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ABSTRACT 
 

The cutting-edge technology to support high ranging accuracy within the indoor environment is 

Impulse Radio Ultra Wide Band (IR-UWB) standard. Besides accuracy, IR-UWB’s low-complex 

architecture and low power consumption align well with mobile devices. A prime challenge in 

indoor IR-UWB based localization is to achieve a position accuracy under non-line-of-sight 

(NLOS) and multipath propagation (MPP) conditions. Another challenge is to achieve acceptable 

accuracy in the conditions mentioned above without any significant increase in latency and 

computational burden. This dissertation proposes a solution for addressing the accuracy and 

reliability problem of indoor localization system satisfying acceptable delay or computational 

complexity overhead. The proposed methodology is based on rules for identification of line-of-

sight (LOS) and NLOS and the range error bias estimation and correction due to NLOS and MPP 

conditions. The proposed methodology provides accuracy for two major application domains, 

namely, wireless sensor networks (WSNs) and indoor tracking and navigation (ITN). This 

dissertation offers two different solutions for the localization problem. The first solution is a rules-

based classification of LOS / NLOS and geometric-based range correction for WSN. In the first 

solution, the Boolean logic based classification is designed for identification of LOS/NLOS. The 

logic is based on channel impulse response (CIR) parameters.  

The second solution is based on fuzzy logic. The fuzzy based solution is appealing well for the 

stringent precision requirements in ITN. In this solution, the parametric Boolean logic from the 

first solution is converted and expanded into rules. These rules are implemented into a fuzzy logic 

based mechanism for designing a fuzzy inference system. The system estimates the ranging errors 

and correcting unmitigated ranges. The expanded rules and designed methodology are based on 

theoretical analysis and empirical observations of the parameters. The rules accommodate the 

parameters uncertainties for estimating the ranging error through the relationship between the input 

parameters uncertainties and ranging error using fuzzy inference mechanism.  

The proposed solutions are evaluated using real-world measurements in different indoor 

environments. The performance of the proposed solutions is also evaluated in terms of true 

classification rate, residual ranging errors’ cumulative distributions and probability density 

distributions, as well as outage probabilities. Evaluation results show that the true classification 
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rate is more than 95%. Moreover, using the proposed fuzzy logic based solution, the residual errors 

convergence of 90% is attained for error threshold of 10 cm, and the reliability of the localization 

system is also more than 90% for error threshold of 15 cm.   

 

  



 
 

vii 

 

DEDICATION 

 

 

 

 

 

 

 

 

 

 

 

 

to my 

Mother and Father  

With love 

  



 
 

viii 

 

ACKNOWLEDGMENTS 

I would like to thank my advisor Dr. Kemal Tepe for introducing me into the research area of 

indoor localization, for his help and support during all phases of this dissertation and mainly for 

the many fruitful discussions, which always inspired and motivated me. I am grateful for all the 

time he dedicated to me and my work although he has many other students they also need his 

support. He became a good friend and I hope this relationship will last after the end of this study 

period too.  

I would like to thanks my past colleague and friend Dr. Muhammad Asif and I feel special gratitude 

for all the time he dedicated and his advises to me and my work despite the long geographic 

distance between us. 

I had many helpful and interesting discussions with all the other research group at WiCIP lab for 

their advice and enlightening discussions.  

  



 
 

ix 

 

TABLE OF CONTENTS 

 

 

Page 

Declaration of Co-Authorship/ Previous Publication ……………………………..………….iii 

Abstract …..……………………………………………………………………………………....v 

Dedication …..…………………………………………………………...……………………...vii 

Acknowledgments ..……….……………………………………………………...……………viii 

List of Tables ……...……………………………………………………………………………xiii 

List of Figures …..…………………………………………………………………………...…xiv 

List of Abbreviations …..……………………………………………………………………….xv 

1. Introduction ….………………………………………………………………………………1 

1.1. Introduction..……………………………………………………………………………….l 

1.2. Applications of indoor localization (IL) ...……………………………...………………….1 

1.3. Challenges in IL ….………………………………………………………………………..2 

1.4. Problem of Statement .…………………………………………………………………….4 

1.5. Contributions .……………………………………………………………………………..5 

1.6. Research methodology ……………………………………………………………………6 

1.7. Dissertation organization .…………………………………………………………………8 

2. Background and Literature Review ………………………………………………………...9 

2.1. Introduction ...……………………………………………………………………………….9 

2.2. IL Positioning metrics .……………………………………………………………………9 

2.3. Types  of ranging ………….……………………………………………………………..10 

2.3.1. Received signal strength indicator ……………………………………………….10 

2.3.2. Time of arrival …………………………………………………………………...11 

2.3.3. Time difference of arrival ………………………………………………………..11 

2.4. Wireless standards used for IL …………………………………………………………...11 

2.4.1. Impulse radio ultra wide band (IR-UWB) …..…………………………………...11 

2.4.2. Wireless local area network (WLAN) ……………………………………………12 

2.4.3. Zigbee …....………………………………………………………………………12 

2.4.4. Bluetooth ……………………………………..………………………………….12 



 
 

x 

 

2.5. IR-UWB and IL .………………………………………………………………………....13 

2.6. Positioning algorithm types .……………………………………………………………..13 

2.6.1. Least square trilateration ...………………………………………………………14 

2.6.2. Extended Kalman filter (EKF) …………………...………………………………14 

2.6.3. Particle filter (PF) ………………………………………………………………..15 

2.7. Non-line-of-sight (NLOS) ranging error mitigation types ………………....……………16 

2.7.1. Range statistic based ……………………………………………………………..17 

2.7.2. CIR data based ………………………….………………………………………..17 

2.7.3. Machine learning based ………………………………………………………….18 

2.7.4. Fuzzy mapping based obstruction identification …………………………………19 

2.8. Summary ………………………………………………………………………………...19 

3. Experimental studies ….……………………………………………………………………20  

3.1. Introduction ...……………………………………………………………………………20 

3.2. Device selection for experiments ...………………………………………………………20 

3.2.1. Comparison of Decawave and Time Domain devices ……………………………20 

3.2.2. Decawave EVK-1000 kit description ……………………………………………21 

3.3. Scenarios for experimental setups .………………………………………………………24 

3.3.1. Office scenarios……….………………………………………………………….24 

3.3.2. Warehouse Scenario….…………………………………………………………..25 

3.4. Observations of parameters in different scenarios ……………………………………….25 

3.4.1. Received signal strength …………………………………………………………25 

3.4.2. First path signal strength …………………………………………………………26 

3.4.3. Rise time …………………………………………………………………………27 

3.4.4. Average CIR normalized magnitude …………………………………………….28 

3.4.5. Leading edge normalized magnitude …..………………………………………...29 

3.4.6. First path max normalized magnitude ……………………………………………29 

3.5. Summary ….……………...……………………………………………………………...30 

4. A parametric rule-based classification and localization algorithm for IR-UWB …….…31 

4.1. Introduction …..……………………………..…………………………………………...31 

4.2. Classification of LOS and NLOS ……………………………………………………......32 

4.2.1. Salient features in LOS and NLOS …..…………………………………………..32 



 
 

xi 

 

4.2.2. Classification methodology ………… ………………..…………………………33 

4.3. Range mitigation methodology ……...…………………………………………………..34 

4.4. Experimental data …………………………….………………………………………….38 

4.5. Results and discussions …………..………………………………………………………38 

4.5.1. Classification performance ……………..………………………………………..38 

4.5.2. Range mitigation performance ………………………………………………….. 41 

4.5.3. Localization performance ………………………………………………………..41 

4.6. Summary………………………………..…...…………………………………………...43 

5. Rule based ranging error mitigation for IR-UWB: A fuzzy logic approach ………….....45 

5.1. Introduction ...……………..…………...………………………………………………...45 

5.2. Fuzzy terminologies ………………………….……….…………………………………46 

5.2.1. Fuzzy set ……………………...………………………………………………….46 

5.2.2. Membership function ……………………………………………………………47 

5.2.3. Fuzzification ………………………..……………………………………………47 

5.2.4. Fuzzy inference ………………………………………………………………….47 

5.2.5. Defuzzification.…...……………………………………………………………...48 

5.3. Parameters uncertainty analysis ..………………………………………………………...48 

5.3.1. Received signal strength …………………………………………………………48 

5.3.2. First path signal strength ……………………………...………………………….50 

5.3.3. Rise time ……………..…………………………………………………………..50  

5.3.4. Ranging error ………....………………………………………………………….51 

5.4. Fuzzy inference system model …………………………………………………………..52 

5.5. Experimental Evaluation…………………………………………………………………53 

5.5.1. Experimental parameters analysis ...……………………………………………..54 

5.5.2. Ranging error mitigation performance …………………………………………..55 

5.5.3. Localization performance ...……………………………………………………...59 

5.6. Summary …… …………………………………………………………………………...61 

6. Conclusion ……………………………………………………………………………..……62 

6.1. Contributions …………………………………………………………………………….62 

6.2. Future research directions ………………………………………………………………..63 

References ………………………………………………………………………………………64 



 
 

xii 

 

Appendix A: Copyright permission ……………………...……………………………………69 

Vita Auctoris ……………………………………………………………………………………76 

  



 
 

xiii 

 

LIST OF TABLES 

Page 

2.1 Existing studies for classification and mitigating NLOS ranging errors in IR-UWB ………16 

3.1 Key characteristics of EVK-1000 & PulseON 410 kits……………………………………..21 

3.2: DW1000 operating characteristics………………………………………………………….22 

3.3 Scenarios and obstructions………………………….……………………………………….24 

4.1 Parameters observations in LOS and NLOS…………………………………………………32 

4.2 Identification Rules for LOS/NLOS…..……………………………………………………..33 

4.3 Confusion Matrix…………………………………………………………………………….39 

4.4 Range mitigated & NLOS Performance……………………………………………………..41 

5.1 Rules for FIS…………………………………………………………………………………55 

5.2 Computational time ………………………………………...………. ………………...…….58 

 

  



 
 

xiv 

 

LIST OF FIGURES 

Page 

2.1 Different Methods for estimating leading edge based on energy detection …...….......………10 

2.2 Ranging error variation in LOS and NLOS conditions …..…………………………..………15 

3.1 EVK-1000 kit EVB-1000 nodes ….………………………………………………………….21 

3.2 Mode of Operation of EVK-1000 Standalone vs. USB connection ……….…………………22 

3.3 Office floor plan ……………………………………………………………………………..25 

3.4 Warehouse floor plan ………………………………………………………………………..26 

3.5  Parameters PDF in different scenarios ………………………………………………………27 

3.6 Average magnitude (����), FP-Min (����), and FP-Max (�	�
) levels in different scenarios 

…...............………………………………………………………………………………….28 

4.1  Anchors and agent nodes placement ………………………………………………………...35 

4.2  Flow-chart of the proposed algorithm ……………………………………………………….37 

4.3 Performance comparison of different classifiers ……..………………………………………40 

4.4 Localization performance ….………………………………………………………………...42 

4.5 Histogram & CDF of NLOS & Mitigated Algorithm ranges ….…….………………………43 

5.1 Fuzzy classification & membership function …..…………………………………………….46 

5.2 Rules structure ….……………………………………………………………………………48 

5.3 RSS and LOS/NLOS ….……………………………………………………………………..49 

5.4 CIR in LOS and NLOS …..…………………………………………………………………..50 

5.5 FIS Model ….………………….……………………………………………………………..52 

5.6 Inputs & outputs MFs for FIS model ….…………………………………………………….54 

5.7 Performance evaluation for different MFs and defuzzification processes …..……………….56 

5.8 CDF for residual ranging errors…...………………………………………………………….57 

5.9 Anchors Placement around Target node with different  �� according to (5.22) …..………....58 

5.10 Outage Probability for various 
� with varying ����� …….……………………………….59 

5.11 Outage Probability for 
� = 3 with varying ����� in worst scenarios …………………….60 



 
 

xv 

 

LIST OF ABBREVIATIONS 

 

AN Anchor Node 

�� ith AN placement 

BEKF Biased extended Kalman filter 

CIR Channel impulse response 

CDF cumulative distribution function 

�
�������� Mitigated distance 

����� NLOS distance 

EKF Extended Kalman filter  

�
�� Percentage error 

EU ETSI EN  European Union European Telecommunications Standards Institute European 

Standard 

FCC Federal Communications Commission 

�� Leading edge MPC 

�� Second MPC in the first path after �� 

�� Third MPC in the first path after �� 

�� Strongest MPC in CIR 

FIS Fuzzy inference system 

FP False positive 

FPSS First path signal strength 

FPR False positive rate 

FN False negative 

FNR False negative rate 

GNSS Global navigation satellite system 

GoC Centre of gravity 

GPS Global positioning system 



 
 

xvi 

 

HM Height method  

IL Indoor localization 

ITN Indoor tracking and navigation 

IR-UWB Impulse radio ultra wide band 

K Proportionality constant 

KF Kalman filter 

LED Leading edge detection 

LOS line-of-sight  

LS-SVM Least square support vector machine 

����  Average CIR normalized magnitude 

���� Leading edge normalized 

�	�
 First path max normalized magnitude 

MEMS Microelectronic mechanical system 

MF Membership function 

MISO Multiple input single output 

MoM Mean of maximum 

MPC Multipath component 

MPP Multipath propagation 

MWSN Mobile WSN 

N Number of measurements 


� Number of anchor nodes 

NLOS non-line-of-sight 

PA Position algorithm 

PDF probability density function 

PF Particle filter 

PIF Position improvement factor 

����� Probability of NLOS 



 
 

xvii 

 

� !� Outage probability 

PSD Power spectral density 

�" Misclassification rate 

RRE Residual range error 

RSS Received signal strength 

RSSI Received signal strength indicator 

RMS Root mean square 

#
��. Mitigated range 

#�%!�. True range 

RT Rise time 

RTLS Real-time localization system 

RToA Round trip time of arrival 

RX Receiver 

SNLOS Soft NLOS 

SNR Signal to noise ration 

SPI Serial peripheral interface 

SVDD Support vector data description 

TD Time difference 

TDoA Time difference of arrival 

TIN-OUT Input-output delay time  

TN Target node 

TNa True negative 

TP True positive 

ToA Time of arrival 

TDMA Time division multiple access 

TOF Time of flight 

TSK Takagi-Sugeno-Kang 



 
 

xviii 

 

TW-ToA Two way time of arrival 

TX Transmitter 

WLAN Wireless local area network 

WSN Wireless sensor network 

2D Two dimensional 

&�'( range improvement factor 

µ  Constant 

β Constant 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 
 

1 

 

INTRODUCTION 

1.1. Introduction 

Locating position and navigating routes in indoors where global navigation satellite systems' 

(GNSS) signals cannot penetrate fall under indoor localization (IL) (or indoor positioning).  IL has 

been gaining attention from the research community and industry in recent years due to widespread 

applications requiring either standalone or in conjunction with data communication where GNSS 

ceases to perform [13-15]. In IL, there are two types of nodes namely target node (TN) and anchor 

node (AN). The TN needs to be localized, and the AN is at a known position. The localization 

requires two phases, i.e., (i) ranging and (ii) positioning. In the ranging process, the distance 

between TN and AN(s) is estimated. The estimated distance utilizes radio signal characteristics 

such as received signal strength and received signal timing information. In the positioning phase, 

usually more than one estimated distances or one estimated distance in addition to an estimated 

angle of arrival of the ranging signals are used to determine the agent's position. 

