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Abstract

A crossed electron-molecular beam system connected to a spectrometer was used to in-

vestigate the dissociative excitation of thymine and adenine following electron impact. The

emission spectrum for these molecules was measured from 80 nm to 150 nm with a 100 eV

electron beam to identify the excited atomic fragments that resulted from these electron

collisions. For each molecule, the hydrogen Lyman series was dominant in spectrum mea-

surements. Relative emission cross sections were measured with respect to Lyman-alpha for

each the Lyman features present in the spectrum for each molecule. The probability of ob-

taining other atomic fragments from the parent molecules was concluded to be insignificant.

Excitation studies were also performed to measure the relative emission cross sections for

electron impact energies up to 430 eV. During thymine studies, this excitation study was

performed for Lyman-alpha in which the threshold energy for this feature was measured to

be 23 eV. During adenine studies, excitation studies were also performed for Lyman-alpha

and Lyman-beta and their thresholds were determined to be 23 eV and 18 eV, respectively.

The possible excitation and dissociation mechanisms from the parent molecules that may

contribute to these studied features are also discussed.
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Chapter 1

Biomolecule Targets - Thymine and

Adenine

1.1 Introduction

Collisions between an electron with an atom or molecule can not only change the momentum

of the colliding objects but can also affect the electronic, vibrational, and rotational energy

of the atom or molecule. Hence, electron collision experiments are performed to investigate

dissociative, ionization, and excitation processes in a chosen target. If one is interested in

such processes, one can measure the light that is emitted from targets or fragments (if the

target undergoes dissociation) that have been promoted to an excited state; all that is needed

is for the excited states to radiatively decay. This photon flux can be measured and related

to the cross section of the excited state process that resulted from the collision.

If one has the capability to measure photon flux from an electron collision with their

target across a range of wavelengths, then specific transitions and processes may be iden-

tified by measuring the spectral lines that occur. Additionally, once a feature has been

identified, its energy dependence can be measured. This results in a so-called excitation

function, a measure of photon flux (which can be related to the cross section of the exci-
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tation process) against variation in energy. Measurement of the excitation function makes

it possible to identify the energy threshold(s) responsible for the production of radiation of

that wavelength.

In this work, a monoenergetic electron beam was used in tandem with a spectrometer

and photon detector to study the excitation processes involved with some targets. Light

of the vacuum ultraviolet (VUV) range of wavelengths (50 nm to 200 nm) was exclusively

studied as many transitions belonging to atomic species (H, He, C, N, O, and more) are

found in this spectral region.

The work done here is a continuation of prior work performed with the VUV spectrometer,

where excitation processes were studied for some sulfur-containing molecules by Brotton et

al. ([6] - [7]) and, more recently, a change in focus towards biomolecules with the pyrimidine

work by Hein et al. [8]. Electron impact studies were performed on thymine and adenine in

the VUV emission range.

1.2 Damage Mechanisms for DNA

Figure 1.1: The adenine and thymine base pair hydrogen bonded together. The molecules
connect to the phosphate-deoxyribose backbone at the R group as can be seen in the figure.

Thymine and adenine are two of the four nucleobases in the nucleic acids of DNA and
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together form a complementary base pair (A-T) via two hydrogen bonds. The other two

nucleobases, guanine and cytosine, form another base pair (G-C) via three hydrogen bonds.

In RNA, thymine is substituted with uracil (demethylated thymine) and the base pairs

are instead A-U and C-G. More generally, the nucleic acid in these nucleobases (DNA and

RNA) consist of purines, which are the double ringed nitrogen-containing compounds, and

their complementary pyrimidine partner, which are the single-ringed nitrogen-containing

compounds. The importance of these nucleic acids can hardly be overstated. These molecules

are responsible for encoding genetic information and are essential for all living cells [9].

The structure of DNA involves sequences of the aforementioned base pairs, which consti-

tutes the genetic code. These base pairs are connected to a phosphate-deoxyribose backbone

that is arranged in a double helix shape, which is useful for the DNA molecule as it allows

DNA to readily replicate itself. This replication mechanism first involves breaking the hy-

drogen bonds between the complementary base pairs, which causes an “unzipping” of the

double strand. Once the two strands are separated, an enzyme called DNA polymerase

matches the isolated purine or pyrimidine with its complementary pair and bonds it to the

strand. This mechanism allows a DNA molecule to copy itself — any one of the two strands

can be used to preserve the genetic information, as the presence of a purine (adenine and

guanine) or a pyrimidine (thymine and cytosine) suggests its complementary pair. T repli-

cation mechanism itself is very accurate, with less than one mistake in every 107 nucleotides

copied [10].

However, DNA may be damaged by oxidising and alkylating agents, or by high energy

radiation (like UV light or X-rays). Manifestations of this damage can include alteration of

the A-T or G-C sequencing in the molecule, insertions or deletions of sequences, fragmen-

tation of the backbone and as a result single strand or double strand breaks, cross-linking

between the pyrimidine bases, and numerous other mechanisms. Most of this damage can

be repaired, but not all of it, and the changes or errors in base pair sequencing can pass

through the replication process uncorrected, which can lead to mutations that cause cancer.
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Additionally, the general accumulation of these uncorrected errors may be an important

cause of ageing [11].

Ionizing radiation (like X-rays or charged particles) can be absorbed by biological ma-

terial, interact with critical nucleotide targets, and begin a process of events that leads to

permanent change. The event whereby atoms or molecules of a nucleotide target are ionized

or excited by incoming radiation is called direct action; for instance, an X-ray may be ab-

sorbed by the DNA molecule, which causes the production of secondary electrons, often 30

eV or lower [12], that can further interact with the biological environment. If instead ionizing

radiation interacts with the surroundings, DNA may be damaged by the process of indirect

action, whereby free radicals are produced and can interact with the DNA molecule. Both of

these radiation damage mechanisms can readily cause single strand and double strand breaks.

The first kind of inflicted damage is easily repaired, but the breaking of both strands is more

serious. Double strand breaks can be repaired by an illegitimate recombination where the

split ends are rejoined, but with no guiding template this process is prone to errors and may

account for many premutagenic lesions induced in DNA [13].

Figure 1.2: An illustration of single strand breaks (SSB) and double strand breaks (DSB)
in DNA. Various A-T and G-C pairs are shown on the backbone. Single strand breaks are
easily repaired, but double stand breaks are much more serious and can be the cause of
mutations.

It is important to understand the dissociative, excitation, and ionization events that may

occur in biological material as such information can be used to model radiation damage

4



processes, and so, much work has been done to fill in the gaps of information. Boudaiffa et

al. [14] have shown that dissociative electron attachment (DEA) is a possible method causing

single strand and double strand breaks. In work done by van der Burgt [15], a large body

of work is referenced about the ionization of thymine, along with dissociative ionization,

and also on DEA. In addition, a few review articles have been compiled, mainly Hotop et

al.[16], Balog et al.[17], Sanche et al.[18], and Baccarelli et al.[19]. Colyer et al. [20] have

performed elastic scattering from thymine at 100 eV and 500 eV, while Abouaf et al. [21]

and Chernyshova et al. [22] have studied thymine’s low energy electron-loss spectroscopy.

Additionally, low energy elastic and inelastic scattering calculations on DNA bases have been

performed by Winstead et al. [23] and Dora et al. [24].

There has been a wide volume of research performed to gather information on absolute

cross sections for various kinds of collisions with the DNA bases along with identifying

fragmentation pathways and dissociation events in order to steadily build up a bank of

information that can be used to help develop theoretical models more accurately estimate

biological damage from collisional processes. However, a limited number of studies are

available that involve photon emission following electron impact. Work has been performed

in the visible and near UV spectral regions to investigate radiation from molecular fragments,

including uracil, by Shafranyosh et al. in reference [25] and reference [26] and Shpenik et

al. in reference [27] and reference [28]. Despite numerous studies, there is a lack of work

done to identify excited atomic species following electron impact. The work presented in

this thesis is an attempt to remedy this gap of information and to continue similar studies

that were performed with pyrimidine in this lab [8]. In this work, photo emission following

electron impact on thymine and adenine was measured for wavelengths of light between 80

nm and 140 nm. As the primary emissions in this range are due to excited atomic states, the

work for this thesis involve identifying the primary atomic fragments resulting from electron

collisions and making measurements on the cross sections for the features present. Absolute

cross sections could not be measured in this work as the vapour pressure of the molecular
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beams could not be measured, but other data can be obtained. Following the identification of

atomic fragments resulting from electron bombardment by measuring an emission spectrum

over the 80 nm to 140 nm wavelength range, the emission cross sections for features present

in the spectral range could be measured relative to the largest feature found. In this way, if

the absolute cross section for any one of these emission features were measured, as may be

done in future work, then the relative emission cross section work present here may be used

to determine absolute cross section measurements for the other features.

Once a spectral feature was identified, excitation studies were performed on the feature

to measure the cross section’s dependence on electron impact energy. Specifically, these exci-

tation studies yield measurements of the electron impact energy where the cross section is at

a maximum and also provides some insight into the high energy behaviour of the cross sec-

tions. Additionally, the threshold energy for atomic dissociations from the parent molecules

can be measured, and as the electron impact energy rises, additional thresholds representa-

tive of newly dominant dissociation pathways that yield the atomic spectral feature under

observation can also be identified as they become relevant to the total cross section. These

threshold observations are discussed in the context of literature where mass spectrometry

and photofragmentation measurements have been performed for thymine and adenine.

Mass spectrometry work done by Rice et al. [29] measured mass fragments of thymine

and adenine, while other thymine mass spectra were obtained by Ulrich et al. [30]. and

Imhoff et al. [31]. Prominent mass fragments had been clearly identified in these works and

fragmentation of the parent molecules was achieved with electron impact energies compa-

rable to the energies used in this work. Sethi et al. [32] performed mass spectrometry for

adenine with electron ionization spectra. In the work of Minaev et al. [2], absolute total

ionization cross sections up to 200 eV for adenine have been measured. Jochims et al. [33],

Schneider et al. [34], and Li et al. [35] have performed photon impact studies on isolated

nucleobases. Particularly in the work of Jochims, 6 to 22 eV synchrotron radiation was

used to probe the photofragmentation of adenine, thymine, and uracil where fragmentation
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pathways are discussed. van der Burgt et al. [12] have measured partial ionization cross

sections for positive fragments of adenine following electron impact. Dawley et al. [36] have

measured electron ionization of adenine and Pilling et al. [37] have measured the dissociative

photoionization of adenine. The results from the works discussed here are compared later to

the results obtained for excitation studies of the identified emission atomic spectral features.

This is done to check for possible fragmentation mechanisms that may be responsible in

producing the studied feature and therefore determine the importance of such fragmentation

pathways to the total cross section of the studied feature.
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Chapter 2

Electron Collisions

2.1 Elastic and Inelastic Collisions

When one considers the action of an electron colliding into some target, numerous kinds of

scattering processes are possible. An electron can collide with a target and scatter without

losing any energy but change the individual momenta of the involved species in a process

called elastic scattering. An atom, A, as an example, will not have its internal energy

changed.

e+ A→ e+ A (2.1)

Electrons with sufficient energy may also affect the internal structure of its target. If a

collision process occurs between an electron and a target, the electron may transfer some

energy to the target and affect its internal structure - this is called inelastic scattering. For

instance, the example atom A that was considered above, if hit by an electron e, which can

become captured:

e+ A→ A− (2.2)

In another case, an electron can inelastically collide into the target A and transfer some
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of its energy to the target.

e+ A→ e′ + A∗ (2.3)

e′ denotes the scattered electron while A∗ denotes the excited state of the atom, which

some timer later can optically decay to its ground state. Another inelastic scattering process

is the action of ionization, where the projectile electron strips the target of one its own

electrons, denoted by e′′ in the equation below.

e+ A→ e′ + e′′ + A+ (2.4)

In this case, the collision has produced an ion. An electron impact that results in multiple

ionizations is possible, but usually with higher kinetic energy of the projectile electron, or

with heavier atoms that possess more electrons. Additionally, ionization of the target can

occur alongside an excitation process.

