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Abstract

A time series is a collection of observations made sequentially through time.

Examples occur in a variety of fields, ranging from medicine to engineering. The

analysis of time series of counts is one of the rapidly developing areas in time

series modeling. In time series, it is unlikely that neighbouring observations are

independent. To accommodate potential correlation for count data, two main

classes of models are frequent in the literature: parameter-driven and observation-

driven models. Central to both classes are the generalized linear models (GLMs).

Parameter-driven models result when temporal random effects are used in the

GLM to accommodate the autocorrelations.

In this dissertation we propose zero-inflated and hurdle specifications for both

Poisson and negative binomial parameter-driven models. We employ the data

cloning approach as the numerical tool for performing inferences about the models.

We carry out intensive simulations to examine the performance of the proposed

methodologies. An application of the methods to a data set on the daily counts of

emergency department visits for asthma cases in Ontario, Canada, is also provided.

The second focus of this dissertation is to model dependence in bivariate time

series of counts. In this direction, we propose two parameter-driven models based

on a commonly used bivariate Poisson specification. The first model employs one

latent process through the cross-correlation parameter of the bivariate Poisson

distribution, thus leading to common temporal autocorrelations between the com-

ponents of the bivariate Poisson, while the second model uses two latent processes

to introduce separate autocorrelations in the two marginal processes. An intensive

simulation study and real data applications are also provided in these scenarios.
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Chapter 1

Introduction and preliminaries

1.1 Introduction

A time series is a collection of observations made sequentially through time.

Examples occur in a variety of fields, ranging from medicine to engineering. With

time series, it is unlikely that neighbouring observations are independent.

To accommodate potential correlation for count data, Brockwell and Davis [7]

and Davis et al. [18] described the so-called generalized state space models for non-

Gaussian time series. A generalized state space model for a time series, consists

of an observation variable and a state variable. The model is expressed in terms

of conditional probability distributions for the observation given the state vari-

ables. Cox [14] characterized such models as observation-driven, and parameter-

driven models. The observation specification is the same for both models. For

observation-driven models the state equation depends on past observations, as well

as other covariates. Generalized linear autoregressive moving average (GLARMA)

and integer-valued GARCH models are examples, see Davis et al. [17] and Ferland

et al. [23]. On the other hand, in parameter-driven models, the state equation

commonly consists of a regression component and a latent process that cannot be

1



1.1 Introduction 2

observed directly and which evolves independently of past and present values of

the observed responses, see Zeger [67] and Jørgensen et al. [34] for examples.

The analysis of time series of counts, motivated by applications in various

fields, is one of the rapidly developing areas in time series modeling. In recent

years, there has been a considerable development of models for non-Gaussian time

series. Generalized linear models (McCullagh and Nedler, [45]) are widely used for

analyzing counts and other types of discrete data. The Poisson model provides the

main instrument for modeling count data. To accommodate overdispersion, many

researchers have turned to overdispersed Poisson and negative binomial regression

models. The negative binomial distribution has flexibility in its parametrization

and has been used differently by different authors. Hilbe [32] presented a detailed

analysis of the nature and scope of the varieties of negative binomial model.

Count data with numerous zeros are common in a number of industrial appli-

cations. Lambert [41] proposed the zero-inflated Poisson (ZIP) regression model

with an application to defects in manufacturing. An adaptation of Lambert’s

ZIP regression to the situation in which the response is an upper-bounded count

was done by Hall [30] by proposing a zero-inflated binomial model. Furthermore,

Ridout et al. [57] provided a score test for testing ZIP regression models against

zero-inflated negative binomial alternatives. Ghosh et al. [27] presented a Bayesian

analysis for a class of zero-inflated models which includes the ZIP models, as special

cases. Also, Famoye and Singh [22] described a zero-inflated generalized Poisson

regression to model domestic violence data.

Hurdle models provide an alternative way to model count data with excess

zeroes. The hurdle model, proposed by Mullahy [49], is a two part model in

which the two separate processes generating zeroes and positive counts are not

constrained to be the same. The first part is a binary response that estimates
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the probability that the zero hurdle (threshold) is crossed. The second part uses

a truncated model to explain the observations above the hurdle. (Cameron and

Trivedi, [10]). Theoretically the threshold could be any value, but it’s usually

taken at zero because this is most often meaningful in the context of the study

objectives. Dobbie and Welsh [20] extended the hurdle model to take account

of possible serial dependence between repeated observations and used generalized

estimating equations to estimate the model parameters, while Min and Agresti

[48] introduced a hurdle model with random effects for clustered and correlated

counts.

The hurdle model is used in a variety of applications, for example in public

health Dalrymple et al. [15] used hurdle models to accommodate extra zeros and

heterogeneity found in the sudden infant death syndrome series. Rose et al. [59]

used zero-inflated and hurdle models for modelling vaccine adverse event count

data. In finance, Boucher et al. [5] used correlated random effects for hurdle

models to model a panel of claim count data. For terrorism modelling, Porter

[54] preferred the hurdle model to the zero-inflated model which assumes that the

extra zeros are due to censoring while the hurdle model assumes that the extra

zeros are due to a separate process, which must be overcome before the number of

corresponding incidents are determined.

A major part of this dissertation is dedicated to the development of zero-

inflated and hurdle parameter-driven models to accommodate correlations in time

series of counts with excess zeros. We propose the use of the data cloning method

to estimate the parameters of these models. Real data examples and numerical

studies are presented.

Bivariate time series of counts arise in many applications where two counts

are correlated and joint estimation is required. For example, such data occur in
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epidemiology when the number of hospital admissions and the number of hospital

discharges are examined, also when two diseases are observed and likely to be

inter-dependent, in marketing when the number of firms which enter and exit an

industry are studied across time.

The bivariate Poisson distribution is probably the most well-known bivariate

discrete distribution, though its definition is not unique. For an excellent discussion

of the various situations in which the distribution arises, we refer to Kocherlakota

and Kocherlakota [38] and Johnson et al. [33].

The first-order integer-valued autoregressive (INAR(1)) model for pure time

series was introduced by McKenzie [47] and later discussed by Al-Osh and Alzaid

[1]. Brännäs [6] extended the model to account for explanatory variables. A

large number of studies have considered the modeling of bivariate or multivariate

count data assuming underlying Poisson distributions. For example, Quoreshi [55]

proposed a bivariate integer-valued moving average (BINMA) model to fit bivariate

time series of count data that are generated from stock transactions. Pedeli and

Karlis [52] defined a bivariate INAR process and discussed alternative methods for

the estimation of its unknown parameters. Liu [44] formulated a bivariate Poisson

integer-valued GARCH model and demonstrated its stability properties.

All the previous models are classified as observation-driven models. Our second

aim in this dissertation is to propose a parameter-driven model that is capable of

modeling overdispersion and serial dependence between two time series of counts.

In Chapter 4 we propose two parameter-driven models of bivariate Poisson, the

first model with one latent process added to the cross-correlation parameter, and

the second model with two latent processes to propose different correlation in the

two time series.

Here is a list of the novel contributions in this thesis:
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1. In Chapters 2 and 3:

(a) We computed the moments of the Zero-inflated Poisson (ZIP) and the

Zero-inflated Negative binomial (ZINB) parameter-driven models under

the assumption of autoregressive latent process of order p.

(b) We formulated the two models in a hierarchical format, appropriate

for Data Cloning (DC) algorithm to be applied, then we carried out

inferences based on MLEs obtained through the DC method.

2. In Chapter 4:

(a) We proposed new hurdle parameter-driven models for both Poisson and

negative binomial distributions with the help of an autoregressive Gaus-

sian latent process of order p.

(b) We formulated the two models in a hierarchical format, appropriate for

the DC algorithm and then carried out inferences based on the MLEs

obtained via the DC.

3. In Chapter 5:

(a) The following two new parameter-driven bivariate Poisson models were

introduced:

1- BP1 model by including an AR(p) process to the cross correlation

parameter of a bivariate Poisson distribution.

2- BP2 model by including two latent processes, AR(p) and AR(q), in

the marginal distributions of a bivariate Poisson model.

These two models are useful, in situations where the components of a

bivariate count time series have same temporal autocorrelation behavior
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or different temporal autocorrelation behavior.

(b) We derived the moments of these new models, formulated them in hi-

erarchical specifications and used the DC method to obtain the MLEs

of their parameters.

According to the above layout of contributions, the rest of this chapter is or-

ganized as follows: basic introduction to Bayesian inference, Markov chain Monte

Carlo methods, data cloning procedure for computing maximum likelihood es-

timates for hierarchical models, and an illustration of the difference of Akaike

information criteria for model selection in the framework of hierarchical models.

In Chapter 2, we present the zero-inflated Poisson parameter-driven model

and its parameter estimation via the data cloning method, results of some numer-

ical simulation studies are reported and an illustrative example using the asthma

dataset is given.

Chapter 3 presents the zero-inflated negative binomial parameter-driven model

and its parameter estimation illustrated by some numerical simulations and the

asthma dataset application.

In Chapter 4, we propose hurdle parameter-driven Poisson and negative bino-

mial models and we estimate their parameters via data the cloning approach. To

motivate both theoretical and methodological developments given in the chapter,

real data sets are used for illustration.

In Chapter 5, we propose two parameter-driven models by using the bivariate

Poisson distribution. A simulation study is conducted and applications on real

data are presented. A summary and some future research is given in Chapter 6.
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1.2 Bayes statistics and MCMC methods

In Bayesian inference there is a fundamental distinction between observable

quantities y, that is the data, and unknown quantities θ. The unknown quanti-

ties could be statistical parameters, missing data, latent process,.... In Bayesian

framework θ are treated as random variables, so we need probability statements

about θ. The prior distribution expresses our uncertainty about θ before seeing

the data, while the posterior distribution expresses our uncertainty about θ after

seeing the data.

Markov Chain Monte-Carlo (MCMC) is a popular method for obtaining in-

formation about distributions, especially for estimating posterior distributions in

Bayesian inference. It allows one to characterize a distribution without knowing

all of the distribution’s mathematical properties by randomly sampling values out

of the distribution. Bayesian data analysis and MCMC techniques tremendous

increase in popularity over the last decade is due to an increase in computational

power which has made it affordable to do such computations.

The name MCMC combines two properties: Monte-Carlo and Markov chain.

Monte-Carlo is the practice of estimating the properties of a distribution by ex-

amining random samples from the distribution. For example, instead of finding

the mean of a specific distribution by calculating it directly from the distribution,

a Monte-Carlo approach would draw a large number of random samples from this

distribution and calculate the sample mean of those. Of course, calculating the

mean of a large sample of numbers can be much easier than calculating the mean

directly from the distribution, especially when random samples are easy to draw,

and when the distribution is hard to work with in other ways. The Markov chain

property of MCMC is the idea that the random samples are generated by a spe-



1.2 Bayes statistics and MCMC methods 8

cial sequential process. Each random sample is used to generate the next random

sample, hence producing the chain. Each new sample in the chain depends on the

one before it and does not depend on any samples before the previous one, this is

the “Markov” property.

In a Bayesian approach, the chain of values produced converges to its equilib-

rium distribution which is the joint posterior distribution. The theory of how to

construct this chain to achieve the proper distribution can be quite complicated,

but suffice it to say that there are some general methods that can be used in most

problems and that are implemented in available software(Roberts and Rosenthal

[58]). In this dissertation we used one of the most prevalent kinds of software,

JAGS.

JAGS is a program for analysis of Bayesian hierarchical models using MCMC

computations; it designed to work closely with the R language. We used coda

package to analyse the output and rjags package to work directly with JAGS from

within R.

Once the MCMC chain has been run and simulated samples from the algorithm

have been stored, we need to perform some diagnostics on the simulations to

determine if they approximately represent the posterior distribution of interest.

There are few relatively simple diagnostics of algorithm convergence:

1. Monitoring the trace plot of the parameter samples: Once convergence has

been reached, samples should look like a random scatter about a stable mean

value, there should be no obvious trend or change in spread.

2. The plot of autocorrelation function of parameter samples: we would expect

the kth lag autocorrelation to be smaller as k increases. If autocorrelation

is still relatively high for higher values of k, this indicates high degree of
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correlation between draws and slow mixing.

3. Multivariate R̂ values for MCMC chain convergence: The R̂ statistic mea-

sures the ratio of the average variance of samples within each chain to the

variance of the pooled samples across chains; if all chains are at equilibrium,

these will be the same and R̂ will be close to one. If the chains have not

converged to a common distribution, the R̂ statistic will be greater than one.

(Brooks and Gelman [8])

1.3 Theory of data cloning

We use the data cloning method in order to obtain the maximum likelihood es-

timates of the parameters, θ̂. Data cloning (DC) is a statistical computing method

introduced by Lele et al. [42]. It exploits the computational simplicity of the

Markov chain Monte Carlo (MCMC) algorithms used in the Bayesian statistical

framework, to obtain the maximum likelihood point estimates and their standard

errors for complex hierarchical models. The use of the data cloning algorithm is

especially valuable for complex models, where the number of unknowns increases

with sample size (i.e. with latent variables), because inference and prediction

procedures are often hard to implement in such situations.

Consider the following form of a hierarchical model:

Hierarchy 1: Y = y|X = x ∼ f(y|x, θ1),

Hierarchy 2: X ∼ g(x|θ2),
(1.3.1)

where y are observed and x are unobserved. The parameters of interest are
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θ = (θ1, θ2) and the likelihood function for this hierarchical model is given by:

L(θ, y) =

∫
f(y|x, θ1) g(x|θ2) dx.

We assume that the parameters are identifiable and that there is a unique mode

(but possibly multiple smaller peaks) to the likelihood function.

To understand the idea of DC method, imagine a hypothetical situation where

an experiment is repeated by K different observers, and all K experiments happen

to result in exactly the same set of observations y(K) = (y, · · · , y). The likelihood

function based on the combination of the data from these K independent exper-

iments is given by L(θ, y(K)) = [L(θ, y)]K . Notice two important features of this

likelihood function:

(i) The location of the maximum of this function is exactly equal to the location

of the maximum of L(θ, y).

(ii) The Fisher information matrix based on L(θ, y) times K equals the Fisher

information matrix of this likelihood function.

It is easy to see that the posterior distribution of θ conditional on the data

y(K) = (y, · · · , y) is given by

πK(θ|y) =

[∫
f(y|x, θ1)g(x|θ2)dx

]K
π(θ)

C(K, y)

=
[L(θ, y)]Kπ(θ)

C(K, y)
,

where

C(K, y) =

∫ [∫
f(y|x, θ1)g(x|θ2)dx

]K
π(θ)dθ

is the normalizing constant, and π(θ) is the prior distribution of the parameters.
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Lele et al. [42] and [43] proved that as K becomes large, πK(θ|y) converges to

a multivariate normal distribution with mean equal to the MLE θ̂ and variance-

covariance matrix equal to 1
K
I−1(θ̂) where I(θ̂) is the information matrix cor-

ressponding to the original likelihood function L(θ, y). This convergence is deter-

ministic convergence of a sequence of functions and not the probabilistic conver-

gence used in Walker [66]. Thus, the asymptotic variance of the ML estimate

can be estimated by multiplying K times the variance of the kth cloned posterior

distribution. One major advantage of the data cloning method is the invariance

of the results to the choice of priors.

It follows then that if we can generate random variates θ1, θ2, · · · , θB from

πK(θ|y) distribution, then we can use their mean and variance to obtain the MLE

θ̂ and its asymptotic varaince. Fortunately, such generation of random variates

from πK(θ|y) is quite easy using the MCMC algorithms. Determining the number

of clones K is possible through disgnostics measures (Lele et al. [43]). These

measures include:

1- Calculating the largest eigenvalue of the posterior variance covariance ma-

trix. If the parameters are identifiable, then this measure should converge to 0 at

a rate 1
K

.

2- Calculating mean square error, ω = 1
B

∑B
i=1(Oi − Ei)

2, where Ei are the

quantiles for χ2
p random variable and Oi = (θi − θ)TV −1(θi − θ).

3- Calculating correlation-like fit statistic, r2 = 1−corr2(Oi, Ei), where corr2(Oi, Ei)

is Pearson’s correlation. If this statistic and the one before are close to zero, it

indicates that the (θi − θ)TV −1(θi − θ) v χ2
p approximation is reasonable.

These measures and multivariate R̂ for MCMC chain convergence are available

in dclone package in R software (S ölymos, [60]).
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1.4 Model selection

Akaike Information Criteria (AIC) compares a set of statistical models to each

other, a good model is the one that has minimum AIC among all the models. The

formula for AIC is

AIC = 2d− 2ln(L(θ̂, y)),

where d is the number of model parameters.

To compute AIC we need the maximized likelihood values which are not directly

available for parameter-driven models. To overcome this limitation (Ponciano et

al. [53]) used the complete likelihood function to compute AIC difference and used

it to compare between two nested models. To illustrate, suppose that model 1 and

model 2 are any two nested models, one can write

AIC1 − AIC2 = −2ln

(
L(θ

(1)
1 , θ

(1)
2 , y)

L(θ
(2)
1 , θ

(2)
2 , y)

)
+ 2(d1 − d2),

where d1 and d2 are the number of estimated parameters under model 1 and 2,

respectively.

Recall that the likelihood of a hierarchical model defined as in Equation [1.3.1]

can be written as

L(θ1, θ2, y) =

∫
f(y|x, θ1)g(x|θ2)dx,

where y is a vector of observations and x is the vector of latent variables. The

desired likelihood ratio evaluated at two different sets of parameter values can be

estimated as:
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L(θ
(1)
1 , θ

(1)
2 , y)

L(θ
(2)
1 , θ

(2)
2 , y)

=
1

m

m∑
i=1

f(y|x(i), θ(1)1 )g(x(i)|θ(1)2 )

f(y|x(i), θ(2)1 )g(x(i)|θ(2)2 )
,

where x(1), x(2), · · · , x(m) are generated samples from the conditional distribution

h(x|y, θ(2)1 , θ
(2)
2 ) ∝ f(y|x, θ(2)1 )g(x|θ(2)2 ).

For a collection of more than two models, the likelihood ratios need to be calculated

for all pairs of models.

AIC differences greater than 2 are generally thought to be significant, and

differences greater than 3 very significant. (Burnham and Anderson, [9]).



Chapter 2

Zero-inflated Poisson

parameter-driven model

This chapter proceeds as follows: in Section 1 we present the Poisson parameter-

driven model and some of its basic properties. Also, to accommodate potential

correlation for count data with excess zeros, we propose a nonstationary zero-

inflated Poisson parameter-driven model. In Section 2, the maximum likelihood

estimators of the model parameters are obtained via the data cloning method.

A simulation study is conducted in Section 3 and in Section 4, the techniques

developed in earlier sections are applied to real data sets.

2.1 Poisson regression models

Poisson regression model is a form of a generalized linear model where the

response variable is modelled as having a Poisson distribution and it is a natural

choice when the response variable is an integer.

Let {Yt : t = 1, 2, · · · , n} be a time series of observed counts, xTt = (xt1, · · · , xtk)

is the tth row of covariate matrix X and β = (β1, · · · , βk)T are unknown k -

14
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dimensional column vector of parameters. Then a Poisson regression model is

given as follows:

f(yt|xt) =
e−λtλytt
yt!

, yt = 0, 1, 2, · · ·

where

log(λt) = xTt β =
k∑
j=1

βjxtj.

For count data of independent observations with excess zeros relative to a

Poisson distribution, the zero-inflated Poisson (ZIP) regression model has been

used extensively as a possible machanism for analyzing such data. Böhning [4]

reviewed the related literature and provided a variety of biomedical examples.

The ZIP regression model is given by

f(yt|xt, zt) =


ωt + (1− ωt)e−λt , if yt = 0

(1− ωt)e−λtλkt /k!, if yt > 0

(2.1.1)

where 0 < ωt < 1,

log(λt) = xTt β =
∑k

j=1 βjxtj,

and

logit(ωt) = log(ωt/(1− ωt)) = zTt γ =
∑m

j=1 γjztj,

xTt = (xt1, · · · , xtk) is the tth row of covariate matrix X, β = (β1, · · · , βk)T are

unknown k -dimensional column vector of parameters, zTt = (zt1, · · · , ztm) is the

tth row of covariate matrix Z and γ = (γ1, · · · , γm)T are unknown m-dimensional

column vector of parameters.

