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Abstract

The Dirac equation provides a fully relativistic covariant equation which can be used

to calculate relativistic transition rates but only for one-electron systems. For the

two-electron case, one can either use approximate relativistic wave functions or obtain

equivalent nonrelativistic operators that can be used with Schrödinger wave functions;

an approach that is preferred for low atomic number (Z) atoms. By using equivalent

nonrelativistic operators obtained from the Foldy-Wouthuysen transformation and

relativistically corrected Schrödinger wave functions, we show that we obtain the

same transition amplitude as in Dirac Theory up to order α2, where α is the fine

structure constant. We show this for the one-electron case and provide a theoretical

framework for the two-electron case. For the one-electron case we obtain analytic

first order corrected wave functions for the 2p states which have not been published

before. For the two-electron case we obtain first order corrected wave functions using

a variational method and compare two different Sturmian basis sets, which we label

triangular and linear basis sets. We show that the triangular basis set provides a

significant advantage over the linear basis set, increasing the precision by two orders

of magnitude. We also compare the wave functions obtained using pseudostates with

those obtained analytically and give some suggestions to improve the agreement near

zero.
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Chapter 1

Introduction

Transition probabilities give the probability that an atom will undergo a transition

from one atomic state to another due to interactions with electromagnetic fields.

These probabilities are used to calculate oscillator strengths and transition rates.

They are used extensively to determine the brighteness of atomic spectral lines in

spectroscopy.

Accurate relativistic transitions probabilities, which include relativistic correc-

tions, are needed in astrophysics for the interpretation of radiation intensities to

determine the temperature and density of the source [3], as well as relative chem-

ical abundances [4]. Chemical abundances are important in determining both the

structure and evolution of stars, enabling one to understand the internal structure

of stars [5]. Space spectrometers such as those on the Hubble, FUSE and Spitzer

space observatories, now have a much higher resolving power giving detailed spec-

tra which demand accurate transition probabilities [6]. Also the observation of some

spin-forbidden transitions in astrophysics [7] can only be explained by relativistic

treatment [8]. Plasma physics also require reliable spectral data for plasma modelling

and diagnostics [6]. The relativistic transition probabilities (along with thermody-

namics) will also allow for measurements of the temperature in fusion plasmas [9].
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These are of use for projects such as the ongoing international ITER project [10] in

France, which hopes to make a reliable carbon-free energy source from the fusion of

deuterium and tritium [11]. The plasma particles are heated, and fusion is achieved

in a tokomak device that uses magnetic fields to contain and control the hot plasma.

The tokomak uses tungsten in the divertor [12], which has a high atomic number, and

thus relativistic corrections are once again important in analysing the light emitted

by tungsten ions [13].

The Dirac theory provides a fully covariant relativistic theory which we can use

to calculate relativistic transition rates for one-electron systems. Thus in order to

calculate the relativistic transition probability we only need to evaluate:

〈
ΨD
j |~α ·A|ΨD

i

〉
(1.1)

where A is the vector potential for the emitted or absorbed photons and
∣∣ΨD

〉
rep-

resent Dirac wave functions.

However, it is a much more difficult problem for many-electron systems as there

is no such thing as a two-electron Dirac equation [14]. For low atomic number (Z)

helium-like ions, the approach that is often used is to start with a nonrelativistic

Hamiltonian with relativistic and QED corrections added by successive orders of

perturbation theory. Since the relativistic effects are of order (αZ)2 or higher, it

is not appropriate to do a perturbation expansion for helium-like ions that have a

large Z. On the other hand, due to the dominant Coulomb field in large Z atoms the

electron correlation effects decrease in proportion to 1
Z

relative to the energies [15].

The high Z region is therefore the region when the relativistic effects become

larger than correlation effects; i.e, when (αZ)2 > 1
Z
, or,Z > 26 [15]. For high Z, two

approaches can be used. Since relativistic effects dominate one can start with the one-

electron Dirac equation, which has relativistic effects included to all orders, and treat
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the electron correlation as a perturbation. One can also use the Multiconfigurational

Dirac Fock Method (MCDF), which is a self-consistent procedure that uses a com-

pletely relativistic basis [16]. However, there are a number of difficulties. In relativity

the total number of particles is not conserved rather only the charge is and it cannot

be written in Hamiltonian form as it is not fully relativistically covariant. Thus, all

practical calculations use an effective electron-electron interaction [17]. Additionally,

due to the negative energy solutions of the Dirac Hamiltonian, the calculations of

bound states must be restricted to the positive energy subspace through the use of

projection operators to prevent the “Brown and Ravenhall Disease [18] in which a

variational solution may collapse into the negative energy continuum.

It should be noted that in the nonrelativistic case approximations are added to

reduce the complexity of the calculations, while in the relativistic case the lack of a

fully covariant closed form of the Hamiltonian is a fundamental problem [19] and ap-

proximations are needed to formulate the mathematical model. In general, it is easier

to perform accurate nonrelativistic calculations than accurate relativistic calculations

[20], as the wave functions are less complex and we have a two-electron Schrödinger

Hamiltonian. Starting with the nonrelativistic case and adding relativistic corrections

may be an approach that will turn out to be both more practical and more accurate

than a priori relativistic calculations for many- electron systems [20]. At least for low

Z, where correlation effects are more important, a nonrelativistic approach would be

preferred.

Relativisitic transition probabilities for hydrogen, and hydrogenlike ions have been

calculated almost exactly, leaving only small quantum electrodynamic (QED) correc-

tions to be included [21]. For helium and helium-like ions Drake [22] developed the

“Unified Method” in 1988, which extended the high precision varational results valid

at low Z to those at intermediate and high Z by merging the 1
Z

expansions from non-

relativistic energies with the (αZ)2 expansions from Dirac energies. This was used for

3



very accurate calculations for the helium isoelectronic sequence and isolectronic tran-

sition probabilities which included relativistic effects. Using the Foldy-Wouthuysen

method, which is a canonical transformation used in relativistic quantum mechanics

to decouple the positive energy states from the negative states to some desired order,

Drake [23] developped a theory of relativistic magentic dipole transitions and also

applied it to the length form of electric dipole transitions [7]. Lin[24] again used

the Foldy-Wouthuysen transformation and presented an interaction Hamiltonian for

electric dipole transitions in helium-like systems. The resulting interaction Hamil-

tonian, used with relativistically corrected wave functions, via the Breit interaction,

should enable the evaluation of relativistic transition probabilities. Also, due to the

Foldy-Wouthuysen transformation, the operators in the interaction Hamiltonian are

nonrelativistic operators which enables us to use nonrelativistic wave functions and

also fully take into account electron correlation effects.

1.1 Purpose

This work investigates the Foldy-Wouthuysen method as a technique to calculate

relativistic corrections to electric dipole transitions. This method starts from the

nonrelativistic case and relativistic corrections will have to be included in both the

wave functions and the operator, up to order (αZ)2. We will consider especially spin

allowed transitions. While the ultimate goal is to use the interaction Hamiltonian

from Lin [24] to do calculations in two-electron systems, the present work investigates

the validity of Lin’s method by first testing it for one-electron systems, for which we

have exact relativistic results to compare with. Furthermore, in order to calculate the

relativistic corrections to the wave functions we will investigate two different Sturmian

basis sets for the pseudospectral method, and compare them with calculated analytic

wave function corrections.
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The goal is to show that by using equivalent nonrelativistic operators and rela-

tivistically corrected Schrödinger wave functions we can obtain the same results as

using relativistic operators and Dirac wave functions, correct up to some fixed order

in powers of the fine structure constant α = e2

~c while Z = 1 as we are considering the

hydrogenic case. Thus we would like to show that

〈
ΨD
j |~α ·A|ΨD

i

〉
=
〈

Ψ
(0)
j + α2Ψ

(1)
j |T (0) + α2T (1)|Ψ(0)

i + α2Ψ
(1)
i

〉
(1.2)

where
∣∣ΨD

〉
are Dirac wave functions,

∣∣Ψ(0)
〉

are Schrödinger wave functions,
∣∣Ψ(1)

〉
are the first order relativistic correction to the Schrödinger wave function and T (0) is

the usual nonrelativistic transition operator and T (1) are the equivalent nonrelativis-

tic transition operators obtained from the Foldy-Wouthuysen transformation. The

equality sign is valid up to order α2. We prove this for the one-electron case and

obtain the necessary operators and analytic wave functions. We also compare the

analytic results with those obtained from variational methods (which will be required

to extend this to the two-electron case).

Chapter 2 discusses the transition operator and the interaction Hamiltonian.

Chapter 3 discusses the Foldy-Wouthuysen transformation and the corrections to

the nonrelativistic transition operator, as well as the different terms needed to cal-

culate the transition integral. Chapter 4 discusses the theory of the pseudospectral

method. Chapter 5 focuses on corrections to the wave functions; we compare two

different basis sets used for generating the wave functions and obtain analytic wave

functions to use as a reference. Chapter 6 presents the results with discussion. And

Chapter 7 presents the conclusion and suggestions for future work.
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Chapter 2

Transition Operator

In this chapter, we will discuss the interaction of an atom with an electromagnetic

radiation field. When discussing the emission or absorption of electromagnetic energy

by an atom, we usually employ the method of quantum mechanical perturbation

theory [25]. One assumes that the atom and electromagnetic field are loosely coupled,

and that the atom is a separate entity [26, p.32]. In this approximation, we can

separate the entire wave function describing the system into a product of two wave

functions. Thus, we consider two quantum-mechanical systems, in our case the atom

and the electromagnetic field, with an interaction energy [25]. This interaction is

regarded as perturbation, which will cause transitions. These transitions are changes

of the atom state which result in the emission or absorption of one or more photons.

In 1916, Einstein proposed three processes by which such transitions could occur,

and gave them corresponding coefficients which are now called “Einstein Coefficients”.

Einstein Coefficients are related to the probability of absorption or emission of light

by an atom. Einstein A coefficients are for spontaneous emission, they are related to

the probability that an atom sponatenously emits a photon, and are in units of s−1

[26, p.43]
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Aji =
1

4πε0

4

3

ω3
ji

~c3

e

m
| 〈Ψj|Hint|Ψi〉 |2 (2.1)

where i and j are two different states of the atom, Hint is the interaction hamiltonian

between the two states of the atomic system and ωij corresponds to the frequency

of the transition between the two states. The above expression is for an unpolarized

field.

The two coefficients are related to each other by the relation [26, p.35]

Aji =
ω2
ij

π2c3
~ωijBji (2.2)

Einstein B coefficients are for absorption (which is related to the probability that

the atom absorbs a photon) and stimulated emission (which is related to the proba-

bility to emit a photon under the influence of an incoming photon).

In spectroscopy, oscillator strengths are more often used. These are dimensionless

quantities that describe the probabaility of emission or absorption of radiation in

transitions. These are related to the Einstein coefficients by [26, p.46]

Aji = −3γfji (2.3)

In all these values, the main term to calculate is 〈Ψj|Hint|Ψi〉, which is the inter-

action matrix also called the transition amplitude.

We will show the resulting interaction matrix in nonrelativisitic theory, relativistic

theory and using the Foldy-Wouthuysen transformation.

2.1 Interaction Matrix in Nonrelativistic Theory

We will now show the interaction matrix in the nonrelativisitc theory. As stated

before, we are considering an atom in a classical radiation field. The theory is non-

7



relativistic since intrinsic spin is ommitted. [26, p.37]

An unperturbed atom has the following Schrödinger Hamiltonian

H0 =
p2

2m
+ V (2.4)

where V = eφ is the scalar potential from the atom and p is the conjugate momentum,

which becomes −i~∇. This satisfies the Schrödinger equation

H0 |Ψ〉 = E0 |Ψ〉 (2.5)

The total Hamiltonian for an atom in an electromagnetic field in the Schrödinger

representation is

H =
1

2m
(p− eA

c
)2 − eφext + V (2.6)

where we made the change that p −→ p− eA
c

[27, p.582] and added −eφext for static

potentials. We can rewrite this as

H = H0 +Hint (2.7)

where H0 was defined in Eq.(2.4) and

Hint = − e

2mc
(p ·A + A · p) +

e2

2mc2
A2 − eφext (2.8)

which describes the interaction with the electromagnetic field, and is treated as a

perturbation.

We apply the coulomb gauge condition ∇ ·A = 0 , and let the scalar potential be

0 (φext = 0) [26, p.38]. We can also use the relationship that for any function f(x)

[28, p.287]

[f(x), p] = ih
df(x)

dx
(2.9)

8



Thus

A · p− p ·A = i~∇ ·A = 0 (2.10)

We thus obtain the interaction Hamiltonian

Hint = − e

mc
A · p +

e2

2mc2
A2 (2.11)

We will consider small fields and can therefore omit the A2 term. Also we note that

the A2 term represents two-photon transitions, which could occur if there is more

than one photon within a volume of a3
0 (a0 = 5.29177× 10−9 cm is the Bohr radius);

however, this would only occur if the photon density is about 1025 cm−3 or greater

[29]. Since the density of photons at the sun’s surface is only 1012 cm−3 it is reasonable

to assume that the number of photons is sufficiently small and we can neglect the A2

generally[29] but it might need to be included for high intensity laser fields. There

can also be times when single photon transitions are forbidden and then two photon

transitions need to be considered. In our case, we are only concerned with allowed

single photon transitions so we will omit the A2 term.

