
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

3-10-2019 

Exploring the roles of the CXXC motifs in Cystathionine γ-Lyase Exploring the roles of the CXXC motifs in Cystathionine -Lyase 

Scott Smith 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Smith, Scott, "Exploring the roles of the CXXC motifs in Cystathionine γ-Lyase" (2019). Electronic Theses 
and Dissertations. 7658. 
https://scholar.uwindsor.ca/etd/7658 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7658?utm_source=scholar.uwindsor.ca%2Fetd%2F7658&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 

 

 

 

 

 

Exploring the roles of the CXXC motifs in Cystathionine γ-Lyase  

 

By 

Scott Andrew Smith 

 

A Thesis  

Submitted to the Faculty of Graduate Studies  

through the Department of Chemistry and Biochemistry 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Science 

at the University of Windsor 

 

 

Windsor, Ontario, Canada 

2019 

© 2019 Scott Andrew Smith 

  



 

 

Exploring the Roles of the CxxC Motifs in Cystathionine γ-Lyase 

 
 

 

by 

 

 

Scott Andrew Smith 

 

 

 

 

 

APPROVED BY: 

 

 

 

 

__________________________________________________ 

J. Hudson 

Department of Biological Sciences 

 

 

__________________________________________________ 

J. Gauld 

Department of Chemistry & Biochemistry 

 

 

__________________________________________________ 

B. Mutus, Advisor 

Department of Chemistry & Biochemistry 

 

 

 

 

 

 

 

 

        January 16, 2019 

 



iii 

 

DECLARATION OF ORIGINALITY 

 

I hereby certify that I am the sole author of this thesis and that no part of this thesis 

has been published or submitted for publication. 

I certify that, to the best of my knowledge, my thesis does not infringe upon 

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, 

quotations, or any other material from the work of other people included in my thesis, 

published or otherwise, are fully acknowledged in accordance with the standard 

referencing practices. Furthermore, to the extent that I have included copyrighted material 

that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, 

I certify that I have obtained a written permission from the copyright owner(s) to include 

such material(s) in my thesis and have included copies of such copyright clearances to my 

appendix.  

I declare that this is a true copy of my thesis, including any final revisions, as 

approved by my thesis committee and the Graduate Studies office, and that this thesis has 

not been submitted for a higher degree to any other University or Institution. 

 

  



iv 

 

ABSTRACT 

Hydrogen sulfide was known as a toxic, flammable gas, until 1996 when it was 

shown that H2S plays an active role within the body. Cystathionine γ-lyase (CSE) is one of 

the enzymes responsible for the production of H2S within the body. Little to nothing is 

understood about the regulation of CSE, specifically two conserved CxxC residues found 

in each monomer of the enzyme. The work aimed to identify the possible regulatory or 

catalytic role of each CxxC motif within CSE. Site-directed mutagenesis revealed the effect 

of each cysteine residue on the catabolism of cystathionine, as well as its effect on varying 

pH. The Cys252 residue was shown to be of genetic importance; point mutation of this 

residue rendered the enzyme inactive. Cys255, Cys307, and Cys310 showed little to no 

impact on the function of the enzyme. Cys307-X-X-Cys310 is located on the periphery of the 

enzyme, while Cys252-X-X-Cys255 is located in the interior, at the dimer-dimer interface. 

This suggests a structural role for the 200 CxxC and a more catalytic role for the 300 motif. 

The catalytic potential of the 300 motif was interrogated with synthesized free thiol 

fluorescent probes, which mimic an already established one in the Mutus lab. The Cys307-

X-X-Cys310 motif exhibited a specificity toward the FITC2-homocysitne probe, due to the 

nature of the dihedral disulfide bond angle. This was further shown through fluorescent 

kinetics, as well as a fluorescent labeling and imaging system based around SDS-PAGE. 

Lastly, mass spectrometry was employed to detect the modification site, but no positive 

result has been observed thus far. However, holoenzyme mass spectrometry has shown an 

addition of homocystine to the Cys307 and Cys310, as well as the WT enzyme. Together, 

this provides a strong indication of a secondary active site responsible for the reduction of 

homocystine to feed downstream pathways which CSE is implicated in.  
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1.1 Hydrogen Sulfide 

Hydrogen Sulfide (H2S) was first discovered in 1777 by Carl William Scheele, a 

Swedish-German pharmaceutical chemist responsible for the isolation of oxygen and 

hydrogen among others [1, 2]. Produced from the decomposition of organic matter, H2S is 

commonly found in natural gas, and volcanic emissions. It is associated with heavy-

industries such as oil and gas production, asphalt production and cooling, paper mills and 

sewage treatment [3-6]. Incidentally, indirect exposure to H2S pollution has been shown to 

cause an increase in the rate of spontaneous abortions [7]. 

1.1.1 Biological Properties of Hydrogen Sulfide 

Hydrogen Sulfide is a colourless, flammable, gas with a characteristically 

repugnant odour, like that of rotten eggs. Short term exposure to high concentrations of 

H2S can lead to lethal sulfide poisoning which shares a similar mechanism of effect to that 

of cyanide. In both hydrogen cyanide (HCN) and H2S poisoning, HCN and H2S are tightly 

bound to the binuclear center of cytochrome c oxidase, specifically the oxidized heme a3 

decreasing cellular respiration [8-10]. Cytochrome c Oxidase is responsible for the transfer 

of electrons from ferrocytochrome c to molecular oxygen, which is then converted to water 

during oxidative phosphorylation [11].  

Hydrogen sulfide exists in the body in 3 main states: (i) free sulfide, which is 

defined as dissolved H2S, exists as an equilibrium between H2S, HS- and S2-, (ii) acid-labile 

sulfur which is sulfur released under acidic conditions from iron-sulfur complexes common 

in enzymes, (iii) bound sulfane sulfur,  or covalently bound sulfur, commonly found in 

persulfides, polysulfides, and Na2S [12-14].  Hydrogen sulfide is a weak diprotic acid 
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which can further dissociate to both hydrosulfide (HS-), and sulfide (S2-), as shown in 

Equation 1.1. Under physiologically relevant conditions pKa1 occurs at 6.76 while 

differing pKa2 values have been reported, ranging from 17-19 [15, 16]. With pKa2 >17, the 

amount of S2- found within the body is negligible. The remainder of free sulfide found in 

cells is a nearly equal ratio of H2S/HS-, while in extracellular fluid and plasma there exists 

a 20% H2S/80% ratio under relevant conditions [14].   

𝐻2𝑆 
𝑝𝐾𝑎1

⇋
.

 𝐻𝑆−
𝑝𝐾𝑎2

⇋
.

 𝑆2−
 

Equation 1.1 

Hydrosulfide is unable to diffuse across lipid membranes and tends to accumulate at its 

source. Once protonated, H2S is lipophilic, and can freely diffuse through membranes [14, 

17]. The lipophilic properties of H2S in conjunction with the large variance in the cellular 

compartmentalization of H2S, make the determination of H2S concentration in the body a 

complex issue.   

1.1.2 Hydrogen Sulfide as a Gasotransmitter 

Carbon monoxide (CO) and nitric oxide (NO) are physiologically relevant gaseous 

molecules capable of initiating and eliciting a cellular signaling response; as such they have 

been classified as gasotransmitters. Wang described gasotransmitters using 6 criteria: (i) 

the molecules must be gaseous, (ii) they do not require transporters to diffuse through 

membranes, (iii) they are endogenously generated via enzymatic activity and their 

generation is regulated, (iv) at physiologically relevant concentrations and pH they have 

defined roles, (v) possess specific molecular targets, (vi) functions displayed by the gas can 

be mimicked by exogenous addition of said gas [18, 19]. Hydrogen sulfides effect on both 
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the enhancement of N-methyl-D-aspartate (NMDA) receptor-mediated responses as well 

as the induction of long-term potentiation in the hippocampus, as shown by Abe and 

Kimura, was some of the first evidence that H2S played a vital role in signaling [20]. H2S’s 

involvement in neuromodulation, smooth muscle relaxation, and KATP channels among 

others, led Wang to propose H2S as a gasotransmitter [19, 21]. 

1.1.2 Postulated Physiological Roles of Hydrogen Sulfide 

1.1.2.1 Reactive Oxygen Species-Scavenger 

Hydrogen sulfide combats oxidative stress by scavenging free radicals and reactive 

oxygen species (ROS). Hydrogen sulfide can be oxidized to sulfate (SO4
2-), thiosulfate 

(S2O3
2), persulfides (RSS-), and polysulfides (RSSnSR) among others. Oxygen and H2S do 

not readily react, so relatively strong oxidants are required to oxidize H2S. Hydrogen 

sulfide is a suitable scavenger of hydroxyls, carbonate radicals, and nitrogen dioxide, 

among others [22]. However, hydrogen sulfides potential as a scavenger of free radicals 

and ROS is wholly dependent on free H2S concentration which can be as low as 10-30 nM 

in the brain [23]. However, H2S can exhibit antioxidant effects by interacting with other 

enzymes and pathways. Glutathione (GSH) is a known antioxidant and scavenger of ROS 

such as glutamate. Glutamate is known to cause oxidative stress through a process called 

oxidative glutamate toxicity, or oxytosis [24]. Hydrogen sulfide has been shown to increase 

glutathione levels to combat oxytosis through several channels, shown in Figure 1.1. First, 

activity of γ-glutamylcysteine synthetase (GCL) is upregulated, which increases GSH 

synthesis. Second, H2S promotes glutamate uptake into the cell by increasing the 

trafficking of the excitatory amino acid transporters-2 (EAAT2).  Increased levels of 

intracellular glutamate also increase the rate of cystine transport into the cell through the 
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system xc
- cystine/glutamate antiporter. Cystine, as well as its reduced form of cysteine are 

required by γ-glutamylcysteine synthetase for glutathione synthesis. Lastly, H2S can reduce 

extracellular cystine to cysteine, increasing intracellular cysteine levels. Increased levels 

of intracellular cysteine show a greater effect on GSH synthesis than that of transported 

cystine [24-27].   
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Figure 1.1 Visual representation of the 3 effects of H2S on oxidative stress. 1) H2S 

directly upregulates GCL increasing GSH levels. 2)  Hydrogen sulfide increases 

trafficking of EAAT2, leading to increased cystine transport. 3) Reduction of cystine to 

cysteine increases intracellular cysteine, increasing GSH synthesis.  

(adapted from [28]).  
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1.1.2.2  Biological Impact of Hydrogen Sulfide on Cardiovascular, Neurological, and 

Inflammatory Response  

 Hydrogen sulfide has been shown to influence a myriad of major biological systems 

within the body, many of which can be attributed to its role in redox biology. Cystathionine 

γ-lyase (CSE) is responsible for the majority of H2S production in the cardiovascular 

system as it is predominantly expressed within the cardiovascular system, specifically 

vascular endothelial cells, smooth muscle cells, and cardiomyocytes [21, 29-34]. In the 

cardiovascular system, H2S has been shown to play a role in slowing myocardial ischemia 

reperfusion injuries, the promotion of angiogenesis, relaxation of smooth muscle cells 

(vasodilation),  and, as stated earlier, in the regulation of blood pressure [21, 29, 31, 34, 

35]. Patients with chronic heart disease or heart failure have had their levels of circulating 

H2S shown to be significantly reduced when compared to an age-matched control [36]. 