Similar processes can also be described for molecules. If we consider a diatomic molecule

made up of atom A and atom B, the different scattering channels as described before are

easily accounted for.

e+ AB → AB− (2.5)

e+ AB → e+ AB (2.6)

e+ AB → e′ + AB∗ (2.7)

e+ AB → e′ + e′′ + AB+ (2.8)

In addition to these kinds of collisions, an electron with sufficient kinetic energy can
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easily break any bonds that constitute the molecule.

e+ AB → e′ + A+B (2.9)

This is a simple dissociation of the diatomic molecule AB. It is feasible for dissociative

processes to occur concurrently with absorption by one of the fragments, or with the pro-

motion of a fragment to an excited state whereby it itself can radiatively decay, or with

ionization. Due to the increase in internal complexity of molecules, many more scattering

channels are opened up for them compared to atoms.

In this work, we are primarily concerned with collision events that result in the production

of excited products, more specifically, excited atomic fragments following electron impact on

biomolecules.

2.2 Quantum Treatment of Scattering

The following discussion is a basic theoretical introduction to the differential cross section

for non-relativistic collisions, which will facilitate discussion on the Bethe-Born approxima-

tion, which itself is discussed in the subsequent section. The physical consequences of the

Bethe-Born approximation are used in the analysis of the relative cross section measure-

ments obtained during excitation studies for energies beyond the cross section maxima. The

discussion here follows the treatment by Inokuti [38]. By the end of this section, we will

arrive at an equation for the total cross section, and then move on to discuss the Bethe-Born

approximation for high energies.

First consider an excitation collision process between an electron and a ground state

target (atom) with Z electrons where the atom transitions from a ground state to an excited

state n. At non-relativistic but high kinetic energies, we may determine the differential cross

section dσn using the first Born approximation for scattering. First by identifying ~p0 as the

momentum of the electron before the collision, ~p as the momentum of the electron after the
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collision, and the momentum transfer as ~K = ~p − ~p0, the differential cross section dσn for

a solid angle dω at θ and φ, calculated in the lowest order of the interaction potential V

between the electron and target is given by the following equation in atomic units.

dσn =
m2p

4π2p0

(ˆ
ei
~K·~ru∗n(~r1...~rz)V u0(~r1...~rz)d~r1...~rzd~r)

)2

dω (2.10)

The quantity m is simply the reduced mass of the two-body system, given as:

m =
m1m2

m1 +m2

(2.11)

In the integrand, u0 and un are the bound state wave functions of the target at the ground

state and the nth state, respectively. The quantity ~r is the position of the projectile electron

while any ~ri is the position of the ith electron in the target.

Next, we consider a Coulombic interaction between the projectile and its target.

V =
Z∑
j=1

e2

| ~r − ~rj |
− Ze2

r
(2.12)

From here, we follow the work by Bethe [39], where we introduce the following relation.

ˆ
ei
~K·~r

| ~r − ~rj |
d~r =

4π

K2
ei
~K·~rj (2.13)

This expression allows us to modify Equation 2.10.

dσn =
4m2e4p

K4p0
| εn(K) |2 dω (2.14)

εn(K) is the atomic matrix element of the target. It is written as

εn(K) = 〈n|
Z∑
j=1

ei
~K·~rj |0〉 (2.15)
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or alternatively:

εn(K) =

ˆ
u∗n

Z∑
j=1

ei
~K·~rju0d~r1...d ~rZ (2.16)

We now consider two more items of interest. Firstly, we seek to replace dω by 2πsinθdθ =

πd(K2)/pp0. Secondly, as the states |n〉 and |0〉 are orthogonal, the second term in Equation

2.12 for the interaction potential, vanishes. We arrive at the following equation.

dσn =
4πm2e4

p20K
4
| εn(K) |2 d(K2) =

4πm2e4

p20K
2
| εn(K) |2 d ln(Ka0)

2 (2.17)

where we have made use of the Bohr radius a0 in Equation 2.17.

Next we define what is known as the Generalized Oscillator Strength, fn(K) in the next

equation.

fn(K) =
En0

R(Ka0)2
| ε(K) |2 (2.18)

The term En0 is the excitation energy of a target from its ground state to its nth state.

The quantity R is the Rydberg energy. We will use this fn(K) as defined above in the latest

expression for dσn.

dσn =
4πe4m2a20R

p20En0
fn(K)d ln(Ka20) (2.19)

During an electron collision with a target of mass M, we can assume the target is sta-

tionary as M > me. The relative momentum, p0, can be written as p0 = mv. Using the

kinetic energy KE of the projectile electron, the above equation becomes:

dσn =
4πR2a20
KEEn0

fn(K)d ln(Ka0)
2 (2.20)

If we integrate across all possible values of ln(Ka0)
2, we can obtain the total cross section.

If we define the following expressions,

δ0 = ln(Ka0)
2
min (2.21)
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and

δ1 = ln(Ka0)
2
max (2.22)

then we can write the effective excitation cross section from the ground state to the nth

excited state as in Equation 2.23.

σn =
4πa20R

2

KEEn0

ˆ δ1

δ0

fn(K)d ln(Ka0)
2 (2.23)

This completes our initial objective. Next we will examine the consequences of the

asymptotic behaviour of fn(K) as K → 0, and looking at an integration across all lnKa0
2,

i.e., letting the δ0 and δ1 defined earlier go to −∞ and +∞, respectively.

2.3 The Bethe-Born Approximation

Bethe [39] worked out a method for expressing the cross section as determined in Equation

2.23 in terms of an asymptotic expansion in inverse powers of KE, which works very well at

high energies. Given this, we now consider the integral limits, δ0 and δ1, and the behaviour

of fn(K).

Looking at the asymptotic behaviour of the Generalized Oscillator Strength as K goes

to 0, we get the optical oscillator strength, fn.

lim
K→0

fn(K) (2.24)

For optically forbidden processes, the optical oscillator strength vanishes, i.e. fn = 0.

Then, as K approaches its lower limit, as defined by (Ka0)
2 → 1/KE, fn(K) goes to 0. In the

high energy approximation, δ0 = ln(Ka0)
2
min → −∞ and δ1 = ln(Ka0)

2
max → +∞. Then,

we can arrive at expressions for the excitation cross sections of optically allowed processes
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(Equation 2.25) and optically forbidden processes (Equation 2.26):

σn =
4πa20R

KE

(
M2

n ln

(
4CnT

R

)
+
γnR

KE

+O

[(
En0
KE

)2
])

(2.25)

σn =
4πa20R

KE

(
bn +

γnR

KE

+O

[(
En0
KE

)2
])

(2.26)

M2
n is the dipole matrix element, as in:

M2
n =

fnR

En0
(2.27)

The other two terms, γn and bn, are expressed in the following equations.

γn = −mefn
2m

−
(
En0
4R

)[
dfn(K)

d(Ka20)

]
K=0

(2.28)

bn =

ˆ +∞

−∞

Rfn(K)

En0
d ln(Ka0)

2 (2.29)

At the high energy limit where KE →∞, the equations obtained for the optically allowed

processes become:

σn =
4πa20RM

2
n lnKE

KE

+
C

KE

(2.30)

with C defined as:

C = 4πa20RM
2
n ln

(
4Cn
R

)
(2.31)

Additionally, the optically forbidden process becomes:

σn =
4πa20Rbn
KE

(2.32)

Consider the cross section for an optically allowed process, as in Equation 2.30. One may

plot lnKE on a horizontal axis and KEσn on a vertical axis; doing so, with this process,
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will yield a straight line with a slope proportional to M2
n, and therefore the optical oscillator

strength fn. Additionally, the intercept on the horizontal axis yields C in Equation 2.30, and

hence Cn. This technique was developed by Fano [40], and this plot itself is called a Fano

plot. At high kinetic energies, a Fano plot indicating linear behaviour justifies the use of

Bethe theory for the collision process. Absolute cross section data then makes it possible to

obtain optical oscillator strengths. Note that if a Fano plot is made of an optically forbidden

process, as in Equation 2.32, a linear function will not be made. Instead, this technique will

yield a constant for the plot.

In this work, the Fano plot technique was used with measurements made on the total

cross section for an excited atomic state, which provides a quantitative method for concluding

whether the process is an optically allowed transition or optically forbidden but spin allowed

transition. In the case of a high energy cross section for a spin forbidden transition, the

cross section will decrease as 1/E3; this was not observed in this work. The experimental

apparatus only had the capability to measure the cross section up to 430 eV; to properly

test the Bethe-Born approximation on the cross section would require at least 1 keV, but

the energy limit in this experiment does suffice to examine some differences between the

optically allowed and optically forbidden but spin allowed transitions.

2.4 Photon Spectroscopy

We next consider a multichannel scattering event such as in a crossed-beam experiment,

specifically with electrons and and molecules. The pressure of the gas that is used in the

crossed-beam experiment, along with the electron beam current, should be sufficiently low

so that some other secondary processes, like intrapopulation collisions and resonance absorp-

tion, negligibly contribute to the overall process. In a crossed-beam experiment, we consider

a quantity n(j), which is the number density of the jth excited target in the collision region.
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It is given by the following equation.

dn(j)

dt
= −

∑
k; k<j

n(j)A(jk) +
n(g)Q(j)IL

e
+
∑
i; i>j

A(ij)n(j) (2.33)

A(jk) and A(ij) are the Einstein A coefficients for the transition to the kth/jth state

from the jth/ith state, respectively. The number densities for the ground, ith state, and

jth excited state atoms are n(g), n(i), and n(j), respectively. Q(j) is the excitation cross

section for the transition to the jth state from the ground state. I is the electron current

and L is the interaction length for the electron-target collision.

The equation listed above has three key terms. The first term describes the rate where

the target of the jth excited state radiatively decays to the lower kth state while the third

term describes the cascade contributions from higher states. The second term, in the middle,

describes the electron impact excitation of atoms to the jth excited state from the ground

state.

Consider when equilibrium is reached. This means that dn(j)/dt = 0 and n(j) can be

expressed using the terms in Equation 2.33.

n(j) =

[
n(g)Q(j)IL

e
+
∑

i; i>j A(ij)n(i)
]

∑
k; k<j A(jk)

(2.34)

Next, we define the quantity J(jk)

J(jk) =
n(j)A(jk)

L
(2.35)

which is the rate of targets in the jth state that decay to the kth state per unit length of

the electron beam. J(jk) can be substituted into the equation we just developed for n(j).

J(jk) =

[
n(g)Q(j)I

e
+
∑

i; i>j J(ij)
]
A(jk)∑

k′; k′<j A(jk′)
(2.36)
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We would like to rearrange Equation 2.36 so that we can arrive at an expression for

Q(j), but first we can make use of the branching ratio for the jth to kth transition, B(jk),

to simplify the expression above. The branching ratio is defined as follows.

B(jk) =
A(jk)∑

k′; k′<j A(jk′)
(2.37)

With this in hand, we are set to rearrange for Q(j).

Q(j) =

[
J(jk)
B(jk)

−
∑

i; i>j J(ij)
]
e

n(g)I
(2.38)

This equation reduces simply if the cascade contributions,
∑

i; i>j J(ij), are negligible.

Q(j) can now be expressed as:

Q(j) =
J(jk)e

B(jk)n(g)I
(2.39)

Using the relation,

B(jk) =
J(jk)∑

k′; k′<j J(jk′)
(2.40)

Equation 2.39 can also be expressed in this way.

Q(j) =

∑
k′; k′<j J(jk′)e

n(g)I
(2.41)

This equation suggests that the excitation cross section for a transition to the jth state

can be determined by measuring the radiation that is emitted from any transitions that end

at the jth state. Spectral line intensities, J(jk) are measured during photon spectroscopy

experiments. A measurement of this kind readily provides a way to determine the effective

cross section, Q(jk), as long as n(g) and I are measured too.

