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ABSTRACT 

 

Wagner and Whitin (1958) develop an algorithm to solve the dynamic Economic Lot-Sizing 

Problem (ELSP), which is widely applied in inventory control, production planning, and capacity 

planning. The original algorithm runs in 𝑂(𝑇2) time, where 𝑇 is the number of periods of the 

problem instance. Afterward few linear-time algorithms have been developed to solve the 

Wagner-Whitin (WW) lot-sizing problem; examples include the ELSP and equivalent Single 

Machine Batch-Sizing Problem (SMBSP). This dissertation revisits the algorithms for ELSPs and 

SMBSPs under WW cost structure, presents a new efficient linear-time algorithm, and compares 

the developed algorithm against comparable ones in the literature.  

The developed algorithm employs both lists and stacks data structure, which is completely a 

different approach than the rest of the algorithms for ELSPs and SMBSPs. Analysis of the 

developed algorithm shows that it executes fewer number of basic actions throughout the 

algorithm and hence it improves the CPU time by a maximum of 51.40% for ELSPs and 29.03% 

for SMBSPs. It can be concluded that the new algorithm is faster than existing algorithms for 

both ELSPs and SMBSPs. 

Lot-sizing decisions are crucial because these decisions help the manufacturer determine the 

quantity and time to produce an item with a minimum cost. The efficiency and productivity of a 

system is completely dependent upon the right choice of lot-sizes. Therefore, developing and 

improving solution procedures for lot-sizing problems is key. This dissertation addresses the 

classical Multi-Level Capacitated Lot-Sizing Problem (MLCLSP) and an extension of the 

MLCLSP with a Setup Carryover, Backlogging and Emission control. An item Dantzig Wolfe 

(DW) decomposition technique with an embedded Column Generation (CG) procedure is used to 

solve the problem. The original problem is decomposed into a master problem and a number of 
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subproblems, which are solved using dynamic programming approach. Since the subproblems are 

solved independently, the solution of the subproblems often becomes infeasible for the master 

problem. A multi-step iterative Capacity Allocation (CA) heuristic is used to tackle this 

infeasibility. A Linear Programming (LP) based improvement procedure is used to refine the 

solutions obtained from the heuristic method. A comparative study of the proposed heuristic for 

the first problem (MLCLSP) is conducted and the results demonstrate that the proposed heuristic 

provide less optimality gap in comparison with that obtained in the literature.  

The Setup Carryover Assignment Problem (SCAP), which consists of determining the setup 

carryover plan of multiple items for a given lot-size over a finite planning horizon is modelled as 

a problem of finding Maximum Weighted Independent Set (MWIS) in a chain of cliques.  The 

SCAP is formulated using a clique constraint and it is proved that the incidence matrix of the 

SCAP has totally unimodular structure and the LP relaxation of the proposed SCAP formulation 

always provides integer optimum solution. Moreover, an alternative proof that the relaxed ILP 

guarantees integer solution is presented in this dissertation. Thus, the SCAP and the special case 

of the MWIS in a chain of cliques are solvable in polynomial time.  
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CHAPTER 1 

INTRODUCTION 

roduction planning is an activity that considers the best utilization of production resources 

to meet production requirements and enhance customer satisfaction over a certain period of 

time. Lot-sizing is one of the production planning problems that involves the decision regarding 

when to manufacture the production orders and the size of these orders. Lot-sizing or batching is 

defined by Kuik, Salomon, and van Wassenhove (1994) as "the clustering of items for 

transportation or manufacturing processing at the same time." Lot-sizing problems arise in 

production facility whenever the resources need to be set up to produce a new product. Setup tasks 

can be of many different forms; this can be any of the required cleaning of resources, part fixation, 

machine adjustments, preheating, inspection, calibration, test runs, and/or tool changes between 

the different batches. Every setup is associated with a setup cost, which involves the cost 

to configure a machine for a production run. This also includes the additional workforce needed 

to set up the equipment, the idle time and production loss during setup operations, and any 

materials consumed during the setup operations. It is obvious that large lot-sizes can minimize the 

setup costs and times and maximize the utilization of the production resources. However, this 

generates inventory as the production is higher than the actual demand. As a result, inventory 

holding cost occurs to hold the excess products produced until they are used to satisfy the demand. 

Thus, the lot-sizing problem is to determine an optimum production or replenishment 

policy for a manufacturing or inventory system in order to meet market demand with the least 

possible expenditure. The decision regarding optimum production or replenishment policy is very 

crucial and hence, a matter of interest for many researchers since the beginning of the twentieth 

P
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century when Harris (1913) introduces his well-known and the most fundamental Economic Order 

Quantity (EOQ) model.  In inventory management, the EOQ is the fixed order quantity that 

minimizes the total holding costs and ordering costs. In this model, demand is assumed to be 

constant over time. It is quite straightforward to derive the optimal solution using the EOQ model, 

but because of the rather strong assumptions and simplifications made in development of the 

model, its practical relevance may be questioned.  

A first extension of the EOQ model is the Economic Lot-sizing and Scheduling Problem 

(ELSP), where multiple items with a constant demand rate share the same production resource 

with a limited capacity. In the ELSP, the objective is to find a production schedule, which 

minimizes the total setup and inventory cost. However, a special case of ELSP is addressed by 

Wagner and Whitin (1958), where discrete periods of time are considered and demand in each of 

these periods is assumed to be known in advance. They consider a single-item with a dynamic 

demand that has to be produced on a facility with an unlimited capacity. Wagner and Whitin (1958) 

develop a forward-recursion dynamic programming algorithm to obtain a minimum total cost 

inventory management scheme. 

1.1 Characteristics of Lot‐Sizing Models: 

Lot-sizing problems can be classified based on the features taken into account by the model. 

The complexity of lot-sizing problems depends on these features. The following characteristics are 

generally used to classify the lot-sizing problem and to decide the complexity of the associated 

model. 
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1.1.1 Planning horizon:  

The planning horizon is defined as the time interval on which the master production 

schedule extends into the future. The planning horizon may be either finite or infinite; finite 

demand is usually accompanied by a dynamic demand whereas that of infinite, is accompanied by 

static one. Also, the system can be observed continuously or at discrete time points, which then 

classifies it as either a continuous or discrete-type system. As for the time-period terminology, 

Lot-sizing problems can also be categorized as big bucket or small bucket problems. Big bucket 

problems are those where the planning horizon is long enough to produce more than one item in a 

time period, whereas for small bucket problems, the planning horizon is so short that only one item 

can be produced in each time period. 

1.1.2 Number of levels: 

Production systems may be classified as either a single-level or a multi-level system. 

Single-level systems can be defined as producing the end item directly from the raw materials or 

the purchased parts through a single operation such as machining, casting, or else. In other words, 

there is no intermediate subassemblies in the transformation process of raw material to the finished 

product. For single-level system, product demands are assessed directly from customer orders or 

market forecasts. Wagner and Whitin (1958), Wagelmans et al. (1992), Aggarwal and Park (1993) 

and Albers and Brucker (1993) deal with single-level systems. In multi-level systems, there is a 

parent–child relation among the items. Raw materials are processed using several operations and 

hence, change to an end products. The output of an operation (level) is input for another. Therefore, 

the demand at one level depends on the demand for its parents’ at the level. This kind of demand 

is named dependent demand. Multi-level problems are more difficult to solve than single-level 
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problems. Wu et al. (2011) and Tempelmeier and Derstroff (1996) study the multi-level lot-sizing 

problem. Multi-level systems are further distinguished by the type of product structure, which 

includes serial, divergent, assembly and general. The four types of product structures are illustrated 

in Figure 1.1. In serial product structures, every item has at most one predecessor and one 

successor. In divergent (assembly) product structures, each item has at most one predecessor 

(successor), but can have an unlimited number of successors (predecessors). General product 

structures, which represent multiple assemblies, are the most complex since there is no limit on 

the number of predecessors or successors. In regards to the process structure, cyclic and acyclic 

production processes can be distinguished. If the items are produced on a different resource other 

than their predecessor or successor it is called acyclic system. If some parent items are produced 

on the same resource as their component, it is called cyclic system.  

   
 

Level 
0 

Level 
1 

Level 
2 

(a) (b) (c) (d)  

Figure 1.1: (a) serial, (b) divergent, (c) assembly, and (d) general product  

breakdown structure 

 

1.1.3 Number of products:  

Lot-sizing models can be classified as single-item or multi-item lot-sizing problem based 

on the number of end-items or finished products. In single-item lot-sizing problems, there is only 

one final item for which the planning activity has to be performed, while in multi-item lot-sizing 
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problems, there are several end items. The complexity of multi-item problems is much higher than 

that of single-item problems.  

1.1.4 Capacity or resource constraints 

Resources or capacities in a production system include manpower, equipment, machines, 

budget, space, etc. When there is no restriction on resources, the problem is said to be 

uncapacitated, and when capacity constraints are explicitly stated, the problem is named 

capacitated. Capacity restriction is important, and directly affects problem complexity. 

1.1.5 Demand 

The demand for the items to be produced or purchased is used as a parameter in the lot-

sizing models. Demand may be classified as deterministic or probabilistic. If the value of the 

demand is known in advance, it is termed as deterministic, but if it is not known exact with 

certainty and the values are based on some probabilities, then it is probabilistic.  Deterministic 

demand can be further distinguished as static (demand rate does not change over time) or dynamic 

(demand rate changes over time). Probabilistic demand can also be further classified as stationary 

(probability distribution function remains unchanged over time) or non-stationary (probability 

distribution function varies in time). Furthermore, another important classification of demand is 

dependent demand and independent demand. In independent demand cases, an item’s requirements 

do not depend on decisions regarding another item’s lot size. This kind of demand can be seen in 

single-level production systems. In multi-level lot-sizing, where there is a parent–child relationship 

among the items, because the demand at one level depends on that of its parents (pervious level), 

it is called dependent. A brief classification of demand is illustrated in Figure 1.2. Problems with 

dynamic and dependent demands are much more complex than problems with static and 
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independent demands. Also, problems with probabilistic demand are more complex than those 

with deterministic demand. 

  

Figure 1.2: Classification of demand 

1.1.6 Setup structure 

Setup structure is another important characteristic that directly affects problem complexity. 

Setup costs and/or times, are usually modelled by introducing zero–one variables in the 

mathematical model of the problem and cause problem solving to be more difficult. Usually, 

production changeover between different products can incur setup time and hence, a setup cost. 

The setup time and costs may be constant, product dependent or sequence dependent. If setup 

time/cost depends solely on the task to be performed, regardless of its preceding task, it is called 

sequence independent. On the other hand, in the sequence dependent type, setup time depends on 

both the task and its preceding task (Allahverdi & Soroush, 2008).  Other considered 

characteristics of setups are setup carryover and setup crossover. If same item is produced in two 

consecutive periods, machine setup state for that item can be fully maintained over periods;  this 
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is denoted as setup carryover (Briskorn, 2006). More specifically, setup carryover permits a setup 

state to be conserved between two consecutive periods.  If the machine is being set up and the 

setup procedure itself crosses over period boundaries; i.e., the incomplete setup state of the 

machine is preserved between periods, it is called setup crossover.  

1.1.7 Inventory shortage 

Inventory shortage is another characteristic, which affects the modelling complexity of the 

lot-sizing problems. If shortage is allowed, it means that it is possible to satisfy the demand of the 

current period in future periods (backlogging case), or it may be allowable for demand not to be 

satisfied at all (lost sale case). The combination of backlogging and lost sales is also possible. Wee 

(1999) develops a deterministic inventory model  based on a Weibull distribution by integrating 

the backlogging and lost sales case. Inventory shortage generally introduces a penalty cost in the 

objective function. Problems with shortage are more difficult to solve than those without. 

1.2 Variants of lot‐sizing and scheduling problems 

1.2.1 Single-Item Single-Level Uncapacitated Lot-Sizing Problem (SISLULSP): 

Single-Item Single-Level Uncapacitated Lot-Sizing Problem (SISLULSP) is discussed by 

many researchers. SISLULSP is one of the basic lot-sizing models. The major assumptions used 

in SISLULSP are as follows:   

o Planning horizon is finite  

o Demand is known in each period and is satisfied at the beginning of the period. 

o Lead time is known and constant (without loss of generality it is set to zero). 

o Backlog is not allowed; i.e., system is uncapacitated. 

o Setup cost for each production lot is constant over time. 
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o Inventory holding cost is linear and is charged to the ending inventories. 

o Production cost is time-varying. 

o Beginning and ending inventories are set to zero. 

o A setup of the resource for each produced item in each period is necessary 

Indices: 

𝑡 Planning period ሺ𝑡 ൌ 1,2,3, … , 𝑇ሻ 

The decision variables are as follows: 

𝐼௧   Inventory level at the end of period 𝑡  

𝑋௧  Production quantity in period 𝑡 

𝑌௧ ൌ ቄ1
0

    if product is produced in period 𝑡 
otherwise

 

The parameters used are as follows: 

𝐷௧   Demand in period 𝑡 

ℎ  Holding cost  

𝑐௧  Setup cost in period 𝑡  

𝑃௧  Variable unit production cost in period 𝑡 

𝐼଴  Initial inventory level  

M  A large enough number, where 

𝑀 𝑡𝑎𝑘𝑒𝑠 𝑎 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡ℎ𝑒 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 ∑ 𝐷௞
்
௞ୀ௧  

The single-item uncapacitated lot-sizing problem can be formulated as follows: 

Model SISLULSP: 

𝑀𝑖𝑛 ∑ ሺ𝑃௧𝑋௧ ൅ ℎ𝐼௧ ൅ 𝑐௧𝑌௧ሻ்
௧ୀଵ       (1) 

Subject to: 

𝐼௧ ൌ 𝐼ሺ௧ିଵሻ ൅ 𝑋௧ െ 𝐷௧ ∀𝑡       (2) 

𝑋௧ ൑ 𝑀𝑌௧  ∀ 𝑡       (3) 
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𝑌௧ ∈ ሾ0,1ሿ    ∀ 𝑡      (4)  

𝐼௧, 𝑋௧ ൒ 0    ∀ 𝑡      (5) 

 

The objective function in Equation (1) is to minimize the sum of production, inventory 

holding and setup cost. Constraints (2) ensure the inventory balance condition.  Constraints (3) 

ensure that production takes place in period 𝑡 only if there is a setup during that period. Constraints 

(4) and (5) provide the logical binary and non-negativity necessities for the decision variables. 

Many authors have studied the SISLULSP. One of the oldest classical production 

scheduling models is the Economic Order Quantity (EOQ) model, which is introduced by Harris 

(1913). In EOQ model, demand is assumed to be a continuous function over time. However, a 

different approach to solve the SISLULSP has been provided by Wagner and Whitin (1958), where 

discrete periods in time are considered and demand in each of these periods is assumed to be known 

in advance. Wagner and Whitin (1958) develop a forward-recursion algorithm, which is well 

known as WW algorithm, for the SISLULSP to obtain a minimum total cost inventory 

management scheme. The computational complexity of the WW algorithm is 𝑂ሺ𝑇ଶሻ time, where 

𝑇 denotes the number of periods. During the 1980s and 1990s, a lot of research is directed at 

improving the computational complexity of the lot-sizing algorithms for SISLULSPs. Evans 

(1985) presents an efficient computer implementation of the WW algorithm, which also runs in 

𝑂ሺ𝑇ଶሻ time.  Later, Federgruen and Tzur (1991) develop a simple forward algorithm, which can 

be implemented in 𝑂ሺ𝑇𝑙𝑜𝑔𝑇ሻ time and 𝑂ሺ𝑇ሻ space. Wagelmans et al. (1992) and Aggarwal and 

Park (1993) both develop dynamic programming recursion for the SISLULSP that runs in 

𝑂ሺ𝑇ሻ time for the WW case.  
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1.2.2 Single-Item Single-Level Capacitated Lot-Sizing Problem (SISLCLSP): 

In the context of single-level production planning, with finite planning horizon and a 

known dynamic demand without incurring inventory shortage, the classical capacitated lot-sizing 

problem (CLSP) is to determine the production quantity and timing while satisfying the capacity 

restriction. This is the most used model in the literature. It is derived directly from the model of 

the SISLULSP (Section 1.2.1). To get the new model replace constraint (3) by the set of capacity 

constraints as follows: 

∑ ሺ𝑝௧𝑋௧ ൅ 𝑠௧𝑌௧ሻ்
௧ୀଵ ൑ 𝑅௧   ∀ 𝑡     (6) 

Here 𝑝௧, 𝑠௧, and 𝑅௧ are the processing time, setup time, and available capacity in period 𝑡 

respectively. Limited resource capacity is reflected by constraints (6).  

1.2.3 Multi-Item Single-Level Uncapacitated Lot-Sizing Problem (MISLULSP):  

Multi-item extension of the uncapacitated lot-sizing problem does not consider production 

capacity but often considers the inventory bounds in which a production plan for multiple 

items has to be determined considering that they share a storage capacity.  This problem is 

addressed by Minner (2009). Akbalik, Penz, & Rapine (2015) study the complexity of this problem 

and prove that the problem is NP-hard even with no holding and fixed setup costs. Recently, Melo 

& Ribeiro (2017) study the mathematical formulations for the MIULSP with inventory bounds and 

provide two effective heuristics based on a rounding scheme and a relax-and-fix approach to solve 

the problem. The mathematical model for the classical MISLULSP presented by Melo & Ribeiro 

(2017) is as follows: 
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Indices: 

𝑡 Planning period ሺ𝑡 ൌ 1,2,3, … , 𝑇ሻ 

𝑗 Item ሺ𝑗 ൌ 1,2,3, … , 𝑛ሻ 

The decision variables are as follows: 

𝐼௝௧  Inventory level for item 𝑗 at the end of period 𝑡 

𝑋௝௧ Production quantity for item 𝑗 in period 𝑡 

𝑌௝௧ ൌ      ቄ1
0

    if item 𝑗 is produced in period 𝑡 
otherwise

 

The parameters used are as follows: 

𝐷௝௧  Demand in period 𝑡 

ℎ௝௧ Holding cost of item 𝑗 in period 𝑡 

𝑐௝௧ Setup cost of item 𝑗 in period 𝑡  

𝑃௝௧ Variable unit production cost of item 𝑗 in period 𝑡 

𝐻௧ Total amount of stock available   in period 𝑡 

M A large enough number 

Melo & Ribeiro (2017) assume that there are no initial and final stocks and that the demands and 

costs are nonnegative The mathematical formulation proposed by Melo & Ribeiro (2017) is as 

follows: 

Model MISLULSP: 

𝑀𝑖𝑛 ∑ ∑ ሺ𝑃௝௧𝑋௝௧ ൅ ℎ௝௧𝐼௝௧ ൅ 𝑐௝௧𝑌௝௧ሻ்
௧ୀଵ

௡
௝ୀଵ     (7) 

Subject to: 

𝐼௝௧ ൌ 𝐼௝ሺ௧ିଵሻ ൅ 𝑋௝௧ െ 𝐷௝௧ ∀𝑗, 𝑡       (8) 

𝑋௝௧ ൑ M ∗ 𝑌௝௧  ∀ 𝑗, 𝑡       (9) 

∑ 𝐼௝௧
௡
௝ୀଵ ൑ 𝐻௧  ∀ 𝑡       (10) 
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𝐼௝௧, 𝑋௝௧ ൒ 0   ∀ 𝑗, 𝑡       (11) 

 𝑌௝௧ ∈ ሾ0,1ሿ   ∀ 𝑗, 𝑡       (12)  

The objective function (7) minimizes the sum of storage costs, variable production costs 

and fixed production costs. Constraints (8) are inventory balance constraints. Constraints (9) are 

setup enforcing constraints. Constraints (10) limit the total stock at a given period. Constraints (11) 

and (12) are, respectively, nonnegativity and integrality constraints on the variables. 