Furthermore, it was demonstrated in CSE knockout mice that at the time of a cardiac event, 

administration of H2S reduced infarct size by 72%, while overexpression of CSE severely 

limits the effect of injury [31]. Antiatherosclerotic properties have also been associated 

with H2S. Loss of CSE expression, as seen in Apolipoprotein E (Apo E) mice treated with 

propargylglycine, a CSE inhibitor, is linked to the rapid development of atherosclerotic 

legions and plaques. Treated mice showed decreased aortic H2S production and plasma 

levels while conversely showing increased plasma levels of intracellular adhesion 

molecule-1 (ICAM-1), a biomarker for the buildup of atherosclerotic plaque in blood 

vessels [37-39].  

The cardioprotective effects of H2S are the result of several interactions with 

various signaling pathways. For example. H2S induces nuclear localization of nuclear 
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factor (erythroid-derived 2)-like 2 (Nrf2), a transcription factor known for the regulation 

of gene expression of several anti-oxidant enzymes. This results in Nrf2  binding to the 

antioxidant responsive element (ARE), which is responsible for an increase in expression 

of hem oxygenase-1 (HO-1) and Thioredxoin-1 (Trx1), which are involved in stress 

response [40, 41]. Additionally, H2S activation of the PKCε-STAT-3 pro-survival 

signaling cascade directly contributes to an increase in cardioprotection.  Additionally, this 

causes phosphorylation and inhibition of Bad, a pro-apoptotic factor, responsible for the 

death of cardiomyocytes [31, 39, 40]. Hydrogen sulfide often exhibits crosstalk with NO 

to elicit cardioprotective effects. For instance, addition of exogeneous H2S activates a 

VEGF-Akt-eNOS-NO-cGMP pathway which leads to a significant increase in NO 

concentrations, ultimately leading to a decrease in oxidative stress, while preserving 

mitochondrial function [36]. 

 Like the cardiovascular system, H2S has numerous effects upon the nervous system. 

As previously stated, H2S affects hippocampal long-term potentiation by acting upon 

NMDA receptors [20]. Specifically, H2S increases intercellular levels of cyclic adenosine 

monophosphate (cAMP) levels which increase activity of protein kinase A (PKA), leading 

to activation of NMDA receptors via PKA phosphorylation [42]. Various ion channels have 

been identified as potential targets of H2S, as seen already through the effects of H2S on 

KATP channels involved in vasodilation/constriction [29]. Calcium ion channels are a 

potential target of H2S, shown by an increase in  intracellular Ca2+ levels, as well as 

subsequent Ca2+ waves [43]. Likewise, modulation of both the Na+/H+ and Cl-/HCO3
- 

exchangers by H2S leads to intracellular acidification [44].  

 Effects of H2S can also be seen in neurodegenerative diseases, specifically 
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Alzheimer’s and Huntington’s (HD), as can be seen in Figure 1.2. Both diseases show 

either a significant decline in H2S levels or a significant lack of production when compared 

to healthy individuals [45, 46]. In Alzheimer’s disease, treatment of rat models with 

exogenous H2S inhibited expression of beta-site amyloid precursor protein cleaving 

enzyme-1 (BACE-1), a β-secretase involved in the production of amyloid beta (Aβ). 

Formation of the Aβ particles themselves can be inhibited by H2S through the inhibition of 

γ-secretase activity via  a cAMP dependent pathway after treatment with an exogenous H2S 

donor [47, 48],   

 A defect in the activating transcription factor 4 (ATF4), a protein responsible for 

the disposition of amino acids stems from oxidative stress caused by cysteine. A lack of 

H2S production caused by low levels of CSE, as well as low levels of key cysteine/cystine 

transporters EAAT3 and system xc
- (as seen in Figure 1.1) increases levels of oxidative 

stress [49]. As well, the HD mutant protein mhtt sequesters SP1, the transcription factor 

for CSE, creating a feedback loop where no CSE can be produced, leading to massive 

increases of oxidative stress [49]. 
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Figure 1.2. (A) Hydrogen sulfide’s effect on Alzheimer’s disease, displaying the 

inhibitory effect of both β-secretase and γ-secretase. (B) Huntington’s disease schematic 

indicating the increase in reactive oxygen species due to lack of CSE expression due to 

mhtt, as well as decrease in ATF4 expression due to ROS. Modified from [50].  
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A case can be made that H2S shows both pro and anti-inflammatory properties [51].  

Hydrogen sulfide has shown proinflammatory effects on pancreatitis, as well as in ischemia 

reperfusion injury models of the kidney. Incidences of sepsis and septic shock have shown 

a proinflammatory effect associated to H2S, as patients in sepsis have higher levels of H2S 

[51, 52]. Anti-inflammatory properties of hydrogen sulfide have been touched upon lightly 

thus far, specifically in the cardiovascular effects section. Decrease in expression of ICAM-

1 by exogenous H2S treatment, and inhibition of NF-κB activity decrease inflammation 

[38, 53]. 

 The effects of H2S within the body are not limited to inflammation and the 

cardiovascular and nervous systems. Hydrogen sulfide plays prominent roles in the 

respiratory, reproductive, and renal system, while effecting the liver and gut [54-60]. 

Effects can be observed in hibernation and oxygen sensing, while a small, albeit somewhat 

controversial role, can be said for cancer [61, 62].  

1.1.3 Postulated Hydrogen Sulfide Signaling Pathways 

The biological mechanism of action that H2S utilizes to elicit signaling events is 

most accepted to be through posttranslational modification of proteins. Hydrogen sulfide 

directly modifies cysteine residues with the help of an oxidant, as seen in Equation 1.2. 

This process is termed s-sulfuration, or, as it is more commonly known now, persulfidation.  

𝑅𝑆𝐻 + 𝐻𝑆
−

 → 𝑅𝑆𝑆
−

+ 2𝐻
+

+ 2𝑒− 𝐸 ° ` = +0.18𝑉  

Equation 1.2 

 Reactive persulfides in the form of RSS-/RSSH can form via H2S interacting with cysteine 

residues on protein, however, H2S displays low reactivity with oxidized thiols like those 

found in disulfides [63]. The requirement for an oxidant to post translationally modify a 
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protein via H2S seems evolutionarily disadvantageous, however, two enzymes of the 

transsulfuration pathway, CSE and its counterpart, cystathionine β-synthase (CBS) 

catalyze reactions that result in the formation of several low molecular weight (LMW) 

persulfides [64]. In addition to Cys-SSH produced by CSE and CBS, glutathione persulfide 

(GSSH) can form through a persulfide exchange reaction in solution between Cys-SSH 

and GSH [65, 66].  

 Some Direct evidence of persulfide-based signaling have been observed. As 

previously stated, Hosoki et al showed that H2S acts as a smooth muscle relaxant. It was 

later shown that H2S’s observed effects on KATP channels were a result of persulfidation of 

a cysteine residue located in a KATP channel subunit, Kir6.1. Persulfidation of this residue 

prevents ATP from interacting with the ion channel, resulting in a K+ influx and smooth 

muscle relaxation [29, 67]. Persulfidation of cysteine 215 in protein tyrosine phosphatase-

1B (PTP-1B) results in a loss of enzymatic activity and an increase in phosphorylation. 

This increased phosphorylation increases the activation of protein kinase-like endoplasmic 

reticulum kinase (PERK) in response to ER stress [68].  

Nuclear localization of Nrf-2, as mentioned previously, is partially responsible for 

the cardioprotective elements attributed to H2S. Binding of Nrf-2 to ARE is a required step 

in the response to cardiac injury, however Nrf-2 is sequestered in the cytoplasm when 

inactive by Kelch-like ECH associated protein 1 (Keap1) [69, 70]. While the exact 

mechanism is not known, some form of oxidative or electrophilic modification of critical 

cysteine residues on Kaep1 is required to induce a conformational change and facilitate the 

release of Nrf-2, resulting in transport to the nucleus [69, 70].  

1.1.4 Measurement of Hydrogen Sulfide 
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The most significant issue in the field of H2S biology is the accurate measurement 

of H2S concentration within the body. There exist several methods for the measurement of 

endogenous H2S as well as labile-sulfur species, such as methylene blue, sulfide ion 

specific electrodes (ISE), ion chromatography (IC), sulfide sensitive fluorescent dyes 

(SSFD), Monobromobimane (MBB), and gas chromatography, coupled to both mass 

spectrometry and flame photometric detectors (FPD). Issues arise when techniques 

designed for measurement of H2S in the environment are erroneously applied to the body. 

The vast array of methods available to measure H2S, and their vastly different sensitivities 

result in reported concentration ranges from the low nM to high µM range as seen in Table 

1.1. 
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Table 1.1. Reported maximum sensitivity, as well as common reported ranges for blood 

and tissue H2S concentrations for common H2S measurement techniques.  
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The methylene blue assay is the most commonly used colorimetric detection 

method. It involves the reaction of H2S with N,N-dimethyl-p-phenylenediamine sulfate 

resulting in the product methylene blue which can be read at 670nm. Methylene blue was 

originally intended to measure H2S concentration in air [71, 72]. Methylene blue also 

requires a highly acidic sample prep which has the potential to liberate acid-labile sulfur, 

further inflating reported concentrations. In addition to over-inflating H2S concentrations, 

methylene blue can form dimers and trimers in solution, resulting in absorption values that 

do not follow Beer’s Law [73]. The methylene blue assay routinely returns blood H2S 

concentration values in the range of 20-300 µM; at such high concentrations, humans can 

experience eye and lung irritation, to unconsciousness and death within 4-8 hours [74]. 

Monobromobimane reacts quickly with H2S, and under basic conditions to form a 

fluorescent product that can be separated by HPLC coupled to a fluorescent detector. The 

MBB reaction has a sensitivity of 2nM, while generally reporting plasma H2S 

concentrations in the 0.1-1.0 µM range [75, 76]. At the low end H2S is detectable by a 

human nose, while at the extreme plasma would have an offensive odour [74].  

Polarographic electrodes and gas chromatography are two of the most accurate 

methods of H2S measurement. Polarographic electrodes are very similar to standard 

oxygen sensors. The detection limit is in the range of 10-20 nM H2S, and the H2S specific 

membrane allows for real-time measurement of plasma or tissue samples in real time [75, 

77]. Gas chromatography (GC) is often coupled to a flame photometric detector or mass 

spectrometer. Gas chromatography often reports values similar to those of the electrode, in 

the low nanomolar range [75]. While GC often measures both H2S and acid-labile sulfur, 

it is possible to distinguish between the two if pH is carefully controlled [78]. 
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When examining the literature, one must consider any reported H2S concentrations, 

as well as the method used to determine that value. It is also critical to examine the claims 

attributed to H2S made in older literature and evaluate whether the method used to measure 

concentrations is both accurate and trustworthy.  