Q(jk) =
J(jk)e

n(g)I
(2.42)

We next consider the problem of polarized radiation briefly. The polarization, P , is
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defined as

P =
I‖ − I⊥
I‖ + I⊥

(2.43)

In the above equation, the photon fluxes, I⊥ and I‖, emitted from the interaction region

per unit solid angle in a direction that is orthogonal to the beam axis are related to the

j�k transition resulting from the inelastic electron collisions. Specifically, they are the

components of the electric dipole transition moment operator, for this j�k transition, for

every atom or molecule in the interaction region. I⊥ is perpendicular to the electron beam

axis while I‖ is parallel to the electron beam axis.

Following work done by Heddle and Keesing [41], the flux of photons that enter into unit

solid angle in the direction of polar angle θ for a j�k transition can be written as:

J(jk, θ) = I‖(jk)sin2θ + I⊥(jk)cos2θ + I⊥(jk) = [I‖(jk) + I⊥(jk)](1− Pcosθ) (2.44)

We can obtain J(j, k) by integrating over all angles, θ and φ; this integration results in

the total intensity for the j�k transition.

J(jk) =

ˆ
4π

J(jk, θ)dω (2.45)

J(jk) =
8π

3
[I‖(jk) + 2I⊥(jk)] (2.46)

This result can be used in Equation 2.42 to obtain an expression for Q(jk) in a different

form, utilizing the parallel and perpendicular photon intensities. Measurement of these

intensities can yield a measurement of the effective cross section.

Q(jk) =
8π

3

I‖(jk) + 2I⊥(jk)

n(g)I
(2.47)

Next, we consider the differential cross section, defined as
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q(jk, θ) =
J(jk, θ)e

n(g)I
(2.48)

This can be simplified by defining an a(jk) with the total intensity term, I‖ + I⊥, as

a(jk) =
(I‖ + I⊥)e

n(g)I
(2.49)

Then, in conjunction with the far right term in Equation 2.44, the differential cross section

can be rewritten as

q(jk, θ) = a(jk)(1− Pcos2θ) (2.50)

Note that a(jk) = q(jk, 90◦), the differential cross section at 90◦, as from Equation 2.44,

Pcos(90◦) = 0, and J(jk, θ) is simply the sum of the intensities.

Integrating the differential cross section over a 4π solid angle yields the effective cross

section:

Q(jk) =

ˆ
4π

q(jk, θ)dω (2.51)

Q(jk) = 4πq(jk, 90◦)

(
1− P

3

)
(2.52)

This equation states that the effective cross section can be obtained if one measures the

differential cross section at 90◦. In our work, we use a diffraction grating to measure radiation

at this angle.

The sensitivity of an optical detector may depend on the polarization of the radiation

as well as the wavelength. We define k‖ and k⊥ as the detection efficiencies for polarized

radiation with parallel and perpendicular electric fields, respectively, to the entrance slit of

a monochromator (as in our experiment) that leads to some photon detecting system. Clout

and Heddle [42] have shown how to eliminate instrumental polarization for measurements.

We consider radiation that is observed at an angle θ to the electron beam axis and also at

angle α to the plane of the electron beam. The state indices j and k will be omitted for
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simplicity; the expression for the signal, S(θ, α) that is measured, is given as:

S(θ, α) = I‖(k‖cos2αsin2θ + k⊥sin
2αsin2θ)

+ I⊥[k‖(sin
2α + cos2αcos2θ) + k⊥(cos2α + sin2αcos2θ)] (2.53)

Appropriate values of α and θ will greatly simplify this expression. If we choose θ = 90◦

and α = 90◦, so that radiation is observed orthogonal to the electron beam axis with a plane

of detection also orthogonal to the plane of the electron beam, then the equation reduces to

S(90◦, 90◦) = I‖k⊥ + I⊥k‖ (2.54)

In this experiment, we assumed that the radiation due to electron-biomolecule collisions

had no polarization, i.e., P = 0, due to the random orientation of the constituent molecules

of the thermally sublimated molecular beam. This means that I⊥ = I‖ = Is, and the signal

that is measured, S(90◦, 90◦) can be shown to be proportional to the effective cross section

Q(jk).

S(90◦, 90◦) = (k⊥ + k‖)Is (2.55)

S(90◦, 90◦) =
(k⊥ + k‖)J(jk, 90◦)

2
(2.56)

S(90◦, 90◦) =
(k⊥ + k‖)n(g)Iq(jk, 90◦)

2e
(2.57)

S(90◦, 90◦) =
(k⊥ + k‖)n(g)IQ(jk)

8πe
(2.58)

Rearranging now for Q(jk):

Q(jk) =
8π

(I/e)n(g)

S(90◦, 90◦)

(k⊥ + k‖)
(2.59)

If one were to compare unpolarized emissions, then some standard or well-known Q(jk)std
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can be used to absolutely determine the Q(jk) in question, assuming current and target

density have been normalized to be the same for both the target and the standard target:

Q(jk)

Q(jk)std
=

S(90◦, 90◦)

S(90◦, 90◦)std

[
k⊥std + k‖std
k⊥ + k‖

]
(2.60)

This procedure can be performed to obtain absolute cross section measurements for a

transition. This was used in earlier work with pyrimidine [8] where absolute data for Lyman-

α production was obtained by comparing with known data for Lyman-α production from

H2.

In this work, absolute cross section measurements were not possible as the vapour pressure

of the molecular beam could not be measured, nor could we pass a calibrating gas through

the capillary tube of the oven that was used to sublimate the biomolecule sample targets.

Despite this, Equation 2.59 indicates that the current of the electron beam must be

measured simultaneously as measurements are made on the cross section during excitation

studies. Without correcting for the electron beam current for a given excitation study,

measurements made on the relative emission cross section are incomplete.

Additionally, the vapour pressure is not expected to deviate greatly once a steady-state

temperature is achieved for the oven. A brief discussion of the steady-state temperature

behaviour of the oven is given in Chapter 3.3 while the relationship between the temperature

of the sample target loaded in the oven and the corresponding vapour pressure is described

in Appendix B. Significant changes in the measured signal of the emission cross section,

i.e., excitation function, across the utilized energy range are therefore expected due to the

electron beam current, which were corrected for in this work by dividing the measured photon

flux signal S(90◦, 90◦) by the electron beam current, I.

During measurements taken across a spectral range, the electron beam current is still

measured despite using a constant electron impact energy for such measurements. For spec-

tral scans, the electron beam current remains constant and so the signal is not expected to
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deviate in a significant way due to the electron beam current.
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Chapter 3

Experimental Apparatus

3.1 Introduction

Electron collisions are performed inside the main chamber kept under a vacuum of 3 to

5×10−7 Torr. Inside this chamber, an electron beam collies with a beam of sublimated

target molecules at right angles. Excited atomic and ionic species resulting from this collision

spontaneously emit radiation in all directions. The main chamber is connected to a half-metre

Seya-Namioka VUV spectrometer which intercepts the resultant radiation that is mutually

orthogonal to the crossed beams. The diffraction grating in the spectrometer allows different

wavelengths of radiation to be picked out and sent to a photon detection apparatus.

The experimental apparatus was designed to accommodate two modes of data acquisition.

In the first mode, the electron beam is kept at a constant energy of 100 eV while timing

electronics rotate the diffraction grating inside the spectrometer to measure the intensity of

radiation over an arbitrary wavelength range. During such measurements, the wavelength

could sweep from 80 nm to 140 nm. The second mode of data acquisition instead keeps

the diffraction grating fixed on one wavelength but allows the electron beam to vary in

energy while measuring the intensity of the radiation. This allows us to acquire a so-called

“excitation function”, the plot of photon counts of a fixed wavelength against the electron
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impact energy. The excitation function can be related to the cross section for the transition

being observed. The electron beam’s energy can vary from 0 eV to 400 eV for this mode of

measurement.

Both modes of data acquisition are used for these collisional experiments. The first

method, where the diffraction grating is rotated to sweep across an arbitrary wavelength

range, is used to determine the sort of transitions that are occurring and to link these radia-

tive transitions with species that are relevant, i.e., the possible fragments from the collision.

After identifying radiative transitions over the wavelength range, the second method is em-

ployed to acquire the excitation function. Data was acquired by a Multi-Channel Scaler

(MCS) program on a computer, which would bin data from the detection electronics.

Figure 3.1: An overview of the experimental apparatus. Key features are the interaction
region in the centre of the chamber, where a target sample is sublimated from an oven inside
and crossed with an electron beam that is emitted from the electron gun. The molecular
beam is shown in the centre of the interaction region and is oriented out of the page. The
photons that emit at right angles to both beams enter the VUV spectrometer. A diffraction
grating picks out the wavelength of light that enters the detector.

Figure 3.1 provides an overview of the main experimental apparatus, which includes the

electron-collision chamber, the VUV spectrometer, and the photon detection arm. The ion

gauge is used to measure the pressure of the chamber, while the gas inlet valve is used to fill
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the chamber to an approximate pressure of 5×10−5 Torr with a gas used for calibration. The

electrical feedthrough is a flange that allows power supplies from outside the chamber to be

connected to resistive wiring that is wrapped around an oven in the centre of the chamber

and around the Faraday cup.

3.2 Vacuum Chamber

The main vacuum chamber is made of stainless steel and consists of three pairs of mutually

orthogonal ports. Each port has a diameter of 8” and is sealed by a Viton O-ring. The

entire apparatus is evacuated with roughing pumps connected to the system with Kwik-

Flange� ISO KF stainless steel tubes and valves. An Edwards E2M12 vacuum pump is

attached to the main collision chamber and an Edwards Speedivac ED100 is attached to

the VUV spectrometer. The roughing pressures are measured by a Kurt J Lesker KJL 6000

Thermocouple Gauge and a Granville-Phillips Series 340 Vacuum Measurement Controller

for each of these roughing pumps respectively. The chamber’s pressure is reduced to about

20 mTorr with these roughing pumps, which is necessary for the efficient operation of turbo

pumps that further reduce the pressures inside the main chamber.

Two turbo pumps are used in conjunction to quickly acquire a low background pres-

sure in the chamber. A Varian TV 701 Navigator turbo pump is fastened underneath the

spectrometer chamber and is typically operated at 28 kRPM. A Varian Turbo-V1000 turbo

vacuum pump is attached underneath the electron collision chamber. Operating background

pressures were 3 to 5×10−7 Torr. If a gas was introduced into the chamber for a study,

the pressure was maintained on the order of 10−6 Torr or a low 10−5 Torr. These pressures

were measured by a Veeco RG1000 Ionization Gauge, which is mounted to a supplementary

compartment of the main chamber.

The sample oven is perched inside the main chamber directly above the Varian Turbo-

V1000 turbo vacuum pump in a stainless steel cradle. The sample target is loaded into the
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oven and is heated to create a sublimated molecular beam that diffuses upwards to the top

of the chamber, which is sealed by a plain flange. Most of the sample’s beam deposits on

this top flange but some of the sample deposits on the sides of the chamber.

An electron gun and Faraday cup are situated opposing each other as is shown in Figure

3.2. Their mutual axis is perpendicular to the axis of the molecular beam sublimated from

the oven. An electron beam produced by the electron gun intercepts the molecular beam

orthogonally and radiation is produced from the collisions between the electrons and the

sublimated sample. This radiation is measured by the detection arm after it passes through

the VUV spectrometer system.

Figure 3.2: A representation of the main chamber provided by Jeff Hein. The oven sits on
a ceramic piece that is fixed on two interleaved stainless steel cradles, which are held up by
the sides of the chamber. The sample is heated in the body of the oven where it diffuses out
as a beam from the stem and intercepted with the electron beam.

