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ABSTRACT 

 

 

Road pricing has two distinct objectives, to alleviate the congestion problem, and to generate 

revenue for transportation infrastructure financing. Accordingly, road pricing studies can be 

roughly classified into two branches with overlapping, one on congestion pricing and the other on 

toll roads. This dissertation contributes to both branches of road pricing studies. Three topics are 

discussed. The first two are related with congestion pricing and the third one is related with 

infrastructure financing. 

 

The first topic is that we study the optimal single-step coarse toll design problem for the bottleneck 

model where the toll level and toll window length have maximum acceptable upper bounds and 

the unconstrained optimal solution exceeds the upper bounds. We consider proportional user 

heterogeneity where users’ values of time and schedule delay vary in fixed proportions. Three 

classic coarse tolling models are studied, the ADL, Laih and braking models. In the ADL model, 

toll non-payers form a mass arrival at the bottleneck following the last toll payer. In the Laih model, 

there is a separated waiting facility for toll non-payers to wait until the toll ends. In the braking 

model, toll non-payers can choose to defer their arrival at the bottleneck to avoid paying the toll. 

We find that, in the ADL and the Laih models, the optimal solution chooses the maximum 

acceptable toll level and toll window length. The ADL model further requires the tolling period to 

be started as late as possible to eliminate the queue at the toll ending moment. In the braking model, 

if the upper bound of the toll window length is too small, no toll should be charged. Otherwise the 

optimal solution chooses the maximum acceptable toll window length and may choose a toll price 

less than the maximum acceptable level. 

 

The second topic is that we develop a new coarse tolling model to address the coarse tolling 

problem during morning peak hour. An “overtaking model” is proposed by considering that toll 

payers could overtake those braking commuters (toll non-payers) to pay toll to pass the bottleneck. 

This would allow commuters to brake and in the meanwhile can make the bottleneck fully utilized 

during the tolling period, i.e., eliminate the somewhat unrealistic unused tolling period in the 

braking model. The overtaking model systematically combines the Laih model and the braking 

model together, capturing both of their properties. Specifically, the overtaking model reduces to 

the Laih model when the unit overtaking cost approaches zero, and reduces to the braking model 

when the unit overtaking cost is too high. An unconstrained optimal tolling scheme is developed, 

and we find out that, unlike the ADL and the Laih models, in the overtaking model, the tolling 

scheme causing capacity waste could be better than tolling scheme without capacity waste. It is 

found that, the optimal tolling scheme is affected by the unit overtaking cost. One critical unit 

overtaking cost is defined. For a small unit overtaking cost, the optimal tolling scheme is similar 

to that of the Laih model, i.e., featured by no queue exists at the toll starting and ending moments 

and no capacity waste exists; for a large unit overtaking cost, the optimal tolling scheme is to set 

the toll high enough to prevent users from overtaking and thereby make the model reduce to the 

braking model. In the latter case, although the unused tolling period (as in the braking model) can 
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be fully utilized through lowering the toll to make commuters overtake, the system cost will be 

increased by doing so. 

 

The third topic is that we investigate the profit maximizing behavior of a private firm which 

operates a toll road competing against a free alternative in presence of cars and trucks. Trucks 

differ from cars in value of time (VOT), congestion externality, pavement damage, and link travel 

time function. We consider mixed travel behaviors of cars and trucks in that trucks choose routes 

deterministically, while cars follow stochastic user equilibrium in route choice. We derive the 

equilibrium flow pattern under any combination of car-toll and truck-toll, and identify an 

integrated equilibrium range within which each road is used by both cars and trucks. We find that, 

depending on the per-truck pavement damage cost, the firm may take a car-strategy, a truck-

strategy, or a car-truck mixed strategy. The perception error of car users, the VOTs and traffic 

demands of cars and trucks are critical in shaping the firm’s strategy. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Road pricing are direct charges levied for the use of roads, such as flat tolls, distance-based tolls 

or time varying tolls. The tolls are aimed to alleviate congestion levels of certain road area or 

discourage use of certain types of vehicle that can cause serious environment pollution. These toll 

charges are used to generate revenue for the government or private firms to finance the road 

infrastructure construction and maintenance. Especially, the toll can be used as a road management 

tool to control peak hour travel demand as to reduce traffic congestion level. It can also help to 

reduce other social and environmental negative externalities generated by vehicles, such as air 

pollution caused by gas emissions, noise and road accidents. 

 

 

1.1 Road pricing for congestion alleviation 

 

Road congestion causes enormous economic costs. Nowadays, congestion has become a very 

crucial problem in most urban areas in the world. To expand transport infrastructure alone does 

not solve the congestion problem, because construction of new roads or adding more capacity to 

the existing roads can not keep pace with the increase in population and vehicle use. Road pricing 

as a way of alleviating traffic congestion has become more and more appealing to the policy 

makers. The theoretical idea of road pricing has dates back to the 1920’s (Pigou, 1920; Knight, 

1924). In practice, congestion pricing schemes has become popular around the world for decades. 

 

The world's first toll road appeared in Singapore's core central business district in 1975. The tolling 

scheme is referred as the Singapore Area Licensing Scheme. In 1998, the tolling scheme is   

converted to a one hundred percent free-flowing Electronic Road Pricing system. To manage 

traffic demand in the city, Singapore introduced variable pricing based on congestion levels in 

2007. The government also levies high annual road tax, charge new vehicle registration fees and 

implement a quota system for new vehicles. 

 

In 2004, Austria implemented a distance based tolling scheme called Go-Maut for vehicles over 

3.5 tons on motorways. If vehicles that is less than 3.5 tons need to enter the Austrian motorway 

network, they have to buy a sticker. With the sticker, drivers can enjoy paying lower tolls and use 

most of motorway network in Austria. The toll is set around 8 euros for 10 days. But to use certain 

routes, such as long tunnels and expensive routes through the Alps, vehicles have to pay extra tolls. 

 

In Norway, electronic urban tolling scheme is implemented on the main road corridors into Bergen 

in 1986, Oslo in 1990 and Trondheim in 1991. In Bergen, tolling scheme is operated as charging 

a cordon toll at every entry points that lead to the city central area. In Oslo, the toll was initially 

intended to generate revenue to finance the road infrastructure construction, but it was found out 
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that tolling reduced traffic demand by around 5%. The Norwegian government announced the rules 

of congestion tolling in cities in October 2011. The road pricing system in Norway is mainly used 

to reduce greenhouse gas emissions, control air pollutions and alleviate traffic congestion. In 

November 2015, motorways into downtown areas in five more cities of Haugesund, Kristiansand, 

Namsos, Stavanger, and Tonsberg started to implement congestion tolling scheme in Norway. 

 

Sweden introduced the Stockholm congestion tax (also referred to as Stockholm congestion charge) 

in August 1, 2007. The congestion toll is collected as a tax levied on most vehicles entering and 

exiting central Stockholm. The primary purpose of the congestion tax is to reduce traffic 

congestion and environmental pollution in central Stockholm. The toll revenue will be used for 

road constructions and maintenance in Stockholm. The toll price has been increased since January 

2016 in the inner-city parts of Stockholm. Meanwhile, the congestion tolling are also implemented 

in Essingeleden. 

 

From December 2015, the Beijing Municipal Commission of Transport started planning to 

introduce congestion charges to the city. The congestion pricing scheme is intended to be a time 

varying toll based on real time traffic flows and vehicles’ emission data. Different vehicles will be 

charged different fees according to time of the day and areas of the city. The tolling is aimed to 

alleviate the congestion level and improve the air quality of the city, since vehicle emissions is 

responsible for 31% of the city's smog sources. In order to control the air pollutions, Beijing has 

already carried out a driving restriction scheme based upon the last digits on the license plates as 

well as a vehicle quota system since 2011. The city is now considering to start charging congestion 

tolls by 2020. 

 

In 1995, US implemented the high occupancy toll lane (HOT lane) system in California’s 91 

express lanes in Orange County. The 91 express lanes is a ten mile road that have both high 

occupancy lanes and general toll lanes. The HOT lane is a type of roadway that is free to high 

occupancy vehicles which should have three or more than three passengers and selected exempt 

vehicles such as motorcycles and zero emission vehicles. If other vehicles want to use the HOT 

lane, they are required to pay a toll. On 91 express lanes, there are no toll booths to collect tolls. 

All vehicles are required to install a transponder to pay the toll electronically. The 91 Express 

Lanes implements a variable tolling scheme based on the time of day. During peak hours, the toll 

is much higher than the off-peak hours. For instance, on Friday, the eastbound toll from 3 pm to 4 

pm is as high as 13.2 dollars but at 9 pm it drops to 5.2 dollars. The westbound toll from 7 am to 

8 am is 10.15 dollars. After 9 am it drops to 6.55 dollars.  

 

Brazil federal government enacted the Urban Mobility Law In January 2012. The law is intended 

to authorize municipalities to conduct congestion pricing to mange traffic flows and reduce traffic 

congestion. The enactment of the law is to encourage people to use public transportation as well 

as reduce air pollution. The law stipulates that revenues generated from congestion tolling can only 

be used for urban infrastructure like public transportation and non-motorized modes, and to finance 

public subsidies to transit fares. The law has been in effect since April 2013. 
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Although road pricing is supported by many solid theories and nowadays has been supported by 

many advanced technologies for implementation, it also has long been treated as a political issue. 

Congestion pricing proposals are frequently declined due to public rejection. Examples include 

Manhattan area in New York and Great Manchester in United Kingdom.  

 

There are several reasons that public cannot accept congestion pricing. For the public, congestion 

pricing is just like another tax levied by government. As summarized by Cervero (1998), “middle-

class motorists often complain they already pay too much in gasoline taxes and registration fees to 

drive their cars, and that to pay more during congested periods would add insult to injury. In the 

United States, few politicians are willing to champion the cause of congestion pricing in fear of 

reprisal from their constituents”. Commuters’ surplus is transferred to the government in the form 

of the toll revenue if the congestion pricing is conducted. Thus, commuters are not happy even if 

the society as a whole (including the government and the users) is benefitted. Furthermore, 

congestion pricing can cause social inequity problem, i.e. people with relatively low income tend 

to avoid tolls thus can be deprived of driving freedom. Due to this reason, congestion pricing is 

often considered as an elitist policy which prices the poor off the roads so that the wealthy can 

move about unencumbered (Cervero, 1998). In addition, spatial equity issue might also arise, 

namely that congestion pricing’s impact may be different for people living in different areas. For 

these reasons, congestion pricing as a policy often encounters impedance from the public, and its 

implementation faces more political issue other than a theoretical or technological problem. 

 

Due to this public acceptance reason, the maximum toll level or tolling period imposed on a road 

may have upper bounds. A tolling scheme under stringent political constraints that can maximumly 

alleviate congestion level are in strong need for the government to implement road pricing. Part of 

this dissertation is devoted to rigorous analysis on how to set up a constrained optimal tolling 

scheme that can minimize congestion and be accepted by the public as well.   

 

 

1.2 Road pricing for infrastructure financing  

 

Private provision of public roads such as tunnels and bridges is increasing around the world. These 

projects are based on build-operate-transfer (BOT) contracts. The BOT contract is defined as that 

the private sector would build and operate the road at its own expense and in return receive toll 

revenues for a period of time and then the road will be transferred to the government. The BOT 

contract helps governments to construct and maintain roads if it has budget constraints, while still 

retaining public ownership of the roads in the long term. Private toll roads are becoming more 

popular. A primary reason is that the private sector is more efficient than the public sector, and 

therefore builds and operates facilities at less cost than the public sector. Also, the public sector, 

under taxpayers’ resistance, is very difficult to finance facilities. In addition, if new road space is 

provided as an “add-on” to an existing network system, and if road users find it worthwhile to 

patronize this new road and pay charges, and if the charges cover all costs (including congestion 

and environmental costs), all may gain benefit, and there would be no obvious losers. Even those 

who do not use these new roads would benefit from reduced congestion on the old ones (Mills, 
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1995). For these reasons, the private provision of public roads is becoming more acceptable for 

the public. 

 

Privately operated toll roads are increasing around the world. For instance, France is well known 

for its toll roads that 8,000 km of the 11,000 kilometers in France are private toll roads. The toll 

roads were granted as franchises to private firms. The free roads are directly administered by the 

national government. Tolls are either a coarse toll or based on the distance driven. The latter case 

is the most common for long distances. Travellers take a ticket from an automatic machine when 

they enter the toll road and pay the toll according to the distance when they exit. In Canada, the 

108 km Highway 407 ETR through the Greater Toronto Area is a private toll road under a 99-year 

lease agreement with the Ontario provincial government. The highway collects tolls electronically. 

Travellers must install a transponder in their car to pay the toll. For those who do not have a 

transponder in their vehicle are tracked by automatic number plate recognition. Then the toll bill 

will be sent to the address of the plate on file. Toll rates are determined by both the 407 ETR and 

the Province of Ontario for each of the respective sections they own. The government set 

limitations in the 407 ETR lease contract for controlling traffic volumes to make the toll price 

reasonable and acceptable. While toll has been increasing annually against the requests of the 

provincial government, resulting in several court battles and the public’s complaints that the toll 

is too high. According to Canadian Shipper (2002), the Ontario highway 407 is charging a very 

high toll for trucks. Almost no trucks are using highway 407. Now, it is mainly serving commuters 

and obtaining its profit by attracting passenger cars only. It has been criticized to levy a high toll 

on trucks to discourage truck use. Regulations from the government is expected to be imposed on 

highway 407 to attract more trucks to alleviate the truck volume on other roads and improve the 

transportation network’s efficiency. 

 

Profit maximization is typically the goal of the private firm which operates the road. Many factors 

can affect the private toll roads’ profitability, such as infrastructure construction, maintenance 

costs, operating costs, regulation and political constraints on tolls, and competition from other 

alternative roads and transportation modes. For the government, understanding the profit-oriented 

behavior of the firm is necessary for choosing suitable regulations. Part of this dissertation is 

devoted to investigating how a private firm can achieve profit maximization on a private toll road. 

 

 

1.3 Objectives 

 

The main objectives of this research are 

 

To study bottleneck coarse tolling problem during morning commute peak hour and propose a 

constrained optimal tolling scheme that can minimize total system cost under the consideration 

that due to public acceptance reason, the maximum toll level and toll window length imposed on 

a bottleneck have upper bounds. 
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To develop a new coarse tolling model to study coarse tolling by considering that toll payers could 

overtake those braking commuters (toll non-payers) to pay toll to pass bottleneck. The proposed 

new model “overtaking model” could capture commuter’s travel behavior of braking and 

overtaking together, thus generating more realistic insights than previous models. 

 

To investigate how a private firm can achieve profit maximization on a private toll road.  

Understanding such profit-oriented behavior of the firm is necessary for choosing suitable 

regulations for the government. 

 

 

1.4 Outline of the dissertation 

This dissertation is organized as follows: Chapter 2 carries out a literature review on previous 

studies related to this dissertation. Besides the basic idea of road pricing, two branches of 

literatures most relevant to this thesis are reviewed: bottleneck coarse tolling and toll road profit 

maximization. 

 

In Chapter 3, we investigate how to achieve constrained optimization in bottleneck model. We 

consider the most realistic case that the political constraint on toll road is stringent: the public 

maximum acceptable toll window length is less than the unconstrained optimal toll window length 

and maximum acceptable toll price is less than the unconstrained optimal toll level. Three 

bottleneck models are studied: mass arrival model, separated waiting lane model and braking 

model. 

 

In Chapter 4, a new coarse tolling model “overtaking model” is proposed. It is assumed that toll 

payers could overtake those braking commuters (toll non-payers) to pay toll to pass bottleneck. 

The overtaking model systematically combines separated waiting lane model and braking model 

together, capturing both of their properties. An unconstrained optimal tolling scheme of overtaking 

model is developed. 

 

In Chapter 5, we investigate how to achieve profit maximization of a private toll road which 

competes against a free alternative in presence of cars and trucks. Trucks differ from cars in value 

of time (VOT), congestion externality, pavement damage, and link travel time function. We 

consider mixed travel behaviors of cars and trucks in that trucks choose routes deterministically, 

while cars follow stochastic user equilibrium in route choice. 

 

Finally, a summary of the major finding of this dissertation and several suggestions for future 

research are presented in Chapter 6.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

Previous studies related to this thesis are reviewed in this chapter. We first briefly review the basic 

idea of road pricing, and then we focus on two branches of literatures most relevant to this 

dissertation: bottleneck coarse tolling and toll road profit maximization.  

 

2.1. The fundamental idea of road pricing 

 

The idea of road pricing dates back to the 1920’s (Pigou, 1920; Knight, 1924), and later seminal 

works on road pricing include Wardrop (1952), Walters (1961), Beckmann (1965) and Vickrey 

(1969). Essentially, the concept of road pricing is based on the fact that road use has negative 

externality. That is, an additional entry to a congested road not only introduces the private travel 

cost of the entering user, but also imposes a marginal travel cost on every existing user. To 

internalize this congestion externality and thereby maximize social welfare, the classic marginal-

cost pricing principle states that road users of congested roads should pay a toll equal to the 

difference between the marginal social cost and the marginal private cost. With this marginal-cost 

pricing scheme, because each user will face the marginal social cost of road use other than the 

marginal private cost, the resulting user optimal traffic equilibrium will be exactly the socially 

optimal one. 

 

The basic concept of road pricing can be easily explained by considering the elastic demand case. 

In the literature, the marginal-cost pricing principle is best illustrated by the demand-supply curves 

of the standard single-link case, i.e. a homogeneous traffic stream moving along a given uniform 

stretch of road (e.g. Walters, 1961; Evans, 1992; Hills, 1993). Specifically, when travel demand is 

elastic, the inverse demand function represents the marginal social benefit function, and at the “do-

nothing” demand-supply equilibrium, it is easy to see that the marginal social cost is larger than 

the marginal social benefit, and thus a proper toll charge (the marginal-cost pricing scheme) should 

be introduced to reduce the travel demand to the socially optimal level. 

 

This section is just a very brief review on the basic concept of road pricing, and the following 

sections are focused on several specific (and perhaps narrow) areas with direct relations to this 

thesis. Therefore, it should be mentioned here that more comprehensive reviews or monographs 

on road pricing studies include (certainly not limited to) Lo and Hickman (1997), Button and 

Verhoef (1998), Verhoef (1996), McDonald et al. (1999), Levinson (2002), Yang and Verhoef 

(2004), Santos (2004), and Yang and Huang (2005). 

 

 

2.2. Bottleneck coarse tolling 
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Vickery’s bottleneck model (Vickery, 1969) is widely used to study peak hour road congestion. 

One important property of the bottleneck model is that a continuously time-varying toll can 

completely eliminate queuing at the bottleneck and achieve the first-best social optimum without 

increasing anyone’s cost. The first-best time-varying toll in the bottleneck model has been 

extensively studied (see, e.g., Arnott et al., 1994; Arnott and Kraus, 1995; Yang and Huang, 1997; 

Small and Verhoef, 2007; Van den Berg and Verhoef, 2011; Xiao et at., 2013). In spite of the 

appealing theoretical property, practical implementation of continuously time-varying tolls is 

difficult for various reasons such as high cost, high information requirement, and possible 

confusion caused to road users. In practice, step tolling is more widely adopted, particularly the 

single-step “coarse tolling”, where a constant toll is implemented during part of the peak period. 

 

There is a stream of literature on the bottleneck coarse tolling problem. Arnott et al. (1990, 1993) 

developed a coarse tolling model (hereafter the ADL model) where a mass of users arrive at the 

bottleneck when the toll ends. They pointed out that the optimal coarse tolling should be such that 

the queue at the bottleneck is eliminated at the starting and ending time points of the tolling period. 

Laih (1994, 2004) proposed a different model (hereafter the Laih model) which avoids mass arrival 

by allowing toll non-payers to wait for the toll to end on secondary lanes without blocking the toll 

payers. Xiao et al. (2011) extended the ADL model by providing details of how the queuing profile 

changes with respect to toll level under heterogeneous VOT assumption. They formulated a non-

linear optimization problem to solve for the optimal tolling scheme. Another coarse tolling model 

is referred to as the “braking” model, independently developed by Lindsey et al. (2012) and Xiao 

et al. (2012). The braking model considers that, as the tolling period is about to end, users have an 

incentive to “brake” (stop or speed down) to wait until the toll ends. Van den Berg (2014) adopted 

all three (ADL, Laih and braking) coarse tolling models and considered three types of user 

heterogeneity to analyze the welfare and distributional effects of optimal coarse tolling. Chen et 

al. (2015) adopted the Laih model and proposed an algorithm to solve the optimal multi-step toll 

problem under general user heterogeneity where the ratios of schedule to queuing delay are 

different for any two groups of users. Nie (2015) considered all three coarse tolling models and 

designed different tradable credit schemes under different models. Jia et al. (2016) used the Laih 

model coarse tolling to manage the morning commute of household travels and analyzed the 

impact of the school-work schedule difference. Knockaert et al. (2016) adopted the ADL model 

and examined the welfare gain from differentiating the coarse tolling scheme for two group of 

users. Ren et al. (2016) proposed coarse tolling models where only part of the users have the 

braking behavior and the braking behavior causes dropped capacity. Li et al. (2017) investigated 

the step tolling problem under an activity-based bottleneck model setup where each commuter’s 

travel decision is made through maximizing her own scheduling utility at home and work. 

 

 

2.3. Toll road profit maximization 

 

Privately operated toll roads are increasing around the world. Profit maximization is typically the 

goal of the private firm which operates the road. For the government, understanding the profit-

oriented behavior of the firm is necessary for choosing suitable regulations. There is an extensive 
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literature on modelling the profit-maximizing behavior of private toll roads (see, e.g., Lindsey and 

Verhoef, 2001; Yang and Huang, 2005; Small and Verhoef, 2007; Tsekeris and Voß, 2009). 

However, to the best of our knowledge, profit maximization by a private toll road that serves cars 

and trucks has not been studied (with the exception of Guo and Xu, 2016). The extension is 

important for two reasons. First, trucks differ from cars in three major ways: value of time (VOT), 

congestion externality as measured by passenger car equivalence (PCE), and pavement damage. 

Previous studies have considered either homogeneous road users or user heterogeneity in VOT 

only. Second, truck traffic could be an important source of revenue or profit for a toll road operator. 

For example, the Illinois Tollway implemented a 40% toll increase for trucks in 2015, which was 

expected to contribute about 60% of its nearly $154 million increase in toll revenue (Chicago 

Tribune, 2015). 

 

In spite of the importance of trucks in profit generation for (private) toll roads, the literature on toll 

roads with trucks is mostly focused on system efficiency and policy, not on profit maximization. 