1.2  In vivo Hydrogen Sulfide Production  

1.2.1 Reverse Transsulfuration Pathway  

Hydrogen sulfide is produced mainly in the cardiovascular system, liver, kidneys 

and the brain. It is a common byproduct of the metabolic pathway known as the 

transsulfuration pathway. The transsulfuration pathway involves the interconversion of 

cysteine and homocysteine through a cystathionine intermediate catalyzed by the 

successive actions of two pyridoxal-phosphate containing enzymes, cystathionine β-

synthase and cystathionine γ-lyase [79, 80]. These two enzymes are predominantly located 

in the cytosol, with some reports indicating they are found in the nucleus and 

mitochondrion [81-83]. There are two versions of this metabolic pathway, the forward and 

reverse. The forward transsulfuration pathway involves the conversion of cysteine to 

homocysteine via the actions of CSE and CBS, and ultimately the methylation of 

homocysteine to methionine via methionine synthase [84]. The canonical reverse 

transsulfuration pathway, Figure 1.3, involves the interconversion of homocysteine and 

serine to cystathionine through the function of CBS, followed by the beta elimination of 

the C-γ-S bond of cystathionine to yield cysteine [85]. While the reverse transsulfuration 

pathway is responsible for cysteine production, which is used in glutathione biosynthesis, 

both enzymes are capable of producing both H2S and LMW persulfides [64].  This is a 

result of both enzymes showing levels of substrate promiscuity with other sulfur containing 
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species. All auxiliary CBS catalyzed reactions can be seen in Figure 1.4, while Figure 1.5 

displays reactions catalyzed by CSE.  
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Figure 1.3 Canonical reverse transsulfuration pathway. (i) Dehydration of homocysteine 

and serine to form cystathionine, catalyzed by CBS. (ii) CSE catalyzed hydrolysis of 

cystathionine to alpha-ketobutryate, ammonia, and cysteine.  
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Figure 1.4 Reactions catalyzed by CBS. Reactions ii, iii, and iv are responsible for H2S 

production, while reaction v is responsible for the production of cysteine persulfides.  
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Figure 1.5 Reactions catalyzed by CSE. Reactions ii-vi are responsible for the production 

of H2S. Reactions vii and vii are the cysteine and homocysteine persulfide producing 

reactions. The preferred substrate, cysteine, can be seen in reaction ii. 
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1.2.2 Cysteine Catabolism 

In addition to production of H2S through the transsulfuration pathway, the enzyme 

3-mercaptopyruvate sulfurtransferase (3-MST) catalyzes the transfer of sulfur from 

cysteine to that of a small, nucleophilic thiol acceptor. Hydrogen sulfide is then liberated 

from the sulfide acceptor [86]. 

1.2.3 Cystathionine γ-lyase  

Cystathionine γ-lyase (EC 4.4.1.1), the second enzyme of the transsulfuration 

pathway, is a PLP-dependent beta-replacing lyase which is located on chromosome 1, 

p31.1, in humans. There are two separate isoforms of CSE, one of which is the result of a 

132 base pair deletion. While both isoforms are expressed, the longer form is the dominant 

form [87]. CSE is predominantly expressed in the cardiovascular system and respiratory 

system, as evidenced by its large cardioprotective effects [21, 29]. In addition, CSE is the 

main H2S forming enzyme in the kidneys, liver, uterus and placenta  [21, 88].  

Cystathionine γ-lyase is a 44.5 kDa monomer which associates as a homotetramer 

in solution, shown in Figure 1.6. Interestingly, crystal structures have shown PLP binding 

in only three of the four subunits. Pyridoxal-phosphate interacts with CSE through strong 

hydrogen bonding between the phosphate and two subunits, specifically Gly90, Leu91, 

Ser209, Thr211 from the primary PLP binding subunit, and Tyr60 and Arg62 from an 

adjacent subunit. Supplemental to these hydrogen bonds are two key bonds between 

Asp187 and Lys212 with PLP. A Schiff base is formed between the carbonyl carbon of 

PLP and amino group of Lys212, while Asp187 is involved electrostatically with the 

pyridinium ring. Additionally, Tyr114 and the pyridine ring of PLP exhibit aromatic π-

stacking [89]. Cystathionine γ-lyase inhibition is possible by propargylglycine (PAG), β-
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cyanoalanine, and aminooxyacetic acid [90]. Of these, propargylglycine is the most 

common, as well as irreversible. Propargylglycine inhibition of CSE is achieved through 

the Cγ of PAG covalently binding to Tyr114, forming a vinyl-ether. Several hydrogen 

bonds between adjacent subunits help to stabilize the ether. Interestingly, inhibition of CSE 

by PAG is only effective when the enzyme is breaking a C-γ-S sulfur bond, which requires 

a two-step mechanism. Both Tyr114 and Lys212 serve this purpose. When CSE is 

catalyzing the production of H2S from cysteine, a one step-mechanism is required, and 

thus Lys212 is sufficient, ignoring Tyr114 [89].  

Regulation of CSE is currently understudied. Phosphorylation of Ser377 has been 

linked to carbon monoxide dependent stimulation of protein kinase G (PKG). While this 

residue is buried, and the exact mechanism of phosphorylation is unknown, 

phosphorylation of Ser377 results in decreased H2S production [91]. The presence of two 

CxxC motifs in CSE mark possible sites for regulation. One of which, Cys307-X-X-

Cys310 is surface exposed, near the periphery of the enzyme, and at the end of an alpha-

helix. The second motif, C252-X-X-Cys255 is more buried and located near the dimer-

dimer interface and is present within an alpha-helix secondary structure. 
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Figure 1.6 (A) Crystal structure of CSE. The four separate chains are highlighted in 

unique colours (PDB Code: 2NMP). (B) Active site of CSE showing key residues, 

including PLP (PDB Code: 2NMP).  
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1.3 CxxC Motif 

A CxxC motif is characterized by two cysteine residues, intervened by two other, 

random residues that together form an active site. CxxC motifs are commonly associated 

with zinc binding in zinc finger binding domains [92]. In the thioredoxin superfamily of 

enzymes, of which protein disulfide isomerase and thioredoxin are members, the CxxC 

motif is the active site [93, 94]. These enzymes are involved in disulfide bond redox, shown 

in Figure 1.7. The proximity of the two cysteine residues allow for the reduction or 

oxidation of disulfide bonds. When the N-terminus of an alpha-helix points towards a 

cysteine residue, the electrostatics of that helix have been shown to lower the pKa
 of said 

cysteine by up to 5 pH units [95]. This can be observed in the solvent exposed C307-X-X-

C310 residue of CSE. This creates a nucleophile which is able to reduce an oxidized 

cysteine substrate, creating a disulfide intermediate. The C-terminal is then able to attack 

this newly formed intermolecular disulfide, reducing the product and forming an oxidized 

CxxC motif [95]. 
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Figure 1.7 CxxC disulfide redox mechanism. The reduced enzyme is able to reduce the 

disulfide bond of the substrate forming a mixed disulfide intermediate. The N-terminal 

cysteine initiates a nucleophilic attack on the oxidized substrate, generating a reduced 

product and an oxidized enzyme.  
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1.4 Fluorogenic Free Thiol Probes 

The phenomenon of fluorescence self-quenching (FSQ) occurs when two identical 

fluorophores are in close proximity to one another. Under this scenario, the intermolecular 

interactions between the two fluorophores quench the native fluorescence, which allows 

for the exploitation of this phenomenon for use in measuring enzymatic activity [96, 97]. 

The fluorescent pseudo-substrates developed for CSE are based off of the Di-E-GSSG 

fluorescent probe previously designed in the Mutus lab [96]. The developed probes utilize 

the fluorescent molecule fluorescein isothiocyanate (FITC) as the fluorophore, and the 

disulfide containing molecules cystine, homocystine and glutathione disulfide as the 

backbone. Nucleophilic attack from the amine of a backbone molecule on the S-C double 

bond of FITC results in the formation of a thiourea product, as shown in Figure 1.8. Each 

cystine amine is capable of nucleophilic attack, resulting in a product with two FITC 

moieties per cystine/homocystine/GSSG.  
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Figure 1.8 Synthesis of FITC2-Cystine probe. Nucleophilic attack results in the 

formation of a thiourea.  
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1.5 Research Objective and Rationale 

Hydrogen sulfide and reactive persulfides, both produced by the enzyme 

cystathionine γ-lyase, have been implicated in various signaling events throughout the 

body. While CSE and CBS are responsible for production of these two signaling molecules, 

regulation of CSE is not well understood, with only two post-translational modifications 

observed. The presence of two CxxC motifs of unknown function within each monomer of 

CSE, one of which meets criteria for a catalytic site is of interest. The CxxC motif is 

commonly associated with the thioredoxin superfamily of enzymes  [93, 94].  

The goal of this research project is to investigate and characterize the roles of the 

C252-X-X-C255 and C307-X-X-C310 motifs in CSE. Site directed mutagenesis was performed 

to investigate the individual effects of changing each or all cysteines to serines. The use of 

steady state kinetic assays discerned any loss or enhancement of enzymatic activity. 

Additionally, the use of fluorescent probes which are capable of reduction by CxxC motifs 

were synthesized to test the potential of these CxxC sites. Lastly, mass spectrometry was 

performed to detect any modification of CSE by the synthesized probe in an attempt to 

elucidate the residues responsible for this activity.  
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CHAPTER 2:  

MATERIALS AND METHODS 
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2.1 Materials and Chemicals 

 

Product Distributor 

Rosetta™ (DE3) pLysS E. coli EMD Millipore 

BL21 (DE3) E. coli 

BL21 (DE3) pLysS E. coli 

NEB® 5-alpha Competent E. coli 

Q5® Site Directed Mutagenesis Kit 

BAMHI Restriction Endonuclease 

 

 

New England BioLabs 

Formic Acid 

Imperial Stain 

PageRuler Plus Prestained Protein Ladder 

Trifluoroacetic Acid 

Zeba™ Spin Desalting Columns  

 

ThermoFisher 

 

Acetonitrile 

Ampicillin (Amp) 

Bacteriological Agar 

Bicinchoninic acid (BCA) 

Bovine Serum Albumin 

Chloramphenicol  

Copper (II) Sulfate 

Dialysis Tubing, 8k MWCO 

Dithiothreitol 

DNAse 

DTNB 

Ethidium Bromide 

Fluorescein-5-isothiocyanate 

Glutathione, oxidized 

Glutathione, reduced 

HIS-Select® Ni-Affinity Resin  

 

 

 

 

 

 

Sigma Aldrich 
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Iodoacetamide 

Isopropyl β-D-1-thiogalactopyranoside 

Kanamycin sulfate 

L-cystathionine 

L-cystine 

L-homocystine 

Lysozyme 

N-ethylmaleimide 

Phenol:Chloroform:Isoamyl Alcohol, 

25:24:1 

Phenylmethane Sulfonyl Fluoride (PMSF) 

Propargylglycine 

Pyridoxal-5`-phosphate 

Sephadex G-25 

Sodium Dodecyl Sulfate 

Tryptone 

Tween-20 

Yeast Extract 

 

 

 

 

 

 

 

 

Sigma Aldrich 

Oasis HLB 1 cc Vac Cartridge Waters 

QIAprep Spin Miniprep Kit Qiagen 
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2.2 Methods   

2.2.1 Site Directed Mutagenesis 

 Mutagenesis of vicinal thiol residues Cys252, Cys255, Cys307, and Cys310 was 

performed using the Q5® site-directed mutagenesis kit (NEB). The primers used were 

designed in an end-to-end, or budding fashion, such that the mutagenic sequence that 

contained the amino acid substitution(s) was found in the forward sequence, resulting in 

an amino acid substitution of Cys to Ser. Polymerase Chain Reaction (PCR) conditions 

were separately optimized for each primer set (Appendix A). A Biorad ®T-100 Thermal 

Cycler was used to carry out 25 cycles of denaturation at 98 °C for 10 seconds, followed 

by primer annealing at varying temperatures (Appendix A), for 30 seconds, and plasmid 

elongation and extension at 72 °C for 4 and a half minutes. The PCR products were treated 

with a kinase-ligase-DpnI (KLD, NEB®) as per the provided instructions.  KLD treated 

product was screened on a 1% agarose gel to ensure the presence of banding. Successful 

PCR reactions resulted in the transformation of the respective plasmid into NEB ® 5-alpha 

competent E.Coli (High efficiency) using the heat-shock method as per manufacturer 

instructions. Transformed cells were plated on 2 x YT LB agar plates containing 50 µg/mL 

of the antibiotic kanamycin and grown overnight at 37 °C. Individual colonies were 

selected and grown overnight in liquid LB-Kan. The resultant bacterial growth was then 

used for plasmid isolation via a standard phenol-chloroform extraction (Qiagen, see 2.2.2). 