The electrical components of the Faraday cup, electron gun, and biomolecule oven are

all connected to external power supplies via feedthroughs in a number of the mounting

flanges. Resistive wiring wrapped around the oven and Faraday cup is connected to Variac

power supplies outside the chamber. There is also a thermocouple connected via this same

mounting flange to measure the temperature of the oven’s stem and the oven’s main body.
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A gas inlet system with a needle-nose valve allows low pressure calibration of gases to

be introduced into the main chamber. Additionally, it is often used as a vent to bring the

pressure of the chamber to atmospheric pressure so that the chamber may be cleaned or to

reload the oven.

3.3 Biomolecule Oven

The biomolecule oven, as pictured in Figure 3.3, is a stainless steel barrel and outfitted with

an array of capillary tubes in its stem. The oven’s body is sealed by a removable metal plug

situated on a threaded base-bolt on the bottom. The sample is loaded into the oven from

the bottom before the oven is inserted into the chamber which is then vented and kept under

vacuum. Aerorod heating wire is wrapped around the oven’s 1” diameter body and 0.25”

diameter stem and connected to a Variac AC supply outside the chamber via an electrical

feedthrough. The Variac supply provides current to the heating wire to warm the oven.

When enough heat is supplied to the sample inside the oven, the sample sublimates and the

oven emanates a molecular beam vertically upwards..

Figure 3.3: The components that make up the oven. A sample is loaded through the body,
which is sealed by the plug. The bolt base is threaded into the bottom of the oven. Repre-
sentation provided by Jeff Hein.
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The main body is typically maintained around 170◦C to 190◦C . The capillary tube is

kept at a higher temperature than the body to prevent clogging in the tube and is about

50◦C higher than the body’s temperature. The Variac supply typically supplies 35 V to 40

V to heat the oven to temperatures that will sublimate the sample.

A thermocouple is attached to the oven’s stem and to the oven’s body, and it is wired

through an electrical feedthrough to outside the chamber. The wiring connects to a switch

box and a multimeter to display the temperature. The switch box allows selective monitoring

of the oven body’s temperature or the oven stem’s temperature.

Figure 3.4: An oven heating study. The blue line indicates the voltage of the heater, and its
appropriate units are on the right axis. The orange line indicates the oven body temperature
and the red line indicates the oven stem temperature. The units for temperature are indicated
on the left axis.

An oven heating study is shown in Figure 3.4. In it, the voltage of the Variac power

supply for the heater was allowed to vary and the corresponding temperature of the oven’s

body and the oven’s stem were recorded. During this study, the oven was empty. The oven

was heated from room temperature and as can be seen in Figure 3.4, the temperature of the

body and the stem reaches a steady-state well by the 6 hour mark and remains constant until
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much later when the the power supply is turned down. At a voltage of about 30 V, the oven’s

body reaches 150 ◦C while the stem reaches a steady-state of about 175 ◦C . The temperature

at which the oven is held is related to the vapour pressure of the sublimated molecular beam

in an exponential fashion—small deviations in the oven temperature can drastically affect

the vapour pressure of the beam. The oven must be held at steady temperatures during data-

taking for a consistent molecular beam vapour pressure. A discussion on this relationship is

given in Appendix B where estimations of the vapour pressure for thymine and adenine are

provided for temperatures relevant to this experiment.

3.4 Electron Beam System

The electron gun supplies a magnetically collimated monoenergetic beam of electrons from

a tungsten filament along an axis othogonal to the molecular beam. The beam enters the

Faraday cup, a positively biased metal needle on the other end of the chamber, and the

current to the Faraday cup is measured by a picoammeter.

Figure 3.5: The electron gun and Faraday cup units. Reproduced from Abdellatif [3].
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During spectrum measurements, the gun energy was kept at a constant 100 eV. During

excitation measurements, the gun energy was ramped from 0-400 eV by the ramping power

supply. The MCS program on the computer could not only bin data during measurements

but could also direct the ramping power supply to supply a specific energy range for the

electron gun. An initial energy to begin an excitation scan, a final energy to end it on,

and the energy resolution per channel could all be specified in the MCS. During excitation

measurements, the gun was increased by 0.5 eV per channel.

The tungsten filament for the electron gun is manufactured by Soquelec and sits on a

ceramic base, which itself is mounted on a stainless steel tube, as seen in Figure 3.5. This

mounting tube has threading on its top where the filament sits so that a filament housing can

be secured over the mounted filament. The filament housing is a stainless steel covering with

three electron lens plates that are independently supplied with voltage from a power supply.

The lens plates are interleaved with ceramic pieces and fastened to the filament housing by

screws secured through the ceramic pieces. The bottom of the mounting tube has a screw

aligned along its longitudinal axis that is inserted into an outer chassis and the filament-

lens conglomerate is tightened to the outer chassis by a nut. The outer chassis is screwed

into a flange. Three electrically insulating but thermally conducting washers separate the

outer chassis from the mounting tube and allow heat from the hot filament to dissipate.

A magnetic solenoid coil is placed around the filament housing and mounting tube to help

collimate the electron beam.

The Faraday cup sits on the opposite side of the chamber from the electron gun and

consists of a stainless steel needle biased up to 50 V and an earthed outer cup. The needle

head, which is also called the inner cup, has a threaded base that is inserted through a hole

at the bottom of the outer cup and suspended by a ceramic sheath to avoid direct electronic

contact with the outer cup. The threaded base is partly wrapped with Kapton tape as an

additional measure to avoid electronic contact between the cups. The thread base of the

inner cup is fastened to a cylindrical mount which is then connected to the Faraday cup’s
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outer chassis with a screw through a threaded ceramic piece.

A power supply is used to keep the current through the tungsten filament at 2.20 A to

2.30 A, as this results in a current of about 50 µA across the Faraday cup. The body of

the filament housing, in conjunction with the sequential two plates, form an Einzel lens;

this focuses the beam while also accelerating it. The third lens, at the tip of the gun, is

grounded to shield the beam from external fields. Electrons are thermionically emitted from

the tungsten filament and accelerated by the lens plates. The filament housing and the plates

held at a bias separately from the filament and are wired to adjustable resistors so that the

voltage across the plates can be changed. This is done because it affects the focusing of the

beam; when the gun is operational under vacuum, the voltages across the plates are adjusted

to optimize the current through the Faraday cup.

The electrons attracted to the positively biased needle are passed to ground via a pi-

coammeter that measures the collected current. Currents could range from 40 µA to 100

µA. The inner cup was positively biased to stop electrons from being back-scattered into the

interaction region. The picoammeter is also connected to a Voltage-to-Frequency (V-to-F)

converter; this device outputs a signal to a port on the computer to the MCS program that

is proportional to the current measured by the picoammeter. In this way, the current be-

haviour can be measured along with the ramping energy of the ramping power supply and

divided from the acquired excitation function.

Figure 3.6 shows the electronics circuitry for the electron gun and Faraday cup. A switch

controls the choice of power supply for spectrum measurements (Constant Energy supply) or

for excitation measurements (Ramping Energy supply). Also pictured is the lens supply to

optimize the current in the chamber. The cathode is connected to the filament supply near

the lenses. The Faraday cup is shown connected to its bias and a switch controller that allows

one to measure the current across the inner cup or the outer cup with the picoammeter.
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3.5 VUV Spectrometer

A McPherson 1/2 m Seya-Namioka Vacuum Ultraviolet (VUV) spectrometer is connected

to the main chamber by one arm and connected to the detector system on the other arm.

Radiation from the main chamber that is orthogonal to the crossed-beam system travels

through an adjustable entrance slit into the spectrometer to a diffraction grating. The

diffraction grating is rotated by a stepper motor so that a chosen wavelength of light is

directed through an exit slit so that it is detected by the channel electron multiplier (CEM)

or photomultiplier (PMT).

A slit and shutter mechanism is included at the end of each arm of the spectrometer

to collimate light. The slits are adjustable and provide up to a 2 mm opening and can

be adjusted in increments of microns. During spectrum measurements, where resolution

is critical to distinguish features, the slits are kept at 0.2 mm which results in 0.8 nm at

full width half maximum (FWHM) for a feature. During excitation measurements, where

intensity is more important than resolution, the slits are opened to 1 mm.

The diffraction grating in the VUV Spectrometer has 2400 lines/mm and is rotated on

a Seya-Namioka mounting by a stepper motor. On the instrument, there is a counter that

linearly corresponds to the rotation of the grating. A gas like He, H2, or N2 with well-studied

features is used to calibrate the counter reading on the instrument with the wavelength of

radiation.

The stepper motor is responsible for the rate of rotation of the diffraction grating. It

rotates a finely threaded shaft in discrete steps. A threaded block envelopes the threaded

shaft; rotation of the shaft causes the block to translate along the shaft. This block is

connected to a mechanical gear system that rotates the diffraction grating inside the vacuum,

which in turn is connected to a counter dial. The stepper motor is controlled by a BNC555

unit, and each pulse from this unit instructs the stepper motor to turn one step corresponding

to 1/8th of a full turn on the counter.

The vacuum inside the spectrometer was kept at 10−7 torr to minimize degradation of
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the spectrometer’s reflection efficiency.

3.6 Photon Detection System

A Burleigh CEM model 4028 was used to detect radiation in the VUV range of 50 nm to

150 nm and was supplied with 3.2 kV from a Ortec model 569 Bias Supply. The CEM was

coated with CsI so that it had greater sensitivity at higher wavelengths.

The CEM produces pulses that are sent through signal processing electronics arranged

on a NIMbin. A pulse is first sent to a preamplifier and then to the Ortec 474 Timing Filter

Amplifier (TFA) which amplifies and shapes the signal. The pulse is sequentially sent to the

Ortec 584 Constant Fraction Discriminator (CFD) to minimize recorded noise. The output

from the CFD is sent to the Ortec 775 Counter and to the Multichannel Scaler (MCS) on

the computer. The MCS hardware is a card attached to the inside of the computer with

BNC ports for multiple uses. Spectrum scans and excitation scans are recorded using the

MCS-32 software and are saved as MCS files and as ASCII files. Figure 3.7 illustrates this

sequence.

Figure 3.7: A block diagram of the electronics sequence for data collection. The signal is
sent to an electronic counter device and to the MCS simultaneously.

The detector housed inside the detection arm of the vacuum chamber is connected to a

small box external from the chamber. The circuit diagram for this box is given in Figure

3.8, which links the detector inside the chamber with both an adjustable 3 kV power supply

34



and the Pre-Amp. The 3 kV power supply directly supplies the detector with voltage for its

operation to develop a signal, which itself is passed on to the Pre-Amp and the rest of the

signal processing electronics as indicated in Figure 3.7.

Figure 3.8: The circuit for the detection box. The triangles in this diagram indicate ground.

3.7 Timing System

A BNC 565 Pulse/Delay Generator was used during spectrum measurements to create a

pulse sequence that controlled the stepper motor and instructed the MCS program to collect

and bin data appropriately. During spectrum measurements, the BNC565 unit sends a

pulse to a control box, which in turn sends the pulse to the stepper motor. Each pulse

causes the stepper motor to rotate the diffraction grating in equal increments. This rotation

corresponds to the counter reading on the spectrometer - each discrete turn by the stepper

motor increases the counter by a factor of 1/8. The counter reading corresponds to a sweep

over wavelengths - when the counter reading increases by 1, the spectrometer has sweeped

over 0.5 nm. This means that 8 pulses must be sent by the BNC565 unit to rotate the

stepper motor by 1 on the counter and therefore sweep over 0.5 nm.

Figure 3.9 illustrates the timing logic of the pulse system for a spectrum scan. Channel A
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of the BNC565 unit sends an initial pulse at t0 to the MCS, instructing it to begin recording

data. At t1, Channel C sends a pulse to the stepper motor so that the spectrum measurement

begins on the initial counter reading, c0. Channel C then sends pulses in equal intervals of

∆t to the stepper motor. Once the counter has increased by 1, to c1, a pulse sent by Channel

B collects the data and records it in the first bin, Ch0, of the MCS software.

Before a spectrum measurement is performed, a time T , called the dwell time, is decided

for the width of each bin. A dwell time of 60 s was typical for spectrum measurements.