There is a stream of literature dedicated to truck-only toll lanes and tollways, which studied various 

aspects of truck toll lanes, including policy and implementation (Samuel et al., 2002), economic 

and financial feasibility (Holguín-Veras et al., 2003), selection of potential truck-only toll lanes 

(Chu and Meyer, 2008), and safety benefits (Chu and Meyer, 2010). Most of the research on truck 

use of toll roads consists of empirical studies and case studies. For example, Zhou et al. (2009) 

used interviews and survey data to understand truckers’ use and non-use of toll roads, Swan and 

Belzer (2010) studied the truck traffic diversion from the tolled Ohio Turnpike, and a recent report 

(Geiselbrecht et al., 2015) reviewed many studies on truck use of toll roads in Texas. 

 

A few papers have employed analytical models of toll roads with cars and trucks, all from a socially 

optimal perspective. Arnott et al. (1992) developed a model with two parallel routes and two user 

types that could be interpreted as cars and trucks, while they restricted their analyses to two group 

of car users with different VOTs and/or trip-timing preferences. De Palma et al. (2008) adopted 

the model to investigate the benefits of separating cars and trucks. They compared the effectiveness 

of different methods including lane access restrictions, differentiated car and truck tolls, and toll 

lanes for either cars or trucks. Holguín-Veras and Cetin (2009) used the multinomial logit model 

to formulate the discrete choice of time of travel for multi-class traffic (cars, small and large trucks) 

on a single corridor. They computed the socially optimal tolls and discussed the policy implications. 

 

Recently, Guo and Xu (2016) examined thoroughly the profit-maximizing behavior of a private 

firm which operates a toll road competing against a free alternative in presence of cars and trucks. 

Trucks differ from cars in VOT, PCE, pavement damage, and link travel time function. They 

considered deterministic route choice for both cars and trucks, and found that the firm takes either 

a car-strategy or a truck-strategy for profit maximization. Their results suggest that the truck-to-

car VOT ratio, the total traffic demand, and the difference in travel distance between the two roads 

are critical in shaping the firm’s strategy. In particular, they found that attracting truck traffic is 

likely to reduce the toll road’s profitability under practical conditions. This result could be used to 

explain the pricing strategies of real-world private toll roads such as Highway 407 in Toronto, 
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which has long been criticized that it sets high truck tolls to discourage truck usage (e.g., Canadian 

Shipper, 2002).  
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CHAPTER 3 

 

 

CONSTRAINED OPTIMIZATION FOR BOTTLENECK COARSE TOLLING 

 

 

In this chapter, we study the optimal single-step coarse toll design problem for the bottleneck 

model where the toll level and toll window length have maximum acceptable upper bounds and 

the unconstrained optimal solution exceeds the upper bounds. We consider proportional user 

heterogeneity where users’ values of time and schedule delay vary in fixed proportions. Three 

classic coarse tolling models are studied, the ADL, Laih and braking models. In the ADL model, 

toll non-payers form a mass arrival at the bottleneck following the last toll payer. In the Laih model, 

there is a separated waiting facility for toll non-payers to wait until the toll ends. In the braking 

model, toll non-payers can choose to defer their arrival at the bottleneck to avoid paying the toll. 

 

 

3.1. Introduction 

 

To the best of our knowledge, the previous works on bottleneck coarse tolling all adopted an 

unconstrained setup in the sense that the length of the tolling period (the toll window length) and 

the toll price level are unbounded. However, in practice, due to public acceptance reason, it is 

likely that the toll level and the toll window length have maximum allowable upper bounds, i.e., it 

may be politically unacceptable to charge a toll price that is too high or charge a toll for a period 

that is too long. Actually, it is very common to consider toll price caps in congestion pricing studies 

under static user equilibrium. For bottleneck dynamic user equilibrium, it is natural to also consider 

a toll window length cap. When the toll level and toll window length have upper bounds, the 

unconstrained optimal coarse tolling may be infeasible (i.e., the unconstrained optimal toll level 

and toll window length may exceed the upper bounds), and the traditional conclusions and insights 

regarding optimal bottleneck coarse tolling may not hold.  

 

We consider that the coarse tolling scheme has a maximum acceptable toll level and a maximum 

acceptable toll window length, both exogenously given by public opinions towards peak hour 

congestion pricing. Under such a constrained optimization setup, we investigate the problem of 

total system cost minimization. We focus on the case that the unconstrained optimal toll level and 

toll window length exceed the upper bounds. We adopt the ADL, Laih and braking models of 

coarse tolling, and consider proportional user heterogeneity where users have different values of 

time (VOT) yet their values of schedule delay are proportional to their VOT. We find that, in the 

ADL and the Laih models, the constrained optimal coarse tolling chooses the maximum acceptable 

toll level and toll window length, which is consistent with the traditional insight that, because the 

toll replaces the queuing delay and thereby reduces the total system cost, increasing the toll in both 

toll price and tolling period will improve the system efficiency. While this is not surprising, an 

important new insight regarding the ADL model is established: under constrained optimization, 

because it is impossible to eliminate the queues at both the starting and the ending moments of the 
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tolling period, in the ADL model the priority is to start the tolling period as late as possible to 

eliminate the queue at the toll ending moment only. This insight is never reported in traditional 

unconstrained coarse tolling studies. We find that, if the toll window length constraint is too 

stringent (the upper bound is too small), then any toll price will make the total system cost greater 

than the no-toll equilibrium, and thus no toll should be charged. When the toll window length 

constraint is not too stringent, the optimal solution chooses the maximum acceptable toll window 

length, while the optimal toll price may be an interior solution (i.e., less than the maximum 

acceptable level). 

 

 

3.2. No-toll equilibrium 

 

In this section we briefly review the no toll equilibrium of the bottleneck model. Consider there 

are N  users commuting from home to work through a road containing a bottleneck. The 

bottleneck’s capacity is s . When users’ arrival rate at the bottleneck is higher than s , a queue will 

develop. When user’s arrival rate is lower than s , the queue at the bottleneck will gradually 

dissipate. Free-flow travel time is normalized to zero without loss of generality. Users incur a unit 

cost of   from queuing delay (travel time), i.e.,   is the VOT. Let 
*t  be the preferred arrival time 

at work of all users.  If a user arrives at work before 
*t  (early arrival), she will incur a schedule 

early delay cost with a unit cost of  . If she arrives at work later than 
*t  (late arrival), she will 

incur a schedule late delay cost with a unit cost of  . We use the term “travel cost” to represent 

the sum of queuing delay cost and schedule delay cost, and the term “travel price” to represent the 

sum of travel cost and toll. 

 

Let ( )x  be the VOT distribution function, which gives the x th user’s VOT. Users are ordered 

in decreasing VOT, i.e., ( )x  is decreasing in x . In this chapter we consider “proportional 

heterogeneity” such that ( ) ( )x x =  and ( ) ( )x x =  for  0,x N , where   and   are 

constants satisfying 0 1    . 

 

Under proportional heterogeneity, the profile of the no-toll equilibrium is the same as that under 

homogeneous VOT assumption. In equilibrium, no user can further reduce her travel cost (travel 

price equals travel cost under no toll) by adjusting her arrival time at the bottleneck. The travel 

cost of a user consists of two parts: queuing delay cost and schedule early/late delay cost. Let ( )q t  

denote the queue length at time t . Travel cost of the x th user arriving at time t  (denoted by 

( ),C x t ) can be given as 
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( )

( )
( )

( )
( ) ( )

( )
( )

( )
( ) ( )

* *

* *

,   early arrival

,

,   late arrival

q t q t q t
x x t t t t

s s s
C x t

q t q t q t
x x t t t t

s s s

 

 

  
+ − − +   

  
= 

 
+ + − +  

 

 

Let ( )t  denote users’ arrival rate at time t . With the fact of ( ) ( )q t t s = − , the arrival rate can 

be obtained by setting derivate of ( ),C x t  with respect to t  equal to zero, which gives us 

( )

( )

( )

*

*

,   early arrival
1

,  late arrival
1

q ts
t t

s
q t

q ts
t t

s










+ 

−
 = 

− + 
 +

 

and  

( )

( )

( )

*

*

,   early arrival
1

,  late arrival
1

q ts
t t

s
t

q ts
t t

s







+ 

−
= 
 + 
 +

 

The arrival rates of users having schedule early and late delay are obtained as both constants, 

implying that a user’s position in the queue is indeterminate. The first user arrives at the bottleneck 

at qt  and the last user arrives at qt  . Considering the first user and the last user incurred only a 

schedule early delay cost and a schedule late delay cost, respectively, with the fact of 

( )( ) ( )( )* *

q qx t t x t t  − = −  and q qt t N s − = , we can obtain ( )*

qt t N s  − = +  and 

( )*

qt t N s   − = + . Figure 3.1 shows the no-toll equilibrium profile.   

 

 
Figure 3.1. No-toll equilibrium profile 
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3.3.1 Equilibrium profile under coarse tolling in the ADL model  

 

In this subsection we review the equilibrium under coarse tolling (the ADL model) and develop 

critical toll levels above which capacity waste happens. A coarse tolling scheme ( ), ,t t + −  is to 

impose a constant toll   from t+  to t− . We assume 
*t t t+ −   and t t N s− +−  . A constant toll 

has no impact on users’ arrival rates for periods with continuous arrivals. Thus the arrival rate of 

users having schedule early delay remains ( )1s − , and the arrival rate of users having schedule 

late delay remains ( )1s +  except for the mass arrival. In equilibrium, no user can further reduce 

her travel price (travel cost plus toll) by adjusting her arrival time at the bottleneck. Because of the 

discontinuity of toll at t+  and t− , to satisfy the equilibrium condition, there must be a period that 

no one arrives at the bottleneck before the first toll-payer arrives, and there must be a mass of 

individuals arriving at the bottleneck after the last toll-payer arrives. 

 

When the toll window length is not too long and toll level is not too high, the bottleneck can be 

fully utilized with no capacity waste. Here “capacity waste” means that, within the morning peak 

period ',q qt t   , there is a period during which no one uses the bottleneck. Figure 3.2 shows the 

equilibrium profile under coarse tolling without capacity waste, where  t  is the arrival time of the 

last toll non-payer arriving before t+ , yt  is the arrival time of the first toll payer, and 
mt  is the mass 

arrival time.  

 

 
Figure 3.2. Equilibrium profile under coarse tolling: the ADL model 

 

In equilibrium, if the x th user is a toll non-payer, her travel cost is given by (consider the first toll 
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  ( ) ( )( )non *

qC x x t t= −  (3.1) 

and her travel price is ( ) ( )nonP x C x=  as she does not pay the toll. Note that while Eq. (3.1)  is 

obtained by considering the first toll non-payer who arrives at 
qt , it applies to all non-payers 

because the arrival time of a user is indeterminate in equilibrium (any toll non-payer could arrive 

at 
qt ). If the x th user is a toll payer, her travel cost is given by (consider the first toll payer, arriving 

at 
yt ) 

 ( ) ( )( ) ( )( )pay *

yC x x t t x t t + += − + −  (3.2) 

and her travel price is ( ) ( )nonP x C x = +  as she has to pay the toll. Similarly, Eq. (3.2) applies to 

all toll payers because any toll payer could arrive at 
yt  in equilibrium. 

 

Under the condition of no capacity waste, the mass arrival time 
mt  is also the arrival time of the 

last toll payer, i.e., mass arrival happens immediately following the arrival of the last toll payer. 

Every user in the mass arrival is assumed to experience an average queuing delay and schedule 

late delay of the total mass. If the x th user is in the mass arrival, her travel price is given by 

( ) ( ) ( ) ( ) *

2 2

q q

m

t t t t
P x C x x t x t 

− −

 
   + +

= = − + −      
   

 

In equilibrium, there is an indifferent user who can arrive at any time as she always incurs identical 

travel price. For those who have higher VOT than the indifferent user, they will pay the toll to pass 

the bottleneck. For those who have lower VOT than the indifferent user, they will avoid the toll 

by coming earlier or later. Let ( )V s t t− += − , which is the number of toll payers under the 

condition of no capacity waste. Then the indifferent user is the V th user with VOT ( )V . 

 

Capacity waste happens at the beginning of the toll window if yt t+ , i.e., if the first toll payer 

arrives later than the toll starting time (no one uses the bottleneck from t+  to yt ). Thus, yt t+=  is 

a critical condition representing that the first toll payer arrives exactly at the toll starting time 

(capacity waste would happen if the toll is any higher). Similarly, 
mt t−=  is a critical condition 

representing that the last toll payer arrives exactly at the toll ending time (capacity waste would 

happen at the ending of the toll window if the toll is any higher). In the following we will derive 

the expressions of yt  and 
mt , based on which we can obtain critical toll levels above which 

capacity waste happens. 

 

We start by deriving qt   and qt . The indifferent user has equal travel price either being the last toll 

payer (i.e., arrives at 
mt  and pays the toll) or joining the mass arrival, thus we have  
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 ( )( ) ( )( ) ( ) ( )* *

2 2

q q

m m

t t t t
V t t V t t V t V t    

− −

 − −
   + +

− + − + = − + −      
   

 

which gives 

 
( )

2

1
qt t

V



 

−

 = +
+

 (3.3) 

In view of q qt t N s − = , Eq. (3.3) readily gives 

 
( )

2

1
q

N
t t

V s



 

−= + −
+

 (3.4) 

 

The indifferent user has equal travel price either being the first toll payer (arrives at yt ) or being 

the toll non-payer that arrives at t , thus we have 

 ( )( ) ( )( ) ( )( ) ( )( )* *

yV t t V t t V t t V t t    + + + +− + − + = − + −  

which gives 

 
( )yt t
V




= +  (3.5) 

 

Making use of (3.4)-(3.5) and the following relationships between the cumulative arrival and 

departure  

( ) ( )
1

q q

s
t t s t t



+− = −
−

 

( ) ( )*

1
z y

s
t t s t t



+− = −
−

 

( ) ( )*

1
m z

s
t t s t t



−− = −
+

 

we can obtain 

 
( )

( )
1 2

1
1

y

N
t t t

V s

  
  

 

+ −+ +
= + − + −

+
 (3.6) 

 
( )

( ) ( )
1 2

1
1

m

N
t t t

V s

  
    

 

+ + +
= + + + − + −

+
 (3.7) 

 

We can see from (3.3)-(3.7) that, for a given toll window position ( ),t t+ − , all the critical arrival 

time instants increase with the toll  , i.e., all users will postpone their arrival time when the toll 

increases (the equilibrium profile moves rightward when the toll increases). When the toll is 

increased to a certain level, the first toll payer will arrive exactly at t+  ( yt t+= ) or the last toll 

payer will arrive exactly at t−  ( mt t−= ). At this moment, if we keep increasing the toll, capacity 

waste will occur at t+ or t− . By setting yt t+=  in (3.6), we can obtain the critical toll level 
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 ( )
( )

( ) ( )crit1
1

,
1 2

N
t t V t t

s

 
 

 

+ − − +
+  

= − − + +  
 (3.8) 

By setting 
mt t−=  in (3.7), we can obtain the critical toll level 

 ( )
( )

( ) ( )crit2
1

,
1 2

N
t t V t t

s

   
 

  

+ − − 
+  +

= − − 
+ +  

 (3.9) 

 

Comparing (3.8) and (3.9), if the toll window ( ),t t+ −  satisfies ( ) ( )* *t t t t + −−  − , then 

crit1 crit2  , which means crit1  is more critical and thus capacity waste first happens at t+  if we 

keep increasing the toll level. Similarly, if ( ) ( )* *t t t t + −−  − , then crit1 crit2  , which means 

crit2  is more critical and thus capacity waste first happens at t−  as the toll level increases. If

( ) ( )* *t t t t + −− = − , then crit1 crit2 = , which means capacity waste happens simultaneously at 

both t+  and t−  as the toll level increases. Note that   and   represent the unit schedule early and 

late delay costs, respectively. Thus, ( ) ( )* *t t t t + −− = −  means that the part of the toll window 

before the work start time, 
*t t+− , and the part after, 

*t t− − , have equal monetary value in terms 

of schedule delay cost. 

 

Definition 3.1. A toll window ( ),t t+ −  is said to be balanced if ( ) ( )* *t t t t + −− = − , early if 

( ) ( )* *t t t t + −−  − , and late if ( ) ( )* *t t t t + −−  − . 

 

As will be shown in the next section, a balanced toll window position is optimal for a given toll 

window length. For an early toll window, there will be no capacity waste as long as crit1  . For 

a late toll window, there will be no capacity waste as long as crit2  . For ease of exposition, we 

define ( ) ( ) ( ) crit crit1 crit2, min , , ,t t t t t t  + − + − + −= . 

 

 

3.3.2. Constrained optimization of coarse tolling in the ADL model 

 

In this subsection, we will look into the constrained optimization problem of coarse tolling, which 

is to minimize the total system cost subject to constraints on toll window length and toll level. Let 

l  and   be the maximum acceptable toll window length and toll level, respectively. Then the 

total system cost minimization problem is  

 ( ) ( ) ( )non pay

0, ,
min , ,

N V

Vt t
TC t t C x dx C x dx




+ −

+ − = +   (3.10) 

subject to 

 t t l− +−   (3.11) 
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    (3.12) 

In objective function (3.10), ( )nonC x  and ( )payC x  are the equilibrium travel costs of toll non-

payers and toll payers, respectively, given by (3.1) and (3.2) in the ADL model under the condition 

of no capacity waste. For ease of exposition, we define l t t− += − , the toll window length of tolling 

scheme ( ), ,t t + − . Then V ls= . Denote 
unconl  and uncon  the l  and   of the unconstrained 

optimal solution to objective function (3.10). To make our analysis and discussion focused, 

throughout this chapter in all three models, we consider 
unconl l  and uncon  , i.e., the 

maximum acceptable toll window length and toll level are less than the first-best values.  

 

We first introduce the following lemma, which allows our analyses to exclude scenarios with 

capacity waste. 

 

Lemma 3.1. In the ADL model, for any tolling scheme with capacity waste, there exists a tolling 

scheme with no capacity waste, shorter toll window length, lower toll level, and lower total system 

cost. 

 

Proof: We give the proof for the case that toll ( ), ,t t + −  has capacity waste only at t+ . The proof 

for the case that capacity waste happens at t−  or at both t+  and t−  can be done in the same way 

and thus omitted here. In this case the toll level can be obtained as the indifferent user’s travel 

price difference between arriving at qt  and yt , which gives us 

( ) ( )y qV t t  = −  

By arriving at qt  or joining the mass arrival, the indifferent user has equal travel price, which leads 

to 

 ( )* *

2 2

q q

q m

t t t t
t t t t 

− −

 
   + +

− = − + −      
   

 (3.13) 

Let us consider tolling scheme ( ), ,new newt t + − , where new yt t+ =  and ( )crit1 ,new yt t  −= . Since new  

is the critical toll level, there is no capacity waste under ( ), ,new newt t + − . Besides, no queue exists at 

newt+  and the toll payers’ profile should be exactly same as that under ( ), ,t t + − . Considering the 

indifferent user’s travel price, 
new  can be further expressed as  

( ) ( )new new qnewV t t   += −  

and it is easy to see that 

 ( )* *

2 2

q new q new

qnew m

t t t t
t t t t 

− −

 
   + +

− = − + −      
   

 (3.14) 
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Comparing (3.13) and (3.14), if 
qnew qt t , in order to let (3.13) and (3.14) hold, we must have 

q new qt t  , which leads to 

( )q new qnews t t N −   

This violates the no capacity waste condition, so it must holds that 
qnew qt t , which readily shows 

that 
new  , ( ) ( )non non

newC x C x , ( ) ( )pay pay

newC x C x=  and ( ) ( )pay pay

newP x P x . This completes the 

proof. 

 

The proof of Lemma 3.1 follows an intuitive line. For a tolling scheme with capacity waste, we 

can shorten the toll window to the clearing period of toll payers (from the first toll payer’s clearing 

time point to the last toll payer’s clearing time point), and reduce the toll level to the corresponding 

critical level. This new tolling scheme has no capacity waste, shorter toll window length, and lower 

toll level. Note that this new tolling scheme does not change the amount of toll payers or their 

arrival pattern. Thus V  and ( )payC x  do not change. In the meanwhile, with the shorter toll 

window length, the first toll non-payer arrives at the bottleneck later and incurs less schedule early 

delay cost. Thus ( )nonC x  is lower, and the total system cost is lower. 

 

From Lemma 3.1, if a feasible tolling scheme of problem (3.10)-(3.12) has capacity waste, then 

there exists another feasible tolling scheme which does not have capacity waste and improves the 

objective function value. Therefore, to solve problem (3.10)-(3.12), we can focus our analyses on 

scenarios without capacity waste, where the equilibrium conditions are given by (3.1)-(3.7) and 

the toll level satisfies ( )crit ,t t  + − . As such, in our subsequent analyses we will regard 

( )crit ,t t + −  as the highest feasible toll level for any toll window ( ),t t+ − . 

 

In the following we will establish a few important properties of objective function (3.10) without 

considering constraints (3.11)-(3.12). These properties will then be applied to constraints (3.11)-

(3.12) to solve the constrained optimization problem. 

 

We first express ( )nonC x  and ( )payC x  in terms of ( ), ,t t + − . Substituting (3.4) into (3.1), and 

(3.6) into (3.2), we have 

 ( ) ( ) ( )
( )

non * 2

1

N
C x x t t

s V




 

−
 

= − − − 
+ 

 (3.15) 

 ( ) ( ) ( )
( )

pay * 1 2

1

N
C x x t t

s V




  

−
  

= − − − +  
+  

 (3.16) 
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Comparing (3.15) and (3.16), we have ( ) ( ) ( ) ( )non payC x C x x V − = . That is, being a toll 

payer reduces the x th user’s travel cost by ( ) ( )x V  . Thus, the x th user would choose to 

pay the toll   if ( ) ( )x V  , which confirms that the V th user is the indifferent user. 

 

Because ( ) ( )V ls =  decreases with l , from (3.15) and (3.16) it is easy to see that ( )nonC x  and 

( )payC x  both decrease with t− ,   and l , which leads to the following lemma. 

 

Lemma 3.2. In the ADL model, consider two tolling schemes ( )1 1 1, ,t t + −  and ( )2 2 2, ,t t + − , both 

without capacity waste, i.e., ( )crit ,i i it t  + − , i =1, 2. If 
1 2t t− − , 

1 2  , and 
1 2l l , with at least 

one strict inequality, then ( ) ( )1 1 1 2 2 2, , , ,TC t t TC t t + − + − . 

Proof. Let ( )non

iC x  and ( )pay

iC x  be the specifications of ( )nonC x  and ( )payC x  under ( ), ,i i it t + − , 

i =1, 2.  It readily holds ( ) ( )non non

1 2C x C x  and ( ) ( )pay pay

1 2C x C x . Because ( ) ( )pay nonC x C x

always holds, we also have ( ) ( ) ( )pay non non

1 1 2C x C x C x  . From (3.10), we have  

 

( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 2

1 2

1 1 1 2 2 2

non non pay non pay pay

1 2 1 2 1 2
0

, , , ,

0

N V V

V V

TC t t TC t t

C x C x dx C x C x dx C x C x dx

 + − + −−

= − + − + −



    

This completes the proof. 