Ranging in IL under non-line-of-sight (NLOS) and multipath propagation (MPP) conditions is a 

challenging task is due to estimation of errors caused by obstructed and blocked, scattered, 

diffracted and reflected signals.  The indoor environment exhibits dense multipath channel due to 

metal objects in the vicinity; usually found on factory and building floors and walls. In these 

environments impulse radio ultra-wide-band (IR-UWB) is the optimum choice for providing sub-

centimeter positioning accuracy [6, 16]. However, NLOS is still a most critical challenge in IR-

UWB for achieving that accuracy [17, 18]. 

1.2. Applications of IL 

In this section, application domains that require IL as standalone or as an add-on to enhance 

functionality, operability, and capability of the domain and stretch domain’s applicability in 

applications are discussed. Those domains are as follows: 

 

• Robots & Drones 

In recent years, besides stationary robots are used extensively in traditional industrial 

applications, drones, as well as mobile robots, find a way in a range of applications which 
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span from industrial floors, smart warehouses, surveillance, military, civil engineering, 

domestic applications and many innovative applications [15, 17]. For instance, drones are 

used in [19] for site monitoring and [20] for indoor rescue service.  For all these 

applications, IL is the fundamental technology which supports finding routes and 

navigating around from one place to another. 

• Wireless Sensor Network (WSN) 

In the past two decades, WSN flourished and developed at an exponential rate due to 

advancement and mass scale developments in micro-electromechanical system (MEMS), 

fabricated chip systems and wireless communication [21]. These technologies are 

integrated on a platform called sensor nodes. The nodes measure parameters (e.g., 

temperature and pressure), process data and store it. The interconnections of these nodes 

formed a network called WSN. Due to the added value to the number of systems, WSN 

finds a way in many applications in civil and military domains [22]. In the application 

domains, WSN functionality and applicability are significantly enhanced with localization. 

For instance, WSN's routing capability and energy consumption can be optimized through 

geographical information based routing protocols [22]. Also, localization plays a central 

role in mobile WSN (MWSN). In most of the WSN applications, IL is the best fit for WSN 

[21]. 

1.3. Challenges in IL 

• NLOS & Multipath 

IL is operated in indoor and cluttered environments. In these conditions, signal propagation 

experienced reflection, refraction diffraction and shadowing due to which signal arrived at 

the receiver in multiple paths called multipath propagation [23]. Also, the direct signal path 

from transmitter and receiver (known as line-of-sight path) is partially or fully blocked due 

objects in the vicinity. The blocked propagation is known as NLOS. Both Multipath and 

NLOS occur frequently and impact the ranging estimation error, which in turn degrades 

position accuracy significantly [18, 24].   

• Latency 
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Latency in estimating the position of the TN occurs at both phases (i.e., ranging and 

positioning). In the ranging phase, latency depends on the employed spectrum and data 

rates, technique to estimate distance (i.e., time-of-arrival), and propagation condition. 

Mainly, the NLOS propagation condition introduces a significant delay in estimating range 

error bias and correcting ranging where statistically based solutions employed due to the 

required number of measurements [25, 26]. In the positioning phase, delay depends on the 

algorithm that is used and the number of ANs that are participating in positioning. For 

instance, in the trilateration algorithm, increasing ANs beyond the minimum requirement 

(i.e., three ANs) increases position accuracy [27]. 

• Computational Cost 

Computational complexity, hence its cost, depends on the employed wireless standard, 

ranging technique, position algorithm, and propagation condition. In case of wireless 

standard, IR-UWB considered being low complex in hardware implementation [28, 29]. 

For ranging technique, received signal strength (RSS) based estimation is less complex 

than other techniques stated in [30], and RSS is available in many wireless standards [31-

33]. For positioning algorithm, a particle filter (PF) algorithm is the least computationally 

efficient among the available algorithms [34, 35]. 

• Energy [36] 

Energy is a primary concern for mobile devices since these devices have limited power 

sources. Enhancing position accuracy requires more use of detection techniques, more 

sophisticated positioning algorithms (i.e., requires more computational resources) and 

more radio sensing which aggravated energy usage.  That is why a trade-off between energy 

requirement and location accuracy needs to be established. 

• Interference 

Indoor communication is done mostly in the unlicensed spectrum such as wireless local 

area network (WLAN), IR-UWB, and Zigbee. Due to this, signal interference from the 

adjacent band and other sources degrade the performance of the system [37]. Although IR-

UWB designed provides immunity from different wireless standards regarding interference 
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[38], but interference within the spectrum due to adjacent signals pose a challenge in the 

reliable operation. 

• Security & Privacy [22] 

Location information and access to the localization system should provide security features 

and controlled access. Lack of these features makes system susceptible to malicious 

activities that can falsely advertise locations, altered routes, and degrade or halt the system 

functioning. Moreover, in mission-critical applications (e.g., in the military domain), the 

location information should be secured with enhanced security features. 

• Scalability[33]  

Scalable positioning system ensures normal positioning function as positioning scope 

expands. The expansion can be in terms of the increased number of requests for localization 

or geographical coverage. A scalable system in the sense of capacity wise is one that can 

handle the localization requests within specified requirements without any interruption in 

services. Regarding geographical coverage, a scalable system is one that ensures 

interrupted services as the system switches localization requests between the ANs. Usually, 

a positioning system with limited ANs covers a specific area. As the distance between the 

AN(s) and TN increases, location accuracy performance decreases. So to expand the 

coverage, more ANs are added.   

1.4. Problem Statement 

In this dissertation, solutions to the problems associated with NLOS and multipath propagations 

that impact position accuracy, position updates, and computational burden of real-time IL systems 

for tracking and navigation based on the IR-UWB spectrum are investigated. Solutions to the 

following specific problems are investigated: 

Problem 1. Position Accuracy: Due to NLOS and multipath conditions, ranging error bias is 

induced in the ranging estimation between AN and TN. The estimated ranges are used in 

position algorithms to determine TN position. Due to the error, TN’s location gets corrupted, 

and position accuracy affected. 
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Problem 2. Position Updates: In order to compensate ranging error, multiple measurements are 

required to obtain statistics of the error to mitigate it. These measurements induce latency and 

affect position updates. Furthermore, acquisition of channel impulse response (CIR) whole 

frame data for the parameters estimation can induce further delay for particular measurement 

[1]. 

Problem 3. Computational Complexity: Additional processing is required to mitigate ranging 

errors due to NLOS. So, solutions which are computational intensive add additional 

computational burden and complexity. For example, the machine learning solutions which 

estimate range error bias under NLOS conditions [3] and particle filter (PF) for estimating 

position while reducing ranging errors [39].  

1.5. Contributions 

The main contributions of this dissertation are: 

1. A novel rule-based classification of line-of-sight (LOS) and NLOS channel condition is 

proposed, and performance of this classifier is evaluated using empirical data and 

compared with existing works in [7, 40]. The rules are designed using empirical analysis 

of the collected channel impulse responses (CIRs) in different environments. The rules 

utilize CIR’s parameters such as received signal strength (RSS), first path signal strength 

(FPSS) and rise time (RT) which are readily available from Decawave® devices and 

doesn’t incur an additional delay in estimating the conditions. Moreover, the geometric 

correction of one range (which is NLOS range) out of three ranges algorithm is presented. 

This is suitable for applications such as WSN where one out of three AN-TN pairs is most 

likely experience NLOS condition at a particular location.  The assumption is supported 

with Probabilistic Model. 

2. A novel fuzzy logic based range error mitigation under LOS  and NLOS conditions solution 

is proposed and evaluated using residual range error (RRE) cumulative density function 

(CDF) and localization outage probability (� !�) metrics. The rules for the classification 

are further expanded to estimate range error bias in LOS and NLOS conditions using the 

parameters. Moreover, the range bias error is estimated in one step rather than in two steps 

namely identification of LOS/NLOS condition and mitigation of ranging errors.   First, the 
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correlation between ranging error and the parameters under different channel conditions is 

developed. Second, the correlation is utilized as an expert knowledge for a fuzzy 

mechanism to design rules for fuzzy inference. The work is compared with work from [12] 

in terms of RRE CDF delay in estimating the error. Moreover, the proposed fuzzy based 

system is also compared with [12] for computational complexity in terms of input-output 

delay time [41]. The proposed solution shows a promising performance and reduces delay 

in estimating ranging error bias compared to [12]. Moreover, the proposed system doesn't 

require any training phase prior to estimating the error as it is validated in different 

environments. 

The results show that the proposed rule-based solutions exhibit the following desired properties 

closely: enhanced localization accuracy under MPP and NLOS conditions, enhanced positioning 

availability under NLOS conditions, and reduced computational burden. While providing those 

benefits, it doesn't add latency in estimating range error bias. 

1.6. Research Methodology 

All problems discussed in 1.5 related to range error bias estimation and correction are addressed 

in this dissertation. In this work, uncertainties in the CIR’s parameters due to NLOS and MPP 

conditions and its correlation to range error bias are analyzed through the extensive experimental 

campaign. It is found that designing rule based on the correlation is acceptable in an 

implementation using fuzzy inference mechanism for estimating the error bias. Therefore, the 

following methodological steps are performed: 

Step#1. Measurements: In this phase, extensive experimental studies are done in three different 

environments. The experiments are conducted using Decawave® devices, and different NLOS 

scenarios are emulated in real-time using different obstructions. In each scenario, CIRs are 

collected along with other parameters.    

Step#2. Analysis: Extensive analysis is done on measured parameters to understand the variation 

of different parameters in different channel conditions. The relationship between measured 

parameters and ranging errors is also analyzed.  

Step#3. Rules Development: Rules have developed at this stage to classify the condition (i.e., LOS 

and NLOS). The rules are established using a comparison mechanism in which the parameters 
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are compared with predefined thresholds. The thresholds are derived through empirical 

analysis done in the previous step.  

Step#4. Expanding rules & Regression: In this phase, rules are further expanded to identify errors 

in LOS and NLOS. The mapping between the parameters (inputs) and range error bias (output) 

is developed through the expanded rules. The mapping is realized through theoretical and 

empirical analysis of parameters uncertainties and their correlation with the error bias.  

Step#5. Applying Fuzzy Logic: The discrete rules developed in the preceding step are 

implemented using a fuzzy mechanism to estimate the error bias in a continuous way. 

Moreover, measurements uncertainty are covered optimally by the fuzzy approach. The 

uncertainties in the parameters are induced due to NLOS and MPP. 
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1.7. Dissertation Organization 

A background and literature review is given in Chapter 2. Chapter 3 discusses the devices selected 

for experiments and describes the scenarios’ setup as well as analyze parameters’ variations in 

different scenarios. Chapter 4 describes the methodology of rule-based classification of LOS and 

NLOS and geometric range correction. Chapter 5 presents a detailed design methodology of Fuzzy 

logic based ranging error mitigation and performance evaluation. In Chapter 6, the conclusions of 

the proposed research in this dissertation is summarized, and some recommendations for future 

work are presented.  
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BACKGROUND & LITERATURE REVIEW 

 

2.1. Introduction  

The process of estimating the distance between TN and AN is called ranging. Electronically, 

ranging process is done with the help of signal transmission between the nodes which are acted as 

transmitter and receiver through signal properties (i.e., timing, received power level or phase 

information). Ranging with accuracy is critical for estimating the position of TN close to the TN’s 

true position and reliable performance of IL. Moreover,  accurate ranging in IL is not a trivial task 

because of prevailing MPP and NLOS conditions in indoor and RF harsh environments. Notably, 

these conditions are dynamically changed for moving TN. Therefore, techniques are needed that 

can estimate and correct ranging error from signal properties due to the conditions. Moreover, the 

techniques that enhance accuracy and hence reliability have various influences on IL’s availability, 

latency, computational requirement, and energy consumption [33].  

In this chapter, first, metrics used in this research that gauge and impact the positioning 

performance are discussed. Second, types of ranging and wireless standards used in IL are 

reviewed. Third, the advantages of IR-UWB standard for precision localization are discussed. 

Fourth, review of existing positioning algorithms which are used specifically in IR-UWB are 

presented. Fifth, existing studies of NLOS (or LOS) classification and ranging error mitigation 

based on IR-UWB are reviewed. Also, their advantages and shortcomings are discussed. Finally, 

the chapter is summarized in the Summary section.   