∆t corresponds to 1/8th of the dwell time; this ∆t was typically 7.5 s. A sweep over some

interval of wavelengths, along with the dwell time, would be decided before a scan. This

would instruct the number of bins to use in the MCS software and for the counter sweep

for the spectrometer. This would be performed after using a calibration gas to relate the

counter reading to wavelength.

Figure 3.9: Timing diagram for spectrum measurements. Channel A corresponds to the
initiating pulse. Channel C corresponds to the pulses sent to the stepper motor to rotate
the diffraction grating. Channel B corresponds the times in which data was binned. The
separation time between Channel C pulses, ∆t, is 1/8th of the dwell time, T. Note that ∆t
is not the difference between t0 and t1—the interval between these t0 and t1 is 100 µs and
has been exaggerated for this diagram.

The control box for the stepper motor can receive pulses from the BNC565’s Channel C

and pass them along to rotate the diffraction grating during spectrum measurements, but it

was also capable of controlling the stepper motor manually. However, the control box was
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only used in this way outside of taking measurements as a convenient tool to manually reset

the entire counter sweep or to rapidly advance the stepper motor to a desired wavelength

setting.

As the finely threaded shaft for the spectrometer is of finite size, a safety switch for the

stepper motor was implemented and connected to the control box. This prevents the stepper

motor from causing the mechanical gear system to exceed the physical length of the shaft and

damage the system. The safety switch is a button located near the end of the shaft - once

the block translates to this threshold on the shaft, it triggers the button which interrupts

the circuit and prevents the stepper motor from receiving pulses from the control box.

Figure 3.10: Block diagram for pulsing process during spectrum measurements. Channel A
instructs the MCS program to begin. Channel B instructs the MCS program when to bin
data. Channel C advances the stepper motor through the control box.

During excitation measurements, the MSC program uses its own internal clock system

to bin data. Additionally, the MSC software is used to control the ramping supply on the

NIMbin. An initial voltage and a final voltage is entered into the software along with the

total number of bins for the data. The MCS software instructs the ramping supply to increase

by equal increments until it reaches the voltage limit input, and to bin each data according

to a dwell time input. Excitation scans were typically done with 0.5 eV per bin for 60 s

each. As a complete excitation measurement could be performed relatively quickly (about 2

hours), the MCS software was instructed to restart the scan at the initial energy and begin

another pass across the energy range. The data from the new pass would be added together

with the previous pass; this would go on until the software had finished all of its passes and

the final excitation scan is the total sum of the signal from each pass.
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3.8 Overview

Figure 3.11 is a block diagram of the entire experiment featuring the main components of

the system.

Figure 3.11: A block diagram overview of the main components of the experiment.
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Chapter 4

Electron Impact Studies on Thymine

4.1 Overview

Thymine was the first target for these crossed-beam studies using the stainless steel oven.

Figure 4.1 is a diagram of the molecule’s geometry. Reagent grade thymine was loaded into

the oven and was sublimated from the stem of the oven so that it could be intercepted by

the electron beam. The body of the oven was kept heated at temperatures between 150◦C

and 160 ◦C while the stem was kept about 20◦C higher to prevent clogging. The work of

Rahman et al. [43] suggests that at these operating temperatures the vapour pressure in the

oven should be less than 5 mTorr.

Figure 4.1: The molecular geometry of thymine.
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Two kinds of experimental data were taken. Firstly, the emission spectrum of thymine

was measured over the wavelength range of 80 to 150 nm while the energy of the electron gun

was fixed at 100 eV. Secondly, the intensity of a spectral feature in the emission spectrum

was measured as the energy of the electron gun was allowed to change from 0 eV up to 430

eV.

The electron beam current was kept constant at 50 µA for the spectrum measurements

and was measured simultaneously with the measurements made on photon emission; no

significant deviation in current was observed during these measurements. The energy res-

olution of the electron beam was about 1 eV at full-width half maximum. Photon fluxes

were assumed to be unpolarized due to the size and complexity of the thymine molecule.

Unfortunately, as there was no capability to measure the pressure in the thymine beam, the

cross section could not be measured in absolute terms.

4.2 Thymine Photoemission Spectra

Figure 4.2 is the measured emission spectrum taken of thymine using a fixed electron

beam energy of 100 eV. The detector used in this experiment, along with the diffraction

grating, have a variable efficiency across the wavelengths. The data has been corrected

to account for this variation in detection probability; a full description for this correction

procedure is discussed in Appendix C.

As evident from the figure, the Lyman series of hydrogen dominates the spectrum. Car-

bon, nitrogen, and oxygen do not contribute a significant share to the signal; if the features

are present, they cannot be discerned from the noise. The dominance of H over C, N, or

O should not be surprising. All the H are exocyclic and can be extracted by breaking one

of the four C-H bonds (three of which belong to the methyl group) or one of the two N-H

bonds. Breaking off either of the O and exciting them should be less likely than extracting

a H fragment as there are less sites for an impact on O to occur. Extracting the C from
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Figure 4.2: The emission spectra of thymine measured from 85 nm to 125 nm with a fixed
electron beam energy of 100 eV. Entrance and exit slits were kept at 0.2 mm to reduce
spectral width. The data have been corrected to take account of the spectral response of the
detection system.

the methyl group would require 3 H to be stripped from it, and extracting any endocyclic

C would require a significant breach upon the ring structure. Similarly, the extraction of

N would also require a breach of the ring. However, as will be discussed later, these are

not the only fragmentation processes that can occur and yield an atomic fragment, but the

dominance of the Lyman series over the wavelength range considered should be expected.

Additionally, comparison with electron mass spectrometry work by Imhoff et al. [31] show

that C+, N+, and O+ ions contribute very little to the total mass spectrum, less than 1%,

whereas both H+ and H2
+ were more prominent. Thus, excited H-atom production is to be

expected also.

Table 4.1 indicates the possible non-hydrogen features and the corresponding transitions
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Atomic fragment Wavelength (nm)

O I 87.8
O I 98.9
O I 104.1
O I 115.2
O I 130.4
C I 126.6
C I 127.8
C I 136.4
N I 120.4
N I 125.3

Table 4.1: Relevant non-hydrogen atomic features that could be observed from thymine.
Taken from NIST[1].

in the 85 - 125 nm range of the spectra that might have been observed during measurements.

Outside of this range, the strong 151.6 nm and 165.8 nm features of C could not detected

because of a lack of spectral sensitivity at these wavelengths.

Feature Wavelength (nm) Transition Relative Cross Section

α 121.6 H[2p�1s] 1.00
β 102.6 H[3p�1s] 0.16 ± 0.01
γ 97.3 H[4p�1s] 0.08 ± 0.01
δ 94.9 H[5p�1s] 0.05 ± 0.01
... ... ... ...

Lyman limit 91.2 H[∞p�1s] N/A

Table 4.2: Features present in thymine emission spectrum.

Table 4.2 lists the features that are present in the spectra, namely the Lyman series,

along with their cross sections relative to the Lyman α feature at 121.6 nm. The rest of

the Lyman series, up to Lyman δ, are all uniquely resolvable, but the hydrogen features

that follow blend and merge together until the Lyman series finally terminates at 91.2 nm.

These relative cross sections are proportional to the area underneath them. The areas were

determined with a Gaussian fit as described in Appendix E. The relative cross sections of

α compared to β, α:β, is 1.00:0.16. This is less than the same ratio taken for pyrimidine

studies [8], in which this ratio was 1.00:0.19, but greater than the 1.00:0.12 ratio measured
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for H2 from McConkey et al. [44].

Between Lyman-γ and Lyman-δ there is a small background contamination from the

(0,0) band of the c4’
1Σ+

g �
1Σ+

g of N2 that was present even in scans taken of the background

with a cold oven.

4.3 Excitation Function Studies

The most intense feature in the spectrum of Figure 4.2, Lyman-α, was chosen to mea-

sure for an excitation function study. As molecular beam density could not be monitored

concurrently with photon flux of the radiation from H fragments, the excitation functions

presented here are not shown in absolute terms. Figure 4.3 shows a measurement of this

relative cross section from 0 eV to 450 eV. The onset of the cross section begins at 23 ± 1.0

eV and rises in a gradual manner. Further discussion of the threshold of the relative cross

section as seen in Figure 4.5 is given later.

From 60 eV the relative cross section rises to a broad maximum of 160 eV after which it

begins to fall off. This slow rise of the excitation function to its broad maximum suggests

that at higher energies it goes as lnE/E, which is indicative that dipole, optically allowed,

processes are significant according to the Bethe-Born approximation, as discussed in Chapter

2.

To check if the excitation function went as lnE/E, a Fano plot was made from the

excitation function in Figure 4.3 and is given in Figure 4.4. In the Fano plot, the horizontal

axis is the natural logarithm of the energy, while the vertical axis is the product of the

excitation function and energy. This has been discussed directly after Equations 2.30 and

2.32. If the excitation function in Figure 4.3 went on as lnE/E at high energies, then the

Fano plot will appear linear beyond the natural logarithm of the energy that corresponds to

the excitation function’s peak. As stated previously, excitation function in Figure 4.3 appears

to have a broad maximum about 160 eV, which corresponds to about 5.08 for the horizontal
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Figure 4.3: Excitation study performed on Lyman-α from 0 eV to 450 eV.

axis of Figure 4.4; it is approximately beyond this point where the linearity of the Fano plot

would be of importance. A proper test of the Bethe-Born prediction requires higher energies

than what has been used in this work, but the plot indicates lnE/E behaviour.

The onset threshold energy for the H[2p-1s] transition, at 121.6 nm, was determined from

Figure 4.5 by performing a linear fit to the threshold region. As mentioned earlier, this was

determined to be:

Et[H(121.6 nm)] = 23.0± 1.0 eV (4.1)

This threshold energy was corrected by using a well-known known threshold energy of

a calibration gas, as discussed in Appendix D. Extracting an excited H atom requires the

breaking of a C-H or N-H bond in the molecule. Schneider [34] has shown that 3.72 eV is
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Figure 4.4: A Fano plot taken of the excitation function. The horizontal axis is the logarithm
of the energy for the excitation function while the vertical axis is the energy of the excitation
function multiplied by the excitation function.

required to break the C7-H bond in the methyl group and release a ground state H atom.

Likewise, the C6-H bond requires 4.77 eV. The N-H bonds require 4.08 eV to break N1-H

and 5.19 eV to break N3-H. Additionally, 10.2 eV is required to excite the H atom to its 2p

state, which suggests the following minimum appearance energies:

Et(C7−H) = 13.92 eV (4.2)

Et(C6−H) = 14.97 eV (4.3)

Et(N1−H) = 14.28 eV (4.4)

Et(N3−H) = 15.39 eV (4.5)

If any of these processes were very significant for the formation of Lyman-α photons in the
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work, the cross section threshold would begin around these energies. However, the measured

threshold is 9.1 eV higher than the most likely threshold as listed above; it is unlikely that

such an energy discrepancy could be accounted for in terms of fragment kinetic energies due

to repulsive potential surfaces of the parent molecule. Therefore, these processes where only

a single H is released from the thymine molecule do not contribute significantly.

Figure 4.5: The emission cross section of Lyman-α transition as a function of electron-impact
energy near threshold. The electron impact energy ranged from 15 eV to 50 eV.