 

Lemma 3.2 states that increasing either one of t− ,   and l  without decreasing the other two will 

reduce the total system cost. In words, each of the three strategies, postponing the toll ending time, 

increasing the toll level, and stretching the toll window length, can reduce the total system cost if 

not conflicting with the other two strategies.  

 

To proceed, we introduce an important benchmark tolling scheme. For a given l , we use 

 crit, ,balancl   to denote the tolling scheme satisfying t t l− +− =  and 

 ( ) ( )* *t t t t + −− = −  (3.17) 

 ( )crit ,t t  + −=  (3.18) 

In words, for a given toll window length l , tolling scheme  crit, ,balancl   is to position the toll 

window balanced and charge the corresponding critical toll level. Denote ( )crit , balancl  the toll 

level under tolling scheme  crit, ,balancl  . 

 

Lemma 3.3. In the ADL model, 
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(a). for a given l , ( )crit , balancl =  is the highest toll level subject to ( )crit ,t t  + −  and 

t t l− +− = ; 

(b). ( )crit , balancl  decreases with l . 

Proof. (a). It suffices to prove that, subject to t t l− +− =  for a given l ,  ( )crit ,t t + −
 is maximized 

if ( ),t t+ −
 is balanced. Because ( ) ( ) ( ) crit crit1 crit2, min , , ,t t t t t t  + − + − + −=  and ( )crit1 ,t t + −

 is 

a constant for a given l  from (3.8), it suffices to show that ( ) ( )crit2 crit1, ,t t t t + − + −=  if ( ),t t+ −
 is 

balanced, which follows readily from (3.8) and (3.9). 

(b). From the proof of (a), ( ) ( )crit crit1, balanc ,l t t  + −= , which decreases with l  from (3.8). This 

completes the proof. 

 

Lemma 3.4. In the ADL model, for a given l , the minimum ( ), ,TC t t + −
 is attained by 

 crit, ,balancl  . 

Proof. From Lemma 3.2, the highest toll level ( )crit ,t t  + −=  minimizes ( ), ,TC t t + −
 for any

( ),t t+ −
. Thus, for a given l , the optimal ( ), ,t t + −

 must satisfy (3.18). Because t−  alone 

determines ( ), ,t t + −
 under conditions t t l− +− =  and (3.18), it suffices to prove that 

( ), ,TC t t + −
 decreases with t−  within the range ( ) ( )* *t t t t + −−  − , and increases with t−  

within the range ( ) ( )* *t t t t + −−  − .  

 

We first consider the range ( ) ( )* *t t t t + −−  − , where ( ) ( )crit crit1, ,t t t t + − + −= . From (3.8), 

for a given l ,  ( )crit1 ,t t + −
 is a constant. Thus, according to Lemma 3.2, increasing t−  (without 

changing l  and  ) will decrease ( ), ,TC t t + −
, i.e., ( ), ,TC t t + −

 decreases with t
−

. 

 

We then consider the range ( ) ( )* *t t t t + −−  − , where ( ) ( )crit crit2, ,t t t t + − + −= . Substituting 

( )crit2 ,t t  + −=  given by (3.9) into (3.15) and (3.16), we have 

 ( ) ( ) ( )non *1 1

1 2 1

N
C x x t t

s

 


  

− + −
= + − 

+ + + 
 (3.19) 

 ( ) ( )( )pay *C x x t t −= −  (3.20) 
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From (3.19)-(3.20), ( )nonC x  and ( )payC x  both increase with t− . Thus ( ), ,TC t t + −
 increases 

with t
−

, which completes the proof. 

 

From Lemma 3.4, if l  and   are unconstrained, the unconstrained optimal tolling scheme must 

be  crit, ,balancl   for some l , i.e., it must hold ( )uncon crit uncon , balancl = . This result is 

consistent with Arnott et al. (1990) and Xiao et al. (2011): under the unconstrained optimal tolling 

scheme, no queue exists at t+  or t
−

, which can only be achieved by charging the critical toll price 

and setting the toll window balanced. 

 

Now we introduce the second important tolling scheme. For a given combination ( ),l   such that

( )crit , balancl  , we use  , , latestl   to denote the tolling scheme satisfying t t l− +− =  and 

 ( ) ( ), ,t t t t l+ −  = + , if ( )crit2 ,t t l    +  (3.21) 

 ( )crit2 ,t t + − = , if ( )crit2 ,t t l    +  (3.22) 

In words, for a given combination of toll window length and toll level ( ),l  , tolling scheme 

 , , latestl   is to position the toll window as late as possible until either t t+ =  or ( )crit2 ,t t + − =  

is reached, whichever comes first. Note that, for a given l , Eq. (3.9) shows that ( )crit2 ,t t + −
 

decreases with t− , thus ( )crit2 ,t t + − =  indeed gives the latest toll window position under given 

  (any later position would make ( )crit2 ,t t  + − ). If ( )crit2 ,t t l    + , then ( )crit2 ,t t + − =  

does not have a solution because we do not allow t t+  , in which case ( ),t t l  +  is the latest toll 

window position. 

 

From Lemma 3.2, for given l  and  , the minimum ( ), ,TC t t + −
 is attained by the maximum t

−
, 

i.e., the latest toll window position, which readily gives the following lemma. 

 

In the ADL model, for a given combination ( ),l   such that ( )crit , balancl  , the minimum 

( ), ,TC t t + −
 is attained by  , , latestl  .  

 

Denote ( ), ,latestTC l   the total system cost under tolling scheme  , , latestl  . We have the 

following important result. 
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Lemma 3.5. In the ADL model, consider ( )1 1,l   and ( )2 2,l   satisfying ( )crit , balanci il  , i =

1, 2. If 
1 2   and 

1 2l l , with at least one strict inequality, then 

( ) ( )1 1 2 2, ,latest , ,latestTC l TC l  . 

 

Proof.  , ,latesti il   have two forms depending on whether ( )crit2 ,i it t l    +  holds, given by 

(3.21)-(3.22). From (3.9), ( )crit2 ,t t l   +  decreases with l , thus 

( ) ( )crit2 crit2

2 1, ,t t l t t l    +  + . Then, if ( )crit2

2 2,t t l    + , in view of 

( ) ( )crit2 crit2

1 2 2 1, ,t t l t t l        +  + , it must also hold ( )crit2

1 1,t t l    + . Therefore, there 

are three cases: (a) ( )crit2 ,i it t l    + , i = 1, 2; (b) ( )crit2 ,i it t l    + , i = 1, 2; (c) 

( )crit2

1 1,t t l    +  and ( )crit2

2 2,t t l    + . 

 

We first consider ( )crit2 ,i it t l    + , i = 1, 2, in which case  , ,latesti il   reduces to 

( ), ,i it t l   + , i =1, 2. From Lemma 3.2, we readily have  ( ) ( )1 1 2 2, , , ,TC t t l TC t t l    +  + . 

 

We then consider ( )crit2 ,i it t l    + , i = 1, 2, in which case  , ,latesti il   is determined by 

i i it t l− +− =  and ( )crit2 ,i i it t + − = , i = 1, 2. From the expression of ( )crit2 ,t t + −
 given by (3.9), 

because ( ) ( )V ls =  decreases with l , it must hold 
1 2t t− − . Under condition ( )crit2 ,t t  + −= , 

( )nonC x  and ( )payC x  are given by (3.19)-(3.20),  both increasing with t− . Thus, we have 

( ) ( )non non

1 2C x C x  and ( ) ( )pay pay

1 2C x C x . Then, following the proof of Lemma 3.2, it can be 

easily shown that ( ) ( )1 1 1 2 2 2, , , , 0TC t t TC t t + − + −−  . 

 

We finally consider ( )crit2

1 1,t t l    +  and ( )crit2

2 2,t t l    + , in which case  2 2, ,latestl   

reduces to ( )2 2, ,t t l   + , and  1 1, ,latestl  is determined by 
1 1 1t t l− +− =  and ( )crit2

1 1 1,t t + − = . 

We consider two cases, ( )crit2

1 2,t t l    +  and ( )crit2

1 2,t t l    + . If ( )crit2

1 2,t t l    + , 

then let ( )crit2

3 2,t t l   = + , and consider the auxiliary tolling scheme ( )2 3, ,t t l   + . It holds 

( ) ( )2 3 2 2, , , ,TC t t l TC t t l    +  +  from Lemma 3.1, and ( ) ( )1 1 1 2 3, , , ,TC t t TC t t l + −   +  

from the previous case of “ ( )crit2 ,i it t l    + , i =1, 2”. Thus ( ) ( )1 1 1 2 2, , , ,TC t t TC t t l + −   + . 

Now we consider ( )crit2

1 2,t t l    + . Consider the auxiliary tolling scheme ( )2 1, ,t t l   + . 
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From Lemma 3.1, it holds ( ) ( )2 1 2 2, , , ,TC t t l TC t t l    +  + , where “=” can hold only if 

1 2 = . Let 
4l  be such that ( )crit2

4 1,t t l   + = . From the expression of ( )crit2 ,t t + −
 given by 

(3.9), because ( ) ( )V ls =  decreases with l , it must hold 
1 4 2l l l  . Consider the auxiliary 

tolling scheme ( )4 1, ,t t l   + . It holds ( ) ( )4 1 2 1, , , ,TC t t l TC t t l    +  +  from Lemma 3.1, 

where “=” can hold only if 
4 2l l= . It holds ( ) ( )1 1 1 4 1, , , ,TC t t TC t t l + −   +  from the previous 

case of “ ( )crit2 ,i it t l    + , i = 1, 2”, unless 
1 4l l=  which gives ( ) ( )1 1 1 4 1, , , ,t t t t l + −  = + . 

Therefore, we have ( ) ( ) ( ) ( )1 1 1 4 1 2 1 2 2, , , , , , , ,TC t t TC t t l TC t t l TC t t l   + −       +  +  + , 

which gives ( ) ( )1 1 1 2 2, , , ,TC t t TC t t l + −   + , where “=” can hold only if 
1 2 =  and 

1 2l l= . 

This gives ( ) ( )1 1 1 2 2, , , ,TC t t TC t t l + −   + , and completes the proof. 

 

The proof of Lemma 3.5 relies on (3.19) and (3.20), which show that users’ travel costs increase 

with t
−

 under ( )crit2 ,t t  + −= . That is, among the three strategies suggested by Lemma 3.2 to 

reduce the total system cost (i.e., increasing t− ,   and l ), when there is a trade-off between 

increasing t−  and increasing   and l , (3.19) and (3.20) demonstrate that the net effect of 

reducing t−  while increasing   and l  improves the total system cost. In short, combining Lemma 

3.2 and Lemma 3.5, to reduce the total system cost, we should first increase   and l  to their upper 

bounds and then increase t−  to the latest position. This immediately leads to the following major 

result.     

 

Proposition 3.1. In the ADL model, for the constrained optimization problem (3.10)-(3.12) with 

unconl l  and uncon  , the optimal solution is  , , latestl  . 

Proof. Because ( )crit , balancl  decreases with l , ( )crit , balancl   holds for any feasible 

( ),l   in view of ( ) ( ) ( )uncon crit uncon crit crit, balanc ,balanc ,balancl l l       =   . Then, 

from Lemma 3.4, ( ), , latestTC l   is the minimum objective function value for any feasible ( ),l  . 

Thus it suffices to prove that ( ) ( ), ,l l =  gives the minimum ( ), , latestTC l  , which follows 

readily from Lemma 3.5.  This completes the proof. 

 

Proposition 3.1 states that, in the ADL model, the constrained optimal tolling scheme is to choose 

the maximum acceptable toll level and toll window length, and start the tolling period as late as 

possible without causing capacity waste. This result suggests that, because under constrained 

optimization it is impossible to eliminate the queues at both the starting and the ending moments 

of the tolling period, the priority is to start the tolling period late to eliminate the queue at the toll 
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ending moment only. This insight is never reported in traditional unconstrained coarse tolling 

studies. More interpretations of Proposition 3.1 will be provided in the next section when we 

compare the results of the ADL and the Laih models. 

 

 

3.4. The Laih model 

 

In this section we study the constrained optimization of bottleneck coarse tolling in the Laih model. 

The Laih model is characterized by that the mass arrival is eliminated through allowing toll non-

payers to wait for the toll to end on secondary lanes without blocking the toll payers. The toll non-

payers experience longer queuing delay than the toll payers. In the Laih model, the position of the 

peak hour is exactly same as that of no-toll equilibrium. The arrival rate of users having schedule 

early delay remains ( )1s − , and the arrival rate of users having schedule late delay remains 

( )1s + .  

 
Figure 3.3. Equilibrium profile under coarse tolling: the Laih model 

 

Figure 3.3 shows the equilibrium profile under coarse tolling of Laih model without capacity waste. 

ut  is the arrival time of the first toll non-payer entering the separated waiting lane. The toll payer 

that has no schedule delay arrives at 
zt . 

zt  is the last toll payer’s arrival time. The last toll payer 

is cleared at t− . After the toll is cancelled at t− , the toll non-payers in the separated waiting lane 

start to leave the bottleneck. The first toll non-payer that uses the separated waiting lane has the 

same schedule late delay as the last toll payer. 

 

Using techniques similar to the derivation of (3.1)-(3.7) in the ADL model, i.e., making use of  

( ) ( )non payC V C V = +  for the indifferent user and comparing the travel costs and travel prices of 

toll payers and non-payers arriving at the bottleneck at different time instants, we can derive all 
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the critical arrival time instants as well as the equilibrium travel costs of users. Specifically, we 

have 

 ( ) ( )non N
C x x

s




 
=

+
 (3.23) 

 ( ) ( )
( )

pay N
C x x

s V

 


  

 
= − 

+ 
 (3.24) 

Comparing (3.23) and (3.24), it is easy to see ( ) ( ) ( ) ( )non payC x C x x V − = , which, similar 

to the ADL model, confirms that the V th user is the indifferent user. 

 

Using techniques similar to the derivation of (3.8) and (3.9) in the ADL model, we can derive the 

critical toll levels in the Laih model. Specifically, by setting 
yt t+= , we can obtain the critical toll 

level 

 ( ) ( ) ( )crit1 *,
N

t t V t t
s


  

 

+ − + 
= − − 

+ 
 (3.25) 

By setting 
zt t−= , we can obtain the critical toll level 

 ( ) ( ) ( )crit2 *,
N

t t V t t
s


  

 

+ − − 
= − − 

+ 
 (3.26) 

Comparing (3.25) and (3.26) here gives exactly the same results as comparing (3.8) and (3.9) in 

the ADL model: crit1 crit2,   and    = , respectively, for ( ) ( )* *,   and t t t t + −−   = − . 

Thus the interpretations of crit1  and crit2  are exactly the same as those in the ADL model, we still 

have Definition 1 on balanced, early and late toll windows, and we still define 

( ) ( ) ( ) crit crit1 crit2, min , , ,t t t t t t  + − + − + −= . Similar to the ADL model, the scenarios with 

capacity waste deserves no consideration in the Laih model, and we focus our analyses on 

scenarios without capacity waste, where the toll level satisfies ( )crit ,t t  + − . 

 

Note that the constrained optimization problem is still given by (3.10)-(3.12), with ( )nonC x  and 

 given by (3.23) and (3.24). From (3.23) ( )nonC x  is independent of the tolling scheme 

and is equal to the travel cost of the no-toll equilibrium. This is because the Laih model preserves 

the peak period 
qt  and 

qt   of the no-toll equilibrium. From (3.24)  decreases with   and 

l . Because  determines  and V ls= , and  is independent of the tolling 

scheme,  determines the total system cost ( ) ( )non pay

0

N V

V
TC C x dx C x dx= +  . That is, in the 

Laih model TC  is determined by , the toll window length and toll level, rather than the 

specific position of ( ),t t+ −
. Specifically, from (3.23) and (3.24)  we can obtain 

( )payC x

( )payC x

( ),l  ( )payC x ( )nonC x

( ),l 

( ),l 
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 ( ) ( )
( )

( )
0 0

,
N VN

TC l x dx x dx
s V

 
  

  
= −

+    

 

Because  is independent of the tolling scheme and  decreases with   and l , using 

similar techniques in the proof of  Lemma 3.2, we can prove the following lemma.  

 

Lemma 3.6. In the Laih model, consider two tolling schemes ( )1 1 1, ,t t + −
 and ( )2 2 2, ,t t + −

, both 

without capacity waste, i.e., ( )crit ,i i it t  + − , i =1, 2. If 
1 2l l  and 

1 2  , with at least one strict 

inequality, then ( ) ( )1 1 2 2, ,TC l TC l  . 

 

Lemma 3.6 states that ( ),TC l   strictly decreases with l  and  , which suggests that the 

constrained optimization problem simply has ( ),l   as the optimal solution. While this is true, we 

still need to show that there exists a toll window positon ( ),t t+ −
 that can realize ( ),l   without 

causing capacity waste. To do so, following the analyses in the ADL model, we still define 

 crit, ,balancl   and ( )crit , balancl  using (3.17) and (3.18). We then have the following 

intermediate results. 

 

Lemma 3.7. In the Laih model,  

(a). for a given l , ( )crit , balancl =  is the highest toll level subject to ( )crit ,t t  + −  and 

t t l− +− = , and is attainable only when ( ) ( )* *t t t t + −− = − ; 

(b). ( )crit , balancl  decreases with l ; 

(c). for a given l , the minimum ( ),TC l   is attained by  crit, ,balancl  ; 

(d). the unconstrained optimal solution satisfies ( )uncon crit uncon , balancl = . 

 

Proof. It is easy to see that (d) follows readily from (c), and (c) follows readily from (a) and Lemma 

3.6. Thus in the following we only prove (a) and (b). 

(a) It suffices to prove that, subject to t t l− +− =  for a given l ,  ( )crit ,t t + −
 is maximized if and 

only if ( ),t t+ −
 satisfies ( ) ( )* *t t t t + −− = − , which follows readily from (3.25), (3.26) and 

( ) ( ) ( ) crit crit1 crit2, min , , ,t t t t t t  + − + − + −= . 

( )nonC x ( )payC x
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(b). Substituting t t l− +− =  and ( ) ( )* *t t t t + −− = −  into either (3.25) or (3.26), it is easy to 

obtain ( ) ( )crit , balanc
N

l V l
s


 

 

 
= − 

+  
, which decreases with l . This completes the proof. 

 

Lemma 3.7(a) is the Laih-model counterpart of Lemma 3.3(a). The difference is that, in the ADL 

model, ( )crit , balancl =  can be attained by both early and balanced toll windows because 

( )crit1 ,t t + −
 given by (3.8) is a constant for a given l . In the Laih model, ( )crit , balancl =  can 

be attained only by the balanced toll window because ( )crit1 ,t t + −
 given by (3.25) increases with 

( ),t t+ −
 and ( )crit2 ,t t + −

 given by (3.26) decreases with ( ),t t+ −
. 

 

Lemma 3.7(c) is the Laih-model counterpart of Lemma 3.4. While they have exactly the same 

result in two different models, the proofs are quite different. In the Laih model, Lemma 3.7(c) 

holds simply because ( )crit , balancl =  is the highest toll for a given l  and ( ),TC l   strictly 

decreases with  . In the ADL model, there is a trade-off between increasing   and increasing t− , 

and we had to use (3.19) and (3.20) to demonstrate that the net effect of increasing   while 

reducing t−  improves TC .  

 

Because ( )crit , balancl =  can be attained only at the balanced position, for ( ),l   such that 

( )crit , balancl  , there is a range of ( ),t t+ − that can realize ( ),l  . That is, if the toll level is 

less than the highest level for a given toll window length, then the toll window position can be 

moved earlier or later than the balanced position while maintaining the same ( ),l   without 

causing capacity waste. Specifically, for a given combination ( ),l   such that ( )crit , balancl  , 

the earliest and latest ( ),t t+ −  positions are given by setting t−  to be, respectively, 

 ( )
( )

*

earliest

1
, max ,0

N
t l t l

s ls

 


   

−
   

= + − −   +   

 (3.27) 

 ( )
( )

*

latest

1
, min ,

N
t l t l

s ls

 


   

−
   

= + −   +   

 (3.28) 

The earliest position ( )earliest ,t l −
 is obtained by moving the toll window as early as possible until 

either t t− =  or ( )crit1 ,t t + − =  is reached, whichever comes first. The latest position ( )latest ,t l −
 

is obtained by moving the toll window as late as possible until either t t l− = +  or 

( )crit2 ,t t + − =  is reached, whichever comes first. 

 

Now we are ready to give our major result for the Laih model. 
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Proposition 3.2. In the Laih model, for the constrained optimization problem (3.10)-(3.12) with 
unconl l  and uncon  , the optimal solution is  

( ) ( )earliest latest, , ,

t t l

t t l t l

 

 

− +

− − −


− =


=


   

 

Proof: From Lemma 3.6 and the definition of ( )earliest ,t l −
 and ( )latest ,t l −

 given by (25)-(26), it 

suffices to prove ( )crit , balancl  , which holds because ( )crit , balancl  decreases with l  and 

thereby ( ) ( )uncon crit uncon crit, balanc ,balancl l    =  . This completes the proof. 

 

Proposition 3.2 states that, in the Laih model, the constrained optimal tolling scheme is to choose 

the maximum acceptable toll level and toll window length, and position the toll window anywhere 

in the range that would not cause capacity.  

 

Comparing Proposition 3.1 in the ADL model and Proposition 3.2 in the Laih model, the common 

part is that both models choose the maximum acceptable toll level and toll window length. This 

can be explained by the fact that, in both models, the toll replaces the queuing delay of toll payers 

without increasing the cost of the toll non-payers, and thus increasing the toll in both toll price and 

tolling period will increase the benefit of imposing a toll. 

 

The different part is that, the Laih model has no requirement on the specific toll window position, 

while the ADL model requires the toll window positioned as late as possible. This can be explained 

as follows. In the ADL model, the time interval between the mass arrival time and the toll ending 

time could be viewed as a period during which a mass of users waiting for the toll to end, which 

represents a pure system cost. Moving the toll window later will make the mass arrival time closer 

to the toll ending time, i.e., attract the mass of users to arrive at the bottleneck closer to the toll 

ending time and wait a shorter period for the toll to end. This reduces the mass of users’ queuing 

delay and improves the total system cost, and thus the ADL model requires the latest toll window 

position. In the Laih model, without mass arrival, changing the toll window position has no impact 

on users’ travel costs and thus no requirement is imposed on the toll window position. 