2.2. IL Positioning Metrics 

The positioning metrics are used to express various objectives of the positioning with respect to 

the reliable functioning of IL. This section provides a brief overview of the positioning metrics 

related to this study: 

A. Accuracy: Accuracy is defined as how close the estimated position of TN to TN’s true 

position. Therefore, accurate IL system is that in which difference between the estimated 
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position and the true position should be minimum under all operating conditions. Thus, it is 

crucial to minimize ranging errors and others errors that affect positioning accuracy. 

B. Availability: It is defined as for specific operating (error) threshold, the localization system is 

available for the percentage of time available under different operating conditions. The metric 

shows the robustness against different errors for tolerable threshold error.  

C. Latency: It is defined as a delay in estimating TN position provided a request is made for the 

estimation. For fast positioning updates, delay in ranging acquisition, estimating ranging error 

and mitigating the error, and estimating positions from ranges are taken into consideration and 

should be minimized. 

2.3. Types of Ranging  

In this section, an overview of different ranging techniques and their pros and cons are discussed. 

The techniques are based on received signal and timing information of the signal and are as 

follows. 

2.3.1. Received Signal Strength Indicator (RSSI) 

RSSI is the most commonly used ranging estimation technique in wireless localization systems 

[42-44] because it is readily available in the form of received power strength. The estimation 

process is based on the Friis equation [45] using transmitted and received powers. However, RSSI 

based ranging and positioning performance degrades significantly under NLOS conditions due to 

 

Fig. 2.1: Different Methods for estimating leading edge based on energy detection [4]. 
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attenuation of received signals related to obstruction between the transmitter (TX) and receiver 

(RX) [46].  

2.3.2. Time Of Arrival (ToA) 

In ToA, ranging is estimated using signal arrival time after synchronization between TX and RX. 

Usually, detection of the arrival time is implemented using a threshold based edge detection 

method [1, 47]. In the literature, different methods are suggested for detecting leading edge after 

the threshold as illustrated in Fig. 1. The setting of the threshold and detection mechanism affects 

the ranging performance in LOS and NLOS conditions [4, 47, 48]. From the arrival time, the 

propagation time between TX and RX is obtained, and thus distance is estimated using RF signal 

speed (i.e., the speed of light). In ToA, precision  synchronization between TX and RX is required 

[49].  However, variation to TOA which is round trip ToA (RToA) also known as two way ToA 

ranging does not require precise synchronization [1, 33]. In ToA, ranging accuracy can be achieved 

with 2-3 cm error in LOS conditions [1, 6]. However, ToA estimation required a very wideband 

signal to estimate signal arrival time [49]. 

2.3.3. Time Difference Of Arrival (TDoA) 

A slightly different version of ToA is called TDoA in which synchronization is required between 

participating ANs (i.e., minimum three ANs are required) rather than between TN and AN. In 

TDoA, TN is in listening mode and received signal time stamps (arrival time) from ANs. The time 

difference (TD) is estimated from propagation times, and these TDs create hyperbolas. From the 

hyperbolas, the position is estimated. The advantages of using TDoA are that more than one TNs 

can be localized simultaneously [33], and does not require AN-TN synchronization (good for 

mobile TNs). However, TDoA requires more calculations (processing) compared to ToA [49] and 

accuracy degraded under NLOS condition [50]. 

2.4. Wireless Standards Used for IL 

2.4.1. Impulse Radio Ultra Wide Band (IR-UWB) 

IR-UWB is the mode of short-range wireless communication in which very shorts pulses are 

transmitted with a minimum bandwidth of 500 MHz over a broad span of frequencies. It was first 

introduced by Guglielmo Marconi in 1901 to transmit Morse codes. However, with advancements 
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and advantages of narrowband communication, it was abandoned. With the recent advancement 

in digital circuitry and digital signal processing, renewed interest have been developed towards 

(IR) UWB for its various advantages [6, 16, 51-53]. The prominent edge of IR-UWB is providing 

precision localization with an accuracy of 2-3 cm in LOS scenarios along with data communication 

[6, 54]. This advantage is inherent from transmitted pulses which have high resolution in time. For 

this reason, Federal Communications Commission regulated UWB and assigned operating 

frequency bands between 3.1 and 10.6 GHz with a cap on the emitting power of -41.6 dBm/MHz 

in band power spectrum density (PSD). The cap on power is due to the very large bandwidth of 

UWB which can interfere with other wireless systems. UWB is also standardized by various 

organizations such as Institute of Electrical and Electronic Engineering (IEEE) with standards 

802.15.3a and 802.15.4a (IR-UWB). The detailed of IR-UWB can be found in [55, 56].  

2.4.2. Wireless Local Area Network (WLAN) 

WLAN is defined as a distributed wireless network of connected devices with an access point that 

can connect to the internet.  WLAN operating frequency bands (such as 2.4 and 5.8 GHz) are a 

license-free spectrum. Due to this, it is the most commonly used wireless network worldwide.  And 

is regulated through organizations such as IEEE (IEEE 802.11a/b/g/n). IL is enabled in WLAN 

with the help of RSSI ranging [31]. The distinct advantage of IL using WLAN is its low cost as 

WLAN deployments are commonly found. 

2.4.3. Bluetooth 

Bluetooth is developed for networking among personal and computer peripheral devices. The 

standard is designed for ease of wireless connectivity instead of using cables for short-range 

communication. Bluetooth is operated in 2.4 GHz frequency spectrum and is based on IEEE 

802.15.3 standard [57]. Bluetooth standard is used in IL in which distance is estimated based on 

RSSI technique as in [43, 58].  

2.4.4. Zigbee 

Zigbee® standard is designed for applications which need low-power and low-bandwidth. The 

standard is based on IEEE 802.15.4 based specifications and globally operated at 2.4 GHz 

frequency [59]. Zigbee® is gaining popularity in home automation, medical device data collection, 
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WSNs and in military applications because of its low-power and low-bandwidth operating 

characteristics [60, 61]. Zigbee based IL uses RSSI for ranging estimation [62, 63].  

2.5. IL & IR-UWB 

IR-UWB is an ideal candidate for IL in precision and accuracy demanding applications [16]. This 

is due to IR-UWB’s prime advantage of providing high resolution positioning  along with the 

following notable advantages [6, 55]: 

• Adaptable data rates: suit well for both low-data-rate and high-data-rate applications. 

• Low complexity hardware: As carrier-free transmission in which only very short radio 

frequency (RF) pulses are transmitted and received. 

• High penetration capability: Due to very short pulses which have a high gain that can 

penetrate through the obstructions 

• Very low power spectrum density (PSD) (-42 dBm/MHz): Due to this coexistence with 

another wireless system, and IR-UWB doesn’t interfere with other wireless 

communication. 

• Low energy consumption: due to PSD. 

• Inherent Security feature: due to low power emission IR-UWB’s communication appears 

to be below the noise floor for other wireless systems. And for these systems, IR-UWB’s 

signals are treated as noise.  

 Due to the above-stated advantages, IR-UWB is adopted commercially and devices available from 

vendors such as Time Domain®, Decawave®, and Ubisense®. In this thesis, the IR-UWB standard 

is considered, and the accuracy and latency problem related to mitigating ranging error is 

considered in IR-UWB domain. In the following section, existing range error techniques with 

reference to the domain are discussed. First, positioning algorithms utilized in IR-UWB are 

discussed followed by ranging error techniques. 

2.6. Positioning Algorithm Types 

The mathematical models or calculations for estimating position that are implemented in 

computers or embedded systems are called position algorithms (PAs). Three types of PAs namely 
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trilateration extended Kalman filter, and particle filter are discussed with reference to IR-UWB are 

as fellows. 

2.6.1. Least Square Trilateration 

Trilateration is the geometric process in which the absolute or relative location of the point is 

estimated given distances using circles. For two dimensional (2D), three distances between ANs 

and TN are required. The distances are as follows: 

�� = )*+"�,+��-.*/"� − /��-.,    (2.1) 

Where 1 = 1,2, ⋯ 6 and 6 ≥ 3, for 2D. . To establish our notations, let an TN be at an unknown 

position denoted by � = (+"�, /"�). The TN is surrounded by the number of ANs denoted by 


� = 6 with known positions denoted by �� = (+��- , /��-). In order to localize the TN, 2.1 need 

to be solved for unknown (+"� , /"�). The coordinates are treated as the point of intersection of 

several spheres (or circles) whose center of location  are ��. The problem of estimating � falls 

under the least square (LS) domain. Furthermore, �� is estimated using a ranging algorithm and 

denoted as �9�. As 2.1 is nonlinear and the solution is also nonlinear LS and algorithm for finding 

� is given as: 

�: = ;<="�'�> ∑ * �9� − ��.�
*�-,�:-.∈� ,    (2.2) 

where B are the number of agent-anchor pairs in the vicinity. For 2D, min B = 3. The solution 

using (2.2) is not feasible because it produces a nonlinear equation of high degree [64]. So, the TN 

position can be estimated through minimizing (2.2) by solving numerically using pseudo inverse 

linearization method [64]. However, the solution does not consider ranging errors and �9� should 

be close to �� for accurate estimation of �.  

2.6.2. Extended Kalman Filter (EKF) 

Kalman filter (KF) is the type of recursive filter that falls under Bayesian Filters domain. KF 

estimate the current state of a system based on past estimations and current measurements. In the 

process, KF assumes that the system is linear with a Gaussian probability model. However, in 

tracking and navigation measurements (such as ranges, velocities, and accelerations) are nonlinear, 
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and KF performance degrades under these nonlinearities. So, KF is evolved into extended KF 

(EKF) or sigma point KF to address the nonlinearity problem. Also, in EKF, noise distributions 

are assumed to be Gaussian with proper tuning of covariance of the assumed probabilistic model. 

EKF is used in indoor tracking and navigation using it in IR-UWB is advantageous due to low 

computational complexity as in [65, 66]. However, the performance of EKF is highly depended 

on the proper tuning of covariance of the assumed probabilistic model and initial state estimation 

[2, 66]. 

2.6.3. Particle Filter (PF) 

PFs are types of Bayesian filters which are applied to systems with nonlinear measurements and 

non-Gaussian distributions. In PF, the estimated TN’s position is considered as samples rather than 

parametric density [67].  For this reason, PF can cope with nonlinearity and complex non-Gaussian 

distributions. PF is used in indoor tracking and navigation in general and particularly in IR-UWB 

domain as in [67, 68]. For instance, in [67], authors used PF for localization in underground mines 

for IR-UWB radar. The prime advantage of PF is its robust performance under nonlinearity and 

non-Gaussian distributed noise and disturbances. On the other hand, its prime disadvantage is its 

high computational complexity which overshadows its advantage in mobile devices [65]. 

 

Fig. 2.2: Ranging error variation in LOS and NLOS conditions [3] 
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2.7. NLOS Ranging error Mitigation Types 

As a wireless technology, IR-UWB deployments experienced MPP and NLOS condition. Due to 

conditions persist in wireless systems, ranging errors are introduced to IR-UWB based IL systems. 

Table 2.1: Existing studies for classification and mitigating NLOS ranging errors in IR-UWB 

Method Based 

on 

Parameters used Position 

Algorithm 

Classification/ 

error 

mitigation 

Comments 

Range 

statistics 

 

 

[2] 

Ranges std. deviation BEKF Classification, 

& 

Error 

mitigation 

Bias are 

estimated for 

severity of 

NLOS 

CIR 

parameters 

statistics 

 

[5]  Weighted 

LS 

Trilateration 

Classification 

& Error 

mitigation 

Weights are 

derived for 

severity of 

NLOS 

[6]  NA Classification  

Machine 

learning 

[7] Signal energy, max. 

amplitude, rise time, 

mean excess delay, 

RMS delay spread, 

Kurtosis 

LS 

Trilateration 

Classification, 

& Error 

mitigation 

Regression is 

applied for error 

estimation 

[8] Error 

mitigation 

[9] Classification  

CIR 

parameters 

 

[10] Received power, 

received first path 

power 

 

LS 

Trilateration 

EKF 

 

 

Classification 

& Error 

mitigation  

 

Weights are 

derived for 

severity of 

NLOS  

[11] EKF Classification 

& Error 

mitigation 

ToA 

estimations are 

corrected 

Fuzzy 

logic 

based 

mapping 

[12] SNR, RMS delay 

spread, kurtosis, 

skewness 

 Classification 

& Error 

mitigation 

Predefined 

errors are 

identified using 

fuzzy logic 

mechanism 
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Therefore, in literature, techniques have proposed to mitigate these errors. The techniques that are 

available in the literature are summarized in Table 2.1, and a brief overview is presented as follow.  

2.7.1. Range Statistics Based 

This technique is based on multiple range measurements. With those measurements, the ranging 

errors’ statistical parameters are estimated. The ranging error variations exhibit differently in LOS 

and NLOS conditions as illustrated in Fig. 2.1 [3]. Based on the variation, a weight can be assigned 

and accounted in biased EKF (BEKF) as studied in [2]. In [2], authors derived weights for 

mitigating NLOS ranging error from measured range statistics and modified measurement 

covariance of EKF which is called BEKF. The technique is simple and relies only on ranges. 

Therefore, it is also used in IL systems based on other standards such as in WLAN for mitigating 

the error [69, 70]. However, estimating online variance and standard deviation for moving TN is 

inaccurate particularly under NLOS conditions [65]. Moreover, latency is introduced due to 

multiple measurements’ requirement which affects position updates. Also lost of information for 

using range statistics instead of CIR data [7].  

2.7.2. CIR Data Based 

In this technique, the range error bias is estimated using either CIR’s statistical properties or CIR 

power profile property. In the case of a statistical solution, the properties for identification of LOS 

and NLOS and mitigation of ranging error due to NLOS are amplitude statistics and delay 

statistics. In [5], the authors investigate behavior or CIR’s amplitude and delay statistics and 

derived weights proportional to the bias in NLOS condition based on the statistical characterization 

of the conditions. The weights are utilized in WLS to show position performance improvement 

under NLOS condition. The amplitude and delay statistical parameters’ probability density 

function (PDF) are used namely kurtosis, mean excessive delay spread and root mean square 

(RMS) delay spread, for the identification and derivation of weights based on the severity of the 

NLOS condition. The proposed technique was evaluated based on simulated 802.15.4a (IEEE 

standard for IR-UWB) channel models. In [6], the authors used a similar method to [5] but using 

parameters such as kurtosis, skewness, peak-to-lead delay, power difference and power ratio. 