The covariates that affect the probability of the zero state (Yt ∼ 0) may or may

not be the same as the covariates that affect the Poisson mean of the Poisson state
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(Yt ∼ Poisson(λt)). If the probability of the zero state does not depend on any

covariates, then the covariate matrix Z is a column vector of ones, and the ZIP

regression requires only one more parameter than Poisson regression. The mean

and the variance of the ZIP model [2.1.1] are given, respectively, by

EYt = (1− ωt)λt and V ar(Yt) = λt(1− ωt)(1 + ωtλt)

and so this framework also accommodates over-dispersion of the data. This over-

dispersion does not arise from heterogeneity, as in the case when the Poisson model

is generalized to the Negative Binomial model. Instead, it arises from the splitting

of the data into two states. In practice, the presence of over-dispersion may come

from one or both of these sources.

2.1.1 Poisson parameter driven model

Poisson regression model is a popular generalized linear model for count data.

However, it assumes that the observations are independent. Zeger [67], introduced

a regression model for time series of counts assuming that the correlation between

observations arises from a latent process added to the linear predictor in log linear

model. To proceed, consider a stationary autoregressive process of order p,(AR(p)),

such that

αt = φ1αt−1 + φ2αt−2 + · · ·+ φpαt−p + εt,

where {εt} is a normal random process with mean zero and variance σ2. Condition-

ing on αt, suppose Yt is a sequence of independent counts with Poisson distribution

defined as follows:

f(yt|αt, xt) =
e−λtλytt
yt!

, yt = 0, 1, 2, · · · (2.1.2)
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and

log(λt) = xTt β + αt,

where xt and β are defined as mentioned before in Poisson regression model. Also,

assume that

f(yt|αt) = f(yt|αt,α(t−1)) = f(yt|αt,α(t−1),y(t−1)), t = 1, 2, · · · (2.1.3)

where y(t) = (yt, yt−1, · · · , y1) and α(t) = (αt, αt−1, · · · , α0, α−1, · · · , α1−p).

Using results in Zeger [67], the marginal moments of the observed process {Yt}

are given as follows:

EYt = E(E(Yt|αt)) = E(λt) = ex
T
t βEeαt = µα e

xTt β,

where µα = Eeαt .

σ2
yt = V ar(Yt) =E(V ar(Yt|αt)) + V ar(E(Yt|αt))

=E(λt) + V ar(λt)

=ex
T
t βEeαt + e2x

T
t βV ar(eαt)

=(µα + σ2
αe

xTt β)ex
T
t β,

where σ2
α = V ar(eαt).

Cov(Yt, Yt+h) =E
(
Cov(Yt|α(t+h), Yt+h|α(t+h))

)
+ Cov(E(Yt|α(t+h)), E(Yt+h|α(t+h)))

=E (Cov(Yt|αt, Yt+h|αt+h)) + Cov(E(Yt|αt), E(Yt+h|αt+h))

=Cov(λt, λt+h)

=e(xt+xt+h)
T βCov(eαt , eαt+h)

=e(xt+xt+h)
T β γα(h),
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where γα(h) is the autocovariance function of the latent process {eαt}. In the

above derivation, we have used the fact that Yt|α(t+h) has the same distribution

as Yt|αt, proven in Proposition B.1. in the Appendix B.

The covariance formula above shows that {Yt} is not a stationary time series

since its autocovariance function, γyt(h), depends on t.

Assuming that αt = φαt−1 + εt is an AR(1) process, the marginal moments of

Yt are obtained as follows:

E(Yt) = e
σ2

2(1−φ2)
+xTt β,

σ2
yt = V ar(Yt) =

[
e

σ2

2(1−φ2) + e
σ2

(1−φ2)
+xTt β

(
e

σ2

(1−φ2) − 1

)]
ex

T
t β

=

[
1 + e

σ2

2(1−φ2)
+xTt β

(
e

σ2

(1−φ2) − 1

)]
e

σ2

2(1−φ2)
+xTt β,

and

γyt(h) = Cov(Yt, Yt+h) =e(xt+xt+h)
T β

[
e

σ2

(1−φ2)

(
e
σ2φh

(1−φ2) − 1

)]
=e

(xt+xt+h)
T β+ σ2

(1−φ2)

(
e
σ2φh

(1−φ2) − 1

)
.

Note that, if φ > 0, then there is always positive correlation between Yt and Yt+h.

2.1.2 ZIP parameter driven model

Although the ZIP regression model has received considerable attention in the

literature, it is not suitable for correlated data and especially for time series of

count events due to the correlation between successive observations. A zero-
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inflated Poisson model with latent process {αt}, is introduced to handle such

correlation. To be precise we consider a stationary autoregressive process of order

p,(AR(p)), such that

αt = φ1αt−1 + φ2αt−2 + · · ·+ φpαt−p + εt,

where {εt} is a normal random process with mean zero and variance σ2. Condi-

tioning on αt, suppose Yt is a sequence of independent counts with ZIP distribution

defined as follows:

f(yt|αt, xt) =


ω + (1− ω)e−λt , if yt = 0

(1− ω)e−λtλytt /yt!, if yt > 0

(2.1.4)

where

log(λt) = xTt β + αt,

xt and β are defined as mentioned before in Model [2.1.1], and 0 < ω < 1. Also,

assume the validity of condition 2.1.3 in Model [2.1.2].

The marginal moments of the observed process {Yt} are given as follows:

EYt = E(E(Yt|αt)) = E((1− ω)λt) = (1− ω)ex
T
t βEeαt = µα µt,

where µα = Eeαt and µt = (1− ω)ex
T
t β.

σ2
yt = V ar(Yt) =E(V ar(Yt|αt)) + V ar(E(Yt|αt))

=E(λt(1− ω)(1 + λtω)) + V ar((1− ω)λt)

=(1− ω){exTt βEeαt + ωe2x
T
t βEe2αt}+ (1− ω)2e2x

T
t βV ar(eαt)

=(1− ω){µαex
T
t β + ωe2x

T
t β(V ar(eαt) + µ2

α)}+ (1− ω)2e2x
T
t βV ar(eαt)

=(1− ω){µαex
T
t β + ωe2x

T
t βµ2

α + e2x
T
t βV ar(eαt)}
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=µα µt +
ω

1− ω
µ2
α µ

2
t +

1

1− ω
µ2
tσ

2
α,

where σ2
α = V ar(eαt).

γyt(h) =E
(
Cov(Yt|α(t+h), Yt+h|α(t+h))

)
+ Cov(E(Yt|α(t+h)), E(Yt+h|α(t+h)))

=E (Cov(Yt|αt, Yt+h|αt+h)) + Cov(E(Yt|αt), E(Yt+h|αt+h))

=Cov((1− ω)λt, (1− ω)λt+h)

=(1− ω)2 ex
T
t βex

T
t+hβCov(eαt , eαt+h)

=µt µt+h γα(h),

where γα(h) is the autocovariance function of the latent process {eαt}. Note that

{Yt} is not a stationary time series as to be expected, since γyt(h) is not free of t.

At this point, a few remarks are in order. Firstly, we notice that the ZIP

parameter-driven model defined here can also accommodate overdispersion be-

cause the mean function is always smaller than the variance function. Secondly,

both negative and positive autocorrelations are accommodated depending on the

parameters of γα(h), the autocovariance function of the latent process.

As an example, if the latent process is a Gaussian AR(1), αt = φαt−1 + εt, then

the marginal moments of Yt reduce to

E(Yt) = (1− ω)e
σ2

2(1−φ2)
+xTt β,

σ2
yt = V ar(Yt) =(1− ω)e

σ2

2(1−φ2)
+xTt β

[
1 + ωe

σ2

2(1−φ2)
+xTt β + e

σ2

2(1−φ2)
+xTt β(e

σ2

1−φ2 − 1)

]
=(1− ω)e

σ2

2(1−φ2)
+xTt β

[
1 + e

σ2

2(1−φ2)
+xTt β(ω + e

σ2

1−φ2 − 1)

]
,
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and

γyt(h) = (1− ω)2e
(xt+xt+h)

T β+ σ2

1−φ2 (e
σ2φh

1−φ2 − 1).

Notice that the autocovariance function could be negative or positive according to

the values of φ.

2.2 Estimation

Let y = (y1, · · · , yn)T be the observed data vector, and conditionally on the

latent autoregressive process {αt}, we assume that the elements of y are indepen-

dent with parameters θ = (θ1, θ2), where θ1 = β denotes the parameters of the

fixed effects when y is assumed to be drawn from model [2.1.2], and θ1 = (β, ω)

denotes the parameters of the fixed effects and the zero state probability when

y is assumed to be drawn from model [2.1.4]. θ2 = (φ1, · · · , φp, σ) denotes the

parameters of the autoregressive latent process in both models.

2.2.1 Parameter estimation of Poisson model

We need to write the Poisson model [2.1.2] as a hierarchical model in order

to estimate the parameters of the posterior distribution using DC method. To

proceed, consider the following model

Yt|xt, αt, ∼ Poisson(λt), with λt = exp(xTt β + αt),

αt|αt−1, · · · , αt−p ∼ Normal(φ1αt−1 + · · · , φpαt−p, σ2).

The likelihood function of this model is obtained by

L(θ, y) =

∫ n∏
t=1

f(yt|αt)g(αt|αt−1, · · · , αt−p)g0(α0, · · · , α1−p) dα,



2.2 Estimation 22

where α0, · · · , α1−p are the initial conditions of the process {αt}. The derivation

of this likelihood function is outlined in Appendix A.

The posterior distribution of θ conditional on the data y(K) = (y, · · · , y) is

given by

πK(θ|y) =
[L(θ, y)]K π(θ)

C(K, y)
,

where C(K, y) =
∫

[L(θ, y)]K π(θ)dθ, is the normalizing constant.

2.2.2 Parameter estimation of the ZIP model

To apply the DC algorithm, we need to write the ZIP model [2.1.4] as a hier-

archical model. Let ut be a random variable such that ut = 0 when Yt is from the

zero state, and ut = 1 if Yt is from the Poisson state. Then the ZIP model can be

written as follows:

Yt|xt, αt, ut ∼ Poisson(utλt + 0.000001), with λt = exp(xTt β + αt),

ut ∼ Bernoulli(1− ω),

αt|αt−1, · · · , αt−p ∼ Normal(φ1αt−1 + · · ·+ φpαt−p, σ
2).

Note that if ut = 0, then

P (Yt = 0|αt, ut = 0) = 1 and P (Yt = k|αt, ut = 0) = 0, k > 0,

and if ut = 1, then

P (Yt = k|αt, ut = 1) = e−λtλkt /k!, k = 0, 1, 2, · · ·

Hence,

P (Yt = 0|αt) =P (ut = 0)P (Yt = 0|αt, ut = 0) + P (ut = 1)P (Yt = 0|αt, ut = 1)
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=ω + (1− ω)e−λt ,

and for k > 0,

P (Yt = k|αt) =P (ut = 0)P (Yt = k|αt, ut = 0) + P (ut = 1)P (Yt = k|αt, ut = 1)

=(1− ω)e−λtλkt /k!,

which shows that Yt has the ZIP distribution [2.1.4]. Of course, adding the number

0.000001 to the Poisson mean is just a trick to avoid the case that the Poisson

mean is exactly zero.

The likelihood function of this model is computed as follows:

L(θ, y,α(n)) =
n∏
t=1

f(yt|αt)g(αt|αt−1, · · · , αt−p)g0(α0, · · · , α1−p),

for details see Appendix A. Also, f(yt|αt) =
∑1

ut=0 h(ut)f(yt|αt, ut). Hence, the

likelihood function of the model is

L(θ, y) =

∫ n∏
t=1

[
1∑

ut=0

h(ut)f(yt|αt, ut)

]
g(αt|αt−1, · · · , αt−p)g0(α0, · · · , α1−p) dα.

The posterior distribution of θ conditional on the data y(K) = (y, · · · , y) is

given by

πK(θ|y) =
[L(θ, y)]K π(θ)

C(K, y)
,

where C(K, y) =
∫

[L(θ, y)]K π(θ)dθ, is the normalizing constant.
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2.3 Forecasting

For ZIP parameter-driven model 2.1.4, and following Section 8.8 of Brockwell

and Davis [7], the forecast density of the next observation Yn+1 given the current

data Y (n) can be computed recursively. To illustrate

E(Yn+1|Y (n)) =E
[
E(Yn+1|αn+1)|Y (n)

]
=E

[
(1− ω)ex

T
n+1β+αn+1|Y (n)

]
=E

[
E((1− ω)ex

T
n+1β+αn+1|αn, · · · , αn−p+1)|Y (n)

]
=E

[
(1− ω)ex

T
n+1β+φ1αn+···+φpαn−p+1+

1
2
σ2|Y (n)

]
.

To compute the last conditional expectation, it is enough to generate a large

number of replicates αi = (αn, · · · , αn−p+1)
i, i = 1, · · · , N, computed from the

conditional distribution of α(n) given Y(n) such that

p(α(n)|y(n)) =

∏n
i=1 p(yi|αi)p(αi|αi−1, · · · , αi−p)p(α0, · · · , α1−p)∫ ∏n
i=1 p(yi|αi)p(αi|αi−1, · · · , αi−p)p(α0, · · · , α1−p)dα

,

and then approximate the conditional expectation by

E(Yn+1|Y (n)) =

∑N
i=1(1− ω)ex

T
n+1β+αTi φ+

1
2
σ2

N
,

where φ = (φ1, · · · , φp). Of course, the same ideas can be applied for predicting

the counts times further into the future.

In general, one can computeE(h(αn, · · · , αn−p+1)|Y (n)), where h(αn, · · · , αn−p+1)

is a function of αn, · · · , αn−p+1, by generating a large number of replicates com-

puted from the conditional distribution α(n) given Y(n) and then approximate the
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conditional expectation empirically,

E(h(αn, · · · , αn−p+1)|Y (n)) =

∑N
i=1 h(αi)

N
.

The following proposition derives the conditional variance, var(Yn+1|Y (n)).

Proposition 2.3.1.

var(Yn+1|Y (n)) = (1− ω)2e2x
T
n+1β

∑N
i=1 e

2(αTi φ+σ
2)

N
−

(∑N
i=1 e

αTi φ+
1
2
σ2

N

)2


+(1− ω)

[∑N
i=1(e

xTn+1β+αTi φ+
1
2
σ2) + e2(x

T
n+1β+αTi φ+σ

2))

N

]
,

Proof. The conditional variance of the next observation Yn+1 given the current

data Y (n) in Section 2.3 is computed as follows:

var(Yn+1|Y (n)) = E
[
var(Yn+1|αn+1)|Y (n)

]
+ var

[
E(Yn+1|αn+1)|Y (n)

]
= E

[
(1− ω)ex

T
n+1β+αn+1(1 + ωex

T
n+1β+αn+1)|Y (n)

]
+ var

[
(1− ω)ex

T
n+1β+αn+1|Y (n)

]
= E

[
E(1− ω)ex

T
n+1β+αn+1(1 + ωex

T
n+1β+αn+1)|αn, · · · , αn−p+1)|Y (n)

]
+

(1−ω)2e2x
T
n+1β

[
var

(
E(eαn+1 |αn, · · · , αn−p+1)|Y (n)

)
+ E

(
var(eαn+1 |αn, · · · , αn−p+1)|Y (n)

)]
.

Note that,

αn+1|αn, · · · , αn−p+1 ∼ Normal(φ1αn + · · ·+ φpαn−p+1, σ
2),

hence,

E(eαn+1|αn, · · · , αn−p+1) = eφ1αn+···+φpαn−p+1+
1
2
σ2
,

E(e2αn+1|αn, · · · , αn−p+1) = e2(φ1αn+···+φpαn−p+1+σ2),

and

var(eαn+1|αn, · · · , αn−p+1) = e2(φ1αn+···+φpαn−p+1)+σ2
(eσ

2 − 1).
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Consequently, the conditional variance becomes

var(Yn+1|Y (n)) = (1−ω)2e2x
T
n+1β[var(eα

Tφ+ 1
2
σ2

)|Y (n))+E(e2(α
Tφ+σ2)−e2αTφ+σ2|Y (n))]

+E[(1− ω)(ex
T
n+1β+αTφ+ 1

2
σ2

+ e2(x
T
n+1β+αTφ+σ2))|Y (n)]

which can be written as

var(Yn+1|Y (n)) = (1− ω)2e2x
T
n+1β[E(e2(α

Tφ+σ2)|Y (n))− [E(eα
Tφ+ 1

2
σ2|Y (n))]2

+(1− ω)E[ex
T
n+1β+αTφ+ 1

2
σ2

+ e2(x
T
n+1β+αTφ+σ2)|Y (n)],

where α = (αn, · · · , αn−p+1) and φ = (φ1, · · · , φp).

2.4 Numerical studies

We considered two experiments: one with a Poisson and the other with a

ZIP for the conditional distribution of observations given the latent process. For

each case, we simulated 500 realizations and estimated the parameters of interest,

reporting the empirical means, the empirical standard deviations and the mean

square errors (MSE) of the estimates together with the asymptotic standard devi-

ation.

2.4.1 Experiment 1: Poisson.

Tables 2.1 and 2.3 show the real values of the parameters of model [2.1.2] from

which the data has been simulated, the empirical means, the empirical standard

deviations, MSE and DC standard errors with (K = 5). With the AR(1) latent
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process we used a covariate sequence defined by xTt = (1, sinπt
2
, cosπt

2
), which

includes two harmonic functions components, and with the AR(2) latent process

we used xTt = (1, t
n
), which includes standardized trend. In both cases we set the

sample size to be 500.

Tables 2.2 and 2.4 show the empirical means, the empirical standard deviations,

MSE and Bayes MCMC standard errors with (K = 1).

We used the following priors in our simulations: normal distribution with mean

zero and variance 104 for fixed effects parameters, log normal distribution with

mean 0 and variance 1 for the inverse of the variance component. For the latent

process AR(1), we used uniform prior distribution on the interval (−0.99, 0.99) for

parameter φ1, and for the parameters φ1 and φ2 in the latent process AR(2) we

used normal prior distribution with mean 0 and variance 104. Also, we assigned

normal prior distributions with mean zero and variance one for the initial condition

parameters in both processes.

In each case we set the following: a burn-in period of 2000, two parallel MCMC

chains and 5000 values to generate from the posterior distribution from each chain.

Table 2.5 gives the percentage of coverage when α = 0.05, that is the proportion

of times the 100(1 − α)% confidence interval θ̂i ± zα
2
SE(θ̂i) contains the true

parameter θi. The table shows similar accurate results with AR(1) and AR(2)

latent processes.
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Table 2.1: Estimation of Poisson model parameters with AR(1)
latent process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

β0 -0.50 -0.4930 0.0112 0.1057 0.1117

β1 1.00 0.9986 0.0090 0.0948 0.0975

β2 0.70 0.6959 0.0090 0.0950 0.0958

σ 1.00 0.9924 0.0055 0.0741 0.0753

φ1 0.45 0.4390 0.0057 0.0749 0.0780

Table 2.2: Estimation of Poisson model parameters with AR(1)
latent process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

β0 -0.50 -0.5010 0.0113 0.0865 0.1136

β1 1.00 1.0020 0.0090 0.0747 0.0983

β2 0.70 0.6984 0.0091 0.0760 0.0965

σ 1.00 1.0020 0.0055 0.0587 0.0760

φ1 0.45 0.4355 0.0058 0.0597 0.0782
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Table 2.3: Estimation of Poisson model parameters with AR(2)
latent process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

β0 0.50 0.5031 0.0264 0.1626 0.1675

β1 2.00 1.9981 0.0697 0.2643 0.2727

σ 0.80 0.7945 0.0016 0.0400 0.0416

φ1 1.00 0.9985 0.0026 0.0514 0.0539

φ2 -0.50 -0.5023 0.0024 0.0485 0.0516

Table 2.4: Estimation of Poisson model parameters with AR(2)
latent process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

β0 0.50 0.5028 0.0281 0.1676 0.1614

β1 2.00 1.9947 0.0768 0.2773 0.2678

σ 0.80 0.7998 0.0016 0.0404 0.0415

φ1 1.00 0.9972 0.0026 0.0512 0.0540

φ2 -0.50 -0.4983 0.0024 0.0489 0.0512
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Table 2.5: Percentage of coverage of a 95% confidence interval in
Poisson model

Parameters AR(1) latent process Parameters AR(2) latent process

β0 0.960 β0 0.930

β1 0.946 β1 0.934

β2 0.946 σ 0.954

σ 0.940 φ1 0.960

φ1 0.956 φ2 0.956

2.4.2 Experiment 2: ZIP.

Tables 2.6 and 2.8 show the real values of the parameters of model [2.1.4] from

where the data have been simulated, the empirical means, the empirical standard

deviations, MSE and DC standard errors with (K = 3).

