

Figure 2.2: Challenges of local spectrum sensing.

In CSS, secondary users can cooperatively execute spectrum sensing to ameliorate the

sensing credibility even under worst case situations. Intuitively, allowing multiple users

to share their sensing results by exploiting their spatial diversity immensely improves the

detection performance and ultimately increases the spectrum utilization [8], [20], [24],

[29]-[32]. Numerous research efforts have been made to develop a CSS mechanism that

considerably relieves the limitations of local sensing and acquire the desired gain. Some

studies focused on the noise uncertainty, for example, a double threshold algorithm was ap-

plied in [35] to diminish the impact of noise uncertainty by utilizing the advantage of CSS

while other studies investigated the effect of CSS in combating severe fading and shadow-

ing [24]. An analytical CSS framework was designed in [36] to hamper the determintal

effect of correlated log-normal shadowing.

17



2. FUNDAMENTALS OF SPECTRUM SENSING IN COGNITIVE RADIO NETWORKS AND OVERVIEW

2.6.1 Cooperative spectrum sensing topologies

Cooperation among cognitive radios can be classified as either centralized or distributed

depending on the architecture, availability of central entity and quality of the control chan-

nel (i.e., a channel used to report the data to the central entity or to exchange them with

other CRs) [1]-[4], [5], [32], [37]. The process of CSS involves three main stages of local

sensing, reporting, and decision making whether the network was implemented in central-

ized or distributed manner [32]. The two models of CSS are depicted in Figure 2.3 [5].

(a) Centralized (b) Distributed

Figure 2.3: Cooperative spectrum sensing topologies.

2.6.1.1 Centralized cooperative spectrum sensing

Centralized CSS is the most popular architecture that is composed of a central entity called

the FC and a number of SUs affiliated with it [24], [31]. In centralized CSS; the FC is

inherently more complicated in its hardware than all the other SUs in the network as it

monitors the CSS stages and makes the final decision about the PU presence [1]-[5]. The

process starts with the FC selecting the PU channel to be detected, and instructing all the

SUs to start detecting it. Following this, each SU performs local spectrum sensing individ-

ually. In the subsequent stage, the SUs forward their sensing results to the FC as one bit
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(hard fusion) or as raw data (soft fusion). Finally, the FC gathers the local results of all the

SUs and combines them according to a fusion rule to render the final decision about the PU

existence [5], [32].

For an efficient execution of this process, a proper selection of the FC is required taking

into account the location and security features; if the FC is heavily shadowed, the overall

performance of the network will be drastically impaired [37]. Additionally, the quality of

the channels is crucial in this scheme; two physical channels in this regards were defined in

[32]; the sensing channel between the PU and the SU which is used for local sensing and

the reporting channel between the FC and other SUs which is used for reporting the results.

Centralized CSS aims to achieve high detection performance and spectrum efficiency

by combining the observations of the spatially located CRs. In spite of the attained de-

tection gain, a number of challenges arise with the implementation of this topology. CSS

requires the establishment of a complex backbone infrastructure for information exchange;

dedicated reporting channels are used by the SUs for reporting the observations to the FC.

Commonly, reporting channels might undergo deep multipath fading and shadowing and

might be assigned with fixed bandwidth [1] besides that in the case of large number of

SUs, the large distance reporting channels consume enormous energy [32]. Subsequently,

a trade-off between performance and overhead (i.e., time, number of users, energy con-

sumption and complexity) should be guaranteed. To address this aim, researchers have

suggested different approaches in this matter including throughput maximization, energy

minimization, sensing scheduling, clustering and detection error minimization.

Throughput optimization has been considered in many works from different aspects. In

[30], a throughput optimization setup that selects the optimal number of users was formu-

lated as a problem of minimizing the total probability of false alarm while conforming to

a permissible interference level. An extension of [30] was implied by the authors in [38]

by imposing an additional constraint on the energy consumption. Unlike [30] and [38], in

[39] the sensing time was included for optimizing the throughput. Similarly, the sensing
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time was optimized to maximize the throughput in [40]. Energy minimization is another

approach that was adopted in [41] to counterweight the overhead and performance by se-

lecting the optimal number of users and sensing time duration in order to minimize the total

energy consumption of the network. The idea behind this approach emanated from the ef-

fect of a large number of users and long sensing duration on both the detection gain and

energy consumption (i.e., long sensing time increases the gain and consumes more energy).

Sensing scheduling is an approach that determines the efficiency of CSS. Sensing schedul-

ing is known to extend the network lifetime by dividing the SUs into groups and activating

one group at a time while keeping the other groups in a sleep mode given that the detection

and false alarm probabilities are satisfied. In [42], greedy degradation algorithm was em-

ployed to find the optimal scheduling and to maximize the sensor lifetime. Furthermore,

geographical neighboring of the users referred as clustering is a widely used approach for

band-limited control channels to reduce the overhead of reporting the results to the FC

[15], [43]. Recently, minimizing the error rate by finding the optimal threshold has been

the focus of many researchers [8], [15], [44].

2.6.1.2 Distributed cooperative spectrum sensing

The main concept of distributed spectrum sensing is that the SUs share their observations

among each other without the need for backbone infrastructure. Different from the central-

ized topology, SUs exchange the information among each other through multiple iterations

until a consensus is reached [45]-[48]. By adopting a distributed spectrum sensing algo-

rithm, cognitive radios should successfully complete three successive phases. In the first

phase, the sensing results are generated by local spectrum sensing, they are then sent to

other SUs within the transmission range of the CR, and following this, the CR fuses the

received data to make a final decision based on a local criterion. Finally, if the spectrum

hole is not detected, SUs iteratively repeat the process until a unanimous final decision

is reached [32]. Table 2.2 highlights the advantages and disadvantages of centralized and

distributed schemes.
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Table 2.2: Comparison of Centralized and Distributed Topologies.

Topology Criterion Advantages Disadvantages

Centralized
A central entity controls the
transmission process and the

final decision making

• FC collects detailed information
about the network (reliable)

• Less number of messages need to
be transmitted compared to the
decentralized approach (Band-
width efficient)

• large number of users increases
the distance of the reporting
channel ( energy inefficient).

• one FC controls the whole net-
work (complex)

Distributed
Each SU makes his/her own

decision by interchanging the
observations with other SUs

• No need for backbone infrastruc-
ture

• High throughput when all users
sense in every time slot

• large control bandwidth required
for the transmission among all
SUs

• Large sensing duration

2.6.2 Reporting schemes

In both centralized and distributed CSS and regardless of the spectrum sensing technique

used, each CR has to perform local spectrum sensing and to send its results to other users or

to the FC as either one bit or raw data to generate a final decision for hypothesis testing [1]-

[32]. The process of combining the sensing results to come up with a cooperative decision

is a fundamental element of CSS known as Data fusion. In essence, for CSS, depending on

the form of the sensing results reported to the FC or shared among users, we can distinguish

between hard fusion and soft fusion [48]:

• Hard fusion: the sensing results are represented in one-bit form ;

• Soft fusion: the sensing results are described as either quantized or energy form.

According to the hard fusion CSS, each CR processes the sensing data locally and transmits

the one-bit decision to the FC. At the FC, a decision fusion rule is employed to make the

global decision. In the case of soft fusion, CRs forward their entire data to the FC to

make the global decision without performing any local process [29]. It was shown in [29],

[48] that the soft combining techniques yield a better performance gain as compared to

the hard combing techniques in terms of the probability of detection. Meanwhile, soft

combining techniques require a large control channel bandwidth that is almost comparable

to the sensing channel which means that the better detection performance comes at the cost
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of large channel bandwidth [1]-[32]. However, recent studies showed that the bandwidth

requirement of the soft techniques is relatively similar to that of hard techniques due to the

overhead of transmitting the sensing results to the FC even for one-bit results. Additionally,

that it is required for hard combining that each SU has the capability of complex signal

processing whereas the SUs in soft schemes do not need this feature [13], [49].

