
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

5-7-2018 

Adaptive Transmission Power with Vehicle Density for Congestion Adaptive Transmission Power with Vehicle Density for Congestion 

Control Control 

OLUWASEYI MOROUNFOLUWA AKINLADE 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
AKINLADE, OLUWASEYI MOROUNFOLUWA, "Adaptive Transmission Power with Vehicle Density for 
Congestion Control" (2018). Electronic Theses and Dissertations. 7420. 
https://scholar.uwindsor.ca/etd/7420 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7420&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7420?utm_source=scholar.uwindsor.ca%2Fetd%2F7420&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 

 

 

Adaptive Transmission Power with Vehicle Density for Congestion Control 

 

 

By 

Oluwaseyi Akinlade 

 

A Thesis 

Submitted to the Faculty of Graduate Studies 

through the School of Computer Science 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Science 

at the University of Windsor 

 

Windsor, Ontario, Canada 

2018 

© 2018 Oluwaseyi Akinlade 



 

Adaptive Transmission Power with Vehicle Density for Congestion Control 

By 

Oluwaseyi Akinlade 

APPROVED BY: 

______________________________________________ 

H. Wu 

Department of Electrical and Computer Engineering 

 

______________________________________________ 

P. Moradian Zadeh 

School of Computer Science 

 

______________________________________________ 

A. Jaekel, Advisor 

School of Computer Science 

 

                                             May 2, 2018 



 

iii 

 

DECLARATION OF ORIGINALITY 

I hereby certify that I am the sole author of this thesis and that no part of 

this thesis has been published or submitted for publication. 

I certify that, to the best of my knowledge, my thesis does not infringe 

upon anyone’s copyright nor violate any proprietary rights and that any ideas, 

techniques, quotations, or any other material from the work of other people 

included in my thesis, published or otherwise, are fully acknowledged in 

accordance with the standard referencing practices. Furthermore, to the extent that 

I have included copyrighted material that surpasses the bounds of fair dealing 

within the meaning of the Canada Copyright Act, I certify that I have obtained a 

written permission from the copyright owner(s) to include such material(s) in my 

thesis and have included copies of such copyright clearances to my appendix.  

I declare that this is a true copy of my thesis, including any final revisions, 

as approved by my thesis committee and the Graduate Studies office, and that this 

thesis has not been submitted for a higher degree to any other University or 

Institution. 

  



 

iv 

 

 

ABSTRACT 

The Intelligent Transport Systems (ITS) employs the Vehicular Ad-hoc Networks 

(VANET) technology to prevent and reduce accidents on highways. VANET uses 

wireless communication technology that includes protocols and applications that 

provides safety and non-safety features for a safe and comfortable driving 

experience. A major problem with VANET is that the network channel utilized for 

the transmission of network packets for awareness becomes congested due to 

vehicles competing to use the channel leading to packet loss, high transmission 

delay and unfair resource usage. These problems would eventually lead to the 

periodic exchange of Basic Safety Messages not being delivered on time, thereby 

making VANET unreliable. Researchers have focused on numerous approaches for 

controlling congestion on the network channel such as adapting the rate of 

transmission of packets i.e. the number of packets that can be sent per second or 

adjusting the transmission power which is the distance a packet can travel. An 

approach is proposed in this thesis to adapt the transmission power, based on the 

vehicle density state of the network, with the aim of reducing congestion on the 

network channel and improving the performance of VANET. Results indicate that 

this can lead to improved performance in terms of reduced packet loss and inter-

packet delay. 
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CHAPTER 1 

INTRODUCTION 

1.1 Vehicular Ad-Hoc Network 

  Traffic collisions often occur due to factors such as nature of the road and vehicle, 

driving under the influence, skill level of driver, over-speeding which may lead to loss of 

life and property. There is clearly a need to make driving experience on roads safe and 

comfortable for both drivers of vehicles and pedestrians alike.  

   The Intelligent Transport System (ITS) [49] makes use of Vehicular Ad-Hoc Networks 

(VANET) technology [1], a subset of Mobile Ad-Hoc Networks (MANET) [50] to 

improve road and vehicle safety by using wireless communication to transmit data 

between nodes (vehicles) [1]. The communication between nodes can be described as 

Vehicle to Vehicle communication (V2V), which allows vehicles to communicate directly 

with other vehicles [2]. Vehicle to Infrastructure (V2I), allows communication between 

static structures such as Traffic lights and buildings [1]. (V2X), allows communication 

between mobile aspects of the traffic system. VANETs are typically composed of high 

speed mobile communication nodes i.e. vehicles moving at high velocities, possess high 

density of nodes on the network, constant change in topology, no energy restrictions 

[1][2]. 
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1.1.1 VANET Applications 

  VANET applications are categorized into safety and service applications [3]. Safety 

Applications include Curve speed warning, Forward Collision warning, Pre-crash 

awareness, Left turn assist, Lane change warning, Emergency brake lights 

Service Applications include traffic optimization and route guidance, infotainment 

applications such as Internet access, media and connectivity, and payment services such 

as parking and E-toll collection 

1.2 Motivation 

   The aim of VANET is generally to increase the safety and comfort of mobile vehicle 

drivers and all road users on the roads. This is ensured by the nodes (vehicles) constantly 

sending and receiving messages or packets with other nodes and infrastructure in a 

vehicular network environment. The types of messages transmitted are Periodic 

messages, safety or event driven messages and data messages. The messages are 

transmitted through the channels allocated in the DSRC/WAVE system [6], with the aid 

of On Board units (OBU), located in the vehicles, and Road Side Units (RSU).  This 

helps to avoid vehicle collisions thereby increasing safety and providing services 

necessary for a comfortable driving experience.  

Congestion occurs in channels when there is saturation of the channels by nodes 

competing to acquire channel access [5]. Congestion control is a challenging issue in any 

vehicular environment. The channels on the network necessary for the transmission of 

these important messages may become congested due to factors such as high density of 

nodes, rapid topology change etc. The messages especially the Basic Safety Message 
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(BSM), which is under the SAE J2735 [10] protocol that contains vital information such 

as vehicle speed, GPS data, acceleration and many others might fail to properly reach the 

destination, leading to accidents and potentially loss of life and property. It is important 

to develop congestion control algorithms [31] to ensure congestion in network channels 

are reduced to ensure proper delivery of messages.  

