Investigation on Lean NOx Trap Regeneration Using Alcohol Fuels

Divyanshu Purohit
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation
Purohit, Divyanshu, "Investigation on Lean NOx Trap Regeneration Using Alcohol Fuels" (2018). Electronic Theses and Dissertations. 7623.
https://scholar.uwindsor.ca/etd/7623

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000 ext. 3208.
Investigation on Lean NO\textsubscript{x} Trap Regeneration Using Alcohol Fuels

by

Divyanshu Purohit

A Thesis
Submitted to the Faculty of Graduate Studies through Mechanical, Automotive, and Materials Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor

Windsor, Ontario, Canada
© 2018 Divyanshu Purohit
Investigation on Lean NO\textsubscript{x} Trap Regeneration Using Alcohol Fuels
by
Divyanshu Purohit

APPROVED BY:

X. Chen
Department of Electrical and Computer Engineering

N. Eaves
Department of Mechanical, Automotive, and Materials Engineering

M. Zheng, Advisor
Department of Mechanical, Automotive, and Materials Engineering

29th November 2018
AUTHOR’S DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I have obtained a written permission from the copyright owner(s) to include such material(s) in my thesis and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University or Institution.
ABSTRACT

The impacts of automotive pollutants on local air quality, human health, and climate change are a major concern worldwide. Therefore, the internal combustion engine (ICE) powered automobiles are expected to be able to meet the increasingly stringent emission and fuel efficiency standards. The reduction in oxides of nitrogen (NO\textsubscript{x}) in lean burn and diesel-fueled compression ignition (CI) engines is a major challenge.

In this research, the use of alcohol fuel such as n-butanol and ethanol is studied in a CI engine. With the application of moderate exhaust gas recirculation (EGR), low engine-out NO\textsubscript{x} and soot emissions are achieved simultaneously. However, to meet NO\textsubscript{x} emission regulations, the use of only alternative fuels is not sufficient for a wide range of engine operating conditions. Therefore, lean NO\textsubscript{x} trap (LNT) after-treatment system is used for further NO\textsubscript{x} reduction using a reductant. In this study, an investigation on the performance of long breathing LNT is performed using ethanol, n-butanol, and diesel as reductants. The LNT regeneration experiments are conducted on a heated flow bench under simulated engine exhaust like conditions. Ethanol and n-butanol are found to be more effective compared to diesel as a reductant in terms of NO\textsubscript{x} conversion, ammonia (NH\textsubscript{3}) slip, nitrogen dioxide (N\textsubscript{2}O) slip, and hydrogen (H\textsubscript{2}) formation, during the LNT regeneration period at the tested conditions. The formation of NH\textsubscript{3} and N\textsubscript{2}O during the LNT regeneration is not desired. Albeit, the NH\textsubscript{3} generated during the LNT regeneration can be utilized to further reduce NO\textsubscript{x} using a selective catalytic reduction (SCR) convertor downstream of the LNT catalyst. In this study, the combined LNT-SCR tests are performed to investigate overall NO\textsubscript{x} reduction using n-butanol as a reductant.
DEDICATION

This work is dedicated to my parents and sister.

I couldn’t be where I am today without you.
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisors, Dr. Ming Zheng, for giving me the opportunity to perform research at Clean Combustion Engine Lab and for providing me with continuous guidance and support in my studies and research. I would also like to acknowledge my committee members Dr. Xiang Chen and Dr. Nickolas Eaves for their advice on my research.

I would also like to extend my appreciation for tremendous support of present and past members at the Clean Combustion Engine Laboratory including Dr. Meiping Wang, Dr. Shui Yu, Dr. Xiao Yu, Dr. Tadanori Yanai, Dr. Marko Jeftic, Dr. Tongyang Gao, Dr. Kelvin Xie, Dr. Shouvik Dev, Qingyuan Tan, Zhenyi Yang, Christopher Aversa, Geraint Bryden, Mark Ives, Zhu Hua, Navjot Sandhu, Simon Le Blanc, Linyan Wang and Liang Li.

I would like to thank Mr. Bruce Durfy, who greatly assisted me with the fabrication and machining of components required for experiments and other research work in laboratory. I would also like to thank my friends: Pragya Mishra and Goutham Reddy for their support.

A special thanks to the following organizations for their funding support at Clean Combustion Engine Lab: the NSERC Industrial Research Chair program, NSERC Collaborative Research and development Program, Ontario Center of Excellency – VIP II program, Ford Motor Company of Canada Ltd., and the University of Windsor.
TABLE OF CONTENTS

AUTHOR’S DECLARATION OF ORIGINALITY .. iii

ABSTRACT .. iv

DEDICATION .. v

ACKNOWLEDGEMENTS .. vi

LIST OF FIGURES .. ix

LIST OF TABLES ... xii

LIST OF NOMENCLATURE .. xiii

CHAPTER 1: INTRODUCTION ... 1

1.1 Research Motivation ... 1

1.2 In-cylinder NO\textsubscript{x} Reduction Approaches ... 4

1.3 Exhaust After-treatment Systems .. 7

1.4 Objective of Thesis .. 16

1.5 Structure of Thesis .. 17

CHAPTER 2: LITERATURE REVIEW ... 19

2.1 Lean NO\textsubscript{x} Trap After-treatment System .. 19

2.1.1 Lean NO\textsubscript{x} Trap Operation ... 19

2.1.2 Product Formation during LNT Regeneration ... 22

2.2 On-board Hydrogen Reforming .. 25

2.4 Combined LNT and SCR After-treatment Systems 26

CHAPTER 3: EXPERIMENTAL SETUP ... 28

3.1 Engine Test Setup .. 28

3.2 Emission Analyzers ... 30
3.3 After-treatment Flow Bench Setup ... 31

CHAPTER 4: ENGINE TEST RESULTS .. 35

4.1 Diesel DI Medium Load Engine Test ... 35
4.2 n-Butanol DI Medium Load Engine Test .. 37
4.3 Ethanol Diesel Dual-Fuel Medium Load Engine Test 38

CHAPTER 5: LNT REGENERATION INVESTIGATION 41

5.1 LNT Test Methodology .. 41
5.2 LNT Regeneration .. 43
 5.2.1 NOx Release during LNT Regeneration .. 43
 5.2.2 Product Selectivity during LNT Regeneration .. 49
 5.2.3 Ammonia to NOx Ratio ... 56
 5.2.4 Hydrocarbon Release during LNT Regeneration 58
5.3 Hydrogen Release during Regeneration ... 62
5.4 Combined LNT-SCR Investigation ... 65

CHAPTER 6: CONCLUSIONS .. 70

REFERENCES ... 73

VITA AUCTORIS ... 83
LIST OF FIGURES

Figure 1-1: Relative concentration of pollutants in modern diesel engine exhausts [3]..... 2
Figure 1-2: Heavy-duty diesel emission standards [7,8] .. 3
Figure 1-3: Effect of EGR on NO\textsubscript{x} and PM emissions ... 5
Figure 1-4: Effect of EGR on CO and THC emissions .. 6
Figure 1-5: Conventional after-treatment system in diesel vehicle 8
Figure 1-6: Adsorption and regeneration periods during an LNT operation 12
Figure 1-7: NO\textsubscript{x} adsorption on LNT catalyst, adapted from [41] 12
Figure 1-8: NO\textsubscript{x} reduction on LNT catalyst, adapted from [41] 13
Figure 1-9: Conventional LNT and long breathing LNT operation regions 15
Figure 1-10: Comparison between conventional and long breathing LNT 15
Figure 1-11: Research methodology ... 17
Figure 2-1: NO\textsubscript{x} storage gradient on catalyst, adapted from [56] 23
Figure 3-1: Engine test setup schematic .. 29
Figure 3-2: After-treatment flow bench test setup schematic .. 32
Figure 3-3: Test setup schematic for combined LNT-SCR tests .. 34
Figure 4-1: NO\textsubscript{x} and PM emissions with diesel DI at medium load 36
Figure 4-2: CO and THC emissions with diesel DI at medium load 37
Figure 4-3: NO\textsubscript{x} and PM emissions with n-butanol DI at medium load 38
Figure 4-4: CO and THC emissions with n-butanol DI at medium load 38
Figure 4-5: NO\textsubscript{x} and PM emissions with ethanol-diesel at medium load 39
Figure 4-6: CO and THC emissions with ethanol-diesel at medium load 40
Figure 5-1: LNT regeneration at 3% inflow O\textsubscript{2} using 1.7 g n-butanol as a reductant 44
Figure 5-2: Peak NO$_x$ slip during regeneration at 3% inflow O$_2$................................. 45
Figure 5-3: Peak NO$_x$ slip during regeneration at 8.5% inflow O$_2$................................. 45
Figure 5-4: Mass of NO$_x$ slip per mass of stored NO$_x$ at 3% inflow O$_2$.......................... 46
Figure 5-5: Mass of NO$_x$ slip per mass of stored NO$_x$ at 8.5% inflow O$_2$...................... 46
Figure 5-6: Mass of NO$_x$ slip per mass of stored NO$_x$ against reductant energy.............. 47
Figure 5-7: LNT regeneration with 1.7 g n-butanol followed by purge period....................... 48
Figure 5-8: LNT regeneration with 1.7 g diesel followed by purge period............................ 49
Figure 5-9: NO$_x$, NH$_3$ and N$_2$O trend during regeneration for 1.7 g ethanol at 3% O$_2$.... 50
Figure 5-10: Peak NH$_3$ slip during LNT regeneration at 3% inflow O$_2$...........................(51
Figure 5-11: Peak NH$_3$ slip during LNT regeneration at 8.5% inflow O$_2$........................... 51
Figure 5-12: Selectivity towards NH$_3$ at 3% inflow O$_2$.. 52
Figure 5-13: Selectivity towards NH$_3$ at 8.5% inflow O$_2$... 52
Figure 5-14: Peak N$_2$O slip during LNT regeneration at 3% inflow O$_2$............................. 53
Figure 5-15: Peak N$_2$O slip during LNT regeneration at 8.5% inflow O$_2$......................... 53
Figure 5-16: Selectivity towards N$_2$O at 3% inflow O$_2$.. 54
Figure 5-17: Selectivity towards N$_2$O at 8.5% inflow O$_2$... 55
Figure 5-18: Selectivity towards N$_2$ at 3% inflow O$_2$.. 56
Figure 5-19: Selectivity towards N$_2$ at 8.5% inflow O$_2$... 56
Figure 5-20: Ammonia to NO$_x$ ratio at 3% inflow O$_2$... 57
Figure 5-21: Ammonia to NO$_x$ ratio at 8.5% inflow O$_2$.. 58
Figure 5-22: Peak methane slip during regeneration at 3% inflow O$_2$.............................. 59
Figure 5-23: Peak HC species and CO at 3% and 8.5% inflow O$_2$ for all the reductants 60
Figure 5-24: HC trend with ethanol as a reductant at 3% inflow O$_2$................................. 61
Figure 5-25: HC trend with n-butanol as a reductant at 3% inflow O$_2$................................. 62
Figure 5-26: Peak H$_2$ slip during regeneration at 3% inflow O$_2$................................. 64
Figure 5-27: Peak H$_2$ slip during regeneration at 8.5% inflow O$_2$................................. 64
Figure 5-28: Mass of H$_2$ released during regeneration at 3% inflow O$_2$ 65
Figure 5-29: Mass of H$_2$ released during regeneration at 8.5% inflow O$_2$ 65
Figure 5-30: Nitrogen-based species before SCR during LNT regeneration (1st cycle)... 66
Figure 5-31: Nitrogen-based species after SCR during LNT regeneration (2nd cycle)..... 67
Figure 5-32: HC species before SCR during LNT regeneration (1st cycle)..................... 68
Figure 5-33: HC species after SCR during LNT regeneration (2nd cycle)..................... 69
LIST OF TABLES

Table 2.1 Literature data for NH₃ formation and H₂ consumption during regeneration .. 24
Table 3.1 Test engine specifications ... 28
Table 3.2 Fuel properties [71-74] .. 30
Table 3.3 Emission analyzers specifications .. 31
Table 4.1 Engine test conditions ... 35
Table 5.1 LNT regeneration test conditions .. 43
Table 5.2 Combined LNT-SCR test conditions .. 66
LIST OF NOMENCLATURE

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMOx</td>
<td>Ammonia Oxidation Catalyst</td>
<td></td>
</tr>
<tr>
<td>ANR</td>
<td>Ammonia to NOx ratio</td>
<td></td>
</tr>
<tr>
<td>AVL</td>
<td>Anstalt für Verbrennungskraftmaschinen List</td>
<td></td>
</tr>
<tr>
<td>ATR</td>
<td>Auto-thermal Reforming</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Crank Angle</td>
<td>°</td>
</tr>
<tr>
<td>CA50</td>
<td>Crank Angle of 50% Cumulative Heat Release</td>
<td>°CA</td>
</tr>
<tr>
<td>CAI</td>
<td>California Analytical Instruments</td>
<td></td>
</tr>
<tr>
<td>CARB</td>
<td>California Air Resources Board</td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Compression Ignition</td>
<td></td>
</tr>
<tr>
<td>CLD</td>
<td>Chemiluminescence Detector</td>
<td></td>
</tr>
<tr>
<td>CCEL</td>
<td>Clean Combustion Engine Lab</td>
<td></td>
</tr>
<tr>
<td>CNG</td>
<td>Compressed Natural Gas</td>
<td></td>
</tr>
<tr>
<td>DEF</td>
<td>Diesel Exhaust Fluid</td>
<td></td>
</tr>
<tr>
<td>DI</td>
<td>Direct Injection</td>
<td></td>
</tr>
<tr>
<td>DME</td>
<td>Dimethyl Ether</td>
<td></td>
</tr>
<tr>
<td>DOC</td>
<td>Diesel Oxidation Catalyst</td>
<td></td>
</tr>
<tr>
<td>DPF</td>
<td>Diesel Particulate Filter</td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>Dry Reforming</td>
<td></td>
</tr>
<tr>
<td>EGR</td>
<td>Exhaust Gas Recirculation</td>
<td></td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
<td></td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
<td></td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectrometer</td>
<td></td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gas</td>
<td></td>
</tr>
<tr>
<td>HCCI</td>
<td>Homogenous Charge Compression Ignition</td>
<td></td>
</tr>
<tr>
<td>HDD</td>
<td>Heavy-Duty Diesel</td>
<td></td>
</tr>
<tr>
<td>HFID</td>
<td>Heated Flame Ionization Detector</td>
<td></td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>HFRR</td>
<td>High-Frequency Reciprocating Rig</td>
<td></td>
</tr>
<tr>
<td>HSV</td>
<td>Hourly Space Velocity</td>
<td>hr(^{-1})</td>
</tr>
<tr>
<td>ICE</td>
<td>Internal Combustion Engine</td>
<td></td>
</tr>
<tr>
<td>IMEP</td>
<td>Indicated Mean Effective Pressure</td>
<td>bar</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquid Natural Gas</td>
<td></td>
</tr>
<tr>
<td>LNT</td>
<td>Lean NO(_x) Trap</td>
<td></td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied Petroleum Gas</td>
<td></td>
</tr>
<tr>
<td>LTC</td>
<td>Low Temperature Combustion</td>
<td></td>
</tr>
<tr>
<td>MAF</td>
<td>Mass Air Flow</td>
<td>g/s</td>
</tr>
<tr>
<td>NDIR</td>
<td>Nondispersive Infrared</td>
<td></td>
</tr>
<tr>
<td>NI</td>
<td>National Instruments</td>
<td></td>
</tr>
<tr>
<td>NSR</td>
<td>NO(_x) Storage and Reduction</td>
<td></td>
</tr>
<tr>
<td>(p_{\text{inj}})</td>
<td>Injection Pressure</td>
<td>bar</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>Parts Per Million</td>
<td>ppm</td>
</tr>
<tr>
<td>PFI</td>
<td>Port Fuel Injection</td>
<td></td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
<td></td>
</tr>
<tr>
<td>SCR</td>
<td>Selective Catalytic Reduction</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Spark Ignition</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Steam Reforming</td>
<td></td>
</tr>
<tr>
<td>TWC</td>
<td>Three-Way Catalyst</td>
<td></td>
</tr>
<tr>
<td>UHC</td>
<td>Unburned Hydrocarbon</td>
<td></td>
</tr>
<tr>
<td>WGS</td>
<td>Water Gas Shift</td>
<td></td>
</tr>
</tbody>
</table>