Moreover, suppose we consider A as a plane wave

A = 2A0cos[k · r− wt]

= A0e
ik·re−iwt + A0e

−ik·reiwt

= A(r)0e
−iwt + A(r)∗0e

iwt

Since the atomic states have wave functions that are well localized and have small

wavelengths compared to the wavelengths of the incident photons [28, p.472], we can

expand eik·r as a power series in the small quantity k · r

eik·r = 1 + ik · r +
1

2
(ik · r)2 + ... ≈ 1 (2.12)

9



this means that the amplitude of the wave is approximately constant over the size

of the atom [26, p.42]. We also note that the the assumption that k · r is small also

means that [29, p.272]

k · r ≈ ka0 ≈
a04E
~c

≈ Zα

2
� 1 (2.13)

where α is the fine structure constant. For high Z atoms ( ≈ 100) the assumption

that Zα is small is not valid, and we need to include the quadrupole and multipole

terms. For our case, we are considering low Z atoms and need only the electric dipole

term. Therefore the interaction Hamiltonian is now

Hint = − e

mc
ê · p (2.14)

where ê is the polarization vector. which means the interaction matrix element is

〈Ψj|Hint|Ψi〉 =
〈

Ψj

∣∣∣− e

mc
ê · p

∣∣∣Ψi

〉
(2.15)

where p = −ih∇ is an odd operator and the wave functions are Schrödinger wave

functions. This is referred to as the“velocity form” of the interaction matrix. We can

simplify it further by using [28, p.472]

[H0, r] =
−ihp

m
(2.16)

10



Thus we have

〈Ψj|Hint|Ψi〉 = − e

mc
ê ·
〈

Ψj|
mi

~
[H0, r]|Ψi

〉
=

e

i~c
ê · 〈Ψj|H0r− rH0|Ψi〉

= − ei
~c

ê · 〈Ψj|Ejr− rEi|Ψi〉

= − ei
~c

(Ej − Ei) 〈Ψj|ê · r|Ψi〉

where the wave functions are Schrödinger wave functions. This is referred to as the

“length form” of the interaction matrix.

2.2 Interaction Matrix in Dirac Theory

In relativistic theory, the total Hamiltonian for a particle in a field is [30]

H = ~α · (cp− eA) + βmc2 + eφ, (2.17)

where

~α =

0 ~σ

~σ 0

 and β =

1 0

0 −1

 (2.18)

where we have made the usual replacement p → p − e
c
A [27, p.582] and assumed

φext = 0 in the Coulomb gauge. The Hamiltonian can be written as

H = H0 +Hint (2.19)

where

H0 = c~α · (p) + βmc2 + eφ (2.20)

11



thus Hint = ~α · eA and the interaction matrix is

〈Ψj|~α · eA|Ψi〉 (2.21)

α =
1

4πε0

e2

~c
=
e2

~c
=

1

c

where the |Ψ〉 =

ϕ
χ

, is a four-component Dirac wave function, where ϕ is the large

component consisting of

 ϕ 1
2

ϕ
−1
2

 and χ is the small component consisting of

 χ 1
2

χ
−1
2

.

2.3 Interaction Matrix using Foldy-Wouthuysen Trans-

formation

So far we have shown that the nonrelativistic transition operator is e
c
p ·A and the rel-

ativistic transition operator is ~α·eA. The next section will use the Foldy-Wouthuysen

transformation [31] to determine the equivalent nonrelativistic transition operators.

Thus, the interaction matrix will be of the form

〈
Ψj| −

eα

m
A · p + α3HFW |Ψi

〉
(2.22)

where the |Ψi〉 are relativistically corrected, i.e Breit-corrected, wave functions. This

means we can write the wave functions as

|Ψi〉 =
∣∣∣Ψ(0)

i

〉
+ α2

∣∣∣Ψ(1)
i

〉
(2.23)

where
∣∣∣Ψ(0)

i

〉
represents the Schrödinger wave functions and

∣∣∣Ψ(1)
i

〉
are the first order

relativistically corrected wave functions, these will be discussed in Chapter 5. The

12



HFW are the additional operators obtained from the Foldy-Wouthuysen transforma-

tion, which will be shown in Chapter 3.

This gives a total of four elements that need to be evaluated

α
〈

Ψ
(0)
j |

e

m
A · p|Ψ(0)

i

〉
(2.24)

α3
〈

Ψ
(1)
j |

e

m
A · p|Ψ(0)

i

〉
(2.25)

α3
〈

Ψ
(0)
j |

e

m
A · p|Ψ(1)

i

〉
(2.26)

α3
〈

Ψ
(0)
j |HFW |Ψ(0)

i

〉
(2.27)

The first term is simply the nonrelativistic interaction matrix element as shown in

Section 2.1. The following two terms depend on the corrections to the wave functions

and these will be discussed in Chapter 5. The last term depends on the operators

obtained after the Foldy-Wouthuysen transformation and these are discussed in the

next Chapter. The total interaction matrix thus consists of the nonrelativistic in-

teraction matrix element plus three correction terms that are of order α2 compared

to the nonrelativistic term. Adding up all the terms should equal the relativistic

interaction matrix (Eq.(2.21)) up to O(α2).
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Chapter 3

The Foldy-Wouthuysen

Transformation

Relativistic effects are rigorously treated by using the four-component Dirac Hamilto-

nian, but this formulation has difficulties which arise both theoretically and compu-

tationally. Furthermore, the Dirac Equation has no true bound state for two or more

electron systems [32] due to what is called the Brown-Ravenhall disease [18]. Foldy

and Wouthuysen [31] developed a method by which we can approximate the four-

component Dirac theory by a two-component theory to any given order in v
c
. The

Foldy-Wouthuysen transformation (FW) eliminates the odd operator in the Dirac

Hamiltonian to some desired order, as the odd operators connect positive and neg-

ative energy states. By choosing a suitable unitary transformation which will act

on both the wave functions and operator and using a series of canonical transfor-

mations, the odd operator is made smaller and eventually neglected [24]. In the

Foldy-Wouthuysen representation, the Dirac Hamiltonian only contains even opera-

tors up to the desired order of v
c

and the small and large components are completely

decoupled [33]. We can thus ignore the small components and we are left with a

two-component theory.
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This method was originally used for the one-electron case, which results in an

exact transformed Hamiltonian for the free particle case. Some attempts to eliminate

the odd operators were also made for the Breit equation in a two particle system [34].

The Foldy-Wouthuysen transformation was extended to two-particles by Chraplyvy

[35] and Erikson used this method to get a two-electron Hamiltonian [36]. However,

the treatment had to be different if the masses were equal [35]. About 20 years

later, Dong L. Lin [24] obtained a Foldy-Wouthuysen transformation for the field

theory of quantum electrodynamics which does not have such a difficulty, and gave

the explicit expression for the operators in the interaction Hamiltonian for the two-

electron system using which the relativistic corrections to transitions can be calculated

with relativistically corrected wave functions.

We will apply the Foldy-Wouthuysen transformation and derive the terms needed

in the interaction matrix element for the one-electron case. We will include both spin

dependent and spin independent terms. In doing so, we follow closely to procedure

adopted in the original Foldy and Wouthuysen paper [31] and in Messiah’s book [33,

p.945] however they considered only time-independent potentials. We will, however,

consider time dependent potentials since the photon vector potential A is in fact time

dependent [23] which our results also confirm.

3.1 Foldy-Wouthuysen Transformation for a Par-

ticle in a field

The fully relativistic quantum mechanical description of the electron is given by

the Dirac equation but it is often difficult to calculate due to the four-components.

The Foldy-Wouthuysen transformation transforms the four-component problem into

a two-component problem by decoupling the positive and negative energy compo-

nents of the wave-functions. This gives a nonrelativistic limit for the Dirac Theory.
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However, when external fields are present the Foldy-Wouthuysen transformation can

only be given up to a desired order in v
c
; it cannot be precisely made. We will perform

the Foldy-Wouthuysen transformation until all the odd terms are of an order smaller

then (v
c
)2. We will use atomic units so v

c
= 1

c
, where c = 137, however we will still

display the m and e for clarity even though they are equal to unity in these units.

It should also be noted that we can consider an expansion in v
c

as an expansion in

αZ where α = 1
c

is the fine structure constant, and Z is the atomic number, which

depends linearly on v. Thus this expansion is valid only in the low Z limit.

The Dirac Hamiltonian for a particle in a central field is [33, p.945]

H = ~α · (cp− eA) + βmc2 + eφ.

~α =

0 ~σ

~σ 0

 and β =

1 0

0 −1

 (3.1)

We can split the Dirac Hamiltonian into even (E) and odd (O) operators.

H = βmc2 + E +O (3.2)

where

O = ~α · ~π = ~α · (cp− eA) E = eφ (3.3)

with the following commuting properties:

βE = Eβ, βO = −Oβ (3.4)

Odd operators are those that are off-diagonal such as the ~α matrix. And even opera-

tors are diagonal such as the β matrix. In the general case, we transform to the new
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representation by a unitary operator U according to

Ψ′ = UΨ = eiSΨ (3.5)

where the Ψ are the four-component Dirac wave functions , |Ψ〉 =

ϕ
χ

, where ϕ

is the large component consisting of

 ϕ 1
2

ϕ
−1
2

 and χ is the small component consisting

of

 χ 1
2

χ
−1
2

. The small component χ ∝ φ
c
. Now we have

HΨ = i
∂

∂t
(e−iSΨ′) = i

∂e−iS

∂t
Ψ′ + e−iSi

∂Ψ′

∂t
(3.6)

We can use the above to find an expression for the transformed Hamiltonian H ′

eiS(HΨ− i∂e
−iS

∂t
Ψ′) = i

∂Ψ′

∂t
= H ′Ψ′ (3.7)

therefore

H ′ = UHU † − iU ∂U
†

∂t
(3.8)

We can expand these terms in powers of 1
c

by using the following operator identity:

eiSHe−iS = H+i[S,H]+
i2

2!
[S, [S,H]]+

i3

3!
[S, [S, [S,H]]]+...+

in

n!
[S, [S, ...[S,H]]] (3.9)

Therefore, to a desired order

H ′ =H + i[S,H]− 1

2
[S, [S,H]]− i

6
[S, [S, [S,H]]] +

1

24
[S, [S, [S, [S, βm]]]]

− Ṡ − i

2
[S, Ṡ] +

1

6
[S, [S, Ṡ]]

(3.10)
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We can eliminate the odd operators by order 1
c

successively, until the desired order is

reached. For first order, we shall call it H ′:

H ′ = βmc2 + E +O + i[S, β]mc2 (3.11)

To cancel O, we let S = −iβO
2mc2

and substitute into Eq.(3.10). We will explicitly show

the first term, and only the results for the other terms as one needs only to use the

commutator rules and the properties in Eq.(3.4). The first term is

i[S,H] = −i
[
−iβO
2mc2

, βmc2 + E +O
]

=

[
βO

2mc2
, βmc2

]
+

[
βO

2mc2
, E
]

+

[
βO

2mc2
,O
]

=
1

2

[
βO, β

]
+

1

2mc2

[
βO, E

]
+

1

2mc2

[
βO,O

]
=

1

2

(
β[O, β] + [β, β]O

)
+

1

2mc2

(
β[O, E ] + [β, E ]O]

)
+

1

2mc2

(
β[O,O] + [β,O]O

)
=

1

2

(
β(Oβ − βO)

)
+

1

2mc2

(
β[O, E ]

)
+

1

2mc2

(
(βO −Oβ)O

)
=

1

2

(
− 2β2O

)
+

1

2mc2

(
β[O, E ]

)
+

1

2mc2

(
2βO2

)
= −O +

β

2mc2

[
O, E

]
+

1

mc2
βO2

(3.12)

The rest of the terms are

1

2
[S, [S,H]] = − βO

2

2mc2
− 1

8(mc2)2
[O, [O, E ]]− O3

2(mc2)2

−1

6
[S, [S, [S,H]]] =

O3

6(mc2)2
− 1

6(mc2)3
βO4

1

24
[S, [S, [S, [S,H]]] =

βO4

24(mc2)3

−Ṡ =
iβȮ
2mc2

− i
2

[S, Ṡ] = − i

8(mc2)2
[O, Ȯ]

(3.13)
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Then Eq.(3.10) becomes

H ′ = β

(
mc2 +

O2

2mc2
− O4

8(mc2)3

)
+ E − O3

3(mc2)2
+

β

2mc2
[O, E ]

− 1

8(mc2)2
[O, [O, E ]− i

8(mc2)2
[O, Ȯ] +

iβȮ
2mc2

= βm+O′ + E ′

(3.14)

where

E ′ = β

(
mc2 +

O2

2mc2
− O4

8(mc2)3

)
+ E − 1

8(mc2)2
[O, [O, E ]− i

8(mc2)2
[O, Ȯ]

O′ =

(
− O3

3(mc2)2
+

β

2mc2
[O, E ] +

iβȮ
2mc2

) (3.15)

Now O′ is of order 1
c2

smaller then O. We can now repeat the process, and transform

H ′ by S ′

S ′ =
−iβ
2mc2

O′ = −iβ
2mc2

(
− O3

3(mc)2
+

β

2mc2
[O, E ] +

iβȮ
2mc2

)
(3.16)

Using this transformation we get the Hamiltonian

H ′′ = eiS
′
(
H ′ − i ∂

∂t

)
e−iS

′
= βmc2 + E ′ + β

2mc2
[O′, E ′] +

iβȮ′
2mc2

= βmc2 + E ′ +O′′
(3.17)

where O′′ is of order 1
c2

smaller then O′, and thus it’s an order of 1
c4

smaller than O.