2.6.2.1 Hard Fusion

In hard fusion, each SU makes a decision and forwards it to the FC which applies a linear

fusion rule to incorporate the received binary data. Typically, hard combining rules wherein

OR, AND and Majority rules are considered as special cases of the general K-out-of-N rule,

are used for decision fusion [31]. Particularly, the general K-out-of-N which is known as

the counting rule is the simplest fusion method since it only counts the number of the users

that detect the presence of the PU and compares it to a predefined threshold. Assuming that

the total number of users is N and the number of users that have decided that the spectrum

is used is K, then the three rules are defined as below:

• Logical OR-rule: The channel is deemed to be occupied if at least one of the cog-

nitive radios decides that it is busy (K = 1) [24]. Thus, this rule increases the PU

protection but at the expense of inefficient spectrum utilization. The global probabil-

ity is computed using (2.13) as follows:

QOR = 1− (1− pi)N , (2.13)

where pi is the local probability of detection or false alarm for the ith CR.

• Logical AND-rule: The channel is deemed to be occupied if all the cognitive radios

decide that it is busy (K = N ) [20]. Thus, this rule increases spectrum utilization

but at the risk of increasing the interference with the PU. The global probability is

computed using (2.14) as follows:

QAND = (pi)
N . (2.14)
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• Majority K-out-of-N: The channel is deemed to be occupied if at leastK users decide

that it is occupied (K =
⌈
N
2

⌉
) [20]. Thus, this rule compromises between the spec-

trum efficiency and PU protection. The global probability is computed using (2.15)

as follows:

QMajority =
N∑
l=K

(
N

l

)
pli (1− pi)

N−l . (2.15)

Hard fusion schemes are vastly used in the literature of CSS [13], [15], [20], [24], [30],

[31], [38]-[41], [44], [48]- [52]. Hard combining was employed in [15] to aggregate the

results of multi-level CBCSS. Logical OR rule has been used in [24] to counter the detri-

mental effects of shadowing and fading. In [31], the number of users required to perform

CSS was found based on two criteria; maximizing pd and minimizing pf ; by using OR and

AND rules. The general K-out-of-N has been considered in [40] where the optimal value

of K and sensing time are jointly determined to maximize the throughput. An extended

version that applies general K-out-of-N rule has been proposed in [38] to jointly optimize

three parameters (K, N , pf ); to maximize the throughput ; while imposing constraints on

the global probability of detection and energy consumption. Alternatively, the energy de-

tection using the K-out-of-N has been studied in [44] to find the relation between the value

of k and the detection threshold and the results validated that the majority rule is the opti-

mal fusion rule to minimize the total error rate. However, it was found that the K-out-of-N

inclines towards the AND rule when the detection threshold is very small and to the OR

rule when the detection threshold is very large. Another scenario has been embraced in

[50] as the optimum value of K has been derived for different setups that either target the

throughput of the secondary system or the quality of service of the primary system.

Moreover, hard combining has been extensively explored in most of the works that deal

with energy efficiency. For example, the K-out-of-N rule was optimized in [51] to maxi-

mize the energy efficiency (i.e., the ratio of the throughput to energy consumption) with a

constraint on the interference level. Recently, the authors in [52] developed novel energy

efficient strategies based on three different hard combining rules to maximize the energy

efficiency by varying the window size. Other works considered advanced fusion techniques
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to assure an adequate detection under practical scenarios, for instance, a linear quadratic

fusion scheme that handles the issue of correlated results without requiring full knowledge

of the signal’s statistics was investigated in [53]. The results show that this scheme out-

weighs the K-out-of-N rule in the case of correlated shadowing while only requiring the

knowledge of lower order moments of the correlated decision variables. A novel weighted

decision fusion scheme that takes into account the difference in SNR between SUs was

proposed in [54] where the FC applies log Likelihood Ratio Test to weight the decisions

with respect to the SNR.

2.6.2.2 Soft Fusion

In soft fusion, the SUs do not make any decision, instead, they convey their entire or pro-

cessed data to the FC to make the final decision [1]-[3], [32]. Several soft fusion schemes

have been utilized in the context of CR [29], [49], [55] -[56]. An optimal soft combining

(OCS) scheme based on the Neyman-Pearson criterion was derived in [29] in which the

decision depends on the weighted summation of the collected energies from different SUs,

and the threshold is calculated to meet a specified probability of false alarm. It was found

that the scheme leans towards the EGC when the SNR is high and to the MRC when the

SNR is low. The performance of the OCS scheme was investigated under (i.i.d) Rayleigh

and Nakagami channels and was compared to the hard combining scheme. Furthermore,

the results corroborated that there is no information loss in OCS, thus increasing the num-

ber of users (N ) always yield a better detection performance for any value of SNR. On the

contrary, information loss is a pivotal issue in the case of hard combining, thereby smaller

N is better under low SNR. Motivated by the fact that the hard techniques are better re-

garding overhead while the soft techniques are better in terms of performance, the authors

proposed a softened two-bit hard scheme which is classified as a 4-level quantization that

offers an almost identical gain to the EGC with much less complexity. In the same manner,

a three-bit quantization scheme was analyzed in [55] by dividing the range of observed

energy into eight regions and assigning upper regions with larger weights. Inspired by

the work in [20], the authors in [56] derived the optimal sensing time that maximizes the

throughput for different soft fusion techniques (i.e., EGC, MRC and MDC).
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Quantization combining has drawn the attention of many researchers since it exhibits a

fairly similar performance to the soft schemes without imposing excessive bandwidth de-

mand on the system [57]. In [58], two multi-bit quantization combining techniques were

proposed; the optimal multi-bit scheme which is based on minimum error probability and

the suboptimal multi-bit method based on the general K-out-of-N rule. Unlike quantiza-

tion over perfect channels, more quantization levels result in higher probability of error

under imperfect reporting channel as emphasized in [57], [59]. In [59], numerical expres-

sions were derived for balancing between the number of quantization levels and reporting

energy. A fusion rule with multi-level quantization was designed to combat the effect of

quantization noise over imperfect reporting channel, and a differential evolution algorithm

was used to determine the optimization parameters [57].

An optimal linear technique was developed in [60] to optimize the detection perfor-

mance and circumvent the computational complexity related to the quadratic forms of the

Log Likelihood Ratio Test (LRT) fusion method. Adopting this technique requires trans-

mitting the local test statistics to the FC where a linear combination is conducted so that

the probability of detection is maximized without the exceeding the probability of false

alarm limit. A modified deflection coefficient (MDC) metric was proposed to optimize the

weighting factor that controls the sensing performance. In [29] and [60], the soft combin-

ing rule was derived under the assumption that the instantaneous SNR is available at each

SU which is only true for slow fading channels. Lately, novel soft combining methods have

been devised to consider the block fading and fast fading conditions where only the average

SNR is available at each SU [61]-[63].

Other soft fusion schemes that are similar to multi antenna case and depend on the avail-

ability of the channel state information (CSI) between the CR and the PU are presented

in [25] and [64]. The schemes include MRC, SC, EGC and square law selection (SLS).

The performance of these schemes has been evaluated under different fading channels and

compared to the hard schemes through complementary ROC according to the probability
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of miss detection in [65]. From an energy consumption perspective, it was shown that EGC

ultimately outperforms both LRT and MRC under critical conditions including low SNR,

large number of users and limited time frame [66].

Soft and hard schemes were compared in various works from different standpoints [49],

[67], [68]. A comprehensive analysis of soft and hard fusion schemes where the reporting

channel is imperfect was presented in [49]. It was proven that the soft schemes are more

precise than the hard schemes even in the existence of the reporting channel errors. A fair

comparison model between soft and hard schemes in terms of detection probability was

examined in [67] by limiting the time resources; the authors extended their work and com-

pared both schemes in terms of energy efficiency in [68]. Several works have considered

combining soft and hard rules to achieve a trade off between the detection performance and

bandwidth requirement as in [69], [70].

2.6.3 User selection algorithms

The user selection is one of the key elements of cooperative spectrum sensing that main-

tains the overall system performance regarding throughput and energy consumption [1],

[32]. In [31], the authors found that it is not always necessary for all the CRs to partic-

ipate in spectrum sensing due to their different locations and channel conditions. They

determined the optimal number of users that either gives an optimum global probability of

detection (Qd) or global probability of false alarm (Qf ) based on two criteria; CFAR and

constant detection rate (CDR). Both criteria converged to the same result that the selection

of the users with highest SNR confers a better detection performance. The importance of

sensor selection has been reinforced in [71], and three different centralized sensor selection

algorithms were emphasized depending on the amount of available knowledge about CR

locations and correlation distribution. By the same token, user selection under correlated

log-normal shadowing was adopted in [72] by asserting that a few number of users col-

laborating over a large area is more efficient than a large number of users located close to

each other in a small area. Due to the high energy consumption and bandwidth requirement
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affined with a large number of users, several clustering schemes were proposed to coun-

teract this problem [32]. The literature provides an ample evidence that clustering has the

potential to reduce the overhead over the control channel and the ability to cut down energy

consumption [15], [43], [73]-[82].