Chemical Formulae

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al(_2)O(_3)</td>
<td>Aluminum Oxide</td>
</tr>
<tr>
<td>Ba</td>
<td>Barium</td>
</tr>
<tr>
<td>BaCO(_3)</td>
<td>Barium Carbonate</td>
</tr>
<tr>
<td>Ba(NO(_2))(_2)</td>
<td>Barium Nitrite</td>
</tr>
<tr>
<td>Chemical Formula</td>
<td>Chemical Name</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Ba(NO₃)₂</td>
<td>Barium Nitrate</td>
</tr>
<tr>
<td>BaO</td>
<td>Barium Oxide</td>
</tr>
<tr>
<td>C₃H₆</td>
<td>Propene</td>
</tr>
<tr>
<td>C₂H₆O</td>
<td>Ethanol</td>
</tr>
<tr>
<td>C₄H₁₀O</td>
<td>Butanol</td>
</tr>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>CO(NH₂)₂</td>
<td>Urea</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>H₂</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>H₂O</td>
<td>Water</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Oxides of Nitrogen</td>
</tr>
<tr>
<td>N₂O</td>
<td>Nitrous Oxide</td>
</tr>
<tr>
<td>NH₃</td>
<td>Ammonia</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen Dioxide</td>
</tr>
<tr>
<td>N₂</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>Pt</td>
<td>Platinum</td>
</tr>
<tr>
<td>Pd</td>
<td>Palladium</td>
</tr>
<tr>
<td>Rh</td>
<td>Rhodium</td>
</tr>
</tbody>
</table>
CHAPTER 1: INTRODUCTION

Internal Combustion (IC) engines, specifically spark ignition (SI) and compression ignition (CI) engines, have been used extensively in the transportation sector. Diesel engines are widely used for the heavy-duty applications because of high efficiency, torque characteristics, mechanical reliability, and robustness. Diesel engines have the inherent benefits of higher fuel efficiency and lower carbon dioxide (CO\(_2\)) emissions compared to the conventional gasoline engines [1-4]. However, the production of harmful emissions from diesel vehicles is a serious drawback. The continuously increasing demand for the reductions in exhaust emissions and fuel consumption without compromising the engine performance has been a challenge. In this chapter research motivation, background information and engineering challenges associated with the research objectives are presented. An overview of the currently used emission reduction technologies has been provided followed by the thesis structure at the end.

1.1 Research Motivation

Raw exhaust from the modern diesel engines contains excess air, along with combustion products such as CO\(_2\), water (H\(_2\)O) and pollutants. Major pollutants in the diesel engine exhaust gases include oxides of nitrogen (NO\(_x\)), particulate matter (PM), unburned or partially burned hydrocarbons, carbon monoxide (CO), and greenhouse gases (GHG). The relative volumetric concentrations of pollutants in typical modern diesel engine exhaust gases are shown in Figure 1-1 [3]. Despite being lower in relative concentration, those pollutants are harmful to human health and the environment. In 2010, heavy-duty trucks and buses mostly powered by the diesel engines accounted for more than 80% of global PM and NO\(_x\) emissions from on-road vehicles [4].
The combustion processes in conventional diesel engines are often summarized in 4 stages: Ignition delay, premixed burn, diffusion burn, and the burning-up tail [1-3]. Diesel engine combustion occurs in a heterogeneous mixture of air and fuel, in which fuel is injected into the cylinder to initiate the combustion. The formation of pollutants during the combustion process is strongly affected by the atomization and mixing of fuel droplets into the air. The NO\textsubscript{x} formation depends on the temperature of the flame front or burning sites, oxygen (O\textsubscript{2}) concentration, and residence time during the combustion process [1,2]. The NO\textsubscript{x} formation aggravates when the high temperature burning zones are compressed under high temperature and pressure conditions [1-3]. In conventional diesel engines when the flame temperatures are in excess of 2200 K, the thermal NO\textsubscript{x} mechanism described by the extended Zeldovich mechanism is responsible for the majority of NO\textsubscript{x} emissions [1,5]. The elevated temperatures and O\textsubscript{2} concentration results in high NO formation rates. With the rising number of vehicles on the road every day, the air quality has become a significant concern for the society and environments. The NO\textsubscript{x} is considered as a precursor of photochemical smog, which is a significant form of air pollution because of the adverse effect on human health and environments. The presence of NO\textsubscript{x} in atmosphere also tends
to form nitric acid, which contributes to acid rain. In order to minimize the effects on environments, emission regulatory authorities such as California Air Resources Board (CARB) and Environmental Protection Agency (EPA) of the United States, have been continuously tightening the emission standards over the past decades. Initially, when the emission regulations were implemented between 1998 to 2006, the authorities such as EPA had focused on the NO\textsubscript{x} reduction. However, starting from 2007, PM emission limits became stringent, and vehicle manufacturers had to use diesel particulate filter (DPF) to meet the emission certification limits [6]. Currently, the NO\textsubscript{x} and PM emission limits regulated by the United States EPA for heavy-duty vehicles are 0.27 g/kW\text{hr} and 0.013 g/kW\text{hr} respectively. During meantime the European Union has tightened the NO\textsubscript{x} and PM emissions similarly. The trends of NO\textsubscript{x} and PM emission certification limits for heavy-duty diesel vehicles set by the EPA and EU are shown in Figure 1-2.

Compared with previous standards [6-8], emission regulations are trending towards near zero levels. Reduction in emissions to achieve the current and future emission standards may not be quite possible by only using advanced internal combustion strategies. Therefore, the use of an exhaust after-treatment system is imperative to meet the current
and future stringent emission regulations. The reductions in NO\textsubscript{x} emissions can be achieved using two pathways: in-cylinder techniques and exhaust gas after-treatment systems, which are discussed further.

1.2 In-cylinder NO\textsubscript{x} Reduction Approaches

In-cylinder techniques have been implemented and investigated extensively for the emission reduction from CI engines. The use of exhaust gas recirculation (EGR), alternative fuels, fuel injection control for delayed combustion phasing, and advanced combustion strategies such as low-temperature combustion (LTC) for NO\textsubscript{x} reduction have been investigated by the researchers [9-22,26,27].

EGR is a well-established method for the in-cylinder NO\textsubscript{x} reduction. When EGR is applied, a certain fraction of the engine exhaust gas is recirculated into the engine intake manifold, where it mixes with the fresh charge. By large, an exhaust gas mainly comprises of nitrogen (N\textsubscript{2}), CO\textsubscript{2} and H\textsubscript{2}O. The recirculated exhaust gas decreases the specific heat capacity ratio of the air-fuel mixture for combustion [1,2]. As a result, the in-cylinder flame temperature is decreased, which reduces the NO\textsubscript{x} formation during the combustion. Ladomatos et al. demonstrated the dilution, thermal, and chemical effects of EGR on NO\textsubscript{x} emissions [9,10].

The effect of in-cylinder O\textsubscript{2} concentrations on the flame temperatures were reported to be most influential on NO\textsubscript{x} and PM formation [9]. In comparison, it was found that the dilution effect was in dominance compared with the thermal and chemical effects of EGR [10]. The high flame temperatures, in conventional high-temperature combustion (HTC) diesel engines result in high NO\textsubscript{x} formation, under the O\textsubscript{2} and N\textsubscript{2} abundant environment [10]. Several other studies have demonstrated that the use of EGR reduces the NO\textsubscript{x} emissions [11-14].
Simultaneously high NO\textsubscript{x} and PM emissions are inevitable in the HTC [14]. The effect of EGR dilution on NO\textsubscript{x} and PM emissions can be seen in Figure 1-3, as an example for diesel combustion. The application of EGR results in the well-known classical HTC trade-off between NO\textsubscript{x} and PM emissions [9-14]. With the increase in EGR, the NO\textsubscript{x} decreases, while the PM tends to increase. The PM formation increases because of the predominant diffusion-controlled combustion, where the reduction in O\textsubscript{2} abundancy leads to the elevated PM formation [15].

However, when a use of heavy EGR (i.e. 9-11\% intake O\textsubscript{2}) is applied, the PM decreases as shown in Figure 1-3. This region of simultaneously low NO\textsubscript{x} and PM emissions is termed as LTC region. However, a major drawback under the LTC region is the increase in CO and THC emissions indicating a reduction in combustion efficiency. The effect of EGR on CO and THC emissions is shown in Figure 1-4. The increase in CO and THC emissions is significant under the LTC region. Therefore, under LTC region a trade-off can be recognized, that is, the CO and HC vs the NO\textsubscript{x} and PM [14].

![Figure 1-3: Effect of EGR on NO\textsubscript{x} and PM emissions](image-url)
An extensive amount of research has been carried out on the diesel LTC because of the simultaneous low NOx and PM emissions [14,16-20]. Under the LTC mode, the flame temperature is reduced with the application of heavy EGR. Thus, the ignition delay is prolonged that results in premixed combustion and decreased PM formation [21,22]. Zheng et al. reported that catalytic reforming of EGR can be used to partially reform the exhaust gas to improve the cycle to cycle variation and combustion stability during LTC. The study also demonstrated that the NOx emissions were reduced by the application of catalytic EGR compared to raw EGR [20].

The use of alternative fuels in IC engines can also help in reducing the emissions during combustion. Commercially diesel and gasoline fuel are widely used in the transportation sector because of their high volumetric energy density. Nevertheless, there are other potential bio-fuels as well, which could be utilized to power the automobiles. The ethanol produced from sugarcane reduces the GHG emissions by 40% to 62% compared to the gasoline [23]. Since 2015, the government of Brazil has set the mandatory rule for 27% ethanol blend in gasoline to reduce emissions from the transportation sector [24]. The United States EPA also has set regulations for 10% ethanol blend in the gasoline [25].
Since, diesel fuel is not suitable for a wide range of load under LTC mode due to its high viscosity and boiling temperature leading to longer mixing time, and higher CO and THC emissions [18]. The alcohol fuels such as ethanol and n-butanol have lower boiling points than diesel. The lower boiling point of fuel helps in the improved air and fuel mixing, and higher latent heat of vaporization of fuel decreases the combustion temperature. Additionally, alcohol fuels have lower CO₂ emissions because they can be derived from biomass [23].

Yanai et al. investigated the direct injection of neat n-butanol in a diesel engine without application of EGR and reported that low NOₓ and soot emissions could be achieved, but load range was limited due to unstable combustion [26]. Gao et al. demonstrated the effect of diesel direct injection (DI) with ethanol port fuel injection (PFI) strategies for simultaneous low NOₓ and soot emissions [27]. The alcohol fuels, such as ethanol and n-butanol have higher O₂ content in fuel and higher volatility that have been found to be beneficial for achieving low NOₓ and PM emissions [18]. Even with the use of alternative fuels and advanced combustion modes, exhaust after-treatment systems are required to meet the current and future emission regulations under wide engine operating conditions.

1.3 Exhaust After-treatment Systems

The after-treatment systems in combination with in-cylinder emission reduction strategies have become an important aspect to meet the progressive reduction in emissions. The after-treatment devices include filters and catalytic converters that help in the reduction of engine-out emissions. The use of these exhaust after-treatment devices also allows improvement in the engine performance for a wide range of operation. However, the continuous variation in the exhaust temperature and the gas concentration affects the
performance of an after-treatment system. Therefore, advanced after-treatment systems are required to curb the emissions for a wide range of engine operating conditions. A conventional aftertreatment system configuration used on diesel-fuelled vehicles for emission reduction is shown in Figure 1-5.

Role of Diesel Oxidation Catalyst and Diesel Particulate Filter

Diesel oxidation catalyst (DOC) consists of honeycomb structured ceramic monoliths impregnated with precious group metals (PGM) (e.g. Platinum (Pt) and Palladium (Pd)). The primary purpose of the DOC in diesel exhaust after-treatment system is the oxidation of unburned HC and CO [28]. In same application DOC also oxidizes NO to NO₂, and this NO₂ promotes soot oxidation on the diesel particulate filter (DPF) [28,29].

A DPF is an exhaust after-treatment device that filters and stores the PM emissions from the engine-out exhaust. Since 2010, DPF has become an essential device and is used in every modern diesel-fuelled vehicle to meet the PM emissions limits [30,31]. Commonly ceramic or metallic wall-through filters are used commercially depending on the applications. It has been reported in literatures that DPF filtration efficiency can reach up
to 99% for monolith wall through filters [30]. Over an operating period, soot and ash layers gets accumulated on the walls of a filter, which increases the engine back pressure. Therefore, the removal of soot and ash from DPF is necessary. Soot, unlike ash, is a combustible material. Periodically, HC is injected into the exhaust to oxidize the soot on DPF. Commercial diesel is often used to regenerate the DPF during active regeneration. During passive regeneration, oxidation reactions occurs by NO₂ under the standard exhaust conditions, and in active regeneration changes are made in exhaust conditions through HC injection. The ash could be potentially removed by cleaning during maintenance [32].