 

 

3.5. The braking model 

 

In this section, we study the constrained optimization of bottleneck coarse tolling in the braking 

model. The braking model, or tactical waiting model, is developed by Lindsey et al. (2012) and 

Xiao et al. (2012). Different from the ADL and the Laih models, the braking model eliminates the 

mass arrival phenomenon by assuming that travelers can delay reaching the bottleneck to avoid 

the toll by slowing down their cars, although there is still capacity at the bottleneck to serve them 
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without delay. Such a braking behavior can cause higher queuing and schedule delay cost for the 

toll non-payers, but is justified by lower travel price compared with paying the toll.  

 

 
Figure 3.4. Equilibrium profile under coarse tolling: the braking model 

 

Depending on the specific toll window position and toll level, there are many possible equilibrium 

profiles in the braking model as shown in Xiao et al. (2012). Among these profiles, profile 1 in 

Xiao et al. (2012) has already been proved to contain the unconstrained optimal tolling scheme. 

This profile is characterized by that no capacity waste exists at t+ , braking starts before all toll 

payers are cleared, and the last toll payer arrives at work late. For our constrained optimization, it 

can also be shown that the optimal solution falls under this profile. Therefore, to keep our analysis 

focused, and also to be consistent with the ADL and the Laih models (i.e., the profile under study 

contains the unconstrained optimal solution, and the last toll payer arrives at work late), we only 

consider profile 1 in Xiao et al. (2012). Figure 3.4 shows this equilibrium profile. In Figure 3.4, 

bt  denotes the moment users start the braking behavior. It is also the moment when the last toll 

payer arrives at the bottleneck. 
zt  denotes the last toll payer’s clearing time at the bottleneck. As 

can be seen from the equilibrium profile, no mass arrival exists in the braking model. After the toll 

is cancelled at t− , those braking travelers start to leave the bottleneck. They choose to delay their 

arrival at the bottleneck to avoid paying the toll. The boundary conditions of such an equilibrium 

profile are  

 yt t+  (3.29) 

 
b zt t  (3.30) 

 *

zt t  (3.31) 

Condition (3.29) requires that the first toll payer arrives at the bottleneck no later than the start of 

the tolling period (no capacity waste exists at t+ ). Condition (3.30) states that the first braking 

traveler’s arrival time cannot be later than the last toll payer’s clearing time (braking starts before 

all toll-payers are cleared). Condition (3.31) requires that the last toll payer arrives at work late. 

Note that in the braking model there is a “wasted” tolling period from zt  to t− , during which the 
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bottleneck is not utilized while users wait for the toll to end. The “effective” tolling period is from 

t+  to 
zt . 

 

Using techniques similar to the derivation of (3.1)-(3.7) in the ADL model, i.e., making use of  

( ) ( )non payC V C V = +  for the indifferent user and comparing the travel costs and travel prices of 

toll payers and non-payers arriving at the bottleneck at different time instants, we can derive all 

the critical arrival time instants as well as the equilibrium travel costs of users. Specifically, we 

have 

 ( )( )( )1 zV t t   −= + − , where ( )zV s t t+= −  (3.32) 

 ( ) ( )non

z

N
C x x t t

s




 

− 
= + − 

+  
 (3.33) 

 ( ) ( ) ( ) ( )pay 1 z

N
C x x x t t

s

 
  

   

− 
= − + − − 

+ + 
 (3.34) 

From (3.32)-(3.34), it is easy to see ( ) ( ) ( ) ( )non payC x C x x V − = , which, similar to the ADL 

and the Laih models,  confirms that the V th user is the indifferent user. It is not surprising that in 

the braking model, with a “wasted” tolling period ( )zt t− − , the toll non-payer’s system cost is 

made higher than that in the no-toll equilibrium. This is different from the ADL and the Laih 

models where the toll non-payer’s system cost is not higher than that in the no-toll equilibrium.  

 

Observe from (3.33) and (3.34) that, other than the basic bottleneck parameters,  ( )nonC x  and 

( )payC x  solely depend on the “wasted” tolling period ( )zt t− − . For ease of exposition, denote 

w zl t t−= − , the “wasted” tolling period, then w zl l t t+− = −  is the “effective” tolling period, 

( )wV s l l= − , and (3.32) can be rewritten as 

 ( )( )( )1w ws l l l  = − +  (3.35) 

Because ( )x  is decreasing, the right-hand side of (3.35) is strictly increasing in 
wl . Therefore, 

 is unique for a given combination ( ),l  . We use ( ),wl l   to highlight  is a function of  

as determined by (3.35). Because  determines  and thereby determines , , 

and V , it also determines the total system cost ( ) ( )non pay

0

N V

V
TC C x dx C x dx= +  . That is, similar 

to the Laih model, here in the braking model TC  is determined by , the toll window length 

and toll level, rather than the specific position of ( ),t t+ − . Specifically, from (3.33) and (3.34) we 

can obtain 

 ( ) ( ) ( ) ( )
0 0

, 1
N V

w w

N
TC l l x dx l x dx

s


   

 

 
= + − + 

+  
   (3.36) 

 

wl wl ( ),l 

( ),l 
wl ( )nonC x ( )payC x

( ),l 
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3.5.1. General properties of ( ),wl l   and ( ),TC l   

 

In this subsection we will establish a few properties of ( ),wl l   and ( ),TC l  , which will be used 

later for constrained optimization analyses. We first examine the properties of ( ),w wl l l =  based 

on (3.35). From (3.35) we can obtain 

 
( )

( )

1

1

w

w

l

Vl

V sl






=


−



 (3.37) 

 
( ) ( ) ( )

1

1

w

w

l

V V sl   


=

 + −  
 (3.38) 

In view of ( ) 0V  , we readily have  0wl     and 0 1wl l     (note 0wl l  =  if  and 

only if ( ) 0V = ), i.e., 
wl  increases with   and l . 

 

We then derive the first order derivatives of  ( ),TC l   based on (3.36).  In view of ( )wV s l l= −  

and ( ),w wl l l = , from (3.36) we have 

 ( ) ( ) ( )1w
w

lTC
A V V sl

l l
 


= − +

 
 (3.39) 

 ( ) wlTC
A V

 


=

 
 (3.40) 

where 

 ( ) ( ) ( ) ( ) ( ) ( )
0 0

1 1
N V

wA V x dx V sl x dx


    
 

= + + − +
+    (3.41) 

 

To proceed, we denote ( )critl   the longest toll window length under given   that satisfies the 

equilibrium profile conditions (3.29)-(3.31). It can be verified that ( )critl   is determined by 

setting (3.29) and (3.30) to be equality (i.e., by setting =yt t+  and =b zt t ), and  ( )critl   decreases 

with  . Note that ( )critl l =  also means that   is the highest toll level under l . In other words, 

if ( )critl l  , then, within the range specified by conditions (3.29)-(3.31),   can be increased 

under fixed l  up to   such that ( )critl l = , and l  can be increased under fixed   up to 

( )critl l  = .  

 

Consider the unconstrained optimal tolling scheme ( )uncon uncon,l  , which minimizes objective 

function (3.36) subject to (3.29)-(3.31) only (i.e., without constraints l l  and   ), we have 

the following lemma. 
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Lemma 3.8. In the braking model, if uncon 0  , then ( )uncon crit unconl l = .  

Proof. If ( )uncon crit unconl l  , then uncon  can be increased under 
unconl , which means 0TC   =  

must hold for optimality. From (3.40) and in view of 0wl    , 0TC   =  gives ( ) 0A V = , 

which in turn gives 0TC l    from (3.39). 0TC l    requires ( )uncon crit unconl l =  for 

optimality, which completes the proof. 

 

Lemma 3.8 states that the unconstrained optimal tolling scheme always gives =yt t+  and =b zt t  as 

long as coarse tolling can reduce the total system cost. Xiao et al. (2012) proved this result for the 

homogeneous user case without requiring uncon 0  , because uncon 0   is trivial with 

homogeneous users. In our analyses with heterogeneous users, uncon 0   is not trivial as it might 

depend on the specific form of the VOT distribution ( )x . At least it cannot be easily seen from 

(3.36)-(3.41).  However, uncon 0 =  is not interesting (and intuitively unlikely), and thus we limit 

our attention to the case that uncon 0  . 

 

As in the ADL and the Laih models, in our analyses of constrained optimization, we consider 

constraints l l  and   , where 
unconl l  and uncon  .  

 

Lemma 3.9. In the braking model, consider 
unconl l l   and uncon    , then ( )critl l  .  

Proof. Because ( )critl   decreases with  , it holds ( ) ( )crit crit uncon unconl l l l  =  . 

 

Lemma 3.9 states that constraint l l  is more critical than constraint ( )critl l  , which means 

that a tolling scheme satisfying 
unconl l l   and uncon     is always feasible within the range 

specified by conditions (3.29)-(3.31). Therefore, in our subsequent analyses, we focus on 

minimizing objective function (3.36) subject to l l  and   , ignoring conditions (3.29)-

(3.31) and their implied constraint ( )critl l  . Conditions (3.29)-(3.31) will be used only when 

we specify the toll window position ( ),t t+ − .  

 

3.5.2. Constrained optimization with homogeneous users 

 

In this subsection we start with the homogenous user case to obtain some insights into constrained 

optimization. We will discuss extending the insights into the heterogeneous user case in the next 

subsection. When users are homogeneous, i.e., ( ) ,x =   0,x N , from (3.35) we have 

( )1wl   = + . Then (3.36) is can be specified as  
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 ( )
( ) ( )( )

2
2,

1 1

s N
TC l N sl

s

 
   

      

 
= + − +  + + + + 

 (3.42) 

It is clear from (3.42) that ( ),TC l   is linear in l  (decreases with l ) and is quadratic in  . 

Therefore, under constraints l l  and   , the optimal l  is always l l= , while the optimal   

may be an interior solution. We denote ( )glob l   the globally optimal   under l l= , then from 

(3.42) we have 

 ( ) ( )glob 1 1
1

2 2

N
l l

s


   

 
= + −

+
 (3.43) 

It is then very clear that the constrained optimal   is 0 =  if ( )glob 0l   ( 0   is an implicit 

constraint throughout this chapter),  =  if ( )glob l  , and ( )glob l =  if ( )glob 0l   .  

 

We summarize these results into the following proposition. 

 

Proposition 3.3. In the braking model with homogenous users, for the constrained optimization 

problem (3.10)-(3.12) with 
unconl l  and uncon  ,  

(a). if  ( )( )1l N s    + + , the optimal toll level is 0 = , i.e., no toll should be charged. 

(b). if  ( )( )1l N s    + +  and ( )glob l  , the optimal solution is  

( ) ( )*

1 2, , ,

t t l

t t l l

 

 

− +

−


− =


=


 −     

 

(c). if ( )( )1l N s    + +  and  ( )glob l  , the optimal solution is 

( )

( ) ( )

glob

*

1 2,

t t l

l

t t l l

 

 

− +

−


− =


=


 −   

 

 

Similar to the Laih model, because the total cost depends on the toll window length and toll level, 

rather than the specific position of ( ),t t+ − , the constrained optimal tolling scheme has a range of 

( ),t t+ −  positions specified by ( )1 ,l  , ( )2 ,l  , ( )1 l  and ( )2 l  in Proposition 3.3(b) and 

3.3(c).   

 

Proof. To show the derivation of these earliest and latest toll window positions in Proposition 3.3, 

a ( )* *,t t t t+ −− −  two-dimensional space for braking model is first introduced. 
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The earliest and latest toll window positions are attained when the optimal toll level (either   or  

( )glob l ) is equal to the critical toll levels at the positions. The critical toll levels are determined 

by setting the equilibrium profile conditions (3.29), (3.30) and (3.31) to be equality. The 

criticalness of each of these conditions is determined by the given toll window’s length and 

position. To compare the criticalness of these conditions, a two-dimensional space of 

( )* *,t t t t+ −− −  is used (shown by Figure 3.5). The lines in Figure 3.5 will be explained as follows. 

 

 
Figure 3.5. Zones with different critical toll levels 

 

Setting (3.29) to be equality gives a lower bound of 
zt , denoted by 

( )* *

2

y

z

N
t t t t

s

  


    

− + +
= − − − 

+ + + 
 

At *y

z zt t= , the toll is pushed to the critical level that eliminates queue at t+  (i.e., yt t+= ). Any 

higher toll will cause capacity waste at t+ . Such a critical toll is denoted by 

( ) ( ) ( )crit * *

2
1ECR

N
t t t t

s

  
   

    

+ + +
− = + − − 

+ + + 
 

Setting (3.30) to be equality gives a lower bound of 
zt , denoted by  

( )* *b

z

N
t t t t

s

  


    

− − +
= − − − 

+ − + 
 

At *b

z zt t= , the toll is pushed to the critical level that eliminates queue at 
zt  (i.e., z bt t= ). Such a 

critical toll is denoted by 

( ) ( ) ( )crit * *1EFC

N
t t t t

s

  
   

    

− − +
− = + − − 

+ − + 
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Similarly, from (3.31), at *

zt t= , the toll is pushed to the critical level that makes the last toll payer 

cleared at 
*t . Any higher toll will make all toll payers arrive at work early. Such a critical toll is 

denoted by 

( ) ( )( )crit * *1EOR t t t t  − −− = + −  

To compare *y

zt  and *b

zt , by setting * *y b

z zt t= , it can be obtained that 

 
( )

( ) ( )
2 2

* * N
t t t t

s

    


     

− +
+ +

− − − =
+ − + −

 (3.44) 

In Figure 3.5, line EC  denotes Eq. (3.44). On line EC , it holds ( ) ( )crit * crit *

ECR EFCt t t t + −− = − . 

When the toll is pushed to this critical level, no queue exists at t+  and 
zt . To compare *y

zt  and 
*t , 

by setting * *y

zt t= , it can be obtained that 

 
( )

( )* *

2 2

N
t t t t

s

   

     

− +
+

− + − =
+ + + +

 (3.45) 

In Figure 3.5, line ER  denotes Eq. (3.45). On line ER , it holds ( ) ( )crit * crit *

ECR EORt t t t + −− = − . 

When the toll is pushed to this critical level, no queue exists at t+  and the last toll payer is cleared 

at 
*t .  

 

In Figure 3.5, the coordinate of C  is ( ) ( )( ),N s N s     + + . Coordinate of E  is 

( )( )20, N s   + + . Coordinate of R  is ( )( ),0N s  + . In EFC , it holds that 

* * *b y

z zt t t  , so that ( ) ( ) ( )crit * crit * crit *

EFC ECR EORt t t t t t  − + −−  −  − . In ECR , it holds that * *y b

z zt t  

and * *y

zt t , so that ( ) ( )crit * crit *

ECR EFCt t t t + −−  −  and ( ) ( )crit * crit *

ECR EORt t t t + −−  − . In EOR , it 

holds that * * *y b

z zt t t  , so that ( ) ( ) ( )crit * crit * crit *

EOR ECR EFCt t t t t t  − + −−  −  − . Based on equilibrium 

profile conditions (3.29), (3.30) and (3.31), in EFC , ( )crit *

EFC t t − −  is the most critical toll level, 

so the last toll payer’s clearing time satisfies *b

z zt t . In ECR , ( )crit *

ECR t t +−  is the most critical 

toll level, so the last toll payer’s clearing time satisfies that *y

z zt t . In EOR , ( )crit *

EOR t t − −  is the 

most critical toll level, so the last toll payer’s clearing time satisfies that *

zt t . 

 

By comparing ( )crit *

EFC t t − − , ( )crit *

ECR t t +− , ( )crit *

EOR t t − − , ( )glob l  and   at different l , the 

earliest and latest positions of the optimal toll window are obtained as follows.  

 

Earliest and latest toll window positions in Proposition 3.3(b)  

 

In Proposition 3.3(b), the optimal toll window length and toll level is ( ),l   and the earliest toll 

window position is  
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( )

( )
( )( )

( )

( )
( )

2

*

1

,  if 
1

,

, if 
1

N
l l f

s
t t l

l f

   


     





 

−

 + +
 − + 

+ + +
− =  = 




 +

 

where 

( )
( ) ( )

2 2

1

N
f

s

      


      

+ + − −
= −

+ + +
 

The latest toll window position is  

( )
( ) ( )

( )
*

2

,  if 
,

,  if 

g l g
t t l

l l g

 




−
 

− =  = 


 

where  

( )
( ) ( )1

N
g

s

    


      

+ −
= −

+ + +
 

 

( )f   and ( )g   denotes two critical toll window lengths. If ( )l f  , the toll window can be 

moved to the earliest position that eliminates the queue at t+  (i.e., yt t+= ). If ( )l f  , the toll 

window can be moved to the earliest position that makes all toll payers arrive at work early (i.e., 
*

zt t= ). If ( )l g  , the toll window can be moved to the latest position that eliminates the queue 

at 
zt  (i.e., 

z bt t= ). If ( )l g  , the toll window can be moved to the latest position that makes all 

toll payers arrive at work late (i.e., 
*t t+ = ).  At ( )*

1 ,t t l − − =  , it holds either yt t+=  or *

zt t=  

(i.e. no queue exists at t+  or the last toll payer is cleared at 
*t ). Any earlier position will cause 

capacity waste at t+  or make the last toll payer cleared before 
*t .  At ( )*

2 ,t t l − − =  , it holds 

either 
z bt t=  or 

*t t l− − =  (i.e. no queue exists at 
zt  or 

*t t+ =  ). Any later position will cause 

capacity waste at 
zt  or make 

*t t+  . 

 

Mathematically, with t t l− +− = , ( )1 ,l   is obtained by setting ( )crit *

ECR t t +− =  for  

( )l f   and ( )crit *

EOR t t − − =  for ( )l f  , and ( )2 ,l   is obtained by setting 

( )crit *

EFC t t − − =  for ( )l g   and 
* 0t t+− =  for ( )l g  . 

 

Earliest and latest toll window positions in Proposition 3.3(c) 

 

In Proposition 3.3(c), the optimal toll window length and toll level is ( )( )glob,l l  and the earliest 

toll window position is  
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( )

( )
( ) ( ) ( )

( )( )

2 2

12 2

*

1

1

2
,  if 

22 1

1
,  if 

2 1

N N
l l l l

s s
t t l

N
l l l l

s

       

       




  

−

 + +  + +
 − + −  

+ + ++ +  
− = = 

 
− +    + + 

 

where  

( ) ( )( )
( )( )( )

2 2 2

1 2 2

2 2 2

1

N
l

s

          

       

+ + + + + + −
=

+ + + + + +
   

The latest toll window position is  

( ) ( ) ( )( ) ( ) 2*

2

2

2
,  if 

2 1

,  if 

N N
l l l

s st t l

l l l

    

        −

  + −
+ −   

+ + + + −− = =   




 

where  

( )( )2 2
2

1 2

N
l

s

   

      

 + −
= + 

+ + + + + 
  

 

1l  and 
2l  denotes two critical toll window lengths. If 

1l l , the toll window can be moved to the 

earliest position that that eliminates the queue at t+  (i.e., 
yt t+= ). If 

1l l , the toll window can 

be moved to the earliest position that makes all toll payers arrive at work early (i.e., *

zt t= ). If 

2l l , the toll window can be moved to the latest position that eliminates the queue at 
zt  (i.e., 

z bt t= ). If 
2l l , the toll window can be moved to the latest position that makes all toll payers 

arrive at work late (i.e., 
*t t+ = ). At ( )*

1t t l− − = , it holds either 
yt t+=  or *

zt t=  (i.e. no queue 

exists at t+  or the last toll payer is cleared at 
*t ). Any earlier position will cause capacity waste at 

t+  or the last toll payer will be cleared before 
*t . At ( )*

2t t l− − = , it holds either 
z bt t=  or 

*t t l− − =  (i.e. no queue exists at 
zt  or 

*t t+ =  ). Any later position will cause capacity waste at 
zt  

or make 
*t t+  . 

 

Mathematically, with t t l− +− = , ( )1 l  is obtained by setting ( ) ( )crit * glob

ECR t t l +− =  for 
1l l  

and ( ) ( )crit * glob

EOR t t l − − =  for 
1l l , and ( )2 l  is obtained by setting ( ) ( )crit * glob

EFC t t l − − =

for 
2l l  and 

* 0t t+− =  for 
2l l . This completes the proof. 

 

In Proposition 3.3(a), ( )( )1l N s    + +  gives ( )glob 0l   and thus the optimal toll is

0 = . Proposition 3.3 (a) states that, if the toll window length constraint is too stringent (toll 
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window not allowed to be longer than a threshold), then any toll price will make the total system 

cost greater than the no-toll equilibrium, and thus no toll should be charged. In Proposition 3.3(b) 

and 3.3(c), when the toll window is allowed to be longer than the threshold, the optimal toll price 

chooses the smaller one between the maximum acceptable toll price and the globally optimal toll 

price. 

 

These results regarding the toll price can all be explained by the fact that, in the braking model, 

with a “wasted” tolling period, tolling reduces the cost of toll payers but increases the cost of toll 

non-payers, and thus there is always a trade-off between the two groups. When the toll window is 

too short as in Proposition 3.3(a), there are too few toll payers and thus it is not worthwhile to 

impose any toll. When the toll window is allowed to be long enough as in Proposition 3.3(b) and 

3.3(c), it is worthwhile to impose a toll because the effect of reducing the costs of toll payers 

outweighs the effect of increasing the costs of toll non-payers. In this case, the trade-off between 

toll payers and non-payers determines a best toll price, which, depending on the toll window length, 

may be higher or lower than the maximum acceptable toll price. When the maximum acceptable 

toll price is not greater than the best toll price as in Proposition 3.3(b), we should set the toll price 

as high as possible. When the maximum acceptable toll price exceeds the best toll price as in 

Proposition 3.3(c), we should simply choose the best toll price.  

 

In Proposition 3.3(b) and 3.3(c), the optimal toll window length is set as the maximum acceptable 

toll window length. This can be explained by the fact that, with homogeneous user, the “wasted” 

tolling period depends on the toll price only, i.e., the toll window length has no impact on the 

“wasted” tolling period and thus does not affect the costs of toll payers and non-payers. In the 

meanwhile, increasing the toll window length increases the number of toll payers, and changing a 

user from a toll non-payer to a toll payer always reduces her travel cost. Therefore, increasing the 

toll window length always improves the total system cost. 

 

3.5.3. Constrained optimization with heterogeneous users 

 

In this subsection we discuss which parts of Proposition 3.3 and the associated insights can be 

generalized into the heterogeneous user case. First of all, because the total cost depends on the toll 

window length and toll level, rather than the specific position of ( ),t t+ −
, the constrained optimal 

tolling scheme has a range of ( ),t t+ −
 positions as in the Laih model. This property still holds with 

heterogeneous users. Regarding toll price and toll window length, we have the following result. 

 

Proposition 3.4. In the braking model, for the constrained optimization problem (3.10)-(3.12) with 
unconl l  and uncon  ,  

(a). if  l is sufficiently small, the optimal toll level is 0 = , i.e., no toll should be charged. 