We can repeat the process again and transform H ′′ by S ′′ = iβO′′
2mc2

. Following the same

trend O′′′ would be an order of 1
c2

smaller than O′′, and an order of 1
c6

smaller than

O. Since O is of order c, therefore the O′′′ is of order 1
c5

. As we are only calculating

corrections up to α2 = 1
c4

, we can ignore O′′′ as it is of a smaller order, so up to the
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desired order the Hamiltonian is

H ′′′ = βmc2 + E ′

= β

(
mc2 +

O2

2mc2
− O4

8(mc2)3

)
+ E − 1

8(mc2)2
[O, [O, E ]]− i

8(mc2)2
[O, Ȯ]

(3.18)

Now we have all even terms up to the desired order (α2), thus the large components

φ′ and small components χ′ are completely decoupled. To within order of 1
c5

the

positive energy solutions are represented by the large component wave functions φ′

which obey

i
∂φ′

∂t
= H ′′′φ

We will now explicitly calculate H ′′′, in which case we will replace the 4 x 4 ~α by

the 2 x 2 σ since we are now looking at only the large components. The first term is

O2

2mc2
=

1

2mc2
σ · (cp− eA)σ · (cp− eA)

=
1

2mc2
(cp− eA)2 +

i

2m
σ · [(cp− eA)× (cp− eA)]

=
1

2mc2
(cp− eA)2 +

i

2mc2
σ · [c(p× p)− ec(p×A + A× p) + e2(A×A)]

=
1

2mc2
(cp− eA)2 − −ec~

2mc2
σ · (∇×A + A×∇)

(3.19)

where we used the identity [37, p.78]

(σ ·A)(σ ·B) = A ·B + iσ · (A×B) (3.20)
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Now we note that

(∇×A + A×∇)f = ∇× (Af) + A×∇f

= ∇×A−A×∇f + A×∇f

= ∇×A

(3.21)

So we can now simplify the first term to obtain

O2

2mc2
=

1

2mc2
(cp− eA)2 − −ec~

2mc2
σ · (∇×A + A×∇)

=
1

2mc2
(cp− eA)2 − −ec~

2mc2
σ · (∇×A)

=
1

2mc2
(cp− eA)2 − −e~

2mc
σ ·B

(3.22)

The second term is

− O4

8(mc2)3
= − 1

8(mc2)3
((cp− eA)2 − e~c(σ ·B))2 (3.23)

The third term is

− 1

8(mc)2
[O, [O, E ]] (3.24)

We will first evaluate inner commutator

[O, E ] = [σ · (cp− eA), eφ]

= [σ · cp, eφ]− e2[σ ·A, φ]

= −i~ec[σ · ∇, φ]

(3.25)

where we have used the fact that A and φ are even operators thus [σ ·A, φ] = 0 [38].
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We can evaluate the remaining commutator by noting that

[σ · ∇, φ]f = (σ · ∇φ− φσ · ∇)f

= σ · ∇φf − φσ · ∇f

= (σ · ∇φ)f + (σ · ∇f)φ− φσ · ∇f

= (σ · ∇φ)f

(3.26)

Thus

[O, E ] = −i~ce(σ · ∇φ) (3.27)

then the third term is

− 1

8(mc2)2
[O, [O,E ]] = − 1

8(mc2)2
[σ · (cp− eA),−i~ce(σ · ∇φ)]

=
i~ce

8(mc2)2
([σ · cp,σ · ∇φ]− [σ · eA,σ · ∇φ] )

=
i~e

8m2c3
(c(σ · pσ · ∇φ− σ · ∇φσ · p)− e(σ ·Aσ · ∇φ− σ · ∇φσ ·A))

=
i~e

8m2c3
(c (p · ∇φ+ iσ · (p×∇φ)−∇φ · p− iσ · ∇φ× p)

− e (A · ∇φ+ iσ · (A×∇φ)−∇φ ·A− iσ · ∇φ×A)))

=
i~e

8(mc)2
(p · ∇φ+ iσ · (p×∇φ)−∇φ · p− iσ · ∇φ× p)

+
i~e2

8m2c3
(2iσ · (∇φ×A))

(3.28)

Once again, we need to be careful with the momentum operator as it contains ∇

p · ∇φf = −i~∇ · ∇φf = −i~(∇ · ∇φ)f − i~(∇φ · ∇f)

=
[
(−i~∇ · ∇φ) + (∇φ · (−i~∇))

]
f = [(p · ∇φ) + (∇φ · p)] f

(3.29)

Therefore we have:

p · ∇φ = (p · ∇φ) +∇φ · p (3.30)

22



where the gradient operator in the first term on the right hand side does not go

beyond the bracket. We thus have

((p · ∇φ) +∇φ · p + iσ · p×∇φ−∇φ · p− iσ · ∇φ× p)

= ((p · ∇φ) + iσ · p×∇φ− iσ · ×p)

(3.31)

As before, we need to be careful with the gradient term in the momentum operator.

We note that:

p×∇φ = (p×∇φ)−∇φ× p (3.32)

which means that − 1
8(mc2)2

[O, [O, E ]] is

=
ie~

8(mc)2
((p · ∇φ) + iσ · (p×∇φ)− iσ · ∇φ× p− iσ · ∇φ× p) +

i~e2

8m2c3
(2iσ · (∇φ×A))

=
e~

8(mc)2
((p · ∇φ) + iσ · (p×∇φ)− 2iσ · ∇φ× p) +

i~e2

8m2c3
(2iσ · (∇φ×A))

=
ie~

8(mc)2
(p · ∇φ)− e~

8(mc)2
σ · (p×∇φ) +

e~
4(mc)2

σ · ∇φ× p− ~e2

4m2c3
(σ · (∇φ×A))

=
e~2

8(mc)2
(∇ · ∇φ) +

ie~2

8(mc)2
σ · (∇×∇φ) +

e~
4(mc)2

σ · ∇φ× p− ~e2

4m2c3
(σ · (∇φ×A))

(3.33)

If we consider φ to be a spherically symmetric potential then we can make some

further simplifications

∇φ = ∇rφ =
1

r

∂φ

∂r
~r

∇×∇φ = 0

∇ · ∇φ = ∇2
r(φ)

(3.34)
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Thus

− 1

8(mc2)2
[O, [O, E ]] =

e~2

8(mc)2
(∇2

r(φ)) +
e~

4(mc)2

1

r

∂φ

∂r
σ · L− ~e2

4m2c3
(σ · (∇φ×A))

(3.35)

Now the fourth term is

− 1

8(mc2)2
[O, Ȯ] = − 1

8(mc2)2

[
O,
[
O, i ∂

∂t

]]
= − 1

8(mc2)2
[O, ωσ · eA] = − eω

8(mc2)2
[O,σ ·A]

=
−ceω

8(mc2)2
[σ · p,σ ·A]

(3.36)

Again, we need to be careful with the ∇

[σ · p, σ ·A]f = −i~ (σ · ∇σ ·A− σ ·Aσ · ∇) f

= −i~ (σ · ∇fσ ·A + (σ · ∇σ ·A)f − σ ·Aσ · ∇f)

= −i~ (∇f ·A + iσ · ∇f ×A + (∇ ·A)f + (iσ · ∇ ×A)f −A · ∇f − iσ ·A×∇f)

= −i~ (−2iσ ·A×∇f + (∇ ·A)f + iσ · ∇ ×A) f

= ~ (−2σ ·A×∇f − i(∇ ·A)f + σ · ∇ ×A) f

= ~ (−2σ ·A×∇f + σ ·B) f

(3.37)

where we have used ∇ ·A = 0 since we are in the Coulomb guage, and once again let

B = ∇×A. The fourth term is now

− 1

8(mc2)2

[
O,
[
O, i ∂

∂t

]]
= − ~ceω

8(mc2)2
(−2σ ·A×∇+ σ ·B) (3.38)
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we can make an equivalent operator out of the ω term, thus giving

−~ceω
8(mc2)2

(−2σ ·A×∇+ σ ·B)

=
~ce

8(mc2)2

[
p2

2m
+ eφ,−2σ ·A×∇+ σ ·B

]
=

~e
16m3c3

[
p2,−2σ ·A×∇+ σ ·B

]
+

~e2

4m2c3
[φ,−σ ·A×∇]

=
~e

16m3c3

[
p2,−2σ ·A×∇+ σ ·B

]
+

~e2

4m2c3
σ ·A×∇φ

(3.39)

Therefore the Hamiltonian in Eq.(3.18) is now:

H ′′′ = β

(
mc2 +

(cp− eA)2

2mc2
− −e~

2mc
σ ·B− ((cp− eA)2 − e~c(σ ·B))2

8(mc2)3

)
+ eφ

+
e~2

8(mc)2
(∇2

r(φ)) +
e~

4(mc)2

1

r

∂φ

∂r
σ · L− ~e2

2m2c3
(σ · (∇φ×A))

− i~ce
16(mc2)3

[
p2,−2σ ·A×∇+ σ ·B

]
= β

(
mc2 +

p2

2m
− p · eA

mc
− p4

8m3c2
+
{p2,p · eA}

4mc3

)
+ eφ

+
e~2

8(mc)2
(∇2

r(φ)) +
e~

4(mc)2

1

r

∂φ

∂r
σ · L− ~e2

2m2c3
(σ · (∇φ×A))

+
~e

16m3c3

[
p2,−2σ ·A×∇

]

(3.40)

where we have used B = ∇×A = 0 since we will consider A = ẑ, and omitted A2

terms (see Section 2.1 for details). We will convert to atomic units (m = e = ~ = 1),

and use the fine structure constant α = 1
c
. We will consider the transition from a 2p

state to a 1s state thus the interaction matrix element is

〈
Ψ′1s|H ′′′|Ψ′2p

〉
=

〈
Ψ′1s| − αp ·A + α3{p2,p ·A}

4
− α3

2
(σ · (∇φ×A))|Ψ′2p

〉
(3.41)
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where Ψ′ is the large component part of U ′′U ′UΨ = eiS
′′
eiS
′
eiSΨ, and Ψ is the four-

component Dirac wave function. Only three terms contribute to the matrix element.

The operators in Eq.(3.41) are nonrelativistic operators. The last term is the only

spin dependent term.

3.2 Two-electron Foldy-Wouthuysen Result

The previous section considered a one-electron problem; for the two-electron problem

Lin [24] determined the following interaction matrix Hamiltonian for spin allowed

transitions between Breit-corrected wave functions.

Hint =

(
− αA1 · p1 + α3{p1

2,A1 · p1}
4

+
eα

2m2r12
[A1 · p2 + A1 · r̂12p2 · r̂12]

+
eα

2m
(σ1 + σ2) · r̂12

r12
×A1

)
+ (1⇐⇒ 2)

(3.42)

where the (1⇐⇒ 2) means we add the same terms except wherever there is a subscript

of 1 we replace it with 2. thus the interaction matrix element is

〈
Ψ′1s|Hint|Ψ′2p

〉
(3.43)

where the wave functions are Breit-corrected wave functions

|Ψ′〉 =
∣∣Ψ(0)

〉
+ α2

∣∣Ψ(1)
〉

(3.44)

The Breit-corrected wave functions (i.e relativistically corrected wave functions) are

discussed in Chapter 5.
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3.3 Evaluation of Foldy-Wouthuysen terms

We will now give the explicit expressions for every term to be evaluated for the one-

electron case and we will use the long wavelength approximation and let A = ẑ (see

Eq.(2.12)). The spin independent terms are

− α
〈

Ψ
(0)
1s |pz|Ψ

(0)
2p

〉
(3.45)

− α3
〈

Ψ
(1)
1s |pz|Ψ

(0)
2p

〉
(3.46)

− α3
〈

Ψ
(0)
2s |pz|Ψ

(1)
2p

〉
(3.47)

α3

4

〈
Ψ

(0)
1s |(p2pz + pzp

2)|Ψ(0)
2p

〉
(3.48)

and the spin dependent term is

− α3

2

〈
Ψ

(0)
1s |(σ · (∇φ× ẑ))|Ψ(0)

2p

〉
(3.49)

Eq.(3.45) is the nonrelativistic term, its’ evaluation is simple. Eq.(3.46) and Eq.(3.47)

are due to the corrections from the wave functions. These terms will be discussed

in Chapter 5. Eq.(3.48) and Eq.(3.49) are due to the corrections from the Foldy-

Wouthuysen transformation, we will now refer to them as the Foldy term and the

Foldy spin term respectively.