Moreover, the proposed work is assessed using real-time measurements in an industrial 
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environment for the identification of LOS/NLOS. Similar to the range statistic based, CIR 

parametric statistic technique also introduced latency as because of statistically based solutions. 

In case of power profile of CIR, received signal power and first path power at RX are used for 

identification of LOS and NLOS condition and weighting NLOS condition’s severity. In [10], the 

author identified LOS, soft NLOS (i.e., direct path present) and severe NLOS (i.e., in which there 

are significant ranging errors) conditions  based on power ratio. The power ratio is between 

received power and FP received power. After identifying severe NLOS, range correction and 

position estimation are based on geometric LS algorithm.  In [11], authors implemented 

identification technique similar to [10] but corrected ToA estimation based on the empirically 

predefined standard deviation. ToA error variance for severe NLOS conditions. The corrected ToA 

estimation is used in EKF for estimating TN position.  

2.7.3. Machine Learning Based 

In this technique, the first step is to develop a model by training a machine learning mechanism 

such as least square support vector machine (LS-SVM). In a second step, the trained model is 

utilized to estimate range error bias and correct a ranging error using the bias. The model is trained 

using empirical CIR parameters as inputs and ranging errors as output. The parameters are the 

energy of the signal, rise time, max. signal amplitude, excess delay spread, and kurtosis. The 

technique is studied and proposed in [7, 9, 29]. In [7], authors suggested the LS-SVM model for 

the identification of LOS/NLOS and the mitigation of ranging error bias in NLOS condition. The 

proposed model training and its performance were evaluated using real-time experimental data. In 

[8], the authors suggested range errors bias mitigation in one step rather than two steps (i.e., 

identification and mitigation) procedure using LS-SVM technique. The authors stated the 

disadvantages of estimating ranging errors in two steps such as the crude way of dealing with 

ranging errors. In [9], the authors proposed a support vector data description (SVDD) machine 

learning methodology for ranging error mitigation which is also one step concept based. The study 

analyzed the percentage of training data and its impact on the ranging error mitigation accuracy. 

Although the above-stated machine learning based references identify NLOS conditions and 

mitigate range error bias due to NLOS condition, they are not feasible in the practical real-time 

system due to computational complexity [11]. Moreover, machine learning based methods are 
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time-consuming due to mandatory training phase and highly dependable on the uncertainties of 

the environments. 

2.7.4. Fuzzy Mapping Based Obstruction Identification 

In [12], authors purposed obstruction identification based NLOS range error mitigation based on 

a fuzzy mapping between signal characteristics (inputs) and likely obstruction (output). The signal 

characteristics are signal-to-noise ratio (SNR), RMS delay spread, kurtosis and skewness for 

identification of predefined obstructions (propagations), namely, iron door, wood door, concrete 

wall, pedestrian, and corner. After identification, range error is compensated using predefined 

range error for a particular obstruction. The empirical designed fuzzy logic model is evaluated and 

validated in predefined propagations.  However, CIR frame length data is required for estimating 

the signal characteristics. Moreover, acquiring CIR frame data in runtime adding a delay in 

estimating range between ANs and TNs [1]. 

2.8. Summary 

In this chapter, the ranging definition, positioning metrics, different types of methodologies for 

ranging and different wireless standards used in IL are discussed. Also, it is showed that IR-UWB 

wireless standard provides better precision localization along with distinct features than other 

wireless standards. The overview of different positioning algorithms and their pros and cons with 

respect to usage in IR-UWB are presented. The literature review of existing range error mitigation 

and classification techniques using IR-UWB are also presented. The analysis of measured 

parameters collected in real time experiments is discussed in the next chapter. The analysis is the 

core for designing the rules on which classification and fuzzy logic are based.  
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EXPERIMENTAL STUDIES  

3.1. Introduction 
IR-UWB based devices are available commercially since the late 90s. However, these devices are 

streamlined after industrial standards (such as IEEE 802.15.4a) in earlier 2000s. Moreover, due to 

the advancement of digital and RF front end as well as potential applications of IR-UWB in 

different domains, proliferation, and availability of the devices are improved over the time.  Due 

to this, recent research studies to address NLOS and MPP issues in IR-UWB are based on and 

validated using the devices [3, 6, 12]. In [3], design methodologies are empirically designed in 

different environments (i.e., office, universities, industries) using different scenarios by 

conducting and collecting data using experimental setups. So, it is vital to carry out empirical 

studies using an experimental testbed for a fair comparison with existing work. Moreover, the 

proposed solutions are more convincible and practical using experimental validation rather than 

simulation-based validation.    

In this chapter, available devices, their features and comparison, and details of the selected device 

are presented first. Second, experimental setups in different environments, scenarios selection and 

placement of nodes are described. Third, parameters observations under different scenarios for 

LOS and NLOS conditions are analyzed. Finally, chapter conclusion is drawn in the summary 

section.  

3.2. Device selection for experiments 

3.2.1. Comparison of Decawave® & Time Domain® devices 
There are many small and big manufactures of IR-UWB compliance devices. However, the 

prominent commercially available complete kits are from Decawave® and Time Domain®. 

Recently, Time Domain® are merged with Humatics® (www.humatics.com). The key 

characteristics of both the kits (i.e., from Decawave® and Time Domain®) are summarized in Table 

3.1. From the Table, the main difference between EVK-1000 and PulseON® 410 is the sampling 

of the RF spectrum. Due to this Decawave® devices have a lower cost compared to Time Domain® 

devices at the cost of lower ranging accuracy. So, for the experimental studies, we chose 

Decawave® EVK-1000 kit.  
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3.2.2. Decawave EVK-1000 Kit Description 

• Hardware 
The kit performs two-way ToA (TW-ToA) based ranging to estimate the distance between two 

nodes. It consists of two EVB-1000 boards (nodes) as shown in Fig. 3.1. Each board is equipped 

with DW-1000 chipset, ARM controller and omi-directional antenna. The heart of the board is 

DW-1000 radio CMOS chip which is fully integrated low power radio transceiver compliant with 

IEEE 802.15.4-2011 UWB standard.  The chip consists of the analog front end (both RF and 

 

Fig. 3.1: EVK-1000 kit EVB-1000 nodes[1] 

Table 3.1: Key Characteristics of EVK-1000 & PulseON 410 kits  

Characteristics EVK-1000 PulseON® 410 

Ranging Based on TW-TOF TW-TOF 

Ranging Accuracy Typically ±3 cm (LOS 

Condition) 

2 cm (LOS Condition) 

Operating range Upto 290 m @ 110 Kbps (LOS 

Condition) 

Upto 500 m (LOS 

Condition) 

Operating Frequency 3.5-6.5 GHz FCC*: 3.1-5.3 GHz 

EU ETSI EN**: 3.1-4.8 

GHz 

Access technique TDMA ALOHA/TDMA 

Average transmitted 

power 

-41.3 dBm/MHz -41.3 dBm/MHz 

RF spectrum sampling 

rate 

Sub Nyquist rate Nyquist Rate (min.) 

Regulation Compliance FCC & EU ETSI EN FCC & EU ETSI EN 
*FCC: Federal Communications Commission 

**EU ETSI EN: European Union European Telecommunications Standards Institute European Standard 
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baseband) and a digital back-end interface to host processor (that control the chip). The chip’s 

mode of operations are summarized in Table 3.2, and a detailed description along with data sheets 

can be found in [1]. The onboard USB or serial peripheral interface (SPI) ports support external 

application (or controller) to control the radio chip. Therefore, EVB-1000 board can be operated 

either in a standalone or USB connection or SPI connection modes as illustrated in Fig. 3.2. In the 

standalone mode, either one node or both nodes are operated on battery-powered and controlled 

by onboard ARM controller.  The ranging information is displayed on the onboard LCD. In USB 

 

Fig. 3.2: Mode of Operation of EVK-1000 Standalone vs USB connection [1] 

Table 3.2: DW1000 Operating characteristics  

Channel 

number 

Centre frequency 

(MHz) 

Bandwidth 

(MHz) 

Preamble Codes 

(16 MHz PRF*) 

Preamble Codes 

(64 MHz PRF*) 

1 3494.4 499.2 1,2 9,10,11,12 

2 3993.6 499.2 3,4 9,10,11,12 

3 4492.8 499.2 5,6 9,10,11,12 

4 3993.6 1331.2** 7,8 17,18,19,20 

5 6489.6 499.2 3,4 9,10,11,12 

7 6489.6 1081..6** 7,8 17,18,19,20 

*Pulse Repitation frequency 

**DW1000 has a max. receive bandwidth of 900 MHz 
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(or SPI) connection, the ranging information is processed and manipulated in software that controls 

the radio chip.  

• Software 

Personal Computer (PC) based DecawaveRanging® software provides alternate to the 

onboard ARM-based embedded software which offers additional configuration, 

controlling, data logging, and diagnostic features. The software enables the following DW-

1000 radio’s capabilities to be observed, and tested: 

 General operation of the transceiver IC on the supported channels and modes provided in 

Table 3.2 as it sends and receives data frames.  

 LOS operations and range. The operational range can be checked by placing the receiver 

at various distances from the transmitter in LOS condition. This is tested in all supported 

channel modes as in Table 3.2.  

 NLOS operations and range. The operational range can be checked when various 

obstructions are between the receiver and the transmitter giving an NLOS channel. This 

is tested in all supported channels modes as in Table 3.2.  

  Time-of-Flight (TOF) Ranging Measurements: The software performs 2-way ranging 

between the two nodes, and estimates the distance between them based on the TOF 

calculations. The operation is checked in LOS and NLOS and effects are observed on the 

distance estimation under LOS and NLOS as the two nodes are moved nearer/further from 

each other, and when there are walls and other obstructions between the units. Moreover, 

the nodes are tested in all supported channel modes mentioned in Table 3.1 for three 

different supported data rates (i.e., 0.11, 0.85 and 8.5 Mbps). In the observations, the 

distances are recorded along with the following data:  

 Logging of CIR data under LOS and NLOS. 

 Logging of SPI activities. 

It was found that there is no significant impact of different channel modes for LOS and NLOS 

operations and ranging estimation under the conditions.  
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3.3. Scenarios for experimental setups 

We collected measurements in two different environments, (i.e., Office and Warehouse). The 

locations of selected areas are inside the engineering building of the University of Windsor. In 

both environments, the nodes are placed on trapezoids to collect measurements as shown in Fig. 

3.3 & 3.4. The LOS and NLOS scenarios are created by placing TX and RX nodes at different 

intervals between 1.92 m and 11.31 m. The NLOS scenarios are emulated using the signal wall, 

multiple walls, concrete, and metal pillars, glass wall, the human body and different objects (i.e., 

chairs, metallic parts, etc.). The NLOS obstructions in each scenario are summarized in Table 3.3.  

In all, there are 30 scenarios where 700 measurements of the parameters are collected. The 

characteristics of the two locations are different which are as follows.  

3.3.1.  Office Scenario 

Table 3.3: Scenarios (and their abbreviations) and Obstructions 

 

Scenario Abbreviation Obstruction 

Office 1 wall O1W One wall 

Office 2 wall O2W Two wall 

Office 3 wall O3W Three wall 

Office Multi-wall O4MW1 Multi wall 

Office Multi-wall O5MW2 Multi wall 

Office Glass  OG1 Glass (clear) 

Office Glass  OG2 Glass (Opaque) 

Warehouse 1 W1B1 Box 

W1M1 Metal 

W1M2 Metal (nodes @height 4 ft. from ground) 

Warehouse 2 W2H1 Human 

W2M1 Metal 

W2M2 Metal (nodes @height 4 ft. from ground) 

Warehouse 3 W3M1 Metal 

W3T1 Trolley 

Warehouse 4 W4M1 Metal 

W4M2 Metal (nodes @height 4 ft. from ground) 

W4T1 Trolley 

W4T2 Trolley (nodes @height 3 ft. from ground) 

Warehouse pillar WP1 Metal Beam (Pillar) to support roof 

 



Chapter 3 
 

25 

 

Office setup has cubical spaces separated by wooden separators of 5 feet height. The office area is 

30x20 meters square (m2). In the office, cubical spaces are created using wooden wall separation 

and concrete pillars. In each cubical space, desk, chair, and metal cabinet are placed. There are 

also glass walls that enclosed the area. The detail of nodes placement along with office floor plan 

are illustrated in Fig. 3.3. 

3.3.2.  Warehouse Scenario 

The dimension of the warehouse is 20x50 m2. In the warehouse, the area is designated as research 

and development for automobile engines and parts. It has metal pillars. The area is kind of open 

space with metal parts that mimic an industrial environment. The detail of nodes placement along 

with warehouse floor plan are illustrated in Fig. 3.4. 

3.4. Observations of different parameters in scenarios 

3.4.1. Received Signal Strength (RSS) 

Instantaneous  (Inst.) RSS is estimated in Decawave devices using [1]: 

#CC (�DE) = 10 log�J K(L)(M) 
�N O − �    (3.1) 

 

Fig. 3.3: Office Floor plan  
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where C is the CIR magnitude, N is the preamble accumulation count, K is constant of 217, and A 

is a predefined constant of -115.72 dBm for a Pulse Repetition Frequency (PRF) of 16 MHz or -

121.74 dBm for a PRF of 64 MHz . Probability density functions (PDFs) of RSS in LOS, soft 

NLOS (SNLOS) (i.e., in SNLOS direct path is the strongest path) and NLOS conditions are 

illustrated in Fig. 3.4(a). From the figure, it can be inferred that in LOS and SNLOS the RSS values 

are centered around -80 dBm. However, in the case of NLOS, RSS value is concentrated around -

83 dBm. From the PDFs, it is obvious that RSS is decreased in NLOS conditions due to 

obstructions. As more severe the NLOS condition is the more power is lost due to the nature of 

obstruction and number of obstructions. Moreover, LOS and NLOS conditions can be identified 

based on RSS values as shown in Fig. 3.4 (a). However, in some cases where RSS decreased to -

84 dBm in the case of SNLOS and LOS. Also in NLOS case, it increased to -80 dBm. The area is 

identified as a grey area, and the region is where misclassification occur for only based on inst. 