With the latent process AR(1), we used a covariate sequence xTt = (1, xt2),

where xt2 is standard normal random variable, and with the latent process AR(2),

we used a sequence of normal random variables with mean 0.5 and variance 0.25.

A sample size of 1000 was used in both cases.

Tables 2.7 and 2.9 show the empirical means, the empirical standard deviations,

MSE and Bayes MCMC standard errors with (K = 1).

The priors we used for the parameters β, ω and σ were uniform(−2.5, 2.5),

Beta(1, 1) and log Normal(0, 1). For φ1 in the AR(1) latent process we used uni-

form(−0.99, 0.99) and normal(0, 104) for φ1 and φ2 in the AR(2) process. Also,

we set the normal prior distribution with mean zero and variance 1 for the ini-
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tial condition parameters in both processes. The burn-in period was 2000, three

parallel MCMC chains were generated with 10000 iterations in each one.

Tables 2.6 and 2.7 show almost similar accurate results except for the param-

eter φ1, we see that DC method gives an estimator with percentage bias of 0.05

which is almost half the percentage bias obtained by Bayes MCMC which is 0.09.

There is also good agreement between the standard deviations observed over the

replications and the standard errors obtained by both DC and Bayesian MCMC.

Furthermore,The percentage of coverage of the MLE using DC method is shown

in Table 2.10.

Table 2.6: Estimation of ZIP model parameters with AR(1) latent
process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

β0 1.00 1.0031 0.0019 0.0437 0.0472

β1 0.50 0.4986 0.0011 0.0324 0.0320

ω 0.35 0.3491 0.0004 0.0193 0.0194

σ 0.40 0.3892 0.0024 0.0475 0.0569

φ1 0.40 0.3791 0.0161 0.1253 0.1476
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Table 2.7: Estimation of ZIP model parameters with AR(1) latent
process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

β0 1.00 0.9983 0.0019 0.0434 0.0446

β1 0.50 0.4991 0.0011 0.0325 0.0320

ω 0.35 0.3484 0.0003 0.0194 0.0190

σ 0.40 0.3953 0.0022 0.0468 0.0468

φ1 0.40 0.3622 0.0160 0.1207 0.1344

Table 2.8: Estimation of ZIP model parameters with AR(2) latent
process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

β0 0.50 0.5005 0.0039 0.0623 0.0607

β1 1.00 1.0017 0.0049 0.0702 0.0602

ω 0.20 0.2006 0.0003 0.0173 0.0184

σ 0.50 0.4918 0.0020 0.0434 0.0401

φ1 -0.40 -0.4346 0.0133 0.1101 0.1002

φ2 0.45 0.4099 0.0130 0.1072 0.0991
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Table 2.9: Estimation of ZIP model parameters with AR(2) latent
process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

β0 0.50 0.4976 0.0037 0.0607 0.0564

β1 1.00 1.0026 0.0050 0.0705 0.0595

ω 0.20 0.2005 0.0003 0.0170 0.0176

σ 0.50 0.4945 0.0016 0.0393 0.0361

φ1 -0.40 -0.4408 0.0124 0.1037 0.0963

φ2 0.45 0.4029 0.0124 0.1012 0.0956

Table 2.10: Percentage of coverage of a 95% confidence interval in
ZIP model

Parameters AR(1) latent process AR(2) latent process

β0 0.966 0.938

β1 0.950 0.938

ω 0.942 0.958

σ 0.958 0.944

φ1 0.968 0.934

φ2 - 0.940
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2.5 Application to real data

2.5.1 Polio dataset

We applied DC method to the polio data example from Zeger [67]. The data

consist of monthly counts of poliomyelities cases in the USA from the year 1970 to

1983 as reported by the Center for Disease Control. The data, which is graphed in

Figure 2.1 reveals some seasonality and the possibility of a slight decreasing trend.

The main objective in modelling this data is the detection of a decreasing trend.

Figure 2.1: Monthly counts of poliomyelities cases in USA. (1970-1983)

We used the same regression variables as in Zeger [67], namely

xTt = (1, t̃/1000, cos(2πt̃/12), sin(2πt̃/12), cos(2πt̃/6), sin(2πt̃/6)),

where t̃ = t − 73 is used to locate the intercept term of January 1976. Also,
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we assumed that there is an unobserved Gaussian AR(1) process {αt} satisfying

αt = φ1αt−1+εt, where the εt are independent and normal(0, σ2). Given the latent

process {αt}, the observations yt, (t = 1, · · · , 168) are independent and following

Poisson distribution with mean λt = exp(xTt β + αt).

Table 2.11 reports the model parameter estimates and the corresponding stan-

dard errors using DC method with 120 colons, 3 MCMC chains, 5000 burn-in

period and 30000 iterations. The model suggests no evidence of decreasing trend

in the rate of US polio infections over time. Both annual and semi-annual seasonal

effects are statistically significant at 0.001 level. The variance and correlation

components are also significant.

Table 2.11: Estimates and their standard errors from analysis of
polio data using DC method

Parameter MLE DC SE z -value

β0 -0.0308 0.1543 -0.20

β1 -3.8600 2.8522 -1.35

β2 -0.0974 0.1491 -0.65

β3 -0.4954 0.1583 -3.13**

β4 0.1986 0.1249 1.59

β5 -0.3627 0.1256 -2.89**

φ1 0.6561 0.1646 3.99**

σ 0.5249 0.1235 4.25**

** indicates significant at 0.01 level

To check the convergence of the DC approach, we calculated the largest eigen-
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value of the posterior variance-covariance matrix (lambda.max), mean squared

error (ms.error) and correlation-like fit statistic (r2). The maximum eigenvalue

reflects the degeneracy of the posterior distribution, while the other two measures

reflect the adequacy of the normal approximation. All these statistics should con-

verge to zero as K increases. If this happens, different prior specifications are no

longer influencing the results (Lele et al. [42] and [43]). These are conveniently

calculated by the function dcdiag in dclone package in R, Table 2.12 shows these

measures. To also further investigate the behaviour of MCMC chains, we com-

puted Brook-Gelman statistic, R̂, and it converges to 1 as shown in Table 2.12,

Figure 2.2 shows the posterior distribution for the parameters with (K=110) and

it looks appropriately normal, while Figure 2.3 presents trace plots of the model

parameters, which suggested that the samples of all the parameters got mixed well.

Table 2.12: Estimability diagnostics

Number of clones lambda.max ms error r2 R̂

1 12.5213 1.4644 0.0342 1.0061

5 1.7503 0.0370 0.0009 1.0030

10 0.8556 0.0090 0.0002 1.0063

20 0.4169 0.0023 0.0001 1.0030

50 0.1683 0.0016 0.0005 1.0021

80 0.1021 0.0021 0.0001 1.0018

110 0.0740 0.0004 0.0000 1.0055
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Figure 2.2: The posterior densities of Poisson model parameters



2.5 Application to real data 38

Figure 2.3: The trace plots of Poisson model parameters
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2.5.2 Asthma age group (70-79) years dataset

Analysis of the trend of Emergencey Department (ED) visits related to asthma

is relevant to public health planning. For illustration purposes, in this section,

we use a dataset of daily counts of emergency department visits due to asthma

for people in the age group (70-79) years in Ontario, Canada during the period

January 1st, 2010 to December 31st, 2015 (sample size = 2191). The data are

part of the National Ambulatory Care Reporting System (NACRS) maintained

by the Canadian Institute for Health Information (CIHI). Due to CIHI’s privacy

and confidentiality policies, any counts that are fewer than five visits per day was

suppressed. For the purposes of the present application, we considered any count

less than 5 to be zero and subtracted 4 from counts greater or equal to 5. Figure

2.4 shows the daily number of asthma visits from January, 1, 2010 till December,

31, 2010 for the age group (70-79) years. Also, Figure 2.5 presents a histogram of

these data. These figures clearly show the need of a zero-inflation model.
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Figure 2.4: Asthma presentation for age group (70-79) years.
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Figure 2.5: Histogram of daily visits of asthma cases of people aged
(70-79) years in Ontario. (January 2010 - December 2015)

The data were fitted using the following set of explanatory variables: x1t =

t
2191

, to include time trend; x2t to include weekend effect; x3t = cos 2πt
365

; x4t =

sin 2πt
365

; x5t = cos 4πt
365

and x6t = sin 4πt
365

to include annual and semi-annual pattern.

For weekend variable we coded it 1 for Saturday and Sunday and zero elsewhere.

The dependent variable is emergency department daily asthma visits by people

aged (70-79) years.

We fitted ZIP parameter driven model to asthma data assuming that there is

AR(1) latent process, αt = φ1αt−1 + εt, where εt ∼ Normal(0, σ2). We also fitted

ZIP model without any latent process and presented the results in Table 2.13.
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Table 2.13: Estimates and their standard errors from analysis of
asthma data by ZIP model with and without latent process

Parameter
ZIP parameter driven model ZIP model

MLE DC SE z -value MLE DC SE z -value

β0 0.6238 0.0919 6.79** 0.9411 0.0375 25.10**

β1 0.2445 0.1451 1.69 0.2460 0.0585 4.21**

β2 -0.0224 0.0446 -0.50 -0.0329 0.0365 -0.90

β3 0.2015 0.0606 3.33** 0.2525 0.0259 9.75**

β4 0.3278 0.0613 5.35** 0.2356 0.0256 9.20**

β5 -0.0681 0.0595 -1.14 0.0350 0.0235 1.49

β6 -0.0477 0.0602 -0.79 -0.0927 0.0260 -3.57**

ω 0.2784 0.0161 17.29** 0.3651 0.0116 31.47**

φ1 0.7906 0.0364 21.72** - - -

σ 0.3520 0.0368 9.56** - - -

** indicates significant at 0.01 level

The models were fitted in jags and called into R using package rjags. We ran

the sampler for 50000 iterations, discarding the first 20000 as burn-in and using

three MCMC chains. Furthermore, the values of the maximum eigenvalue of the

posterior variance-covariance matrix, mean square error, correlation-like fit statis-

tic r2 and Brooks-Gelman statistic, R̂, with K=3 are 0.0091, 0.0006, 0.0000 and

1.022885, respectively, for ZIP parameter driven model, and 0.0015, 0.0050, 0.0002

and 1.0009, respectively, for ZIP model. These values reflect the degenerateness

of the posterior distribution, the adequacy of the normal approximation and the
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convergence of the MCMC chains. Figure 2.6 shows the posterior densities of ZIP

parameter driven model which look appropriately normal, while Figure 2.7 presents

trace plots of ZIP parameter driven model, which suggested that the samples of

all the parameters got mixed well.

From Table 2.13 we see that in both models annual seasonal effects are statisti-

cally significant at 0.001 level, while weekend effect and semi-annual effects are not

significant. In parameter driven model, our estimate β̂1 = 0.2445 with asymptotic

standard error 0.1451 is clearly not significant, while in the model without latent

process is significant at 0.001 level. The variance component in ZIP parameter

driven model is statistically significant at 0.001 level, which means the number of

asthma visitors to the emergency department of hospitals for the age group (70-79)

years express significant heterogeneity. also, significant correlation is detected at

0.001 level.
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Figure 2.6: The posterior densities of ZIP model parameters.
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Figure 2.7: The trace plots of ZIP model parameters.
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2.5.3 Asthma type J4591 dataset

We used a dataset of daily counts of emergency department visits of asthma

type J4591 cases in Ontario, Canada during the period January 1st, 2012 till

December 31st, 2016 (sample size = 1827). The dataset was obtained from the

Canadian Institute for Health Information (CIHI). Daily counts that are below

four were suppressed here, therefore, we translated the counts down by 4, as was

done in the previous section. Figure 2.8 and 2.9 present, respectively, time series

and histogram display of the data set.

Figure 2.8: Asthma presentation for asthma type J4591.



2.5 Application to real data 47

Figure 2.9: Histogram of daily visits of asthma type J4591 cases in
Ontario. (January 2012 - December 2016)

The data were fitted using the following set of explanatory variables: x1t =

t
1827

, to include time trend; x2t to include weekend effect; x3t = cos 2πt
365

; x4t =

sin 2πt
365

; x5t = cos 4πt
365

and x6t = sin 4πt
365

to include annual and semi-annual pattern.

For weekend variable we coded it 1 for Saturday and Sunday and zero elsewhere.

The dependent variable is emergency department daily asthma visits by people

with asthma type J4591.

We fitted ZIP parameter driven model to asthma data assuming that there is

AR(1) latent process, αt = φ1αt−1 + εt, where εt ∼ Normal(0, σ2), and presented

the results in Table 2.14.



2.5 Application to real data 48

Table 2.14: Estimates and their standard errors from analysis of
asthma data by ZIP parameter-driven model

Parameter MLE DC SE z -value

β0 0.2284 0.1260 1.81

β1 0.4481 0.1596 2.81*

β2 0.0385 0.0914 0.42

β3 0.1008 0.0708 1.42

β4 -0.0001 0.0678 0.00

β5 -0.1099 0.0666 1.65

β6 -0.0395 0.0743 -0.53

ω 0.5723 0.0207 27.65**

φ1 0.4681 0.1599 2.93*

σ 0.6072 0.0715 8.49**

* indicates significant at 0.01 level ** indicates significant at 0.001 level

The models were fitted in jags and called into R using package rjags. We

ran the sampler for 40000 iterations, discarding the first 20000 as burn-in and

using three MCMC chains. Furthermore, the values of the maximum eigenvalue

of the posterior variance-covariance matrix, mean square error, correlation-like fit

statistic r2 and Brooks-Gelman statistic, R̂, with K=6 are 0.0062, 0.0093, 0.0002

and 1.0291, respectively. These values reflect the degenerateness of the posterior

distribution, the adequacy of the normal approximation and the convergence of

MCMC chains. Figure 2.10 shows the posterior densities of ZIP parameter driven

model which look appropriately normal, while Figure 2.11 presents trace plots of
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ZIP parameter driven model, which suggested that samples of variance component

show less quality of mixing than the samples of the other parameters.

From Table 2.14 we see that weekend, annual and semi-annual seasonal effects

are not significant, while the trend is significant at 0.01 level. The variance compo-

nent is statistically significant at 0.001 level, which means the number of asthma

visitors to the emergency department of hospitals express significant heterogeneity.

Also, significant correlation is detected at 0.001 level.
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Figure 2.10: The posterior densities of ZIP model parameters.
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Figure 2.11: The trace plots of ZIP model parameters.



Chapter 3

Zero-inflated negative binomial

parameter-driven model

This chapter proceeds as follows: in Section 1, we present a negative bino-

mial parameter-driven model and its moment properties. To accommodate auto-

correlations and excess zeros, we propose zero-inflated negative binomial (ZINB)

parameter-driven model. In Section 2, MLEs for the model parameters are ob-

tained via data cloning, and a simulation study is conducted in Section 3. Finally,

real data applications are provided in Section 4.

3.1 Negative binomial regression models

Let {Yt : t = 1, 2, · · · , n} be a time series of observed counts, xTt = (xt1 , · · · , xtk)

is the tth row of covariate matrix X and β = (β1, · · · , βk)T is the vector of regres-

sion coefficients of primary interest. Then a negative binomial regression model is

52
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given by

f(yt|xt) =

yt + r − 1

yt

 prt (1− pt)yt , yt = 0, 1, 2, · · ·

where r is a positive number and pt satisfies the logit model

log

{
r(1− pt)

pt

}
= xTt β =

k∑
j=1

βjxtj.

Notice that under this representation, the mean and the variance are

EYt =
r(1− pt)

pt
and V ar(Yt) =

r(1− pt)
p2t

.

The zero-inflated negative binomial (ZINB) regression model has the distribution

f(yt|xt, zt) =



ωt + (1− ωt)prt , if yt = 0

(1− ωt)

yt + r − 1

yt

 prt (1− pt)yt , if yt > 0
(3.1.1)

where

log

{
r(1− pt)

pt

}
= xTt β =

k∑
j=1

βjxtj and log

(
ωt

1− ωt

)
= zTt γ =

m∑
j=1

γjztj,

xTt = (xt1 , · · · , xtk) is the tth row of covariate matrix X, β = (β1, · · · , βk)T are

unknown k−dimensional column vector of parameters, zTt = (zt1 , · · · , ztm) is the

tth row of covariate matrix Z, γ = (γ1, · · · , γm)T are unknown m−dimensional

column vector of parameters.

The mean and the variance of the ZIBN model [3.1.1] are
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EYt = r(1− ωt) (1−pt)pt
= (1− ωt)ex

T
t β,

and

V ar(Yt) =
r(1− ωt)(1− pt)

p2t
[1 + rωt(1− pt)]

= (1− ωt)ex
T
t β[1 + ωte

xTt β +
1

r
ex

T
t β].

3.1.1 Negative binomial parameter driven model

Consider a stationary autoregressive process of order p, (AR(p)), such that

αt = φ1αt−1 + φ2αt−2 + · · ·+ φpαt−p + εt,

where {εt} is a normal random process with mean zero and variance σ2. Condi-

tioning on αt, assume that the random variables Y1, · · · , Yn are independent with

negative binomial distribution. Specifically, consider the distribution

f(yt|αt, xt) =

yt + r − 1

yt

 prt (1− pt)yt , yt = 0, 1, 2, · · · (3.1.2)

where r is a positive number and pt satisfies

log

{
r(1− pt)

pt

}
= xTt β + αt,

where xt and β are defined as mentioned before in negative binomial model. Also,

assume that

f(yt|αt) = f(yt|αt,α(t−1)) = f(yt|αt,α(t−1),y(t−1)), t = 1, 2, · · · (3.1.3)
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where y(t) = (yt, yt−1, · · · , y1) and α(t) = (αt, αt−1, · · · , α0, α−1, · · · , α1−p).

The first two moments of the observed process {Yt} can be evaluated as follows:

EYt = E(E(Yt|αt)) = E

(
r(1− pt)

pt

)
= E(ex

T
t β+αt) = ex

T
t βEeαt = ex

T
t βµα,

where µα = Eeαt .

σ2
yt = V ar(Yt) = E(V ar(Yt|αt)) + V ar(E(Yt|αt))

= E

[
r(1− pt)

p2t

]
+ V ar

[
r(1− pt)

pt

]
= E

(
ex

T
t β+αt

[
1 +

1

r
ex

T
t β+αt

])
+ V ar(ex

T
t β+αt)

= ex
T
t βEeαt +

1

r
e2x

T
t βE(eαt)2 + e2x

T
t βV ar(eαt)

= ex
T
t βµα +

1

r
e2x

T
t βµ2

α + (1 +
1

r
)e2x

T
t βσ2

α,

where σ2
α = V ar(eαt).