The Foldy term can be evaluated as

iα3

4

〈
Ψ

(0)
1s |∇2∇z +∇z∇2)|Ψ(0)

2p

〉
=
iα3

2

〈
Ψ

(0)
1s |∇2∇z)|Ψ(0)

2p

〉
= −α3 2i

√
2

27
(3.50)

The Foldy spin term can be written as:

− α3

2

〈
Ψ

(0)
1s |(σ · (∇φ× ẑ))|Ψ(0)

2p

〉
= −α3

〈
Ψ

(0)
1s |(S ×∇φ) · ẑ|Ψ(0)

2p

〉
(3.51)
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where we have used

a · (b× c) = c · (a× b) (3.52)

and

S =
σ

2
(3.53)

In order to calculate the matrix element, we use the following:

E = −∇φ; φ = −1

r

(S × E · ẑ) = SxEy − SyEy

Ex = − 1

r2
sin θ cosφ

Ey = − 1

r2
sin θ sinφ

Sx =
S+ + S−

2

Sy =
S+ − S−

2

(3.54)

We will also need to explicitely write the wave functions, using Clebsch-Gordon Co-

efficients.

∣∣∣2p 1
2
, 1
2

〉
=

(
−
√

1

3
Y 0

1 α +

√
2

3
Y 1

1 β

)
R21

∣∣∣2p 1
2
,− 1

2

〉
=

(
−
√

2

3
Y −1

1 α +

√
1

3
Y 0

1 β

)
R21∣∣∣2p 3

2
, 3
2

〉
= Y −1

1 βR21∣∣∣2p 3
2
,− 1

2

〉
=

(√
1

3
Y −1

1 α +

√
2

3
Y 0

1 β

)
R21

∣∣∣2p 3
2
, 1
2

〉
=

(√
2

3
Y 0

1 α +

√
1

3
Y 0

1 β

)
R21∣∣∣2p 3

2
,− 3

2

〉
= Y 1

1 αR21

(3.55)

where the notation used is
∣∣2pj,mj〉. The α and β represent the spin up and spin down
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states respectively, the Y m
l represent the spherical harmonics and Rnl represent the

radial wave function.

Then we get the following results:

− α3

2

〈
Ψ

(0)
1s |(σ · (∇φ× ẑ))|Ψ(0)

2p 1
2

〉
= −2iα3

27

√
2

3
(3.56)

− α3

2

〈
Ψ

(0)
1s |(σ · (∇φ× ẑ))|Ψ(0)

2p 3
2

〉
=

2iα3

27

√
1

3
(3.57)

Here we have evaluated Eq.(3.49) analytically. For the two-electron case it would

not be possible to evaluate the operator in this way, we would need to use angular

momentum algebra. In order to evaluate the matrix element we can first convert it

to the reduced matrix element form using [39, p.75]

〈γ′j′m′|T(k, q)|γjm〉 = (−1)j
′−m′

 j′ k j

m′ q m

 〈γ′j′||T(k)||γj〉 (3.58)

where T(k, q) is a the q component of a Tensor of order k. γ represents the additional

values for the states, and the matrix represents a 3−j symbol. We will have two

terms, one for the transition of 2p 3
2

to 1s and one for 2p 1
2

to 1s. For the 2p 1
2

to 1s

transition we can write:

〈
0

1

2

1

2

1

2

∣∣∣∣(S × E · ẑ)

∣∣∣∣1 1

2

1

2

1

2

〉
= i
√

2

1
2

1 1
2

1
2

0 1
2

〈0
1

2

1

2

∣∣∣∣∣∣∣∣S × E

∣∣∣∣∣∣∣∣ 1
1

2

1

2

〉

=
1√
6

〈
0

1

2

1

2

∣∣∣∣∣∣∣∣S × E

∣∣∣∣∣∣∣∣ 1
1

2

1

2

〉
(3.59)

where we have used [39, p.70]

T(1,m) =
i√
2

(x× y)m (3.60)
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to evaluate the reduced tensor matrix we can use [39, p.110]

〈γ′j′1j′2J ′||X(K)||γj1j2J〉 =
∑
γ′′

〈γ′j′1||T(k1)||γ′′j1〉 〈γ′′j′2||U(k2)||γj2〉×

[(2J + 1)(2J ′ + 1)(2K + 1)]
1
2


j′1 j1 k1

j′2 j2 k2

J ′ J K


(3.61)

where the matrix is a 9−j symbol. For the 2p 1
2

to 1s transition we can write

〈
0

1

2

1

2

∣∣∣∣∣∣∣∣S × E

∣∣∣∣∣∣∣∣ 1
1

2

1

2

〉
= 〈0||E||1〉

〈
1

2

∣∣∣∣∣∣∣∣S∣∣∣∣∣∣∣∣12
〉√

12


1
2

1
2

1

0 1 1

1
2

1
2

1


= 〈0||E||1〉

√
3

2

√
12

1

3

√
1

6
= 〈0||E||1〉

√
1

3

(3.62)

where we have used [39, p.76]

〈
1

2

∣∣∣∣∣∣∣∣S∣∣∣∣∣∣∣∣12
〉

= ~
√

3

2
(3.63)

we now evaluate 〈0||E||1〉 using Eq.(3.58)

〈00|E · ẑ||10〉 =

0 1 1

0 0 0

 〈0||E||1〉 = −
√

1

3
〈0||E||1〉 (3.64)

Therefore

〈
0

1

2

1

2

1

2

∣∣∣∣(S × E · ẑ)

∣∣∣∣1 1

2

1

2

1

2

〉
= −i

√
2

√
1

6

√
1

3

√
3 〈00|E · ẑ||10〉

= −i
√

1

3
〈00|E · ẑ||10〉

= −i
√

1

3

〈
Ψ1s|

cos θ

r2
|Ψ2p

〉
= − 2i

27

√
2

3

(3.65)
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Similarly for the 2p 3
2

to 1s we have

〈
0

1

2

1

2

1

2

∣∣∣∣(S × E · ẑ)

∣∣∣∣1 1

2

3

2

1

2

〉
=

√
1

6

〈
Ψ1s

∣∣∣∣cos θ

r2

∣∣∣∣Ψ2p

〉
=

2i

27

√
1

3

(3.66)

which are the same results we obtained analytically.
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Chapter 4

Psuedospectral Method

We have so far only discussed the corrections to the operator, we will now consider

the corrections to the wave functions. For one-electron systems we can obtain the

exact analytic form of the wave functions, as shown in the Appendix and in Chapter

5. This is not possible for the two-electron case, but we can make use of variational

methods. Variational methods have the advantage that they can be used to solve the

Schrödinger equation in cases where it cannot be solved analytically. This chapter

discusses how variational methods can be applied to many-electron atoms or com-

plicated systems. An expansion in a basis set essentially converts the differential

equation into a matrix equation, making it into a linear algebra problem that can be

solved by matrix diagonalization. We can thus create a discrete variational spectrum,

called a pseudospectrum, which approximates the physical spectrum.

4.1 Rayleigh-Ritz Variational Method

The following sections are discussed in detail in [40], we present here a summary

for the reader. Suppose we have a Hamiltonian that we cannot solve exactly. We

know there exists a spectrum of exact solutions to the Schrödinger equation for this
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Hamiltonian.

HΨi = EiΨi, i = 1, 2, 3.. (4.1)

Let us now define a trial wave function, Ψtrial, that approximates one of the Ψi.

Assume that Ψi and Ψtrial are both normalized and ideally Ψtrial = Ψi. Although we

may not even know the Ψi, since we know they form a complete basis set we can

expand the trial wave function, Ψtrial in terms of the Ψi, as follows

Ψtrial =
∞∑
i

ciΨi (4.2)

We can get the trial energy, Etrial, corresponding to the trial wave function using the

Rayleigh Quotient [40]

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

(4.3)

Using Eq.(4.1) and Eq.(4.2) and substituting into Eq.(4.3) gives

E =

∑∞
i Ei|ci|2∑∞
i |ci|2

(4.4)

Since we had made the assumption that all the Ψi and Ψtrial are normalized, this

means that
∞∑
i

|ci|2 = 1 (4.5)

so that Eq.(4.3) becomes

Etrial = |c1|2E1 + |c2|2E2 + |c3|2E3 + ...

= E1 + |c2|2(E2 − E1) + |c3|2(E3 − E1) + ...

If we let the eigenvalue spectrum be ordered such that E1 < E2 < E3..., then Etrial

is either greater or equal to E1. Thus, Etrial is an upper bound to the lowest energy

eigenvalue E1.
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The Rayleigh-Ritz Variational Method uses the fact that we can write an arbitrary

function Ψtrial with variational parameters that can be varied to minimize the energy

Etrial, thus obtaining the closest value to E1. Therefore any variation in the trial

function, which leads to a smaller energy inevitably leads us to a wave function that

is closer to the exact solution.

We can thus find the upper bound to the eigenvalue E1 by minimizing Etrial,

which means varying the variational parameters in ψtrial until Etrial is minimized.

Since Etrial can never fall below E1, when we have minimized Etrial we would have

a good approximation to both the energy eigenvalue and wave function for the first

state [41].

In fact, as shown by Hylleraas, Undheim and MacDonald, this method can be

used to find the remaining eigenvalues as well [1, 2]. Note that this is only true if the

energy spectrum is bounded from below. This will be discussed further in the next

section.

4.2 Linear Variational Method

Suppose one writes

Ψtrial =
N∑
i

aiφi (4.6)

where the φi are a normalizable set of arbitrary functions. We assume that φi form a

complete basis set in the limit N −→∞. Note that these φi need not have anything

to do with the exact wave functions, Ψi, discussed in Section 4.1. Again if we use the

Rayeligh Quotient (Eq.(4.3)) we get the following expression for the energy

Etrial =
〈Ψtrial|H|Ψtrial〉
〈Ψtrial|Ψtrial〉

=

∑
ij a
∗
i aj〈φi|H|φj〉∑

ij a
∗
i aj〈φi|φj〉

(4.7)
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Then in order to satisfy the minimization condition

∂Etrial

∂ai
= 0, i = 1...N (4.8)

the following must be satisfied

N∑
i=1

(〈φi|H|φk〉 − Etrial〈φi|φk〉)ai = 0 (4.9)

which can be expressed as a N -dimensional eigenvalue problem


〈φ1|H|φ1〉 . . . 〈φ1|H|φN〉

...
. . .

...

〈φN |H|φ1〉 . . . 〈φN |H|φN〉



a1

...

aN

 =


λ1

...

λN



〈φ1|φ1〉 . . . 〈φ1|φN〉

...
. . .

...

〈φN |φ1〉 . . . 〈φN |φN〉



a1

...

aN


(4.10)

The lowest of the N eigenvalues will be an upper bound to E1 as discussed in Section

4.1 Note that Eq.(4.9) in the limit N −→ ∞ is equivalent to the Schrödinger Equa-

tion provided that the basis set is complete in the limit. Since this is a generalized

eigenvalue problem, first the overlap matrix 〈φi|φj〉, is diagonalized followed by the

Hamiltonian matrix. Any set of functions can form φi as long as they are a complete

normalizable set.

The benefit of Eq.(4.9) is its computational usefulness. We need only increase N

until the lowest eigenvalue converges to a sufficient degree of accuracy.

This method can be extended beyond the first eigenvalue also, if we use the

Hylleraas-Unheim-MacDonald Theorem, which states that“the variational bound prop-

erty applies not just to the lowest eigenvalue, but also to all the higher-lying vari-

ational eigenvalues” [41] provided that the spectrum is bounded from below. This

means that not only is λ1 ≥ E1 , but λ2 ≥ E2, and λ3 ≥ E3 and so on.

As an extra row and column is added to the Hamiltonian, the N old eigenvalues lie
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Figure 4.1: This diagram illustrates the Hylleras-Undheim-MacDonald theorem [1, 2].
The Ei are the exact eigenvalues of H, and the λi are the variational eigenvalues for
a N-dimensional basis set. The previous N eigenvalues lie between the new N+1
eigenvalues as N increases
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between the N+1 new eigenvalues, which is why it is referred to as the “interleaving”

theorem. As N increases the eigenvalues progressively decrease until they reach the

exact physical values, as can be seen in Figure 4.1. Additionally, some of the higher

lying values actually lie in the continuum. The complete collection of variational

solutions are termed pseudostates, as they form a discrete variational representation

of the continuous physical spectrum. This is advantageous computationally, as we

can do a discrete sum instead of an integration over the continuum, and relatively

few pseudostates may be needed to represent the physical spectrum.