1.2.4 Multi-Item Single-Level Capacitated lot-Sizing Problem (MISLCLSP): 

Multi-Item Single-Level Capacitated Lot-Sizing Problem (MISLCLSP) is an extension of 

the MISLULSP. MISLCLSP is a well-studied problem in which timing and lot-sizes are planned 

for the production of multiple items which share a single capacity constrained resource. Trigeiro, 

Thomas, and McClain (1989) are the first to attempt to solve the MISLCLSP with setup time.The 

mathematical model for the classical MISLCLSP proposed by Trigeiro et al. (1989) is as follows: 

The multi-item uncapacitated lot-sizing problem can be formulated as follows: 

Model MISLCLSP: 

𝑀𝑖𝑛 ሺ8ሻ    

Subject to: 

(9), (10), (12), (13) 

∑ ∑ ሺ𝑝௝௧𝑋௝௧ ൅ 𝑠௝௧𝑌௝௧ሻ்
௧ୀଵ

௡
௝ୀଵ ൑ 𝑅௧  ∀ 𝑡     (14) 

Here 𝑝௝௧, and 𝑠௝௧ are processing time and setup time associated with item 𝑗 in period 𝑡 and 𝑅௧ is 

the available capacity in period 𝑡.  The objective of the model MISLCLSP is to minimize the total 

setup, holding and production cost. Limited resource capacity is reflected by constraints (14).  
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1.2.5 Multi-Level Capacitated lot-Sizing Problem (MLCLSP): 

The multi-level extension of the CLSP, known as Multi-Level Capacitated Lot-Sizing 

Problem (MLCLSP) deals with the production of multiple items when interdependence among the 

different items at the different production levels is imposed due to the product structure. The 

classical MLCLSP is introduced by Billington, McClain, and Thomas (1983), which describes the 

following scenario. The planning horizon is finite and divided into 𝑇 discrete time periods 

(e.g.,weeks). There are 𝑛 items with period-specific external demands, which must be met without 

delay. The items are produced on 𝑚 non-identical resources with limited period-specific 

capacities. Each resource comprises of one or more resource units, such as similar machines or 

workers, which are treated as a single entity. The mathematical formulation of the classical 

MLCLSP is presented in Chapter 3 Section 3.3.1.  

1.3 Solution Approaches for lot-sizing problems: 

Lot-sizing decisions are crucial because these decisions help the manufacturer determine 

the quantity and time to produce an item with a minimum cost. The efficiency and productivity of 

a system are completely dependent upon the right choice of lot-sizes. Therefore, developing and 

improving solution procedures for lot-sizing problems is key. The solution approaches of lot-

sizing problems can be divided into three main areas: (i) Exact methods, (ii) Heuristic methods, 

and (iii) Metaheuristic methods. Florian et al. (1980) have proved that the single-item CLSP is 

NP-hard. Later, Bitran and Yanasse (1982) show that even special cases which are solvable in 

polynomial time become NP-hard when introducing a second item. Therefore to tackle the 

intractable nature of the lot-sizing problems, different heuristic and metaheuristic methods have 

been used. 
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1.3.1 Exact Methods: 

Exact methods are useful to explore the underlying difficulties in solving the lot-sizing 

problems. For single item lot-sizing problems the mostly used exact methods include branch and 

bound (Erenguc & Aksoy, 1990), valid inequalities (Barany, Van Roy, & Wolsey, 1984; Miller, 

Nemhauser, & Savelsbergh, 2003), extended reformulations (Eppen & Martin, 1987; Rardin & 

Wolsey, 1993), Lagrangian relaxation (Billington, McClain, & Thomas, 1986; Chen & Thizy, 

1990; Diaby, Bahl, Karwan, & Zionts, 1992) and Dantzig-Wolfe decomposition (Degraeve & Jans, 

2007). Akartunalı and Miller (2012) study the computational complexities of the multi-level 

extension of the lot-sizing problems. Pochet and Wolsey (2006) provide an extensive discussion 

of the mathematical programming techniques used for lot-sizing problems. 

1.3.2 Heuristic Approaches: 

A heuristic is a strategy that is designed for solving a problem more quickly when classic 

methods are too slow, or for finding an approximate solution when classic methods fail to find an 

exact solution. This is achieved by trading optimality, completeness, accuracy, or precision for 

speed. Although exact methods are powerful since they provide a guarantee on solution quality, 

they exhibit an important drawback on the computational end; even with the modern fast 

computers and the state-of-the-art optimization packages, solving large-scale lot-sizing problems 

is a very complicated (and often an impossible) task. To compensate for the computational 

shortcomings of exact methods and to provide real-time solutions to practical problems, heuristic 

methods have been extensively used in this area. 

Chen and Thizy (1990) have proved that multi-item CLSP is NP-hard. Therefore, different 

approaches are addressed in the literature to find near-optimal heuristic solutions for the 
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MISLCLSP. Trigeiro et al. (1989) are the first to attempt to solve the MICLSP with setup time to 

obtain near-optimal solutions. They propose a Lagrangian heuristics, which  are iterative solution 

approaches applying Lagrangian Relaxation (LR). Thizy and Van Wassenhove (1985) , Trigeiro 

et al. (1989) and Sox and Gao (1999) suggested a Lagrangian relaxation based heuristics to solve 

a multi-item CLSP. Later Absi, Detienne, and Dauzère-Pérès (2013) apply LR to the capacity 

constraints and propose a non-myopic heuristic based on a probing strategy and a refining 

procedure.  A number of set partitioning and column generation heuristics are proposed by 

Cattrysse, Maes, and Van Wassenhove (1990). Many researchers propose Relax-and-fix (RF) 

heuristic (Belvaux & Wolsey, 2000; Stadtler, 2003), which solves relaxed MIP subproblems 

sequentially and fixes binary variables throughout the process to speed up the solution procedure 

of the lot-sizing problems. Dantzig-Wolfe (DW) decomposition is applied for CLSP for the first 

time by Manne (1958). Later Jans  and Degraeve (2004), Duarte & de Carvalho (2015) and Araujo 

et al. (2015) implemented DW decomposition-based heuristic to solve the lot-sizing problems. 

Fiorotto, de Araujo, and Jans (2015) combine LR and DW decomposition in a hybrid form for the 

MICLSP and show the competitiveness of the hybrid methods over other methods from the 

literature. 

1.3.3 Metaheuristic Approaches: 

The fundamental characteristics of metaheuristics are presented by Blum and Roli (2003) 

which are as follows: 

 Metaheuristics are general strategies that guide the solution procedure of the optimization 

problems to find a sufficiently good solution.  

 Metaheuristics are not problem-specific. 
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 Metaheuristics use the domain-specific knowledge in the form of problem-specific 

heuristics that are controlled by the upper level strategy.  

 Metaheuristics are usually non-deterministic and may incorporate mechanisms to avoid 

getting trapped in confined areas of the search space. Furthermore, the search space may 

also include infeasible solutions, where the violation of constraints is charged with penalty 

cost.  

 Metaheuristics belong to the group of improvement procedures starting from a given initial 

solution.  

 The two basic principles that largely determine the behavior of a metaheuristic are 

intensification and diversification. The latter enhances the exploration of the search space, 

while the former allows for the exploitation of the accumulated search experience. 

In recent years, there is a huge advancement in the implementation of metaheuristic 

approaches to solve the lot-sizing problems, such as the hybrid genetic algorithm (Dellaert & 

Jeunet, 2000), the simulated annealing (Raza & Akgunduz, 2008), the particle swarm optimization 

(Han, Tang, Kaku, & Mu, 2009), the variable neighborhood search (Xiao, Kaku, Zhao, & Zhang, 

2011), the soft optimization approach based on segmentation (Kaku, Li, & Xu, 2008), the hybrid 

simulated annealing based tabu search (Berretta, Franca, & Armentano, 2005), the memetic 

algorithm (Berretta & Rodrigues, 2004), and the ant colony optimization system  (Pitakaso, 

Almeder, Doerner, & Hartl, 2006). It has been reported that these algorithms can provide highly 

cost-efficient solutions within a reasonable time. Recently Duda (2017) applies Genetic 

Algorithms (GAs) hybridized with variable neighborhood search (VNS) to solve multi-item CLSP 

with setup times.  
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1.4 Scope of the Research:  

This dissertation is concerned with the study of a SIULSP , which is motivated by the fact 

that many solution approaches of complex lot-sizing problems, which range from the single-item 

CLSPs to the multi-item MLCLSPs, lead to subproblems involving SIULSP. For example, the 

application of DW decomposition  (Jans & Degraeve, 2004) and Lagrangian relaxation (Sox & 

Gao, 1999) to CLSP lead to the consideration of SIULSP as a subproblem.  An efficient linear 

time algorithm for the SIULSPs will, hence,accelerate the convergence of such solution 

approaches. 

The SIULSP is further extended to MLCLSP with setup carryover, backlogging and 

emission control. To the best of the author’s knowledge, no attempt has been made to this point to 

tackle the MLCLSP while implementing emission control. DW decomposition has its application 

for single-level multi-item CLSP. But for multi-level extension of CLSP, it has never been 

implemented. Moreover the problem of determining setup carryover variable gives rise to a 

Maximum Weighted Independent Set (MWIS), which is a new area of application for MWIS.   

1.5 Contributions of the Research: 

The contributions of this piece of research could be summarized as: 

First, the WW algorithm and its various improvements are revisited to develop a more 

efficient linear time algorithm for the single-level SIULSPs. The theoretical properties of the 

developed algorithm are derived and an experimental comparison with the similar algorithms 

existing in the literature is conducted. The analysis shows that the developed linear time algorithm 

outperforms its comparable algorithms in the literature given the various employed metrics of 

analysis. 
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Second, an item DW decomposition of the classical MLCLSP is presented. The MLCLSP 

is extended by allowing setup carryover and backlogging. An emission capacity constraint is also 

included, and the problem is referred to as MLCLSP with Setup Carryover, Backlogging, and 

Emission control (MLCLSP-SCBE). A Mixed Integer Linear Programming (MILP) model for the 

MLCLSP-SCBE is formulated, and an item DW decomposition of the proposed MILP formulation 

is proposed. Column Generation (CG) approach is used along with a novel Capacity Allocation 

(CA) heuristic to obtain feasible setup plans and an Integer Linear Programming (ILP) model to 

determine the setup carryover assignment to optimality. The method is hybridized with an LP-

based improvement procedure, which helps to refine the solution further. The overall solution 

procedure reduces the optimality gap which is used as a benchmark to compare the performance 

of the proposed approach. 

Third, it is shown that the Setup Carryover Assignment Problem (SCAP) is equivalent to 

the problem of finding the Maximum Weighted Independent Set (MWIS) in a chain of cliques. An 

ILP is formulated to determine the setup carryover variable and, it has been demonstrated that the 

SCAP and the special case of MWIS problem is solvable in Polynomial time. 

1.6 Outline of the Dissertation: 

This dissertation is comprised of five independent chapters. The definition of the lot-sizing 

problem along with its different characteristics and variants are presented in Chapter 1 

(Introduction). Chapter 2 provides an efficient linear-time algorithm for the WW dynamic program 

and its implementation along with computational results assessing its performance. An MILP 

formulation and application of DW decomposition heuristic for an MLCLSP and its extensions is 

presented in Chapter 3. An experimental design and analysis for performance evaluation of the 
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proposed DW decomposition heuristics is also included in this chapter. Chapter 4 presents the 

problem of Setup Carryover Assignment (SCAP) for inventory lot-sizing as the problem of finding 

a Maximum Weighted Independent set. Finally, Chapter 5 concludes the dissertation and ends with 

some directions for the future research. 
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CHAPTER 2 

DYNAMIC ECONOMIC LOT-SIZING PROBLEM: A NEW 𝑶ሺ𝑻ሻ ALGORITHM FOR 

THE WAGNER-WHITIN MODEL 

agner and Whitin (1958) develop an algorithm to solve the dynamic Economic Lot-

Sizing Problem (ELSP), which is widely applied in inventory control, production 

planning, and capacity planning. The original algorithm runs in 𝑂ሺ𝑇ଶሻ time, where 𝑇 is the number 

of periods of the problem instance. Subsequently, other researchers develop linear-time algorithms 

to solve the Wagner-Whitin (WW) lot-sizing problem; examples include the ELSP and equivalent 

Single Machine Batch-Sizing Problem (SMBSP). This chapter revisits the algorithms for the ELSP 

and SMBSP under WW cost structure, presents a new efficient linear-time algorithm, and 

compares the developed algorithm with equivalent algorithms in the literature. The developed 

algorithm employs a lists and stacks data structure, which is a completely different approach than 

that of the comparable algorithms for the ELSP and SMBSP. Analysis of the developed algorithm 

shows that it executes fewer different actions throughout and hence it improves execution time by 

a maximum of 51.40% for the ELSP and 29.03% for the SMBSP. 

2.1 Introduction: 

The economic lot-sizing problem (ELSP) is an important issue in production and inventory 

control. Typically, a product is created or purchased in batch quantities and placed in stock. As the 

stock is depleted, more production or procurement must take place to replenish it. The main 

objective of the ELSP is to determine an optimum production or replenishment policy for a 

manufacturing or inventory system to meet the required market demand with the least possible 

expenditure. This policy decision is crucial, so it is a matter of interest for many researchers. Harris 

W 
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(1913) introduces his well-known and fundamental Economic Order Quantity model, in which he 

assumes demand to be a continuous function over time. However, Wagner and Whitin (1958) 

provide a different approach to solving the lot-sizing problem. They consider time in discrete 

periods and assume that demand in each period is known in advance. 

Wagner and Whitin (1958) develop a forward recursion algorithm to obtain a minimum 

total cost inventory management scheme, which satisfies demand known a priori in every period. 

They consider uncapacitated (i.e., without bounds on production and inventory) lot-sizing 

problems for a single-item inventory system. Their algorithm’s main assumption is that an item 

produced in a period can satisfy the demand in that and subsequent periods. Any item incurs setup 

and unit production costs, and any item carried to the next period incurs a unit inventory holding 

cost. The goal is to find a minimum cost production plan. The Wagner-Whitin (WW) algorithm 

runs in 𝑂ሺ𝑇ଶሻ time, where 𝑇 is the number of periods of the problem instance. Wagelmans et al. 

(1992) develop a linear-time algorithm (based on a geometric approach) for special cases of the 

WW problem where production and holding costs remain constant. Aggarwal and Park (1993) 

identify that the ELSP gives rise to Monge arrays (a special type of 2 × 2 array in which the four 

elements at the intersection points are such that the sum of the upper-left and lower-right elements 

across the main diagonal is less than or equal to the sum of the lower-left and upper-right elements 

across the antidiagonal). Employing the properties of a Monge array, Aggarwal and Park provide 

a linear-time  algorithm for the WW problem. Albers and Brucker (1993) study the complexity of 

the single machine batch-sizing problem (SMBSP) and develop an algorithm for the shortest path 

problem that can be solved in linear time. The SMBSP can be defined as follows. Suppose there 

are 𝑛 jobs, with given processing times, to be processed in batches on one machine. A batch is a 

set of jobs that is processed together. The number of jobs in a batch is called the batch size. The 
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production of a batch requires machine setups, which are assumed to be both sequence- and 

machine-independent. The problem is to find the optimal batch size that minimizes the total flow 

time. Flow time of a batch is the sum of the processing times of all jobs in that batch plus the 

machine setup time. Therefore, all jobs in a batch have the same flow time. 

The Wagelmans et al. (1992) and Aggarwal and Park (1993) algorithms are famous in the 

field of ELSP and obtain excellent results in terms of time complexity. This chapter revisits these 

algorithms and presents a new linear-time algorithm for the ELSP under WW cost structure. The 

developed algorithm employs a lists and stacks data structure, which is a completely different 

approach than that of the existing algorithms (Aggarwal & Park, 1993; Wagelmans et al., 1992) in 

the literature. We match our result with the other algorithms (Aggarwal & Park, 1993; Wagelmans 

et al., 1992) for the ELSP and find that the new algorithm takes less CPU time and performs fewer 

various operations. The ELSP is equivalent to the SMBSP (see Section 2.4), so the developed 

algorithm is also applicable for solving the SMBSP. The developed algorithm is compared with 

the Albers and Brucker (1993) algorithm for the SMBSP and demonstrates its superiority in terms 

of various metrics of comparison. For the ELSP, we assume that holding costs are stationary but 

setup costs are time variant. However, for the SMBSP, we assume that setup costs for every job 

are constant.  

The rest of this chapter is organized as follows. Section 2.2 reviews the related work in the 

literature. Section 2.3 provides a simpler linear-time algorithm for the WW dynamic program and 

its proofs. Section 2.4 illustrates how the developed algorithm can be implemented for the SMBSP. 

Section 2.5 presents a numerical example showing the implementation of the developed algorithm. 

Section 2.6 illustrates the computational results assessing the new algorithm’s performance. 

Finally, Section 2.7 is the conclusion. 
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2.2 Literature review: 

During the 1980s and 1990s, many researchers improve the computational complexity of 

the algorithms for the simple uncapacitated ELSP. Evans (1985) presents an efficient computer 

implementation of the WW algorithm, which is an 𝑂ሺ𝑇ଶሻ time dynamic programming recursion, 

where 𝑇 denotes the number of periods. He exploits the special structure of the problem, which 

requires low core storage, enabling it to be potentially useful and efficient for solving lot-sizing 

problems.  

There are many studies in the literature that discuss the improvement opportunities of the 

Wagner-Whitin algorithm to solve the single-item uncapacitated dynamic ELSP. Federgruen and 

Tzur (1991) develop a simple forward algorithm, which can be implemented in 𝑂ሺ𝑇𝑙𝑜𝑔𝑇ሻ time 

and 𝑂ሺ𝑇ሻ space for the dynamic ELSP. They also provide linear-time algorithms for two distinct 

cases: (i) models without speculative motives for carrying stock and ii) models with nondecreasing 

setup costs. Wagelmans et al. (1992) develop a backward dynamic programming recursion for the 

uncapacitated ELSP that runs in 𝑂ሺ𝑇ሻ time for the WW case and 𝑂ሺ𝑇𝑙𝑜𝑔𝑇ሻ time for a more 

general case, where marginal production costs differ between periods and all cost coefficients are 

unrestricted in sign. Aggarwal and Park (1993) show that the dynamic programming formulation 

of the uncapacitated ELSP gives rise to the Monge array, and they prove that the structure of the 

Monge arrays can be exploited to obtain a significantly faster algorithm. They present an 

𝑂ሺ𝑇𝑙𝑜𝑔𝑇ሻ time algorithm for both basic and backlogging ELSPs when the production, inventory, 

and backlogging costs are linear, and they show that for the special case of the WW model, this 

algorithm runs in 𝑂ሺ𝑇ሻ time.  
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 ሺ𝑡ସ െ 1ሻ considering the backlogged quantities of periods 𝑡ଶ though ሺ𝑡ଵ െ 1ሻ. Expression 

(48) indicates a schedule for production and setup in 𝑡ଵ|𝑡ଶ ൏ 𝑡ଵ ൏ 𝑡ସ െ 1 , production of 

demands of periods 𝑡ଶ through 𝑡ଵ, along with the backlogged quantities of periods 𝑡ଶ 

though ሺ𝑡ଵ െ 1ሻ,  setup carryover to the period ሺ𝑡ଵ ൅ 1ሻ and production in period ሺ𝑡ଵ ൅ 1ሻ 

equal to the demands of periods ሺ𝑡ଵ ൅ 1ሻ through  ሺ𝑡ସ െ 1ሻ.  