The autocovariance function of Yt is, for h 6= 0,

γyt(h) =E(Cov(Yt|α(t+h), Yt+h|α(t+h))) + Cov(E(Yt|α(t+h)), E(Yt+h|α(t+h)))

=E(Cov(Yt|αt, Yt+h|αt+h)) + Cov(E(Yt|αt), E(Yt+h|αt+h))

=Cov(ex
T
t β+αt , ex

T
t+hβ+αt+h)

=e(xt+xt+h)
T βCov(eαt , eαt+h)

=e(xt+xt+h)
T βγα(h),

where γα(h) is the autocovariance function of the latent process {eαt}. Notice that

the above derivation follows from proposition B.1. in Appendix B. Of course {Yt}

is not a stationary time series since all its moments depend on t.
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Suppose that {αt} is an AR(1) process, such that αt = φαt−1 + εt. Then the

marginal moments of Yt are obtained as follows:

EYt = e
σ2

2(1−φ2)
+xTt β,

V ar(Yt) =ex
T
t βe

σ2

2(1−φ2) +
1

r
e2x

T
t βe

σ2

(1−φ2) + (1 +
1

r
)e2x

T
t βe

σ2

(1−φ2)

[
e

σ2

(1−φ2) − 1

]
=e

σ2

2(1−φ2)
+xTt β

{
1 +

1

r
e

σ2

2(1−φ2)
+xTt β +

(
1 + r

r

)
e

σ2

2(1−φ2)
+xTt β

[
e

σ2

(1−φ2) − 1

]}
,

and for h 6= 0,

γyt(h) = Cov(Yt, Yt+h) = e
(xt+xt+h)

T β+ σ2

(1−φ2)

[
e
σ2φh

(1−φ2) − 1

]
.

Clearly, if φ > 0, then the correlation between Yt and Yt+h is always positive.

3.1.2 ZINB parameter driven model

To accommodate correlation between successive observations in ZINB regres-

sion model, a latent process {αt}, is introduced in the link function. Specifically,

let {αt} be a stationary autoregressive process of order p, such that

αt = φ1αt−1 + φ2αt−2 + · · ·+ φpαt−p + εt,

where {εt} is a normal random process with mean zero and variance σ2, conditional

on the covariates and the latent process {αt}, Y1, · · · , Yn are independent and
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modelled by a ZINB distribution, namely

f(yt|αt, xt) =



ω + (1− ω)prt , if yt = 0

(1− ω)

yt + r − 1

yt

 prt (1− pt)yt , if yt > 0
(3.1.4)

where

log

{
r(1− pt)

pt

}
= xTt β + αt,

0 < ω < 1, xt and β are defined as mentioned before in ZINB model. Also, assume

the validity of assumption 3.1.3. The marginal moments of the observed process

{Yt} are given as follows:

EYt = E(E(Yt|αt)) = E
{

(1− ω)ex
T
t β+αt

}
= (1− ω)ex

T
t βEeαt = µtµα,

where µt = (1− ω)ex
T
t β and µα = Eeαt .

V ar(Yt) =E(V ar(Yt|αt)) + V ar(E(Yt|αt))

=E

{
(1− ω)ex

T
t β+αt(1 + ωex

T
t β+αt +

1

r
ex

T
t β+αt)

}
+ V ar((1− ω)ex

T
t β+αt)

=(1− ω)ex
T
t β

{
Eeαt + ωex

T
t βE(eαt)2 +

1

r
ex

T
t βE(eαt)2

}
+ (1− ω)2e2x

T
t βV ar(eαt)

=µt

{
µα +

ω

1− ω
µt(σ

2
α + µ2

α) +
1

r(1− ω)
µt(σ

2
α + µ2

α)

}
+ µ2

tσ
2
α

=µtµα + µ2
tµ

2
α +

ω

1− ω
µ2
t (σ

2
α + µ2

α) +
1

r(1− ω)
µ2
t (σ

2
α + µ2

α),

where σ2
α = V ar(eαt).

γyt(h) =E(Cov(Yt|α(t+h), Yt+h|α(t+h))) + Cov(E(Yt|α(t+h)), E(Yt+h|α(t+h)))
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=E(Cov(Yt|αt, Yt+h|αt+h)) + Cov(E(Yt|αt), E(Yt+h|αt+h))

=Cov((1− ω)ex
T
t β+αt , (1− ω)ex

T
t+hβ+αt+h)

=(1− ω)2ex
T
t βex

T
t+hβCov(eαt , eαt+h)

=µtµt+hγα(h),

where γα(h) is the autocovariance function of the latent process {eαt}.

3.2 Estimation

3.2.1 Parameter estimation of negative binomial model

To estimate the parameters of the negative binomial (NB) model [3.1.2], we

need to write it as a hierarchical model. To proceed, consider the following model

Yt|xt, αt v NB(r, pt), with r(1−pt)
pt

= exp(xTt β + αt),

αt|αt−1, · · · , αt−p v Normal(φ1αt−1 + · · ·+ φpαt−p, σ
2).

The likelihood function of this model is obtained by

L(θ, y) =

∫ n∏
t=1

f(yt|αt)g(αt|αt−1, · · · , αt−p)g0(α0, · · · , α1−p) dα,

for details see Appendix A.1. The posterior distribution of θ = (β, φ1, · · · , φp, σ)

conditional on the data y(K) = (y, · · · , y) is given by

πK(θ|y) =
[L(θ, y)]K π(θ)

C(K, y)
,

where C(K, y) =
∫

[L(θ, y)]K π(θ)dθ, is the normalizing constant.
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3.2.2 Parameter estimation of ZINB model

In order to estimate the parameters of the ZINB model [3.1.4] using data cloning

method, we need to write it as a hierarchical model. To this end, consider the

following

Yt|xt, αt, ut v NB(r, pt),

with

pt =
r

r + (1− ut)exp(xTt β + αt)
− 0.0000001ut,

ut v Bernoulli(ω),

αt|αt−1, · · · , αt−p v Normal(φ1αt−1 + · · · , φpαt−p, σ2).

First, note that if ut = 1, then pt ≈ 1,

P (Yt = 0|αt, ut = 1) = 1 and P (Yt = k|αt, ut = 1) = 0, k > 0.

Second, if ut = 0, then pt = r
r+exp(xTt β+αt)

and

P (Yt = k|αt, ut = 0) =

k + r − 1

k

 prt (1− pt)k, k = 0, 1, 2, · · ·

Hence,

P (Yt = 0|αt) = P (ut = 1)P (Yt = 0|αt, ut = 1) + P (ut = 0)P (Yt = 0|αt, ut = 0)

= ω + (1− ω)prt ,

and for k > 0,

P (Yt = k|αt) = P (ut = 1)P (Yt = k|αt, ut = 1) + P (ut = 0)P (Yt = k|αt, ut = 0)
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= (1− ω)

k + r − 1

k

 prt (1− pt)k,

which is the same distribution of Yt in the model [3.1.4].

Now, the likelihood function of this model is given as follows:

L(θ, y,α(n)) =
n∏
t=1

f(yt|αt)g(αt|αt−1, · · · , αt−p)g0(α0, · · · , α1−p),

for details see Appendix A.1. Also, f(yt|αt) =
∑1

ut=0 h(ut)f(yt|αt, ut). Hence, the

likelihood function of the model is

L(θ, y) =

∫ n∏
t=1

[
1∑

ut=0

h(ut)f(yt|αt, ut)

]
g(αt|αt−1, · · · , αt−p)g0(α0, · · · , α1−p) dα.

The posterior distribution of θ = (ω, β, φ1, · · · , φp, σ) conditional on the data

y(K) = (y, · · · , y) is given by

πK(θ|y) =
[L(θ, y)]K π(θ)

C(K, y)
,

where C(K, y) =
∫

[L(θ, y)]K π(θ)dθ, is the normalizing constant.

3.3 Numerical studies

We considered two experiments: one with a negative binomial and the other

with a ZINB density for the conditional distribution of observations given the

latent process. For each case, we simulated 500 realizations and estimated the

parameters of interest, reporting the empirical means, the empirical standard de-

viations and the mean square errors (MSE) of the estimates together with the
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asymptotic standard deviation.

3.3.1 Experiment 1: Negative binomial.

Tables 3.1 and 3.3 show the real values of the parameters of model [3.1.2] from

which the data has been simulated, the empirical means, the empirical standard

deviations, MSE and DC standard errors with (K = 3). With the AR(1) latent

process we used a covariate sequence defined by xTt = (1, xt2), where xt2 is uni-

form(0,2) random variable, and with the AR(2) latent process we used a covariate

sequence defined by xTt = (1, sinπt
6
, cosπt

6
), which includes two harmonic functions

components. In both cases we set the sample size to be 500 and r = 4.

Tables 3.2 and 3.4 show the empirical means, the empirical standard deviations,

MSE and Bayes MCMC standard errors with (K = 1).

The following priors were used in our simulations: normal distribution with

mean zero and variance 104 for fixed effects parameters, Gamma(1, 0.1) for the

inverse of the variance component. For the parameter φ1 of the latent process

AR(1), we used uniform(−0.99, 0.99), and for φ1 and φ2 in the latent process

AR(2) we used normal prior distribution with mean zero and variance 104. Also,

we set the normal prior distribution with mean zero and variance 1 for the initial

condition parameters in both processes.

In each case we set the following: a burn-in period of 2000, two parallel MCMC

chains and 5000 values to generate from the posterior distribution fron each chain.

Tables 3.1 and 3.2 show almost similar results of estimation for β0 and β1

and slightly better estimation for φ1 and σ using DC method. In both tables the

standard deviation estimates performed well. In Tables 3.3 and 3.4, we see that

the empirical standard deviation is close to the estimated one and the estimates of

the parameters are approximately unbiased with slightly better estimation for φ2
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using DC method. Table 3.5 reports the percentage of coverage of 95% confidence

interval in both cases.

Table 3.1: Estimation of negative binomial model parameters with
AR(1) latent process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

β0 -0.50 -0.5112 0.0174 0.1316 0.1299

β1 0.90 0.9030 0.0108 0.1042 0.1034

σ 0.80 0.8048 0.0050 0.0703 0.0703

φ1 -0.60 -0.5927 0.0045 0.0669 0.0647

Table 3.2: Estimation of negative binomial model parameters with
AR(1) latent process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

β0 -0.50 -0.5161 0.0178 0.1326 0.1311

β1 0.90 0.9046 0.0110 0.1050 0.1043

σ 0.80 0.8142 0.0051 0.0702 0.0707

φ1 -0.60 -0.5852 0.0047 0.0672 0.0655
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Table 3.3: Estimation of negative binomial model parameters with
AR(2) latent process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

β0 0.50 0.4978 0.0050 0.0707 0.0740

β1 -1.20 -1.2040 0.0110 0.1047 0.1028

β2 2.00 2.0026 0.0125 0.1119 0.1105

σ 0.60 0.5974 0.0030 0.0547 0.0577

φ1 1.00 0.9886 0.0034 0.0569 0.0551

φ2 -0.75 -0.7434 0.0027 0.0512 0.0492

Table 3.4: Estimation of negative binomial model parameters with
AR(2) latent process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

β0 0.50 0.4920 0.0051 0.0710 0.0749

β1 -1.20 -1.2066 0.0111 0.1051 0.1048

β2 2.00 2.0072 0.0127 0.1126 0.1118

σ 0.60 0.6133 0.0032 0.0548 0.0591

φ1 1.00 0.9803 0.0037 0.0575 0.0568

φ2 -0.75 -0.7323 0.0031 0.0528 0.0509



3.3 Numerical studies 64

Table 3.5: Percentage of coverage of a 95% confidence interval in
negative binomial model

Parameters AR(1) latent process AR(2) latent process

β0 0.948 0.954

β1 0.948 0.938

β2 - 0.956

σ 0.948 0.952

φ1 0.942 0.936

φ2 - 0.936

3.3.2 Experiment 2: ZINB

In Tables 3.6 and 3.8 we show the real values of the parameters of model

[3.1.4] from where the data has been simulated, the empirical means, the empirical

standard deviations, MSE and DC standard errors with (K = 3). With both AR(1)

and AR(2), we used a covariate sequence xTt = (1, xt2), where xt2 is uniform(0, 2)

random variable and a sample size of 500.

Tables 3.7 and 3.9 show the empirical means, the empirical standard deviations,

MSE and Bayes MCMC standard errors with (K = 1).

We set Normal(0, 104) and Gamma(1, 0.1) for β and the inverse of the variance

component, respectively. Also, we used uniform(−0.99, 0.99) For φ1 in the latent

process AR(1), and Normal(0, 104) for φ1 and φ2 in the latent process AR(2).

For the initial condition parameters in both processes we used Normal(0, 1). The

burn-in period was 5000, three parallel MCMC chains were generated with 10000
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iterations in each one.

Tables 3.6 and 3.7 show almost similar results of estimation for the parameters

β0, β1 and ω, and slightly better estimation for the latent process parameters φ1 and

σ using DC method, the standard deviation estimates performed well. Simulation

results reported in Tables 3.8 and 3.9 show that the empirical standard deviation is

close to the estimated one in both K = 1 and K = 3. In addition, we can see some

bias in estimating φ1 and φ2 in both methods with slightly better estimation using

DC method. Table 3.10 reports the percentage of coverage of a 95% confidence

interval with both AR(1) and AR(2) processes.

Table 3.6: Estimation of ZINB model parameters with AR(1) latent
process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

β0 0.50 0.4749 0.0205 0.1410 0.1396

β1 1.50 1.5160 0.0118 0.1074 0.1080

ω 0.30 0.2854 0.0003 0.0116 0.0243

σ 0.70 0.7010 0.0048 0.0697 0.0700

φ1 -0.70 -0.6907 0.0034 0.0580 0.0601



3.3 Numerical studies 66

Table 3.7: Estimation of ZINB model parameters with AR(1) latent
process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

β0 0.50 0.4692 0.0209 0.1415 0.1411

β1 1.50 1.5184 0.0119 0.1075 0.1092

ω 0.30 0.2852 0.0004 0.0115 0.0243

σ 0.70 0.7138 0.0051 0.0701 0.0712

φ1 -0.70 -0.6803 0.0040 0.0596 0.0619

Table 3.8: Estimation of ZINB model parameters with AR(2) latent
process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

β0 -0.50 -0.5065 0.0159 0.0996 0.1348

β1 2.00 2.0083 0.0089 0.0752 0.0972

ω 0.20 0.1990 0.0002 0.0105 0.0241

σ 0.60 0.5838 0.0046 0.0513 0.0654

φ1 -0.40 -0.4540 0.0221 0.1088 0.1407

φ2 0.45 0.3891 0.0224 0.1077 0.1400
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Table 3.9: Estimation of ZINB model parameters with AR(2) latent
process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

β0 -0.50 -0.5097 0.0160 0.0991 0.1359

β1 2.00 2.0099 0.0089 0.0750 0.0978

ω 0.20 0.1996 0.0002 0.0104 0.0240

σ 0.60 0.5893 0.0042 0.0501 0.0649

φ1 -0.40 -0.4609 0.0181 0.0969 0.1343

φ2 0.45 0.3782 0.0193 0.0960 0.1334

Table 3.10: Percentage of coverage of a 95% confidence interval in
ZINB model

Parameters AR(1) latent process AR(2) latent process

β0 0.948 0.954

β1 0.948 0.948

ω 1.00 1.00

σ 0.948 0.940

φ1 0.960 0.948

φ2 - 0.946
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3.4 Application to real data

3.4.1 Polio dataset

We revisited polio data example again and used the same regression variables

we used before in the Poisson model case, namely

xTt = (1, t̃/1000, cos(2πt̃/12), sin(2πt̃/12), cos(2πt̃/6), sin(2πt̃/6)),

where t̃ = t − 73. We assumed that the latent process {αt} is an AR(1) and the

observations yt, (t = 1, · · · , 168) conditional on the latent process are independent

and following negative binomial distribution with mean

r(1− pt)
pt

= exp(xTt β + αt).

For parameter estimation we adapted the following strategy. First, we obtained the

MLEs for β, φ and σ with fixe values of r, (r = 1, · · · , 9), and number of colons=50.

Secondly, we generated 500 random data samples of the latent process and hence

calculated the AIC differences for all pairs of models with different values of r,

then we chose the estimate r̂ = 2 that yielded positive AIC difference with respect

to all the other values of r. Table 3.11 shows the results of the AIC differences.
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Table 3.11: The AIC difference with r = 2 in model 2

r value in model 1 AIC1 − AIC2

1 50.70

3 0.32

4 9.78

6 31.56

7 40.66

9 58.14

Table 3.12 shows the estimates of β, φ and σ and their standard errors using

200 colons, three parallel MCMC chains for 30000 iterations each, following burn-

in period of 5000 iterations. For comparison, we included the results from Poisson

parameter driven model of Chapter 1. We used the AIC difference for model

comparison, taking the first model to be Poisson and the second model to be

negative binomial, the value of AIC1 − AIC2 = 123.3. Because the difference is

positive and greater than 3 we conclude that negative binomial model provides

better description of the data than does Poisson model. Both models suggest no

evidence of a decreasing trend in the rate of US polio ifections over time.

To check the convergence of the DC approach with negative binomial model, in

Table 3.13 we computed the largest eigenvalue of the posterior variance-covariance

matrix (Lamda.max), mean squared error (ms.error)and correlation-like fit statis-

tic (r2) and all these statistics converge to zero. For further investigation of the

behaviour of MCMC chains, we computed Brooks-Gelman statistic, R̂, and it con-

verges to 1 as shown in Table 3.13. Figure 3.1 presents trace plots for the model
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parameters and Figure 3.2 shows the posterior distribution for the parameters with

(K = 200). Monitoring the trace plots suggested that the samples of the fixed ef-

fects and the samples of correlation parameter got mixed well, but the samples of

the variance component shows less quality of mixing. The posterior densities of

all the parameters look appropriately normal.

Table 3.12: Estimates and their standard errors from analysis of
polio data by negative binomial and Poisson parameter driven models

Parameter
Poisson Negative Binomial

MLE DC SE z -value MLE DC SE z -value

β0 -0.0308 0.1543 -0.20 0.1053 0.1854 0.57

β1 -3.8600 2.8522 -1.35 -3.8976 3.7002 -1.05

β2 -0.0974 0.1491 -0.65 -0.1117 0.1400 -0.80

β3 -0.4954 0.1583 -3.13** -0.5021 0.1499 -3.35**

β4 0.1986 0.1249 1.59 0.1852 0.1378 1.34

β5 -0.3627 0.1256 -2.89** -0.3702 0.1356 -2.73**

φ1 0.6561 0.1646 3.99** 0.8836 0.0884 10.00**

σ 0.5249 0.1235 4.25** 0.2290 0.0948 2.42*

* indicates significant at 0.05 level ** indicates significant at 0.01 level
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Table 3.13: Estimability diagnostics

Number of clones lambda.max ms error r2 R̂

1 25.0997 8.4090 0.1273 1.0230

50 0.2711 0.0021 0.0001 1.0144

100 0.1314 0.0008 0.0000 1.0153

150 0.0995 0.0011 0.0000 1.0143

200 0.0685 0.0013 0.0001 1.0127
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Figure 3.1: The trace plots of NB model parameters
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Figure 3.2: The posterior densities of NB model parameters
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3.4.2 Asthma age group (70-79) years dataset

We revisited the dataset of daily counts of emergency department visits of

asthma cases of people aged (70-79) years in Ontario, Canada again, and used the

same regression variables we used before in ZIP model, namely: x1t = t
2191

; x2t =

weekend; x3t = cos 2πt
365

; x4t = sin 2πt
365

; x5t = cos 4πt
365

and x6t = sin 4πt
365
. We assumed

that the latent process {αt} is an AR(1) and the observations yt, (t = 1, · · · , 2191),

conditional on the latent process are independent and following ZINB distribution

with mean r(1−pt)
pt

= exp(xTt β + αt).

For parameter estimation we adapted the following approach. First, find the

MLE for β, φ and σ with different values of r, (r = 1, 2, · · · , 9), and number of

clones =3. Second, generate 100 random data samples of the latent process. Third,

calculate AIC difference for all pairs of models with different values of r. Finally,

the estimate r̂ = 2 was determined by the r value that yielded positive AIC

difference with all the other models. Table 3.14 shows the results of the AIC

difference.