Extracted plasmids were sequenced by Robarts’s Research Institute (London Regional 

Genomics Center, London, Ontario, Canada) to ensure the successful mutations as well as 

the presence of the hCSE gene in the pET-28b(+) vector. The mutations resulted in the 

following mutants; C252S, C255S, C307S, C310S, double mutants C252S_C255S, 

C307S_C310S, and quadruple mutant C252S_C255S/C307S_C310S. 
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2.2.2 Plasmid Miniprep 

 Plasmid DNA isolation from E. Coli was adapted from a standard protocol 

(Qiagen). Briefly, 1.5 mL of previous E. Coli culture was centrifuged at 12,000 x g for 1 

minute. The resultant pellet was resuspended in 100 µL of buffer P1 (50mM glucose, 

25mM TRIS-HCL pH 8.0, 10mM EDTA). 200 µL of Buffer P2 (0.2M NaOH, 1% SDS) 

was added to the resuspended pellet and inverted to mix. To this, 150 µL of Buffer P3 (3M 

NaOAC, pH 5.2) was added and incubated on ice for 30 min, before centrifugation at 12, 

000 x g for 10 min. 500 µL of phenol:choloroform:isoamylalcohol was added to the 

collected supernatant, vigorously shaken and centrifuged at 12, 000 x g for 30 seconds. The 

top aqueous layer was removed and 500 µL of chloroform was added, shaken vigorously 

and centrifuged again at 12, 000 x g for 30 seconds. The aqueous phase layer was then 

collected and 900 µL of anhydrous EtOH was added. Sample was inverted to mix and 

immediately centrifuged at 12, 000 x g for 2 minutes. The EtOH was aspirated, and the 

resultant pellet was washed with 70% EtOH, dried, and reconstituted in 30 µL of TE buffer.   

2.2.3 Bacterial Plasmid Transformation  

 WT and mutated hCSE plasmid products were transformed via the heat-shock 

method. Briefly, WT and mutated hCSE plasmid products (5 µL) were added to 25 µL of 

competent E. Coli BL21 (DE3) (New England Biolabs) and incubated on ice for 30 

minutes, followed by a 45 second heat shock at 42 °C, then returned to ice for 5 minutes. 

950 µL of RT SOC media was added to the transformed cells and incubated with shaking 

at 37 °C for one hour. The incubated culture was then plated onto LB-agar (50 µg/mL 

kanamycin A, 25 µg/mL chloramphenicol) and grown for 16 hours at 37 °C while shaking.  



35 

2.2.4 Purification of CSE 

 The protocol described below was followed for WT as well as all previously 

mentioned mutant constructs of hCSE. Successfully transformed cells were grown at 37 

°C, shaking, overnight in 100 mL 2xYT media containing kanamycin A (50 µg/mL). This 

overnight culture was used to inoculate 1L of fresh 2xYT (kanamycin A) and grown at 37 

°C, shaking, until a cell density (OD600) of 0.7-0.8 was achieved. To induce protein 

expression, 1mM IPTG was added and incubated at RT for 20 hours. Cells were collected 

via centrifugation at 6, 000 rpm for 30 min at 4°C. Resultant pellets were resuspended in 

10 mL, pH 8.0 Lysis Buffer (100 mM NaCl, 50mM Tris-HCl, 2mM EDTA, 2mM PMSF, 

1% Triton X-100, 100 µg/mL lysozyme, 50 µg/mL DNase 1) and incubated on ice for 30 

minutes. Following incubation on ice, the cell debris underwent sonication on level 5 for 8 

cycles of 30 seconds (Sonic Dismemberator, Fisher Scientific) on ice. Cellular debris was 

further separated via centrifugation at 12, 000 rpm for 30 minutes at 4°C. The supernatant 

was applied to a previously equilibrated (40 mM Tris-HCl, pH 8.0) HIS-SelectTM Nickel 

Affinity resin with a column volume of 5 mL. The resin was subsequently washed with 10 

column volumes of wash buffer (50mM Tris-HCl, 40 mM Imidazole, pH 8.0). His-tagged 

hCSE was eluted with 2 column volumes of an elution buffer containing 50 mM Tris-HCl, 

250 mM Imidazole, pH 8.0. Eluted protein was buffer exchanged over a period of 20 hours 

at 4°C via dialysis and previously prepared dialysis tubing (Sigma). Dialysis buffer 

contained 100mM potassium phosphate, 2mM EDTA, and 50 µM PLP, pH 8.0. Buffer was 

changed twice, at the 2- and 14-hour marks. Protein purity was assessed via SDS-PAGE 

(See Appendix , Figure A1) and concentration via BCA assay [98]. 
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2.2.5 In Vitro Kinetic Assays 

All kinetic assays were performed at room temperature (~22 ± 2 °C) using fresh 

enzyme. Any assays utilizing mutant enzyme were performed in triplicate and in parallel 

with WT enzyme or an untreated control to ensure both consistency and validity in the 

results. All UV-VIS experiments were performed on an 8453 UV-VIS Spectrophotometer 

(Agilent Technologies, Mississauga, ON). All fluorescent experimental data was collected 

by a Cary Eclipse fluorescence spectrophotometer using a 5nm slit width and medium gain 

settings.  

2.2.5.1 Cystathionine Catabolism Assay 

L-cystathionine was the chosen substrate to elicit the steady-state catalytic 

parameters of CSE. Ellman’s Reagent (DTNB) was the chosen probe to track the formation 

of the L-cysteine product through the formation of 2-nitro-5-thiobenzoate (TNB2-), a 

product with a characteristic absorbance at 412nm. Excess DTNB (100 µM) was added to 

a 500 µL cuvette containing varying concentrations of 0.1-5.0 mM L-cystathionine in the 

standard CSE reaction buffer (100 mM phosphate, 2mM EDTA, pH 8.0). Reaction 

components were allowed a 30 second period for equilibration before CSE was added and 

mixed to a final concentration of 300 nM. The initial rate of reaction was determined from 

the linear slope of the first 60 seconds. The molar extinction coefficient of DTNB, in 

conjunction with the Beer-Lambert Law, allowed for the determination of Michaelis-

Menten kinetic parameters [99]. Kinetic data was fitted to a Michaelis-Menten like 

hyperbolic curve (Equation 2.1) using the Solver function in Excel.  
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vo = 
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀+[𝑆]
 

Equation 2.1 

2.2.5.2 pH Gradient  

To determine the optimum pH for the activity of CSE, a single concentration of L-

cystathionine (1.5 mM), was made in CSE assay buffer at a range of pH (6.0-9.0). As per 

the catabolism assay, the linear slope of the initial 60 seconds was used to determine 

Michaelis-Menten parameters. The resultant data was plotted in Excel were the optimum 

operating pH was visualized. This was repeated with all mutant enzymes, to determine any 

effect on optimum pH.  

2.2.5.3 Free-thiol Determination Assay 

 CSE free thiol determination involved the usage of Ellman’s Reagent and CSE 

assay buffer without a substrate present. Four different concentrations (0.25, 0.5, 0.75, 1.0 

µg/µL) in triplicate were incubated in an excess amount of 10 mM DTNB (10 µL) and 

varying amounts of buffer to make the reaction volume. The reactions were incubated at 4 

°C and placed on a shaker for 30 min, and their absorbance at 412nm recorded. Using the 

provided extinction coefficient of 14140-1 cm-1, the number of solvent accessible free thiols 

per µL could be obtained[100].  

Denaturation of the CSE to determine total free thiol content was performed via 

incubation of CSE in 6M Guanidine Hydrochloride (GHCl) for 1 hour at 4 °C, with 

shaking. Samples were desalted, and buffer exchanged to CSE assay buffer using Zeba™ 

Spin Desalting columns (ThermoFisher Scientific, Waltham, MA, USA) as per the 

manufacturer’s instructions. The above protocol was followed to determine total free 
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sulfide content.  

2.2.5.4 Oxidation of CSE 

 Oxidation of CSE was performed using Glutathione disulfide (GSSG). GSSG was 

added in excess of 20-100-fold over the free thiol content in WT CSE. Samples were 

incubated for 1 hour at 4 °C, shaking. Excess GSSG was removed using Zeba™ spin 

columns, as described above. Oxidized CSE was used in an L-cystathionine catabolism 

assay as earlier stated. 

2.2.5.5 S-Nitrosylation of CSE 

 Tenfold molar excess of prepared S-Nitrosoglutathione (GSNO) was added to CSE. 

GSNO was prepared by Dr. Bulent Mutus, University of Windsor, Windsor, Ontario, 

Canada. Briefly, 1.5g of glutathione (GSH) was dissolved in 15 mL ice cold water. To that, 

25 mL 2M HCl was added, followed by 0.345g of NaNO2. Mixture reacted at 4 °C for 40 

minutes, 10 mL acetone added, followed by 10 minutes more reaction time. Resultant paste 

was vacuum filtered, washed 3 times with 10 mL acetone, and 3 times with 10 mL water. 

Product was lyophilized until powder form. CSE/GSNO reacted for one hour at 4 °C, 

shaking. Excess GSNO was removed using Zeba™ spin columns, as described above. S-

nitrosylation effects on CSE were observed via a cystathionine catabolism assay, as 

described previously.  

2.2.5.6 Fluorescent Probe Kinetics 

 Di-Eosin glutathione disulfide (Di-E-GSSG) was synthesized by Cody Caba of the 

Mutus group (University of Windsor, Windsor, Ontario, Canada). Mitchell DiPasquale of 

the Mutus group (University of Windsor, Windsor, Ontario, Canada), performed the Di-E-

GSSG kinetics utilizing WT enzyme, as well as the quadruple, 300 double, and 200 double 
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mutants. Leslie Ventimiglia of the Mutus group (University of Windsor, Windsor, Ontario, 

Canada), performed preliminary fluorescent probe kinetic analysis on the FITC2-Cystine, 

FITC2-Homocystine, and FITC2-GSSG using the WT, 200, 300, and quadruple mutants.  

2.2.5.6.1 Di-Eosin Glutathione Disulfide 

 Di-E-GSSG was used as a possible fluorescent disulfide pseudo substrate for CSE. 

