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Abstract 

Animals communicate using multiple signaling modalities, with vocal and visual signals being the 

most prevalent in birds. The responses of animals to signal divergence among populations, along 

with the extent of divergence itself, may promote reproductive isolation and potentially 

speciation. Research on mating signal divergence, and experimental tests of responses to 

divergent signals, will expand our understanding of the mechanisms of reproductive isolation. In 

my dissertation, I investigated the form and function of vocal and visual signals in the Rufous-

capped Warbler (Basileuterus rufifrons), a Neotropical resident songbird with complex song and 

bright plumage. I described male vocal behaviour in this species, and experimentally tested 

whether males and females showed seasonal variation in vocal behaviour during conspecific 

territorial interactions. I quantified range-wide variation in plumage, song, and morphology, and 

I experimentally tested whether two sympatric subspecies responded differently to each other’s 

songs. I found that male Rufous-capped Warblers have large, complex repertoires, and vary 

their singing behaviour depending on the season, time of day, and presence of conspecifics. I 

found that female Rufous-capped Warblers sing, which is the first report of female song in this 

species. Females used both songs and calls to contribute to joint territory defence, but they 

approached playback and sang most often in the non-breeding season. My results suggest that 

Rufous-capped Warblers comprise two distinct species, the northern, white-bellied B. rufifrons 

and southern, yellow-bellied B. delattrii, based on phenotypic differences between them and 

low responses to heterotypic signals by two divergent subspecies living in sympatry. My 

research provides insight into the vocal behaviour of tropical resident wood-warbler species, 

and adds to the growing number of studies showing that female signals function in territory 

defence in tropical songbirds. My findings also support a revision of the Rufous-capped 
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Warbler’s taxonomic status, thus refining our understanding of biodiversity in wood-warblers 

and Neotropical animals. 
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Introduction 

Animals use multiple signaling modalities to communicate, including visual, acoustic, 

tactile, and chemosensory, and these signals play vital roles in animal survival and reproduction. 

Birds primarily communicate using acoustic signals such as songs and calls, and visual signals 

such as bright plumage colours and elaborate mating displays (Bradbury & Vehrencamp 2011). 

In birds, many acoustic and visual signals are sexually-selected traits (Searcy & Andersson 1986), 

which may contribute to reproductive isolation between populations, and potentially to 

speciation (Coyne & Orr 2004; Price 2008). In order to understand the role of these signals in 

promoting reproductive isolation, however, it is important to quantify patterns of signal 

divergence, and to understand how animals respond to divergent signals (e.g., Grant & Grant 

2002; Uy et al. 2009; Dingle et al. 2010). In my dissertation, I examine acoustic signals and, to a 

lesser degree, visual signals to explore signal divergence in a tropical songbird. 

Acoustic signals may evolve through ecological selection, sexual selection, drift, or a 

combination of all three processes (Wilkins et al. 2013). Through ecological selection, natural 

selection on morphological features (e.g., bill size) influences the structure of signals (e.g., Podos 

2001; Benkman 2003; Aleixandre et al. 2013). Through sexual selection, signal divergence 

between populations corresponds to mate choice and competition for rivals (e.g., Patten et al. 

2004; Danner et al. 2011). Through drift, signal divergence gradually increases between 

populations over time (e.g., Byers et al. 2010) and geographic distance (e.g., Irwin et al. 2008; 

Campbell et al. 2010). Although our understanding of signal divergence is largely focused on 

male signals, female signals may also evolve through social selection, which encompasses 

competition among conspecifics for resources including, but not exclusive to, mates (West-

Eberhard 1983; Tobias et al. 2012). 
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The goal of my dissertation is to examine the function and evolution of acoustic and 

visual signals in a common yet little-studied Neotropical resident songbird, the Rufous-capped 

Warbler (Basileuterus rufifrons). Males and females of this species share conspicuous signals, 

including complex song and bright plumage, and I describe the structure and function of these 

traits for the first time in this dissertation. It is not known if these signals have similar functions 

in the two sexes, or if signal function also varies seasonally in these year-round territorial birds. 

Rufous-capped Warbler populations also vary geographically in plumage and song, and this 

variation broadly coincides with habitat differences related to vegetation and altitude (Howell & 

Webb 1995; Curson 2010). The extent of phenotypic differences between populations, and the 

responses of the warblers themselves to these signals, have not yet been quantified, despite the 

value of this information in resolving long-disputed taxonomic relationships within this clade 

(Ridgway 1902; Todd 1929; Monroe 1968; Howell & Webb 1995). 

Vocal behaviour in songbirds and warblers 

The oscine songbirds (i.e. Suborder Passeri of the Order Passeriformes) are among the 

few animal groups that learn their vocalizations from conspecifics (Beecher & Brenowitz 2005; 

Catchpole & Slater 2008), and they are therefore known for their highly diverse and complex 

songs. Males in most songbird species have repertoires of multiple song types (MacDougall-

Shackleton 1997), and vary their patterns of song delivery depending on factors such as 

breeding status (Staicer 1996b), time of day (Nelson & Croner 1991), level of aggressive 

motivation (Järvi et al. 1980; Trillo & Vehrencamp 2005; Van Dongen 2006), and presence of 

particular conspecific neighbours (Beecher et al. 2000). 

The Family Parulidae (commonly known as the ‘wood-warblers’) is a diverse family of 

over 100 New World songbird species. Among the wood-warblers that have been studied to 
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date, many temperate-breeding migrant species, and at least one tropical resident species, 

Adelaide’s Warbler (Setophaga adelaidae; Staicer 1996a), have two distinct subsets of songs in 

their repertoires. These ‘song categories’ or ‘singing modes’ vary structurally and in context of 

use (Spector 1992). The first category (Type I or A songs) are primarily used by unpaired males 

during the daytime and are often simpler in structure, whereas the second category (Type II or B 

songs) are primarily used by paired males, especially in the dawn chorus, and are often more 

complex in structure (Spector 1992; Staicer 1996a). First category songs were traditionally 

thought to function in male-female communication, and second category songs in male-male 

interactions (Kroodsma et al. 1989), although recent experimental work suggests that both 

categories may instead deliver different messages to conspecifics of both sexes (Beebee 2004). 

Although repertoire structure and use in the Parulidae is relatively well-studied in species of 

primarily migratory genera (e.g., Setophaga, Vermivora), our knowledge of song structure and 

singing behaviour in tropical resident genera is comparatively sparse (Spector 1992; Staicer 

1996a). Furthermore, several tropical species in the genera Basileuterus, Myioborus, and 

Myiothlypis reportedly exhibit female song and male-female duets (although female song is 

likely under-reported in both migratory and resident wood-warblers; Spector 1992; Taff et al. 

2012). 

Female signals 

Studies of the structure and function of elaborate animal signals have largely focused on 

males, whereas elaborate signals in females have received less research attention (Langmore 

1998). Recent research suggests that female signals in birds are subject to similar selection 

pressures as male signals, but may be more strongly shaped by social selection (e.g., Tobias et 

al. 2011). In particular, females of many tropical bird species have bright plumage and complex 
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songs equivalent to those of males (Stutchbury & Morton 2001). Many aspects of tropical 

species’ behaviour, including the presence of female song, remain understudied (Stutchbury & 

Morton 2001), although female song has recently been acknowledged to be less rare than 

previously assumed, and also to be the ancestral state in songbirds (Odom et al. 2014). Female 

song may serve multiple functions including mutual mate attraction (Langmore et al. 1996; 

Tobias et al. 2011), territory defence (Krieg & Getty 2016), within-pair communication (Hall et al. 

2015), or female-female competition (Langmore & Davies 1997; Cain & Langmore 2015).  

Signal divergence and receiver response 

The description of geographic variation in song and plumage features between closely-

related taxa is a critical component of accurate taxonomic classification (Tobias et al. 2010). 

Although Neotropical bird diversity is extensive (Milá et al. 2012; Freile et al. 2014), we surely 

underestimate this diversity due to the lack of studies analyzing multiple phenotypic traits (e.g., 

morphology, plumage, and vocalizations) and molecular genetics (e.g., Cadena & Cuervo 2010; 

González et al. 2011; Caro et al. 2013; Sandoval et al. 2017). In particular, many Neotropical 

species and subspecies were first classified prior to the use of modern audio recording 

equipment and spectrophotometric analysis, and thus classification was based on morphological 

measurements and subjective assessments of plumage and voice differences (Ridgway 1902; 

Monroe 1968). Indeed, an increasing number of cryptic bird species (i.e. species with 

indistinguishable morphology and plumage) are now described based on acoustic divergence 

(e.g., Toews & Irwin 2008; O’Neill et al. 2011; Hosner et al. 2013). Since plumage and song are 

sexually-selected mating signals which could contribute to reproductive isolation (Coyne & Orr 

2004; Price 2008), it is critical to quantify range-wide variation in these signals to accurately 

describe taxonomic relationships. 
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To investigate the contribution of signal divergence to reproductive isolation between 

populations, it is useful to examine not only the degree of signal difference, but also whether 

animals respond differently to the signals (Seddon & Tobias 2010; Hudson & Price 2014). 

Although responses to signal divergence often align with phenotypic and genetic divergence 

(e.g., Mendelson & Shaw 2005; Uy et al. 2009; Caro et al. 2013; Greig et al. 2015), animals may 

also show strong discrimination between similar signals (e.g., Grant & Grant 2002; Tobias & 

Seddon 2009; Grace & Shaw 2012) or discriminate little between apparently divergent signals 

(e.g., Gee 2005; Dingle et al. 2010). Additionally, character displacement, where animals show 

greater signal divergence or discrimination in sympatric compared to allopatric populations, may 

reduce hybridization in sympatry when hybrids are less fit (Gerhardt 2013; Hudson & Price 

2014). Learning of signals, or learned preferences for signals, may also enhance or reduce 

reproductive isolation between populations (Verzijden et al. 2012). Learning can enhance 

reproductive isolation when animals learn to discriminate against heterotypic signals (e.g., Grant 

& Grant 2002; Seddon & Tobias 2010), but it can reduce isolation when animals instead learn 

the signals of a sympatric species or subspecies (e.g., McEntee et al. 2016; Kenyon et al. 2017). 

Experimental studies using playback of vocal signals (e.g., Grant & Grant 2002; Lemmon 2009; 

Grace & Shaw 2012) are useful to compare responses of animals to vocal variation between 

sympatric and allopatric populations, and to assess whether processes such as character 

displacement and learning are acting to enhance or reduce reproductive isolation. 

Genus Basileuterus 

The genus Basileuterus includes 11 Neotropical resident wood-warbler species 

distributed in Mexico, Central America, and South America (Curson 2010; Lovette et al. 2010; 

Chesser et al. 2016). Although several species are locally common or geographically widespread, 
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few detailed studies exist of their natural history and behaviour (reviewed in Cox & Martin 

2009). All Basileuterus species are sexually monochromatic, and some live as pairs on year-

round territories (Curson 2010). Basileuterus warblers build dome-shaped nests with a side 

entrance, and females reportedly assume all nest-building and incubation duties (Stiles & Skutch 

1989; Curson 2010), although descriptions of nesting behaviour, and even the nests themselves, 

exist for only four Basileuterus species (Skutch 1967; Greeney et al. 2005; Cox & Martin 2009). 

No detailed analyses of vocal behaviour exist of any Basileuterus species, or of any 

species in two related tropical wood-warbler genera, Myioborus and Myiothlypis (Spector 1992). 

Female song is reported in only one Basileuterus species, the Three-striped Warbler (B. 

tristriatus: Spector 1992; Donegan 2014). However, given the prevalence of female song in 

tropical songbird species overall (Odom et al. 2014) and the lack of detailed behavioural studies 

in these genera, it is likely that female song exists in other congeners. Since repertoire structure 

coincides with phylogenetic relationships in some wood-warblers (e.g., Setophaga: Spector 

1992; Wiley et al. 1994; Staicer 1996a) but not in others (e.g., Cardellina: Ammon & Gilbert 

1999; Demko et al. 2013; Geothlypis: Byers 2015), detailed vocal behaviour studies of multiple 

species within each genus are needed to compare male and female repertoire structure and use 

at the genus and family level (e.g., Price & Lanyon 2004; Price 2009; Mason et al. 2017). 

A recent phylogenetic analysis outlines generic relationships within the Family Parulidae 

(Lovette et al. 2010), and yet taxonomic classification is less well-defined at the species level. 

Species-level relationships have recently been revised within two Basileuterus clades. B. 

culicivorus and B. hypoleucus were grouped into one species based on molecular genetic 

analyses indicating monophyly (Vilaça & Santos 2010). B. tristriatus was split into three species 

based on allopatric distributions, genetic divergence, and vocal differences of Central and South 

American populations (Gutiérrez-Pinto et al. 2012; Donegan 2014). 
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The Rufous-capped Warbler 

The Rufous-capped Warbler (Basileuterus rufifrons) is a widespread Neotropical resident 

warbler found from southern Arizona to southern Colombia. The taxonomic relationships 

between subspecies of Rufous-capped Warbler is a matter of historical controversy (Ridgway 

1902; Todd 1929; Monroe 1968; Howell & Webb 1995). There are eight currently-recognized 

subspecies which differ considerably in plumage and vocalizations, but can be broadly 

categorized into two groups based on their distributions and phenotypic characteristics (Curson 

2010; Figure 1.1). The northern rufifrons group (4 subspecies: B. r. caudatus, dugesi, jouyi, and 

rufifrons) lives in dry scrub habitats in southern Arizona, Mexico, and western Guatemala, has a 

white belly contrasting with the yellow throat and breast, and has repetitive songs containing 

few syllable types. The southern delattrii group (3 subspecies: B. r. actuosus, delattrii, and 

mesochrysus) lives in semi-open habitats and tropical dry forest in southeastern Mexico, Central 

America, and Colombia and Venezuela, has solid yellow underparts, and has songs containing 

many frequency-modulated syllable types (Howell & Webb 1995; Curson 2010). The final 

subspecies, B. r. salvini, which lives in the Atlantic lowland region of southern Mexico and 

northern Central America, has intermediate plumage between the delattrii and rufifrons groups, 

including a pale yellow or mixed white-yellow belly. Although the vocalizations of B. r. salvini are 

not well-described, its songs and calls appear to be similar to those of the neighbouring 

subspecies B. r. rufifrons, with which it reportedly intergrades (Howell & Webb 1995). 

Furthermore, B. r. delattrii and B. r. rufifrons are sympatric in southern Mexico at the limits of 

their respective ranges (Howell & Webb 1995), although the extent of phenotypic intergradation 

and competitive territorial interactions between the two subspecies remains undocumented. 

Although the delattrii and rufifrons groups were historically split into two species based on 

phenotypic differences (Todd 1929), the intermediate characteristics of B. r. salvini, and the 
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possible intergradation between B. r. rufifrons and both B. r. delattrii and B. r. salvini, resulted in 

all subspecies being lumped taxonomically in subsequent analyses (Monroe 1968). No 

comprehensive phenotypic or genetic analyses have yet been conducted to resolve the 

taxonomic status of this clade (Curson 2010). 

Dissertation overview 

In my dissertation, I will describe the vocal behaviour of Rufous-capped Warblers, using 

both observational and experimental data to examine sex-specific and seasonal variation in 

vocal signal use during territorial interactions. I will also quantify range-wide phenotypic 

variation by using field and museum data to compare plumage, song, and morphology between 

Rufous-capped Warbler subspecies. Finally, I will conduct playback experiments to assess 

divergence in receiver response to vocal signals in two sympatric and potentially hybridizing 

subspecies in southern Mexico.  

In Chapter 2, I will investigate the vocal behaviour of males in a colour-banded 

population of Rufous-capped Warblers (B. r. delattrii) in Costa Rica. I will test the hypotheses 

that males show repertoire specialization by using song categories or singing modes, and by 

using particular song types during conspecific interactions. This chapter is published in the 

journal IBIS. In Chapter 3, I will describe the nest structure and nesting biology of B. r. delattrii, 

using focal observations and video monitoring of nests with colour-banded adults during the 

nest-building, incubation, and nestling periods. This chapter is published in the journal 

Ornitología Neotropical. In Chapter 4, I will use a stereo playback experiment to test how male 

and female B. r. delattrii use vocal signals during territorial interactions, and to examine whether 

vocal signal use varies seasonally. I will also provide the first description of female song 

structure and use in this species. This chapter is published in the journal Behavioral Ecology and 
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Sociobiology. In Chapter 5, I will use data from field and museum specimens and online natural 

sound libraries to assess taxonomic relationships between subspecies based on morphology, 

plumage, and vocal differences, focusing on three divergent subspecies found in southern 

Mexico: B. r. delattrii, B. r. rufifrons, and B. r. salvini. In Chapter 6, I will experimentally test 

whether warblers’ responses to the songs of two southern Mexican subspecies, B. r. delattrii 

and B. r. rufifrons, differ between sympatric and allopatric populations, and if these response 

differences potentially contribute to reproductive isolation between the two subspecies. 
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Figures 

 

Figure 1.1. Range distributions of the eight recognized Rufous-capped Warbler subspecies. The 
rufifrons group (B. r. caudatus, jouyi, dugesi, and rufifrons) are found in Arizona, Mexico, and 
western Guatemala, whereas the delattrii group (B. r. delattrii, mesochrysus, and actuosus) live 
in southern Mexico, Central America, and South America. The intermediate subspecies B. r. 
salvini (black shading) lives in the lowland Atlantic region of southern Mexico and western 
Guatemala. B. r. rufifrons (grey shading) and B. r. delattrii (yellow shading) are sympatric in 
southern Chiapas, Mexico. 
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Chapter Summary 

In the majority of songbird species, males have repertoires of multiple song types used for mate 

attraction and territory defence. The wood-warblers (Family Parulidae) are a diverse family of 

songbirds in which males of many migratory species use different song types or patterns of song 

delivery (known as ‘singing modes’) depending on context. The vocal behaviour of most tropical 

resident warblers remains undescribed, although these species differ ecologically and 

behaviourally from migratory species, and may therefore differ in their vocal behaviour. We test 

whether male Rufous-capped Warblers Basileuterus rufifrons use distinct singing modes by 

examining song structure and context-dependent variation in their songs. We recorded multiple 

song bouts from 50 male warblers in a Costa Rican population over three years to describe 

seasonal, diel, and annual variation in song structure and vocal behaviour. We found that 

Rufous-capped Warbler songs are complex, with many syllable types shared both within and 

between males’ repertoires. Males varied their song output depending on context: they sang 

long songs at a high rate at dawn and during the breeding season, but sang shortened songs in 

the presence of a vocalizing female mate. Unlike many migratory species, Rufous-capped 

Warblers do not appear to have different singing modes; they did not change the song variants 

used or the pattern of song delivery according to time of day, season, or female vocal activity. 

Our research provides the first detailed vocal analysis of any Basileuterus warbler species, and 

enhances our understanding of the evolution of repertoire specialization in tropical resident 

songbirds.  
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Introduction 

The songs of birds are multipurpose signals that serve diverse functions including mate 

attraction and territory defence (Catchpole & Slater 2008). In over 70% of songbird species, 

males have repertoires of multiple song types that may serve specialized functions (MacDougall-

Shackleton 1997, Catchpole & Slater 2008). Many species vary their use of particular song types 

or syllable types depending on breeding status, time of day, or level of aggressive motivation 

(e.g., Järvi et al. 1980; Nelson & Croner 1991; Kunc et al. 2005). Birds can also adjust their vocal 

behaviour depending on context by using different patterns of song delivery (e.g., Wiley et al. 

1994; Trillo & Vehrencamp 2005) or varying their vocal output through changes in song rate 

(e.g., Benedict et al. 2012; Szymkowiak & Kuczyński 2016) or song length (e.g., Nelson & Poesel 

2011). The evolution of specialized song types or vocal behaviour may be constrained by 

phylogeny (Mann et al. 2009), although female choice, male-male competition, and cultural drift 

likely drive repertoire diversity (Byers & Kroodsma 2009, Price 2013). Detailed vocal descriptions 

provide valuable insight into the evolution of acoustic communication and lay critical 

groundwork for comparative studies between closely-related species (e.g., Price & Lanyon 2004; 

Mann et al. 2009; Mason et al. 2017). 

In many territorial bird species with repertoires of multiple song types, males share song 

types with neighbouring males and use them during territorial interactions (e.g., Beecher et al. 

2000b; Vehrencamp et al. 2007; Camacho-Schlenker et al. 2011). Collectively, studies of such 

species suggest that song sharing is important for territory establishment and ongoing territory 

defence. For example, male Song Sparrows Melospiza melodia match song types with 

neighbours during male-male territorial interactions (Beecher et al. 2000b) and males with more 

shared songs have longer territory tenure (Beecher et al. 2000a). Males of many species use 
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their repertoires differently across years through differential repertoire use or even learning 

new songs, in order to better match the song types or syllables used by their neighbours (e.g., 

McGregor & Krebs 1989; Payne & Payne 1993; Lemon et al. 1994; Vargas-Castro et al. 2012, 

2015). Within and across species, song sharing is more prevalent in resident populations or 

short-distance migrants with high return rates than in long-distance migrants (Handley & Nelson 

2005; Yoon et al. 2013), although some migratory populations show high sharing (Foote & 

Barber 2007). While much research has explored repertoire use during the breeding season in 

temperate songbird populations, little is known about seasonal and annual variation in the vocal 

behaviour of tropical resident species. 

Tropical birds exhibit life-history traits which differ from those in temperate birds, 

including widespread year-round territoriality and long-term pair bonds, and these differences 

may influence the structure and function of their vocalizations (Stutchbury & Morton 2001). In 

tropical resident birds, singing for mate attraction and territory defence is not confined to the 

breeding season (Fedy & Stutchbury 2005; Topp & Mennill 2008; Tobias et al. 2011; Odom et al. 

2017), as it is in most temperate species (Catchpole & Slater 2008). Although detailed vocal 

analyses are few, studies of tropical resident songbirds have revealed complex behaviours such 

as song-matching with neighbouring males during territorial interactions (e.g.,Vehrencamp et al. 

2007; Price & Yuan 2011), song sharing combined with annual variation in song type use 

(Vargas-Castro et al. 2012, 2015), and use of different patterns of song delivery depending on 

context (e.g., Staicer 1996a; Molles & Vehrencamp 1999). 

The wood-warblers (Family Parulidae) are a diverse family that includes both resident 

and migratory species, and studies of the vocalizations of some migratory wood-warblers have 

revealed an interesting system of vocal behaviour. Males in the genera Setophaga, Mniotilta, 
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and Vermivora use two distinct subsets of songs or patterns of song delivery, known as ‘singing 

modes’, which vary in structure and context of use (Spector 1992). Type I songs are primarily 

used during day singing or male-female interactions and are often delivered in repeat mode (i.e. 

eventual variety, or repetition of one song type), whereas Type II songs are used during dawn 

singing or male-male interactions and are typically delivered in serial mode (i.e. immediate 

variety, or switching between multiple song types; Wiley et al. 1994; Staicer et al. 2006). Males 

of some migratory warbler species share more song types with neighbours than non-neighbours 

(Lemon et al. 1994; Beebee 2002; Janes & Ryker 2006; Demko et al. 2016), and add or drop 

songs from their repertoires between years depending on their use by neighbours (Lemon et al. 

1994; Demko et al. 2016). According to the latest phylogenetic classification of the Parulidae, 

related species tend to share similar vocal behaviour (Spector 1992; Lovette et al. 2010), 

including both temperate and tropical Setophaga warblers (Spector 1992, Staicer 1996a). 

However, recent work on the genera Cardellina (Ammon & Gilbert 1999; Demko et al. 2013) and 

Geothlypis (Byers 2015) shows that congeners can exhibit different vocal behaviour. 

Rufous-capped Warblers Basileuterus rufifrons are common tropical resident warblers 

that defend year-round territories (Contreras-González et al. 2010; Curson 2010). As with other 

Basileuterus warblers, their vocal repertoire is undescribed; temporal, seasonal, and annual 

variation in song type use or patterns of song delivery remains undocumented. The objective of 

our study is to test hypotheses related to repertoire structure and singing behaviour by 

describing song structure and vocal activity of a Costa Rican population of the subspecies B. r. 

delattrii. To test whether males have two singing modes, as do many temperate warblers, we 

investigated repertoire size and organization, and seasonal and temporal variation in use of 

different song types or patterns of song delivery. Based on the hypothesis that male Rufous-
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capped Warblers use two singing modes, we predicted that they would use specific song types 

or patterns of song delivery during particular seasons (non-breeding and breeding) or times of 

day (dawn and daytime; Spector 1992). We also investigated the potential role of repertoire 

sharing in mediating conspecific interactions by analyzing repertoire sharing between 

individuals, and annual variation in use of specific song types and syllables in the repertoire. 

Based on the hypothesis that songs are important in mediating conspecific interactions for 

Rufous-capped Warblers, we predicted that males should share more songs with neighbours 

than non-neighbours, and that use of specific song types and syllables should change across 

years (Lemon et al. 1994; Demko et al. 2016). We also briefly describe non-song vocalizations 

(calls). Our research is the first quantitative vocal analysis of any species in the tropical resident 

genera Basileuterus, Myioborus, or Myiothlypis, and provides a foundation for understanding 

the evolution of repertoire specialization in this group of tropical resident songbirds.  

Methods 

Study site and data collection 

From April to July of 2013 to 2015, we studied a colour-banded population of Rufous-

capped Warblers in Sector Santa Rosa, Área de Conservación Guanacaste, northwestern Costa 

Rica (10°51’N, 85°36’30”W). The warblers are common residents in second-growth and mature 

forest areas of this tropical dry forest. The time period of data collection coincided with the end 

of the dry (non-breeding) season (December to mid-May) and the beginning of the rainy 

(breeding) season (mid-May to November; Campos & Fedigan 2013). Over three field seasons, 

we sampled 50 focal males (2013: n = 14; 2014: n = 26; 2015: n = 31); 13 males were sampled in 

two consecutive years, and four males were sampled in all three years. We collected dawn and 
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daytime recordings of territorial males using a Marantz PMD660 digital recorder, Sennheiser 

ME62 omnidirectional microphone, and Telinga parabola. At least once per season, we collected 

continuous dawn chorus recordings for each male, beginning at the male’s first song of the 

morning (approx. 04:45 CST) until the end of the period of continuous song that we considered 

to be the dawn chorus (approx. 06:00). We collected 30–60 min daytime recordings between 

06:30 and 12:00 approximately weekly from each male. 

We captured focal birds in mist-nets using conspecific playback, and gave each bird a 

unique combination of colour-bands in order to identify individuals and differentiate between 

the sexes (Rufous-capped Warblers are sexually monomorphic). During the pre-breeding and 

breeding season (late April to July), we sexed birds in the hand by observing a cloacal 

protuberance for males or a brood patch for females. When we could not determine the bird’s 

sex based on these characteristics, we instead determined sex based on their behaviour during 

territorial observations. Only males sing a continuous dawn chorus bout, and females are the 

primary nest-builders and sole incubators (Stiles & Skutch 1989; Chapter 3). Forty-six of the 50 

focal males were colour-banded. Since the warblers have individually-distinctive song 

repertoires, we were able to confirm the identity of the four unbanded males by obtaining at 

least two recordings of a male warbler with a similar song repertoire on the same territory 

within the same year.  

Repertoire size and song organization 

Using Syrinx-PC sound analysis software (J. Burt, Seattle, WA), we annotated all male 

focal recordings and classified vocalizations at several levels of organization. We defined a 

syllable as the smallest continuous trace on a spectrogram (Catchpole & Slater 2008). We 
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categorized each syllable based on its shape, duration, and frequency bandwidth, and thus 

produced a syllable catalogue for each focal male and a syllable pool of all syllable types 

observed in all males in the population (Byers 1995). A. Demko classified all syllables; to ensure 

objectivity, a second observer classified syllables for 50 songs and obtained >95% agreement in 

classification using two inter-observer reliability scores (Chapter 4). We defined a 'song variant’ 

as a unique sequence of syllables in the same order, excluding consecutive repetitions of the 

same syllable type within a song. More generally, a ‘song’ was a syllable sequence separated by 

at least 0.5 s from another syllable sequence. 

We measured several variables in order to describe song and repertoire organization for 

all 50 males. First, we calculated the total number of syllables per song variant, and the number 

of different syllable types per song variant (Rendall & Kaluthota 2013). We then used these 

values to calculate a syllable diversity index, which is the ratio of the number of different syllable 

types to the total number of syllables (Gil & Slater 2000; dos Santos et al. 2016). We calculated 

this index for each song variant, and then calculated an average of these values across all of a 

male’s recorded song variants to obtain an average syllable diversity score for each male. A 

value of 1 indicates that every syllable within a song is used only once, whereas a value close to 

0 indicates that syllable types are frequently repeated within a song. We measured syllable 

repertoire size and song variant repertoire size, and then used Kendall’s Ƭ correlations to test 

whether these measures were correlated with the number of songs recorded (Podos et al. 1992; 

Gil & Slater 2000). 

Our recordings revealed that Rufous-capped Warbler songs are complex, and not 

visually classifiable into song types (i.e. song variants that share similar sequences of syllables) in 

contrast to many other warbler species (e.g., Byers 1995, Staicer 1996a). Therefore, we used 
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similarity indices and cluster analyses to quantify the degree of within-male repertoire 

organization, in order to determine whether a male’s song variants can be objectively grouped 

into song types (Podos et al. 1992; Gil & Slater 2000). We used the Jaccard’s distance adjusted 

for differences in song length to compare the number of syllable types shared between each of 

a male’s song variants. We used the ‘designdist’ function in the ‘vegan’ R package (Oksanen et 

al. 2017) to calculate pairwise Jaccard’s distances between all of a male’s song variants to 

produce a distance matrix (e.g., MacDougall-Shackleton et al. 2009; Sosa-López & Mennill 2013). 

The adjusted Jaccard’s coefficient, Sj (adj) was calculated as: 

(1) Sj (adj) = c /((a + b + c) - d) 

For two songs, X and Y, a was the number of unique syllables found in song X, but not in song Y; 

b was the number of unique syllables found in song Y, but not in song X; c was the number of 

shared syllables in songs X and Y; and d was the difference between the number of syllables in 

songs X and Y. We then used the ‘pvclust’ package (Suzuki & Shimodaira 2015) to test for the 

presence of clusters (song types) using hierarchical cluster analysis with average linkage. Cut-off 

values were selected for each cluster based on a boot-strapping analysis which assesses the 

probability (α = 0.05) of obtaining a specific cluster compared to randomized groupings based 

on 1000 replications. 

Seasonal and temporal variation in song use 

To test whether male Rufous-capped Warblers use distinct singing modes, we calculated 

song rate (number of songs/min), number of song variants used, syllable diversity index, and 

song duration for multiple 20-song bouts per male (total number of bouts: n = 141, number of 

males: n = 44, number of bouts per male: 1–12). A song bout was a sequence of consecutive 
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recorded songs separated by < 30 s (dos Santos et al. 2016). Song rate and song duration are 

standard measures of song output, and are known to differ between singing modes and times of 

day in other warbler species (e.g., Spector 1991; Staicer et al. 2006; Price & Crawford 2013). To 

calculate the relative occurrence of unique song variants within a bout, we calculated a 

Shannon-Wiener index using the ‘vegan’ R package (Oksanen et al. 2017). This index is often 

used to measure species richness in ecological communities, and is also useful for calculating the 

relative occurrence of commonly and rarely used song variants within a bout (Molles & 

Vehrencamp 1999). To assess whether Rufous-capped Warblers used different patterns of song 

delivery (eventual or immediate variety), we calculated the switching rate within song bouts, 

which is the number of transitions between different song variants divided by the total possible 

number of transitions (the number of songs in the bout minus 1). A switching rate of 1 indicates 

that each successive song variant in a bout is different (i.e. high-switching serial mode), whereas 

a switching rate of 0 indicates that each successive song variant is the same (i.e. low-switching 

repeat mode; Molles & Vehrencamp 1999). We were interested in whether female vocal activity 

influenced male singing behaviour, so when we recorded female calls in the background of the 

male focal recording during a song bout, we counted the female as ‘vocal’ and otherwise 

counted her as ‘silent’. It is likely that females also attend to male vocalizations even when not 

vocalizing themselves. However, since the behaviour of females was more difficult to monitor 

when they were silent, we confined our analysis to vocalizing females. Since males of warbler 

species with two song categories use primarily Type II singing during the dawn chorus (Spector 

1992), we also calculated the percentage of song variants that focal males used during both 

periods, compared to those used exclusively at dawn, for a subset of males (n = 15) with at least 

50 songs recorded in each period in any given year. 



Chapter 2: Rufous-capped Warbler Vocal Behaviour 

 

 

28 

 

We used linear mixed models to test the influence of season (non-breeding season vs. 

breeding season), time of day (dawn vs. day), whether the female vocalized near the male (vocal 

vs. silent), and the interaction effect between season and time of day on each of the response 

variables. In this analysis, we used season, time of day, season × time interaction, and female 

vocal activity as fixed effects, and bird identity as a random effect. We used likelihood ratio tests 

to estimate P-values of fixed effects, and ran post-hoc tests to quantify all significant effects 

using R’s ‘multcomp’ package (Hothorn et al. 2017). For song switching rate, we applied the 

arcsine transformation to the response variable to meet the assumptions of linear mixed model 

analysis. 

Syllable sharing 

Since male Rufous-capped Warbler repertoires consist of song variants comprised of 

combinations of syllables rather than discrete song types (Figure 2.1), we quantified repertoire 

sharing at the level of the syllable. We calculated the adjusted Jaccard’s similarity index to 

compare the presence or absence of specific syllable types in the syllable repertoires of all males 

to one another (MacDougall-Shackleton et al. 2009; Sosa-López & Mennill 2013). Using the 

pairwise sharing coefficients, we calculated the proportion of between-male syllable sharing 

within the study population. We then tested for the presence of clusters (groups of males with 

similar syllable repertoires) using hierarchical cluster analysis with average linkage, followed by 

boot-strapping analysis at α = 0.05 with 10 000 replications. We ran separate analyses for 2013 

(n = 14), 2014 (n = 26), and 2015 (n = 31). 
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Annual variation in song use 

To document annual variation in repertoire use by focal males, we analyzed syllable 

repertoires and song bouts from all males with 2–3 years of available song recordings (n = 17). 

For each male, we measured whether specific song variants or syllables were added or dropped 

across years within the male’s observed repertoire. This could indicate differential use of the 

existing song repertoire based on the presence or absence of specific neighbouring males that 

share those song types (e.g., Payne & Payne 1993; Nordby et al. 2007) or learning of new songs 

by males across years (e.g., Vargas-Castro et al. 2015). To quantify the proportion of song 

variants and syllables changed in a given male’s repertoire between years, we calculated the 

Sørensen-Dice index (Eriksen et al. 2011; Vargas-Castro et al. 2015): 

(2) SD = 1 - (2Ns / (R1 + R2)) 

In this formula, Ns is the number of song variants or syllables used in both years, R1 is the 

repertoire size in year 1, and R2 is the repertoire size in year 2. A value of 0 indicates that the 

repertoires were the same between years, and a value of 1 indicates that the entire repertoire 

composition changed between years. We converted the values to percentages in the Results. 

We conducted all statistical analyses using R v.3.4.3 (R Development Core Team 2017). 