Table 3.14: The AIC difference with r = 2 in model 2

r value in model 1 AIC1 − AIC2

1 52.52

3 8.86

4 312.39

5 440.98

6 736.83

9 1245.64
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Table 3.15 presents MLE of ZINB parameter driven model using number of

colons=5, three parallel MCMC chains with 30000 iterations each following burn-

in period of 20000 iterations. For comparison, we included the results from ZIP

parameter driven model of Chapter 1. The value of AIC difference was, AIC1 −

AIC2 = 3209.1 assuming that ZIP is model 1 and ZINB is model 2, the value of

AIC difference indicating that ZINB provides better description of the data than

does ZIP model.

Table 3.15: Estimates and their standard errors from analysis of
asthma data by ZIP and ZINB parameter driven models

Parameter
ZIP parameter driven model ZINB parameter driven model

MLE DC SE z -value MLE DC SE z -value

β0 0.6238 0.0919 6.79** 0.5500 0.1234 4.46**

β1 0.2445 0.1451 1.69 0.2630 0.2067 1.27

β2 -0.0224 0.0446 -0.50 -0.0100 0.0568 -0.18

β3 0.2015 0.0606 3.33** 0.2117 0.0793 2.67**

β4 0.3278 0.0613 5.35** 0.3638 0.0797 4.56**

β5 -0.0681 0.0595 -1.14 -0.0786 0.0721 1.09

β6 -0.0477 0.0602 -0.79 -0.0510 0.0790 -0.65

ω 0.2784 0.0161 17.29** 0.1741 0.0182 9.57**

φ1 0.7906 0.0364 21.72** 0.9275 0.0180 51.53**

σ 0.3520 0.0368 9.56** 0.1683 0.0254 6.63**

** indicates significant at 0.01 level

Table 3.15 shows that the estimates and standard errors in ZIP and ZINB
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models are comparable and both suggest no evidence of increasing trend in the

rate of asthma over time for the age group (70-79) years. In both models, annual

seasonal effects and zero state probability are significant while semi-annual and

weekend effects are not significant. The variance component in both models is

statistically significant at 0.001 level, which means the number of asthma visitors

to the emergency department of hospitals for the age group (70-79) years express

significant heterogeneity. Also, significant correlation is detected at 0.001 level in

both models with larger value in ZINB.

To check the convergence of the DC method with ZINB model, we calculated

the largest eigenvalue of the posterior variance-covariance matrix, mean square

error and correlation-like fit statistic and their values were 0.0110, 0.0126 and

0.0005, respectively, indicating the convergence of the approach. Also, we com-

puted Brooks-Gelman statistic, R̂, and it was 1.0560 indicting the convergence of

the chains. Furthermore, trace plots and posterior densities of the model param-

eters are shown in Figure 3.3 and 3.4, respectively. Monitoring the trace plots

suggested that the samples of all parameters got mixed well except the samples of

the variance component which shows less quality of mixing. The posterior densities

of all the parameters look appropriately normal.
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Figure 3.3: The trace plots of ZINB model parameters
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Figure 3.4: The posterior densities of ZINB model parameters
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3.4.3 Asthma type J4591 dataset

We revisited the dataset of daily counts of emergency department visits of

asthma type J4591 cases in Ontario, Canada again, and used the same regression

variables we used before in ZIP model, namely: x1t = t
1827

; x2t = weekend; x3t =

cos 2πt
365

; x4t = sin 2πt
365

; x5t = cos 4πt
365

and x6t = sin 4πt
365
. We assumed that the latent

process {αt} is an AR(1) and the observations yt, (t = 1, · · · , 1827), conditional

on the latent process are independent and following ZINB distribution with mean

r(1− pt)
pt

= exp(xTt β + αt).

For parameter estimation we adapted the following approach. First, find the

MLE for β, φ and σ with different values of r, (r = 1, 2, · · · , 9), and number of

clones =3. Second, generate 100 random data samples of the latent process. Third,

calculate AIC difference for all pairs of models with different values of r. Finally,

the estimate r̂ = 2 was determined by the r value that yielded positive AIC

difference with all the other models. Table 3.16 shows the results of the AIC

difference.
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Table 3.16: The AIC difference with r = 2 in model 2

r value in model 1 AIC1 − AIC2

1 74.40

3 677.92

4 566.48

5 1120.91

6 1456.12

7 2021.30

Table 3.17 presents MLE of ZINB parameter driven model using number of

clones=5, three parallel MCMC chains with 20000 iterations each following burn-

in period of 20000 iterations. For comparison, we included the results from ZIP

parameter driven model of Chapter 1. The value of AIC difference was, AIC1 −

AIC2 = 6000.5 assuming that ZIP is model 1 and ZINB is model 2, the value of

AIC difference indicating that ZINB provides better description of the data than

does ZIP model.
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Table 3.17: Estimates and their standard errors from analysis of
asthma data by ZIP and ZINB parameter driven models

Parameter
ZIP parameter driven model ZINB parameter driven model

MLE DC SE z -value MLE DC SE z -value

β0 0.2284 0.1260 1.81 0.1980 0.1769 1.12

β1 0.4481 0.1596 2.81* 0.5369 0.2913 1.84

β2 0.0385 0.0914 0.42 0.0873 0.0917 0.95

β3 0.1008 0.0708 1.42 0.0849 0.1092 0.78

β4 -0.0001 0.0678 0.00 -0.0101 0.1166 -0.09

β5 -0.1099 0.0666 1.65 -0.1313 0.0917 -1.43

β6 -0.0395 0.0743 -0.53 -0.0584 0.1047 -0.56

ω 0.5723 0.0207 27.65** 0.5305 0.0194 27.35**

φ1 0.4681 0.1599 2.93* 0.9571 0.0188 50.91**

σ 0.6072 0.0715 8.49** 0.1275 0.0328 3.89**

* indicates significant at 0.01 level ** indicates significant at 0.001 level

Table 3.17 shows that the estimates and standard errors in ZIP and ZINB mod-

els are comparable and both suggest no evidence of seasonal effect over time for

type J4591. The variance component in both models is statistically significant at

0.001 level, which means the number of asthma visitors to the emergency depart-

ment of hospitals of type J5491 express significant heterogeneity. Also, significant

correlation is detected at 0.001 level in both models with larger value in ZINB. In

ZIP model, there is significant increasing trend at level (0.01) of significance, while

in ZINB model the trend in the rate of asthma over time was not significant.
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To check the convergence of the DC method with ZINB model, we calculated

the largest eigenvalue of the posterior variance-covariance matrix, mean square

error and correlation-like fit statistic and their values were 0.0110, 0.0126 and

0.0005, respectively, indicating the convergence of the approach. Also, we com-

puted Brooks-Gelman statistic, R̂, and it was 1.0560 indicting the convergence of

the chains. Furthermore, trace plots and posterior densities of the model param-

eters are shown in Figure 3.5 and 3.6, respectively. Monitoring the trace plots

suggested that the samples of all parameters got mixed well except the samples of

the variance component which shows less quality of mixing. The posterior densities

of all the parameters look appropriately normal.
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Figure 3.5: The trace plots of ZINB model parameters
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Figure 3.6: The posterior densities of ZINB model parameters



Chapter 4

Hurdle parameter-driven model

This chapter proceeds as follows: in Section 1 we present the hurdle Poisson

and negative binomial parameter-driven models. Adaptation of the data cloning

algorithm to estimate these parameters of these models is outlined in Section 2. A

simulation study is conducted in Section 3, and finally, an application on a data

set on emergency department visits due to asthma in the Canadian province of

Ontario is discussed in Section 4.

4.1 Hurdle model

Assume that f1 and f2 are any probability density functions for non negative

integers. Let {Yt : t = 1, 2, · · · , n} be a time series of observed counts. Then a

hurdle model can be expressed as:

f(Yt = yt) =


f1(0), if yt = 0

(1− f1(0)) f2(yt)
1−f2(0) , if yt > 0

(4.1.1)

85
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The model collapses to the standard model if f1(0) = f2(0), allows for excess zeros

if f1(0) > f2(0) and too few zeros if f1(0) < f2(0).

The moments of the model are determined by the probability of crossing the

threshold and by the moments of the zero-truncated density. Namely, the mean is

EYt =
1− f1(0)

1− f2(0)
µ2,

where µ2 is the untruncated mean in density f2(yt), and the variance is

var(Yt) =
1− f1(0)

1− f2(0)
σ2
2 +

(1− f1(0))(f1(0)− f2(0))

(1− f2(0))2
µ2
2,

where σ2
2 is the untruncated variance in density f2(yt).

To extend the hurdle model to accommodate correlations in time series counts,

we propose hurdle model with latent process {αt} to handle such correlation in

the following subsections.

4.1.1 Poisson autoregressive hurdle model

Let {Yt : t = 1, 2, · · · , n} be a time series of observed counts, xTt = (xt1, · · · , xtk)

is the tth row of covariate matrix X, β = (β1, · · · , βk)T are unknown k -dimensional

column vector of parameters, zTt = (zt1, · · · , ztm) is the tth row of the covariate

matrix Z and γ = (γ1, · · · , γm)T are unknown m-dimensional column vector of

parameters.

To accommodate correlation between successive observations of the time series

when f2(·) in Model [4.1.1] is specified as Poisson distribution, consider the fol-

lowing model: let {αt} be a stationary autoregressive process of order p, AR(p),
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such that

αt = φαt−1 + φ2αt−2 + · · ·+ φpαt−p + εt,

where {εt} is a normal random process with mean zero and variance σ2. Condi-

tioning on αt, suppose Yt is a sequence of independent counts with Poisson hurdle

(PH) distribution defined as follows:

f(yt|αt, xt, zt) =


ωt, if yt = 0

(1− ωt) e−λtλ
yt
t

(1−e−λt )yt! , if yt > 0

(4.1.2)

where

log(λt) = xTt β + αt,

and

logit(ωt) = log
ωt

(1− ωt)
= zTt γ.

Also, assume that

f(yt|αt) = f(yt|αt,α(t−1)) = f(yt|αt,α(t−1),y(t−1)), t = 1, 2, · · · (4.1.3)

where y(t) = (yt, yt−1, · · · , y1) and α(t) = (αt, αt−1, · · · , α0, α−1, · · · , α1−p). We call

Model [4.1.2] as Poisson autoregressive hurdle model (PARH).

4.1.2 Negative binomial autoregressive hurdle model

The following model is proposed to handle temporal dependence when f2(·) in

Model [4.1.1] is specified as negative binomial. To proceed, assume that Yt, xt, zt

and αt are defined as mentioned in the previous subsection. Conditioning on αt,

suppose Yt is a sequence of independent counts with negative binomial hurdle
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(NBH) distribution defined as follows:

f(yt|αt, xt, zt) =



ωt, if yt = 0

(1− ωt)


yt + r − 1

yt


prt (1−pt)yt
(1−prt )

, if yt > 0
(4.1.4)

where

log

{
r(1− pt)

pt

}
= xTt β + αt,

and

logit(ωt) = zTt γ.

Also assume the validity of condition 4.1.3 in Model [4.1.2]. We call such model

as negative binomial autoregressive hurdle model (NBARH).

4.2 Estimation

In order to estimate the parameters of PARH and NBARH models by data

cloning method, we need to write them as hierarchical models. PARH model

could be written as follows

Yt|αt, xt, zt ∼ PH(λt),

with

λt = exp(xTt β + αt) and logit(ωt) = zTt γ,

αt|αt−1, · · · , αt−p ∼ Normal(φ1αt−1 + · · · , φpαt−p, σ2).

The hierarchical model for NBARH is
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Yt|αt, xt, zt, ∼ NBH(λt),

with

r(1−pt)
pt

= exp(xTt β + αt) and logit(ωt) = zTt γ,

αt|αt−1, · · · , αt−p ∼ Normal(φ1αt−1 + · · · , φpαt−p, σ2).

The likelihood function of the models is obtained by

L(θ, y) =

∫ n∏
t=1

f(yt|αt)g(αt|αt−1, · · · , αt−p)g0(α0, · · · , α1−p) dα,

where f(yt|αt) is PH density function for PARH model, and NBH density function

for NBARH model, g(αt|αt−1, · · · , αt−p) is the density function of normal distri-

bution and g0(α0, · · · , α1−p) is the prior distribution for the initial conditions of

the AR(p) process. θ = (θ1, θ2), where θ1 = (β, γ) denotes the parameters of the

fixed effects, and θ2 = (φ1, · · · , φp, σ) denotes the parameters of the autoregressive

latent process {αt}. For more details see Appendix A.

The posterior distribution of θ conditional on the data y(K) = (y, · · · , y) is

given by

πK(θ|y) =
[L(θ, y)]K π(θ)

C(K, y)
,

where C(K, y) =
∫

[L(θ, y)]K π(θ)dθ, is the normalizing constant.

4.3 Numerical studies

A simulation experiment is presented to check the performance of DC method

when the data is simulated from PARH and NBARH models. Five hundred real-
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izations were generated from each model with sample size of 500 in each realiza-

tion. The simulations described below were implemented using Jags software and

dclone, rjags and coda packages from R software.

4.3.1 PARH model

In this experiment we considered two cases:

1. Case 1: PARH with AR(1) latent process.

2. Case 2: PARH with AR(2) latent process.

In Case 1, the following explanatory variables were used: xt1 = 1, xt2 is uni-

form(2,4) random variable, zt1 = 1 and zt2 is standard normal random variable,

while in Case 2 we let zt = xt = (1, xt2), where xt2 is a standard normal random

variable.

The priors that we used in these simulations are: normal distribution with

mean zero and variance 103 for fixed effects parameters, log normal distribution

with mean zero and variance 1 for the inverse of the variance component. For

the latent process AR(1), we used uniform(-0.99, 0.99) prior distribution for φ1,

and for φ1, φ2 in the latent process AR(2), we used normal prior distribution with

mean zero and variance 104. Furthermore, we assigned normal priors distribution

with mean zero and variance 1 for the initial conditions in both processes.

In each case we set the following: burn-in period of 10000, three parallel MCMC

chains and then every 10th sample was kept until 1000 observations were obtained

from each chain. Thus, a total of 3000 observations were generated from the joint

posterior distribution of the parameters.

Tables 4.1 and 4.3 display the real values of the parameters, the empirical

means, the empirical standard deviations, MSE and DC standard errors with K=3
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and K=2, respectively. Both Tables show that the true value of the parameter is

very close to the estimated value, and the DC standard errors and the empirical

standard deviations are in very good agreement.

Tables 4.2 and 4.4 display the empirical means, the empirical standard devia-

tions, MSE and Bayes MCMC standard errors with K=1.

Also, we present the percentage coverage of 95% confidence interval of both

cases in Table 4.5.

Table 4.1: Estimation of PARH model parameters with AR(1) latent
process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

γ0 -1.00 -1.0070 0.0154 0.1239 0.1307

γ1 -2.00 -2.0318 0.03619 0.1878 0.1912

β0 -1.00 -0.9705 0.0611 0.2457 0.2290

β1 1.50 1.4907 0.0064 0.0794 0.0747

σ 0.80 0.7969 0.0011 0.0337 0.0361

φ1 -0.50 -0.4922 0.0029 0.0535 0.0531
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Table 4.2: Estimation of PARH model parameters with AR(1) latent
process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

γ0 -1.00 -1.0121 0.0157 0.1248 0.1311

γ1 -2.00 -2.0452 0.0378 0.1894 0.1920

β0 -1.00 -0.9640 0.0668 0.2563 0.2220

β1 1.50 1.4885 0.0070 0.0831 0.0724

σ 0.80 0.8014 0.0011 0.0339 0.0365

φ1 -0.50 -0.4881 0.0030 0.0539 0.0536

Table 4.3: Estimation of PARH model parameters with AR(2) latent
process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

γ0 -1.50 -1.5222 0.0286 0.1679 0.1734

γ1 -3.00 -3.0610 0.0832 0.2821 0.2908

β0 -1.00 -0.9984 0.0284 0.1688 0.1635

β1 2.00 2.0003 0.0152 0.1236 0.1247

σ 0.90 0.9013 0.0064 0.0802 0.0793

φ1 1.00 0.9950 0.0030 0.0549 0.0539

φ2 -0.75 -0.7427 0.0031 0.0556 0.0499
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Table 4.4: Estimation of PARH model parameters with AR(2) latent
process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

γ0 -1.50 -1.5304 0.0295 0.1693 0.1741

γ1 -3.00 -3.0805 0.0875 0.2849 0.2926

β0 -1.00 -1.0089 0.0243 0.1559 0.1632

β1 2.00 2.0040 0.0150 0.1226 0.1256

σ 0.90 0.9140 0.0064 0.0788 0.0805

φ1 1.00 0.9896 0.0031 0.0550 0.0547

φ2 -0.75 -0.7372 0.0029 0.0520 0.0500

Table 4.5: Percentage of coverage of a 95% confidence interval in
PARH model

Parameters AR(1) latent process AR(2) latent process

γ0 0.950 0.960

γ1 0.952 0.968

β0 0.918 0.940

β1 0.926 0.956

σ 0.962 0.948

φ1 0.952 0.934

φ2 - 0.938
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4.3.2 NBARH model

In this experiment we also considered two cases:

1. Case 1: NBARH with AR(1) latent process.

2. Case 2: NBARH with AR(2) latent process.

In Case 1, we used the following covariate sequences defined by xTt = (1, xt2), where

xt2 is standard normal random variable and zTt = (1, zt2, zt3), where zt2 = cos 2πt
365

and zt3 = sin 2πt
365
. In Case 2, xt2 is uniform(1,2) random variable and zTt = (1, zt2),

where zt2 = t
500
.

The same priors used in Section 4.3.1 were used in this experiment. Moreover,

a burn-in period of 5000 samples was used with three parallel chains and then

every 10th sample was kept, until 1000 observations were obtained from each

chain. Hence, a total of 3000 observations were generated from the joint posterior

distribution of the parameters.

The real values of the parameters, the empirical means, the empirical standard

deviations, MSE and DC standard errors with K=2 are shown in Tables 4.6 and

4.8, while Tables 4.7 and 4.9 show the same summary but with K=1. Almost we

have similar results for both DC method and Bayes MCMC method except for

estimating φ1 in AR(1) process and φ1, φ2 in AR(2) process, DC method gives

better unbiased estimate for these parameters than Bayes MCMC method. The

percentage of coverage of 95% confidence interval of both cases is presented in

Table 4.10.
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Table 4.6: Estimation of NBARH model parameters with AR(1)
latent process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

γ0 -1.50 -1.5425 0.0346 0.1815 0.1721

γ1 2.00 2.0587 0.0559 0.2296 0.2188

γ2 1.00 1.0346 0.0408 0.1993 0.1888

β0 -1.00 -0.9977 0.0265 0.1631 0.1577

β1 1.50 1.5029 0.0126 0.1125 0.1141

σ 0.70 0.6542 0.0232 0.1455 0.1458

φ1 -0.40 -0.3147 0.0540 0.2167 0.2863

Table 4.7: Estimation of NBARH model parameters with AR(1)
latent process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

γ0 -1.50 -1.5535 0.0363 0.1832 0.1730

γ1 2.00 2.0715 0.0583 0.2311 0.2196

γ2 1.00 1.0427 0.042 0.2011 0.1896

β0 -1.00 -1.0057 0.0268 0.1641 0.1591

β1 1.50 1.5081 0.0128 0.1132 0.1148

σ 0.70 0.6612 0.0217 0.1425 0.1413

φ1 -0.40 -0.2578 0.0565 0.1908 0.2786
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Table 4.8: Estimation of NBARH model parameters with AR(2)
latent process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

γ0 -0.50 -0.5076 0.0437 0.2091 0.1945

γ1 -1.00 -1.0163 0.1483 0.3852 0.3581

β0 1.00 0.9985 0.0487 0.2210 0.2163

β1 1.50 1.5005 0.0202 0.1421 0.1374

σ 0.50 0.5026 0.0025 0.0502 0.0503

φ1 1.00 0.9878 0.0110 0.1045 0.1031

φ2 -0.45 -0.4469 0.0080 0.0895 0.0872

Table 4.9: Estimation of NBARH model parameters with AR(2)
latent process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

γ0 -0.50 -0.5085 0.0440 0.2097 0.1947

γ1 -1.00 -1.0195 0.1496 0.3867 0.3585

β0 1.00 0.9968 0.0491 0.2217 0.2181

β1 1.50 1.5015 0.0203 0.1426 0.1385

σ 0.50 0.5098 0.0025 0.0491 0.0503

φ1 1.00 0.9741 0.0112 0.1026 0.1034

φ2 -0.45 -0.4351 0.0081 0.0886 0.0879
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Table 4.10: Percentage of coverage of a 95% confidence interval in
NBARH model

Parameters AR(1) latent process AR(2) latent process

γ0 0.942 0.936

γ1 0.928 0.934

γ2 0.930 -

β0 0.960 0.954

β1 0.948 0.948

σ 0.930 0.954

φ1 0.952 0.942

φ2 - 0.940

4.4 Application to asthma dataset

We revisited the dataset of daily counts of emergency department visits of

asthma for age group (70-79) years in Ontario, Canada again. We began by fitting

PARH model, retaining all the covariates used in ZIP model before. Namely: x1t =

t
2191

; x2t = weekend; x3t = cos 2πt
365

; x4t = sin 2πt
365

; x5t = cos 4πt
365

and x6t = sin 4πt
365
,

with AR(1) latent process and number of clones set to 1. Once we obtained our

final fitted PARH model we fitted NBARH model under the same specifications

as in the PARH using the same covariates, latent process and K = 1 clones.