RSS value. 

3.4.2. First Path Signal Strength (FPSS) 

 Inst. FPSS is estimated using ��and two more CIR’s components (i.e., �� and ��) followed by �� 

as [1]: 

 

Fig 3.4: Warehouse Floor Plan 
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��CC (�DE) = 10log�J *	PQR	QQR	SQ.
�Q − �,    (3.2) 

From 3.1 and 3.2, inst. RSS and FPSS are correlated to each other as both are estimated using CIR 

values. So, FPSS exhibit similar to RSS in LOS, SNLOS, and NLOS as illustrated in Fig. 3.5(b). 

However, FPSS is also attenuated depend on first path attenuation factor (more detailed analysis 

and the relationship between RSS and FPSS will be discussed in Chapter 5).  

3.4.3. Rise time (RT) 

RT is defined as the difference between the time occurrence of the strongest path in ℎ(U) (��), 

denoted as V	W and time occurrence of leading edge ( ��), denoted as V	P as given: 

#V(6XYZ) = V	W − V	P,      (3.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5: Parameters PDF in different scenarios: (a) RSS; (b) FPPS; (c) RT 
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RT’s PDFs for LOS, SNLOS, and NLOS are given in Fig. 3.5 (c). From empirical PDF 

observation, it is obvious that strongest path is the first path in LOS and SNLOS cases as RT’s 

PDFs are concentrated on the lower side (i.e., between 2 to 6 ns) as illustrated in Fig. 3.5 (c). 

Whereas, in NLOS case, values are much higher (greater than 10 ns) because the strongest path in 

NLOS is not the first path.   

3.4.4. Average CIR normalized magnitude 

It is estimated using CIR ℎ(U) normalized magnitudes as given: 

���� = 10 [\= ]∑ ^ �_`(�-)ab-cdefgh,�efg i,    (4.1) 

where U��� is the leading edge time at which the range is estimated based on Time of Arrival (ToA) 

technique, and j is the frame size in a nanosecond (ns) where discrete ℎ(U) presents. In the case 

of Decawave devices, W is 1016 ns [1]. 

 

Fig. 3.6: Average magnitude (����), FP-Min (����), and FP-Max (�	�
) levels in 

different scenarios 
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3.4.5. Leading Edge Normalized Magnitude 

It is estimated using the first normalized magnitude above threshold (&) occurs in ℎ(U) at the time 

denoted as U��� (i.e., ℎ(U���)). It is also called the first path (FP) minimum and its magnitude is 

computed as: 

���� = 10 [\=_ℎ(U���)a,    (4.2) 

3.4.6. First Path Max Normalized Magnitude 

It occurs in ℎ(U) either at the time: k� = U��� + 1(ns) or at the time: k� = U��� + 2(ns) , depends 

on which CIR’s magnitude level is higher (i.e., max|ℎ*UoP.,ℎ*UoQ.|).It is estimated as: 

�	�
 = 10 logpℎ*Uo-.q,     (4.3) 

 where 1 ∈ r1 \< 2s. 

The parameters’ (i.e., ���� , ����, and �	�
) average values in different scenarios are illustrated 

in Fig. 3.6. From the figure, ����  has lower values in LOS and SNLOS compared to NLOS 

conditions. This is due to the strongest path in CIR’s ℎ(U)  in LOS and SNLOS and all other 

multipath components (MPCs’) magnitudes in ℎ(U) are weak. Whereas in NLOS, the direct path 

(i.e., between TX and RX) is relatively weak and others MPCs are strong due to reflected, defracted 

and shadowed paths and direct path is partially or fully blocked by the obstruction. Due to this 

reason, �	�
 has the strongest magnitude in LOS and SNLOS conditions and lower magnitudes 

compared to other MPCs in NLOS conditions.  

The parameters’ observations are helpful in identifying the conditions (i.e., LOS and NLOS) and 

induced errors due to these conditions. The identification and mitigating the errors are covered in 

the next two chapters. 
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3.5. Summary 

In this chapter, first, availability of devices from leading vendors, their differences and selected 

devices description is presented. Also, the need for empirical based studies for designing and 

validating of the proposed methodology is emphasized. Second, scenarios creation in the selected 

premises is described. Third, measured parameters in the scenarios and their observations in 

different scenarios are presented. 
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A  PARAMETRIC RULE-BASED CLASSIFICATION AND 

LOCALIZATION ALGORITHM FOR IR-UWB  

 

4.1. Introduction 

Wireless Sensor Networks (WSNs) are deployed in indoor and dense environments where Global 

Positioning System (GPS) does not perform satisfactorily [14]. Therefore, indoor Real-Time 

Localization System (RTLS) is an optimum choice to support applications demanding location 

awareness in the WSN domain [21, 22]. There are many existing wireless systems that support 

indoor localization along with data communication. The most popular of these systems are WiFi, 

Zigbee, Bluetooth and IR-UWB [16, 42, 71]. Among them, IR-UWB is at the forefront of 

providing high-resolution localization [11]. Besides precision ranging, IR-UWB salient features 

such as through-wall propagation, low power consumption, size form factor, and many other 

salient features bode well for WSN [16, 55]. However, the localization accuracy of IR-UWB 

degrades when they operate under NLOS conditions which are inherent in wireless 

communications with real-time deployments [5, 40]. Due to NLOS conditions, ranging errors  

increase significantly compared with LOS conditions. 

Therefore a novel rule-based technique for classification of LOS and NLOS conditions along with 

geometric ranging correction methodology is proposed to minimize position errors under NLOS 

condition. The classification technique is designed with consideration of key requirements of WSN 

such as reduced computational requirement, delay due to measurements acquisition while 

enhancing classification accuracy for detecting LOS and NLOS conditions. The set of rules, on 

which classification is based, consider six specific parameters namely (I) average of normalized 

channel impulse response (CIR) magnitudes, (II) first path minimum CIR magnitude, (III) first 

path maximum CIR magnitude, (IV) received signal strength, (V) first path signal strength and 

(VI) rise time. For range mitigation, a geometrical ranging correction positioning algorithm based 

on the geometrical layout of anchors and agent nodes is proposed.  Moreover, experiments in two 

different scenarios are conducted to collect ranging data, signal levels and channel data in LOS 

and NLOS conditions. The experimental study and parametric data from Chapter 3 are used to 

support the proposed classification and range mitigation algorithm. Similar to [72], the proposed 
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range mitigation algorithm is developed based on the assumption of having only one anchor-agent 

in NLOS condition. Furthermore, a probabilistic model is also presented to show simultaneously 

one anchor node out of three is the most likely in NLOS condition. The model justifies that the 

assumption of one anchor in NLOS in the ranging algorithm. The proposed classification and 

mitigation algorithm has low complexity and computational requirements while enhancing the 

position accuracy under NLOS condition without adding the delay in range acquisition.  

The chapter is organized as follows: Section 4.2, discusses the classification of LOS and NLOS. 

Section 4.3, describes the probabilistic model, and a ranging algorithm. Experimental 

measurements and scenarios are presented in Section 4.4. Section 4.5, introduces the proposed 

algorithm and its performance and finally, the conclusions are provided in Section 4.6. 

4.2. Classification of LOS and NLOS 

4.2.1. Salient features in LOS and NLOS 

From the preceding chapter explained that normalized MPCs are stronger in NLOS compared to 

LOS. Also, the strongest MPC is observed followed by leading edge of MPC in the first path in 

LOS condition. In addition to leading edge, two more MPC components constitute the first path 

(or the direct path) [1]. However, in NLOS condition the phenomena do not exhibit. Moreover, 

overall received power and first path power are attenuated in NLOS due to obstructions between 

the TX and RX and multipath propagation of the transmitted signal.  Based on the parameters and 

channel magnitudes observations in the preceding chapter, following parameters are supportive in 

the identification of LOS and NLOS: Average CIR normalized magnitude, leading edge 

   TABLE 4.1: PARAMETERS OBSERVATIONS IN LOS AND NLOS 

S. No. Observation LOS NLOS 

P1 �	�
 �	�
 = 1 �	�
 < 1 

P2 Relationship between �	�
 and ���� µ���� ≤ �	�
 µ���� > �	�
 

P3 Relationship between �	�
 and ���� x�yz� ≤ �	�
 x�yz� > �	�
 

P4 Relationship between ���� and ���� �yz� ≤ ���� �yz� > ���� 

P5 RT #V ≤ 6 ns #V > 6 ns 

P6 RSS #CC ≥ −82.5 dBm #CC < −82.5 dBm 

P7 Relationship between #CC and ��CC (∆) ∆ ≤ 7 dB ∆ > 7 dB 
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magnitude, the first path max magnitude, rise time, received signal strength (RSS), and the 

received first path’s power. 

4.2.2. Classification Methodology 

Through extensive experiments in different scenarios in two different conditions (i.e., LOS and 

NLOS), observations regarding parameters are summarised in Table 4.1. The multiplier constants 

(i.e., µ and β) values are found experimentally which are 8 and 10 respectively. In addition to the 

observations, combining two or more observations for identifying the conditions is more effective 

and reduce false alarms (for classification) rather than using sole observation for identification. 

The observations’ combination is called rules, and the particular combination is based on the 

following facts:  

• Combination-1: P2 & P3  

 The combination is based on observations 2 & 3 (i.e., P2 & P3) from Table 4.1 

 Average magnitude of CIR(tells the no. of Multipath) 

 First path max. magnitude (tells the strength of the first path in LOS or NLOS) 

 First path min. magnitude (critical for range estimation in ToA algorithm) 

 Combination is based on CIR magnitudes 

• Combination-2: P4 & P5 

 The combination is based on observations 4 & 5 (i.e., P4 & P5) from Table 4.1 

TABLE 4.2:  IDENTIFICATION RULES FOR LOS/NLOS  

Identification Rule# 1 

 (R1) 

Rule# 2 

 (R2) 

Rule # 

3 (R3) 

Combination Logical  

Operation 

Rule 

Logic 

LOS µ���� ≤ �	�
 
x����≤ �	�
 

 
1 

R1&R2 TRUE(1) 

LOS ���� ≤ ���� #V ≤ 6  2 R1&R2 TRUE(1) 

LOS x���� ≤ �	�
 #CC ≥ −82.5  3 R1&R2 TRUE(1) 

LOS #V ≤ 6 #CC ≥ −82.5 ∆ ≤ 7 4 R1&R2&R3 TRUE(1) 

NLOS µ���� > �	�
 
x����≤ �	�
 

 
1 

R1&R2 FALSE(0) 

NLOS ���� > ���� #V > 6  2 R1&R2 FALSE(0) 

NLOS 
x����> �	�
 

#CC < −84.5  
3 

R1&R2 FALSE(0) 

NLOS #V > 6 #CC < −84.5 ∆ > 7 4 R1&R2&R3 FALSE(0) 
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 Average Magnitude 

 First path min. magnitude 

 Rise time (tell where in time span max. path occurs in CIR) 

• Combination-3: P3 & P6 

 The combination is based on observations 3 & 6 (i.e., P3 & P6) from Table 4.1 

 Average magnitude 

 First path min. magnitude 

 Received power strength (tells how strong overall signal is) 

• Combination-4: P5, P6 & P7 

 The combination is based on observations 5, 6 & 7 (i.e., P5, P6 & P7) from Table 4.1 

 Based on the received signal and the first path. The relationship holds well in mild NLOS 

conditions 

 Received signal strength exhibit differently in sever NLOS conditions 

 Does not require whole CIR data within the frame (i.e., 1016 data samples) 

The above combinations are logically combined using AND operation for classification. Due to 

the fact that all parameters within particular combination are within a specific threshold (which 

are defined in Table 4.1) for LOS and logically true for LOS condition; that’s why AND operation 

is appropriate. Truth Table for all the combinations along with the classification of LOS and NLOS 

are summarized in Table 4.2. 

4.3. Range Mitigation Methodology 

After classification, geometric range correction of one anchor-agent pair out of three is presented. 

First, one out of three anchor-agent pair’s channel condition is in NLOS most probable occurrence 

analysis is presented. Second, the range correction of the pair method is presented. 