Non-song vocalizations and female song 

In addition to male songs, we sampled calls produced by Rufous-capped Warblers on 

our focal recordings, as describing calls is a critical first step towards quantifying sex-specific 

differences in call structure and function (Digby et al. 2013; Benedict & Krakauer 2013). Owing 

to a small number of available high-quality call recordings from known-sex individuals, we 

provide a qualitative description of ‘chip’ call types recorded from male and female Rufous-
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capped Warblers during territorial interactions. We also recorded rare instances of female song 

during our focal recording collection and qualitatively describe these vocalizations.  

Results 

Male repertoire size and song organization 

Our analyses revealed that male Rufous-capped Warblers have complex vocal 

repertoires comprised of many song variants produced from a small pool of syllables. On 

average, males had repertoires of 181 ± 166 song variants (range: 22–820) and 42 ± 9 syllable 

types (range: 26–64; n = 50). There was little syllable repetition within songs; the average 

within-male syllable diversity was 0.78 ± 0.06 (range: 0.63–0.90). Since the song variant 

repertoire size was strongly correlated with the number of songs recorded (Kendall’s Ƭ = 0.63, P 

< 0.001, n = 50) which varied considerably between males (range: 62–2491), we chose a subset 

of males that had been recorded extensively (> 500 songs; n = 24) to accurately describe the 

relationship between aspects of repertoire complexity. There was a significant positive 

correlation between song variant repertoire size and the number of songs recorded (Ƭ = 0.32, P 

= 0.03, n = 24), although the syllable repertoire size was not significantly correlated with the 

number of songs (Ƭ = 0.11, P = 0.47, n = 24). Males with larger syllable repertoires did not have 

larger song variant repertoires, as syllable and song variant repertoire sizes were not 

significantly correlated (Ƭ = 0.18, P = 0.22, n = 24). Rufous-capped Warbler repertoires were not 

objectively classifiable into song types (i.e. groups of song variants that share similar sequences 

of syllables). Repertoire size estimates based on shared syllable types ranged from 1–60 song 

types (mean ± SD = 14.7 ± 14.3), and these categories were not consistent with visual 

classification of song variants based on syllable similarity. 
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Seasonal and temporal variation in song use 

Male Rufous-capped Warblers showed seasonal and temporal variation in song rate 

during active singing bouts. For song rate, there was a significant season × time of day 

interaction (Table 2.1). During the non-breeding season, males (n = 44) sang at a similar rate 

during dawn and daytime singing (estimate = -0.11 ± 0.97, t = -0.1, P = 0.91; Figure 2.2A), but 

during the breeding season, males sang at a significantly higher rate at dawn than during the 

day (estimate = 2.72 ± 0.37, t = 7.4, P < 0.001; Figure 2.2B). Female vocal activity did not have a 

significant effect on male song rate (Table 2.1).  

Song duration varied according to season, time of day, and female vocal activity. For 

song duration, there was a significant season × time of day interaction (Table 2.2). During the 

non-breeding season, songs were of similar length during both dawn and daytime singing 

(estimate = -0.03 ± 0.11, t = -0.3, P = 0.75; Figure 2.3A), but during the breeding season, males 

sang significantly longer songs at dawn than during the day (estimate = 0.20 ± 0.04, t = 4.8, P < 

0.001; Figure 2.3B). Males also sang longer songs overall during the breeding season than during 

the non-breeding season (estimate = -0.31 ± 0.05, z = -5.7, P < 0.0001). Female vocal activity had 

a significant effect on male song duration (Table 2.2); males sang shorter songs when the female 

was vocalizing compared to when she was silent (estimate = -0.11 ± 0.05, z = -2.13, P = 0.03; 

Table 2.3). 

The switching rate between song variants changed significantly with time of day 

(likelihood ratio test: χ2
1 = 3.85, P = 0.05; Table 2.S1). Switching rates were higher during dawn 

singing compared to daytime singing (estimate = -0.05 ± 0.02, z = -2.2, P = 0.03), although 

switching rates were high (mean > 0.90; Table 2.3) during both time periods. Neither song 

variant diversity (Shannon-Wiener index), syllable diversity, nor the number of song variants per 
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bout varied significantly with season, time of day, or female vocal activity (Tables 2.3, 2.S2–

2.S4). Males used many song variants exclusively during dawn or daytime singing; males (n = 15 

with the most songs recorded) used 77.3 ± 11.2% (range: 50–90%) of their song variants 

exclusively in dawn or daytime singing within a given year. 

Syllable sharing 

Males shared many syllable types with neighbours. In a cluster analysis of syllable 

similarity across all three years, 49 of the 50 focal males grouped into 3–5 clusters of males with 

similar syllable repertoires (Figure 2.4). Average syllable sharing between all males in the 

population was low (mean ± SD: Sj (adj) = 0.11 ± 0.09), but was highly variable across pairs of 

males (pairwise range: 0.01–0.90). Males shared twice as many syllables with other males within 

the same cluster (Sj (adj) = 0.16 ± 0.13; within-group range: 0.15–0.44; pairwise range: 0.02–

0.90) than with males in different clusters (Sj (adj) = 0.08 ± 0.04; pairwise range: 0.01–0.26). 

Within years, males in nearby locations at the study site had similar syllable repertoires. In 2015, 

there were three exceptions: males 92, 93, and 94 grouped vocally with males outside of their 

geographical area (Figure 2.4). Male 92 had no immediate neighbours among the other focal 

birds in the study population; males 93 and 94 in the IQ Trail area both claimed their territories 

in mid-June and likely moved there from other locations where they would have been exposed 

to different syllable and song types. Most males present in more than one year remained in the 

same cluster across years (Figure 2.4). 

Annual variation in song use 

Males varied both the syllable types and song variants used in their repertoires between 

years. Males (n = 17) changed 79.8 ± 17.0% (range: 42.6–100%) of their song variants between 
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seasons. They changed relatively few syllable types, however, showing only 8.4 ± 9.3% turnover 

of syllables between seasons (range: 0–45%). Nearly half (mean ± SD = 40.6 ± 22.5%) of the 

syllables that males changed between seasons were ‘rare’ syllables that occurred in only 1–2 

annotated songs in any given year. The percentage of rare syllables present in all of a male’s 

changed syllables varied considerably between individuals (range: 0–83.3%), and may reflect 

variation in sampling effort (i.e. rare syllables are more likely to be missed in a smaller sample of 

songs). 

Non-song vocalizations 

Male and female Rufous-capped Warblers produced call notes during a variety of 

conspecific interactions. Both sexes produced at least six different ‘chip’ call variants (Figure 

2.5A) during territorial interactions with other warblers and during foraging activities, especially 

during the non-breeding season. Females (n = 17) also gave ‘chip’ calls when vocalizing near a 

singing male partner (Figure 2.5A). Both sexes also produced high-pitched, short-duration alarm 

calls during perceived threats to their nest site or fledglings (Figure 2.5B). 

Female song 

Female Rufous-capped Warblers sing rarely. In our three-year study, we recorded 

confirmed spontaneous song from a banded female only once, on a dawn chorus recording from 

the start of the breeding season on June 4, 2015. This was the day after the first major rain 

event of the season, and the first day when we observed female warblers nest-building that 

year. The singing female had recently paired with a new mate, her former neighbour, after May 

26. In a concurrent playback study, we found that female Rufous-capped Warblers occasionally 

sing in response to conspecific playback of male songs and female calls (Chapter 4). The female 
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songs produced spontaneously during the current study were similar in structure to the songs 

females produce in response to playback, in that they were shorter with fewer syllables and 

syllable types than male songs (Chapter 4). 

Discussion 

Male Rufous-capped Warblers have large, complex repertoires of song variants 

produced from a small pool of approximately 45 syllables. In support of the hypothesis that 

Rufous-capped Warbler songs are important in mediating conspecific interactions, our results 

suggest that males may use shared songs and syllables during these interactions, given that they 

share more syllable types with neighbours than non-neighbours. They also use the same 

syllables across years, but they change the particular song variants used annually. Rufous-

capped Warblers also have complex vocal behaviour: they vary song structure and use according 

to season, time of day, and social context. In particular, males sing at the highest rates with the 

longest songs during the breeding season dawn chorus, but sing shortened songs in the 

presence of a vocalizing female. Although switching rates between songs were higher at dawn 

than during the day, males switch frequently between songs at all times of day. We did not find 

support for the hypothesis that Rufous-capped Warblers use two singing modes; in contrast to 

many wood-warblers, this species sings with immediate variety and high within-song complexity 

irrespective of time of day, breeding status, or female vocal activity. The vocal behaviour of 

Rufous-capped Warblers, which display complex and variable repertoires without apparent 

singing modes, differs from other warbler species studied to date (e.g., Spector 1992; Demko et 

al. 2013), but is similar to other songbird species with complex multi-syllable repertoires (e.g., 
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Willow Warblers Phylloscopus trochilus: Gil & Slater 2000; House Wrens Troglodytes aedon: 

Rendall & Kaluthota 2013). 

We found that although Rufous-capped Warblers do not have two distinct singing 

modes, their complex repertoires differ in structure and use from other wood-warbler species 

(reviewed in Spector 1992). Warblers with two singing modes typically only sing structurally 

complex songs with immediate variety in Type II singing (e.g., Byers 1995); in warblers with a 

single singing mode, males generally sing a single, stereotyped primary song type in most 

contexts (Lein 1981, Ritchison 1995). Apart from Rufous-capped Warblers, the only known 

single-mode singers with complex songs are three tropical Geothlypis species, which have 

elaborate songs in contrast to their other tropical resident and migratory congeners (Byers 

2015). Interestingly, many comparative studies in songbirds to date suggest that breeders in 

higher-latitude or seasonally variable habitats, rather than tropical breeders, have more 

elaborate songs, perhaps owing to heightened sexual selection pressures (e.g., Botero et al. 

2009; Weir & Wheatcroft 2011; Kaluthota et al. 2016; Xing et al. 2017). Further detailed work on 

the vocal behaviour of the tropical resident genera Basileuterus, Myioborus, and Myiothlypis is 

necessary to discern large-scale patterns in repertoire use in the Family Parulidae.  

Males show the highest song output during the breeding season dawn chorus, when 

they increase both song rate and song duration. This pattern is similar to that observed for many 

migratory warbler species (Spector 1992; Staicer et al. 1996) and the well-studied tropical 

resident Adelaide’s Warbler Setophaga adelaidae, which sings a dawn chorus only during the 

breeding season even though it is territorial year-round (Staicer 1996b). In many songbird 

species, dawn chorus singing serves to defend territories against rival males (e.g., Liu 2004; 

Amrhein & Erne 2006; Foote et al. 2011). This is a likely function of the dawn chorus in Rufous-



Chapter 2: Rufous-capped Warbler Vocal Behaviour 

 

 

36 

 

capped Warblers as well, since they appear to be more exclusively territorial in the breeding 

season. During the non-breeding season, we occasionally observed non-territorial adult 

warblers on a focal pair’s territory, but never during the breeding season (A. Demko pers. obs.). 

High song output, particularly high song rate, may also be a male signal to social or extra-pair 

female mates (e.g., Cockburn et al. 2009). In several species, males with higher dawn song rates 

within a population show reproductive benefits: they obtain a mate earlier (Hofstad et al. 2002; 

Murphy et al. 2008) or have female mates who lay eggs earlier (Poesel et al. 2001). 

Furthermore, male Field Sparrows Spizella pusilla sing at the highest rates at dawn during the 

incubation and nestling periods (Zhang et al. 2015), suggesting that high song rate in this species 

is a signal to other males and possibly extra-pair females. Further analyses examining seasonal 

variation in song output in individual warblers of known breeding status would be valuable to 

determine the function of the increased song rate and song length we observed during the 

dawn chorus. 

Male Rufous-capped Warblers sing shorter songs when their female partner is vocalizing 

nearby. This finding corresponds with a recent hypothesis suggesting that short, simple songs 

are directed to females, and better allow them to detect and compare the quality of male 

vocalizations (Price 2013). Indeed, use of short or stereotyped songs near females is 

documented for other songbird species with both single-song repertoires (Nelson & Poesel 

2011) and specialized singing modes (Ficken & Ficken 1967; Kroodsma et al. 1989). Shortened 

songs may be directed signals to stimulate the female during her fertile period, and to leave the 

nest during the incubation period, as shorter songs are thought to draw less attention from 

predators or rivals (Nelson & Poesel 2011). However, males also use long, complex songs at 

times when both male and female conspecifics would be listening, such as during the dawn 
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chorus. Therefore, variation in specific song components (e.g., song duration) may convey 

different messages to male and female conspecifics depending on context of use (e.g., Molles 

2006). Future work comparing responses of both sexes to different patterns of song delivery and 

song durations would be useful to determine the intended receivers and social function of each 

signal component. 

The finding that males in our population share many syllable types with their neighbours 

suggests that using particular song or syllable types is beneficial for territory defense during 

male-male interactions (Beecher & Brenowitz 2005). In many songbird species, males use shared 

song types or series of syllables to interact with conspecific neighbours during territorial 

boundary disputes (e.g., Beecher et al. 2000b; Anderson et al. 2005; Vehrencamp et al. 2007; 

Price & Yuan 2011). This is likely in Rufous-capped Warblers as well, since pairs establish and 

defend territories year-round using their songs (Chapter 4), and share the same neighbours over 

multiple years (this study). Since female Rufous-capped Warblers also sing during conspecific 

interactions, use of shared songs may also be important in male-female interactions. In Banded 

Wrens Thryophilus pleurostictus, a species with female singing behaviour similar to that of 

Rufous-capped Warblers (i.e. females sing shorter, less complex songs than males and do not 

sing coordinated duets), female song is primarily used in male-female communication between 

pair members and in territory defence (Hall et al. 2015). Further experimental work could clarify 

whether Rufous-capped Warblers, and other year-round resident tropical species with long-

term territory tenure across years, use particular matching songs or syllables during both 

intrasexual and intersexual conspecific interactions (e.g., Beecher et al. 2000b; Vehrencamp et 

al. 2007). 
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The large annual turnover in the specific song variants used by male Rufous-capped 

Warblers suggests benefits to changing songs over time. One explanation is that specific song 

variants convey messages to other individuals in the population, and that presence or absence 

of those individuals across seasons or years may drive annual song turnover. In many songbirds, 

males can add or drop songs or syllables in order to more closely match the repertoires of 

neighbouring males (McGregor & Krebs 1989; Lemon et al. 1994; Nicholson et al. 2007; Demko 

et al. 2016). Another explanation for the observed pattern of song sharing is cultural drift, 

whereby males vary their repertoire use over time, based on copying of specific syllables or 

variants in the population (e.g., Byers et al. 2010). In Rufous-capped Warblers, an analysis of 

countersinging bouts between neighbouring males would be necessary to evaluate whether 

males use matching songs during vocal interactions, and whether arrival or departure of specific 

neighbours affects whether a focal male uses particular song variants in a given year. 

Our study revealed that Rufous-capped Warblers have complex repertoires comprised 

of a finite number of syllables that males can recombine to produce a large number of song 

variants, or unique sequences of syllables. Syllables, rather than whole songs, appear to be the 

fundamental learned unit of the repertoire. Males share many syllable types with neighbours 

and change the song variants and syllables used across years, suggesting that both sharing and 

annual song variation are important signals to conspecifics. Males vary their singing behaviour 

primarily by increasing song rate and song duration during the breeding season dawn chorus, 

perhaps as a strategy to defend territories from other males, and by decreasing song duration 

near female mates, perhaps as an advertisement signal. Our results suggest that in contrast to 

other migratory and tropical resident warblers studied to date, Rufous-capped Warblers have 

complex repertoires and vocal behaviour without apparent singing modes. Our research thus 
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contributes towards comparative studies of repertoire specialization across the Family 

Parulidae. Our study will also inform a comparison of vocalizations and vocal behaviour with a 

northern subspecies of Rufous-capped Warbler B. r. rufifrons, which has distinct vocalizations, 

plumage patterns, and territorial behaviour from the southern B. r. delattrii (Curson 2010, 

Chapter 5).  
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Tables 

Table 2.1. Linear mixed model and post-hoc comparison results of variation in 
song rate of male Rufous-capped Warblers (n = 44) according to season, time 

of day, and female vocal activity. 
Song rate 

Full LMM  χ2 df P value 

Time of day 37.67 1 <0.001 
Season 8.92 1 0.003 
Female vocal activity 0.57 1 0.45 
Time of day × Season 7.28 1 0.007 

Post-hoc comparisons Estimate ± SE t value P value 

Breeding season    
Dawn-Day 2.72 ± 0.37         7.4 <0.001 

Non-breeding season    
Dawn-Day -0.11 ± 0.97       -0.1 0.91 
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Table 2.2. Linear mixed model and post-hoc comparison results of variation in 
song duration of male Rufous-capped Warblers (n = 44) according to season, 
time of day, and female vocal activity. Significant effects are highlighted in 
bold. 

Song duration 

Full LMM  χ2 df P value 

Time of day 16.68 1 <0.001 

Season 24.77 1 <0.001 
Female vocal activity 4.62 1 0.03 
Time of day × Season 3.90 1 0.05 

Post-hoc comparisons Estimate ± SE t value P value 

Breeding season    
Dawn-Day 0.20 ± 0.04         4.8 <0.001 

Non-breeding season    
Dawn-Day -0.03 ± 0.11       -0.32 0.75 
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Table 2.3. Comparison of acoustic variables measured from 20-song bouts (n = 141) of male 
Rufous-capped Warblers (n = 44 males). Data are summarized relative to time of day, season, 
and female vocal activity; all values are mean ± SD. The sample sizes below each category 
indicate the number of bouts analyzed. 
 Pre-breeding season Breeding season Female vocal activity 

Acoustic 
variable 

Dawn 
(n = 22) 

Day 
(n = 5) 

Dawn 
(n = 68) 

Day 
(n = 46) 

Vocal 
(n = 26) 

Silent 
(n = 115) 

Song rate 
(songs/min) 

8.33 ± 2.30 8.40 ± 2.41 10.36 ± 2.27 7.59 ± 1.46 8.38 ± 2.00 9.23 ± 2.46 

Song 
duration (s) 

2.09 ± 0.24 2.11 ± 0.20 2.44 ± 0.31 2.27 ± 0.28 2.16 ± 0.25 2.36 ± 0.32 

Number of 
song 
variants 

14.05 ± 3.47 15.00 ± 3.54 13.84 ± 3.83 14.07 ± 3.46 14.04 ± 3.88 13.97 ± 3.57 

Song variant 
diversity 

2.44 ± 0.41 2.54 ± 0.40 2.46 ± 0.38 2.47 ± 0.37 2.43 ± 0.45 2.47 ± 0.36 

Switching 
rate 

0.97 ± 0.07 0.94 ± 0.07 0.97 ± 0.05 0.95 ± 0.07 0.94 ± 0.09 0.96 ± 0.05 

Syllable 
diversity 

0.80 ± 0.08 0.82 ± 0.10 0.79 ± 0.07 0.80 ± 0.07 0.81 ± 0.08 0.79 ± 0.07 
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Figures 

 

Figure 2.1. Sound spectrograms depicting examples of four song variants from one male Rufous-
capped Warbler. This male used each syllable type in multiple song variants. For example, he 
used the same three-syllable group (in black box) at end of song A and middle of song B. 
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Figure 2.2. Male Rufous-capped Warblers (n = 44) sang at similar song rates during dawn and 
daytime singing in the non-breeding season (A), but sang at significantly higher rates during 
dawn singing than during the day during the breeding season (B). Error bars represent standard 
error around the mean. Sample sizes below bars indicate the number of song bouts analyzed. 
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Figure 2.3. Male Rufous-capped Warblers (n = 44) sang songs of similar duration during dawn 
and daytime singing in the non-breeding season (A), but sang significantly longer songs at dawn 
than during the day during the breeding season (B). Error bars represent standard error around 
the mean. Sample sizes below bars indicate the number of song bouts analyzed. 
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Figure 2.4. Male Rufous-capped Warblers clustered into 3–5 groups in 2013–2015 according to 
syllable repertoire similarity. Each group consisted of neighbouring males from the same 
location at the study site (High Forest, Cafetal Road, Junction, M Trail, and IQ Trail), except for 
birds 92 (M Trail) and 93-94 (IQ Trail) in 2015. Numbers represent individual males (2013: n = 14; 
2014: n = 26; 2015: n = 31), and colours indicate cluster membership. Breaks in 2014 and 2015 
maps indicate gaps without monitored territories; the distance between the north end of the 
bottom map and south end of the top map is approximately 650 m. 
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Figure 2.5. Examples of Rufous-capped Warbler ‘chip’ calls produced by both sexes during 
territorial interactions and foraging (A), and an alarm call used by both sexes during perceived 
threats to the nest site or fledglings (B). Calls in (A) were recorded from different individual 
males and females and represent our best-quality recordings; calls in (B) are from individuals of 
unknown sex. 

  

F
re

q
u
e
n
c
y
 (

k
H

z
)

Time (s)

0 0.25 0.5 0.75 1

7

1

9

3

5

11

Male Male Male Male MaleFemaleFemaleFemaleFemaleFemale

BA



Chapter 2: Rufous-capped Warbler Vocal Behaviour 

 

 

54 

 

Supplementary Material for Chapter 2 

Table 2.S1. Linear mixed model results of variation in switching rate of male 
Rufous-capped Warblers (n = 44) according to season, time of day, and 
female vocal activity. Significant effects are highlighted in bold. 

Switching rate 

Full LMM  χ2 df P value 

Time of day 3.85 1 0.05 
Season 2.18 1 0.14 
Female vocal activity 1.22 1 0.27 
Time of day × Season 0.57 1 0.45 
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Table 2.S2. Linear mixed model results of variation in song variant diversity 
index of male Rufous-capped Warblers (n = 44) according to season, time of 
day, and female vocal activity. No effects were significant. 

Song variant diversity index    

Full LMM  χ2 df P value 

Time of day 0.06 1 0.81 
Season 1.05 1 0.31 
Female vocal activity 0.02 1 0.88 
Time of day × Season 1.98 1 0.16 
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Table 2.S3. Linear mixed model results of variation in syllable diversity index 
of male Rufous-capped Warblers (n = 44) according to season, time of day, 
and female vocal activity. No effects were significant. 

Syllable diversity index    

Full LMM  χ2 df P value 

Time of day 0.44 1 0.51 
Season 0.06 1 0.81 
Female vocal activity 0.19 1 0.67 
Time of day × Season 0.57 1 0.45 
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Table 2.S4. Linear mixed model results of variation in number of song variants 
used by male Rufous-capped Warblers (n = 44) according to season, time of 
day, and female vocal activity. No effects were significant. 

Number of song variants    

Full LMM  χ2 df P value 

Time of day 0.19 1 0.67 
Season 2.52 1 0.11 
Female vocal activity 0.60 1 0.44 
Time of day × Season 1.80 1 0.18 

 

  



 

*This chapter is the outcome of joint research with D. Mennill. 
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Chapter 3: Nest description and nesting behaviour of the Rufous-capped 

Warbler (Basileuterus rufifrons) 
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Chapter Summary 

The breeding biology of most tropical resident bird species is little-documented, particularly for 

sexually monomorphic species in which sex-specific contributions to nest-building and nestling 

provisioning are challenging to quantify. We describe nest structure and adult behaviour 

throughout the nesting cycle for a colour-banded population of Rufous-capped Warblers 

(Basileuterus rufifrons), a widespread sexually monomorphic tropical resident songbird. Using 

focal observations of 11 nests, combined with video monitoring during the incubation and 

nestling periods, we provide new information on this species’ nesting behaviour, particularly 

sex-specific parental contributions to nest-building, incubation, and nestling care. All nests were 

dome-shaped structures with a side entrance constructed of grasses, twigs, and leaves, as is 

typical for Basileuterus warblers. Females were the primary nest-builders, although we also 

observed male-assisted nest-building at one nest, which is a rare behaviour in wood-warblers. 

Females were the sole incubators, and the incubation period in this population was 13–14 days. 

Video recordings confirmed that males and females made equivalent contributions to nestling 

feeding and nest sanitation. Our study provides detailed observations of both male and female 

Rufous-capped Warblers during all stages of the nesting cycle, and thus improves our 

understanding of nesting behaviour in this common yet little-studied species.   
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Introduction 

The breeding biology and nesting behaviour of tropical resident bird species have 

received little study compared to their temperate counterparts (Stutchbury & Morton 2001). 

Although nests are described for many tropical species, detailed observations on male and 

female behaviour during different nesting stages are uncommon. This is especially true for 

sexually monomorphic species, where the contributions of males and females are more difficult 

to observe without a colour-banded population (Cox & Martin 2009, Sandoval & Mennill 2012). 

This is the case for the Family Parulidae (New World wood-warblers), in which life-history 

descriptions of species in the monomorphic tropical resident genera Basileuterus, Myioborus, 

and Myiothlypis are scarce (reviewed in Cox & Martin 2009). All Basileuterus warblers studied to 

date have similar dome-shaped nests with a side entrance, built on or near the ground in a slope 

or under a shrub for concealment and protection from heavy rains (e.g., Rowley 1962, Skutch 

1967, Greeney et al. 2005, Cox & Martin 2009). However, descriptions of nesting behaviour, 

including nest-building, incubation, and parental provisioning of nestlings, are largely based on 

observations of unmarked individuals of unconfirmed sex. 

The Rufous-capped Warbler (Basileuterus rufifrons) is a widely-distributed resident 

songbird found from southern Arizona to northern South America. This species lives in a variety 

of semi-open habitats and dry forest from 0–3000 m a.s.l. (Contreras-González et al. 2010, 

Curson 2010). Although pairs are territorial year-round, they breed seasonally during the rainy 

season (Stiles & Skutch 1989). There are two primary subspecies groups: the white-bellied 

rufifrons group of Mexico and western Guatemala, which inhabits arid scrub and semi-open 

montane habitats; and the yellow-bellied delattrii group of southeastern Mexico, Central and 

South America, which lives in dry forest and humid semi-open habitats (Howell & Webb 1995). 
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There are previous nest descriptions of both subspecies groups. For the rufifrons group in 

Mexico, there are opportunistic observations of one nest in Jalisco (Zimmerman & Harry 1951), 

one nest in Oaxaca (Rowley 1966), and three nests in Morelos (Rowley 1962). For the delattrii 

group in Costa Rica, there is a description of one nest with eggs (Cherrie 1892), and detailed 

observations of five nests (two with eggs, three with nestlings), along with incubation and 

nestling watches on one nest each (Skutch 1967). Only the female incubates eggs and broods 

nestlings (Skutch 1967) but both parents feed nestlings (Zimmerman & Harry 1951, Skutch 

1967). 

In this study, we describe the nests, nestlings, and nesting behaviour of Rufous-capped 

Warblers, based on data collected from B. r. delattrii in northwestern Costa Rica. In particular, 

we provide the first detailed record of sex-specific nesting behaviour using a colour-banded 

population. We observed nests during the nest-building, incubation, and nestling periods, and 

we also collected video recordings of selected nests during the incubation and nestling periods. 

Methods 

We collected data from mid-May to early July 2013–2015 during the Rufous-capped 

Warbler breeding seasons at Sector Santa Rosa, Área de Conservación Guanacaste, 

northwestern Costa Rica (10°51’N, 85°36’30”W; 300 m a.s.l.). This site is a Neotropical dry forest 

with both second-growth and mature stands, where the warblers are common year-round 

residents in both habitat types. In this population, birds breed only during the rainy season, 

which typically begins in May of each year. We captured and colour-banded male and female 

warblers as part of a separate study on the territorial behaviour of this species; either one or 

both adults was colour-banded for each nesting pair included in this study. We sexed birds 

based on the presence of secondary sexual characteristics when captured (cloacal protuberance 
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for males and brood patch for females) and behaviour during focal observations (only males sing 

prolonged spontaneous song bouts). 

Nest structure 

We monitored 11 nests: one nest in 2013, four nests in 2014, and six nests in 2015. We 

located nests by following females carrying nesting material (n = 10) or adults carrying food to 

nestlings (n = 1). We monitored the number of eggs and nestlings weekly until fledging by 

conducting 20-min nest watches, after which time we approached the nest to check contents if 

the female was not on the nest. We did not flush females off nests to check nest contents, to 

minimize disturbance to incubating females. We colour-banded and weighed nestlings (n = 14) 

from five nests (1–4 young per nest) in all cases where the young survived to 8–10 days old. We 

were not able to confirm fledging dates for these nests, because fledging occurred after our field 

expeditions had concluded. We estimate that the nestling period is approximately 12 days, since 

Skutch (1967) reported a 12-day nestling period for two nests in another Costa Rican 

population, and 10-day-old nestlings in our study population were highly mobile during and 

after banding (A. Demko pers. obs.). 

We collected measurements of the nest and surrounding environment for 10 nests. One 

nest still contained small (i.e., 1–2-day old) nestlings at the end of our field expedition, so we did 

not remove the nestlings to measure the nest. We measured the inner height and width of the 

nest entrance (in mm), the horizontal depth of the nest from the entrance to the back wall (in 

mm), and the amount of tree canopy cover (estimated within 5%). We also described the overall 

nest structure and construction materials of all nests, and measured the length and width of two 

eggs from an abandoned nest and described their colour pattern. 
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Breeding behaviour 

In 2014, we collected video recordings of two warbler nests. Each recording session was 

an approximately 4-hour continuous recording between 06:30–11:00 CST; we placed video 

cameras on tripods 7–10 m away from the nest to avoid interference with normal parental 

behaviour. We recorded Nest 3 during both the incubation and nestling periods, and Nest 4 

during the nestling period only, for a total of 4 h 23 min during incubation and 8 h 4 min during 

the nestling period. We annotated the videos using VLC Media Player (v. 2.2.6). We identified 

adults by recording their colour-bands whenever possible and noted the timing and length of 

each adult visit to the nest. For both the incubation and nestling periods, we calculated nest 

attentiveness (i.e., percentage of total time spent by adults on or at the nest). For the nestling 

period only, we also observed adult behaviour during nest visits (e.g., carrying food or fecal 

sacs). We found most nests during the nest-building stage, so we also described nest-building 

activity by both males and females during 30–60 min observation periods upon nest discovery. 

Results and Discussion 

Nest structure and location 

All of the Rufous-capped Warbler nests we studied were dome-shaped structures with a 

covered top and a side entrance, and were located on or near the ground (Table 3.1). The outer 

structure of the nests was constructed of fine grasses topped with dead leaves (n = 5; Figure 

3.1A), fine grasses (n = 3; Figure 3.1B), small twigs (n = 2; Figure 3.1C), or large grasses (n = 1; 

Figure 3.1D), and all nests were lined with fine grasses. Nests measured on average 45 x 63 x 84 

mm (height x width x depth), and canopy cover above nests was 66 ± 27% (mean ± SD; range: 

25–90%; n = 10). Most nests were located on a slope, either below leaf litter and small shrubs (n 
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= 7) or below large rocks (n = 2); two nests in areas with flat terrain were located on the ground 

in a hummock (n = 1) or below a shrub (n = 1). The nest structure and placement of Rufous-

capped Warbler nests at our study site were consistent with other accounts of Basileuterus 

nests (Cox & Martin 2009) and with previous reports of this species’ nests (Cherrie 1892, 

Zimmerman & Harry 1951, Rowley 1962, Skutch 1967). 

Clutch size and egg description 

Clutch sizes were 3‒4 eggs (n = 6 confirmed completed clutches; Table 3.1). Five nests 

were abandoned or depredated before clutch completion (n = 4) or were not observed during 

incubation (n = 1). We did not collect data on the frequency or timing of egg laying, although 

other accounts suggest that females of this species lay one egg per day (Skutch 1967). We 

measured two eggs: they measured 18.6 x 13.5 mm and 18.0 x 13.5 mm, and were pinkish-white 

with brown speckles concentrated at the wider end of the egg. Clutch size and egg descriptions 

are consistent with other published accounts for this species (Cherrie 1892; Rowley 1962, 1966; 

Skutch 1967) and other Basileuterus warblers (Cox & Martin 2009). 

Nest-building behaviour 

We found 10 nests during the nest-building stage and one nest during the nestling 

stage. We found the first nests of each breeding season (n = 9) within two days of the first major 

rain event of that year (22 May 2013, 10 May 2014, and 3 June 2015), whereas we located re-

nests (n = 2) after depredation or nest abandonment up to 32 days after the first rain. Both re-

nests were newly constructed; we did not observe warblers re-using a previous nest structure. 

Females were the primary nest builders, as is reported for other temperate and tropical wood-

warbler species generally (Kendeigh 1945, Skutch 1954) and Rufous-capped Warblers specifically 
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(Skutch 1967). During observation periods, females made many trips to the nest, bringing nest 

material (e.g., grasses, twigs, leaves). The females were largely silent while nest-building, but 

occasionally uttered soft ‘chip’ calls when their male mates were nearby. While females were 

building the nest, males at 10 of 11 nests sang or produced ‘chip’ calls 3–10 m away from the 

female, and three males accompanied the female while she collected nest materials. 

We observed one male, whose sex we confirmed based on his colour-bands, bringing 

twigs to the nest twice and entering the nest once. Nest-building by males is rare in wood-

warblers (Kendeigh 1945, Skutch 1954), and ours is the first report of this behaviour in Rufous-

capped Warblers (Zimmerman & Harry 1951, Rowley 1962, Skutch 1967). The temperate-

breeding Louisiana Waterthrush (Parkesia motacilla; Mattsson et al. 2009) and the tropical 

resident Buff-rumped Warbler (Myiothlypis fulvicauda; Skutch 1954) are the only known wood-

warbler species where males and females contribute equally to nest-building (Table 3.2). 

Occasional male-assisted nest-building, such as we observed, is reported for 12 other 

temperate-breeding and two tropical resident warbler species, in which some males carry 

material to the nest but contribute much less than females (Table 3.2). We suggest that careful 

observation of other tropical resident warblers may reveal that male nest-building is more 

prevalent in this family than previously reported. 

Incubation and nestling provisioning behaviour 

Our observations during incubation and nestling periods are consistent with other 

reports in this species, in that only the female appears to incubate and brood nestlings, whereas 

both parents contribute equally to nestling provisioning (Skutch 1967). The incubation period, 

calculated as the time elapsed from the last egg laid to the first egg hatched, was 13 days for 

four nests, and 13–14 days for a fifth nest. We collected a video recording of Nest 3 on 27 June 
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2014 from 06:41–11:04 CST, when the female was incubating four eggs. The female visited the 

nest twice for an average of 0.5 visits per hour and total nest attentiveness of 78.7%. The two 

incubation bouts were 70.4 min and ≥116.5 min; the total time of the second bout was unknown 

since the female was still on the nest at the end of the recording. The male was not detected at 

or near the nest during this video. 

Our observations point to a slightly longer incubation bout length and a higher level of 

nest attentiveness than the observations of Skutch (1967). He reported average morning 

incubation bouts of 50.6 min, with the longest being 70 min, and nest attentiveness of 65.7%. 

These differences could be related to the time of the incubation period, although it was likely 

comparable between the two studies, since our nest was observed late in incubation (day 9 of 

13–14) and Skutch’s was “well advanced in incubation” (Skutch 1967). Since these differences 

could also be owing to low sample sizes, further observations at multiple intervals across the 

incubation stage with a large sample of nests would be useful to investigate patterns of within-

species variability in incubation activity. 

Nestling mass at 8–10 days old was 9.2 ± 1.1 g (range: 8–10.5 g; n = 10). Although we 

could not estimate the exact age of the nestlings because eggs hatched over a 2-day period, the 

least-developed nestlings (estimated to be 8–9 days old) had open eyes, fully feathered heads, 

large pin feathers on the wings and tail, and narrow yellow feather tracts down the sides of the 

bare belly (Figure 3.2A-B). The most-developed nestlings (estimated to be 9–10 days old) had 

fully feathered wings with buffy wing bars, and wide yellow feather tracts covering most of the 

belly (Figure 3.2C-D).  

