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Abstract 

In industry fiber degradation during processing of biocomposite in the extruder is a problem that 

requires a reliable solution to save time and money wasted on producing damaged material. In this 

thesis, We try to focus on a practical solution that can monitor the change in temperature that causes 

fiber degradation and material damage to stop it when it occurs.  

Ultrasound can be used to detect the temperature change inside the material during the process of 

material extrusion. A monitoring approach for the extruder process has been developed using 

ultrasound system and the techniques of machine learning algorithms. A measurement cell was built to 

form a dataset of ultrasound signals at different temperatures for analysis. Machine learning algorithms 

were applied through machine-learning algorithm’s platform to classify the dataset based on the 

temperature. The dataset was classified with accuracy 97% into two categories representing over and 

below damage temperature (190
o
c) ultrasound signal. This approach could be used in industry to send 

an alarm or a temperature control signal when material damage is detected.  

Biocomposite is at the core of automotive industry material research and development concentration. 

Melt mixing process was used to mix biocomposite material with multi-walled carbon nanotubes 

(MWCNTs) for the purpose of enhancing mechanical and thermal properties of biocomposite.  The 

resulting composite nano-bio- composite was tested via different types of thermal and mechanical tests 

to evaluate its performance relative to biocomposite. The developed material showed enhancement in 

mechanical and thermal properties that considered a high potential for applications in the future. 
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Chapter One 

Introduction and Literature Review   
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Introduction and Literature Review  

Products are being highly customized with reduced production lead times. The conjugation of these 

factors pushes companies to continuously and quickly adapt the new technologies rapidly especially 

the ones related to resources, materials, and information flows [1, 2]. 

Extruder process 

 

 

 

 

 

 

 

 

 

Polymer composites are being produced via either single or twin screw extruder (Figure 1). The 

polymer resin is heated until it reaches molten state through a mixture of heating elements and shear 

heating coming from the extrusion screw.  The screw, or screws as the case with twin screw extrusion, 

forces the resin through a die. 

Main Control Parameters 

Speed  

Pressure  

Temperature 

One of the essential measures to be taken into account during the composite manufacturing process is 

the temperature parameter. Temperature monitoring allows prediction of polymer composite material 

destruction during the extrusion. Controlling the temperature during production cycle helps to save 

material from damage; hence saving time and money of preparing another material. There are several 

approaches to monitor the temperature represented in different kinds of transducers and monitoring 

systems. The objective of this project is to provide a robust Ultrasound temperature monitoring system 

for material production, which allows controlling the high-temperature effect on the material 

preparation and preventing damage before it happens. 

  

Figure 1 Extruder 
https://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Extruder.gif 
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Composite materials 

Materials which consist of two or more elements, one of them,  the fiber, is dispersed in a continuous 

matrix phase is called composite material. The product properties that are produced are different to the 

properties of the elements on their own. Composites have many advantages such as lightness, 

resistance to corrosion, resilience, translucency and superior efficiency in construction in comparison 

with conventional materials. To obtain the maximum reinforcement, highly stressed fiber regions could 

be introduced into the polymer matrix at in a particular position, orientation and volume. 

Composite Manufacturing 

The primary goal is to achieve the required technical performance of the manufactured composite at an 

economical cost process. Hence the choice of process is essential to achieve that goal. Each process has 

its particular benefits and limitations making it suitable for specific applications. Composite parts can 

be molded via a wide range of processes including simple manual process and industrialized complex 

processes such as ‘Sheet Molding Compound’ (SMC) [3]. 

 

Technical factors like the mechanical properties, environmental performance and size, and shape of the 

part in addition to economic factors like cost per piece being produced and run length are the main 

factors that govern the choice of the process and process parameters.  

Fiber 

Fiber reinforcement has different grades and types. In production, attention must be taken to guarantee 

that the correct grade/type is used. When different grade or type of fiber is used, the composite material 

produced will not have the expected properties.  For example, Carbon fibers of different types or 

grades do however have vast differences in modulus and strength.  

 

Fiber may be broken, and sometimes bundles of fiber may be kinked or wavy rather than straight, all of 

which will severely affect the tensile and compressive strength of the final composite material by 

reducing them. Uneven distributions of fiber lead to resin-rich or resin-starved regions. Defects in fiber 

may make them weaker or introduce stress concentrations 
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Bio-composite  

 

Biocomposites have proven their capability as an environmentally friendly replacement for polymers 

composites. Over the past decade, biocomposites have been used in many industries with different 

running applications primarily in the automotive industry[4]. Enhancing the properties of the 

biocomposites and providing the composites with more efficient electrical properties will open the 

door widely for more applications, especially with the mainstream heading towards cheaper and lighter 

electric vehicles.  

Studies concerning fiber-reinforced composites have been focused on thermosetting matrices because 

of the low viscosity of the uncured resin, which results in excellent fabric impregnation, and the low 

curing temperature, which is beneficial to avoid fiber thermal degradation[5].  

 

Cellulose-based natural fibers have excellent mechanical properties and a low density which can be 

used successfully as reinforcements for different kinds of thermoplastics. Although a weakness point of 

that fiber, which may cause a thermal stability problem, is that the first degradation occurs at 

temperatures above 180°C. Because of this, the thermoplastics typically used as the matrix are 

polyvinyl chloride, polypropylene, and polyethylene, which have melting temperatures below or equal 

to the degradation temperature [6].  

Monitoring extruder temperature  

In polymer extrusion, a homogenous melt output is required to achieve a uniform extruded product. 

The extruder temperature profile is to be taking into consideration as one significant parameter to avoid 

fiber degradation during the production process. Temperature disturbance in the melt leads to non-

uniformity of the optical, mechanical, or chemical properties of the produced parts, or leads to 

extrudate containing un-molten or gelled particles[7].  

The mechanical properties are the main affected properties when fiber degradation is concerned. 

Studies show the small or significant effect on mechanical properties (e.g., tenacity) due to fiber 

degradation as a result of thermal exposure for short or long time long [6].   

Although the Surface temperature of the screw is known to affect the melting process [7],  there are no 

published studies that take the surface temperature of the screw during the process into account when 

simulating the temperature profile of the melt inside the screw. One of the main reasons is the 

difficulty of measuring screw temperature during the process.  
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Studies investigating the temperature profile using another means of measurement can be found. Single 

screw extruder averaged melt temperature profiles comparison across the width of the screw at the end 

of the metric zone between a high-density polyethylene homopolymer (HDPE) with low-density 

polyethylene (LDPE) for three types of screws was measured. Data was measured with an infrared 

sensor at the metering section of the screw channel while other data was collected using a 

thermocouple grid at the end of the metric zone [8]. 

Results show that IR data is sensitive to the temperature and detects small variation in temperature 

across the channel width within 3-5 ̊c especially with the high speed. While larger variations can be 

detected through the melt (20-30 ̊c) [9].  

A twin extruder is more challenging to measure the temperature profile though. However, some studies 

have a temperature data analysis along the axis of the extruder by using six measuring points along the 

length of the extruder [10]. Measuring melt profile before the die section is highly likely to give similar 

results of a single screw. 

As illustrated earlier, this variation of temperature may lead to degradation of fiber although the sited 

temperature is less than the degrading temperature. To avoid this, less temperature should be applied to 

the melt through the extruder. To implement real-time control of the temperature, the further 

measurement should be done near the screw (center of the melt) which represents the highest 

temperature point due to the high shear force between the screw and composite and friction between 

the fiber, that may lead to exposing the fiber to more heat and end with fiber degradation that affects 

the mechanical properties badly.  
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Conventional methods of temperature determination 

 

Thermocouples 
Shielded thermocouples are the most commonly used melt temperature sensors. Thermocouples are 

generally used in association with another thermocouple held at a known reference temperature, the 

differences being used to compute temperature at the measurement position. The thermocouple 

junction is shielded, and the tip is mounted to protrude into the polymer melt. 

Although shielded thermocouples (the thermocouple junction is sheathed for robustness) are relatively 

inexpensive, they have several disadvantages. When the sensors are flush mounted with the extruder 

barrel wall, the recorded temperature is often similar to barrel temperature; the thermocouple gives a 

single point measurement that tends to be heavily influenced by the barrel due to its proximity. 

Temperature gradients along the thermocouple sheath introduce measurement error. Shear heating 

effects can be observed if the thermocouple tip protrudes into the melt flow, thereby indicating a local 

temperature increase. Also, response time is slow owing to the thermal mass of the sheath, limiting 

sensitivity to transient changes. 

The single point measurement issue may be addressed by the use of multiple or traveling thermo-

couples. However, the disadvantages of shear heating errors and slow response times remain. More 

recently, thermocouple meshes have been proposed whereby a pattern of crossing wires forms several 

thermocouple junctions across the mesh, which sits within the melt flow. However, the durability of 

such a mesh of thin wires in high pressure and high flow rate conditions is yet to be confirmed. Some 

published experiments installed a thermocouple grid before the die section of the barrel to measure the 

temperature profile on radial positions [11].  

 

 

 

 

 

 

 

 

 

Figure 2 Temperature profiles for single screw measured by thermocouple grid  
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Infrared transducers 

Melt temperature can also be measured using infrared techniques, with a wavelength range of ~0´8 mm 

to 1 mm. A polymer melt in a closed area or within an extruder or mold is assumed to behave similarly 

to a black body (one that completely absorbs all incident radiant energy and emits the maximum level 

of radiation possible at all infrared wavelengths). 

The Stefan Boltzmann relationship gives the total energy emitted by a black body object U=σT
4
,where 

U=W m
−2

; σ=5´6687×10−8 W m
−2

 K
−4

 (Stefan's constant); and T =absolute temperature (K). 

For specific temperature conditions, a particular wavelength has energy radiation of maximum 

intensity. For a particular wavelength, the energy emitted can be measured and related to the 

temperature of the object. The principle of operation of an infrared temperature transducer makes use 

of this fact, such that the transducer notes the wavelengths for which infrared radiation is strongest and 

relates them to the temperature of the body. The energy emission information is typically gained from 

an area of melt projecting inwards from the die wall such that an accurate indication of melt, rather 

than surface temperature, may be obtained. 

Infrared transducers are thought to probe a distance of up to 8 mm into the melt. The actual distance is 

unknown and depends upon the material under test. Work by Obendrauf and others [8, 12] using a 

Dynisco MTX transducer determined penetration depth by measuring the emitted intensity of infrared 

from a specific material for different sample thicknesses and using the information to quantify the 

absorption coefficient for that material, from which an average penetration depth is obtained. The 

authors suggest that the measuring depth for an unfilled polypropylene is on the order of 1.6 mm. This 

is compared with 6.7 mm for rigid poly(vinyl chloride) PVC and 0.033 mm for a 20% talc and soot-

filled polypropylene. 

Recent studies, again using a flush mounted Dynisco MTX sensor with a sapphire window, have 

confirmed that penetration depth is affected by polymer type. For a linear low-density polyethylene 

(LLDPE), an average penetration depth of 4.5 mm is noted when a traversing thermocouple is used to 

measure temperatures, whereas for low-density polyethylene (LDPE) and high-density polyethylene 

(HDPE) the penetration depth is on the order of 3.2 mm. 
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Corrections for shear heating associated with the traversing thermocouple may mean that the infrared 

measurement depth is underestimated. Magnesium hydroxide filler is also shown to have a tremendous 

influence on penetration depth during extrusion and a smaller effect during static tests. Measured 

temperature apparently decreases with increasing filler content in LDPE. 

The advantages of using an infrared device rather than thermocouples include [13]: 

1. Much improved response time (having a typical first order time constant of 10 ms); 

2. Non-intrusive design using a flush mounted sapphire window, removing the influence of shear 

heating from measurements; 

3. The ability to make bulk temperature measurements rather than surface temperature 

measurements; and 

4. Robust design; 

 

However, the uncertainty of measurement depth and inability to probe the entire melt cross-section 

depending upon die or nozzle geometry leads to problems when estimating bulk melt temperature. 
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Ultrasound Measurements 

Non-Destructive Testing (NDT) for material evaluation keeps gaining more interest every day for both 

industrial and research purposes.  NDT not only saves material cost but also can be used to have 

quality control over the production process.  Ultrasound plays a vital role as an NDT method. It has 

gained more interest, especially in the medical applications as a safe alternative to other evaluation 

methods and industrial applications and as a cheap and a high potential multipurpose testing method. 

Since the early 19th century elastic constant of material has been determined extensively using acoustic 

techniques [14].  The ability to detect a change in acoustic properties of polymers/composites due to 

the environment made Ultrasonic Non-Destructive Evaluation (NDE) a very promising technique for 

inline monitoring  [15, 16]. The need for robust process control increases especially for complex 

engineering components constructed from fiber reinforced polymer composites [17].     

  

In 2000, Challis, R. E presented a paper describing the application of a group of physical techniques 

that used to characterize the polymer structure during cure, with the aim of relating these to phenomena 

measurable by ultrasound, He concluded that compression wave ultrasound systems have the potential 

to monitor both the progress of treatment and the development of mechanical properties [18]. 

 

Dynamic Mechanical Analysis (DMA) defines techniques whereby we apply a time-dependent 

sinusoidal disturbance to a specimen, and the consequential behavior is measured as a function of time 

[19]. Several authors have reported using ultrasound to monitor the progression of the viscoelastic 

moduli of polymers due to change in time or temperature. It is known as Ultrasonic Dynamic 

Mechanical Analysis (UDMA) [20].  

 

Although there are still limitations on the application of ultrasound on polymer process evaluation, 

such as the poor long-term stability of transducers at high temperature and more reliable software 

analysis and interpretation of events derived from the response of polymers to ultrasonic waves,  the 

use of ultrasound is potentially a influential method for the characterization of polymers, mainly as a 

tool for Inline monitoring of events occurring during the manufacture of polymer matrix composites 

[20]. 
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Ultrasonic Dynamic Mechanical Analysis (UDMA) can be performed by scanning over a wide range of 

frequencies [21]. Mc Hugh, Jarlath (2007), presented his work to demonstrate the practical application 

and sensitivity of ultrasound as a high-frequency DMA technique for the characterization of polymers 

[17]. He was following the footsteps of Satrk. W  and others at Bundesanstalt für Materialforschung 

und –prüfung (BAM) [22] who, at this time, had the only commercial acoustic equipment that has the 

capability of industrial process monitoring thermosetting molding compounds.   

 

In his work, he employed a high-temperature sensor to obtain data over a wide range of frequencies (2 

to 6MHz and 250 to 650 KHz). He used two sample measuring setups to neglect the boundary 

reflections. He applied Fourier transformation analysis software to determine frequency-specific sound 

velocity and attenuation. Applying these factor, he achieved a high sensitivity technique for DMA of 

polymers and demonstrated its potential for a range of applications.   

 

Recently, ultrasonic measurements as a nondestructive, cheap and safe technique have also found it's 

place for process control applications either to understand equipment problems or as a way to predict 

the outcome of measurements proposed to control a process [23].   

 

Acoustic properties of polymers 

There is no parameter used to describe the material properties using ultrasound. For crystalline 

materials, a simple relationship describing elastic recovery exists 𝑀 = 𝜌𝑐2, whereby M represents the 

mechanical modulus, ρ the density and c is transversal or longitudinal sound velocity. On the other 

hand, viscoelastic materials such as polymers dissipate energy and wave propagation is attenuated [17]. 

It is common to express Young’s modulus as a complex quantity  𝐸∗ = 𝐸′ + 𝑖𝐸′′ [21].  

 

Acoustic waves are characterized by sound speed and sound absorption. Sound absorption (α) is a 

measure of the energy removed from the sound wave by transformation to heat during the propagation 

of the wave through a given thickness of the material.  

 

Varying stresses are normally expressed as a complex quantity, and the modulus is given by 𝑀∗ =

 𝑀 ́ +  𝑖𝑀 ́ ́ [19]. M ́ is referred to as the real component and describes the elastic or energy storage 

component of the modulus. M ́ ́ is the imaginary part or loss modulus.  