However, stripping a H atom from any of the C or N sites of the molecule is certainly

not the only way to acquire a H atom. Mass spectrometry work [15][33][29] has shown that

H atoms are often produced by more complicated dissociation channels of the molecule. For
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example, H can be produced from such a dissociation channel:

e+ T→ C4H4NO+ + HNCO + H + e′ + e′′ (4.6)

Indeed, work by van der Burgt et al.[15] has shown that the appearance of heavy frag-

ments often accompanies with it one or more H atoms. These fragments have been identified

in their work to have the following masses: 13, 14, 15 u; 26, 27, 28 u; 37, 38, 39, 40 u; 51,

52, 53, 54, 55 u; and 82 and 83 u. Some of these fragments are a part of the most significant

features in thymine’s mass spectrum [31], and so they should be expected to significantly

contribute to the H signal observed. Dissociation channels that involve the appearance of

these heavy fragments alongside the appearance of H atoms can account for the “late” on-

set of the Lyman-α relative cross section, with respect to the minimum energy expected to

observe the transition; the appearance energy of the 82 u fragment, C4H4NO+, has been

measured to be 12.8 eV by van der Burgt [15] and 13.2 eV by Jochims [33]. With the 10.2

eV required to promote ground state H to its 2p state, the appearance energy that should

be expected to observe signal from H dissociated from this process is 23.0 eV to 23.4 eV,

which is in agreement with our threshold measurement. However, the 54 u fragment was

measured to have the same appearance energy as the 82 u fragment, which implies that

discerning a dissociation process that results in a 82 u fragment or a 54 u fragment from the

excitation function in Figure 4.5 is ambiguous. As mentioned by van der Burgt [15], despite

a CO worth of mass difference between the 82 u and 54 u fragments, 54 u is not likely to

be formed by CO loss from 82 u, though this does not rule out mass fragment 83 u being

formed and then losing CO and H.

The 28 u mass fragment, which is expected to belong to a fragmentation process that

involves H loss, would be expected at about 23.8 eV according to van der Burgt [15], which

can partially contribute to the measured onset at 23.0 eV. Imhoff [31] has identified these

fragments as CO+ or HNCH+, and accordingly it is the most intense feature in their mass

47



spectrum. It would be likewise difficult to separate a process resulting in 28 u from a process

that results in 82 u or 54 u.

It is also suggested that the appearance energy of the 55 u fragment, identified as

HNC3H4
+ by Imhoff [31] and also responsible for the production of H atoms, is 10.3 eV,

meaning that some process beginning at least at 20.5 eV could potentially be seen. Since

this is the the second most intense feature in the mass spectrum by Imhoff [31], it possibly

contributes to the observed thresholds as in Figure 4.5.

The 39 u mass fragment is expected at about 24.6 eV according to van der Burgt [15],

and identified by Imhoff [31] as C3H3
+. The associated H fragment could begin contributing

to the signal in Figure 4.5 at about 25 eV, but this fragment does not appear to be very

intense based on Imhoff’s mass spectrum.

Schneider et al. [34] have studied the photodissociation of thymine in which photons of

minimum energy of 4.59 eV were used to determine dissociation dynamics of thymine where

ionic fragmentation is not involved. They had suggested a two photon process following the

excitation of thymine to a ππ* state; decay on a femtosecond timescale to a long-lived dark

state follows, giving the opportunity for a second photon to be absorbed. It is suggested that

the excited state resulting from the second absorption of a photon decays to the electronic

ground state followed by a statistical dissociation of a H atom. The occurrence of a process

like this implies a minimum of 9.18 eV. Detecting Lyman-α from a fragmentation that

involves a similar process would require a minimum of 19.38 eV, well below our observed

threshold.

It should also be noted that at about 33 eV the relative emission cross section begins to

rise sharply, which suggests that multiple channels contribute to the detection of H fragments,

however, given the work here it is not possible to quantify these channels; similar behaviour

was observed in the ionization channels by van der Burgt [15].
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4.4 Conclusions

Spectral measurements from 80 nm to 140 nm revealed evidence for fragmentation of hydro-

gen following 100 eV electron impact. Spectral features from other atomic fragments were

not observed. Additionally, excitation studies indicated that a simple dissociation process

where an excited hydrogen atom is stripped from any of its bonds, with no other fragments,

does not significantly contribute to Lyman-α production. Instead it appears that H dissoci-

ation yielding Lyman-α radiation more likely occurs alongside the appearance of molecular

fragments— including those of which that make up some of the most significant features in

thymine’s mass spectrum. Some fragmentation pathways that may be responsible for the

appearance of Lyman-α have been discussed, but in some cases, the fragmentation path-

ways were not distinct due to these pathways possessing coincident threshold energies, or,

the dominance of any one fragmentation pathway over another could not be thoroughly

described. The shape of the excitation function for Lyman-α, as in Figure 4.3, indicated

that optically allowed processes are significant, suggesting that the production of excited

hydrogen fragments following the fragmentation of the parent molecule occurs as part of an

initial ionizing collision.
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Chapter 5

Electron Impact Studies on Adenine

5.1 Overview

Adenine was the second molecule studied in this work. Figure 5.1 is a diagram of the

adenine molecule, which consists of a hexagonal ring attached to a pentagonal ring. There

are two N atoms on each ring. On the larger ring there is a NH2 branch and one H attached

to the C2 site. On the smaller ring a lone H atom is attached to the N9 site, and another H

is attached to the C8 site.

Figure 5.1: The molecular geometry of adenine.

Just as with thymine, adenine purchased from Sigma-Aldrich was loaded into the oven.

The oven’s body was heated to over 180 ◦C in order to sublimate the adenine and make a

gas that could be intercepted by an electron beam. The stem settled at a temperature 40
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◦C higher than the body, which prevented adenine clogging through the capillary opening of

the oven. Studies have been performed on adenine with similar temperatures [43][12]. The

stem’s temperature, despite being significantly hotter than the oven, was not expected to

cause any thermal dissociation as the sublimated adenine should be heated mainly by the

oven alone.

Similarly to thymine, photoemission spectra of adenine were taken over a wavelength

range of 90 nm to 140 nm with a fixed electron energy beam of 100 eV. Additionally, the

relative cross sections of the Lyman-alpha (121.6 nm) and Lyman-beta (102.6 nm) features

were taken from 0-300 eV, for Lyman-alpha’s case, and 0-400 eV, for Lyman-beta’s case.

During spectrum measurement runs, the electron gun was kept constant at 50 µA. The

behaviour of the current of the electron gun as it changed with energy was also monitored

so that the relative cross sections of the spectral features could be corrected for changes

in current. The energy resolution of the electron beam was about 1 eV at full-width half

maximum, just as with thymine. Photon fluxes were assumed to be unpolarized due to

the size of molecule complexity. As there was no capability to measure the pressure of the

adenine beam, the absolute cross section could not be measured as in Equation 2.62.

5.2 Photoemission Spectra

Figure 5.2 displays the photoemission spectra of adenine taken from 90 nm to 140 nm

with a fixed electron beam energy of 100 eV. The data has been corrected for the variation in

detection probability across this wavelength region. Possible non-hydrogen atomic features

that could have been measured from the dissociation of adenine are listed in Table 5.1,

namely the most intense C or N features in this wavelength range. Similar to thymine, only

the H Lyman series was detected.

All the H belong to the perimeter of the molecule while all the C and N make up the

main ring structures. A single H fragment, with no other fragments, requires the breaking
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Figure 5.2: Adenine emission spectrum measured at constant electron impact energy of 100
eV with 0.2 mm slit width. The data have been corrected to take account of the spectral
response of the detection system.

of a N-H bond or a C-H bond. Of the N-H bonds, one of the two N-H bonds off of the C6

must be broken, or the N-H bond on the smaller ring must be broken. Extracting a single

C or N fragment should be significantly more difficult than extracting a H fragment due to

the fact that, with the exception of the N in the NH2, all the N or C are endocyclic.

Atomic fragment Wavelength (nm)

C I 126.6
C I 127.8
C I 136.4
N I 120.4
N I 125.3

Table 5.1: Relevant non-hydrogen atomic features that could be observed from adenine.
Taken from NIST.[1]
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The fragmentation channels of adenine are dominated by molecular fragments that ac-

company atomic fragments. Comparison with electron mass spectrometry work by Minaev

et al. [2] at 95 eV indicates that C+ and N+ ions contribute less than 1% to the entire mass

spectrum, whereas H fragments can accompany some of the most intense features in the

mass spectrum; these processes will be discussed later.

Feature Wavelength (nm) Transition Relative Cross Section

α 121.6 H[2p-1s] 1.00
β 102.6 H[3p-1s] 0.23 ± 0.01
γ 97.3 H[4p-1s] 0.08 ± 0.01
δ 94.9 H[5p-1s] 0.05 ± 0.01
... ... ... ...

Lyman limit 91.2 H[∞p-1s] N/A

Table 5.2: Features present in adenine emission spectrum.

Table 5.2 lists the features identified in the adenine photoemission spectra of Figure 5.2.

Only the H Lyman series is present. Lyman-α is the dominant feature of the spectrum,

followed by Lyman-β, Lyman-γ, and Lyman-δ. The rest of the Lyman series is present in

the spectrum and terminates at the Lyman limit at 91.2 nm. As pressure could not be

measured to determine an absolute cross section, relative cross sections are instead provided

for β, γ, and δ in Table 5.2. The features present in the spectrum of Figure 5.2 were fitted

with Gaussians, as discussed in Appendix E, and the areas of each fit were measured relative

to Lyman-α. Of interest is the α:β intensity ratio of 1.00:0.23, which is higher than the

measured 1.00:0.16 value determined for thymine.

Background studies performed with a cold oven revealed a molecular nitrogen contami-

nation in the system as with thymine. This signal has been subtracted from the data.
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5.3 Excitation Function Studies

As with thymine, the Lyman-α feature was chosen to measure its relative cross section

as it varies with energy. Pressure could not be monitored along with the photon flux of the

H radiation, and so these excitation functions are not provided in absolute terms. Figure

5.3 displays the total excitation function measured with the spectrometer fixed on Lyman-α

radiation measured from 0 eV to 300 eV. The cross section has a broad peak at about 200

eV, which is located approximately 40 eV more than that of the peak for the total Lyman-α

excitation of thymine seen in Figure 4.3. The overall shape seems to suggest that spin and

optically allowed processes are dominant as the excitation function seems to decrease from

the maximum as lnE/E, a consequence from the Bethe-Born approximation discussed in

Chapter 2.3. However, the energy range does not extend far enough to obtain a linear fit

that properly tests the Bethe-Born approximation.

Figure 5.3: Lyman-α excitation function from 0 eV to 350 eV.
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An excitation function with a smaller range, measured from 0 eV to 50 eV, to determine

near-threshold behaviour is shown in Figure 5.4 where the onset appears rather late at 24 ±

1 eV followed by a more dominant process occurring at about 37 eV. These thresholds were

determined by performing linear fits in the threshold region. This can be compared to the

measured onset threshold energy for Lyman-α of 23.0 eV in Figure 4.5. Discussion of the

Lyman-α threshold processes is given later in this work.

Figure 5.4: Lyman-α excitation function near threshold.

Excitation studies were also performed on Lyman-β, as can be seen in Figure 5.5, which

shows the total excitation function for this transition.

The cross section rises to a broad maximum around 175 eV and falls off slowly with higher

energies. As with thymine, the cross section is broadly unstructured for energies beyond the

near-threshold region (50 eV or more). The energy range of this study does not extend
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Figure 5.5: Lyman-β excitation function measured from 0 eV to 400 eV.

far enough to make a proper conclusion from the Bethe-Born approximation, however, the

decrease in the cross section following the maximum goes approximately as 1/E, suggesting

that spin-allowed but dipole-forbidden processes are important.