1.3 Problem Statement 

  An ideal vehicular network should consist of a network where packets containing vital 

information are sent and received between nodes in a timely manner as scheduled with 

minimum drop in packets or error rate resulting in accurate and timely collision warnings. 

In Vehicular networks congestion control encounters different challenges, due to various 

obstacles such as communication overhead, high rate of transmission delay, inefficient 

utilization of bandwidth, inefficient use of resources which affect the channel utilized for 

the transmission of network packets for awareness in vehicles [31]. 

  In vehicular networks the 5.9 GHz channel with power limits of 33 dBm [11] using a 

communication range of 300m prescribed by Federal Communications Commission 

(FCC) used for safety messages and service announcements is being shared with all 

vehicles competing for resources and usage. Each vehicle can transmit at a rate of up to 

10 beacons per second, which causes a heavy load on the channel and consequent packet 

collisions. Packets are only sent when a vehicle senses the channel is clear by constant 

monitoring of the channel [12]. The resource allocation in the vehicular network 

environments are not managed centrally making the channel access mechanisms of IEEE 

802.11 [31] unable to prevent channel congestion when messages are broadcasted. In 

broadcast situations packets are not acknowledged because every vehicle sending out 
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acknowledgement packets to every other vehicle will cause a packet explosion and extra 

traffic on the channel. Packet collisions and Medium Access Control (MAC) transmission 

delay grow exponentially when channel load is above 40% of the theoretical maximum 

channel capacity [13]. MAC transmission delays result in late arrival of safety messages, 

high packet collision rate and reduction in transmission range. A Congestion control 

algorithm is required to reduce the congestion without overloading the channels.  

1.4 Solution Outline 

Constantly transmitting packets at a fixed high transmission power without taking into 

consideration the dynamic topology of VANET is highly inefficient and will lead to high 

number of packet collisions on the channels, a large number of packets lost, high beacon 

error rate, degradation of the performance of VANET and congestion on the channels. 

The above-mentioned flaws will cause for packets to not get delivered to the vehicles that 

need them hence safety of vehicles on the network is at risk. An approach is proposed in 

this paper to control congestion by adapting the transmission power according to the 

vehicle density state of the road. Vehicles will broadcast packets at suitable transmission 

powers based on the density of the vehicles on the roads. The approach aims to reduce 

packets lost, Inter-Packet Delay, beacon error rate, channel busy time thereby increasing 

the performance of VANET. The outcome of this approach and results will be discussed 

in chapter 4 of this thesis. 

1.5 Thesis Organization 

The remaining parts of this thesis will be organized as follows. Chapter 2 will discuss and 

review background knowledge in this research area. Chapter 3 will discuss the approach 
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used for congestion control and Chapter 4 will contain the analysis of the results. Chapter 

5 will explain the results and relevance to future research in the VANET field. 
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CHAPTER 2 

BACKGROUND 

 

2.1 TERMINOLOGY 

This section defines some of the important terminology used in the rest of the thesis. 

• Intelligent Transportation Systems (ITS): A broad range of intelligent 

technologies which consider vehicles, infrastructure, and driver’s all interacting 

with each other dynamically for safety, security and improving efficiency of 

transportation. The Road Emergency Services Communications Unit (RESCU) 

[16] employed by the city of Toronto is an example of the ITS system. Collision 

avoidance systems that use Radar, sonar and different sensors to detect potential 

hazards and alert drivers is also an example.  The city of Minneapolis uses a Lane 

departure Warning system for the bus fleet to allow transit buses to safely drive 

on the shoulder lane of the interstate [53]. 

• Vehicle to Vehicle Communication: This is simply communication between 

two vehicles by using wireless technology. 

• Vehicle to Infrastructure: Wireless communication between a vehicle and road 

side units (RSU). 

• Dedicated Short Range Communication: Defined by the United States 

District of Transportations as a two-way short to medium-range wireless 

communications technology [17] capable of high data transmissions in safety-

based applications for vehicular networks. 
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• Wireless Access in Vehicular Environments: Wave technology is the next 

generation Dedicated Short Range Communication technology capable of high-

speed V2V and V2I wireless communication with significant applications in ITS 

which operates on 5.850-5.925 GHz band with data rates of 6-27 Mbs/s [18]. 

• Congestion: Congestion occurs in channels when there is saturation of the 

channels by nodes competing to acquire channel access [5] leading to packet 

delay, packet errors, inefficient channel utilization etc. 

• Congestion Control Algorithms: These are the protocols or strategies designed 

to prevent and control congestion in the channels [5]. These are designed to 

improve VANETs. 

• Decentralized Congestion Control: DCC is a specification in the European 

Telecommunications Standards Institute (ETSI) in which the strategy is to avoid 

degradations such as packet transmission delays, packet losses, reduction in 

communication range by limiting the load of each vehicle on the channel and not 

exceeding a certain threshold [11]. 

• Basic Safety Message: Messages required by V2V safety applications for low 

latency and localized broadcast [19] in VANETs containing vehicle information 

such as Vehicle size, speed, position, acceleration etc. 

• Medium Access Control: In a vehicular environment Mac layer enables a 

decentralized behavior in which vehicle nodes can communicate without joining 

the network. It eliminates the need for a central manager controlling the channel 

access [20]. The MAC mechanism is based on the IEEE 802.11 Distributed 

Coordination Function (DCF), It is a contention-based mechanism which relies on 
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the Carrier Sense Multiple Access plus collision avoidance (CSMA/CA) to 

arbitrate channel access [26]  

• Cooperative Awareness Messages: These are messages sent between vehicles 

that show current awareness of all surrounding vehicles and their status used for 

safety applications. Vehicles with safety applications store a relational table 

consisting of vehicles stored in a neighbors table and vehicles that should be 

stored [21]. 