In order to find an estimate for the dispersion parameter r in NBARH model,

we followed the subsequent steps:
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1. Find the MLE for β, γ, φ and σ with different values of r, (r = 1, 2, · · · , 9).

(The number of clones we used here is 1).

2. Generate 100 random data samples of the latent process {αt}.

3. Calculate AIC difference for all pairs of models with different values of r.

4. Determine the estimate r̂ by the r value that yielded the positive AIC dif-

ference with all other values of r.

The estimate r̂ = 1 was chosen in this analysis because it gave positive AIC

difference with all other values of r.

Estimated parameters, their standard errors and Wald statistic for PARH and

NBARH models are presented in Table 4.11. The diagnostic measurements for data

cloning algorithm convergence and Brook-Gelman statistic, R̂, are shown in Table

4.12. Furthermore, trace plots of all the parameters for both models are presented

in Figure 4.1 and 4.3 showing good mixing for all parameters samples with less

quality of mixing for σ in NBARH model. Also, plots of posterior densities of the

models parameters are shown in Figures 4.2 and 4.4.

The following priors were used for both models: N(0, 103) for fixed effects

β and γ; log normal(0,1) for the variance component, Uniform(-0.99,0.99) for

the correlation component, and for the initial condition α0, we used the prior

N(0, 1). For PARH model we set the following: number of chains=3; number

of adaptation steps to tune the sampler=20000; number of samples to be kept

after the burn-in samples are discarded=20000 and thinning rate =20. While for

NBARH model we used the following: number of chains=3; burn-in period=40000;

number of iterations following burn-in period=50000 and thinning rate=100. In

addition, taking model 1 to be PARH model and model 2 to be NBARH model, the
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difference AIC1−AIC2 value was 4971.6 indicating that NBARH model provides

better description of the data than does PARH model.

In Table 4.11, we see almost similar results for the fixed effects parameters

for both models. The hurdle portion in both models exhibits significant linear

decreasing trend, indicating that that for every new day, we expect 0.36%, (1 −

exp(−0.44)), reduction in the odds of having less than five visits to emergency

departments across Ontario, due to asthma in the age group (70-79) years.

Also, there is evidence of significant seasonal effects (annual and semi-annual

frequencies) on the model of the zeros while the effect of the weekends were not sig-

nificant on the distribution of the zeros. For the non-zero distributions, the trend

is significant at 0.1 level in PARH model (p-value=0.09) indicating an increase in

the number of daily visits to emergency departments over time, while such time

trend is not significant in NBARH model. Also, there are significant annual peri-

odic trend, while the semi-annual and weekend effects are not significant in both

models. The temporal autocorrelation among the non-zero observations is also

statistically significant with larger correlation value in NBARH model. Similarly,

there are significant variance components in both models indicating heterogeneity

in the non-zero observations.
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Table 4.11: Estimates and their standard errors from analysis of
asthma data by PARH and NBARH parameter driven models

Parameter
PARH model NBARH model

MLE DC SE z -value MLE DC SE z -value

β0 0.8139 0.0745 10.92** 0.5801 0.1769 5.37**

β1 0.2063 0.1234 1.67 0.2426 0.1706 1.42

β2 -0.0341 0.0438 -0.78 -0.0503 0.0761 -0.66

β3 0.1728 0.0516 3.35** 0.2359 0.0727 3.25**

β4 0.2179 0.0493 4.42** 0.2563 0.0686 3.74**

β5 -0.0291 0.0479 -0.61 -0.0099 0.0652 -0.15

β6 -0.0549 0.0506 -1.09 -0.0802 0.0674 -1.19

γ0 -0.1299 0.0931 -1.40 -0.1285 0.0930 -1.38

γ1 -0.4432 0.1561 -2.84** -0.4447 0.1557 -2.86**

γ2 -0.0978 0.0988 -0.99 -0.0991 0.0983 -1.01

γ3 -0.1898 0.0621 -3.06** -0.1891 0.0619 -3.06**

γ4 -0.5364 0.0647 -8.29** -0.5368 0.0645 -8.32**

γ5 0.1491 0.0632 2.36* 0.1486 0.0630 2.36*

γ6 0.0335 0.0625 0.54 0.0335 0.0632 0.53

φ1 0.7624 0.0535 14.26** 0.9338 0.0307 30.45**

σ 0.2987 0.0397 7.53** 0.0963 0.0242 3.99**

* indicates significant at 0.05 level ** indicates significant at 0.01 level
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Table 4.12: Estimability diagnostics

Model Number of clones lambda.max ms error r2 R̂

PARH 1 0.0311 0.0426 0.0004 1.0085

NBARH 1 0.0384 0.0857 0.0204 1.0315
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Figure 4.1: The trace plots of PARH model parameters



4.4 Application to asthma dataset 103

Figure 4.2: The posterior densities of PARH model parameters
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Figure 4.3: The trace plots of NBARH model parameters
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Figure 4.4: The posterior densities of NBARH model parameters



Chapter 5

Parameter-driven Bivariate

Poisson model

The organization of this chapter is as follows: in Section 1 we present two

parameter-driven bivariate Poisson models and derive their properties. The esti-

mation procedure for the unknown parameters is again based on the DC algorithm

and is discussed in Section 2. A simulation study and real data applications are

provided in Sections 3 and 4.

5.1 Bivariate Poisson models

Suppose that W1,W2 and W3 are three independent random variables following

Poisson distributions with parameters λ1, λ2 and λ3. Define Y = W1 + W3 and

Z = W2 +W3. Then the joint probability mass function of Y and Z can be derived

as follows

P (Y = y, Z = z) =P (W1 +W3 = y,W2 +W3 = z)

106
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=

min(y,z)∑
i=0

P (W1 = y − i,W2 = z − i,W3 = i)

=

min(y,z)∑
i=0

P (W1 = y − i)P (W2 = z − i)P (W3 = i).

Of course, we get the last step using the independence of W1,W2 and W3. Now,

the joint probability mass function can be written as

P (Y = y, Z = z) =

min(y,z)∑
i=0

e−λ1λy−i1

(y − i)!
e−λ2λz−i2

(z − i)!
e−λ3λi3
i!

= e−(λ1+λ2+λ3)
λy1
y!

λz2
z!

min(y,z)∑
i=0

λi3
i!

y! λ−i1

(y − i)!
z! λ−i2

(z − i)!
.

Hence, the bivariate Poisson distribution of Y and Z is given by

P (Y = y, Z = z) = e−(λ1+λ2+λ3)
λy1
y!

λz2
z!

min(y,z)∑
i=0

(
y

i

)(
z

i

)
i!

(
λ3
λ1λ2

)i
, (5.1.1)

where y, z = 0, 1, 2, · · · .

Clearly, Y and Z marginally have Poisson distributions with means λ1 + λ3

and λ2 + λ3, respectively. Moreover, the covariance between Y and Z becomes

Cov(Y, Z) = Cov(W1 +W3,W2 +W3) = V ar(W3) = λ3,

and thus the correlation equals

Corr(Y, Z) =
λ3√

(λ1 + λ3)(λ2 + λ3)
.

We can see that the correlation is always positive as both λ3 and the dominator

exceed zero.
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The bivariate Poisson regression model arises if we assume that the parameters

depend on some explanatory variables, in other words:

lnλi = xTi βi =

pi∑
j=1

βijxij, i = 1, 2, 3

where the vectors xi and βi have dimension pi× 1. Therefore, the set of covariates

and their number may be different for different λi’s.

Suppose that {(Yt, Zt) : t = 1, 2, · · · , n} is a bivariate time series of observed

counts. Then we expect some dependence between successive observations, to ac-

commodate this kind of dependence we propose two bivariate Poisson models: the

first one with one latent process added to the cross-correlation parameter λ3, to

introduce equal correlation functions in the two processes {Yt} and {Zt} and also

to accommodate cross-correlation between them. The second one with two latent

processes added to the parameters λ1 and λ2, to propose different correlation func-

tions in the two processes {Yt} and {Zt}. In addition, both models accommodate

over-dispersion of the data.

5.1.1 Bivariate Poisson with one latent process

To handle the correlation and cross-correlation between successive bivariate

observations, the following parameter-driven bivariate Poisson model with one

latent process (BP1) is proposed. To illustrate, consider a stationary autoregressive

process of order p, AR(p), such that

αt = φαt−1 + φ2αt−2 + · · ·+ φpαt−p + εt,
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where {εt} is a normal random process with mean zero and variance σ2. Condi-

tioning on αt, suppose (yt, zt) is a sequence of independent counts with bivariate

Poisson distribution defined as follows:

f(yt, zt|αt) = e−(λ1t+λ2t+λ3t)
λyt1t
yt!

λzt2t
zt!

min(yt,zt)∑
i=0

(
yt
i

)(
zt
i

)
i!

(
λ3t
λ1tλ2t

)i
, (5.1.2)

where yt, zt = 0, 1, 2, · · · and t = 1, 2, · · · , n. The parameters λ1t, λ2t and λ3t satisfy

lnλ3t = xT3tβ3 + αt =

p3∑
j=1

β3jx3jt + αt,

and

lnλit = xTitβi =

pi∑
j=1

βijxijt, (i = 1, 2),

where the vectors xit and βi (i = 1, 2, 3) have dimension pi × 1. Also, assume that

f(yt, zt|αt) = f(yt, zt|αt,α(t−1)) = f(yt, zt|αt,α(t−1),y(t−1), z(t−1)), t = 1, 2, · · ·

(5.1.3)

where (y(t), z(t)) = ((yt, zt), (yt−1, zt−1), · · · , (y1, z1)) and

α(t) = (αt, αt−1, · · · , α0, α−1, · · · , α1−p).

The marginal moments of the observed bivariate process {(Yt, Zt)} are given

as follows:

EYt = E(E(Yt|αt)) = E(λ1t + λ3t) = ex
T
1tβ1 + ex3t

T β3Eeαt = ex
T
1tβ1 + µαe

xT3tβ3 ,

where µα = Eeαt , and

σ2
yt = V ar(Yt) =E(V ar(Yt|αt)) + V ar(E(Yt|αt))
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=E(λ1t + λ3t) + V ar(λ1t + λ3t)

=ex
T
1tβ1 + ex

T
3tβ3Eeαt + e2x

T
3tβ3V ar(eαt)

=ex
T
1tβ1 + (µα + σ2

αe
xT3tβ3)ex

T
3tβ3 ,

where σ2
α = V ar(eαt). Similarly, the mean and the variance of the process {Zt} are

EZt = ex
T
2tβ2 + µαe

xT3tβ3 ,

and

σ2
zt = V ar(Zt) = ex

T
2tβ2 + (µα + σ2

αe
xT3tβ3)ex

T
3tβ3 .

The autocovariance function of the observed process {Yt} is given by

γyt(h) =Cov(E(Yt|α(t+h)), E(Yt+h|α(t+h))) + E(Cov(Yt|α(t+h), Yt+h|α(t+h)))

=Cov(E(Yt|αt), E(Yt+h|αt+h)) + E(Cov(Yt|αt, Yt+h|αt+h))

=Cov(λ1t + λ3t, λ1(t+h) + λ3(t+h))

=Cov(ex
T
3tβ3+αt , ex

T
3(t+h)

β3+αt+h)

=e(x3t+x3(t+h))
T β3Cov(eαt , eαt+h)

=e(x3t+x3(t+h))
T β3γα(h),

where γα(h) is the autocovariance function of the latent process {eαt} and h 6= 0.

In the above derivation, we have used the fact that the conditional distribution of

the observed process Yt given the future of the latent processes is same as if only

the current states of the latent processes were given ( for details see Proposition

B.1. in Appendix). Clearly, the correlation between Yt and Yt+h could be positive

or negative depending on the sign of γα(h), and the process {Yt} is not stationary
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time series since γyt(h) depends on t. In addition, following the previous steps, we

will get the same autocovariance function for the observed process {Zt}.

Furthermore, the cross-covariance function between Yt and Zt+h when h = 0,

can be derived as follows

γytzt(0) =Cov(E(Yt|α(t+h)), E(Zt|α(t+h))) + E(Cov(Yt|α(t+h), Zt|α(t+h)))

=Cov(λ1t + λ3t, λ2t + λ3t) + E(λ3t)

=Cov(ex
T
3tβ3+αt , ex

T
3tβ3+αt) + E(ex

T
3tβ3+αt)

=e2x
T
3tβ3V ar(eαt) + ex

T
3tβ3E(eαt)

=(µα + σ2
αe

xT3tβ3)ex
T
3tβ3 ,

showing that the cross-correlation between Yt and Zt is always positive. When

h 6= 0, the cross-covariance function is

γytzt(h) = Cov(Yt, Zt+h) =Cov(E(Yt|αt), E(Zt+h|αt+h)) + E(Cov(Yt|αt, Zt+h|αt+h))

=Cov(λ1t + λ3t, λ2(t+h) + λ3(t+h))

=Cov(ex
T
3tβ3+αt , ex

T
3(t+h)

β3+αt+h)

=e(x3t+x3(t+h))
T β3Cov(eαt , eαt+h)

=e(x3t+x3(t+h))
T β3γα(h),

which is the same autocovariance function for the processes {Yt} and {Zt}.

As a special case, assume that αt = φαt−1+εt is an AR(1) process, the marginal

moments of (Yt, Zt) are obtained as follows

E(Yt) = ex
T
1tβ1 + e

σ2

2(1−φ2)
+xT3tβ3 and E(Zt) = ex

T
2tβ2 + e

σ2

2(1−φ2)
+xT3tβ3 ,
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σ2
yt = V ar(Yt) =ex

T
1tβ1 + e

σ2

2(1−φ2)
+xT3tβ3 + e

σ2

(1−φ2)
+2xT3tβ3

(
e

σ2

(1−φ2) − 1

)
=ex

T
1tβ1 +

[
1 + e

σ2

2(1−φ2)
+xT3tβ3

(
e

σ2

(1−φ2) − 1

)]
e

σ2

2(1−φ2)
+xT3tβ3 ,

similarly,

σ2
zt = V ar(Zt) = ex

T
2tβ2 +

[
1 + e

σ2

2(1−φ2)
+xT3tβ3

(
e

σ2

(1−φ2) − 1

)]
e

σ2

2(1−φ2)
+xT3tβ3 .

The autocovariance function of the process {Yt} is

γyt(h) = e
(x3t+x3(t+h))

T β3+
σ2

(1−φ2)

(
e
σ2φh

(1−φ2) − 1

)
,

which is also the autocovariance function for {Zt} and is the cross-covariance

function between Yt and Zt+h, h 6= 0. Finally, the cross-covariance function for Yt

and Zt is

γytzt(0) =

[
e

σ2

2(1−φ2) + e
σ2

(1−φ2)
+xT3tβ3

(
e

σ2

(1−φ2) − 1

)]
ex

T
3tβ3

=

[
1 + e

σ2

2(1−φ2)
+xT3tβ3

(
e

σ2

(1−φ2) − 1

)]
e

σ2

2(1−φ2)
+xT3tβ3 .

5.1.2 Bivariate Poisson with two latent processes

In this section, we introduce another parameter-driven bivariate Poisson model

with two latent processes (BP2) to accommodate different correlations in the ob-

served processes {Yt} and {Zt}. To be precise, consider two stationary autoregres-

sive processes of order p and q, respectively, such that

αt = φ1αt−1 + φ2αt−2 + · · ·+ φpαt−p + εt,

and
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α̃t = φ̃1α̃t−1 + φ̃2α̃t−2 + · · ·+ φ̃pα̃t−q + ε̃t,

where {εt} and {ε̃t} are independent normal random processes with mean zero and

variance σ2 and σ̃2, respectively. Suppose that (yt, zt) conditioning on αt and α̃t

from a bivariate sequence of independent counts with bivariate Poisson distribution

defined by:

f(yt, zt|αt, α̃t) = e−(λ1t+λ2t+λ3t)
λyt1t
yt!

λzt2t
zt!

min(yt,zt)∑
i=0

(
yt
i

)(
zt
i

)
i!

(
λ3t
λ1tλ2t

)i
, (5.1.4)

where yt, zt = 0, 1, 2, · · · and t = 1, 2, · · · , n. The parameters λ1t, λ2t and λ3t satisfy

lnλ1t = xT1tβ1 + αt =

p1∑
j=1

β1jx1jt + αt, lnλ2t = xTt β2 + α̃t =

p2∑
j=1

β2jx2jt + α̃t

and

lnλ3t = xT3tβ3 =

p3∑
j=1

β3jx3jt,

where the vectors xit and βi (i = 1, 2, 3) have dimension pi × 1. Also, consider the

following assumptions:

1. f(yt, zt|αt, α̃t) = f(yt, zt|α(t), α̃(t)) = f(yt, zt|α(t), α̃(t),y(t−1), z(t−1))

2. f(yt|αt) = f(yt|α(t), α̃(t))

3. f(zt|α̃t) = f(zt|α(t), α̃(t))

The marginal moments of the observed bivariate process {(Yt, Zt)} are given

as follows:

EYt = E(E(Yt|αt)) = E(λ1t + λ3t) = ex
T
1tβ1Eeαt + ex3t

T β3 = ex
T
3tβ3 + µαe

xT1tβ1 ,
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where µα = Eeαt . Similarly, the marginal mean of Zt is

EZt = ex
T
3tβ3 + µα̃e

xT2tβ2 , where µα̃ = Eeα̃.

The variance of the process {Yt} is

σ2
yt = V ar(Yt) =E(V ar(Yt|αt)) + V ar(E(Yt|αt))

=E(λ1t + λ3t) + V ar(λ1t + λ3t)

=ex
T
1tβ1Eeαt + ex

T
3tβ3 + e2x

T
1tβ1V ar(eαt)

=ex
T
3tβ3 + (µα + σ2

αe
xT1tβ1)ex

T
1tβ1 ,

where σ2
α = V ar(eαt). Analagously, the marginal variance of Zt is

σ2
zt = V ar(Zt) = ex

T
3tβ3 + (µα̃ + σ2

α̃e
xT2tβ2)ex

T
2tβ2 , where σ2

α̃ = V ar(eα̃).