 

https://www.depositonce.tu-berlin.de/browse?type=author&value=Mc+Hugh%2C+Jarlath
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Depending on the nature of the ultrasonic wave, from measurements of velocity c and attenuation 

coefficient α the two components of the complex modulus (shear or longitudinal, here indicated with 

M ́ and M ́ ́) can be calculated from the following expressions [20] 
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These laws work for modulus including the complex Young’s modulus E*, complex shear modulus 

G*, complex longitudinal modulus L* or complex bulk modulus K*.  The modulus is related according 

to the following expressions [20, 24] 

 

𝐾∗ =  𝐿∗ − 4/3𝐺∗ 

𝐿 ′ =  𝐾′ +  4/3 𝐺′ 

𝐿′′  =  𝐾 ′′ +  4/3 𝐺′′ 

(3) 

 

The ratio of the imaginary part of the modulus (Young’s shear of bulk) to the real part is the tangent of 

the phase angle between the two components and is called the loss factor, tan𝛿. The loss factor is 

approximately related to absorption (α) per wavelength (λ) by the equation[21]: 

 tan 𝛿 =
𝐸′′

𝐸′
= 𝛼𝜆/𝜋 (4) 

 

The longitudinal and transverse speed of sound is related to the elastic constants with the relations [21]

 𝑣𝑙 = √
𝑘+4𝐺/3

𝜌
    , 𝑣𝑠 = √

𝐺

𝜌
    where K is the bulk modulus, G is the shear modulus and ρ is, the 

density.  
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The calculation of attenuation and group velocity for different sample thickness is calculated from the 

peak arrival times according to the following equation.  

 𝑉𝑇𝑂𝐹 =
(𝑑2 − 𝑑1)

(𝑡2 − 𝑡1)
=  (m/s) (5) 

 

t1 and t2 represent the time of flight of the sound wave to travel through individual samples. 1 and 2 are 

the thin and thick specimen respectively. The attenuation is determined by linking the peak amplitudes 

(e.g., negative peak) from the thin d1 and thick d2 samples and calculated according to the following 

Equation. Peak amplitudes are referred to as A1 and A2. 

 𝛼 = 20 log (
𝐴1

𝐴2
)

1

∆𝑑
= (dB/mm) (6) 

The advantage of using Ultrasound (US) monitoring system 

Previously published work by C. K. Jen discussed using ultrasound for monitoring polymer and the 

dispersion of the filler in a polymer matrix during extrusion [25, 26]. Experiments have shown that 

ultrasound can provide in-process information about the quality of dispersion. It has been confirmed 

that the ultrasonic sensor can be successfully operated along the extruder screw and that ultrasound can 

give access to the material properties while the polymer is being processed [27]. 

 

Several advantages are provided by Ultrasonic techniques over conventional methods and through 

ultrasonic measurements performed at the die level [27, 28]. However, since the properties of the 

composites are gradually changing along the extruder, there is a keen interest to access these properties 

at any location throughout the process. 

 

 Ultrasound wave prevents the false increase in temperature due to interaction effect between 

the viscous polymer and conventional thermocouple probe, which leads to more accurate 

temperature measurement of the melt. 

 Ultrasonic can also monitor the distribution of the reinforcement material/ additives in the 

composite as different distribution lead to different ultrasonic properties. 

 Ultrasonic equipment can be very competitive with other techniques of measuring temperature 

regarding cost-effectiveness, durability, and reliability.  
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Machine learning 

 

A new era of industry 4.0 based mainly on the mass production of individually customized products 

leads manufacturers and companies to adapt rapidly to new evolving technologies and manufacturing 

systems to respond quickly to market demands especially those are continuously changing [1, 29-31].   

 

Learning is the process of converting experience into expertise or knowledge [32]. Data is the input to 

a learning algorithm in training. The output is experience, which usually has a  form of a computer 

algorithm that performs particular tasks.  

 

Machine Learning has become a cornerstone of information technology. With the ever-increasing 

amounts of data becoming available there is no doubt that data mining and data analysis is becoming 

an unreplaceable ingredient for technological progress [31].  

 

Personal computers facilitate saving things that previously would have been trashed.  Affordable multi-

gigabyte storage units are postponing someone's decisions about what to do with all this data since it is 

easier to purchase another disk and keep it all. The world is overwhelmed with similar data. Buried in 

all this data is potentially useful information that is hardly taken advantage of.  As the volume of data 

increases, inexorably, the proportion of it that people understand decreases, alarmingly [29]. 

 

Data mining is about looking for and discovering the patterns in data. Generally speaking, a scientist’s 

job is an interpretation of data, to identify the patterns that govern how the physical world works and 

capture them in theories that can be used for predicting what will happen in similar or new situations. 

The entrepreneur’s job is to recognize opportunities, that is, patterns of behavior that can be turned into 

a profitable business, and exploit them [29, 31, 33]. 

 

Data mining is using automated searching via computer programing or an algorithm to look at 

electronically stored data. However, this is not new for science, as similar techniques have been used 

for sorting, identification, and validation of information. The unique thing is the significant increase in 

chances and opportunities to find a pattern in data.  
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 The continuous growth of databases in recent years and databases on everyday activities as customer 

choices puts data mining into the front of new business technologies. It has been estimated that the 

amount of data stored in the world’s databases doubles every 20 months [33].  

 

The opportunities for data mining increases as the flood of data continues and machines that can 

undertake the searching become usual. As the world overwhelms us with the data it generates, data 

mining becomes our only hope for revealing the patterns that lie beneath it. Similar to knowledge is 

power, wisely examined data is a treasured resource. It can lead to new understandings and, in 

commercial settings, to competitive advantages [29]. Data mining is about finding a solution to 

problems by analyzing data existing in databases.  

 

There are two excesses for the expression of a pattern, either as a black box or as a transparent box. 

Black box innards are effectively incomprehensible while transparent box construction reveals the 

structure of the pattern. Valuable patterns allow us to make predictions on new data. The difference is 

whether or not the patterns that are mined are represented regarding a structure that can be inspected, 

reasoned about, and used to enlighten future decisions. Such patterns are called structural because they 

capture the decision structure in an explicit way that assists us to explain something about the data. 

 

Most of the techniques that are for finding and describing structural patterns in data have developed 

within a field known as machine learning. 
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Task Statement  

Problem definition 

The fiber in Fiber Reinforced polymer composites reaches degradation temperature during processing. 

Fiber degradation leads to the material losing leading properties such as strength. Material reaching 

fiber degradation temperature is considered damaged and should not be used to the production line. 

The damaged material is considered a loss in both time and money.  

Cause 

Temperature increase and vary between inside the extruder barrel temperature (measured temperature) 

and material inside. Due to shear force between the extruder and material during production, 

temperature increases in the center of the extruder more than the settled temperature. Thermocouple 

does not sense the temperature change since it is loaded into the barrel to measure temperature from 

the surface of the extruder barrel. Hence, detection of the damage happens after the material is already 

processed.  

Mission  

The primary goal of this work is to study the Bio- composite production technology and the production 

process conditions (e.g., different temperature regions of production) to develop a reliable approach to 

solve the defined problem. Adding CNTs to the Bio- composite and following the modified composite 

from production to testing will be an excellent aid for understanding the technology and provide a 

suitable solution for future materials. 

Currently, to overcome the problem of temperature increase, manual temperature adjustment is 

performed when damage is detected to stop the following batches of the material being ruined. The 

suggested approach is to find a monitoring system that can help detect damage when it happens, so it 

could be controlled earlier and resulting in saving time and money. This can be achieved by either directly 

measuring temperature near extruder screw surface instead of the barrel via different methods, or detecting 

temperature increase effect inside the material and have control if the damage is exposed. Although, measuring 

the temperature directly near the surface of rotating screw is not practically possible for either high cost or 

technical difficulties.  

The mission is to develop and confirm the selected approach of using ultrasound to monitor the 

temperature increase and its effect on the material and apply machine-learning techniques to classify 

different Temperature US signals to detect damaged material.  
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Chapter Two 

Ultrasound Instrumentation for experimental examination of temperature 
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Fundamentals of ultrasound 

Acoustics (The science of sound) has become a wide-ranging interdisciplinary field covering the 

academic areas of physics, engineering, psychology, audiology, architecture, physiology, neuroscience, 

and others [34]. The branches of acoustics include architectural acoustics, physical acoustics, musical 

acoustics, psychoacoustics, electro-acoustic, noise control, shock and vibration, underwater acoustics, 

speech, physiological acoustics, etc.[34, 35].  

Soundwave is generated through different techniques, such as vibrating bodies, changing airflow, time-

dependent heat sources and supersonic flow. Ultrasonic Testing (UT) uses high-frequency sound 

waves in the range between 0.5 and 15 MHz for inspections and measurements [34, 36]. In the 

engineering field, UT has a wide range of applications such as flaw detection/evaluation, dimensional 

measurements, material characterization, etc.[37]. Ultrasound is also used in the medical field such as 

sonography, therapeutic ultrasound, etc. [38]. 

UT is based on the analysis of either the reflected waves (pulse-echo) or the transmitted waves through 

the transmission. Since they require one-sided contact surface to the item being examined, generally 

pulse-echo systems are more useful than other techniques. 

Ultrasonic testing (UT) is the most commonly used non-destructive evaluation method for the 

inspection of composites [39]. Frequency range 20 kHz to 20 MHz is frequently used on 

microscopically homogenous materials (i.e., non-composite).  In testing composites the frequency 

range is reduced due to the attenuation, so the operating frequency limit is usually 5 MHz or less [40].  

In most techniques, pulses of ultrasound are sent through the composite and then received after being 

affected by the structure.These techniques include through-transmission, pulse-echo, back-scattering, 

and ultrasonic spectroscopy [21, 34, 40].  

Through the manual (UT) the area is contact-tested by scanning a probe by hand; For a small 

inspection area is, this is suitable for fieldwork. To obtain consistent results, manual UT requires a high 

level of operator skill due to the signal amplitude dependence on the thickness of the coupling fluid 

layer, which itself is dependent on the pressure applied [39, 41]. However, variations among trained 

operators should not pose a problem provided a standard calibration be obtained.  
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For water-sensitive or absorbent composites, roller probes with water-retentive rubber tires are favored 

because they leave the surface dry. However, these work at the lower end of the UT frequency range 

and therefore are not best suited to detailed defect analysis [13, 39]. This illustrates that the probe-

specimen distance must be within a narrow tolerance else the ultrasound transmitter will become de-

coupled from the testing sample [13]. 

In non-contact UT, tolerated probe movements can be accepted without de-coupling the transmitter. 

Generating the ultrasound with a laser is one way of doing this [13]. The added advantage of this is that 

the speed and the signal can be produced and sensed in any orientation up to 60 degrees relative to the 

specimen. However, this approach is obviously relatively costly in addition to surface ablation risk and 

the required physical safety measures when using high powered lasers, which can be restrictive in a 

production or field environment. Using the magnetostrictive is another alternative, but these operate 

only at the low ultrasonic frequency range (200 kHz or less). 

Immersion testing, or IUT, is to uphold a continuous buffer, preserved when the specimen probe 

distance changes significantly, of coupling fluid, usually water, between the probe and the testing 

sample. For a small specimen, an immersion test can be executed by executing the test with the probe 

and specimen fully submerged in coupling fluid [13, 36]. However, this approach is impractical in the 

case of large specimens  since submersion of the specimen will cause excessive cost and also the size 

of immersion tanks. 

 

Figure 3 US non-destructive test Through Transmission setup 
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If the specimen is floating that will lead to another problem, large forces are needed to keep it 

submerged. The jet probe technique is an alternative to submersion in which two specially designed 

probes apply water jet and couple it to the ultrasound, one transmitter and one receiver. This is a more 

suitable technique for big or floating samples since it can adapt to the change in the surface contours. 

[13, 41, 42]. 

Pulse-echo UT examination system includes several units, transducer, the pulser/receiver, and a display 

unit. High voltage electrical pulses are generated by the electronic device or a pulser/receiver. Driven 

by the pulse, high-frequency ultrasonic energy is generated by the transducer [34, 39].  

 

 

 

 

 

 

 

The energy of sound is generated and propagates through the materials in the form of waves. When 

there is a discontinuity (defect /crack) in the wave path, some of that energy will be reflected back 

from the surface with a flaw. The transducer turns the reflected wave signal into an electrical signal, 

and the signal is displayed on a screen. Time of travel can be directly related to the traveled distance, 

Knowing the velocity of the signal. From analyzing the signal, information about the reflector location, 

size, orientation and other features can be gained [34, 39, 41]. 

 

 

  

Figure 4 US Non-destructive Pulse- Eco System 
https://www.nde-ed.org/EducationResources/CommunityCollege/Ultrasonics/Introduction/description.htm 

https://eis.hu.edu.jo/ACUploads/10526/Ultrasonic%20Testing.pdf  

 

 

 

https://www.nde-ed.org/EducationResources/CommunityCollege/Ultrasonics/Introduction/description.htm
https://eis.hu.edu.jo/ACUploads/10526/Ultrasonic%20Testing.pdf
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Advantages and Disadvantages 

compared to other NDT methods are [13, 21, 34, 36, 39, 41]: 

Advantages 

 An automated system produces detailed images; 

 Safety; 

 Other features can be obtained, such as thickness measurement; 

 Portable and easy to use; 

 Sensitivity to the surface and beneath the surface discontinuities; 

 Penetration depth for flaw detection or measurement is superior to other NDT methods; 

 High accuracy; 

 Specimen preparation is minimal; and 

 Instantaneous results can be obtained. 

 

Disadvantages 

 Surface must be accessible to transmit ultrasound; 

 Coupling medium is required; 

 Defects may be unseen if it is parallel to the sound wave beam; and 

 Some samples, e.g., cast iron specimen are hard to inspect due to law sound wave and 

high noise level from the rough surface. 

 

Physical acoustics involves the use of acoustic techniques in the study of physical phenomena as 

well as the use of other experimental techniques (optical, electronic, etc.) [34]. Since much of 

physics involves the use and study of waves, it is useful to begin by mentioning some different 

types of waves and their properties. The most basic definition of a wave is a disturbance that 

propagates through a medium. A simple comparison can be made with a stack of dominoes that 

are lined up and knocked over. As the first domino falls into the second, it is hit over into the 

third, which is knocked over into the next one, and so on. This suggests that we define two 

concepts, the average particle velocity of the individual dominoes and the wave velocity (of the 

disturbance) down the chain of dominoes [21, 34]. 
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Physics of Acoustics 

Properties of Acoustic Waves 

The wavelength is inversely proportional to the frequency of the wave and directly proportional 

to the velocity of the wave. This relationship can be described by the following equation: 

 
v

f
   (7) 

Where; 

λ : wavelength (m) 

v  : velocity (m/s) 

f : frequency (Hz) 

The speed of sound waves in a medium is fixed where it is a representative of that medium. As 

can be illustrated by the equation, an increase in frequency will lead to a decline in wavelength 

[34, 35]. 

Defects Inspection 

In UT, a decision about the frequency of the transducer that will be used has to be taken into 

consideration to control the wavelength. The wavelength of the ultrasound plays an essential rule 

in detecting a discontinuity. A discontinuity should be larger than one-half the wavelength to 

stand a reasonable chance of being exposed as a general practice [19]. 

In order to define a technique's ability to locate discontinuity, sensitivity and resolution are two 

terms that are used in the ultrasound evaluation. Sensitivity is the ability to locate small defects. 

Sensitivity increases with higher frequency and shorter wavelengths. Where resolution is the 

ability of the system to find discontinuities that are close together within the specimen or located 

near the part surface. The resolution also increases as the frequency increases [39]. 

Material's grain structure and thickness have to be taken into account for selecting a frequency 

for inspection, in addition to the discontinuity's type, size, and probable location. Soundwave 

tends to scatter from large or coarse grain structure as frequency increases, and from small 

imperfections within a material.  
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Cast materials often require lower frequencies to be used for evaluation because they have coarse 

grains. Higher frequency transducers can be used for inspection of wrought and forged products 

with directional and refined grain structure [39, 43]. The penetration depth is also reduced. 

Soundwave Propagation in Elastic Materials 

Sound waves propagation is caused by the oscillatory or vibrations motions of particles within a 

material.  Ultrasonic wave can be simulated as an infinite number of oscillating masses or 

particles connected by means of elastic springs. Each particle is affected by the motion of its 

nearest neighbor and both inertial and elastic restoring forces act upon each particle [34]. 

For a mass with spring constant k and its mass m, a mass on a spring has a single resonant 

frequency (natural frequency). Tied to the elastic limit of any material, there is a linear 

correlation between the displacement of a particle and the force trying to restore the particle to 

the position of Equilibrium. Hooke's Law describes this linear dependency. When using terms of 

the spring model, the relation between force and displacement is written as F = k x. 

The effect of Material Properties on Speed of Sound 

Because the mass of the atomic particles and the spring constants are different for different 

materials, sound waves propagate at different speeds through the different materials. While the 

mass of the particles is related to the density of the material, the spring constant is linked to the 

elastic constants of material. In solids, the speed of sound is connected in a general relationship 

to material density, and elastic constants are given by the following equation: 

 
ijC

v


  (8) 

Where; 

v  : Speed of sound (m/s) 

ijc : Elastic constant “ in a given direction” (N/m
2
) 

 : Density (kg/m
3
) 

Subject to the type of wave and which of the elastic constants that are used, this equation may 

have different forms. The subscript “ij” linked to ”C” in the equation is used to direct the 

directionality of the elastic constants with respect to the type of the wave and wave travel 
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direction. The elastic constants are the same for all directions in isotropic materials. However, 

most materials are anisotropic. Hence the elastic constants differ in each direction.  