2.2 Dedicated Short Range Communications/ Wireless Access in Vehicular 

Environments (DSRC/WAVE) 

  Dedicated Short Range Communication [4] is a standard for VANET employed in North 

America by the Federal Communication Commission, which allocates 75 MHz of 

Spectrum in 5.9 GHz bandwidth [5] for Vehicle to Vehicle communication and Vehicle 

to Infrastructure communication. The transmission ranges are between 10-1000m and 3-

27 Mbps for rate. 

 Wireless Access in Vehicular Environments (WAVE) belongs to the IEEE 1609 and 

IEEE 802.11p family of standards, which provide services and interfaces that enable 

secure vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication, 

multi-channel operations, management of network services, enhanced navigation and 

many other applications [1][6]. The WAVE architecture components are the On-Board 

Units (OBU) found in vehicles, Road Side Units (RSU) such as traffic lights, and finally 

WAVE technology [7]. 
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2.2.1 DSRC/WAVE Standards 

  The wave protocol stack comprises of the Society of Automotive Engineers SAE J2735 

[8], IEEE 1609 [9] and IEEE802.11p family protocol of stacks. 

• IEEE1609.0 Draft Standard for WAVE: Architecture necessary for Multi-channel 

DSRC/WAVE devices to communicate in a mobile vehicular environment. 

• IEEE 1609.1 Trial Use Standard for WAVE: Resource Manager that describes the 

data and management services offered by the WAVE architecture for safety and 

service applications. 

• IEEE 1609.2 (Trial Use Standard for WAVE: Security Services for Applications 

and Management Messages.  

• IEEE 1609.3 Trial Use Standard for WAVE: Networking Services 

• IEEE 1609.4 Trial Use Standard for WAVE: Multi-Channel Operations 

• IEEE P1609.11 Over the Air Data Exchange Protocol for Intelligent 

Transportation Systems (ITS) 

• IEEE802.11P Part 11 Wireless LAN Medium Access Control (MAC) and 

Physical Layer (PHY) specifications 
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Figure 1: DSRC/Wave Architecture 

2.3 Basic Safety Messages 

 Vehicle networks periodically exchange single-hop status information broadcasts 

otherwise known as beacons [14] or basic safety messages (BSM). The basic safety 

messages are the most important message type for awareness on vehicular networks 

because it is constantly being exchanged with nearby vehicles or roadside units. BSM’s 

utilize the DSRC protocol stacks to deliver these messages, from the lower layers by the 

IEEE 802.11p to the upper layer protocols covered by the IEEE 1609.x series of 

standards. The BSM transmit rate is set to 10Hz by the North America Safety Pilot Model 

[15] and can also be reduced if channel load is high. The contents of basic safety 

messages include: 

PART 1 DATA ELEMENT: A Mandatory representation of Vehicle State [15] 

• DSRC message ID 

• Message count 
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• Latitude/Longitude 

• Current Time 

• Position Accuracy 

• Transmission and Vehicle Speed 

• Steering Wheel Angle 

• Acceleration 

• Braking State, Status 

• Vehicle Size 

• Path history 

• Front and Rear Wiper Status 

• Steering Wheel Angle 

• Lights Status (headlights, turn signals, hazard light) 

• Differential GPS corrections 

PART 2 DATA ELEMENT: Optional Information 

• Vehicle, Bumper heights 

• Throttle position  

• Vehicle mass 

• Vehicle type 

• Vehicle identification number (VIN) 

• Tire conditions 

• Cargo weight 

• Daily solar radiation 
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• GPS status and quality 

2.4   Fundamental Concepts of Congestion Control 

The goal of congestion control is to enhance the performance of VANETs by controlling 

congestion on the channels, reduce packet loss and delay, increase throughput and 

providing a safe and reliable environment for VANET users. 

Congestion control utilizes different approaches to adjust and determine the transmission 

parameters. The classes include: 

Reactive Congestion Control: It takes actions to reduce channel load after   congestion 

on a channel is detected [22]. This system basically gathers information about the status 

of channel congestion and decides what actions are to be taken. 

Proactive Congestion Control: Proactive systems estimate channel load under given 

sets of parameters, uses optimization algorithms to then determine the maximum Power 

or Rate setting that are needed to limit the maximum congestion level [23]. It uses 

number of surrounding nodes and data generation patterns to estimate the transmission 

parameters [22]. 

Hybrid Congestion Control: Hybrid approaches combine Reactive and Proactive 

systems for congestion control. Tielert et al in [51] used joint power and rate to control 

congestion. Javed et al [52] used a combined transmission range and packet generation 

rate control algorithm that considers safety of the vehicles and maximizes channel 

utilization. 
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2.5 Performance Criteria 

The performance criteria also known as performance metrics are the basis to examine 

performance of congestion control schemes. Some common performance metrics for 

congestion control algorithms are outlined below. 

Fairness: Fairness is a performance metric to determine quality of a DCC scheme. It is 

the ratio between maximum and minimum of the number of channel access opportunities 

of each vehicle on a vehicular network [13]. In some cases, it represents the performance 

of a network instead of individual vehicles. In [24] Batsuuri describes an ideal “fair” case 

in his example saying each vehicle has a Successful Packet Reception (SPR) rate of 80%. 

An unfair situation includes one in which some vehicles have an SPR of 100% and some 

will have as low as 10%. 

Transmit Rate: This is the number of transmission opportunities within a given time 

interval in a vehicle [13]. 

Beacon Reception Rate (BRR): This is the most common metric used to evaluate the 

performance of a network, a good measure for awareness. It is the number of packets or 

beacons received from a vehicle with an interval of 1s [13]. Safety applications depend 

on the successful receptions of the messages sent. An increase in the beacon reception 

rate relates to an increase in awareness for neighboring vehicles. 