2.7 Cluster-based CSS (CBCSS)

Cooperative spectrum sensing was introduced to enhance the detection performance by

combining the decisions of spatially located CRs. However, the prospect of detection im-

provement gradually diminishes with the increase in the number of users that cause con-

gestion on the control channel coupled with an added computational complexity and high

energy consumption. Moreover, the reporting channels are commonly exposed to propa-

gation effects which encompass multipath fading, path loss and shadowing. Besides that,

if the user is outside the coverage range of the PU, it will only transmit the noise power

inducing a negative impact on the sensing performance.

In the light of these hurdles related to the conventional CSS, cluster-based CSS (CBCSS)

has been introduced because of its intrinsic attributes in reducing the control overhead and

the energy consumption of the networks. This can be interpreted as clustering simultane-

ously reduces the reporting channels distances and the number of the users reporting to the

FC, thereby consumes less energy, undergoes less propagation and requires less overhead

[2], [7], [32]. In CBCSS, the available CRs are divided into groups according to the ge-

ographical locations and (SNR) values. In each cluster, the nodes are defined as either

cluster heads (CHs) or cluster members (CMs) depending on their roles. The user with

the largest reporting channel gain (i.e., nearest to the FC) is elected as the CH where the

remaining users are classified as (CMs) [73]-[75]. Unlike conventional CSS, the concept

of clustering is to perform spectrum sensing on two levels where the internal level is exe-

cuted among the CMs (intra-cluster) while the external level is carried out between the CHs

(inter-cluster) [73]. More specifically, the CHs inform the CMs about the channel to be de-

tected based on the FC commands, thereafter, the CMs perform local spectrum sensing and
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forward the results to the CH which in turn combines them and sends the final result to the

BS that executes another level of fusion by combining the CHs results and disseminating

the final outcome back to them.

2.7.1 Clustering methods

Multiple criteria were used to classify clustering methods [74]-[75]. For example, in [74],

four clustering methods were underlined based on the availability of the CR and PU loca-

tions. First, if the location of both the CRs and PU is unknown, then random clustering is

considered by randomly dividing the CRs into clusters. Second, if only the location of the

CRs is known, two methods can be employed to divide the CRs into clusters: a reference

based clustering based on a predefined reference and a statistical clustering that relies on

the CRs relative proximities. Finally, a distance based clustering is utilized when the posi-

tion of both the PU and CRs is known; only a set of users that are close to the PU is selected

for clustering. A comprehensive survey was presented in [75], where clustering algorithms

were classified into five categories according to their objectives, namely, dominating set

based clustering, energy efficient clustering, stability based clustering, CSS based cluster-

ing and common control channel establishment based clustering. Furthermore, the works

presented complexity analysis, performance evaluation and descriptions of related contri-

butions for each category.

2.7.2 Clustering models

Clustering has been deliberately studied in literature where different clustering models are

tailored for cognitive radio networks (CRNs), mainly, performance improvement oriented

models, overhead reduction oriented models and combined metrics based models. The

survey in [73] sheds light on these different models that are shown below:

2.7.2.1 Performance gain oriented models

In [76], a CBCSS scheme was proposed to utilize the spatial diversity of users taking into

account the imperfection of the reporting channels. Both soft and hard combining fusion
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rules were applied to delineate the performance level. The proposed CBCSS showed a sub-

stantial performance improvement relative to the conventional CSS; the work though did

not provide any information about the cluster formation design; instead, it assumed that

the clustering had been already done by some distributed algorithms by the upper layers.

A more consolidated version was proposed in [77] by integrating clustering formation al-

gorithms with performance improvement model. The authors employed a greedy heuristic

and graph theory techniques to build the clusters whereby the SUs within the coverage

range of the PU are allowed to join the cluster. Also, the suggested CBCSS scheme aims

to improve the achievable throughput while protecting the PU from harmful interference.

2.7.2.2 Overhead reduction oriented models

Under this category, CBCSS techniques are directed towards reducing the incurred over-

head [43], [78]-[79]. A novel minimal dominating set algorithm based on graph theory

was suggested in [43] to find the minimum number of clusters that preserves the network

connectivity while reducing the number of the CRs reporting to the FC to reduce the re-

quired bandwidth. In the same manner, the authors in [78] proposed an algorithm that finds

the minimum number of clusters to minimize the overhead. Although the works in [43]

and [78] aim to reduce the number of clusters, they follow different approaches. In [78],

the approach follows an optimization problem that balances between the system reliabil-

ity and the overhead. Furthermore, the simulation results demonstrated the efficiency of

the proposed model in comparison with the K-means clustering. A CBCSS approach that

minimizes the energy consumption in the reporting stage was considered in [79] with the

aid of frequency reuse methods.

2.7.2.3 Combined metric based models

Several works have tackled the issue of compromising between performance improvement

and overhead reduction [15], [80]-[82]. Two recent works were proposed by the same au-

thors to address this matter from different perspectives [15], [80]. In [15], a multi-level

hierarchal algorithm was proposed to divide the cluster with a large number of users to

multiple groups and subgroups in such a manner that improves the detection performance
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and minimizes the overhead. The authors also proposed another algorithm that jointly de-

termines the sensing time and data transmission time to maximize the energy efficiency

while meeting the required detection accuracy [80]. Simulation results affirmed the ad-

equacy of the low-complexity algorithm in improving the performance of the cluster. A

cluster hybrid energy aware CSS (CHESS) mechanism was introduced in [81] by coalesc-

ing the energy consumption with sensing accuracy to achieve a reliable performance and

expand the network lifetime. In [82], a CBCSS scheme that reduces the required amount of

cooperation resources while achieving high performance level was employed. The scheme

deploys two methods within the cluster; a selective method to select the most reliable user

as cluster head and a parallel mechanism that is based on frequency division to handle the

synchronization and contention collision. At the FC, an optimal Chair-Varshney rule (CV

rule) was employed to conclude a final decision.

2.8 Conclusions

This chapter has provided an overview of spectrum sensing including its preliminaries and

techniques with an emphasis on energy detection. The design parameters and the perfor-

mance under several fading channels with different signal models were briefly discussed.

Furthermore, cooperative spectrum sensing has been outlined, and the main challenges

of spectrum sensing were accentuated. Some of the primary advantages and drawbacks

of centralized topology and distributed topology were summarized. Then, two main key

elements of CSS; reporting schemes and user selection algorithms; were also presented.

Finally, the three primary models of cluster based CSS were illustrated.
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CHAPTER 3

Hierarchical Cluster-Based CSS in

Cognitive Radio Employing Soft-Hard

Combination

3.1 Introduction

Collaboration between CRs has been proposed to alleviate the adverse impact of channel

impairments on the detection performance. However, the attained improvement in detec-

tion performance (i.e., cooperation gain) always comes with challenges of increasing the

complexity, energy consumption and delay time (i.e., cooperation cost) [32]. Collabora-

tion process has two main stages, namely, sensing stage and reporting stage. In the sensing

stage, all contributing CRs independently sense the existence of the PU, whilst in the re-

porting stage; every single CR forwards its local observation to the FC. The FC extracts the

final decision about the existence of the PU by fusing the aggregated CRs’ observations [7].

Two popular schemes can be employed during the reporting stage, either hard decision or

soft decision. In case of hard combining, the CRs report their observations as one bit (i.e.,

0 or 1) to the FC which employs a hard combining rule such as OR, AND, and k-out-of-N

rules to make the cluster decision, while in case of soft combining, all CRs forward their

entire test statistics to the FC which employs a soft combing technique such as EGC, SC

and MRC to come out with the decision about the PU existence [83].

Soft combining schemes lead to a better detection performance compared with the hard

combing schemes at the cost of large channel bandwidth [84]. In general, incurred over-
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head is one of the foremost challenges involved with CSS scheme. Therefore, the principle

of clustering was applied to make a trade-off between the gain and the cost of the coop-

eration process. Tremendous research works have tackled cluster-based spectrum sensing

(CBSS) schemes from distinct standpoints. The CBSS schemes can be divided into three

main categories, namely, performance improvement oriented schemes, overhead reduction

oriented scheme, and combined metrics scheme [73].