4.3 Pseudospectral Method Application to Perturbed

Wave Functions

Since most problems in quantum mechanics cannot be solved exactly, it is often useful

to split the Hamiltonian into two parts.

H = H(0) + λV (4.11)

where V is treated as a small perturbation to the Hamiltonian and the Schrödinger

equation can be solved exactly for H(0). In our case, the perturbation will be the Breit

operators in order to get the relativistic corrections to the wave functions. These Breit

operators will be discussed in Chapter 5, we present here the general solution letting

V stand for any perturbation.

The time-independent Schrödinger equation, for a state Ψi, is

HΨi = EΨi (4.12)
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where i means initial. We now expand both Ψi and Ei as a power series in λ

Ψi = Ψ
(0)
i + λΨ

(1)
i + λ2Ψ

(2)
i ... (4.13)

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i ... (4.14)

Keeping only terms linear in λ gives

H(0)Ψ
(1)
i + VΨ

(0)
i = E

(0)
i Ψ

(1)
i + E

(1)
i Ψ

(0)
i (4.15)

(
H(0) − E(0)

i

)
Ψ

(1)
i =

(
E

(1)
i − V

)
Ψ

(0)
i (4.16)

which we can write as

(
H(0) − E(0)

i

) ∣∣∣Ψ(1)
i

〉
=
(
E

(1)
i − V

) ∣∣∣Ψ(0)
i

〉
(4.17)

If we act Ψ
(0)
i′ from the left on Eq.(4.17) and keep only terms linear in λ we can get

the following expression for the first order correction to the energy.

E
(1)
i′ =

1〈
Ψ

(0)
i′ |Ψ(0)

〉 [〈Ψ
(0)
i′ |V |Ψ

(0)
〉

+
〈

Ψ
(0)
i′ |H

(0) − E(0)|Ψ(1)
〉]

(4.18)

Since by assumption H
(0)
i |Ψ

(0)
i

〉
= E

(0)
i |Ψ

(0)
i

〉
, and assuming that the functions are

orthonormal (i.e
〈

Ψ
(0)
i′ |Ψ

(0)
i

〉
= 1 if and only if i′ = i) we get

E
(1)
i =

〈
Ψ

(0)
i |V |Ψ

(0)
i

〉
(4.19)

We can rearrange Eq.(4.17) to

∣∣∣Ψ(1)
i

〉
=

(E
(1)
i − V )|Ψ(0)

i

〉
(H(0) − E(0)

i )
(4.20)
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inserting a complete set of states gives

∣∣∣Ψ(1)
i

〉
=
∑
n

∣∣Ψ0
n

〉 〈Ψ0
n|(E

(1)
i − V )|Ψ(0)

i

〉
E

(0)
n − E(0)

i

(4.21)

expanding the numerator

∣∣∣Ψ(1)
i

〉
=
∑
n

∣∣Ψ0
n

〉 〈Ψ0
n|E

(1)
i |Ψ

(0)
i

〉
E

(0)
n − E(0)

i

+
∑
n

∣∣Ψ0
n

〉 〈Ψ0
n|(V )|Ψ(0)

i

〉
E

(0)
i − E

(0)
n

(4.22)

We will omit the term with E
(0)
n = E

(0)
i , if present, as that would cause the denom-

inator to be 0. We can assume that
〈

Ψ
(0)
n |Ψ(0)

i

〉
= 0 for the remaining states. Thus

we sum over all n except n = i

∑
n6=i

|Ψ0
n >

〈
Ψ

(0)
n |E(1)

i |Ψ
(0)
i

〉
E

(0)
n − E(0)

i

=
∑
n6=i

|Ψ(0)
n >

E
(1)
i

〈
Ψ

(0)
n |Ψ(0)

i

〉
E

(0)
n − E(0)

i

= 0 (4.23)

Thus we are left with

∣∣∣Ψ(1)
i

〉
=
∑
n6=i

∣∣Ψ(0)
n

〉 〈Ψ
(0)
n |V |Ψ(0)

i

〉
E

(0)
i − E

(0)
n

(4.24)

In order to calculate the corrections to the wave function, we can replace the

summation over the complete set of intermediate states (including the continuum) by

a discrete summation over the set of N pseudostates (as discussed in Section 4.2).
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Chapter 5

Corrections to the Wave Functions

We have discussed so far the relativistic corrections of O(α2) to the nonrelativistic

operator in the interaction matrix, which were obtained in Chapter 3. We will now

discuss the relativistic corrections of O(α2) to the Schrödinger wave functions. We

need this corrected wave functions to evaluate the remaining terms

− α3
〈

Ψ
(1)
1s |pz|Ψ

(0)
2p

〉
= i~α3

〈
Ψ

(1)
1s |∇z|Ψ(0)

2p

〉
(5.1)

− α3
〈

Ψ
(0)
2s |pz|Ψ

(1)
2p

〉
= i~α3

〈
Ψ

(0)
2s |∇z|Ψ(1)

2p

〉
(5.2)

The previous chapter discussed the pseudospectral method, whereby with the use

of variational methods one can make a pseudospectrum. This pseudospectrum can

be used to calculate the corrections to the wave functions, as the summation over the

continuum can be approximated by a discrete sum over the pseudostates. For the

one-electron case we can calculate the corrections to the wave functions analytically.

For the two-electron case one needs to use the pseudospectral method to obtain the

wave function corrections.

In this chapter we will discuss first the Breit corrections, i.e relativistic correc-

tions, and perturbation theory. We will then present the analytic first order wave
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functions (detailed discussion of the analytic wave functions are in the Appendix),

these will be used as a reference for the approximate wave functions obtained by the

pseudospectral method. Furthermore, in this chapter, we will compare the results

obtained by the Pseudostate method using a linear basis set to the triangular basis

set, which encompasses a larger energy spectrum.

5.1 The Breit Corrections

Since we have already shown the Foldy-Wouthuysen transformation (Chapter 3), we

will use those results to get the Breit, i.e relativistic, corrections to the Hamiltonian

and thus determine the Breit correction terms. These can also be derived from the

Breit equation expanded in powers of p
mc

as shown by Bethe and Salpeter [34, p.181],

or, starting from the Dirac equation, separating out the rest mass energy by defining

E ′ = E −mc2, and expanding the small component as done by Schiff [30].

The total energy is

E = 〈Ψj|H|Ψj〉 (5.3)

Thus only even terms that were in the Hamiltonian in Eq.(3.40) will contribute. This

means

H = H(0) − p4

8m3c2
+

e~2

8(mc)2
(∇2

r(φ)) +
e~

4(mc)2

1

r

∂φ

∂r
σ · L (5.4)

we can use atomic units and rewrite this as

H = H(0) − α2 p4

8
+ α2πδ

3(~r)

2
+ α2 1

2

1

r

dV

dr
L · S (5.5)

where we have used φ = −1
r

and S = σ
2
. L is the orbital angular momentum and S

is the spin angular momentum.

There are thus three α2 correction terms in the Hamiltonian. The first term,

which we will from here on refer to as the p4 term, refers to the correction due to the
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”variation of mass with velocity” [34], meaning the change in the mass of the electron

due to its relativisitic motion. This is independent of the spin of the electron. The

second term, which we will now refer to as the δ3(~r) term is a term characteristic of

the Dirac equation. This only affects the s-states as the wave functions with l > 0

vanish at the origin. This is also a spin independent term. The last term, is the spin-

orbit term which arises from the interaction between the electron orbital magnetic

moment and spin magnetic moment. This is the only spin dependent term. For the

two-electron case there are some additional terms, which are given in [34, p.181]

5.2 The Wave Function Corrections Using the An-

alytic Method

From perturbation theory the first order perturbation equation is (see Section 4.3 for

details)

H(0)Ψ(1) + VΨ(0) = E(0)Ψ(1) + E(1)Ψ(0) (5.6)

where V is the perturbation,

(H(0) − E(0))Ψ(1) + VΨ(0) − E(1)Ψ(0) = 0 (5.7)

We can solve this differential equation using the Method of Frobenius [42]. We first

let

Ψ(1) =

[∑
s

(qsr
s−2 +msr

s−1 ln(r))

]
Ψ(0) (5.8)

The logarithmic terms are included as they appear in the solutions for the 1s wave

function correction as seen in Cohen and Dalgarno’s paper [43]. Our results showed

that these terms exist for both s and p-states as the coefficients for the logarithmic
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terms did not turn out to be 0 for the p-states. They seem to be a mathematic

necessity, and they might arise in the s-states to describe the wave function behaviour

near the nucleus (near 0). For p-states, the small component still behaves like an s-

state near the nucleus. We know that

E(1) =
〈
Ψ(0)|V |Ψ(0)

〉
(5.9)

and

H(0) =
p2

2
− 1

r
(5.10)

E(0) = − 1

2n2
(5.11)

where n is the principal quantum number and Ψ(0) is the regular Schrödinger wave

function, and we have used atomic units (m = e = ~ = 1). In our case, the perturba-

tion is V = α2Hrel, where Hrel was defined in Eq.(5.32)

Substituting all of these into Eq.(5.7), we can group all the terms with the same

powers of r and thus determine the coefficients qi and mi. Details are given in

Appendix and results will be also shown here.

5.2.1 Analytic Results for 1s

The spin-orbit term is 0 for the s-states so we need only consider the p4 term and the

δ3(~r) term in Hrel Eq.(5.32).

Solutions for Ψ(1) for the s-states for some perturbations have been previously de-

termined by Cohen and Dalgarno [43]. Among these are the first order wave function

correction for the perturbation V = ∇4 and for the perturbation V = δ3(~r) which

are of interest to us since these functions are also in Hrel. These will provide a check

for us to see if our results from the pseudospectrum method are correct, as well as

enable an independent check of our analytic method.
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The unnormalized wave function correction for V = ∇4, as determined in [43] is

ψ
(1)
1s =

[
4Z3r − 4

Z

r
+ 8Z2 ln(r)

]
Ψ

(0)
1s

and for the perturbation πδ3(~r)

Ψ
(1)
1s =

[
Z2r − 1

2r
+ Z ln(r)

]
Ψ

(0)
1s

where in both cases

Ψ
(0)
1s =

√
Z3

π
e−Zr

These solutions can be used to find the first order corrections to the wave functions

for the p4 term and the δ3(~r) term, as the operators differ only by a constant. The

wave functions were also normalized using the Gram Schmidt procedure. Since (H(0)−

E(0))Ψ(0) = 0 we can add an arbitrary amount of Ψ(0) to Ψ(1) and it still satisfies

Eq.(5.32), i.e Ψ(1)′ = Ψ(1) +εΨ(0) is still a solution. The strategy is to choose ε so that〈
Ψ(1′)|Ψ(0)

〉
= 0. This ensures that the full solution Ψ(0) + λΨ(1) remains normalized

at least up to terms linear in λ.

Thus using Cohen and Dalgarno’s results [43], the first order wave function cor-

rections for the perturbation −p4
8

was determined to be

Ψ
(1)
1s =

(
− ln(2)− ln(r) +

1

2r
− r

2
+

(−4γ + 7)

4

)
Ψ

(0)
1s (5.12)

where γ = 0.5772156649015328606065121 is the Euler-Mascheroni constant. For the

πδ3(~r)
2

correction term, the normalized first order wave function correction was deter-

mined to be:
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Ψ
(1)
1s =

(
ln(2)

2
+

ln(r)

2
− 1

4r
+
r

2
+

(2γ − 5)

4

)
Ψ

(0)
1s (5.13)

Using these we can calculate the correction due to the 1s wave function correction,

i.e Eq.(3.46)

− α3
〈

Ψ
(1)
1s |pz|Ψ

(0)
2p

〉
(5.14)

since Ψ
(1)
1s is the sum of Eq.(5.12) and (5.13)

∣∣∣Ψ(1)
1s

〉
=
∣∣∣Ψ(1)

p4

〉
+
∣∣∣Ψ(1)

δ

〉
(5.15)

we obtain

−
〈

Ψ
(1)

p4 |pz|Ψ
(0)
2p

〉
=

√
2(1 + 48 ln(3)− 96 ln(2)

243
i = −0.074, 544, 415, 992, 783, 892, 407, 877, 82i

(5.16)

and

−
〈

Ψ
(1)
δ |pz|Ψ

(0)
2p

〉
=

√
2(1− 16 ln(3) + 32 ln(2)

162
i = 0.048, 911, 825, 793, 701, 370, 473, 911, 68i

(5.17)

giving the result

−
〈

Ψ
(1)
1s |pz|Ψ

(0)
2p

〉
=

√
2(5 + 48 ln(3)− 96 ln(2))

486
i = −0.025, 632, 590, 199, 082, 521, 933, 966, 15i

(5.18)

5.2.2 Analytic Results for 2p

Analytic solutions for the p-states have not been previously published and so are

obtained here. Using the method outlined in the previous section, the first-order

wave functions for the 2p state were determined and those results will be presented

below
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For the p-states there are two contributions, one from the p4 term and one from

the spin obit term in Hrel (see Eq.(5.32)).