In a typical non-industrial environment, anchors are located near ceiling level. Thus, most 

obstructions are generally avoided due to anchors elevation. In this case, it has been observed, 

during the experiments performed in real time indoor deployments that AN in LOS is most likely 

rather than in NLOS. So, having AN in LOS is assume to be ���� =70% and that of NLOS is 

����� =30% instead of equal probability. Based on the assumption, the probability of an AN 

experiencing NLOS, �����(��) out of three ANs  is modelled as: 
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NyBC �<\�;�1[1U/ �\< \6Y ;6Zℎ\<: 

�����(��) = *��.����(1 − ����)� ,    (4.1) 

where 1 ∈ r0,1,2s, and �����(�J), �����(��) …�����(��) are statistically independent events 

that shows either �J or �� or … �� is in NLOS respectively. The p<\�;�1[1U/ �\< two ANs  

experiencing NLOS simultaneously is as follows: 

�����(2��) = *��.�����(1 − ����)     (4.2) 

From (4.1) and (4.2), it can be deduced that most likely single node experienced NLOS and co-

occurrence of two or three anchor nodes in NLOS are less probable. Therefore, a single node 

experiencing NLOS should be handled with the highest priority, while there is a possibility of two 

or more anchors being NLOS, it is assumed in the range mitigated model that anchors are placed 

near ceiling level and that they are placed in strategic locations to minimize NLOS probability of 

two or three anchor nodes simultaneously. Based on the analysis, geometric range correction of 

any one of the anchor-agent pair out of three are as follows: 

The distances between anchors, associated angles, and two LOS estimated ranges are required 

for geometrically correcting NLOS range as illustrated in Fig. 4.1. The distances between anchor 

 

 

Fig. 4.1: Anchors and agent nodes placement 

 

���  

����  

����  
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nodes for known anchors’ position and angles ��� , ��P, and ��Q associated with anchors �J, �� 

and ��  are calculated respectively as follows: 

z�� = )K+�� − +��O� + K/�� − /��O�
      (4.3) 

��� = cos,� ����Q ,K���Q R���Q O
(,�)������ �       (4.4) 

where (�, �, [) ∈ r0,1,2s, � ≠ � ≠ [. Using the distances between anchors (i.e., from (4.3)), 

associated angles (i.e., from (4.4)) and two LOS ranges (#� and #�), the third range #^can be 

corrected given �^–agent pair is in NLOS using: 

���� = cos,� ���Q,(���QR��Q)
(,�)����� �     (4.5) 

���� = ��� − ����       (4.6) 

#� = )z��� + #�� − (2z��#� cos K����O)    (4.7) 

 

• For Point outside ∆A0A1A2: 

For tag outside the triangle, the #� and associated angle (���� or ��Q�) for estimating #�  are 

changed. However,  #J or #� would not change due to geometric symmetry and can be corrected 

using (4.5, 4.6, and 4.7). For determining #�, the associated angle can be calculated by modifying 

(4.6) as : 

���� = ��� + ����       (4.8) 

where in this case j ∈ r0 or 2s. For range #� to be determined outside the perimeter of ∆�J����, 

it is required that to check whether the agent with position V is inside or outside the triangle 

�J���� as illustrated in Fig. 4.1. It can be checked as: 

� = ���("�Q),��� (���Q)
��� (�P�Q)       (4.9) 

  = − ���("�P),��� (���P)
��� (�P�Q)      (4.10) 
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det(¤ ¥) = ¤ × ¥ = ¤§¥¨ − ¤¨¥§    (4.11) 

For the point V� (where 1 ∈ r1,2,3s) is inside ∆�J���� if �,   > 0 and � +   < 1 otherwise outside 

the triangle. The flow chart of the proposed classifier and range mitigation algorithm is given by 

Fig. 4.2. From the figure, the algorithm starts with getting range values, ANs’ coordinates, and 

condition (i.e., LOS or NLOS) identification from three ANs. In the second step, trilateration 

process is executed for estimating the position. If LOS for all ANs is present, then the estimated 

position is available at the output. If NLOS is detected, then the algorithm is checked for the 

number of ANs in NLOS. If one AN in NLOS is detected, then the range mitigation is applied to 

the NLOS range, and position is estimated with the corrected range. Otherwise, the unmitigated 

position is available with a range error warning at the output. 

 

 

 

Fig. 4.2: Flow-chart of the proposed algorithm 
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4.4. Experimental Data  

For validating proposed classification and ranging methodology, data collected in two different 

scenarios (i.e., Office and Warehouse) is used as described in Chapter 3. The data is comprised of 

ranges (i.e., #J, #�, and #�) and associated CIR measurements. The data is collected in LOS and 

NLOS conditions at three different locations (i.e., V�, V�, and V�) in each scenario. Three different 

locations in each scenario are depicted in Fig. 4.1. From CIR measurements, the parameters 

describe in Section 3.4 are extracted. In each of the scenarios, 400 set of ranges and CIR 

measurements were taken for LOS and NLOS conditions. So, in all 1200 measurements were taken 

in all scenarios.  

4.5. Results & Discussion 

In this section, the performance of the proposed classifier, range mitigation, and localization 

algorithm using a mitigated range are demonstrated. The performance measures and quantitative 

details are discussed. 

4.5.1. Classification Performance 

Performance of the classification strategies from Table 4.2 is quantified in terms of the confusion 

matrix as given in Table 4.3. The matrix is defined in terms of true positive (TP), true negative 

(TNa), false positive (FP) and false negative (FN). In addition, the terminologies are defined as: 

 TP: LOS predicted when there is LOS condition present. 

 TNa: NLOS predicted when there is NLOS condition present. 

 FP: LOS predicted when there is NLOS condition present. 

 FN: NLOS predicted when there is LOS condition present. 

 Misclassification rate (�") is defined in terms of false positive rate (��#), and false negative rate 

(�
#) [7] as given: 

�"  = (��# +  �
#)/2,      (4.12) 

where ��# = ��/
 and �
# = �
/
. Where 
 is a total number of measurements (i.e., 1200). 

From Table 4.3, it is observed that FP and FN are the highest for Combination-2. FN is highest for 

the combination is due to less the MPCs in some LOS conditions and ����  is low in the conditions. 

Comparing with ����, the statement (i.e., ���� ≤ ���� ) is false and detected as NLOS rather 
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than LOS. Same is true for FP in conditions where there is severe NLOS present. In the LOS 

condition, most of the MPCs are relatively weak compared to first path MPC (strongest MPC) and 

these MPCs are below a threshold level in the threshold based detector. As there is no weightage 

for the MPCs below the threshold in the computation of and ����  therefore ����  is low. For 

Combination-4, FN is the second highest in the Table. This is due to ∆> 7 dB in some experimental 

setups where there are significant MPCs and the first path is detected earlier than the actual first 

path. Due to this, the first path power is low and the difference between the received signal and 

the first path is more than 7 dB. However, Combination-4 is most effective among different 

combinations for detecting NLOS conditions as depicted in the Table. Moreover, the combination 

requires only the parameters which are readily estimated in Decawave deceives [1]. It also does 

not introduce a delay due to non-requirement of CIR data from the devices [1]. Due to these facts, 

Combination-4 is considered from thereon.  

To show the effectiveness of the proposed classifier, we compare the proposed classifier with 

presented in [40] and [7] as shown in Fig. 4.3. For classifier in [40], the solution is based on the 

difference between received signal and first path signal strengths and for LS-SVM classifier from 

[7], the best classification is based on the cumulative energy of the signal, the kurtosis of the 

Table 4.3: Confusion Matrix 

Rule 

Type 

Number of 

measurements 

N=1200 

Predicted 

LOS 

Predicted 

NLOS 

Combination-1 Actual  

LOS 

465 35 

Combination-2 401 99 

Combination-3 493 7 

Combination-4 460 40 

Combination-1 Actual 

NLOS 

36 664 

Combination-2 44 656 

Combination-3 30 670 

Combination-4 4 696 
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channel and rise time parameters. For a fair comparison, we extracted the parameters from our 

measurement database for both comparisons.  

It has been observed that the proposed classifier is very effective in detecting NLOS condition for 

severe NLOS situations where the signal strengths are attenuated significantly (i.e., less than -

85dBm) for the received, and the first path signals strength. However, due to less difference in the 

received signal and the first path signal strengths, the classifier in [40] failed to identify the 

condition and falsely detect condition as LOS. In the NLOS condition, ranging error is observed 

around 1 m.  Due to attenuation, most MPCs preceding strongest path in CIR are below the 

threshold level, and the MPC closest to strongest MPC is detected as leading edge, so the difference 

between the first path signal strength (strongest path) and the received signal strength is less than 

6 dB. Due to this, only difference based solution failed from [40] in the condition. In the case of 

LS-SVM classifier [7], the outliner increased in NLOS conditions due to the varying condition of 

the channels where the real-time measurements are taken. This is due to the increase in people 

activity in the areas. Due to this, FNR increases for LS-SVM.   Moreover, the proposed rule-based 

classifier achieves true classification rate of 97% which is equal to (1- �")x100. 

 

 

Fig. 4.3: Performance comparison of different Classifiers.  
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4.5.2. Range Mitigation Performance 

The performance of the proposed range algorithm for 1200 measurements in two different 

scenarios is provided in Table 4.4. In each scenario, measurements are taken at three different 

locations (i.e. V�, V�, and V�) as decipted in Fig. 4.1. In Table 4.4, the performance of the range 

mitigated algorithm is measured in terms of percentage error (�
��), and range improvement factor  

(&�'(). �
�� is the percent error of #
��. (i.e., mitigated range) relatived to #�%!� (i.e., true range), 

and, &�'( is the percent error improvement in range error (#
��.) resulting from the mitigation 

algorithm over the NLOS range measurement(#����.), in relation to the #�%!�.  

The average &�'( for the office and warehouse are 5.65%, and 5.68%, respectively. An overall 

average of these values yields a &�'( of 5.66%. It is observed that &�'( is improved considerably 

where there is severe NLOS as in the case of #� ranging at V� position in all scenarios. This is due 

to ranging error around 1 m in the case. From Table 4.4, it can be seen that �
��is low for most of 

the measurements due to less difference between #
��. and  #�%!�  which shows the effectiveness 

of the proposed ranging algorithm. 

4.5.3. Localization performance 

The performance of the localization algorithm from Section 2.71 using mitigated ranges and NLOS 

ranges is determined in terms of position improvement factor (PIF) which is  
�ªe«¬

�­-d-®�d¯° ratio. The 

ratio is between NLOS distance (�����) (i.e., the difference between true LOS position and NLOS 

Table 4.4: Range Mitigated & NLOS performance 

    

N= 1200 

             Office Warehouse 

��1U  (%) &1E±  
(%)

��1U (%) &1E±  (%) 

Position V� 
R0 0.91 2.37    1.90 6.18 

R1 2.32 2.24    4.47 4.91 

R2 3.73 15.31 0.84 5.08 

Position V� 
R0 1.34 3.94    0.63 5.70 

R1 2.76 2.35    0.56 4.98 

R2 0.42 5.66   0.24 8.30 

Position V� 
R0 0.63 5.70   0.29 4.59 

R1 0.56 4.98   3.04 1.99 

R2 0.24 8.30   3.09 9.35 
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position) and mitigated distance (�
��������) (i.e., the difference between true LOS position and 

mitigated distance position). The distances are computed as: 

����� = )(+"-��� − +"-����)� + (/"-��� − /"-����)�   (4.13) 

 

�
�������� = )(+"-��� − +"-
��������)� + (/"-��� − /"-
��������)� (4.14) 

The PIF is computed for each of the position (i.e., V�, V�and V�) in all the scenarios. The average 

of PIF for each of the position in a particular scenario are illustrated in Fig. 4.4. From Fig. 4.4, it 

can be deduced that the PIF varies from 3.42 to 12.5054. This variation in PIF value is due to 

different channels experiencing NLOS with varying severities. For instance, a low PIF is due to a 

 

Fig. 4.4: Localization Performance in terms of PIF 
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mild severity of the encountered NLOS. Accordingly, If the NLOS range measurements were only 

slightly greater (i.e., due to the severity) than the actual LOS range measurements, the PIF will be 

lower as the margin of the ranging error is lower. 

The effectiveness of range mitigation algorithm is gauged from PIF factor as shown in Fig. 4.4. 

The large PIF number shows that there is a significant difference between mitigated distance and 

NLOS distance. The difference in the distances is also shown from CDF and histograms in Fig. 

4.5. The CDF also shows that the overall error decreases by 0.35 meter for the mitigated technique 

compared to NLOS condition.  

4.6. Summary 

In this chapter, a novel rule-based classification technique to identify LOS/NLOS and geometric-

based range mitigation are developed. Moreover, a probabilistic model, for the non-industrial 

environment to show one anchor-agent pair in the set of three is most likely in NLOS condition, 

is presented. The (proposed) classifier and range mitigation algorithm are validated using 

experimental measurements in two different environments. The experimental study has shown that 

the proposed classifier can achieve 97% success rate in identifying LOS/NLOS.   In addition, the 

performance of the proposed ranging algorithm is quantified in terms of percentage mitigated 

error, percentage improvement range factor and position improvement factor. The ranging error 

shows lower error up to 4.47% along with improvement range factor of 10.47% compared with 

 

Fig. 4.5: Histogram & CDF of NLOS & Mitigated Algorithm ranges 
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NLOS ranging. The position factor shows an improvement of up to 12 times compared with 

position using an unmitigated NLOS range. The standard deviation of the mitigation results is 

lower than that attained by a system running no correction algorithm. Moreover, the standard 

deviation of our proposed mitigated solution is 0.2517 m less than the NLOS solution on average, 

across all the test rooms.  

As a next step (which is provided in Chapter 5), NLOS mitigation is extended for scenarios where 

two or all of the agent anchor’s pairs are in NLOS. Moreover, the rules for identifying LOS and 

NLOS are expanded for fuzzification and estimating ranging error bias based on the severity of 

NLOS conditions. The biased value is subtracted from the estimated range to estimate mitigated 

range for enhancing position accuracy of the system where more than one anchor-agent pair are in 

NLOS. 
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RULE BASED RANGING ERROR MITIGATION FOR IR-UWB:  

A FUZZY LOGIC APPROACH  

 

5.1. Introduction 

Fuzzy logic is categorized as a soft computing method which accommodates the uncertainties of 

the real world. In a more specific sense, fuzzy logic is an extension of multivalued reasoning whose 

objective is to do estimated reasoning rather than the strict solution. It achieves robustness, 

tractability, and low-cost solution by exploiting the tolerance for imprecision, partial truth and 

uncertainty in measurements. In contrast to the traditional hard computing where Crisp logic is 

applied, Fuzzy logic may have true or false values with a degree of certainty or uncertainty. 

Furthermore, Fuzzy Logic is close to the human way of reasoning which finds a way in many 

control and classification applications [73]. Particularly, in the wireless domain, Fuzzy Logic has 

gained popularity for classification and clustering applications in recent years due to low cost and 

less computational complexity burden [74, 75]. In this chapter, Fuzzy logic is applied to CIR 

parameters to estimate the ranging error and mitigate the error in LOS and NLOS estimated ranges 

for indoor tracking and navigation (ITN) application domain. Due to ITN’s stringent 

computational complexity and ranging acquisition delay requirements, fuzzy logic solution aligns 

well with the requirements. Moreover, measurements uncertainties are covered optimally by the 

fuzzy approach [76, 77]. Estimation (or mitigation) of the error is done in one step rather than in 

two (i.e., the first classification of LOS or NLOS, and second, mitigation of NLOS errors). 