Varying concentrations of Di-E-GSSG (0.1-4.0 µM) was added to CSE assay buffer in a 

500 µL skirted cuvette. A 60 second initial reaction time with excitation and emissions of 

525 and 545 nm respectively was used to determine a baseline. Both CSE (including above 

stated mutants) and inhibited CSE was added to a final concentration of 500 nM, where 

EGSH formation was measured as an increase in fluorescence at 545 nm. A Di-E-GSSG 

standard curve permitted the quantification of relative fluorescence to that of product 

concentration. This allows for the expression of the rate of EGSH production to be 

characterized by Michaelis-Menten kinetics.  

CSE was inhibited by the addition of 1mM propargylglycine (PAG) to CSE stocks. 

The mixture was carried out under shaking at 4 °C, for 1 hour. PAG is a known, and 

common inhibitor of CSE [101]. 

2.2.5.6.2 Synthesized FITC Probes 

 Initial CSE fluorescent assays were performed with 5 concentrations (0.25-5.0 µM) 

of the 3 synthesized probes added to a 500 µL skirted cuvette containing CSE assay buffer. 

Excitation and emission of 494 and 521nm were used to obtain a baseline after 30 seconds. 

CSE was added to a final concentration of 10 µM and allowed to react in the cuvette for 

90 seconds. Subsequent CSE fluorescent assays were performed with 7 concentrations 

(0.1-5.0µM) of only FITC2-Homocystine. FITC2-homocystine was also tested with all 
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available mutants.  

2.2.6 Probe Synthesis and Purification  

2.2.6.1 Probe Synthesis 

 The following synthesis was prepared with the help of Leslie Ventimiglia of the 

Mutus group (University of Windsor, Windsor, Ontario, Canada). The below protocol was 

followed for synthesis of FITC2-Cystine (FITC-Cys), FITC2-Homocystine (FITC-Homo), 

and FITC2-Glutathione disulfide (FITC-GSSG). The protocol describes the FITC-Cys 

synthesis. For synthesis of FITC-Homo or FITC-GSSG, L-cystine was replaced with 

homocystine or glutathione disulfide respectively. Reaction of L-cystine and fluorescein 

isothiocyanate (FITC) occurred on a small scale, 6 mL. Sodium carbonate (Na2CO3, 0.3M) 

was dissolved in 3 mL Mili-Q H2O, followed by 3 mL 99.5% acetone; solution was left to 

react until homogenous. 0.2 M L-cystine was added and left to dissolve at 50 °C. To the 

dissolved cystine, FITC was added in a 2.5:1 molar ratio with L-cystine and left to react at 

50 °C, stirring, and wrapped in parafilm and foil to protect from light exposure. Fluorescent 

activity of the crude product was confirmed using a fluorometer set to an Excitation and 

Emission of 494 and 521 nm respectively. Briefly, 1 µL crude product was added to a 

skirted 500 µL containing 5 µL 1M DTT and 494 µL CSE assay buffer, pH 8.0. Product 

was snap frozen at -80 °C and lyophilized until a dry powder, where it was stored at -20 

°C until size-exclusion chromatography could be performed.   

2.2.6.2 Probe Purification 

 Lyophilized probe was purified via Sephadex® G-25 gel chromatography. G-25 

resin was swelled in excess ddH2O overnight, and subsequently packed into a 3cm by 30 

cm column with a constant flow of ddH2O supplied by an Econo Pump (Bio-Rad Labs).  
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 Dry, crude, probe was reconstituted in as little 0.5 M phosphate buffer (pH 8.5) as 

possible, generally 3-4 mL, and added to the dry G-25 column bed. Probe was allowed to 

diffuse into the column where a constant flow of ddH2O was provided to elute the probe 

over time. The elution was monitored for absorbance changes overtime using the BioLogic 

LP UV-VIS and subsequent software. Fractions were collected when a change in 

absorbance was detected, and collection ceased once the absorbance returned to a baseline. 

Fractions were frozen at -80 °C and lyophilized until a dry powder was reached. The 

purified probe was resuspended in as little 0.1M phosphate buffer as possible. 

Concentration was determined using UV-VIS at a wavelength of 494nm, and Beer Lambert 

Law with the ϵ 88,000 M-1cm-1 of FITC. Reported concentrations were halved in 

accordance with the two FITC present per molecule of cystine.  

 Fold-increase of the purified probe was determined using methods stated above.  

2.2.7 Fluorescent Labelling of CSE 

CSE was fluorescently labelled and visualized using an SDS-PAGE system. The 

samples to be labelled and visualized were modelled off the fluorescent kinetic 

experiments. The final amounts of both probe and enzyme were held constant from the 

reactions in the cuvettes. Two main gel sample combinations were used during these 

experiments.  

2.2.7.1 Fluorescent Probe and All CSE variants 

 The below protocol was repeated for each of the 4 available fluorescent probes: 

FITC2-Cystine, FITC2-Homocystine, FITC2-GSSG, Di-E-GSSG, and the overall 

experiments were repeated in triplicate.  
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 CSE and CSE mutants (255, 252_255, 307, 310, 307_310, Quad) were added to a 

microcentrifuge tube containing CSE assay buffer, plus 1mM PMSF, to a final 

concentration of 1.8 µM, or 30 µg of protein. To this, FITC2-Cystine was added to a final 

concentration of 5 µM and total reaction volume of 300 µL. The prepared samples reacted 

at RT for 2 hours with gentle shaking, protected from the light. 5x, non-reducing SDS 

sample buffer was added to 25 µL of reacted samples and boiled. Samples were run on a 

12% SDS gel until the sample buffer dye front ran off, about 2 hours. Gels were rinsed 

with Mili-Q before imaging using a FluoroChem® Q quantitative imaging system (Alpha 

Innotech) using the CY2 function. Gels were then stained and visualized using Coomassie, 

to ensure an equal amount of protein was loaded.  

2.2.7.2 All CSE Variants with DTNB Thiol Blocking 

 The below protocol was repeated for 7 of the 8 available CSE constructs 

(production and purification issues of the single 252 CSE mutant), and the overall 

experiments were repeated in triplicate.  

 WT CSE was added to a final concentration of 1.8 µM or 30 µg to 8 microcentrifuge 

tube containing CSE assay buffer, as stated above. DTNB was selectively added to every 

other tube as a thiol blocker to a final concentration of 0.33 mM. The CSE/DTNB mixture 

reacted for 2 hours with gentle shaking at RT. To two of these tubes, 5 µM FITC2-Cystine 

was added. Likewise, the remaining probes (FITC2-Homocystine, FITC2-GSSG, Di-E-

GSSG) were added to the remaining tubes resulting in each probes exposure to WT CSE 

and a thiol-blocked WT CSE. These mixtures then reacted at RT with gentle shaking for 2 

hours. As stated above, samples were run on 12% SDS gels and fluorescently imaged, then 

stained by Coomassie to visualize equal loading of protein.  
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2.2.8 Mass Spectrometry  

2.2.8.1 High Performance Liquid Chromatography Electrospray Ionization Mass 

Spectrometry (HPLC-ESI MS) 

 A random gel piece was digested following the same protocols as outlined below 

to act as a control. Fluorescently labelled hCSE (FITC2-homocystine treated) were ran in 

tandem with a duplicate Coomassie stained gel to ensure presence of fluorescence on CSE 

prior to digestion. WT CSE as well as the 307 and 310 cysteine to serine mutants were 

digested.  

2.2.8.1.1 Proteolysis and Sample Preparation  

 Digestion of both CSE and modified CSE was performed using a modified version 

of an established in-gel trypsin digestion protocol [102].  For CSE and CSE mutants, 5 µg 

was run on a 12%, non-reducing SDS gel until the dye front ran off. Protein was visualized 

with Imperial™ Protein Stain (ThermoFisher Scientific), and destained with Mili-q H2O 

until clear. Bands of interest were excised with a clean scalpel and placed in a siliconized 

microcentrifuge tube. Excise bands were cut into 1 x 1 mm squares in the tube. Excised 

bands were destained using fresh 100 µL 50 mM ammonium bicarbonate (ABC) made in 

Mili-q and 100% acetonitrile (ACN) in a 1:1 (vol/vol) solution. Gel pieces were incubated 

with shaking at 37 °C for 15 minutes, destain was decanted and fresh destain was added 

and the process was repeated. 400 µL of neat ACN was added to the decanted gel piece 

and left for 5-10 minutes with occasional vortexing. Samples were dried using a Digital 

Series SpeedVac™ Systems in combination with a Savant RVT5105 Ultra-Low 

Temperature Refrigerated Vapor Trap (ThermoFisher Scientific) until the gel pieces 

shrunk and turned white. Lyophilized Trypsin G old, Mass Spectrometry Grade (Promega) 
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was resuspended in provided resuspension buffer and brought to a working concentration 

of 13 ng/µL through the addition of 100 µL 50 mM ABC. 30 µL trypsin was added to the 

dry gel pieces and allowed to sit on ice for 30 min. Additional trypsin was added if required 

to saturate the gel pieces, generally an additional 30 µL of trypsin, and left to sit for 90 

minutes. ABC was added (20-30 µL) to cover gel pieces and keep wet during digestion. 

Samples were shaken overnight (16 hours) at 37 °C to allow for complete digestion. 

Samples were decanted, and pre-extract saved. Tryptic peptides were extracted using 200 

µL extraction buffer (1:2 (vol/vol) 5% formic acid (FA)/100% ACN) with shaking at 37 

°C for 15 minutes; repeated twice while collecting the extract after each incubation. 

Extracted peptides were dried once again. Dried peptides were reconstituted in 100 µL 

0.1% trifluoroacetic acid (TFA) for sample cleanup and desalting using Oasis HLB 1 cc 

Vac Cartridges according to manufacturer’s instructions. Desalted peptides were dried and 

resuspended in 25 µL 0.1% FA for ESI-MS analysis.  

 Modified CSE involved the incubation of CSE with either FITC2-Homocystine or 

homocystine prior to SDS-PAGE. Fluorescent sample preparation was similar to the 

described method in section 2.2.7.1 with 10 µM FITC2-Homocystine or 100 µM 

homocystine addition. Modified samples were quenched prior to separation via SDS page 

using a cold acetone precipitation procedure. Four times sample volume of ice-cold acetone 

was added, vortexed and incubated at -20 °C for 1 hour. Samples were spun down at 12,000 

x g for 10 minutes. Acetone was aspirated, and pellets were allowed to air dry for 20 

minutes before resuspension in buffer. Modified CSE samples were then digested as per 

the protocol described above.  
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2.2.8.1.2 Data Acquisition 

 Mass Spectrometry was performed by Dr. Janeen Auld (University of Windsor, 

Windsor, Ontario, Canada). 

 Prepared samples were analyzed using a Waters SYNAPT G2-Si time-of-flight 

mass spectrometer configured for nano-ESI operated in positive-ion mode coupled to a 

Waters nanoACQUITY UPLC system. The UPLC was configured for 1D single pump 

trapping. Mobile phase buffer A was 0.1% formic acid. Mobile phase buffer B was 

acetonitrile with 0.1% FA. Samples were loaded onto the column in 97% buffer a and 3% 

buffer B over 3 minutes and flow rate of 5 µL per minute. A 7-step, 60 min gradient run at 

0.3 µL per minute. Buffer A concentration at 5 minutes was 90%, 75% at 15 minutes, 50% 

at 22 minutes, 25% at 41 minutes, 15% at 42 minutes, 15% at 44 minutes and finally 97% 

at 45 minutes. Samples were analyzed in MSe mode followed by data processing with 

Progenesis QI.  