Lean Burn Exhaust After-treatment Systems for NOₓ Reduction

In-cylinder strategies can reduce the NOₓ emissions to a certain extent, and after-treatment systems are required to further reduce the engine-out NOₓ. The urea-based selective catalytic reduction (SCR) and lean NOₓ trap (LNT) are two well-established technologies used in the transportation sector for NOₓ reduction under lean engine operating conditions.

Selective Catalytic Reduction

The urea-based SCR is a NOₓ reduction technology that uses ammonia as reductant over the SCR convertor. This technology can achieve higher NOₓ conversion under lean burn conditions. The SCR after-treatment system needs aqueous urea ((NH₂)₂CO) solution also known as DEF (Diesel Exhaust Fluid) or Ad-Blue, which provides ammonia (NH₃) on decomposition in exhaust [33,34]. Diesel vehicles are equipped with an urea delivery system for SCR. A typical urea delivery system consists of a storage tank, heater, sensors, doser, pump, and dosing control module that controls dosing the required amount of DEF
for NO\textsubscript{x} reduction independent of engine control [34]. The quantity of urea required for the NO\textsubscript{x} reduction is generally calculated based on the engine out NO\textsubscript{x} emissions.

Aqueous urea solution often contains 32.5\% urea and deionized water in balance. This composition of urea and water provides a freezing temperature of -11°C, which is required during cold weather conditions [34]. The urea injected into hot exhaust produces ammonia (NH\textsubscript{3}) because of the thermolysis and hydrolysis effects [34]. The performance of SCR depends on the vaporization and proper mixing of injected aqueous urea solution. When urea is used as a reducing agent, the reaction pathways involved in NO\textsubscript{x} reduction are: urea hydrolysis (Equation 1.1) to NH\textsubscript{3}; standard reaction (Equation 1.2) when NO is present alone; and fast SCR reaction (Equation 1.3) when both NO and NO\textsubscript{2} are present; and slow reaction (Equation 1.4) when only NO\textsubscript{2} is present [34].

\begin{align*}
(NH\textsubscript{2})\textsubscript{2}CO + H\textsubscript{2}O & \leftrightarrow 2NH\textsubscript{3} + CO\textsubscript{2} \quad \text{(Equation 1.1)} \\
NH\textsubscript{3} + NO + \frac{1}{4}O\textsubscript{2} & \rightarrow N\textsubscript{2} + \frac{3}{2}H\textsubscript{2}O \quad \text{(Equation 1.2)} \\
NH\textsubscript{3} + \frac{1}{2}NO + \frac{1}{2}NO\textsubscript{2} & \rightarrow N\textsubscript{2} + \frac{3}{2}H\textsubscript{2}O \quad \text{(Equation 1.3)} \\
NH\textsubscript{3} + \frac{3}{4}NO\textsubscript{2} & \rightarrow \frac{7}{8}N\textsubscript{2} + \frac{3}{2}H\textsubscript{2}O \quad \text{(Equation 1.4)}
\end{align*}

The urea-based SCR after-treatment technology is well established and can achieve high NO\textsubscript{x} conversion efficiency [34]. However, there are some glitches that need to be resolved to improve this technology. Some shortcomings of urea-based SCR technology addressed by previous researchers are: the limited NO\textsubscript{x} conversion at low-load driving conditions (vanadium SCR catalyst) [35], sensitivity towards sulfation (copper SCR catalyst) [36], and ammonia slip and urea crystallization in urban driving condition, i.e. when the exhaust
temperature is below 200°C for light-duty, whereas urea requires 180°C to vaporize into NH₃ [37,38]. The urea-based SCR system requires additional distribution infrastructure for periodic refills, packaging for on-board urea storage, heating and injection system with complex control strategies. This increases the overall cost of a vehicle. A wide range of engine operating conditions requires continuous dosing of DEF in the exhaust stream for efficient NOₓ conversion. Sometimes this leads to a slip of ammonia into the environment [34]. NH₃ is poisonous and harmful in high concentration for the environment. Therefore, heavy-duty diesel vehicles are also equipped with an ammonia oxidation catalyst (AMOx) downstream of SCR to avoid excessive NH₃ slip from the tailpipe [34].

Lean NOₓ Trap

The lean NOₓ trap (LNT) or NOₓ storage and reduction (NSR) catalyst are exhaust after-treatment technologies for the NOₓ reduction from lean burn engine exhaust. Since the 1990s, LNT or NSR catalyst has been investigated [39,40]. An LNT catalyst is mostly used in passenger cars and light duty trucks. An LNT catalyst operates on periodic lean and rich operations, also termed as adsorption and regeneration periods, respectively. The NOₓ is stored during the adsorption period on an LNT catalyst. Then during the LNT regeneration, the stored NOₓ is reduced with the help of reducing agents [39,40]. A representative case for an LNT operation cycle (adsorption and regeneration) is shown in Figure 1-6 as an example.
The engine-out NO\textsubscript{x} formed during engine operation is absorbed on the storage sites of an LNT catalyst. Initially, during the adsorption period, the catalytic oxidation of NO to NO\textsubscript{2} occurs on the PGM sites. The NO\textsubscript{x} is trapped on the catalyst in the form of nitrites and nitrates because of the oxidation reactions. The NO\textsubscript{x} storage reactions on an LNT catalyst are shown in Equation 1.4 and 1.5. The storage sites on the LNT catalyst gradually saturates, as the engine-out NO\textsubscript{x} gets adsorbed on it during the lean period. For instance, the duration of the adsorption period in conventional LNT operation is 60 seconds on certain operating conditions. The NO\textsubscript{x} adsorption process on an LNT catalyst surface is shown schematically in Figure 1-7.

\begin{align*}
\text{BaCO}_3 + 2\text{NO} + \frac{1}{2}\text{O}_2 &\rightarrow \text{Ba(NO}_3)_2 + \text{CO}_2 \\
\text{BaCO}_3 + 2\text{NO} + \frac{3}{2}\text{O}_2 &\rightarrow \text{Ba(NO}_3)_2 + \text{CO}_2
\end{align*}

(Equation 1.4)

(Equation 1.5)

Figure 1-6: Adsorption and regeneration periods during an LNT operation

Figure 1-7: NO\textsubscript{x} adsorption on LNT catalyst, adapted from [41]
During the regeneration period, a reductant (e.g. HC, H₂ or CO) is introduced upstream of the LNT catalyst into the exhaust stream by either in-cylinder post injection or local exhaust pipe injection. This leads to an O₂ deficiency in the exhaust mixture. The injection of reductant initiates the regeneration reactions on the LNT catalyst. The stored NOₓ is reduced, but some portion slips, producing an unreduced spike. The alcohol fuels such as ethanol and n-butanol can also be used for the LNT regeneration. The NOₓ reduction process on the LNT catalyst surface is shown in Figure 1-8. The LNT regeneration involves complex chemical reaction mechanisms. Some of the LNT regeneration reactions are as follows:

\[
\text{Ba(NO}_3\text{)}_2 + \frac{5}{9} \text{C}_3\text{H}_6 \rightarrow \text{N}_2 + \text{BaO} + \frac{5}{3} \text{CO}_2 + \frac{5}{3} \text{H}_2\text{O} \quad \text{(Equation 1.6)}
\]

\[
\text{Ba(NO}_3\text{)}_2 + 8\text{H}_2 \rightarrow 2\text{NH}_3 + \text{BaO} + 5\text{H}_2\text{O} \quad \text{(Equation 1.7)}
\]

\[
\text{Ba(NO}_3\text{)}_2 + 3\text{CO} \rightarrow \text{BaCO}_3 + 2\text{NO} + 2\text{CO}_2 \quad \text{(Equation 1.8)}
\]

\[
\text{Ba(NO}_3\text{)}_2 + 3\text{H}_2 + \text{CO}_2 \rightarrow \text{BaCO}_3 + 2\text{NO} + 3\text{H}_2\text{O} \quad \text{(Equation 1.8)}
\]

Generally, the active control for the LNT regeneration is used on the vehicles, in which the fuel as a reductant is injected into the exhaust periodically to reduce the stored NOₓ. Therefore, the overall fuel consumption of a vehicle increases. The LNT technology has
drawbacks such as higher cost of production due to PGM’s and inconsistent NO\textsubscript{x} conversion efficiency. However, the LNT technology has advantages over the urea-based SCR system such as lower cost (for light-duty), on-board fuel can be used as reducing agent, requires less complex control strategy and hardware packaging. Therefore, in this research, an LNT after-treatment system is investigated. To meet the current and future stringent NO\textsubscript{x} emission regulations, an LNT is also being used with a SCR on the vehicles [42].

Long Breathing Strategy for Lean NO\textsubscript{x} Trap

The long breathing strategy is developed to reduce tailpipe NO\textsubscript{x} emission by combining in-cylinder NO\textsubscript{x} reduction with an LNT after-treatment system [43-45]. The use of EGR helps in reducing the NO\textsubscript{x} formation as discussed earlier. In the long breathing strategy for an LNT operation, the NO\textsubscript{x} adsorption period is prolonged as a result of the reduced engine-out NO\textsubscript{x} levels [43,44]. Accordingly, lesser LNT regeneration periods are required compared to the conventional LNT operation, which requires frequent regenerations [43-45]. A representative case for conventional LNT and long breathing LNT operation is shown in Figures 1-9 and 1-10. Higher engine-out NO\textsubscript{x} emissions would otherwise saturate the storage sites on the LNT at a faster rate. Consequentially, frequent regenerations are required. The use of long breathing strategy reduces the fuel penalty associated with the LNT regeneration [43-45]. The engine-out NOx emission limits for long breathing LNT operation has been proposed to be 100 ppm [44,45].

The PM emissions increases with the application of EGR. A DPF is used to filter the PM from the exhaust. The higher PM emissions can saturate a DPF fast, and frequent HC injections will be required to oxidize the soot on a DPF, which increases the fuel penalty
associated with a DPF. Modern heavy-duty diesel (HDD) vehicles are equipped with a DPF to meet the current PM emission limit of 0.013 g/kWh. Considering DPF filtration efficiency of 90 to 95\%, the indicated PM emission limit suitable for long breathing LNT has been proposed to be 0.1 g/kWh \cite{44}. Both NO\textsubscript{x} and PM emissions should be below the mentioned limits simultaneously for long breathing LNT operations.

![Figure 1-9: Conventional LNT and long breathing LNT operation regions](image)

Figure 1-9: Conventional LNT and long breathing LNT operation regions

![Figure 1-10: Comparison between conventional and long breathing LNT](image)

Figure 1-10: Comparison between conventional and long breathing LNT
1.4 Objective of Thesis

The in-cylinder NO\textsubscript{x} reduction using EGR has been implemented and used in diesel-fuelled vehicles. The alcohol fuels such as ethanol and n-butanol can potentially be used in diesel engines with some modifications in the fuel delivery system. The previous studies have shown that the use of alcohol fuels can reduce NO\textsubscript{x} and PM emissions simultaneously [18,26,27]. However, to meet the NO\textsubscript{x} emission regulations, an after-treatment system such as an LNT is required for further reduction in engine-out NO\textsubscript{x} emissions. The use of ethanol and n-butanol as reductants for an LNT regeneration has not been explored much in the past.

The primary objective of this research is to investigate the NO\textsubscript{x} reduction during the LNT regeneration using ethanol and n-butanol as reductants. The LNT regeneration performances with ethanol and n-butanol are compared with diesel that is conventionally used as a reductant on diesel vehicles. The LNT regeneration performance is compared in terms of NO\textsubscript{x} conversion and by-product formation (e.g. NH\textsubscript{3} & N\textsubscript{2}O) for different reductant types. The secondary objective of this work is to investigate the effect of the combined LNT-SCR after-treatment system on the overall NO\textsubscript{x} reduction. This study is divided into 2 sections. The first section includes the engine test results conducted to demonstrate the exhaust conditions that are suitable for long breathing LNT operation. The second section comprises of the results and discussions related to the LNT regeneration and the combined LNT-SCR after-treatment system tests. The premise of the present study is to demonstrate strategies for ultra-low NO\textsubscript{x} emissions using in-cylinder techniques, and after-treatment systems.
Initially, engine test results for diesel, n-butanol, and ethanol-diesel combustion are discussed to demonstrate low NOx and PM emissions simultaneously. The engine exhaust conditions suitable for long breathing LNT operations are determined. In accordance, experimental investigations are performed using an LNT catalyst on an offline after-treatment system test bench under the simulated engine exhaust like conditions. The reductant is used only during regeneration for the NOx reduction. Therefore, the adsorption period is not investigated in detail for this study, and adsorption is decoupled from the LNT regeneration period. Comprehensive analyses of different nitrogen-based species (e.g. NH3 and N2O) and HC species are performed based on the FTIR measurements. The combined LNT-SCR tests are performed to analyze the effect on the overall NOx reduction by utilizing the NH3 formed during the LNT regeneration on downstream SCR. The research methodology for this study is shown in Figure 1-11.

Figure 1-11: Research methodology

1.5 Structure of Thesis

Chapter 1 includes an overview of diesel engine emissions, emission legislations, in-cylinder emission reduction pathways, and exhaust after-treatment systems.
Chapter 2 contains the literature review related to adsorption and regeneration operation of LNT, H₂ reforming, and combined LNT-SCR after-treatment systems. The product formation due to the reduction of stored NOₓ during the LNT regeneration has been elucidated in this chapter.

Chapter 3 provides a detailed description of the experimental setup used in this research work. Details and schematics related to engine test setup are explained with the emission analyzers in the initial part followed by the after-treatment flow bench test setup for the DOC-LNT and DOC-LNT-SCR configurations.

Chapter 4 pertains to the engine test results with diesel direct injection (DI), n-butanol DI and ethanol port fuel injection (PFI) – diesel DI performed on a single cylinder research engine.

Chapter 5 comprises of explanations and discussions about the test results related to the performance of LNT regeneration using diesel, ethanol, and n-butanol as reductants. The formation pathway of NH₃ and N₂O due to the reduction of stored NOₓ, along with the hydrocarbon speciation and H₂ reforming during LNT regeneration is discussed. The H₂ reforming experimental results using ethanol and n-butanol as reductants are provided to explain the NH₃ formation and NOₓ reduction.

Chapter 6 recapitulates the conclusions along with limitations and future recommendations for the present work.
CHAPTER 2: LITERATURE REVIEW

Although, the lean NO\textsubscript{x} trap (LNT) has been used for NO\textsubscript{x} reduction in diesel-fuelled vehicles for more than a decade, urea-based selective catalytic reduction (SCR) technology has gained popularity over the LNT after-treatment system. Currently, in order to meet more stringent regulations, the LNT combined with the SCR technology is also implemented [42]. In this chapter, literature reviews for the LNT operation during adsorption and regeneration period are performed with a focus on the different operating parameters that affect the NO\textsubscript{x} conversion during regeneration. Studies of nitrogen-based species such as NH\textsubscript{3} and N\textsubscript{2}O with the NO\textsubscript{x} conversion during regeneration are also essential as they are undesired by-products. However, the NH\textsubscript{3} released during the LNT regeneration can be utilized on the SCR for further NO\textsubscript{x} reduction. Therefore, at the end of this chapter, a review of the combined LNT-SCR after-treatment system is produced.