For the perturbation −p4
8

the first order wave function correction is

Ψ
(1)
2p =

[
−48 ln(r)r + 72− 3r2 + (97− 48γ)r

144r

]
Ψ

(0)
2p (5.19)

For a perturbation of L·S
2r3

, the first order wave function corrections for the 2p1/2 and

2p3/2 are:

Ψ
(1)
2p 1

2

=

[
−12 ln(r)r + 36− 3r2 + (31− 12γ)r

72r

]
Ψ

(0)
2p (5.20)

Ψ
(1)
2p 3

2

=

[
12 ln(r)r − 36 + 3r2 + (12γ − 31)r

144r

]
Ψ

(0)
2p (5.21)

We note that

Ψ
(1)
2p 1

2

= −1

2
Ψ

(1)
2p 3

2

(5.22)

Using these we can calculate the correction due to the 2p wave function correction,

i.e Eq. (3.47)

− α3
〈

Ψ
(0)
1s |pz|Ψ

(1)
2p

〉
(5.23)

since Ψ
(1)
2p is the sum of Eq.(5.19) and (5.20) or (5.21). For 2p 1

2∣∣∣∣Ψ(1)
2p 1

2

〉
=
∣∣∣Ψ(1)

p4

〉
+

∣∣∣∣Ψ(1)
SO 1

2

〉
(5.24)

and therefore

−
〈

Ψ
(0)
1s |pz|Ψ

(1)

p4

〉
=

√
2(37− 48 ln(3)− 48 ln(2))

729
i = −0.109, 533, 314, 191, 598, 355, 423, 887, 2i

(5.25)
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and

−
〈

Ψ
(0)
1s |pz|Ψ

(1)
SO 1

2

〉
=

2
√

2(19 + 12 ln(3)− 12 ln(2)

729
i = 0.092, 595, 414, 937, 054, 806, 589, 355, 07i

(5.26)

giving the result

−
〈

Ψ
(0)
1s |pz|Ψ2p

(1)
1
2

〉
=

25

48
+

ln(3)

2
− ln(2)

2
i = −0.723, 565, 887, 387, 415, 524, 322, 340, 0i

(5.27)

For 2p 3
2
: ∣∣∣∣Ψ(1)

2p 3
2

〉
=
∣∣∣Ψ(1)

p4

〉
+

∣∣∣∣Ψ(1)
SO 3

2

〉
(5.28)

The p4 correction is the same, the spin orbit term is

−
〈

Ψ
(0)
1s |pz|Ψ

(1)
SO 3

2

〉
= −
√

2(19 + 12 ln(3)− 12 ln(2)

729
= 0.09259541493705480658935507i

(5.29)

giving the result

− α3

〈
Ψ

(0)
1s |pz|Ψ

(1)
2p 3

2

〉
=

25

48
+

ln(3)

2
− ln(2)

2
= −α30.7235658873874155243223400i

(5.30)

5.3 The Wave Function Corrections using the Pseu-

dostate Method

The purpose of this section is to test an alternative pseudostate method of finding ap-

proximate solutions to the perturbation equations. For two-electron problems, exact

analytic solutions are not possible. For such cases, instead of solving the perturbation

equation analytically we can instead express the solution in terms of pseudostates.

We can treat Hrel as a perturbation, and use Eq.(5.33) from Chapter 4
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∣∣Ψ(1)
〉

=
N∑
n=1

|Ψ0
n〉

〈
Ψ0|Hrel|Ψ(0)

n

〉
E(0) − E(0)

n

(5.31)

where the Ψ0
n are the pseudostates, N is the number of pseudostates and

Hrel =
p4

8
+
πδ3(~r)

2
+

1

2

1

r

dV

dr
~L · ~S (5.32)

Since the first-order correction due to the spin-orbit term vanishes for the 1s state,

there are only two contributions to the wave function correction: the p4 term and the

δ3(~r) correction term. For the 1s state we need only evaluate

∣∣∣Ψ(1)
1s

〉
=

N∑
n=1

|Ψ0
n〉

〈
Ψ0

1s|
−p4

8
|Ψ(0)

n

〉
E

(0)
s − E(0)

n

+
N∑
n=1

|Ψ0
n〉

〈
Ψ0

1s|
πδ3(~r)

2
|Ψ(0)

n

〉
2(E

(0)
s − E(0)

n )
(5.33)

whereas for the 2p state, the δ3(~r) correction term vanishes, and there are again only

two contributions to the wave function correction: the p4 term and the spin orbit

correction term. For the 2p state we need only evaluate

∣∣∣Ψ(1)
2p

〉
=

N∑
n=1

|Ψ0
n〉

〈
Ψ0

2p|
−p4

8
|Ψ(0)

n

〉
E

(0)
s − E(0)

n

+
N∑
n=1

|Ψ0
n〉

〈
Ψ0

2p|12
1
r
dV
dr
~L · ~S|Ψ(0)

n

〉
E

(0)
s − E(0)

n

(5.34)

The results from Eq.(5.33) and Eq.(5.34), depend largely on how well the pseudospec-

trum represents the actual physical spectrum. The following section examines two

different pseudostate wave function representations and compares them.

5.4 Linear vs. Triangular Basis

We will now compare two different Sturmian basis sets that can be used to produce

a pseudospectrum. In the simplest representations, which we will call the linear basis
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the pseudostates are of the form:

Ψn = e−α0rYlm(a1r
0 + a2r

1 + a3r
2 + a4r

3....anr
q) (5.35)

where q is the highest power of r, which can be set arbitrarily and α0 = 1
n′

where n′

is the principal quantum number of the particular states we are trying to approximate.

A higher q means more peusodosates and a broader energy spectrum extending to

higher energy. The number of pseudostates N is equal to the number of terms in each

pseudostate. We can increase q until the answer converges to sufficient accuracy. For

example, if we want to sum over s-states and only want 5 pseudostates, α0 would be 1

and if we set q as 4, we would get a spectrum of 5 pseudostates with each pseudostate

having 5 terms:

Ψ1 = e−rY10(a1r
0 + a2r

1 + a3r
2 + a4r

3 + a5r
4)

Ψ2 = e−rY10(a6r
0 + a7r

1 + a8r
2 + a9r

3 + a10r
4)

Ψ3 = e−rY10(a11r
0 + a12r

+a13r
2 + a14r

3 + a15r
4)

Ψ4 = e−rY10(a16r
0 + a17r

1 + a18r
2 + a19r

3 + a20r
4)

Ψ5 = e−rY10(a21r
0 + a22r

1 + a23r
2 + a24r

3 + a25r
4)

(5.36)

We shall now consider a different basis we shall label as the ”triangular basis”. The

triangular basis was first used for the calculation of Bethe logarithms in helium-like

systems [44], but has not been studied in much detail since. In the triangular basis,
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the pseudostate wave functions are of the form

Ψn =

Ylm[e−α0λqr(rq−q)

+e−α0λq−1r(r0 + rq−(q−1)

+e−α0λq−2r(r0 + r1 + rq−(q−2)

...

+e−α0λq−qr(r0 + r1 + r2 + r3....rq)]

Now we have two variables, q, the highest power of r, and λ, which is a variable

scale parameter. The total number of terms in each pseudostate is (q+1)(q+2)
2

, which is

also the number of pseudostates and their related energies. The parameter λ controls

”the spacing between the tiers of terms on different distance scales”[44], so as λ

increases it covers a huge range of energies in the actual spectrum compared to the

simple linear method, as can be seen in Figure 5.1. As an example, for the 1s state,

if q is set to 4, we would have 15 pseudostates. The first pseudostate would be

Ψ1 =

Y10

[
e−λ

4r
(
a15r

0
)

+e−λ
3r
(
a13r

0 + a14r
1
)

+e−λ
2r
(
a10r

0 + a11r
1 + a12r

2
)

+e−λ
1r
(
a6r

0 + a7r
1 + a8r

2 + a9r
3
)

+e−λ
0r
(
a1r

0 + a2r
1 + a3r

2 + a4r
3 + a5r

4
) ]

An important limitation of the linear basis set is that the highest power N cannot
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Figure 5.1: This diagram shows the energy spectrum for the 1s pseudostates for
highest power 10, for both triangular and linear basis. The triangular one covers an
enormously larger range of energies.
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be increased indefinitely due to numerical round-off errors that produce negative

eigenvalues for the overlap matrix. For example, in double precision, the highest value

of N is approximately N = 16. This limits the accuracy that can be obtained.In order

to compare these methods we will look at one of the correction terms that we need

to calculate in Eq.(3.46):

N∑
n=1

〈
Ψ(0)
n |pz|Ψ

(0)
2p

〉 〈Ψ0
1s|
−p4

8
|Ψ(0)

n

〉
E

(0)
s − E(0)

n

(5.37)

We will call this the p4 correction term for 1s. The analytic value was determined

in Eq.(5.16) in subsection 5.2.1 as −0.074, 544, 415, 992, 783, 892, 407, 877, 82i. Table

5.1 shows the values found using the linear basis, and Table 5.2 shows the values

found using the triangular basis with λ = 10. The highest accuracy achieved in

the linear basis values was 10−5 at the highest power of 14. The same accuracy of

10−5 can be achieved using the triangular basis at a highest power of 10. Thus,

the triangular basis gives the same accuracy as the linear basis set but with a lower

highest power of r, which is an advantage as we can now increase accuracy without

running into problems such as round-off errors caused by increasing the highest power

of r. Furthermore, at the highest power of 14 the triangular basis value is two orders

of magnitude more accuarate. To compare convergence we can look at the difference

between successive values. Looking at the values from both at a highest power of 11,

the triangular basis value is smaller by two orders of magnitude thus it is converging

quicker than the linear basis.

In order to compare their convergence we can also look at the values found by

partial sums over pseudostates up to a certain energy. The values shown in Figure

5.3 give a clearer convergence pattern than the values in Figure 5.2, as they arrive at

a clear steady value and a plateau.

It is thus clear that the triangular basis converges faster and gives more accurate
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Table 5.1: Values for the p4 correction term for 1s (i.e∑N
n=1

〈
Ψ

(0)
n |pz|Ψ(0)

2p

〉 〈Ψ0
1s|
−p4
8
|Ψ(0)
n

〉
E

(0)
s −E

(0)
n

) using the linear basis. As the highest power is

increased (and subsequently the number of pseudostates), the difference between
successive values decrease and we also get closer to the analytic value

Max Power of R linear Difference with previous value Difference with Analytic Value

6 -0.0793601567090413 -0.0048157407162575

7 -0.0723531313671880 0.0070070253418533 0.0021912846255958

8 -0.0754985392647251 0.0031454078975371 -0.0009541232719413

9 -0.0741423759205424 0.0013561633441827 0.0004020400722414

10 -0.0747094243847665 0.0005670484642241 -0.0001650083919827

11 -0.0744778891018926 0.0002315352828739 0.0000665268908912

12 -0.0745693128790127 0.0000914237771201 -0.0000248968862289

13 -0.0745317041795466 0.0000376086994661 0.0000127118132372

14 -0.0745391298868143 0.0000074257072677 0.0000052861059695

Table 5.2: Values for the p4 correction term for 1s (i.e∑N
n=1

〈
Ψ

(0)
n |pz|Ψ(0)

2p

〉 〈Ψ0
1s|
−p4
8
|Ψ(0)
n

〉
E

(0)
s −E

(0)
n

) using the triangular basis with a λ of 10.

As the highest power is increased (and subsequently the amount of pseudostates),
the difference between successive values decrease and we also gets closer to the
analytic value

Max Power of R Triangular with λ 10 Difference with previous value Difference with Analytic Value

6 -0.0741626132868520 0.0003818027059318

7 -0.0743951738119599 0.0002325605251079 0.0001492421808239

8 -0.0745996584300792 0.0002044846181193 0.0000552424372954

9 -0.0745642821014297 0.0000353763286495 0.0000198661086459

10 -0.0745374174797260 0.0000268646217037 0.0000069985130578

11 -0.0745419927587497 0.0000045752790237 0.0000024232340341

12 -0.0745452432945680 0.0000032505358183 0.0000008273017842

13 -0.0745446951898728 0.0000005481046952 0.0000002791970890

14 -0.0745443226806348 0.0000003725092380 0.0000000933121490
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Figure 5.2: The contributions to the p4 correction term for 1s (i.e∑N
n=1

〈
Ψ

(0)
n |pz|Ψ(0)

2p

〉 〈Ψ0
1s|
−p4
8
|Ψ(0)
n

〉
E

(0)
s −E

(0)
n

) by the partial sums over pseudostates up to a

certain energy, using a linear basis with a highest power of 10. The absolute value
was taken for clarity in the graph
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Figure 5.3: The contributions to the p4 correction term for 1s (i.e∑N
n=1

〈
Ψ

(0)
n |pz|Ψ(0)

2p

〉 〈Ψ0
1s|
−p4
8
|Ψ(0)
n

〉
E

(0)
s −E

(0)
n

) by the partial sums over pseudostates up to a

certain energy, using a triangular basis with λ of only 3 and a highest power of 10.
The absolute value was taken for clarity in the graph
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Effect of Changing Lambda for 1s Pseudostates

Figure 5.4: Plot of the deviation of the p4 correction term for 1s ( (i.e∑N
n=1

〈
Ψ

(0)
n |pz|Ψ(0)

2p

〉 〈Ψ0
1s|
−p4
8
|Ψ(0)
n

〉
E

(0)
s −E

(0)
n

) from the expected analytic value, with changing

lambda, while the highest power of r is fixed at 10. A minimum can be seen at a λ
of 14.

values as compared to the linear basis. As the highest power of r is increased the values

improve for both; however, computation time also increases. We can however modify

the λ parameter; with an optimal value of λ we don’t need to increase the highest

power as much. The optimal value of λ is chosen which minimizes the difference

between successive values, thus giving the least error. In our case since the analytic

value is known, the optimal value of λ is that which gives the closest value to the

analytic value. For the 1s pseudostate spectrum, the optimal value of λ is 14 as can

be seen in Figure 5.4.