Multi-cluster Multi-group (MCMG) algorithm has been proposed in [85] to improve

the detection performance by dividing the cluster into groups. A multi-level hierarchal-

based CSS (MH-CBSS) algorithm has been developed in [15], the algorithm exploited

the hierarchical structure of a cluster and employed two different fusion rules at different

levels in order to attain better detection performance and lower incurred overhead. An

iterative algorithm has been proposed in [80] to determine the optimal sensing time, data

transmission time and number of users that maximize the energy efficiency in designing an

efficient cluster-based spectrum sensing.

Inspired by the work in [15] and [85], we propose a new cluster hierarchy criterion

employing soft-hard combination techniques in order to significantly improve the detec-

tion performance and to determine the required number of the hierarchical structure of the

cluster. In the proposed algorithm, the soft technique is employed at the lowest level while

the hard decision rule is employed at the higher levels. Moreover, the optimal number of

CRs in each hierarchical level is considered.

This chapter is organized as follows: system model is presented in Section 3.2. The

proposed algorithm is described in Section 3.3. Simulation results are presented in Section

3.4. Finally, conclusions are provided in Section 3.5.

3.2 System model

Assume a cluster with N CR’s, each CR employs energy detection to sense PU existence

independently. For an AWGN channel, pd and pf , are provided as in [64]

pd = QM
2

(√
2γ,
√
λ
)
, (3.1)
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pf =
Γ
(
M
2
, λ
2

)
Γ
(
M
2

) , (3.2)

where Γ(.) and Γ(., .) denote the gamma function and the incomplete gamma function,

respectively. Qa (b, c) is the generalized Marcum Q function, λ is the detection threshold,

M indicates the degrees of freedom, and γ is the SNR. Note that the noise variance is

assumed to be unity. Using the decision fusion rule K-out-of-N, Qd, and Qf , for a cluster

with N CRs are computed as follows:

Qd =
N∑
j=K

(
N

j

)
P j
d (1− Pd)N−j, (3.3)

Qf =
N∑
j=K

(
N

j

)
P j
f (1− Pf )N−j, (3.4)

whereK =
⌈
N
2

⌉
with d.e being the ceiling function. Employing data fusion rules, pd can be

determined by averaging equation (3.1) over the PDF of the employed scheme as follows:

pd =

∫ ∞
0

QM
2

(√
2γ,
√
λ
)
fγ (γ) dγ, (3.5)

where fγ (γ) is the PDF of the employed scheme. The three schemes over the Nakagami

fading channel are described in [23], [64] as follows:

• Equal Gain Combining (EGC)

EGC is the most popular soft fusion scheme, the FC makes the final result about the

PU presence by combining the received energy values from all CRs.

The probability of false alarm and the probability of detection are as [23]:

PEGC
f =

Γ
(
VM
2
, λ
2

)
Γ
(
VM
2

) , (3.6)

PEGC
d =

∫ ∞
0

QVM
2

(√
2γ,
√
λ
)
fγEGC (γ) dγ, (3.7)

where fγEGC (γ) is the PDF of, γEGC , for V i.i.dNakagami-m fading channels given
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by [23]

fγEGC (γ) =

(
m

γ̄

)V m
γV m−1

Γ (V m)
e

−mγ
γ̄ , (3.8)

where m is the Nakagami parameter, m = 1, 2, 3, . . .

• Maximal Ratio Combining (MRC)

Using MRC, each CR employ energy detection to obtain it’s energy value and for-

wards the result with appropriate weighting, which is proportional to the instanta-

neous SNR, to the FC.

The false alarm probability is computed as (3.2), while the probability of detection is

computed as [23]:

PMRC
d =

∫ ∞
0

QM
2

(√
2,
√
λ
)
fγMRC

(γ) dγ, (3.9)

where fγMRC
(γ) is the PDF of the SNR, as [23]:

fγMRC
(γ) =

(
m

γ̄

)V m
γV m−1

Γ (V m)
e

−mγ
γ̄ . (3.10)

• Selection Combining (SC)

Using SC, the FC polls the CR with the maximum instantaneous SNR.

The probability of false alarm is computed as (3.2), while the probability of detection

is computed as [23]:

P SC
d =

∫ ∞
0

QM
2

(√
2,
√
λ
)
fγSC (γ) dγ, (3.11)

where fγSC (γ) is the PDF of SNR, as [23]:

fγSC (γ) =
V mmγm−1

γ̄mΓV (m)
e

−mγ
γ̄ ΓV−1

(
m,

(
mγ

γ̄

))
. (3.12)

34



3. HIERARCHICAL CLUSTER-BASED CSS IN COGNITIVE RADIO EMPLOYING SOFT-HARD COMBINATION

3.3 The proposed fusion algorithm

Algorithm 1 describes the proposed soft combining technique which is employed in the

inferior hierarchical level of the cluster, whilst the hard combining technique is employed

in the superior levels. The optimal number of required hierarchical levels and the number

of CRs in each level can be determined using the following criterion:

max
G,R,K1

(Qd)

subject to R ≥ 1; G ≥ 1

Qf ≤ β

(3.13)

where k1 =
⌈
G
2

⌉
, G is the number of the groups, R is the number of the CRs in a group

and β is the spectrum utilization constraint.

The objective of the above-mentioned optimization criterion is to maximize the total

attained while refraining to exceed some threshold . An iterative algorithm is developed to

extract the optimal number of levels and the number of CRs in each level.

Algorithm 1 The proposed fusion iterative algorithm
1: specify N , β, Pf , and then compute, λ using (3.2)
2: Find factorization of N , Let R1 = {1, a1, a2, . . . , ar}, where ai is a divisor of N

and i = {1, 2, 3, . . . , r}
3: d = 1

FOR i = 1 : r + 1
R = R1(i)
G = N/R1(i)
compute Pd(i), Qd(i), Qf (i)
IF Qf (i) ≤ β
A2(d, i) =

[
Qd(i) G(i) R(i)

]
d+ +
ELSE
CONTINUE
END
END

4:
[
i1, i2

]
= max (A2 (:, 1))

5: G= A2 (i2, 2) and R = A2 (i2, 3)
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3.4 Simulation Results

As a simulation setting, let N = 18 CRs, and probability of false alarm constraint β = 0.01.

The simulation results of the proposed algorithm are compared with MCMG algorithm [85]

and conventional algorithm [73]. Moreover, the number of required hierarchical levels and

number of CRs in each level are determined by the proposed iterative algorithm as shown

in Table 3.1.

Table 3.1 provides the results of selecting the best hierarchical levels for the cluster us-

ing the proposed iterative algorithm with EGC. The results show that the optimal hierarchy

for the cluster with 18 CRs is to divide the cluster into three groups, each has 6 CRs.

Assuming an equiprobable system with the same probability of presence and absence of

the PU, then the second combination of Table 3.1 gives the minimum probability of error

compared to the other combinations.

Table 3.1: Results of the proposed iterative algorithm.

i Qd Qf G R
1 0.9976 0.0975 2 9
2 0.9532 0.0073 3 6
3 0.8981 0.0022 6 3
4 0.6077 3.3× 10−5 9 2

For a thorough comparison, different scenarios are considered as follows:

Scenario one: Investigating the impact of sensing time, M , on the performance of the

proposed algorithm over the Nakagami fading channel. The detection performances of the

proposed algorithm employing EGC, MRC and SC schemes are illustrated in Figures 3.1,

3.2, and 3.3 respectively.
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The performances of the proposed algorithm using different schemes are compared

with the MCMG and the conventional algorithms. It is clear from the figures that the

proposed algorithm outperforms both algorithms. Moreover, it can be inferred from the

figures that increasingM adversely impacts the performances of the proposed algorithm for

all employed schemes, this is because increasing M leads to increase the sensing threshold

and the degree of freedom; therefore, the detection performance decreases consequently.

Figure 3.1: The impact of varying M on the total probability of detection of the proposed
algorithm using EGC compared with the MCMG and the conventional algorithms.
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Figure 3.2: The impact of varying M on the total probability of detection of the proposed
algorithm using MRC compared with the MCMG and the conventional algorithms.

Figure 3.3: The impact of varying M on the total probability of detection of the proposed
algorithm using SC compared with the MCMG and the conventional algorithms.
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Scenario two: determining the best data fusion rule can be employed for the proposed

algorithm. It can be seen from Figure 3.4 that MRC outperforms both EGC and SC in

terms of the attained total probability of detection. However, the improvement attained

by MRC scheme comes at the expense of mere complexity and more bandwidth require-

ments. Moreover, for a limited control channel bandwidth, EGC can be considered the best

scheme.