The velocity of the travel of an ultrasonic wave is a characteristic of a given material. The 

passage of a mechanical wave through a material can be thought of in terms of a stress/strain 

relationship, the wave transmitting a force to each element within the material encountered 

during its propagation and causing a corresponding elemental displacement 

For longitudinal sound waves, the ratio of element displacement with time and the magnitude of 

that displacement in the direction of wave propagation can be related to elastic constants and 

material density. The ultrasonic velocity in a specific material is then determined by the elastic 

modulus and the material density. For longitudinal waves, the velocity can be defined in terms of 

the bulk and shear moduli as [44]: 
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   (9) 

Where C is the velocity of longitudinal waves (m s
−1

); k is the bulk modulus (N m
−2

); G is the 

shear modulus (N m
−2

), and ρ is the density of the material (kg m
−3

). For polymer melts, the 

appropriate modulus for material characterization is often taken as the bulk modulus k, while the 

shear modulus G is relatively small compared with its value for the material in its solid state.  

When attenuation is small, typically correct for a melt relative to attenuation in the region of the 

glass transition temperature, the equation can be simplified to give: 

 

 
K

C


  (10) 

The ultrasonic velocity also changes with temperature and pressure [34, 39, 44]. This is linked to 

changes in elastic moduli and density with temperature and pressure. The temperature and 

pressure effects are related for a given material, according to pressure, volume, and temperature 

(PVT) equations of state, and additionally for viscoelastic materials such as polymers, a time 

component must be considered. 
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Although the temperature and pressure effects are interrelated, it is useful to separate the effects 

of temperature and pressure on ultrasonic velocity in a specific material for the application of 

velocity measurements during polymer processing, because temperature and pressure values can 

be individually determined by non-ultrasonic means. This allows ultrasound to be used as an 

alternative indicator of temperature or pressure. If the temperature and pressure influences are 

removed from a measured velocity change, residual velocity change can then be used to indicate 

variations in the material type (e.g., blend fraction or filler level). 

To measure ultrasound velocity, the transit time of the signal is measured. The total change in 

transit time may then be thought of as being a function of the variation in temperature if all other 

variables (e.g., pressure, material type, filler level) were constant, plus a function of the change 

in pressure if all other variables were constant, and so on for each of the associated variables. 

This can be written in terms of a differential equation, using the Chain Rule, such that for a 

specific material the total change in transit time Dt is given by [44]: 

 ( ) ( ) ( )P T TP

t t t
t dT dP d

T P
  



  
   

  
 (11) 

Where ∂t is the change in transit time due to one variable; T is the temperature; P is the pressure, 

and   is the filler level. This assumes only that T, P, and   can each be varied independently. 

 The values of (∂t/∂T )P , (∂t/∂P)  T, and (∂t/∂ ) TP can be obtained experimentally from the 

slopes of the appropriate static calibration tests. 
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Ultrasound as temperature measurement solution 
The velocity of propagation of an ultrasonic signal through a melt varies during processing since 

it is dependent upon temperature and pressure conditions. Ultrasonic velocity measurement can, 

therefore, be utilized as a method of temperature and pressure determination [26, 34, 39, 44].  

Temperature and pressure effects on velocity have been calibrated for a number of materials. If 

an independent source of pressure measurement is present in the die or nozzle, for example, 

using a mounted pressure sensor, the temperature can be inferred from the ultrasound velocity 

and pressure measurements. The ultrasound transducers can be used in line during processing 

and are non-invasive, but the ultrasonic signal is propagated across the entire melt cross-section 

resulting in a bulk measurement, and data are available in real time [44]. 

Correlation Method Based Bio-composite Material Temperature Estimation Utilizing Ultrasound 

Signals  

In material, production temperature is considered a primary factor for monitoring and quality 

control [12, 45, 46]. The change in temperature during the production process can lead to 

degradation of the material or one of its composites. Temperature monitoring allows prediction 

of material destruction before it occurs. Controlling the temperature during production help is 

saving material from damage; hence saving time and money of preparing another material. There 

are several approaches to monitor the temperature represented by means of different kinds of 

transducers and monitoring systems [45].   

Ultrasound (US) technology has been a cornerstone of many development projects over the last 

three decades. Many approaches to using ultrasound as production or temperature monitoring 

system have been reported [9, 25, 47]. In these procedures, an ultrasound signal is used to 

determine the speed of sound and attenuation coefficient to determine properties of the produced 

material. In addition to providing high accuracy results for a very computable price ultrasound 

has a primary advantage of penetration that can predict the temperature inside the material not 

only the temperature at the surface as other alternatives  [48-50].  

This experiment aims to estimate the temperature of biocomposites by comparing its US signal 

with a set of biocomposite templates with known US temperatures. The predicted temperature is 

determined from the knowledge of the optimum value of the correlation coefficient between the 

biocomposites and the templates.  
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Theory 

Ultrasound has been widely used for the non-destructive evaluation of material [47]. 

Temperature also affects the speed of sound. There are specific functional relations between the 

propagation velocity of ultrasonic waves in gas, liquid, and solid at certain temperatures [49, 51, 

52]. High attenuation in the composite at elevated temperature makes recognizing two reflections 

inapplicable. However, using the correlation coefficient for analysis, the signal could help 

estimating the temperature.  

A correlation coefficient (µ) is a number that denotes statistical relationships between two or 

more values in vital statistics [53, 54]. The correlation coefficient measures the linear 

interdependence between two random variables. The µ value can range between -1.00 and 1.00.  
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Where X and Y are representing the digital US collected from the US transducer. ℇ is the 

covariance,   is the standard deviation. 

Experiment setup 

Heating Setup 

One (1) MHz ultrasound transducer fixed on a melting chamber has been used to record 

ultrasound signals while increasing temperature of Polypropylene –fiber composite from room 

temperature (25
o
C) to 200

o
c (Figure 6). Ultrasound signal data have been saved for temperature 

change each 10
o
C. An On/Off temperature control with 0.5

o
C offset was applied to maintain the 

temperature while measuemnt is carried out.  Data were stored in MATLAB software accessible 

format. The program was developed for comparing a detected signal at specified temperature 

with the data recorded throughout the experiment. The program used the library of the data 

recorded as a reference for comparison to determine which data is most similar to the compared 

signal using correlation coefficient function between signals at frequency domain. The program 

illustrates the temperature of the signal with the highest correlation coefficient. 

The main potential application for this project is online monitoring of material production 

temperature. By switching the compared signal with the signal from the online transducer, the 

temperature could be determined using a previously recorded data. These data could not only be 
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changed or adjusted from one product to another but also could be calibrated to illustrate internal 

degradation temperature of the material, which is usually different than detected using 

conventional methods like a thermocouple. 

 

 

 
 

 

 

 

 

 

 

 

   

Figure 5 Block diagram of the instrumentation setup. 

Figure 6 Measurement cell  
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Extrusion setup 
 

Another set up was designed and built in order to simulate the fluid movement of the polymer inside the 

extruder (Figure 7). With the Help of Hydraulic press, a heat chamber was built from Aluminum and 

surrounded by heating cable to provide heat enough to melt and extrude the composite from a lower 

rectangular shaped hole. An epoxy material was installed in a side hole of the chamber as a waveguide. 

The different material was pushed via the hydraulic press through the rectangular hole where the flow can 

pass in front of ultrasound 1 MHz transducer. Pulser receiver mode ultrasound signal detection system 

was attached in order to record echo signal at a different temperature. The temperature was controlled and 

recorded via a temperature control unit, and a Thermocouple insulted neat the extrusion hole recording.  

Ultrasound signals were recorded at 500sample per second at different temperature for each composite 

(160
o
c, 170

o
c, 180

o
c, 190

o
c, 200

o
c, and 210

o
c). the signals were processed in order to determine the 

correlation between the temperature of the flow and the speed of sound. 

 

 

 

 

 

 

 

 

 

 

   (a)       (b) 

  
Figure 7 Block diagram (a) and Measurement cell (b) of the extrusion process simulation setup 
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Calculations 
As illustrated earlier in chapter one the calculation of attenuation and sound velocity for different 

the material is calculated from the peak arrival times (Figure 8) in our case equations 5 and 6 can 

be rewritten to be.  

 V =
(2d)

(𝑡B − 𝑡A)
 (13) 

 

Where, d is the sample thickness, tA and tB represent the time of flight of the sound wave to 

travel through individual samples. A and B are the recived peaks from the end of the buffer and 

the surface of the champer respectively. The attenuation is determined by linking the peak 

amplitudes and calculated according to the following Equation. Peak amplitudes are referred to 

as A1 and A2. 

 

 

  

 𝛼 =
1

2𝑑
ln (

𝐴1

𝐴2
) (14) 

Figure 8 Sample of received US signal 
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Chapter Three  

Applying machine learning for industrial application   
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Applying machine learning for industrial application  

Applying machine learning in for industrial application has been a cornerstone for studies and 

research in the past decade especially as the industry was entering the new era of Industry 4.0 

and x by internet production [55]. Applying machine learning techniques in industry shows 

promising potential for enhancing productivity, efficiency, and quality control in production 

process [56]. Many publications have discussed the effectiveness of applying machine learning 

techniques in different stages of production. Most of these studies have an industrial case study 

where a machine learning technique was applied either to overcome a problem or to create a 

prediction model for the results. This work is a review of some of the recent applying of machine 

learning techniques for different industrial fields or purposes. 

In 2004 M. Aksoy et al. [57] used Rule-3 inductive learning algorithm [58] to train a system by 

five good cups and then tested for 113 unseen examples. The system correctly classified unseen 

examples by efficiency of 100% and also determines what kind of cup is being used. Compared 

to conventional methods the main advantages of such a system was simple, fast, low memory 

space is required, and orientation had no effect. This kind of system in addition to other similar 

systems presented at the same time but it shows lots of potential applying the machine learning 

in the industry to achieve better results with fewer efforts and less time-consuming. 

Machine learning in the energy industry 

In general, any industry is showing great interest in Energy resources and economic 

development. For the purpose develop and apply the machine learning approach to predict gross 

domestic product (GDP) based on the mix of energy resources [59], Machine learning approach 

was applied, and results were compared to those of a backpropagation algorithm. Lots of 

previous efforts were taken to investigate the relationship between energy consumption and GDP 

growth, although the main idea of such work was to investigate the data via applying machine 

learning techniques in order to deal with high nonlinearity of the data.  

 

For their research, The World Bank Database was used as the data source. As the output 

parameter, the GDP growth rate (percentage) was used. Based on the results, Artificial Neural 

Network (ANN) can be useful in analyzing the relationship between the mix of energy resources 
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and economic growth and with applying of a machine learning approach it may be possible to 

improve predictive accuracy. Results indicate that GDP predictive accuracy can be enhanced by 

applying a machine learning approach.    

Machine learning in material industry 

Lots of efforts have been taken into building a simulation for material design for specific 

properties. Many material databases enhanced with many computational correlations between 

material properties and different desired functionalities has been studied and published [60].  

An advanced material design simulation toolbox has been designed and discussed by Amir 

Mosavi [61]. In his work, he was trying to overcome a challenge that faces material design tools 

as they either depend on a single algorithm or deal with only limited ranges of design 

problems[62, 63]. In addition, the absence of a tool for multi-criteria decision and a significant 

data tool to take into account dealing with the massive material database is considered a further 

gap in this research area. This study proposed a toolbox for predictive simulation-based 

optimization of advanced materials to model, simulate, and predict the fundamental properties 

and behavior of multi-scale materials. With the involvement of advanced machine learning and 

big data technologies, the artificial systems would learn and generate knowledge from large 

databases of material properties to provide predictive analysis capability for unmolded materials. 

His methodology was using machine learning integrated optimization for predicting the three-

dimensional structure multi-scale material to efficiently solve such sub-tasks and combine their 

outputs into a reliable 3D structure predictor.  

He implemented his method on a textile design composite adapted from some referred 

publications. He concluded that by applying machine learning, he managed to implement a 

platform which is a simple yet powerful concept that reduces computation time to design 

application-based tailored materials. 

 

This work is a simple yet influential concept leading to developed technology that reduces 

computation time to design application based custom-made materials. The toolbox is mainly 

considered for the virtual design and simulation of advanced material. 
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Machine learning for industrial reliability  

Manufacturers’ goal is to produce high-quality products in less time. Due to the highly 

competitive market, the manufacturers’ interest is to put concentration more than ever before on 

the machines’ reliability [64]. An industrial case study was presented by [65] discussed this 

matter. The study of how machine learning models can fit this reliability estimation function in 

comparison with traditional approaches (e.g., Weibull distribution).  The previous work in their 

literature review on machine learning for reliability established that machine learning models can 

perform well in the industrial reliability field. However, they noted that the studies often use one 

well-known case study to validate their models. Therefore it was still unclear if there is machine 

learning model able to perform generally well across different datasets.  

To predict the reliability, the study used a supervised machine learning approach on 19 industrial 

mechanical components obtained from real industries. Four diverse machine learning approaches 

were implemented: artificial neural networks, support vector machines, random forest, and soft 

computing methods.  

The experimental set up included two failure process investigation methods via complete data or 

censored data. The empirical reliability function was then indicated by the machine learning 

models path and the traditional path for comparison. 

The experimental results show the high ability of machine learning to predict the component 

reliability and particularly, random forest, which generally obtains high accuracy and the best 

results for all the cases. The data confirms that all the models improve their performance when 

considering censored data and shows how machine learning models obtain better prediction 

results with respect to traditional methods when increasing the size of the time-to-failure 

datasets.  

The study showed the potential of the machine learning approach for technical or industrial 

reliability analysis. These results contribute in the field of maintenance engineering or quality 

control helping to define some threshold values which trigger specific maintenance action. 
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Machine learning in electronic industry 

Technologies for inserting electronic components are necessary within the electronics industry. 

Visual feature recognition, robot arm insertion motion clustering, and machine learning were 

employed to develop a system for inserting nonconventional components [66]. A study proposed 

a learning system for machines-customized machines- have been mainly designed for automatic 

assembly- that incorporates image characteristics into the insertion motions performed by a robot 

arm to solve problems related to transformer insertion[66].  

The operation of the investigated system was separated into three layers: Vision layer where 

image was filtered, and the pin image features of each transformer were preserved, Motion layer 

where insertion motions for transformers were manually fed to the system and a clustering 

algorithm was applied to search for representative motions among these manually taught motions 

and Decision layer where multilayer SVM modeling was applied to estimate robot arm motions 

according to input-image features to generate ideal insertion motions. 

A large number of motions were initially fed to the system because of the variations between all 

transformers. However, a prominent set- back of this method is that these insertion motions must 

be manually trained, although automatic learning can be taught in the future. The decision layer 

uses one-against-rest support vector machines (SVMs) to establish classifiers for applying the 

collected image characteristics to the calculation of insertion motions. The concept of SVM 

classification was utilized to teach the relationship between image features and representative 

motions. Developing SVM training models involved in putting the training data set, data class 

labeling, and SVM parameter adjusting. Once SVM models were generated, inputting new and 

similar data sets enabled these SVM classifier models to estimate their respective data class. The 

core concept of SVM classification is binary classification.  

By using 300 transformers as training samples and 200 transformers as test samples experiments 

were performed to validate the research methods. The experimental results showed an 

accurateness rate of 88%, and that the engaged SVM classifiers were more accurate than the 

other two classifiers. 
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Machine learning in pharmaceutical industry 

In the pharmaceutical industry granulation processes are, more often than not, used to obtain and 

maintain suitable specific properties in terms of compressibility, flowability, and homogeneity 

[67]. In the work of A. Wafa'H et al. [68], a new systematic modeling framework which uses 

machine learning for describing the granulation process was presented. The ultimate aim of that 

research was to develop a fast, transparent, more accurate and low –cost predictive modeling 

framework for the twin screw granulation (TSG) process.  