Beacon Error rate (BER): Frequent broadcast of Basic Safety Messages at high rates 

such as 10Hz to increase awareness [25] especially in dense environments increases 

packet collisions. The collisions result in reduction in quality of the beacons sent. The 

information carried by the beacons will contain errors and useful data missing. Errors in 



 

14 

 

the packets will lead to the packet not being used and eventual wastage in network 

resources. Awareness and fairness is reduced due to this rate of high packet collisions and 

errors. 

Efficiency of Cooperative Awareness: It is measured by the packet success rate 

which is dividing the Number of decoded packets by the number of received strong 

signals [27]. 

Channel Busy Ratio (CBR): The channel busy ratio is a good measure for channel load. 

It is the overall observation time and the time a channel is sensed to be busy. The total 

observation time is usually set to 100ms [13]. The CBR is dependent on the congestion 

control scheme utilized. It is also an input for congestion control. CBR represents the 

fraction of time a channel is busy. 

Inter-Packet Delay (IPD) or Update Delay: This is the delay time between 

subsequent packets received from the same sender [37] [38]. 

2.6 Current Research Problems and Solutions 

Unrealistic Simulation of Traffic Scenarios 

 In this field of research majority of the VANET traffic scenarios are performed with 

simulators due to the high cost of operating in real world scenarios. The current 

simulators being used have come a long way from previous simulators which assumed 

unrealistic models. An example is the mobility model, the scale of the map, distance and 

speed used in simulators doesn’t always translate to real world. These factors might affect 

how vehicles frequently receive messages subsequently affecting how congestion in the 

channels are controlled. 
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Specific Improvement of Performance Metrics 

 Majority of congestion control schemes only focus on specific performance metrics such 

as CBR, Throughput, Reception rate etc. only and not schemes that collectively improve 

the network performance with minimum trade-off [28]. 

Lack of transmission of non-safety beacons 

 In dense traffic situations, priority is given to the transmission of safety messages over 

non-safety messages which is an open issue. A scheme should be developed to utilize the 

control channel properly so both messages can be delivered at the same time. 

Generation of Extra Packets  

Congestion control schemes might on some occasions generate extra packets during the 

transmissions of messages creating awareness of the current congestion situation, the 

additional packets sent increase channel load therefore creating communication overhead 

and a packets storm leading to further congestion on the network [29].  

Beacon Rate Reduction 

An increase in transmission rate allows safety applications to function better due to 

frequent updates in safety messages received. In high vehicle density scenarios, 

transmitting beacons at a high rate the control channel might become overloaded and 

eventually congested. Reducing the beacon transmit rate results in safety applications 

having a failure or delay in messages received [31]. 
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Transmission Power Increase 

Congestion control schemes that are based on adjusting the transmit power only have a 

problem when safety messages are transmitted at high power, so packets can be received 

by vehicles at a greater distance. The number of vehicles receiving messages greatly 

increases leading to packet collisions on the channels and congestion on the network 

from all vehicles competing for channel access. Jordan [31] in his paper developed a 

scheme to oscillate between high power and low power transmissions so vehicles that are 

near receive more packets and vehicles that are far also receive packets but fewer. 

2.7 Literature Review 

 This section discusses the important research papers related to congestion control on 

Vehicle to Vehicle networks. The ideas, algorithms, parameters, performance 

criteria’s, limitations and comparison with other schemes will be observed. 

  An algorithm that deals with power adaptation in an interesting manner is the 

Decentralized Congestion Control Algorithm for Vehicle to Vehicle Networks Using 

Oscillating Transmission Power [31]. The author proposes a novel method for 

adapting the transmission power in an Oscillating manner which alternates between 

high and low powered transmissions. The algorithm attempts to solve the problem of 

reducing the number of packets received by vehicles at greater distances while 

increasing the packets received by vehicles nearby thereby, increasing awareness to 

nearby vehicles who need the packets for frequent updates. Two drastically different 

powers and rates are selected for the algorithm, the rates are then combined to select a 

Low Powered Packet Interval (LPPI) which is the number of low powered packets 

that should be sent between high powered packets [31]. The author also modified the 
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OSC algorithm to include a rate control algorithm called LIMERIC [35] to further 

control congestion according to the CBR. The performance metrics considered were 

Beacon Error Rate, Beacon Reception Rate, Channel Utilization, Channel Busy Time, 

Inter-Packet delay. 

The simulations were carried out using the Vehicle in Network Simulation framework 

(Veins) [32] to connect the OMNET++ Discrete event network simulator [33] and 

Simulation of Urban Mobility (Sumo) [34], in parallel. The results of the simulation 

proved that the OSC method was able to reduce the number of packets sent to distant 

vehicles while packets were sent to nearby vehicles at a high rate. The channel 

utilization also showed a decrease in congestion compared to a 10 Hz control with no 

congestion control algorithm used. High channel utilization might lead to increase in 

PER is a limitation observed. 

 The Linear Message Rate Integrated Control (LIMERIC) [35] is a linear adaptive 

control algorithm which adapts message rate so the CBR does not go beyond a 

specific limit [13] and executed by each vehicle on a network unlike other similar 

approaches which used a binary control. LIMERIC results show a provable 

convergence to fair and effective channel utilization [13]. LIMERIC also avoids 

fairness problems observed in algorithms that use binary control. LIMERIC is shown 

to quickly adapt to changing network conditions. LIMERIC was compared with other 

DCC schemes [36] which included a 10 Hz control + DCC, CAM + DCC then lastly 

a 10 Hz control. SUMO and NS2 were used to perform the simulations. Numerical 

results showed that the CAM + DCC control had the highest packet error rate, 10Hz 

and LIMERIC had similar PER, 10 Hz recorded lower Inter-Packet Delay compared 
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to LIMERIC, LIMERIC shows lower reception intervals and tracking error than DCC 

schemes used. LIMERIC’s ability ensures max throughput and awareness irrespective 

of vehicle density [36]. 

 Integration of Congestion Control and Awareness control (INTERN) [39] was 

described as a scheme that integrates congestion and awareness control processes. 