 

Figure 3.2: Shortest path network for the Subproblem 

For 1 ൑ 𝑘 ൑ 𝑇 ൅ 1, Let 𝑉௝ሺ𝑘ሻ be the minimum cost of satisfying demand in periods 

1 through ሺ𝑘 െ 1ሻ for item 𝑗 Defining 𝑉௝ሺ1ሻ ൌ 0∀𝑗, we have the following DP recursion: 
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𝑉௝ሺ𝑘ሻ ൌ min
ଵஸ௞ᇲஸ௧ᇲழ௞ஸ௧ᇲᇲ

ሼ 𝑉ሺ𝑘ᇱሻ ൅ 𝑓௝ሼሺ𝑡′, 𝑘′ሻ, ሺ𝑡ᇱᇱ, 𝑘ሻሽሽ    (49) 

To analyze the computational complexity of recursion (49), it takes 𝑂ሺ𝑇ሻ time to 

obtain 𝑆𝐶௧
௝ and  𝑂ሺ𝑇ଶሻ time to obtain 𝑃𝐶௧

௝ሺ𝑡ᇱ, 𝑡ᇱᇱሻ, 𝐻𝐶௧
௝ሺ𝑡ᇱ, 𝑡ᇱᇱሻ, and 𝐵𝐶௧

௝ሺ𝜏, 𝜏ᇱሻ for all 1 ൑

𝜏 ൑ 𝜏ᇱ ൑ 𝑡 ൏ 𝑡ᇱ ൑ 𝑡ᇱᇱ ൑ 𝑇 from Equation (44). It is noted that after an 𝑂ሺ𝑇ଶሻ time 

preprocessing step, each 𝑓௝ሼሺ𝑡ଵ, 𝑡ଶሻ, ሺ𝑡ଷ, 𝑡ସሻሽ where 1 ൑ 𝑡ଶ ൑ 𝑡ଵ ൏ 𝑡ସ ൑ 𝑡ଷ ൑ 𝑇 can be 

evaluated in constant time via Equation (45) through (48). Once these values are available, 

𝑉௝ሺ𝑘ሻ∀1 ൑ 𝑘 ൑ 𝑇 ൅ 1 can be obtained in 𝑂ሺ𝑇ଷሻ time.  

3.3.7 Setup Carry over Assignment:  

The problem of setup carryover assignment can be described as follows: If an item 

𝑗 is produced both in period 𝑡 and ሺ𝑡 ൅ 1ሻ and a setup is performed in both periods, the 

second setup can be replaced by a setup carryover if the item is produced at the end of 

period 𝑡  and at the beginning of period ሺ𝑡 ൅ 1ሻ. This last condition can be fulfilled by only 

one item that is produced in both period 𝑡 and ሺ𝑡 ൅ 1ሻ.  This saves both setup time and 

setup costs and such savings are attainable by only one item that is produced in both period 

𝑡 and ሺ𝑡 ൅ 1ሻ.   

An ILP model can be formulated for each machine to determine the setup carryover 

assignment variable. The objective of the problem is to maximize savings in setup cost. 

Suppose we are given 𝑆ሺ𝑖, 𝑡ሻ∀𝑖, 𝑡, where 𝑆ሺ𝑖, 𝑡ሻ is the set of items produced in machine 

𝑖∀𝑖 ൌ 1, . . . , 𝑚 in period 𝑡∀ 𝑡 ൌ 1. . . 𝑇. Let us assume another set 𝑆ᇱሺ𝑖, 𝑡ሻ|𝑆ᇱሺ𝑖, 𝑡ሻ ൌ

𝑆ሺ𝑖, 𝑡ሻ ∩ 𝑆ሺ𝑖, 𝑡 ൅ 1ሻ ∀𝑖 ൌ 1, . . . , 𝑚 and 𝑡 ൌ 1 … 𝑇 െ 1. Each element of 𝑆ᇱሺ𝑖, 𝑡ሻ represents 

an item  that can be carried over from period 𝑡 to ሺ𝑡 ൅ 1ሻ to avoid the machine setup for 
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that item in period ሺ𝑡 ൅ 1ሻ. Since for a particular machine 𝑖, only one item can be carried 

over to the next period, we have to pick exactly one element from 𝑆ᇱሺ𝑖, 𝑡ሻ. Let us introduce 

the parameters for the problem as follows: 

𝑐௝ Setup cost saving associated with element 𝑗|𝑗 ∈ 𝑆ᇱሺ𝑖, 𝑡ሻ ∀𝑡 

𝑞௝௧ ൌ ቄ1
0

    if item 𝑗 ∈ 𝑆′ሺ𝑖, 𝑡ሻ
otherwise

 

𝑟௝௧ ൌ ቄ1
0

   if  𝑞௝௧ ൌ 𝑞௝ሺ௧ାଵሻ ൌ 1 and 𝑖𝑓 |𝑆′ሺ𝑖, 𝑡 ൅ 1ሻ| ൐ 1
otherwise

 

Decision variable: 

𝑧௝௧ ൌ 1 
If item 𝑗 ∈ 𝑆ᇱሺ𝑖, 𝑡ሻ is produced at the end of period 𝑡 and in the   

beginning of period ሺ𝑡 ൅ 1ሻ 

0 otherwise 

Model  SC: 

𝑀𝑎𝑥 ∑ ∑ 𝑐௝
்ିଵ
௧ୀଵ௝∈ఝሺ௜ሻ 𝑧௝௧       ∀𝑖      (50) 

Subject to, 

𝑧௝௧ ൑ 𝑞௝௧ ∀𝑗, 𝑡 ൏ 𝑇       (51) 

∑ 𝑧௝௧ ൑ 1 ௝∈ௌሺ௜,௧ሻ|௤ೕ೟ୀଵ  ∀𝑡 ൑ 𝑇      (52) 

𝑧௝௧ ൅ 𝑧௝ሺ௧ାଵሻ ൑ 1  ∀𝑗, 𝑡 ൏ 𝑇 െ 1|𝑟௝௧ ൌ 1     (53) 

𝑧௝௧  ∈ ሼ0,1ሽ ∀𝑗, 𝑡        (54) 

The objective function to maximize the setup cost savings for all 𝑖 ൌ 1. . 𝑚 is 

expressed in equation (50). Constraints (51) ensure that an item, which is produced in two 

consecutive periods, should be carried over to the next period. Constraints (52) state that 

at most one item can be carried over to the next period. But for some 𝑡, if 𝑞௝௧ ൌ 0∀𝑗 ∈
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𝑆ሺ𝑡ሻ, ∑ 𝑧௝௧ ௝∈ௌሺ௜,௧ሻ ൌ 0. Constraints (53) prevents the same item from being selected to carry 

over in two consecutive periods if  𝑟ሺ𝑗, 𝑡ሻ ൌ 1, which implies the condition that if item 𝑗 is 

carried over from period 𝑡 to ሺ𝑡 ൅ 1ሻ then 𝑗 cannot be carried over from ሺ𝑡 ൅ 1ሻ to ሺ𝑡 ൅ 2ሻ. 

Finally the type of variables are defined in constraints (54). We determine the setup 

carryover variable 𝛼௝௧ by applying Procedure 1. 

Procedure 1: 

 

3.4 Proposed DW decomposition Heuristic Method 

3.4.1 Outline of the solution procedure:  

Model MLCLSP (MLCLSP_SCBE): 

Step 1: Generate an initial set of solutions by applying the following procedure: 

Step 1.1: From Equation (17) (Equation (44)) calculate 𝑆𝐶௧ᇱ
௝ , 𝑃𝐶௧ᇱ

௝ ሺ𝑡ሻ, and  𝐻𝐶௧ᇱ
௝ ሺ𝑡ሻ  

(𝑆𝐶௧
௝, 𝑃𝐶௧

௝ሺ𝑡ᇱ, 𝑡ᇱᇱሻ, 𝐻𝐶௧
௝ሺ𝑡ᇱ, 𝑡ᇱᇱሻ, and 𝐵𝐶௧

௝ሺ𝜏, 𝜏ᇱሻሻ by fixing the dual variables 

𝑤௜௧ and 𝑣௝ (𝒘𝒊𝒕, 𝒚𝒊𝒕, 𝜸, and 𝒗𝒋) a value of zero for the end items 𝑗|𝑗 ∈ 𝜔. 

Input: 𝑧௝௧ , 𝑆ሺ𝑖, 𝑡ሻ 
Output: 𝛼௝௧ 

Initialization: 𝛼௝௧ ൌ 𝑧௝௧  ∀𝑗, 𝑡 
Case 1: If |𝑆ሺ𝑖, 𝑡ሻ| ൌ 0  then 𝛼௝௧ ൌ 𝛼௝ሺ௧ିଵሻ 

Case 2: if |𝑆ሺ𝑖, 𝑡ሻ| ൌ 1 then 𝛼௝௧ ൌ 1|𝑗 ∈ 𝑆ሺ𝑖, 𝑡ሻ 
Case 3: let 𝜖 ൌrandom number between 1 and 𝑛 | 𝜖 ∈ 𝑆ሺ𝑖, 𝑡ሻ 
if |𝑆ሺ𝑖, 𝑡ሻ| ൐ 1 and ∑ 𝛼௝௧௝∈ఝሺ௜ሻ ൌ 0 then 𝛼ఢ௧ ൌ 1 
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Step 1.2: Use 𝑆𝐶௧ᇱ
௝ , 𝑃𝐶௧ᇱ

௝ ሺ𝑡ሻ, and  𝐻𝐶௧ᇱ
௝ ሺ𝑡ሻ (𝑺𝑪𝒕

𝒋, 𝑷𝑪𝒕
𝒋ሺ𝒕ᇱ, 𝒕ᇱᇱሻ, 𝑯𝑪𝒕

𝒋ሺ𝒕ᇱ, 𝒕ᇱᇱሻ, and 

𝑩𝑪𝒕
𝒋ሺ𝝉, 𝝉ᇱሻ) as the input for DPR1  (DPR2) and obtain the optimal 

production quantity 𝑋௝௧ and setup decision 𝑌௝௧ for item 𝑗 in period 𝑡. 

Step 1.3: Derive demand for the components 𝑘|𝑘 ∈ 𝜆  as follows: 

𝐷௞௧ ൌ ∑ 𝑎௞௞ᇲ𝑋௞ᇲ௧ ∀𝑡௞ᇲ∈௰ሺ௞ሻ   

Step 1.4: Repeat Steps 1.1 and 1.2 for the components.  The planned production is 

exploded down to the immediate predecessor level. 

Step 1.5: Apply a Capacity Allocation (CA) heuristic to make 𝑋௝௧ and 𝑌௝௧ feasible 

(Section 3.4.2). 

Step 1.6: For MLCLSP_SCBE, solve the ILP for maximizing setup cost savings 

(Equation (50)-(54)) and obtain the value of the setup carryover decision 

variable 𝛼௝௧∀𝑗, 𝑡 by applying Procedure 1 (Section 3.3.7). 

Step 1.7: Use the 𝑌௝௧ values from step 1.5 (and 𝜶𝒋𝒕 from step 1.6) as parameters 

and solve model MLCLSP (MLCLSP_SCBE) to obtain an optimal value 

for 𝑋௝௧, 𝐼௝௧ ሺand 𝒃𝒋𝒕). 

Step 2: Solve the LP relaxation of the 𝑀𝑃ଵሺ𝑀𝑃ଶሻand obtain the dual values of constraints 

(8) and (9) (constraints (31) through (34)).  

Step 3: Solve the subproblems using the following approach: 
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Step 3.1: Use the dual values obtained from Step 2 and calculate 𝑆𝐶௧ᇱ
௝ , 𝑃𝐶௧ᇱ

௝ ሺ𝑡ሻ, and 

 𝐻𝐶௧ᇱ
௝ ሺ𝑡ሻ  (𝑺𝑪𝒕

𝒋, 𝑷𝑪𝒕
𝒋ሺ𝒕ᇱ, 𝒕ᇱᇱሻ, 𝑯𝑪𝒕

𝒋ሺ𝒕ᇱ, 𝒕ᇱᇱሻ, and 𝑩𝑪𝒕
𝒋ሺ𝝉, 𝝉ᇱሻሻ by using Equation 

(17) (Equation (44)).  

Step 3.2: Repeat Steps 1.2 through 1.7.  

Step 4: If there exists at least one new column with negative reduced cost, add such 

columns to 𝑀𝑃ଵሺ𝑴𝑷𝟐ሻ and start from Step 2 again.  Otherwise, stop. 

3.4.2 Description of the Capacity Allocation (CA) Heuristic: 

The pseudocode for the CA heuristic is given in Section 3.4.2, where the following 

symbols are used: 

𝑙   Index for levels of product hierarchy (from 0 for the end item to 𝐿).  

𝜋ሺ𝑙ሻ   Set of items positioned in level 𝑙 of the product hierarchy. 

𝑄௝௧  Production quantity for item 𝑗 in period 𝑡 obtained from WW 

solution (capacity constraint relaxed). 

𝑋ᇱ
௝௧   Production quantity for item 𝑗 in period 𝑡 obtained from  

CA heuristic. 

𝑍ᇱ
௝௧   Allocated capacity for item  𝑗 in period 𝑡 in time units.   

𝑌ᇱ
௝௧   Setup decision for item 𝑗 in period 𝑡 obtained from CA heuristic. 

𝐼ᇱ
௝௧   Inventory level of item 𝑗 in period 𝑡 obtained from CA heuristic. 

𝑅𝑒𝑞஼௔௣ሺ௜,௧ሻ  Required capacity of machine 𝑖 in period 𝑡 in time units. 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒஼௔௣ሺ௜,௧ሻ Available capacity of machine 𝑖 in period 𝑡 in time units. 
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𝑡′  Last period before the next period of production obtained from the 

WW solution. 

ሺ𝑅𝑄ሻ௝  Remaining quantity of item 𝑗 from the WW solution after the 

production quantity  is adjusted in any period. 

ሺ𝑅𝐷ሻ௝,௧  Remaining demand of item 𝑗 in period 𝑡 that cannot be satisfied due 

to the limit of the capacity of resource 𝑖|𝑖 ∈ 𝜌ሺ𝑗ሻ.  

𝑈𝑛𝑢𝑠𝑒𝑑஼௔௣ሺ೔,೟ሻ
  Unutilized capacity of machine 𝑖 in period  𝑡. 

𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒௝,௧  Allowable quantity of item 𝑗 that can be allocated in period 𝑡. 

The CA heuristic works as follows: The algorithm starts with 𝑡 ൌ 1 and 𝑙 ൌ 0.  Let 

us consider an item 𝑗|𝑗 ∈ 𝜋ሺ𝑙ሻ and machine 𝑖 that is responsible to produce 𝑗 is currently 

overloaded in period 𝑡. This overload is decreased by shifting the production quantity of 

an item 𝑗|𝑗 ∈ 𝜑ሺ𝑖ሻ into an earlier period or later period. The production quantity of item 𝑗 

is reduced according to the ratio of the allowable capacity and the required capacity of 

machine 𝑖 in period 𝑡 as shown in Equation (55). The production quantity of item 𝑗  in 

period 𝑡 is assigned using Equation (56).  

𝑍ᇱ
௝௧ ൌ ሺ𝑄௝௧ ൈ 𝑝௝ ൅ 𝑠௝ሻ ൈ

஺௩௔௜௟௔௕௟௘಴ೌ೛ሺ೔,೟ሻ

ோ௘௤಴ೌ೛ሺ೔,೟ሻ
     (55) 

𝑋ᇱ
௝௧ ൌ max ൬

௓ᇲ
ೕ೟ି௦ೕ

௣ೕ
, 𝐷௝௧ െ 𝐼′௝ሺ௧ିଵሻ൰      (56) 

While decreasing the production quantity of any item, one has to remember that a 

reduction in the production quantity should not lead to backorders for this item resulting 

from successor item demands. That is why it is necessary to adjust the production quantity 

of the successor item. If there is no further item causing an overload of the resource in 
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question in the current level, then we will adjust the quantity of the successor items of the 

product hierarchy. For all direct and indirect successors 𝑗ᇱ of item  𝑗, the maximum quantity 

that can be decreased is determined according to Equation (57).  

𝑋ᇱ
௝ᇲ௧ ൌ max

 
൬ 𝐷௝ᇲ௧ െ 𝐼′௝ᇲሺ௧ିଵሻ , min

௝∈ఓሺ௝ᇲሻ

௑ᇲ
ೕ೟

௔ೕೕᇲ
൰     (57) 

In the case where the sum of demands of all the items 𝑗 produced in machine 𝑖 in 

period 𝑡 exceeds the available capacity of machine 𝑖 in period 𝑡, we shift the production 

(ሺ𝑅𝐷ሻ௝,௧ ൌ 𝐷௝௧ െ 𝐼௝ሺ௧ିଵሻ െ 𝑋ᇱ
௝௧

) backward into period 𝜏|𝜏 ൏ 𝑡 and 𝑈𝑛𝑢𝑠𝑒𝑑஼௔௣ሺ೔,ഓሻ
൐ 0. 