First, an interval type-2 fuzzy model is elicited in order to predict the properties of the granules 

produced by twin screw granulation (TSG). Second, a Gaussian mixture model (GMM) is 

integrated into the framework in order to characterize the error residuals emanating from the 

fuzzy model. This was done to refine the model by taking into account uncertainties and/or any 

other unmodelled behavior, stochastic or otherwise. All proposed modeling algorithms were 

confirmed by Laboratory experiments. The size of the granules formed by TSG was successfully 

predicted, where most of the predictions fit within a 95% confidence interval. The proposed 

modeling framework is a promising development in the granulation process, as it was able not 

only to predict the granule size successfully but also to deal with the uncertainties surrounding 

such a process. In the future, such a modeling framework can also be adapted to represent the 

production cycle of pharmaceuticals; by developing a model for each unit operation, followed by 

connecting these models into one single modeling framework.  

Machine learning for production machines 

For industry and production machines and tools, Cutting tool wears detection using multiclass 

logical analysis of data was presented [69]. The work shows tool wear class detection approach. 

Based on the recorded experiments, tool wear classes are determined using the Douglas–Peucker 

algorithm. Logical analysis of data (LAD) is then used as machine learning, pattern recognition 

technique for detecting the present tool wear class based on the latest sensors’ readings of the 

time-dependent machining variables, and deriving new information about the inter-correlation 

between the tool wear and the machining variables (Feed, Cutting Force and Feed Force), by 

doing pattern analysis. LAD is a data-driven technique which relies on combinatorial 
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optimization and pattern recognition. The accuracy of LAD has compared to that of an artificial 

neural network (ANN) technique since ANN is the most familiar machine learning technique.  

The proposed method was applied to experimental data those are gathered under various 

machining conditions. Based on the multiclass LAD classification algorithm, the tool wear 

classes are defined by finding the hidden patterns specific to each class. Through an analysis of 

the generated patterns, class identifiers are found. The accuracy of LAD is evaluated and 

validated by comparison to an ANN technique. LAD shows better classification accuracy for the 

tool wear phenomenon. Based on the results it the technique used was able to detect the tool 

wear class correctly and with high accuracy. Tool wear class detection will be used to indicate 

the cutting tool life when the tool is used in rough and finish cut. The objective will be the 

prognosis of tool wear, to find the best time to change the tool. Another point of research is to 

decrease the LAD’s computational time to use it for online monitoring and detection of the tool 

wear.  The accuracy of detection can be improved by including additional variables such as 

vibration signals, acoustic emissions, and cutting temperatures. 

Machine learning in the steel industry 

The core purpose of this study was to acquire a predictive model able to perform initial detection 

of central segregation severity in continuous cast steel slabs. Centerline segregation in steel cast 

products is an internal defect that can be very harmful when slabs are rolled in weighty plate 

mills[70]. Hence, predicting its existence is a matter of significance to prevent future risks. The 

study presents a hybrid algorithm, of support vector machines (SVMs) and the particle swarm 

optimization (PSO) techniques, to forecasting the centerline segregation from input parameters 

determined by experiment in continuous cast steel slabs. This technique includes kernel 

parameter setting in the SVM training procedure, which considerably affects the regression 

accuracy. also, a multivariate adaptive regression splines (MARS)  and a multilayer perceptron 

network (MLP) approach. This last method also in combination with the particle swarm 

optimization (PSO) technique, was fitted to the experimental data for comparison purposes. To 

this end, the most critical physical-chemical parameters of this industrial process are 

investigated. 
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The study results are two main points. First, the importance of each physical-chemical variables 

on the segregation is obtainable. Second, predicting segregation with some models were acquired 

successfully. The results achieved with the MLP and PSO–MARS-based models are apparently 

worse than those obtained with the PSO–RBF (Radial basis function) SVM-based model. The 

connection between experimental data and the model confirmed the decent performance of the 

latter. 

The main findings of this research work can be summarized as follows: The diagnostic 

techniques commonly used for segregation based on the traditional methods are expensive from 

both the material and human points of view. Consequently, the development of alternative 

diagnostic techniques is necessary. A hybrid PSO–SVM-based model with an RBF kernel 

function was successfully developed to predict the centerline segregation from the other 

measured input operation variables, in order to lower costs in the quality assessment of steel’s 

bodies. A high coefficient of determination equal to 0.98 and 0.97 was obtained when this hybrid 

PSO–SVM-based model with an RBF kernel function was applied to the experimental dataset 

corresponding to two factors (Carbon and Average width).   

In a word, machine learning techniques were applied successfully to provide an alternative and 

more reliable solution for an industrial problem and overcome an existing industrial method 

defects  

Machine learning in the industrial chemical process 

The Logical Analysis of Data (LAD) was applied as an interpretable machine-learning technique 

for fault detection and diagnosis (FDD) in industrial chemical processes. This classification 

technique discovers hidden knowledge in datasets by extracting interpretable patterns, which can 

be linked to underlying physical phenomena. LAD was selected as an FDD method not only on 

its excellent performance but also because the human expert can learn from the knowledge as it 

gets revealed [71]. In addition, LAD is not based on statistical analysis hence, it can deal with 

highly correlated, nonlinear, or time-varying variables without the need for a decorrelation 

procedure that is common in most statistical methods. To exemplify the difficulty in interpreting 

faults in complex chemical processes the LAD approach was applied to two case studies, one 

simulated and one real.  
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The LAD approach was able to interpret and diagnose the normal and faulty situations in the 

Tennessee Eastman Process TEP, a well-known benchmark problem in the field of process 

monitoring and control that uses simulated data. The second case study used a real dataset from a 

black liquor recovery boiler (BLRB). LAD was used to investigate and analyze the cause of low 

steam production by black liquor flow (SP/BLF), a critical key performance indicator (KPI) of 

boiler efficiency. A set of patterns was extracted from the boiler data, in a situation where the 

KPI was decreasing beyond an absolute lower limit set by an expert. The accuracy of the 

proposed LAD approach was compared to well-known machine learning methods, namely the 

artificial neural network (ANN), Decision Tree (DT), Random Forest (RF), k nearest neighbors 

(kNN), quadratic discriminant analysis (QDA) and the support vector machine (SVM). The LAD 

performance was comparable to the most accurate one-the Random Forest-.  

The method showed substantial improvements in terms of the number of correctly classified 

faulty observations, and the results show that it is suitable for industrial situations with noisy 

measurements. Moreover, LAD is not only a classification technique, but it is also-and more 

importantly- a knowledge discovery tool that extracts interpretable patterns.  

Such interpretable knowledge is particularly useful for fault diagnosis in engineering 

applications; wherein one cannot only detect and identify a fault but also relate it to the variables 

that contributed to its occurrence[64, 71]. 

Machine learning in textile industry  

Data mining applications, including classification and clustering techniques and machine 

learning algorithms, implemented in the textile industry were investigated in this study [72] in 

order to provide a summary of how machine learning techniques can be applied in the textile 

industry to overcome the problems where traditional methods are not beneficial. That work 

shows that a classification technique has higher interest than a clustering technique in the textile 

industry. It also demonstrates that the most frequently used and practical classification 

approaches are ANN and SVM.  As they generally deliver high accuracy in the textile 

applications. For the clustering task of data mining, a K-means algorithm was employed in 

textile studies among the others that were examined in that work. The study concluded with 
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some remarks on the strength of the data mining techniques for the textile industry, ways to 

overcome assured challenges and offer some possible further research directions. 

Machine learning in research and development 

In industry, it is essential to have a continues update on what compotators are doing. Machine 

learning can be applied to illustrate work been done for years about a specific topic into main 

points of interest topic[73] . It also can be used to help to have a visualization of errors and faults 

in order to enhance evaluation of the production process and add value to the data extracted 

through production an turn into valuable knowledge that can be used as a compatibility 

advantage. Visualization is an essential aspect of decision making. It helps in representing the 

knowledge that is extracted from datasets in a clear and comprehensive way [56, 73]. 

The primary objective of data visualization, according to standard definitions is to “amplify 

cognition” by externalizing thought processes. As a tool for “crystallizing new knowledge,” 

visualization allows us to perceive and recognize patterns in data. [56] presented some examples 

of visualization in the field of machining. It presented, the input data, the outcomes with respects 

to some specifications, and the knowledge discovered in the form of patterns. Information is 

extracted from experimental results and is presented in the form of characteristic patterns which 

are used in data visualization. Logical Analysis of Data (LAD) is used as knowledge extraction 

approach.  

The next research challenge is to visualize big data. The field of visualization is becoming more 

and more significant because managing enormous amounts of data is increasing rapidly. 

However, the development of new visualization tools is still to be done. 

Machine learning in medical industry 

A) Machine learning in automata 

In the field of medical industry machine learning approach to synchronization of automata were 

presented by[74]. The main idea is to predict the length of the shortest synchronizing words of a 

finite automaton by applying the machine learning approach by introducing automata features 

which represent the structure of an automaton and use them with machine learning algorithms. 

The work discusses the effectiveness of the machine learning approach in predicting the length 
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of the shortest synchronizing words. Several experiments were performed with different types of 

models and with full and restricted sets of features with the aim to answer the following research 

questions stated in the introduction of the research paper.  

 Are the machine learning methods able to predict the reset threshold for a given 

automaton, described in terms of the automaton features? 

 Which features have the most significant impact on the reset threshold and what are the 

relations between the features? 

 Do the machine learning models work well when we restrict the possible features to the 

ones that are computed quickly (in linear time) and to simple, linear models?  

Although there is a weakness in this approach appears in the strong dependence of accuracy on 

the machine learning method chosen and training data provided, the obtained results seem to be 

encouraging in terms of both algorithm effectiveness and accuracy.  

They considered the novelty of the work is the analysis of different automata features and their 

impact on the reset threshold. Results show that these features can be utilized by the machine 

learning algorithms to quickly and accurately predict the reset threshold. We also showed that it 

is possible to use only a small set of quickly computable features and still keep the algorithm’s 

accuracy, which makes the presented solution very practical.  

Results showed that the efficient prediction of the reset threshold is possible, even when 

restricting to simple, linear models and features that can be computed quickly. There exist some 

well-known heuristic algorithms that predict the reset threshold by finding a synchronizing word 

for a given automaton.  

B) Machine learning techniques for computer aided diagnose 

Because of the high numbers of breast cancer in women significantly increased in the recent 

years. Physician experience of diagnosing and spotting breast cancer can be assisted by using 

some computerized features extraction and classification algorithms. N. I. Yassin et al. [75] 

presents the conduction and results of a systematic review (SR) that aims to investigate state of 

the art concerning the computer-aided diagnosis (CAD) for breast cancer detection.  
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This systematic review aims to identify various studies related to breast cancer CAD systems 

based on medical images and MLT classifiers. The primary intention of the study is to find the 

answer to these research questions. What are the Machine learning Techniques (MLT) classifiers 

currently applied for breast cancer CAD systems based on medical imaging?, What are the 

modalities of medical imaging used for the development of breast cancer CAD systems?, What 

are the evaluation criteria used for the assessment of breast cancer CAD systems?, and What are 

the data sets used for the development of breast cancer CAD systems? 

Several scientific databases from different sources were used. To select those of interest 

inclusion and exclusion standards were defined and applied to each retrieved work. From 320 

studies retrieved, 154 studies were included. the scope of this research excludes commercial 

interests.  The survey provides a general analysis of the current status of CAD systems according 

to the used image modalities and the machine learning based classifiers. Potential research 

studies have been discussed to create a more capable CAD system. 

It is noticed that there is significant diversity in the usage patterns of MLTs, some of them have 

been used extensively, some have been used less frequently, and others have been used at low 

rates. The conclusion extracted from the study was that Data Mining (DM) had been used with 

SVM in 50 papers; the range of achieved Acc is from 64.7% to 100%. Ultrasound (US) has been 

used with SVM in 14 papers; the Accuracy ranges from 75.5% to 98.3%. Also, 9 papers are 

using MRI combined with SVM with a maximum Acc value of 98%, and the least achieved Acc 

was 82.8%. And 6 papers used microscope-SVM and the ACC registered is 96.9%. Only 2 

papers are using (Infrared thermography) IRT-SVM, and the achieved Acc was 88.1% and 

61.8%. ANN is used with DM, US, MRI and microscopic images; it is used with DM in 34 

papers and with the US in 4 papers, one of them used both DM and US, only one paper with 

MRI and 2 papers with microscopic. In 20 papers with DM-ANN, the Accuracy ranges from 

90% to 98.14%. In the rest of the papers that stated the Accuracy values, its value ranges from 

71% to 89.38%. The highest achieved Acc with US-ANN is 94%. KNN has been used in 21 

papers, 14 with DM with the highest Accuracy registered 98.69%. One publication combined 

KNN with the US, 3 combined with MRI, and 3 combined it with microscopic modality.  
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According to the collected data, it is difficult to compare methods with each other due to several 

factors comprehensively. Some of this factors are the databases used for assessment, the samples 

of images selected for assessment, the number of samples used, the assessment approach 

(validation methodology, training and testing set) used. Moreover, the tuning of parameters 

involved in different methods varies from one method to the other, thus adding another obstacle 

for a fair comparison between various methods.  

Generally, among the classifiers mentioned in the literature, SVM classifier has been used 

extensively for breast tissue classification purposes. The use of artificial intelligence methods is 

increasing because of the effectiveness of classification and detection schemes assisting experts 

in the medical field. Observing the pitfalls during the CADs clinical application will lead to 

improving their performance, thus reducing false positive that may lead to psychological, 

physical, and economic costs, and reducing false negative readings that may cause neglecting of 

treatment.  

Deep learning classifier is a promising trend that appeared in the recent years. There is an 

increased interest in applying it in CADs systems in the last couple of years. Also, swarm 

intelligence is worth studying as it was rarely applied in the investigated publication in CADs 

systems. Developing MLT-CAD system that combines more than one image modality is a 

necessity. Also developing CAD systems using 3D mammography which is a new trend that may 

help to improve CAD efficiency is an important issue. These points should be considered to 

develop CAD systems in the future. 

Ultrasound signal classification for fault detection 

Ultrasound signal classification for fault detection has been carried out [76]. Four features were 

selected to determine characteristics of the signal. The mean value, root mean square value, 

standard deviation, and absolute value. Those four features were used to differentiate between 

three classes. First class related to the signal without flaw, the second one to the place with the 

flaw and the third class related to the weld. Support vector machine technique was used for the 

classification the signals. With this technique, it is possible to classify the signal with back-wall 

echo, a signal with fault echo and signal measured on the weld. This method is beneficial for the 

automated classification of ultrasound signals for industrial applications, However using this 
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method is limited when there is higher similarity between the two signals beginning classified 

since the selected features will not be enough to distinguish between signals. 

Machine learning techniques have been applied extensively in different fields in the industry for 

the past few years. It is predicted that more application is obtained in the next decade as research 

is just scratching the surface of the mountains of data  available to be used. Many successful 

attempted has been recorded in applying machine learning either to overcome a failure of the 

current methods that have been applied or to provide a new approach for a different solution for 

the problem that can not be managed using traditional approaches. 

Machine learning can be applied directly for direct classification of data or as a filtration layer 

before or after applying the main algorithm or detecting approach in order to enhance results. 

Technics of machine learning can be combined and or mixed in order to create a hybrid 

algorithm for classification of data. Also, machine learning can be used as a single layer in 

multiple layer algorithm or be combined with one of these layers to form a more complex layer 

of classification.  

The primary challenge when using machine learning is identifying the features that based on it 

the classification or clustering will take place. In the majority of the cases, these features are 

determined by the researcher based on previous knowledge of the process and the rule played by 

each feature affecting the results. In general, one might say the more features included, the better 

the results although this is not always guaranteed and strongly depends on how the features are 

affecting the results.  

Most of the machine learning techniques have accuracy higher than 95%, some time accuracy 

range reaches 100%, Which is why terms like sensitivity, specificity, and Geometric mean plays 

an essential rule in analyzing the results especially when comparing different types of machine 

learning techniques. 

SVM is the most frequently used machine learning technique in industry, and the Random forest 

is the best results technique. The primary purpose of applying machine learning in the industry 

and especially those two techniques  is acquiring the best results of finding a solution in the most  

simple, reliable and cost-effective way. 
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With more data on analysis, machine learning is at the core of industry nearby future. Many 

future industry applications put data analysis either for maintenance purposes, product 

development or just to save time and money in high potential position. Based on the data and 

papers provided in this work this is no longer an option, but it has become a must to maintain a 

decent level of compatibility. 

Using machine learning rather than direct programming 

The short answer to this question is dependent on two factors 

 Problem's complexity  

 Need for adaptively 

Complexity 

Complexity means if the task is too complicated to program. Complexity can be classified into 

one of two categories  

a) Human or animal tasks! Examples include driving, speech recognition, and image 

understanding. Satisfactory results can be reached using up to date machine learning programs 

“that learn from their experience," when exposed to sufficiently training examples. 