The near-threshold behaviour of the excitation function is shown in Figure 5.6. The

threshold for the excitation function for Lyman-β was measured using a linear fit in the

region and found to be

Et[H(102.6 nm)] = 18.0± 1.0 eV (5.1)

As with thymine, this threshold was corrected by using a well-known threshold energy of

a calibration gas, as discussed in Appendix D. Gas phase electron energy loss experiments

performed by Dillon et al. [45] showed a broad unstructured peak at 5 eV. Additionally,
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Figure 5.6: Lyman-β excitation function near threshold.

further experimental and theoretical work performed with respect to gas phase adenine and

also on monolayers has shown that this broad feature at 5 eV does exist; this feature is

indicative of a dissociation of the parent molecule. Hünig et al. [46] photolysed adenine with

243 nm (5 eV) photons and a REMPI process to determine the products of this dissociation,

which were identified to be ground state H atoms. In the case for detecting Lyman-β

radiation in this work, the H atoms from this dissociation process requires 12.2 eV for

the emission of a photon from the H(3p) state to the H(1s) state. This would suggest a

minimum appearance energy of 17.2 eV, which is in line with the 18.0 ± 1.0 eV threshold

measurement made on the excitation function from Figure 5.6. This dissociation process
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leads to the production of the 134 u mass fragment:

e+ H5C5N5 → H4C5N5 + H(3p) + e′ (5.2)

Additional fragmentation processes are possible. Jochims et al. [33] have shown that the

following process, an additional way to produce the 134 u mass fragment alongside ground

state H has an appearance energy of 10 eV.

e+ H5C5N5 → H4C5N
+
5 + H + e′ + e′′ (5.3)

A process like this with a dissociated H promoted to an np state could appear about 25 eV

granted that the fragments possess some kinetic energy.

As with thymine, there are other fragmentation channels in which it is possible that

excited H is produced along with some molecular fragment. Mass spectrometry work by

Rice et al. [29], Minaev et al. [2], Jochims et al. [33] and others has made it possible to

identify the major fragmentation pathways that occur for adenine. Minaev suggests four

primary fragmentation routes for adenine, which are summarized in Table 5.3.

Route Neutral Loss Mass (u) Charged Fragment Loss Mass (u) Broken Bonds

1 C4H3N4 107 CH2N
+ 28 N1-C6 and C5-C6

2 C2H3N2 55 C3H2N3
+ 80 C5-C6 and N3-C2

3 C4H3N4 107 CH2N
+ 28 N7-C8 and N9-C4

4 HCN 27 C4H4N4
+ 108 N1-C6 and C2-N3

Table 5.3: Main primary fragmentation pathways for adenine as proposed by Minaev et al.
[2].

What follows involves a discussion of these fragmentation pathways, which for some do

not immediately lead to excited H production as was the case with thymine. However, it is

possible that excited H is produced during the chains of dissociation, or at the end of these

fragmentation pathways, such as in the most significant fragmentation pathway for excited

adenine, which involves successive losses of HCN units. It is most likely initiated by way of
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Route 4 in which a HCN unit is removed from the parent molecule to form the 108 u mass

fragment.

C5H5N
+
5 → C4H4N

+
4 + HCN (5.4)

The most likely way for adenine to lose its first HCN unit is from the breaking of the N1-C6

and C2-N3 bonds. The ions produced from the dissociation are not stable and tend to shed

off more fragments. Following the initial HCN loss by way of Route 4, the 108 u fragment

can transfer one or two H to the N3 site, reconfiguring itself in one of two isomers depending

on the number of H transferred. Following one H transfer, an additional HCN unit loss may

occur to form the 81 u mass fragment.

C4H4N
+
4 → C3H3N

+
3 + HCN (5.5)

The 81 u mass fragment can then undergo successive HCN losses to form 54 u and 27 u

fragments by the following processes.

C3H3N
+
3 → C2H2N

+
2 + HCN (5.6)

C2H2N
+
2 → HCN+ + HCN (5.7)

If the 108 u fragment undergoes double H transfer and forms an alternative isomer, it will

shed a NH2CN unit in the following way to form the 66 u fragment.

C4H4N
+
4 → NH2CN + C3H2N

+
2 (5.8)

The fragmentation pathways as explained above involve the most significant ways in which

the parent molecule dissociates, however they do not produce H so alternative fragmentation

channels must be assessed.

The 108 u mass fragment is a dominant fragment in the mass spectra, but alongside it
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there is the 107 u and 106 u fragments. Sethi et al. [32] and Minaev et al. [2] suggest that

107 u and 106 u can be created from one or two H loss, respectively, from the 108 u fragment.

However, from Routes 1 and 3 from Table 5.3 and Jochims et al. [33], the 107 u fragment

can appear without the need for H loss from 108 u. The 106 u fragment appears in Minaev’s

work with the same relative intensity as the 107 u fragment in the mass spectrum, but does

not appear in Rice et al. [29] or in van der Burgt et al. [12]. However, appearance energy

measurements of mass fragments by van der Burgt does not contradict H loss as a possible

dissociation process.

The 81 u fragment, formed from an initial HCN loss followed by one H transfer and then

a second HCN loss, can lose H to form the 80 u fragment, which is present in Rice, Minaev,

and van der Burgt. This H loss is suggested by Sethi et al. [32] and Minaev et al. [2], but an

additional, alternative process is proposed by Minaev as indicated by Route 2 in Table 5.3.

Jochims et al. [33] explains the appearance of this fragment by the formation of a charged

107 u fragment by the following process.

C5H5N
+
5 → C4H3N

+
4 + H2CN (5.9)

The C4H3N4
+ can lose one HCN unit to form C3H2N3

+, an 80 u mass fragment without the

need for H loss. However, as with the 107 u fragment, appearance energy measurement work

performed by van der Burgt [12] permits H loss as a possible method for the appearance of

the 80 u fragment.

The 54 u fragment, formed from a third successive HCN loss, has been suggested by Sethi

et al. [32] and Minaev et al. [2] to lose one or two H for the appearances of the 53 u and 52

u fragments. Jochims et al. [33] explains the appearance of C2HN2
+, a fragment with mass

of 53 u, by way of an initial H2CN loss from adenine followed by two successive HCN losses,

a fragmentation pathway that does not involve H loss. Appearance energy measurements of

54 u, 53 u, and 52 u by van der Burgt et al. [12] allow H loss to be a plausible way for such
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fragments to be formed. The 52 u fragment does not appear to be measured in Jochims [33]

nor its appearance energy by van der Burgt et al. [12], however it does appear in the mass

spectra work of Minaev et al. [2] and Rice et al. [29]; additionally, the intensity of the 53

u fragment is higher than the 80 u fragment in the mass spectra, which suggests an 80 u to

53 u pathway by one HCN loss can be accompanied by H loss from 54 u for the production

of 53 u.

The fragments with masses of 29 u, 28 u, 27 u, and 26 u are prominent in mass spectra

work for adenine. The 29 u fragment has the elemental formula CH3N
+ and is suggested

by Jochims et al. [33] to be the NH2CH+ ion. The 28 u fragment, as formed by Route 3

in Table 5.3, is more intense than the 29 u fragment, and as its appearance energy is less

than the appearance energy of the 29 u fragment, it is not expected that H is lost from 29

u to form 28 u. The 27 u fragment has the elemental formula HCN and, as discussed, has

plentiful pathways to be formed without the need for any H loss. However, the appearance

of the 26 u fragment, identified with the elemental formula as CN, could be formed from H

loss from 27 u. A possible pathway that involves a mass fragment of 26 u with H production

could involve the loss of HCN units and lead to H production excited to some np level.

H5C5N5 + e→ x(HCN) + CN + H(np) + ion fragments + me′ (5.10)

(x = 0 to 4; m ≥ 1)

The appearance energy for the fragmentation processes described above are all within

the 12-14 eV range [12][33][37]. With this known, and with the expectation that some more

energy would be expected for the additional dissociation process that occurs in Equation

5.10 to yield excited H atoms, the appearance energy for Lyman-α or Lyman-β radiation

for such dissociation events would be expected to be in the range of 25 to 35 eV. This may

contribute to the near-threshold behaviour of the Lyman-α excitation function as seen in

Figure 5.4.

It is worth mentioning again that the threshold for Lyman-α, seen in Figure 5.4, was
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measured to be

Et[H(121.6 nm)] = 24.0± 1.0 eV (5.11)

This is a surprising result as this threshold is not 2 eV lower than the Lyman-β threshold,

measured as 18 eV, but instead is significantly higher. It can also be seen in Figure 5.4

that after the initial onset, a more dominant process takes over at about 37 eV. This sort

of behaviour contradicts the sort of process that happens in Equation 5.2, where a single

excited H is stripped from the parent molecule; if this were happening, the threshold onset

would begin at approximately 15.2 eV. This may be due to a fast radiationless transfer of

energy from the excited parent molecule to a lower state, as discussed by Broo [47] and

others [48][49]. Another consequence of this measurement is that the kind of dissocation

as given in Equation 5.2 is not a two-step process in which the H atom is dissociated and

then excited; if it were, excitation of the H(2p) or H(3p) states should occur with similar

possibility. The contribution of the process as given in Equation 5.2 to the appearance of

Lyman-β but not to Lyman-α may explain the higher α:β ratio for adenine, listed in Table

5.1, as compared to work done for thymine or in previous work done with pyrimidine [8].

5.4 Conclusions

Spectral measurements from 85 nm to 140 nm indicated evidence for the dissociation of

excited H fragments from the parent molecule due to the presence of the Lyman series.

The spectral features from other atomic fragments in the VUV range were not observed, as

with thymine, indicating low probability for extracting excited C or N fragments. Excitation

studies revealed that a simple dissociation process where hydrogen is stripped from the parent

molecule does not likely yield Lyman-α hydrogen. However, this process is consistent with

the measured threshold energy of Lyman-β, suggesting such a simple dissociation process can

yield H(3p). The threshold measurements indicate some possible fragmentation pathways,

but it was not possible to uniquely qualify them.
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Chapter 6

Conclusion

The dissociative excitation of thymine and adenine has been studied in the VUV spectral

range. Measurements of emission spectra were performed for thymine from 85 nm to 125

nm and for adenine from 90 nm to 140 nm. These studies revealed that the only significant

products in this region from electron impact were H(np) atoms as indicated by the Lyman

series present in the measurements. Additionally, the relative cross sections, α:β:γ, for both

thymine and adenine were determined to be 1.00:0.16:0.08 and 1.00:0.23:0.08, respectively.

In the case for thymine, no excited C, N, or O atomic fragments were observed. For adenine,

neither C or N excited products were observed. This is consistent with dissociative ionization

measurements that indicated non-hydrogen atomic ions make up a very small portion of the

total ionization products.

Excitation functions were obtained for the H(2p�1s) transition for thymine and on the

H(2p�1s) and H(3p�1s) transitions for adenine. Threshold measurements on the H(2p�1s)

transition with thymine were consistent with ionization measurements where fragmentation

pathways were studied, mainly that excited H atoms dissociate more likely as a product

that comes along with molecular fragments rather than being singularly dissociated from

the parent molecule. Threshold measurements for the studied H transitions with adenine

unexpectedly showed a +6 eV discrepancy between Lyman-α and Lyman-β rather than a -2
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eV difference, which may be due to a radiationless process where energy is rapidly transferred

to a lower state as discussed by Broo and others [47]. This could be a possible reason for the

higher α:β cross section ratio compared to the relative cross sections measured for thymine

in this work and in pyrimidine work by Hein et al. [8]. Measurements performed on the

Lyman-β excitation function indicates that near threshold, dissociation of H atoms most

likely occurs by being singularly cleaved from the parent molecule. At energies of 25 eV or

higher, H dissociation is dominated by processes with more complicated break-up channels.

The fragmentation pathways for adenine [2] indicate that the parent molecule breaks up in

many molecular pieces, especially in multiples of HCN units, and such ways of producing

excited H may be less for adenine than for thymine.

The excitation function of the H(2p�1s) transition for thymine was measured with a

broad maximum at about 160 eV; at the highest energies it falls-off as approximately ln(E)/E,

which suggests dipole-allowed processes are significant. Similarly, the excitation functions

for the H(2p�1s) and H(3p�1s) transitions for adenine were measured; Lyman-α had a

broad maximum about 200 eV while Lyman-β had a broad maximum about 175 eV. Both of

these excitation functions seemed to go as 1/E at higher energies, suggesting the importance

of spin-allowed but dipole-forbidden processes in this case.