2.1 Lean NO\textsubscript{x} Trap After-treatment System

Lean burn gasoline and diesel engines often have lower fuel consumption compared to stoichiometric SI engines [1,2]. However, a major problem in lean burn is the reduction of NO\textsubscript{x} from engine exhaust, because three-way catalytic (TWC) convertor cannot reduce NO\textsubscript{x} effectively under excess O\textsubscript{2} conditions. As a solution, the LNT technology can be used for NO\textsubscript{x} reduction under lean burn (excess O\textsubscript{2}) engine operations. An overview of NO\textsubscript{x} reduction using an LNT catalyst is explained as follows.

2.1.1 Lean NO\textsubscript{x} Trap Operation

The LNT operates under the periodic adsorption (lean) and regeneration (rich) cycles. During the lean period (storage period), the NO\textsubscript{x} is continuously stored on the storage sites,
until the storage sites are saturated - beyond which NO\textsubscript{x} cannot be stored. A typical LNT catalyst contains precious group metals (e.g. Pt and Pd), which helps in the oxidation of NO to NO\textsubscript{2}, and an alkaline earth metal or basic phase (Barium oxide/carbonate) for providing a storage capacity as nitrite (NO\textsubscript{2}-) or nitrate (NO\textsubscript{3}1-) [46-49]. The two reactions during the NO\textsubscript{x} adsorption are supported on the alumina (Al\textsubscript{2}O\textsubscript{3}) substrate. The alumina is used because it provides higher surface area and thermal stability. After NO\textsubscript{x} adsorption, the LNT needs to be regenerated to reduce the stored NO\textsubscript{x} with the help of a reductant. An LNT catalyst periodically undergoes rich conditions to regenerate the storage sites for a few seconds, during this period the stored NO\textsubscript{x} is reduced to N\textsubscript{2} and other species [46-49]. Toyota introduced the NO\textsubscript{x} storage and reduction (NSR) technique in the mid-1990s for vehicle emission control [39,40]. Since then researchers have investigated the LNT catalysts on heated reactors, engine dynamometers and real world driving vehicles. The chemical reaction models for the NO\textsubscript{x} storage and reduction on an LNT catalyst using H\textsubscript{2}, CO and propene (C\textsubscript{3}H\textsubscript{6}) as the synthetic gases has also been reported [47-50].

During the NO\textsubscript{x} adsorption period, the NO\textsubscript{x} storage efficiency is affected by the exhaust temperature, gas concentration, residence time and catalyst properties. The NO\textsubscript{x} storage on the catalyst surface occurs via two chemical routes; nitrite route and nitrate route [46-50]. The NO to NO\textsubscript{2} oxidation is important in NO\textsubscript{x} storage processes because NO\textsubscript{2} is more effective for the BaO loading, which is evident in literatures [42,46]. Henceforth, at low temperatures, the NO\textsubscript{x} storage efficiency is low as a result of limited NO to NO\textsubscript{2} conversion [46].

The NO oxidation is also affected by the Pt dispersion and Pt particle size present on the catalyst [51,52]. Bhatia et al. have reported that the NO conversion reaches a maximum of
60% conversion around 350°C. The complete oxidation of NO to NO₂ over the Pt sites is constrained by thermodynamic NO/NO₂ equilibrium, kinetics, and mass transfer [51]. Lindholm et al. investigated the effect of H₂O and CO₂ on the NOₓ storage efficiency of a Pt based LNT catalyst [53]. It was reported that the storage efficiency is higher in the absence of H₂O and CO₂. The CO₂ effect was significant than H₂O on the NOₓ storage. Researchers have also investigated the effect of NOₓ feed on the storage efficiency during adsorption period [44,45]. The NOₓ storage efficiency decreased with the increase in NO feed at a 350°C LNT temperature [45].

The LNT regeneration period for the NOₓ reduction is required to vacate the storage sites (BaO), occupied by NOₓ. After a certain amount of the NOₓ is stored, the LNT regeneration period is initiated with the help of a reductant. During regeneration, the catalyst temperature increases, and the O₂ concentration decreases that decreases the stability of Barium nitrites, and Barium nitrates, initiating their breakdown [46]. The stored NOₓ is reduced to mainly N₂, and by-products in certain fractions during regeneration. A small amount of unconverted NOₓ is also released instantaneously at the start of regeneration [46-49]. Different types of reductants such as H₂, CO, and hydrocarbons (HC) have been investigated in the past for the LNT regeneration [40,46-49]. It has been reported that H₂ is more efficient in NOₓ reduction during the LNT regeneration [40]. Takahashi et al. investigated the performance of NOₓ storage and reduction catalyst under low temperature and found that reduction efficiencies with the reductant type decrease in the order of H₂ > CO > C₃H₆ [40]. It was found that the NOₓ storage sites were not regenerated completely when excess CO and C₃H₆ were used as reductants. However, the NOₓ storage sites were completely regenerated when adequate H₂ was used as a reductant.
Maurer et al. recently investigated the effect of different space velocities, catalyst temperature and regeneration duration on the NO\textsubscript{x} reduction efficiency and secondary emissions on a synthetic gas test bench [54]. During the lean period, 240 ppm NO\textsubscript{x}, 6% CO\textsubscript{2}, 6% H\textsubscript{2}O, and 11% O\textsubscript{2} were supplied and for the rich period 1900 ppm C\textsubscript{3}C\textsubscript{3}H\textsubscript{6}, 2.7% CO, and 0.9% H\textsubscript{2} as a reductant with CO\textsubscript{2}, O\textsubscript{2}, H\textsubscript{2}O were used. The variation in temperature showed that the LNT regeneration is most efficient between 300 to 400°C. An optimum temperature window for the NO\textsubscript{x} storage was 300 - 350°C, and regeneration was very efficient at 350°C with low secondary emissions. The shorter regeneration period can be achieved with higher hourly space velocity (HSV). The CO & HC emissions decreased with the decrease in the regeneration duration without decreasing the LNT regeneration performance.

2.1.2 Product Formation during LNT Regeneration

The NH\textsubscript{3} and N\textsubscript{2}O are two main nitrogen-based products formed during the LNT regeneration. The formation of both NH\textsubscript{3} and N\textsubscript{2}O as a by-product is not desirable. The spatial profile of the stored NO\textsubscript{x} along the catalyst length is schematically depicted in Figure 2-1. However, the NH\textsubscript{3} can be utilized on a SCR convertor downstream of an LNT catalyst for further NO\textsubscript{x} reduction. The N\textsubscript{2}O is a potential greenhouse gas (GHG), and formation is highly undesired. Researchers have reported that the N\textsubscript{2}O formation occurs during the transition from either lean to rich or rich to lean conditions [55,56]. The N\textsubscript{2}O formation occurs at the initial part on the regeneration sites on the LNT catalyst because of inadequate NO\textsubscript{x} reduction over the PGM sites. Although, the N\textsubscript{2}O is formed during rich to lean transition because of the reaction between the remaining adsorbed NO\textsubscript{x} with the reductants.
Kubiak et al. reported the mechanistic aspects related to the formation of N$_2$O over the Pt-BaO/Al$_2$O$_3$ and Rh-BaO/Al$_2$O$_3$ model of NSR [57]. The H$_2$ and NH$_3$ were used as reductants to examine the reactivity of both gas phase NO and stored nitrates. It was observed that the gas phase N$_2$O formation involved the coupling of undissociated NO molecules with N-containing species formed upon NO dissociation on the reduced PGM sites [55,56]. The complete dissociation of the gas-phase NO can prevent N$_2$O formation. The N$_2$O formation appeared significant at low temperatures (near 150°C), while N$_2$O formation dropped at high temperatures (above 200°C). Since the reductant reduces the PGM sites effectiveness at a higher temperature, which leads to the complete dissociation of NO.

The NH$_3$ is formed by direct reaction of the NO$_x$ and the available H$_2$ during the LNT regeneration. Castoldi et al. and Artioli et al. reported the reaction pathways given in Equation 2.1 and 2.2 for the NH$_3$ formation over the Pt-Ba/Al$_2$O$_3$ LNT catalyst [58,59]. Researchers found that initially, the reaction for NO$_x$ reduction is selective towards N$_2$, but NH$_3$ is an intermediate product [58].

$$\text{Ba(NO}_3\text{)}_2 + 8\text{H}_2 \rightarrow 2\text{NH}_3 + \text{Ba(OH)}_2 + 4\text{H}_2\text{O} \quad \text{(Equation 2.1)}$$
\[
\text{Ba(NO}_3\text{)}_2 + 8\text{H}_2 + \text{CO}_2 \rightarrow 2\text{NH}_3 + \text{BaCO}_3 + 5\text{H}_2\text{O}
\]
(Equation 2.2)

Many researchers have explored the effect of Pt and Ba concentrations on the NH\(_3\) formation during regeneration [50-53, 60, 61]. Lindholm et al. investigated the impact of the catalyst preparation procedure on the performance of the LNT [60]. Two catalysts were prepared for experiments, one with Pt impregnated on Al/Ba and the other with Ba impregnated on Al/Pt. The experimental results showed an effect of preparation procedure on the NO\(_x\) storage and reduction LNT operation with N\(_2\)O and NH\(_3\) formations. The NO\(_x\) storage capacity was higher for the catalyst with Ba impregnated on Al/Pt compared to the catalyst with Pt impregnated on Al/Ba at 400°C. The NO\(_x\) conversion was better with Al/Pt/Ba catalysts compared to Al/Ba/Pt catalyst due to well dispersed Ba for Al/Pt/Ba catalyst which leads to better contact between Ba and Pt. Castoldi et al. reported that NH\(_3\) formation increased with the increase in Ba concentration on the catalyst, which also resulted in the slow release of H\(_2\) during regeneration [61]. Literature data for the NH\(_3\) formation during the LNT regeneration is summarized in Table 2.1.

Table 2.1 Literature data for NH\(_3\) formation and H\(_2\) consumption during regeneration

<table>
<thead>
<tr>
<th>Author’s</th>
<th>Castoldi et al. [58]</th>
<th>Artioli et al. [59]</th>
<th>Lindholm et al. [53]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst</td>
<td>Pt-Ba/Al(_2)O(_3)</td>
<td>Pt-Ba/Al(_2)O(_3)</td>
<td>Pt-Ba/Al(_2)O(_3)</td>
</tr>
<tr>
<td>Catalyst Temp. (°C)</td>
<td>350</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>NO inlet (ppm)</td>
<td>300</td>
<td>1000</td>
<td>300</td>
</tr>
<tr>
<td>NH(_3) slip (ppm)</td>
<td>150-400</td>
<td>500</td>
<td>300</td>
</tr>
<tr>
<td>H(_2) intake (ppm)</td>
<td>2000</td>
<td>4000</td>
<td>2000</td>
</tr>
<tr>
<td>H(_2) slip (ppm)</td>
<td>600-1500</td>
<td>1000</td>
<td>80</td>
</tr>
</tbody>
</table>
2.2 On-board Hydrogen Reforming

On-board reforming of hydrocarbon fuels to produce hydrogen can be beneficial for the LNT catalyst operation. The presence of H\textsubscript{2} during the LNT regeneration improves the NO\textsubscript{x} conversion and increases the NH\textsubscript{3} formation [40,45]. The catalytic H\textsubscript{2} reforming can occur through the following processes; steam reforming (SR) (Equation 2.3), partial oxidation (2.4), auto-thermal reforming (ATR) (Equation 2.5), and a combination of two or more methods [62].

\[
C_xH_y + xH_2O \leftrightarrow \left(x + \frac{y}{2}\right)H_2 + xCO \\
\text{(Equation 2.3)}
\]

\[
C_xH_y + \frac{x}{2}O_2 \leftrightarrow \frac{y}{2}H_2 + xCO \quad \text{(Equation 2.4)}
\]

\[
C_xH_y + \frac{x}{2}O_2 + xH_2O \leftrightarrow \left(x + \frac{y}{2}\right)H_2 + xCO_2 \quad \text{(Equation 2.5)}
\]

The steam reforming process yields a higher quantity of H\textsubscript{2} when the steam reacts with a hydrocarbon fuel. However, this requires a substantial amount of heating since it is an endothermic reaction [62]. The main products from the steam reforming of alcohol fuels are H\textsubscript{2}, CO, CH\textsubscript{4}, CO\textsubscript{2} and minor species (e.g. aldehydes, ethylene, coke) [63]. The alcohols are reactive molecules, which decompose over the catalyst surfaces (or in gas phase) much faster than hydrocarbons [63, 64].

The catalytic partial oxidation involves the incomplete combustion reaction of air-fuel mixture, thus producing the least amount of H\textsubscript{2} compared to other reforming processes [62]. The auto-thermal reforming involves both partial oxidation and steam reforming to result in thermodynamically neutral reaction [62]. Even though the H\textsubscript{2} yield is lower than steam reforming, thermodynamically neutral reactions are beneficial. Gutierrez et al.
investigated the auto-thermal reforming of ethanol over Rh and Pt mono and bimetallic catalyst [65]. It was reported that the complete conversion of ethanol occurred above 700°C when Rh catalyst is used.

The H₂ can also be produced via water-gas shift reaction on the catalyst (Equation 2.6). To increase the H₂ yield, combination of SR, ATR and water-gas shift reaction is often proposed by researchers [63].

\[\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \]

(Equation 2.6)

2.4 Combined LNT and SCR After-treatment Systems

Studies have shown that the presence of a SCR convertor downstream of an LNT catalyst can improve the overall NOₓ conversion [66-69]. In combined LNT and passive SCR systems, the fuel is solely required for the LNT regeneration. The SCR utilizes the NH₃ formed during the LNT regeneration. This entails that SCR can operate without urea injection system in combined configuration. Wang et al. studied the coupled LNT-SCR system for NOₓ reduction consisting of Pt/Rh LNT catalyst and Cu-zeolite SCR [66]. The LNT catalyst temperature was maintained 200°C under the feed of 5% CO₂, 5% H₂O, 8% O₂, 300 ppm NO during lean period. During rich conditions of 5 seconds, the feed gas comprised of 300 ppm NO, 3333 ppm C₃H₆ or 5000 ppm C₂H₄, 0% or 1% O₂ (as indicated), 5% CO₂, 5% H₂O, and N₂ as balance. The test data was gathered at 25°C temperature interval up to 450°C. It was demonstrated that the Cu-SCR was better for the NOₓ reduction using both alkenes and NH₃.