Figure 3.4: A comparison of the detection performance of the proposed algorithm employ-
ing different data fusion rules.

Scenario three: investigating the effect of varying the Nakagami parameter, , on the

performance of the proposed algorithm employing different schemes. From Figure 3.5 , it

can be noted that increasing Nakagami parameter, m , has a slight impact on the perfor-

mance only for good SNR scenarios (i.e., γ > 0 dB). This can be interpreted as follows:

in low SNR scenario, the effect of noise dominates over the improvement impact of spatial

diversity attained by both EGC and MRC when increasing .
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Figure 3.5: Total probability of detection of the proposed algorithm employing EGC and
MRC schemes at different values of fading parameter m.

3.5 Conclusion

Balancing between detection performance and overhead in CBCSS has been considered.

Optimization criterion employing soft and hard combining techniques to extract hierarchi-

cal levels for a cluster has also been developed. The simulation results have shown that

using the proposed algorithm, the cluster can only have two hierarchical levels. The impact

of sensing time on the performance has also been investigated. Furthermore, the effect of

varying on the performance has also been examined. Finally, simulation results have shown

that the proposed algorithm employing MRC technique outperforms the performance of the

proposed algorithm using EGC or SC techniques.
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CHAPTER 4

Combined Softened-Hard and Hard

Fusion in Cluster-Based Cognitive Radio

Networks

4.1 Introduction

Currently, CRN has been envisaged as a promising methodology to tackle the dilemma of

spectrum scarcity by enabling the opportunistic access of the unoccupied frequency bands

without interfering with the PUs. The FCC stated that the SUs should assure utilizing the

spectrum with limited or no interference to the PU. Therefore, spectrum sensing is a manda-

tory function of cognitive radio systems as it enables the SUs to abide by this stipulation.

However, the destructive effects of wireless channels including shadowing, fading and path

loss might render single SU spectrum sensing as unreliable [1]. CSS is used to obviate this

problem. The main idea of CSS is to make a global decision about the availability of the

PU by combining the sensing results originated by multiple users [32].

Different fusion schemes, mainly the soft and hard fusion, can be applied to combine

the sensing results at the FC depending on the control channel bandwidth requirements

[84]. It is apparent that the detection performance achieved by the soft combining tech-

niques is decidedly better compared with the hard combining techniques at the cost of the

increasing demand for extra bandwidth of the feedback channels [49]. With Hard com-

bining, the users transmit their local observations to the FC as one bit. Thus the traffic
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overhead is reduced at the cost of sacrificing the detection accuracy. The works in [44] and

[52] proved that the majority K-out-of-N rule (i.e., K =
⌈
N
2

⌉
) ;where N is the total num-

ber of users, k is the number of users which decide the occupancy of the spectrum and d.e

denotes the ceiling function; is the optimal hard fusion rule. It was found in [44], that the

majority K-out-of-N is the optimal rule regarding the detection error rate. Alternatively,

the work in [52], validated the optimality of the general K-out-of-N regarding the energy

efficiency; as it compromises between the probability of detection (Qd) and the probability

of false alarm (Qf ). In [29] and [60], the cost was sacrificed for the veracity of the detec-

tion performance. Simulation results reinforced the superior detection performance of the

soft combining schemes compared with the hard schemes whereas, the complexity analysis

of both schemes was overlooked. The energy consumption of different soft schemes was

analyzed in [66]. Researchers applied different strategies to counterbalance between the

overhead and performance. In [29], a softened two-bit hard technique; classified as 4-level

quantization; was proposed by dividing the range of the observed energy into four regions,

the results showed that this rule is suboptimal in terms of the overhead and the detection

performance. Unlike quantization strategy, the works in [69] and [70] considered combin-

ing soft and hard fusion techniques by relying on the estimation of the test statistics and

the estimation of the reporting channel coefficient, respectively, to exploit the advantages

of both schemes. In [86], soft and hard schemes were combined at different levels; LRT

is applied at the lower level while weighted decision fusion is adopted at the higher level,

further, using different fusion rules at different hierarchical levels was considered in [15]

to balance between performance and overhead.

The trade off between gain and performance in CRNs can be addressed from a differ-

ent aspect to confront the problems related to imperfect reporting channel and shadowing.

The shadowing effect of the closely located CRs impedes the performance, and the large

distances of the reporting channels require a significant amount of energy consumption and

are susceptible to erroneous. The selection of the users for CSS plays a vital role in deter-

mining the overall detection performance [32]. In [31], the users with the highest SNR are

selected for CSS while a small number of users over a large distance is chosen to reduce the
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effect of shadowing in [72]. On the other hand, clustering has been recognized to improve

the detection performance especially in the case of densely deployed areas by grouping the

CRs located close to each other into separate clusters [73]-[74]. CBCSS has been stud-

ied thoroughly in literature [15], [43], [73]- [82], [85]. With such a scenario, the average

distance over which the observation results are sent becomes smaller compared with the

centralized scheme besides that the number of the reporting users to the FC reduces sig-

nificantly. Hence, CBCSS reduces the overhead in terms of bandwidth requirement and

energy consumption, as well as enhances the overall detection performance.

In this chapter, two schemes are proposed to enhance the detection performance of

CBCSS while reducing the system’s complexity. First, a two bit softened hard scheme is

combined with one bit hard scheme at the cluster level based on the average SNR of each

cluster to balance between the overhead and gain while a one bit general K-out-of-N hard

fusion is employed at the FC level to combine the results in a way that compromises be-

tween Qd and Qf taking into account both the imperfection of the reporting channels and

the non-identical SNR of the multiple clusters. The proposed algorithm is compared with

two schemes that both employ the General K-out-of-N hard fusion at the FC level incorpo-

rated with either softened two bit or one bit hard fusion at the cluster level. The proposed

scheme is further improved by employing an adaptive iterative algorithm that selects only

the reliable clusters for decision making based on their Qd to adapt to the SNR variations

of the PU which results in variations of the SNR of each cluster. In addition, the overhead

analysis of different cases are presented along with the simulation results. Furthermore,

the performance is analyzed in both Rayleigh and Nakagami fading channels besides that a

random signal model is considered which is more appropriate for the detection of unknown

PU signals.

This chapter is organized as follows: system model is briefly described in Section 4.2.

Section 4.3 presents the proposed scheme and the modified proposed scheme. Simulation

results are illustrated in Section 4.4. Finally, conclusions are provided in Section 4.5.
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4.2 System model

Assume a cognitive radio network that consists of one PU and multiple SUs (N ) which are

grouped into multiple clusters (C) by a certain clustering strategy [77]-[78], [87]. Similar

to [88], the SUs within the cluster are assumed to have identical average SNR of the re-

ceived PU signal since they are located near each other and the distance between them is

much smaller compared with their average distance to the PU. This is equivalent to a SNR

variation of less than one dB within the cluster which is true since the cluster radius (Rc) is

computed by (4.1) as [88]:

Rc =
θ − 1

θ + 1
RP , (4.1)

where Rp is the average distance between the PU and the cluster, θ = 10
0.1
α and α is the

path loss exponent. However, each cluster has independent and different average SNR of

the PU signal due to its different location and channel conditions. It is assumed that all

the nodes are stationary and that the clusters are located at different distances from the

PU. Each cluster has (S) CMs and is governed by a CH which is selected based on the

largest reporting channel gain and acts as a FC of the cluster. Here, two levels of fusion

are considered; at the first level of fusion, the CH collects the results from the SUs which

belong to it and combines them with a certain fusion rule to formulate a final decision that

is to be sent to the FC through imperfect reporting channel for the second level of fusion.

In such scenario, errors can occur at two levels, a perfect channel condition at the low level

and an imperfect channel at the high level are considered. Each SU in the cluster employ

energy detection to find its local observations. The SUs within the cluster employ either a

softened hard fusion or hard fusion depending on their average SNR, γ̄c. The FC employs

general K-out-of-N rule to find the global decision. The conventional cluster based CSS

model that is used throughout this chapter is shown in Figure 4.1.
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Figure 4.1: Cluster-Based CSS model.