We collected a video recording of Nest 4 on 3 June 2014 from 06:36–10:37 CST, when it 

contained four nestlings that were 1–2 days old. Adults visited the nest 11 times for an average 

of 2.4 visits per hour, with average visit length of 7.4 ± 5.6 min (mean ± SD; range: 0.4–19.7 min) 
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and total nest attentiveness of 34.3%. Female visits (n = 4) were 7.4 ± 4.6 min (mean ± SD; 

range: 2.9–12.7 min), and the female was also on the nest for the first 5.3 min of recording. The 

six remaining visits were made by unknown adults whose colour-bands were not visible on the 

video. During 5 of 10 visits, an adult brought food items to the nestlings; because of the video 

quality, we could not identify any specific food items during these visits. 

We collected a video recording of Nest 3 on 6 July 2014 from 06:39–10:42 CST, when it 

contained four nestlings of 5–6 days old. Adults visited the nest 26 times for an average of 6.4 

visits per hour. For the 21 visits of known length, the average length was 2.6 ± 5.2 min (mean ± 

SD; range: 0.1–18.7 min). The total nest attentiveness was 39.9%; on seven occasions, the male 

and female were both present at the nest at the same time. We confirmed the bird’s sex for 19 

visits. Male visits (n = 12) were all short: 0.2 ± 0.2 min (mean ± SD; range: 0.1–0.7 min). Female 

visits (n = 7) were more variable in length: 7.2 ± 7.2 min (mean ± SD; range: 0.5–18.7 min). 

During five of these seven visits, the female entered the nest for >5 min to brood the nestlings. 

During 23 of 26 visits, both adults made confirmed food deliveries to nestlings, including green 

caterpillars (n = 3 visits) and brown caterpillars (n = 1 visit; Figure 3.3). Both adults also 

contributed to nest sanitation by carrying fecal sacs away from the nest after feeding young (n = 

6 visits: 4 female, 1 male, 1 unknown adult). Overall, these video recordings suggest that males 

and females made a similar number of visits to feed nestlings, but female visits were longer 

because females often entered the nest for several minutes after feeding to brood nestlings 

rather than leaving immediately. 

Conclusion 

Our study provides new information on the nests and nesting behaviour of Rufous-

capped Warblers, particularly incubation times and sex-specific parental contributions to nest-
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building and nestling provisioning. Our work also advances our knowledge of breeding 

behaviour in a little-studied genus of tropical resident wood-warblers. Published nest 

descriptions exist for only four of the eleven Basileuterus species: Rufous-capped Warbler, 

Three-striped Warbler (B. tristriatus: Greeney et al. 2005, Cox & Martin 2009), Golden-crowned 

Warbler (B. culicivorus), and Black-cheeked Warbler (B. melanogenys: Skutch 1967). Natural 

history information on the remaining species, most of which have restricted distributions, will 

be useful not only to compare temperate and tropical wood-warbler breeding biology, but also 

to focus conservation efforts for rare species using further data on their habitat and nest site 

requirements.  
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Tables 

Table 3.1. Nest structure and contents of 11 Rufous-capped Warbler (Basileuterus rufifrons) 
nests found during the 2013–2015 breeding seasons at Sector Santa Rosa, Guanacaste, 
Costa Rica. A blank space indicates measurement not collected; an asterisk (*) indicates 
unconfirmed clutch size or nestling number. 
Nest Primary 

material 
Location Nest 

width 
(mm) 

Nest 
height 
(mm) 

Nest 
depth 
(mm) 

Cover 
(%) 

Clutch 
size 

No. of 
young 

Final 
status 

1
 

small 
twigs 

on flat 
ground; 
below 
shrub 

  
 25 3 3 nestlings 

2 fine 
grasses, 
dead 
leaves 

on slope; 
below leaf 
litter 

65 45 90 70 1 0 failed 

3 fine 
grasses 

in side of 
bank; 
below 
rocks 

60 45 75 90 4 4 nestlings 

4 fine 
grasses, 
dead 
leaves 

on slope; 
below leaf 
litter 

80 50 95 90 4 4 nestlings 

5 fine 
grasses, 
dead 
leaves 

on flat 
ground; in 
hummock 

70 60 95 90 2 0 failed 

6 fine 
grasses 

on slope; 
below 
shrub 

43 30 84  * 0 failed 

7 small 
twigs 

on slope; 
base of 
two rocks 

66 38 85  3–4*
 

3 nestlings 

8 fine 
grasses 

on slope; 
below leaf 
litter 

59 46 74 65 3 3 nestlings 

9 fine 
grasses, 
dead 
leaves 

on slope; 
below leaf 
litter 

75 48 95 35 2–3
* 

2–3
*
 nestlings 

10 large 
grasses 

on slope; 
below leaf 
litter 

46 32 75  * 0 failed 

11 fine 
grasses, 
dead 
leaves 

on slope; 
below leaf 
litter 

65 56 75  3 3 nestlings 
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Table 3.2. List of wood-warbler species (Family Parulidae) with reported frequent (males 
contribute equally to females) or occasional (males contribute rarely) male-assisted nest-
building.  

Species Breeding 
range 

Reference 

Frequent male nest-building   

Louisiana Waterthrush (Parkesia motacilla) temperate Mattsson et al. 2009 
Buff-rumped Warbler (Myiothlypis fulvicauda) tropical Skutch 1954 

Occasional male nest-building   

Blue-winged Warbler (Vermivora cyanoptera) temperate Gill et al. 2001 
Prothonotary Warbler (Protonotaria citrea) temperate Petit 1999 
Cerulean Warbler (Setophaga cerulea) temperate Boves & Buehler 2012 
Northern Parula (Setophaga americana) temperate Moldenhauer & Regelski 

2012 
Magnolia Warbler (Setophaga magnolia) temperate Dunn & Hall 2010 
Pine Warbler (Setophaga pinus) temperate Rodewald et al. 2013 
Yellow-rumped Warbler (Setophaga 
coronata) 

temperate Hunt & Flaspohler 1998 

Yellow-throated Warbler (Setophaga 
dominica) 

temperate McKay & Hall 2012 

Golden-cheeked Warbler (Setophaga 
chrysoparia) 

temperate Ladd & Gass 1999 

Black-throated Green Warbler (Setophaga 
virens) 

temperate Morse & Poole 2005 

Black-throated Blue Warbler (Setophaga 
caerulescens) 

temperate Holmes et al. 2017 

Canada Warbler (Cardellina canadensis) temperate Reitsma et al. 2009 
Tropical Parula (Setophaga pitiayumi) tropical Regelski & Moldenhauer 

2012 
Slate-throated Redstart (Myioborus miniatus) tropical Skutch 1954 
Rufous-capped Warbler (Basileuterus 
rufifrons) 

tropical this study 
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Figures 

 

Figure 3.1. Photographs of Rufous-capped Warbler (Basileuterus rufifrons) nests found at Sector 
Santa Rosa, Guanacaste, Costa Rica from April-June 2013–2015. Nests were dome-shaped with a 
side entrance and were constructed from different materials: (A) Nest 9 constructed of fine 
grasses topped with dead leaves; (B) Nest 8 constructed of fine grasses; (C) Nest 1 constructed 
of small twigs; and (D) Nest 10 constructed of large grasses. Photographs taken by A. Demko. 

  

A
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Figure 3.2. Photographs of Rufous-capped Warbler (Basileuterus rufifrons) nestlings at Sector 
Santa Rosa, Guanacaste, Costa Rica: at age 8–9 days old on 6 July 2015 from Nest 11 (A: ventral 
view; B: dorsal view) and 9–10 days old on 2 July 2015 from Nest 7 (C: ventral view; D: dorsal 
view). Older nestlings had more extensive feathering on the wings, back, and belly than did 
younger nestlings. Photographs taken by A. Demko. 
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Figure 3.3. Photographic stills taken from a video recording of (A) a banded male and (B) an 
unbanded female Rufous-capped Warbler (Basileuterus rufifrons) delivering food items to 5–6 
day old nestlings on 6 July 2014 at Sector Santa Rosa, Guanacaste, Costa Rica. Nest entrance is 
partially obscured by branches; yellow arrows indicate the nest location on the photographs. 
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Chapter 4: Male and female signaling behaviour varies seasonally during 

territorial interactions in a tropical songbird
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Chapter Summary 

In many tropical birds, both sexes use conspicuous vocal signals during territorial interactions. 

Although a growing number of studies examine male and female signals in the context of 

coordinated vocal duets, the use of vocal signals by both sexes in non-duetting species is poorly 

documented, even though these species are more numerous than duetting species. 

Furthermore, few studies of tropical non-duetting species test for seasonal variation in signaling 

behaviour. We studied season-specific and sex-specific variation in signaling behaviour of a 

tropical resident songbird, the Rufous-capped Warbler (Basileuterus rufifrons), by conducting a 

playback experiment where we simulated conspecific territorial intruders producing three types 

of vocalizations (male songs, female calls, or a ‘pair’ with simultaneous male songs and female 

calls) and a heterospecific control. We repeated playback during the pre-breeding and breeding 

seasons. Response intensity to playback varied with season and sex of the focal birds. During the 

pre-breeding season, both sexes showed strong physical approach responses and vocal 

responses to all conspecific intrusions, especially paired intrusions. During the breeding season, 

males responded strongly to all conspecific treatments, whereas females showed little response. 

Although females primarily used calls in response to conspecific playback, many females also 

sang, especially during the non-breeding season. Our results therefore suggest that both male 

and female signals are used for shared territory defence, but that the contributions of each sex 

to territory defence vary seasonally. Our results also contribute to our understanding of the 

evolution of combined male and female signaling during territory defence. 
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Introduction 

Many animals use conspicuous vocal and visual signals to communicate, including 

complex vocalizations and brightly coloured ornaments. Across taxa, these signals are known to 

function in mate attraction, competition for mates, and defence of territorial resources 

(Bradbury & Vehrencamp 2011). Traditionally, sexual selection on males to attract and compete 

for mates was thought to be the primary mechanism driving the evolution of conspicuous traits 

(reviewed in Kraaijeveld et al. 2007; Tobias et al. 2012). In many tropical birds, however, both 

males and females produce similar vocal and visual signals, and both sexes defend territories 

throughout the year (Stutchbury & Morton 2001). Furthermore, recent analyses show that male 

ornaments in dimorphic species are not necessarily sexually selected (Candolin & Tukiainen 

2015). An alternative view suggests that female signals, including vocalizations and bright 

colouration, function in competition among conspecifics for territorial resources (West-Eberhard 

1983; Tobias et al. 2012). 

Most research on female signaling in birds has focused on duetting species, where both 

members of a breeding pair sing in a coordinated manner (Hall 2004; Dahlin & Benedict 2014). 

When duets are played to territorial pairs, birds often show strong coordinated responses to 

territorial intrusions by producing more duets and staying close together (e.g., Hall and Peters 

2008; Mennill and Vehrencamp 2008; Benedict 2010; Dahlin and Wright 2012; Koloff and 

Mennill 2013). A growing body of evidence suggests that duets are multifunctional signals, and 

that birds use duets primarily in cooperative territory defence, mate-guarding, and maintaining 

contact between pair members (reviewed in Douglas and Mennill 2010; Dahlin and Benedict 

2014; Tobias et al. 2016). In contrast, the function of female vocal signals in non-duetting 

species has received little study, in spite of the fact that 84% of all bird species do not produce 
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duets (Tobias et al. 2016). Many non-duetting tropical resident species also defend shared 

territories year-round (e.g., Freed 1987). Females of these species often use calls only (e.g., 

Adelaide’s Warblers, Setophaga adelaidae; Staicer 1996) or both calls and songs that are not 

produced as duets (e.g., Banded Wrens, Thryophilus pleurostictus; Hall et al. 2015) during 

territorial interactions. 

In territorial resident birds that breed seasonally, both male and female signals might 

serve different functions across the seasons (e.g., Fedy and Stutchbury 2005; Gill et al. 2007). 

Most studies have focused on temperate zone species where territory defence is performed 

primarily by males during the breeding season (reviewed in Catchpole and Slater 2008). In 

tropical resident species, however, both sexes may be involved in territory defence and these 

behaviours may persist throughout the year (Stutchbury & Morton 2001). Previous studies 

conducted on tropical resident duetting birds during both the breeding and non-breeding 

seasons indicate that territorial responses are season- and sex-specific (Fedy & Stutchbury 2005; 

Gill et al. 2007, 2008; Odom et al. 2017). In White-bellied Antbirds (Myrmeciza longipes), both 

males and females show high levels of aggression to intruders and respond more intensely 

during the non-breeding season, providing evidence that both sexes contribute to shared 

resource defence (Fedy & Stutchbury 2005). In Buff-breasted Wrens (Cantorchilus leucotis), both 

sexes show high aggression to rival females and pairs in both seasons, suggesting both territory 

defence and female-female competitive functions for their signals (Gill et al. 2007, 2008). 

Remarkably few studies have quantified seasonal variation in vocalizations of males versus 

females for resident, non-duetting bird species (Logue 2005). Furthermore, although both 

duetting and non-duetting species often use calls for territory defence (e.g., Staicer 1996; 

Neudorf and Tarof 1998), few playback studies have presented both songs and calls to territorial 

pairs to compare conspecific responses to these signals (Sandoval et al. 2013). 
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In this investigation, we studied Rufous-capped Warblers (Basileuterus rufifrons), non-

duetting tropical resident songbirds with conspicuous male and female vocal signals, using an 

experimental approach to evaluate whether these animals exhibit season- and sex-specific 

variation in signal use. We evaluated season- and sex-specific variation in territorial behaviour in 

the context of three non-mutually-exclusive hypotheses of signal function: (1) territory defence; 

(2) intrasexual competition for mates; and (3) mate attraction (Kraaijeveld et al. 2007; Tobias et 

al. 2011). If birds use their signals primarily for territory defence, we predicted that male and 

female vocal signals would be used throughout the year in response to territorial intrusions, and 

we predicted that both sexes would respond strongly to both intersexual and intrasexual 

conspecific intruder signals (Tobias et al. 2011; Dowling & Webster 2016). Conversely, if birds 

use their signals primarily for intrasexual competition for mates, we predicted that these signals 

would be used more frequently during the breeding season, and that males and females would 

both respond more strongly to intrasexual versus intersexual signals (Tobias et al. 2011). Finally, 

if birds use their signals primarily in mate attraction, we predicted they would be used more at 

the start of the breeding season, and that males and females would respond more strongly to 

intersexual versus intrasexual signals (Tobias et al. 2011). 

Methods 

Study species 

Rufous-capped Warblers are tropical resident songbirds distributed from southern 

Arizona and northern Mexico to northern Colombia and Venezuela, from sea level up to 3000 m 

elevation (Curson 2010). They are common foliage-gleaning insectivores in semi-open habitats 

such as second-growth forest and shade coffee plantations (Perfecto et al. 2004; Jedlicka et al. 
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2006; Morrison et al. 2010; Morrison & Lindell 2011) as well as mature Neotropical dry forests 

(Stiles & Skutch 1989). Pairs typically defend territories year-round (Jedlicka et al. 2006), but 

may also participate in mixed-species foraging flocks during the non-breeding season (Hutto 

1988). Both sexes have bright, sexually monomorphic plumage (Curson 2010). In our study 

population, males sing regularly and females sing only rarely (Chapter 2), but both males and 

females produce ‘chip’ calls (Figure 4.1; females produce these calls more often than males) and 

pair members often vocalize simultaneously (i.e., the male produces songs or calls while the 

female produces calls). Females appear to produce calls in response to their partner’s songs, a 

behaviour observed in other tropical resident warbler species (Staicer 1996). 

Playback design 

We conducted playback experiments from April to June 2015 in Sector Santa Rosa of the 

Área de Conservación Guanacaste in northwestern Costa Rica (10°51’N, 85°36’30”W). Santa 

Rosa is characterized by Neotropical dry forest habitat with a pronounced dry season from 

approximately December to May (the onset of the rainy season varies from late April until early 

June), and a rainy season from approximately May to November. Rufous-capped Warblers begin 

breeding activities at the start of the rainy season (Stiles & Skutch 1989). We therefore 

conducted pre-breeding season trials on territorial pairs of warblers at the end of the dry season 

(April 28‒May 22; n = 25 pairs received playback in the pre-breeding season; the rainy season 

began on June 3 in 2015), and breeding season trials at the beginning of the rainy season (June 

8‒23; n = 21 pairs received playback in the breeding season). We conducted all trials from 

06:30‒11:00 CST, a time window that coincides with the morning period of peak vocal activity, 

while avoiding overlap with the dawn chorus when males typically sing at a higher rate (Chapter 

2). 
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We used a stereo playback design, broadcasting male and female vocalizations from 

separate speakers, to provide a natural simulation of a territorial intrusion by two individuals 

(reviewed in Douglas and Mennill 2010). We presented three treatments of conspecific 

vocalizations to pairs of territorial warblers to simulate different numbers and sexes of 

intruders: (1) Male treatment, of a male song from one speaker; (2) Female treatment, of a 

female call from one speaker; and (3) Pair treatment, of a male song and female call broadcast 

simultaneously from two separate speakers. In addition, we presented (4) a one-speaker Control 

treatment, of male vocalizations of Long-tailed Manakins (Chiroxiphia linearis), a sympatric non-

competitor bird species that is common at our study site. Each pair received one treatment on 

each of four successive days using a factorial design with randomly-selected order of stimulus 

presentation. Each set of treatments was repeated for each pair in both the pre-breeding and 

breeding seasons. To minimize time-of-day effects on response strength, trials for each pair took 

place within 30 min of the same start time across days. 

We tested the same pairs during both the pre-breeding and breeding periods, whenever 

possible, to account for individual variation in response (as in Gill et al. 2007; Akçay et al. 2014); 

16 of 25 subject pairs received playback in both periods. For the remaining five pairs, a different 

male defended a given territory during the pre-breeding and breeding periods. In seven pairs 

tested, the female was not banded, so it is possible that the female changed between periods 

and we did not detect this change. We captured one or both pair members using mist-nets and 

conspecific playback, and gave each bird a unique colour-band combination to allow for 

individual identification during trials, since both sexes look alike. We waited at least 10 days 

between the capture date and start of playback trials for all birds, and used different conspecific 

stimuli from the playback trials while luring birds into mist nets, thereby minimizing the effect of 

previous experience on playback response. We determined the sex of individuals based on the 
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presence of a cloacal protuberance for males (from April 15 through July) and a brood patch for 

females (in June and July). We also confirmed the sex of each bird behaviourally during 

territorial observations, based on continuous song during the dawn chorus for males, and 

observations of nest-building and incubation activity for females. 

We placed two speakers (model: FoxPro Scorpion TX200) 5 m apart and 1 m above the 

ground near the focal pair’s territory centre (as in Mennill 2006; Koloff and Mennill 2013); this 

allowed us to simulate a pair of birds engaging in a territorial intrusion. We chose the speaker 

locations based on 60-min territorial observation periods of each pair in early April. We placed 

small pieces of flagging tape at 1 m and 5 m distances away from each speaker to aid the two 

observers in estimating the distance of birds from the speakers during trials. All stimuli were 

broadcast at 88 dB(A) SPL (amplitude measured at 1 m from the speaker with a Casella CEL‒240 

sound level meter; Casella CEL Inc., Buffalo, NY, USA). This amplitude is a natural level for 

warbler vocalizations (e.g., Hof and Hazlett 2010) and comparable to the natural volume of 

Rufous-capped Warbler vocalizations heard in the field. 

Trials consisted of a 5 min playback period followed by a 5 min post-playback 

observation period. During each trial, two observers sat together 15‒20 m away from the 

playback speakers and recorded the trial with a Marantz PMD660 digital recorder and an 

Audiotechnica AT8015 directional microphone. Two observers were necessary to accurately 

track the behaviour of the male and female of each pair separately during the playback trials. 

Each observer dictated the horizontal and vertical distance of one bird from the speaker and 

other physical behaviours. We included any pair’s response in our analysis as long as one or 

both individuals approached within 10 m of either speaker during the 5 min playback. For the 

conspecific treatments, if there was no response during this 5 min period and the focal birds 

were not seen or heard in the territory, we assumed that they did not detect the playback 
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(territories can be >100 m across; A. Demko pers. obs.). We then waited 2 min and played the 5 

min stimulus again. If there was still no response, or if a neighbour also responded to the 

playback by approaching within 10 m or interacting with the focal birds during the trial, we 

repeated the trial on the following day. If there was still no response on the second day, we 

considered the pair to be non-responsive to that treatment. To calculate the proportion of 

responses by males and females to each playback treatment, we used only the final trial 

conducted for a specific treatment type and pair of birds. 

We recorded both physical and vocal responses from males and females separately 

during each trial. We analyzed the following four physical approach responses: (1) number of 

flights over each speaker; (2) closest approach to speaker (m); (3) latency to approach within 10 

m of the speaker; and (4) time spent within 10 m of the speaker. We analyzed the following four 

vocal responses: (1) number of songs; (2) number of calls; (3) latency to first song; and (4) 

latency to first call. For trials where males sang at least one song, we also tested whether song 

duration and number of syllables per song differed by treatment or season. We did not 

statistically compare female song duration or number of syllables per song by treatment or 

season because of the small available sample size. These response measures have been used in 

other playback studies on songbirds and are associated with strong territorial responses (e.g., 

Akçay et al. 2013; Hof and Podos 2013). Since identification of colour-banded individuals was 

central to our study and the playback stimuli were audibly distinct to the observers, we were 

unable to use blinded methods for data collection.  

Playback stimuli 

We created playback stimuli from high-quality recordings of male songs and female calls 

we collected from colour-banded male and female Rufous-capped Warblers from the study 
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population in 2013‒2014. We used male songs and female calls because they were the most 

common vocalizations recorded from each sex during naturally-occurring conspecific territorial 

interactions (A. Demko pers. obs.). We used Audition 3.0 software (Adobe, San Jose, CA, USA) to 

filter recordings with a high pass filter of 1000 Hz and to normalize the amplitude of the final 

playback files to -1 dB. All stimuli were from birds with territories at least 200 m away from the 

playback subject’s territory, and therefore presumably unfamiliar to the focal birds prior to the 

playback experiment. We used a different set of playback stimuli for each pair whenever 

possible to avoid pseudoreplication (McGregor 1992), although we were limited by the number 

of high-quality recordings of confirmed-identity animals. For male stimuli (n = 20), we used four 

different song types from each male, presented alternately at a natural daytime song rate of 6 

songs/min. Since males typically alternate between song types during daytime song bouts 

(Chapter 2), the use of multiple song types per bird was more natural than repeating only one 

song type. For female stimuli (n = 9), we used one ‘chip’ call repeated at a natural call rate of 15 

calls/min. We calculated natural song and call rates from a subset of daytime 2013‒2014 focal 

recordings from Santa Rosa (n = 10 each for males and females). We constructed pair stimuli 

using one male and one female stimulus file broadcast from separate speakers, which simulated 

the vocal behaviour of Rufous-capped Warbler pairs observed during naturally occurring 

territorial interactions (A. Demko pers. obs.). For control stimuli (n = 15), we used Long-tailed 

Manakin songs we recorded from Santa Rosa, broadcast at a rate of 9 songs/min. We used the 

same stimuli for each pair during both seasons to ensure that variation in response strength 

across seasons was unrelated to differences in acoustic properties of the playback stimuli used. 

In the cases where partnerships changed on a given territory between seasons, we used the 

same stimuli previously used at that territory. 
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Although both male and female Rufous-capped Warblers produce ‘chip’ calls, sex-

specific differences in the frequency of these calls and the behavioural context of their use 

should allow sex identification of the caller by territorial pairs during the Female and Pair 

treatments. To confirm sex-specificity of ‘chip’ calls, we conducted a paired comparison of 

structural variation in this call type between 10 mated warbler pairs, and found significant sex 

differences (Figure 4.1). Male calls had a minimum frequency that was on average, 604 Hz lower 

than the minimum frequency of females (mean ± SD males: 3237 ± 455 Hz, females: 3841 ± 626 

Hz; paired t-test, t9 = 3.55, P = 0.006), although neither maximum frequency (t9 = 1.44, P = 0.18) 

nor note duration (t9 = -0.15, P = 0.89) differed between the sexes. Songs and calls are known to 

convey different messages across bird species (Catchpole & Slater 2008), and therefore it is 

possible that the type of vocalization (song versus call) is confounded with the sex of the 

treatment type (male versus female). Therefore, different responses to the treatment types 

should be interpreted primarily in the context of seasonal effects rather than sex-specific 

effects, pending further studies comparing responses to the same vocalizations across sexes 

(e.g., testing responses to male vs. female songs and male vs. female calls). 

Male versus female song comparison 

After discovering that females sang in response to playback stimuli (see Results), we 

compared male and female Rufous-capped Warbler songs. We measured songs from 10 males 

(10 songs each randomly selected from the pool of high-quality spontaneous songs available 

from focal recordings) and 10 females (1‒18 songs each from the best-quality songs available on 

playback recordings). The males and females selected for this analysis were 10 of the mated 

pairs tested in our study. We measured seven acoustic variables on each song: song duration, 

number of syllables per song, number of syllable types, syllable diversity (number of different 
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syllable types divided by the total number of syllables per song), maximum frequency, and 

minimum frequency. We defined a syllable as the smallest continuous trace on a spectrogram 

comprising a song (Catchpole & Slater 2008), and we defined a syllable type as a syllable with 

specific spectro-temporal properties that is different from other such syllables. A. Demko 

identified all syllable types based on their frequency, shape, and duration by visual comparison 

of spectrograms. A second observer naive to the sex and identity of the individual birds 

repeated the syllable classification for a subset of 50 songs (35 male and 15 female), and we 

then compared the scores of both observers using two inter-observer reliability coefficients 

modified from Illes (2015): 

(1) Score 1 = 1 – ((a/b)/b) 

(2) Score 2 = 1 – ((c-b)absolute value/b) 

 

a was the absolute value of the mean difference between A. Demko’s and the second observer’s 

syllable count for each song; b was the mean of A. Demko’s syllable type count per song; and c 

was the mean of the second observer’s syllable type count per song. Both observers had high 

consistency in syllable classification, with similarity scores of 99.6% for Score 1, and 97.1% for 

Score 2.  

We then calculated average values within individual birds to produce a single value for 

each variable, and ran two-sample t-tests to compare these variables between sexes. We 

collected frequency measurements in Avisoft-SASLab Pro (version 5.2.09; R. Specht, Berlin, 

Germany) from the power spectrum of each song at a threshold amplitude of -20 dB from the 

peak amplitude. This method is the recommended method in order to standardize 

measurements across recordings with differing signal-to-noise ratios (Zollinger et al. 2012; 

Brumm et al. 2017). Power spectra were produced with a Hann window with FFT size of 512 and 
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frequency resolution of 62.5 Hz. We collected temporal measurements manually from 

spectrograms in Raven Pro v. 1.4 (Cornell Laboratory of Ornithology, Ithaca, NY) with the 

following settings: Hann spectrogram window with FFT size of 512, time resolution of 2.9 ms, 

and frequency resolution of 86.1 Hz. 

Analyses 

We used Syrinx PC software (J. Burt, Seattle, WA, USA) to annotate the observers’ 

narration of physical responses by the birds, as well as the vocalizations produced by the birds, 

on the recordings for each playback session, producing a time-stamped record of the behaviours 

and vocalizations of each playback subject. We analyzed physical approach responses and vocal 

responses separately, in order to quantify differences in use of visual and vocal signals in this 

species. Since many of the response variables were correlated, we used Principal Components 

Analysis (without factor rotation) on the extracted variables to produce uncorrelated composite 

variables (McGregor 1992). For males, the distance of closest approach was log-transformed 

prior to analysis to improve linear relationships between the response variables according to the 

assumptions of principal components analysis (Quinn & Keough 2002). To incorporate the two-

speaker Pair treatment in this analysis, we used the strongest response of each individual to 

either speaker for each physical response variable. Since male and female speakers were only 5 

m apart, we considered the target area for stimulus detection to be similar for the one-speaker 

and two-speaker treatments, particularly in relation to the large territories of our study species.  

For physical approach responses, the first principal component (PC1) explained 73.0% of 

the overall variation for males, and 75.7% for females. For both sexes, the PC1 loadings 

corresponded to a shorter latency to approach, a closer distance of approach, more time spent 

within 10 m of the speakers, and more flights over the speakers (Table 4.1); we refer to this PC1 
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score as “physical approach response”. For vocal responses, PC1 explained 51.1% of the overall 

variation for males, and 63.4% for females. For males and females, the PC1 loadings 

corresponded to a greater number of songs and calls produced, and a shorter latency to first 

song and first call; we refer to this PC1 score as “vocal response”. PC2 explained 40.7% of the 

variation in males and 27.3% of the variation in females. For both sexes, PC2 loadings 

corresponded to more calls and longer latency to first song, as well as fewer songs and a longer 

latency to first call (Table 4.2).  

Using the PC1 scores as the response variables for both physical approach and vocal 

responses, we ran linear mixed models using the ‘lme4’ package in R (Bates et al. 2015). We ran 

models separately for males and females with fixed effects of playback treatment (four levels: 

Male, Female, Pair, or Control) and season (two levels: pre-breeding or breeding), and pair 

identity as a random effect to account for repeated sampling of the same individuals. We 

initially included a fixed effect of treatment presentation order, but this effect was non-

significant (all P > 0.09) so we excluded it from final analyses. To estimate P-values for fixed 

effects, we conducted likelihood ratio tests comparing models with each combination of 

additive and interactive fixed effects. To quantify significant fixed effects, we conducted post-

hoc analyses using the ‘glht’ function in the ‘multcomp’ package in R (Hothorn et al. 2017). 

To account for multiple comparisons in t-tests and post-hoc tests, we used the false 

discovery rate correction with an adjusted α value based on the number of comparisons used in 

the test (Benjamini & Hochberg 1995). We conducted all analyses using R v.3.3.1 (R 

Development Core Team 2016). Values are presented as mean ± SE unless otherwise specified.  
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Results 

Overall playback response 

Both sexes of Rufous-capped Warbler responded to playback of conspecific songs and 

calls by approaching the speakers and vocalizing, and response intensity varied with season and 

sex of the focal bird. In the pre-breeding season, both males and females responded (i.e. 

approached within 10 m of the playback) to the majority of conspecific treatments (males: 95%, 

females: 73%). Both sexes had similar response rates to Pair and Female treatments (Chi-

squared test: Pair: χ2
1 = 2.4, P = 0.12; Female: χ2

1 = 1.9, P = 0.17; Figure 4.2), although females 

responded less often than males to the Male treatment (χ2
1 = 5.2, P = 0.02). In the breeding 

season, males responded to the majority of conspecific treatments (78% overall), whereas 

females responded little (29% overall; Pair: χ2
1 = 11.8, P <0.001; Female: χ2

1 = 7.7, P = 0.005; 

Male: χ2
1 = 6.10, P = 0.01; Figure 4.2). Both sexes responded little to the heterospecific Control 

stimuli (Figure 4.2). 

Physical approach responses 

Males showed strong physical approach responses to all conspecific treatments during 

both seasons, showing the strongest response to the Pair treatments (Figure 4.3A-B). There 

were significant effects of treatment (likelihood ratio test: χ2
3 = 111.8, P < 0.001) and season (χ2

1 

= 17.0, P < 0.001) on responses to playback for males. Males responded more strongly to all 

conspecific treatments than to the Control (post-hoc tests: all P < 0.001; Table 4.3A). They 

responded significantly more to Pair than Female treatments (mean ± SE: estimate = 0.63 ± 0.21, 

z = 2.9, P = 0.02), although responses did not differ between Pair and Male treatments (estimate 

= 0.47 ± 0.21, z = 2.2, P = 0.12) or Male and Female treatments (estimate = 0.16 ± 0.21, z = 0.7, P 
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= 0.88). There was no significant interaction effect between treatment and season (likelihood 

ratio test: treatment × season: χ2
3 = 7.3, P = 0.06), indicating that males showed similar 

responses to each treatment type during both seasons (Figure 4.3A-B). 

Females showed strong physical approach responses to conspecific treatments during 

the pre-breeding season, but responded very little during the breeding season (Figure 4.3C-D). 

There were significant effects of treatment (likelihood ratio test: χ2
3 = 41.2, P < 0.001) and 

season (χ2
1 = 22.8, P < 0.001) on responses to playback for females. There was also a significant 

interaction between treatment and season (χ2
3 = 11.1, P = 0.01), indicating that females differed 

significantly in their response strength to each treatment type across seasons. In the pre-

breeding season, females responded more strongly to all conspecific treatments than to the 

Control treatment (all P < 0.001; Table 4.3A, Figure 4.3C). They responded significantly more to 

Pair than Male treatments (estimate = -1.25 ± 0.41, t = -3.1, P = 0.01), although responses did 

not differ between Pair and Female treatments (estimate = -0.89 ± 0.41, t = -2.2, P = 0.14) or 

Male and Female treatments (estimate = 0.36 ± 0.41, t = 0.9, P = 0.82). In contrast, during the 

breeding season, physical approach responses were uniformly low, and did not differ 

significantly between conspecific treatments and the Control treatment (all P > 0.05; Table 4.3B, 

Figure 4.3D). 

Vocal responses 

Males showed strong vocal responses to all conspecific treatments during both seasons, 

but the relative response strength to each treatment type differed seasonally (Figure 4.4A-B). 

For vocal responses, there was a significant interaction between treatment and season 

(likelihood ratio test: χ2
3 = 10.2, P = 0.02). In the pre-breeding season, males had a stronger vocal 

response to all conspecific treatments than to the Control (all P < 0.001; Table 4.4A). They 
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responded more to Pair than to Female treatments (estimate = -1.03 ± 0.24, t = -4.3, P < 0.001), 

although the vocal response during Pair and Male treatments (estimate = -0.41 ± 0.24, t = -1.7, P 

= 0.31; Figure 4.4A) and Male and Female treatments (estimate = -0.62 ± 0.24, t = -2.5, P = 0.05) 

did not differ. During the breeding season, males had a stronger vocal response to conspecific 

treatments than to the Control treatment (all P < 0.001; Table 4.4A), although vocal response 

did not differ among conspecific treatments (all P > 0.05; Table 4.4A, Figure 4.4B). 

Male song duration differed significantly by season (likelihood ratio test: χ2
1 = 22.8, P < 

0.001) but not by treatment type (χ2
2 = 0.95, P = 0.62). Males sang significantly longer songs in 

the breeding season (mean ± SD = 2.1 ± 0.4 s) than in the non-breeding season (mean ± SD = 1.7 

± 0.4 s; post-hoc comparison estimate = -0.35 ± 0.07, z = -5.0, P < 0.001). The number of syllables 

per song also differed significantly by season (likelihood ratio test: χ2
1 = 23.6, P < 0.001) but not 

by treatment type (χ2
2 = 0.96, P = 0.62). Males sang songs with significantly more syllables in the 

breeding season (mean ± SD = 15.9 ± 3.9) than in the non-breeding season (mean ± SD = 12.5 ± 

3.7; post-hoc comparison estimate = - 3.39 ± 0.68, z = -5.0, P < 0.001). 