 

b) Beyond human capabilities tasks! Examples include tasks related to the analysis of 

enormous and complex data sets: astronomical data, dealing with medical archives, weather 

prediction, analysis of genomic data, search engines, and electronic commerce. 

 

There is a treasure of useful information hidden in the massive amount of data stored in 

electronically stored devices. Learning to search and discover patterns in these data is a 

promising domain with high potential market value. This domain integrates the programs that 

learn from these data with the unlimited memory capacity and exponentially increasing the speed 

of computer processors into a new field of  research that opens the door for the further era of 

how we deal with our gained knowledge  

 

Adaptivity. 

In programming, once the coding is done, the program is ready, and we installed, it does not 

change. However, many factors change over time or from one user to another. Machine learning 
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tools provide a solution for such issues since the program behavior adapts to the input data. 

Example, the program can adapt to variations between the handwriting of different users, 

adjusting automatically to modifications like spam e-mails, and speech recognition programs. 

Methods and Output presentation 

Machine learning contains two main types of learning 

 Supervised learning (Classification) 

 Unsupervised learning (Clustering) 

 

 

 

 

 

 

 

 

Supervised learning (Classification): when we know the results or the category of the training 

samples, the program aims to determine to which class the new sample belongs. 

Unsupervised learning (Clustering): when we have uncategorized samples, the program aims to 

determine which samples have enough in common to be recognized as one group. 

Some of the methods and techniques with which these learning types can be achieved are: 

 Support vector machine 

 Decision tables  

 Decision trees  

 Clusters 

 Classification rules  

 Association rules  

 Rules with exceptions 

Figure 9 Types of machine learning 
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Support vector machine 

Support vector machine (SVM) learns a separating hyperplane to maximize the margin and to 

produce good generalization ability. In successful applications, one of the leading attractions of 

SVM is that it is capable of learning with few training samples [77]. 

When SVM is creating a hyperplane, there are four things to consider. 

 x, data points 

 y, labels for the classes 

 w, weight vector 

 b, bias; 

 

 

 

 

 

 

 

 

 

For a Photo classification example x would be the set of available images, y, would be the class 

labels (which pic contains fruits and which contains animals). To determine the orientation of the 

hyperplane, we will need to use w (the weight vector). The primary objective of SVM is to 

estimate the optimal value of w. Which one is better? A or B? 

 

 

 

 

 

Figure 10 Support Vector Machine SVM 

Figure 11 Different orientation hyperplanes A (Right), and B (Left) 
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The only difference is hyperplane function technique. Following the rule for maximum margin, 

we would choose the A one as it is the better one for SVM.  

If we choose the B, the margin between the yellow support vector and the hyperplane is small. So 

in the case,  that other data points that belong to the color yellow came into the left of the support 

vector of the yellow class, which would create a false-classification. 

SVM is a promising classification and regression technique, which can be non-linearly mapped 

to a higher-order feature space by substituting the dot product operation in the input space with a 

kernel function. The method is to find the best decision hyperplane that separates the positive 

examples and negative examples with maximum margin. By defining the hyperplane this way, 

SVM can be generalized to unknown instances efficiently, which has been proven by various 

applications.  

 

Decision tables 
The most straightforward, most elementary technique of representing the output from machine 

learning is to make it just the same as the input into a decision table. For example, if we are 

deciding whether or not to travel using car or train. We can put the input data and the decision of 

that situation into a table.  

 

Table 1 Decision table sample 

Weather Cost/person Time Distance No of travelers Kids Decision 

Rainy >100 Day >500Km ≤ 4 No Car 

Sunny <100 Night <500Km ≥4 yes 

Sunny <100 Night <500Km ≥4 No 

Rainy >100 Day >500Km ≤ 4 yes Train 

Sunny <100 Night <500Km ≥4 No 

Rainy >100 Night >500Km ≤ 4 yes 
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Clusters 

Clustering is to group a set of similar items closer, in comparison to other items in the same 

set of data. 

 

 

 

 

 

 

 

 

Hard clustering: where each instance of the dataset can only fit into one cluster as there is a hard 

division on lines.  

Hierarchical clustering: includes sub-clusters, where the clusters have ‘branches’ of subclusters 

Soft clustering: where each instance can belong to each cluster with a certain degree which can 

be represented as a percentage or probability. 

The stage that follows clustering is often a stage in which a decision tree or rule set is inferred 

that assigns each instance to the cluster to which it belongs. Then, the clustering operation is just 

one step on the way to a structural description. 

  

Figure 12 Types of clusters 
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Decision trees 

The decision tree classifier is a predictive technique based on hierarchical node splitting using 

impurity of the variables. Each node in the tree tests a specific feature. However, some trees 

compare two features with each other or use some function of one or more attributes. To classify 

an unknown example, it is routed down the tree according to results of the test from the previous 

nodes, and when a leaf is reached the instance is classified according to the class assigned to the 

leaf. 

 

Figure 13 Decision tress sample 

 

Random Forest Decision Trees: 
 
Grows many different decision trees to 
classify sample x. 
 
Each tree votes (classify) class for x  
 
Forest select  the class having the most 
votes. 

 

  

Figure 14 Random Forest sample 
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Algorithm 

• tree k( 1..T) repeat: 
• Select bootstrap samples (2/3 of N) 

 Top it to be N with replacement  
 Select m of variables randomly  

from M 

 On Nxm bootstrap, grow k
th

 tree   

 Gini importance to split k
th

 tree at 
each node 

• The rest (1/3 N)  is out of bag (OOB)  
 For each sample x in OOB 

 classify x using k
th

 to class j 

End repeat 

T : number of Trees.                    N is number of samples in training dataset 
M is number of Variable in N.   m is the number of selected variables, where m << M 

For each sample n in Training dataset repeat 
 For all time n appears in OOB. Find the 

class j with maximum votes  
 n is classified as j  
 If j != real class of n  

e =e + 1                      
End repeat 
Error estimation 

  

Figure 15 Random forest Algorithm 
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The Weka machine learning workbench 

 

Waikato Environment for Knowledge Analysis (Weka) was developed at the University of 

Waikato in New Zealand. Weka is a platform that  consists of a collection of up to date machine 

learning algorithms and data mining techniques and tools. One can say it includes almost every 

algorithm mentioned in books. Data mining is an experimental science, so Weka was designed to 

try out any existing method on new datasets rapidly and effortlessly. Starting with preparing the 

input data and going through evaluating learning scheme statistically, and visualizing the input 

data as the result of learning, Weka provides far-reaching support for the entire process.  Also, it 

also includes a range of preprocessing tools.  

What’s in Weka? 

 

Weka workbench offers learning algorithms implementations that you can easily apply to your 

dataset. Without writing any program code at all one can preprocess a dataset, feed it into a 

learning scheme, and explore the resulting classifier and its performance. Inputs are fed to 

algorithms in the form of a single relational table in the ARFF format. Weka workbench includes 

methods for all the standard data mining problems: regression, classification, clustering, 

association rule mining, and attribute selection. 

Weka can be used for; 

I. Applying a learning method to a dataset and analyze its output. 

II. Using learned models to generate predictions on new instances.  

III. Appling several different learners and compare their performance. 

 

Weka interactive learning methods are called classifiers. Users select the one they want from a 

menu. A standard evaluation module used to measure the performance of all classifiers. 

Weka is an open source platform. It is available from http://www.cs.waikato.ac.nz/ml/weka 
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Machine learning for Ultrasound Signal classification 

Methodology  

To apply a classification algorithm to ultrasound signals, a dataset containing over 180-

ultrasound signals recorded at different temperature were obtained. In Chapter 2 we introduced 

the instrument needed for detecting and recording an ultrasound signal. Figure 5 shows the block 

diagram of the instrumentation and setup of the experimental equipment. The ultrasound signal is 

recorded as a voltage signal function in time. 500 hundred sampling rate per second is presenting 

the amplitude of the reversed pulse of a single ultrasound signal. The corresponding temperature 

at which each signal was recorded is attached to the signal file.   

Ultrasound signals were put together to form one file of data containing all the recorded signals. 

Since 190
o
C is the temperature at which degradation of the fiber occurs, signals were classified 

into two classes representing signals marked at temperatures less than 190
o
C and the signals 

recorded at a temperature equal or more than 190
o
c. The data file was saved as a Weka data file 

(.csv). After defining the class column of the data, different classifier algorithms were applied in 

order to obtain best classification results.  

 

 

 

 

 

 

The primary target of the classification is to identify the signals overs 190
o
C, which represent the 

temperature at which material is damaged.  Table 10 shows the best result outcome from a cost-

sensitive random forest classifier. Compared to other classifying algorithms, it gives the highest 

accuracy and specificity.    

X(Tx)

X(Tx)

>190

X(Tx)

<190

X(Tx)

>150

X(Tx)

<150

Figure 16 Signal /Temperature classification 
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Data Pre-processing 

  

Figure 17 Step.1 Recording Ultrasound signal at different Temperatures 

Figure 18 Step.2 Signal saved with 500 sample/sec 

Figure 19 Step.3 Signal amplitude is transferred into features 

Figure 20 Step.4 All signals are saved as one file .csv 
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Classification flow chart 

  

Figure 17 Flow chart of Machine learning training/classification 
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Chapter Four  

Mechanical, Thermal, and Ultrasonic Properties of Plastic Composites Reinforced with 

Microcellulose and MWCNT 

 

 

  



 

56 
 

Introduction  

Use of hybrid composites is one of the polymer science trends that are gaining attention in the 

automotive industry. Many automotive components are being manufactured using natural fiber 

reinforced composites [78]. By adding various types of reinforcements, the material can be 

tailored to specific needs.  

Polypropylene (PP) is a commonly used thermoplastic polymer with excellent properties such as 

chemical inertness, lightweight, low cost, and easy processing. Despite these benefits, it has 

some disadvantages, such as small impact resistance and stiffness and low thermal stability [79, 

80]. Thermal and mechanical properties of plastics can be significantly improved using fillers. 

Natural fibers are currently getting considerable attention as a new advanced material for 

application in automotive, building and packaging industries. The main advantage is 

biodegradability, sustainability, low cost, low density, high strength and lower abrasiveness. 

However, due to their hydrophilic nature, the natural fibers have poor compatibility with the 

polymer matrix, poor water resistance and produce low-performance materials. The University 

of Toronto has overcome several of these problems in interfacial adhesion for natural fiber 

composites, developing the composite that has excellent fiber dispersion on the PP matrix with 

excellent compatibility between the fibers and polymer [78]. Low thermal stability of the natural 

fibers can lead to the decomposition during material processing, which limits their applications 

significantly.  

Monitoring the temperature during extrusion within the range of ± 
o
C is believed to be very 

important especially for the case of processing CNT reinforced fiber-PP composites. For 

example, the paper results clearly demonstrate that the temperature of extrusion varies along the 

extruder length. Although the 150
o
C is enough for melting PP during its feeding into extrusion, 

the melt increase of temperature is needed in order to achieve viscous property of PP melt at the 

entrance of the fiber (with temperature increase more than 25
o
C). The final temperature of PP 

composite extrusion defines the properties of the semi-crystalline structure of the composite [81].  

The technology examination of University Toronto [82] demonstrated that the extruder 

temperature significantly influences the structure and the properties of the composite being 

formed. For example, the increase in temperature more than the settled value led to fiber 

degradation, hence damage to the material.  
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Analysis of both data shows that control of temperature region of the extruder during processing 

of fiber-PP Carbon Nanotube (CNT) composite is critical to achieving the high-performance 

materials. The work in the University of Toronto optimize the regions of the extruder of cellulose 

–PP- composite, so for the study of mechanical properties and structured composite we used 

regions defined by M. Sain [82].   

Main motor 

Speed(rpm) 

Feeder speed 

(rpm) 
Die in place 

Temperature 

region 1(
o
C) 

Temperature 

region 2 (
o
C) 

Temperature 

region 3(
o
C) 

150 15 Yes 180 185 190 

 

Enhanced mechanical strength and thermal stability of natural composites can be achieved by 

adding nanotubes. MWCNTs become a popular choice of additives in high-performance 

applications. The high surface area of nanofillers provides an increase in strength even at a low 

content of fillers. It has been shown that reinforcing PP with CNTs gives significant 

improvement in thermal and mechanical properties of composites. Multi-walled Carbon Nano 

Tubes (MWCNTs) are a proper choice of additives to polymers that have a high Young’s 

modulus and decent thermal and electrical conductivity. Developing multiscale composites with 

microscale natural fibers and nanoscale CNT provides additional benefits in reinforcing the 

polymer matrix [83]. Further difficulties of polymer composite extrusion technology arise due to 

pressure in the composites of the carbon nanotubes 

When trying to understand natural fiber reinforced composites failure mechanisms, most of the 

results reported in publications concern the effect of fiber content and processing parameters on 

composite strength [84]. Little work is done on the study of deformation mechanisms of 

composites reinforced by natural fibers and CNT.  

These mechanisms can differ from those of synthetic fibers due to different morphology and 

nature of fibers. The objective of this present research is to study the effect of MWCNTs on the 

structure and properties of natural fibers reinforced composites. The analysis of experimental 

data is also focused on the analysis of strengthening mechanisms and improving the mechanical 

performance and thermal stability of the natural fiber-based composites modified with CNTs.  
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Materials and Methods 

Materials (Preparation of Composites)  

Before the preparation, all components were dried in the oven for 24 hrs . Polypropylene/micro 

cellulose (PP/MC) composite developed at University of Toronto [82] (40 wt. % MC, 4 wt. % 

PP-g-MA (Ncell-40) and PP 4944-50) was used in this study. Polypropylene grafted maleic 

anhydride (PP-g-MA) was used as a compatibilizer. Three types of multi-walled CNTs 

(MWCNTs) were used (Cheap tubes Inc.), purity >95wt%, Ash <.5wt%. The outer diameter is 

20-50 nm, the length is 15-30 µm. The composition of the materials is shown in Table 2. 

 

Table 2 Composites 

 PP-g-MA, 

wt.% 

MC, wt.% MWCNT, 

wt.% 

PP 0 0 0 

PP/MF 3 30 0 

PP/MF/CNT-0.5 3 30 0.5 

PP/MF/CNT-1 3 30 1 

 

Masterbatch was prepared by the premixing small amount of PP/MC composite with MWCNTs 

at 190 ̊C using high viscosity mixer to ensure good distribution and reduce agglomeration. The 

mixed material was then poured into a flat surface, chopped to small pieces and then grinded. 

The composite materials were prepared by mixing a master batch and other components using 

twin screw extruder (TSE 25/40) at the following conditions: rotation speed of 150rpm. The 

composition of materials investigated is shown in Table 2. The extruded composites were 

pelletized and injection molded using Zangle 28 Ton into standard test specimens (Figure 18). 

As a reference, the neat PP without fillers was processed the same way. 
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Mechanical properties 

Tensile properties were tested for three samples for each composite using the machine at the rate 

of 10 mm/min according to the standard. 

Microhardness  

The samples were mounted, and the surface was prepared and polished with series of the 

increasingly fine grade of the silicon carbide paper. The Shimadzu ultra microhardness tester 

DUH 211S equipped with Berckovich indenter was used. 200 mN load force was applied to track 

the load-unload behavior. Hold-at-the–peak method [85] was used to equilibrate the creep 

deformation. The length of impression was measured with accuracy to ±1 μm with an optic 

microscope equipped right after the load-unload cycle. Two types of mechanical properties were 

obtained through loading-unloading test. One is a dynamic hardness DHT115 defined as  

 2115
3.8584FDHT

h
  (15) 

Where F is the indentation force, and the h is the indentation depth. The other parameter is an 

elastic modulus Eit defined as a slope of the unloading curve. Elastic Wel and plastic Wpl work of 

deformation were determined as W = ∫ Fdh from the load-unload graphs.  

Microhardness offers a bridge between microstructure and macroscopic mechanical properties. 

This method allows us to characterize specific parts of the material on a micrometric scale.  

Figure 18 Standard test specimens 
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Thermal properties 

Thermal Gravimetric Analysis/ Single Differential Thermal Analysis 

(TGA/SDTA) 
 

The thermal properties of PP-CNT composites are susceptible to the composition [86].  The 

thermal stability of composites was examined using TA Q500 analyzer. Samples were heated in 

a nitrogen atmosphere with heating rate up to 500
o
C and held until the weight is stabilized. The 

mass loss and its derivative were recorded as a function of temperature. 

 
Differential Scanning Calorimetry (DSC) 

 

Thermal transitions of composites including melting and crystallization temperatures and 

crystallinity degree were investigated using 822Mettler Toledo DSC calorimeter with a cooling 

system under a nitrogen atmosphere. The samples were heated from room temperature up to 

200
o
C with heating rate 10

o
C/min. To eliminate thermal history, then cooled to 0

o
C at 10 

o
C/min. 