Shifting production to the earlier period is possible because the feasibility of the resulting 

problem instances with respect to the capacity constraints is maintained by ensuring that 

the cumulative capacity for every period is larger than (or equal to) the cumulative 

requirement. Because of this shifting to earlier period, the production quantity of item 𝑗 in 

period  𝜏 increases. To accommodate the derived demand of the predecessor items 𝑗ᇱ of 𝑗, 

the production quantity of all 𝑗ᇱ|𝑗ᇱ ∈ 𝜇ሺ𝑗ሻ is adjusted as follows: 𝑋′௝ᇲఛ ൌ max ሺ𝑋ᇱ
௝ᇲఛ , 𝐷௝ᇲఛ ሻ 

If, for all  𝑗|𝑗 ∈ 𝜋ሺ𝑙ሻ and for all 𝑖|𝑖 ∈ 𝜌ሺ𝑗ሻ,  the available capacity of machine 𝑖 in 

period 𝑡 is allocated among all 𝑗|𝑗 ∈ 𝜑ሺ𝑖ሻ, then we move into the next level of the product 

hierarchy. When the production quantity of all items 𝑗 is allocated according to the 

available capacity of machine 𝑖 in period 𝑡, shift forward the remaining quantity ሺ𝑅𝑄ሻ௝ to 

period 𝑡ᇱ|𝑡ᇱ ൐ 𝑡 and assign the production of item 𝑗  in period 𝑡′ as follows: 𝑋ᇱ
௝௧ᇲ ൌ

𝑚𝑖𝑛ሺ𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒௝௧ᇲ, 𝐷௝௧ᇲ, ሺ𝑅𝑄ሻ௝ሻ. Update ሺ𝑅𝑄ሻ௝. Next, shift the rest of the quantity 

backward for all 𝑡ᇱ ൌ 𝑡ᇱ െ 1, . . 𝑡 ൅ 1. 
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3.4.3 Pseudocode for the CA Heuristic: 

 

 
 
 
 
 

Input: 𝑄௝௧ ∀𝑗, 𝑡 
Output: 𝑋′௝௧, 𝐼′௝௧, 𝑌′௝௧∀𝑗, 𝑡 
𝑡 ൌ 1 
𝑊ℎ𝑖𝑙𝑒 ሺ𝑡 ൑ 𝑇ሻ𝑑𝑜 

𝐹𝑜𝑟𝑎𝑙𝑙 ሺ𝑙 𝑖𝑛 0. . 𝐿ሻ 𝑑𝑜 
  𝐹𝑜𝑟𝑎𝑙𝑙 ሺ𝑗 ∈ 𝜋ሺ𝑙ሻ, 𝑖 ∈ 𝜌ሺ𝑗ሻሻ 𝑑𝑜 

𝑅𝑒𝑞஼௔௣ሺ௜,௧ሻ ൌ ∑ ሺ𝑋ᇱ
௞௧𝑝௞ ൅ 𝑌ᇱ

௞௧𝑠௞ሻ௞∈ఝሺ௜ሻ       (58) 

𝑈𝑛𝑢𝑠𝑒𝑑஼௔௣ሺ೔,೟ሻ
ൌ max ሺ0, 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒஼௔௣ሺ௜,௧ሻ

െ 𝑅𝑒𝑞஼௔௣ሺ௜,௧ሻሻ   

𝑊ℎ𝑖𝑙𝑒 ቀ𝑅𝑒𝑞஼௔௣ሺ௜,௧ሻ
൐  𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒஼௔௣ሺ௜,௧ሻ

ቁ 𝑑𝑜   

𝑅𝑎𝑡𝑖𝑜 ൌ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒஼௔௣ሺ௜,௧ሻ
/𝑅𝑒𝑞஼௔௣ሺ௜,௧ሻ

 

  𝐹𝑜𝑟𝑎𝑙𝑙 ሺ𝑘 ∈ 𝜑ሺ𝑖ሻሻ 𝑑𝑜 
𝑍′௞௧ ൌ ሺ𝑄௞𝑡 ൈ 𝑝௞ ൅ 𝑠௞ ൈ 𝑌′௞௧ሻ ൈ 𝑅𝑎𝑡𝑖𝑜 

  𝐼𝑓 ∑ ሺ𝐷௞ᇲ௧ ൈ 𝑝௞ᇲሻ ൑௞ᇲ∈ఝሺ௜ሻ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒஼௔௣ሺ௜,௧ሻ
  𝑡ℎ𝑒𝑛 

𝑋′௞௧ ൌ max ሺඍ
𝑍′

௞𝑡 െ 𝑠௞

𝑝௞
එ , 𝐷௞௧ െ 𝐼′௞ሺ௧ିଵሻሻ 

𝐸𝑙𝑠𝑒 

𝑋′௞௧ ൌ ඍ
𝑍′

௞𝑡 െ 𝑠௞

𝑝௞
එ  

ሺ𝑅𝐷ሻ௞௧ ൌ 𝐷௞௧ െ 𝐼′௞ሺ௧ିଵሻ െ 𝑋′௞௧  

Allocate unsatisfied demand to prior periods and 
update the production quantities of the predecessor 
items using Procedure 2 

𝐸𝑛𝑑 െ 𝐼𝑓 
𝑈𝑝𝑑𝑎𝑡𝑒 𝑌′௞௧ 𝑎𝑛𝑑 𝐼′௞௧  

𝐹𝑜𝑟𝑎𝑙𝑙 ൫𝑘′ ∈  𝜇ሺ𝑘ሻ൯ 𝐷௞ᇲ௧ ൌ 𝑋′௞௧ ൈ 𝑎௞ᇲ௞  

      𝐸𝑛𝑑 െ 𝑑𝑜 
        𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑅𝑒𝑞஼௔௣ሺ௜,௧ሻ using Equation (58) 

Update production quantities of the successor items using Procedure 3 
𝐿𝑒𝑡, 𝑡ᇱ ൌ 𝑙𝑎𝑠𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑡ᇱ ൐ 𝑡 

Allocate capacity from period 𝑡ᇱ backwards to period ሺ𝑡 ൅ 1ሻ using Procedure 4 
𝑈𝑝𝑑𝑎𝑡𝑒 𝑌′௝௧ᇲᇲ  𝑎𝑛𝑑 𝐼′௝௧ᇲᇲ∀𝑡 ൏ 𝑡′′ ൑ 𝑡ᇱ   

𝑡 ൌ 𝑡 ൅ 1 
𝐸𝑛𝑑 െ 𝑑𝑜 
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Procedure 2: 

 
 
Procedure 3:

 

 
 
 
 
 
 
 
 
 
 
 

Input: ሺ𝑅𝐷ሻ௞௧  and 𝑈𝑛𝑢𝑠𝑒𝑑஼௔௣ሺ೔,ഓሻ
∀𝑖 ∈ 𝜌ሺ𝑘ሻ, 𝜏 ൑ 𝑡 െ 1 

Output: 𝑋′௞ఛ ∀𝜏 ൑ 𝑡 െ 1 
𝜏 ൌ 𝑡 െ 1       
𝑊ℎ𝑖𝑙𝑒 ሺ𝑅𝐷ሻ௞௧ ൐ 0 𝑡ℎ𝑒𝑛 

𝐹𝑜𝑟𝑎𝑙𝑙 ቀ𝑖′ ∈ 𝜌ሺ𝑘ሻ| 𝑈𝑛𝑢𝑠𝑒𝑑஼௔௣ሺ೔ᇲ,ഓሻ
൐ 0ቁ  𝑑𝑜   

𝑋′௞ఛ ൌ 𝑋′௞ఛ ൅ min ሺ𝑈𝑛𝑢𝑠𝑒𝑑஼௔௣ሺ೔ᇲ,ഓሻ
, ሺ𝑅𝐷ሻ௞௧ሻ   

ሺ𝑅𝐷ሻ௞௧ ൌ max ሺ0, ሺ𝑅𝐷ሻ௞௧ െ 𝑈𝑛𝑢𝑠𝑒𝑑஼௔௣ሺ೔ᇲ,ഓሻ
ሻ 

𝑙ᇱ ൌ 𝑙 ൅ 1 
𝑊ℎ𝑖𝑙𝑒 ሺ𝑙ᇱ ൑ 𝐿ሻ 𝑑𝑜 

𝐹𝑜𝑟𝑎𝑙𝑙 ሺ𝑗ᇱ ∈ 𝜋ሺ𝑙ᇱሻ|𝑗ᇱ ∈ μሺ𝑘ሻሻ  𝑑𝑜 
    𝐷௝ᇲఛ ൌ 𝑋′௞ఛ ൈ 𝑎௝ᇲ௞ 

𝑋′௝ᇲఛ ൌ max ሺ𝑋ᇱ
௝ᇲఛ , 𝐷௝ᇲఛ ሻ 

𝐸𝑛𝑑 െ 𝑑𝑜 
𝑙ᇱ ൌ 𝑙′ ൅ 1 

𝐸𝑛𝑑 െ 𝑑𝑜 
𝐸𝑛𝑑 െ 𝑑𝑜 
𝜏 ൌ 𝜏 െ 1 

𝐸𝑛𝑑 െ 𝑑𝑜 

Input: 𝑋′௝௧  ∀𝑗 ∈  𝜋ሺ𝑙ሻ 
Output: 𝑋′௝௧∀𝑗 ∈ 𝜋ሺ𝑙ᇱሻ, 𝑙ᇱ ൑ 𝑙 െ 1 
𝑙ᇱ ൌ 𝑙 െ 1 
𝑊ℎ𝑖𝑙𝑒 ሺ𝑙ᇱ ൒ 0ሻ 𝑑𝑜 
  𝐹𝑜𝑟𝑎𝑙𝑙 ൫𝑗ᇱ ∈ 𝜋ሺ𝑙ᇱሻ൯𝑑𝑜 

  𝑋′௝ᇲ௧ ൌ max ൬𝐷௝ᇲ௧ െ 𝐼ᇱ
௝ᇲሺ௧ିଵሻ , min

௞∈ఓሺ௝ᇲሻ

௑ᇲ
ೖ೟

௔ೖೕᇲ
൰ 

𝐸𝑛𝑑 െ 𝑑𝑜 
𝑙ᇱ ൌ 𝑙′ െ 1 

 𝐸𝑛𝑑 െ 𝑑𝑜 
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Procedure 4:  

 

3.4.4 Illustrative Example for CA heuristic: 

Let us consider an instance of 4 periods and there are two end items with demand 

𝐷ଵ௧=(20, 25, 30, 30)  and 𝐷ସ௧=(25, 20, 30, 35) ∀𝑡 ൌ 1. .4 to satisfy and each of the end 

items has two components.  The product breakdown structure (See Figure 3.3) and other 

parameters (Table 3.2) are given below: 

 
Figure 3.3: Product hierarchy structure for the example problem 

1
(m/c 1)

2 (3 units)
(m/c 2)

3 (2 units)
(m/c 3)

4
(m/c 1)

5 (3 units)
(m/c 2)

6 (4 units)
(m/c 3)

Input: 𝑄௝௧ , 𝑋′௝௧ ∀𝑗 
Output: 𝑋′௝௧ᇲᇲ  ∀𝑗 , 𝑡 ൏ 𝑡′′ ൑ 𝑡ᇱ 

𝐹𝑜𝑟𝑎𝑙𝑙 ሺ𝑖 𝑖𝑛 1. . 𝑚, 𝑗 ∈ 𝜑ሺ𝑖ሻሻ 𝑑𝑜 
𝐿𝑒𝑡, ሺ𝑅𝑄ሻ௝ ൌ max ሼ0, 𝑄௝௧ െ 𝑋′௝௧ሽ 
𝑊ℎ𝑖𝑙𝑒 ሺ𝑡ᇱ ൐ 𝑡 ൅ 1ሻ𝑑𝑜  

𝐹𝑜𝑟𝑎𝑙𝑙 ൫𝑖ᇱ ∈ 𝜌ሺ𝑗ሻ൯ 𝑑𝑜 
𝑈𝑛𝑢𝑠𝑒𝑑஼௔௣൫௜ᇲ,௧ᇲ൯

ൌ max ሼ0, ሺ𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒஼௔௣൫௜ᇲ,௧ᇲ൯
െ 𝑅𝑒𝑞஼௔௣൫௜ᇲ,௧ᇲ൯

ሻሽ 

𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒௝,௧ᇲ ൌ  
𝑈𝑛𝑢𝑠𝑒𝑑஼௔௣൫௜ᇲ,௧ᇲ൯

െ 𝑠௝

𝑝௝
 

  𝑋ᇱ
௝௧ᇲ ൌ min ሼ𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒௝,௧ᇲ , ሺ𝐷௝௧ᇲ ൅ ሺ𝑅𝐷ሻ௝௧ሻ, ሺ𝑅𝑄ሻ௝ሽ 

ሺ𝑅𝑄ሻ௝ ൌ ሺ𝑅𝑄ሻ௝ െ 𝑋ᇱ
௝௧ᇲ  

𝐼𝑓 𝑋ᇱ
௝௧ᇲ ൌ 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒௝,௧ᇲ 𝑡ℎ𝑒𝑛 ሺ𝑅𝐷ሻ௝௧ ൌ 𝐷௝,௧ᇲ െ 𝑋ᇱ

௝௧ᇲ 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑌′௝௧ᇲ 𝑎𝑛𝑑 𝐼′௝௧ᇲ  

𝐹𝑜𝑟𝑎𝑙𝑙 ൫𝑘 𝑖𝑛 𝜇ሺ𝑗ሻ൯ 𝐷௞௧ᇲ ൌ ∑ 𝑋′௞ᇲ௧ᇲ ൈ 𝑎௞ᇲ௞௞ᇲ∈୻ሺ௞ሻ    

𝐸𝑛𝑑 െ 𝑑𝑜 
𝑡ᇱ ൌ 𝑡ᇱ െ 1 

𝐸𝑛𝑑 െ 𝑑𝑜  
𝐼𝑓 ሺ𝑅𝑄ሻ௝ ൐ 0 𝑡ℎ𝑒𝑛 
  𝑋ᇱ

௝௧ᇲ ൌ 𝑋ᇱ
௝௧ᇲ ൅ ሺ𝑅𝑄ሻ௝  

𝐹𝑜𝑟𝑎𝑙𝑙 ൫𝑘 𝑖𝑛 𝜇ሺ𝑗ሻ൯ 𝐷௞௧ᇲ ൌ ∑ 𝑋′௞ᇲ௧ᇲ ൈ 𝑎௞ᇲ௞ ௞ᇲ∈୻ሺ௞ሻ   

𝐸𝑛𝑑 െ 𝑖𝑓 
𝐸𝑛𝑑 െ 𝑑𝑜 
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Step 1: WW for end-items: 

Each subproblem is an SIULSP. Let, 𝑋௝௧ and 𝑍ᇱ
௝௧ be the production quantity and 

allocated capacity for item 𝑗 in period 𝑡 respectively.  The WW solution and the required 

capacity for item 1 and 4 at each period is given in Table 3.3. 

 Table 3.3: WW solution for end items 1 and 4 

Period (𝑡) 1 2 3 4 

𝑋ଵ௧ 45 0 60 0 

𝑍ᇱ
ଵ௧ 105 0 135 0 

𝑋ସ௧ 110 0 0 0 

𝑍ᇱ
ସ௧ 360 0 0 0 

 Step 2:  Derive demands for components is given in Table 3.4. 

Table 3.4: Derive demands for components 

Period (𝑡) 1 2 3 4 

𝐷ଶ௧ 135 0 180 0 

𝐷ଷ௧ 90 0 120 0 

𝐷ହ௧ 330 0 0 0 

𝐷଺௧ 440 0 0 0 

 

Table 3.2: Parameters for the example problem of size (𝑇 ൈ 𝑛 ൈ 𝑚 ൌ 4 ൈ 6 ൈ 3) 

Job ሺ𝑗ሻ 1 2 3 4 5 6 

Processing time (𝑝௝) 2 3 2 3 1 2 

Setup time (𝑠௝) 15 20 25 30 20 20 

Holding cost(ℎ௝) 0.5 0.6 0.2 0.3 0.6 0.2 
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Step 3: WW for components 

The WW solution for items 2,3,5 and 6 is given in Table 3.5. 

 Table 3.5: WW solution for items 2, 3, 5, and 6. 

Period (𝑡) 1 2 3 4 

𝑋ଶ௧ 135 0 180 0 

𝑋ଷ௧ 210 0 0 0 

𝑋ହ௧ 330 0 0 0 

𝑋଺௧ 440 0 0 0 

Step 4: Feasibility Procedure: 

Step 4.1: Capacity allocation of the WW solution is shown in figure 3.4. Let, 𝑡 ൌ

1, 𝑙 ൌ 0.  Item 1 and 4 are at level 0 and both of these items are processed by machine 1. 

The required capacity of machine 1 in period 1 exceeds the available capacity. That is 

why the production quantity of items 1 and 4 in period 1 is shifted to the later periods.  

The available capacity of machine 1 in period 1 is allocated for items 1 and 4 as 

follows: 𝑍ᇱ
ଵଵ ൌ ൬105 ൈ ቀଷ଴଴

ସ଺ହ
ቁ൰ ൌ 67.74  and  𝑍ᇱ

ସଵ ൌ ൬360 ൈ ቀଷ଴଴

ସ଺ହ
ቁ൰ ൌ 232.258. As a 

result, the production quantity for item 1 and 4 in period 1 is decreased as follows:  

𝑋ᇱ
ଵଵ ൌ ⌊ሺ67.74 െ 15ሻ/2⌋ ൌ 26. and 𝑋ᇱ

ସଵ ൌ ⌊ሺ232.258 െ 30ሻ/3⌋ ൌ 67.   

Derived demand and required capacity for items 2, 3, 5 and 6 in period 1 are 78, 

52, 201 and 268 respectively.  
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(a) Machine 1 (b) Machine 2 

 

(c) Machine 3  

                               Figure 3.4: Capacity Allocation of WW solution 

Step 4.2: Let 𝑙 ൌ 1. Items 2, 3, 5 and 6 are produced in the next level. The 

required capacity of machine 2 and 3 in period 1 is computed as follows:  

item ሺ𝑗ሻ 𝑋′௝ଵ 𝑍ᇱ
௝ଵ Machine

2 maxሺ78,135ሻ ൌ 135 425 2 

3 maxሺ52,210ሻ ൌ 210 445 3 

5 maxሺ201, ,330ሻ ൌ 330 350 2 

6 maxሺ268,440ሻ ൌ 440 900 3 

Thus, the required capacity of machine 2 and 3 in period 1 is 775 and 1345 time 

units respectively.  
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Step 4.3: The available capacity of machine 2 in period 1 is allocated for items 2 

and 5 as follows: 

𝑍ᇱ
ଶଵ ൌ ൬425 ൈ ቀସ଴଴

଻଻ହ
ቁ൰ ൌ 219.35 and  𝑍ᇱ

ହଵ ൌ ൬350 ൈ ቀସ଴଴

଻଻ହ
ቁ൰ ൌ 180.65. As a 

result, the production quantity for items 2 and 5 in period 1 decreases  as follows:  𝑋ᇱ
ଶଵ ൌ

⌊ሺ219.35 െ 20ሻ/3⌋ ൌ 66 and 𝑋ᇱ
ହଵ ൌ ⌊ሺ180.65 െ 20ሻ/1⌋ ൌ 160.  Similarly, the 

production quantity for item 3 and 6 in period 1 is decreased to 𝑋ᇱ
ଷଵ ൌ 70 and 𝑋ᇱ

଺ଵ ൌ 157.   

Required capacity of machine 2 = 66 ൈ 3 ൅ 20 ൈ 1 ൅ 160 ൈ 1 ൅ 20 ൈ 1 ൌ 398 ൏ 400. 

Required capacity of machine 3 = 70 ൈ 2 ൅ 25 ൈ 1 ൅ 157 ൈ 2 ൅ 20 ൈ 1 ൌ 499 ൏ 500. 

If required capacity exceeds the available capacity then start from step 4.2. 

Step 4.4: Compute production quantity of the successor items:  𝑋ᇱ
ଵଵ ൌ

max ቀ20, min ቀ଺଺

ଷ
, ଻଴

ଶ
ቁቁ ൌ 22 and  𝑋ᇱ

ସଵ ൌ max ቀ25, min ቀଵ଺଴

ଷ
, ଵହ଻

ସ
ቁቁ ൌ 39 

Step 4.5: Update the production quantity of predecessors.  

𝑋ᇱ
ଶଵ ൌ maxሺ66, 22 ൈ 3ሻ ൌ 66, 𝑋ᇱ

ଷଵ ൌ maxሺ70, 22 ൈ 2ሻ ൌ 70,  

 𝑋ᇱ
ହଵ ൌ maxሺ160, 39 ൈ 3ሻ ൌ 160, 𝑋ᇱ

଺ଵ ൌ maxሺ157, 39 ൈ 4ሻ ൌ 157.  

Step 4.6:  Shift the production quantity for each item to the period (𝑡ᇱ ) before the 

next production period obtained from WW schedule and then shift the excess production 

forward.  For any item 𝑗, if 𝑋௝௧ ൌ 0∀𝑡 ൐ 1 then assign 𝑡ᇱ ൌ 𝑇. 