Traditionally, in clustering, users are grouped based on their distance to the PU or the

relative distance between them. The clustering topologies which are depicted in Figure 4.2

are classified as below:

• Clustering based on the distance between the cognitive radio and the primary user

(i.e., users that have similar distance to the primary user will be in the same cluster),

• Clustering based on the relative distance between cognitive radios (i.e., users that are

close to each other will be in the same cluster)

In this chapter, it is considered that the sensing channels between the SUs and the PU expe-

rience Nakagami-m fading. Therefore, a clustering topology based on the relative distance

among users is adopted throughout this chapter as it achieves the best detection perfor-

mance. This can be interpreted as this clustering topology reduces the distance between

SUs and thus minimizes the effect of fading. However, clustering based on the relative

distance to the PU increases the distance between the SUs in the cluster which is suitable

if a shadowing model was considered.
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(a) Relative distance to PU (b) Relative distance between users

Figure 4.2: Different clustering methods

a) Local decision :

Suppose that each SU is employed with an energy detector to detect the PU signal.

Then, for an AWGN channel and random signal model with small number of samples; pf

and pd are computed from equations (4.2) and (4.3), respectively , as follows:

pf =
Γ
(
M
2
, λ
2

)
Γ
(
M
2

) , (4.2)

pd =
Γ
(
M
2
, λ
2(1+γr)

)
Γ
(
M
2

) , (4.3)

where M is the degrees of freedom related to the distribution of the test statistic of the

energy detector (i.e., M
2

is the number of samples), λ is the detection threshold, γr is the

SNR, Γ(.) is the Gamma function and Γ(., .) is the incomplete Gamma function [28].

However, when the SUs experience independent Nakagami fading channels, the expression

of the local probability of false alarm is computed by (4.2) and the local probability of

detection is obtained by averaging pd in (4.3) over the PDF of the instantaneous SNR γ

(i.e., f (γ) ) given by

f (γ) =
1

Γ (m)

(
m

γ̄

)
γm−1e

−mγ
γ̄ , (4.4)

where m is the Nakagami parameter and γ̄ is the average SNR.
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b) Global decision at the cluster head:

Upon receiving the local decisions from each SU, the CH combines the received results

by either employing a hard fusion or soft fusion rule to deduce a global decision that is

disseminated back to the whole network. The control channel between the users of the

cluster and the CH is assumed to be perfect (i.e., error free) since the users in the clusters

are in the vicinity of each other. In this chapter, we will consider two schemes for contriving

a global decision at the CH, namely, one-bit hard fusion and two-bit quantized soft fusion.

1. General K-out-of-N rule

The general K-out-of-N rule is the general one-bit hard fusion that includes OR (i.e.,

K = 1), AND (i.e., K = N ) and majority (i.e., K =
⌈
N
2

⌉
) rules. K can be optimized to

maximize the detection accuracy. The formulas in (4.5) and (4.6) are used for independent

clusters with non-identical SNR considering that the reporting channels between the SU

and the CH is perfect [89].

Qf =
N∑
i=K


CNk∑
j=1

[
K∏
l=1

pf,xj ,l

N∏
l=K+1

(
1− pf,xj ,l

)] , (4.5)

Qd =
N∑
i=K


CNk∑
j=1

[
K∏
l=1

pd,xj ,l

N∏
l=K+1

(
1− pd,xj ,l

)] , (4.6)

where CN
k = N !/ (K! (N −K)!), k =

⌈
N
2

⌉
with d.e indicating the ceiling function, pf,xj ,l

and pd,xj ,l are the local probabilities of false alarm and detection for each SU which are

obtained by averaging equations (4.2) and (4.3) over (4.4), respectively.

2. Softened-Hard fusion

It is known that in the conventional One-bit hard fusion, one threshold divides the whole

range of observed energy into two regions in the sense that all the SUs above the threshold

are equally assigned with the same weight value. Unlike the conventional one-bit hard

scheme, the whole range of energy is divided by three thresholds (λ1, λ2, λ3), into four

regions where each region is allocated with a different weight value due to the distinction
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in the observed energies. Thus, each SU needs to exchange two bits to identify which region

its observed energy belongs to. The detection criteria depends on the weighted summation

given by NC =
∑3

i=0wiNi where Ni indicates the number of observed energies falling in

region i and the weight values assigned to each region are given by (w0 = 0, w1 = 1, w3 =

L,w4 = L2). The weighted summation is compared to a predefined threshold equivalent

to (NC = L2) where L is a design parameter to be optimized. The channel is detected

as occupied if NC ≥ L2; otherwise, it is detected as idle. The principle of softened-hard

fusion differs from the conventional one-bit Hard fusion as shown in Figure 4.3 [29].

Figure 4.3: The principle of Softened-Hard scheme.

In the two-bit hard fusion rule, the three thresholds (λ1, λ2, λ3) which denote three local

probabilities of false alarm (pf1, pf2, pf3), respectively, are determined to satisfy a specific

global false alarm probability (Qf ). For this target to be met, Nc should be less than L2

which can be interpreted in (4.7) where I = L2 − 1 and Ji = min
{⌊

L2−iw1

w2−w1

⌋
, i
}

with

b.c denoting the floor function. Two design parameters β1 and β2 are defined as β1 =
pf2

pf1
,

β2 =
pf3

pf2
. An exhaustive search is employed to determine L, β1 and β2. Thereafter, the

value of ρ which is given by ρ =
pf1

1−pf1
is determined using (4.8). The total probability

of detection is obtained likewise from (4.9); the values of L, β1 and β2 are numerically

calculated to maximize the average Qd while meeting the required Qf . When N , Qf , β1,
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β2 and ρ are known, the values of pf1, pf2 and pf3 can be obtained while λ1, λ2 and λ3 can

be determined in a subsequent manner from (4.2). Then, pd1 , pd2 and pd3 can be obtained

by averaging (4.3) over (4.4). It is worth mentioning that the exhaustive search can be

done offline and the values can be stored in a look up table to reduce the computational

complexity.

1−Qf =
I∑
i=0

Ji∑
j=0

Pr (N0 = N − i, N1 = i− j,N2 = j,N3 = 0 | H0)

=
I∑
i=0

(
N

i

)
(1− pf1)N−i

{
Ji∑
j=0

(
i

j

)
(pf1 − pf1)i−j (pf2 − pf3)j

}
(4.7)

(1−Qf ) (1 + ρ)N =
I∑
i=0

(
N

i

){ Ji∑
j=0

(
i

j

)
× (1− β1)i−j (β1 − β1β2)j

}
ρj (4.8)

Qd = 1−
I∑
i=0

Ji∑
j=0

Pr (N0 = N − i, N1 = i− j,N2 = j,N3 = 0 | H1)

= 1−
I∑
i=0

(
N

i

)
(1− pd1)N−i

{
Ji∑
j=0

(
i

j

)
(pd1 − pd1)i−j (pd2 − pd3)j

}
(4.9)

The performance of both hard and quantized schemes is validated in Figures (4.4) and (4.5)

which compare the total probability of detection of quantized two bit fusion and hard one

bit fusion (i.e., OR-rule) for different number of users and different degrees of freedom,

respectively, considering that the cognitive radios experience Rayleigh fading and the total

probability of false alarm Qf is 0.05 for both schemes. It is concluded from the figures

that the softened scheme outperforms the hard scheme especially with a large number of

samples and large number of users at the cost of only transmitting one more bit for each

CR without jeopardizing the control channel bandwidth as EGC and MRC which feed back

the entire energy observations to the FC [29].
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Figure 4.4: The impact of varying N on the total probability of detection of the Softened-
hard fusion compared with OR-hard fusion.

Figure 4.5: The impact of varying M on the total probability of detection of the Softened-
hard fusion compared with OR-hard fusion.

50



4. COMBINED SOFTENED-HARD AND HARD FUSION IN CLUSTER-BASED COGNITIVE RADIO NETWORKS

c) Global decision at the Fusion center:

It is more suitable for practical scenarios to consider the effect of the imperfect reporting

channel between the CH and the FC. In the case of imperfect reporting channels between

the CHs and the FC and if the observations are reported as binary phase shift keying (BPSK)

over fading channel with ξmax,i which represents the largest control channel gain between

the FC and the CH, i.e.;

ξmax,i = max (ξi,1, ξi,2, · · · , ξi,Si) (4.10)

Where Si is the number of the users in the i-th cluster and ξ̄i is the average of ξi,j (i.e, the

SNR of the channel between the j-th user in the i-th cluster and the fusion center) since the

users in the cluster are close to each other [15], [85].