(b). if the optimal toll level is 0  , then the optimal toll window length is l l= . 

Proof.  
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(a). From (3.40) and in view of  0wl    , it suffices to  prove ( ) 0A V   for a sufficiently small 

l . From ( )wV s l l= −  and 1wl l   , a sufficiently small l  gives a sufficiently small V , which in 

turn makes the third term of the RHS of (3.41) sufficiently small and thereby ( ) 0A V  . This 

completes the proof. 

(b). If the optimal toll level is 0  , from (3.40) and in view of 0wl    , it must hold 

( ) 0A V  . Then from (3.39)  and in view of 0wl l   , we have 0TC l   , which requires the 

optimal toll window length l l=  under constraints l l . This completes the proof.  

 

Proposition 3.4 suggests that two important insights from the homogenous user case carries on to 

the heterogeneous user case. Specifically, Proposition 3.4(a) states that, when the toll window 

length constraint is too stringent, then no toll should be charged, which generalizes Proposition 

3.3(a) into the heterogeneous case. Proposition 3.4(b) states that, if coarse tolling can reduce the 

total system cost, then the toll window length should be set as the maximum acceptable toll 

window length, which generalizes the results on toll window length in Proposition 3.3(b) and 3.3(c) 

into the heterogeneous case. 

 

While the interpretation of Proposition 3.4 is generally the same as that of Proposition 3.3 (i.e., all 

the results originate from the trade-off between toll payers and non-payers), the reasoning of 

Proposition 3.4(b) is actually much more complicated than that of the homogeneous case. 

Specifically, when users are heterogeneous, the “wasted” tolling period increases with both the 

toll price and the toll window length, which means that the toll window length plays a similar role 

as the toll price in the trade-off between toll payers and non-payers. In other words, unlike in the 

homogeneous case, the total system cost is generally nonlinear in toll window length (the specific 

form depends on the VOT distribution) and may increase or decrease with toll window length. 

Therefore, the optimal toll window length might have a similar structure as the optimal toll price 

in Proposition 3.3(b) and 3.3(c), i.e., an interior optimal solution is possible. However, by 

examining the properties of  ( ),wl l   and ( ),TC l   given by (3.37)-(3.41), we find that, when toll 

price is charged at the optimal level, the net effect of increasing the toll window length is positive 

in reducing the total system cost, and thus we have Proposition 3.4(b). 

 

 

3.6. Conclusions 

 

Due to public acceptance reason, for peak hour congestion pricing, it may be politically 

unacceptable to charge a toll price that is too high or charge a toll for a period that is too long. 

Motivated by this, we study bottleneck coarse tolling in a constrained optimization setup, where 

there is a maximum acceptable toll level and a maximum acceptable toll window length. Three 

widely used coarse tolling models are studied, the ADL, Laih and braking models. The basic user 

behavioral difference between these three models are: in the ADL model, toll non-payers form a 

mass arrival at the bottleneck following the last toll payer’s arrival at the bottleneck; in the Laih 

model, a separated waiting facility is built aside of the bottleneck for toll non-payers to wait until 
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the toll ends; in the braking model, toll non-payers can choose to defer their arrival at the bottleneck 

to avoid paying the toll. In all three models, we consider proportional user heterogeneity, and focus 

on the case that the unconstrained optimal toll level and toll window length exceed the maximum 

acceptable upper bounds. 

 

We find that, in the ADL and the Laih models, the constrained optimal coarse tolling chooses the 

maximum acceptable toll level and toll window length, which is consistent with the traditional 

insight that, because the toll replaces the queuing delay and thereby reduces the total system cost, 

increasing the toll in both toll price and tolling period will improve the system efficiency. While 

this is not surprising, an important new insight regarding the ADL model is established: under 

constrained optimization, because it is impossible to eliminate the queues at both the starting and 

the ending moments of the tolling period, in the ADL model the priority is to start the tolling period 

as late as possible to eliminate the queue at the toll ending moment only. This insight is never 

reported in traditional unconstrained coarse tolling studies. We find that, if the toll window length 

constraint is too stringent (the upper bound is too small), then any toll price will make the total 

system cost greater than the no-toll equilibrium, and thus no toll should be charged. When the toll 

window length constraint is not too stringent, the optimal solution chooses the maximum 

acceptable toll window length, while the optimal toll price may be an interior solution (i.e., less 

than the maximum acceptable level). 

 

Comparing the three models, one common result is that the constrained optimal tolling scheme in 

all three models chooses the maximum acceptable toll window length. It should be noted that this 

result is not trivial for the braking model with heterogeneous users, where the trade-off between 

toll payers and non-payers makes the total system cost nonlinear and non-monotonic in toll 

window length. This result holds in the braking model with heterogeneous users because we 

proved that, when toll price is charged at the optimal level, the net effect of increasing the toll 

window length is positive in improving the total system cost. The Laih model and the braking 

model have a common feature that the total system cost depends on the toll level and toll window 

length rather than the specific toll window position. Therefore, in these two models the constrained 

optimal tolling scheme has a range of toll window positions. By contrast, the ADL model requires 

the toll window to be positioned as late as possible to minimize the queuing delay of the mass 

arrival users. A unique feature of the braking model is that the constrained optimal toll price may 

be less than the maximum acceptable level. This is because, unlike the ADL and Laih models, in 

the braking model there is a trade-off between toll payers and non-payers, which, depending on 

the toll window length, may give an interior optimal toll price. 

 

In summary of all three models, in designing bottleneck coarse tolling, when the unconstrained 

optimal solution exceeds the toll level and toll window length upper bounds, it is generally safe to 

push the toll window length to its upper bound. When the mass arrival behavior has to be 

considered, the specific position of the toll window matters, i.e., the later the better. When the 

braking behavior has to be considered, it may not be optimal to charge the maximum acceptable 

toll level. 
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CHAPTER 4 

 

 

BOTTLENECK COARSE TOLLING UNDER THE EXISTENCE OF OVERTAKING 

BEHAVIOR 

 
 

In the previous chapter, we studied the constrained optimization for bottleneck coarse tolling. 

Three bottleneck models are studied: the ADL model, the Laih model and the braking model. In 

this chapter, we develop a new coarse tolling model that considers commuters’ overtaking 

behavior: toll payers can overtake those braking commuters (toll non-payers) to take advantage of 

the tolling period to pay toll to pass the bottleneck. The overtaking model systematically combines 

Laih model and braking model’s together by capturing both model’s properties and provides more 

realistic insights on how to achieve system cost minimization for the coarse tolling problem during 

morning peak hour. 

 

 

4.1. Introduction 

 

Bottleneck coarse tolling has been studied for decades. Three bottleneck models are mainly used 

to conduct the study: the ADL model, the Laih model and the braking model. The ADL model is 

depicted by that a mass of toll non-payers arrive at the bottleneck right after the last toll payer’s 

arrival, so that they can avoid paying the toll. Such behavior causes a long queue at the ending 

time of the tolling period. Since these commuters all want to seize the opportunity to avoid the toll, 

the position of each commuter in the queue is random. The Laih model is characterized by that a 

separated waiting lane or facility is built aside of the bottleneck for toll non-payers to wait until 

toll is cancelled. The braking model is featured by that the toll non-payer can choose to defer their 

arrival at the bottleneck by braking her car to avoid paying the toll. The invention of Laih model 

and braking model is to eliminate or replace the mass arrival behavior at the bottleneck. Although 

all three models can reflect some important properties of morning commute behavior respectively, 

no model has been invented to capture all the properties reflected by these three models. The reason 

is that the rule that each model is based on is contradicting with each other. For the ADL model, 

the rule is first in first out: if a commuter arrives at the bottleneck within the tolling period, she 

must pay the toll. For the Laih model, due to the existence of a separated waiting lane, the first in 

first out rule is violated: even a commuter arrives within the tolling period, she does not need to 

pay the toll if she choose to wait in the separated waiting lane and the rule stipulates that, after the 

toll is cancelled, the commuters waiting in the separated waiting lane has the road right to leave 

the bottleneck first. The rule of the braking model is that even a commuter arrives within the tolling 

period, she does not have to pay the toll if she chooses to wait at the bottleneck (not to leave the 

bottleneck). Since the rule still follows first in and first out, the braking commuters can block the 

road for those willing to pay the toll. As the result, all toll payers have to arrive at the bottleneck 

before the first braking commuter’s arrival. The rule difference of three models are summarized in 

the following flow chart. 



42 
 

 

 
Chart 4.1. Rule difference of three models 

 

Motivated by the rule difference of three models, we introduce a new “overtaking model” that can 

capture both the property of Laih model and braking model. In reality, toll payers can overtake 

those braking commuters (toll non-payers) to take advantage of the tolling period to pay toll to 

pass the bottleneck in order to reduce travel price. Such overtaking behavior can easily be observed 

in the morning commute period. The overtaking behavior is incurred a constant unit cost of k . k  

is the cost to overtake one vehicle or the impedance caused by one vehicle. If k  is sufficiently 

large, the proposed overtaking model will become the braking model (i.e. no commuter has 

incentive to overtake). If 0k = , the overtaking model can be treated as Laih model. As soon as 

the braking behavior starts, the overtaking behavior happens. In this research, the toll payer 

arriving right before the first braking commuter starts to brake is assumed to have schedule late 

delay cost, so that all overtaking commuters have schedule late delay cost.  

 

 

4.2. The overtaking model 

 

In this section, the equilibrium profile of overtaking model is analyzed. Figure 4.1 shows the 

equilibrium profile of the overtaking model, where there is no capacity waste at t+  and t
−

, and all 

overtaking commuters have schedule late delay. For model completeness, the individual travel 

price is given in the following 
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Figure 4.1. Equilibrium profile of overtaking model 

 

For toll non-payers arriving before t+ , let ( )1   denote their arrival rate, and their travel price is 

given as 

 ( )
( ) ( ) ( ) ( )1 1

non *q q

t t

q q
t t

d s t t d s t t

P t t t
s s

     
 

 − − − −
 

= + − − 
 
 

 
  (4.1) 

It can be obtained that 

( ) ( ) ( )non

1 1
1

dP t t s t s

dt s s

 
 

− − 
= + − − 

 
 

Based on the definition of equilibrium, by setting ( )non 0dP t dt = , it gives ( ) ( )1 1t s = − . 

Substituting ( )1 t  into (4.1), the travel price or cost of  a toll non-payer is given as 

 ( ) ( ) ( )non non *

qP t C t t t= = −   (4.2) 

For toll payers arriving before 
zt  (the arrival time when toll payer has no schedule delay cost), let 

( )2   denote their arrival rate, they have schedule early delay, and their travel price is given as 

 

( )
( ) ( ) ( ) ( ) ( ) ( )1 2 1 2

pay *q y q y

t t t t

q q
t t t t

d d s t t d d s t t

P t t t
s s

           
  

 + − − + − −
 

= + − − + 
 
 

   
 

where t  is the last toll non-payer’s arrival time before t+ . It can be obtained that 

( )
( )

( )pay

2dP t t

dt s


  = − −  
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By setting ( )pay 0dP t dt = , it gives ( ) ( )2 1t s = − . With the fact of ( ) ( )1
q

t

q
t

d s t t   += − , it 

can be obtained that  

 ( ) ( ) ( )pay *

yP t t t t t  + += − + − +   (4.3) 

For toll payers arriving after 
zt  and before any braking or overtaking happens, let ( )3   denote 

their arrival rate, they have schedule late delay, and the travel price is given as 

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3
pay

1 2 3
*

z

q y z

z

q y z

t t t

q
t t t

t t t

q
t t t

d d d s t t

P t
s

d d d s t t

t t
s

        


        
 

+ + − −

= +

 + + − −
 
+ − + 

 
 

  

  
 

It can be obtained that  

( )
( )

( )pay

3dP t t s

dt s


  

−
= + +  

By setting ( )pay 0dP t dt = , it gives ( ) ( )3 1t s = + . With the fact of ( ) ( )*

2

z

y

t

t
d s t t   += − , 

it can be obtained that 

 ( ) ( )pay *

zP t t t = − +   (4.4) 

The first braking commuter is assumed to start braking at 
bt . The toll payer that arrives right before 

bt  is assumed to leave the bottleneck at 
zt . If she has schedule late delay (i.e. *

zt t ), at 

equilibrium, it holds that 

 ( ) ( )*

1
b z z

s
t t s t t


− = −

+
  (4.5) 

(4.4) and (4.5) gives  

 ( ) ( ) ( )pay *

z b zP t t t t t  = − + − +   (4.6) 

Let ( )b   denote the arrival rate of the braking commuters. For a braking commuter arriving 

before t− , her travel price is given as 

 ( )
( ) ( )

non *b b

t t

b b
t t

d d
P t t t t t

s s

     
 − −

   
   

= + − + + −   
   
   

 
  (4.7) 

It can be obtained that  

( )
( )

( )non

bdP t t

dt s


  = + −  

By setting ( )non 0dP t dt = , it can be obtained that ( ) ( )1b t s = + . From (4.7), it gives that 

 ( ) ( ) ( )non *

bP t t t t t − −= − + −   (4.8) 
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For braking commuters arriving after t− , their arrival rate can also be obtained as ( )1s + . Their 

travel price is same as equation (4.8). 

 

In the braking model, a braking commuter blocks those who arrive after her, so toll payers should 

arrive before 
bt . While in the overtaking model, toll payers can overtake those braking commuters, 

so after 
bt , there are still toll payers arriving at the bottleneck. The overtaking cost is assumed to 

be proportionate to the number of braking commuters by the time the toll payer arrives at the 

bottleneck. The overtaking cost is given as ( )
b

t

b
t

k d   , which captures the property that if the 

toll payers decides to arrive later, she will face a longer queue ahead of her or her travel will be 

impeded by more braking commuters, so that her overtaking cost will be higher. In reality, k  does 

not have to be the cost of overtaking one vehicle. It can also be the risk cost incurred by impedance 

or blocking of the braking commuters. Let ( )o   denote the arrival rate of the overtaking 

commuters. If arriving before 
zt , an overtaking commuter’s travel price of is given by 

 ( )
( ) ( )

( )pay *b b

b

t t

o o tt t

z z b
t

d d
P t t t t t k d

s s

     
     

   
   

= + − + + − + +   
   
   

 
   (4.9) 

It can be obtained that 

( )
( )

( )
( )

pay

o

b

dP t t
k t

dt s


   = + − +  

By setting ( )pay 0dP t dt = , it gives  

 ( )
( )

1
1 1

o

s sk
t

  

 
= −  + + 

  (4.10) 

The condition that overtaking behavior exists is 

( )
1 0

1

sk

 
− 

+
, 

which is equivalent to ( )1k s  + , i.e., the unit braking cost has to be less than a threshold for 

overtaking behaviors to happen. For ease of exposition, denote 

 
( )1

sk


 
=

+
 

Then (4.10) can be rewritten as ( ) ( ) ( )1 1o t s  = − + , and condition ( )1k s  +  is 

equivalent to 1  . Throughout this chapter, ( )1k s  +  and 1   are both used and 

considered interchangeable. In other words,   represents the unit overtaking cost k .   

 

Making use of (4.9) and (4.10), it gives that 

 ( ) ( ) ( )pay *

z b zP t t t t t  = − + − +   (4.11) 
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At equilibrium, ( ) ( )pay nonP t P t= , from (4.8) and (4.11), the toll price satisfies 

 ( )( )1 zt t   −= + −   (4.12) 

For overtaking commuters arriving after 
zt , their arrival rate and travel price is same as that of 

equation (4.10) and (4.11). The last overtaking commuter is assumed to arrive at 
ot . If there is no 

capacity waste at t− , at equilibrium, it holds that 

 ( )( ) ( )1
1

o b z

s
t t s t t



−− − = −
+

  (4.13) 

(4.13) gives 

 
( )( )1

1

z

o b

t t
t t





−+ −
= +

−
  (4.14) 

Since 
zt t− , from (4.14), it gives 

o bt t . (4.12) and (4.14) show that, when 0 → , it holds 

zt t−→  and 
o bt t→ , meaning that when toll level is sufficiently low, commuters will not have 

much incentive to brake or overtake. 

 

Equation (4.9) shows that the first overtaking commuter arrives right after 
bt . That is because if 

she arrives any moment after 
bt , she could be incurred a higher overtaking cost. Mathematically, 

it can be proved like this: suppose the first overtaking commuter arrives at 
ot  , compared with the 

toll payer arriving right before 
bt , at equilibrium, it holds that ( ) ( )

o

b

t

o b b
t

t t k d   


 − =  , which 

gives ( ) ( ) ( )1o b o bt t k t t s  − = − + , or equivalently, ( ) ( )o b o bt t t t − = − . This readily gives 

o bt t =  in view of 1  . 

 

The first commuter and last commuter has no queuing cost, so it holds that ( ) ( )* *

q qt t t t  − = − . 

If there is no capacity waste, with the fact of q qt t N s − = , it can be obtained that  

*

q

N
t t

s



 
− =

+
 and *

q

N
t t

s



 
 − =

+
 

The toll non-payer’s travel price can now be given as 

 ( )non N
P t

s



 

=
+

  (4.15) 

From (4.15) and (4.8), it gives that 

 ( )*

b

N
t t t t

s




 

− −= + − −
+

  (4.16) 

(4.16) implies that at equilibrium, the time braking behavior happens is not affected by toll level. 

It is only determined by the toll ending time. From (4.3) and (4.11), it can be obtained that 

 ( ) ( )* *

y z b zt t t t t t t t + += − + − − + −   (4.17) 
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The conditions that no capacity waste exists at t+  and t− , and all overtaking commuters have 

schedule late delay are given by 

 
yt t+   (4.18) 

 
ot t−   (4.19) 

 *

zt t   (4.20) 

 (4.18) states that, the condition there is no capacity waste at t+  is that the first toll payer arrives 

before t+ . (4.19) states that, the condition there is no capacity waste at t−  is that the last overtaking 

commuter arrives at the bottleneck before t− . (4.20) states that all overtaking commuters have 

schedule late delay cost. By setting 
yt t+=  and 

ot t−= , from (4.14), (4.16) and (4.17) , it gives two 

critical 
zt  values (representing two critical toll levels), denoted by y

zt  and o

zt , respectively, and 

given by  

( )
( )( )

*

1 1

y

z

N
t t t t

s

 

   

− += + − −
+ + +

 

( ) ( )*1
1

1

o

z

N
t t t t

s


 

  

− − 
= − − − − 

+ + 
 

Conditions (4.18) and (4.19) are equivalent to (4.21) and (4.22), respectively 

 y

z zt t   (4.21) 

 o

z zt t   (4.22) 

From (4.12), the lower bounds on 
zt  given by conditions (4.20)-(4.22) represent three upper 

bounds on the toll level. Since 
zt t− , from (4.21) and (4.22), it can be obtained that 

* N
t t

s



 

+− 
+

 and * N
t t

s



 

− − 
+

 

 

The equilibrium profile of the overtaking model is stable and cannot be replaced by the braking 

model for 1  , which is explained in the following proposition. 

 

Proposition 4.1. If the unit overtaking cost is low ( 1  ), the equilibrium profile of the braking 

model will collapse and becomes the equilibrium profile of the overtaking model. 

 

Proof. Figure 4.2 shows the equilibrium profile of the braking model. 
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Figure 4.2. Equilibrium profile without capacity waste in the braking model 

 

For 1  , under the equilibrium profile of the braking model, as a commuter is allowed to overtake, 

she could overtake at 
zt , so that she does not have queuing cost. Her travel price is given as 

 ( ) ( )pay * z

b

t

z b
t

P t t k d    = − + +   (4.23) 

The toll payer arriving just before 
bt  has a travel price of 

  

 ( ) ( )pay *

z b zP t t t t  = − + − +   (4.24) 

Since ( ) ( )1b s  = +  and 1  , from (4.23) and (4.24) it holds that 

( ) ( ) ( ) ( )* *

1
z z b z b z

s
t t k t t t t t t    


− + − +  − + − +

+
 

which means that, if overtaking behavior is allowed, the commuter would have incentive to 

overtake to reduce travel price and the equilibrium profile of braking model would collapse. So, 

for 1  , only the equilibrium profile of overtaking model exists. This also shows that, if 1  , 

overtaking behavior does not exist and the equilibrium profile will be the braking model. 

 

 

4.3. Optimal tolling scheme of equilibrium profile without capacity waste 

 

Equation (4.12) shows that   is a function of zt  and 
*t t− − . A tolling scheme is determined by 

 , 
*t t+−  and 

*t t− − . So, the total system cost can be treated as a function of 
zt , 

*t t+−  and 
*t t− − .    

For homogeneous users, the total system cost is given as 

 ( ) ( )( ) ( )* *, , 1z z

N
TC t t t t t N t t s t t

s


  
 

+ − − − +− − = − + − −
+

  (4.25) 

In (4.25), the first term is the total travel price. Second term is the total toll revenue. It can be 

acquired that 
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( )
( ) ( )

* *, ,
1 0

z

z

TC t t t t t
s t t

t
 

+ −

− +
 − −

= + − 


 

so, for a given toll window ( )* *,t t t t+ −− − , ( )* *, ,zTC t t t t t+ −− −  increases with 
zt . In the 

following we will compare the three lower bounds on 
zt  given by conditions (4.20)-(4.22). 

Comparing the three lower bounds ( y

zt , o

zt  and 
*t ) results in three lines in the ( )* *,t t t t+ −− −  two-

dimensional space as shown in Figure 4.3. 

 

Figure 4.3. The ( )* *,t t t t+ −− −  two-dimensional space 

 

To compare which one of y

zt  and o

zt  is more critical, set y o

z zt t= , which is shown as EC  in Figure 

4.3. The equation of EC  is given as 

 ( ) ( )( )* *1
N

t t t t
s


   

 

+ −− − − − =
+

  (4.26) 

The coordinate of C  is ( ) ( )( ),N s N s     + + . To compare which one of y

zt  and 
*t  is 

more critical, set *y

zt t= , which is shown as EB  in Figure 4.3. The equation of EB  is given as  

 ( )
( )( )

* *

1 1

N
t t t t

s

 

   

− +− + − =
+ + +

  (4.27) 

To compare which one of o

zt  and 
*t  is more critical, set *o

zt t= , which is shown as EG  in Figure 

4.3. The equation of EG  is given as 

 
( )

* 1

1 2

N
t t

s

 

   

− −
− =

+ − +
  (4.28) 

To show the derivation of the optimal tolling scheme, the following lemma is introduced. 

 

Lemma 4.1. For the equilibrium profile that no capacity waste exists at t+  and t− , and all 

overtaking commuters have schedule late delay, the optimal toll window is on EC  in Figure 4.3. 

 

Proof. In Figure 4.3, a toll window on EC  is featured by 
yt t+=  and ot t−=  under the critical toll. 