Females showed strong vocal responses during all conspecific treatments during the 

pre-breeding season, but responded little during the breeding season (Figure 4.4C-D). For 

female vocal responses, there was a significant interaction between treatment and season 

(likelihood ratio test: χ2
3 = 18.3, P < 0.001). In the pre-breeding season, females responded more 

strongly to all conspecific treatments than the Control treatment (all P ≤ 0.001; Table 4.4B). They 

also responded more to Pair versus Male treatments (estimate = 1.08 ± 0.34, t = 3.1, P = 0.01) 

and Pair versus Female treatments (estimate = 1.21 ± 0.34, t = 3.5, P = 0.003), although their 

vocal responses to Male versus Female treatments did not differ (estimate = 0.13 ± 0.35, t = 0.4, 

P = 0.98; Figure 4.4C). During the breeding season, female vocal responses were low, and did 
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not differ significantly between conspecific treatments and the Control treatment (all P > 0.05; 

Table 4.4B, Figure 4.4D). 

Female song 

We recorded female song, previously undocumented in Rufous-capped Warblers, during 

many conspecific playback trials. Over one-third of females in the study (36%) sang at least one 

song in response to playback, with female song recorded during 20% of pre-breeding and 6% of 

breeding season trials. Female songs were similar to male songs in minimum frequency and 

syllable structure (Table 4.5, Figure 4.5). Female songs, however, were shorter, had a higher 

maximum frequency and broader bandwidth, contained fewer syllables and syllable types, and 

had a lower syllable diversity than male songs (Table 4.5).  

Discussion 

Recent studies comparing male and female signaling in diverse animal taxa suggest that 

conspicuous signals are not only used by both sexes to attract and compete for mates, but also 

to compete with conspecifics for territories (e.g., Robinson and Kruuk 2007; Watson and 

Simmons 2010; Tobias et al. 2011; Cain and Langmore 2015; Tibbetts et al. 2015). In Rufous-

capped Warblers, a tropical resident songbird, we found both season- and sex-specific 

responses to simulated territorial intrusions. In the breeding season, males were more 

responsive than females to all conspecific treatments. This pattern of response resembles that 

of temperate bird species (Catchpole & Slater 2008) and other tropical resident species in that 

males responded more strongly than females during the breeding season (e.g., Busch et al. 

2004). In the pre-breeding season, however, responses were more equal between the sexes; at 

this time of year, both male and female Rufous-capped Warblers responded strongly to all 
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conspecific intruders, as has been observed in previous studies of tropical birds (e.g., Fedy and 

Stutchbury 2005; Gill et al. 2007, 2008). Males also sang longer songs overall during all 

conspecific treatments in the breeding season compared to the pre-breeding season. The strong 

seasonal variation in response to territorial intrusions by Rufous-capped Warblers highlights the 

importance of conducting behavioural studies across different seasons and breeding stages to 

gain a more thorough understanding of signal function in tropical resident animals. 

During the pre-breeding season, both male and female Rufous-capped Warblers showed 

strong physical approach and vocal responses to all conspecific treatments, and responded most 

strongly to the Pair treatment. Our results suggest that shared territory defence is an important 

function of this species’ vocal signals (Tobias et al. 2011; Dowling & Webster 2016). Other 

studies on tropical resident songbirds have also found strong responses by both sexes to paired 

intrusions during the non-breeding season (Gill et al. 2007, 2008) and stronger responses overall 

during the non-breeding season than the breeding season (Fedy & Stutchbury 2005). Defence of 

territorial and food resources may be critical during the non-breeding season, particularly at our 

Neotropical dry forest study site, which experiences an extended dry non-breeding season when 

food resources for warblers are especially scarce. Similarly, ecological resource defence during 

the non-breeding season is a proposed function of female signaling in Stripe-headed Sparrows 

(Peucaea ruficauda) at the same field site (Illes 2015) and White-bellied Antbirds at another site 

with a comparable climate (Fedy & Stutchbury 2005). Higher population density during the non-

breeding season related to scarcity or patchiness of food resources could also increase the 

intensity of territorial defence behaviour during this period (e.g., Wicklund and Village 1992). 

Furthermore, we conducted our study during the pre-breeding season, when intensity of 

territory and mate defence may be greater than earlier in the non-breeding season, so it could 

be useful to conduct further studies well outside of the breeding season in order to gain a 
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deeper understanding of any differences between non-breeding and pre-breeding territorial 

behaviour (e.g., Odom et al. 2017). Regardless of the drivers of territory defence during the non-

breeding and pre-breeding periods, both male and female Rufous-capped Warblers likely use 

vocal signals to defend territorial resources from conspecifics. 

During the breeding season, only males showed a strong response to conspecific 

intruders by vocalizing and approaching the speakers. This pattern of response was also found in 

the tropical resident Rufous-collared Sparrow (Zonotrichia capensis), in which males responded 

more strongly than females to intruders of both sexes during the breeding season (Busch et al. 

2004). The low female response we observed may be related to breeding stage, because 75% (6 

of 8) of females with monitored nests in our study were nest-building, egg-laying, or incubating 

during the trial period, and females are the primary nest-builders and sole incubators in this 

species (Stiles and Skutch 1989; Chapter 3). Our results therefore refute the intrasexual mate 

competition hypothesis, since males responded strongly and females responded very little 

towards all intruders during the breeding season, rather than showing stronger same-sex 

responses. Although female Rufous-capped Warblers contributed less to territory defence 

during the breeding season than did males, further studies examining territorial behaviour 

across multiple breeding stages will be useful for comparing seasonal roles of both sexes in 

territory defence (e.g., Dowling and Webster 2016). 

Male Rufous-capped Warblers showed strong responses to all conspecific treatments 

during the breeding season, whereas they responded less to the Female treatment than to Pair 

and Male treatments during the pre-breeding season. Since the focal males were all paired and 

many of their female mates were incubating on nests during the breeding season, it is possible 

that males were responding strongly to all conspecific intruders in the absence of territory 

defence by their mates during the breeding season. Conversely, males may have been signaling 
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more to the playback-simulated female during the breeding season. Our finding that males sang 

longer songs with more syllables during the breeding season than during the non-breeding 

season suggests that they modify their singing behaviour depending on the breeding status of 

their mate. In many songbird species, males increase song complexity during their female 

mate’s pre-fertile or fertile period (e.g., Ballentine et al. 2003; Zhang et al. 2015). Another 

explanation is that males approached and vocalized more to females in order to solicit extra-pair 

copulations. Rufous-capped Warblers in our study population live at high densities, suggesting 

that extra-pair mating may occur at high rates. Longer songs are also associated with increased 

extra-pair paternity and decreased loss of within-pair paternity for males in at least one other 

songbird species (Willow Warblers, Phylloscopus trochilus; Gil et al. 2007). However, any such 

interpretations should be made cautiously, because extra-pair paternity rates are currently 

unknown for Rufous-capped Warblers (Macedo et al. 2008). Although the results of our study do 

not support the mate attraction hypothesis for male vocal signals, future detailed vocal analyses 

will investigate how male Rufous-capped Warblers modify their song structure and singing 

behaviour relative to breeding status. 

Our study was the first to document female song in Rufous-capped Warblers. Although 

calls were the most common vocalization used by females in response to playback, over one-

third of females in our study population also produced song during playback trials. Female song 

is now known to be more common in birds than previously thought (Odom et al. 2014), and was 

likely overlooked in the past in species such as the Rufous-capped Warbler in which both sexes 

look alike and male and female songs are similar in acoustic structure. A recent comparative 

analysis of female trait evolution in the Parulidae revealed that female song likely evolved 

independently in different genera, suggesting that it may serve different functions across 

species (Najar & Benedict 2015). Occasional female song early in the breeding season is 



Chapter 4: Male and Female Territorial Behaviour 

 

 

97 

 

reported for at least 13 temperate zone parulid warbler species (e.g., Taff et al. 2012; Matthews 

et al. 2016). Pair bond formation is the proposed function in at least four temperate-breeding 

species: Wilson’s Warbler (Cardellina pusilla; Gilbert and Carroll 1999), Common Yellowthroat 

(Geothlypis trichas; Taff et al. 2012), Prothonotary Warbler (Protonotaria citrea; Matthews et al. 

2016), and Prairie Warbler (Setophaga discolor; Nolan 1978), and is also a possible function of 

female song in Rufous-capped Warblers. Territory defence is a more likely function of female 

song in our study species, as in duets produced by other tropical species (e.g., Hall and Peters 

2008; Benedict 2010; Dahlin and Wright 2012; Koloff and Mennill 2013) and non-duet female 

songs used by temperate and tropical songbirds (Hall et al. 2015; Krieg & Getty 2016). We 

documented the majority of female song during the Pair treatment in the pre-breeding season, 

to which both males and females responded strongly by vocalizing at high rates and approaching 

the speakers closely. Furthermore, females sang in our study population in other situations 

where a territory defence function is likely: (1) in response to continuous playback of conspecific 

songs and calls during capture attempts; (2) spontaneous song on the territory when 

unaccompanied by the male; and (3) during the dawn chorus in the first week of the breeding 

season (Chapter 2). Further studies testing seasonal responses of both male and female Rufous-

capped Warblers to female song playback would be useful to thoroughly investigate the 

function of this signal. 

Our study revealed seasonal variation in the responses of Rufous-capped Warblers to 

territorial intrusions, wherein pairs typically responded together during the pre-breeding season 

and males typically responded alone in the breeding season. We found that males primarily 

used song during shared territory defence against both single and paired conspecific intruders, 

whereas females primarily used calls. The similarity of this response pattern to other temperate 

warbler species is consistent with the proposed temperate origins of the Family Parulidae and 
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other related families (reviewed in Barker et al. 2015), and provides important evidence for 

further investigation into the evolution of duetting behaviour and female song in this clade. We 

also found that males and females may make different use of similar signals, such as song, 

depending on season or breeding status. Male Rufous-capped Warblers used song to defend 

territories during both seasons, whereas females primarily used song during the non-breeding 

season. Indeed, shared male and female signals in other species, such as complex song in Superb 

Fairy-wrens (Malurus cyaneus; Cain and Langmore 2015) and bill colour in American Goldfinches 

(Spinus tristis; Murphy et al. 2014), are also used differently by males and females. Species-

specific levels of female competition may also affect female signaling behaviour (Colombelli-

Négrel 2016), although this idea requires further investigation in our study species and other 

tropical resident species. Overall, our research provides support for the shared territory defence 

hypothesis for both male and female Rufous-capped Warblers. In addition to paralleling results 

of conspecific intrusion studies on other tropical species (e.g., Fedy and Stutchbury 2005; Gill et 

al. 2007, 2008), our study demonstrates that seasonality influences the territorial behaviour of 

both sexes in a year-round resident songbird. It also highlights that females of a non-duetting 

tropical songbird participate in shared territory defence as effectively as duetting species, by 

using vocal signals such as calls and songs not produced as duets. Future studies incorporating 

playback of multiple types of male and female vocalizations (such as male calls and female 

songs), or using visual models to experimentally test responses to visual signals, will be useful to 

further understand the relative importance of vocal and visual signals, and seasonal variation in 

use of such signals, in the territorial behaviour of tropical animals. 
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Tables 

 

 

  

Table 4.1. Summary of correlations between physical approach response 
variables for first principal component in two separate principal 
components analyses, one for male responses to playback, and one for 
female responses to playback. 

 Male PC1 Female PC1 

Eigenvalue 2.92 3.03 
Percentage of variation (%) 73.0 75.7 
Latency to approach within 10 m -0.55 -0.55 
Closest approach -0.53 -0.52 
Time spent within 10 m 0.55 0.54 
Number of flights over speaker 0.34 0.37 
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Table 4.2. Summary of correlations between vocal response variables for first 
and second principal components in two separate principal components 
analyses, one for male responses to playback, and one for female responses to 
playback. 

 Male PC1 Male PC2 Female 
PC1 

Female 
PC2 

Eigenvalue 2.05 1.63 2.54 1.09 
Percentage of variation (%)  51.1 40.7 63.4 27.3 
Number of songs 0.62 -0.33 -0.46 0.59 
Number of calls 0.19 0.70 -0.51 -0.48 
Latency to first song -0.65 0.24 0.53 -0.42 
Latency to first call -0.40 -0.58 0.50 0.49 
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B. Female physical approach response (PC1) 

Full LMM  χ2 df P value 

Treatment 41.2 3 <0.001 
Season 22.8 1 <0.001 
Treatment × Season 11.1 3 0.01 

Post-hoc comparisons Estimate ± SE t value P value 

Breeding season    
Control – Female -0.90 ± 0.44 -2.0 0.17 
Control – Male -1.14 ± 0.44 -2.6 0.05 
Control – Pair -0.97 ± 0.44 -2.2 0.13 
Female – Male -0.25 ± 0.44 -0.6 0.95 
Female – Pair -0.07 ± 0.44 -0.2 1.0 
Male – Pair 0.18 ± 0.44 0.4 0.98 

Pre-breeding season    
Control – Female -2.01 ± 0.41 -4.9 <0.001 
Control – Male -1.65 ± 0.41 -4.0 <0.001 
Control – Pair -2.90 ± 0.41 -7.1 <0.001 
Female – Male 0.36 ± 0.41 0.9 0.82 
Female – Pair -0.89 ± 0.41 -2.2 0.14 
Male – Pair -1.25 ± 0.41 -3.1 0.01 

  

Table 4.3. Linear mixed model and post-hoc comparisons results of physical 
approach response (PC1) for male (A) and female (B) Rufous-capped 
Warblers in response to playback. Significant effects (after false discovery 
rate correction) are highlighted in bold. 

A. Male physical approach response (PC1) 

Full LMM  χ2 df P value 

Treatment 111.8 3 <0.001 
Season 17.0 1 <0.001 
Treatment × Season 7.3 3 0.06 

Post-hoc comparisons Estimate ± SE z value P value 

Both seasons    
Control – Female 1.66 ± 0.21 7.7 <0.001 
Control – Male 1.82 ± 0.21 8.5 <0.001 
Control – Pair 2.29 ± 0.21 10.7 <0.001 
Female – Male 0.16 ± 0.21 0.7 0.88 
Female – Pair 0.63 ± 0.21 2.9 0.02 
Male – Pair 0.47 ± 0.21 2.2 0.12 
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B. Female vocal response (PC1) 

Full LMM  χ2 df P value 

Treatment 35.4 3 <0.001 
Season 21.1 1 <0.001 
Treatment × Season 18.3 3 <0.001 

Post-hoc comparisons Estimate ± SE t value P value 

Breeding season    
Control – Female 0.72 ± 0.37 1.9 0.22 
Control – Male 0.74 ± 0.37 2.0 0.19 
Control – Pair 0.47 ± 0.37 1.3 0.58 
Female – Male 0.03 ± 0.37 0.1 1.0 
Female – Pair -0.25 ± 0.37 -0.7 0.91 
Male – Pair -0.27 ± 0.37 -0.7 0.88 

Pre-breeding season    
Control – Female 1.44 ± 0.35 4.1 <0.001 
Control – Male 1.57 ± 0.35 4.5 <0.001 
Control – Pair 2.65 ± 0.34 7.7 <0.001 
Female – Male 0.13 ± 0.35 0.4 0.98 
Female – Pair 1.21 ± 0.34 3.5 0.003 
Male – Pair 1.08 ± 0.34 3.1 0.01 

  

Table 4.4. Linear mixed model and post-hoc comparisons results of male (A) 
and female (B) vocal responses (PC1) of Rufous-capped Warblers to 
playback. Significant effects (after false discovery rate correction) are 
highlighted in bold. 

A. Male vocal response (PC1) 

Full LMM  χ2 df P value 

Treatment 115.7 3 <0.001 
Season 9.5 1 0.002 
Treatment × Season 10.2 3 0.02 

Post-hoc comparisons Estimate ± SE t value P value 

Breeding season    
Control – Female -1.34 ± 0.26 -5.1 <0.001 
Control – Male -1.37 ± 0.26 -5.3 <0.001 
Control – Pair -1.41 ± 0.26 -5.4 <0.001 
Female – Male -0.03 ± 0.26 -0.1 1.0 
Female – Pair -0.07 ± 0.26 -0.3 0.99 
Male – Pair -0.04 ± 0.26 -0.2 1.0 

Pre-breeding season    
Control – Female -1.31 ± 0.24 -5.4 <0.001 
Control – Male -1.93 ± 0.24 -8.0 <0.001 
Control – Pair -2.34 ± 0.24 -9.8 <0.001 
Female – Male -0.62 ± 0.24 -2.5 0.05 
Female – Pair -1.03 ± 0.24 -4.3 <0.001 
Male – Pair -0.41 ± 0.24 -1.7 0.31 
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Table 4.5. Comparison of seven acoustic variables of male and female Rufous-capped 
Warbler songs. All values are mean ± SD, and significant t-test results are highlighted in 
bold. 

Acoustic variable Males 
(n = 10) 

   Females 
   (n = 10) 

 

t value P value 

Maximum frequency (kHz) 8.06 ± 0.23 8.70 ± 0.34 4.97 <0.001 
Minimum frequency (kHz) 3.28 ± 0.17 3.23 ± 0.32 -0.44 0.67 
Bandwidth (kHz) 4.77 ± 0.29 5.47 ± 0.40 4.45 <0.001 
Song duration (s) 2.37 ± 0.26 1.26± 0.28 -9.18 <0.001 
Total number of syllables 17.57 ± 2.73 7.23 ± 1.83 -9.96 <0.001 
Number of syllable types 14.24 ± 2.53 4.81 ± 1.64 -9.88 <0.001 
Syllable diversity 0.81 ± 0.05 0.68 ± 0.16 -2.31 0.04 
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Figures 

 

Figure 4.1. Sound spectrograms of male and female Rufous-capped Warbler ‘chip’ calls of two 
types. Male and female calls are similar in structure, but male calls have a lower average 
minimum frequency than female calls. 
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Figure 4.2. The responses of Rufous-capped Warbler males (A) and females (B) to four playback 
treatments (heterospecific control, conspecific female calls, conspecific male songs, or both 
conspecific female calls and male songs) during the pre-breeding season (left) and the breeding 
season (right). Males responded to all conspecific treatments during both seasons, while 
females responded primarily in the pre-breeding season. 
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Figure 4.3. Male Rufous-capped Warblers responded more strongly to Pair treatments than to 
Female treatments during both the pre-breeding (A) and breeding (B) seasons. Females 
responded more strongly to Pair treatments than to Male treatments during the pre-breeding 
season (C) and responded weakly to all conspecific treatments during the breeding season (D). A 
higher PC 1 score indicates stronger response intensity to playback. Error bars indicate mean ± 
SE of PC 1 scores, and letters above bars denote statistical significance. 
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Figure 4.4. Males had stronger vocal responses to Pair treatments than to Female treatments 
during the pre-breeding season (A), but responded strongly to all conspecific treatments during 
the breeding season (B). Females had a stronger vocal response to Pair than to Male and Female 
treatments during the pre-breeding season (C), but responded little to all conspecific treatments 
during the breeding season (D). A higher PC 1 score indicates stronger response intensity to 
playback. Error bars indicate mean ± SE of PC 1 scores, and letters above bars denote statistical 
significance. 
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Figure 4.5. Sound spectrograms of male (A-B) and female (C-D) Rufous-capped Warbler songs 
from two mated pairs (A/C and B/D) in Santa Rosa, Costa Rica. Male and female songs share a 
similar syllable structure and organization. Examples of syllable types shared by males and 
females are enclosed in boxes for male song (B) and female song (D). 
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Chapter Summary 

Neotropical biodiversity is considerable, but it is likely underestimated owing to historical gaps 

in our sampling effort and our focus on morphological features of animals rather than 

divergence in their mating signals and behaviour. Recent multi-trait analyses incorporating 

morphological, plumage, and vocal data, combined with molecular analyses, allow more 

accurate descriptions of tropical diversity. We present a comprehensive study of morphological, 

plumage, and vocal variation in the Neotropical resident Rufous-capped Warbler (Basileuterus 

rufifrons). This species’ taxonomic status is controversial because the B. r. salvini subspecies is 

intermediate in plumage between neighbouring B. r. delattrii and B. r. rufifrons, and because 

delattrii and rufifrons also reportedly hybridize in a zone of sympatry. Using morphological and 

spectral plumage measurements of field and museum specimens, and vocalizations from field 

recordings and natural sound libraries, we compared phenotypes of all eight recognized 

subspecies. We found that B. r. delattrii and B. r. rufifrons differ significantly in morphology and 

plumage, whereas B. r. salvini is similar to B. r. rufifrons rather than being intermediate for most 

plumage features. Vocalizations fall into two distinct groups, delattrii and rufifrons-salvini; these 

two groups differ in multiple acoustic characteristics with no overlap even between individuals 

from the delattrii-rufifrons zone of sympatry. Our results suggest that Rufous-capped Warblers 

comprise two distinct groups, Rufous-capped Warblers (B. r. rufifrons and salvini as well as B. r. 

caudatus, dugesi, and jouyi) and Chestnut-capped Warblers (B. r. delattrii as well as B. r. 

actuosus and mesochrysus), and provide evidence for a revision of the species’ current 

taxonomic status. Future genomic analysis of samples from multiple sites in Mexico and Central 

America will further refine our assessment of range-wide phenotypic and genetic divergence in 

this species complex.  
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Introduction 

The Neotropics exhibit high biodiversity, with a wide variety of habitats promoting local 

adaptation and reproductive isolation (Pérez-Emán 2005; Cadena et al. 2007; Smith et al. 2014). 

Although biodiversity remains greatly underestimated in tropical species (Milá et al. 2012; Freile 

et al. 2014), recent advances in the use of multi-trait phenotypic analyses in systematics 

research are revealing previously undocumented variation (e.g., Cadena & Cuervo 2010; 

González et al. 2011; Caro et al. 2013; Sandoval et al. 2017). The resulting taxonomic 

refinements allow researchers to more accurately describe tropical diversity and focus 

conservation efforts (e.g., Haig & D’Elia 2010). 

Although Neotropical birds are well-studied compared to other taxa, particularly non-

vertebrates, many historical subspecies descriptions were based on specimens collected prior to 

the use of audio recordings of vocalizations and spectrophotometric analyses of plumage colour, 

and therefore morphology and subjective impressions of plumage colouration were the primary 

traits used for classification (e.g., Ridgway 1902; Monroe 1968). Since birdsong is a sexually-

selected mating signal (Catchpole & Slater 2008), song divergence between populations may 

promote reproductive isolation even when morphology and plumage vary little (Toews & Irwin 

2008; Dingle et al. 2010). In fact, many cryptic species in both temperate and tropical regions 

have recently been described based largely upon vocal differences (e.g., Toews & Irwin 2008; 

O’Neill et al. 2011; Hosner et al. 2013). However, a lack of range-wide data on vocalizations, 

particularly from hybrid or contact zones, means that taxonomic relationships remain unclear 

even for widespread species (e.g., González et al. 2011). In order to assess the degree of 

reproductive isolation between closely-related populations, researchers should therefore 

compare phenotypes both within and outside secondary contact or hybrid zones. Gradual or 
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clinal variation would indicate limited reproductive isolation between groups, whereas more 

abrupt changes would indicate strong isolation (e.g., the groups overlap in range but do not 

interbreed; Toews & Irwin 2008). 

The Rufous-capped Warbler (Basileuterus rufifrons) is a common resident warbler 

species distributed in Arizona, Mexico, Central America, and South America whose taxonomic 

status has long been disputed (Ridgway 1902; Todd 1929) because of considerable variation in 

plumage and vocalizations throughout its range (Curson 2010). Eight subspecies are recognized, 

seven of which fall into two plumage-based groups: (1) the northern, white-bellied rufifrons 

group of southern Arizona, Mexico, and western Guatemala (B. r. caudatus, dugesi, jouyi, and 

rufifrons); and (2) the southern, yellow-bellied delattrii group of southeastern Mexico, Central 

America, and Colombia and Venezuela (B. r. actuosus, delattrii, and mesochrysus; Curson 2010; 

Figure 5.1). Songs of both males and females also differ between these two groups; rufifrons 

group songs have trilled, repetitive syllables, whereas delattrii group songs have varied, 

frequency-modulated syllables (Howell & Webb 1995; Curson 2010; Chapter 2). The eighth 

subspecies, B. r. salvini, found in the lowland Atlantic area of southern Mexico and northern 

Central America, is intermediate between the delattrii and rufifrons groups: it has a pale yellow 

or mixed white-yellow belly, although other features such as crown colour resemble the 

rufifrons group (Friedmann et al. 1957; Curson 2010). However, comparisons of B. r. salvini 

vocalizations to those of the delattrii and rufifrons groups are contradictory (Monroe 1968; 

Howell & Webb 1995), and no previous analyses have quantified vocal differences between any 

Rufous-capped Warbler subspecies. Furthermore, the delattrii group, rufifrons group, and B. r. 

salvini differ broadly in their habitat preferences. Whereas birds in the delattrii group inhabit dry 

to semi-humid deciduous forest (e.g., tropical dry forest) and second-growth habitat (e.g., coffee 

plantations) between 0‒1500 m a.s.l., birds in the rufifrons group live in dry scrub, semi-open, 
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and second-growth habitats between 0‒3000 m a.s.l., most commonly at mid- to high-elevation 

(>1000 m a.s.l.), and B. r. salvini live in semi-open and second-growth lowland habitats (0‒500 m 

a.s.l.; Curson 2010). Based on the disputed status of B. r. salvini, some authorities have 

historically lumped all subspecies together (Ridgway 1902; Monroe 1968), whereas others have 

split them into the Rufous-capped Warbler B. rufifrons (i.e. “the rufifrons group” and B. r. salvini) 

and the Chestnut-capped Warbler B. delattrii (i.e. “the delattrii group”; Todd 1929; Howell & 

Webb 1995). 

Over the past century, the Rufous-capped Warbler taxon has been repeatedly split and 

lumped with the addition of new data throughout the species’ range. The first range-wide 

classification of this clade (Ridgway 1902) considered all subspecies to be conspecific because of 

the similar belly and upperpart colouration of the delattrii group and B. r. salvini. However, 

subsequent work classified the delattrii group as a separate species from the rufifrons group and 

B. r. salvini based on the delattrii group’s positive wing-tail ratio (wing longer than tail), all-

yellow breast and belly, chestnut crown and auricular, and absence of a white lower auricular 

patch (Todd 1929; Figure 5.2). All subspecies were once again grouped together based on the 

work of Monroe (1968), who combined B. r. delattrii and B. r. salvini because of reported 

hybridization between the two subspecies in eastern Guatemala, El Salvador, and Honduras. 

Despite stating that “there are no apparent differences in song pattern, ethology, or 

morphology” between B. r. delattrii and B. r. salvini, Monroe (1968) supplied no supporting 

information on the vocalizations or behaviour of either subspecies. In their comprehensive field 

guide to Mexican birds, Howell & Webb (1995) favoured a species split. They argued that: (1) B. 

r. salvini are not found in El Salvador and Honduras, so they could not interbreed with B. r. 

delattrii there; (2) there are no confirmed hybrids between B. r. delattrii and either B. r. rufifrons 

or B. r. salvini; and (3) plumage features (e.g., belly, crown, and auricular colour) and song are 
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similar between B. r. rufifrons and B. r. salvini whereas both differ markedly from B. r. delattrii. 

They also reported that B. r. delattrii and B. r. rufifrons are sympatric in southeastern Mexico 

and western Guatemala (Howell & Webb 1995), although the presence of hybridization in this 

contact zone needs confirmation. 

Our objective was to conduct a comprehensive study of Rufous-capped Warbler 

morphological, plumage, and vocal variation in order to resolve the taxonomic status of this 

clade. Our main focus was to assess whether B. r. salvini is intermediate between, or more 

similar to either, the delattrii and rufifrons groups; and to compare individual birds’ phenotypes 

in the B. r. delattrii and B. r. rufifrons contact zone to evaluate the presence and extent of 

hybridization. Using audio recordings of vocalizations and spectrophotometric measurements of 

plumage colour collected throughout this species’ range, we sought to re-assess taxonomic 

relationships within the Rufous-capped Warbler clade. 

Methods 

Morphology 

We measured Rufous-capped Warbler specimens from 11 natural history museums. We 

aimed to sample both sexes evenly within geographical regions, and included only adult birds of 

known sex in our final analyses (n = 261 males and 180 females). We also included 

morphological field data collected from 250 live birds (n = 195 males and 55 females) in Costa 

Rica and southern Mexico from 2013–2017. The same observer (A. Demko) collected all field 

and museum measurements. A comparison between field and museum data showed that the 

majority of measurements did not differ significantly between the two sampling methods 

(Supplementary Methods 1; Table 5.S1). Although our field and museum data set spanned the 
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entire range distribution of the species and all documented subspecies, our primary focus was 

on southern Mexico and northern Central America (Guatemala, Honduras, and El Salvador), the 

region of reported sympatry and hybridization between B. r. delattrii, B. r. rufifrons, and B. r. 

salvini (Monroe 1968; Howell & Webb 1995). 

For each individual, we measured six standard morphological traits (e.g., Cadena & 

Cuervo 2010; Halley et al. 2017): wing chord (unflattened wing length), tail length, tarsus length, 

bill length (nares to tip), and bill depth and bill width (both measured at anterior end of nares). 

We measured wing and tail to the nearest 0.5 mm with a wing ruler, and tarsus and bill to the 

nearest 0.05 mm with dial calipers. For each sex separately, we ran MANOVA and Discriminant 

Function Analysis (DFA) to assess whether individuals could be reliably grouped into subspecies 

and plumage groups, and used the leave-one-out cross-validation (LOOCV) method to 

determine the most diagnostic morphometric variables (e.g., Sandoval et al. 2017). We analyzed 

data using three classifications: (1) all subspecies divided into three plumage-based groups 

(yellow-bellied delattrii group, white-bellied rufifrons group, and B. r. salvini); (2) three 

extensively-sampled subspecies with sympatric or parapatric distributions in southern Mexico 

(B. r. delattrii, B. r. rufifrons, and B. r. salvini); and (3) all eight subspecies separately. To 

compare each plumage group and subspecies, we ran ANOVA and diagnosability index tests for 

the most diagnostic traits in each DFA (Patten & Unitt 2002; Sandoval et al. 2017). The 

diagnosability test was done at the 75% level; positive values of this index indicate that the trait 

is diagnosable between groups, whereas negative values indicate that the trait is not 

diagnosable (Patten & Unitt 2002). We also ran ANOVA comparing the wing-tail ratio (wing 

length minus tail length) between groups, because of previous reports of subspecific variation in 

this trait wherein the rufifrons group have shorter wings than tails and the delattrii group have 

longer wings than tails (Todd 1929). 
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Plumage 

To compare overall plumage patterns across individuals, we took digital photographs of 

the dorsal, ventral, and left and right sides of each museum specimen (n = 261 males and 180 

females). Using these photographs, we measured two plumage traits varying between 

subspecies. The first trait was the extent of white in the auricular; birds had either a white patch 

below the eye extending to the cheek, or a small white spot below the eye. The second trait was 

the extent of yellow plumage coverage on the breast and belly, calculated by dividing the total 

length from chin to lower edge of the yellow breast patch by the total body length from chin to 

cloaca measured using the measurement tool in GIMP2 photo editor. We scored specimens with 

an entirely yellow breast and belly as 1 (100%) for this trait. 

We collected five spectral reflectance measurements from each of 10 plumage patches 

per specimen: belly, breast, crown, mantle (upperparts), nape, rump, shoulder, tail, throat, and 

wing. We then averaged the five measurements within a plumage patch to obtain one 

measurement per patch for each individual. In cases where a particular plumage patch was 

damaged or missing on a specimen (e.g., missing tail feathers), we excluded that measurement 

from the analysis. We collected plumage reflectance measurements using an Ocean Optics USB 

2000 reflectance spectrometer and PX-2 pulsed xenon lamp (Ocean Optics, Dunedin, FL, USA). 

The fiber-optic probe was fitted with a rubber tip to maintain the probe at a fixed distance of ~5 

mm from the surface being measured, perpendicular to the surface, and to exclude external 

light. We calibrated the readings using a Spectralon white standard (Ocean Optics, Dunedin, FL, 

USA) after every 10 specimens measured.  

We ran Principal Components Analysis (PCA) with the correlation matrix to produce 

composite response variables, using as original variables the mean reflectance values in 10 nm 



Chapter 5: Two Subspecies Groups of Rufous-capped Warbler 

 

 

122 

 

bins between 300‒700 nm (Montgomerie 2006). Given the absence of UV reflectance in the 

pigments of the crown, we ran two PCAs: one for the crown patch only, and the other for the 

remaining nine plumage patches. We excluded individuals labelled as juveniles on the museum 

tags, and those with visibly juvenile plumage (e.g., buffy underpart colour). We therefore 

included only adult birds of known sex in our final analyses (n = 261 males and 180 females for 

the all-subspecies analysis; and n = 183 males and 136 females for the three-subspecies 

analysis). We ran separate PCAs for the all-subspecies and three-subspecies analyses, and 

included all principal components (PCs) with eigenvalues >1 in subsequent analyses. We 

describe the most influential PCs below for the all-subspecies analysis. PC loadings and 

eigenvalues were similar for the three-subspecies analysis, and are described in Supplementary 

Methods 2.  

For the crown patch, PC1 accounted for 79.5% of the variation (eigenvalue: 32.6) with 

negative loadings across the 300‒700 nm range, and was negatively associated with brightness. 

PC2 accounted for 15.1% of the variation (eigenvalue: 6.2) with negative loadings from 300‒510 

nm and increasingly positive loadings from 520‒700 nm, and was positively associated with 

redness. PC3 represented 4.4% of the variation (eigenvalue: 1.5) with positive loadings from 

390‒590 nm and low negative loadings at 300‒380 nm and 600‒700 nm; PC3 was positively 

associated with yellow and green reflectance (Figure 5.S1). 

For the other nine patches, PC1 accounted for 84.1% of the variation (eigenvalue: 34.5) 

with negative loadings across the 300‒700 nm range, and was negatively associated with 

brightness. PC2 accounted for 11.3% of the variation (eigenvalue: 4.7) with positive loadings 

from 370‒500 nm and negative loadings at 310‒360 and 510‒700 nm. PC2 was associated with 

carotenoid level, wherein negative scores corresponded to a high carotenoid component to the 

patch (i.e. yellow) and positive scores indicated a lack of carotenoids (i.e. white or grey). PC3 
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accounted for 4.1% of the variation (eigenvalue: 1.7) with positive loadings from 410‒700 nm 

and negative loadings from 300‒400 nm, and was negatively associated with UV reflectance 

(Figure 5.S2). 

Using the ‘lme4’ package in R (Bates et al. 2015), we ran general linear models using 

PC1, PC2, and PC3 for each plumage patch as response variables, and subspecies, sex, and 

subspecies × sex interaction as fixed effects. Since the age of museum specimens ranged over 

more than 100 years (range: 1893‒2009) and since reduced reflectance, especially in the UV 

part of the spectrum, is reported for older museum specimens of other warbler species (McNett 

& Marchetti 2005), we also included specimen collection year as a covariate in the models. We 

conducted likelihood ratio tests to estimate P-values for each independent variable, and 

conducted post-hoc analyses for all significant effects using the ‘glht’ function in R’s ‘multcomp’ 

package (Hothorn et al. 2017). We conducted all statistical analyses using R v.3.4.3 (R 

Development Core Team 2017). 