The global probabilities of false alarm (Qf,i) and detection (Qd,i) for the i-th cluster are

written as a function of the probability of error (Qe,i) as follows:

Qf,i = Qf,i (1−Qe,i) + (1−Qf,i)Qe,i (4.11)

Qd,i = Qd,i (1−Qe,i) + (1−Qd,i)Qe,i (4.12)

whereQe,i =
∫∞
0
Qe|ξmax,if(ξmax,i)dξmax,i with error probability rate ofQe|ξmax,i = Q

(√
2ξmax,i

)
and the probability density function f (ξmax,i) of (ξmax,i) is given by (4.13).

f (ξmax,i) =
Sim

mξm−1max,i

ξ̄mi ΓSi (m)
e

−mξmax,i
ξ̄i ΓSi−1

(
m,

(
mξmax,i
ξ̄i

))
(4.13)

which reduces to (4.14) under Rayleigh fading when m = 1

f (ξmax,i) =
Si
ξ̄i
e

−ξmax,i
ξ̄i

(
1− e

−ξmax,i
ξ̄i

)Si−1
(4.14)
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4.3 Proposed model

In this section, we present the proposed low complexity soft-hard combination scheme

(combined scheme) which incorporates the softened hard and hard fusion schemes at the

cluster level and employs a low bandwidth K-out-of-N at the FC level. The proposed

combined scheme that selects the reliable clusters for the decision making process is also

illustrated to enhance the detection performance of the combined scheme while reducing

the actual overhead. Two levels of spectrum sensing are completed in both schemes; com-

bined fusion at the low level and hard fusion at the high level.

Using the combined scheme; we assume that the FC can obtain the location information

and the SNR of all users either by REM [6] or through SNR estimation methods as in [90]

and thus it can determine the average SNR, γ̄c, of each cluster. The FC determines the total

average SNR ,γ̄T ,of all the clusters within the PU’s protection range and compares γ̄c of

each cluster with γ̄T . The clusters with γ̄c greater than or equal to γ̄T employ hard fusion

and compute the cluster’s Qdc by (4.6) which is equivalent to the expression in (2.15) since

the SNR variation within one cluster is about 1 dB, while the clusters with γ̄c less than

γ̄T employ a softened two bit fusion and compute Qdc by (4.9). Finally, the FC employs

a hard fusion and finds the global probability of detection (Qd) by (4.6). The system’s

performance is mainly analyzed with Qd since it is a function of the SNR while Qf is

independent of the SNR and varies according to the adopted fusion rule and number of

users. The detection error rate (Qe) is also used for performance analysis and is defined by

(4.15) as [8]:

Qe,i = p (H0)Qf,i + p (H1) (1−Qd,i), (4.15)

where Qf,i and Qd,i are the global probabilities of false alarm and detection for the i-th

cluster, respectively, while p (H0) and p (H1) are the probabilities of absence and presence

of the PU, respectively.
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The procedure of the combined scheme is summarized as follows:

Step 1: The FC collects the location information of each SU and determines the CHs based

on the reporting channel gains.

Step 2: Each SU forwards its local observations and its estimated SNR to its CH.

Step 3: The CH sends its average SNR ,γc, to the FC which finds SNR, γT , of all the

clusters.

Step 4: Qdc is computed using (4.6) if γc > γT . Otherwise Qdc is calculated using (4.9).

Step 5: The global decision is made at the FC using (4.6).

Algorithm 2 illustrates the proposed combined fusion scheme which selects the reliable

clusters for the decision making process. The FC allocates a reliability factor to each clus-

ter proportional to its detection rate. The reliability factor is given by Equation (4.16)

µi = Qdci, (4.16)

where µi denotes the detection rate of the i-th cluster which is compared to a predefined

threshold (ϕ) to determine the eligible clusters for the decision making process. The thresh-

old (ϕ) is initialized with a specific value to satisfy a condition of practical interest.

Algorithm 3 illustrates a proposed adaptive combined fusion scheme assuming that the

clusters are located at different distances from the PU and that the PU transmit SNR varies

according to a path loss model described by (4.17) as in [31]:

γc =
PPU
σ2

δ

Rα
p

(4.17)

where PPU is the transmit power of the PU, δ is the path loss constant andRp is the average

distance between the cluster center and the PU. The threshold (ϕ) is initialized with a
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specific value and updated at each iteration in adaptive manner to ensure the improvement

of Qd and the reduction of Qe, simultaneously.

Algorithm 2 The proposed combined fusion algorithm
1: Find the estimation of SNR of each cluster (γc) and compute (γT )
2: Specify ϕ and W where W = {W1,W2, · · · ,WC} and C is the number of the

clusters,
3: for i = 1 : C,
4: if γc(i) > γT (i)

Using (4.6) compute Qdc(i)

else if
Using (4.9) compute Qdc(i)

end for
5: if Qdc(i) < ϕ
W ← W \ {Wi} /* Remove cluster Wi from the set of clusters W */
else
continue
end if

Algorithm 3 The proposed adaptive combined fusion algorithm

1: Initialize P̄PU , Qfc and let Q← ∅
2: Compute Qdc for each PPU
3: Let U =

[
Q̄dc1, . . . , Q̄dcC

]
where C is the number of the clusters,

4: Sort the rows of U in descending order.
5: for i = 1 : length(U)
D = U(i, :)

6: for j = 1 : length(D)
7: if D(j) > ϕ

Q = D(j)
else
ϕ = D(j)
break
end
end
Using (4.5) compute Qf (i)

8: if Qf (i) < Qfc

Using (4.6) compute Qd(i)
else
Q = [Q′ ϕ]
Using (4.6) compute Qd(i)
Using (4.5) compute Qf (i)
end
end

54



4. COMBINED SOFTENED-HARD AND HARD FUSION IN CLUSTER-BASED COGNITIVE RADIO NETWORKS

The complexity analysis of the different fusion schemes is illustrated in Table (4.1)

where C is the number of clusters, S is the number of the users in the cluster, D1 is the

number of the clusters that employ two-bit fusion, D2 is the number of the remaining

clusters after discarding the unreliable clusters, D3 is the number of the remaining clusters

that employ two-bit fusion and D4 is the number of the remaining clusters that employ

one-bit fusion.

Table 4.1: Overhead analysis for different fusion schemes.

Fusion scheme Number of bits transmitted
in intra-cluster level

number of bits transmitted
in inter-cluster level Total number of bits

Hard (S-1)C C (S-1)C+C

Softened-Hard 2(S-1)C C 2(S-1)C+ C

Combined 2(S-1)D1+(S-1)(C −D1) C 2(S-1)D1+(S-1)(C −D1)+C

Proposed combined 2(S-1)D3+(S-1)D4 D2 2(S-1)D3+(S-1)D4+D2

4.4 Simulation results

In this section, the simulation results of the combined scheme and the proposed combined

scheme are presented and compared with two different scenarios, namely, the conventional

CBCSS with either the softened hard fusion or the hard fusion at the cluster level [76].

The results are presented for different number of users for each cluster, different number of

samples, different global probability of false alarm, different fading channels and different

K value of the hard scheme. Perfect and imperfect reporting channel cases are also con-

sidered. The effect of variable PU SNR ratio is considered by varying the average SNR of

each cluster according to a path loss model that accounts for the average distance between

the cluster and the PU. Here a simple model is used: the average SNR of all the clusters is

γ̄ = 1
C

∑C
i=1 γi and the SNR of cluster i is ηi−1γm, where η is the SNR gap between all the

clusters and γm is the minimum SNR among all the clusters. It is assumed that there are

five clusters with SNR gap of 2 dB. The degrees of freedom M is 10, Qfc is 0.05, S = 4,
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C = 5, m = 1, L = 2, α = 3, δ = 1 and ϕ = 0.5. The overhead analysis is shown in Tables

4.2 and 4.3 for the different schemes of five clusters with four and ten users in each cluster,

respectively.

Table 4.2: Overhead analysis when C = 5 and S = 4.

Fusion scheme Number of bits transmitted
in intra-cluster level

number of bits transmitted
in inter-cluster level Total number of bits

Hard 3× 5 = 15 1× 5 = 5 20

Softened-Hard 2× (4− 1)× 5 = 30 1× 5 = 5 35

Combined 2×(4−1)×3+(4−1)×2 = 24 1× 5 = 5 29

Proposed combined 2×(4−1)×2+(4−1)×2 = 18 1× 4 = 4 22

Table 4.3: Overhead analysis when C = 5 and S = 10.