To detect the crystallization temperature Tc; then heated again to 200
o
C at the same heating rate 

to detect melting temperature Tm and the heat of fusion (∆Hm).  

 

Melting and crystallization temperatures were identified as peak points at the DSC curves. The 

degree of crystallinity, %X, was determined from; 

 % m

o

H
X

H w





 (16) 

 

where ΔHm is the enthalpy of fusion of the polymer, ΔH0 is the enthalpy of fusion of pure PP 

crystals (188.9J/g), and w is the mass fraction of PP in the composites. 

 

Microstructure  

The fracture surfaces of the materials were studied using FEI Quanta Environmental Scanning 

Electron Microscope (SEM). The sample surfaces were coated with carbon to decrease charging.  
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Acoustic properties 

The ultrasound properties were measured using the pulse-echo technique, which is the most 

frequently used methods for acoustic analysis of solid materials [87, 88]. A flat piezoelectric 

contact transducer with a central frequency of 1MHz was used for both transmitting and 

receiving the ultrasonic pulses at normal incidence. The transducer was connected to the 

Panametrics 5073PR Pulse-Receiver. Observation of A-scans was performed in the Techtronics 

TDS 5052 Digital Oscilloscope. All tests were executed at room temperature with equal input 

signal amplitude. Each sample was measured at 10 points with five shots per each point. The 

speed of sound and attenuation were calculated as 

       

 2 /c d t   (17) 

and   

  
1

2

1
ln( )

2

A

d A
   (18) 

           

where ∆d is the sample thickness, Δt is the time interval between the initial pulse and the 

successive pulse as the wave reflects from the lower surface of the specimen, and A1 and A2 are 

the amplitudes of these pulses.  

The Archimedean method was used to determine composites ρ density. The data of sound speed 

and attenuation were used to calculate storage L', loss L" longitudinal moduli as: 

 
2'L c  (19) 
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''

c
L

 


  (20) 

Where ω is the angular frequency. The absorption per wavelength relates approximately to the 

loss factor of the material according to the equation:  

 
'

tan
''

L

L
   (21) 
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Results 

Mechanical properties 

Many efforts have been made in describing and modeling the mechanical properties of different 

polymeric systems with particular focus set on the investigation of the time dependence of the 

viscous material behavior and the formation of irreversible plastic flow. The objective of this 

chapter is the examination of mechanical behavior with the aim of being able to expect the 

polymer composite mechanical properties. 

Analysis of experimental data may be done from the viewpoint of; 

A. Analysis of the test diagram and strength curves. 

B. Analysis of the total stress, total strength of elastic modulus of the composites. 

C. Analysis of loading/unloading behavior of the composites. 

In general, the strength curve consists of two stages.  Stage A at which the elastic behavior of the 

composite under load is observed and stage B, which associate plastic deformation of material at 

high stains. The yield offset indicates the initial deviation of the true stress-true stain diagrams 

from the linear forms, and point B is associated with the yield stress, which is located roughly at 

the maximum point of the curve in the true stress-true strain diagram [89]. From this viewpoint, 

it seems to be very important to define both parameters A and B, which reflects the process of 

beginning and continuation of polymer composite plastic deformation.  

The generally accepted mechanism is based on the nuclear growing and motion of the defects of 

crystalline structure (dislocations), along with the easy crystallographic planes [89]. Adding 

CNTs up to 0.5 and 1.0% changes the structure of semi-crystalline PP composites and inhibit the 

motion of dislocations from one side and the degree of polymer crystallinity from another side. It 

allows increasing the yield strength of PP matrix up to 15MPa. Figure 24 shows these yield 

differences achieved due to change of CNT content in the polymer composite. The further 

deformation of the composite results in the development of strengthening effect at stage B of the 

strengthen curve. At this stage, there is no considerable difference of the true stress-true strain 

curves of the samples with different content of CNT.  
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Tensile test results 

It is now well-known and commonly admitted that the mechanical properties of polymer 

nanocomposites, especially the modulus, depend to a significant degree on filler distribution and 

interfacial interaction, and are increased only when the excellent dispersion of the nanofiller and 

efficient stress transfer at the polymer/filler interface are guaranteed. 

It is known from the work of M. Sain [81, 82], That the mechanical properties of PP 

biocomposites depend upon how strongly chemical bonds link the fiber and matrix. So, the 

parameters of stress-strain curves allow defining these effects. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 
 

 
 

 

Figure 19 Tensile test 

Figure 20 Tensile test results 
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All stress-strain curves exhibit both a high stiffness as well as a brittle failure at low failure 

strains of about 4.5% (Figure 24). For all samples, the stress-strain curves follow a linear elastic 

relation up to strains of about 0.2%. They all exhibit a continuously decreasing slope, each 

starting with a particular initial stress value, depending on the composition, content, and type of 

CNTs. The Figure 24 demonstrates that yield stress of PP may be increased considerably by 

reinforcement with both cellulose nanofibers and CNTs.  

 

  

Figure 22 Tensile modulus, Yield stress and Yield strain at break 

Figure 21 Stress-Strain curve 
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Although yield strength of PP is about 15.1 MPa, adding cellulose microfiber results in 

increasing yield strength to 24MPa, adding of CNTs results in a further increase of yield stress 

up to 28MPa. Strengthening of PP matrix by reinforcement with microfiber and CNTs seems to 

be a result of modification of polypropylene matrix structure and hardening effect due to 

cellulose microfibers reinforcement. 

Total strength of the composite depends on the content of CNTs and fibers. There is no essential 

difference in the total strength. It means that the further plastic deformation of prepared 

composite results in various similar mechanisms of deformation for both reinforced phases. 

Although the total strength of pure PP is about 22Mpa, the effect of the strengthening of PP 

during further deformation will be 6.9MPa. The effect of strengthening PP with fiber composite 

is 22MPa. Addition of CNT results in diminishing strength effect (19-19.5MPa). Such 

mechanical behavior of material during the tensile test is the result of the interaction of various 

structure phases (Matrix-fiber-CNTs), which will be discussed during analysis of microstructure. 

The modulus of elasticity is the man sensitive parameter, which depends on modification 

structure by CNTs (Figure 25).  Modification of PP microfiber structure with CNTs results in 

increasing modulus of elasticity from 2400 MPa up to 3250 MPa (32%). However, the change of 

the content of CNTs from 0.5% to 1.0% does not show effect. This might be because CNTs are 

distributed through the matrix relatively uniformly and preferably located on the surface of 

cellulose fibers. 

The ductility of PP composite dramatically depends on the content of the reinforcement 

elements. Although the strain of pure PP is so high (60%), The ductility of strain at break of the 

composite modified with microfiber and CNTs is about only 4.5%. This means there is a need 

for further optimize the ductility of the composite by modification of structure by the change of 

extrusion technology parameters. 

Loading and unloading test allows analysis of mechanical behaviors of the composite in more 

details. Taking into account elastic strain after relaxation and total strain after unloading, the 

experimental data of the test is shown in Figure 28, Figure 29. The results reveal that 

modification of PP with biofiber and CNTs leads to a decrease of elastic strain after relaxation 

phase during 1000sec. If the elastic strain of PP is about 0.003, the elastic strain for all 
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composites is about three times smaller (0.001). From the ratio of plastic to elastic strain we can 

see that this ratio for the composite diminished by five times. These results demonstrate the 

enormous strengthening effect of modification of PP at various stages of loading.  

Figure 24 Yield Strength for composites 

Figure 23 Total strength 
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Figure 26 Yield stress difference CNT composition 

Figure 25 Modulus of elasticity 

Figure 27 Strain at Break 
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Uniaxial tensile tests results showing the stress-strain behavior of biofiber reinforced 

polypropylene with CNTs indicate for all strains: (i) a finite amount of stress relaxation leading 

to a quasi-stationary state. (ii) a finite amount of plastic flow with a non-linear dependence on 

the imposed strain, and (iii) the effect of inhibiting of stress relaxation with CNTs during 

unloading stage.   

 

Figure 29 Total Strain after unloading, plastic strain 

Figure 28 Stress Cycle 
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On the basis of these observations, some structure formation features are predicted: (i) increase 

of yield strength of composite with CNTs due to its possible interaction with the cellulose fibers, 

(ii) diminishing of total plastic strain (strain to break) of PP composite reinforced with bio fibers 

and CNTs.  

The effects of PP composite deformation relate to the quasistatic behavior of the material 

including the plastic flow, the other accounts for the viscous forces leading to relaxing stress 

components.  

Microhardness  

Dynamic Micro indentation, or depth-sensing indentation testing, is a technique used primarily to 

obtain values of the elastic modulus and hardness of materials and involves bringing an indenter 

with the known geometry into contact with a sample. Three areas where selected for 

measurement for each sample (Figure 30). A. area with more fiber concentration (Fiber), B. area 

with less fiber concentration (Matrix) and C. area with a mix of fiber and matrix concentration 

(Matrix and Fiber). The min distance between two measurements areas has to be at least 15 times 

the dimension of the probe in order to avoid any effect of the measurement on each other’s. 

Figure 31 shows the deformation after the test.   

   

 

 

 

 

 

  

Figure 30 Image to show the selected areas of test 

a b 

Figure 31 sample deformation after the test (a and b) 

15 μm 
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Figure 32 Typical load-unload Curve 

The schematic load-unload curve is shown in Figure 32. The load-unload graph shows both 

elastic and plastic deformation occurs during the test. The hardness DHT115 values and elastic 

indentation modulus EIT are shown in Table 2. Elastic indentation modulus increases with 

adding fillers. It rises 85% by adding microfiber to the PP matrix; further reinforcement by 

MWCNT increases indentation modulus in 1.9 for 0.5% and 2.1 for 1% correspondingly.  

 

It is important to note that due to differences in the type of loading and measuring methods, there 

is no direct correspondence between indentation modulus and the Young modulus from the 

tensile test. As seen from Table 3, the elastic work of indentation is the same order as the plastic 

indentation work. The ratio of elastic to the total; work is decreasing as microfibers CNT added 

to the PP matrix. It shows the same trend for 0.5 and 1% of MWCNT. The residual indentation 

depth is dependent on the composite filler and is 3.5-3.8 µm for all composites. 

 

 

 

 

 

 

 

 

 

Figure 33 Micro hardness test results 
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The neat PP shows the most extensive indentation depth and correspondingly has the lowest 

hardness and indentation modulus. Addition of microfiber leads to a decrease in maximum 

indentation depth and raise the indentation modulus. Also, adding  CNT increases microhardness 

and indentation modulus as it can surround the fiber and form a layer on the fiber that affect it’s 

hardness. The diffenrce is in micro hardness between phases or areas can also be noted due to the 

concenrating mainly on the effect of one additive than the other.  

 

The ratio of elastic to total work decreases slightly with adding both types of filler to the 

composition indicating less mobility of PP chains. This decrease in elastic function and increase 

in plastic work correspondingly means that the fillers affect plasticity of the PP matrix (discuss 

with VM). Wel/Wt parameter describes material deformation behavior. 

Thus, lower indentation depth and indentation depth increase under the loading, as well as more 

slope of the unloading curve of the reinforced composites are indicators of higher hardness, 

lower creep tendency, and more elevated stiffness compared to neat PP. Lower chain mobility 

can explain this due to higher crystallinity rate. 

 

Table 3 Microhardness 

 DHT115 EIT Wpl Eel Et Wel/Wt, % 

PP 16.10 4.16E+09 379 215 594 36 

PP MF 26.5 7.72E+09 337 156 493 32 

CNT0.5% 24.7 8.00E+09 360 138 498 28 

CNT 1% 26.5 8.75E+09 378 133 511 26 

 

Bowman et al. [17] have found the correlation between microhardness and elastic modulus/yield 

stress or semicrystalline polymers. 
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Acoustic properties 
  
Although the ultrasonic method is well-known for non-destructive analysis, its application for 

measurements of dynamic mechanical properties of polymers has also been utilized [90, 91]. It is 

beneficial for describing the viscoelastic behavior of polymers and composites.  

As sinusoidal stress is applied, modulus can be expressed as an in-phase part, the storage 

modulus (E‘) and out of phase part, the loss modulus (E"). The storage modulus E’ is the 

measure of the elastic response of the composite and measures the stored energy; whereas the 

loss modulus E” is the measure of the viscous response of the material which measures energy 

dissipated as heat. A loss factor tan∆, which is a ratio of loss to the storage module, works as a 

quantity of the energy dissipation of the composite material. This parameter reports us how good 

the composite material will be at absorbing energy,  

As known, the longitudinal modulus L is related to bulk K and shear moduli G as 

 * * *4 / 3L K G   (22) 

Piche showed that below Tg, the thermal behavior of the material’s sound velocity is governed 

by the shear modulus G* while at Tg and higher temperatures, the bulk modulus K* is more 

significant and dominates the velocity’s temperature dependence. 

The storage modulus E’ denotes the material’s stiffness and proportional to the energy that is 

stored during the load cycle. The loss modulus E” is proportional to the energy that is dissipated 

during the load cycle in the form of heat.  

Table 4 Acoustic Properties 

 PP MF CNT 0.5% CNT 1% 

Speed of sound, m/s 2500 2813 2880 2880 

Attenuation, mm
-1

 0.12 0.24 0.24 0.27 

L’, GPa 5.66 7.97 8.39 8.45 

L”, GPa 0.52 1.74 1.87 2.1 

Tan δ 0.09 0.22 0.22 0.25 
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                                             a                                                                          b 

   

                                             a                                                                             b 

 

The increase of storage modulus indicated that the composites show the better interaction 

between the fiber or CNT and the polymer matrix. 

 

 

 

 
 

Figure 34 Speed of sound (a) and attenuation (b) in neat PP and microfiber and MWCNT composites. 

Figure 35 Elastic moduli E’ and E” (a) and loss factor tan δ (b) in neat PP and microfiber and MWCNT composites 
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Thermal stability  

Natural fiber degradation is the severe drawback in biocomposites production. Thermal 

degradation of natural fibers leads to the poor mechanical performance of the composite, changes 

in composite appearance. Thermal stability of neat PP and composites was studied using TGA. 

The difference in mass of the composite specimen was monitored as heat applies to the sample. 

Figure 36 shows the thermal degradation of the PP/MF/MWCNT composites. The first 

derivatives of the TGA curve are shown in Figure 36. This type of graph should show the 

inflection point as a maximum. Thermal degradation parameters are summarized in Table 5.  

     

  a                                                                                 b 

 

The TGA of the neat PP shows one degradation step, starting 370
o
C and completed at 480

o
C. 

This step is attributed to degradation of the PP matrix with the mass residue of 6%. The thermal 

degradation of polypropylene occurs by chain scission with radical chain mechanism. All TGA 

curves of composites show similar degradation pattern for all types of composites. The 

composite mass change has two sigmoid shapes, the degradation of cellulose and PP. The minor 

weight loss at the temperatures below 100°C corresponds to dehydration. All samples showed 

0.5% of weight loss. 

The cellulose-containing composites start to degrade at approximately 260, 265, 268
o
C for the 

composites with 0, 0.5, and 1% MWCNT correspondingly. The maximum rate of fibers 

decomposition occurs at 320
o
C for all composites. The mass loss of 87, 83, and 85% were 

measured for materials with 0, 0.5, and 1% of MWCNT. The Derivative thermo-gravimetric 

Figure 36 TGA (a) and DTA (b) of composites 
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(DTG) curve shows the small shoulder presence that is assigned to the degradation of the 

hemicelluloses and cellulose [92]. 

Table 5. Decomposition characteristics of composites 

sample TG/DTGA 

 Dehydration, 

% 

Tonset T 1 

(peak) 

T onset 2 T 2 

(peak) 

D50 FR, % 

0% MWCNT 0.5 260 320 376 440 432 20 

0.5% MWCNT 0.5 265 320 392 450 433 12 

1% MWCNT 0.5 270 320 408 455 439 19 

The second degradation step (PP degradation) occurs between 360
o
C and 480

o
C and corresponds 

to PP thermal degradation. Similar two-step degradation was observed for orange tree fibers-

reinforced PP composites [88]. Thermal degradation of PP usually happens at 400
o
C due to C-C 

chain bonds rupture[93, 94]. The PP in the composites starts degrading at 370 
o
C in PP/MC 

composite, the beginning of the degradation temperature shifts toward the higher temperatures 

with adding MWCNT to the composite, 392 and 408
o
C correspondingly for 0.5 and 1% of CNT. 