Moreover, ranging errors in LOS condition due to multipath propagation is also accounted for and 

corrected in the proposed range mitigation technique based on fuzzy logic.  

In this chapter, first, basic terminologies of Fuzzy Logic is described. Second, uncertainties in CIR 

parameters (i.e., received signal strength, first path signal strength and rise time) due to LOS and 

NLOS are modeled. The ranging errors related to the uncertainties is analyzed. The theoretical 

analysis is the foundation and served as expert knowledge for designing the rule inference 

mechanism and a fuzzy inference system (FIS). Third, the proposed FIS model is presented. 

Fourth, measured parameters are compared with the theoretical uncertainty analysis. The 
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comparison is supportive in designing of the membership functions of the FIS system. Finally, the 

experimental evaluation of the proposed system and localization performance are presented.  

5.2.  Fuzzy Terminologies 

5.2.1. Fuzzy Set 

In classical theory, elements are classified into different sets based on Boolean logic, i.e., either an 

element belongs to a particular set or not. However, in fuzzy theory, an element belongs to a 

particular set or not with the degree of membership function between 0 and 1. Logically 0 

interpreted as completely not a member and 1 as an absolute member., A fuzzy set which describes 

a condition of LOS based on received signal strength, where reading is greater than -80 dBm has 

defined criteria for an element to belong to a set of LOS with a full degree of membership. In the 

case, a reading of -78 dBm which has a full degree of membership Aas illustrated in Fig. 5.1(a). 

However, a reading of -83 dBm is far away from the criterion and does not belong to the set. 

Another reading of -81dBm is close to the criterion,  and it is reasonable to categorize to LOS set 

with a partial degree of membership, and the value of membership depends on the features of the 

membership function. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1: Fuzzy classification & membership function (a) classification. (b) membership 

function 

 

   (a) 

 

   (b) 
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5.2.2. Membership Function 

A shape or curve that defines the features of a fuzzy set is called a membership function (MF). It 

assigned each element to corresponding membership value or degree of membership in close 

internal _0,1a. It has a core area and supportive boundaries as shown in Fig. 5.1(b). An input 

variable + and the corresponding degree of membership ²(+) are defines on horizontal and vertical 

axes respectively. A full degree of membership is represented by the core region and ²(+) = 1. 

Supportive region where 1 < ²(+) < 0 covers the fuzziness and tells the degree of certainty that 

a particular value of + belongs to a fuzzy set. Generally, there are five curves (or MFs) used which 

are Trapezoidal, Triangle, Gaussian, Sigmoidal, and Generalized Bell. Generally, Gaussian or 

Triangle MFs are used [76, 77]. 

5.2.3.  Fuzzification 

In fuzzy logic, a process of converting numerical input values into a linguistic variable with a 

certain degree of membership is called fuzzification. The process of mapping input space onto 

linguistic variable is done using fuzzy set and corresponding MF. Usually, more than one MF are 

used to map the signal input onto multiple linguistic variables. Fuzzification process facilitates a 

fuzzy inference mechanism to be applied to the input variable(s). 

5.2.4. Fuzzy Inference 

A process of projecting input variable(s) onto output space through rules structure is called fuzzy 

inference. The structure is parallel If-Then as illustrated in Fig. 5.2. A single If-Then rule is of the 

following form: 

³� + 1X [\´, Vµz
 / 1X [\´,     (5.1) 

The L.H.S. of the rule in (5.1), where input(s) is located, is called antecedent. The R.H.S., where 

the output is located, is called consequent. Multiple inputs are connected using fuzzy logic 

operators. The operators are AND,  OR and NOT. The AND operation is interpreted as min 

function, i.e., min (+�, +�). OR operation interpreted as a max function, thus  +� B# +� is 

equivalent to a max (+�, +�). And NOT +� becomes 1-+�. 

The rules are designed thru expert knowledge of a particular process within an application. There 

are three types of fuzzy inference mechanism namely Mamdani, Surgeno, and Takagi-Sugeno-

Kang (TSK) [76]. The three types differ from each other at the output after the inference 
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mechanism. Mamdani output is a linguistic variable, whereas Surgeno output is a numerical 

number [76]. TSK is a hybrid form of Mamdani and Surgeno [76]. For most classification 

problems, Mamdani is commonly used as it is ease to design and resembles human analogy for 

inference and control [76]. In this work, Mamdani is used. Moreover, Mamdani requires a 

defuzzification process to convert a linguistic variable into a numerical value at the output. 

5.2.5. Defuzzification 

A process of converting a linguistic variable into crisp value after rule inference is called 

defuzzification. There are four types of defuzzification namely, mean of max (MoM), center of 

gravity (GoC), height method (HM), and look up table [77]. GoC method is commonly used in 

many applications [77].  

5.3. Parameters Uncertainty Analysis 

In this section, uncertainties in the CIR parameters due to LOS and NLOS conditions are discussed. 

Moreover, ranging error, correlation to the uncertainties, is considered.  

The CIR parameters are RSS, FPPS and rise time RT. 

5.3.1.  Received Signal Strength (RSS) 

It is known that RSS, transmitted power, and the distance between transmitter and receiver are 

correlated to each other by well-known Ferris equation [45]. In addition, RSS is affected by 

 

 

 

 

 

 

 

Fig. 5.2: Rules Structure 
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multipath propagation components (MPCs) and condition of the channel (LOS or NLOS) as 

illustrated in Fig. 5.3. In the Figure, it is assumed that TX power to all RXs is equal and all RXs 

are at the same distance. So, RX1 received max power related to transmitted power due to LOS, 

RX2 received less power than RX1 due to NLOS, and RX3 received the least power compared to 

RX1 and RX2 due to severe NLOS. The instantaneous RSS varies due to MPCs and LOS/NLOS 

conditions, can be modeled as: 

 

#CC�>��. = � #CC'��> + y         
 = 0 (yBC) #CC'��> + y + 
   
 < 0(
yBC),      (5.2) 

where y is MPP factor in dBs and 
  is an attenuation factor in dBs.  The 
 varies with the severity 

of NLOS. For less severe NLOS condition,  
 is low, and RSS is high. However, for very severe 

NLOS condition, the 
 is high and RSS is low. For the LOS condition, RSS is very high.  

 

 

 

Fig. 5.3: RSS and LOS/NLOS 
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5.3.2. First Path Power Strength (FPPS) 

In IR-UWB, the FPPS is estimated using CIR leading edge MPC (��) followed by two MPCs in CIR 

(�� and ��) as illustrated in Fig. 5.4 [1]. For ranging estimation, leading edge detection (LED) 

algorithm is employed to detect �� based on time of arrival (ToA) technique. Therefore, FPPS is a 

vital indicator in IR-UWB. Similar to RSS, FPPS varies due to MPCs and the channel condition. 

Therefore, FPPS can be modelled as follows: 

���C�>�� = � ���C'��> + y	�              
	� = 0 (yBC)
 ���C'��> + y	� + 
	�  
	� < 0(
yBC),   (5.3) 

where first path y	� MPP factor in dB and 
	� is the first path attenuation factor in dB. The 

magnitude of 
	� is depend on obstruction material and number of obstructions in NLOS conditions. 

As #CC�>��. and ���C�>��. are estimated using CIR magnitude. Hence they are interlinked with each 

other. 

5.3.3. Rise time (RT) 

RT is defined as the difference between the time occurrence of �� V(��) and time occurrence of 

max MPC (�'�§) V(�'�§) as given: 

#V = V(�'�§) −  V(��),      (5.4) 

RT varies according to the condition as demonstrated in Fig. 5.4. The Figure shows that RT in 

LOS is low while it is high in NLOS. 

 

 

 

 

 

 

 

 

 

Fig 5.4: CIR in LOS and NLOS (a) LOS (b) NLOS 

 

(b) 

 

(a) 
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5.3.4. Ranging error  

In this subsection, the relationship between ranging error and FPPS (as well as RSS) is developed. 

For the LED algorithm, the first MPC above the threshold is considered as the first path [1]. Based 

on that, the distance between the TX and RX is estimated as: 

V"�	 = V(��) − V�¨>,      (5.5) 

 ¶ = V"�	 . L,       (5.6) 

where V"�	 is the time of flight; V�¨> is the time at which TX and RX are synchronized; V(��) is 

the time at which �� (leading edge magnitude) detected, provided: 

�� > & ,      (5.7) 

where & is the threshold level for ToA based estimator (receiver). However, ��  depends on the 

received power and channel condition. Moreover, the ranging error depends on detection scenarios 

of �� such as early detection and post detection. 

 

• Case I (Early detection): 

Consider that leading edge is detected earlier than the true �� as shown in Fig. 5.4(a). and denoted 

by ��·. The new VB�· is computed as: 

VB�· = V(��·) − V�¨>¸`,     (5.8) 

Such that: 

V(��·) <  V(��),      (5.9) 

∆V =  V(��·) − V(��),      (5.10) 

Error in the distance is given by: 

Y = ∆V. L       (5.11) 

From (5.11), the estimated distance is shorter than the true distance and ranging error is negative. 

From (5.3) and (5.11), the ranging error depends on the RSS and FPPS power levels. 

 

• Case II (post detection): 

It is the case where the NLOS condition is present. In this case, the leading edge is detected after 

�� as shown in Fig. 5.4(b). and denoted by ��··. VB�· is estimated using  (5.8). However, 

V(��··) >  V(��),       (5.12) 
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using (5.10),  ∆V is positive. Hence error is positive and the error magnitude is corelated with the 

received FPPS and RSS magnitudes and the magnitudes are related to NLOS severity as in (5.2) 

and (5.3). 

5.4. Fuzzy Inference System (FIS) Model 

The parameters’ uncertainties and their correlation to ranging error are a mirror to the channel 

condition (i.e., LOS or NLOS) and severity of the NLOS condition as shown in the preceding 

section. To overcome the ranging error due to these uncertainties, FIS is presented in this section. 

In particular, Mamdani multiple input single output (MISO) FIS can be written as: 

¹(<�) = x(<�) + /,                 (5.13) 

where ¹ is the fuzzified weight of the particular rule <�, x(<�) is the firing strength of the rule and 

/ is the area of  the consequent membership function (MF) of <�. 
 

º = » ¼½(¨)¨ �¨
» ¼½(¨) �¨ ,      (5.14) 

where ²¾(/) is the output membership function (MF) of output /. According to (5.13) and (5.14), 

Mamdani multiple inputs single output (MISO) FIS can be depicted as in Fig. 5.5. 

where 6 ∈ r1,2,3s are the number of inputs, 1 is the total number of  MFs, and E is  the number of 

rules, while ¿>�  and À' are input and output fuzzy sets respectively. Mamdani FIS consist of five 

steps (or layers) that can estimate output from inputs. Each step output is described as follows: 

 

 

Fig. 5.5: FIS Model 
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• Step 1: Fuzzification step 

C�,�,Á = ²Â��(+�),       (5.15) 

where ; = 1, ⋯ , 6 and � = 1, … , 1 associated with each input. The antecedent MF is a Gaussian 

function as it gives the best performance among different membership functions [27]. 

²Â��(+�) = exp �− K§�,Æ��
Ç�� O��,     (5.16) 

where ��Á and  �Á are the parameters referred to as input premise (Gaussian) parameters. 

 

• Step 2: Inference or rule step 

C�,� = x� = ²ÂP- (+�) × ²ÂQ- (+�) × ⋯ ²Â�- (+�),       (5.17) 

where 1 = 1, ⋯ E. Firing strength x� of the particular rule is generated using the product (AND) 

method [76]. 

 

• Step 3: Implication step 

C�,� = x� ∘ ²¾-*/�.,       (5.18) 

where 1 = 1, ⋯ E. Implication operator is a product. Similar to antecedent MF, consequent MF 

(²¾-*/�.) is also Gaussian function: 

²¾-*/�. = exp �− K¨-,o-
É- O��,           (5.19) 

where k�and Ê�are the parameters referred to as output premise (Gaussian) parameters. 

 

• Step 4: aggregation step 

CË = ∑ x� ∘ ²¾-*/�.'�Ì� ,      (5.20) 

• Step 5: defuzzification step 

CÍ = ∆�= º ∘ CË,      (5.21) 

 The crisp output ∆�is estimated with the defuzzification method (º) centroid [76]. 

 

5.5. Experimental Evaluation 

The purpose of the experimental studies is twofold. First, empirically analyze of the measured 

parameters is presented and compared with theoretical analysis of the CIR parameters’ 
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uncertainties presented in Section-5.3. The analyses are supportive in designing the FIS model 

parameters and rules.  Second, evaluate the performance of the FIS model to estimate the ranging 

error in real time environment as presented in Section-5.4. In these experiments, waveforms, range 

measurements, channel data, received and first path signals’ levels, for LOS and NLOS conditions 

are collected in different scenarios and environments as described in Chapter 3. 

5.5.1. Empirical Parameters Analysis 

We analyze the measured parameters (i.e., RSS and FPPS levels, RT and ranging errors) based on 

the theoretical uncertainties analysis of the parameters presented in Section-5.3. From the 

measurements, we observe that for LOS condition in all scenarios, the RSS is in the range of -78 

to -80 dBm and FPPS is in the range of and -80 to -82 dBm. We labeled the ranges as very high. 

For mild NLOS condition, the RSS is in the range of -80 to -82 dBm and FPPS is in the range of  

-82 to -86 dBm. We labeled the ranges as high. Subsequently, as the NLOS severity increases, we 

labeled the ranges as a medium, low, and very low for RSS and FPPS as shown in Fig. 5.6.  From 

the observations, we find that RSS and FPPS levels are very high in LOS scenarios and degrade 

gradually as the NLOS severity increases and the relationship confirms the theoretical analysis.  