Songs 

We measured songs obtained from digital recordings of singing males and females from 

our own field recordings collected in Mexico and Costa Rica, supplemented with recordings from 

the University of Florida and the Cornell Lab of Ornithology’s Macaulay Library. We focused only 

on high-quality songs in this analysis (i.e. those with a high signal-to-noise ratio and minimal 

overlapping background noise). Our sample size was 405 songs from 126 males (37 delattrii 

group, 75 rufifrons group, and 14 B. r. salvini) and 18 females (3 delattrii group, 14 rufifrons 

group, and 1 B. r. salvini). We measured 1‒12 songs per individual; within individuals, each song 

measured was a different variant (i.e. unique sequence of syllable types) to account for intra-

individual song variation. We included 1‒16 individuals from each sampling location. 
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Using Adobe Audition 3.0 (Adobe, San Jose, CA, USA), we high-pass filtered all songs at 1 

kHz to remove background noise, and spot-filtered background noise (e.g., vocalizations of other 

animals) overlapping with the frequency range of Rufous-capped Warbler vocalizations using 

the lasso selection tool. Using Avisoft-SASLab Pro (version 5.2.09; R. Specht, Berlin, Germany), 

we measured 14 acoustic variables commonly used for vocal comparisons of closely-related 

avian taxa (e.g., Toews & Irwin 2008; Cadena & Cuervo 2010; Mason et al. 2014; Kenyon et al. 

2017). For whole songs, we measured minimum frequency, maximum frequency, frequency 

bandwidth, peak frequency, total number of syllables, number of different syllable types, song 

duration, syllable production rate (total number of syllables/song duration), and syllable 

versatility. Syllable versatility is the ratio of the number of different syllable types to the total 

number of syllables, and is useful for quantifying the repetition rate of syllables within a song 

(Gil & Slater 2000). For individual syllables, we measured minimum frequency, maximum 

frequency, peak frequency, and duration, and calculated mean values across all syllables within 

a song. 

We used the automatic parameter measurement tool in Avisoft to measure both song- 

and syllable-specific variables, except for song peak frequency, directly from spectrograms. The 

spectrogram window settings we used were FFT size of 512, time resolution of 1.5 ms, and 

frequency resolution of 43 Hz; these settings optimized both frequency and temporal resolution 

across the spectral range of the songs. To standardize measurements across songs, we 

measured all variables at a threshold amplitude of -20 dB from the peak amplitude. In rare cases 

where specific syllables could not be measured accurately at the -20 dB threshold (e.g., faint 

introductory syllables), we either adjusted the threshold amplitude to measure those syllables, 

or measured them manually on the spectrograms using on-screen cursors. We measured song 
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peak frequency from power spectra with a Hann window, FFT size of 512, and frequency 

resolution of 62.5 Hz. 

To compare acoustic variation between male songs for each subspecies, we first 

calculated mean values of each variable within individuals to produce a single data point for 

each individual. We ran separate ANOVA for each variable to assess subspecies differences, and 

then conducted PCA with a correlation matrix to produce composite response variables based 

on all 14 spectro-temporal variables (e.g., Toews & Irwin 2008; Mason et al. 2014). The first 

three PCs had eigenvalues >1 and accounted for 54.1%, 16.1%, and 8.8% of the total variation, 

respectively (Table 5.S2). We ran ANOVA to compare PC scores between the delattrii group, 

rufifrons group, and B. r. salvini. To assess whether individual songs could be accurately grouped 

according to our pre-defined subspecies categories, we used MANOVA and DFA with LOOCV 

(e.g., Cadena & Cuervo 2010; Halley et al. 2017; Kenyon et al. 2017). We ran DFA using a subset 

of eight non-collinear variables (song duration, song minimum frequency, song maximum 

frequency, peak frequency, number of syllables, number of syllable types, syllable production 

rate, and syllable versatility). 

To assess sex-specific differences in the rufifrons group and B. r. salvini songs, we ran t-

tests to compare male and female songs for each variable. We excluded females from the 

previous analyses owing to small sample sizes of female songs. For multiple comparisons, we 

applied the Benjamini-Hochberg false discovery rate α-value correction (Benjamini & Hochberg 

1995).  
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Results 

Morphology 

The morphology of the delattrii and rufifrons groups showed significant separation in 

several characters. Furthermore, B. r. salvini was similar to the rufifrons group, rather than being 

intermediate between the delattrii and rufifrons groups. For males, the three groups differed as 

a whole according to MANOVA (Wilk’s Λ = 0.22, F2, 371 = 67.8, P < 0.001). The most diagnostic 

traits in our discriminant analysis were wing and tail length, which together correctly classified 

82.9% of individuals. Classification was accurate for both the delattrii (119 of 127 correct, or 

93.7%) and rufifrons groups (175 of 190 correct, or 92.1%). However, only 28.1% (16 of 57) of B. 

r. salvini were correctly assigned; the majority of incorrect assignments (39 of 57, or 68.4%) 

were to the rufifrons group. Wing length was significantly different across all three groups (F2, 453 

= 259.3, P < 0.001; Figure 5.3A), whereas tail length (F2, 444 = 45.6, P < 0.001) was longer for the 

rufifrons group (Tukey’s P < 0.001) than the other two groups (Tukey’s P = 0.14). 

For females, the three groups also differed as a whole according to MANOVA (Wilk’s Λ = 

0.29, F2, 184 = 25.3, P < 0.001). The most diagnostic trait by discriminant analysis was wing length, 

which correctly classified 68.4% of individuals. Correct classification rates were high for both the 

delattrii (62 of 75 correct, or 82.7%) and rufifrons groups (54 of 73 correct, or 74.0%), but low 

for B. r. salvini (12 of 39 correct, or 30.8%; 27 of 39 (69.2%) of individuals were classified as 

rufifrons group. Wing length (F2, 231 = 117.2, P < 0.001; Figure 5.3B) and tail length (F2, 219 = 15.0, P 

< 0.001) were both significantly different across all three groups. For both sexes, the only 

diagnosable trait was wing length between the delattrii group and B. r. salvini (males: Dds = 0.63; 

females: Dds = 0.19); wing length was longer for the delattrii group than B. r. salvini (Table 5.1).   
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The wing-tail ratio was significantly different between all three groups (ANOVA, males: 

F2, 444 = 381.1, P < 0.001; females: F2, 219 = 96.8, P < 0.001), with B. r. salvini being intermediate 

between the delattrii and rufifrons groups. However, the mean value was negative for both the 

rufifrons group and B. r. salvini (wing shorter than tail) and positive for the delattrii group (wing 

longer than tail; Table 5.1; Figure 5.3C-D).  

Plumage 

Overall pattern.—Rufous-capped Warbler subspecies in the same plumage-based group 

shared similar facial and underpart colour patterns as reported in previous descriptions 

(Ridgway 1902; Todd 1929). All rufifrons group subspecies and B. r. salvini had a white auricular 

patch below the eye extending to the cheek. In contrast, all delattrii group subspecies had only a 

small white spot below the eye (Figure 5.2). All rufifrons group subspecies had yellow breast 

patches extending less than 50% of the body length, and no individuals had entirely yellow 

bellies. In contrast, all individuals from delattrii group subspecies had all-yellow breasts and 

bellies. Finally, B. r. salvini were intermediate in the extent of yellow coverage on the breast and 

belly; the mean percentage of yellow was 66.2% for males and 64.3% for females, although 

27.7% of B. r. salvini individuals had entirely yellow bellies (Table 5.S3).  

All-subspecies analysis.—Rufous-capped Warblers differed between the subspecies 

groups in all 10 measured plumage patches (Table 5.S6). The crowns of the rufifrons group and 

B. r. salvini were rufous (red-orange), and those of the delattrii group were chestnut (red-

brown; Table 5.2). The rufifrons group and B. r. salvini had significantly brighter (lower PC1 

score; ANCOVA F2, 432 = 17.3, P < 0.001) and yellower (higher PC3 score; ANCOVA F2, 432 = 11.7, P < 

0.001) crowns than the delattrii group (Figure 5.4A), whereas the rufifrons group had 
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significantly redder crowns (higher PC2 score; ANCOVA F2, 432 = 3.9, P = 0.02) than the delattrii 

group and B. r. salvini (Tables 5.S6‒5.S7). 

The throats and upper breasts of the rufifrons group and B. r. salvini were lemon yellow. 

However, their lower breast and belly colours differed, with the rufifrons group being brownish-

white and B. r. salvini mixed white-yellow to pale yellow. In contrast, the delattrii group had 

golden yellow throats, breasts, and bellies (Table 5.2). Yellow colour of the belly (PC2; ANCOVA 

F2, 432 = 286.0, P < 0.001) differed across all three groups, with the delattrii group being the most 

yellow, B. r. salvini intermediate, and the rufifrons group the least yellow (Figure 5.4B). The 

rufifrons group had brighter bellies (lower PC1 score; ANCOVA F2, 432 = 3.5, P = 0.03) and less 

yellow breasts (higher PC2 score; ANCOVA F2, 432 = 38.0, P < 0.001; Figure 5.4C) than the delattrii 

group and B. r. salvini. However, delattrii and rufifrons groups had brighter breasts (lower PC1 

score; ANCOVA F2, 432 = 5.9, P = 0.003) than B. r. salvini. The throat patch showed no significant 

group differences in brightness (PC1; ANCOVA F2, 432 = 0.6, P = 0.52) although yellow hue differed 

significantly across all three groups where B. r. salvini were yellowest, rufifrons group 

intermediate, and delattrii group least yellow (PC2; ANCOVA F2, 432 = 5.4, P = 0.005; Table 5.S7). 

The mantle colour varied from olive in the delattrii group to olive-grey in the rufifrons 

group, with B. r. salvini being an intermediate olive to olive-grey (Table 5.2). The rufifrons group 

and B. r. salvini had significantly brighter mantles compared to the delattrii group (lower PC1 

score; ANCOVA F2, 432 = 6.2, P = 0.002). However, mantle colour differed significantly across all 

three groups, with the delattrii group being yellowest, B. r. salvini intermediate, and the 

rufifrons group least yellow (lower PC2 score; ANCOVA F2, 432 = 43.6, P < 0.001; Table 5.S7). 

The napes of the rufifrons group and B. r. salvini were grey, compared to olive-grey in 

the delattrii group (Table 5.2). The nape patch was significantly brighter (lower PC1 score; 
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ANCOVA F2, 432 = 19.7, P < 0.001; Figure 5.4D) and less yellow (higher PC2 score; ANCOVA F2, 432 = 

29.7, P < 0.001) in the rufifrons group and B. r. salvini than in the delattrii group. 

The rumps and shoulders of the delattrii group and B. r. salvini were olive, compared to 

olive-grey in the rufifrons group (Table 5.2). All three groups differed in rump colour, with the 

delattrii group yellowest, B. r. salvini intermediate, and the rufifrons group least yellow (lower 

PC2 score; ANCOVA F2, 432 = 26.1, P < 0.001), although they did not differ in rump brightness 

(PC1; ANCOVA F2, 432 = 2.5, P = 0.08; Table 5.S7). The groups did not differ in shoulder patch 

brightness (PC1; ANCOVA F2, 432 = 0.2, P = 0.79), but all groups differed in yellow colour, with B. r. 

salvini yellowest, the delattrii group intermediate, and the rufifrons group least yellow (PC2; 

ANCOVA F2, 432 = 10.4, P < 0.001). 

The tail and wing patches were dusky grey in all individuals, with yellow-green feather 

borders in the rufifrons group and B. r. salvini, and olive borders in the delattrii group (Table 

5.2). For the tail, all three groups differed in yellow colour, with B. r. salvini yellowest, the 

rufifrons group intermediate, and the delattrii group least yellow (PC2; ANCOVA F2, 426 = 5.4, P = 

0.005); the subspecies did not differ in brightness (PC1; ANCOVA F2, 426 = 0.6, P = 0.55). For the 

wing, B. r. salvini were significantly yellower (lower PC2 score; ANCOVA F2, 432 = 17.1, P < 0.001) 

than the delattrii group whereas the rufifrons group were intermediate; all three groups had 

similar brightness (PC1; ANCOVA F2, 432 = 0.6, P = 0.54; Table 5.S7). 

For belly, breast, mantle, rump, shoulder, tail, throat, and wing, the delattrii group had 

significantly greater UV reflectance (lower PC3 score; ANCOVA all P < 0.05) than the rufifrons 

group and B. r. salvini. For nape, PC3 did not differ between subspecies (ANCOVA all P > 0.05; 

Table 5.S7). 

Rufous-capped Warbler plumage differed significantly between the sexes in four 

plumage patches: belly, crown, mantle, and nape (Table 5.S6). For the crown, all three 
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subspecies groups showed sexual dichromatism in PC3; males had less yellow crowns (lower PC3 

score; ANCOVA F1, 432 = 7.6, P = 0.006) than females (Figure 5.4A). There was a subspecies × sex 

interaction where delattrii group males had significantly brighter napes (lower PC1 score; 

ANCOVA F2, 432 = 5.1, P = 0.006) than delattrii group females (Figure 5.4D). Males had brighter 

(lower PC1 score; ANCOVA F1, 432 = 4.7, P = 0.03) and less yellow mantles (higher PC2 score; 

ANCOVA F1, 432 = 4.1, P = 0.04) than females. Males showed more UV reflectance than females in 

the belly (lower PC3 score; ANCOVA F1, 432 = 6.4, P = 0.01) and mantle (ANCOVA F1, 432 = 7.4, P = 

0.007). These effects were largely driven by sex differences in B. r. salvini, as the delattrii and 

rufifrons groups did not differ between the sexes for these plumage patches (Table 5.S7). 

Three-subspecies analysis.—Rufous-capped Warblers differed between subspecies in all 

10 measured patches (Table 5.S8). Overall, B. r. rufifrons and B. r. salvini were similar to one 

another and differed from B. r. delattrii, although this general pattern varied by plumage patch. 

The crowns of B. r. rufifrons and B. r. salvini were rufous (red-orange), and those of B. r. delattrii 

were chestnut (red-brown; Table 5.2). The crowns of B. r. rufifrons and B. r. salvini were 

significantly brighter (lower PC1 score; ANCOVA F2, 306 = 20.1, P < 0.001) and yellower (higher PC3 

score; ANCOVA F2, 306 = 4.7, P = 0.01) than those of B. r. delattrii. The crowns of B. r. salvini were 

redder than those of B. r. delattrii (higher PC2 score; ANCOVA F2, 306 = 4.7, P = 0.01), while B. r. 

rufifrons were intermediate between the two (Tables 5.S8‒5.S9).   

The breast and belly colour overlapped between B. r. delattrii and B. r. salvini, because 

many B. r. salvini had both white and yellow in these patches. Yellow colour of the belly (PC2; 

ANCOVA F2, 306 = 160.8, P < 0.001) differed across all three subspecies, with B. r. delattrii being 

the yellowest, B. r. salvini intermediate, and B. r. rufifrons the least yellow. Compared to B. r. 

delattrii and B. r. salvini, B. r. rufifrons had less yellow breasts (higher PC2 score; ANCOVA F2, 306 = 

24.2, P < 0.001) and brighter bellies (lower PC1 score; ANCOVA F2, 306 = 3.5, P = 0.03). However, 
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B. r. delattrii had brighter breasts (lower PC1 score; ANCOVA F2, 306 = 5.4, P = 0.005) than B. r. 

rufifrons and B. r. salvini. The throat patch showed no subspecies differences in brightness (PC1; 

ANCOVA F2, 306 = 0.1, P = 0.89) or yellow hue (PC2; ANCOVA F2, 306 = 2.6, P = 0.08; Table 5.S9). 

Mantle colour varied from olive in B. r. delattrii to olive-grey in B. r. rufifrons, with B. r. 

salvini being olive to olive-grey (Table 5.2). The mantles of B. r. rufifrons were significantly 

brighter than those of B. r. delattrii (lower PC1 score; ANCOVA F2, 306 = 4.7, P = 0.01), whereas B. 

r. salvini were intermediate between the other two subspecies. Mantle colour (PC2) was similar 

between B. r. delattrii and B. r. salvini, which both had significantly yellower mantles than B. r. 

rufifrons (lower PC2 score; ANCOVA F2, 306 = 16.0, P < 0.001; Table 5.S9). 

The nape patch was grey in B. r. rufifrons and B. r. salvini, compared to olive-grey in B. r. 

delattrii (Table 5.2). B. r. rufifrons and B. r. salvini had significantly brighter (lower PC1 score; 

ANCOVA F2, 306 = 17.0, P < 0.001) and less yellow (higher PC2 score; ANCOVA F2, 306 = 29.5, P < 

0.001) napes than B. r. delattrii. 

The rumps and shoulders of B. r. delattrii and B. r. salvini were olive, compared to olive-

grey in B. r. rufifrons (Table 5.2). Therefore, B. r. delattrii and B. r. salvini both had yellower 

rumps (lower PC2 score; ANCOVA F2, 306 = 9.4, P = 0.001) than B. r. rufifrons; the three subspecies 

did not differ in rump brightness (PC1; ANCOVA F2, 306 = 1.6, P = 0.21; Table 5.S9). The shoulder 

patch did not differ between subspecies in brightness (PC1; ANCOVA F2, 306 = 0.5, P = 0.62), but B. 

r. salvini were significantly more yellow (lower PC2 score; ANCOVA F2, 306 = 5.3, P = 0.005) than B. 

r. delattrii and B. r. rufifrons. 

The tail and wing patches were dusky grey in all individuals, with yellow-green feather 

borders in B. r. rufifrons and B. r. salvini, and olive borders in B. r. delattrii (Table 5.2). The tails 

and wings of B. r. rufifrons and B. r. salvini were significantly yellower than B. r. delattrii (lower 

PC2 score; tail: ANCOVA F2, 301 = 7.6, P < 0.001; wing: ANCOVA F2, 306 = 22.9, P < 0.001). All three 



Chapter 5: Two Subspecies Groups of Rufous-capped Warbler 

 

 

132 

 

subspecies had similar brightness in both tail (PC1; ANCOVA F2, 301 = 0.7, P = 0.48) and wing 

patches (PC1; ANCOVA F2, 306 = 1.2, P = 0.30; Table 5.S9). For all patches other than crown, B. r. 

delattrii had significantly greater UV reflectance (lower PC3 score; ANCOVA all P < 0.05) than B. 

r. rufifrons and B. r. salvini (Table 5.S9). 

Rufous-capped Warblers differed significantly between the sexes in five plumage 

patches: crown, nape, rump, shoulder, and wing (Table 5.S8). All three subspecies were sexually 

dichromatic for crown PC3, with males having less yellow reflectance in the crown (lower PC3 

score; ANCOVA F1, 306 = 12.2, P < 0.001) than females. For the nape, rump, and shoulder patches, 

B. r. delattrii were sexually dichromatic, but B. r. rufifrons and B. r. salvini were not. There were 

subspecies × sex interactions wherein B. r. delattrii males had significantly brighter napes (lower 

PC1 score; ANCOVA F2, 306 = 5.5, P = 0.005) and rumps (ANCOVA F2, 306 = 3.8, P = 0.02) than B. r. 

delattrii females. There were also significant sex effects where males had brighter shoulders 

(lower PC1 score; ANCOVA F1, 306 = 4.2, P = 0.04), less yellow napes (higher PC2 score; ANCOVA 

F1, 306 = 4.0, P = 0.05) and rumps (ANCOVA F1, 306 = 8.1, P = 0.005), more UV-reflective rumps 

(lower PC3 score; ANCOVA F1, 306 = 10.6, P = 0.001) and napes (ANCOVA F2, 306 = 8.3, P = 0.004), 

and yellower wings (lower PC2 score; ANCOVA F1, 306 = 6.1, P = 0.01) than females. These effects 

were largely driven by sex differences in B. r. delattrii; males had less yellow rumps, more UV-

reflective napes and rumps, and yellower wings than females, whereas male and female B. r. 

rufifrons and B. r. salvini did not show sex differences (Table 5.S9). 

For both the all-subspecies and three-subspecies analyses, there were specimen age 

effects (i.e. significant collection year covariate) for several plumage patches. For both analyses, 

there was a UV reflectance component (PC3) year effect for all plumage patches; a yellow colour 

(PC2) year effect for the tail and throat, and a red colour (PC2) year effect for the crown (PC2; 

Tables 5.S6, 5.S8). For the all-subspecies analysis, there was a year effect of brightness (PC1) for 
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the belly, breast, crown, nape, throat, and wing (Table 5.S6). For the three-subspecies analysis, 

there was a year effect of brightness for the belly, breast, nape, shoulder, and wing (Table 5.S8). 

Songs 

Male songs.—Rufous-capped Warbler songs differed significantly in both acoustic 

structure and organization between subspecies, with the delattrii group being well-

differentiated from the rufifrons group and B. r. salvini (Figure 5.5). For 13 of 14 measured 

variables, the delattrii group differed significantly from the rufifrons group and B. r. salvini, 

which were similar to each other; the final variable (syllable peak frequency) differed 

significantly across all three groups (Table 5.3). PC1 differed significantly between all three 

groups (ANOVA: F2, 123 = 395.6, P < 0.001), and corresponded well with spectro-temporal 

features distinguishing the delattrii group songs from the rufifrons group and B. r. salvini songs 

(Figure 5.6). Positive loadings corresponded to song duration, number of syllables, and syllable 

production rate, whereas negative loadings corresponded to all other variables (Table 5.S2). 

Therefore, songs with positive PC1 scores (the rufifrons group and B. r. salvini; Figure 5.5A, C, 

and E) were longer and faster-paced, had more syllables but less variety of syllable types, were 

lower in frequency at both the song and syllable level, and had shorter, narrower-bandwidth 

syllables. Songs with negative PC1 scores (the delattrii group; Figure 5.5B, D, and F) were shorter 

and slower-paced, had fewer syllables but more variety of syllable types, were higher in 

frequency at both the song and syllable level, and had longer, wider-bandwidth syllables. PC2 

and PC3 did not differ significantly between subspecies (ANOVA PC2: F2, 123 = 0.5, P = 0.62; PC3: 

F2, 123 = 0.9, P = 0.41), and were not as readily interpretable as PC1 in terms of acoustic structure. 

Discriminant analysis results also showed that the delattrii group songs differed from 

the rufifrons group and B. r. salvini songs. Songs differed significantly between subspecies 
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according to MANOVA (Wilk’s Λ = 0.06, F16, 232 = 46.9, P < 0.001). The most diagnostic trait 

according to discriminant analysis was the syllable versatility index, which correctly classified 

88.1% of individuals. The majority of the delattrii group songs (97.3%, or 36 of 37) were assigned 

to the correct group. All the rufifrons group (75 of 75) and B. r. salvini (14 of 14) songs were 

classified as rufifrons group. 

Male and female song comparison.—Male and female rufifrons group and B. r. salvini 

songs differed significantly in 9 of the 14 measured acoustic variables (Table 5.4). Compared to 

male songs, female songs were shorter with higher maximum frequency and bandwidth. 

Syllables of female songs were also shorter, with higher maximum frequency, peak frequency, 

and bandwidth than male syllables. Although female songs had fewer syllables overall than male 

songs, they had a greater variety of syllable types (i.e. higher syllable diversity index). Male and 

female songs shared similar song and syllable minimum frequency, song peak frequency, 

number of syllable types, and syllable production rate (Figure 5.7). In contrast to female delattrii 

group songs, which had similar syllable types as male songs (Chapter 2), female rufifrons group 

syllables were structurally distinct from those of males (Figure 5.7). 

Discussion 

We found considerable differences between the delattrii and rufifrons groups in 

morphology, song, and many plumage features, based on data collected from live birds, 

museum specimens, and archived sound recordings sampled across the range of Rufous-capped 

Warblers. Our analyses also show that B. r. salvini are similar to the rufifrons group rather than 

being intermediate between delattrii and rufifrons. These patterns suggest that Rufous-capped 

Warblers comprise two distinct groups, delattrii and rufifrons-salvini, and supports a revision of 

the species’ current taxonomic status. Our results align with historical taxonomic groupings 
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based on morphology and plumage colour (Todd 1929) and recent evidence based on field 

observations (Howell & Webb 1995) rather than the current American Ornithological Society 

classification as a single species (Monroe 1968). In addition, the song differences between the 

delattrii and rufifrons-salvini subspecies groups described for the first time in our study provide 

further evidence of divergence between the two groups. We therefore propose that the 

taxonomy of the Rufous-capped Warbler clade should be revised to account for these 

differences in plumage, morphology, and voice. 

Morphology 

Overall, our morphological analyses suggested that the delattrii group was distinct from 

the rufifrons group and B. r. salvini, providing support for their separation into two groups. 

Interestingly, the groups also differed in overall body shape as well as size; for example, 

although the delattrii group had the longest wings of the three groups, the rufifrons group had 

the longest tails. Our wing-tail ratio measurements corroborate those of Todd (1929), who also 

noted that all rufifrons group subspecies and B. r. salvini have a negative wing-tail ratio (wing 

shorter than tail) and all delattrii group subspecies have a positive wing-tail ratio (wing longer 

than tail). Furthermore, our discriminant analysis suggested that B. r. delattrii is a well-defined 

group, and that B. r. rufifrons and B. r. salvini are not well-defined as separate subspecies but 

instead group together. The discriminant analysis of all eight subspecies further corroborated 

that the rufifrons group and the delattrii group represent two distinct units, as most of the 

incorrect assignments for a given subspecies were to another subspecies within the same 

plumage-based group. 

Our morphological analyses did reveal some overlap between subspecies, since despite 

significant differences in all morphological measurements, the only diagnosable trait was the 
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difference in wing length between the delattrii group and B. r. salvini. This overlap in 

morphology between groups may be owing to the similar overall size of all Basileuterus, which 

are among the larger members of the Family Parulidae (Curson 2010). Although not explicitly 

tested in our study, subspecies or populations may also be locally adapted to specific diets, 

which could explain why traits related to foraging behaviour (e.g., bill size) varied widely within 

and between subspecies (e.g., Benkman 2003; Francis & Guralnick 2010; Riyahi et al. 2013; 

Aleixandre et al. 2013). Another possibility is that morphological variation is a an adaptation to 

variation in temperature or other climatic variables; a separate study testing the validity of 

ecogeographical rules using the same museum data set found that across all subspecies, Rufous-

capped Warblers living in cooler regions had longer wings and tails than those living in warmer 

regions (Bastien 2018). Further studies could assess these relationships within each subspecies, 

and in particular, address whether the unique morphological features of B. r. salvini, such as 

short wings, are in fact ecological adaptations to their habitat. 

Plumage 

We found that plumage colour varied more between Rufous-capped Warbler subspecies 

than did morphology or song, as separate colour patches showed different patterns of similarity 

between subspecies. Although delattrii group plumage was more distinct overall from that of 

rufifrons group and B. r. salvini, B. r. salvini were intermediate between the delattrii and 

rufifrons groups in some patches, notably belly colour. Belly colour was highly variable between 

subspecies, being golden yellow in the delattrii group, brownish-white in the rufifrons group, 

and mixed yellow-white to entirely pale yellow in B. r. salvini. Both the delattrii group and B. r. 

salvini, which have yellow breasts and olive- to olive-green mantles and rumps, differed in the 
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colour of these traits compared to the rufifrons group, which have white breasts and olive-grey 

mantles and rumps (Table 5.2). 

Still, plumage variation between subspecies largely mirrored the pattern found for 

morphology and song, in that the rufifrons group and B. r. salvini were similar while both 

differed from the delattrii group. Most notably, UV reflectance was highest in all measured 

plumage patches in the delattrii group. In the subspecies group comparison, the rufifrons group 

and B. r. salvini had brighter and yellower crowns, brighter but less yellow napes, and brighter 

mantles than the delattrii group. In the comparison of the three subspecies with adjoining 

ranges, additional differences were apparent: B. r. rufifrons and B. r. salvini also had duller 

breasts and yellower wings and tails than B. r. delattrii. Previous Rufous-capped Warbler 

taxonomic comparisons qualitatively described plumage colours and classified each subspecies 

based on their geographic ranges and subtle colour variation relative to the reference 

subspecies B. r. delattrii and B. r. rufifrons (Table 5.2; Ridgway 1902; Todd 1929; Howell & Webb 

1995). Our analyses used quantitative spectrophotometric analyses to confirm the overall 

differences and similarities in plumage characteristics described by earlier researchers, while 

providing new insights into colour variation not visible to humans (e.g., UV reflectance). 

The large variation in plumage colouration we observed could result from ecological 

selection, wherein plumage colour evolves to either maximize conspicuousness or crypsis 

relative to the environment (e.g., Endler & Théry 1996; Doucet et al. 2007; Simpson & McGraw 

2018). All three subspecies groups have particular habitat preferences; although all Rufous-

capped Warblers prefer semi-open habitats, the rufifrons group prefer dry, open, high-elevation 

sites above 1000 m a.s.l., the delattrii group prefer dry to semi-humid, forested, low-elevation 

sites below 1000 m a.s.l., and B. r. salvini prefer humid, open, low-elevation sites below 500 m 

a.s.l. In the forested habitat of the delattrii group, olive-green upperparts would be more 
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cryptic, whereas a deep red crown and yellow breast, which are potentially sexually-selected 

signals, would be more conspicuous (e.g., Doucet et al. 2007; Simpson & McGraw 2018). 

Furthermore, female mating preferences may result in plumage features such as a yellow B. r. 

delattrii belly introgressing into adjacent B. r. rufifrons populations to produce intermediate B. r. 

salvini plumage. A similar scenario occurred when yellow collar colour introgressed into white-

collared populations across a hybrid zone between Golden-collared (Manacus vitellinus) and 

White-collared Manakins (M. candei; Stein & Uy 2006). Since no confirmed hybrids exist 

between B. r. delattrii and B. r. salvini, however (Todd 1929; Howell & Webb 1995), genetic 

analyses will be necessary to assess the presence and extent of introgression of plumage traits 

across subspecies. 

An intriguing finding of our plumage analysis was that although Rufous-capped Warblers 

appear sexually monochromatic to humans, several plumage patches are in fact sexually 

dichromatic. Overall, our findings coincide with two studies based on spectral reflectance data, 

one of 166 North American passerine species, and the other of 376 species in the cardinal and 

tanager clades, in which over 90% of the putatively monochromatic species were actually 

dichromatic based on avian visual systems (Eaton 2007; Burns & Shultz 2012). We found that 

the delattrii group, rufifrons group, and B. r. salvini females all had yellower (i.e. less red or 

chestnut) crowns than males within the same group. Several sex-specific differences were found 

only in the delattrii group, providing further evidence that the delattrii group is distinct from the 

rufifrons group and B. r. salvini. This sexual dichromatism suggests that the crown, and possibly 

the nape in the delattrii group, is a signal used in mate choice or sex recognition. Mate choice 

experiments using visual models of warblers with varying crown colours (e.g., Baldassarre et al. 

2013) may be useful to further explore the role of these plumage patches as mating signals. 

Further research on little-studied monochromatic tropical species, particularly bright 
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monochromatic species like the Rufous-capped Warbler, will likely reveal other cases of cryptic 

sexual dichromatism. 

Songs 

Male Rufous-capped Warbler songs separated distinctly into two groups: delattrii and 

rufifrons-salvini. These vocal differences aligned with morphological and plumage differences, 

suggesting that B. r. salvini are conspecific with B. r. rufifrons (Todd 1929; Howell & Webb 1995) 

rather than being similar to B. r. delattrii or intermediate between B. r. delattrii and B. r. 

rufifrons (Ridgway 1902; Monroe 1968). Songs of the delattrii group were shorter, slower-paced, 

and higher in frequency, with fewer syllables but more variety of syllable types, and longer, 

wider-bandwidth syllables. In contrast, the rufifrons group and B. r. salvini songs were longer, 

faster-paced, and lower in frequency, with more syllables but less variety of syllable types, and 

had shorter, narrower-bandwidth syllables. Songs are used to attract mates and defend 

territories (Catchpole & Slater 2008), and may therefore act as a strong isolating barrier even 

between closely-related taxa without large morphological or plumage variation (e.g., Toews & 

Irwin 2008; Dingle et al. 2010). Indeed, a playback study in a sympatric zone between B. r. 

delattrii and B. r. rufifrons in southern Mexico (Chapter 6) showed that warblers of both 

subspecies responded more strongly to own-subspecies than other-subspecies male songs, 

suggesting that song could serve as an isolating barrier between subspecies (e.g., Irwin et al. 

2001; Dingle et al. 2010; Benites et al. 2015). Observations in the contact zone also suggested 

that B. r. delattrii and B. r. rufifrons territories overlapped without inter-subspecies aggression, 

and that the warblers mated assortatively, as we never observed mixed pairs. Further evidence 

for vocal divergence in sympatry is that within the subset of male songs measured from the 

sympatric site (B. r. delattrii: n = 9; B. r. rufifrons: n = 9), all fit within the average range of PC1 
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values for their subspecies (Figure 5.6). Ongoing genetic analyses will assess whether gene flow 

is ongoing between the two subspecies in sympatry. 

The marked vocal divergence we observed between the delattrii and rufifrons-salvini 

groups could result from the effects of habitat structure on sound transmission (Wilkins et al. 

2013). The Acoustic Adaptation Hypothesis states that animal acoustic signals have evolved to 

transmit optimally in an animal’s habitat, since both vegetation features (Morton 1975) and 

ambient noise levels in the habitat (Slabbekoorn & Smith 2002) may affect signal transmission. 

In Rufous-capped Warblers, the rufifrons group and B. r. salvini, which live primarily in open 

habitats, have many rapid trilled syllables in their songs, whereas the delattrii group, which 

prefer forested habitats, have slower-paced songs with larger inter-note intervals. Both types of 

songs would be expected to transmit well in their respective environments according to the 

Acoustic Adaptation Hypothesis (Morton 1975). In Rufous-collared Sparrows (Zonotrichia 

capensis), a similar pattern of vocal variation occurs wherein songs from open-habitat 

populations are lower-frequency, narrower-bandwidth, and contain longer, faster trills than 

songs from forest-dwelling populations (Handford & Lougheed 1991). However, the Acoustic 

Adaptation Hypothesis is not universally supported across all Rufous-collared Sparrow 

populations (Kopuchian et al. 2004; Lijtmaer & Tubaro 2007) and there is little evidence of local 

song adaptation in other species where song varies little structurally across populations (e.g., 

Rufous-and-white Wrens Thryophilus rufalbus; Graham et al. 2017). Similarly, it is likely in 

Rufous-capped Warblers that acoustic adaptation is not the sole explanation for population-

level vocal differences, since other song features, such as frequency, are not consistent with the 

Acoustic Adaptation Hypothesis relative to each habitat type (Morton 1975). A small study 

comparing habitat features of B. r. delattrii and B. r. rufifrons territories within and outside the 

Mexican sympatric zone showed that vegetation (e.g., number of trees, canopy cover) did not 
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differ significantly between the two subspecies’ territories within the contact zone, but did 

differ between subspecies in allopatric sites (Vargas-Herrera et al. 2017). Since songs are similar 

within Rufous-capped Warbler subspecies in both sympatric and allopatric areas, further work is 

needed to determine if other site-specific factors (e.g., ambient noise) may influence song 

structure (e.g., Slabbekoorn & Smith 2002). Additionally, our sample of songs was concentrated 

in southern Mexico and Costa Rica, so further recordings from sites throughout the Rufous-

capped Warbler’s range, coupled with vegetation sampling, sound transmission experiments, 

and ambient noise measurements at the same sites, could clarify whether acoustic adaptation 

plays a role in shaping song structure in this species. 