The autocovariance function of the process {Yt} is obtained as follows

γyt(h) =Cov(E(Yt|α(t+h), α̃(t+h)), E(Yt+h|α(t+h), α̃(t+h)))+

E(Cov(Yt|α(t+h), α̃(t+h), Yt+h|α(t+h), α̃(t+h)))

=Cov(E(Yt|αt), E(Yt+h|αt+h)) + E(Cov(Yt|αt, Yt+h|αt+h))

=Cov(λ1t + λ3t, λ1(t+h) + λ3(t+h))

=Cov(ex
T
1tβ1+αt , ex

T
1(t+h)

β1+αt+h)

=e(x1t+x1(t+h))
T β1Cov(eαt , eαt+h)

=e(x1t+x1(t+h))
T β1γα(h),

where γα(h) is the autocovariance function of the latent process {eαt}. In the above
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derivation we have used the fact that Yt|α(t+h), α̃(t+h) has the same distribution

as Yt|αt proven in Proposition B.2. in Appendix B. Similarly, the autocovariance

function of {Zt} is given by

γzt(h) = Cov(Zt, Zt+h) = e(x2t+x2(t+h))
T β2γα̃(h),

where γα̃(h) is the autocovariance function of the latent process {eα̃}. Notice that

we have different autocovariance functions for the two processes {Yt} and {Zt}.

Moreover, the cross-covariance function between Yt and Zt, when h = 0, is derived

as follows

γytzt(0) =Cov(E(Yt|α(t+h), α̃(t+h)), E(Zt|α(t+h), α̃(t+h)))+

E(Cov(Yt|α(t+h), α̃(t+h), Zt|α(t+h), α̃(t+h)))

=Cov(E(Yt|αt), E(Zt|α̃t)) + E(Cov(Yt|αt, Zt|α̃t))

=Cov(λ1t + λ3t, λ2t + λ3t) + E(λ3t)

=Cov(ex
T
1tβ1+αt , ex

T
2tβ2+α̃t) + ex

T
3tβ3

=ex
T
1tβ1+x

T
2tβ2Cov(eαt , eα̃t) + ex

T
3tβ3

=ex
T
3tβ3 .

When h 6= 0,

γytzt(h) =Cov(E(Yt|α(t+h), α̃(t+h)), E(Zt+h|α(t+h), α̃(t+h)))+

E(Cov(Yt|α(t+h), α̃(t+h), Zt+h|α(t+h), α̃(t+h)))

=Cov(E(Yt|αt), E(Zt+h|α̃t+h)) + E(Cov(Yt|αt, Zt+h|α̃t+h))

=Cov(λ1t + λ3t, λ2t + λ3t)
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=Cov(ex
T
1tβ1+αt , ex

T
2(t+h)

β2+α̃t+h)

=ex
T
1tβ1+x

T
2(t+h)

β2Cov(eαt , eα̃t+h)

=0,

which means that there is no cross-correlation betweeen the random variables Yt

and Zt+h except when h = 0.

Consider the special case when αt = φαt−1 + εt and α̃t = φ̃α̃t−1 + ε̃t. The

marginal moments of the process {(Yt, Zt)} are given as follows

E(Yt) = ex
T
3tβ3 + e

σ2

2(1−φ2)
+xT1tβ1 and E(Zt) = ex

T
3tβ3 + e

σ̃2

2(1−φ̃2)
+xT2tβ2 ,

σ2
yt = V ar(Yt) = ex

T
3tβ3 +

[
1 + e

σ2

2(1−φ2)
+xT1tβ1

(
e

σ2

(1−φ2) − 1

)]
e

σ2

2(1−φ2)
+xT1tβ1 ,

σ2
zt = V ar(Zt) = ex

T
3tβ3 +

[
1 + e

σ̃2

2(1−φ̃2)
+xT2tβ2

(
e

σ̃2

(1−φ̃2) − 1

)]
e

σ̃2

2(1−φ̃2)
+xT2tβ2 .

The autocovariance function of the two processes {Yt} and {Zt} are given,

respectively as follows

γyt(h) = e
(x1t+x1(t+h))

T β1+
σ2

(1−φ2)

(
e
σ2φh

(1−φ2) − 1

)
,

γzt(h) = e
(x2t+x2(t+h))

T β2+
σ̃2

(1−φ̃2)

(
e
σ̃2φ̃h

(1−φ̃2) − 1

)
,

and the cross-covariance function is

γytzt(h) =


ex

T
3tβ3 , h = 0

0, h 6= 0
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5.2 Estimation

We can think of the bivariate Poisson regression model as a hierarchical model

that defines first the probability distribution function of W3, which is Poisson with

parameter λ3, and then defines the joint probability mass function of Y, Z|W3. To

illustrate, we note that

P (Y = y, Z = z|W3 = w3) =P (W1 +W3 = y,W2 +W3 = z|W3 = w3)

=P (W1 = y − w3,W2 = z − w3)

=P (W1 = y − w3)P (W2 = z − w2)

=
e−λ1λy−w3

1

(y − w3)!

e−λ2λz−w3
2

(z − w3)!
,

which is the product of the univariate probability functions of W1 and W2. In the

third step of the above derivation, we have made use of the fact that W1 and W2

are independent of each other. Now, the likelihood function can be written as

L(θ, y, z) =

min(y,z)∑
w3=0

P (y, z|w3)P (w3).

Notice that y, z ≥ w3, which implies 0 ≤ w3 ≤ min(y, z), where the non-negativity

constraint is due to the fact that the support of a Poisson distribution is the set

of non-negative integers.

5.2.1 Parameter estimation of BP1 model

The BP1 model [5.1.2] can be written hierarchy as follows:

Yt, Zt|W3t, αt ∼
2∏
i=1

Poisson (λi), with lnλi = xTitβi, (i = 1, 2),
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W3t|αt ∼ Poisson (λ3), with lnλ3 = xT3tβ3 + αt,

αt|αt−1, · · · , αt−p ∼ Normal (φ1αt−1 + · · ·+ φpαt−p, σ
2),

subject to the restriction 0 ≤ w3t ≤ min(yt, zt), t = 1, 2, · · · , n. The likelihood

function L(θ, y, z) of this model is obtained by

∫ min(yt,zt)∑
w3t=0

n∏
t=1

f(yt, zt|w3t, αt)h(w3t|αt)g(αt|αt−1, · · · , αt−p)g0(α0, · · · , α1−p)dα,

where θ = (θ1, θ2), θ1 = (β1, β2, β3) denotes the parameters of the fixed effects and

θ2 = (φ1, · · · , φp, σ) denotes the parameters of the autoregressive latent process

{αt}. α0, · · · , α1−p are the initial conditions of the AR(p) process. For more details

see Appendix A.

The posterior distribution of θ conditional on the cloned data (y, z)(K) =

((y, z), · · · , (y, z)) is given by

πK(θ|y, z) =
[L(θ, y, z)]Kπ(θ)

C(K, y, z)
,

where π(θ) is the prior distribution of the parameters, and

C(K, y, z) =

∫
[L(θ, y, z)]Kπ(θ)dθ,

is the normalizing constant.
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5.2.2 Parameter estimation of BP2 model

The BP2 model [5.1.4] can be written hierarchically as follows:

Yt, Zt|W3t, αt, α̃t ∼
2∏
i=1

Poisson (λi),

with lnλ1 = xT1tβ1 + αt and lnλ2 = xT2tβ2 + α̃t,

W3t ∼ Poisson (λ3), with lnλ3 = xT3tβ3,

αt|αt−1, · · · , αt−p ∼ Normal (φ1αt−1 + · · ·+ φpαt−p, σ
2),

α̃t|α̃t−1, · · · , α̃t−q ∼ Normal (φ̃1α̃t−1 + · · ·+ φ̃qα̃t−q, σ̃
2),

subject to the constraint 0 ≤ w3t ≤ min(yt, zt), t = 1, 2, · · · , n. The likelihood

function of this model is obtained by

L(θ, y, z) =

∫ min(yt,zt)∑
w3t=0

n∏
t=1

f(yt, zt|w3t, αt)h(w3t)G(α, α̃)dαdα̃,

where

G(α, α̃) = g(αt|αt−1, · · · , αt−p) g̃(α̃t|α̃t−1, · · · , α̃t−q)g0(α0, · · · , α1−p)g̃0(α̃0, · · · , α̃1−q),

θ = (θ1, θ2, θ3), θ1 = (β1, β2, β3) denotes the parameters of the fixed effects, the pa-

rameters of the latent process {αt} are denoted by θ2 = (φ1, · · · , φp, σ), and finally

θ3 = (φ̃1, · · · , φ̃q, σ̃) denotes the parameters of the latent process {α̃t}.α0, · · · , α1−p

and α̃0, · · · , α̃1−q are the initial conditions of AR(p) and AR(q) processes, respec-

tively.
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The posterior distribution of θ conditional on the data (y, z)(K) is given by

πK(θ|y, z) =
[L(θ, y, z)]Kπ(θ)

C(K, y, z)
,

where π(θ) is the prior distribution of the parameters, and

C(K, y, z) =

∫
[L(θ, y, z)]Kπ(θ)dθ,

is the normalizing constant.

5.3 Numerical studies

A simulation study was conducted to check the performance of the DC method

when the data is simulated from BP1 and BP2 models. We used 500 Monte

Carlo realizations from each model with sample size of 500 in each realization.

dclone, rjags and coda packages from R and Jags software were used to do these

simulations.

5.3.1 Experiment 1: BP1 model

In this experiment we considered two cases:

1. Case 1: BP1 with AR(1) latent process.

2. Case 2: BP1 with AR(2) latent process.

The true values for the parameters λ1t, λ2t and λ3t in Case 1 are as follows:

lnλ1t = 2 + xt, lnλ2t = 1.5− 0.5xt and lnλ3t = −1 + 2xt + αt,
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the latent process {αt} is given by αt = −0.5αt−1 + εt, where εt ∼ Normal(0, 0.72)

and the explanatory variable xt was drawn from standard normal distribution,

whereas the true values for the parameters λ1t, λ2t and λ3t in Case 2 are given as

follows:

lnλ1t = 1.5 + 0.8xt, lnλ2t = 1− 0.5 sin
πt

3
− cosπt

3
and lnλ3t = 1 + αt,

the latent process {αt} is given by αt = αt−1−0.7αt−2+εt, where εt ∼ Normal(0, 0.52)

and xt is standard normal random variable.

The following priors were used in our simulations: normal distribution with

mean 0 and variance 103 for fixed effects parameters, log normal distribution with

mean 0 and variance 1 for the inverse of the variance component. For the latent

process AR(1), we used uniform prior distribution on the interval (−0.99, 0.99) for

φ1, and for φ1, φ2 in the latent process AR(2) we used normal prior distribution

with mean 0 and variance 104. Furthermore, we assigned normal priors distri-

butions with mean 0 and variance 1 for the initial condition parameters in both

processes.

In each case we set the following: burn-in period of 2000, three parallel MCMC

chains and 5000 values to generate from the posterior distribution from each chain.

Tables 5.1 and 5.3 show the real values of the parameters, the empirical means,

the empirical standard deviations, MSE and DC standard errors with (K = 3).

Both Tables show that the true value of the parameter is very close to the estimated

value, and the DC standard errors and the empirical standard deviations are in

very good agreement.

Tables 5.2 and 5.4 show the real values of the parameters, the empirical means,

the empirical standard deviations, MSE and Bayes MCMC standard errors with
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(K = 1). Almost we have similar results for both DC method and Bayes MCMC

method except for estimating φ1 in AR(1) process and φ1, φ2 in AR(2) process, DC

method gives better unbiased estimate for these parameters than Bayes MCMC

method.

Table 5.5 shows the percentage of coverage of 95% confidence interval in BP1

model with AR(1) latent process and BP1 model with AR(2) latent process.

Table 5.1: Estimation of BP1 model parameters with AR(1) latent
process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

β10 2.00 1.9989 0.0005 0.0229 0.0228

β11 1.00 1.0013 0.0002 0.0146 0.0146

β20 1.50 1.4982 0.0018 0.0429 0.0402

β21 -0.50 -0.5004 0.0010 0.0309 0.0310

β30 -1.00 -1.0285 0.0776 0.2773 0.2683

β31 2.00 2.0140 0.0301 0.1730 0.1661

σ 0.70 0.6948 0.0080 0.0893 0.0889

φ1 -0.50 -0.4612 0.0294 0.1671 0.1487
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Table 5.2: Estimation of BP1 model parameters with AR(1) latent
process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

β10 2.00 1.9998 0.0005 0.0229 0.0228

β11 1.00 1.0011 0.0002 0.0146 0.0146

β20 1.50 1.5008 0.0019 0.0431 0.0400

β21 -0.50 -0.4981 0.0010 0.0312 0.0310

β30 -1.00 -1.0756 0.0880 0.2871 0.2748

β31 2.00 2.0391 0.0331 0.1778 0.1702

σ 0.70 0.7157 0.0079 0.0876 0.0898

φ1 -0.50 -0.4214 0.0343 0.1679 0.1559
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Table 5.3: Estimation of BP1 model parameters with AR(2) latent
process using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

β10 1.50 1.5004 0.0017 0.0417 0.0426

β11 0.80 0.8005 0.0006 0.0251 0.0259

β20 1.00 0.9925 0.0058 0.0760 0.0719

β21 -0.50 -0.5028 0.0031 0.0557 0.0536

β22 -1.00 –1.0079 0.0054 0.0732 0.0681

β30 1.00 0.9943 0.0068 0.0825 0.0806

σ 0.50 0.5032 0.0024 0.0493 0.0476

φ1 1.00 0.9883 0.0039 0.0612 0.0591

φ2 -0.70 -0.6913 0.0034 0.0576 0.0524
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Table 5.4: Estimation of BP1 model parameters with AR(2) latent
process using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

β10 1.50 1.4998 0.0017 0.0416 0.0427

β11 0.80 0.8007 0.0006 0.0250 0.0259

β20 1.00 0.9896 0.0059 0.0758 0.0723

β21 -0.50 -0.5039 0.0031 0.0556 0.0534

β22 -1.00 -1.0099 0.0054 0.0733 0.0684

β30 1.00 0.9915 0.0068 0.0820 0.0816

σ 0.50 0.5113 0.0025 0.0488 0.0484

φ1 1.00 0.9808 0.0042 0.0615 0.0601

φ2 -0.70 -0.6836 0.0037 0.0582 0.0534
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Table 5.5: Percentage of coverage of a 95% confidence interval in
BP1 model

Parameters AR(1) latent process Parameters AR(2) latent process

β10 0.948 β10 0.956

β11 0.948 β11 0.952

β20 0.928 β20 0.934

β21 0.948 β21 0.936

β30 0.944 β22 0.918

β31 0.936 β30 0.948

σ 0.946 σ 0.948

φ1 0.918 φ1 0.938

- - φ2 0.932

5.3.2 Experiment 2: BP2 model

In this experiment we also considered two cases:

1. Case 1: BP2 with two AR(1) latent processes.

2. Case 2: BP2 with two AR(2) latent processes.

The true values for the parameters λ1t, λ2t and λ3t in Case 1 are as follows:

lnλ1t = 1 + 0.9xt + αt, lnλ2t = 0.8 + 0.5xt + α̃t

and

lnλ3t = −1.4 + 2zt,
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the two latent processes are given by

αt = −0.6αt−1 + εt, and α̃t = 0.6α̃t−1 + ε̃t,

where εt ∼ Normal(0, 0.82), and ε̃t ∼ Normal(0, 0.42), the explanatory variable xt

is a standard normal random variable and zt is uniform random variable on the

interval (0, 2).

The true values for the parameters λ1t, λ2t and λ3t in Case 2 are as follows:

lnλ1t = 1 + 0.7xt + αt, lnλ2t = 1.5− 0.8xt + α̃t

and

lnλ3t = 0.5 + xt,

the latent processes are

αt = −0.4αt−1 − 0.5αt−2 + εt, where εt ∼ Normal(0, 0.62),

and

α̃t = α̃t−1 − 0.7α̃t−2 + ε̃t, where ε̃t ∼ Normal(0, 0.52)

and xt is standard normal random variable.

The following priors were used in our simulations: Normal(0, 103) for β1, β2

and β3, log Normal(0, 1) for σ and σ̃, uniform(−0.99, 0.99) for φ1 and φ̃1 in AR(1)

processes, Normal(0, 104) for φ1, φ2 and φ̃1, φ̃2 in AR(2) processes, and finally,

Normal(0, 1) for the initial condition parameters in both processes.

In each case we set the following: burn-in period of 2000, three parallel MCMC

chains with 5000 iterations from each chain.
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Tables 5.6 and 5.8 report the real values of the parameters, the empirical means,

the empirical standard deviations, MSE and DC standard errors with (K = 3) and

(K = 5), respectively. Both Tables show that the true value of the parameter is

very close to the estimated value, and the DC standard errors and the empirical

standard deviations are in very good agreement.

Tables 5.7 and 5.9 show the real values of the parameters, the empirical means,

the empirical standard deviations, MSE and Bayes MCMC standard errors with

(K = 1). Almost we have similar results for both DC method and Bayes MCMC

method.

Table 5.10 shows the percentage of coverage of 95% confidence interval in BP2

model with AR(1) latent process and BP2 model with AR(2) latent process.
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Table 5.6: Estimation of BP2 model parameters with two AR(1)
latent processes using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

β10 1.00 0.9982 0.0046 0.0677 0.0664

β11 0.90 0.9000 0.0037 0.0604 0.0555

β20 0.80 0.7975 0.0061 0.0780 0.0764

β21 0.50 0.4975 0.0018 0.0429 0.0427

β30 -1.40 -1.4070 0.0370 0.1923 0.1856

β31 2.00 2.0028 0.0114 0.1068 0.1036

σ 0.80 0.7991 0.0028 0.0528 0.0509

φ1 -0.60 -0.5947 0.0028 0.0523 0.0505

σ̃ 0.40 0.3996 0.0032 0.0565 0.0565

φ̃1 0.60 0.5681 0.0122 0.1033 0.1035
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Table 5.7: Estimation of BP2 model parameters with two AR(1)
latent processes using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

β10 1.00 0.9927 0.0046 0.0678 0.0671

β11 0.90 0.9019 0.0037 0.0605 0.0559

β20 0.80 0.7909 0.0063 0.0785 0.0778

β21 0.50 0.4982 0.0019 0.0430 0.0430

β30 -1.40 -1.4013 0.0365 0.1911 0.1849

β31 2.00 1.9997 0.0112 0.1060 0.1031

σ 0.80 0.8059 0.0028 0.0528 0.0516

φ1 -0.60 -0.5910 0.0029 0.0527 0.0510

σ̃ 0.40 0.4075 0.0031 0.0553 0.0558

φ̃1 0.60 0.5545 0.0133 0.1058 0.1045
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Table 5.8: Estimation of BP2 model parameters with two AR(2)
latent processes using DC method

Parameter Real value MLE estimator MSE Empirical SD DC SE

β10 1.00 0.9936 0.0056 0.0749 0.0714

β11 0.70 0.7033 0.0022 0.0472 0.0479

β20 1.50 1.4945 0.0047 0.0685 0.0647

β21 -0.80 -0.8031 0.0023 0.0482 0.0466

β30 0.50 0.4985 0.0112 0.1057 0.1004

β31 1.00 1.0012 0.0030 0.0545 0.0534

σ 0.60 0.5950 0.0027 0.0522 0.0496

φ1 -0.40 -0.4026 0.0074 0.0861 0.0802

φ2 -0.50 -0.5061 0.0045 0.0668 0.0697

σ̃ 0.50 0.4966 0.0012 0.0346 0.0356

φ̃1 1.00 1.0006 0.0026 0.0509 0.0497

φ̃2 -0.70 -0.7014 0.0020 0.0444 0.0446
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Table 5.9: Estimation of BP2 model parameters with two AR(2)
latent processes using Bayes MCMC.