 

 

 

𝑡ᇱ ൌ 2 
ሺ𝑅𝑄ሻଵ ൌ 45 െ 22 ൌ 23 
𝑋ᇱ

ଵଶ ൌ 23 

22  0 60 (WW 
solution) 

23 𝑖𝑡𝑒𝑚 1 
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𝑡ᇱ ൌ 4 
ሺ𝑅𝑄ሻସ ൌ 110 െ 39 ൌ 71 
𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒ସ,ସ ൌ ଷ଺଴ିଷ଴

ଷ
ൌ 110,  

𝐷ସସ ൌ 35, ሺ𝑅𝐷ሻଶ,ସ ൌ 0 
𝑋ᇱ

ସସ ൌ minሺ110, 71, 35ሻ ൌ 35 

39  35 30 6 

𝑡ᇱ ൌ 3 
ሺ𝑅𝑄ሻସ ൌ 71 െ 35 ൌ 36 
𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒ସ,ଷ ൌ ହ଴଴ିଷ଴

ଷ
ൌ 156,  

𝐷ସଷ ൌ 30 
ሺ𝑅𝐷ሻସ,ଷ ൌ minሺ0, 𝐷ସଷ െ 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒ସ,ଷሻ ൌ 0 
𝑋ᇱ

ସଷ ൌ minሺ156, 36, 30ሻ ൌ 30 

ሺ𝑅𝑄ሻସ ൌ 36 െ 30 ൌ 6
𝑋ᇱ

ସଶ ൌ 6 

𝑖𝑡𝑒𝑚 4 
 

ሺ𝑅𝑄ሻସ ൌ 65 െ 65 ൌ 0
𝑋ᇱ

ହଶ ൌ 0 
𝑡ᇱ ൌ 3 
ሺ𝑅𝑄ሻହ ൌ 170 െ 105 ൌ 65 
𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒ହ,ଷ ൌ ସହ଴ିଶ଴

ଵ
ൌ 430,  

𝐷ହଷ ൌ 30 ൈ 3 ൌ 90, ሺ𝑅𝐷ሻହ,ଷ ൌ 0 
𝑋ᇱ

ହଷ ൌ minሺ430, 65, 90ሻ ൌ 65 

𝑡ᇱ ൌ 4 
ሺ𝑅𝑄ሻହ ൌ 330 െ 160 ൌ 170 
𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒ହ,ସ ൌ ହ଴଴ିଶ଴

ଵ
ൌ 480,  

𝐷ହସ ൌ 35 ൈ 3 ൌ 105,  
ሺ𝑅𝐷ሻହ,ସ ൌ minሺ0,105 െ 480ሻ ൌ 0 
𝑋ᇱ

ହସ ൌ minሺ480, 170, 105ሻ ൌ 105 

160  105 65 0 𝑖𝑡𝑒𝑚 5 
 

𝑡ᇱ ൌ 2 
ሺ𝑅𝑄ሻଶ ൌ 135 െ 66 ൌ 69 
𝑋ᇱ

ଶଶ ൌ 69 
 

 

𝑖𝑡𝑒𝑚 2 
 

66  180 (WW 
solution) 

69  0 
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Similarly the capacity allocation for item 3 and 6 is as follows: 

 
 
 
 
 
 

Step 4.7:  𝑡 ൌ 𝑡 ൅ 1 and repeat step 4.1 to 4.6 until 𝑡 ൌ 𝑇. The feasible solution after 

the capacity allocation is completed is shown in Table 3.6 and the capacity allocation 

of a feasible solution is shown in Figure 3.5. 

Table 3.6: A feasible solution after the CA heuristic is completed 

Job(𝑗) 
Period(𝑡) 

1 2 3 4 

1 22 23 30 30 

2 66 69 115 65 

3 70 20 120 0 

4 39 6 30 35 

5 160 0 65 105 

6 157 36 107 140 

Step 5: Assign setup decision variables. For the example problem, 𝑌ᇱ
௝௧ ൌ 1  forall 𝑗 and 𝑡 

except 𝑌′ଷ,ସ ൌ 𝑌′ହ,ଶ ൌ 0.    

Step 6: improvement procedure: Solve original problem as LP given the setup variables. 

The setup decisions (𝑌′௝௧) provided by the CA heuristic is used as a parameter in the relaxed 

LP model for local search. As a result, the refined solution becomes optimum for a 

particular setup decision. Furthermore, if the setup decisions are correct, then the solution 

obtained using the local search method provide the optimum solution. The production 

schedule after local search is shown in Table 3.7. 

 

𝑖𝑡𝑒𝑚 3  70  120 20  0 

𝑖𝑡𝑒𝑚 6  157  10736 140 
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(a) Machine 1 (b) Machine 2 

 
Machine 3 

Figure 3.5: Capacity Allocation of a feasible solution 

 

Table 3.7: Production schedule after improvement procedure 

Job(𝑗) 
Period(𝑡) 

1 2 3 4 

1 20 25 30 30 

2 60 75 90 90 

3 40 59 111 0 

4 46 0 29 35 

5 138 0 87 105 

6 184 36 116 140 
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3.5 Computational Study 

The performance of the proposed DW decomposition and the CG procedure with 

the CA heuristic is tested using a large number of experimental test cases. We first consider 

a subset of the test instances introduced by Tempelmeier and Derstroff (1996), namely the 

600 problem instances of class B with a noncyclic resource graph of general and an 

assembly product structure (as shown in Figure 3.6). All the test cases are comprised of ten 

items, three resources and four time periods. The 600 instances were generated combining: 

1. One general and one assembly product structure 

2. Three demand structures with varying coefficients of variance (CV = 0.1, 0.4, 

0.7) 

3. Five setup cost structures resulting in different profiles of average Time Between 

Orders (TBO = the average length of a production cycle) The numbers divided 

by slashes means TBO values for the higher, middle or the lower levels of the 

product hierarchy. Setup cost is computed using the following  formula:  

𝑆𝑒𝑡𝑢𝑝 𝑐𝑜𝑠𝑡 ൌ 0.5 ൈ ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 ൈ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 ൈ ሺ𝑇𝐵𝑂ሻଶ 

4. Five capacity utilization profiles (90%, 70%, 50%, 90%/70%/50%, 

40%/70%/90%). Available capacity per period is computed by dividing the 

mean demand by the target capacity utilization.  

5. Two set up time profiles (see Table 3.8) 

6. Two resource assignment profiles (see Table 3.9) 

The mathematical model and the heuristic is coded using Fico’s Mosel (Xpress) 

algebraic modeling language. All the test instances are run on a PC with an Intel Core 

i7 1.8 GHz processor, 8 GB of RAM and an L2 cache of 512KB.  
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Table 3.8: Setup time profiles for problem class B (Tempelmeier & Derstroff, 1996) 

Setup time profile 
Setup Time 

5 10 15 

1 7, 8, 9, 10 1, 2, 5, 6 3, 4 

2 3, 4 1, 2, 5, 6 7, 8, 9, 10 

Table 3.9: Resource assignment for problem class B (Tempelmeier & Derstroff, 1996) 

Resource General Product Structure Assembly Product Structure 

A 1..4 1 

B 5..7 2..4 

C 8..10 5..10 

 

                               

Figure 3.6: General and Assemble Product Structure for problem class B 

(Tempelmeier & Derstroff, 1996) 

A comparison between the solution quality of the proposed approach, which uses 

the DW decomposition and CG combined with a CA heuristic and that of the Tempelmeier 

and Derstroff (1996) approach is shown in Table 3.10. As seen in Table 3.10, the average 

deviations from optimality by using the proposed heuristic method are much smaller than 

those reported in Tempelmeier and Derstroff (1996). Overall average optimality gap 

improves by 20% as compared to Tempelmeier and Derstroff (1996). Figure 3.7 shows the 

5  6  7  8 9 10

2  3 4

1 1 2  3  4

5  6  7

8  9  10
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average deviations from optimality (a) per TBO profile and (b) per capacity profile. Table 

3.10 and Figure 3.7 confirm the competitiveness of the proposed heuristic method.  

We apply the proposed heuristic in order to solve the MLCLSP with SCBE. Unlike 

the original data specification, we apply only the assembly product structure, three demand 

structures with varying coefficient of variance, five TBO profiles, five capacity utilization 

profiles, one setup time profiles (setup profile 1 from Table 3.8), one resource assignment 

profile, and three emission capacity profile (1500 t/MWh, 2000 t/MWh, and 2500 t/MWh). 

In Table 3.11, the percentage deviations of the heuristic solution values from the exact 

values are presented, broken down according to utilization profile, emission capacity 

profile, TBO profile and coefficient of variation of the demand series. The average 

computation time per problem instance is about 0.789 seconds for MILP and 0.928 seconds 

for the heuristic. The overall mean deviation from optimality for the 225 test instances are 

1.75 and the mean variance is 0.63. 

(a) (b) 

Figure 3.7: Average deviations from optimality per (a) TBO profile (b) capacity 
profile 
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Table 3.10: Average deviation of the proposed heuristic solutions and comparison with 

the result given by Tempelmeier and Derstroff (1996) 

TBO 

Profile 
CV 

Utilization rate(%)

90  70 50 90/70/50 50/70/90  mean

DW  T&D DW T&D DW T&D DW T&D DW  T&D  DW T&D

1 

0.1  0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00  0.00 0.00

0.4  0.00  0.74 0.10 0.01 0.01 0 0.53 0.79 0.29  0.33 0.19 0.37

0.7  0.12  2.24 0.22 0.24 0.12 0.25 0.52 1.24 0.75  0.83 0.35 0.96

mean  0.04  0.99 0.11 0.08 0.04 0.08 0.35 0.68 0.35  0.39  0.18 0.44

2 

0.1  0.05  0.13 1.09 1.1 0.02 0 0.44 0.48 0.59  0.73 0.44 0.49

0.4  0.41  1.39 0.78 0.8 0.38 0.49 0.18 1.13 0.24  0.19 0.40 0.80

0.7  1.45  1.35 0.70 0.78 0.4 0.51 1.42 1.51 1.29  1.49 1.05 1.13

mean  0.64  0.96 0.86 0.89 0.27 0.33 0.68 1.04 0.71  0.81 0.63 0.81

4 

0.1  0.23  0.28 4.52 4.88 0.18 0.08 2.45 2.55 0.85  0.91 1.65 1.74

0.4  2.53  2.83 4.55 4.53 2.62 2.59 3.12 3.27 1.05  1.13 2.77 2.87

0.7  3.42  3.54 1.80 1.99 0.44 0.57 3.18 3.24 2.54  2.68 2.28 2.40

mean  2.06  2.22 3.62 3.8 1.08 1.08 2.92 3.02 1.48  1.57 2.23 2.34

1/2/4 

0.1  0.16  0.18 0.25 0.86 0.53 0.84 0.48 1.18 0.14  0.14 0.31 0.64

0.4  2.63  3.05 0.22 0.17 0.75 0.91 1.52 1.63 0.22  0.36 1.07 1.22

0.7  2.23  4.4 1.05 0.58 1.19 1.28 1.18 1.26 2.45  2.53 1.62 2.01

mean  1.67  2.54 0.51 0.54 0.82 1.01 1.06 1.26 0.94  1.01 1.00 1.27

4/2/1 

0.1  0.03  0.58 1.62 2.31 0.02 0 0.85 0.82 0.00  0.39 0.50 0.82

0.4  0.22  1.46 1.05 1.19 1.34 1.55 1.84 2.15 0.05  0.12 0.90 1.29

0.7  0.75  0.85 2.58 4.71 1.42 1.53 3.05 3.21 2.24  3.77 2.01 2.81

mean  0.33  0.96 1.75 2.74 0.93 1.03 1.91 2.06 0.76  1.43 1.14 1.64

Overall mean (600 problem instances) 1.04 1.30

*T&D = Tempelmeier and Derstroff (1996) 
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Table 3.11: Percentage Deviations from Optimality for MLCLSP with SCBE 
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mean

TBO  
Profile  CV 

1 

0.1  0.80  0.14  0.19 0.52 0.56 0.19 1.34 0.33 0.19 1.34 0.69 0.19 0.73 0.14  0.19 0.50 

0.4  0.57  0.86  0.20 0.71 0.13 0.13 0.41 0.13 0.19 0.57 0.93 0.19 0.57 0.92  0.65 0.48 

0.7  0.34  0.45  0.64 0.95 0.46 0.53 1.19 0.48 0.65 0.99 0.45 0.19 0.59 0.45  0.19 0.57 

mean  0.57  0.48  0.34 0.73 0.38 0.28 0.98 0.32 0.34 0.97 0.69 0.19 0.63 0.50  0.34 0.52 

  variance  0.49  1.00  0.04 0.06 1.05 0.40 1.06 1.47 0.53 0.13 0.68 0.10 0.11 0.40  0.07 0.08 

2 

0.1  1.80  0.52  0.76 1.95 2.37 1.78 1.90 2.05 1.71 1.90 0.52 1.26 1.44 0.52  0.69 1.41 

0.4  0.79  1.34  1.08 1.75 0.50 1.66 0.79 0.57 0.97 1.56 1.26 1.15 0.79 1.26  1.10 1.10 

0.7  2.13  2.51  1.09 2.25 2.17 2.81 2.85 2.97 2.43 2.28 2.17 1.75 1.13 1.78  1.20 2.10 

mean  1.57  1.46  0.98 1.98 1.68 2.08 1.85 1.86 1.70 1.91 1.32 1.39 1.12 1.18  1.00 1.54 

  variance  0.49  1.00  0.04 0.06 1.05 0.40 1.06 1.47 0.53 0.13 0.68 0.10 0.11 0.40  0.07 0.51 

4 

0.1  1.00  0.79  1.81 2.75 4.04 2.52 1.59 3.62 1.89 3.13 3.32 1.04 1.94 1.71  4.56 2.38 

0.4  1.39  3.19  1.45 2.87 3.96 1.69 2.36 2.52 3.39 2.64 3.86 1.63 1.63 3.33  0.95 2.46 

0.7  1.16  2.54  2.04 3.39 4.23 2.30 3.80 0.98 4.49 3.37 4.28 1.57 2.93 4.08  4.93 3.07 

mean  1.18  2.17  1.77 3.00 4.08 2.17 2.58 2.37 3.26 3.04 3.82 1.41 2.17 3.04  3.48 2.64 

  variance  0.04  1.54  0.09 0.12 0.02 0.18 1.26 1.76 1.70 0.14 0.23 0.11 0.46 1.47  4.83 0.93 

1/2/4 

0.1  1.02  0.99  3.14 1.37 9.79 3.64 2.30 1.10 3.45 4.87 1.87 2.26 3.63 1.48  2.95 2.92 

0.4  0.09  1.32  5.24 4.91 8.67 2.26 1.98 0.57 4.04 3.76 1.77 2.12 2.85 3.19  2.12 2.99 

0.7  0.66  3.72  5.28 1.50 9.50 3.46 5.50 1.23 5.07 1.54 4.71 2.66 4.42 1.17  0.99 3.43 

mean  0.59  2.01  4.55 2.59 9.32 3.12 3.26 0.97 4.19 3.39 2.79 2.34 3.63 1.94  2.02 3.11 

  variance  0.22  2.22  1.50 4.03 0.34 0.56 3.79 0.12 0.67 2.87 2.79 0.08 0.62 1.18  0.97 1.46 

4/2/1 

0.1  0.87  0.84  1.32 0.92 1.22 0.50 1.03 1.65 2.37 1.71 0.37 0.50 1.01 0.37  0.50 1.01 

0.4  0.72  1.15  0.51 1.14 0.88 0.50 1.20 0.37 1.19 0.71 1.12 0.50 0.71 1.20  0.93 0.86 

0.7  1.44  0.43  0.50 1.49 1.08 1.36 1.81 1.13 1.46 1.45 1.08 0.49 0.64 0.68  0.50 1.04 

mean  1.01  0.81  0.77 1.18 1.06 0.79 1.35 1.05 1.67 1.29 0.86 0.50 0.78 0.75  0.64 0.97 

  variance  0.14  0.13  0.22 0.08 0.03 0.25 0.17 0.41 0.38 0.27 0.18 0.00 0.04 0.18  0.06 0.17 

Overall mean (225 test instances) =1.75 
Overall mean variance = 0.63 

To further investigate the proposed heuristic, we generate 96 test instances with 

increased size of assembly product structure. The new test instances are divided into four 

sets with the dimensions given in Table 3.12. These sets are combined with two levels of 
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capacity utilization rate for both production and emission limits (90% and 70%). For each 

combination, six instances were generated using two TBO profiles (1 and 2) and three 

coefficients of variance (0.1, 0.4, 0.7), resulting in a total of 24 instances for each set. The 

computational results are shown in Table 13, where each row contains aggregate results 

for the 6 instances in each combination described above. For problem sets A and B, the 

average % of gap column in Table 3.13 indicates the difference of the objective values 

resulting from the proposed heuristic method relative to the optimal solution. For problem 

sets C and D, the average percentage of gap is computed from the difference of the heuristic 

solution and the lower bound resulting from relaxing constraints (31) and (32). A lower 

percentage shows better performance for the solution methods. 

Table 3.12: Dimensions of the new test problems 

Problem Set No. of 
Products 

No. of 
Resources 

No. of Periods No. of 
Instances 

A 15 6 4 24 
B 10 3 10 24 
C 15 6 10 24 
D 10 3 20 24 

The dimension of the test problems moderately increased but in many cases 

XPRESS solver is not able to compute the optimum solution within a time limit of one 

hour on a PC with an Intel Core i7 1.8 GHz processor, 8 GB of RAM and L2 cache of 

512KB. For problem set A and B, the average percentage of gap is 0.845% and 1.09% 

respectively. For problem set C and D, Xpress solver could not solve a single instance. The 

average percentage of gap for problem set C and D is 5.88% and 4.58% respectively. The 

average percentage of gap is higher for problem set C and D because the lower bound of 

the model MLCLSP_SCBE is compared with the heuristic solution. The proposed 
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framework solves all the instances taken into account in less computational time and with 

a very small percentage of gap when compared to the MILP. 

Table 3.13: Extended computational results  

Problem 
set 

Utilization rate (%) 
# of Instances 

solved 
Computational 
Time (Seconds) 

Average 
% of gap

Production 
capacity 

Emission 
capacity 

MILP 
DW 

heuristic 
MILP 

DW 
heuristic 

 

A 
90 

90 3 6 1.19 0.86 1.98 
70 3 6 1.14 0.84 0.18 

70 
90 6 6 2.94 0.75 0.61 
70 6 6 3.01 0.78 0.61 

Overall mean for Problem set A (24 instances) 0.84 

B 
90 

90 5 6 1.21 1.25 1.42 
70 6 6 13.08 0.98 0.68 

70 
90 5 6 1.51 1.17 1.37 
70 6 6 53.28 0.93 0.88 

Overall mean for Problem set B (24 instances) 1.09 

C 
90 

90 0 6 - 2.04 5.72 
70 0 6 - 1.96 5.92 

70 
90 0 6 - 1.96 5.87 
70 0 6 - 1.73 5.99 

Overall mean for Problem set C (24 instances) 5.88 

D 
90 

90 0 6 - 1.19 5.46 
70 0 6 - 1.44 5.19 

70 
90 0 6 - 1.59 3.45 
70 0 6 - 1.54 4.20 

Overall mean for Problem set D (24 instances) 4.58 

3.6 Conclusion:  

This chapter proposes an MILP model for the extension of the classical MLCLSP 

by incorporating setup carryover, backlogging, and emission control (MLCLSP_SCBE). 

An item DW decomposition technique is developed to decompose both the classical 

MLCLSP and MLCLSP_SCBE into a number of uncapacitated dynamic single-item lot-

sizing problems, which are solved by combining dynamic programming and a multi-step 

iterative capacity allocation heuristic approach. An ILP model is developed to determine 
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the setup carryover variable to optimality for a given production schedule. An LP based 

post-improvement procedure is implemented to refine the solution. The capacity 

constraints are being taken into consideration implicitly through the dual multipliers, which 

are updated using a column generation procedure. The performance of the heuristic for 

classical MLCLSP is tested by comparing the average percentage of deviation from 

optimality with that of Tempelmeier and Derstroff (1996). Overall, the average optimality 

gap is improved by 20% as compared to Tempelmeier and Derstroff (1996). The quality of 

the heuristic for MLCLSP_SCBE is tested based on 225 small instances taken from the 

literature. Four new data sets containing a total of 96 problem instances with increased size 

is generated. Computational results show that the proposed optimization framework 

provides competitive solutions within a reasonable time frame. 
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CHAPTER 4 

LOT-SIZING PROBLEM TO MAXIMIZE SETUP COST SAVINGS: AN 

APPLICATION OF THE MAXIMUM WEIGHTED INDEPENDENT SET 

PROBLEM 

 

he Setup Carryover Assignment Problem (SCAP), which consists of determining 

the setup carryover plan of multiple items for a given lot-size over a finite planning 

horizon with the objective of maximizing setup costs savings is presented in this Chapter. 