2.2.8.2 Holo-enzyme Mass Spectrometry 

2.2.8.2.1 Sample Preparation  

 Prepared CSE (80 µg) was added to a microcentrifuge tube containing 150 µM 

homocystine as well as CSE assay buffer. The mixture reacted for 15 minutes with gentle 

shaking at RT. Resultant mixture was snap-frozen in liquid nitrogen before freeze drying 

could occur via a lyophilizer. The dried protein was reconstituted in 80 µL H2O; 5 µL of 

resuspended solution was mixed with 295 µL 0.1% formic acid.  

2.2.8.2.2 Data Acquisition  

 Mass Spectrometry was performed by Dr. Yufeng Tong ((University of Windsor, 

Windsor, Ontario, Canada). Prepared samples were analyzed using an Agilent Q-Tof 6545 
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LC/MS.  

2.2.9 Molecular Modelling  

 Molecular modelling was performed by Dr. Bulent Mutus (University of Windsor, 

Windsor, Ontario, Canada). Predicted molecular structures for each of the fluorescent free 

thiol probes, as well as respective MM2 energy minimizations were created using 

ChemDraw 3D. 

2.2.10 Statistical Analysis 

One-way ANOVA followed by Dunn’s multiple comparison test, as well as Two-

way ANOVA were performed using GraphPad Prism version 7 (GraphPad Software, La 

Jolla California, USA).  
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CHAPTER 3:  

RESULTS 
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3.1 Site Directed Mutagenesis 

A total of seven hCSE mutants were designed and purified. Successful mutagenesis 

was confirmed via cDNA sequencing. These cysteine residues were targeted due to their 

lack of overall study. Specifically, each cysteine was mutated to a serine using primers 

defined in Appendix A, Table A.1. A cysteine to serine mutation was chosen due to the 

overall minor impact the change would induce, as both amino acids are polar and 

uncharged.  Overall, mutant hCSE variants produced included single mutants C252S, 

C255S, C307S, and C310S, double mutants C252S_C255S and C307S_C310S, and lastly 

a quadruple mutant C252S_C255S_C307S_C310S. The purity of the isolated enzymes was 

assessed using SDS-PAGE (Appendix A Figure A.3). Hereinafter, the C252S_C255S and 

C307S_C310S will be referred to as the 200 double and 300 double mutants respectively, 

while the single mutants will be named as they are, ex, C252S. Likewise, the 

C252S_C255S_C307S_C310S mutant will be referred to as the quad.  

3.2 In-vitro Kinetic Assays 

 In order to assess the potential effects that the mutation of each cysteine involved 

in the CxxC motif to serine have upon the enzymatic activity, a cystathionine catabolism 

assay was performed. The Michaelis-Menten profile of the mutants were determined using 

a constant concentration of DTNB, while varying the concentration of cystathionine. Prior 

to the cystathionine catabolism assay, the stability of DTNB was tested at various pH 

values (not shown). DTNB begins to breakdown at pH values greater than 7, however 

stability is increased in phosphate buffer until pH values greater than 8 [76]. DTNB was 

shown to be stable in CSE activity buffer, but, nevertheless a blank rate which included 

DTNB, CSE assay buffer and L-cystathionine was subtracted from any enzymatic rate to 
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ensure the faithfulness of the data.  

The WT enzyme and the mutants displayed a great variance in the ability to 

catabolize L-cystathionine, as seen in Figure 3.1. Specifically, the WT as well as the C307S 

and C310S exhibited remarkably similar Michaelis-Menten profiles. This is further shown 

in the extracted kinetic parameters, displayed in Table 3.1. All three constructs share the 

same KM of 1.35 mM, and the indicators of enzymatic efficiency kcat and kcat/KM are similar 

as well, indicating that the mutation of each individual cysteine in the 300 CxxC motif 

display little effect on the catalytic activity of the enzyme, with respect to cystathionine. 

The C252S mutation completely alters the activity of the enzyme, in essence it is 

catalytically and enzymatically deadinactive, with no detectable activity. The C255S 

mutation reports a similar KM as the WT, but displays 62% of both the catalytic activity and 

catalytic efficiency of the WT. The 200-double mutant, like the C252S is devoid of all 

enzymatic activity with respect to cystathionine catabolism. The 300-double mutant, 

however, displays an identical KM to that of the WT, but once again displays altered 

catalytic rate and efficiency values, possessing 21 and 22% of the WT values respectively. 

The quad mutant shows complete loss of catabolism of cystathionine activity as well.   

 The oxidation/reduction of CSE, as well as S-nitrosylation effects are shown in 

Appendix B, Figure B.1. The oxidation/reduction of WT CSE was performed by 

incubating WT with both GSH as well as GSSG. Appendix B, Figure B.1 A shows the 

lack of effect that both GSH and GSSG have on the CxxC motif, as well as any other free 

cysteines on the WT. Additionally, B shows the S-nitrosylation of CSE by GSNO. GSNO 

modifies thiols with a NO group. Both free thiols and the CxxC motifs should be targets of 

s-nitrosylation, but, as seen in Appendix B, Figure B.1 B, no effect on the rate of 
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cystathionine catabolism by both WT and C307S_C310S is observed. 

 Each CSE monomer contains a total of 10 cysteines, four involved in each CxxC 

and 6 additional residues. DTNB was used to determine the number of free thiols relative 

to the concentration of CSE in a solution. The number of free thiols in the native state, as 

well as the number of free thiols in the denatured enzyme were determined. In the native 

state, CSE has 44 µM of free thiol, with an enzyme concentration of 22 µM, indicating two 

free thiols. When denatured, CSE has 111 µM of free thiols, indicating that there are 5 free 

and accessible thiols present.  
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Figure 3.1 Catabolism of L-cystathionine of WT and mutants (WT, blue; C252S, red; 

C255S, green; C252S_C255S, purple; C307S, orange; C310S, black; C307S_C310S, 

brown; quad, purple). Varying concentrations of cystathionine (0.1-4 mM) were 

incubated with constant CSE and DTNB concentration; data reported as the mean ± S.D. 

of n = 3 experiments.  
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Table 3.1. Extracted kinetic parameters of all CSE constructs seen in Figure 3.1.  

CSE WT 252 255 252_255 307 310 307_310 

KM (mM) 1.35 0 1.35 0 1.35 1.35 1.35 

Vmax (mM/s) 0.00075 0 0.000465 0 0.00077 0.00069 0.000162 

kcat (s-1) 0.85 0 0.53 0 0.87 0.78 0.18 

kcat/KM (mM-

1s-1) 

0.63 0 0.39   0 0.64 0.58 0.14 
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3.3 pH Dependent Activity of CSE Mutants 

 The pH-dependent activity profiles for each CSE construct that displayed 

enzymatic activity were tested at a single cystathionine substrate concentration (1.5 mM) 

over a varying pH range (6.0-9.0). The C252S, 200-double, and quad were not tested as 

the change in pH was not sufficient to recover enzymatic activity. In addition, accurate 

kinetic parameters could not be extracted from the data as multiple concentrations per pH 

value would be required.  

 The resultant pH curve for CSE constructs can be seen in Figure 3.2. All enzymes 

exhibited their lowest activity at pH 6, the lowest tested. The WT and C310S both exhibit 

a characteristic bell curve, with the maximal enzymatic activity reported at pH 7.8. The 

C307S and C255S mutants appear to exhibit a bell curve-like activity profile, but without 

additional data points it cannot be concluded. C307S exhibits maximal enzymatic activity 

at 8.6, while C255S shows maximum pH dependent activity at 8.3.  
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Figure 3.2 pH-dependent cystathionine catabolism activity profiles of CSE and CSE 

mutant constructs. (WT, blue; C255S, red; C307S, green; C310S, purple; C307S_C310S, 

orange). 1.5 mM cystathionine was incubated with constant enzyme and DTNB in CSE 

assay buffer of varying pH. pH profiles represent the mean ± S.D of n = 3 experiments.  
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3.4 Di-E-GSSG as a CSE Pseudo Substrate  

 Prior work in the Mutus lab established Di-E-GSSG as a suitable substrate to 

monitor reaction kinetics as the PDI active site consists of two CXXC motifs [96]. The 

presence of the two CXXC motifs on CSE was the determining factor in the testing of Di-

E-GSSG with CSE. The reaction of Di-E-GSSG with CSE led to a few interesting findings, 

which can be seen in Appendix B, Figure B.2 A. First, a kinetic rate was observed for the 

WT, 200-double, and 300-double, while no rate was observed for the quad mutant. The 

observation of a kinetic rate for the 200-double mutant is interesting as this is the first 

observation of some form of rate with this mutant thus far. A presence of a rate here 

indicates a possibility that this rate is independent of the active site of the enzyme. The B 

panel presents another noteworthy finding. The summation of the observed rates for the 

200 and 300 double mutants are relatively equal to that of the WT, further supporting the 

notion that these rates are independent of the active site and are in fact the result of the 

CxxC motifs. Panels C and D further solidify the observed activity as independent of the 

active site. Panel C shows the successful inhibition of CSE by PAG. PAG is a useful 

inhibitor when the substrate requires a two-step mechanism, of which homocystine utilizes. 

Panel D shows both the same WT and PAG-inhibited CSE reacting with Di-E-GSSG, in 

which the observed inhibited rate matched identically to the WT.  These results support an 

independent catalytic site outside of the traditional active site of CSE.  

3.5 Novel Fluorescent Free Thiol Probes 

 The results shown above were the driving force for the design and synthesis of more 

suitable fluorescent free thiol probes to be used with CSE. Fluorescein was chosen as the 

fluorophore as it is a more economical alternative to eosin. The backbones of the free thiol 
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probes were chosen due to their role as disulfide containing alternative substrates for CSE, 

or as a key molecule in the transsulfuration pathway. While NMR provided inconclusive 

results due to both probe production, as well as concentration issues, the proposed 

structures shown in Figure 3.3 are supported by FSQ. The fold increase displayed by each 

of the three synthesized probes indicates FSQ. Figure 3.3 A is FITC2-cystine which, when 

incubated with 1M DTT showed a 10-fold increase in fluorescence. FITC2-GSSG, shown 

in panel B, displayed a 12-fold increase after reduction by DTT. Lastly, FITC2-

homocystine exhibited a nearly 20-fold increase in fluorescence after reduction by DTT.  

 The suitability of each free thiol probe to monitor CSE CxxC activity was examined 

in a manner similar to that of the Di-E-GSSG probe, the results of which can are shown in 

Figure 3.4. Of the three synthesized probes, only FITC2-homocystine showed some form 

of activity with CSE. Both FITC2-cystine and FITC2-GSSG show no activity with respect 

to the canonical active site of CSE or the CxxC motifs. FITC2-homocystine activity was 

then examined with each of the available CSE mutants. It should be noted that production 

and purification issues of the C252S mutant did not allow for further testing of this 

construct. Figure 3.4 B shows FITC2-homocystine activity with each of the mutants. The 

mutant kinetics provides some interesting results. Most noteworthy is the lack of activity 

of the quad mutant, solidifying the role of the CxxC in catalyzing disulfide bond cleavage. 