Vocal divergence between Rufous-capped Warbler subspecies was also apparent in 

female songs of both the delattrii and rufifrons groups, which differed from one another while 

being structurally similar to their male counterparts. Female delattrii songs, described in a 

previous study (Chapter 4), were shorter, with fewer syllables and syllable types, and higher 

maximum frequency than male songs. They appear to serve a territory defence function in 

intense interactions such as playback-simulated conspecific territorial intrusions by pairs 

(Chapter 4), yet are rarely used spontaneously (Chapter 2). Female rufifrons group songs, 

described in this study, were also shorter, with fewer syllables and higher maximum frequency 

than male songs. The syllables themselves were also shorter, and of higher maximum frequency 

and larger bandwidth. Interestingly, female singing behaviour of the two subspecies may also 

differ: B. r. rufifrons and B. r. salvini females appeared to produce more spontaneous songs in 

response to their male partner’s songs during focal recordings (A. Demko pers. obs.) and sang 

more frequently in response to playback during an experimental study than did B. r. delattrii 

females (Chapter 6). A detailed study of singing behaviour based on extensive focal recordings 

would be useful to investigate the function of female song in the rufifrons group. The B. r. 
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rufifrons and B. r. salvini pairs included in this study were only recorded once each for 10‒15 

min, compared to multiple 30‒60 min recordings per pair for the delattrii population we studied 

(Chapter 2). Given that female song is common yet poorly-studied in tropical songbird species 

(Stutchbury & Morton 2001; Odom & Benedict 2018), and that the delattrii and rufifrons groups 

appear to be vocally distinct based on our analyses, further investigations of singing behaviour 

in both groups would be informative to explore song evolution in the Family Parulidae. 

Conclusion 

Our research revealed that the rufifrons group and B. r. salvini are well-differentiated 

from the delattrii group in plumage and song, and to a lesser extent in morphology. The low 

responses to other-subspecies song and apparent lack of inter-subspecies territoriality and 

hybridization in a sympatric zone between B. r. delattrii and B. r. rufifrons in southern Mexico 

further suggests reproductive isolation between the two groups (Chapter 6). We therefore 

propose that the delattrii group be elevated to full species status separately from the rufifrons 

group. We also suggest that B. r. salvini be classified with the rufifrons group, given B. r. salvini’s 

similarity to B. r. rufifrons in song, plumage, and morphology. The Rufous-capped Warbler 

(Basileuterus rufifrons) would therefore comprise the five northern subspecies (B. r. caudatus, 

dugesi, jouyi, rufifrons, and salvini), and the Chestnut-capped Warbler (Basileuterus delattrii) 

would comprise the three southern subspecies (B. d. actuosus, delattrii, and mesochrysus). 

Ongoing genomic analysis of samples from the B. r. delattrii and B. r. rufifrons contact zone and 

other sites throughout the Rufous-capped Warbler’s range in Mexico and Central America will 

compare patterns of range-wide phenotypic and genetic divergence, and further refine the 

taxonomic classification proposed here. 
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Table 5.1. Morphological measurements of male and female Rufous-capped 
Warblers according to subspecies group (delattrii group, rufifrons group, and B. r. 
salvini). Values in bold indicate measurements with significant differences 
between groups. 

Males delattrii 
group 

(n = 176) 

 rufifrons  
group 

 (n = 211) 
salvini 

(n = 69) 

Wing length (mm) 57.0 ± 2.2 52.8 ± 2.3 50.8 ± 1.7 
Tail length (mm) 53.2 ± 3.3 55.9 ± 3.0 52.6 ± 2.0 
Tarsus (mm) 20.7 ± 0.8 20.8 ± 0.7 20.5 ± 0.8 
Bill length (mm) 7.3 ± 0.4 6.9 ± 0.4 7.2 ± 0.3 
Bill depth (mm) 3.9 ± 0.3 3.8 ± 0.2 3.9 ± 0.2 
Bill width (mm) 3.8 ± 0.4 3.6 ± 0.3 3.6 ± 0.2 
Wing-tail ratio (mm) 3.8 ± 2.7 -3.0 ± 2.1 -1.8 ± 2.1 
% yellow underparts 100 ± 0.0 47.7 ± 4.6 66.2 ± 22.1 

Females delattrii 
group 

(n = 102) 

 rufifrons  
group  

(n = 87) 
salvini 

(n = 46) 

Wing length (mm) 54.5 ± 2.4 50.8 ± 2.3 49.2 ± 1.5 
Tail length (mm) 51.7 ± 3.4 53.4 ± 3.2 50.3 ± 2.0 
Tarsus (mm) 20.3 ± 0.9 20.5 ± 0.7 20.3 ± 0.7 
Bill length (mm) 7.3 ± 0.4 6.8 ± 0.3 7.1 ± 0.3 
Bill depth (mm) 3.9 ± 0.3 3.7 ± 0.2 3.8 ± 0.1 
Bill width (mm) 3.8 ± 0.4 3.5 ± 0.3 3.6 ± 0.2 
Wing-tail ratio (mm) 2.8 ± 2.8 -2.6 ± 2.6 -1.1 ± 2.1 
% yellow underparts 100 ± 0.0 47.7 ± 5.1 64.3 ± 21.0 
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Table 5.2. Plumage colours by body region in B. r. delattrii, B. r. rufifrons, and B. r. salvini 
subspecies according to Ridgway (1902); Todd (1929); Howell & Webb (1995); and this study. 

Body region B. r. delattrii B. r. rufifrons B. r. salvini 

Crown chestnut (red-brown) rufous (red-orange) rufous (red-orange) 
Lower auricular chestnut white white 
White spot below eye present absent absent 
Nape olive-grey grey grey 
Mantle (upperparts) olive olive-grey olive-grey to olive 
Rump, shoulder olive olive-grey olive 
Throat, upper breast golden yellow lemon yellow lemon yellow 
Lower breast, belly golden yellow brownish-white mixed white-yellow 

to pale yellow 
Wing, tail dusky, olive border dusky, yellow-green 

border 
dusky, yellow-green 
border 
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Table 5.3. Vocal measurements of male Rufous-capped Warbler songs by subspecies group 
(delattrii group, rufifrons group, and B. r. salvini). All variables were significantly different 
between delattrii group and both rufifrons group and B. r. salvini, aside from syllable peak 
frequency which was significantly different across all three groups. 

Vocal variable delattrii (n = 37) rufifrons (n = 75) salvini (n = 14) 

Song duration (s) 2.24 ± 0.37 2.77 ± 0.85 3.04 ± 1.06 
Song maximum frequency (Hz) 8906.0 ± 436.3 7518.5 ± 638.8 7460.2 ± 640.5 
Song minimum frequency (Hz) 3292.1 ± 291.6 2647.3 ± 313.8 2759.5 ± 191.0 
Song bandwidth (Hz) 4844.4 ± 710.6 5624.2 ± 723.4 5624.2 ± 723.4 
Song peak frequency (Hz) 5907.1 ± 384.3 5416.7 ± 555.0 5270.5 ± 532.5 
Syllable duration (s) 0.08 ± 0.02 0.06 ± 0.01 0.06 ± 0.01 
Syllable maximum frequency (Hz) 7289.7 ± 383.2 5913.5 ± 325.6 5709.0 ± 297.1 
Syllable minimum frequency (Hz) 4659.5 ± 237.8 3951.8 ± 271.4 3832.2 ± 253.2 
Syllable bandwidth (Hz) 2630.2 ± 473.8 1961.7 ± 343.5 1876.7 ± 290.4 
Syllable peak frequency (Hz) 5892.6 ± 223.7 4949.9 ± 299.3 4653.5 ± 231.4 
Number of syllables 15.60 ± 3.40 26.73 ± 9.27 29.96 ± 11.64 
Number of syllable types 10.94 ± 3.56 6.05 ± 1.83 5.80 ± 1.15 
Syllable versatility index 0.69 ± 0.11 0.24 ± 0.05 0.21 ± 0.06 
Syllable production rate (syllables/s) 6.92 ± 0.82 9.65 ± 1.30 9.78 ± 1.17 
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Table 5.4. Vocal measurements of male and female rufifrons group and B. r. salvini songs. Male 
and female songs differed significantly in 9 of the 14 measured variables. Significant differences 
are highlighted in bold. 

Vocal variable Males 
(n = 89) 

Females 
(n = 15) 

t value P value 

Song duration (s) 2.82 ± 0.89 1.90 ± 0.80 -4.05 <0.001 
Song maximum frequency (Hz) 7509.3 ± 635.7 8315.7 ± 594.7 4.81 <0.001 
Song minimum frequency (Hz) 2665.0 ± 299.8 2691.5 ± 287.1 0.33 0.75 
Song bandwidth (Hz) 4844.4 ± 710.6 5624.2 ± 723.4 3.87 0.001 
Song peak frequency (Hz) 5393.7 ± 551.2 5597.0 ± 520.9 1.39 0.18 
Syllable duration (s) 0.06 ± 0.01 0.05 ± 0.01 -6.78 <0.001 
Syllable maximum frequency (Hz) 5881.3 ± 328.3 6589.2 ± 387.5 6.68 <0.001 
Syllable minimum frequency (Hz) 3933.0 ± 270.8 3967.7 ± 482.9 0.27 0.79 
Syllable bandwidth (Hz) 1948.4 ± 335.6 2621.6 ± 645.0 3.95 0.001 
Syllable peak frequency (Hz) 4903.3 ± 308.3 5562.1 ± 520.0 4.77 <0.001 
Number of syllables 27.24 ± 9.68 18.23 ± 8.00 -3.91 <0.001 
Number of syllable types 6.01 ± 1.74 5.22 ± 2.24 -1.31 0.21 
Syllable versatility index 0.23 ± 0.05 0.29 ± 0.08 2.75 0.01 
Syllable production rate (syllables/s) 9.67 ± 1.28 9.56 ± 0.91 -0.38 0.71 
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Figures 

 

Figure 5.1. Range distributions of the eight recognized Rufous-capped Warbler subspecies. 
White-bellied B. r. rufifrons (grey shading) and yellow-bellied B. r. delattrii (yellow shading) are 
sympatric in southern Chiapas, Mexico. The range of intermediate-plumaged B. r. salvini (black 
shading) adjoins that of B. r. rufifrons, but does not overlap with that of B. r. delattrii. 
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Figure 5.2. Photographs of adult Rufous-capped Warblers (Basileuterus rufifrons) of three 
subspecies found in southern Mexico: (A-B) B. r. rufifrons, Motozintla, Chiapas; (C-D) B. r. 
rufifrons, Finca La Victoria, Chiapas; (E-F) B. r. salvini, Estación de Biología Los Tuxtlas, Veracruz; 
(G-H) B. r. delattrii, Finca La Victoria, Chiapas, and (I-J) B. r. delattrii, Mapastepec, Chiapas. B. r. 
rufifrons (A-D) have a rufous crown and auricular, a large white auricular patch, and a white 
belly contrasting with the yellow throat. B. r. delattrii (G-J) have a chestnut crown and auricular, 
a small white spot below the eye, and a yellow throat and belly. B. r. salvini (E-F) have similar 
head colouration as B. r. rufifrons, but have extensive yellow streaking on the white belly.  
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Figure 5.3. (A) Male and (B) female Rufous-capped Warblers showed significant differences in 
wing length between the delattrii group, rufifrons group, and B. r. salvini, with the delattrii 
group having the longest wings and B. r. salvini the shortest wings. (C) Males and (D) females 
also differed in the wing-tail ratio (wing length minus tail length), with the delattrii group having 
a positive wing-tail ratio (wing longer than tail) and both the rufifrons group and B. r. salvini 
having a negative wing-tail ratio (wing shorter than tail).  
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Figure 5.4. Rufous-capped Warblers showed subspecies and sex differences in plumage 
reflectance spectra between the delattrii group, rufifrons group, and B. r. salvini. (A) Males had 
less yellow crowns (lower PC3 score) than females for all three groups. (B) The belly colour was 
yellowest for the delattrii group (lower PC2 score), intermediate for B. r. salvini, and least yellow 
for the rufifrons group. (C) The breast was yellower for the delattrii group and B. r. salvini (lower 
PC2 score) than for the rufifrons group. (D) Males from the delattrii group had brighter napes 
(lower PC1 score) than delattrii group females, although both male and female rufifrons group 
and B. r. salvini had brighter napes than delattrii group birds.  
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Figure 5.5. Song spectrograms of Rufous-capped Warbler male songs: (A) allopatric B. r. rufifrons 
(Yagul, Oaxaca, Mexico); (B) allopatric B. r. delattrii (Santa Rosa, Guanacaste, Costa Rica); (C) 
allopatric B. r. salvini (Estación de Biología Los Tuxtlas, Veracruz, Mexico); (D) allopatric B. r. 
delattrii (Mapastepec, Chiapas, Mexico); (E) sympatric B. r. rufifrons (Finca La Victoria, Chiapas, 
Mexico); and (F) sympatric B. r. delattrii (Finca La Victoria). Songs of rufifrons group (A and E) 
and B. r. salvini (C) are structurally similar to one another, and differ from delattrii group songs 
(B, D, and F). Songs from sympatric B. r. rufifrons (E) and B. r. delattrii (F) resemble allopatric 
songs of their own subspecies rather than being intermediate or mixed.  
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Figure 5.6. Male songs of the delattrii group were distinct from the rufifrons group and B. r. 
salvini based on PC1 scores. Individuals of both sympatric B. r. delattrii (green dots) and B. r. 
rufifrons (orange dots) fell within the average range of PC1 scores for their subspecies in 
allopatry, whereas PC2 scores did not differ significantly between subspecies.  
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Figure 5.7. Song spectrograms of B. r. rufifrons male and female songs from (A-B) Motozintla, 
Chiapas, Mexico and (C-D) Yagul, Oaxaca, Mexico. Female songs and syllables are shorter, have 
higher maximum and peak frequency, and larger bandwidth than male songs. 
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Supplementary Material for Chapter 5 

Supplementary Methods 1: Comparison between morphological measurements collected from 
live birds in the field and museum specimens of B. r. delattrii, B. r. rufifrons, and B. r. salvini. 

 

The mean values of the majority of morphological measurements were similar between 

field and museum specimens of all three subspecies. For B. r. delattrii, males were significantly 

larger in field compared to museum specimens for wing length, tail length, tarsus, and bill width 

in males, and for tarsus and bill width in females. For B. r. rufifrons, males were significantly 

larger in field compared to museum specimens for wing length, tail length, tarsus, and bill width 

in males, and for wing length, tail length, and tarsus in females. For B. r. salvini, males were 

significantly larger in field compared to museum specimens for tarsus and bill width in males, 

and for bill width in females; however, wing length in B. r. salvini females was significantly 

smaller in field compared to museum specimens. All other comparisons between field and 

museum specimens were not significantly different (Table 5.S1). 

Supplementary Methods 2: Description of principal components of plumage reflectance PCAs 
for the three-subspecies analysis. 
 

Three-subspecies analysis.—In the PCA with only the three most widely-sampled 

subspecies, the crown patch PC1 accounted for 80.1% of the variation (eigenvalue: 32.8) with 

negative loadings across the 300‒700 nm range, and was negatively associated with brightness. 

PC2 accounted for 15.0% of the variation (eigenvalue: 6.1) with negative loadings from 300‒510 

nm and positive loadings from 520‒700 nm, and was positively associated with redness. PC3 

represented 4.4% of the variation (eigenvalue: 1.5) with positive loadings from 390‒600 nm and 

negative loadings at 300‒380 nm and 610‒700 nm. PC3 was positively associated with yellow 

and green reflectance (Figure 5.S1). 
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For the other nine patches, PC1 accounted for 84.0% of the variation (eigenvalue: 34.4) 

with negative loadings across the 300‒700 nm range, and was negatively associated with 

brightness. PC2 accounted for 11.6% of the variation (eigenvalue: 4.7) with positive loadings 

from 370‒500 nm and negative loadings at 320‒360 and 510‒700 nm. PC2 was associated with 

carotenoid levels, wherein negative scores corresponded to a high carotenoid component to the 

patch (i.e. yellow) and positive scores indicated a lack of carotenoids (i.e. white or grey). PC3 

accounted for 4.0% of the variation (eigenvalue: 1.7) with positive loadings from 410‒700 nm 

and negative loadings from 300‒400 nm, and was negatively associated with UV reflectance 

(Figure 5.S2). 
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Supplementary Results: Results of morphological analyses comparing three subspecies (B. r. 
delattrii, B. r. rufifrons, and B. r. salvini) and all eight subspecies of Rufous-capped Warbler. 
 

Three-subspecies analysis.—The B. r. delattrii and B. r. rufifrons subspecies showed 

considerable morphological separation, whereas B. r. salvini was similar to B. r. rufifrons. For 

males, the three subspecies differed as a whole according to MANOVA (Wilk’s Λ = 0.20, F2, 311 = 

62.4, P < 0.001). The most diagnostic traits according to discriminant analysis were wing and tail 

length; these two characters correctly classified 79.9% of individuals. Classification accuracy was 

high for B. r. delattrii (102 of 110 correct, or 92.7%) and B. r. rufifrons (124 of 147 correct, or 

84.4%). However, only 43.9% (25 of 57) of B. r. salvini were correctly assigned; the majority of 

incorrect assignments (30 of 57, or 52.6%) were to B. r. rufifrons. Both wing length (F2, 374 = 

220.4, P < 0.001) and tail length (F2, 365 = 305.9, P < 0.001) were significantly different across all 

three subspecies. 

For females, the three subspecies differed as a whole according to MANOVA (Wilk’s Λ = 

0.27, F2, 146 = 21.5, P < 0.001). The most diagnostic traits were also wing and tail length, which 

correctly classified 73.8% of individuals. As with males, 91.8% (56 of 61) of B. r. delattrii were 

classified correctly, whereas B. r. rufifrons and B. r. salvini overlapped considerably. For B. r. 

rufifrons, 65.3% (32 of 49) were assigned to B. r. rufifrons and 20.4% (10 of 49) to B. r. salvini. 

For B. r. salvini, 35.9% (14 of 39) were assigned to B. r. rufifrons and 56.4% (22 of 39) to B. r. 

salvini. Wing length was significantly different across all three subspecies (F2, 182 = 120.9, P < 

0.001). Tail length (F2, 174 = 11.4, P < 0.001) was similar for B. r. delattrii and B. r. rufifrons 

(Tukey’s P = 0.93), but shorter for B. r. salvini than for either B. r. delattrii or B. r. rufifrons 

(Tukey’s P < 0.001). For both sexes, the only diagnosable trait was wing length between B. r. 

delattrii and B. r. salvini (males: Dds = 0.56; females: Dds = 0.20), with wing length being longer 

for B. r. delattrii than B. r. salvini (Table 5.S3).    
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The wing-tail ratio was significantly different between all three subspecies (ANOVA; 

males: F2, 365 = 305.9, P < 0.001; females: F2, 174 = 67.6, P < 0.001); however, the mean value was 

negative for both B. r. rufifrons and B. r. salvini (wing shorter than tail) and positive for B. r. 

delattrii (wing longer than tail; Table 5.S3). 

Eight-subspecies analysis.—Classification accuracy by discriminant analysis varied 

considerably across subspecies for both sexes, although most incorrect assignments were to a 

subspecies within the same plumage-based group, and B. r. salvini grouped with B. r. rufifrons. 

For males, the subspecies differed as a whole according to MANOVA (Wilk’s Λ = 0.13, F7, 366 = 

22.4, P < 0.001). The most diagnostic traits according to discriminant analysis were wing and tail 

length, which correctly classified 67.6% of individuals. For the yellow-bellied subspecies, the 

correct classification rate was high for B. r. delattrii (90.9%), but low for B. r. actuosus (60%) and 

B. r. mesochrysus (16.7%). However, all incorrectly assigned B. r. actuosus and B. r. mesochrysus 

grouped with another yellow-bellied subspecies. For the white-bellied subspecies, only B. r. 

rufifrons had a high correct classification rate (84.4%); 0% of B. r. caudatus, B. r. dugesi, and B. r. 

jouyi were assigned correctly, with most individuals classified as B. r. rufifrons or B. r. salvini. 

Classification accuracy of B. r. salvini was low (42.1%), with the majority of remaining individuals 

(52.6%) assigned to B. r. rufifrons (Table 5.S4).  

In females, the subspecies differed as a whole according to MANOVA (Wilk’s Λ = 0.13, F6, 

179 = 12.7, P < 0.001). The most diagnostic traits were wing and tail length, which correctly 

classified 64.5% of individuals. For the yellow-bellied subspecies, the correct classification rate 

was high for B. r. delattrii (88.7%) and B. r. mesochrysus (77.8%). Although classification 

accuracy was low for B. r. actuosus (50%), all incorrectly assigned B. r. actuosus grouped with 

another yellow-bellied subspecies, B. r. delattrii. For the white-bellied subspecies, B. r. rufifrons 

(65.3%) had the highest correct classification rates. 22.2% of B. r. jouyi and 0% of B. r. dugesi 
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were assigned correctly, with most incorrectly-assigned individuals grouping with B. r. rufifrons 

or B. r. salvini. Classification accuracy was also low for B. r. salvini (56.4%), with the majority of 

remaining individuals grouping with B. r. rufifrons (35.9%; Table 5.S4). 
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  Table 5.S1. Comparison between field and museum-collected 
morphological measurements from males and females of three 
extensively-sampled subspecies, B. r. delattrii, B. r. rufifrons, and B. r. 
salvini. Significant comparisons are highlighted in bold; values are mean 
± SD. 

Measurement Field Museum t value P value 

B. r. delattrii      

Males (n = 151)     

Wing length (mm) 57.5 ± 1.8 55.5 ± 2.3 5.53 <0.001 

Tail length (mm) 54.5 ± 3.2 52.7 ± 2.8 3.59 <0.001 

Tarsus (mm) 21.0 ± 0.6 20.0 ± 0.7 8.28 <0.001 

Bill length (mm) 7.2 ± 0.4 7.2 ± 0.4 -0.06 0.95 

Bill depth (mm) 3.8 ± 0.2 3.9 ± 0.2 -1.75 0.08 

Bill width (mm) 3.8 ± 0.4 3.7 ± 0.3 2.88 0.004 

Females (n = 84)     

Wing length (mm) 54.4 ± 1.8 54.5 ± 2.6 -0.27 0.79 

Tail length (mm) 52.3 ± 3.2 52.8 ± 2.9 -0.84 0.41 

Tarsus (mm) 20.8 ± 0.7 19.7 ± 0.8 6.96 <0.001 

Bill length (mm) 7.2 ± 0.4 7.1 ± 0.3 0.69 0.49 

Bill depth (mm) 3.8 ± 0.3 3.8 ± 0.2 -0.98 0.33 

Bill width (mm) 3.8 ± 0.4 3.6 ± 0.2 2.89 0.006 

B. r. rufifrons     

Males (n = 157)     

Wing length (mm) 54.2 ± 1.6 52.2 ± 2.4 6.16 <0.001 

Tail length (mm) 58.0 ± 2.2 54.3 ± 2.4 9.92 <0.001 

Tarsus (mm) 21.2 ± 0.6 20.6 ± 0.6 5.46 <0.001 

Bill length (mm) 6.9 ± 0.3 7.0 ± 0.4 -1.51 0.13 

Bill depth (mm) 3.9 ± 0.2 3.8 ± 0.2 0.93 0.35 

Bill width (mm) 3.7 ± 0.2 3.5 ± 0.2 4.89 <0.001 

Females (n = 56)     

Wing length (mm) 51.3 ± 1.0 50.2 ± 2.2 2.15 0.04 

Tail length (mm) 56.1 ± 3.3 52.1 ± 2.4 3.26 0.01 

Tarsus (mm) 21.1 ± 0.5 20.5 ± 0.7 2.61 0.02 

Bill length (mm) 6.8 ± 0.3 6.9 ± 0.3 -0.51 0.62 

Bill depth (mm) 3.7 ± 0.2 3.7 ± 0.2 0.35 0.73 

Bill width (mm) 3.6 ± 0.3 3.5 ± 0.3 0.94 0.37 
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Measurement Field Museum t value P value 

B. r. salvini     

Males (n = 69)     

Wing length (mm) 50.3 ± 1.3 50.9 ± 1.8 -1.53 0.13 

Tail length (mm) 53.3 ± 1.7 52.4 ± 2.1 1.86 0.07 

Tarsus (mm) 20.8 ± 0.7 20.3 ± 0.8 2.66 0.01 

Bill length (mm) 7.3 ± 0.3 7.1 ± 0.3 1.77 0.08 

Bill depth (mm) 4.0 ± 0.1 3.9 ± 0.2 1.92 0.06 

Bill width (mm) 3.8 ± 0.2 3.5 ± 0.2 4.18 <0.001 

Females (n = 46)     

Wing length (mm) 47.8 ± 1.1 49.4 ± 1.4 -2.98 0.03 

Tail length (mm) 51.4 ± 1.8 50.2 ± 2.0 1.24 0.28 

Tarsus (mm) 20.8 ± 0.5 20.3 ± 0.7 2.07 0.08 

Bill length (mm) 7.0 ± 0.2 7.1 ± 0.3 -0.83 0.44 

Bill depth (mm) 3.8 ± 0.1 3.6 ± 0.1 0.71 0.51 

Bill width (mm) 3.8 ± 0.1 3.6 ± 0.2 2.46 0.05 
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Table 5.S2. Summary of factor loadings of 14 acoustic variables for first three 
principal components in a PCA. PC1 describes differences between the delattrii 
and rufifrons-salvini group songs. The most influential loadings have scores > 
0.27 or < -0.27 and are highlighted in bold. 

 PC1 PC2 PC3 

Eigenvalue 7.58 2.25 1.23 
Percentage of variation (%) 54.1 16.1 8.8 
Song duration 0.14 -0.44 0.38 
Song maximum frequency -0.30 -0.26 0.14 
Song minimum frequency -0.26 0.11 -0.26 
Song bandwidth -0.21 -0.36 0.31 
Song peak frequency -0.19 -0.03 -0.09 
Syllable duration -0.25 0.26 0.46 
Syllable maximum frequency -0.35 0.00 0.08 
Syllable minimum frequency -0.28 -0.24 -0.31 
Syllable bandwidth -0.28 0.21 0.39 
Syllable peak frequency -0.33 -0.08 -0.13 
Number of syllables 0.23 -0.44 0.21 
Number of syllable types -0.21 -0.42 -0.22 
Syllable versatility index -0.32 -0.09 -0.20 
Syllable production rate 0.29 -0.19 -0.25 
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Table 5.S3. Morphological measurements of male and female Rufous-capped 
Warblers according to subspecies (B. r. delattrii, B. r. rufifrons, and B. r. salvini). All 
measurements were significantly different between groups. 

Males delattrii  
(n = 151) 

 rufifrons  
(n = 157) 

salvini 
(n = 69) 

Wing length (mm) 56.9 ± 2.2 53.2 ± 2.3 50.8 ± 1.7 
Tail length (mm) 53.9 ± 3.2 56.1 ± 3.0 52.6 ± 2.0 
Tarsus (mm) 20.6 ± 0.8 20.9 ± 0.7 20.5 ± 0.8 
Bill length (mm) 7.2 ± 0.4 7.0 ± 0.3 7.2 ± 0.3 
Bill depth (mm) 3.8 ± 0.2 3.9 ± 0.2 3.9 ± 0.2 
Bill width (mm) 3.7 ± 0.3 3.6 ± 0.3 3.6 ± 0.2 
Wing-tail ratio (mm) 3.0 ± 2.2 -2.9 ± 2.0 -1.8 ± 2.1 
% yellow underparts 100 ± 0.0 48.3 ± 4.6 66.2 ± 22.1 

Females delattrii 
(n = 84) 

 rufifrons  
(n = 56) 

salvini 
(n = 46) 

Wing length (mm) 54.5 ± 2.2 50.3 ± 2.1 49.2 ± 1.5 
Tail length (mm) 52.6 ± 3.1 52.7 ± 2.9 50.3 ± 2.0 
Tarsus (mm) 20.2 ± 0.9 20.6 ± 0.7 20.3 ± 0.7 
Bill length (mm) 7.2 ± 0.3 6.9 ± 0.3 7.1 ± 0.3 
Bill depth (mm) 3.8 ± 0.3 3.7 ± 0.2 3.8 ± 0.1 
Bill width (mm) 3.7 ± 0.3 3.6 ± 0.3 3.6 ± 0.2 
Wing-tail ratio (mm) 2.0 ± 2.2 -2.5 ± 2.5 -1.1 ± 2.1 
% yellow underparts 100 ± 0.0 48.2 ± 5.9 64.3 ± 21.0 
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Table 5.S4. Discriminant analysis classification accuracy (%) of male and female Rufous-capped 
Warblers according to subspecies. Row headers indicate discriminant analysis subspecies 
classification and column headers indicate original subspecies classification. 

rufifrons group delattrii group 

Males caudatus 
(n = 3) 

dugesi 
(n = 29) 

jouyi 
(n = 11) 

rufifrons 
(n = 147) 

salvini 
(n = 57) 

delattrii 
(n = 110) 

mesochrysus 
(n = 12) 

actuosus 
(n = 5) 

caudatus 0 0 0 0 0 0 0 0 
dugesi 0 0 9.1 0 1.8 0 0 0 
jouyi 0 0 0 0 0 0 0 0 
rufifrons 100 82.8 72.7 84.4 52.6 5.5 0 0 
salvini 0 17.2 9.1 10.9 42.1 1.8 0 0 
delattrii 0 0 9.1 4.8 3.5 90.9 58.3 40.0 
mesochrysus 0 0 0 0 0 1.8 16.7 0 
actuosus 0 0 0 0 0 0 25.0 60.0 

Females caudatus 
(n = 0) 

dugesi 
(n = 14) 

jouyi 
(n = 9) 

rufifrons 
(n = 49) 

salvini 
(n = 39) 

delattrii 
(n = 62) 

mesochrysus 
(n = 9) 

actuosus 
(n = 4) 

caudatus ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 
dugesi ‒ 0 0 0 0 0 0 0 
jouyi ‒ 0 22.2 2.0 0 1.6 0 0 
rufifrons ‒ 71.4 55.6 65.3 35.9 4.8 0 0 
salvini ‒ 14.3 0 20.4 65.4 4.8 11.1 0 
delattrii ‒ 14.3 22.2 12.2 7.7 88.7 11.1 50.0 
mesochrysus ‒ 0 0 0 0 0 77.8 0 
actuosus ‒ 0 0 0 0 0 0 50.0 
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Table 5.S5. Morphological measurements (mean ± SD) of male and female Rufous-capped 
Warblers according to subspecies. 
 rufifrons group delattrii group 

Males caudatus 
(n = 4) 

dugesi 
(n = 33) 

jouyi 
(n = 17) 

rufifrons 
(n = 157) 

salvini 
(n = 69) 

delattrii 
(n = 151) 

mesochrysus 
(n = 16) 

actuosus 
(n = 9) 

Wing 
length 
(mm) 

52.0 ± 2.7 51.7 ± 1.8 52.1 ± 2.8 53.2 ± 2.3 50.8 ± 1.7 56.6 ± 2.2 57.0 ± 2.7 59.1 ± 2.0 

Tail length 
(mm) 

54.8 ± 2.2 55.1 ± 2.5 55.4 ± 3.4 56.1 ± 3.0 52.6 ± 2.0 53.9 ± 3.2 49.4 ± 3.0 51.9 ± 2.1 

Tarsus 
(mm) 

20.2 ± 0.3 20.2 ± 0.7 20.8 ± 0.8 20.9 ± 0.7 20.5 ± 0.8 20.6 ± 0.8 20.2 ± 0.7 21.3 ± 0.5 

Bill length 
(mm) 

6.7 ± 0.2 6.7 ± 0.3 7.0 ± 0.4 7.0 ± 0.3 7.2 ± 0.3 7.2 ± 0.4 7.6 ± 0.3 8.1 ± 0.4 

Bill depth 
(mm) 

3.6 ± 0.2 3.7 ± 0.2 3.8 ± 0.1 3.9 ± 0.2 3.9 ± 0.2 3.8 ± 0.2 4.1 ± 0.1 4.5 ± 0.2 

Bill width 
(mm) 

3.3 ± 0.2 3.4 ± 0.2 3.6 ± 0.1 3.6 ± 0.3 3.6 ± 0.2 3.7 ± 0.3 4.1 ± 0.2 4.3 ± 0.2 

Wing-tail 
ratio (mm) 

-2.8 ± 2.4 -3.4 ± 1.8 -3.2 ± 3.0 -2.9 ± 2.0 -1.8 ± 2.1 3.0 ± 2.2 7.5 ± 2.6 7.2 ± 2.8 

% yellow 
underparts 

48.1 ± 7.3 46.6 ± 4.2 47.0 ± 4.6 48.3 ± 4.6 66.2 ± 22.1 100 ± 0.0 100 ± 0.0 100 ± 0.0 

Females caudatus 
(n = 2) 

dugesi 
(n = 17) 

jouyi 
(n = 12) 

rufifrons 
(n = 56) 

salvini 
(n = 46) 

delattrii 
(n = 84) 

mesochrysus 
(n = 13) 

actuosus 
(n = 5) 

Wing 
length 
(mm) 

49.0 ± 0.0 51.1 ± 2.0 52.6 ± 2.8 50.3 ± 2.1 49.2 ± 1.5 54.5 ± 2.2 54.2 ± 2.6 56.4 ± 3.1 

Tail length 
(mm) 

54.0 ± NA 54.1 ± 3.1 55.3 ± 3.8 52.8 ± 2.9 50.3 ± 2.0 52.6 ± 3.1 47.1 ± 1.7 50.6 ± 1.8 

Tarsus 
(mm) 

20.5 ± 0.7 20.2 ± 0.6 20.7 ± 0.7 20.6 ± 0.7 20.3 ± 0.7 20.2 ± 0.9 20.7 ± 0.6 21.1 ± 0.6 

Bill length 
(mm) 

6.5 ± 0.1 6.7 ± 0.3 6.9 ± 0.3 6.9 ± 0.3 7.1 ± 0.3 7.2 ± 0.3 7.7 ± 0.3 8.3 ± 0.2 

Bill depth 
(mm) 

3.8 ± 0.0 3.7 ± 0.3 3.8 ± 0.3 3.7 ± 0.2 3.8 ± 0.1 3.8 ± 0.3 4.0 ± 0.2 4.3 ± 0.1 

Bill width 
(mm) 

3.3 ± 0.0 3.3 ± 0.2 3.6 ± 0.3 3.6 ± 0.3 3.6 ± 0.2 3.7 ± 0.3 4.0 ± 0.3 4.5 ± 0.2 

Wing-tail 
ratio (mm) 

-5.0 ± NA -2.9 ± 3.0 -2.8 ± 3.1 -2.5 ± 2.5 -1.1 ± 2.1 2.0 ± 2.2 6.7 ± 2.8 5.8 ± 2.9 

% yellow 
underparts 

44.7 ± 1.2 46.6 ± 3.9 47.9 ± 3.2 48.2 ± 6.0 64.3 ± 21.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 
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Table 5.S6. Linear mixed model results of plumage colour analysis for Rufous-capped Warblers 
in delattrii group, rufifrons group, and B. r. salvini. Values in bold indicate significant effects. 
  PC1 (brightness) PC2 (yellow) PC3 (UV) 

  F df P F df P F df P 

Belly Subspecies 3.5 2, 432 0.03 286.0 2, 432 <0.001 36.7 2, 432 <0.001 
 Sex 0.0 1, 432 0.93 0.1 1, 432 0.70 6.4 1, 432 0.01 
 Subspp × Sex 1.3 2, 432 0.27 0.8 2, 432 0.46 2.2 2, 432 0.12 
 Year 31.8 1, 432 <0.001 0.0 1, 432 0.97 171.8 1, 432 <0.001 