Fusion scheme Number of bits transmitted
in intra-cluster level

number of bits transmitted
in inter-cluster level Total number of bits

Hard 9× 5 = 45 1× 5 = 5 50

Softened-Hard 2× (10− 1)× 5 = 90 1× 5 = 5 95

Combined 2×(10−1)×3+(10−1)×2 =
72

1× 5 = 5 77

Proposed combined 2×(10−1)×2+(10−1)×2 =
54

1× 4 = 4 58

It is clearly inferred from the tables that the required number of bits scales gradually

with the number of users in the cluster. As number of the clusters or the users in the cluster

increases, the combined scheme becomes a better option than the softened hard scheme

with less overhead at the cost of slightly degraded performance. However, selecting the

reliable clusters provides a better detection performance and less overhead compared with

both the softened hard and combined schemes.
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Figure 4.6: The impact of varying the number of users in the cluster on the total probability
of detection for different fusion schemes.

Figure 4.7: The impact of varying the number of samples on the total probability of detec-
tion for different fusion schemes.
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The detection performance of the combined softened hard scheme and the proposed

combined fusion scheme is evaluated and compared with the softened hard and hard fusion

schemes when the number of the users in the clusters varies form 3 to 15 as shown in

Figure (4.6). As expected, the total probability of detection (Qd) will improve with the

increase of the number of users in the cluster. It is shown that the combined scheme is

a suboptimal solution that balances between the complexity and gain while the proposed

combined fusion scheme is the best among all the schemes as it achieves high detection

performance even when the number of the users in the cluster is small. Similarly, we can

see from Figure 4.7 that the network total probability of detection (Qd) of all schemes

increases with the increases of the number of samples, further, the proposed combined

fusion algorithm significantly enhances the performance compared with all schemes with

much less complexity in terms of the number of bits required to transmit the results.

Figure 4.8: A comparison of different fusion schemes under Rayleigh and Nakagami fading
channels.
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Figure 4.9: ROC curves under perfect and imperfect reporting channels.

Figure 4.10: Total probability of error under perfect and imperfect reporting channels with
different number of samples.
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Different channel conditions are investigated in Figures 4.8, 4.9 and 4.10, respectively.

Figure 4.8 investigates the effect of varying Nakagami parameter m on the system’s perfor-

mance. It is shown that the detection performance remarkably improves when increasing

the Nakagami parameter m for both the hard and the combined schemes. However, the im-

provement attained by increasing m diminishes gradually as the number of users increases

for both softened and proposed combined schemes. Figure 4.9 compares ROC curves of

all the schemes under both perfect and imperfect reporting channels. Moreover, the effect

of the imperfect reporting channel is analyzed in terms of the detection error rate in Figure

4.10; increasing the SNR of the reporting channel (ξ) decreases the error rate Qe. The

combined scheme is marginally comparable to the softened hard scheme while the pro-

posed combined scheme exhibits a superior performance relative to the other schemes. The

impact of the the value of K on the detection performance is assessed in Figure 4.11. It is

shown that the value of K does not affect the softened hard scheme and only have a slight

effect on the proposed combined scheme, yet it greatly affects both hard and combined

schemes.

Figure 4.11: Total probability of error with different values of K for different schemes.
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Varying the PU SNR which yields to variations of the SNR of all the clusters is illus-

trated in Figures 4.12, 4.13 and 4.14, respectively. In Figure 4.12, the proposed combined

algorithm is compared with the one-bit, two-bit and combined schemes. The results show

that the proposed algorithm outperforms all the schemes especially under low SNR. How-

ever, the performance improves with the increase of SNR and then degrades at moderate

SNR values since the reliability of the clusters increases with the increase of SNR and more

clusters are selected for the decision making process while they still are not as reliable as

the case of high SNR. Therefore, an adaptive proposed algorithm was employed to ensure

minimizing Qe and attaining high Qd as shown in Figures 4.13 and 4.14, respectively. In

Figure 4.13, the schemes are compared at cluster global probability of false alarm equal

to 0.05 and 0.1, respectively, and it is shown that the adaptive modified algorithm has the

best detection performance among all schemes. The performance of the schemes is also

compared in terms of Qe with respect to the PU SNR and the same results are obtained.

Figure 4.12: Detection performance with different PU SNR with proposed combined fusion
scheme.
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Figure 4.13: Detection performance with different PU SNR with proposed adaptive com-
bined fusion scheme.

Figure 4.14: Total probability of error with different PU SNR.
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4.5 Conclusion

In this chapter, a new soft-hard combined scheme in CBCSS was presented to enhance

the detection performance while accounting for the system’s complexity by combining the

softened hard and the hard fusion at the intra-cluster level. The scheme was compared

with both softened hard and hard fusion schemes. Furthermore, the scheme was improved

by selecting the reliable clusters for detection by employing an adaptive iterative algorithm.

Both schemes were analyzed over imperfect and perfect reporting channels as well

as different channel conditions. They were also studied with different values of K (i.e.,

number of users that successfully detect the PU signal ). Simulation results have shown that

the combined scheme is suboptimal in terms of performance and overhead while it becomes

a better option in the case of densely deployed areas. However, the modified combined

scheme outperforms all schemes in terms of performance and overhead considering that

the iterative algorithm can be done offline to reduce the complexity.
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CHAPTER 5

Conclusions and Future Works

5.1 Conclusions

Compromising between the performance and complexity in CBCSS was considered in this

thesis by combining soft and hard fusion techniques from two different aspects. On one

hand, the cluster was divided into groups by an optimization criterion in a way that employs

soft data fusion at the group level and hard fusion at the cluster level as described in chapter

three. On the other hand, multiple clusters were classified based on their SNR to employ

either quantized soft fusion or hard fusion while a hard fusion scheme was adopted at the

FC level as delineated in chapter four.

Balancing between detection performance and overhead in CBCSS has been consid-

ered. Optimization criterion employing soft and hard combining techniques to extract hi-

erarchical levels for a cluster has also been developed. The simulation results have shown

that using the proposed algorithm, the cluster can only have two hierarchical levels. The

impact of sensing time on the performance has also been investigated. Furthermore, the

effect of varying on the performance has also been examined. Finally, simulation results

have shown that the proposed algorithm employing MRC technique outperforms the per-

formance of the proposed algorithm using EGC or SC techniques.

A combined performance and overhead oriented CBCSS scheme was considered by

proposing a new soft hard combined scheme to enhance the detection performance while

accounting for the system’s complexity by combining the softened hard and the hard fusion
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at the intra-cluster level. The scheme was compared with both softened hard and hard fu-

sion schemes. Furthermore, the scheme was improved by selecting the reliable clusters for

the decision making process by employing an adaptive iterative algorithm. Both schemes

were analyzed under imperfect and perfect reporting channels as well as different channel

conditions. They were also studied with different values of K. Simulation results showed

that the combined scheme is suboptimal in terms of performance and overhead while it

becomes a better option in the case of large number of users. However, the modified com-

bined scheme is superior to all schemes in terms of performance and overhead considering

that the iterative algorithm can be done offline to reduce the complexity.

5.2 Recommendations for future work

Throughout this thesis, we addressed some methods based on clustering for cooperative

spectrum sensing in cognitive radio networks to improve the detection performance while

accounting for the system’s complexity. This work can be extended in various ways. For

instance, the performance of the proposed schemes is examined under Nakagami fading

channels while in practice shadowing might occur if the two cognitive radios are located

close to each other. In that case, the performance can be further investigated over a compos-

ite multipath fading and shadowing channel model. While we mainly studied the temporal

detection assuming that all the SUs share the same spectrum access opportunities, it is ben-

eficial to consider the spectrum heterogeneity by exploring the joint detection of spectrum

holes in both spatial and temporal domains. Besides, the system is implemented using en-

ergy detector which assumes the exact estimation of the noise power. However, there exists

noise uncertainty in real scenarios which significantly affects the detection performance.

Therefore, it is important to analyze the performance by exploiting some techniques such

as two-stage sensing to alleviate the effect of uncertainty. Practical implementations us-

ing Software Defined Radio (SDR) which is characterized by a soft ware entity and USRP

(Universal Software radio Peripherals) hardware platform can also be considered. Finally,

a typical PU activity model, the ON/OFF model, can be applied to study the effect of the

alternate PU states on the system’s performance.
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