Of the singly mutated residues, the C310S displays the lowest rate. This is of interest as 

C310S is the most solvent exposed of all the cysteine’s involved in a CSE CxxC motif. 

This is seen in a space filling model of crystal structure 2NMP in Figure B.3. Unlike the 

Di-E-GSSG kinetic results, the addition of the 200 and 300-double mutant rates do not 
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appear to equal that of the WT. This suggests that some of the other 6 free thiols found on 

CSE play some small role in disulfide bond cleavage.  
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Figure 3.3 (A) 10-Fold fluorescence increase of FITC2-cystine, as well as proposed 

structure. (B) 12-fold fluorescence increase of FITC2-GSSG; proposed structure.  (C) 18-

fold fluorescence increase of FITC2-homocystine after reduction by DTT, as well as the 

proposed structure.  
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Figure 3.4 Fluorescent free thiol probe kinetics. (A) Testing of the three synthesized 

fluorescent probes. Only FITC2-homocystine displays some form of rate with CSE. 

(B)Testing of FITC2-homocystine with CSE mutants.  
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The potential of free thiols influencing the kinetic data was investigated using an 

SDS-PAGE model and DTNB as a free thiol blocker, which is explored below. As stated 

in Section 2.2.7, two different approaches were utilized in an attempt to quantify the 

difference in labelling efficiencies of the four free thiol probes. These results are shown in 

Figure 3.5. The effect of DTNB blocking free thiols can be seen in both panels A and B. 

Panel A shows a representative image of free thiol probe labelling of the WT enzyme. The 

cystine probe shows marginal activity, but the presence of DTNB completely removes the 

labelling. Likewise, Di-E-GSSG is completely void of any labelling, independent of 

DTNB. The fluorescence per nanogram of protein indicates efficiency and preference in 

binding. FITC2-Homocystine, even with the blocking of free thiols by DTNB shows the 

highest degree of fluorescent labeling. Both FITC2-GSSG and Di-E-GSSG shows the 

lowest labeling efficiency, while FITC2-cystine shows a marginally increased rate. 

Interestingly, the C255S mutant shows the highest degree of fluorescence/ng of CSE, more 

so than that of the WT. Unsurprisingly, the quad mutant has the lowest amount of labelling 

of the mutants tested. The lack of the purported active sites kills any chance of activity. 

Additionally, all single mutants seem to show a higher degree of labelling over the WT, as 

the single mutants lack that second cysteine which is crucial for the reduction of that 

intramolecular disulfide formed between the vicinal cysteine and the probe.  

A more direct comparison of the fluorescent probes propensity to label each mutant 

CSE construct can be seen in panel C and a graphical comparison of each probes labelling 

specificity towards each CSE construct which can be seen in D. In the representative 

FITC2-Homocystine labelled image in C, the three single mutants, C255S, C307S, and 

C310S appear to have a greater amount of FITC2-Homocystine, and thus show a larger 
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amount of fluorescence. Of further note is the behavior of the 300 mutants; C307S, and 

C310S. Both show a higher degree of labelling when compared to the other constructs. The 

C307-X-X-C310 motif is located on the periphery of the enzyme, and as can be seen in 

B.3, the Cys310 is solvent exposed. This allows for easier access to the reducing free thiol 

of the mutated enzyme. This phenomenon is not seen in the WT as the motif is able to 

reduce that intramolecular disulfide, kicking off the fluorescent tag.  
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Figure 3.5 Visualization and quantification of fluorescent labelling by free thiol probes. 

(A) Representative image of WT CSE fluorescently labelled by the four probes. (B) 

Comparison of both CSE mutant’s propensity to become fluorescently labelled as well as 

the effect of blocking free thiols on fluorescent output. (C) Representative image of 

FITC2-Homocystine labelling of all CSE proteins. (D) Comparison of various probes 

specificity in labelling CSE mutants.  
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3.6 Mass Spectrometry 

 The bulk of the HPLC-ESI MS thus far has given no results. While an 89% 

sequence coverage of the WT protein has been achieved, no direct identification of a 

successfully modified peptide of interest has been observed thus far. The mass fingerprints 

of the two peptides of interest, those of the CxxC motifs can be seen in Figure 3.6. These 

peptides have a m/z of 783.345 for the CTGC containing CxxC, and a m/z of 1104.501 for 

the CYLC containing CxxC. The 783.345 m/z peptide has a charge of +3 and relates to the 

C307-X-X-C310 motif. The 1104.501 m/z peptide has a charge of +2 and relates to the more 

interior C252-X-X-C255 motif. When either of the C307-X-X-C310 cysteines are mutated to a 

serine, the 783 peak is no longer observed, which is to be expected, but the replacement 

peak is not visible.  

 The holoenzyme mass spectrometry performed has shown a positive result thus far. 

As opposed to proteolytic digestion, the monomer was run as a holo-enzyme. Figure 3.7 

shows four mass fingerprints; A is the C307S mutant incubated with homocystine, B is the 

C310S mutant incubated with homocystine, C is the untreated WT enzyme, while D is WT 

incubated with homocystine. Both samples A, and B show an increase in approximately 

132 Daltons, which indicates homocystine addition. Sample D shows a peak that is 132 

Daltons heavier than that of the untreated WT in sample C. In addition, we observe a PTM 

of some 39 Daltons, which is an unknown entity.  While the confirmation of homocystine 

addition is a result, it is inconclusive as the sample preparation for this mass spectrometry 

cannot identify the site of modification.  
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Figure 3.6 (A) CxxC mass spec fingerprints. CYLC fingerprint corresponds to the 200-

motif. 
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(B) CTGC fingerprint corresponds to the 300-motif 
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Figure 3.7 Holoenzyme mass spectrometry. (A) C307S, shows an addition of 132.2 

Daltons, half homocystine. (B) C310S, shows an addition of 132.2 Daltons, half 

homocystine. (C) WT enzyme, unmodified, with an unknown 39 Dalton modification. (D) 

Modified WT, showing both the half homocystine addition as well as the unknown 39 

Dalton modification.  
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CHAPTER 4: 

DISCUSSION 
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4.1 CSE In-vitro Kinetics  

 The various steady state kinetic assays performed support a crucial role for the 

hypothesis that the CXXC motifs are involved in regulation of the enzyme, as well as 

contain a secondary disulfide reducing active site. The catabolism of L-cystathionine is a 

key indicator of overall enzyme activity. The results show a larger regulatory role for the 

more interior CXXC motif, the C252-X-X-C255 motif, specifically the Cys252 residue. This 

residue appears to be a key residue for the enzyme, as a point mutation results in a lack of 

cystathionine catabolism. A secondary piece of evidence in support of Cys252 playing an 

active role in the function of the enzyme is the production and isolation issues that plagued 

the project. A usable quantity of enzyme was purified only once, with multiple purification 

attempts resulting in sub-microgram quantities. Cys255 shows a large decrease in activity 

compared to WT, showing 62% of the catalytic activity. This motif is located near the 

dimer-dimer interface, is located entirely within an alpha-helix, and is almost entirely 

buried within the enzyme, which gives validity to the hypothesis that this motif is involved 

in the regulation and function of the enzyme.  

 While the C252-X-X-C255 is more involved in enzyme regulation, the C307-X-X-C310 

motif is hypothesized to contain a secondary disulfide reducing active site. The 

cystathionine catabolism of the single mutants is marginally affected.  The double mutant 

remains catalytically active, with some loss in function; although that is almost certainly a 

result of steric hindrance interfering with normal enzyme function.  

 The response of each CSE mutant to a change in pH indicates the optimal pH for 

maximal enzyme activity. Wildtype CSE was shown to have maximum enzyme activity at 

a pH of 7.8, which is lower than what has been reported in literature [85]. This raises an 
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interesting issue as the pH of 8.0 for the standard CSE assay buffers was chosen due its 

relation to the reported maximum pH of 8.2. As DTNB begins to rapidly degrade in 

phosphate buffer above pH 8.0, 8.0 was selected for the assay buffer as it was the closest 

to the reported maximal activity pH without introducing false rates due to the degradation 

of DTNB. Performing the kinetics again in a lower pH, 7.8, could lead to a more 

appropriate picture of the enzyme’s true activity. Interestingly, C255S shows a max activity 

at pH 8.2, the only enzyme tested to match what is reported in literature. The C252S, 200-

double and quad mutant were not examined due to a lack of activity.  

The effects seen by changes in pH on activity of the mutants is quite surprising. 

With a pI of 6.18, CSE is positively charged in its environment in the cytosol. The mutation 

of the cysteine residues has no net effect on the pI of the enzyme, so the response to change 

in pH must be the result of some other changes in the enzyme. As the 300-double mutant 

displays a pH curve that is mostly flat in nature, as well as the lowest activity of the mutants 

tested, one can assume that the introduction of the oxygen on serine affects the overall 

integrity of the local area.  This can possibly explain the greater effect observed on the 

double mutants.  

When compared to regulation of its counterpart, cystathionine β-lyase, the overall 

regulation of CSE is poorly understood [50]. Attempts to influence activity of CSE by 

oxidation, reduction, and S-nitrosylation by GSSG, GSH and GSNO respectively, yielded 

no significant difference to the L-cystathionine catabolism activity of CSE. These 

experiments were performed before the successful mutagenesis and purification of all the 

single mutants, leaving, at the time the WT and the 300-double as the only catalytically 

active mutants.  
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4.2 Fluorescent Free Thiol Probes 

The Di-E-GSSG kinetic data shown in Figure B.2 was the first supporting 

evidence for a secondary active site in the C307-X-X-C310 C motif. The observed rate was 

shown to be independent of the traditional active site, with the 300-motif making up the 

bulk of the activity. This discovery led to the synthesis of three fluorescent probes. 

Cystine and homocystine were specifically chosen as a starting material for two reasons: 

i) both cystine and homocystine are disulfide containing molecules, which is essential for 

fluorescence self-quenching to occur, (ii) both molecules are postulated to be alternative 

substrates for CSE. Glutathione disulfide was chosen because it interacts with the 

transsulfuration pathway in addition to its disulfide. While the structures of the probes 

could not be directly confirmed via solution NMR, the observed fold-increase after 

treatment with DTT indirectly confirms the proposed structures. Several issues 

contributed to this, notably the inability to produce probe at a concentration suitable for 

NMR.  