 
Breast Subspecies 5.9 2, 432 0.003 38.0 2, 432 <0.001 21.2 2, 432 <0.001 
 Sex 0.0 1, 432 0.90 0.1 1, 432 0.75 0.8 1, 432 0.38 
 Subspp × Sex 0.4 2, 432 0.64 0.4 2, 432 0.65 0.8 2, 432 0.44 
 Year 37.0 1, 432 <0.001 3.0 1, 432 0.08 148.6 1, 432 <0.001 

 
Mantle Subspecies 6.2 2, 432 0.002 43.6 2, 432 <0.001 6.0 2, 432 0.003 
 Sex 4.7 1, 432 0.03 4.1 1, 432 0.04 7.4 1, 432 0.007 
 Subspp × Sex 0.9 2, 432 0.41 1.3 2, 432 0.27 1.9 2, 432 0.14 
 Year 1.1 1, 432 0.30 2.2 1, 432 0.14 23.5 1, 432 <0.001 

 
Nape Subspecies 19.7 2, 432 <0.001 29.7 2, 432 <0.001 1.3 2, 432 0.28 
 Sex 1.1 1, 432 0.29 1.3 1, 432 0.25 2.2 1, 432 0.14 
 Subspp × Sex 5.1 2, 432 0.006 2.0 2, 432 0.13 2.0 2, 432 0.13 
 Year 10.7 1, 432 0.001 2.2 1, 432 0.14 58.5 1, 432 <0.001 
           
Rump Subspecies 2.5 2, 432 0.08 26.1 2, 432 <0.001 4.1 2, 432 0.02 
 Sex 0.1 1, 432 0.74 0.3 1, 432 0.61 1.5 1, 432 0.22 
 Subspp × Sex 2.3 2, 432 0.10 0.9 2, 432 0.39 0.8 2, 432 0.45 
 Year 0.2 1, 432 0.66 0.0 1, 432 0.89 31.0 1, 432 <0.001 
           
Shoulder Subspecies 0.2 2, 432 0.79 10.4 2, 432 <0.001 14.0 2, 432 <0.001 
 Sex 0.8 1, 432 0.36 0.1 1, 432 0.71 3.2 1, 432 0.07 
 Subspp × Sex 0.0 2, 432 0.98 0.2 2, 432 0.83 0.3 2, 432 0.71 
 Year 1.9 1, 432 0.17 0.0 1, 432 0.90 56.6 1, 432 <0.001 

 
Tail Subspecies 0.6 2, 426 0.55 5.4 2, 426 0.005 6.9 2, 426 0.001 
 Sex 0.3 1, 426 0.57 0.1 1, 426 0.74 2.5 1, 426 0.12 
 Subspp × Sex 0.1 2, 426 0.89 0.3 2, 426 0.73 1.1 2, 426 0.35 
 Year 0.1 1, 426 0.77 6.5 1, 426 0.01 33.1 1, 426 <0.001 

 
Throat Subspecies 0.6 2, 432 0.52 5.4 2, 432 0.005 6.1 2, 432 0.003 
 Sex 0.0 1, 432 0.86 0.1 1, 432 0.75 0.2 1, 432 0.67 
 Subspp × Sex 0.2 2, 432 0.82 0.2 2, 432 0.83 0.4 2, 432 0.65 
 Year 5.6 1, 432 0.02 25.6 1, 432 <0.001 60.3 1, 432 <0.001 

 
Wing Subspecies 0.6 2, 432 0.54 17.1 2, 432 <0.001 21.0 2, 432 <0.001 
 Sex 0.3 1, 432 0.56 1.1 1, 432 0.29 3.0 1, 432 0.09 
 Subspp × Sex 0.1 2, 432 0.90 0.3 2, 432 0.71 1.4 2, 432 0.24 
 Year 9.8 1, 432 0.002 1.8 1, 432 0.18 20.3 1, 432 <0.001 
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  PC1 (brightness) PC2 (red) PC3 (yellow) 

  F df P F df P F df P 

Crown Subspecies 17.3 2, 432 <0.001 3.9 2, 432 0.02 11.7 2, 432 <0.001 
 Sex 0.6 1, 432 0.44 1.2 1, 432 0.27 7.6 1, 432 0.006 
 Subspp × Sex 0.7 2, 432 0.50 2.2 2, 432 0.11 0.1 2, 432 0.91 
 Year 4.1 1, 432 0.04 13.6 1, 432 <0.001 7.4 1, 432 0.007 
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Table 5.S7. Subspecies and sex differences in plumage colouration between delattrii group 
(yellow), rufifrons group (white), and B. r. salvini Rufous-capped Warblers. Significant Tukey’s 
post-hoc test results are highlighted in bold; values for subspecies × sex interactions are 
provided when significant for that PC score. 
   PC1   PC2   PC3  

  Est. ± SE t P Est. ± SE t P Est. ± SE t P 

Belly Subspecies          
 white-salvini -1.84 ± 0.48 -3.8 <0.001 3.82 ± 0.23 16.8 <0.001  0.40 ± 0.22 1.8 0.16 
 yellow-salvini -0.05 ± 0.52 -0.1 1.00 -4.13 ± 0.25 -16.8 <0.001 -1.95 ± 0.24 -8.2 <0.001 
 white-yellow 1.79 ± 0.43 4.2 <0.001 -7.95 ± 0.20 -39.5 <0.001 -2.36 ± 0.20 -12.1 <0.001 
Breast Subspecies          
 white-salvini -1.07 ± 0.39 -2.7 0.02 2.87 ± 0.32 9.1 <0.001 0.17 ± 0.20 0.8 0.67 
 yellow-salvini -1.65 ± 0.43 -3.9 <0.001 -0.25 ± 0.34 -0.7 0.74 -1.35 ± 0.22 -6.2 <0.001 
 white-yellow -0.58 ± 0.35 -1.7 0.22 -3.12 ± 0.28 -11.1 <0.001 -1.52 ± 0.18 -8.5 <0.001 
Crown Subspecies          
 white-salvini -0.23 ± 0.64 -0.4 0.93 0.05 ± 0.31 0.2 0.99 0.21 ± 0.16 1.4 0.37 
 yellow-salvini 5.40 ± 0.69 7.8 <0.001 -0.62 ± 0.33 -1.9 0.15 -0.83 ± 0.17 -4.9 <0.001 
 white-yellow 5.63 ± 0.56 10.0 <0.001  -0.67 ± 0.27 -2.5 0.04 -1.05 ± 0.14 -7.5 <0.001 
Mantle Subspecies          
 white-salvini -0.15 ± 0.13 -1.2 0.48 0.52 ± 0.06 9.4 <0.001 0.04 ± 0.08 0.4 0.90 
 yellow-salvini 0.39 ± 0.14 2.8 0.02 -0.14 ± 0.06 -2.4 0.05 -0.31 ± 0.09 -3.6 0.001 
 white-yellow 0.54 ± 0.11 4.7 <0.001 -0.66 ± 0.05 -13.5 <0.001 -0.34 ± 0.07 -4.9 <0.001 
Nape Subspecies          
 white-salvini 0.26 ± 0.13 2.0 0.11 0.03 ± 0.05 0.7 0.77 0.05 ± 0.09 0.6 0.84 
 yellow-salvini 0.80 ± 0.14 5.7 <0.001 -0.36 ± 0.05 -7.1 <0.001 -0.25 ± 0.09 -2.7 0.02 
 white-yellow 0.53 ± 0.11 4.7 <0.001 -0.39 ± 0.04 -9.5 <0.001 -0.30 ± 0.08 -3.9 <0.001 
 Subspp × sex          
 yellow M-F 0.61 ± 0.18 3.4 <0.001       
 white M-F -0.07 ± 0.15 -0.5 0.64       
 salvini M-F 0.20 ± 0.21 0.9 0.36       
Rump Subspecies          
 white-salvini -0.32 ± 0.21 -1.5 0.27 0.61 ± 0.10 6.1 <0.001 -0.01 ± 0.14 -0.1 1.00 
 yellow-salvini -0.09 ± 0.23 -0.4 0.92 -0.28 ± 0.11 -2.6 0.02 -0.72 ± 0.16 -4.6 <0.001 
 white-yellow 0.23 ± 0.19 1.3 0.42 -0.89 ± 0.09 -10.1 <0.001 -0.71 ± 0.13 -5.6 <0.001 
Shoulder Subspecies          
 white-salvini 0.11 ± 0.14 0.8 0.71 0.36 ± 0.05 6.8 <0.001 0.15 ± 0.09 1.7 0.20 
 yellow-salvini -0.02 ± 0.15 -0.1 0.99 0.15 ± 0.06 2.7 0.02 -0.50 ± 0.10 -5.2 <0.001 
 white-yellow -0.14 ± 0.13 -1.1 0.53 -0.20 ± 0.05 -4.5 <0.001 -0.66 ± 0.08 -8.3 <0.001 
Tail Subspecies          
 white-salvini 0.12 ± 0.14 0.8 0.67 0.13 ± 0.04 3.2 0.004 0.02 ± 0.08 0.3 0.95 
 yellow-salvini 0.16 ± 0.15 1.1 0.52 0.23 ± 0.04 5.4 <0.001 -0.40 ± 0.08 -4.7 <0.001 
 white-yellow 0.05 ± 0.12 0.4 0.93 0.10 ± 0.04 2.9 0.01 -0.42 ± 0.07 -6.1 <0.001 
Throat Subspecies          
 white-salvini -0.38 ± 0.42 -0.9 0.64 0.52 ± 0.20 2.6 0.02 0.13 ± 0.20 0.7 0.79 
 yellow-salvini -0.58 ± 0.46 -1.3 0.41 1.03 ± 0.22 4.8 <0.001 -0.88 ± 0.22 -4.0 <0.001 
 white-yellow -0.21 ± 0.37 -0.6 0.85 0.51 ± 0.18 2.9 0.01 -1.02 ± 0.18 -5.6 <0.001 
Wing Subspecies          
 white-salvini 0.15 ± 0.17 0.9 0.65 0.21 ± 0.05 4.6 <0.001 0.04 ± 0.06 0.6 0.80 
 yellow-salvini 0.38 ± 0.18 2.1 0.10 0.40 ± 0.05 8.0 <0.001 -0.46 ± 0.07 -6.6 <0.001 
 white-yellow 0.23 ± 0.15 1.5 0.27 0.19 ± 0.04 4.6 <0.001 -0.50 ± 0.06 -8.8 <0.001 
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Table 5.S8. Linear mixed model results of plumage colour analysis for B. r. delattrii, B. r. 
rufifrons, and B. r. salvini subspecies of Rufous-capped Warbler. Values in bold indicate 
significant effects. 
  PC1 (brightness) PC2 (yellow) PC3 (UV) 

  F df P F df P F df P 

Belly Subspecies 3.5 2, 306 0.03 160.8 2, 306 <0.001 33.6 2, 306 <0.001 
 Sex 0.2 1, 306 0.69 0.0 1, 306 0.92 3.4 1, 306 0.07 
 Subspp × Sex 0.6 2, 306 0.57 0.4 2, 306 0.66 1.7 2, 306 0.18 
 Year 26.8 1, 306 <0.001 0.2 1, 306 0.67 113.5 1, 306 <0.001 

 
Breast Subspecies 5.4 2, 306 0.005 24.2 2, 306 <0.001 16.6 2, 306 <0.001 
 Sex 2.7 1, 306 0.10 0.0 1, 306 0.87 0.1 1, 306 0.83 
 Subspp × Sex 0.6 2, 306 0.55 0.0 2, 306 0.97 0.3 2, 306 0.72 
 Year 23.9 1, 306 <0.001 0.5 1, 306 0.48 104.3 1, 306 <0.001 

 
Mantle Subspecies 4.7 2, 306 0.01 16.0 2, 306 <0.001 7.2 2, 306 <0.001 
 Sex 1.8 1, 306 0.18 0.1 1, 306 0.72 2.2 1, 306 0.14 
 Subspp × Sex 1.5 2, 306 0.22 1.3 2, 306 0.28 2.0 2, 306 0.13 
 Year 3.1 1, 306 0.08 0.1 1, 306 0.78 18.8 1, 306 <0.001 

 
Nape Subspecies 17.0 2, 306 <0.001 29.5 2, 306 <0.001 1.6 2, 306 0.21 
 Sex 12.3 1, 306 <0.001 4.0 1, 306 0.05 8.3 1, 306 0.004 
 Subspp × Sex 5.5 2, 306 0.005 2.1 2, 306 0.12 2.9 2, 306 0.06 
 Year 8.6 1, 306 0.004 2.5 1, 306 0.12 31.9 1, 306 <0.001 
           
Rump Subspecies 1.6 2, 306 0.21 9.4 2, 306 0.001 3.9 2, 306 0.02 
 Sex 14.2 1, 306 <0.001 8.1 1, 306 0.005 10.6 1, 306 0.001 
 Subspp × Sex 3.8 2, 306 0.02 1.7 2, 306 0.19 1.8 2, 306 0.17 
 Year 0.0 1, 306 0.95 0.2 1, 306 0.64 14.7 1, 306 <0.001 
           
Shoulder Subspecies 0.5 2, 306 0.62 5.3 2, 306 0.005 6.5 2, 306 0.002 
 Sex 4.2 1, 306 0.04 0.0 1, 306 0.94 2.4 1, 306 0.13 
 Subspp × Sex 0.4 2, 306 0.70 0.1 2, 306 0.90 0.2 2, 306 0.82 
 Year 6.1 1, 306 0.01 2.5 1, 306 0.12 45.6 1, 306 <0.001 

 
Tail Subspecies 0.7 2, 301 0.48 7.6 2, 301 <0.001 6.1 2, 301 0.002 
 Sex 1.5 1, 301 0.22 0.0 1, 301 0.86 1.3 1, 301 0.26 
 Subspp × Sex 0.1 2, 301 0.87 0.4 2, 301 0.69 0.8 2, 301 0.46 
 Year 0.1 1, 301 0.72 10.3 1, 301 0.002 31.9 1, 301 <0.001 

 
Throat Subspecies 0.1 2, 306 0.89 2.6 2, 306 0.08 4.1 2, 306 0.02 
 Sex 0.2 1, 306 0.63 0.0 1, 306 0.83 0.0 1, 306 0.85 
 Subspp × Sex 0.1 2, 306 0.95 0.2 2, 306 0.86 0.5 2, 306 0.60 
 Year 3.2 1, 306 0.07 19.2 1, 306 <0.001 40.2 1, 306 <0.001 

 
Wing Subspecies 1.2 2, 306 0.30 22.9 2, 306 <0.001 13.2 2, 306 <0.001 
 Sex 0.0 1, 306 0.88 6.1 1, 306 0.01 0.0 1, 306 0.88 
 Subspp × Sex 0.1 2, 306 0.94 0.7 2, 306 0.48 0.9 2, 306 0.40 
 Year 4.2 1, 306 0.04 0.2 1, 306 0.62 22.2 1, 306 <0.001 
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  PC1 (brightness) PC2 (red) PC3 (yellow) 

  F df P F df P F df P 

Crown Subspecies 20.1 2, 306 <0.001 4.7 2, 306 0.01 4.7 2, 306 0.01 
 Sex 0.0 1, 306 0.99 1.1 1, 306 0.30 12.2 1, 306 <0.001 
 Subspp × Sex 0.2 2, 306 0.79 2.5 2, 306 0.08 0.1 2, 306 0.86 
 Year 0.0 1, 306 0.84 8.9 1, 306 0.003 3.4 1, 306 0.07 
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Table 5.S9. Subspecies and sex differences in plumage colouration between B. r. delattrii, B. r. 
rufifrons, and B. r. salvini subspecies of Rufous-capped Warbler. Significant Tukey’s post-hoc test 
results are highlighted in bold; values for subspecies × sex interactions are provided when 
significant for that PC score. 
   PC1   PC2   PC3  

  Est. ± SE t P Est. ± SE t P Est. ± SE t P 

Belly Subspecies          
 delattrii-rufifrons -2.20 ± 0.54 -4.0 <0.001 8.18 ± 0.28 29.3 <0.001 2.77 ± 0.24 11.7 <0.001 
 delattrii-salvini -0.19 ± 0.59 -0.3 0.94 4.43 ± 0.30 14.8 <0.001 2.60 ± 0.25 10.2 <0.001 
 rufifrons-salvini 2.01 ± 0.54 3.7 <0.001 -3.74 ± 0.28 -13.5 <0.001 -0.18 ± 0.24 -0.8 0.73 
Breast Subspecies          
 delattrii-rufifrons 1.03 ± 0.42 2.4 0.04 3.09 ± 0.32 9.7 <0.001 1.62 ± 0.21 7.6 <0.001 
 delattrii-salvini 1.84 ± 0.45 4.1 <0.001 0.48 ± 0.34 1.4 0.34 1.62 ± 0.23 7.0 <0.001 
 rufifrons-salvini 0.81 ± 0.42 1.9 0.13 -2.61 ± 0.32 -8.2 <0.001 0.00 ± 0.21 0.0 1.00 
Crown Subspecies          
 delattrii-rufifrons -6.39 ± 0.67 -9.5 <0.001 0.75 ± 0.34 2.2 0.07 0.73 ± 0.17 4.4 <0.001 
 delattrii-salvini -6.58 ± 0.73 -9.1 <0.001 1.04 ± 0.36 2.9 0.01 0.80 ± 0.18 4.5 <0.001 
 rufifrons-salvini -0.19 ± 0.67 -0.3 0.96  0.29 ± 0.33 0.9 0.67 0.07 ± 0.17 0.4 0.90 
Mantle Subspecies          
 delattrii-rufifrons -0.45 ± 0.14 -3.2 0.005 0.47 ± 0.07 7.1 <0.001 0.34 ± 0.08 4.2 <0.001 
 delattrii-salvini -0.29 ± 0.15 -1.9 0.14 0.06 ± 0.07 0.8 0.71 0.43 ± 0.09 4.9 <0.001 
 rufifrons-salvini 0.16 ± 0.14 1.1 0.50 -0.41 ± 0.07 -6.2 <0.001 0.09 ± 0.08 1.1 0.53 
Nape Subspecies          
 delattrii-rufifrons -0.51 ± 0.15 -3.5 0.002 0.50 ± 0.06 8.9 <0.001 0.34 ± 0.09 3.8 <0.001 
 delattrii-salvini -0.85 ± 0.16 -5.4 <0.001 0.49 ± 0.06 7.9 <0.001 0.38 ± 0.10 3.9 <0.001 
 rufifrons-salvini -0.33 ± 0.15 -2.3 0.06 -0.02 ± 0.06 -0.3 0.94 0.04 ± 0.09 0.4 0.91 
 Subspecies × sex          
 delattrii M-F 0.70 ± 0.22 3.2 0.002       
 rufifrons M-F -0.17 ± 0.19 -0.9 0.37       
 salvini M-F 0.20 ± 0.22 0.9 0.36       
Rump Subspecies          
 delattrii-rufifrons -0.05 ± 0.24 -0.2 0.98 0.67 ± 0.13 5.2 <0.001 0.81 ± 0.15 5.3 <0.001 
 delattrii-salvini 0.27 ± 0.26 1.0 0.55 0.14 ± 0.14 1.0 0.57 0.96 ± 0.16 5.9 <0.001 
 rufifrons-salvini 0.32 ± 0.24 1.3 0.39 -0.53 ± 0.13 -4.2 <0.001 0.16 ± 0.15 1.0 0.56 
 Subspecies × sex          
 delattrii M-F 1.38 ± 0.36 3.8 <0.001       
 rufifrons M-F 0.23 ± 0.32 0.7 0.48       
 salvini M-F 0.11 ± 0.36 0.3 0.76       
Shoulder Subspecies          
 delattrii-rufifrons 0.20 ± 0.16 1.3 0.42 0.11 ± 0.06 1.8 0.16 0.55 ± 0.09 5.9 <0.001 
 delattrii-salvini 0.00 ± 0.17 0.0 1.00 -0.17 ± 0.06 -2.8 0.02 0.50 ± 0.10 4.9 <0.001 
 rufifrons-salvini -0.21 ± 0.16 -1.3 0.40 -0.28 ± 0.06 -4.8 <0.001 -0.05 ± 0.09 -0.6 0.84 
Tail Subspecies          
 delattrii-rufifrons 0.13 ± 0.16 0.8 0.71 -0.24 ± 0.05 -4.8 <0.001 0.45 ± 0.08 5.4 <0.001 
 delattrii-salvini -0.14 ± 0.17 -0.8 0.69 -0.29 ± 0.05 -5.4 <0.001 0.45 ± 0.09 5.0 <0.001 
 rufifrons-salvini -0.27 ± 0.16 -1.7 0.22 -0.05 ± 0.05 -1.0 0.58 0.00 ± 0.08 0.0 1.00 
Throat Subspecies          
 delattrii-rufifrons 0.23 ± 0.46 0.5 0.87 -0.03 ± 0.23 -0.1 0.99 1.05 ± 0.21 4.9 <0.001 
 delattrii-salvini 0.29 ± 0.50 0.6 0.83 -0.64 ± 0.25 -2.6 0.03 1.02 ± 0.23 4.4 <0.001 
 rufifrons-salvini 0.06 ± 0.46 0.1 0.99 -0.61 ± 0.23 -2.6 0.02 -0.04 ± 0.21 -0.2 0.98 
Wing Subspecies          
 delattrii-rufifrons -0.03 ± 0.19 -0.2 0.99 -0.36 ± 0.05 -7.3 <0.001 0.50 ± 0.07 7.1 <0.001 
 delattrii-salvini -0.45 ± 0.20 -2.2 0.07 -0.44 ± 0.05 -8.2 <0.001 0.46 ± 0.08 6.2 <0.001 
 rufifrons-salvini -0.42 ± 0.19 -2.2 0.07 -0.07 ± 0.05 -1.5 0.30 -0.03 ± 0.07 -0.5 0.87 
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Figure 5.S1. Summary of factor loadings for first three principal components in a PCA describing 
reflectance of the crown patch. Original variables are mean reflectance values grouped into 10 
nm bins across the avian visual spectrum (300‒700 nm). PC1 (grey line) represents brightness, 
PC2 (red line) represents amount of red reflectance, and PC3 (yellow line) represents amount of 
yellow reflectance.  
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Figure 5.S2. Summary of factor loadings for first three principal components in a PCA describing 
reflectance of all plumage patches except for the crown. Original variables are mean reflectance 
values grouped into 10 nm bins across the avian visual spectrum (300‒700 nm). PC1 (grey line) 
represents brightness, PC2 (yellow line) represents amount of yellow reflectance, and PC3 
(purple line) represents amount of UV reflectance. 
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Chapter Summary 

When animal mating signals diverge between populations, reproductive isolation and speciation 

may occur. Variation in animals’ responses to these signals may reveal whether differences in 

perception contribute to behavioural differences between populations. We tested whether 

signal divergence influences receiver responses to playback in the Rufous-capped Warbler 

(Basileuterus rufifrons), a Neotropical resident songbird with a contact zone between two 

divergent subspecies, B. r. delattrii and B. r. rufifrons, in southern Mexico. We presented 

allopatric and sympatric pairs of warblers with playback simulating a territorial male rival of 

each subspecies. We found that song acts as a premating isolating barrier between subspecies. 

Warblers responded more strongly to playback of their own subspecies than the other 

subspecies when we conducted playback to delattrii and rufifrons living in sympatry. However, 

delattrii living in allopatry responded strongly to playback of both subspecies, suggesting 

possible reproductive character displacement. Our research demonstrates that delattrii and 

rufifrons discriminate between each other’s songs, suggesting that song is an isolating 

mechanism, and adds to the growing literature on receiver response to vocal signal divergence 

in closely-related sympatric and allopatric animal populations.  
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Introduction 

Signal divergence between animal populations promotes premating reproductive 

isolation and speciation (Price & Bouvier 2002; Coyne & Orr 2004), and occurs through 

ecological selection, sexual selection, and cultural or genetic drift (Wilkins et al. 2013). 

Investigating the mechanisms of signal divergence solely by examining patterns of phenotypic 

and genetic divergence may be inconclusive. In some populations, divergence in mating signals 

such as bright plumage and elaborate song mirrors genetic differentiation (Mendelson & Shaw 

2005; Uy et al. 2009; Caro et al. 2013; Greig et al. 2015). Other closely-related taxa may show 

strong phenotypic differentiation and discrimination despite little genetic difference (e.g., 

Mason & Taylor 2015; Benites et al. 2015), or discriminate strongly between phenotypically 

similar signals (e.g., Grant & Grant 2002; Tobias & Seddon 2009; Grace & Shaw 2012). Therefore, 

it is critical to examine not only the extent of divergence, but also the strength of discrimination 

or response to trait divergence by the animals themselves (Seddon & Tobias 2010; Hudson & 

Price 2014). In animals using acoustic and visual modalities to communicate, experimental 

studies using playback of vocal signals (e.g., Grant & Grant 2002; Lemmon 2009; Grace & Shaw 

2012) and presentation of visual models (e.g., Gabor & Ryan 2001; Mays & Hopper 2004; Hick et 

al. 2016) are useful tests of response to signal variation. 

Although signal divergence between allopatric populations is often considered an 

important indicator of reproductive isolation (Coyne & Orr 2004), the extent of signal 

divergence in closely-related allopatric populations does not always reflect the degree of 

reproductive isolation (Hudson & Price 2014). Instead, reproductive character displacement (i.e. 

greater signal divergence, heightened discrimination, or both) when closely-related populations 

come into secondary contact may maintain premating isolation through reinforcement when 
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selection against hybrids is strong (Gerhardt 2013; Hudson & Price 2014). This pattern has been 

observed in taxa including insects (e.g., Jang & Gerhardt 2006; Grace & Shaw 2012), fishes (e.g., 

Gabor & Ryan 2001), and anurans (e.g., Lemmon 2009). In birds, male Black-crested Titmice 

(Baeolophus atricristatus) and Tufted Titmice (B. bicolor) showed stronger song discrimination in 

an older hybrid zone because of reduced hybrid fitness (Curry & Patten 2016). In Collared 

Flycatchers (Ficedula albicollis) and Pied Flycatchers (F. hypoleuca), plumage and song diverged 

more in sympatry than in allopatry and corresponded to female preferences, minimizing 

undesirable interspecific mating (Sætre et al. 1997; Haavie et al. 2004). A similar situation can 

occur in parapatric (adjoining) populations which potentially hybridize; in two Grey-breasted 

Wood-wren (Henicorhina leucophrys) subspecies, males in parapatric populations had more 

acoustically different songs and stronger song discrimination than males in allopatric 

populations (Dingle et al. 2010). In these cases, reinforcement promotes assortative mating 

thereby limiting hybridization, although not all contact zones show this pattern (Wilkins et al. 

2018). 

Birdsong is a widely studied territory defence and mating signal (Catchpole & Slater 

2008). Related populations that compete for resources (e.g., food, nesting sites) may respond 

strongly to heterotypic songs of competitors even when they are reproductively isolated (Martin 

& Martin 2001; Tobias & Seddon 2009; Jankowski et al. 2010; Freeman 2016). When one closely-

related species or subspecies replaces another along an ecological gradient, competitive 

interactions can promote between-population discrimination upon secondary contact (e.g., 

Jankowski et al. 2010; Caro et al. 2013; Freeman et al. 2016). To establish whether different 

responses to song between closely-related sympatric populations are related to mate attraction 

or resource defence, it is important to confirm whether gene flow is ongoing. If gene flow is 
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absent, competition for territorial resources, rather than mates, likely explains heightened 

responses to heterotypic signals (reviewed in Lipshutz 2018). 

Differences in receiver perception of signals, whether learned or innate, are expected to 

influence signal divergence (Endler & Basolo 1998; Verzijden et al. 2012). Learned discrimination 

between particular signal features may influence response strength even if the signals diverge 

little structurally (Grant & Grant 2002; Gee 2005; Seddon & Tobias 2010; Grace & Shaw 2012), 

and may also result in asymmetric discrimination between different populations (e.g., Colbeck et 

al. 2010; Dingle et al. 2010). Different populations may vary in their innate sensory sensitivity to 

specific signal features (e.g., frequency), further enhancing reproductive isolation in 

combination with learned discrimination (Dingle et al. 2010; McEntee 2014). However, learning 

can reduce reproductive isolation when animals learn signals from neighbouring individuals of a 

related species or subspecies (e.g., McEntee et al. 2016; Kenyon et al. 2017). For instance, in a 

young hybrid zone, male Pied Flycatchers sang mixed songs containing elements copied from 

Collared Flycatcher neighbours, resulting in increased hybridization (Haavie et al. 2004). These 

examples underscore the importance of quantifying both innate and learned components of 

discrimination in order to examine their contribution to reproductive isolation. 

The Rufous-capped Warbler (Basileuterus rufifrons) is an ideal species in which to study 

receiver response to signal divergence between populations. This common resident warbler of 

Mexico, Central America, and northern South America shows pronounced geographic variation 

in vocal and visual signal phenotypes. The eight recognized subspecies fall into two groups that 

differ in plumage and voice: (1) the northern, white-bellied rufifrons group of Mexico and 

western Guatemala, and (2) the southern, yellow-bellied delattrii group of southeastern Mexico 

and Central and South America (Curson 2010; Figure 6.1). The current taxonomy recognizes a 

single species based on the existence of an intermediate-plumaged subspecies, B. r. salvini, in 
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the Atlantic lowland region of southern Mexico, and reported hybridization between white-

bellied B. r. rufifrons and yellow-bellied B. r. delattrii in a narrow zone of sympatry in southern 

Mexico and Guatemala (Monroe 1968; Curson 2010; Figure 6.1). However, other authorities 

split the two groups into separate species based on their highly divergent plumage and songs 

(Todd 1929; Howell & Webb 1995). The two groups also differ in their habitat preferences; the 

white-bellied group lives in arid scrub and pine-oak from 1000–3000 m a.s.l., whereas the 

yellow-bellied group inhabits semi-open humid habitats and tropical dry forest from 0–1500 m 

a.s.l. (Curson 2010). Given these phenotypic differences, this system is ideal for testing variation 

in receiver response to vocal signals between populations. 

The objective of our research was to experimentally test whether song divergence 

between phenotypically divergent Rufous-capped Warbler subspecies contributes to 

behavioural differences in response to these vocal signals. We aimed to determine if vocal 

divergence influences reproductive isolation between two Rufous-capped Warbler subspecies 

with a narrow contact zone, B. r. rufifrons and B. r. delattrii. We predicted that if males compete 

between subspecies for mates and territories, males in both sympatry and allopatry should 

respond equally strongly to both subspecies. If males do not compete between subspecies for 

mates and territories, males in both sympatry and allopatry should respond strongly to their 

own subspecies and weakly to the other subspecies. If song is a reproductively isolating barrier 

between subspecies, and if males of each subspecies also compete for territories when they 

occur in sympatry, males in sympatry should respond strongly to both subspecies, whereas 

males in allopatry should respond strongly to their own subspecies and weakly to the other 

subspecies. If reproductive character displacement occurs between the two subspecies, males in 

sympatry should respond strongly to their own subspecies and weakly to the other subspecies, 

whereas males in allopatry should respond strongly to both subspecies. If aggression levels or 
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innate perceptual sensitivity differ between subspecies, we expected an asymmetric response 

between the subspecies (e.g., Colbeck et al. 2010; Dingle et al. 2010). 

Methods 

Study species and location 

We conducted our study in southeastern Chiapas, Mexico, where delattrii are found in 

humid forest at low elevation (200–800 m a.s.l.) and rufifrons live in montane scrub habitat at 

high elevation (1200–3000 m a.s.l.; Howell & Webb 1995). In this region, delattrii and rufifrons 

co-occur in humid, semi-open habitats (e.g., coffee plantations) at mid–elevation (800–1200 m), 

but appear to share territories, mate assortatively, and have distinct plumage and songs (A. 

Demko and J. R. Sosa-López pers. obs.). We experimentally tested the importance of vocal 

signals for within-subspecies discrimination by presenting territorial pairs of delattrii and 

rufifrons with song playback of both subspecies (e.g., Uy et al. 2009; Greig et al. 2015). We 

conducted our playback study at three localities at the start of the breeding (rainy) season: (1) 

allopatric delattrii near Mapastepec, Chiapas (15.34°N, 92.52°W; elev. 450 m), a humid montane 

deciduous forest (May 25–31, 2017); (2) allopatric rufifrons near Motozintla, Chiapas (15.38°N, 

92.27°W; elev. 1700 m), an arid montane pine-oak scrub (June 8–9, 2017); and (3) sympatric 

delattrii and sympatric rufifrons at Finca La Victoria, Chiapas (15.29°N, 92.42°W; elev. 1000 m), a 

humid shade coffee plantation (May 8–21, 2017; Figure 6.2). 

Playback design 

We captured warblers on their territories using mist-nets and song playback, and we 

banded each animal with a unique colour-band combination for individual identification. We 
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banded both the female and the male owners in 5 territories; in 23 territories we captured the 

male only; and in 18 territories both birds were unbanded. For unbanded pairs, we verified the 

territory holder identity by comparing the unique song types used by the males during each 

trial. Our analysis included territories of 15 allopatric delattrii, 6 allopatric rufifrons, 17 sympatric 

delattrii, and 8 sympatric rufifrons (Table 6.1). 

We presented three treatments to each pair, one on each successive day: (1) male 

delattrii song; (2) male rufifrons song; and (3) control of male song of a sympatric non-

competitor species, the Banded Wren (Thryophilus pleurostictus). Thus, each focal bird received 

own-subspecies, other-subspecies, and heterospecific stimuli. We broadcast stimuli from a 

FoxPro Scorpion TX200 speaker placed 1 m above the ground near the centre of the warblers’ 

territory. We estimated the territory centre based on capture locations and 30-min territorial 

observations of the territory holders prior to the experiment; males typically sang from the 

same perch during the dawn chorus, which we presumed to be near their territory centre. We 

broadcast stimuli at 90 dB(A) SPL measured at 1 m from the speaker using a Casella CEL–240 

sound level meter (Casella CEL Inc., Buffalo, NY, USA). This amplitude approximates the natural 

volume of Rufous-capped Warbler broadcast songs and the amplitude used in other warbler 

song playback studies (e.g., Hof & Hazlett 2010). 

Trials consisted of a 5-min pre-playback, 5-min playback, and 2-min post-playback 

period. We ran all trials between 07:00–12:30 CDT, which is the period of peak daily vocal 

activity in this species, excluding the early-morning dawn chorus when males typically sing 

spontaneously at a high rate (Chapter 2). One or two observers sat 15–20 m away from the 

speaker to record the birds’ responses and describe their behaviour. We used a Marantz 

PMD660 digital recorder and Audiotechnica AT8015 directional microphone to record all 

playback trials. During the trials, the observer(s) dictated the horizontal and vertical distance of 
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each bird from the playback, and described other activities related to aggressive territorial 

responses (e.g., flights over the speaker). 