INTERN proposes a scheme that dynamically adjusts the transmission rate and power 

of the beacons of each vehicle, so application requirements are satisfied at the same 

time controlling channel load [39]. The objectives are to have vehicles use minimum 

transmission settings which satisfy individual vehicles application requirements under 

dense traffic scenarios and enable the increase of transmission settings under low 

traffic scenarios so desired CBR is achieved. Performance of INTERN was evaluated 

using MATLAB in different scenarios and compared against schemes such as 

Minimum Packet Transmission Frequency (MINT) [40] an awareness control 

protocol and a congestion control scheme combining LIMERIC and PULSAR [38]. 

Results show that INTERN can maintain the CBR below CBRmax in scenarios with 

low and medium traffic scenarios. Maintenance of stable levels of the channel load 

and application effectiveness is also observed in the literature. 

 The Centralized and Localized Data Congestion Control Strategy for Vehicular 

Networks Using a Machine Learning Clustering Algorithm [41] deals with congestion 

control in Urban Areas. The literature discusses that intersections are very critical 

locations where accidents, injuries and fatal loss of life and property occur. In the 

paper a centralized and localized data congestion scheme is proposed to control data 

congestion using Road Side Units (RSUs) at traffic intersections. It uses three 
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methods to detect congestion, clustering of messages and finally controlling 

congestion on the channels. The channel usage level is the performance criteria for 

detecting congestion in the channels. K-means clustering algorithm is used for 

clustering the gathered and filtered messages based on factors such as size of 

messages, validity of messages and type of messages. The clustered messages are 

then passed through the data congestion unit which assigns proper values to 

parameters such as transmission rate, range, Contention Window Size (CW) and 

Arbitration Interframe spacing (AIFS) for each cluster of messages. The RSUs 

situated at the intersections transmit the appropriate information to vehicles that are 

stopped at red traffic signals to help reduce packet collisions thereby reducing 

congestion on the channels. The aim of the literature is to improve on throughput, 

delay and packet loss ratio compared to other congestion control strategies. The 

author mentioned that intersections are highly critical places with the most likelihood 

for the occurrence of traffic collisions and reported the death of 800 road users and 

7250 seriously injured at intersection traffic collisions [42]. The reason for congestion 

occurring on the channels at intersections is due to the high rate of vehicle density at 

red lights and it affects the Quality of Service (QoS) of VANET systems [43]. A 

congestion area is formed before the traffic lights due to the large amount of 

communication between vehicles resulting in high packet loss and increase in packet 

delay in the immediate area. The centralized strategy operates in each RSU located at 

the intersections. The Congestion Detection Unit works by measuring the channel 

usage level unlike other strategies that sense the channels periodically to measure 

parameters such as messages in the queue and channel occupancy time [44]. 
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Congestion is assumed to occur when the channel usage level exceeds a predefined 

threshold. The Data control unit utilizes Unsupervised Machine Learning algorithms 

[45] which are used for unlabeled data and do not need to employ a training data set. 

The proposed K-Means Unsupervised Algorithm used for the clustering works by 

firstly selecting initial centroids for K clusters, Secondly Computing the squared 

Euclidean distance of each data of the centroids, thirdly computing the new centroids 

cluster to find closest centroids then the second and third steps are repeated until a 

change in cluster members no longer exist [46] [47].  

The Congestion Control Unit discussed in the literature adjust communication 

parameters for the individual clusters set by the data control unit. The strategy selects 

values of the parameters according to the range of values defined by the DSRC 

standard [1], the data rates are in the range of 3-27 Mbps and 10-1000m for the 

transmission range. The proposed strategy adjusts the parameters by using the 

formulas estimated in [48] [34] to calculate the delay for the centroid of each cluster 

and by considering all possible combinations of the communication parameter values. 

The values corresponding to the lowest delay are selected as the communication 

parameters of each cluster. The RSUs then send the parameters to the vehicles located 

before the red lights at the congestion area and the vehicles based on this information 

for congestion control.  

The Simulations were carried out using SUMO, NS2 and Mobility model generator 

for Vehicular networks (MOVE). An Urban scenario was simulated using the 

Manhattan road pattern with eight intersections, Nakagami model for a propagation 

delay model and Poisson distribution for data generation. Performance metrics 
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considered were Average delay, Average Throughput, Number of Packets Lost, 

Packet Loss Ratio, Collision Probability and Packet Delivery Ratio.  

The scheme was compared against CSMA/CA, D-FPAV, CABS and NC-CC 

Strategies and results showed that the proposed strategy in the literature outperformed 

the other strategies. It improved the performance of VANETs by reducing the packet 

loss ratio, average delay, increased throughput and packet delivery. The limitation 

discovered is the computation time due to the Machine Learning Algorithm 

conducting large calculations. 
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CHAPTER 3 

PROPOSED VEHICLE DENSITY 

BASED POWER CONTROL 

ALGORITHM 

3.1       Introduction 

  The topology of VANET is extremely dynamic as vehicles go in and out of the 

transmission range rapidly, which has an effective max distance for packet delivery at 

1000m. The purpose of the network congestion control algorithm proposed in this thesis 

is to reduce congestion on the network by adjusting the transmission power according to 

the current density of nodes (i.e. vehicles) on the roads. The number of vehicles includes 

both parked and moving within the transmission range of the ego vehicle. The goals of 

the proposed algorithm are: 

• reduce Inter-Packet Delay (IPD), 

• reduce the rate of lost packets, 

• reduce channel busy time, and 

• reduce Beacon Error Rate  
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This will lead to increased throughput of the network, lower delay in communication and 

generally improve the safety of vehicles on the road. 

3.1.1 How It Differs from Existing Approaches 

The proposed algorithm differs from other algorithms in this field by:  

• Adjusting Transmission power based on vehicular density. 

• Using the Traffic command Interface of the simulator to determine the traffic 

conditions or node density as opposed to using Local density estimates [54].  