The SCAP is modelled as a problem of finding Maximum Weighted Independent Set 

(MWIS) in a chain of cliques, which is formulated as an Integer Linear Programming (ILP) 

model. It is shown that Linear Program (LP) relaxation of a straightforward formulation of 

MWIS gives fractional solution. The SCAP is then  formulated using a clique constraint 

and it is proved that the incidence matrix of the SCAP has totally unimodular structure and 

the LP relaxation of the proposed SCAP formulation always provides integer optimum 

solution. Moreover, an alternative proof that the relaxed ILP guarantees integer solution is 

presented in this chapter. Thus, the SCAP and the special case of the MWIS in a chain of 

cliques are solvable in polynomial time.  

4.1 Introduction 

Lot-sizing is the process of determining a tentative plan for how much production 

will occur in the next time periods during an interval of time called planning horizon. In 

each period that an item is produced a setup is required. A setup may cause setup costs as 

well as setup time. If an item produced at the end of period 𝑡 is continued at the beginning 

T
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of the next period (𝑡 ൅ 1), it is cost-effective to maintain the setup of that item into period 

ሺ𝑡 ൅ 1ሻ to save the setup cost. This is referred to as setup carryover (Briskorn, 2006). Setup 

carryover allows the machine setup to be maintained between two adjacent periods. For a 

given production schedule, the Setup Carryover Assignment Problem (SCAP) is to 

determine the set of items to carryover from one period to the next such that the total savings 

of setup cost is maximized.  

To illustrate the problem, we use an example. Let us consider an SCAP where 

multiple items (𝑗ଵ, 𝑗ଶ, … , 𝑗଺) are being processed on the same resource over a planning 

horizon of length 𝑇 ൌ 6. Let us model the SCAP in the form of some connected undirected 

cliques 𝐺௧ ∀𝑡 ൌ 1. .5 as shown in Figure 1. Note that a clique is a subset of nodes in which 

every two nodes are connected by an edge.  In Figure 1, each clique represents a period. 

Items produced in period 𝑡 and ሺ𝑡 ൅  1ሻ are placed as nodes in clique 𝐺௧ ∀𝑡 ൑ 𝑇 െ 1. 

Therefore, each node in 𝐺௧ represents an item that can be carried over from period 𝑡 to 

ሺ𝑡 ൅  1ሻ∀𝑡 ൑ 𝑇 െ 1. To refer to the condition that only one item can be produced at the 

end of one period and at the beginning of the next period, we connect all nodes in a clique 

and formulate a problem that allows us to choose at most one node from two nodes 

connected by an edge, so at most one node from a clique. Choosing a node from 𝐺௧ ∀𝑡 ൑

𝑇 െ 1 represents producing the corresponding item at the end of period 𝑡 and at the 

beginning of period ሺ𝑡 ൅  1ሻ. Furthermore, the edges between 𝐺௧ and 𝐺௧ାଵ  refer to the 

condition that if item 𝑗 is produced at the end of period 𝑡, then it is continued at the 

beginning of period ሺ𝑡 ൅ 1ሻ. This implies that  𝑗 cannot be produced at the end of period 

ሺ𝑡 ൅ 1ሻ unless 𝑗 is the only eligible item to carryover. The savings in setup corresponds to 

the weight of the problem.  
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The problem of maximizing savings of setup cost is equivalent to the problem of 

choosing a maximum weighted set of nodes such that no two nodes are connected by an 

edge. This problem is known as Maximum Weighted Independent Set (MWIS) problem. 

By definition, an independent set in a graph 𝐺 is vertex set in which no two vertices are 

adjacent. If each vertex of 𝐺 is assigned a positive weight, then we say that 𝐺 is a weighted 

graph. The Maximum Weighted Independent Set (MWIS) problem consists of finding in a 

weighted graph an independent set of maximum total weight.   

 

Figure 4.1: A simple undirected graph used to model the SCAP as the MWIS problem 

In this chapter, we formally describe a special case of MWIS problem in a chain of 

cliques, formulate it as an Integer Linear Programming (ILP) model, and present its natural 

Linear Program (LP) relaxation. We show that LP relaxation of a straightforward 

formulation of MWIS and solution of SCAP using that formulation gives fractional 

solution. We model the SCAP as a chain of cliques and show that the SCAP is equivalent 

to the problem of finding MWIS in chain of cliques. The SCAP is formulated as an ILP 

model for a given production schedule to maximize the savings in the setup cost. We also 

prove that the constraint matrix of the ILP has a totally unimodular structure and LP 

relaxation of the proposed ILP always provides an integer optimum solution. We also give 

an alternative proof of integer solution of the relaxed ILP. Thus, the SCAP and its 
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equivalent the special case of the MWIS in a chain of cliques are solvable in polynomial 

time.  

The rest of the chapter is organized as follows: Section 4.2 reviews some relevant 

literature. Section 4.3 provides a mathematical formulation of the MWIS. Section 4.4 states 

the problem of SCAP and presents an ILP model addressing the problem. Section 4.5 shows 

the equivalency of the SCAP to the MWIS problem. Section 4.6 relaxes the proposed ILP 

model and presents two alternate proofs that the relaxed LP provides integer optimal 

solution. A numerical example is provided in Section 4.7 and the conclusion along with 

some future research direction is presented in Section 4.8.  

4.2 Literature Review 

The production changeovers between different items on the same machine incur 

setup time and setup cost. Setup time is the time required to prepare the necessary machines 

to perform a task while setup cost is the cost to setup a machine before the execution of a 

task (Allahverdi & Soroush, 2008).  Setup tasks are expensive in terms of loss of production 

time, material and labor hours. Therefore, setup reduction is an important feature of the 

continuous improvement program of any manufacturing/service organization. Allahverdi 

(2015) provides an up to date survey of lot-sizing problems with setup times/costs and 

addresses different industry application where setup is a crucial part of production planning 

process. However, if an item is produced in two consecutive periods, it is possible to 

conserve the setup state of the machine between those periods, which is referred to as setup 

carryover (Briskorn, 2006). This may happen over multiple consecutive periods. Since 

incorporating setup carryover has a significant effect on both cost and lot sizes (Sox & Gao, 

1999), it is crucial to determine the setup carryover variables correctly. Many researchers 
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(Haase, 1998; Sahling, Buschkühl, Tempelmeier, & Helber, 2009; Sox & Gao, 1999; 

Tempelmeier & Buschkühl, 2009) have considered the lot-sizing  with setup carryover and 

propose various solution methodologies such as priority rule based scheduling procedure 

(Haase, 1998), Lagrangian decomposition heuristic (Sox & Gao, 1999; Tempelmeier & 

Buschkühl, 2009), Fix and optimize heuristic (Sahling et al., 2009) and so on to solve the 

problem. The heuristic solution sometimes generate infeasible solution in terms of setup 

carryover constraints. Sox and Gao (1999) provide a feasibility procedure and Tempelmeier 

& Buschkühl (2009) apply post-optimization in order to make sure that the setup carryover 

constraints are satisfied.  

We show in this Chapter that SCAP can be formulated as the problem of finding an 

MWIS in a chain of cliques. MWIS is a combinatorial optimization problem that naturally 

arises in many applications. Several real-life problems can be formulated as MWIS 

including wireless network scheduling (I. C. Paschalidis, F. Huang, & W. Lai, 2015), graph 

coloring (Pal & Sarma, 2012),  graph coding (Etzion & Ostergard, 1998), multi-object 

tracking (Brendel, Amer, & Todorovic, 2011), and molecular biology (Gardiner, Artymiuk, 

& Willett, 1997).  

The MWIS problem has been extensively studied in the literature. Finding a 

maximum independent set of a graph is known to be NP-hard (Garey & Johnson, 1979) in 

general. However, it is known to be solvable in polynomial time for some cases including 

perfect and interval graphs (Grotschel, Lovász, & Schrijver, 1993), disk graphs (Matsui, 

2000), claw-free graphs (Minty, 1980), fork-free graphs (Alekseev, 2004), trees (Chen, 

Kuo, & Sheu, 1988), circle graphs (Valiente, 2003), growth-bounded graphs (Gfeller & 

Vicari, 2007) and so on. Moreover, there has been an extensive work on approximating the 

MWIS (Kako, Ono, Hirata, & Halldórsson, 2009), and specialized algorithms have been 
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developed for exactly computing the MWIS (Xiao & Nagamochi, 2016) in any graph in 

general. Although exact approaches provide an optimal solution, they become 

computationally intractable for the graphs with several hundreds of vertices. Therefore, the 

application of heuristic approaches are very common when one deals with the MWIS 

problem on very large graphs. Early attempts to apply different metaheuristic methods to 

the MWIS problems were made in the beginning of 1990’s. Back and Khuri (1994) use 

genetic algorithms to solve the MWIS problems. Many successful implementations of the 

evolutionary algorithms have appeared in the literature ever since (Borisovsky & 

Zavolovskaya, 2003; Hifi, 1997). Simulated Annealing (SA) is another popular 

metaheuristic approach, which has wide application in the combinatorial optimization 

problems. An example of SA for the MWIS is described in the textbook by Aarts and Korst 

(1989). Other well-known metaheuristic methods which have been successfully 

implemented to the MWIS include greedy randomized adaptive search procedures or 

GRASP (Feo, Resende, & Smith, 1994) and tabu search (Friden, Hertz, & de Werra, 1990). 

4.3 Maximum Weighted Independent Set and its LP relaxation: 

SCAP can be modelled as an MWIS problem in a chain of cliques. Given a 

production schedule that solves an MWIS problem with appropriate weights to decide the 

machine setup state of which items to preserve for the next period to maximize the savings 

in setup cost, is the starting point of our work in this Chapter. 

Given a chain of 𝐾 cliques 𝐺 ൌ ሺ⋃ 𝐺୲, 𝐸଴
௄
௧ୀଵ ሻ, where 𝐺௧ ൌ ሺ𝑉௧, 𝐸௧, 𝑊௧ሻ∀𝑡 ൌ

1,2, … , 𝐾 is the 𝑡 െ 𝑡ℎ set of cliques, 𝑉௧ ൌ ሼ1,2, … , 𝑛ሽ is the 𝑡 െ 𝑡ℎ set of nodes, 𝐸௧ ൌ

ሼሺ𝑗, 𝑘ሻ|𝑗, 𝑘 ∈ 𝑉௧𝑎𝑛𝑑 𝑗 ് 𝑘ሽ  is the    𝑡 െ 𝑡ℎ set of edges, 𝑊௧ ൌ ሼ𝑐௧ଵ, 𝑐௧ଶ, … , 𝑐௧௡|𝑐௧௝ ൌweight 

of the 𝑗 െ 𝑡ℎ node of the 𝑡 െ 𝑡ℎ clique} is the 𝑡 െ 𝑡ℎ set of weights, and 𝐸଴ is the set of 
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edges such that for any node 𝑗 ∈ 𝐺௧ there can be at most one edge ሺ𝑗, 𝑘ሻ|𝑘 ∈ 𝐺௧ାଵ ∀1 ൑

𝑡 ൑ 𝐾 െ 1, at most one edge ሺ𝑘, 𝑗ሻ|𝑘 ∈ 𝐺௧ିଵ∀2 ൑ 𝑡 ൑ 𝐾, no edge of the type ሺ𝑗, 𝑘′ሻ|𝑘ᇱ ∈

𝐺௧ᇲ ∀𝑡ᇱ ൒ 𝑡 ൅ 2, and no edge of the type ሺ𝑗, 𝑘′ሻ|𝑘ᇱ ∈ 𝐺௧ᇲ ∀𝑡ᇱ ൑ 𝑡 െ 2, the problem 

addressed in this Chapter is to find an MWIS in 𝐺.  

Figure 4.2 shows a weighted undirected graph 𝐺 ൌ ሺ⋃ 𝐺୲, 𝐸଴
ଷ
௧ୀଵ ሻ  consisting of a 

chain of three cliques 𝐺1, 𝐺ଶ, and 𝐺ଷ, where 𝐺ଵ ൌ ሺሼ1,2,3ሽ, ሼሺ1,2ሻ, ሺ2,3ሻ, ሺ3,1ሻሽ, ሼ0.5, 0.8, 0.6ሽሻ,                          

𝐺ଶ ൌ({4,5,6},{(4,5),(5,6),(6,4)},{0.8,0.5,0.6}), 𝐺ଷ ൌ({7,8,9,10),{(7,8),(7,9),(7,10),(8,9),(8,10), 

(9,10)},{0.5,0.9,0.6,0.7}) and 𝐸଴ ൌ ሼሺ1,5ሻ, ሺ2,4ሻ, ሺ3,6ሻ, ሺ5,7ሻ, ሺ6,9ሻሽ. We are interested in 

finding an MWIS 𝑥∗ in 𝐺, which maximizes the sum of the total weights. 

Figure 4.2: A simple chain of three cliques 𝐺 ൌ ሺ⋃ 𝐺୲, 𝐸଴
ଷ
௧ୀଵ ሻ 

Let us introduce the indices and the parameters for the problem as follows: 

Indices: 

𝑡  clique index ሺ𝑡 ൌ 1,2,3, … , 𝐾 ሻ 

𝑗, 𝑘 node index ሺ𝑗 ൌ 1,2,3, … , 𝑛; 𝑘 ൌ 1,2,3, … , 𝑛ሻ 

Parameters: 

𝑤௝ positive weight associated with node 𝑗|𝑗 ∈ 𝑉௧ ∀𝑡 

Decision variable: 

𝑥௝ ൌ ቄ1
0

    if  node 𝑗 is in the independent set
otherwise
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Model:  MWIS 

𝑀𝑎𝑥     ∑ 𝑤௝𝑥௝
௡
௝ୀଵ         (1) 

Subject to, 

𝑥௝ ൅ 𝑥௞ ൑ 1 ∀𝑡, ሺ𝑗, 𝑘ሻ ∈ 𝐸௧       (2) 

𝑥௝ ൅ 𝑥௞ ൑ 1  ∀𝑡, ሺ𝑗, 𝑘ሻ ∈ 𝐸଴       (3) 

𝑥௝  ∈ ሼ0,1ሽ ∀𝑗         (4) 

The objective function (1) is to maximize the total node weights. Constraints (2) are 

the edge constraints within a clique and constraints (3) are the edge constraints between 

two adjacent cliques. The edge constraints (2) and (3) prohibits two nodes of the same edge 

to be selected at the same time. Constraints (4) is the integrality constraint. The LP 

relaxation of MWIS is formed by relaxing constraints (4) as  0 ൑ 𝑥௝ ൑ 1. We refer to this 

LP as the relaxed MWIS. Below we show that the relaxed MWIS does not satisfy the totally 

unimodular property (i.e., every square non-singular submatrix of the incidence matrix has 

determinant 0, +1 or −1) and the Relaxed MWIS gives fractional solution.  

The optimum solution to the problem illustrated in Figure 4.2 is  𝑥∗ ൌ{2, 6, 8} and 

the total weight is 2.3.   If the relaxed MWIS is used, the resulting MWIS is 

𝑥∗ ൌ{1,2,3,4,5,6,7,8,9,10} and the total weight becomes 3.25 with fractional 𝑥௝ ൌ 0.5 ∀𝑗 ൌ

1, … ,10, which is an infeasible solution.  

Let 𝐴 be the {0, 1} edge-vertex incidence matrix for the graph 𝐺 ൌ ሺ⋃ 𝐺୲, 𝐸଴
௄
௧ୀଵ ሻ,  

defined as follows: 𝐴 has |ሺ⋃ 𝐸௧ሻ ∪ 𝐸଴
௄
௧ୀଵ | rows, one for each edge and |⋃ 𝑉௧

௄
௧ୀଵ  | columns, 

one for each vertex. 𝐴௝௞ ൌ 1 if vertex 𝑗 is incident to vertex 𝑘 otherwise it is 0. Figure 4.3 

shows the incident matrix corresponding to clique 𝐺ଵ. 
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Figure 4.3: Clique 𝐺ଵ and the correspondent incident matrix 

The incidence matrix of model MWIS does not have totally unimodular structure. 

For example the determinant of ൥
1 1 0
0 1 1
1 0 1

൩ shown in Figure 4.3 is 2. Moreover, the relaxed 

MWIS provides fractional solution and the resulting MWIS becomes infeasible.  

To avoid infeasibility, we model the SCAP using a clique constraint. In this Chapter, 

we shall show that SCAP is equivalent to MWIS in a chain of cliques, which is solvable in 

polynomial time.  

4.4 ILP formulation for SCAP: 

Let us consider a production schedule where multiple items (𝑗ଵ, 𝑗ଶ, … , 𝑗௞∀𝑘) are to 

be produced on the same machine over a planning horizon of length 𝑇. An Integer Linear 

Programming (ILP) model can be formulated to find the set of items to carryover from one 

period to the next such that the total savings of setup cost is maximized. Suppose we are 

given 𝑆ሺ𝑡ሻ∀𝑡, where 𝑆ሺ𝑡ሻ is the set of items produced in period 𝑡∀ 𝑡 ൌ 1. . . 𝑇. Let 𝑆ᇱሺ𝑡ሻ ൌ

𝑆ሺ𝑡ሻ ∩ 𝑆ሺ𝑡 ൅ 1ሻ ∀𝑡 ൌ 1 … 𝑇 െ 1. Each element of 𝑆ᇱሺ𝑡ሻ represents an item that can be 

carried over from period 𝑡 to ሺ𝑡 ൅ 1ሻ to avoid the machine setup for that item in period ሺ𝑡 ൅

1ሻ. Since only one item can be carried over to the next period, we have to pick exactly one 

element from 𝑆ᇱሺ𝑡ሻ. We redefine the indices and introduce some new parameters for the 

problem as follows: 

2

31 
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Indices: 

𝑡  planning period ሺ𝑡 ൌ 1,2,3, … , 𝑇ሻ 

𝑗  item index ሺ𝑗 ൌ 1,2,3, … , 𝑛ሻ 

Parameters: 

𝑐௝ Setup cost saving associated with element 𝑗|𝑗 ∈ 𝑆ᇱሺ𝑡ሻ ∀𝑡 

𝑞௝௧ ൌ ቄ1
0

    if item 𝑗 ∈ 𝑆′ሺ𝑡ሻ
otherwise

 

𝑟௝௧ ൌ ቄ1
0

   if  𝑞௝௧ ൌ 𝑞௝ሺ௧ାଵሻ ൌ 1 and 𝑖𝑓 |𝑆′ሺ𝑡 ൅ 1ሻ| ൐ 1
otherwise

 

Decision variable: 

𝑧௝௧ ൌ ቄ1
0

    if item 𝑗 ∈ 𝑆ᇱሺ𝑡ሻ is carriedover from period 𝑡 to ሺ𝑡 ൅ 1ሻ
otherwise

 

Model:  SCAP 

𝑀𝑎𝑥     ∑ ∑ 𝑐௝𝑧௝௧
்ିଵ
௧ୀଵ

௡
௝ୀଵ        (6) 

Subject to, 

𝑧௝௧ ൑ 𝑞௝௧ ∀𝑗, 𝑡 ൑ 𝑇 െ 1       (7) 

∑ 𝑧௝௧ ൑ 1 ௝∈ௌᇲሺ௧ሻ  ∀𝑡 ൑ 𝑇 െ 1       (8) 

𝑧௝௧ ൅ 𝑧௝ሺ௧ାଵሻ ൑ 1  ∀𝑗, 𝑡 ൑ 𝑇 െ 1|𝑟௝௧ ൌ 1     (9) 

𝑧௝௧  ∈ ሼ0,1ሽ ∀𝑗, 𝑡        (10) 

The objective function (6) is to maximize the setup cost savings. Constraints (7) 

ensure that an item, which is produced in two consecutive periods, should be carried over 

to the next period. Constraints (8) are the clique constraints which state that at most one 

item can be carried over to the next period. But for some 𝑡, if 𝑞௝௧ ൌ 0∀𝑗 ∈ 𝑆ሺ𝑡ሻ, 

∑ 𝑧௝௧ ௝∈ௌሺ௧ሻ ൌ 0. Constraints (9) prevents same item to be selected to carryover in two 

consecutive periods if  𝑟௝௧ ൌ 1, which implies the condition that if item 𝑗 is carried over 
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from period 𝑡 to ሺ𝑡 ൅ 1ሻ then 𝑗 cannot be carried over from ሺ𝑡 ൅ 1ሻ to ሺ𝑡 ൅ 2ሻ. Finally the 

type of variables are defined in constraints (10).  