Parameter Real value Bayes estimator MSE Empirical SD Bayes SE

β10 1.00 0.9857 0.0060 0.0759 0.0722

β11 0.70 0.7073 0.0023 0.0478 0.0487

β20 1.50 1.4895 0.0049 0.0690 0.0652

β21 -0.80 -0.8052 0.0024 0.0487 0.0470

β30 0.50 0.5012 0.0111 0.1057 0.1004

β31 1.00 0.9989 0.0029 0.0543 0.0533

σ 0.60 0.6030 0.0027 0.0523 0.0501

φ1 -0.40 -0.3953 0.0073 0.0853 0.0808

φ2 -0.50 -0.4978 0.0044 0.0660 0.0704

σ̃ 0.50 0.5052 0.0012 0.0347 0.0363

φ̃1 1.00 0.9940 0.0027 0.0513 0.0507

φ̃2 -0.70 -0.6945 0.0021 0.0453 0.0456
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Table 5.10: Percentage of coverage of a 95% confidence interval in
BP2 model

Parameters AR(1) latent processes Parameters AR(2) latent processes

β10 0.942 β10 0.932

β11 0.920 β11 0.954

β20 0.940 β20 0.932

β21 0.942 β22 0.936

β30 0.942 β30 0.936

β31 0.938 β31 0.952

σ 0.944 σ 0.948

φ1 0.946 φ1 0.922

σ̃ 0.946 φ2 0.944

φ̃1 0.942 σ̃ 0.946

- - φ̃1 0.942

- - φ̃2 0.940

5.4 Real data application

5.4.1 Asthma visits by asthma type

In this section, we will analyze daily counts of emergency department visits due

to asthma in the Canadian province of Ontario during the period January 1st, 2010

till December 29th, 2016 (sample size = 2555). The data set was obtained from the

Canadian Institute for Health Information and it consisted of daily counts of visits
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for two types of asthma (codes: J4500 (Predominantly allergic asthma without

stated status asthmaticus) and J4590 (Asthma, unspecified, without stated status

asthmatics)). The data are summarised in Figures 5.1, 5.2 and Table 5.11. It is

clear from these figures that there is some form of seasonal pattern with higher

activity occurring in September and October for type J4500 and in September,

October and December for type J4590. Also, there is suggestion to include effects

of weekends (Saturday and Sunday) because during weekends general practitioners

(private physicians) are less available and people tend to rely more on emergency

departments of hospitals when asthma attack occurs.

Table 5.11: A statistical summary of asthma dataset for ICD codes
J4590 and J4500

Asthma J4500 Asthma J4590

Mean 56.9 96.0

Variance 551.9 536.3

Standard deviation 23.5 23.2

Minimum 12 47

Maximum 268 221
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Figure 5.1: Asthma J4500 presentations
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Figure 5.2: Asthma J4590 presentations
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For this data set, We fitted the following model:

lnλit = βi0 +
6∑
j=1

βijxjt, (i = 1, 2)

and

lnλ3t = β30 + αt, (t = 1, · · · , 2555),

where αt = φ1αt−1 + εt and εt ∼ Normal(0, σ2). The explanatory variables are

as follows: x1t = t
2555

to include trend; x2t to include weekend effect; x3t =

cos 2πt
365

; x4t = sin 2πt
365

; x5t = cos 4πt
365

and x6t = sin 4πt
365

to include seasonal effects. The

dependent variables are, of course, counts of daily visits by people with asthma

types J4500 and J4590 in the province of Ontario in the period mentioned above.

Table 5.12 reports the model parameter estimates and the corresponding stan-

dard errors. For this application, the number of colons was k=5, burn-in period

of 20000 iterations, three MCMC chains with 10000 iterations each. Furthermore,

the following priors were used: Normal(0, 103) for the fixed random effects; log

Normal(0, 1) for the variance components and uniform(−0.99, 0.99) for the corre-

lation component.

To check the convergence of the DC approach, we calculated the largest eigen-

value of the posterior variance-covariance matrix, the mean square error and the

correlation-like fit statistic. The values are 0.0026, 0.0176 and 0.0000, respectively.

The values reflect the degenerateness of the posterior distribution and that the nor-

mal approximation is adequate. Also, Brooks-Gelman statistic was R̂ = 1.0905,

indicating MCMC chain convergence.

In order to examine the convergence of the DC approach, we provided plots of

the posterior densities of the model parameters (Figure 5.3) and their trace plots

(Figure 5.4). The posterior densities look appropriately normal, and the trace
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plots suggest that the samples of all parameters got mixed well, but the samples

of the cross correlation component show less quality of mixing.

Table 5.12: Estimates and their standard errors from analysis of
asthma data for types J4500 and J4590

Parameter MLE DC SE z-value Parameter MLE DC SE z-value

β10 3.9704 0.0123 322.80** β20 4.4774 0.0077 581.04**

β11 -0.4593 0.0219 -20.97** β21 -0.1305 0.0127 10.28**

β12 0.1258 0.0079 15.92** β22 0.0432 0.0053 8.15**

β13 0.1659 0.0101 16.43** β23 0.1199 0.0055 21.80**

β14 0.0157 0.0090 1.74 β24 0.0328 0.0055 5.96**

β15 -0.1733 0.0092 -18.84** β25 -0.0570 0.0053 10.75**

β16 -0.1297 0.0092 -14.10** β26 -0.0519 0.0054 9.61**

φ1 0.9286 0.0103 90.16** β30 1.8229 0.1142 15.96**

σ 0.4804 0.0210 22.88** - - -

** indicates significant at 0.001 level
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Figure 5.3: The posterior densities of BP1 model parameters
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Figure 5.4: The trace plots of BP1 model parameters
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Table 5.12 reveals that there is a significant trend effect indicating decrease in

the counts of both asthma types. Also, weekend effect is highly significant variable

for both asthma types. Fourier series terms to model seasonal pattern in the data

are statistically significant except sin 2πt
365

for asthma type J4500. Furthermore, the

cross correlation component is significant and the parameters of the latent process

are also significant. It is noteworthy that the strength of the various regression

coefficients are not same for the two types of asthma. For instance, the effect of

weekend as compared to week days is 0.1258 for J4500 while such effect is 0.0432

for J4590. This is an indication that the two asthma types do not behave the same

way and hence, a bivariate modeling, or in general, regressions models that take

into account the type variable, are necessary.

5.4.2 Asthma visits by age group

Another scenario where a bivariate count data may arise is when one considers

emergency department visits due to asthma for different age groups. Here, for the

sake of illustration, we will analyze daily counts of emergency department visits

due to asthma in the Canadian province of Ontario during the period January 1st,

2010 till December 10th, 2015 (sample size = 2170) for children in the age groups

(0-9) and (10-19) years. The data set was obtained from the Canadian Institute

for Health Information.

Figures 5.5 and 5.6 show time series plots of these data, while Table 5.13

provides summary statistics. It is clear from these figures that there is some

form of seasonal pattern with higher activity occurring in the fall (September-

November) for both age groups. Also, there is suggestion to include model terms

for weekend effect (Saturday and Sunday) for the same reasons as stated in the

previous section.
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Table 5.13: A statistical summary of asthma dataset

Age group (0-9) years Age group (10-19) years

Mean 48.9 22.3

Variance 453.0 87.8

Standard deviation 21.3 9.4

Minimum 11 5

Maximum 237 91
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Figure 5.5: Asthma presentations for age group (0-9) years
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Figure 5.6: Asthma presentations for age group (10-19) years
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The following model is found useful in our exploration of the data:

lnλ1t = β10 +
6∑
j=1

β1jxjt + αt, lnλ2t = β20 +
6∑
j=1

β2jxjt + α̃t

and

lnλ3t = β30,

where αt ∼ Normal(0, σ2), α̃t = φ̃1α̃t−1+εt and εt ∼ Normal(0, σ̃2). The explana-

tory variables are as follows: x1t = t
2170

to include trend; x2t to include weekend

effect; x3t = cos 2πt
365

; x4t = sin 2πt
365

; x5t = cos 4πt
365

and x6t = sin 4πt
365
, (t = 1, · · · , 2170).

The dependent variables are:

1. Emergency department daily visits by children aged (0-9) years.

2. Emergency department daily visits by people aged (10-19) years.

Table 5.14 reports the model parameter estimates and the corresponding stan-

dard errors. For this application, the number of clones was k=5, burn-in period

of 30000 iterations, two MCMC chains with 10000 iterations each. Furthermore,

the following priors were used: Normal(0, 103) for fixed random effects; log Nor-

mal(0, 1) for variance components and uniform(−0.99, 0.99) for correlation com-

ponent.

To check the convergence of the DC approach, we calculated the largest eigen-

value of the posterior variance-covariance matrix, the mean square error and the

correlation-like fit statistic. The values are 0.0019, 0.0091 and 0.0002, respectively.

The values reflect the degenerateness of the posterior distribution and that the

normal approximation is adequate. Also, Brooks-Gelman statistic, R̂ = 1.0569,

indicating MCMC chain convergence.

For further investigate the behaviour of the convergence of the DC approach,
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Figure 5.7 provides a plot of the posterior densities of the model parameters which

look appropriately normal, and Figure 5.8 presents trace plots for model parame-

ters and it suggests that the samples of the parameters got mixed well except the

samples of β01, β02 and β03 show less quality of mixing.

Table 5.14: Estimates and their standard errors from analysis of
asthma data for age groups (0-9) and (10-19) years

Parameter MLE DC SE z -value Parameter MLE DC SE z -value

β10 3.7369 0.0240 155.70** β20 2.6323 0.0650 40.50**

β11 -0.4809 0.0303 -15.87** β21 -0.5692 0.0907 -6.28**

β12 0.1740 0.0197 8.83** β22 0.0679 0.0225 3.02*

β13 0.2520 0.0132 19.09** β23 -0.0090 0.0378 -0.24

β14 -0.0116 0.0118 -0.98 β24 -0.1657 0.0369 -4.49**

β15 -0.3152 0.0133 -23.70** β25 -0.3343 0.0373 -8.96**

β16 -0.1963 0.0128 -15.34** β26 -0.2817 0.0377 -7.47**

σ 0.3473 0.0086 40.38** σ̃ 0.2482 0.0167 14.86**

β30 2.2915 0.0546 41.97** φ̃1 0.7806 0.0251 31.10**

* indicates significant at 0.01 level, ** indicates significant at 0.001 level
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Figure 5.7: The posterior densities of BP2 model parameters
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Figure 5.8: The trace plots of BP2 model parameters
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Table 5.14 reveals that weekend effect is highly significant variable for both age

groups but with larger effect on the group (0-9) years. Also, there is significant

trend effect indicating decrease in the counts of both age groups. In addition,

Fourier series terms to model seasonal pattern in the data are statistically sig-

nificant except sin 2πt
365

for age group (0-9) years and cos 2πt
365

for age group (10-19)

years.

The variance components for both age groups are statistically significant. This

means that the daily number of asthma visitors to the emergency department

of hospitals for both age groups express significant heterogeneity. Also, there is

significant correlation between observations for the age group (10-19) years, and

the parameter of cross correlation β30 is also statistically significant.



Chapter 6

Summary and future research

6.1 Summary and Outline of Contributions

Parameter-driven models for time series of counts are attractive because the

regression coefficients therein are interpretable in the same way that a generalized

linear model with random effects is interpreted. A major difficulty posed by these

models, however, comes from their computational intractability. There have been

many works in the literature using various computational approaches, including

Bayesian, EM and Particle filtering, to estimate the parameters of these models

and carry out inferences. The computational difficulty is further complicated when

the counts are bivariate, or more generally multivariate, or the data has extra zeros

than expected by the commonly used models.

In this dissertation, we studied three kinds of parameter-driven count models.

The main goal of these models is to accommodate correlation between observations

in time series data.

Namely, in Chapter 2 and 3, we presented ZIP and ZINB parameter-driven

models and derived their marginal moments. Using data cloning method, we

computed the maximum likelihood estimates of the models parameters and their

150
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asymptotic variance. As an application of these models, we used two datasets: the

first one is daily counts of emergency department visits for asthma type J4591 in

Ontario, and the second one is the daily counts of emergency department visits

for asthma of the age group (70-79) years in Ontario.

In Chapter 4, we proposed hurdle parameter-driven models for both Poisson

and negative binomial and used data cloning method to find the MLE for their

parameters. We applied these models on asthma datasets for the age group (70-79)

years. Using AIC difference procedure we showed that NBARH parameter-driven

model provides better description of the data than does PARH in both datasets.

Finally, in Chapter 5, we showed two kinds of parameter-driven models of bi-

variate Poisson distribution. One with one latent process and the other with two

latent processes. We derived the marginal moments of the observed bivariate pro-

cess, and numerical simulations were conducted on the estimation of the model’s

parameters. We applied the BP1 model to analyze linear and seasonal trends in

the counts of daily emergency department visits due asthma with ICD codes J4500

and J4590 in the province of Ontario. Similarly, we used the the BP2 model to

analyze daily visits due to asthma in the age groups (0-9) years and (10-19) years.

Here is a list of contributions in this study:

1. In Chapter 2 and 3:

(a) We computed the moments of ZIP and ZINB parameter-driven models

under the assumption of autoregressive latent process of order p.

(b) We formulated the two models in a hierarchical form appropriate for

the data cloning (DC) algorithm and carried out inferences based on

the DC method.

2. In Chapter 4:
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(a) We proposed new hurdle parameter-driven models for both Poisson and

negative binomial counts with extra zeros.

(b) We formulated the two models in a hierarchical format and applied a

DC algorithm to carry out the statistical inferences.

3. In Chapter 5:

(a) The following two new parameter-driven bivariate Poisson models were

introduced:

1- BP1 model by including an AR(p) process to the cross correlation

parameter of a bivariate Poisson distribution.

2- BP2 model by including two latent processes, AR(p) and AR(q), in

the marginal distributions of a bivariate Poisson model.

These two models are useful, in situations where the components of a

bivariate count time series have same temporal autocorrelation behavior

or different temporal autocorrelation behavior.

(b) We derived the moments of these new models, formulated them in hi-

erarchical specifications and used the DC method to obtain the MLEs

of their parameters.

6.2 Future study

In this dissertation we only considered autoregressive latent processes to model

temporal correlation. For more complicated correlation structure in the data, it

may be desirable to use a more general formula for the latent process like mixed
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autoregressive/moving-average process, mixed ARMA, which contains both au-

toregressive terms and moving average terms.

In future, it is important to develop model diagnostic tools based on residuals.

Such tools do not exist for models estimated via DC algorithm. However, in general

it is not easy to define and provide asymptotic results for residuals in the area of

mixed effects models, which includes the parameter-driven models as special cases

(Song [61])

When estimating the parameters of ZINB and NBARH parameter-driven mod-

els, we couldn’t use data cloning method to estimate the dispersion parameter r

directly. We computed the parameters of the model for different values of r, then

using AIC difference, we chose the estimate of r that gives us the smallest AIC.

This procedure is time consuming. It will be a major improvement if we can find

a procedure that can compute r directly without using AIC difference.

In Chapter 5, we presented a detailed description of two parameter-driven

bivariate Poisson models. The proposed models can only account for positive

correlation. From practical point of view, it is desirable to have flexible models

that allows for both positive and negative correlation between observations.

Also, we focused in Chapter 5 on bivariate Poisson which can be generalized

to parameter-driven multivariate Poisson model.



Appendices

A Derivation of the likelihood function

In this appendix, we will outline the derivation of the likelihood function used

throughout the thesis. Consider a stationary autoregressive process of order p,

AR(p), such that

αt = φ1αt−1 + φ2αt−2 + · · ·+ φpαt−p + εt,

where {εt} is a normal random process with mean zero and variance σ. Condi-

tioning on αt, suppose Yt is a sequence of independent counts with conditional

probability density p(yt|αt). Also, assume

p(yt|αt) = p(yt|αt,α(t−1)) = p(yt|αt,α(t−1),y(t−1)), t = 1, 2, · · ·

where α(t−1) = (αt−1, · · · , α0, α−1, · · · , αt−p) and y(t−1) = (yt−1, · · · , y1). Notice

that from the definition of AR(p) process we have

p(αt|αt−1, · · · , αt−p) = p(αt|α(t−1)) = p(αt|α(t−1),yt−1)), t = 1, 2, · · ·

Now, the joint likelihood of the data and the latent processes can be written
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as follows:

p(y1, · · · , yn, αn, · · · , α1, α0, α−1, · · · , αt−p) = p(yn|α(n),y(n−1))p(α(n),y(n−1))

= p(yn|αn)p(αn|α(n−1),y(n−1))p(α(n−1),y(n−1))

= p(yn|αn)p(αn|αn−1, · · · , αn−p)p(yn−1|α(n−1),y(n−2))p(α(n−1),y(n−2))

= · · ·

=
∏n

t=2 p(yt|αt)p(αt|αt−1, · · · , αt−p)p(α(1), y1)

=
∏n

t=1 p(yt|αt)p(αt|αt−1, · · · , αt−p)p(α0, · · · , α1−p).

B Some useful propositions

The next two propositions show that the distribution of the observed processes,

Yt and Zt, are independent of the future of the latent processes given their current

values.

Proposition B.1. Given that p(yt|αt) = p(yt|αt,α(t−1)), where αt is an AR(p)

process, we have

p(yt|αt) = p(yt|α(t+h)), (t = 1, 2, · · · ) and (h = 1, 2, · · · )

Proof.

p(yt|α(t+h)) =
p(α(t+h), yt)

p(α(t+h))

=
p(αt+h|α(t+h−1), yt)p(α

(t+h−1), yt)

p(α(t+h))

=
p(αt+h|αt+h−1, · · · , αt+h−p)p(αt+h−1|α(t+h−2), yt)p(α

(t+h−2), yt)

p(α(t+h))

=
p(αt+h|αt+h−1, · · · , αt+h−p)p(αt+h−1|αt+h−2, · · · , αt+h−1−p)p(α

(t+h−2), yt)

p(α(t+h))
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=

∏h
i=1 p(αt+i|αt+i−1, · · · , αt+i−p)p(α(t), yt)

p(α(t+h))

=

∏h
i=1 p(αt+i|αt+i−1, · · · , αt+i−p)p(yt|αt)p(α(t))

p(α(t+h))

=
p(yt|αt)

∏h
i=1 p(αt+i|αt+i−1, · · · , αt+i−p)p(α(t))∏h

i=1 p(αt+i|αt+i−1, · · · , αt+i−p)p(α(t))

=p(yt|αt)

Proposition B.2. Let {αt} and {α̃t} be two independent AR(p) and AR(q) pro-

cesses, respectively. Assume that

p(yt|αt) = p(yt|α(t), α̃(t)), (t = 1, 2, · · · )

Then

p(yt|α(t+h), α̃(t+h)) = p(yt|αt), (h = 1, 2, · · · )

Proof.

p(yt|α(t+h), α̃(t+h)) =
p(yt,α

(t+h), α̃(t+h))

p(α(t+h), α̃(t+h))

=
p(αt+h|α(t+h−1), α̃(t+h), yt)p(yt,α

(t+h−1), α̃(t+h))

p(α(t+h), α̃(t+h))

=
p(αt+h|αt+h−1, · · · , αt+h−p)p(α̃t+h|α(t+h−1), α̃(t+h−1), yt)p(yt,α

(t+h−1), α̃(t+h−1))

p(α(t+h), α̃(t+h))

=
p(αt+h|αt+h−1, · · · , αt+h−p)p(α̃t+h|α̃t+h−1, · · · , α̃t+h−q)p(yt,α(t+h−1), α̃(t+h−1))

p(α(t+h), α̃(t+h))

=

∏h
i=1 p(αt+i|αt+i−1, · · · , αt+i−p)p(α̃t+i|α̃t+i−1, · · · , α̃t+i−q)p(yt,α(t), α̃(t))

p(α(t+h), α̃(t+h))

=

∏h
i=1 p(αt+i|αt+i−1, · · · , αt+i−p)p(α̃t+i|α̃t+i−1, · · · , α̃t+i−q)p(yt|α(t), α̃(t))p(α(t), α̃(t))

p(α(t+h), α̃(t+h))

=
p(yt|αt)

∏h
i=1 p(αt+i|αt+i−1, · · · , αt+i−p)p(α̃t+i|α̃t+i−1, · · · , α̃t+i−q)p(α(t), α̃(t))∏h

i=1 p(αt+i|αt+i−1, · · · , αt+i−p)p(α̃t+i|α̃t+i−1, · · · , α̃t+i−q)p(α(t), α̃(t))
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= p(yt|αt).
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