The approaches discussed in chapter 2 all made use of various methods ranging from 

acting upon specific parameters to maintain a certain threshold to reduce congestion 

and combining multiple factors for congestion control. In [31] the author of the paper 

used an oscillating power control to adjust transmission power to alternate between 

high power and low power transmissions by intentionally sending a number of low 

powered packets to reach vehicles that are nearby followed by sending fewer high 

power packets to reach vehicles that are distant, prioritizing awareness for vehicles that 

are nearby. Awareness is sacrificed and there is an increase in IPD for distant vehicles. 

Compared to the oscillating power approach [31], the proposed approach can 

effectively reduce the IPD, by considering node densities leading to an improved 

awareness for the vehicles. 
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3.2 High Level Outline 

   The proposed approach is based on how a single vehicle i.e. ego vehicle should adapt 

its transmission power according to the current vehicle density condition on the road and 

broadcast packets to other surrounding vehicles on the road accordingly. There is need 

for the transmission power to be controlled in the Medium Access Layer (MAC) to 

address situations such as: 

1. A single high transmission power at a high vehicle density will lead to packet 

congestion, leading to packet collisions and lost packets, which will cause reduction 

in VANET performance. 

2. A single low transmission power at low vehicle densities will most likely result in 

awareness problems since distant vehicles will be unable to receive the packet. 

3. Using the same transmission power at various vehicle densities will lead to wastage 

of resources and/or poor performance of the network. 

 The above-mentioned situations are addressed in the proposed approach. The algorithm 

is split into two parts, the first is for acquiring the current number of vehicles either in a 

parked state or driven state presently on the road. The second is for allocating the 

transmission power to be used. 
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Figure 3.1:  Proposed Algorithm 

  In the simulation environment to be used an initialization method is called at the 

beginning of the simulation to load the necessary modules when a vehicle is created in 

the simulation. A maximum transmission range is selected, which is the maximum 

distance a packet can travel in the network. In our simulations, this is set to 1000m and 

corresponds to the highest transmission power level. The maximum packet transmission 

rate is also selected at a constant rate of 10Hz i.e. 10 packets are sent every second to 

neighboring vehicles.  A reduction in the transmission rate will cause delay in significant 

or critical safety messages that are needed to be delivered in a specific time period [55]. 

The first part of the pseudocode in Figure 3.1 (step 4. a-f) counts the numbers of vehicles 

presently on the road and determines if the vehicle density state is Dense, Moderate or 

1. Select maximum transmission range, calculate the required transmission 

power based on the transmission range. 

2. For each packet a vehicle sends, repeat steps 4-5 

3. Procedure SetVehicleDensity 

a.      VehicleCount = getVehicleCount() 

b.      if (VehicleCount ≥ 100) then VehicleDensity← Dense 

c.     else if (50 < VehicleCount && VehicleCount < 100) then          

VehicleDensity ←Moderate 

d.      else if (VehicleCount ≤ 50) then VehicleDensity←Sparse 

e.      end if 

f.      end procedure 

4.  Procedure AllocateTransmissionPowerLevel 

a.      if  VehicleDensity= High  then setTxPower (LowTxPower) 

b.      if  VehicleDensity= Moderate then setTxPower 

(MediumTxPower) 

c.      if  VehicleDensity = Sparse then setTxPower 

(HighTxPower) 

d.      end if 

e.  end procedure 
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Sparse as vehicles enter and exit the network. A flowchart for these steps is shown in 

Figure 3.2  

 

Figure 3.2: Flow chart showing vehicle density state 
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A dense density state is when there are more than 100 vehicles present on the road. This 

can be due to various reasons such as accidents, traffic lights, poor driving abilities, and 

rush hour times. Traffic speeds are usually low, and vehicles are closer to each other. A 

Moderate density state is when there are 50 to 100 vehicles presently on the road. This is 

usually free flowing traffic. A Sparse state is one in which there are less than 50 vehicles 

presently on the road. The vehicles are thinly spread apart or faraway from each other, 

with high vehicle speeds, and traffic is free flowing. A pictorial representation of the 

three density levels are shown in Fig. 3.3 - Fig. 3.5. 

 

Figure 3.3: A Dense vehicle state 

 

 

Figure 3.4: A Moderate vehicle density state 
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Figure 3.5: Sparse vehicle density state 

 

The second procedure involves the allocation of the transmission power for the various 

vehicle density state mentioned. The Dense traffic density state is assigned a low 

transmission power. This is reasonable because of the proximity of the vehicles, so that 

the low power packets can reach the neighboring vehicles. A high transmission power in 

a dense environment may cause a high number of packet collisions and congestion which 

will reduce performance of VANET. 

The Moderate state is assigned a medium power, a power that is not too low that packets 

will not get delivered to vehicles faraway and just high enough to accommodate vehicles 

that are afar. The Sparse state is assigned a high transmission power to make provision 

for vehicles that are far away from each other due to the low number of vehicles on the 

road and relatively high speeds. A flowchart for these steps is shown in Fig. 3.6 
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Figure 3.6: Procedure for assigning transmission power 
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CHAPTER 4 

SIMULATIONS AND RESULTS 

4.1 Simulation 

Real world practical experiments of VANET are not feasible due to the time-consuming 

nature and large amount of resources that are required to conduct the experiments safely 

and for significant results to be obtained, hence the need for simulators to carry out the 

experiments which are safe, cheap and can replicate the VANET scenarios. A collection 

of open source software is used to simulate our work which would consist of a software 

to simulate vehicle mobility or traffic scenario and another to simulate the network 

communication between the high speed mobile nodes. The Simulation of Urban Mobility 

(SUMO) [34] tool which is widely used in this research field was used for the simulation 

of road traffic. It is implemented in C++ and includes features such as explicit 

Microscopic simulation for simulating vehicles, pedestrians and public transport, 

generation of time schedules for traffic lights and supports the import of real world maps. 