4.5 The equivalency of SCAP to the problem of finding the MWIS in a chain of 

cliques: 

This section shows that for a given production schedule, the solution of SCAP will 

yield the MWIS and vice versa. 

Theorem 1:  The SCAP for inventory lot-sizing over 𝑇 periods is equivalent to finding the 

MWIS in a chain of ሺ𝑇 െ 1ሻ cliques. 

Proof: Consider an instance of the SCAP, where 𝑆ᇱሺ𝑡ሻ ൌ ൛𝑗௧,௞ |𝑘 ൌ 1,2, . . 𝑛௧ൟ∀𝑡 ൑

𝑇 െ 1 represents a set of items for each of which setup can be carried over from period 𝑡 to 

ሺ𝑡 ൅ 1ሻ to avoid the machine setup for that item in period ሺ𝑡 ൅ 1ሻ. The condition of the 

SCAP is that only one item can be produced at the end of period 𝑡 and if item 𝑗 is produced 

at the end of period 𝑡, the same item cannot be produced at the end of period (𝑡 ൅ 1) given 

that there are multiple items to be produced in period ሺ𝑡 ൅ 1ሻ.  

Let us create an instance of MWIS in a chain of ሺ𝑇 െ 1ሻ- cliques as follows: For 

each 𝑆ᇱሺ𝑡ሻ there is a clique 𝐺௧ with nodes 𝑗௧,௞  ∀𝑘 ൌ 1,2, . . 𝑛௧ , 𝑡 ൑ 𝑇 െ 1 and an edge 

between each pair of nodes.  Weight of node 𝑗௧,௞ ∈ 𝐺௧ is 𝑐௝೟,ೖ 
, where 𝑐௝೟,ೖ 

 is the savings in 

setup corresponding to 𝑗௧,௞ . Choosing a node from 𝐺௧  represents producing the 

corresponding item at the end of period 𝑡 and at the beginning of period ሺ𝑡 ൅  1ሻ. If  

𝑗௧,௞ ∈ 𝑆ᇱሺ𝑡ሻ  and 𝑗ሺ௧ାଵሻ,௞ᇲ ∈ 𝑆ᇱሺ𝑡 ൅ 1ሻ represent the same item and if |𝑆ᇱሺ𝑡 ൅ 1ሻ| ൐ 1, there 
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is an edge connecting node𝑗௧,௞  in 𝐺௧ to node 𝑗ሺ௧ାଵሻ,௞ᇲ   in 𝐺௧ାଵ, which refers to the condition 

that if 𝑗௧,௞  is picked from 𝐺௧ then 𝑗ሺ௧ାଵሻ,௞ᇲ cannot be picked from 𝐺௧ାଵ.  

Let us consider a solution of MWIS ሼ𝑗ଵ,௞భ , 𝑗ଶ,௞మ , … , 𝑗ሺ்ିଵሻ,௞ሺ೅షభሻ ሽ , which means 

there is no common edge between node 𝑗௧,௞೟ ∈ 𝐺௧  and 𝑗ሺ௧ାଵሻ,௞ሺ೟శభሻ ∈ 𝐺ሺ௧ାଵሻ ∀𝑡 ൑ 𝑇 െ 1. 

For each 𝑡, item representing node 𝑗௧,௞೟ ∈ 𝐺௧ is produced at the end of period 𝑡 and the setup 

of item 𝑗௧,௞೟  is carried over from period 𝑡 to period ሺ𝑡 ൅  1ሻ. Thus 

ሼ𝑗ଵ,௞భ , 𝑗ଶ,௞మ , … , 𝑗ሺ்ିଵሻ,௞ሺ೅షభሻ ሽ constitutes a solution of SCAP. Therefore, the problem of 

maximizing savings of setup cost reduces to the problem of choosing an MWIS in a chain 

of 𝑇 െ 1ሻ- cliques. 

Consider an instance of MWIS in a chain of ሺ𝑇 െ 1ሻ- cliques 𝐺௧with nodes 

ሼ𝑗௧,௞ |𝑘 ൌ 1,2, . . 𝑛௧ሽ∀𝑡 ൑ 𝑇 െ 1 such that there is no edge of the type (𝑗௧,௞, 𝑗൫௧ା௧ᇲ൯,௞ᇲ|1 ൏

𝑡ᇱ ൑ 𝑇 െ 1 െ 𝑡, 𝑘ᇱ ൌ 1,2, … , 𝑛൫௧ା௧ᇲ൯); for any node 𝑗௧,௞ ∈ 𝐺௧, there is at most one edge 

connecting node 𝑗௧,௞ and 𝑗ሺ௧ାଵሻ,௞ᇲ| 𝑗ሺ௧ାଵሻ,௞ᇲ ∈ 𝐺௧ାଵ, and at most one edge between node 

𝑗ሺ௧ିଵሻ,௞ᇲᇲ| 𝑗ሺ௧ିଵሻ,௞ᇲᇲ ∈ 𝐺௧ିଵ and 𝑗௧,௞. Weight of node 𝑗௧,௞  is 𝑐௝೟,ೖ 
. 

Let’s create an instance of SCAP as follows: For each node 𝑗௧,௞ ∈ 𝐺௧ ∀𝑘 ൌ

1,2, . . 𝑛௧ , 𝑡 ൑ 𝑇 െ 1 there is an item 𝑗௧,௞ that is produced in periods 𝑡 and ሺ𝑡 ൅ 1ሻ with setup 

cost 𝑐௝೟,ೖ
. Each edge (𝑗௧,௞, 𝑗௧,௞ᇲ) in clique 𝐺௧ refers to the condition that only one item can be 

produced at the end of period 𝑡 and at the beginning of period ሺ𝑡 ൅ 1ሻ. Each clique 

corresponds to a period. For each edge (𝑗௧,௞, 𝑗ሺ௧ାଵሻ,௞ᇲ) between clique 𝐺௧ and 𝐺௧ାଵ, the items 

𝑗௧,௞ and 𝑗ሺ௧ାଵሻ,௞ᇲ are identical and therefore, this item cannot be produced at the end of 

period 𝑡 and ሺ𝑡 ൅ 1ሻ at the same time. More precisely, if 𝑗௧,௞ is produced at the end of period 
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𝑡, it has to be produced at the beginning of period ሺ𝑡 ൅ 1ሻ. Again, if  𝑗ሺ௧ାଵሻ,௞ᇲ is produced 

at the end of period  ሺ𝑡 ൅ 1ሻ, it has to be produced at the beginning of period ሺ𝑡 ൅ 2ሻ. If 

there is no edge between two nodes of 𝑗௧,௞ ∈ 𝐺௧ and 𝑗ሺ௧ାଵሻ,௞ᇲ ∈ 𝐺௧ାଵ, these two items can 

be produced at the end of their respective periods.  

Let us consider a solution of SCAP  ቄ𝑗ଵ,௞భ , 𝑗ଶ,௞మ , … , 𝑗ሺ்ିଵሻ,௞ሺ೅షభሻ ቅ where item 𝑗௧,௞೟
 is 

produced at the end of period 𝑡 and the setup of item 𝑗௧,௞೟
 is carried over from period 𝑡 to 

ሺ𝑡 ൅ 1ሻ in order to maximize the savings in setup cost. Since each 𝑗௧,௞೟
 represents a node in 

𝐺௧ ∀𝑡 ൑ 𝑇 െ 1, there is no common edge between 𝑗௧,௞೟
 and 𝑗ሺ௧ାଵሻ௞ሺ೟శభሻ

. Thus,  

ቄ𝑗ଵ,௞భ , 𝑗ଶ,௞మ , … , 𝑗ሺ்ିଵሻ,௞ሺ೅షభሻ ቅ constitutes an MWIS. Hence, the problem of finding the 

MWIS in a chain ሺ𝑇 െ 1ሻ- cliques reduces to the problem of maximizing the savings of 

setup cost. 

Therefore, the SCAP for inventory lot-sizing is equivalent to finding the MWIS in 

a chain ሺ𝑇 െ 1ሻ- cliques∎ 

4.6 LP Relaxation of Model SCAP: 

In this section, we shall show that the LP relaxation of the model SCAP gives 

integral solution.  

Let 𝐴 be the constraint matrix for the model SCAP which is a 0-1 matrix.  Each row 

of matrix 𝐴 represents a constraint and each column represents a variable. The constraint 

matrix 𝐴 is feasible if it has one of the following properties. 
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Property 1: If  𝑎௜,௝ ൌ  𝑎௜ᇲ,௝ ൌ 𝑎௜ᇲᇲ,௝ᇲ ൌ 𝑎௜ᇲᇲ,௝ᇲᇲ ൌ 1 and 𝑎௜ᇲᇲ,௝ ൌ 0 then there exists at 

most one nonzero element among 𝑎௜,௝ᇲ, 𝑎௜,௝ᇲᇲ, 𝑎௜ᇲ,௝ᇲ, 𝑎௜ᇲ,௝ᇲᇲ where 𝑗 ് 𝑗ᇱ ് 𝑗ᇱᇱ, 𝑗 ∈

𝐺௧ and 𝑗ᇱ, 𝑗ᇱᇱ ∈ 𝐺௧ାଵ∀𝑡 ൑ 𝑇 െ 1 

Proof of property 1: According to constraint (9), node 𝑗 ∈ 𝐺௧ can be connected at 

most one node in 𝐺௧ାଵ. Therefore, there exists at most one nonzero element among 𝑎௜,௝ᇲ, 

𝑎௜,௝ᇲᇲ, 𝑎௜ᇲ,௝ᇲ, 𝑎௜ᇲ,௝ᇲᇲ.  An example of this property is shown in Figure 4.4(a). 

Property 2: If  𝑎௜,௝ ൌ  𝑎௜ᇲ,௝ ൌ 𝑎௜ᇲᇲ,௝ᇲ ൌ 𝑎௜ᇲᇲ,௝ᇲᇲ ൌ 𝑎௜ᇲᇲ,௝ ൌ 1 then 𝑎௜,௝ᇲ ൌ 𝑎௜,௝ᇲᇲ ൌ 

𝑎௜ᇲ,௝ᇲ ൌ 𝑎௜ᇲ,௝ᇲᇲ ൌ 0 where 𝑗 ് 𝑗ᇱ ് 𝑗ᇱᇱ and  𝑗, 𝑗ᇱ, 𝑗ᇱᇱ ∈ 𝐺௧ ∀𝑡 ൑ 𝑇 െ 1 

Proof of property 2: Since 𝑎௜ᇲᇲ,௝ ൌ 𝑎௜ᇲᇲ,௝ᇲ ൌ 𝑎௜ᇲᇲ,௝ᇲᇲ ൌ  1, node 𝑗, 𝑗ᇱ, 𝑗ᇱᇱ belongs to the 

same clique. According to constraint (8), nodes in the same clique is represented by a single 

row of 1s. Therefore, 𝑎௜,௝ᇲ ൌ 𝑎௜,௝ᇲᇲ ൌ 𝑎௜ᇲ,௝ᇲ ൌ 𝑎௜ᇲ,௝ᇲᇲ ൌ 0. An example of this property is 

shown in Figure 4.4(b). 

 
 (a)       (b) 

Figure 4.4:  Example of constraint matrix showing (a) property 1 and (b) property 2 

Theorem 2: Every 𝑘 ൈ 𝑘 submatrix representing the linear constraints of the model SCAP 

is totally unimodular. 
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Proof: We prove by induction method that the constraint matrix 𝐴 is totally 

unimodular. Note that a matrix is defined to be totally unimodular if and only if every 

square submatrix has determinant 0 or േ1.  

It is obvious that 1 ൈ 1 submatrices have determinant either 0 or 1.  

For 2 ൈ 2 submatrices, we have either i) all four elements are zero in which case 

the determinant is also zero, or, ii) at least one element is zero in which case the determinant 

is plus or minus the product of two elements and thus its value is always 0 or 1.  

Now, let us assume that all 𝑘 ൈ 𝑘 submatrices of 𝐴 have determinant 0 or 1.  

Let us consider a ሺ𝑘 ൅ 1ሻ ൈ ሺ𝑘 ൅ 1ሻ submatrix 𝐴௞ାଵ of 𝐴. Three situations can 

arise:  

i) 𝐴௞ାଵ has a zero column, which means that the determinant of  𝐴௞ାଵ is 0.  

ii) 𝐴௞ାଵ has at least one column with exactly one non-zero element. Suppose the 𝑡-

th column has exactly one non-zero element which is located in the 𝑖-th row. So, 𝑗௜,௧ ൌ 1.  

Now if we calculate the determinant with respect to column 𝑡, we get, |𝐴௞ାଵ|=𝑗௜,௧𝐴௞, where 

𝐴௞ is the 𝑘 ൈ 𝑘 submatrix resulting from the deletion of the 𝑡-th column and the 𝑖-th row 

from 𝐴௞ାଵ. From the induction assumption, |𝐴௞ |∈ ሼ0, േ1ሽ and since 𝑗௜,௧ ൌ 1, we have 

|𝐴௞ାଵ|∈ ሼ0,1ሽ.  

iii) Every column of submatrix 𝐴௞ାଵ has at least two non-zero elements which are 

equal to 1. If every column of 𝐴௞ାଵ has at least two non-zero elements, then one of the 

following holds:  
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a) 𝐴௞ାଵ has a row with all elements equal to zero, which means that the determinant 

of  𝐴௞ାଵ is 0.  

b) 𝐴௞ାଵ has at least one row which has exactly one non-zero element which are 

equal to 1. Suppose the 𝑖-th row has exactly one non-zero element which is located in the 

𝑡-th column. So, 𝑗௜,௧ ൌ 1.  Now if we calculate the determinant with respect to row 𝑖, we 

get, |𝐴௞ାଵ|=𝑗௜,௧𝐴௞. From the induction assumption, we have |𝐴௞ାଵ|∈ ሼ0, േ1ሽ.  

c) Every row of 𝐴௞ାଵ has at least two non-zero elements which are equal to 1. If 

every row has at least two 1s and every column has at least two 1s then for  2ൈ2 matrix the 

determinant is 0 and for 3ൈ3 matrix the graph is infeasible according to property 1 and 2.  

Let us assume that all 𝑚 ൈ 𝑚 submatrices of 𝐴௞ାଵ have either determinant 0 i.e., 

|ሺ𝐴௞ାଵሻ௠| ൌ 0 or the graph is infeasible. 

Let us consider a ሺ𝑚 ൅ 1ሻ ൈ ሺ𝑚 ൅ 1ሻ submatrix ሺ𝐴௞ାଵሻ௠ାଵ of 𝐴௞ାଵ.  Suppose the 

𝑖-th row has at least two 1s located in the 𝑗-th, 𝑗ᇱ-th ,…, 𝑗ᇱᇱ-th column. So, 𝑎௜,௝ ൌ ⋯ ൌ

 𝑎௜,௝ᇲ ൌ ⋯ ൌ 𝑎௜,௝ᇲᇲ ൌ 1.  Now if we calculate the determinant with respect to row 𝑖, we get, 

|ሺ𝐴௞ାଵሻ௠ାଵ|=𝑎௜,௝ሺ𝐴௞ାଵሻ௠ ൅ ⋯ ൅ 𝑎௜,௝ᇲሺ𝐴௞ାଵሻ௠ ൅ ⋯ ൅ 𝑎௜,௝ᇲᇲሺ𝐴௞ାଵሻ௠ ൌ 0.  

Therefore, if every row and every column of 𝐴௞ାଵ has at least two non-zero 

elements and the matrix is feasible, the determinant is zero.  

Hence, the determinant of every 𝑘 ൈ 𝑘 submatrix of 𝐴 is either 0 or 1. Therefore, 

matrix 𝐴 is totally unimodular ∎ 

ILP with totally unimodular constraint matrix are solved by their LP relaxation, 

which gives integer solution. According to Theorem 2, the SCAP has a totally unimodular 
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constraint matrix. The linear programing (LP) relaxation of the above ILP is obtained as 

follows: 

Model:  Relaxed SCAP 

𝑀𝑎𝑥 ሺ6ሻ               

Subject to, 

(7) through (10)  

𝑧௝௧  ൒ 0 ∀𝑗, 𝑡         (11) 

Now we shall provide an alternate proof that the relaxed SCAP always provides 

integral optimum solution.  

Theorem 3: There exists an integer 𝑧௝௧ ∀𝑗, 𝑡|𝑐௝ ∈ ℝ, which is an optimum solution of the 

Relaxed SCAP.  

Proof: Let 𝜎 be an optimal solution which has some period 𝑡 such that 0 ൏ 𝑧௝௧ ൏

1∀𝑗. Out of all such periods, take the first period and out of all such jobs in that period, take 

the one with highest savings. If there are multiple optimum solution, consider the optimal 

solution in which there are least fractional 𝑧௝௧ values. We shall show that there exists some 

𝜎′ in which there are fewer fractional 𝑧௝௧ values. Let 𝑐ఙ̅ and 𝑐ఙ̅ᇲ be the total setup cost 

savings associated with t solution 𝜎 and 𝜎ᇱ respectively. 

Case 1: 𝑟௝భሺ௧ିଵሻ ൌ 𝑟௝భ௧ ൌ 0 and 𝑗ଵ is the only item in 𝑆′ሺ𝑡ሻ| 𝑞௝భ௧ ൌ 1 .  Let us create 

𝜎ᇱ from 𝜎 as follows: 

𝑧௝௧ᇲሺ𝜎′ሻ ൌ 𝑧௝௧ᇱሺ𝜎ሻ ∀𝑗 ് 𝑗ଵ, 𝑡′ ് 𝑡 

𝑧௝భ௧ሺ𝜎′ሻ ൌ 1 

𝑐ఙ̅ᇲ ൒ 𝑐ఙ̅ 
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Therefore, 𝜎′ is not worse than  𝜎 and 𝜎′ has fewer fractional 𝑧௝௧ values. 

Case 2: 𝑟௝భሺ௧ିଵሻ ൌ 𝑟௝భ௧ ൌ 0 and 𝑆′ሺ𝑡ሻ has more than one element i.e, 𝑞௝௧ ൌ 1∀ 𝑗 ∈

𝑆′ሺ𝑡ሻ.  Let us assume that 𝑗ଵ has the highest setup cost and 0 ൑ 𝑧௝௧ ൑ 1∀𝑗 ∈ 𝑆′ሺ𝑡ሻ. Let us 

create 𝜎ᇱ from 𝜎 as follows: 

𝑧௝௧ᇲሺ𝜎′ሻ ൌ 𝑧௝௧ᇲሺ𝜎ሻ ∀𝑗, 𝑡′ ് 𝑡 

𝑧௝భ௧ሺ𝜎ᇱሻ ൌ 1;  

𝑧௝௧ሺ𝜎ᇱሻ ൌ 0 ∀ 𝑗 ∈ 𝑆′ሺ𝑡ሻ. 

Thus  𝑐ఙ̅ᇲ ൒ 𝑐ఙ̅ and constraints (3) is not violated. Therefore, 𝜎′ is not worse than  

𝜎 and 𝜎′ has fewer fractional 𝑧௝௧ values. 