In DGEC , it holds that o y

z zt t  and *o

zt t . Based on equilibrium condition (4.18), (4.19) and 
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(4.20), it holds that o

z zt t . As ( )* *, , 0z zTC t t t t t t+ − − −   , in DGEC , the minimum total cost 

of a given toll window is obtained by setting o

z zt t= . From (4.25), it is given by 

( ) ( ) ( ) ( )* * *, 1DGEC N N
TC t t t t N t t s t t

s s

 
   
   

+ − − − + 
− − = − − − − − 

+ + 
 

It can be obtained that 

( )
( ) ( )*

*
1 0

DGECTC N
t t s

st t


  

 

−

+

 
= − − − −  

+ −  
 

So, given 
*t t− − , 

DGECTC  decreases with 
*t t+− . The optimal toll window is on EC . 

 

In ECB , it holds that y o

z zt t  and *y

zt t . Based on equilibrium condition, it holds that y

z zt t . 

As ( )* *, , 0z zTC t t t t t t+ − − −   , in ECB , the minimum total cost of a given toll window is 

obtained by setting y

z zt t= . From (4.25), it is given by 

( ) ( )
( )( )

( ) ( )* * *, 1
1 1

ECB N N
TC t t t t N t t s t t

s s

  
  
     

+ − + − +
 

− − = − + − − − 
+ + + + 

 

It can be obtained that 

( )
( )

( )( )
( )*

*
1 0

1 1

ECBTC N
t t s

st t

 
 

   

+

−

 
= − + − −  

+ + + −  
 

So, given 
*t t+− , 

ECBTC  decreases with 
*t t− − . The optimal toll window is on EC . 

 

In GEBA , it holds that * o

zt t  and * y

zt t . Based on equilibrium condition, it holds that *

zt t . 

As ( )* *, , 0z zTC t t t t t t+ − − −   , in GEBA , the minimum total cost of a given toll window is 

obtained by setting *

zt t= . From (4.25), it is given by 

( ) ( )( ) ( )* * *, 1GEBA N
TC t t t t N t t s t t

s


  
 

+ − − − +− − = − + − −
+

 

It can be obtained that 

( )
( )( )*

*
1 0

GEBATC
t t s

t t
  −

+


= − + − 

 −
 

So, given 
*t t− − , 

GEBATC  decreases with 
*t t+− . The optimal toll window is on EB . Since on EB  

it holds that *y

zt t=  and 
ECB GEBATC TC= , it readily gives that in ABCD  the optimal toll window 

is on EC . This completes the proof.  

 

Let ( )
op

*t t+−  and ( )
op

*t t− −  denote the optimal toll window, and ( )
op

t t− +−  denote the optimal 

toll window length . Let ( )*
E

t t+−  and ( )*
E

t t− −  denote the toll window, and ( )
E

t t− +−  denote 
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the toll window length corresponding to E  in Figure 4.3. Let ( )*
EC

globe
t t+−  and ( )*

EC

globe
t t− −  denote 

the global optimal toll window on EC , where 

( )
( )

( )
*

1
1

2

1

EC

globe

N
t t

s


  

 

  

+

+ −
+

− =
+ −

 

( )
( )

*

1

2

1

EC

globe

N
t t

s


 

 

  

−

−
+

− =
+ −

 

Based on Lemma 4.1, we have the following proposition. 

 

Proposition 4.2. For the equilibrium profile that no capacity waste exists at t+  and t
−

, and all 

overtaking commuters have schedule late delay, there exists a critical unit overtaking cost 

represented by 

( )2
E

 


  

+
=

+ −
 

such that the optimal toll window is given as 

(a). If  0, E  , it holds ( ) ( )
op

* *
EC

globe
t t t t+ +− = − , ( ) ( )

op
* *

EC

globe
t t t t− −− = − , and 

( )
op

2t t N s− +− = . 

(b). If ( ),1E  , it holds  ( ) ( )
op

* *
E

t t t t+ +− = − , ( ) ( )
op

* *
E

t t t t− −− = − , and ( )
op

2t t N s− +−  . 

 

Proof. On EC , the minimum total cost of a given toll window can be obtained as 

( ) ( ) ( )

( )( )

* *

* *

1

1

EC N N
TC t t N s t t

s s

N
t t t t

s

 
   
   

 
 
  

− −

− −

 
− = − − − −  

+ + 

 
− + + − − 

+ 

 

It can be obtained that 

( )
( )

( ) ( )( )

( ) ( )

*

* *

*

*

1 1

1 1

ECdTC t t N
s t t t t

sd t t

N
t t

s

 
    

  

 
 

  

−

− −

−

−

−   
= − − − − + + − − +  

+−  

   
− − + −    

+   

 

 

( )

( )
( ) ( )

2 *

2
*

2 1 1 1 0

ECd TC t t
s

d t t


   



−

−

−  
= − + −  

 −
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So, ( )*ECTC t t− −  is strictly convex for ( )* ,t t− −  − + . By setting 

( ) ( )* * 0ECdTC t t d t t− −− − = , it gives that 

 ( ) ( )
op

* *
EC

globe
t t t t− −− = −   (4.29) 

From (4.26), the optimal 
*t t+−  can be obtained as 

 ( ) ( )
op

* *
EC

globe
t t t t+ +− = −   (4.30) 

From (4.29) and (4.30), the optimal toll window length can be obtained as  

( )
op 1

2

N
t t

s

− +− =  

The optimal total cost can be acquired as 

 ( ) ( )op * 1
1

2

EC

globe

N N N
TC N s t t

s s s

 
   
   

− 
= − − − − 

+ + 
  (4.31) 

The optimal toll level is obtained as 

 ( ) ( )op *1
EC

globe

N
t t

s


   

 

− 
= − − − 

+ 
  (4.32) 

As the optimal toll window is on EC , it must hold that ( ) ( )
op

* *
E

t t t t− −−  − , which readily gives

0 E   . This completes the proof of Proposition 4.2(a). 

 

For ( ),1E  , it holds ( ) ( )* *
EC E

globe
t t t t− −−  − . As ( ) ( )

2
2 * * 0ECd TC t t d t t− −− −  , it holds that 

( ) ( )* * 0ECdTC t t d t t− −− −   for ( )* *
EC

globe
t t t t− −−  − . Since E  has the minimum 

*t t− −  on EC , 

the optimal toll window is given by 

 ( ) ( )
( )

op
* * 1

1 2

E N
t t t t

s

 

   

− − −
− = − =

+ − +
  (4.33) 

 ( ) ( )
( )

op
* *

1 2

E N
t t t t

s

  

   

+ + +
− = − =

+ − +
 (4.34) 

The optimal toll window length can be obtained as  

 ( ) ( )
( )

( )

op 1 1

1 2 2

E N N
t t t t

s s

    

   

− + − +
− + +

− = − = 
+ − +

  (4.35) 

The optimal total cost can be acquired as 

 
( )( )

( )
( )op

1 1

1 2

EN
TC N t t

s

 


   

− +
 + −

= − − 
+ + − 

  (4.36) 

The optimal toll level is obtained as 

 ( ) ( )op *1
EN

t t
s


   

 

− 
= − − − 

+ 
  (4.37) 

This completes the proof of Proposition 4.2(b). 
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Proposition 4.2 states that, for equilibrium profile that no capacity waste exists and all overtaking 

commuters have schedule late delay, the optimal tolling scheme is featured by that the first toll 

payer arrives at t+  and the last overtaking commuter arrives at t− , both of them experiencing no 

queuing delay. For 
E   and 

E  , although the forms of solutions are different, the properties 

of them are identical. For 
E  , the optimal toll window is obtained by using the first order 

condition. For 
E  , as the solution obtained from first order condition is below E  and thus not 

feasible, the optimal toll window is given by E . 

 

4.4. Impact of k  

 

In this section, the impact of the unit overtaking cost on the optimal tolling scheme is investigated 

and discussed. Lemma 4.2 is used to summarize the impact of k . 

 

Lemma 4.2. For the equilibrium profile that no capacity waste exists at t+  and t− , and all 

overtaking commuters have schedule late delay, the optimal tolling scheme has the following 

properties: 

(a). If  0, E  , 
opTC  increases with k , op  decreases with k , ( )

op

2t t N s− +− =  and the 

optimal toll window position becomes earlier as k  increases. 

(b). If ( ),1E  , 
opTC  increases with k , op  decreases with k , ( )

op

t t− +−  increases with k , 

( )
op

2t t N s− +−   and the optimal toll window position becomes earlier as k  increases. 

 

Proof. For  0, E  , from (4.29), it can be obtained that 

( ) ( )

( )

op
*

2

1

2 1
0

1 1

s

d t t N

dk s



  






− −
− +

= 
 
+ − 

 

 

so ( )
op

*t t− −  decreases with k . As ( )
op

2t t N s− +− = , ( )
op

*t t+−  increases with k . So, the toll 

window position becomes earlier with k . From (4.31), it can be obtained that 

( )

( )

( )

( )
( )

( )

2

*
op

2

1
1

2 1
1 1 1 1

EC

globe
t tdTC N s N N

s
dk s s s


 

  
 

      

−

 
− − + 

= − + 
+ +   + − + −  

  

 

Since ( )*
EC

globe

N
t t

s



 

− −
+

 for  0, E  , it holds that 
op

0
dTC

dk
 . So, the optimal total cost 

increases with k . From (4.32), it can be obtained that 
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( )

( )

( )

( )
( )

( )

2

*
op

2

1

0
1

1 1 1 1

EC

globe
t td s N N

dk s s


 

   
 

      

−

 
− − + 

= − − +  
+ +   + − + −  

  

 

So, the optimal toll level decreases with k . 

 

For ( ),1E  , from (4.33), it can be obtained that 

( ) ( )

( )

op
*

2

1 1
0

1 1
1

s

d t t N

dk s



  

  




− −
− + +

= 
+  

+ − 
+ 

 

So, ( )
op

*t t− −  decreases with k . From (4.34), it is straight forward that ( )
op

*t t+−  increases with 

k . From (4.35), it is straight forward that ( )
op

t t− +−  increases with k . So, the toll window 

position becomes earlier. From (4.37), it can be obtained that 

( )

( )

op

2

1
0

1 1
1

s

d N

dk s

  

  




−
+

= 
+  

+ − 
+ 

 

So, op  decreases with k . From (4.36), it can be obtained that 

( )
( )

( )

2op

3

1
1 2 2 2

1 1

1 1
1

s

dTC N
s

dk s


   

    


  




− − − +  + + + 
= −  

+    
+ − 

+ 

 

Since 
E  , it holds that ( )2 2 1  − +  , which readily gives 

op

0
dTC

dk
 . So, the optimal total 

cost increases with k . This completes the proof. 

 

From (4.31), if 0 =  (i.e. overtaking does not incur cost), it can be obtained that 

( )
1

o

s
t


=

+
  

 

which are the arrival rate of toll payers having schedule late delay and the optimal total cost in the 

Laih model. This implies that Laih model can be treated as a special case of the overtaking model 

when overtaking incurs cost. As 
opTC  increases with k , the optimal total cost of the overtaking 

model is higher than that of Laih model.    

op 3

4

N
TC N

s



 

=
+
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From (4.36) and (4.37), if 1 → , it holds that op 0 → , ( ) 0o t →  and op N
TC N

s



 

→
+

. 

This implies that, when unit overtaking cost is sufficiently large, the optimal toll level approaches 

zero and the optimal total cost approaches that of no toll equilibrium. Since the optimal total cost 

of braking model is lower than that of no toll equilibrium, this indicates that when unit overtaking 

cost is sufficiently large, the braking model is better than the overtaking model in terms of total 

system cost. When the toll level is sufficiently high, there will be capacity waste in the overtaking 

model and the overtaking model can reduce to the braking model. This indicates that, in the 

overtaking model, the equilibrium profile with capacity waste can have a lower total cost than that 

without capacity waste. Thus, in the next section, we will investigate the equilibrium profile of the 

overtaking model with capacity waste.   

 

 

4.5. Equilibrium profile with capacity waste 

 

Figure 4.1 shows the equilibrium profile of overtaking model without capacity waste. For a given 

toll window, y

zt , o

zt  and 
*t  corresponds to three different critical toll level. If toll price exceeds 

the critical toll level, there will be capacity waste at t+  or t
−

, or make *

zt t  (i.e. some overtaking 

commuters have schedule early delay). In this study, we only need to consider the capacity waste 

scenario where capacity waste appears at t− , no capacity waste exists at t+  and all overtaking 

commuters have schedule late delay. This requires the toll window in DGEC  in Figure 4.3. Toll 

windows in ECB  and GEBA  in Figure 4.3 do not need to be considered for the following reasons. 

 

For a toll window in ECB  in Figure 4.3, if ( )( )1 y

zt t   − + − , capacity waste will appear at t+  

and no capacity waste exists at t− . This equilibrium profile need not be considered because 

capacity waste at t+  can only cause a pure system waste from t+  to yt  (i.e. a tolling period no one 

comes or leaves the bottleneck). Such waste increases the length of peak hour and the number of 

toll non-payers. The decrement of toll payers’ system cost can not offset the increment of toll non-

payers’ system cost, thus making total cost higher than the no waste profile.  

 

In Figure 4.3, for a toll window in GEBA , if ( )( )*1 t t   − + − , it holds that *

zt t  and no 

capacity waste exists at t
+

 or t
−

. In GEBA , when toll level is sufficiently large, the equilibrium 

profile of the overtaking model will reduce to that of the braking model where all toll payers have 

schedule early delay. Such profile has been proved by Xiao et al. (2012) to be worse than the 

profile where some toll payers have schedule late delay (which is achieved by toll windows in 

DGEC ). Thus, toll windows in GEBA  need not be considered. 

 



56 
 

In summary, only toll windows in DGEC  in Figure 4.3 need to be considered for the case with 

capacity waste. For a toll window in DGEC , if ( )( )1 o

zt t   − + − , capacity waste will appear 

at t− , no capacity waste exists at t+  and all overtaking commuters have schedule late delay. Figure 

4.4 shows such an equilibrium profile. As can be seen in Figure 4.4, since toll level is high, the 

last overtaking commuter has no queuing delay and leaves the bottleneck before t−  (i.e. 
ot t−  ). 

No commuter would have incentive to overtake between 
ot  and t− . 

 

Figure 4.4. Equilibrium profile with capacity waste at only t−  

 

For the profile with capacity waste at t− , as toll only causes some overtaking commuters to join 

braking (i.e. partially overtaking), equation (4.1) to (4.12) still hold. Since no commuters overtake 

between 
ot  and t− , the length of the peak hour is given as 

 q q o

N
t t t t

s

−

 − = + −   (4.38) 

With the fact of ( ) ( )* *

q qt t t t  − = − , it holds that 

 
*

q o

N
t t t t

s



 

− 
− = + − 

+  
 (4.39) 

The last overtaking commuter arrives at 
ot  and experiences no queuing delay. Her travel price is 

given as 

 ( ) ( ) ( )pay *

1
o o b

s
P t t t k t t 


= − + − +

+
  (4.40) 

Making use of (4.2), (4.8) and (4.39), it can be obtained that 

 ( )*

b o

N
t t t t t t

s




 

− − − 
= + − − + − 

+  
  (4.41) 

Making use of (4.11), (4.40) and (4.41), it gives 
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( ) ( )

( )

*1
1

1

1
1

1

z

o

N
t t t t t

s

t

 
 

    


  

  

− − − 
= − + − − − 

+ + + 

 
+ + + − 

+ + 

  (4.42) 

The equilibrium condition that capacity waste only exists at t−  and all overtaking commuters have 

schedule late delay is given by 

 
z bt t   (4.43) 

 
yt t+   (4.44) 

 *

zt t   (4.45) 

(4.43) gives the condition that overtaking behavior exists. If 
z bt t= , no commuter would overtake, 

and the overtaking model just reduces to the braking model. From (4.11) and (4.40), condition 

(4.43) is equivalent to 
o bt t , which also means that a sufficiently high toll would make 

o bt t=  

(i.e. overtaking behavior does not exist). (4.44) gives the condition that there is no capacity waste 

at t+ . (4.45) simply states that all overtaking commuters have schedule late delay. By setting 

conditions (4.43)-(4.45) to equality, i.e., setting 
z bt t= , 

yt t+=  and *

zt t= , from (4.17), (4.41) and 

(4.42), it gives three critical 
ot  values (representing three critical toll levels), denoted by 1w

ot , 2w

ot  

and 3w

ot , respectively, and given by 

 ( )1 *w

o

N
t t t t

s

  


    

− − +
= − − − 

+ − + 
  (4.46) 

 

( ) ( )* * *

2w

o

N
t t t t t t t

s
t

 
   

   

  
 

 

+ − − − 
+ − + + − − − + + =

+ −
+

+

  (4.47) 

( ) ( ) ( )

( )

* *

3

1 1

1

w

o

N
t t t t t

s
t

 
  

   


  

 

− − − 
+ − − + − − − + + =

+ + −
+

 

Conditions (4.43)-(4.45) are equivalent to (4.48)-(4.50), respectively 

 1w

o ot t   (4.48) 

 2w

o ot t   (4.49) 

 3w

o ot t   (4.50) 

From (4.12) and (4.42), the lower bounds on ot  given by conditions (4.48)-(4.50) represent three 

upper bounds on the toll level. Since ot t− , from (4.48)-(4.50), it can be obtained that 

 * N
t t

s



 

− − 
+

  (4.51) 
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 ( ) ( ) ( )* *1
N

t t t t
s


   

 

− +− − − −  −
+

  (4.52) 

 
( )

* 1

1 2

N
t t

s

 

   

− −
− 

+ − +
  (4.53) 

(4.51)-(4.53) corresponds to region DGEC  in Figure 4.3. Specifically, setting (4.51)-(4.53) to 

equality represents CD , EC  and EG , respectively. For a given toll window, 1w

ot , 2w

ot  and 3w

ot  

corresponds to three different critical toll levels which can be obtained by making use of (4.12) 

and (4.42).  At 1w

o ot t= , no commuters would overtake. At 2w

o ot t= , the first toll payer arrives at 

t+ . At 3w

o ot t= , any higher toll will make some overtaking commuters arrive at work early. 

 

Comparing the three lower bounds ( 1w

ot , 2w

ot  and 
3w

ot ) results in two lines in the ( )* *,t t t t+ −− −  

two-dimensional space as shown in Figure 4.5. To compare which one of 1w

ot  and 2w

ot  is more 

critical, set 1 2w w

o ot t= , which is shown as CF  in Figure 4.5. The equation of CF  is given as 

 ( ) ( ) ( )( )2 * * 2 N
t t t t

s
        − ++ + − − + − − =   (4.54) 

To compare which one of 2w

ot  and 3w

ot  is more critical, set 2 3w w

o ot t= , which is shown as EF  in 

Figure 4.5. The equation of EF  is given as 

( ) ( ) ( )( )( ) ( )2 * 2 *2
N

t t t t
s

              + − + − + + − + + + + − = +    (4.55) 

In CFD , it holds that 1 2 3w w w

o o ot t t  . In CFE , it holds that 2 1w w

o ot t , 2 3w w

o ot t . In FEG , it holds 

that 3 2 1w w w

o o ot t t  . HI , HJ , JK  and KL  will be explained in next section. 

 

Figure 4.5. ( )* *,t t t t+ −− −  two-dimensional space for profile with capacity waste at t−  

 

 

4.6. Optimal tolling scheme of equilibrium profile with capacity waste 
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In this section, we investigate the optimal tolling scheme for profile with capacity waste.   is a 

function of 
ot  and 

*t t− − . A tolling scheme is determined by  , 
*t t+−  and 

*t t− − . So the total 

system cost can be treated as a function of 
ot , 

*t t+−  and 
*t t− − . The total system cost is given as 

 ( ) ( )( ) ( )* *, , 1o o z o

N
TC t t t t t t t N t t s t t

s


  
 

+ − − − + 
− − = + − − + − − 

+  
  (4.56) 

In (4.56), the first term is the total travel price. The second term is the total toll revenue. It can be 

obtained that 

( ) ( ) ( ) ( )
1

1 1
1

o z

o

TC
N s t t t t

t

 
     
    

+ −
  

= − − + − + + − − + −  
 + + +  

 

( )
2

2
2 1

o

TC
s

t


   

 

 
= + + − 

 + 
 

It is straight forward that 2 2 0oTC t   , so for a given toll window TC  is strictly convex with 

respect to 
ot  at ( ),ot  − + . By setting 0oTC t  = , it gives 

( ) ( ) ( ) ( )

( )

*
1 1 1

2 1

globe

o

N N
t t t t t t

s s
t

   
     

       


  

 

+ − − − −
+ + + − + + − − + − − −

+ + + +
=

+ + −
+

   
   
   

 
 
 

 

Making use of globe

ot  and (4.56), at globe

o ot t= , it can be obtained that 

( ) ( ) ( )
2

* *, 1globe globe

o

N
TC t t t t N t t s t t

s

 
    
   

+ − − + +  
− − = + − − + + − −   

+ +   
 

and 

( )
( )

( ) ( ) ( )

2
*

*

*

1 1

2 2

1 1
1 1

2 2

globeTC
N s t t

t t

N
s t t s

s

    
  
     

 
     

   

−

+

+

  + +
= − + − 

+ + + −  

 
− + + − − − − 

+ + 

 

 

For a given toll window, under equilibrium constraints, to see if 
ot  can take the value of globe

ot , we 

need to compare globe

ot  with each of 1w

ot , 2w

ot  
3w

ot  and t
−

. Comparing globe

ot  with each of 1w

ot , 2w

ot  

3w

ot  and t−  results in four lines HI , HJ , JK  and KL  in the ( )* *,t t t t+ −− −  two-dimensional 

space as shown in Figure 4.5. To compare which one of 1w

ot  and globe

ot  is more critical, set 

1w globe

o ot t= , which is shown as HI  in Figure 4.5. The equation of HI  is given as 
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( ) ( ) ( )

( ) ( )
( )

2
*

*

2
1 1

2 1
1

t t

N N
t t

s s

    
    

    

  
   

      

−

+

   + + +
+ + − + − −  

+ + −  

+ 
+ + + − − = + 

+ + − + 

  (4.57) 

 

To compare which one of 2w

ot  and globe

ot  is more critical, set 2w globe

o ot t= , which is shown as HJ  in 

Figure 4.5. The equation of HJ  is given by 

( ) ( )

( ) ( ) ( )

( )

*

2 2
*

2

1 2

1 1

2 2

t t

t t

N N

s s

   
     

   

    
    

     

  
    

     

+

−

  + −
+ + − + + − +  

+ +  

   + +
+ + − − − −  

+ + +  

   
= + − + +   

+ + +   

  (4.58) 

 

To compare which one of 3w

ot  and globe

ot  is more critical, set 3w globe

o ot t= , which is denoted by JK  

in Figure 4.5. 