The simulations are deterministic by default, but parameters are set in place to introduce 

randomness. The network is modeled using OMNET++ [33] and Vehicles in Network 

Simulation (VEINS) [32]. OMNET++ is a Discrete Event Simulator which is an 

extensive, modular, component-based C++ library and framework for building networks 

such as wired and wireless communication networks, queuing networks etc. and support 

of wireless ad-hoc networks, internet protocols, photonic networks etc. Figure 4.2 shows 

the simulation environment in OMNET++ with nodes. VEINS contain detailed models of 

the IEEE 802.11P and IEEE 1609.4 DSRC/WAVE network layers and is the tool that 



 

31 

 

connects the traffic scenario (SUMO) with the network simulator (OMNETT++) to 

simulate VANET scenarios and protocols. VEINS was modified to include the proposed 

algorithm and collection of the results and statistics. 

4.1.1 Simulation Setup 

 

Parameter VALUE 

Simulation Duration 

Max Transmission Range 

Bitrate 

Sensitivity 

Thermal Noise 

Transmission Rate 

BSM size 

 

 

50s 

1000m 

6Mbps 

-89dBm 

-110dBm 

10Hz 

250 Bytes 

Table 4.1: Simulation Parameters 

 The proposed approach was tested using three scenarios which are: 

• A Six-lane highway consisting of three lanes in both directions 

• A Twelve-lane highway consisting of six lanes in both directions 

• A Twelve-lane highway consisting of six lanes in both directions and a slow-

moving traffic to stress the network 

The length of roadway was 900m with vehicles having a max speed of 80km/hr for the 

six and twelve lane roads then 50km/hr for the twelve-lane road built to stress the 

network. SUMO utilizes a route configuration file for the vehicle and traffic route 

parameters. The parameters include acceleration, deceleration, vehicle type, color, min- 

gap between vehicles, impatience of the drivers, max speed, emission class, depart lane 

and so on. Vehicles enter and exit the traffic simulation depending on the set route as 
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shown in Figure 4.1. Vehicles were added into the simulation at a constant rate of 0.1s in 

any random lane with space availability. 

 

            Figure 4.1: Vehicles created in SUMO entering and exiting the road network 

The proposed approached is implemented in the veins source files which consist of the 

various modules necessary for the use of the DSRC/WAVE protocol such as the MAC 

module where the transmission power can be controlled, messages module for creating 

and controlling the type of messages to be sent, a settings file that consist of all 

predefined parameters for running the simulation in OMNET++ and so on. Only Basic 

Safety Messages were broadcasted in the simulation because they are the most important 

messages when it comes to safety. Some of the information contained in the BSM 

packets are: 

• Sender ID 

• Receiver ID 

• Sender Speed 

• Sender Position 



 

33 

 

 

4.1.2 Simulation Runs 

The scenarios for the simulations were all run in the OMNET++ network environment for 

50 seconds at a transmission rate of 10Hz and a maximum transmission range of 1000m. 

The network simulation environment shows the modules used, nodes presently in the 

simulation broadcasting messages, time of simulation. Road side Units were not used in 

the simulation because it is a V2V network scenario. Three simulations were run for each 

traffic scenario which are: 

1. The 10Hz transmission rate without the use of a congestion control algorithm 

2. The Oscillating Power algorithm 

3. The proposed Adaptive power with vehicle density algorithm 

 

 

Figure 4.2: OMNET++ Environment showing a network simulation in progress 
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4.2 Simulation Results 

The results collected in the simulations are discussed in this section. At the end of the 

simulations scalar values were collected from each vehicle and calculated to obtain the 

results below: 

• Packets Sent 

• Packets Received 

• Packets Lost 

• Beacon Reception Rate 

• Beacon Error Rate 

• Channel Activity 

• Inter-Packet Delay 

The total number of vehicles generated during the simulations varied for the different 

road traffic scenarios used due to factors such as number of lanes and space availability 

but did not change for the different approaches meaning the simulation generated the 

same number of vehicles when the different approaches were used on a specific road. 

Scenario Number of Vehicles 

       6 Lanes 

       12 Lanes 

 12 Lanes (Slow) 

137 

272 

280 

Table 4.2: Total number of vehicles generated 
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Figure 4.3: Total Packets Sent 

4.2.1 Packets Sent 

Figure 4.3 shows the total number of packets sent by all the vehicles by the congestion 

control approaches used in the three road scenarios. The three approaches investigated all 

sent the same number of packets to the surrounding vehicles in the network which is 

expected due to the deterministic nature of the road traffic simulator (SUMO) and the 

fixed transmission rate of ten packets per second utilized. The twelve lanes with 50 km/hr 

sent the most packets because it had slower moving traffic and slightly more vehicles 

generated than the 12 Lanes with 80 km/hr traffic. 
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4.2.2 Packets Received 

 

Figure 4.4: Total Packets Received 

 

The total number of packets received by the vehicles in the scenarios vary by the 

congestion control algorithm used. It is shown in figure 4.4 that the 10Hz with no 

congestion control algorithm used receives significantly more packets compared to OSC 

power control and the adaptive method that adjust transmission power with vehicle 

density. This occurs due to the fixed high power used by the 10Hz approach and the 

broadcasting of packets to all vehicles in the simulation regardless of how great the 

distance of the vehicles which will lead to congestion in the network. The congestion 

control algorithms all receive less packets which is expected because of the control 

methods used regarding the transmission power. An approach receiving more packets 
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compared to the other does not necessarily mean it outperforms the other approaches in 

terms of reducing congestion in the network. 

4.2.3 Lost Packets 

 

 

Figure 4.5: Total Lost Packets 

A reduction in packet loss is a good measure to determine how effective our approach is 

in the simulations for congestion control. A reduction in packet loss would mean that the 

network is less congested, and packets are transmitted to the vehicles that need them 

without any problems. The scenarios in Figure 4.5 show that there is an increased loss of 

packets by the 10Hz approach on the twelve lanes road due to the Dense state of vehicle 

traffic and no form of congestion control leading to packet collisions and packets not 

getting delivered in the network which eventually results in a congested state of the 

network. This reduces the performance of safety in the network. The Adaptive and OSC 
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approaches both have an almost similar reduction in the total number of lost packets in 

the scenarios. 