Case 3: 𝑟௝௧ ൌ 𝑟௝ሺ௧ାଵሻ ൌ ⋯ ൌ 𝑟௝ሺ௧ା௞ሻ ൌ 1 ∀𝑘 ൌ 1,2, . . ሺ𝑇 െ 2 െ 𝑡ሻ and 𝑡 ൏ 𝑇. 

Given a solution 𝜎 ൌ ሼ𝑧௝௧|0 ൏ 𝑧௝௧ ൏ 1ሽ, we shall find an 𝜀, 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2  such that for 

𝑧′௝௧ ൌ 𝑧௝௧ ൅ 𝜀 ∀𝑧௝௧ ∈ 𝑆𝑒𝑡 1 and 𝑧′௝௧ ൌ 𝑧௝௧ െ 𝜀 ∀𝑧௝௧ ∈ 𝑆𝑒𝑡 2 or 𝑧′′௝௧ ൌ 𝑧௝௧ െ 𝜀 ∀𝑧௝௧ ∈ 𝑆𝑒𝑡 1 

and 𝑧′′௝௧ ൌ 𝑧௝௧ ൅ 𝜀 ∀𝑧௝௧ ∈ 𝑆𝑒𝑡 2 either 𝜎ᇱ ൌ ሼ𝑧′௝௧ሽ or 𝜎ᇱᇱ ൌ ሼ𝑧′′௝௧ሽ will have at least one 

more integer value and 𝑐ఙ̅ᇲ 𝑜𝑟 𝑐ఙ̅ᇲᇲ ൒ 𝑐ఙ̅  .     

Step 1: Suppose  𝑗 and 𝑗′ are two elements of 𝑆ᇱሺ𝑡ሻ∀𝑡| 𝑗′ ് 𝑗. Initialize two sets 𝑆𝑒𝑡1 and 

𝑆𝑒𝑡2 as follows: 

𝑆𝑒𝑡1 ൌ ሼ𝑧௝௧| 𝑟௝௧ ൌ  1ሽ  and 𝑆𝑒𝑡 2 ൌ ሼ𝑧௝ሺ௧ାଵሻ|𝑟௝ሺ௧ିଵሻ ൌ 1 , max
௝ᇲ∈ௌᇲሺ௧ሻ

𝑧௝ᇲ௧|𝑗′ ് 𝑗ሽ . 

Step 2: Let 𝑡 ൌ 𝑡 ൅ 1. We compute 𝑆𝑢𝑚 ൌ ∑ 𝑐௝௝|௭ೕ೟∈ௌ௘௧ଵ െ ∑ 𝑐௝௝|௭ೕ೟∈ௌ௘௧ଶ   

If 𝑆𝑢𝑚 ൒ 0 and 𝑟௝௧ ൌ  1|𝑧௝௧ ∈ 𝑆𝑒𝑡1, augment 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2 as follows:  

𝑆𝑒𝑡1ᇱ ൌ min  
௝ᇲ,௝ᇲᇲ∈ௌᇲሺ௧ିଵሻ

൛𝑧௝ᇲሺ௧ିଵሻห𝑧௝ᇲሺ௧ିଵሻ ∈ 𝑆𝑒𝑡1,  𝑧௝ᇲᇲሺ௧ିଵሻห 𝑧௝ᇲᇲ௧ ∈ 𝑆𝑒𝑡2ൟ   

𝑆𝑒𝑡1 ൌ ሺ𝑆𝑒𝑡1 ∪ 𝑆𝑒𝑡1ᇱሻ   

𝑆𝑒𝑡2′ ൌ ൜𝑧௝ሺ௧ାଵሻ, min
௝ᇲ,௝ᇲᇲ∈ௌᇲሺ௧ሻ

൬𝑧௝ᇲ௧ฬ𝑟௝ᇲሺ௧ିଵሻ ൌ 1, max
௝ᇲᇲ∈ௌᇲሺ௧ሻ

൫𝑧௝ᇲᇲ௧ห𝑗ᇱᇱ ് 𝑗൯൰ൠ  and 
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𝑆𝑒𝑡2 ൌ ሺ𝑆𝑒𝑡2 ∪ 𝑆𝑒𝑡2ᇱሻ െ ሺ𝑆𝑒𝑡2 ∩ 𝑆𝑒𝑡2ᇱሻ   

If 𝑆𝑢𝑚 ൏ 0 and 𝑟௝௧ ൌ  1|𝑧௝௧ ∈ 𝑆𝑒𝑡2, augment 𝑆𝑒𝑡1 and 𝑆𝑒𝑡2 as follows: 

𝑆𝑒𝑡1′ ൌ ൜𝑧௝ሺ௧ାଵሻ, min
௝ᇲ,௝ᇲᇲ∈ௌᇲሺ௧ሻ

൬𝑧௝ᇲ௧ฬ𝑟௝ᇲሺ௧ିଵሻ ൌ 1, max
௝ᇲᇲ∈ௌᇲሺ௧ሻ

൫𝑧௝ᇲᇲ௧ห𝑗ᇱᇱ ് 𝑗൯൰ൠ   

𝑆𝑒𝑡1 ൌ ሺ𝑆𝑒𝑡1 ∪ 𝑆𝑒𝑡1′ሻ െ ሺ𝑆𝑒𝑡1 ∩ 𝑆𝑒𝑡1ᇱሻ  

𝑆𝑒𝑡2′ ൌ min  
௝ᇲ,௝ᇲᇲ∈ௌᇲሺ௧ିଵሻ

൛𝑧௝ᇲሺ௧ିଵሻห𝑧௝ᇲሺ௧ିଵሻ ∈ 𝑆𝑒𝑡2,  𝑧௝ᇲᇲሺ௧ିଵሻห 𝑧௝ᇲᇲ௧ ∈ 𝑆𝑒𝑡1ൟ 

𝑆𝑒𝑡2 ൌ ሺ𝑆𝑒𝑡2 ∪ 𝑆𝑒𝑡2ᇱሻ 

If 𝑆𝑢𝑚 ൒ 0 and 𝑟௝௧ ൌ  0|𝑧௝௧ ∈ 𝑆𝑒𝑡1 or  𝑆𝑢𝑚 ൏ 0 and 𝑟௝௧ ൌ  0|𝑧௝௧ ∈ 𝑆𝑒𝑡2, go to 

step 3. 

Step 3: If 𝑆𝑢𝑚 ൒ 0, then 𝑧′௝௧ሺ𝜎ᇱሻ ൌ 𝑧௝௧ ൅ 𝜀 ∀𝑧௝௧ ∈ 𝑆𝑒𝑡 1 and 𝑧ᇱ
௝௧ሺ𝜎ᇱሻ ൌ 𝑧௝௧ െ 𝜀 ∀𝑧௝௧ ∈

𝑆𝑒𝑡 2 , where 𝜀 ൌ 𝑚𝑖 𝑛൫1 െ 𝑚𝑎 𝑥൫𝑧௝௧ ห𝑧௝௧ ∈  𝑆𝑒𝑡 1൯ , 𝑚𝑖 𝑛൫𝑧௝௧ห𝑧௝௧ ∈  𝑆𝑒𝑡 2൯൯.  

If 𝑆𝑢𝑚 ൏ 0, then 𝑧ᇱᇱ
௝௧ሺ𝜎ᇱᇱሻ ൌ 𝑧௝௧ െ 𝜀 ∀𝑧௝௧ ∈ 𝑆𝑒𝑡 1 and 𝑧ᇱᇱ

௝௧ሺ𝜎′′ሻ ൌ 𝑧௝௧ ൅ 𝜀 ∀𝑧௝௧ ∈

𝑆𝑒𝑡 2 , where 𝜀 ൌ 𝑚𝑖 𝑛൫𝑚𝑖𝑛൫𝑧௝௧ ห𝑧௝௧ ∈  𝑆𝑒𝑡 1൯, 1 െ 𝑚𝑎 𝑥൫𝑧௝௧ห𝑧௝௧ ∈  𝑆𝑒𝑡 2൯൯. 

Therefore, 𝜎′ or 𝜎′′ is not worse than  𝜎 and 𝜎′ or 𝜎′′  has fewer fractional 𝑧௝௧ 

values ∎ 

4.7 Numerical Example  

Essentially, Theorem 3 uses an iterative 𝜀-perturbation procedure, which converts 

a fractional solution to an integer solution that is not worse. To illustrate this iterative 

procedure, we use an example. Let us consider an SCAP where the following production 

schedule is given. 𝑆ሺ1ሻ ൌ ሼ1,2,3ሽ, 𝑆ሺ2ሻ ൌ ሼ1,2,3,4ሽ, 𝑆ሺ3ሻ ൌ ሼ1,2,4ሽ, 𝑆ሺ5ሻ ൌ ሼ1,4ሽ, and 

𝑆ሺ5ሻ ൌ ሼ1ሽ. 
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Items 1, 2, and 3 is produced in period 1 and 2. Thus, items 1, 2, and 3 are the 

eligible items to carryover from period 1 to period 2. Hence 𝑆ᇱሺ1ሻ ൌ ሼ1,2,3ሽ. Similarly, 

item 1, 2, and 4 are produced in periods 2 and 3. Therefore, items 1, 2, and 4 are eligible to 

carryover from period 2 to period 3 and 𝑆ᇱሺ2ሻ ൌ ሼ1,2,4ሽ. Let us formulate an undirected 

graph as shown in Figure 4.5, where each item that are allowed to carryover to the next 

period represents a node and each period represents a clique. The edges between two 

cliques states the condition that the corresponding nodes represents identical item and this 

item cannot be produced at the end of two consecutive periods at the same time. The 

corresponding 𝑧௝௧ values ∀𝑗, 𝑡 are shown in the parenthesis along with each node (Figure 

4.5). Let us assume that the cost savings associated with each item is ሺ𝑐ଵ, 𝑐ଶ, 𝑐ଷ, 𝑐ସሻ ൌ

ሺ10,8,6,5ሻ 

 

Figure 4.5: A simple undirected graph for the example problem 

A step by step procedure of the first iteration is shown in Table 4.1:  
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Table 4.1: A step by step procedure of the first iteration 

  Step1: Initialization: 

𝑡 ൌ 1 

 

𝑆𝑢𝑚 ൌ 10 െ ሺ6 ൅ 8ሻ ൌ െ4 

 Step 2: Augmentation: 

𝑡 ൌ 2 

 

𝑆𝑢𝑚 ൌ ሺ10 ൅ 8 ൅ 10ሻ െ ሺ8 ൅ 10ሻ ൌ 10. 

𝑡 ൌ 3 

𝑆𝑢𝑚 ൌ ሺ10 ൅ 6 ൅ 10ሻ െ ሺ8 ൅ 10 ൅ 6 ൅ 10ሻ ൌ െ8 

 Step 3: ε-perturbation 

𝑡 ൌ 4 

𝑆𝑢𝑚 ൏ 0 and  𝑟ଵସ ൌ 0, 𝜀 ൌ 0.2. Total savings, 𝑐ఙ̅ ൌ 25.3.  

The 𝑧௝௧ values after iteration 1 is shown in Table 4.2 below: 
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Table 4.2: 𝑧௝௧ values ∀𝑗, 𝑡 after iteration 1 

Item (𝑗) 
Period (𝑡) 

1 2 3 4 

1 𝑧ଵଵ=0.3 𝑧ଵଶ=0.3 𝑧ଵଷ=0.4 𝑧ଵସ=0.4 

2 𝑧ଶଵ=0.3    

3     

4  𝑧ସଶ=0 𝑧ସଷ=0.5  

𝑐ఙ̅ᇲ ൌ26.9. Thus,  𝑐ఙ̅ᇲ ൒ 𝑐ఙ̅ and constraints (3) is not violated and 𝜎′ has fewer 

fractional 𝑧௝௧ value. Table 4.3 shows that the number of integer solution increases at least 

by 1 at each iteration until all of them becomes integer. The setup cost savings is also 

increases as the number of integer solution increases and the saving is maximum when 

there is no fractional solution remaining. Note that if there is only one job in a period in a 

SCAP, there will be no edge connecting the node representing that job in the MWIS 

problem which is equivalent to that SCAP. This special case satisfies the conditions of the 

SCAP formulated in this chapter and it is solved by the LP relaxation of SCAP. 

Table 4.3: Results of iterations 

Iteration 𝑧ଵଵ 𝑧ଵଶ 𝑧ଵଷ 𝑧ଵସ 𝑧ଶଵ 𝑧ଶଶ 𝑧ଷଵ 𝑧ସଶ 𝑧ସଷ |𝜎| |𝜎′|
Cost 

savings

0 0.5 0.1 0.6 0.2 0.1 0.7 0.4 0.2 0.3 9 0 25.3 

1 0.3 0.3 0.4 0.4 0.3 0.7 0.4 0 0.5 8 1 26.9 

2 0 0.6 0.1 0.7 0.6 0.4 0.4 0 0.8 7 2 28.4 

3 0 0.7 0 0.8 0.6 0.4 0.3 0 0.9 6 3 29.3 

4 0 1 0 0.8 1 0 0 0 0.9 2 7 30.5 

5 0 1 0 0.8 1 0 0 0 1 1 8 31 

6 0 1 0 1 1 0 0 0 1 0 9 33 
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4.8 Conclusion: 

This Chapter shows an application of a special case of MWIS problem in the context 

of SCAP. We formulate the MWIS problem in a chain of cliques as an ILP model, and 

present its natural LP relaxation. We show that LP relaxation of a straightforward 

formulation of MWIS and solution of SCAP using that formulation gives fractional 

solution. We model the SCAP as a chain of cliques and show that the SCAP is equivalent 

to the problem of finding MWIS. The SCAP is formulated as an ILP model for a given 

production schedule to maximize the savings in the setup cost. We also prove that the 

constraint matrix of the ILP has a totally unimodular structure and the LP relaxation of the 

proposed ILP always provides integer optimum solution. We also give an alternative proof 

of integer solution of the relaxed ILP. Thus, the SCAP and the special case of the MWIS 

in a chain of cliques are solvable in polynomial time.   
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Concluding remarks 

This dissertation presents a comprehensive study on inventory lot-sizing problem 

and develops dynamic programming based algorithms, mathematical models, and 

competitive heuristic solution approaches to solve the problem. In Chapter 2, an efficient 

linear-time algorithm for ELSPs as well as SMBSPs employing lists and stack data 

structures is developed. The approach in this dissertation is different from the well 

established linear time algorithms by Wagelmans et al. (1992) (based on geometric 

approach) and Aggarwal and Park (1993) (based on Monge arrays).  The theoretical 

properties of the developed algorithm are derived and an experimental comparison with 

the algorithms previously developed by Aggarwal and Park (1993), Wagelmans et al. 

(1992), and Albers and Brucker (1993) is presented. The results indicate that the developed 

algorithm shows a maximum of 40.54% and 51.40% and an average of 29.84% and 39.27% 

performance improvement with respect to CPU time over  the Wagelmans et al. (1992) and 

Aggarwal and Park (1993) algorithms, respectively.  Additionally, the developed algorithm 

is implemented for SMBSP where it shows a maximum of 29.03% and an average of 

25.75% improvement over Albers and Brucker (1993) algorithm. Moreover, the number of 

times the “If” statements (basic action) are executed by Algorithm 1 is less than that of the 

algorithms proposed by Wagelmans et al. (1992) and Aggarwal and Park (1993) for all the 

test data sets. The condition of the outer For loop in Algorithm 1 is checked exactly ሺT െ

1ሻ times. Since the inner While loop is nested inside the inner For loop, hence, if the Inner 

For loop does not run, the inner While loop is not executed. The condition of inner For 



147 
 

loop in line (7) of Algorithm 1 is checked at most ሺ2T െ 4ሻ times over all possible cases 

but this loop runs at most ሺT െ 1ሻ times. Most of the “If” statements are nested inside the 

inner For and Inner While loops, which explains why Algorithm 1 checks the “If” 

conditions fewer number of times than the other comparable algorithms.  Furthermore, 

Algorithm 1 performs fewer list operations than the ones by Wagelmans et al. (1992) and 

Albers and Brucker (1993). Again, the number of matrix cells to be evaluated by Algorithm 

1 is less than that by Aggarwal and Park (1993). Therefore, with regards to every metric of 

comparisons, the new algorithm shows better result than the algorithms proposed by 

Wagelmans et al. (1992), Aggarwal and Park (1993), and Albers and Brucker (1993). In 

other words, it is obvious that Algorithm 1 outperforms the other three algorithms. 

Algorithm 1, therefore, is faster.  

In chapter 3, first we present an item DW decomposition of the classical MLCLSP. 

We then extend the MLCLSP by allowing set-up carryover and backlogging. We also 

include emission capacity constraints and refer the problem as MLCLSP with Set-up 

Carryover, Backlogging and Emission control (MLCLSP-SCBE). We develop an MILP 

model for the MLCLSP-SCBE and apply item DW decomposition of the proposed MILP 

formulation embedded with a CG procedure. We propose a dynamic programming 

approach to solve each of the sub-problems and develop a CA heuristic to generate feasible 

solutions. An ILP model is proposed to determine the setup carryover plan optimally for a 

given production schedule. The solution approach is hybridized with an LP based 

improvement procedure in order to refine the solution and hence improve the solution 

quality given by the DW decomposition.  The performance of the proposed heuristic for 

classical MLCLSP is tested by comparing the average percentage of deviation from 
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optimality with that of Tempelmeier and Derstroff (1996). Overall average optimality gap 

improves by 20% as compared to Tempelmeier and Derstroff (1996). The quality of the 

heuristic for MLCLSP_SCBE is tested based on 225 small instances taken from literature. 

Four new data sets containing a total of 96 problem instances with increasing problem size 

is generated.  Computational results show that the proposed optimization framework 

provides competitive solutions within a reasonable time. 

Chapter 4 shows an application of a special case of MWIS problem in the context 

of SCAP. We formulate the MWIS problem in a chain of cliques as an ILP model, and 

present its natural LP relaxation. We show that LP relaxation of a straightforward 

formulation of MWIS and solution of SCAP using that formulation gives fractional 

solution. We model the SCAP as a chain of cliques and show that the SCAP is equivalent 

to the problem of finding MWIS. The SCAP is formulated as an ILP model for a given 

production schedule to maximize the savings in the setup cost. We also prove that the 

constraint matrix of the ILP has a totally unimodular structure and the LP relaxation of the 

proposed ILP always provides integer optimum solution. We also give an alternative proof 

of integer solution of the relaxed ILP. Thus, the SCAP and the special case of the MWIS 

in a chain of cliques are solvable in polynomial time.   

5.2 Future Works 

Future work will address the case of parallel machines, which makes the 

MLCLSP_SCBE formulation much more relevant for industrial applications. If there exists 

multiple identical machines within a machine group, it may be economically attractive to 

have some machines continuously setup over several periods for a product with high 
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regular demand while the setup of the other machines producing products with low and 

irregular demand is frequently changed. It might also be interesting to broadening the 

computational basis of the numerical evaluation. Another interesting line of future research 

involves extending the MLCLSP_SCBE model to a production–distribution system with 

emissions. Another extension would be to incorporate a cap-and-trade mechanism like 

Hua, Cheng, and Wang (2011) do in an EOQ setting. 

The DW decomposition based heuristic solution approach is depicted in this 

dissertation. In future, other decomposition methods such as Benders Decomposition can 

be implemented to solve the MLCLSP with different extensions. Also metaheuristic 

techniques such as Genetic Algorithm, Tabu Search, and Simulated Annealing may be used 

to investigate if the percentage gap from optimality improves.  

In this work, all problem parameters including demand are assumed to be known 

with absolute certainty which may not be acceptable for certain markets and products. To 

take into account uncertainty we can consider stochastic dynamic programming, robust 

optimization and even Discrete event simulation.  
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