 

To compare which one of globe

ot  and t−  is more critical, set globe

ot t−= , which is shown as KL  in 

Figure 4.5. The equation of KL  is given by 

 

( ) ( ) ( ) ( )* *2 1 1

2

t t t t

N N

s s

 
      

   

 


   

− +   
+ + − − − + + + − −   

+ +   

= −
+ +

  (4.59) 

In DLKEC , it holds that globe

ot t−   and 

( )
( )

( ) ( )

2

*

1 1 1
1

2 2 2

2
0

2 1

globeTC N
N s s

st t

N

s

     
    
       

 

     
 

+

  + +
 − − − +  

+ + + + −  

−


+
− + + −

+

 

so, ( )* 0globeTC t t+  −   if globe

ot t−  . 

 

Before showing the derivation of the optimal tolling scheme, the following lemma is introduced. 

 

Lemma 4.3. For the equilibrium profile that capacity waste only exists at t−  and all overtaking 

commuters have schedule late delay (i.e. toll windows in DGEC  of Figure 4.5), the optimal toll 

window is in CHJE  in Figure 4.5. 
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Proof. We first prove that the optimal toll window in LGK  is on KL , then we prove that the 

optimal toll window in IHJKL  is on HI , HJ  or JK , then we prove that the optimal toll window 

in CDIH  is on HC , then we prove that the optimal toll window in JKE  is on JE . 

  

In LGK , for a given toll window, as globe

ot t−   and 2 2 0oTC t   , for 
ot t− , it holds that 

0oTC t   . So TC  decreases with 
ot . The minimum total cost of a given toll window in LGK  

is obtained by setting 
ot t−= , which gives us 

( ) ( ) ( ) ( )* * *, 1LGK N N
TC t t t t N t t s t t

s s

 
   
   

+ − − − + 
− − = − − − − − 

+ + 
 

It is straight forward that ( )* 0LGKTC t t+  −  , so the optimal toll window in LGK  is on KL . 

On KL , it is trivial that 
LGK globeTC TC= . 

 

In IHF , it holds that 1w globe

o ot t . In HFJ , it holds that 2w globe

o ot t . In FJKL , it holds that 

3w globe

o ot t . So, in IHJKL , for a given toll window, the minimum total cost is obtained by setting 

globe

o ot t=  and 
globeTC  is the minimum total cost. Since ( )* 0globeTC t t+  −   for globe

ot t−  , the 

optimal toll window in IHJKL  is on HI , HJ  or JK .             

 

In CDIH , for a given toll window, as 1w globe

o ot t  and 2 2 0oTC t   , for 1w

o ot t , it holds that 

0oTC t   . So TC  increases with 
ot . The minimum total cost of a given toll window in CDIH  

is obtained by setting 1w

o ot t= , which gives us 

( ) ( )

( ) ( ) ( )

2
* * *

* *

,

1

CDIH N N
TC t t t t N t t

s s

N N
t t s t t t t

s s

    
  
        

     
   

         

+ − −

− − − +

 +
− − = + − − 

+ + + − + 

    + +
− + − − − − − −    

+ − + + − +    

 

It is straight forward that ( )* 0CDIHTC t t+  −  ,  so the optimal toll window in CDIH  is on HC . 

On HI , it holds that 
CDIH globeTC TC= . In JKE , it is trivial that the optimal toll window is on JE . 

This completes the proof. 

 

With Lemma 4.3, we can focus on the analysis of toll windows in CHJE . In CHJE , for a given 

toll window, as 2w globe

o ot t  and 2 2 0oTC t   , for 2w

o ot t , it holds that 0oTC t   . So TC  

increases with ot . The minimum total cost of a given toll window in CHJE  is obtained by setting 

2w

o ot t= . When 2w

o ot t= , it holds that 

( )( ) ( )2 *1 w

z o

N
t t t t t t

s


 

 

− − + 
+ − = + − − − 

+  
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So, based on (4.56), the minimum total cost of a given toll window in CHJE  is obtained as 

( ) ( ) ( )* * 2 2 * 2,CHJE w w w

o o o

N N
TC t t t t t t N t t t t s t t

s s

 
  
   

+ − − − + +    
− − = + − − + − − − −    

+ +    
 

It can be obtained that 

( ) ( )
( ) ( )

( ) ( )

2
2 2 *

* *

2 2 *

wCHJE
w wo
o o

w w

o o

tTC N N
s t t t t t t

s st t t t

N
s t t s t t t t

s

  
 

     


   

 

+ − +

+ +

+ − +

    
= − − − + + − − −  

+ + + −  −   

  
+ − − + − − −  

+   

  (4.60) 

where 

 
( )

2

*

w

ot

t t




  

 

+


=

 − + −
+

  (4.61)  

( ) ( )
( ) ( )

( )

2
2 2 *

* *

2

wCHJE
w wo
o o

w

o

tTC N N
s t t t t t t

s st t t t

N s t t

  
 

     

 
 
   

+ − +

− −

+

    
= − − − + + − − −  

+ + + −  −   

+ − −
+ +

  (4.62) 

where 

 
( )

2

*

w

ot

t t


  

 


  

 

−

+ −
 +

=
 − + −

+

  (4.63) 

On HC , it holds that 
CDIH CHJETC TC= . On HJ , it holds that 

CHJE globeTC TC= . The optimal toll 

window in DGEC  is in CHJE . As ( )2 *w

ot t t−  −  increases with   and ( )2 * 1w

ot t t−  −  , for 

large k , in (4.62), it can be seen that  

( )
( ) ( )

2
2 2

*
0

w
w wo
o o

t N
s t t N s t t

st t

   
  

       

+ +

−

  
− − − + − −  

+ + + + −  
, 

which leads to ( )* 0CHJETC t t−  −  , so the optimal toll window is on HC . 

 

In the following, we solve the optimal toll window in CHJE  and discuss its properties. To obtain 

the optimal toll window in CHJE , Kuhn tucker condition is used. The mathematical setup is given 

in the following. 

( )* * ,CHJEMin TC t t t t+ −− −  

subject to 
1 2w w

o ot t   

2w

ot t−  

3 2w w

o ot t  
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2globe w

o ot t  

The lagrangian function is constructed in the following  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

2 2
* * * * * *

1

* *

2 3

2 2
* *

4

, ,

1

2

CHJE N
L t t t t TC t t t t U t t t t

s

N N
U t t t t U

s s

t t t t

U

   
 

     

 
     
   

       
   

     


 

 

+ − + − − +

− +

+ −

 + +
− − = − − + − + − − − 

+ − + − 

  
+ − − − − + − + +  

+ +  

   + − + + +
− + − − + −    

+ + +    

+ + −
+

( )

( ) ( )

( ) ( ) ( )

2

*

2 2
*

2 2

1 2

1 1

N N

s s

t t

t t

 
  

   

   
     

   

    
    

     

+

−

   
+ + −   

+ +   

  + −
+ + − + + − −  

+ +  

   + + 
+ + − − − −   

+ + +    

   

It can be acquired that 

( ) ( )

( )

2

1 2 3* *

4

2

1 2

CHJEL TC
U U U

t t t t

U

    
   

   

   
     

   

+ +

   + − +
= − + − + 

+ + −  −  

  + −
− + + − + +  
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( ) ( )
( ) ( )

( ) ( )

2 2

1 2 3* *

2 2

4

1

1 1

CHJEL TC
U U U

t t t t

U

     
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    

    
    

     

− −

   + + + +
= + − − − + 

+ − + −  −  

   + +
− + + − − −  

+ + +  

  

According to Kuhn tucker condition, the optimal toll window satisfies the given constraints and 

the following conditions:  

 
( )*

0
L

t t+


=
 −

  (4.64) 

 
( )*

0
L

t t−


=

 −
  (4.65) 

1 2 3 40,  0,  0,  0U U U U      

( ) ( )
2 2

* *

1 0
N

U t t t t
s

   
 

     

− + + +
− + − − − = 

+ − + − 
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( ) ( ) ( )* *

2 1 0
N

U t t t t
s


   
 

− + 
− − − − + − = 

+ 
 

( ) ( ) ( )( )
2 2

* *

3

2
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N
U t t t t
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        
     
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+ −
    + − + + +

+ − + − − + − =   
+ + + +     

   

( )

( ) ( )

( ) ( ) ( )

2

4

*

2 2
*

2 2

1 2

1 1 0

N N
U

s s

t t

t t

  
    

     

   
     

   

    
    

     

+

−

   
+ − + + −   

+ + +   

  + −
+ + − + + − −  

+ +  

   + + 
+ + − − − − =  

+ + +    

 

Because the feasible region is a convex set and the constraints are comprised of linear functions, 

the toll window obtained using Kuhn tucker conditions must be the optimal toll window. Let 

( )*
wop

t t+−  and ( )*
wop

t t− −  denote the optimal toll window in CHJE . In the following, we will 

examine the optimality conditions of the boundary solutions and interior solutions.  

 

 

We first consider the optimal toll window that satisfies 1 2w w

o ot t=  (on CH ), namely 

 ( ) ( )
2 2

opw opw
* * N

t t t t
s

   
 

     

− ++ +
− − + − = −

+ − + −
  (4.66) 

then it holds that 
1 0U  , 

2 0U = , 
3 0U =  and 

4 0U = . From (4.64) and (4.65), it can be acquired 

that 

 
( ) 1*

0
CHJETC

U
t t


+


− =

 −
  (4.67) 

 
( )

2

1*
0

CHJETC
U

t t

  


  −

 + +
+ =

+ − −
  (4.68) 

Making use of (4.66), (4.67) and (4.68), it can be obtained that 

 ( )
( )
( ) ( )

2
opw

*

2

2

2 1

N
t t

s

    

  

+
+ + +

− =
+ +

  (4.69) 

 ( )
( )
( ) ( )

2
opw

*

2

3 2

2 1

N
t t

s

    
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−
+ + +

− =
+ +

  (4.70) 

Plugging (4.69) and (4.70) into (4.60) and (4.62) then combining with (4.67) and (4.68) can solve 

out 
1U . Since 

1 0U  , from (4.68), it requires ( )* 0CHJETC t t−  −  , which, from (4.62), is 

equivalent to 
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( )

( )

( ) ( )

2

2

*
2 2 *

w

w o

o

w w

o o

N
t t

t s

N Nt t
t t t t t t

s s
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   

  


     

+

−
+ − +

− −
 + +


  −

− − + + − − − 
+ + +  

, 

which, from (4.63), is equivalent to 

b   

where, 

 
2 1

b





=

+
  (4.71) 

b  represents the critical unit overtaking cost, above which the optimal tolling scheme should 

make no commuter have incentive to overtake. The total cost under such a tolling scheme is given 

by 

 
( )( )

2
braking 1

1
4 1

N
TC N

s

   

    

 + +
= −  + + + 

  (4.72) 

 

Now we consider the optimal toll window that satisfies 2w

ot t−=  (on EC ), namely 

 ( ) ( ) ( )
opw opw

* *1
N

t t t t
s


   

 

− +− − − − = −
+

  (4.73) 

then it holds that 
2 0U  , 

1 0U = , 
3 0U =  and 

4 0U = . From (4.64) and (4.65), it can be acquired 

that 

 
( ) 2*

0
CHJETC

U
t t


+


+ =

 −
  (4.74) 

 
( )

( ) 2*
1 0

CHJETC
U

t t
 

−


− − =

 −
  (4.75) 

Making use of (4.73), (4.74) and (4.75), it can be obtained that 

 ( )
( )

( )

opw
*

1
1

2

1 1

N
t t

s

 
 
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




+

+ −
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− =
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  (4.76) 

 ( )
( )

opw
*

1

2

1 1

N
t t

s




 






−

−
+

− =

+ −

  (4.77) 

It is easy to see that (4.76) and (4.77) are same as (4.30) and (4.29). That is because, if 2w

ot t−= , 

the bottleneck is fully utilized (i.e. the equilibrium profile with capacity waste at t−  becomes the 

profile without capacity waste). Plugging (4.76) and (4.77) into (4.60) and (4.62) then combining 
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(4.74) and (4.75) can solve out 
2U . Since 

2 0U  , from (4.75), it requires that 

( )* 0CHJETC t t−  −  , which, from (4.62), is equivalent to 

 
( ) ( )

2

* opw
*

1

2

3

2

w

o

N

t s

Nt t t t
s



 




 

−
+

 +


 − − −
+

  (4.78) 

where ( )
opw

*t t+−  is given by  (4.76). From (4.63), (4.78) is equivalent to   

 
o     

where 

 
( )
22

o

  


  

+
=

+ +
  (4.79) 

o  represents the critical unit overtaking cost, below which the optimal tolling scheme should 

make the bottleneck fully utilized. Plugging (4.76) and (4.77) into 3 2w w

o ot t  gives 

 
E    (4.80) 

where 
E  is given in Proposition 4.2. The smaller one of 

o  and 
E  determines the optimality 

condition. The criticalness of 
o  and 

E  depends on   and  , and it is straight forward that 

b o  . The total cost under such a tolling scheme is given by  

( ) ( )overtaking * 1
1

2

EC

globe

N N N
TC N s t t

s s s

 
   
   

− 
= − − − − 

+ + 
 

 

Now, we consider the optimal toll window that satisfies 2w

ot t−= (on EC ) and 3 2w w

o ot t= (on EJ ), 

i.e., at E , then it holds that 
1 0U = , 

2 0U  , 
3 0U   and 

4 0U = , from (4.64) and (4.65), it 

requires 

 
( )

2

2 3*

2
0

CHJETC
U U

t t

    
  

   +

  + − +
+ − + = 

+ + −  
  (4.81) 

 
( )

( ) ( )
2

2 3*
1 0

CHJETC
U U

t t

  
   

 −

  + +
− − − + = 

+ −  
  (4.82) 

As the optimal toll window satisfies 2w

ot t−=  and 3 2w w

o ot t= , it can be easily solved as ( )*
E

t t+−  

and ( )*
E

t t− − . Plugging ( )*
E

t t+−  and ( )*
E

t t− −  into (4.81) and (4.82) can solve 
2U  and 

3U . 

The conditions 2 0U   is equivalent to E  , and 3 0U   is equivalent to condition    

( 1   ),  thus it holds E    .   is obtained by solving  

( )
( )

( )( )
( )

2 2

* *

1
2

CHJE CHJETC TC

t t t t
          

− +

 
 + + + −  + + + 

 −  −
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Due to the form of   is too complicated, thus omitted here. The total cost under such an optimal 

tolling scheme is given as 

( )( )

( )
( )overtaking

1 1

1 2

EN
TC N t t

s

 


   

− +
 + −

 = − − 
+ + − 

 

 

Now we consider the interior solutions. If the optimal toll window satisfies 1 2w w

o ot t , 2w

ot t− , 

3 2w w

o ot t  and 2globe w

o ot t , then it holds that 
1 0U = , 

2 0U = , 
3 0U =  and 

4 0U = . From (4.64) and 

(4.65), it can be acquired that 

 
( )*

0
CHJETC

t t+


=
 −

  (4.83) 

 
( )*

0
CHJETC

t t−


=

 −
  (4.84) 

Combining (4.83) and (4.84) can solve out the interior optimal toll window, the optimal toll 

window is given as  

( )
( )

( ) ( )

3 2 2 3 2 3

*

2 2

2 2 2 2opw N
t t

s

         


   

+
+ + + + − + +

− =
+ +

 

( )
( ) ( )

( ) ( )

2 2 2 2 2 2 3 2 2 3

*

2 2

2 2 5 2 2 3opw N
t t

s

               


   

−
− − + + + + + + + − − −

− = −
+ +

 

then plugging the solution into condition 1 2w w

o ot t  gives condition 
b  , and 2w

ot t−  gives 

condition 
o  , thus it holds 

o b    . Since 
b o  , according to Kuhn tucker condition, the 

interior solution cannot be the global optimal solution. It can be verified that no more feasible 

solution exists. 

 

Before giving the global optimal toll window, the criticalness among 
o , 

E  and 
b  needs to be 

analyzed. The criticalness among 
o , 

E  and 
b  determines the optimality conditions obtained 

from Kuhn tucker condition. Comparing the three critical unit overtaking costs (
o , 

E  and 
b ) 

results in two lines in the ( ),   two-dimensional space as shown in Figure 6. Specifically, 

2

2

1

1


 



−
=

+
 corresponds to o E = , and 

1

1


 



−
=

+
 corresponds to b E = . The criticalness 

among 
o , 

E  and 
b  is as given in Figure 4.6. 
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Figure 4.6. criticalness among 

o , 
E  and 

b   

 

Setting 
braking overtakingTC TC=  gives a critical unit overtaking cost denoted by ̂ , where 

( )( )

2

2ˆ

1
2

 


 





   

+
+

+
=

+ +
+ +

 

Comparing the optimal tolling schemes of equilibrium profiles shown in Figure 1 (i.e. no capacity 

waste exists, and all overtaking commuters have schedule late delay) and in Figure 4 (i.e. capacity 

waste only exists at t
−

, and  all overtaking commuters have schedule late delay), the unconstrained 

optimal tolling schemes (i.e., global optimal tolling scheme) is given in the following.  

 

If 

2

2

1

1


 



−


+
, then it holds b o E    , and 

E  does not need to be considered. According to 

Kuhn tucker condition, if 
b  , the optimal toll window is given by (4.76) and (4.77), and the 

optimal toll level is given by (4.32). This corresponds to equilibrium profile of the overtaking 

model without capacity waste in Figure 4.1 with 
ot t−=  , i.e., last overtaking commuter arrives at 

t−  and 
yt t+= , i.e., first toll payer arrives at t+ . If 

o  , according to Kuhn tucker condition, 

the optimal toll window is given by (4.69) and (4.70), and the optimal toll level can be obtained 

by making use of (4.12), (4.42) and (4.46). This corresponds to the equilibrium profile of the 

overtaking model with capacity waste given in Figure 4.4 with 
o z bt t t= = , i.e., no commuter has 

incentive to overtake and 
yt t+= , i.e., first toll payer arrives at t+ . The overtaking model just 

reduces to the braking model.  If b o    , the optimal total cost is determined by the smaller 

one of 
brakingTC  and 

overtakingTC . If ˆ  , then 
braking overtakingTC TC . If ˆ  , then 

braking overtakingTC TC . From the Kuhn tucker condition, if 
b  , it holds 

braking overtakingTC TC , 
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and if 
o  , it holds 

braking overtakingTC TC . Either ˆ
b   or ˆ

o   will contradict with the 

Kuhn tucker condition, thus it must hold ˆ
b o    , which shows that if ˆ0,  

 
, the optimal 

total cost is 
overtakingTC , and if ( )ˆ,1  , the optimal total cost is 

brakingTC . Condition E     

does not need to be considered, since if E  , this condition is invalid. If E  , as 
overtakingTC  

and overtakingTC   both increases with k , at 
E , it holds overtaking overtakingTC TC = , and for 

o  , it 

holds 
braking overtakingTC TC , then overtakingTC   cannot be the optimal solution.  

 

If 
2

2

1 1

1 1

 
  

 

− −
 

+ +
, it holds 

b E o    , then 
o  does not need to be considered. For 

b  , 

overtakingTC  is the optimal solution. For 
b E    , the smaller one of 

brakingTC  and 
overtakingTC  is 

the optimal solution. If ˆ
E  , then for  0, E  , 

overtakingTC  is the optimal solution. If ˆ
E  , 

then for ˆ0,  
 

, the optimal total cost is 
overtakingTC , and for ( )ˆ,1  , the optimal total cost is 

brakingTC . If E  , for   , 
brakingTC  is the optimal solution. For E    , the smaller one 

of 
brakingTC  and overtakingTC   is the optimal solution. If E  , then condition E     is invalid, 

thus for ( ),1E  , 
brakingTC  is the optimal solution. 

 

If 
1

1


 



−


+
, it holds 

E b o    , then 
o  does not need to be considered. According to the 

Kuhn tucker condition, it must hold b  . For 
E  , the optimal total cost is 

overtakingTC . For 

E b    , the optimal total cost is overtakingTC  , the optimal toll window is given by (4.33) and 

(4.34), namely the toll window corresponding to E  in Figure 4.5. The optimal toll level is given 

by (4.37). The equilibrium profile is the overtaking model without capacity waste given by Figure 

4.1 with 
ot t−=  and 

yt t+= . For   , 
brakingTC  is the optimal solution. For b    , the 

smaller one of 
brakingTC  and overtakingTC   is the optimal solution. 

 

In summary, for small unit overtaking cost, the optimal tolling scheme is featured by the overtaking 

model’s equilibrium profile where the first toll payer arrives at t+ , the last overtaking commuter 

arrives at t− , and no capacity waste exists; for large unit overtaking cost, the optimal tolling 

scheme is to set the toll high enough to prevent users from overtaking, because from system cost 

perspective, it is better to make commuters braking instead of overtaking (i.e., the toll is pushed to 

critical level to make no commuter overtake). This is because reducing overtaking cost is more 

beneficial for system when unit overtaking cost is high. Although the wasted tolling period can be 
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fully utilized through lowering the toll to make commuters overtake, the system cost will be 

increased by doing so. 

 

 

4.7. Conclusion 

 

In this chapter, a new “overtaking model” is developed to study the coarse tolling problem during 

morning peak hour. The overtaking behavior is featured by that the toll payers can overtake those 

braking commuters (toll non-payers) to take advantage of the tolling period to pay toll to pass the 

bottleneck. Such overtaking behavior can easily be observed in the morning commute period. The 

overtaking behavior is incurred a constant unit cost. The optimal tolling scheme is investigated 

based on equilibrium profile with capacity waste and without capacity waste. Unlike ADL and 

Laih model, in overtaking model, tolling scheme causing capacity waste could be better than 

tolling scheme without capacity waste. It is found that, the optimal tolling scheme is affected by 

the unit overtaking cost and one critical unit overtaking costs are defined. If the unit overtaking 

cost is small, the optimal tolling scheme is featured by that the first toll payer arrives at t+ , the last 

overtaking commuter arrives at t− , and no capacity waste exists. If the unit overtaking cost is high, 

the optimal tolling scheme makes no commuter want to overtake, and only braking behavior exists. 

Thus, the overtaking model reduces to the braking model. 
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CHAPTER 5 

 

 

TOLL ROAD PROFIT MAXIMIZATION UNDER MIXED TRAVEL BEHAVIORS OF 

CARS AND TRUCKS 

 

 

The previous two chapters investigates the problem of bottleneck coarse tolling. In the scenario of 

bottleneck model, the purpose of road pricing is to minimize traveller’ total system cost to reduce 

traffic congestion, which serves the government to maintain traffic volume. Meanwhile, road 

pricing can also serve as a way of infrastructure financing. For example, the government usually 

finance the construction and maintenance of a public road by charging tolls, so understanding how 

to achieve road profit maximization is necessary for government to effectively operate and manage 

roads. On the other hand, if government has budget constraint, it will authorize a private firm to 

construct and operate a road. Private toll roads are built by the firm to charge toll for revenue for 

a period until the franchise expires or the government debt is retired. After the debt is retired, the 

franchise of the road is turned back to government control. Profit maximization is typically the 

goal of a private firm, so for the government, understanding the profit-oriented behavior of the 

firm is necessary for choosing suitable regulations. Motivated by these considerations, we conduct 

this research of toll road profit maximization by considering mixed travel behavior of cars and 

trucks. 