We considered a response to be a trial where at least one warbler of the focal pair 

approached within 10 m of the playback speaker during the 5-min playback period (e.g., Gill et 

al. 2007; Jankowski et al. 2010). If both the male and female responded, we recorded all 

response data for each individual separately, rather than pooling all responses together. We 

repeated the 5-min playback in a new location within the pair’s territory on the following day if 

there was no response to the own-subspecies stimulus on the first attempt. We used this 

protocol because we expected all birds to respond territorially to the song of their own 

subspecies, and thus assumed that the first location chosen was not near the actual territory 

centre. If there was still no response on the second attempt, we did not include that territory’s 

data in the analysis. We also repeated any trials on the following day if a neighbour of the same 

subspecies also approached within 10 m of the playback during the 5-min playback period, or if 

another animal species approached the playback at the same time as the focal bird. At the 

sympatric site, we did not repeat the trial if a warbler from the other subspecies also responded, 

since the territories of the two subspecies frequently overlapped (A. Demko pers. obs.). When 

territories overlapped between the two subspecies, we identified the focal subspecies based on 

capture locations of individuals and dawn singing observations. In all cases where we repeated a 

trial, we used only the second, successful trial in our analyses. We ensured that neighbouring 

warbler pairs used in the experiment did not receive the same playback stimuli to avoid 

familiarity with particular song types. 
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Playback stimuli 

We used our own field recordings collected under natural or playback-induced 

conditions in Mexico in 2016 and 2017 to produce all playback stimuli. Since Rufous-capped 

Warblers use similar song types in natural and playback-induced conditions (Chapter 4), we 

considered songs from both types of recordings to be equivalent and we chose the highest-

quality recordings available to produce playback stimuli. Our investigation focused on the 

overall responses of each subspecies to each other rather than their responses to the local 

population, so birds at all three sites received only non-local song playback of both subspecies 

(modified from Dingle et al. 2010). Furthermore, since we expected warblers at the sympatric 

site to be more familiar with and potentially more responsive to local song of both subspecies, 

the use of non-local songs at all sites permitted a more conservative approach to data analysis. 

Birds at each site received the conspecific stimuli indicated in Table 6.1. To produce 

heterospecific stimuli, we recorded Banded Wren songs opportunistically from five individual 

males at Mapastepec, Motozintla, and Parque Nacional Cañon del Sumidero, Chiapas. 

Each playback stimulus consisted of a single song type recorded from one individual 

male, repeated at a natural daytime song rate of 6 songs/min (Chapter 4). We prepared stimuli 

by filtering each song with a 1000 Hz high-pass filter, editing out background noise around the 

song using the lasso selection tool, and normalizing the amplitude of the final playback files to -1 

dB using Adobe Audition 3.0 software (Adobe, San Jose, CA, USA). We produced the following 

number of different stimuli for each subspecies and location: Finca La Victoria rufifrons (n = 6); 

Finca La Victoria delattrii (n = 9); Motozintla rufifrons (n = 9); Mapastepec delattrii (n = 11); and 

Banded Wren (n = 5). 
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Analysis 

We annotated recordings of playback trials using Syrinx PC (J. Burt, Seattle, WA, USA), 

focusing on the observers’ description of the birds’ physical responses to the playback, and all 

songs and calls produced by each warbler during the trials. We recorded the following response 

measures for each focal male and female: (1) closest distance of approach to speaker in m; (2) 

latency to approach within 10 m of speaker; (3) time spent within 10 m of speaker; (4) number 

of songs given; and (5) song duration in seconds (calculated by averaging the song duration of all 

songs recorded during the playback trial). We used Principal Components Analysis to create 

uncorrelated response variables (McGregor 1992); we first log-transformed the latency to 

approach and time within 10 m variables to meet the assumptions of PCA (Quinn & Keough 

2002). PC1 (eigenvalue: 2.92) represented 58.3% of the total variation in response strength, and 

was the only influential PC (i.e. eigenvalue >1). Factor loadings for PC1 corresponded to physical 

and vocal approach responses of warblers to playback; a positive PC1 score corresponded to a 

stronger response, including closer approach distance, shorter latency to approach, more time 

spent near the speaker, more songs sung, and longer songs produced (Table 6.2). We then ran 

linear mixed models with PC1 as the response variable; playback treatment (delattrii, rufifrons, 

or control), site (allopatric delattrii, sympatric delattrii, allopatric rufifrons, or sympatric 

rufifrons), and treatment × site interaction as fixed effects; and bird identity and playback 

stimulus file as random effects (Greig et al. 2015). We included an order effect in the initial 

models, but as this was non-significant (χ2
1 = 0.2, P = 0.67), we excluded it from the final models. 

We conducted likelihood ratio tests to estimate fixed effects P-values, and conducted separate 

post-hoc analyses for each site using the ‘glht’ function in the ‘multcomp’ package in R (Hothorn 

et al. 2017). Data met LMM assumptions aside from the presence of three outliers; we elected 
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to retain the outliers in our final analysis, because they represented actual responses of pairs to 

playback, and a separate analysis with the outliers removed yielded the same significant effects 

and post-hoc test results. We conducted all statistical analyses using R v.3.4.3 (R Development 

Core Team 2017). 

Results 

Male responses to playback 

Male Rufous-capped Warblers at all sites showed high response rates to playback; 88‒

100% of individuals responded (i.e. approached within 10 m of the speaker) during own-

subspecies trials and 20‒87% during other-subspecies trials. Only sympatric delattrii responded 

to significantly more own-subspecies than other-subspecies playback trials (Fisher’s exact test, P 

< 0.001). Sympatric rufifrons, allopatric delattrii, and allopatric rufifrons did not differ 

significantly in the proportion of responses to own- and other-subspecies playback (Fisher’s 

exact test, all P > 0.10; Figure 6.3). Although some males responded to control trials (0‒43% by 

site; Figure 6.3), response strength (PC1) was greater to conspecific trials than to control trials at 

all sites (Figure 6.4). A significant treatment main effect (χ2
2 = 16.6, P < 0.001) and treatment × 

site interaction (likelihood ratio test: χ2
6 = 39.0, P < 0.001) indicated that responses to each 

treatment type varied between sites (Table 6.3). 

The sympatric and allopatric sites showed different patterns of response strength to 

playback. Sympatric delattrii and rufifrons both discriminated between the two subspecies 

(Figure 6.4). Sympatric delattrii males responded significantly more strongly to delattrii playback 

than to either rufifrons (estimate = 2.18 ± 0.47, t = 4.6, P < 0.001) or control playback (estimate = 

-2.34 ± 0.50, t = -4.7, P < 0.001), whereas their responses to rufifrons and control playback did 
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not differ (estimate = -0.16 ± 0.50, t = -0.3, P = 0.94). Sympatric rufifrons males responded 

significantly more strongly to rufifrons playback than to either delattrii (estimate = -2.34 ± 0.66, t 

= -3.6, P = 0.002) or control playback (estimate = -2.58 ± 0.67, t = -3.8, P < 0.001), whereas their 

responses to delattrii and control playback did not differ (estimate = -0.24 ± 0.69, t = -0.3, P = 

0.94; Table 6.3). 

In contrast to the sympatric sites, allopatric delattrii males did not discriminate between 

the two subspecies; instead, they responded significantly more strongly to both delattrii 

(estimate = -2.64 ± 0.52, t = -5.1, P < 0.001) and rufifrons playback (estimate = -2.02 ± 0.54, t = -

3.8, P < 0.001) than to the control, whereas their responses to delattrii and rufifrons playback 

did not differ (estimate = 0.62 ± 0.51, t = 1.2, P = 0.45; Figure 6.4). In allopatric rufifrons, males 

showed a trend towards discrimination between subspecies; they responded more strongly to 

rufifrons playback than to delattrii (estimate = -1.88 ± 0.94, t = -2.0, P = 0.12) or control 

(estimate = -3.07 ± 1.44, t = -2.1, P = 0.09; Table 6.3), although neither comparison was 

significant. The observed trend only suggests discrimination between subspecies, since a low 

sample size at this site precluded accurate statistical analysis. 

At the sympatric site, an opposite-subspecies neighbour sometimes responded to 

playback when the focal bird did not respond (e.g., during a rufifrons playback treatment on a 

delattrii territory, a neighbouring rufifrons sometimes responded). Some rufifrons individuals 

responded to off-territory playback of both rufifrons (6 of 17 trials) and delattrii playback (2 of 

17 trials). During both of these delattrii trials and 1 of the 6 rufifrons trials, the delattrii territory 

holder also responded to the playback. Only one delattrii individual responded to delattrii 

playback (1 of 8 trials) on a rufifrons territory. Two of the rufifrons intruders were confirmed as 

neighbours of the focal delattrii male based on their colour band combinations. The remaining 

unbanded off-territory responders were presumed to be males based on the song types they 
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sang on the playback recording, as both delattrii and rufifrons males sing acoustically distinct 

songs from females (Chapter 5). 

Female responses to playback 

Female Rufous-capped Warblers also occasionally responded to playback along with 

their male partners. Despite lower sample sizes for rufifrons than delattrii territories, results 

suggested that female rufifrons showed stronger responses to playback than did female 

delattrii. Female rufifrons responded in 33% (1 of 3) of rufifrons trials and 20% (1 of 5) of 

delattrii trials at the allopatric site, and 25% (2 of 8) of rufifrons trials at the sympatric site. All 

four responding rufifrons females sang in response to the playback, indicating a more intense 

response. Female delattrii responded in 13.3% (2 of 15) of delattrii trials and 6.7% (1 of 15) of 

rufifrons trials at the allopatric site, and 5.9% (1 of 17) of delattrii trials and 6.2% (1 of 16) of 

control trials at the sympatric site. Only 1 of 5 responding delattrii females sang in response to 

playback. 

Discussion 

Our results showed differential responses between Rufous-capped Warbler subspecies 

to each other’s songs, where sympatric delattrii and rufifrons responded more strongly to own-

subspecies than other-subspecies song playback. Both the high responses to own-subspecies 

playback and the low responses to other-subspecies playback in sympatry indicate that the two 

subspecies are not interspecifically territorial. Weaker discrimination between the two 

subspecies’ songs at the allopatric delattrii site compared to the sympatric site also suggests 

that reproductive character displacement may be enhancing discrimination in sympatry. We also 

found potential evidence that delattrii and rufifrons differ in aggression levels. In sympatry, 
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rufifrons males appeared to be more aggressive; although less numerous than delattrii, they 

responded more to other-subspecies playback than did delattrii. In allopatry, however, delattrii 

appeared to be more aggressive since males responded strongly to both subspecies (e.g., Hick et 

al. 2016). 

One explanation for the weak other-subspecies responses in sympatry is historical 

premating behavioural isolation, where populations which have diverged over a long time 

period and come into secondary contact recently do not recognize one another as potential 

mates or competitors (Uy et al. 2018). This is possible for Rufous-capped Warblers, since both 

subspecies co-exist on territories in sympatry, and sing in adjacent trees without apparent 

antagonism (A. Demko pers. obs.). A similar pattern was found for two related species of African 

tinkerbirds (Pogoniulus bilineatus and P. subsulphureus), which are not interspecifically 

territorial and thus respond less to heterospecifics in sympatry than in allopatry (Kirschel et al. 

2009). Another potential explanation is that selection against hybrids may be occurring in the 

contact zone, and promotes stronger discrimination against heterotypic signals in sympatry than 

in allopatry through reproductive character displacement (Gerhardt 2013; Uy et al. 2018). This is 

the case for Collared and Pied Flycatchers, which have come into secondary contact following 

historical isolation in allopatry. In those species, hybrid females are sterile and hybrid males 

have lower pairing success, favouring character displacement of both song and plumage in 

sympatry to avoid interspecific mating (Sætre & Sæther 2010). This scenario seems plausible for 

Rufous-capped Warblers as well, since sympatric delattrii and rufifrons showed stronger 

discrimination against other-subspecies playback than did allopatric delattrii. Although songs did 

not differ acoustically within each subspecies between sympatric and allopatric sites (Chapter 

5), enhanced discrimination in sympatry is still an important component of reproductive 

character displacement (e.g., Kirschel et al. 2009; Dingle et al. 2010). Furthermore, no apparent 
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hybrids were found at our sympatric site, and all warblers we observed there (over 40 delattrii 

and 25 rufifrons pairs) mated assortatively. The apparent absence of hybrids in the contact zone 

suggests either complete reproductive isolation or selection against hybrids. Ongoing molecular 

analyses will assess the degree and timing of genetic divergence between delattrii and rufifrons, 

and determine whether hybridization has occurred historically or is ongoing in the contact zone. 

Furthermore, tests of female choice for these divergent signals (e.g., Sætre et al. 1997; Jang & 

Gerhardt 2006) in Rufous-capped Warblers would be useful to assess the contribution of 

reproductive character displacement to heightened discrimination in sympatry. 

Allopatric delattrii responded strongly to playback of both subspecies; 87% of delattrii 

pairs responded to both delattrii and rufifrons songs. Interestingly, a separate playback study on 

delattrii in Central America also found strong responses to both subspecies; in that study, 60% 

of pairs (total n = 15) responded to songs of both local delattrii and allopatric B. r. caudatus, a 

northern Mexican subspecies with similar songs and plumage as rufifrons (Freeman & 

Montgomery 2017). Therefore, one explanation for the differing responses of delattrii and 

rufifrons is that delattrii have a broader acoustic perceptual sensitivity than rufifrons. Studies 

comparing other closely-related songbird species show that strong heterotypic responses can 

occur in reproductively isolated populations when birds exhibit innate perceptual sensitivities to 

particular acoustic features (Dingle et al. 2010; McEntee 2014) or respond preferentially to 

songs which are acoustically similar to their own (Sosa-López et al. 2016). An analysis comparing 

acoustic features of delattrii and rufifrons songs showed that delattrii songs have a larger 

average syllable bandwidth than rufifrons songs and that the frequency ranges of the two 

subspecies overlap (Chapter 5), suggesting that delattrii may be sensitive to a wider frequency 

range than rufifrons. 
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Allopatric delattrii may also have responded strongly to rufifrons because they are 

behaviourally dominant and therefore more aggressive towards intruders. Overall, delattrii are 

larger than rufifrons and are more numerous at the sympatric site; both characteristics are 

associated with dominance in other bird species (Freshwater et al. 2014; Hick et al. 2016). 

However, the dominance of delattrii remains inconclusive, because rufifrons responses were 

stronger in some respects than those of delattrii; for example, rufifrons used more female song 

and had more out-of-territory aggressive responses to playback in sympatry. A study that 

measures aggression more directly, such as by using visual models which birds could potentially 

attack, would allow comparison of the intensity of aggressive behaviours of both delattrii and 

rufifrons during territorial interactions (e.g., Greig et al. 2015; Hick et al. 2016). 

It is also possible that delattrii at our allopatric site had prior exposure to rufifrons 

during the non-breeding season, resulting in a heightened response to their songs. Although 

Rufous-capped Warblers are year-round residents throughout their range, individuals are more 

mobile during the non-breeding season, and could potentially encounter one another if either 

subspecies moves altitudinally at any time during the year. The rufifrons subspecies occurs at 

higher elevations (generally above 1000 m a.s.l.) adjacent to the allopatric delattrii site (450 m 

a.s.l.), and Rufous-capped Warbler habitat is continuous between the two locations according to 

historical records. Given that both subspecies responded less to one another in sympatry, where 

they are in continuous contact, this explanation appears unlikely. However, year-round surveys 

of Rufous-capped Warbler distribution in locations where altitudinal movements are possible 

would be useful to determine if dispersal and inter-subspecies contact occur in the non-

breeding season. 

Another potential factor influencing responses is song variation between source 

populations used to produce playback stimuli. The delattrii and rufifrons songs used as playback 
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at the allopatric sites were all recorded from the sympatric site, so if any sympatric rufifrons 

used hybrid or mixed songs (i.e. songs with delattrii-type syllables), those songs could 

potentially provoke a strong response in allopatric delattrii (e.g., Qvarnström et al. 2006). We do 

not believe this to be an important confounding factor in our study, because our analysis of 

acoustic structure comparing delattrii and rufifrons songs revealed that the two subspecies’ 

songs had significantly distinct spectro-temporal characteristics (Chapter 5). Furthermore, all 

recordings analyzed from the sympatric site were within the average acoustic range for their 

given subspecies, and we found no mixed songs containing syllable types of both subspecies. 

However, our playback study only included one sympatric and one allopatric site for each 

subspecies for logistical reasons, resulting in small sample sizes, especially for rufifrons. Since 

other studies comparing multiple allopatric populations have found within-species or subspecies 

response differences across sites (e.g., Gabor & Ryan 2001; McEntee 2014), further research at 

more delattrii and rufifrons sites would be valuable to assess whether response differences 

between subspecies are innate (e.g., different perceptual sensitivity) or learned (e.g., learned 

aggressive responses). 

We found that females also discriminate between the two subspecies, and that delattrii 

and rufifrons females may differ in their aggression levels. In particular, rufifrons females 

responded more frequently than delattrii females to playback, and showed intense behavioural 

responses such as singing. In both subspecies, female choice for specific song characteristics or 

heightened female discrimination between signals could therefore result in lower other-

subspecies responses and assortative mating. Indeed, females of many species show stronger 

responses than males to local-population songs, indicating a preference and heightened 

discrimination for those signals (Seddon & Tobias 2010; Danner et al. 2011; Wheatcroft & 

Qvarnström 2017). In Rufous-capped Warblers, playback experiments comparing female 
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responses to songs of local and non-local own- and other-subspecies populations would be 

useful to investigate the influence of vocal geographic variation on female mate choice (Jang & 

Gerhardt 2006; Danner et al. 2011).  

The fact that delattrii and rufifrons differ in their habitat preferences and potentially in 

their aggression levels should be considered when assessing response differences between 

subspecies. If the low-elevation species (i.e. delattrii) is more dominant, anthropogenic and 

climate-change related effects, including habitat alteration and temperature increases, may 

cause the low-elevation species to expand its range upslope, thus restricting the range of the 

high-elevation species (e.g., Jankowski et al. 2010; Freeman & Montgomery 2016; Freeman et al. 

2016). If the high-elevation species (i.e. rufifrons) is more dominant, elevational replacement 

can still occur if habitat changes favour the lower-elevation species’ occupation of higher-

elevation habitat (e.g., Barve & Dhondt 2017) or the expansion of the higher-elevation species’ 

habitat downslope (e.g., through increased severity of droughts). In Rufous-capped Warblers, 

our sympatric study site was in a humid forest zone cleared to produce a semi-open shade 

coffee plantation. Rufous-capped Warbler territory characteristics  in the contact zone are more 

similar in vegetation density and canopy cover to allopatric delattrii territories than allopatric 

rufifrons territories (Vargas-Herrera et al. 2017), so it is probable that rufifrons have moved 

downslope from their native habitat to the contact zone. Since delattrii are more numerous in 

the contact zone, and the habitat there is more similar to native delattrii habitat, this suggests 

that the contact zone may be sub-optimal rufifrons habitat. Further experimental work could 

test whether one subspecies is more dominant, and if so, whether this relationship varies 

between sympatric populations which have been in contact for differing time periods. Such data 

would allow researchers to understand potential effects of climate and habitat change on the 

population dynamics and range distributions of delattrii and rufifrons. 
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Our research suggests that song is an important trait promoting premating reproductive 

isolation between the delattrii and rufifrons subspecies of Rufous-capped Warbler, since birds 

preferentially responded to their own subspecies in sympatry. The strong discrimination 

between own- and other-subspecies songs in sympatry suggests that reproductive character 

displacement may be contributing to divergence between the two subspecies. In contrast, the 

strong response of allopatric delattrii to both subspecies may indicate a wider range of 

perceptual sensitivity or higher aggression levels in delattrii compared to rufifrons, although 

further experimental studies incorporating additional allopatric populations and visual signals 

would be useful to explore these ideas (e.g., Gabor & Ryan 2001; McEntee 2014; Hick et al. 

2016). Overall, our work adds to the growing number of studies examining receiver response 

differences to learned signal divergence between bird populations, and the importance of vocal 

signal divergence as a premating isolating barrier in secondary contact zones.  
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Tables 

Table 6.1. Playback locations and origin of Rufous-capped Warbler stimuli used to produce 
playback. All populations received non-local stimuli. 

Playback 
location 

Subspecies Range Number of 
territories 

Origin of 
rufifrons 
stimulus 

Origin of 
delattrii 
stimulus 

Finca La 
Victoria 

delattrii sympatric 17 Motozintla Mapastepec 

Finca La 
Victoria 

rufifrons sympatric 8 Motozintla Mapastepec 

Mapastepec delattrii allopatric 15 Finca La Victoria Finca La Victoria 

Motozintla rufifrons allopatric 6 Finca La Victoria Finca La Victoria 
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Table 6.2. Summary of correlations between five physical and vocal response 
variables for first three principal components. PC1 represents response strength 
of male Rufous-capped Warblers to playback; neither PC2 nor PC3 differed 
significantly between treatments or sites. 

 PC1 PC2 PC3 

Eigenvalue 2.92 0.86 0.70 
Percentage of variation (%) 58.3 17.2 14.0 
Number of songs 0.49 0.38 -0.24 
Song duration 0.45 0.48 -0.35 
Closest approach distance -0.46 0.16 -0.61 
Time within 10 m 0.50 -0.19 0.35 
Latency to approach to 10 m -0.31 0.75 0.57 
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Table 6.3. Linear mixed model and post-hoc comparison results of physical and 
vocal approach (PC1) of male Rufous-capped Warblers in response to playback. 
Significant effects are highlighted in bold. 

Full LMM  χ2 df P value 

Treatment 16.6 2 <0.001 
Site 7.4 3 0.06 
Treatment × Site 39.0 6 <0.001 

Post-hoc comparisons Estimate ± SE t value P value 

Sympatric delattrii     
control – delattrii -2.34 ± 0.50 -4.7 <0.001 
control – rufifrons -0.16 ± 0.50 -0.3 0.94 
delattrii – rufifrons 2.18 ± 0.47 4.6 <0.001 

Sympatric rufifrons     
control – delattrii -0.24 ± 0.69 -0.3 0.94 
control – rufifrons -2.58 ± 0.67 -3.8 <0.001 
delattrii – rufifrons -2.34 ± 0.66 -3.6 0.002 

Allopatric delattrii     
control – delattrii -2.64 ± 0.52 -5.1 <0.001 
control – rufifrons -2.02 ± 0.54 -3.8 <0.001 
delattrii – rufifrons 0.62 ± 0.51 1.2 0.45 

Allopatric rufifrons     
control – delattrii -1.19 ± 1.35 -0.9 0.65 
control – rufifrons -3.07 ± 1.44 -2.1 0.09 
delattrii – rufifrons -1.88 ± 0.94 -2.0 0.12 
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Figures 

 

Figure 6.1. Map of Rufous-capped Warbler (Basileuterus rufifrons) range distribution. The white-
bellied rufifrons group (grey shading) distributes from southern Arizona to western Guatemala, 
while the yellow-bellied delattrii group (yellow shading) distributes from southeastern Mexico 
through Central and South America. Two subspecies from these groups, northern B. r. rufifrons 
and southern B. r. delattrii, live in sympatry at mid-elevation sites in southern Mexico (orange 
star). 
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Figure 6.2. Locations of sympatric and allopatric Rufous-capped Warbler study sites in southern 
Chiapas, Mexico. The sympatric site is approximately 30 km away from each allopatric site; the 
two allopatric sites are approximately 60 km apart.  
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Figure 6.3. Sympatric delattrii responded more often (i.e. approached within 10 m) to own-
subspecies than other-subspecies playback, whereas sympatric rufifrons, allopatric delattrii, and 
allopatric rufifrons did not differ significantly in number of responses to own-subspecies and 
other-subspecies playback.  
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Figure 6.4. Sympatric delattrii and rufifrons responded more strongly to own-subspecies than 
other-subspecies playback, whereas allopatric delattrii responded strongly to both own-
subspecies and other-subspecies playback. Letters above boxplots indicate significant post-hoc 
test results. 
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Introduction 

In my dissertation, I investigated the vocal behaviour of a Neotropical resident songbird, 

the Rufous-capped Warbler (Basileuterus rufifrons), using both observational data from focal 

recordings and experimental data from playback studies. I assessed whether phenotypic 

variation contributes to reproductive isolation by comparing plumage, song, and morphology 

between subspecies, and by conducting a playback experiment to test for differences in 

responses to divergent vocal signals in two sympatric subspecies. Overall, my research provided 

new insight into the vocal behaviour and breeding biology of tropical wood-warblers, including 

the first quantitative analysis of both male and female song in the genus Basileuterus (Chapters 

2 and 4), and a description of sex-specific roles in parental care by Rufous-capped Warblers 

during each nesting stage (Chapter 3). My work also revealed that Rufous-capped Warblers 

likely comprise two phenotypically distinct groups (Chapter 5) which correspond to the historical 

taxonomic classification of this clade as two species (Todd 1929). In particular, song structure 

differed significantly between the two groups (Chapter 5), and reduced responses to heterotypic 

songs in sympatry by both B. r. delattrii and B. r. rufifrons indicate that vocal differences may 

promote reproductive isolation between them (Chapter 6). 

My work provides new information on season- and sex-specific variation in breeding and 

territorial behaviour, which are poorly-studied aspects of the ecology of tropical resident birds 

(Stutchbury & Morton 2001). My research showed both sexes of Rufous-capped Warblers 

contributed more equally to territory defence than is reported in studies of migratory wood-

warblers. Both sexes regularly produced songs and calls, and closely approached playback 

simulating conspecific territorial intrusions (Chapter 4). Female Rufous-capped Warblers 

responded more strongly to playback during the non-breeding season than during the breeding 
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season, similarly to other tropical year-round resident songbird species (e.g., Fedy & Stutchbury 

2005; Gill et al. 2007, 2008). This suggests that female songs and calls that are produced outside 

the context of duets likely serve a territory defence function, as do female signals used as part of 

duets in many other tropical resident species (reviewed in Dahlin & Benedict 2014; Tobias et al. 

2016). My findings also reveal that social selection on competition for resources may contribute 

to female signal evolution (e.g., Tobias et al. 2011). 

My research improves our understanding of vocal behaviour in tropical resident wood-

warblers. Rufous-capped Warblers appear to differ in their vocal behaviour from other 

migratory and tropical resident warbler species; males have large, complex repertoires of song 

variants that they use interchangeably, rather than two distinct song categories or singing 

modes (e.g., Wiley et al. 1994; Staicer 1996) or one primary song type (e.g., Lein 1981; Ritchison 

1995). My findings therefore suggest that tropical resident warblers have diverse vocal 

behaviours similar to those of migratory species (Spector 1992). At least one tropical resident 

species in the genus Setophaga, the Adelaide’s Warbler (S. adelaidae), uses two song categories 

like its migratory congeners (Staicer 1996). Males of at least one species in the genus Geothlypis, 

the Gray-crowned Yellowthroat (G. poliocephala), have multiple song types, while its other 

tropical congeners use only a single song type (Byers 2015). Although female song has been 

anecdotally reported for several tropical resident warblers (Spector 1992; Medina 2015), my 

study is the first to document female song in the Rufous-capped Warbler, making it only the 

second Basileuterus species with known female song (see Donegan 2014). Overall, this research 

highlights that even widespread, common tropical resident species such as the Rufous-capped 

Warbler warrant further study of their ecology and vocal behaviour. 

The morphological, vocal, and plumage differentiation between Rufous-capped Warbler 

subspecies strongly suggests that they represent two species, the northern rufous-capped, 
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white-bellied group (suggested name: Rufous-capped Warbler, or B. rufifrons) and the southern 

chestnut-capped, yellow-bellied group (suggested name: Chestnut-capped Warbler, or B. 

delattrii), as originally named by both historical (Todd 1929) and recent sources (Howell & Webb 

1995). Notably, I established that the reportedly intermediate subspecies B. r. salvini is more 

phenotypically similar to B. r. rufifrons than to B. r. delattrii. In addition to providing a more 

accurate description of taxonomic relationships within the genus Basileuterus, my work provides 

an incentive for further studies on the ecology and vocal behaviour of both the delattrii and 

rufifrons groups. Although the breeding biology and behaviour of the delattrii group is relatively 

well-documented (Skutch 1967; Chapters 2‒4), the rufifrons group remains little-studied apart 

from a handful of nest descriptions (Zimmerman & Harry 1951; Rowley 1962, 1966) and this 

study’s analysis of song structure (Chapter 5). Furthermore, the two groups appear to be 

reproductively isolated by song, since both B. r. delattrii and B. r. rufifrons responded little to 

heterotypic playback in sympatry (Chapter 6). My work adds to a growing number of studies 

demonstrating that vocal signal divergence may contribute to reproductive isolation between 

closely-related bird populations (Sætre et al. 1997; Kirschel et al. 2009; Dingle et al. 2010). 

Future directions: Male vocal behaviour 

My research on male repertoire structure and singing behaviour (Chapter 2) revealed 

that male B. r. delattrii have large, variable repertoires and show seasonal variation in repertoire 

use. The function of both of these traits warrants further examination. The large repertoire sizes 

and highly complex songs of this species suggest that these traits may be under selection, and 

perhaps even subject to different selective pressures (Searcy & Andersson 1986; Price & Lanyon 

2004; Handley & Nelson 2005). In order to explore repertoire function in Rufous-capped 

Warblers, future studies should examine whether repertoire size and complexity are associated 
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with measures of male quality, such as territory tenure, survival, or lifetime reproductive 

success (e.g., Buchanan & Catchpole 1997; Beecher et al. 2000a; Reid et al. 2005; Nicholson et 

al. 2007), and with female choice (e.g., Nolan & Hill 2004). In order to investigate the function of 

seasonal variation, future researchers should conduct a longitudinal analysis of song use in focal 

males of known breeding status. Since song rate and song length increased in Rufous-capped 

Warblers during the breeding season and the dawn chorus, it would be useful to examine 

whether these two traits vary predictably according to specific breeding stages (e.g., egg-laying, 

incubation), times of day, or other contexts (e.g., Nelson & Poesel 2011; Zhang et al. 2015). 

An intriguing aspect of Rufous-capped Warbler singing behaviour is that males showed 

annual turnover in song and syllable types. In other songbird species, males add or drop song 

types or syllables from their repertoires depending on whether those vocalizations are also used 

by conspecific neighbours (e.g., Lemon et al. 1994; Nicholson et al. 2007; Demko et al. 2016). 

Since Rufous-capped Warbler pairs hold year-round territories and may retain the same 

territories for at least three years (Chapter 2), song sharing could facilitate communication 

between particular neighbours, as in other temperate (e.g., Beecher et al. 2000b) and tropical 

resident species (e.g., Vehrencamp et al. 2007, 2014). Future research should therefore explore 

whether changes in male song or syllables types are associated with changes in territorial 

neighbours, and whether factors such as age or territory fidelity may influence annual song type 

turnover. If shared song types are important for mediating male-male social interactions, males 

with longer territory tenure would be expected to share more songs or syllables with neighbours 

(e.g., Beecher et al. 2000a), and males should alter their repertoire composition as neighbours 

change in order to share more songs with them (e.g., Lemon et al. 1994; Nicholson et al. 2007). 
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Future directions: Female vocal behaviour 

The finding that female Rufous-capped Warblers sing opens the door for further studies 

of the form and function of female song in this species and other tropical resident warblers. In B. 

r. delattrii, female song was infrequent, and females did not appear to form coordinated duets 

with males (Chapter 4). My experimental study on male and female signaling behaviour during 

territorial interactions suggested that B. r. delattrii females use song in joint territory defence 

(Chapter 4). However, other documented functions of female song in other species, such as 

mate guarding and female-female competition, were not thoroughly explored in that study. 

Further experimental tests using female songs as playback stimuli could further test those 

hypotheses by determining whether warblers respond differently to the songs produced by each 

sex (Dowling & Webster 2016; Krieg & Getty 2016) and whether responses vary seasonally or 

according to other contexts such as breeding status (Baptista et al. 1993; Dowling & Webster 

2016). 

In B. r. rufifrons, females sang frequently and formed duets with their male partners by 

partially overlapping songs with them (Chapter 6; A. Demko pers. obs.). The majority of detailed 

studies of duetting behaviour in Neotropical passerine birds thus far have been conducted in 

wrens, sparrows, icterids (blackbirds and orioles), and antbirds (reviewed in Dahlin & Benedict 

2014). In Adelaide’s Warbler, the only tropical wood-warbler whose duets are described, 

observational data supported the territory defence hypothesis of duet function, since pairs sang 

duets most often after fights with conspecific neighbours (Medina 2015). Since both sexes of B. 

r. rufifrons have multiple song types in their repertoires, future studies should examine whether 

this species adheres to a duet code, where males and females preferentially sing particular song 

types in sequence (e.g., Mennill & Vehrencamp 2005; Logue 2006; Rivera-Cáceres et al. 2016). 
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Using this information, researchers could then measure whether coordination of both song 

timing and song type use during duets varies depending on length of the pair bond (Hall & 

Magrath 2007; Rivera-Cáceres et al. 2016), or other contexts and possible functions (e.g., 

territory defence, mate guarding). 

Another fruitful area for future research would be to explore the presence and 

frequency of use of female song (e.g., occasional song, coordinated song with males) in other 

tropical wood-warbler species. Comparative studies of the evolution of male and female traits in 

the Family Parulidae (e.g., Najar & Benedict 2015; Simpson et al. 2015) could incorporate female 

song use into future analyses. A recent comparative analysis of the evolution of plumage 

dichromatism in the Parulidae suggested that social selection maintains the ancestral state of 

monochromatism in tropical resident species, while natural selection drives a shift to 

dichromatism in migratory species (Simpson et al. 2015). Since female song is proposed to be 

the ancestral state in songbirds (Odom et al. 2014), a more complete documentation of female 

song across warbler species could allow researchers to analyze whether similar selective 

pressures explain female song evolution in wood-warblers. 

Future directions: Signal divergence and responses 

Future research should examine the potential role of habitat structure and climate in 

shaping both acoustic and visual signals. Songs, plumage, and morphology varied considerably 

between Rufous-capped Warbler subspecies, and these differences corresponded broadly with 

habitat characteristics (dry, open, high-elevation habitat in the northern part of their range; 

semi-humid, forested, low- to mid-elevation habitat in the southern part of their range; Curson 

2010). In fact, a parallel Honours thesis study using the museum data set revealed that latitude 

and temperature were correlated with plumage colouration and morphological differences 
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across the Rufous-capped Warbler’s range (Bastien 2018), and that B. r. delattrii and B. r. 

rufifrons living in allopatry in southern Mexico used different habitat types (Vargas-Herrera et al. 

2017). To build on these findings, future research could test the Acoustic Adaptation Hypothesis 

by comparing detailed vegetation measurements and sound transmission studies to confirm 

whether variation in song structure correlates with habitat features (e.g., Handford & Lougheed 

1991; Graham et al. 2017). 

The results of the experiment I designed to study subspecies recognition suggested that 

Rufous-capped Warblers may exhibit character displacement in sympatry (Chapter 6). This 

hypothesis should be tested using female choice experiments to assess whether females prefer 

songs of different subspecies from both local and non-local populations (Danner et al. 2011). 

Genomic analyses would also provide an invaluable contribution to our understanding of this 

phenomenon for several reasons: (1) to confirm the extent and timing of divergence between 

Rufous-capped Warbler subspecies; (2) to assess the extent of historical and current 

hybridization between sympatric B. r. delattrii and B. r. rufifrons; and (3) to investigate whether 

genetic divergence corresponds to phenotypic divergence. This research is currently underway 

using blood samples collected during the course of the studies presented in Chapters 5 and 6. 

Conclusion 

My dissertation research provides insight into the function of both male and female 

vocal signals in tropical year-round resident animals, and highlights that both female songs and 

calls are used in territory defence. It also provides a foundation for comparative analyses of 

vocal trait evolution in the Family Parulidae, particularly with respect to male repertoire 

specialization and the presence and elaboration of female ornamentation. My dissertation 

research also provides support for a revised taxonomy of Rufous-capped Warblers according to 
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phenotypic divergence in multiple traits. It also reveals that vocal signal divergence is potentially 

an important factor in maintaining reproductive isolation between closely-related sympatric 

taxa, and demonstrates that the vocal and visual signals of animals play important roles in the 

processes of behavioural isolation and speciation.   
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