Due to the λ the pseudostates in the triangular basis set can span a larger portion

of the spectrum and thus converge faster. As we increase the number of pseudostates,

the dependance with λ becomes less. Ideally we want to keep the number of pseu-
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dostates to a minimum, and find the ideal λ which gives us the optimum value.

We thus get a better value compared with the linear basis with minimal increase in

computation time.

5.5 Pseudostate Wave Functions Vs. Analytic

We have seen that the triangular basis is a significantly better basis set than the linear

basis set. We will now compare the first order wave function correction obtained

using the pseudospectral method (with a triangular basis), with the analytic first

order wave function corrections. Figure 5.5 shows a plot of the Ψ
(1)
1s obtained from

the pseudostate method compared with the analytic one. A triangular basis was used

with λ = 14, (which as shown in Figure 5.4 this was the optimal value for 1s) and the

highest power of r was 6 which is very low. This shows that even with a small highest

power of r, and subsequently less pseudostates, we still acheive a good representation

of the wave function. Figure 5.6 shows the difference between the absolute values

of the Ψ
(1)
1s obtained from the pseudostate method with the Ψ

(1)
1s obtained from the

analytic method for r = 0.1..20. The plot shows values from r = 0.1 as there is a

much larger deviation near r = 0. They differ by a very small amount (O(10−3))

and the values become even closer to each other as r increases. The agreement can

be improved by increasing the highest power of r, and subsequently the number of

pseudostates. Similar results were obtained for the 2p case.
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Figure 5.5: Plot of the analytic Ψ
(1)
1s and the Ψ

(1)
1s (for r = 0.1..20) obtained from

pseudostates using a triangular basis set with a λ = 14 and a highest power of 6. The
two wave functions overlap almost exactly.
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Figure 5.6: Plot of the difference (for r = 0.1..20) between the absolute values of the

Ψ
(1)
1s obtained from the pseudostate method (triangular basis, λ = 14, highest power

of 6) with the Ψ
(1)
1s obtained from the analytic method. The deviation is small and

decreases as r increases.
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Chapter 6

Results

The goal was to show that by using equivalent nonrelativistic operators and rela-

tivistically corrected Schrödinger wave functions we can obtain the same results as

using relativistic operators and Dirac wave functions, correct up to some fixed order

in powers of the fine structure constant α. Thus we would like to show that

〈
ΨD
j |~α ·A|ΨD

i

〉
=
〈

Ψ
(0)
j + α2Ψ

(1)
j |T S|Ψ

(0)
i + α2Ψ

(1)
i

〉
(6.1)

where the left side is evaluated up to O(α2). We have discussed already the corrections

to the operator that arise from Foldy-Wouthuysen transformation. We also discussed

the pseudostate method as a technique to determine the corrections to the wave

functions, and compared the linear and triangular basis. Furthermore, we presented

the analytic wave functions and used them as a reference for the corrected wave

functions.

We now will proceed to evaluate all the terms in Eq. (6.1). We will consider the

transition from a 2p state to a 1s state. Due to the angular momenta coupling, there

are two possible 2p states: 2p1/2 and 2p3/2. Further we are using the long wavelength

approximation (see Section 2.1), so we let A = ẑ

For the relativistic term, i.e left side of Eq.(6.1), we use the following to evaluate
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it [20]

(−1)j
′−1/2 η√

6

√
(2j′ + 1)(2j + 1)×

j′ 1 j

1
2

0 −1
2

Mj′j (6.2)

where

Mj′j = i

([
(κj′ − κj)I+

L+1 + 2I−L+1

]
√

2
−
√

2
[
(κj′ − κj)I+

L−1 + 2I−L−1

])
(6.3)

with

I± =

ˆ ∞
0

(Pj′Qj ±Qj′Pj)jL

(wr
c

)
dr (6.4)

where j = 1
2

and j′ = 1
2

or 3
2

depending on which transition we are calculating, κ is

the Dirac quantum number (κ = ∓(j + 1
2
) for j = l ± 1

2
), and η is the normalization

constant. P and Q are the large and small radial radial components of the Dirac

bispinor, as given in [34, p.69] expanded in terms of α and only kept up to order α2. jL

is a spherical Bessel function and as we are using the long wavelength approximation

we will only use the first term so it’s just 1.

For the nonrelativistic formalism, i.e the right side of Eq.(6.1), we need to evaluate

the following terms:

− α
〈

Ψ
(0)
j |

e

m
A · p|Ψ(0)

i

〉
(6.5)

− α3
〈

Ψ
(1)
j |

e

m
A · p|Ψ(0)

i

〉
(6.6)

− α3
〈

Ψ
(0)
j |

e

m
A · p|Ψ(1)

i

〉
(6.7)

α3
〈

Ψ
(0)
j |HFW |Ψ(0)

i

〉
(6.8)

The last three terms, which are the relativistic corrections of O(α2) are each

composed of two terms. Thus the relativistic corrections require the calculation of
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the following six terms:

− α3
〈

Ψ
(1)
1sp4
|pz|Ψ(0)

2pj

〉
(6.9)

− α3
〈

Ψ
(1)
1sδ(r)
|pz|Ψ(0)

2pj

〉
(6.10)

− α3
〈

Ψ
(0)
1s |pz|Ψ

(1)
2pp4

〉
(6.11)

− α3
〈

Ψ
(0)
1s |pz|Ψ

(1)
2pL·S

〉
(6.12)

α3

4

〈
Ψ

(0)
1s |(p2pz + pzp

2)|Ψ(0)
2p

〉
(6.13)

− α3

2

〈
Ψ

(0)
1s |(σ · (E× ẑ))|Ψ(0)

2p

〉
(6.14)

We are interested in calculating the corrections of order O(α2) compared to the

nonrelativistic term (Eq.(6.5)), so for both the relativistic and nonrelativistic methods

we will factor out the α term thus our results will be in the form of

Cα(1 + α2 × corrections)

where C is the leading nonrelativistic value for the matrix element. The first four

terms arise due to the wave function corrections, they can be seen in Table 6.1. For

the pseudostate method we used a triangular basis set with a λ of 14 and a highest

power 18. The last two terms were already determined in Chapter 3, factoring out

the first term gives:

iα3

4

〈
Ψ

(0)
1s |∇2∇z +∇z∇2)|Ψ(0)

2p

〉
α
〈

Ψ
(0)
1s | emA · p|Ψ(0)

2p

〉 = −α2 3

8
(6.15)
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and the spin term gives different results for the j’s:

−α3

2

〈
Ψ

(0)
1s |(σ · (∇φ× ẑ))|Ψ(0)

2p 1
2

〉
α
〈

Ψ
(0)
1s | emA · p|Ψ2p(0)

〉 = −α2 3

8
(6.16)

−α3

2

〈
Ψ

(0)
1s |(σ · (∇φ× ẑ))|Ψ(0)

2p 3
2

〉
α
〈

Ψ
(0)
1s | emA · p|Ψ(0)

2p

〉 = α2 3

16
(6.17)

6.1 2p to 1s transition

We will consider first simply the spin-independent result. Using the Dirac transi-

tion amplitudes and averaging over the spin quantum numbers to remove the spin

dependence we get

〈
ΨD
j |~α ·A|ΨD

i

〉
∝ 1 + α2

(
− 19

288
+

4 ln(3)

6
− 4 ln(2)

3

)
(6.18)

For the nonrelativistic evaluation we need only the contributions from the follow-

ing four terms, as these are spin independent

α3
〈

Ψ
(1)
1sp4
|pz|Ψ(0)

2pj

〉
(6.19)

α3
〈

Ψ
(1)
1sδ(r)
|pz|Ψ(0)

2p1

〉
(6.20)

α3
〈

Ψ
(0)
1s |pz|Ψ

(1)
2pp4

〉
(6.21)

α3

4

〈
Ψ

(0)
1s |(p2pz + pzp

2)|Ψ(0)
2p

〉
(6.22)
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Using analytic wave functions we obtain

〈
Ψ

(0)
j + α2Ψ

(1)
j |T S|Ψ

(0)
i + α2Ψ

(1)
i

〉
∝ 1 + α2

(
− 19

288
+

4 ln(3)

6
− 4 ln(2)

3

)
= 1 + α2(−0.0746582224120578919491607)

(6.23)

which matches exactly with the relativistic case. Using pseudostates results in

〈
Ψ

(0)
j + α2Ψ

(1)
j |T S|Ψ

(0)
i + α2Ψ

(1)
i

〉
∝ 1 + α2(−0.07465822246761371580508678)

(6.24)

with matches up to 10 decimal places.

6.2 2p1
2

to 1s transition

The relativistic result, i.e left side of Eq.(6.1) for the 2p 1
2
, is

〈
1s|~α ·A|2p 1

2

〉
=

32ηαi

81
√

3

(
1 + α2

(
−17

96
+ ln(3)− 3 ln(2)

2

))
(6.25)

this requires the evaluation of all six terms for the nonrelativistic method. Using the

analytic wave functions and summing the contributions from all the terms gives

16
√

2αi

81
√

3

(
(1 + α2

(
−17

96
+ ln(3)− 3 ln(2)

2

))
=

16
√

2αi

81
√

3

(
(1 + α2 (−0.1181918155051416060639363)

) (6.26)

where we see that the α2 corrections match exactly. For the pseudostate method we

get the following result

16
√

2αi

81
√

3

(
(1 + α2 (−0.118191855608973605322189)

)
(6.27)
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where it matches up to 9 digits after the decimal.

6.3 2p3
2

to 1s transition

The relativistic result, i.e left side of Eq.(6.1) for the 2p 3
2
, is

〈
1s|~α ·A|2p 3

2

〉
=

32η
√

2αi

81
√

3

(
1 + α2

(
− 1

96
+

3 ln(3)

4
− 5 ln(2)

4

))
(6.28)

this requires the evaluation of all six terms for the nonrelativistic method. Summing

the contributions from all the terms and using the analytic wave functions gives

32αi

81
√

3

(
(1 + α2

(
− 1

96
+

3 ln(3)

4
− 5 ln(2)

4

))
32αi

81
√

3

(
(1 + α2 (−0.0528914258655160348917730)

) (6.29)

once again, this matches exactly with the relativistic case. The result using the

pseudostate method is:

32αi

81
√

3

(
(1 + α2 (−0.05289142592127207624535330)

)
(6.30)

which matches up to 9 digits after the decimal.

6.4 3p to 2s transitions

We have thus far shown results for the 2p to 1s transitions. We will repeat the

procedure for the 3p to 2s as a further test of the validity of the operators and

the wave functions. In this case the radial parts are different, while the angular

parts are the same. In order to compute the transition probability, we need to first

determine the analytic wave functions. For the 2s wave functions we can refer to
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Cohen and Dalgarno’s [43] results, and we obtained the 3p wave functions ourselves,

The normalized analytic first order wave function corrections for both are presented

in the Appendix.

The relativistic result, i.e left side of Eq.(6.1) for the 3p 1
2

case is

〈
2s|~α ·A|3p 1

2

〉
=
−128η

√
6αi

3125

(
1 + α2

(
13

96
− ln(3)

2
− 3 ln(2)

2
+ ln(5)

))
(6.31)

Using the nonrelativistic operators and the analytic corrected wave functions,we get

128
√

3αi

3125

(
1 + α2

(
13

96
− ln(3)

2
− 3 ln(2)

2
+ ln(5)

))
(6.32)

where the α2 terms match exactly. For the 3p 3
2
, the relativistic value is

〈
2s|~α ·A|3p 3

2

〉
=
−256

√
3αi

3125

(
1 + α2

(
− 9

32
− ln(3)

2
− ln(2) +

3 ln(5)

4

))
(6.33)

Using the nonrelativistic operators and the analytic corrected wave functions, we get:

128
√

6αi

3125

(
1 + α2

(
− 9

32
− ln(3)

2
− ln(2) +

3 ln(5)

4

))
(6.34)

where once again the α2 terms match exactly.