Bradley Gough et al. investigated the performance of the LNT catalyst with ethanol as a reductant [68]. This research was conducted for specific markets in which ethanol
infrastructure is developed (e.g. Brazil). The LNT catalyst was developed for >95% NOₓ reduction using ethanol fuel reductant. The SCR and DOC were arranged in series to avoid the slip of the secondary emission produced during the regeneration. The after-treatment system was tested for different emission test cycles on 7.2 L and 13 L diesel engines. The results showed that the increase in the C/N ratio (i.e. ethanol to NOₓ ratio) enhanced the NOₓ conversion, however, led to the increased ethanol consumption and secondary emissions.

In summary, the LNT technology has proven to be very useful in NOₓ reduction under lean burn engine operations. The researchers have explored the effect of different parameters such as temperature, gas composition, reductant types and catalyst properties on NOₓ adsorption and reduction. The formation of by-products (e.g. NH₃ and N₂O) because of NOₓ conversion in an LNT catalyst has also been studied in the past. A significant research has been conducted on the LNT regeneration operation using different reductants. However, there is not much literature available on the LNT regeneration performance using alcohol fuels (e.g. n-butanol and ethanol) under the engine exhaust like conditions. Therefore, in this research, investigations are performed to provide a comparison of NOₓ conversion and species formation during the LNT regeneration using ethanol, n-butanol, and diesel as reductants. The potential of combined LNT-SCR (without urea) in NOₓ reduction has also been explored in this work using n-butanol as a reductant for the LNT regeneration.
CHAPTER 3: EXPERIMENTAL SETUP

In this chapter, research tools used for the experiments are explained with help of schematics. The measurement instruments used for the engine and after-treatment flow bench tests are described. A heated offline after-treatment system test bench setup used for the LNT regeneration and the combined LNT-SCR tests is described in the later part of this chapter.

3.1 Engine Test Setup

The following engine tests are conducted on a 2.0 L Ford Duratorq diesel engine at the Clean Combustion Engine Lab (CCEL) at the University of Windsor. This 4-cylinder engine is converted into a single cylinder research engine with the other 3 cylinders kept at motoring [18]. The engine is coupled to a Schenck WS230 eddy-current dynamometer. The engine specifications are given in Table 3.1.

<table>
<thead>
<tr>
<th>Research Engine</th>
<th>Ford Duratorq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Type</td>
<td>4-Cylinder (4-stroke)</td>
</tr>
<tr>
<td>Displacement (cm³)</td>
<td>1998</td>
</tr>
<tr>
<td>Bore (mm)* Stroke (mm)</td>
<td>86 * 86</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>18.2:1</td>
</tr>
<tr>
<td>Direct injection system</td>
<td>Common rail (max. 1600 bar)</td>
</tr>
</tbody>
</table>

The fuel injectors are actuated using the injector power drivers (iPOD), and an in-house developed LabVIEW program paired with National Instruments (NI) Real-Time (RT) and Field Programable Gate Array (FPGA) hardware. The engine speed is measured with a Gurley Precision Instruments 9125S optical encoder [70]. The in-cylinder pressure is
measured by a piezoelectric pressure transducer (AVL GU-13P) coupled to a Kistler Type5010 B charge amplifier. The pressure data is recorded at resolution of 0.1°CA, while 200 consecutive cycles are recorded for each test data point. The coolant temperature is maintained at 80°C using an external conditioning unit during the tests. Intake air is supplied through an oil-free dry air compressor, paired with an installed pressure regulator to control the mass flow rate. The intake and exhaust surge tanks are installed to provide steady intake and exhaust conditions. In turn, this decreases the cyclic pulsations generated by the valve opening and closing, thus reducing measurement error. Intake and exhaust gas compositions are determined through the emission analyzers. All the test data (e.g. emissions, pressure and temperature readings, fuel injection timing and duration) is synchronized through local area network, and shared variables in LabVIEW program.

Figure 3-1: Engine test setup schematic
The fuels used for the engine tests include diesel, ethanol, and n-butanol. These fuels are also used as reducing agents (reductants) for the LNT regeneration tests. The high pressure direct injection (DI) is used for diesel and n-butanol delivery, whereas the port fuel injection (PFI) is used for the ethanol injection during the engine tests. The properties of the reducing agents for LNT regeneration used in this study are given in Table 3.2.

Table 3.2 Fuel properties [71-74]

<table>
<thead>
<tr>
<th>Fuel Properties</th>
<th>Diesel</th>
<th>n-Butanol</th>
<th>Ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Formula</td>
<td>C₁H₁.₈₅</td>
<td>C₄H₁₀O</td>
<td>C₂H₆O</td>
</tr>
<tr>
<td>Lower Heating Value (MJ/kg)</td>
<td>43.5</td>
<td>33.1</td>
<td>26.8</td>
</tr>
<tr>
<td>Carbon Content (% mass)</td>
<td>86.8</td>
<td>64.8</td>
<td>52.1</td>
</tr>
<tr>
<td>Hydrogen Content (% mass)</td>
<td>13.2</td>
<td>13.6</td>
<td>13.1</td>
</tr>
<tr>
<td>Oxygen Content (% mass)</td>
<td>0</td>
<td>21.6</td>
<td>34.8</td>
</tr>
<tr>
<td>Density @ 15°C, (kg/m³)</td>
<td>858</td>
<td>813</td>
<td>788</td>
</tr>
<tr>
<td>Viscosity @ 40°C, (cSt)</td>
<td>2.7</td>
<td>3.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Boiling Temperature @ 1 bar, (°C)</td>
<td>Variable</td>
<td>117.5</td>
<td>78.3</td>
</tr>
<tr>
<td>Cetane Number</td>
<td>46.5</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Octane Number</td>
<td>25</td>
<td>87</td>
<td>110</td>
</tr>
<tr>
<td>Lubricity (μm) from HFRR*</td>
<td>315 [72]</td>
<td>591 [72]</td>
<td>1057 [72]</td>
</tr>
<tr>
<td>Purity</td>
<td>-</td>
<td>>997 [73]</td>
<td>>99.5 [74]</td>
</tr>
</tbody>
</table>

* HFRR: High-Frequency Reciprocating Rig

3.2 Emission Analyzers

During the engine tests, intake and exhaust gases are directly sampled by using a dual-bank gas analyzer. The sampled gases firstly pass through a conditioning unit that consist of a chiller unit, a heated pump, and numerous filters to remove PM and water concentration. The intake and exhaust CO₂, alongside exhaust CO, are measured using the California
Analytical Instruments (CAI) non-dispersive infrared analyzers. The CAI chemiluminescence and flame ionization detectors are used to measure the NO\textsubscript{x} and THC respectively during the engine and after-treatment flow bench experiments. All the CAI analyzers are calibrated before each test. For full scale operating range of CAI analyzers, the noise, zero drift, repeatability, and linear uncertainties are each below 1%. An AVL smoke meter (Model 415S) is used for smoke measurement during the engine tests. The specifications of different emission measurement devices used in the engine and the after-treatment flow bench tests are tabulated in Table 3.3. An MKS 2030 DS Fourier transform infrared (FTIR) spectrometer is used to measure the NH\textsubscript{3}, N\textsubscript{2}O, and hydrocarbon species during the LNT regeneration experiments [75].

<table>
<thead>
<tr>
<th>Analyzer type</th>
<th>Measured Emissions</th>
<th>Model</th>
<th>Range used</th>
<th>Resolution</th>
<th>Noise/Zero Span Drift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paramagnetic detector</td>
<td>O\textsubscript{2} (%)</td>
<td>CAI 602P</td>
<td>0-25%</td>
<td>0.025%</td>
<td><1%</td>
</tr>
<tr>
<td>Heated Flame Ionization Detector</td>
<td>THC (ppm C\textsubscript{1})</td>
<td>CAI 300 HFID</td>
<td>0-3000 ppm</td>
<td>0.01 ppm</td>
<td><1%</td>
</tr>
<tr>
<td>Heated Chemiluminescence Detector</td>
<td>NO and NO\textsubscript{2} (ppm)</td>
<td>CAI 600 HCLD</td>
<td>0-3000 ppm</td>
<td>0.01 ppm</td>
<td><1%</td>
</tr>
<tr>
<td>Non-Dispersive Infrared</td>
<td>CO (ppm) and CO\textsubscript{2} (%)</td>
<td>CAI 200/300 NDIR</td>
<td>CO: 0-1% CO\textsubscript{2}: 0-20%</td>
<td>CO – 0.001% CO\textsubscript{2} – 0.02%</td>
<td><1%</td>
</tr>
</tbody>
</table>

3.3 After-treatment Flow Bench Setup

The after-treatment system tests are conducted on a separate flow bench from engine test setup. The engine exhaust like conditions are simulated on the flow bench for the experiments. An LNT catalyst is the primary after-treatment system studied in this
research. The flow bench is developed at the CCEL for after-treatment system research [44,45]. The schematic of the flow bench is shown in Figure 3-2.

![Flow bench diagram]

Figure 3-2: After-treatment flow bench test setup schematic

Commercially available catalysts (e.g. DOC, LNT, and SCR) are used in this research, without modifications to their respective catalytic properties. The volume of the catalysts used is 0.234 litres. The LNT catalyst used for the experiments is Pt/Ba-Al₂O₃. The copper-exchanged zeolite SCR is used for investigation. A fiber mat for thermal insulation is used to reduce the heat loss, is provided around the 2” diameter steel pipe sections in which catalysts are kept.

Praxair compressed gas cylinders are used to supply NO, CO, and N₂ at a required concentration to the flow bench. The pressure regulators are used to control flow from the NO, CO and N₂ gas cylinders. Compressed air at 4 bar is supplied to the Environics Series 2000 Multi-Component Gas Mixer. The Gas Mixer is used to control air flow rate. The inflow O₂ concentration on the bench is achieved by regulating the flow of air through Gas
Mixer and balance N₂ gas from the cylinder. “Tera Term” program is used to control the Gas Mixer remotely during tests. A mass air flow (MAF) sensor from Bosch (model - 0281002619) is installed upstream of the heater. An SCXI-1302 module is used to acquire the measurement from a MAF sensor. The PM in the exhaust can be filtered using a diesel particulate filter. Therefore, PM is not considered in this investigation. A Leister LE 10000s Electric Hot Air Tool heater, rated up to 650°C maximum temperature is used to maintain the required temperature during tests. The Omega “K” type thermocouples are used, alongside an NI SCXI-1303 terminal block and an SCXI-1102 thermocouple module, for temperature data measurement and acquisition.

The reductant and water injection are done using low-pressure injectors that are designed originally for gasoline PFI. For the experiments, the injection pressure is maintained constant at 2.5 bar gauge. Both are injected into the heated feed gas directly. A water cooling jacket is provided around both the injectors to avoid damage at high temperatures. Deionized water is used for the water injection. The quantity of reductant and water required during the LNT regeneration is achieved by varying the parameters such as length, frequency, and duty cycle of the pulse width modulation (PWM) signal. Initially, both the water and reductant injectors are calibrated. The duty cycle and frequency combinations are identified before the experiments to inject the required quantity of water and reductant. The user defined injection command is sent from personal computer (PC) to an NI PXI-8110 real-time computer. An NI PXI-7853R FPGA module, which is connected to the RT computer generates the desired PWM signal. The PWM signal is then sent to an in-house built injector driver circuit. The parameters are controlled using an in-house developed NI LabVIEW program paired with RT and FPGA hardware.
The gas sampling is implemented at upstream of the DOC and downstream of the LNT catalyst during the LNT regeneration experiments. The CAI analyzers mentioned earlier in this chapter are used to analyze gas composition upstream and downstream of the catalysts. The program developed using the LabVIEW software is used to monitor, record and synchronize all the test data. Apart from CAI emission analyzers, an MKS 2030-HS FTIR spectrometer is used to measure the concentration of the species such as NH₃, N₂O and hydrocarbons. A V&F Q7000 hydrogen analyzer is used to measure the H₂ that is formed during the LNT regeneration process [76].

For the combined LNT-SCR after-treatment system tests, the previous test setup is modified after the LNT catalyst, and a commercially available Cu-SCR is placed downstream of the LNT catalyst, as shown in Figure 3-3. To investigate the effect of SCR on overall NOₓ abatement, gas sampling is implemented before and after the SCR. The average temperature achieved on the SCR during test is ~265°C with the average LNT temperature maintained at ~350°C during adsorption.

![Test setup schematic for combined LNT-SCR tests](image)

Figure 3-3: Test setup schematic for combined LNT-SCR tests
CHAPTER 4: ENGINE TEST RESULTS

In this chapter, engine test results are discussed. The engine tests are conducted at the Clean Combustion Engine Laboratory at the University of Windsor. The engine tests are performed to determine the engine-out exhaust conditions suitable for long breathing LNT operations. As discussed earlier, NOx reduction can be achieved by using in-cylinder approach such as EGR and alternative fuels. The engine tests with diesel, n-butanol, and ethanol are conducted with the application of EGR. All the tests are performed at the medium engine load (10 bar IMEP – Indicated Mean Effective Pressure). The engine test conditions are shown in Table 4.1. The emission regulations are enforced on a brake-specific basis. However, emission levels in this chapter are reported on an indicated basis, and thus a lower indicated emission level could be required to satisfy the regulations.

Table 4.1 Engine test conditions

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Diesel</th>
<th>n-Butanol</th>
<th>Ethanol – Diesel (60:40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMEP (bar)</td>
<td>~ 10</td>
<td>~ 10</td>
<td>~ 10</td>
</tr>
<tr>
<td>Speed</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Injection pressure, p_{inj} (Mpa)</td>
<td>120</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>Port Fuel p_{inj} (bar)</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Intake pressure, p_{intake} (bar)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CA50 (°CA)</td>
<td>368</td>
<td>369</td>
<td>368</td>
</tr>
<tr>
<td>EGR Sweep (Intake O2 %)</td>
<td>14.2-18.5%</td>
<td>14.5-18.5%</td>
<td>14.5-18.4%</td>
</tr>
</tbody>
</table>

4.1 Diesel DI Medium Load Engine Test

Firstly, diesel is used for the medium load engine tests. To maintain the medium load, the fuel injection duration and pressure are set to 610 μs and 1200 bar, respectively. The intake
A boost pressure of 2 bar absolute is used. The fuel injection timing is varied between 354°CA to 358°CA to maintain the CA50 (50% mass fraction burned) around 368°CA. The effect of EGR on NO\textsubscript{x} and PM at the medium engine load is shown in Figure 4-1. The well-known NO\textsubscript{x} and soot trade-off is evident. A major decline in NO\textsubscript{x} emission is observed from 750 ppm to 100 ppm, when the intake O\textsubscript{2} concentration changes from 18% to 15.5% as a result of EGR application. The PM levels are below 0.01 g/kW hr at 16.33% intake O\textsubscript{2} concentration. However, the PM emissions are increased with a further increase in the EGR. The PM can be filtered in exhaust by using a diesel particulate filter (DPF). Generally, modern diesel vehicles are equipped with a DPF, known to have a filtration efficiency of more than 95%. Therefore, to meet the current PM emission limits of 0.013 g/kW hr, the engine-out indicated PM emissions should be below 0.1 g/kW hr, considering DPF filtration efficiency of 95%. For the long breathing LNT operations, NO\textsubscript{x} and PM emission limits are ~100 ppm and ~0.1 g/kW hr respectively [44]. Both NO\textsubscript{x} and PM emissions should be below the limits simultaneously. It is clear from Figure 4-1 that at this engine test conditions, the PM emissions are higher than 0.1 g/kW hr, when NO\textsubscript{x} emissions are below 100 ppm.