4.2.4 Beacon Reception Rate 

 

Figure 4.6: Beacon Reception Rate 

Beacon Reception Rate is the comparison of the ratio of the total number of packets 

received and packets sent in the simulations. The 10 Hz with no congestion control 

approach shows a higher Beacon Reception Rate due to packets being able to travel a far 

distance throughout the duration of the simulation compared to the other approaches with 

congestion control methods used. This would lead to an increased Beacon error rate and 

eventually contribute to the degradation and increase in congestion of the network. The 

adaptive approach recorded less beacon reception rate because of the change in density 

states in the simulation and reduction of transmission power at high density states which 

would affect the distance a packet would travel just for reducing congestion. 
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4.2.5 Beacon Error Rate 

Figure 4.7: Beacon Error Rate 

The beacon error rate shows the ratio of packets lost over the packets received in the 

simulations. According to figure 4.7 the OSC and Adaptive approaches had slightly 

similar beacon error rates. The Adaptive approach had a slightly better performance than 

the OSC approach and significant improvement compared to the 10Hz only approach. 

This improvement was possible due to the adaptive approach seeking to accommodate 

the appropriate transmission power needs of the various traffic densities and limiting the 

wastage of resources in the process. The 10Hz only approach without a congestion 

control algorithm performed poorly compared to the others due to the high beacon 

reception rate mentioned earlier. 
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4.2.6 Channel Activity 

Figure 4.8: Channel Activity 

Figure 4.8 is an indication of congestion level on the network. The channel busy time 

recorded in the simulation by the MAC layer is the percentage of time the channels are 

treated as busy. The Total Busy time of the individual vehicles are divided by the total 

simulation time which tells us the amount of time the MAC layer is busy. A vehicle 

needs to wait for the channel to be clear before a packet can be transmitted in the 

network. Percentages above 100% indicate heavy overlapping transmissions, resulting in 

the channel being highly congested and harming the performance of the network.  The 

adaptive algorithm shown in figure 4.8 performed better than the other approaches in the 

twelve-lane 50km/hr scenario that was dedicated for stressing the network. In the 

scenarios where no congestion control method was used a high level of congestion is 

discovered which is harmful to the performance of VANET. 
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4.2.7 Inter-Packet Delay 

The Adaptive control that adjust transmission power according to change in vehicle 

density states aims to perform better than the OSC power algorithm that records a rapid 

increase in IPD which would be harmful to the use of Safety Applications. The delay 

time between packets sent needs to be reduced or kept at a gradual increase. The IPD is 

calculated by finding the average IPD for each second an Ego vehicle transmits to a 

receiving vehicle and the average transmission distance in that instant. The transmission 

distances are grouped into 20-meter intervals. 

The results from the scenarios collected in Figures 4.9, 4.10 and 4.11 all indicate a 

gradual increase of IPD in the OSC control method. The OSC shows a reduction in IPD 

only for distances that are less that 150m in all scenarios. The 10Hz with no congestion 

control performed better than the OSC in all scenarios because of the steady fixed 

transmission power and rate utilized. An almost consistent state of IPD was discovered in 

the simulations. The Adaptive control records an increase of IPD in figure 4:10 and 4:11 

which would be because of a vehicle density state change. A reduction in IPD is also 

noticed at greater distances for the adaptive control which is due to the transmission 

power being low and gradually fading in the dense vehicle density state. This result by 

the Adaptive control indicates that it performs significantly better than the OSC algorithm 

which records a significant gradual increase of IPD in all scenarios.  
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Figure 4.9: 6 Lanes IPD 

 

 

         

Figure 4.10: 12 Lanes IPD 
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Figure 4.11: 12 Lanes (slow) IPD 
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CHAPTER 5 

CONCLUSION AND FUTURE 

WORK 

5.1 Conclusion 

In this thesis, we have proposed and analyzed an approach to adapt transmission power 

according to vehicle density with the aim of controlling and reducing channel congestion 

on VANET. The approach was able to use different transmission powers to control 

channel congestion at Dense, Moderate and Sparse vehicle density states. The adaptive 

approach has shown to have improvement in reducing the channel busy time, reducing 

the number of lost packets, less beacon error rate recorded for the packets and a reduction 

in IPD as opposed to not using a congestion control approach and the OSC approach. 

5.2 Future Work 

There is plenty of room for the improvement of the adaptive transmission power with 

vehicle density approach. Combination of the adaptive approach with other approaches in 

the research field to make it Hybrid will further improve the performance of VANET and 

reduce congestion on the network. Introduction of a Rate control algorithm to the 

proposed approach which uses a single fixed transmission rate to control the number of 

packets sent will help with congestion control. Combining the OSC with the proposed 

approach in the dense vehicle density state will boost awareness in the network by 
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sending some packets to vehicles at greater distances but this will need to be tested and 

improved upon because of the gradual increase of IPD caused by the OSC algorithm. 
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 APPENDIX A 

Scalar Results 

 

 6 Lanes 12 Lanes 12 Lanes (Slow) 

Sent Packets 27670 54580 62980 

Received Packets 873953 3368978 4643317 

Lost Packets 13559 101292 219503 

Channel Activity (%) 67.29 129.2 179.4 

Beacon Reception Rate 31.58 61.73 73.73 

Beacon Error Rate 0.016 0.030 0.047 

Table 1: 10 Hz Scalar Results 

 

 6 Lanes 12 Lanes 12 Lanes (Slow) 

Sent Packets 27670 54580 62980 

Received Packets 583705 2239997 3015877 

Lost Packets 4128 46591 60999 

Channel Activity (%) 44.95 85.51 115.10 

Beacon Reception Rate 21.10 41.04 47.89 

Beacon Error Rate 0.007 0.021 0.020 

Table 2: OSC Scalar Results 
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 6 Lanes 12 Lanes 12 Lanes (Slow) 

Sent Packets 54580 27670 62980 

Received Packets 717893 2091112 2755967 

Lost Packets 4287 34088 60653 

Channel Activity (%) 54.80 79.79 105.50 

Beacon Reception Rate 25.94 38.31 43.76 

Beacon Error Rate 0.006 0.016 0.022 

Table 3: Adaptive Scalar Results 
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