6.5 Discussion

We have seen for all cases, including the spin dependent case, that the α2 correction

terms using the equivalent nonrelativsitic operators and the analytic first order wave

function corrections match exactly with the relativistic result. The logarithmic terms

come only from the corrections to the wave functions, whereas the numerical terms can

come either from the Foldy-Wouthuysen corrections or the wave function corrections.

Since the logarithmic terms and the numerical terms match with the relativistic case,
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we can conclude that our analytic wave functions were correctly obtained and also

the operators obtained from the Foldy-Wouthuysen transformation are correct.

The pseudostate result is only accurate within 5 digits after the decimal. Looking

at Table 6.1, which compares the individual values between analytic and pseudostate

wave functions, we see that the 1s wave function corrections are the limiting factor.

For the p states, the L ·S values are the most accurate, followed by the p4 corrections.

We even used a λ = 14 which as shown in Fig. 5.4 is the optimal value for the 1s pseu-

dostates, however the results from the 1s corrections are significantly less accurate. It

could be that the near-zero behaviour of the 1s state could be a contributing factor,

as for p-states the wave function vanishes at zero. We saw in Figure 5.6 that the

deviation was increasing as we neared zero, while in Figure 5.5 we saw that the wave

function is large near zero. This means a large contribution comes from the near zero

portion of the wave function, which has the largest deviation from the analytic. This

could explain why our s − states are limiting our accuracy. Further, if we consider

the analytic wave function correction for 1s for the −p4

8
perturbation:

Ψ
(1)
1s =

(
− ln(2)− ln(r) +

1

2r
− r

2
+

(−4γ + 7)

4

)
Ψ

(0)
1s (6.35)

we see that it contains logarithmic functions and also 1
r

terms, whereas the wave

function obtained from our pseudostate method only contains positive powers of r.

Implementing logarithmic terms or terms of negative powers of r in our pseudostates

could improve the results obtained from the pseudostate method. We also repeated

the procedure with 2s and 3p states and saw the same result, namely that the s states

gave less accurate values than the p states. Let’s look at the first order wave function

correction for 2p for a perturbation of −p
4

8

Ψ
(1)
2p =

−48 ln(r)r + 72− 3r2 + (97− 48γ)r

144r
Ψ

(0)
2p (6.36)
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At first glance it seems this also has a 1
r

term, however it is being multiplied by

Ψ
(0)
2p =

√
2

π

r cos θ

8
e−r/2 (6.37)

Therefore, Ψ
(1)
2p only has positive powers of r and since our pseudostates are composed

of only positive powers of r, the 2p wave functions obtained from the pseudostate

method gave results closer to those obtained by the analytic wave functions.
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Chapter 7

Conclusion

The Dirac equation provides a fully relativistic covariant equation which can be used

to calculate relativistic transition rates but only for one-electron systems. For the

two-electron case, one can either use approximate relativistic wave functions or obtain

equivalent nonrelativistic operators that can be used with Schrödinger wave functions;

an approach that is preferred for low Z atoms. We have employed the second method

and used equivalent nonrelativistic operators to calculate relativistic transition rates.

Using the Foldy-Wouthuysen transformation we derived the equivalent nonrela-

tivistic operators for the transition amplitude, which matched with the one-electron

terms in Lin’s paper [24]. We used a pseudostate method to obtain the relativisitically

corrected wave functions, and tested two different Sturmian basis sets showing that

the triangular basis set provides a significant advantage. We also obtained the ana-

lytic form of the relativistic corrected wave functions for the p-states, which have not

been published before. Using the analytic forms of the wave functions for s-states[43]

and p-states, we were able to asses the accuracy of the pseudostate method.

Our results show that by using equivalent nonrelativistic operators obtained from

the Foldy-Wouthuysen transformation and relativistically corrected Schrödinger wave

function, one can get the relativistic corrections up to α2. The two matched exactly
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when using analytic wave functions, thus providing a theoretical framework for the

two-electron case. For the pseudostates, the accuracy was limited by the s-states

which might be improved if one includes a 1
r

or a logarithmic term in the pseudostates.

The triangular basis set was shown to be a much better choice than a linear basis set,

providing a much broader spectrum, converging quicker than the linear basis set and

increasing the accuracy by two orders of magnitude.

Daniel Venn [45] successfully implemented the pseudospectral method for helium

for electric dipole transitions and verified that the hydrogenic results are recovered in

the limit of large Z by using the analytic wave functions obtained in this thesis.

Future work would be to implement a 1
r

term or logarithmic term in the pseu-

dostates and see if this improves the results from the pseudospectral method. One

should also repeat this method for the full vector potential A = ε̂e−ik·r and not just

the leading term, and prove that it still agrees with Dirac Theory up to order α2.

One can then apply this method to the two-electron case.
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Appendix A

Analytic First Order Wave

Function Corrections

We will now present the method used to solve for the analytic form of the first

order corrected wave functions. Using this method we obtained expressions for the

correction to the wave functions for 2p and 3p states, which have not been published

yet.

From perturbation theory the first order perturbation equation is (see Section 4.3)

H(0)Ψ(1) + VΨ(0) = E(0)Ψ(1) + E(1)Ψ(0) (A.1)

where V is the perturbation. We can rearrange all terms to one side

(H(0) − E(0))Ψ(1) + VΨ(0) − E(1)Ψ(0) = 0 (A.2)

where we know the following:

H(0) =
p2

2
+ eφ (A.3)

E(0) = − 1

2n2
(A.4)
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E(1) =
〈
Ψ(0)|V |Ψ(0)

〉
(A.5)

where n is the principal quantum number and Ψ(0) is the regular Schrödinger wave

function, and we have used atomic units (m = e = ~ = 1)

We can solve this differential equation using the Method of Frobenius [42]. Cohen

and Dalgarno [43] published the corrections to the 1s and 2s wave functions for

different perturbations. His functions had negative and positive powers of r, and also

logarithmic terms. In order to determine the wave functions for the p-state we define

our wave function to be some combination of r terms and logarithmic terms

Ψ(1) = (
∑
s

(qsr
s−2 +msr

s−1 ln(r)))Ψ(0) (A.6)

We now substitute this into Eq. (A.1) and group all the terms with the same powers of

r and also group the logarithmic terms that have the same power of r. The coefficient

of each r, which is composed of the terms ai and bi, must be 0, as Eq.(A.1) is zero.

This enables us to determine the coefficients ai and bi.

For example, suppose we want to determine the first order wave function correction

for the 2p state if our perturbation is p4. Then we have:

Ψ(1) = (
∑
s

(qsr
s−2 +msr

s−1 ln(r)))Ψ
(0)
2p (A.7)

If we substitute this into Eq. (A.1), and collect terms with the same powers of r

then

∑
s=1

(−ms+1(−3− s)(s) +ms(s− 1))rs−1 ln(r)

+
∑
s=4

((qs+1(s− 1)(−s− 2) + qs(s− 2))rs−2) + (2q1 + 8)r−2

+ (−q1 − 3m1 + 4)r−1 + (−2m2 − 4q3 +m1 − 2)r1 + (2q4 + q3 −
1

6
)r0 = 0

(A.8)
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this gives us the relations

−ms+1(−3− s)(s) +ms(s− 1) = 0 s = 1..n

qs+1(s− 1)(−s− 2) + qs(s− 2) = 0 s = 4..n

2q1 + 8 = 0

−q1 − 3m1 + 4 = 0

−2m2 − 4q3 +m1 − 2 = 0

2q4 + q3 −
1

6
= 0

(A.9)

which means

ms+1 =
ms(s− 1)

s(3 + s)
s = 1..n

qs+1 =
qs(s− 2)

(s− 1)(s+ 2)
s = 4..n

q1 = −4

m1 =
8

3

q3 =
1

6

q4 = 0

(A.10)

The first recursion relation is null because of the (s − 1) term. Only m1 can exist.

The second recursion relation is also null as q4 = 0 so all the next terms will be zero

as well. This leaves us with

(
r

6
− 4

r
+

8 ln(r)

3

)
Ψ2p (A.11)

One can do this by hand and determine the recursion relations as shown above.

It can also be done in Maple, which has a built in function called collect(f,r) which

collects terms of the same power of r in the expression f . However it will group
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terms such as r ln(r) and r together. Thus, it is advisable to increase first the powers

of r until one notices that the additional terms have coefficients of 0 (i.e if no term

greater then rm contributes). Then, increase the powers of the r in the logarithmic

terms successively until a solution is achieved. All the coefficients in the Ψ(1) can thus

be determined, except the r0 term. This can be set arbitrarily, it doesn’t affect the

wave function or the expectation values, as it goes away if you normalize the wave

function. The resulting Ψ(1) are not normalized, and can be normalized using the

Gram Schmidt procedure,

∣∣∣Ψ(1)′
〉

=
∣∣Ψ(1)

〉
−
〈
Ψ(0)|Ψ(1)

〉 ∣∣Ψ(0)
〉

(A.12)

where
∣∣Ψ(1)′

〉
is the normalized wave function.

The results for the s-state corrections matched with those presented by Cohen

and Dalgarno [43], providing a check for our method. The p-state wave functions

were then obtained which have not been published before. we will now present the

normalized first order corrections for the s and p states.

A.1 S-State First Order Analytic Wave Functions

Cohen and Dalgarno [43] have presented the unnormalized first order wave function

corrections for some perturbations. Using their results, we obtained the normalized

analytic wave functions

The first order wave function corrections for the perturbation −p4
8

for the 1s and

2s are

Ψ
(1)
1s =

[
− ln(2)− ln(r) +

1

2r
− r

2
+

(−4γ + 7)

4

]
Ψ

(0)
1s (A.13)

Ψ
(1)
2s =

[
(2− r) ln(r)− 1

r
− 3

16
r2 + (47

16
− 16γ)r + 2γ − 15

8

(r − 2)

]
Ψ

(0)
2s (A.14)
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and for the πδ3(~r)
2

perturbation, the normalized first order wave function correction

are

Ψ
(1)
1s =

[
ln(2)

2
+

ln(r)

2
− 1

4r
+
r

2
+

(2γ − 5)

4

]
Ψ

(0)
1s (A.15)

Ψ
(1)
2s =

[
(4r − 8) ln(r) + 4

r
+ r2 + (4γ − 13)r + (−8γ + 6)

8(r − 2)

]
Ψ

(0)
2s (A.16)

where

Ψ
(0)
1s = −

√
1

π
e−r (A.17)

Ψ
(0)
2s = −

√
2

π

(r − 2)

8
e−

r
2 (A.18)

and γ = 0.5772156649015328606065121 is the Euler-Mascheroni constant.

A.2 P-State First Order Analytic Wave Functions

Using the method outlined in the beginning of this Appendix, the first-order wave

functions for 2p and 3p states were determined and those results will be presented

below.

We first show the results for 2p wave functions. For a perturbation of −p
4

8
the first

order wave function correction is

Ψ
(1)
2p =

[
−48 ln(r)r + 72− 3r2 + (97− 48γ)r

144r

]
Ψ

(0)
2p (A.19)

For a perturbation of L·S
2r3

, the first order wave function corrections for the 2p 1
2

and

2p 3
2

are:

Ψ
(1)
2p 1

2

=

[
−12 ln(r)r + 36− 3r2 + (31− 12γ)r

72r

]
Ψ

(0)
2p (A.20)

Ψ
(1)
2p 3

2

=

[
12 ln(r)r − 36 + 3r2 + (12γ − 31)r

144r

]
Ψ

(0)
2p (A.21)
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Note that

Ψ
(1)
2p 1

2

= −1

2
Ψ

(1)
2p 3

2

(A.22)

where

Ψ
(0)
2p =

√
2

π

r cos θ

8
e−r/2 (A.23)

We now present the results for 3p wave functions. For a perturbation of −p
4

8
the first

order wave function correction is

Ψ
(1)
3p =

[
(108− 18r)( ln(2r)

ln(3)
)− 162

r
− r2 + (54− 18γ)r + 108γ − 189

54(r − 6)

]
Ψ

(0)
3p (A.24)

For the 3p 1
2

state, the first order wave function correction due to the spin orbit

term is

Ψ
(1)
3p 1

2

=

[
(216− 36r)( ln(2r)

ln(3)
)− 648

r
− 4r2 + (−36γ + 129)r216γ − 288

216(r − 6)

]
Ψ

(0)
3p (A.25)

For the 3p 3
2

state, it is

Ψ
(1)
3p 3

2

=

[
(216− 26r)(− ln(2r)

ln(3)
) + 648

r
+ 4r2 + (36γ − 129)r − 216γ + 288

432(r − 6)

]
Ψ

(0)
3p

(A.26)

where

Ψ
(0)
3p = −

√
2

π

(r − 6)r cos(θ)

81
e−

r
3 (A.27)

and γ = 0.5772156649015328606065121 is the Euler-Mascheroni constant.
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