Fig. 5.6: Inputs & outputs MFs for FIS model 
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Similarly, we find that RT is in the range of 3-4 nsec. for all the scenarios in LOS condition. We 

labeled the range as very low. This is due to strongest path presented after leading edge in LOS 

scenarios. For mild NLOS condition, RT is in the range of 5-10 nsec. and it is labeled as low. As 

the NLOS severity increases, the RT increases and the ranges are labeled as medium, high, and 

very high accordingly as illustrated in Fig. 5.6.  

For LOS condition, we find that ranging errors are in the ranges of -15 to -2 cm, we labeled the 

ranges as negative (NE). The errors can be negative as discussed in Case 1 in Section-5.3. For mild 

NLOS conditions, the ranging error is in the range of 2 to 12 cm and labeled as very low (V. Low). 

However, as the severity of the NLOS condition increases the ranging error magnitude increases, 

and the ranges are labeled as low medium and high as shown in Fig. 5.6.  The parameters empirical 

comparison and theoretical analysis of the parameters uncertainties are supportive in designing the 

input and output MFs using (14) and (17), respectively and as shown in Fig.  5.6 as well as 

designing of FIS rules as provided in Table 5.1.  

5.5.2. Ranging Error Mitigation Performance 

For two different MFs (i.e., Gaussian and Triangle) and two different defuzzification processes 

(i.e., GoC and MoM), the FIS model performances for estimating the ranging error are illustrated 

in Fig. 5.7. The performance is quantified in terms of probability density function of residual 

Table 5.1: Rules for FIS  

 Antecedent Consequent 

S. No. RSS FPPS RT Ranging Error 

1 V. High V. High V. Low V. Low 

2 V. High High V. Low V. Low 

3 V. High Medium LOW N.E 

4 High High V. Low V. Low 

5 High Medium Low N.E 

6 High Low Medium Low 

7 High V. Low Medium Medium 

8 Medium Medium V. Low V. Low 

9 Medium Low Low N.E 

10 Medium V. Low Low Medium 

11 Low Medium V. Low High 

12 Low Low Low V. High 

13 Low V. Low Medium V. High 

14 V. Low Low V. Low High 

15 V. Low V. Low  Low V. High 
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ranging errors, (i.e., errors remaining after mitigation). From Fig. 5.7(a), it can be deduced that 

residual errors are concentrated around zero for Gaussian MF along with GoC defuzzification 

(Combination-I). The performance of Gaussian MFs and MoM defuzzification combination 

(Combination-II) is quite similar to the combination-1. However,   the residual errors are 

concentrated more on the negative side as depicted in Fig. 5.7(b). The performance degrades when 

using Triangle MFs irrespective of the defuzzification process used as illustrated in Fig. 5.8.c & 

Fig. 5.8.d for Triangle MF and GoC defuzzification (Combination-III) and Triangle MF and MoM 

defuzzification (Combination-IV) respectively. So, Combination-I would be considered from 

thereon. 

Fig. 5.7: Performance evaluation for different MFs and defuzzification processes: (a) 

Combination-1 (b) Combination-II (c) Combination-III (d) Combination-IV  
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The fuzzy mitigation ranging performance is quantified in terms of residual ranging errors and 

compared with unmitigated LOS, and NLOS ranges as shown in Fig. 5.8.   

Fig. 5.8 demonstrates the CDF of the residual errors for the proposed fuzzy system along with 

existing work from [12] and unmitigated LOS and NLOS errors. For a fair comparison with 

existing from [12] labeled as Fuzzy-CIR (as it depends on frame length CIR data), we estimated 

parameters (i.e., SNR, RMS delay spread, kurtosis, and skewness) from experimentally collected 

CIR data. In Decawave® devices, for the suggested optimum threshold level (&) [1], ranging errors 

are more on the negative side within -10 cm for most of the readings. Moreover, in some 

experimental setups where the estimated range is more than 10 m, ranging errors spread to -20 cm 

as observed in Fig. 5.8. This is also observed for some SNLOS cases where the strong path is the 

first path followed by weak MPCs in CIR. We considered ranging errors in LOS and SNLOS 

conditions and estimated ranging errors based on RSS, FPPS and RT levels in these conditions. 

However, Fuzzy-CIR does not consider LOS and SNLOS ranging errors. Moreover, in propagation 

conditions where metal obstructions and more MPCs in CIRs are presented and observed ranging 

errors are not that high (less than 20 cm). For these conditions, Fuzzy-CIR estimated large errors 

(between -20 and -40 cm). This is observed for less than 6% of the readings as shown in Fig. 5.8. 

It is due to higher estimated RMS delay spread. Whereas for the proposed fuzzy system, RSS and 

 

Fig. 5.8: CDF for residual ranging errors. 
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FPSS levels are in the high or mid ranges (as stated above) and due to this range error estimation 

are minimal (less than -15 cm.) for the conditions.  For higher errors in NLOS conditions (>25 cm) 

both systems (i.e., proposed and Fuzzy-CIR) are performed identical as shown in Fig. 5.8. 

However, for Fuzzy-CIR, the parameters’ estimation need frame length CIR data which add 

latency in estimating range and ranging errors. Whereas this is not the case for the proposed Fuzzy 

system. Moreover, for residual errors with ±10cm, from Fig 5.8 we have CDF=90.97% for the 

proposed fuzzy system compared with CDF=79.87% Fuzzy-CIR system and CDF=64.62% for 

unmitigated NLOS ranges. This shows the ranging performance increment over the Fuzzy-CIR 

system and NLOS ranges. 

Moreover, the computational burden is measured in terms of input-output delay time (VÎ�,�Ï"). It 

is defined as the time taken by fuzzy system to estimate the crisp output provided inputs [41]. For 

the proposed system and existing work from [12], the average of VÎ�,�Ï" with standard deviation 

is provided in Table 5.2. The statistics is taken using Profile viewer in Matlab® for 21 executions. 

The VÎ�,�Ï" is estimated on Intel Core i5 CPU with clock speed 2.4010 e-09 s with installed RAM 

 

Fig. 5.9: Anchors Placement around Target node with different  �� according to (5.22) 

Place new 

ANs 

 

��  

Table 5.2: Computational time 

Method VÎ�,�Ï"(ms) 

Mean Std. Deviation 

Proposed Fuzzy system 54.7 3.7 

CIR-Fuzzy [12] 59.9 5.4 
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capacity of 8GB. It can be deduced that average VÎ�,�Ï" is reduced by 5ms using the proposed 

fuzzy system for error estimation. Hence the system is putting less computational burden compared 

to [12]. 

5.5.3. Localization Performance 

The performance of localization is evaluated using fuzzy mitigated ranging. To evaluate the 

performance, we simulated the localization network using the following settings: anchor nodes 

(ANs) ANs 3 ≤ 
� ≤ 6 with varying probability of NLOS 0.2 ≤ ����� < 1. The ANs are placed 

around the target agent (TA) with true position � = (0,0). For every AN 1 ≤ 1 ≤ 
�, the true 

distance (��) is selected from the pool of scenarios (as discussed in Section-V ) associated with 

the1�` scenario and the 1�` AN is positioned around the agent as illustrated in Fig. 5.9 using: 

�� = �� Kcos K�Ð(�,�)
�� O , sin K�Ð(�,�)

�� OO,    (5.22) 

From the measurements, the estimated distance between the agent and ANs are used to estimate 

the position of the agent using (2.2).  The 1�` estimated distance (�ÒÓ ) is drawn from NLOS pool 

with ����� and from LOS pool using (1 − �����). Similarly, based on the fuzzy mitigated ranges, 

 

 

 

 

 

 

 

 

 

 

  Fig. 5.10: Outage Probability for various 
� with varying ����� in: (a) Warehouse; (b) Office 
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the estimated agent position is determined using (1) and the 1�` fuzzy range (�ÒÔ ) associated with 

the scenario is selected for the 1�` AN. 

The reliability of the localization is measured by outage probability (� !�). The � !� is defined as 

the probability that the position error is greater than the threshold error as given: 

� !�(Y�`) = ÕÖ� − �:Ö� > Y�`×,    (5.23) 

where �: is the estimated position. We consider threshold error (i.e., Y�` = 15 cm). The � !� is 

determined through Monte Carlo simulation for 5000 networks created using (5.22) and the target 

agent for each set of 
�.The � !� for networks with ANs from 3 to 6 with varying ����� for both 

the environments, namely, warehouse and office, are illustrated in Fig. 5.10. In the Figure, the � !� 

using unmitigated ranges and fuzzy ranges are labelled as Ø� and Ø�, respectively. Moreover, from 

the Figure, the position errors are low (i.e., less than 10%) for low ����� (i.e. 0.2). However, as 

the uncertainties increases the � !� increases. In the case of Ø�, � !� is relatively low (i.e., below 

10%) even for high ����� in both the environments. It is observed that as ����� increases, 

increasing  
� does not helpful in decreasing the � !�. It is due to high ranging errors in 

unmitigated ranges, particularly observed in office environment case as illustrated in Fig. 5.10(b).  

Now let us considered for 
� = 3 with the worst scenarios from both the environments as shown 

in Fig. 5.11. The worst case scenarios are defined as the ranging errors vary between 40 and 100 

Fig. 5.11: Outage Probability for 
� = 3 with varying ����� in worst scenarios 
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cm under NLOS condition. From the Figure, the � !�, is  consistently high for every ����� using 

true ranges. However, � !� is considerably low (i.e., less than 10%) for the system using fuzzy 

ranges (Ø�) compared to Ø�. This is due to considerable reduced ranging errors in fuzzy mitigated 

ranges. 

5.6. Summary 

Traditionally, statistical and machine learned methods are employed to tackle range errors and 

enhance the accuracy of localization in IR-UWB. These approaches are adding a delay in position 

updates and computational burden in indoor tracking and navigation systems. Moreover, machine 

learning based models are cumbersome to train and specific to the trained scenarios. In this paper, 

we have proposed to employ fuzzy logic to estimate ranging error and enhance localization 

accuracy. In addition, the fuzzy mechanism was employed to cope with the errors present in LOS 

condition due to MPP and blindly estimated the ranging errors. In other words, prior or posterior 

knowledge of LOS or NLOS conditions is not required.  The ranging correction and localization 

performance are evaluated in terms of the CDF of the residual errors and the outage probability 

with extensive experimental measurements in indoor environments using IR-UWB devices.  

The results showed that the residual errors after fuzzy correction are concentrated around ideal 

LOS performance (i.e., which has minimal errors).  In comparison with Fuzzy-CIR system [12] 

and NLOS ranges, the proposed ranging error correction shows improvement in CDF of 11% (in 

comparison with Fuzzy-CIR [12]) and 26% (in comparison with NLOS ranges) for ranging errors 

with ±10 cm. Moreover, the simulated localization system using fuzzy corrected ranges showed 

more robustness against the position errors than the system using unmitigated ranges. Finally, the 

result facts demonstrated the effectiveness of employing a fuzzy logic approach for ranging errors 

mitigation in IR-UWB. 
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CONCLUSION 

 

6.1. Contributions  

This dissertation has presented two methods for enhancing IR-UWB based indoor localization 

accuracy while reducing delay in estimating the position and computational requirement. The two 

methods are based on rules, and these rules are designed that utilized CIR parameters. In the first 

method, classification of LOS and NLOS condition is proposed, and the classification is based on 

Boolean logic. The logic is based on the rules. After the identification phase, a range error is 

corrected for NLOS link based on geometric correction algorithm that utilized two LOS ranges to 

correct one NLOS range in the set of three ranges. 

The second method corrects more than one range which utilized rules in the FIS system. The 

system is based on fuzzy logic whose inputs are CIR parameters and output is estimated error. The 

error is utilized to correct corrupted range and corrected range(s) which is called mitigated range(s) 

is utilized to estimate the TN position. 

Both the methods are validated using real-time data collected in experimental studies. The studies 

are carried out in office and warehouse setups in University of Windsor premises using Decawave 

evaluation kit. In the setups, thirty different scenarios were created that emulate LOS and NLOS 

conditions using different obstructions.  

In the first method, it was shown that using RSS, FPSS and RT parameters reduced delay while 

achieved low misclassification rate. The proposed classification methodology is compared with 

[40] and [7] in terms of misclassification rate. The classification method has lower classification 

rate compared to [40] and [7] while reducing delay and require less computational resources 

compared to [7]. In addition, the proposed classification does not depend on environment aspect 

compared to machine learning based classification [7] which requires training data from a 

particular environment to train the model. 

In the second method, fuzzy logic is applied to the variation of RSS, FPSS and RT parameters. 

The variation is proportional to NLOS severity. Moreover, a relationship is developed between 

parameters’ variation and ranging error. The relationship is utilized as expert-based knowledge for 

designing of fuzzy mechanism and FIS system. The performance of the system is gauged through 



Chapter 6 
 

63 

 

residual ranging error CDF and outage probability. In addition, the proposed FIS is compared with 

[12], and results show that the FIS is more effective than [12] in reducing errors and delay in 

estimating the error in the condition. Moreover, the system designing consider errors in LOS 

conditions due to MPP which is a novel approach. The proposed system is intended for indoor 

tracking and navigation where the probability of NLOS occurrence for more than one AN-TN link 

is high, and there is a critical need for precision localization in which accuracy is high while the 

delay in position estimation is low. 

6.2. Feature Research Direction 

In this dissertation, the proposed techniques namely classification and fuzzy based ranging error 

correction are validated in an offline mode. It is interesting that procedure (particularly fuzzy 

inference system) would be converted into embedded compatible codes for real-time 

implementation. In addition, sensor fusion technique would be considered in which inertial 

measurement sensing parameters are fused with fuzzy mitigated ranges. The technique would be 

implemented using an extended Kalman filter for enhancing tracking control. 
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