Initial testing of the three probes with CSE was the first indication that there may 

be some form of specificity involved in the CXXC sites. Both FITC2-Cystine and FITC2-

GSSG displayed no activity in an in vitro kinetic assay similar to that of the Di-E-GSSG 

assay. The full-scale testing of the FITC2-homocystine probe revealed a few noteworthy 

items. First, the C307-X-X-C310 C motif cysteines show the highest rate of activity with 

respect to the probe, independent of the WT. Unlike the phenomenon that was observed 

with the Di-E-GSSG probe, the additive rates of the both the 200 and 300-doubles do not 

equal that of the WT. This suggests that there is some contribution by free thiols on CSE 

to the kinetic rates observed.  
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To correct for this, DTNB was used to block any free thiols prior to fluorescent 

labelling by the probes. These results were visualized via fluorescent imaging of SDS-

PAGE. The results shown in Figure 3.5 B and D are somewhat contradictory. In the thiol 

blocking experiments, the specificity of the proposed active site is fully supported. The 

rates at which FITC2-homocystine label the various CSE enzymes far exceeds that of the 

other probes. In addition to the specificity for homocystine, the activity of the single 

mutants, specifically C307S and C310S exceed that of the WT. This is an expected result 

here. The cysteine to serine mutations lack the second cysteine required to cleave the 

disulfide formed between the probe and enzyme. In the WT the CXXC motif functions as 

it should; the N-terminal cysteine residue attacks the probe, forming a mixed disulfide, 

where the C-terminal residue is able to attack the newly formed disulfide and release a 

reduced product, lowering the observed fluorescence. While the mutants are unable to 

cleave the formed mixed disulfide between the enzyme and probe, there should exist a 

higher likelihood that there is an interaction between the probe and enzyme in the first 

place. The CXXC motif can exist in either a reduced or oxidized state; when oxidized 

there will be no reaction between the probe and the enzyme. The single mutants lack the 

ability to form a disulfide, and as such can always initiate a nucleophilic attack. The quad 

mutant fully supports a secondary active site based on the CXXC motifs. With or without 

the presence of DTNB, there is little to no fluorescent labelling, indicating that free thiols 

add an insignificant amount to the observed fluorescence.  

While the DTNB experiments support some substrate specificity, the visualization 

of every mutant construct with each probe is not so convincing. There is a lack of 

significant difference between the fluorescence/ng of protein. However, some broad 
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trends can be observed. Homocystine appears to be the preferred fluorescent probe, 

although there is an instance where cystine appears to be favoured over homocystine. 

Likewise, the previously observed trend that the single mutants show a higher rate of 

fluorescence uptake appears to hold true. This is especially true when it comes to the 

C307-X-X-C310 C motif. This motif is located on the periphery of the enzyme, and its C-

terminal cysteine, Cys310 is the lone solvent exposed residue. In addition, the N-terminal 

cysteine is located at the end of an alpha-helix. Cysteines located at the end of alpha-

helices have a much lower pKa when compared to other cysteines. The electrostatics of 

the helix direct towards the cysteine, lowering that pKa, which results in a better leaving 

group [95].  

4.3 Mass Spectrometry 

 Mass spectrometry was employed to determine the exact binding site of the 

fluorescent probes. Thus far, the critical residue has not been observed. A sequence 

coverage of 90% has been achieved in WT CSE thus far, while C307S and C310S have 

achieved lower rates of coverage, about 75% each. The peptides corresponding to the 

CxxC motifs have been identified with full confidence. However, modification of these 

peptides has yet to be observed. Both homocystine and FITC2-homocystine have been 

used in attempt to observe a modification. The probable cause of this observation is that 

the CxxC motifs are functioning as they should, the modification is cleaved before it can 

be detected by the MS. Another, unlikely possibility is that the modification, in this 

instance the FITC2-homocystien probe, is not suitable to fly. Homocystine should be a 

much better candidate to fly than the probe, but detection has still not been successful.  

 The use of C307S and C310S led to new obstacles. The mutation of either 
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cysteine to a serine resulted in the loss of the peptide of interest, as should happen, 

however the peptide that should replace it, one 16 Daltons less has yet to be detected. 

This is independent of any attempt at modification with homocystine. The reason for this 

is currently unknown.  

 Mass spectrometry on the holoenzyme, that is, the non-digested enzyme provided 

the only success seen with mass spectrometry. The WT, C307S, and C310S have had an 

addition of 132.2 Daltons detected. This is consistent with homocystine addition. One can 

only speculate as to why the modified holoenzyme has been detected and no modified 

peptide has. There is a possibility that the modification interferes with the active site of 

trypsin, inhibiting the cleavage around the CXXC motifs. The peptides surrounding the 

CXXC were compared to a modified and unmodified sample, and the relative ratios 

remained unchanged, which does not support the obstruction of trypsin. The formation of 

dehydroalanine, a modification involving the loss of sulfur on a cysteine residue, which is 

common in PLP enzyme is also a possibility, as is spontaneous disulfide formation 

between the tryptic peptides [103].  

 The use of differential thiol-labelling to map the sites of modification is the next 

step with mass spectrometry. Any initial modification of a cysteine residue with a probe 

will protect that residue from modification by a thiol labelling agent, such as N-

ethylmaleimide. The disulfide can then be reduced and labelled with another labelling 

agent, such as iodoacetamide, which should allow for easier detection by MS.  

4.4 Proposed Mechanism of Action 

 We propose a novel activity of the CxxC sites found in CSE. Of the three 

fluorogenic probes synthesized, CSE shows a preference to FITC2-homocystine which 
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can be explained through the geometry of the disulfide bonds. Energy minimized MM2 

structures of the three probes show that homocystine has the smallest disulfide dihedral 

angle. The cystine probe has a disulfide dihedral of almost 90 °, while the GSSG probe 

has an angle of 128°. The larger angles prevent interaction with the CxxC sites, as the 

remainder of the probes cause an increase in steric hindrance. The homocystine probe has 

a small enough disulfide dihedral angle that the disulfide bond “presents” itself to the 

CXXC, facilitating an easier interaction.  

 The specificity for homocystine can be explained by the role of CSE in oxidative 

stress pathways, as stated above. High levels of homocystine are indicative of high-

oxidative stress, which is common in neurodegenerative diseases. The system xc
- 

cystine/glutamate transporter is associated with the lowering of oxidative stress, by 

increasing GSH production. Increase in Nrf2 nuclear localization is responsible for a 

similar mechanism. We propose that the reduction of homocystine to homocysteine by 

the CXXC motif increases the intracellular pool of homocysteine, which in turn raised 

cysteine levels and thus levels of GSH in the cell. Additionally, the modification of the 

CXXC motif’s by homocystine provide the possibility of a mechanism to modify the 

enzymes activity. Homocystine-induced oxidation of the CXXC motif’s present on CSE 

may result in an increase or decrease of CSE activity in response to various stressors in 

the body.  
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CHAPTER 5: 

CONCLUSION 
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 The addition of H2S to the list of gasotransmitters by Wang led to an increase of 

research on the enzymes responsible for its production. However, the lack of information 

about the regulation of CSE, specifically the CXXC motifs located in CSE is an area of 

interest. Mutation of key cysteine residues involved in CSE CXXC motifs revealed a key 

residue, C252S, which when mutated kills all activity. In vitro kinetic assays revealed 

disulfide reductase activity associated with the C307-X-X-C310 motif. Fluorogenic probes 

designed to interrogate the function of this motif revealed a specificity to homocystine. 

Electrospray ionization mass spectrometry was performed with the intent of detecting 

homocystine addition to a CxxC motif but was unsuccessful. However, homocystine 

addition to the WT, C307S, and C310S holoenzyme was.  

 Future directions for this project are twofold. Definitive structures of the probe 

need to be determined by solution NMR. In addition, mutation of the cysteine residues to 

a more neutral amino acid, such as alanine could give further insight into the roles of the 

CXXC motifs. Lastly, successful identification of a modified peptide by mass 

spectrometry is essential. Differential thiol labelling or switching from ESI-MS to a less 

energy intensive method such as matrix assisted laser desorption/ionization (MALDI) MS 

to further increase the chance of detection.  
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APPENDICES  

Appendix A (Chapters 1 & 2 supplementary material) 

 

Figure A.1 Plasmid map containing hCSE. CSE plasmid was provided by Dr. Ruma 

Banerjee of the University of Michigan and the plasmid was cloned into the pET28b-

hCSE vector by Dr. Sirinart Ananvoranich of the University of Windsor.  
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Figure A.2 hCSE sequence. CxxC residues are bolded and underlined.  
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Table A.1 Table of PCR Primers used. Changed base pairs are underlined and bolded. 

For quad mutation, both double primers were used sequentially, mutating one CxxC at a 

time.  

Primer Sequence (5`-3`)            MT 

°C 

CSE C307S CTG TAC AAC CTG TAG ACT GAC GCT TCA CC 55 

CSE C307S rev GGA TGG TCA CCT TTT ATA TTA AGG GCA CTC 55 

CSE C310S GAC CAT CCC TGT AGA ACC TGT ACA CTG A 54 

CSE C310S rev ACC TTT TAT ATT AAG GGC ACT CTT CAG CAT G 54 

CSE C307S_C310S CAT CCC TGT AGA ACC TGT AGA CTG ACG CTT CAC 58 

CSE C307S_C310S rev GTC ACC TTT TAT ATT AAG GGC ACT CTT CAG C 58 

CSE C252S CGA TTG CAG AGG TAA GAA TCA ATA GGA GAT GG 56 

CSE C252S rev GGT CTG AAG ACT CTA CAT GTC CGA AT 56 

CSE C255S  TCA GAC CTC GAT TGG AGA GGT AAC AAT C 59 

CSE C255S rev GGT CTG AAG ACT CTA CAT GTC CGA AT 59 

CSE C252S_C255S  CAG ACC TCG ATT GGA GAG GTA AGA ATC AAT AGG 

AGA TG 

55 

CSE C252S_C255S rev AAG ACT CTA CAT GTC CGA ATG GAA AAG 55 
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Figure A.3 Purification of CSE mutants.  
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Appendix B (Chapters 3 & 4 supplementary material) 

 

Figure B.1 Effects of post-translational modifications on CSE (A) Reduction and 

oxidation of CSE via GSH and GSSG treatment of CSE. WT, blue; WT + GSH, red; WT 

+ GSSG, green. (B) Incubation of WT and 300-double mutant with GSNO. WT, blue; 

WT + GSNO, red; 307_310 green, 307_310 + GSNO, purple. 
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Figure B.2 Reaction of WT, 200, 300, and quad with Di-E-GSSG. (A) (WT; blue, 

307_310; green, 252_255; red, quad; purple). (B) Summation of 200 and 300 rates, 

equaling the WT rate (WT; blue, combined 200 and 300; red). (C) Cystathionine 

catabolism with inhibited WT by PAG and uninhibited WT (WT; blue, inhibited WT; red). 

(D) Di-E-GSSG observed rates with inhibited and uninhibited WT. 
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Figure B. 3 (A) Space filling model of CSE crystal structure 2NMP. Cysteine 310 is 

shown in red and is shown as solvent accessible. This residue is solvent exposed on all 4 

monomers. (B) Energy minimized structure of FITC2-homocystine showing a disulfide-

dihedral angle of 62.2 °. (C) Energy minimized structure of FITC2-cystine showing a 

disulfide dihedral angle of 89.8 °. (D) Energy minimized structure of FITC2-GSSG 

showing a disulfide-dihedral angle of 127.2 °. 
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Figure B.4 Supplementary Mass spec data. The chromatogram of WT CSE. The 1105 

m/z indicates the 200 motif. 
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Figure B.5 Identifying peptide for CSE.  
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Figure B.6 Identifying peptide for CSE. 



95 

VITA AUCTORIS  

NAME:  Scott Andrew Smith 

PLACE OF BIRTH: Windsor, ON 

YEAR OF BIRTH: 1991 

EDUCATION: 

 

 

 

Villanova High School, LaSalle, ON, 2009 

 

University of Windsor, B.Sc., Windsor, ON, 

2014 

 

University of Windsor, M.Sc., Windsor, ON, 

2019 

 

 

 


	Exploring the roles of the CXXC motifs in Cystathionine γ-Lyase
	Recommended Citation

	tmp.1554327366.pdf.akLqd