In future investigations, atomic fragmentation of cytosine could be studied. One ad-

vantage of studying cytosine is that it is a liquid at room temperature like pyrimidine. In

the work by Hein et al. for pyrimidine [8], which involved a different configuration of the

experimental apparatus, it was possible to measure the cross section data and calibrate it

in absolute terms due to pyrimidine’s liquid property. Pyrimidine was introduced into the

chamber in a different way from the oven; it was delivered from a stainless steel tube via a

gas line into a delivery tube that formed a beam of pyrimidine gas directly above the electron

beam. In the previous set-up for the chamber, not only could the delivery tube pressure be

monitored, but another calibration gas could be passed through the delivery tube, ensuring

ease of replicating similar experimental conditions for the collision chamber, which is nec-
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essary to determine the absolute cross section, as discussed in the end of Chapter 2.4. In

past work, the absolute cross sections for pyrimidine in the VUV range were determined by

measuring them relative to the well-known H2 cross sections. A similar experimental scheme

can be performed with cytosine to obtain measurements of absolute cross sections in the

VUV wavelength range, but will require the experimental apparatus to be reverted to the

previous configuration involving the delivery tube system.

A similar procedure can be done to determine absolute cross sections for thymine and

adenine, but this will require a major re-design of the biomolecule oven. The oven will have

to be modified to allow a calibration gas to pass through its capillary tube. Alternatively,

an entirely new oven may have to be designed to make this possible. Additionally, the

apparatus will have to be adapted so that the vapour pressure of the sublimated beam can

be measured during measurements. Once this is done, absolute cross section measurements

may be performed on the Lyman series for thymine and adenine.

Finally, an additional target for future electron dissociation studies could be guanine,

which is a solid at room temperature like thymine and adenine. At the least, the studies

done in this work could be performed on guanine to obtain information on the atomic

fragmentation processes. Additionally, this will enable us to observe the possible dissociation

pathways near threshold. If the experimental apparatus is reconfigured to allow absolute

cross section measurements for the targets that require sublimation, then absolute cross

section measurements in the VUV wavelength range for guanine may be performed. It will

be worthwhile to extend the work done here from thymine and adenine to guanine and

cytosine as the latter two molecules make up the remaining two main nucleobases of DNA.
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Appendix A

Scientific Constants

Quantity Symbol Value Units
Electron volt eV 1.602 176 565(35) ×10−19 J

Boltzmann’s constant kB 1.380 648 8(13)× 10−23 J/K
Elementary charge e 1.602 176 565(35)×10−19 C
Planck’s constant h 6.626 069 57(29)×10−34 Js

Reduced Planck’s constant ~ 1.054 571 726(47)×10−34 Js
Bohr radius a0 0.529 177 210 92(17)×10−10 m

Electron mass me 9.109 382 91(40)×10−31 kg
Ideal Gas Constant R 8.3144598(48) J/(mol K)

Torrent Torr 133.322 Pa
Molar Mass of Thymine MT 126.1133 g/mol
Molar Mass of Adenine MA 135.13 g/mol

Rydberg constant R∞ 10 973 731.568 508 (65) m−1
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Appendix B

Jet Flow Estimations of Thymine and

Adenine

In this experiment, thymine and adenine were loaded into an oven with a capillary tube

outfitted with an array of 3 by 5 effusion holes, each with a radius of 0.035 inches. The tube

was heated to at least 150 ◦C so that condensation within the tube was avoided. Thermal

collisions between the molecules is considered here in order to determine an estimate for the

type of vapour flow that occurs from the oven. Vapour pressures are also estimated.

Firstly, by considering a gas of spherical particles that interact with each other only by

elastic collisions, the distributions of their velocities, v, can be described by the Maxwell-

Boltzmann distribution [50].

f(v)dv =

(
m

2πkBT

)3/2

4πv2 exp

(
−mv2

2kBT

)
dv (B.1)

The mass of the particle that makes up the gas is m, which is held at temperature T . kB

is Boltzmann’s constant. From here, the mean speed 〈v〉, most probable speed vp, and root-

mean-square speed vrms can be calculated. For instance, vp can be determined by taking the

derivative of Equation 1.1 and solving for a solution. In that case, one obtains the following
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expression for the most probable speed.

vp =

√
2kBT

m
(B.2)

The mean velocity 〈v〉 can be determined by calculating the expectation value of the

entire distribution.

〈v〉 =

ˆ ∞
0

vf(v)dv =

√
8kBT

πm
(B.3)

It easily follows that the mean velocity is proportional to the most probable speed.

〈v〉 =
2√
π
vp (B.4)

Next, one may want to consider the mean free path of these particles, which is the average

distance a particle of this gas will travel without colliding into the other particles, and can

be defined using the mean velocity. We can formulate the mean free path by taking the

distance travelled by the particle and dividing it by the volume of interaction where the

particle may find a target and also by the number of molecules per unit volume. To do so,

we will want to consider the average relative velocity of the targets, 〈vrel〉. It can be shown

that this quantity can be written in the following way.

〈vrel〉 =
√

2〈v〉 (B.5)

We now wish to return to the mean free path. A particle of the ideal gas travels at 〈v〉

and in time t covers a distance of 〈v〉t and has an effective collision cross section of πσ2.

A random target with 〈vrel〉 will, in the same time, cover a distance of 〈vrel〉t =
√

2〈v〉t.

Then the volume of interaction is πσ2
√

2〈v〉t. Then, with the number of molecules per unit

volume, nV , the mean free path, λ, can be expressed in this way.

λ =
〈v〉t

πσ2
√

2〈v〉tnV
=

1√
2πσ2nV

(B.6)
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The ideal gas law allows the above equation to be written in a form that contains the

vapour pressure, P , and temperature of the gas as according to this law:

nV =
N

V
=

P

kBT
(B.7)

Then, the mean free path for a hard spherical particle that makes up an ideal gas can be

rewritten in this way.

λ =
kBT√
2πσ2P

(B.8)

Unfortunately in the work done, we could not measure the vapour pressure of the subli-

mated target as it left the capillary tube in the oven; only pressures of a swarm gas distribu-

tion in which the entire chamber is filled with a target could be measured. However, a rough

estimation was made to determine the vapour pressure. However, a few acknowledgements

must be made: thymine and adenine are clearly not spherical, and the oven is not a closed

system. The experiment is performed in vacuum at approximately 3 × 10−7 Torr and any

gas in the system is continuously pumped out, and the sublimated biomolecule targets are

always being emitted from the oven.

Ferro et al [4] have done work to measure the vapour pressures of thymine and cytosine.

Figure B.1 features a plot that uses the Clausius-Clapeyron equation they measured to

observe the vapour pressure as a function of temperature. Additionally, Zielenkiewicz [5]

had measured enthalpies of sublimation for adenine and its methyl derivatives, and the data

measured there were used to create the vapour pressure plots shown in Figure B.1.

Electron impact studies on these biomolecules were only performed after a steady-state

oven temperature was achieved. A key goal was to use as low a temperature to sublimate

the molecule as possible in order to avoid thermal decomposition and to reduce the vapour

pressure to avoid viscous flow of the sublimated biomolecules and also so that all of sample

target was not completely expelled from the oven too quickly. However, pressures could not
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Figure B.1: Vapour pressure plots against temperature. The thymine plot on the left was
done with [4]. The adenine plot on the right was done with [5].

be made arbitrarily low as this would reduce photon counts from electron impact measure-

ments and require larger data sets in order to obtain usable statistics.

During electron impact measurements for thymine, the oven body was maintained at

150 ◦C , which according to Figure B.1 would correspond to approximately 1.2 mTorr.

However, measurements taken for adenine required hotter temperatures due to low photon

statistics at similar temperatures to thymine. Electron impact measurements were performed

at 180 ◦C as a compromise to obtain similar photon count rates as for thymine, which

corresponds to a vapour pressure of 9.2 mTorr. Tabet et al [51] had performed molecular

flux measurements on DNA/RNA molecule vapour jets and reported that at 440 K (177

◦C ), thymine’s mass deposit rate was 7 times greater than that of adenine. Whenever the

chamber was opened up for maintenance, the mass deposition of adenine from the oven to

the top of the chamber where the oven points at was clearly less than that for thymine with

the same oven temperature and for similar periods of sublimation.

With these temperatures and vapour pressure estimations, and using σ = 0.7 nm as an

effective diameter for the molecules [51], the mean free path for thymine is estimated to be

16.7 mm at 1.2 mTorr. For adenine, a estimation for the mean free path is 2.34 mm at 9.2

77



mTorr.

Accordingly, three kinds of flow regime can be described using the Knudsen number Kn,

which is related to the dimensions of the capillary (L, the length of the capillary) and the

mean free path.

Kn =
λ

L
(B.9)

Particularly, according to [52], vapour jet flow can be characterized with the following

Knudsen numbers

� Kn > 10 - molecular flow; no interaction between molecules occurs during exit through

capillary

� Kn > 0.1 - intermediate flow

� Kn > 0.001 - viscous flow; intermolecular collisions are prominent

The length of the biomolecule capillary tube was 20 mm, which suggests an estimated

Kn = 0.83 for thymine and Kn = 0.11, which are both in the intermediate flow range. Thus

some collisions will occur between the biomolecules and with the wall of the capillary tube,

probably modifying the velocity distribution within the molecular beam exiting the tube.
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Appendix C

Detection Efficiency Correction

Measurements made on photon flux across a range of wavelengths was dependent on both the

wavelength dependence of the detector and the reflection efficiency of the diffraction grating.

To determine accurate relative cross sections, it was necessary to account for this wavelength

efficiency by determining an instrument probability function P(λ) that suitably reproduces

the detection variation. This was done by using a theoretical emission spectrum of H2 from

Brotton et al [6] and as seen in Figure C.1, and comparing it with well-known emission

features from an experimentally measured H2 spectrum. This has been fully discussed in [6].

Figure C.1: Theoretical H2 emission spectrum reproduced from Brotton et al [6].
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Firstly, the features of the experimentally measured H2 spectrum were matched with

the features of the theoretical emission spectrum. The ratio between the two sets of data

was taken and a cubic polynomial was fitted to the resultant data points. The instrument

probability function is shown in Figure C.2. The function begins to rise after 135 nm most

likely because the diffraction grating is blazed for maximum reflection at 150 nm.

Figure C.2: The relative probability for photon detection from 90 nm to 140 nm. This
accounts for the wavelength efficiency for both the detector and diffraction grating.
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Appendix D

Threshold Calibration

Helium was a common gas that was used as calibration standard to determine the energy

shift in threshold measurements. However, a molecular N2 signal, appearing at 95.8 nm, was

persistent during spectrum measurements. What follows is a calibration calculation that

was performed using this background signal. Figure D.1 shows the results of an excitation

scan.

Figure D.1: Excitation study performed on the (0,0) band of the c4’
1Σg

+ �1Σg
+ of N2 at

95.8 nm.

A linear fit was performed in the near threshold region of the excitation function. The
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intercept of this linear fit was calculated as the energy threshold. In this case, it was deter-

mined to be 18.2 eV. With a real energy threshold of 12.9 eV for this N2 feature at 95.8 nm

[53], the energy offset was determined to be 5.3 eV.

Figure D.2: A close-up of the excitation function measurement along with the linear fit
performed near the threshold region.
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Appendix E

Curve Fitting and Error Analysis

E.1 Fitting Relative Cross Sections

A Gaussian distribution, fg, defined as

fg(x) =
A√
πw2/2

exp

(
−2(x− xc)

w2

)
(E.1)

with area A, width parameter w, and centre xc was used to fit the relative cross sections for

spectrum scans. The full width at half maximum (FWHM) is expressed as

FWHM = 2
√

2 ln 2w (E.2)

E.2 Error Analysis

Standard propagation of errors were used where applicable. Given some quantity f depen-

dent on a set of independent variables x1, x2, ..., xn, the uncertainty of f , δf , can be calculated

if the corresponding uncertainties for the variables it is dependent on, i.e. δx1, δx2, ..., δxn,

83



are known. The uncertainty is determined by

(δf)2 =
n∑
i=1

(
∂f

∂xi
δxi

)2

(E.3)
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