![Figure 4-1: NO\textsubscript{x} and PM emissions with diesel DI at medium load](image-url)
The effect of EGR on CO and THC emissions is shown in Figure 4-2 at similar engine test conditions. The CO and THC emissions tends to increase with the application of EGR.

![Graph showing CO and THC emissions with diesel DI at medium load](image)

Figure 4-2: CO and THC emissions with diesel DI at medium load

4.2 n-Butanol DI Medium Load Engine Test

The second set of engine test are conducted using n-butanol with DI (direct injection). n-Butanol fuel can be used in a diesel engine with minimal modifications due to its high viscosity. However, it has been reported in the literatures that the peak pressure rise rates of using n-butanol at the medium and high engine load operations are challenging [18,71]. To accommodate for this challenge, a double injection strategy is employed in this set of engine tests. The first fuel injection timing is set to 343°CA, while second is set to 363°CA at the same injection pressure. Combustion phasing (CA50) is maintained at 369°CA throughout the EGR sweep. The effect of EGR on NOx and PM at the medium engine load with the long breathing region is shown in Figure 4-3. The PM emission level are lower throughout the EGR sweep. Compared to the relevant test results with diesel DI in Figure 4-2, the NOx and PM emissions of this set of engine tests are lower. The higher volatility and O₂ content in n-butanol helps in highly premixed and ultra clean combustion [18,70].
Moreover, NOₓ and PM limits for long breathing conditions are achieved with n-butanol combustion. Under the same test conditions, the CO and THC emissions increase with the increasing EGR. The effect of EGR on CO and THC is shown in Figure 4-4.

Figure 4-3: NOₓ and PM emissions with n-butanol DI at medium load

Figure 4-4: CO and THC emissions with n-butanol DI at medium load

4.3 Ethanol Diesel Dual-Fuel Medium Load Engine Test

The high-pressure direct injection (DI) of ethanol is challenging because of its high volatility and poor lubricity [71]. The ethanol is difficult to compression ignite compared
to the n-butanol because of lower reactivity. Therefore, the ethanol is delivered via port injection and the diesel via direct injection as a pilot fuel [18].

The engine tests are conducted at 10 bar IMEP with an ethanol to diesel energy ratio of 60:40 that showed the lowest NO\textsubscript{x} emissions among the tested fuel ratios [77]. The ethanol as a port fuel is injected for 3400 μs at 7 bar injection pressure. The diesel is injected for fixed duration of 380 μs at varied injection timings in a range of 355°CA to 359°CA. The combustion phasing is maintained at 368°CA during the test. The effect of EGR on NO\textsubscript{x} and PM emissions is shown in Figure 4-5. Conditions suitable for long breathing LNT operations are achieved with ethanol diesel dual-fuel combustion at the tested condition. The PM emissions are lower than 0.1 g/kW hr throughout the EGR sweep.

![Figure 4-5: NO\textsubscript{x} and PM emissions with ethanol-diesel at medium load](image)

The effect of EGR on the CO and THC emissions is shown in Figure 4-6. The CO and THC emissions are significantly higher compared to the n-butanol DI and diesel DI combustion. This is attributed to the lower in-cylinder charge reactivity to effectively oxidize the CO and THC. Thus, the combustion efficiency is lower during ethanol diesel dual-fuel combustion [18,70].

39
Figure 4-6: CO and THC emissions with ethanol-diesel at medium load

Summary

The NO\textsubscript{x} formation is reduced with the application of EGR. However, the excessive application of the EGR leads to an increase in the PM emissions, and a reduction in the combustion efficiency. The NO\textsubscript{x} and soot trade-offs are evident for all the engine tests. At moderate EGR (i.e. 15 to 17\% intake O\textsubscript{2} concentration), the NO\textsubscript{x} emissions could be limited to \~100 ppm for all cases. For n-butanol and ethanol-diesel cases, the indicated PM emissions are less than 0.05 g/kW·hr throughout tested EGR sweep. Thus, the ethanol-diesel and n-butanol combustion under the tested conditions satisfy the long breathing LNT operation requirements. Additionally, with the application of moderate EGR for ethanol-diesel and n-butanol cases, the NO\textsubscript{x} and PM emissions are below 100 ppm and 0.1 g/kW·hr respectively. For the long breathing strategy, the engine exhaust O\textsubscript{2} volumetric concentration is measured to be around 8.5\%. This volumetric concentration is used as a reference for the after-treatment system tests on an offline test bench.
CHAPTER 5: LNT REGENERATION INVESTIGATION

In this chapter, the LNT regeneration test results are discussed. To investigate the LNT performance with different reductants, the LNT regeneration tests are conducted. The engine exhaust like conditions are simulated on a flow bench for the LNT regeneration experiments. The experiments for the LNT regeneration period are performed using diesel, n-butanol, and ethanol as reductants at 3% and 8.5% inflow O$_2$ concentrations. The results for NO$_x$ conversion and different products formation during regeneration are discussed. The results for HC species formed because of fuel reforming on the DOC and LNT catalyst are also presented. Furthermore, results for investigation of the combined LNT-SCR tests on the overall NO$_x$ reduction have been explained at the end of this chapter.

5.1 LNT Test Methodology

The complete LNT operation cycle consists of adsorption, regeneration and purge period in this investigation. Firstly, the NO$_x$ is adsorbed on the LNT catalyst for each test case. During adsorption period, the average LNT temperature is maintained at 350°C. The NO$_x$ concentration of ~200 ppm with the balance air is supplied at the inlet of the flow bench. The inflow NO (i.e. NO feed) concentration of 200 ppm is chosen to reduce the adsorption time to ~5.5 mins to store cumulative NO$_x$ of 0.21 g. The 0.21 g NO$_x$ storage results in NO$_x$ loading equivalent to 0.9 g/L of LNT catalyst. Based on the previous experiments on the flow bench, it has been observed that the NO$_x$ loading of 0.9 g/L of LNT is the maximum suitable amount of NO$_x$ until the regeneration would require a significantly higher amount of reductant [45]. The NO$_x$ adsorption tests under the same conditions have shown that 100 ppm NO feed takes approximately 11 mins to store 0.21 g NO$_x$ [41]. During the NO$_x$ adsorption period, parameters such as inflow NO concentration, NO$_x$ storage...
quantity, hourly space velocity (HSV), and LNT temperature are kept the same for each test case.

The NO\textsubscript{x} storage is calculated based on the difference between the inlet (sampling before DOC) and the outlet (sampling after LNT) NO\textsubscript{x} concentration measured using emission analyzers. The NO feed is stopped when 0.21 g of NO\textsubscript{x} storage is achieved on the LNT catalyst. The hourly space velocity (HSV) of 80,000 hr-1 is achieved during adsorption period. The NO\textsubscript{x} slip (i.e. NO\textsubscript{x} measured at the outlet of LNT) during the adsorption period is observed to be low (5-10 ppm) for each of the test case. The NO\textsubscript{x} storage efficiency for all the test cases is around 97%. The storage efficiency is calculated based on Equation 5.1.

\[
\text{Storage Efficiency} = \frac{m_{\text{NOx intake}} - m_{\text{NOx slip during adsorption}}}{m_{\text{NOx intake}}} \quad \text{(Equation 5.1)}
\]

The LNT regeneration period is initiated after the NO\textsubscript{x} adsorption period is completed. The LNT regeneration tests are conducted under 3% and 8.5% inflow O\textsubscript{2} concentration. The inflow O\textsubscript{2} concentration of 8.5% is chosen based on engine exhaust like condition. The effect of oxygen is of interest, and 3% was the lowest achievable O\textsubscript{2} concentration for this flow bench setup. The 3% inflow O\textsubscript{2} is used to have a comparison with the previous experiments conducted at the CCEL [45]. During the LNT regeneration, HSV is achieved to be around 50,000 hr-1. The LNT regeneration investigation is explained in section 5.2.

Each LNT regeneration test case is followed by a purge period for 1 min. A purge period is included to vacate the NO\textsubscript{x} from storage sites on the LNT catalyst if it is not eliminated (i.e. reduced) during the LNT regeneration. The previous research has shown that if the reductant quantity is not sufficient to reduce the NO\textsubscript{x}, a certain portion of the stored NO\textsubscript{x} remains on the LNT, which can affect the next cycle of the LNT operation [45]. During the
purge period, 1% CO, 6% H₂O and balance N₂ are supplied without reductant injection. The LNT temperature during the purge period decreases because of water injection. The HSV during the purge period is kept similar to the regeneration period.

5.2 LNT Regeneration

The experiments for investigating the LNT regeneration are conducted at the steady state conditions. The LNT regeneration period is decoupled from the NOₓ adsorption period during the experiments by not supplying NOₓ during regeneration. The water and fuel injections are initiated once the inflow O₂ concentration and catalyst temperature are stable. The reductant injection period is kept 30 seconds during the LNT regeneration. The effect of reductant type on NOₓ conversion, and by-product formation during the LNT regeneration are discussed in the following sections. The test conditions for LNT regeneration is given in Table 5.1.

<table>
<thead>
<tr>
<th>Reductant</th>
<th>LNT Temp (°C)</th>
<th>NOₓ Stored (g)</th>
<th>Reductant Quantity (g)</th>
<th>O₂ (%)</th>
<th>H₂O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>350</td>
<td>0.21</td>
<td>0.8</td>
<td>3 & 8.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>0.21</td>
<td>1.7</td>
<td>3 & 8.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>0.21</td>
<td>3.2</td>
<td>3 & 8.5</td>
<td>6</td>
</tr>
<tr>
<td>Ethanol</td>
<td>350</td>
<td>0.21</td>
<td>0.8</td>
<td>3 & 8.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>0.21</td>
<td>1.7</td>
<td>3 & 8.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>0.21</td>
<td>3.2</td>
<td>3 & 8.5</td>
<td>6</td>
</tr>
<tr>
<td>n-Butanol</td>
<td>350</td>
<td>0.21</td>
<td>0.8</td>
<td>3 & 8.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>0.21</td>
<td>1.7</td>
<td>3 & 8.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>0.21</td>
<td>3.2</td>
<td>3 & 8.5</td>
<td>6</td>
</tr>
</tbody>
</table>

5.2.1 NOₓ Release during LNT Regeneration

The reduction of stored NOₓ is initiated on the LNT catalyst with the reductant injection. After a few seconds of reductant injection, the NOₓ slip from the LNT catalyst is observed
for all test cases. The slip of the instantaneous NO\textsubscript{x} at 3% inflow O\textsubscript{2} concentration with 1.7 g of n-butanol as a reductant is illustrated as an example in Figures 5-1. When the reductant is injected, the catalyst temperature increases, and the O\textsubscript{2} concentration decreases. Consequently, this reduces the stability in barium nitrates, and barium nitrites. Thus, NO\textsubscript{x} is released from the storage sites for reduction [41,46]. During the regeneration period, a certain fraction of the stored NO\textsubscript{x} is released unconverted as shown in Figure 5-1.

![Figure 5-1: LNT regeneration at 3% inflow O\textsubscript{2} using 1.7 g n-butanol as a reductant](image)

The peak value of NO\textsubscript{x} slip during the LNT regeneration relative to the injected quantity of reductants is presented in Figures 5-2 and 5-3 for 3% and 8.5% inflow O\textsubscript{2} respectively. For all the reductants, the peak instantaneous NO\textsubscript{x} slip increases with an increase in the injected quantity. The peak NO\textsubscript{x} slip is higher with n-butanol than with ethanol at lower injected quantity. It has been suggested in literature that the presence of CO\textsubscript{2} significantly influences the reaction chemistry of the LNT catalyst during regeneration [78]. The NO\textsubscript{x} conversion decreases in the presence of CO\textsubscript{2} during regeneration [78]. In the present investigation, CO\textsubscript{2} is not supplied to the flow bench. However, the CO\textsubscript{2} is generated in the flow bench as a result of the HC oxidation in the DOC and LNT catalyst. The CO\textsubscript{2} formation increases as the injected reductant quantity increases. Therefore, the increase in
the peak NO\textsubscript{x} slip can be ascribed to the increase in CO\textsubscript{2} concentration and the increase in temperature during regeneration.

Figure 5-2: Peak NO\textsubscript{x} slip during regeneration at 3\% inflow O\textsubscript{2}

Figure 5-3: Peak NO\textsubscript{x} slip during regeneration at 8.5\% inflow O\textsubscript{2}

The cumulative mass of NO\textsubscript{x} slip per mass of stored NO\textsubscript{x} relative to the reductant quantity under 3\% and 8.5\% inflow O\textsubscript{2} is illustrated in Figures 5-4 and 5-5 respectively. As the quantity of reductant injected increases, the percentage of NO\textsubscript{x} slip for diesel and ethanol case also increases. However, a slight decrease in the percentage of NO\textsubscript{x} slip is observed with the n-butanol case for both the inflow O\textsubscript{2} concentration. The NO\textsubscript{x} slip during
regeneration is the highest with diesel and the lowest with ethanol as a reductant. This can be because of the lower volatility and H\textsubscript{2} production during regeneration using ethanol compared to ethanol and n-butanol as reductants. The presence of CO\textsubscript{2} inhibits the effective NO\textsubscript{x} conversion process because the reverse water gas shift reaction leads to carbonyls formation on the PGM sites of the LNT catalyst [78]. Therefore, the mass of NO\textsubscript{x} slip per unit mass of NO\textsubscript{x} stored on the LNT increases with the increase in quantity for diesel and ethanol as reductants.