The maximum degradation rate for PP also occurs at higher temperatures with adding 

nanoparticles. Similar behavior was reported by other authors [Chipara et al., 2008]. This effect 

may be due to the interaction between PP chains and CNT revealing the interface formation. 

MWNTs dispersed throughout the matrix may act as a barrier to heat and resistant to volatile 

degradation products. Improved resistance to thermal degradation has also been reposted for 

nanoclay/PP composites [95]. The proposed mechanism includes higher thermal conductivity of 

composites that facilitates heat dissipation [96]. Another mechanism attributes the increase of 

decomposition temperature to the hindered diffusion of volatile decomposition products caused 

by the nanoparticles [97]. The total mass loss was measured 20, 12, and 19% for biocomposites 

with 0, 0.5, and 1% of MWCNTs correspondingly. No additional mass loss was observed after 

reaching 470
o
C. Due to the absence of oxidizing phase, the degradation of CNTs is not present at 

the curve. 

Thus, MWCNT reinforcement of PP improves the thermal stability of the PP matrix by delaying 

the volatilization of the products of C-C bonds scission.  
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Crystallization and melting of PP on composites   
 

Changes in crystallinity degree of the polymer phase of composite lead to significant changes in 

the composite’s mechanical performance, especially in creep and compression. The DSC 

thermograms of the PP and composites for the cooling and the second heating are presented in 

Figure 37. The primary thermal behavior parameters (crystallization temperature, melting 

temperature, and crystallinity degree) for each specimen are summarized in Table 6. Only one 

exothermic peak was observed on cooling thermograms for all samples. Pure PP shows a sharp 

crystallization peak at 121
o
C with onset 126

o
C. MF composite has the peak at the 123

o
C while 

adding CNT to the composite shows an additional shift of the crystallization temperature 

(126
o
C). Onset temperatures also are shifted to higher values indicating the earlier start of the 

crystallization process. Higher Tc values indicate the earlier start of crystallization in the 

presence of MF and, especially, MWCNT. Spolijaric et al. [98] have reported little increase of 

Tc onset and peak temperatures with the rise of MC content. These data indicate that MF and 

CNT may act as centers of nucleation propelling PP matrix crystallization [99]. Adding MF and 

CNT increases the number of nucleation sites and promote PP to crystallize at slightly higher 

temperature.  

The second heating thermograms are presented in Figure 37(b). Only one endothermic peak is 

observed at each thermogram. Melting onset temperature of pure PP is 144
o
C with peal 

temperature 165
o
C. This peak corresponds to melting of the α-crystalline phase of PP [100]. 

Adding MF and MWCNT increase the onset temperatures for both melting and crystallization 

processes but does not affect the peak temperature values. Other authors have reported slightly 

lower Tm for natural fiber-based PP compared with neat PP [101]. Adding both reinforcing 

agents (MF and MWCNT) lead to significant increase in the melting peak area normalized to the 

PP content and calculated the heat of fusion. The effect of MWCNT is more noticeable 

compared to the microfibers effect. This suggests that interaction between the fibers,  CNT and 

PP are restricting  the flowability of PP molecules during the melting process [100]. The 

crystallinity of PP has increased from 32% for pure PP to 35% for MF-containing composite. 

Adding MWCNT further shifts crystallinity degree to 40%. Small Angle Light Scattering 

analysis of glass reinforced PP has shown that adding fillers to the polymer matrix supports the 

crystallization process of PP matrix by creating the nucleation sites on the filler surface and 
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initiate the trans crystalline layer formation [87, 102]. Similar nucleation effect on PP 

crystallization was observed for other types of natural fibers[101, 103] and CNT. 

 

Table 6 Thermal properties of PP and its composites 

Material  Crystallization Melting Crystallinity 

degree, ΔΧ 

 onset, 
o
C peak, 

o
C peak, 

o
C ∆Hm, J/g PP  

PP 126 121 165 60.7 32 

0% MWCNT 127 123 165 65.3 35 

0.5% 

MWCNT 

130 126 164 75.5 40 

   

 

 
 
 
 
SEM 

The fiber- matrix adhesion is the essential factor to enhance the mechanical performance of the 

composites. By using Scanning electron microscopy (SEM ) to inspect the fracture surface of the 

composites with cellulose and CNT, the SEM analysis shows fibers dispersion in the matrix. 

Excellent adhesion between natural fibers and the matrix with random pullouts was also 

observed. No agglomeration occurs providing the efficient stress transfer between the fibers and 

the matrix.  

Figure 37 DSC of the composites. Cooling (left) and heating (right) plots 



 

78 
 

The dispersion of CNT in polymer matrix governs the reinforcing power of CNTs. The shown 

SEM images are a representative illustration of fiber and CNT dispersion. A uniform 

arrangement of fibers can be observed without bundles. The diameter of the nanofibers was 

measured as nm. The increased diameter is assumed due to PP-g-MA wrapped around CNTs. 

Due to carbon nanotube surface interactions with grafted maleic anhydride groups, the PP-g-MA 

adsorbs onto the nanotubes resulting formation of the coat of PP-g-MA a few nanometers 

thickness. This coating remained undamaged after fracture. 

 

 

                      A                                                 B                                               C 

 

Figure 38. The fracture surface of the composites. A- PP+MF, 2- PP+MF+0.5%MWCNT, C- PP+MF+1%MWCNT 

The specific feature of fracture of tension samples are seen at the SEM and optical microscope 

images In This cases some fractures of Bio fibers are seen, some pull off effects of Biofiber may 

be observed. The low ductility of the PP MF and PP-MF-CNTs composites may be explained by 

high loading capacity of microfiber within withstand higher stress than these of PP matrix. MF 

fracture details are shown in (Figure 39) the adhesion of MF to PP Matrix is perfect (Figure 40). 

For this reason, the total effect of the increase of PP-MF-CNTs composite mechanical properties 
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is high. The addition of CNTs increase the Mechanical properties of the composite due to 

additional strengthen to MF.  

 

  

Figure 39 SEM image of Fracture surface of PP- MF composite 

Figure 40 SEM image showing good adhesion of MF and PP 
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Chapter Five  

Results and discussion 
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It is important to note that this project is multi-discipline projects that require a min 

understanding of all the disciplines involved including material science, physics of ultrasound 

and machine learning. The work in this project has covered as much as necessary from the 

knowledge needed to achieve the stetted tasks required to achieve the goal of that work.  

The results of this work can be classified into three main categories:  

A. The results of material development, which included the results and conclusion from the 

material evaluations tests and studying the effect of adding CNT to the bio composites.  

B.  The results of ultrasound measurements of the different composites at heating and extrusion 

temperature.  

C. The results of applying machine learning techniques to classify the ultrasound signal for two 

temperature classes above and below 190
o
C. 

The integration of these results demonstrates the completion of the tasks and the accomplishment 

of the project goal to provide a system by which fiber degradation in the bio-composite process 

could be prevented.  

     

 Results of material evaluation tests 

Polymer microfiber reinforced nanocomposites have received much attention [78, 81, 

104] , and their modification with the carbon nanotubes allows to change their structure and the 

mechanical properties. The obtained experimental data reveal that a small amount of the carbon 

nanotubes results into an improvement of the properties, such as elastic modulus, strength, and 

others.  Using the carbon nanotube reinforcement is believed to provide an improved balance of 

stiffness and toughness. Many studies [105]  have been performed to find a relationship between 

the structure and the properties of the polymer-based nanocomposites to understand mechanisms 

of increasing the properties of the polymer. Study of the mechanical behavior of the polymer-

based nanocomposites is of great importance from this viewpoint.    

Characterization of the mechanical properties and study of the viscous material behavior 

of different polymer materials have been performed in many works (see, for example, [106]). 

The particular attention was devoted to the investigation of the time dependence of the formation 

of irreversible plastic flow [106] which may be determined by precision tension tests. It is well 

known that at the present time, the studies of deformation response and accompanying structural 
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changes of semicrystalline polymers are being performed during uniaxial tension tests prior yield 

point (plastic strains of about 0.01-1%). This is because straining of semi-crystalline polymers 

prior to yield point is the stage preceding dramatic changes of polymer structure beyond yielding 

[89] .The study of PP based nanocomposite mechanical behavior in microstrain area of loading is 

more adequate than at the large strains because the structural transformations induced by small 

deformations are negligible as compared to that of the composite virgin structure. 

The two types of tension tests with plastic strain measurement in the range of ε=0.01-1%  

(Figure 24Figure 21Figure 43) allow defining the deformation behavior of nanocomposites prior 

the yield point. The polypropylene (PP) and polypropylene-microfiber-CNT composite C (1.0% 

CNT)   stress-strain curves in the area of yield point are shown in Figure 41 as an example. The 

micro-strain area of stress-strain curves may be approximated with three lines and characterized 

by critical points A, B. The polypropylene-based materials exhibit deformation behavior similar 

to that of semi-crystalline polymers. Point A indicated the initial deviation of the stress-strain 

curve from the elastic line, and point B is associated with real yield point at the plastic strains of 

about ε=0.002. Relationships of the composite structure and properties characterized by critical 

points A, B are established by authors[106, 107] The possible reason of deviation of linear 

dependence at point A of the stress-strain curve is believed to be sliding of lamella blocks. The 

point B is associated with the yield point which is located at the field of maximal curvature of the 

stress-strain curve in the micro-strain area. The yield stress values are believed to be defined by 

the processes of cooperative motion of the blocks of crystalline lamellae [89] 

It is interesting to note that the critical strains of the  A and B points vary in the narrow 

ranges for all examined composites in spite of their different composition (εA=0.002, εB= 0.006, 

Figure 41). It means that the micro-strain deformation mechanisms proposed by [89]are similar 

for composites with different content of reinforcement phases (both cellulose fibers and CNTs). 

It allows suggesting that the micro-strain deformation mechanisms are controlled solely by semi-

crystalline polypropylene matrix structure. The stress-strain response is known to be coupled 

with structural transformations in accordance with models developed in works[89, 108] The 

basic model is based on the concept of pseudoelasticity [89]which is defined by the semi-

crystalline structure of the polymer. That is why a crystallinity degree c and distribution of 
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crystalline and amorphous phases both at initial and deformation stages are the main structure 

parameters controlling the stress-strain response.    

     

  True stress is calculated by dividing of the real load Px at the certain absolute strain-Δl 

(Δl=Lx-Lo) on real cross-section area Fx of the dog-bone sample being tested. At this case Px is 

defined from P-Δl  diagram, and real cross-section area is defined on the base of the rule of 

constant volume of working part of the sample during tension. So Fx = Vsample/Lx.  This 

calculation is made by the test machine, and the curve true stress-true strain is obtained by same 

machine. Total stress is calculated more simply: stress=Pmax/Fo. Pmax is the maximal load on the 

tension diagram, and Fo is the initial area of the tension sample, Hence the true stress is more 

accurate characteristics as its variation reveals about strengthening behavior of the material.  

 

The results of precise evaluation of critical stresses and strains of the points A and B are 

shown in Figure 42 as the stress and strain dependences on crystallinity degree of the composite. 

The results reveal that modification of composite structure by its reinforcing with cellulose 

nanofibers and CNTs leads to following effects: 

i) Reinforcing with cellulose nanofibers do not change both critical stresses and strains 

of the points A and B considerably in spite of variation of crystallinity degree; 

ii) The main effect of CNT modification is an increase of both critical stresses and 

strains of the points A and B which is believed to be the result of specific features of 

semi-crystalline structure formation arisen due to CNTs presence; 

iii) The strengthening effect of CNTs (inclination of the curves σA,B=f(c) ) in the range 

of c=40-50% is similar to points A and B (Figure 42) that reveals about the influence 

of CNTs on the polypropylene matrix crystallinity and structure at the initial stage of  

the PP composite deformation.     

A relatively small effect of cellulose nanofiber reinforcement (30% content of the cellulose 

nanofibers) on the composite tensile strength (Figure 42) is similar to that defined in[104] The 

main reason of such a PP composite deformation behavior seems to be considerable strains of the 

PP matrix at the maximal tension stresses which are used for tensile strength calculation. The 

mechanical properties of cellulose fibers and stress transfer in the fiber-matrix interface at the 

significant strains are believed not to influence the total tensile strength considerably[109]. We 
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observe the similar behavior for critical stress (point A) and yield stress (point B) at small strains 

(εA=0.001 and εB=0.004). Perhaps, the interfacial stress transfer at the fiber-matrix interface is 

not sufficient to achieve the valuable strengthening effect of the composite structure due to the 

high strength of the cellulose fibers.  

  

Modification of PP composite with CNTs with the content of 0.5-1.0% change the PP-fiber 

composite deformation behavior at the small strains (Figure 42) because of two possible effects: 

 i) dispersion strengthening of PP matrix with CNTs, and ii) increase of crystalline fracture in the 

semi-crystalline matrix.  The matrix strengthening effect due to an increase of crystallinity 

degree of PP matrix seems to be of great importance. Indeed, the yield stress  (point B) of PP-

fiber-CNT composite is obtained to be twice higher than that of PP-fiber composite (Figure 42). 

The Raman spectroscopy is used to investigate the deformation behavior of the 

nanocomposites[109] A noticeable shift of Raman peaks at the strains of about  ε=0.03 reveals 

about two possible ways of the stress transfer: whisker-whisker and whisker-matrix 

interactions[109] However, our experimental results of tensile tests at the smaller strains 

(εA=0.001 and εB=0.004) do not demonstrate the effect of the whisker-whisker and whisker-

matrix interactions on the critical stresses at points A and B. It allows to suggest that the matrix 

strengthening effect due to increase of crystallinity degree of PP matrix is responsible for 

increase of critical stresses  at the points A and B.       

  

As shown by [110] many polymers, such as, e.g., polyethylene, polypropylene, polyamide, 

etc. only to a certain degree (between 10% and 50%) which are called as semi-crystalline ones. 

The general feature of the microstructure of the semi-crystalline polymers is the presence of 

crystalline lamellae (blocks) which are stacked with a break of about 10…50 nm. The crystalline 

blocks usually have a thickness of 5-10 nanometers and a lateral size of 1-5μm [110] . The 

specific feature of semi-crystalline polymer crystal structure (at nano-scale) is that the polymer 

chains in the crystalline phase are oriented perpendicular to the lateral direction of the lamellae, 

and their length is much larger than the lamellar thickness [107, 108, 110]. Thus, the numerous 

chains arisen from the crystalline blocks into the areas between the blocks form an amorphous 

network as shown in [108] The structure of are assumed to be highly entangled since most of the 

entanglements of the molten state are preserved upon rapid cooling[110] The crystalline block 
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network available at the crystal phase content of about 35-50% is believed to be responsible for 

the effects of increase of critical stresses at the points A and B, and the deformation mechanisms 

at these small strains will be studied in detail in the future work.  

 

From another side, the elastic and plastic deformation of the amorphous network of PP 

matrix influence of the mechanical behavior of the composite. To investigate these effects, the 

tensile specimens were loaded to the defined strain and subsequently unloaded into the stress-

free state and kept for 1000sec similar to the procedure of [106]. The experimental results reveal 

that the total strain reached by the loading of the samples is composed of the elastic and 

irreversible plastic strain. The plastic strain is available after the long relaxation time in the 

unloaded state.  The reversible elastic strains which achieved by relaxation in the unloaded state 

is believed to be the result of the composite amorphous network transformation.   

 

The reversible elastic strain dependence on the PP matrix crystallinity shown in  

Figure  clearly demonstrate the effect of the material composition. Indeed, the PP matrix 44

relaxation processes are inhibited by cellulose microfibers due to a decrease of amorphous phase 

content. However, CNTs addition results in a slight increase of elastic relaxation strain due to 

possible restoration of amorphous phase structure during a stress-free state in spite of higher 

crystallinity of the composite. The mechanism of this effect will be studied in future work.           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 41 Critical Points A, B on True Stress vs True Strain curve 
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Figure 43 True Stress vs. True Strain  

 

 

 

 

 

 

 

Figure 42 Critical stress vs. Crystallinity 
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Figure 44 Reversible relaxation strain vs. Crystallinity  

Results of Ultrasound measurements  

The main point of US parameter measurements is the establishment of the relationships between 

technology parameters of melted polymer composite during the extrusion into the mold, the 

temperature, and structure formation processes. For this reason, the temperature dependences on 

the speed of sound and attenuation are determined by two methods. Both methods are explained 

in the experimental procedure in chapter 2 where sound speed and attenuation are defined at 

various temperatures of extrusion and ambient temperature after solidification of polymer 

material. 

 The dependence of sound velocity on extrusion temperature of PP itself is shown in Figure 45. It 

is precisely seen that the scatter of US speed for each temperature is in the range (15-30 m/s). It 

means that variation of sound in the temperature range of 160
o
-200

o
C is possible to be 

determined by such measurement with sufficient accuracy. The  dependence of sound velocity 

shown in Figure 45 does not demonstrate that destruction processes of melted composite occur 

because curve shown in Figure 45 is smooth. It is known that PP-Microfiber composite 

destruction temperature is higer than 180
o
C. because of degradation of cellulose fiber (see the 

data of TGA analysis). it means that increase in temperature above 180
o
C will result in some 

decrease in polymer strength so, determination of the temperature regimes preventing such 

degradation may be made by analysis of dependences of sound velocity/ attenuation on extrusion 

temperature.   
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The comparison of measurements of the speed of sound during the extrusion process and directly 

after heating (Figure 46) we would note that polymer matrix structure formation at the different 

extrusion temperature does not lead to a change in speed of sound (smooth curves). 

Modification of polymer (PP) with micro cellulose fiber does not change a trend of temperature 

dependance of speed of sound. This suggests that the polymer matrix properties have major 

contribution to the mechanism of ultrasound propagation (Figure 37). The absolute values of 

sound speed for all material  are in correlation for both heat and extrusion measurements 

 

 

 

 

 

 

 

Figure 45 Variation of sound speed for PP at different temperatures 

Figure 46 Sound speed vs. heating temperature 
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The attenuation parameter slightly increases with temperature is shown on (Figure 48). It has to 

be noted that attenuation is a sensitive parameter to the characteristics the structure formation of 

the filled composite and this parameter should be used alonf with sound speed for online 

monitoring of the extrusion process. The mechanisms of sound attenuation in polymers include 

a. scattering by fillers, and b, intrinsic absorption by conversion to heat in a viscoelastic material 

[111].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47 Speed of sound vs, extrusion temperature 

Figure 48 Speed of sound vs. crystallinity of composites extruded at various temperature   
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Figure 50 US Attenuation at different Temperature 

Figure 49 Attenuation vs. crystallinity of PP based composites  
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The speed of sound in a material relates to the elastic moduli of the material, which is considered 

a characteristic of each material since the propagation of the US in the material depends on of the 

material density and structure as seen in (Figure 47, Figure 49).  

As shown from the US graphs and analysis US signal can be used as an indication of changes in 

the material during extrusion. However, the change in US signal is minimal and can not be 

directly used to monitor the processing of the material. A signal enhancement system able to 

detect minor changes and differentiate between different -yet so similar- US signal can be used 

to obtain and form monitoring conditions and characteristics that could be used for online fault 

detection for the Bio-composite material production process. Such a system should be able to 

detect and classify signals of damaged-undesirable- the structure of a material by indicating the 

difference in US signals with a comparison of the desired structure signal. 

Establishment of a relationship between us signals and mechanical properties of the examined 

composites may be performed based on a comparison of data shown in (Figure 42Figure 

48Figure 49). The results revealed about the dependence of both US speed and attenuation on the 

crystallinity of the composite matrix. These dependencies are in agreement with those of critical 

stress and strains obtained by mechanical tests Figure 42. It may be stated that US signal 

measurement during inline monitoring of extrusion process allows characterizing the mechanical 

properties of the material of real components. Creation of a database of US signals and 

mechanical properties for various compositions is required that is planned to do in future work.  
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In order to prove the concept of our approach of comparing and classifying signal based on the 

temperature. A data of ultrasound signals with sampling rate 500 samples per second is collected 

for each saved at a different temperature.  Knowing the frequency, sampling rate and signal time 

the signal can also be shown in both time and frequency domain. 

The correlation coefficient is calculated between signals at a different temperature. Table 7 

shows the correlation coefficient between samples forms temperature range 110
o
C-120

o
C. 

Comparing two signals at the same temperature gives the highest µ = 1.0000. 

Figure 52 illustrates two signals at a different temperature. The first signal is at 50
o
C and while 

the second signal is at 80
o
C. The comparison between these two signals gives low µ  = 0.9122. 

The top graphs show the same amplitude with respect to time, and the lower graphs are the signal 

is frequency domain. 

Table 7 µ value between signals at different Temperatures 

T 
o
C 90 110 130 150 170 190 

70 0.8654 0.3570 0.3400 0.3317 0.3207 0.3023 

90  0.3867 0.3733 0.3648 0.3518 0.3318 

110   0.9972 0.9966 0.9965 0.9945 

130    0.9987 0.9977 0.9971 

150     0.9987 0.9979 

170      0.9989 

 

 

 

 

 

 

Figure 51 Software Flowchart 
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Figure 53 illustrates the comparison between the same signal at same temperature T = 100
o
C. 

The correlation between these signal gives the highest µ = 1.000.  

 

 

 

 

 

The result of calculating and comparing the correlation coefficient between signals at different 

temperature shows that correlation coefficient between signals at near temperatures is much 

higher than between signals at a different temperature. Although this confirms that signals can be 

compared in order to determine temperature from the compared signal, it shows that correlation 

coefficient is a not a sufficient approach for that comparison since higher correlation coefficient 

Figure 52 US signal at Different temperature 50
o
c (Right), 80

o
c (Left) 

Figure 53 US signal at same temperature 100
o
C 
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can be detected between two different materials at a different, yet near temperatures. A 

MATLAB algorithm that can calculate the correlation coefficient and reveal the corresponding 

temperature of the highest correlation coefficient confirmed these results.    

 

 

 

 

 

Figure 54 illustrates a comparison between the US signal on the right and multi known 

temperature ultrasound signals on the left.  The software starts calculating µ between the signals 

till it reaches the max µ then it shows the temperature that matches this coefficient. The software 

then shows the two signals in both time and frequency domain. 

The main conclusion of these results is confirming the need for machine learning techniques to 

classify the signal according to temperature, which make us, uses the main advantage of machine 

learning, which is the simplicity in finding a prediction model in order to be used to determine 

the temperature of the signal from previous experiences for a complex problem.  

 

Figure 54 Finding Matching US signal 
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Results of Machine learning classification  

A data file of 60 ultrasound signals at different temperatures was exported to Weka program to 

apply a classification algorithm. The ultrasound signal was classified using the cost-effective 

random forest classifier into two classes below and equal, or over 190
o
 C the result of this 

classifier was as follows. 

Correctly Classified Instances          58               97 % 

Incorrectly Classified Instances         2                3 %  

= Detailed Accuracy By Class === 

Table 8 Detailed Accuracy of classifier By Class 

 

 

 

 

=== Confusion Matrix === 

  a  b   <-- classified as 

 51  1 |  a = 1 

1 7 |  b = 2 

2  

 

By applying machine learning,  A success of classifying the US signal according to temperature 

with 97% accuracy was obtained. This indicates that machine learning is a successful approach 

to be used to monitor the change in temperature during the extrusion. By applying machine 

learning techniques and use dominant ultrasound advantages over other techniques we can obtain 

a go-no go gage for the extrusion process that can predict material damage and alarm the 

operator for a required response. By using machine learning techniques, we successfully 

transferred the problem from a sophisticated signal analysis and modeling to find an empirical 

solution to a simple data classification one. These results are considered the required solution for 

the defined problem and the accomplishment of mission stated in the task statement. 

TP Rate FP Rate Precision Recall Class 

0.981 0.125 0.981 0.981 1 

0.875 0.019 0.875 0875 2 
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For more reliable results,  different classifiers were applied to the dataset file containing 184-

ultrasound signal.  Table 9 and Figure 55 show the results of the different classifiers used for 

comparison.   

 

Table 9 Detailed Accuracy of different classifiers 

 

Where; 

Positive = (<190
o
c), Negative = (≥190

o
c), TP= True Positive, FN= False Negative, FP= False 

Positive, TN=True Negative 

Sensitivity or true positive rate 

TPR =TP/P = TP/ (TP+FN) 

Specificity or true negative rate 

SPC= TN/N=TN/(TN+FP) 

Precision or positive predictive value 

PPV= TP/(TP+FP) 

Accuracy 

ACC= (TP+TN)/(TP +FP+FN+TN) 

Geometric mean  

GM =  √TPR − SPC 

 

Specificity and the geometric mean play a more dominant rule of choosing the classifier in our 

case. Since our main interest is the minority class (Signals over 190
o
C), it is important not to 

choose the classifier based only on accuracy. As higher accuracy, in this case, may not be a good 

indication for the strong classifier. 

 

Classifier TP FN FP TN 
Sensitivity 

(%) 

Specificity 

(%) 

Geometric mean 

(%) 

Accuracy 

(%) 

Precision 

(%) 

Linear LSVM 154.00 1.00 15.00 14.00 99.35 48.28 69.26 91.30 91.12 

LSVM 155.00 0.00 29.00 0.00 100.00 0.00 0.00 84.24 84.24 

NaïveBayes 106.00 49.00 3.00 26.00 68.39 89.66 78.30 71.74 97.25 

Random Forest 155.00 0.00 5.00 24.00 100.00 82.76 90.97 97.28 96.88 

Cost Sensitive 

Random Forest 
154.00 1.00 3.00 26.00 99.35 89.66 94.38 97.83 98.09 
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Results of the Classifiers 

Results in changes based on the classifier algorithm and parameters tunning to deal with the 

specific dataset. Following is the used classifiers Strengths and weakness points.  

 

Support Vector Machines (SVM) 

 As explained in chapter three SVM use Kernels mechanism, which essentially calculates the 

distance between two remarks.  The SVM algorithm then finds a decision margin that maximizes 

the distance between the nearby members of separate classes. 

 Advantages:  with many kernels to choose from it can model non-linear decision boundaries. 

They are also reasonably strong against overfitting, especially in high-dimensional space. 

 Disadvantages:  SVM's are memory concentrated, delicate to tune due to the significance of 

choosing the correct kernel, and don't scale well to more massive datasets.  

Naive Bayes 

Naive Bayes (NB) is a straightforward algorithm based on conditional probability and counting. 

The model is, in fact, a probability table that gets updated through training data. To predict a new 

incident, just "look up" the class probabilities in "probability table" built on its feature values. 

"Naive" because of its core assumption that all input features are independent, which hardly 

holds true in reality. 

 Advantages: even though the conditional independence assumption rarely holds true, NB 

models actually perform amazingly sound in practice, mainly for how simple they are. They 

are easy to implement and can scale with your dataset. 

 Disadvantages: due to their sheer simplicity, models adequately trained and tuned using the 

previous algorithms listed often-beat NB models. 

Classification Tree (Random forest) 

 Advantages:  classification tree ensembles also perform very well in practice. They are 

robust to outliers, scalable, and able to model non-linear decision edges thanks to their 

hierarchical structure obviously. 

 Disadvantages: unconstrained, individual trees are likely expected to overfit, but this can be 

alleviated by ensemble methods. 

 

https://www.quora.com/What-is-an-intuitive-explanation-of-a-naive-Bayes-classifier
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For many application, random forest classifier has been showing the best results over other 

classifiers, which is why it is well known to be usually preferred over SVM's in the industry 

[112]. 

 

 

 

Figure 55 Comparison between classifiers 

 

Table 10 Comparison of approaches 
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Table 10 shows a comparison between the current methods used for temperature monitoring 

(Thermocouple), the conventional approach of using ultrasound (signal analysis), and the studied 

approach of using machine learning for signal classification. This compassion could be seen as 

the advantages of machine learning approach over current and conventional approaches from an 

industrial point of view. 

Regarding simplicity, monitoring the temperature using thermocouple may be the most 

straightforward way, since the thermocouple is already attached to most of the extruders. On the 

other hand, Although both conventional and machine learning approach need a transducer to be 

installed, the time needed for preparation of the system in comparison with machine learning is 

much longer. Also, the complexity of the algorithm needed to deal with the signal and analysis of 

the peaks and determine the speed of sound and find the correlated temperature is much harder 

than simple classifier technique, which from an industrial viewpoint will be as a go-nogo gauge 

for the processed composite.  

Thermocouple approach also shows superiority over the other techniques in terms of cost. It is 

also very competitive with the machine learning regarding practicality, since for mass production 

reducing the temperature when damage is detected may be the most straightforward approach to 

save time and money and avoid stopping the production line. Of course, having a system that 

tells you whether or not this is a damaged composite will add more value to the practicality of 

the system. The conventional approach may achieve better accuracy and reliability since it is an 

empirical model, but machine learning is very competitive in the same terms since it also uses 

the experience to learn. 

Machine learning is more superior to other techniques in many ways, especially regarding 

response time. Since thermocouple has a long response time and ultrasound monitoring of the 

temperature gives a more direct measurement of the temperature change or the temperature 

change effect on the material. In addition to that, machine learning techniques are more 

straightforward to calibrate and adapt to new material or process parameters. Machine learning is 

also better in terms of specificity as the primary concern for the industry is to avoid material 

damage and maintain a continuous composite production process. Hence, the more concern is to 

target the damaged material when damage occurs and prevent the cause from repeating.   
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Conclusion  

The modified methods of US monitoring of sound speed and attenuation during heating, 

extrusion of PP Nano-Bio-composites is developed, and relationships between US signal and 

temperature parameters are established. It is found that characterization of the extrusion 

processes by sound velocity and attenuation allows monitoring and prevent the cellulose fiber 

composite destruction. 

The correlation coefficient between ultrasound signals was obtained to confirm the relation 

between change in temperature and ultrasound signals. It is was noticed that signals at near 

temperature have high correlation coefficient, which makes it hard to use an empirical model to 

detecting the change in temperature.  Machine learning classifier algorithm was used to classify 

184 datasets of ultrasound signals of biocomposite material at different temperatures. The 

classifier was used to classify the signals into over and below 190
o
C, which is the temperature at 

which the fiber degradation takes place. Five classifier results were obtained for comparison and 

to choose the best outcome. The results show that the best classifier is the cost-sensitive random 

forest classifier with accuracy 97.8%.  This technique could be used in monitoring temperature 

during biocomposite production in order to contain fiber degradation during the extrusion. The 

system can be enhanced for industrial purposes to adapt different kinds of materials and to 

predict possible temperature increase. It is found that modification PP composite with CNTs with 

the content of about 0.5-0.1% changes the PP – fiber composite behavior at the small strength 

and this effect is controlled by structure of semi crystalline polymers. 

iv) Reinforcing with cellulose nanofibers do not change both critical stresses and strains 

of the points A and B considerably in spite of variation of crystallinity degree; 

v) The main effect of CNT modification is an increase of both critical stresses and 

strains of the points A and B which is believed to be the result of specific features of 

semi-crystalline structure formation arisen due to CNTs presence; 

vi) The strengthening effect of CNTs (inclination of the curves σA,B=f(c) ) in the range 

of c=40-50% is similar to points A and B (Figure 42) that reveals about the influence 

of CNTs on the polypropylene matrix crystallinity and structure at the initial stage of  

the PP composite deformation.     
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The effect of CNTs on both these parameters is especially pronounced. DSC analysis showed 

that adding microfibers and MWCNT in PP matrix leads to increase in  the crystallization 

temperature and the crystallinity degree in PP. The thermal degradation study shows an increase 

in thermal stability of the PP matrix in the composite with added CNTs.  The increased 

crystallinity degree of the PP matrix in composites with adding microfibers and MWCNT is 

shown. Thus adding fibers and especially CNT vigorously promotes the nucleation of PP. 

The mechanical and thermal behavior of nitrocellulose/PP and micro cellulose/MWNT/PP 

composites was studied. For all systems, the increase in yield stress has been observed 

supporting the existence of an interaction between nanotubes and the polymer matrix. The 

addition of fibers and CNT increased the temperature of crystallization and crystallinity degree. 

The obtained results allow developing the extrusion temperature monitoring technique and inline 

evaluation of the mechanical properties of the PP-MF-CNT composites. 
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Future work 
 

The machine learning techniques can be used in online monitoring for ultrasound signal 

classification based on the temperature. The following flowchart shows that same technique used 

for classification for over and below 190
o
c can be followed by similar classification for lower or 

higher temperatures. After classification, the system can be connected to a control system to 

provide a control signal that can adjust the temperature online automatically. The system could 

also be connected to a local or vast area network to share the data and learning experiences with 

other similar systems in the network. The machine learning can also be used as a prediction 

model to determine when the temperature is expected to be increased by obtaining more training 

data at different processing conditions.  

  

Temperature 

Control Control Signal 
Input  

(US signal) 

Classifier Algorithm classify 

according to Corresponding 

Temperature 

  

X(Tx)<190 

X(Tx)>170 X(Tx)<170 

X(Tx)>180 X(Tx)<180 

X(Tx) 

X(Tx)>190 

X(Tx)>160 X(Tx)<160 
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