![Figure 5-4: Mass of NO\textsubscript{x} slip per mass of stored NO\textsubscript{x} at 3% inflow O\textsubscript{2}](image)

![Figure 5-5: Mass of NO\textsubscript{x} slip per mass of stored NO\textsubscript{x} at 8.5% inflow O\textsubscript{2}](image)
The NO\textsubscript{x} slip may also be compared with respect to the amount of reductant energy injected to reduce the NO\textsubscript{x}. The amount of energy injected is calculated by multiplying the gravimetric energy density with the quantity of reductant. The trend for NO\textsubscript{x} slip per mass of NO\textsubscript{x} stored relative to the energy of reductant injected is demonstrated in Figure 5-6 for 8.5% inflow O\textsubscript{2} tests. The trend is similar in terms of quantity of reductant injected. However, it can be realized in Figure 5-6 that the lower amount of energy is injected for the LNT regeneration with ethanol and n-butanol than with diesel as a reductant.

![Figure 5-6: Mass of NO\textsubscript{x} slip per mass of stored NO\textsubscript{x} against reductant energy](image)

The regeneration effectiveness is calculated using Equation 5.2 to evaluate the LNT regeneration [45]. The cumulative mass of the NO\textsubscript{x} is used to calculate the regeneration effectiveness. The regeneration effectiveness is considered as 100\% if no NO\textsubscript{x} is released during the purge period. The purge period is crucial to determine the quantity of NO\textsubscript{x} remained unconverted after the regeneration period. The LNT operation cycle consisting of adsorption, regeneration and purge period under the 8.5\% inflow O\textsubscript{2} is illustrated in Figures 5-7 and 5-8. Theses figures serve as an example for n-butanol and diesel cases.
Regeneration Effectiveness = \frac{\text{NO}_x \text{ stored} - \text{NO}_x \text{ slip during purge}}{\text{NO}_x \text{ stored}} \quad \text{(Equation 5.2)}

The regeneration effectiveness is considered 100% for test cases with no NO\textsubscript{x} slip during the purge period. During purge period, no NO\textsubscript{x} release is observed for both n-butanol and ethanol as reductants at the two tested O\textsubscript{2} concentrations. Moreover, during the purge period for the highest quantity (i.e. 3.2 g) of injected diesel, there is no NO\textsubscript{x} released. However, for 0.8 g and 1.7 g of injected diesel, there is a certain fraction of the stored NO\textsubscript{x} that is released during the purge period. The release of this NO\textsubscript{x} during the purge period leads to reduced regeneration effectiveness. The lower regeneration effectiveness with diesel as a reductant could be related to the insufficient quantity of diesel injected to reduce the stored NO\textsubscript{x}. The WGS reaction and steam reforming on the DOC and LNT increases the total H\textsubscript{2} yield. The presence of higher H\textsubscript{2} could potentially contribute to higher regeneration effectiveness. The H\textsubscript{2} measurement is performed in this investigation during the LNT regeneration for further verification and discussed in section 5.3.

Figure 5-7: LNT regeneration with 1.7 g n-butanol followed by purge period
5.2.2 Product Selectivity during LNT Regeneration

The selectivity in a chemical reaction is entitled as the tendency of reactants to form a product over other products. During the LNT regeneration, higher conversion of the stored NO\textsubscript{x} into N\textsubscript{2} is desirable. However, other by-products are also formed during the regeneration period. The product formation because of the NO\textsubscript{x} conversion during the LNT regeneration is investigated in this research. The FTIR is used to measure the concentration of NH\textsubscript{3} and N\textsubscript{2}O. In the same set of LNT regeneration tests (refer to Table 5.1), sampling for the FTIR measurement is performed after the LNT.

The cumulative molar quantities of NH\textsubscript{3} and N\textsubscript{2}O formed during the LNT regeneration are analyzed in terms of product selectivity. The selectivity towards N\textsubscript{2}O and NH\textsubscript{3} is calculated using Equations 5.3 and 5.4 respectively [45,79]. The cumulative molar N\textsubscript{2}O and NH\textsubscript{3} are represented as [N\textsubscript{2}O] and [NH\textsubscript{3}] respectively. Both the stored and released molar NO\textsubscript{x} quantities are represented as [N]\textsubscript{inflow} and [NO\textsubscript{x}] respectively in the given equations. Although, direct measurement of N\textsubscript{2} is not performed, an estimation is made for the N\textsubscript{2} selectivity considering that stored the NO\textsubscript{x} is converted into N\textsubscript{2}, NH\textsubscript{3}, and N\textsubscript{2}O during regeneration.
\[
\text{N}_2\text{O Selectivity} = \frac{2[N_2\text{O}]_{\text{regeneration}}}{[N]_{\text{inflow}}} \quad \text{(Equation 5.3)}
\]
\[
\text{NH}_3 \text{ Selectivity} = \frac{[\text{NH}_3]_{\text{regeneration}}}{[N]_{\text{inflow}}} \quad \text{(Equation 5.4)}
\]
\[
\text{N}_2 \text{ Selectivity} = \frac{[N]_{\text{inflow}} - (2[N_2\text{O}]+[\text{NH}_3]+[\text{NO}_x])_{\text{regeneration}}}{[N]_{\text{inflow}}} \quad \text{(Equation 5.5)}
\]

The trends for the release of NH\text{\textsubscript{3}} and N\text{\textsubscript{2}}O along with NO\text{\textsubscript{x}} during regeneration at 3% inflow O\text{\textsubscript{2}} with 1.7 g of ethanol is demonstrated in Figure 5-9. This trend for NO\text{\textsubscript{x}}, NH\text{\textsubscript{3}}, and N\text{\textsubscript{2}}O is similar for all the test cases. The similar results have been reported in the literature for NH\text{\textsubscript{3}} and N\text{\textsubscript{2}}O with reductants such as H\text{\textsubscript{2}}, CO and HC 79. The NH\text{\textsubscript{3}} slip downstream of the LNT is observed after the release of NO\text{\textsubscript{x}} and N\text{\textsubscript{2}}O. The reductants initially react with released NO\text{\textsubscript{x}} over an incompletely reduced PGM surface, and therefore N\text{\textsubscript{2}}O is likely to form at the front part of catalyst 51,52. The formed NH\text{\textsubscript{3}} is transported by convection downstream into the oxidized zone of the catalyst, where it reacts with the stored O\text{\textsubscript{2}} and NO\text{\textsubscript{x}}, delaying the NH\text{\textsubscript{3}} slip 51,52.

![Figure 5-9: NO\text{\textsubscript{x}}, NH\text{\textsubscript{3}} and N\text{\textsubscript{2}}O trend during regeneration for 1.7 g ethanol at 3% O\text{\textsubscript{2}}](image-url)
The NH$_3$ formation is mainly affected by the presence of H$_2$ during regeneration [54,55]. The peak value of the NH$_3$ slip relative to the reductant quantity is shown in Figures 5-10 and 5-11 at the 3% and 8.5% inflow O$_2$ respectively. The peak NH$_3$ slip during regeneration is found to be significantly higher with ethanol and n-butanol than with diesel as a reductant. The higher peaks in NH$_3$ could be because of higher H$_2$ production with ethanol and n-butanol during the LNT regeneration.

![Figure 5-10: Peak NH$_3$ slip during LNT regeneration at 3% inflow O$_2$](image1)

![Figure 5-11: Peak NH$_3$ slip during LNT regeneration at 8.5% inflow O$_2$](image2)
The selectivity towards NH$_3$ relative to the injected reductant quantity is illustrated in Figures 5.12 and 5.13 at the 3% and 8.5% inflow O$_2$ respectively. The selectivity towards NH$_3$ formation increases with the increase in reductant quantity for all tested reductants. The higher NH$_3$ selectivity is observed with n-butanol and ethanol compared to that of diesel as a reductant. The increase in the selectivity towards NH$_3$ is ascribed to the higher H$_2$ concentration during regeneration.

![Figure 5-12: Selectivity towards NH$_3$ at 3% inflow O$_2$](image1)

![Figure 5-13: Selectivity towards NH$_3$ at 8.5% inflow O$_2$](image2)
The \(\text{N}_2\text{O} \) is formed by the incomplete reduction of \(\text{NO}_x \) in the catalyst during regeneration [52]. The peak \(\text{N}_2\text{O} \) slip relative to the reductant quantity of regeneration is represented in Figures 5-14 and 5-15 under the 3% and 8.5% inflow \(\text{O}_2 \) respectively. At the lowest injected diesel quantity (i.e. 0.8 g), the peak \(\text{N}_2\text{O} \) is lowest, whereas for the higher reductant quantities (i.e. 1.7 g and 3.2 g) the \(\text{N}_2\text{O} \) peak is higher with diesel than with ethanol or n-butanol. The \(\text{N}_2\text{O} \) peak in the ethanol case with 8.5% inflow \(\text{O}_2 \) decreases with the increase in injected reductant quantity. This could be caused by the enhanced \(\text{NO}_x \) reduction.

![Figure 5-14: Peak \(\text{N}_2\text{O} \) slip during LNT regeneration at 3% inflow \(\text{O}_2 \)](image)

![Figure 5-15: Peak \(\text{N}_2\text{O} \) slip during LNT regeneration at 8.5% inflow \(\text{O}_2 \)](image)
The N₂O is a potent greenhouse gas (GHG) and regulated under GHG emission regulations. The instantaneous peak N₂O trend may not correspond to the cumulative N₂O produced during regeneration. The selectivity towards N₂O for all three reductants relative to the injected quantity is shown in Figures 5-16 and 5-17 at the 3% and 8.5% inflow O₂ concentrations respectively. When n-butanol is used as reductant, the selectivity towards N₂O decreased with the increase of the reductant quantity for both inflow O₂ concentrations case. It is also observed that the N₂O selectivity is higher with 8.5% inflow O₂ than with 3% because of higher CO₂ presence, which constraints the effective NOₓ conversion [79]. The decrease in the N₂O selectivity with an increase in n-butanol quantity, can further be attributed to the higher reductant reactivity and H₂ yield that helps in improving the NOₓ reduction process.

![Graph](image)

Figure 5-16: Selectivity towards N₂O at 3% inflow O₂

On the contrary, at 8.5% inflow O₂, the selectivity towards N₂O rises with the increase in diesel quantity. The amount of N₂O released using diesel at 3% inflow O₂ is higher than ethanol and n-butanol. The higher N₂O formation observed with diesel at lower O₂ concentration could be caused by the lack of H₂ and CO, which are required for efficient
NO\textsubscript{x} conversion. The N\textsubscript{2}O selectivity is almost doubled at the lowest quantity (i.e. 0.8 g) of ethanol for 8.5% inflow O\textsubscript{2} compared to 3% case. In the case of ethanol, the selectivity towards N\textsubscript{2}O does not change significantly at 3% inflow O\textsubscript{2}, whereas the N\textsubscript{2}O selectivity decreases to 7% from 15% at 8.5% inflow O\textsubscript{2} with the increase in ethanol quantity.

![Diagram showing selectivity towards N\textsubscript{2}O at 8.5% inflow O\textsubscript{2}](image)

Figure 5-17: Selectivity towards N\textsubscript{2}O at 8.5% inflow O\textsubscript{2}

An estimation is made for the selectivity towards N\textsubscript{2} during the NO\textsubscript{x} conversion. The N\textsubscript{2} selectivity results against the quantity of reductant injected under the 3% and 8.5% inflow O\textsubscript{2} concentration are presented in Figures 5-18 and 5-19 respectively. The selectivity towards N\textsubscript{2} is higher with ethanol as a reductant at 3% inflow O\textsubscript{2}. The N\textsubscript{2} selectivity is decreased mainly because of increase in NO\textsubscript{x} slip during regeneration. The NO\textsubscript{x} is not converted entirely for the lower two quantities (i.e. 0.8 g and 1.7 g) of diesel case at both the inflow O\textsubscript{2} concentration. At 8.5% inflow O\textsubscript{2}, regeneration effectiveness is not 100% with 0.8 g and 1.7 g of diesel case (explained in section 5.2.1).
5.2.3 Ammonia to NO\textsubscript{x} Ratio

The ammonia to NO\textsubscript{x} ratio (ANR) is a critical parameter, which affects the NO\textsubscript{x} conversion over the SCR convertor. It has been reported in the literature that the ANR before the SCR should be near to 1 for optimal NO\textsubscript{x} conversion [34]. Based on the experimental results, molar NH\textsubscript{3} to NO\textsubscript{x} ratio is calculated downstream of the LNT catalyst for the reductants used.
The ANR available downstream of the LNT is illustrated in Figures 5-20 and 5-21 at the 3% and 8.5% inflow O₂ respectively. As the reductant quantity increased, more NH₃ formation occurs resulting in an increasing ANR. When ethanol and n-butanol are used as reductants, the ANR is higher than with diesel case because of higher NH₃ concentration. The ANR with n-butanol case increased from 1.2 to 2.5 at 3% inflow O₂ concentration. At the lowest injected quantity (i.e. 0.8 g) of ethanol, NOₓ slip is negligible, and by-product (e.g. N₂O and NH₃) formation is significant. Therefore, for the sake of comparison, the ANR is not considered at lowest injected ethanol quantity.

With the increase in inflow O₂ concentration from 3 to 8.5%, the ANR is observed to decrease for all the reductants. The ANR is lower with 8.5% inflow O₂ because of less NOₓ conversion into NH₃, and more slip of unconverted NOₓ during regeneration. The ANR is found to be greater than 1 when 1.7 g and 3.2 g of ethanol and n-butanol is injected at both the inflow O₂ concentrations.
5.2.4 Hydrocarbon Release during LNT Regeneration

The investigation of hydrocarbon (HC) species downstream of the LNT is important in this study to understand the decomposition of a reductant into different HC species. This information will help to understand the reforming and partial oxidation in the LNT catalyst. The ethanol, n-butanol, and diesel reforming in the LNT catalyst can potentially lead to the formation of different HC species. The species concentration during the experiment is measured using the FTIR spectrometer, and the data is analyzed for all the test conditions given in Table 5.1. The variation in HC species concentration is observed with different reductants. The lighter HC (i.e. C₁-C₄) are dominant species formed with ethanol and n-butanol as reductants. Comparison of the peak concentration of methane (CH₄) for all the reductant types is presented in Figure 5-22. Since there are large variations between methane concentrations with the different fuels, the peak methane concentration graph is shown in logarithmic scale. The methane production is significantly higher with ethanol than with diesel and n-butanol as reductants.
The peak value of HC species and CO for 1.7 g reductant cases at both the inflow O\textsubscript{2} concentration are demonstrated in Figure 5-23. The methane and CO formation is the highest with ethanol as a reductant. Moreover, aldehydes and propylene are formed in significant amount after the reforming of ethanol and n-butanol as reductants. Among aldehydes family, acetaldehyde is formed with ethanol, whereas butyraldehyde is observed mainly with n-butanol.
The trend for HC species with 1.7 g ethanol under 3% inflow O₂ is shown in Figure 5-24. As the quantity of reductant increases, the release in cumulative amount of HC species also increases. The cumulative amount of methane is significantly higher with the ethanol cases. As a consequence of catalytic reforming, the ethanol decomposition and demethanation during regeneration leads to higher methane formation. The release of HC species for the ethanol cases completes earlier, compared to n-butanol because of its higher volatility. Additionally, the formation of propylene is less with ethanol than with n-butanol as a reductant.
Figure 5-24: HC trend with ethanol as a reductant at 3% inflow O₂

The trend for HC species with 1.7 g n-butanol under 3% inflow O₂ concentration during LNT regeneration is shown in Figure 5-25. The trend for HC species is similar to that of other injected quantities of n-butanol. The cumulative concentration of HC species decreases at higher inflow O₂ level because of enhanced oxidation. The propylene is released a few seconds after the NOₓ slip commenced. However, acetaldehyde is released after the completion of reductant injection. The cumulative methane formation during regeneration is significantly less with n-butanol, while the production of propylene is higher than with ethanol and diesel as reductants.

The alkane formation is less significant with n-butanol compared to ethanol case. The higher propylene and aldehyde formation is observed with n-butanol as a reductant. Moreover, the duration of HC slip after the LNT is longer with n-butanol than with ethanol.
cases. The propane formation is higher compared to ethane and methane with n-butanol case.

![Figure 5-25: HC trend with n-butanol as a reductant at 3% inflow O2](image)

5.3 Hydrogen Release during Regeneration

The H₂ is the most effective reductant and major constituent affecting NH₃ formation during the LNT regeneration. The H₂ measurement is performed for ethanol and n-butanol as reductants at 3% and 8.5% inflow O₂ concentration. In this research, the reductant is injected before the DOC, which promotes the H₂ reforming because of the precious group metals (Pt, Rh) on the catalyst. The purpose of these experiments is to identify the potential of the H₂ formation using diesel, n-butanol, and ethanol as a reductant to justify NOₓ conversion and NH₃ formation during regeneration. The reforming of ethanol and n-butanol starts with the initial dehydrogenation, followed by the rapid release of products such as CH₄, CO₂ and CO.
The test conditions for the H₂ reforming tests are kept similar to the LNT regeneration test conditions, as mentioned in Table 5.1. The separate tests for H₂ reforming are conducted because gas concentration measurement using CAI analyzer, FTIR and H₂ analyzer is difficult at the same time because of the limitation of flow rate on the flow bench setup. The temperature of the catalysts, and injection pressure of water and reductant are kept the same as LNT regeneration tests.

The peak value of H₂ slip relative to the injected quantity of reductant, is demonstrated in Figures 5-26 and 5-27 at the 3% and 8.5% inflow O₂ concentration respectively. The H₂ yield increases with the increase in reductant quantity. The amount of H₂ released after the LNT regeneration is corresponding H₂ that is not utilized in NOₓ reduction. The alcohol fuels such as ethanol and n-butanol have higher H/C (hydrogen to carbon ratio), O₂ content, and lower activation energy for breaking the C-C bond. Therefore, the cumulative H₂ yield is higher at low temperature (i.e. 350°C) compared to diesel. The H₂ peak is more for 1.7 g and 3.2 g quantity when ethanol is used as reductant. The higher H₂ peak can be attributed to a lower activation energy for H₂ release from the ethanol during the reforming process in the catalyst. Additionally, the H₂ slip is lower with the lowest injected quantity of ethanol, which could be correlated to the utilization of the H₂ in NOₓ conversion. The n-butanol and ethanol require lower temperatures for steam reforming, which may also contribute to the higher production of H₂. The higher H₂ formation during the LNT regeneration leads to the higher NH₃ formation (recall Figures 5-12 and 5-13) as an intermediate product during NOₓ reduction on the LNT.
The cumulative mass of H₂ slip during the LNT regeneration at the 3% and 8.5% inflow O₂ concentration is shown in Figures 5-28 and 5-29 respectively. Initially, at lower quantity (i.e. 0.8 g) of reductant, it appeared that most of the H₂ formed is utilized in NOₓ reduction as well as NH₃ formation. The peak and cumulative amount of H₂ released is highest for 3.2 g of ethanol and n-butanol as reductants. At higher O₂ concentration fast oxidation reaction reduces the H₂ generation. Thus, the cumulative amount of H₂ slip is slightly lower with 8.5% inflow O₂ case than with 3%.
5.4 Combined LNT-SCR Investigation

The combined LNT-SCR are performed to investigate the NO\textsubscript{x} reduction on the downstream SCR using the generated NH\textsubscript{3} during the LNT regeneration. The combined LNT and SCR experiments are conducted under similar conditions with n-butanol as a reductant for LNT regeneration. It is important to note that urea injection is not used in the experiments. The sampling is required to be implemented before and after the SCR. The gas sampling at both the locations within single LNT regeneration cycle is not possible due
to the limitation of test setup. Therefore, 2 cycles of the LNT regeneration are performed at the same test conditions. Another reason for 2 cycles is that the NH₃ released during first regeneration is adsorbed on the SCR downstream. The absorbed NH₃ utilized for NOₓ reduction during 2nd cycle of regeneration. In the previous experiments, sufficient ammonia to NOₓ ratio is observed with 1.7 g of n-butanol at 3% inflow O₂ (see Figure 5-20). The test conditions for the LNT- SCR are presented in table

Table 5.2 Combined LNT-SCR test conditions

<table>
<thead>
<tr>
<th>Reductant</th>
<th>LNT Temp (°C)</th>
<th>SCR Temp (°C)</th>
<th>NOₓ Stored (g)</th>
<th>Reductant Quantity (g)</th>
<th>O₂ (%)</th>
<th>H₂O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Butanol</td>
<td>350</td>
<td>265</td>
<td>0.21</td>
<td>1.7</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

During the 1st cycle of LNT regeneration sampling for FTIR is done before the SCR. The trend for NOₓ, NH₃, N₂O, and NO₂ before the SCR is shown in Figure 5-30. The peak NOₓ, N₂O, NH₃ and NO₂ measured before the SCR are 378, 252, 532 and 9 ppm respectively.

During the 2nd cycle of LNT regeneration, FTIR sampling is done after the SCR. The trend for N₂O, NH₃, NO₂ and NOₓ after the SCR is shown in Figure 5-31. Most of the NH₃
formed during regeneration is absorbed on the downstream SCR. The NO\textsubscript{x} peak is observed to be slightly lower than the previous cycle. However, there is no significant reduction in the cumulative quantity of NO\textsubscript{x} is observed compared to the 1st cycle of regeneration after the SCR. Therefore, in the tested cases, no effect of the Cu-SCR convertor is observed on further NO\textsubscript{x} reduction after the LNT catalyst. This could be attributed to the lower SCR temperature for reaction to occur, and the HC fouling on the active sites of SCR.

![Graph](image)

Figure 5-31: Nitrogen-based species after SCR during LNT regeneration (2nd cycle)

To determine the HC absorption on the SCR, an investigation of the HC species before and after the SCR is performed. Researchers have reported that HC deposition can affect the NO\textsubscript{x} reduction activity on the SCR [80]. Therefore, HC species based on the FTIR data are analyzed for the same experiment. The trend for different HC before and after the SCR is presented in Figures 5-32 and 5-33 respectively. There is not significant change observed in the methane concentration across the SCR. The concentrations of ethane and propane are decreased after the SCR. When sampling is implemented after the LNT catalyst, high concentration (~2500 ppm) of propylene is observed with 1.7 g of n-butanol as reductant, as shown in Figure 5-32. However, propylene concentration is observed to be significantly
less after the SCR as shown in Figure 33. Similarly, butyraldehyde after the SCR is not detected. The duration of the breakthrough for HC species and NO\textsubscript{x} after the SCR is longer than after the LNT catalyst. Overall, a significant change in the HC concentration before and after the SCR is found that indicates HC fouling on the SCR surface when n-butanol is used a reductant for the LNT regeneration. The absorbed HC species on the active sites of the Cu-SCR surface negatively affects the NO\textsubscript{x} conversion reaction. The experiment is repeated at the same conditions, but similar trends are observed with n-butanol as a reductant.

![Figure 5-32: HC species before SCR during LNT regeneration (1st cycle)](image-url)
Figure 5-33: HC species after SCR during LNT regeneration (2nd cycle)
CHAPTER 6: CONCLUSIONS

This chapter provides a summary of the main results based on the experimental investigation, along with conclusions derived from the results. The limitations and future recommendations related to work are also discussed. Initially, the engine test results at the medium load using diesel, n-butanol, and ethanol-diesel are discussed to demonstrate the exhaust conditions suitable for the long breathing LNT operation. Then the LNT regeneration tests are performed under engine exhaust like conditions on an offline after-treatment test bench. To fulfill the objective of the after-treatment tests, the alcohol fuels such as ethanol and n-butanol are used as a reductant, for the LNT regeneration. In the end, the combined LNT-SCR after-treatment system is tested using n-butanol as a reductant for the LNT regeneration. The conclusion based on the experimental investigations are summarized below:

Engine Test Results

- With the application of EGR, the engine-out NOx and PM emissions are observed to be within a sufficiently low range that is suitable for the long breathing LNT operations at the medium engine load with n-butanol DI.
- The ethanol diesel dual-fuel combustion with the application of moderate EGR can achieve low NOx and PM emissions. At medium engine load, suitable ranges of NOx and PM emissions are achieved for the long breathing LNT operations. However, higher CO and THC emissions are observed.
LNT Regeneration

- The regeneration effectiveness is higher when ethanol and n-butanol are used as reductants, because the NO\textsubscript{x} slip is less observed during the purge period compared to diesel operations with 3\% and 8.5\% inflow O\textsubscript{2} concentrations.
- The use of ethanol is proved to be a better reductant for NO\textsubscript{x} reduction over the LNT catalyst, because less amount of NO\textsubscript{x} slip per mass of NO\textsubscript{x} stored is observed compared to n-butanol and diesel for the 3\% and 8.5\% inflow O\textsubscript{2} operations under an average LNT temperature of ~350\textdegree{}C. The higher NO\textsubscript{x} conversion is achieved in part, by the higher H\textsubscript{2} yield during regeneration, and the higher volatility of ethanol, as a reductant.
- The NH\textsubscript{3} formation is higher with ethanol and n-butanol than with diesel during the LNT regeneration. The ammonia to NO\textsubscript{x} ratio (ANR) is the highest with ethanol as a reductant.
- The selectivity towards N\textsubscript{2}O decreased with the increase in injected quantity with ethanol and n-butanol as reductants due to better NO\textsubscript{x} conversion in presence of higher H\textsubscript{2} and CO during the LNT regeneration under the bench testing conditions.
- The hydrogen yield by the reforming effect of ethanol and n-butanol in the catalyst, is significantly higher compared to using diesel. The availability of H\textsubscript{2} before the LNT catalyst is effective to increase the NO\textsubscript{x} reduction and the ammonia formation during regeneration.
- The concentration of lighter HC (C\textsubscript{1}-C\textsubscript{4}) species is higher downstream of the LNT with ethanol and n-butanol compared to using diesel as a reductant. The methane (greenhouse gas) formation is higher with ethanol as a reductant.
• The combined LNT-SCR after-treatment shows no significant change in overall NOx reduction with n-butanol as a reductant at the tested conditions.

Additional Remarks and Future Works

• Investigations are required to determine whether the long breathing LNT operation requirements can be achieved at high load conditions for different fuelling methods (diesel DI, n-butanol DI and ethanol PFI-diesel DI) with EGR.

• Further LNT regeneration tests should be performed with more variations in testing conditions (e.g. temperature, space velocity, regeneration duration, reductant types, and O2 concentration). Other reducing agents such as DME and gasoline, should be investigated, in comparison with diesel, n-butanol and ethanol as reductants.

• The LNT regeneration performance should be further investigated directly with the actual engine exhaust.

• The combined LNT-SCR should be tested more with other reducing agents, and to utilize NH3 generated during the LNT regenerations over a subsequent SCR convertor for further NOx reductions.
REFERENCES

42. NO\textsubscript{x} control technologies for Euro 6 diesel passenger cars | International Council on
Clean Transportation, https://www.theicct.org/publications/nox-control-technologies-

43. Ojeda, W. de, Zheng, M., Han, X., Jeftic, M. \textit{et al.}, “Diesel Engine NO\textsubscript{x} Reduction,”

Characterization and Long Breathing with Low NO\textsubscript{x} Combustion,” Electronic Theses
and Dissertations, 2016.

45. Aversa, C., “Investigation on the Performance of a Long Breathing Lean NO\textsubscript{x} Trap

46. Liu, G. and Gao, P.-X., “A review of NO\textsubscript{x} storage/reduction catalysts: mechanism,

47. Olsson, L., Persson, H., Fridell, E., Skoglundh, M. \textit{et al.}, “A Kinetic Study of NO
Oxidation and NO\textsubscript{x} Storage on Pt/Al\textsubscript{2}O\textsubscript{3} and Pt/BaO/Al\textsubscript{2}O\textsubscript{3},” J. Phys. Chem. B

48. Olsson, L., Blint, R.J., and Fridell, E., “Global Kinetic Model for Lean NO\textsubscript{x} Traps,”

for NO\textsubscript{x} storage and reduction on Pt/BaO/Al\textsubscript{2}O\textsubscript{3} monolithic catalysts,” Catalysis

50. Fridell, E., Skoglundh, M., Westerberg, B., Johansson, S. \textit{et al.}, “NO\textsubscript{x} Storage in

52. Xue, E., Seshan, K., and Ross, J.R.H., “Roles of supports, Pt loading and Pt dispersion in the oxidation of NO to NO\textsubscript{2} and of SO\textsubscript{2} to SO\textsubscript{3},” *Applied Catalysis B: Environmental* 11(1):65–79, 1996.

56. Mráček, D., Kočí, P., Marek, M., Choi, J.-S. *et al*., “Dynamics of N\textsubscript{2} and N\textsubscript{2}O peaks during and after the regeneration of lean NO\textsubscript{x} trap,” *Applied Catalysis B: Environmental* 166–167:509–517, 2015.

58. Castoldi, L., Lietti, L., Forzatti, P., Morandi, S. *et al*., “The NO\textsubscript{x} storage-reduction on PtK/Al\textsubscript{2}O\textsubscript{3} Lean NO\textsubscript{x} Trap catalyst,” *Journal of Catalysis* 276(2):335–350, 2010.

73. Sigma-Alorich, "1-Butanol, HPLC grade",

74. Sigma-Alorich, "Ethyl alcohol, Pure, Anhydrous",
VITA AUCTORIS

NAME: Divyanshu Purohit

PLACE OF BIRTH: Barmer, Rajasthan, India

YEAR OF BIRTH: 1993

EDUCATION: Bachelor of Engineering (Automobile Engineering)

Rajiv Gandhi Technological University, India

2010-2014

M.A.Sc. Mechanical Engineering

University of Windsor, Canada

2016-2018