 

This chapter extended Guo and Xu (2016) by considering mixed travel behaviors of cars and trucks 

in that trucks choose routes deterministically (i.e., choose the route with the lowest actual cost), 

while cars follow stochastic user equilibrium in route choice (i.e., choose the route with the lowest 

perceived cost). This setup is realistic insofar as truckers, because of their commercial nature, are 

very sensitive to trip costs and tend to have much lower perception errors than passenger car drivers. 

We derive the equilibrium flow pattern under any combination of car-toll and truck-toll, and 

identify an integrated equilibrium range within which each road is used by both cars and trucks. 

We find that, depending on the per-truck pavement damage cost, the firm may take a car-strategy, 

a truck-strategy, or a car-truck mixed strategy. The perception error of car users, the VOT and 

traffic demand of cars and trucks are critical in determining different profit-maximizing strategy.  

 

 

5.1. Model introduction 

 

Consider two roads or links, link 1 and link 2, connecting one origin and one destination, where 

link 1 is a private toll road and link 2 is a free public road. There are two groups of vehicles, cars 

and trucks, indexed by ,g L H= , where L  and H  represent cars (light vehicles) and trucks 

(heavy vehicles), respectively. Total travel demands of cars and trucks are fixed, and denoted 
Lv  

and Hv  respectively. Let giv  be the traffic volume of group g  on link i , ,g L H= , 1,2i = , where 

1 2g g gv v v+ = , ,g L H= . If n  is the congestion PCE of trucks, then the total PCE units on link i  
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is 
i Li HiN v nv= + , 1,2i = . Let ( )gi it N  be the travel time of group g  on link i , which is assumed 

to be an increasing and continuously differentiable function of 
iN . Let 

L  be the logit-model 

parameter that measures the perception error of car users . The perception error decreases with 
L

, so a large value of 
L  corresponds to a small perception error. Let 

LP  and 
HP  be the tolls charged 

on cars and trucks, respectively, and 
L  and 

H  be their values of time (VOT). The equilibrium 

conditions are 

 ( ) ( )1 1 2 2
H

H H

H

P
t N t N


+  , if 

1 0Hv   (5.1) 

 ( ) ( )1 1 2 2
H

H H

H

P
t N t N


+  , if 

2 0Hv   (5.2) 
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e
v v

e e





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 
− + 

 

 
− + 
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=

+

 (5.3) 
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( )
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2 2

1 1
2 2

2

L L

L
L L

L L L

t N

L L P
t N

t N

e
v v

e e




 

−

 
− + 

− 

=

+

 (5.4) 

 1 2g g gv v v+ = , ,g L H=  (5.5) 

 
Li Hi iv nv N+ = , 1,2i =  (5.6) 

 0giv  , ,g L H= , 1,2i =  (5.7) 

Condition (5.1) stipulates that, if link 1 is used by trucks in equilibrium, then the generalized travel 

time (including toll) of link 1 for trucks must not exceed the travel time of link 2. Condition (5.2) 

is interpreted similarly. Condition (5.3) and (5.4) stipulate that, the car users follow logit-based 

stochastic user equilibrium. In this paper, logit model is adopted to represent the route choice 

probability of car users. As the model shows, no matter how high car toll is charged, there are 

always cars on link 1. For a given car toll, if 
L  increases to positive infinity, car users will have 

no perception error and follow deterministic user equilibrium, namely, choosing the route with 

shortest travel time. If 
L  is zero, namely, the perception error of cars users is infinitely large, 

there are always half amount of cars on link1 and the other half on link 2, regardless of the toll 

level. 

 

The differences and connections between our model and that of Guo and Xu (2016) are as follows.  

Both models feature two parallel links connecting one OD pair, two user types with fixed total 

demands, and deterministic user equilibrium to describe truck users’ route choice. The major 

difference is that, in this paper, car users follow stochastic user equilibrium, which means that, car 

users do not have to always choose the shortest path. The perception error of car users can play a 

significant role in their decision making of route choice, hence further affecting truck users’ route 

choice decisions. 
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5.2 The integrated equilibrium 

 

Following Arnott et al. (1992) and de Palma et al. (2008), we refer to the user equilibrium as an 

integrated equilibrium if both cars and trucks use each road, i.e., if 0giv  , ,g L H= , 1,2i = . An 

integrated equilibrium can occur only if conditions (5.1) and (5.2) both hold as equalities for truck 

users. Since car users follow stochastic user equilibrium, there are always cars on both link 1 and 

link 2. Let L HN v nv= +  denote the total PCE units in the network where 1 2N N N+ = , and Lv  

and Hv  are given. For any 
LP  and 

HP , condition (5.8)-(5.10) uniquely determines the flow pattern 

of cars and trucks: 

 ( ) ( )1 1 2 2
H

H H

H

P
t N t N


+ =  (5.8) 

 
( ) ( )1 1 2 2

1

1

1

L
L L L

L

L L P
t N t N

v v

e




 
+ − 

 

=

+

 (5.9) 

 1 1
1

L
H

N v
v

n

−
=  (5.10) 

Condition (5.8) is the integrated equilibrium condition for trucks. From (5.8), we can see that 
1N  

is a function of 
HP . Given 

HP , the total traffic flow on link 1 is uniquely determined. We can 

further obtain that 

( ) ( )
1

1 1 2 2

1

H H H H

dN

dP t N t N
= −

 +  
 

It is straightforward that 
1 HdN dP  is less than zero, so 

1N  is a decreasing function of
HP . From 

(5.9) and (5.10), it is easy to see that, 
1Lv  and 

1Hv  are both functions of 
LP  and 

HP . If we denote  

( ) ( )1 1 2 2

1

L
L L L

L

P
t N t N

A e




 
+ − 
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from (5.9), we can obtain that 
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From (5.10) we can obtain that 

( ) ( ) ( ) 1
1 1 2 2

1 1
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1
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L L L

H H
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dN
A t N t N

v dN dP
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( )
1

2

1
1 L

H L
L

L

A
v

v
P nA




−


=


 

It is obvious that we have 
1 0L Hv P   , 

1 0L Lv P   , 
1 0H Hv P    and 

1 0H Lv P   . These 

tell us that, given the car toll, the flow of cars increases with truck toll but the flow of trucks 

decreases with it. Given the truck toll, the flow of trucks increases with car toll but the flow of cars 

decreases with it. 

 

 

5.3. The critical pricing curves for trucks ( )crit1

H LP f P=  and ( )crit2

H LP g P=  

 

Under the integrated equilibrium, given the car toll, the flow of trucks decreases with truck toll. 

Since the maximum flow of trucks on link 1 is 
Hv  and minimum flow is zero, there must exist two 

critical toll levels for trucks. For a given 
LP , under condition (5.8)-(5.10), we define that, 

1H Hv v=  

under crit1

HP , and 
1 0Hv =  under crit2

HP . Obviously crit1 crit2

H HP P . Namely, crit1

HP  is the truck toll that 

attracts all trucks to link 1 and crit2

HP  is the truck toll that drives away all trucks to link 2. We use 

crit1

1Lv  and crit2

1Lv  to denote the flow of cars on link1 under crit1

HP  and crit2

HP , respectively. Based on 

(5.8) and (5.9), we can obtain the following equations: 
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H

P
t v nv t v v


+ + = −  (5.11) 

( ) ( )crit1 crit1
1 1 2 1

crit1

1

1

1

L
L L L H L L L

L

L L P
t v nv t v v

v v

e




 
+ + − − 

 

=

+

 

 ( ) ( )
crit2

crit2 crit2

1 1 2 1
H

H L H L L H

H

P
t v t v v nv


+ = − +  (5.12) 

( ) ( )crit 2 crit 2
1 1 2 1

crit2

1

1

1

L
L L L L L L H

L

L L P
t v t v v nv

v v

e




 
+ − − + 

 

=

+

 

We can see that, cirt1

HP  and crit2

HP  are both functions of 
LP . We use ( )crit1

H LP f P=  and  

( )crit2

H LP g P=  to represent the critical pricing curves for trucks. In the ( ),L HP P  two-dimensional 

space, a toll pair ( ),L HP P  where crit1 crit2

H H HP P P   gives an integrated equilibrium. Any truck toll 

that falls out of this range gives a non-integrated equilibrium for truck users. If crit1

H HP P , all 

trucks use link 1. If crit2

H HP P , all trucks use link 2. If we denote  

( ) ( )crit1 crit1
1 1 2 1

1

L
L L L H L L L

L

P
t v nv t v v

B e




 
+ + − − 

 = +  
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( ) ( )crit 2 crit 2
1 1 2 1

1

L
L L L L L L H

L

P
t v t v v nv

C e




 
+ − − + 

 = +  

we can obtain that  

( ) ( ) ( )

( ) ( ) ( )

crit1 crit1

1 1 2 1crit1

2 crit1 crit1

1 1 2 1

1

1

H
L L H L H H L L

H L

L L L L L H L L L

v B t v nv t v v
dP

dP B v B t v nv t v v








  − + + −
 

=
  + − + + −
 

 

( ) ( ) ( )

( ) ( ) ( )

crit2 crit2

1 1 2 1crit2

2 crit2 crit2

1 1 2 1

1

1

H
L L H L H L L H

H L

L L L L L L L L H

v C t v t v v nv
dP

dP C v C t v t v v nv








  − + − +
 

=
  + − + − +
 

 

We can see that, crit1

H LdP dP  and crit2

H LdP dP  are both greater than zero, so both ( )Lf P  and ( )Lg P  

are increasing functions of 
LP . Figure 5.1 shows these two critical pricing curves in the ( ),L HP P  

two-dimensional space. 

 
Figure 5.1 two critical pricing curves for trucks 

 

As shown by Figure 5.1, the area between the two curves are the integrated equilibrium area. Any 

points outside gives a non-integrated equilibrium for truck users. From (5.11) and (5.12), it can be 

further seen that, ( )Lf P  and ( )Lg P  both have two asymptotic lines. For ( )Lf P , we have 

( ) ( ) ( ) ( ) ( )2 1 2 10H H H L H H L H Ht t N f P t v t nv −   −        

This means that, curve ( )crit1

H LP f P=  is always between line ( ) ( )2 10H H H HP t t N= −    and line  

( ) ( )2 1H H H L H HP t v t nv= −   . With LP  increasing, the value of crit1

HP  will be infinitely 

approaching ( ) ( )2 1H H L H Ht v t nv −   . With LP  decreasing, the value of crit1

HP  will be infinitely 

approaching ( ) ( )2 10H H Ht t N −   . For ( )Lg P , we have 

( ) ( ) ( ) ( ) ( )2 1 2 1 0H H H H L L H H Ht nv t v g P t N t −   −        
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This means that, curve ( )crit2

H LP g P=  is always between line ( ) ( )2 1H H H H H LP t nv t v= −    and 

line ( ) ( )2 1 0H H H HP t N t= −   . With 
LP  increasing, the value of crit2

HP  will be infinitely 

approaching ( ) ( )2 1 0H H Ht N t −   . With 
LP  decreasing, the value of crit2

HP  will be infinitely 

approaching ( ) ( )2 1H H H H Lt nv t v −   . The position of these four asymptotic lines depend on the 

value of 
Lv  and 

Hnv , if 
L Hv nv , we have ( ) ( ) ( ) ( )2 1 2 1H H L H H H H H H Lt v t nv t nv t v −  −       , 

so the upper asymptotic line of ( )Lf P  is above the lower asymptotic line of ( )Lg P ; if 
L Hv nv , 

we have ( ) ( ) ( ) ( )2 1 2 1H H L H H H H H H Lt v t nv t nv t v −  −       , so the upper asymptotic line of 

( )Lf P  is below the lower asymptotic line of ( )Lg P . Since we assume that ( ) ( )2 10H Ht t N  and 

( ) ( )2 1 0H Ht N t , the upper asymptotic line of ( )Lg P  is always above the lower asymptotic line 

of lower asymptotic line ( )Lf P .  

 

 

5.4. Profit maximization by the private toll road 

 

In this section we examine the profit-maximizing behavior of the firm that operates link 1. Let Hm  

be the pavement damage cost (road maintenance cost) caused by one truck using link 1 so that 

1H Hm v  is the total pavement damage cost caused by trucks. Because one heavy truck causes 

thousands of times as much pavement damage as a passenger car (see, e.g., Holguín-Veras and 

Cetin, 2009, Table 6), we ignore the pavement damage cost caused by cars. For simplicity, we 

assume that pavement quality is kept constant by immediately repairing any damage. The firm's 

profit maximization problem is given by 

( ) ( )1 1
,

max ,
L H

L H L L H H H
P P

P P P v P m v = + −  

subject to ( )1 1,L Hv v  satisfying equilibrium conditions (5.1)-(5.7) under ( ),L HP P  

 

Lemma 5.1: The maximum profit is attained by a toll pair ( ),L HP P  satisfying cirt1 crit2

H H HP P P  , 

where ( )crit1

H LP f P=  and ( )crit2

H LP g P= . 

Proof: For a toll pair ( ),L HP P  such that crit2

H HP P , we have 1 0Hv =  and crit2

1 1L Lv v= . Note that we 

also have 
1 0Hv =  and crit2

1 1L Lv v=  under ( )crit2,L HP P , we readily have ( ) ( )crit2, ,L H L HP P P P =  . For 

a toll pair ( ),L HP P  such that crit1

H HP P , we have 1H Hv v= , crit1

1 1L Lv v= . Note that we also have  

1H Hv v=  and crit1

1 1L Lv v=  under ( )crit1,L HP P , we readily have ( ) ( )crit1, ,L H L HP P P P  . This 

completes the proof. 

 

With Lemma 5.1, the profit-maximization problem can be converted to the following form: 
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( ) ( )1 1
,

max ,
L H

L H L L H H H
P P

P P P v P m v = + −  

subject to ( )1 1,L Hv v  satisfying integrated equilibrium conditions (5.8)-(5.10) under ( ),L HP P  

cirt1 crit2

H H HP P P    

( )crit1

H LP f P= , ( )crit2

H LP g P=  

The Kuhn-Tucker condition is used to solve this problem.  

Let ( ) ( ) ( ) ( )1 2

1 2 1 1 1 2, , , crit crit

L H L L H H H H H H HL U U P P P v P m v U P P U P P= − − − + − + − , the optimal toll 

levels ( )* *,L HP P  satisfies 

0
L

L

P


=


, 0

H

L

P


=


 

1 * 2crit crit

H H HP P P   

( )1 *

1 0crit

H HU P P− =  

( )* 2

2 0crit

H HU P P− =  

1 0U  , 
2 0U   

Using the Kuhn-Tucker conditions to solve the problem, we obtain two critical levels of pavement 

damage cost, 
1Hm  and 

2Hm , given by 

( ) ( ) ( ) ( )

( ) ( )

crit1* crit1* crit1* crit1* crit1*

1 2 1 1 1 1 1 1 2 1

crit1* crit1*

1 1 2 1

H H H L L H L H L L L L H L L L

H H H L H H L L

m t v v t v nv v n t v nv t v v

v n t v nv t v v

 



   = − − + − + + −
   

  − + + −
 

(5.13) 

where crit1*

1Lv  solves 

 

( ) ( ) ( ) ( )

( ) ( )

crit1*

1

crit1* crit1*

1 1

crit1* crit1* crit1* crit1* crit1*

1 1 2 1 1 1 1 2 1

crit1* crit1*

1 1 2 1

ln L L L

L L L

L

L L H L L L L L L H L L L

H
H H L H H L L

L

v v v

v v v

t v nv t v v v t v nv t v v

v t v nv t v v







 −
− 

− =
   + − − + + + −
   
 

  + + + − 
   

 (5.14) 

 
( ) ( )

( ) ( )

crit 2* crit 2*

2 2 1 1 1

crit2* crit2* crit 2*

1 1 1 2 1

H H H L L H H L

L L L L L L L H

m t v v nv t v

v n t v t v v nv





 = − + −
 

  − + − +
 

 (5.15) 

where crit2*

1Lv  solves  

 

( ) ( ) ( ) ( )

crit2*

1

crit2* crit2*

1 1

crit2* crit2* crit2* crit2* crit2*

1 1 2 1 1 1 1 2 1

ln L L L

L L L

L

L L L L L H L L L L L L H

v v v

v v v

t v t v v nv v t v t v v nv


 −
− 

− =
  − − + + + − +
 

 (5.16) 
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The optimal solution is summarized in the following proposition. 

 

Proposition 5.1.  The optimal toll pair ( )* *,L HP P  satisfies 

(a) If 
1H Hm m , we have ( )* *

H LP f P=  and   

 
( )

( ) ( )

( ) ( )

* crit1* crit1* crit1*

1 1 1 2 1crit1*

1

crit1* crit1*

1 1 2 1

L L
L L L L L H L L L

L L L

H H H L H H L L

v
P v t v nv t v v

v v

v t v nv t v v








  = + + + −
 −

  + + + −
 

( ) ( )* crit1* crit1*

2 1 1 1H H H L L H L HP t v v t v nv  = − − +
 

 

(b) If 
2H Hm m , we have ( )* *

H LP g P=  and  

( )
( ) ( )* crit 2* crit 2* crit 2*

1 1 1 2 1crit 2*

1

L L
L L L L L L L L H

L L L

v
P v t v t v v nv

v v





  = + + − +
 −

 

( ) ( )* crit2* crit2*

2 1 1 1H H H L L H H LP t v v nv t v  = − + −
 

 

(c) If 
1 2H H Hm m m  , we have ( ) ( )* * *

L H Lf P P g P   and  

( )
( ) ( ) ( ) ( )* * * * * * *

1 1 1 2 2 1 1 1 2 2*

1

L L
L L L L L H H H H

L L L

v
P v t N t N v t N t N

v v


 


      = + + + +
   −

 

( ) ( ) ( ) ( )* * * * * * *

1 1 1 2 2 1 1 1 2 2H H L L L L H H H HP m v n t N t N v n t N t N       = + + + +
   

 

* * *

1 1 1L HN v nv= + , * *

2 1N N N= −   

crit1*

1Lv  is the flow of cars on link 1 at the optimal solution if the optimal ( )* *,L HP P  is on curve 

( )crit1

H LP f P= . It is straightforward that we have 
1H Hv v= . 

1Hm  can be viewed as a truck-strategy 

taking criterion for the firm. If 
1H Hm m , the firm should take truck-strategy. It is easy to see that, 

if link 1 is much longer than link 2, we have ( ) ( )crit1* crit1*

2 1 1 1H L L H L Ht v v t v nv−  + , which leads to 

1 0Hm  . Since in real world the pavement damage cost can never be negative, under this 

circumstance, the truck-strategy will never be used. 

 
crit2*

1Lv  is the flow of cars on link 1 at the optimal solution if the optimal ( )* *,L HP P  is on curve 

( )crit2

H LP g P= . It is straightforward that we have 
1 0Hv = . 

2Hm  can be viewed as a car-strategy 

taking criterion for the firm. If 
2H Hm m , the firm should take car-strategy. It can be seen that, if 

link 1 is much longer than link 2, we have ( ) ( )crit2* crit2*

2 1 1 1H L L H H Lt v v nv t v− +  , which leads to 

2 0Hm  . Since in real world, the pavement damage cost is positive, under this circumstance, car 

strategy will always be used. 
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*

1Lv  and *

1Hv  are the flows of cars and trucks on link1 at the optimal solution if the optimal ( )* *,L HP P  

is between curve ( )crit1

H LP f P=  and curve ( )crit2

H LP g P= . It is straightforward that we have 

1 0Hv   and 
1 0Lv  .  If 

1 2H H Hm m m  , the firm should take a car-truck mixed strategy. 

 

 

5.5. Impact of perception error on profit-maximizing strategy 

 

In this section, we will analyze how the perception error of car users can impact the profit-

maximizing strategy for the firm. As mentioned in the first section, the perception error decreases 

with 
L . The profit-maximizing strategy is determined by 

1Hm  and 
2Hm . From (5.14), with other 

parameters 
Lv , 

Hv , 
L  and 

H  given, crit1*

1Lv  can be seen as a function of 
L , namely, given  

L , 

we can solve crit1*

1Lv . From (5.13), 
1Hm  can be seen as a function of crit1*

1Lv . With the value of crit1*

1Lv , 

the value of 
1Hm  can be obtained, so 

1Hm  is actually a function of 
L . 

2Hm  can be interpreted 

similarly.   

In (5.14), denote 

( ) ( ) ( ) ( )crit1* crit1* crit1* crit1* crit1*

1 1 1 2 1 1 1 2 1
H

L L L H L L L H H L H H L L

L

D v t v nv t v v v t v nv t v v



      = + + − + + + −
   

 

We assume D  increases with crit1*

1Lv , i.e., crit1*

1 0LdD d v  . crit1*

1LdD d v  is obtained as: 

( ) ( ) ( ) ( )

( ) ( )

crit1* crit1* crit1* crit1* crit1*

1 1 2 1 1 1 1 2 1crit1*

1

crit1* crit1*

1 1 2 1

L L H L L L L L L H L L L

L

H
H H L H H L L

L

dD
t v nv t v v v t v nv t v v

dv

v t v nv t v v




    = + + − + + − −
 

  + + − −
 

 

In (5.16), denote  

( ) ( )crit2* crit2* crit2*

1 1 1 2 1L L L L L L HE v t v t v v nv  = + − +
 

 

Similarly, we assume E  increases with crit2*

1Lv , i.e., crit2*

1 0LdE d v  . crit2*

1LdE d v  is obtained as: 

( ) ( ) ( ) ( )crit2* crit2* crit2* crit2* crit2*

1 1 2 1 1 1 1 2 1crit2*

1

L L L L L H L L L L L L H

L

dE
t v t v v nv v t v t v v nv

dv
    = + − + + − − +
 

 

The assumptions made for D  and E  hold if BPR link travel time function is adopted. With these 

assumptions, it is easy to obtain that crit1*

1 1 0H Ldm dv   and crit2*

2 1 0H Ldm dv  . From (5.13)-(5.16), 

we can obtain the following proposition. 

 

Proposition 5.2. As 
L  increases from zero to infinity, 

(a) the firm is more likely to take either car-strategy or truck-strategy but less likely to take mixed-

strategy if link 2 is long and truck-to-car VOT ratio is high. 

(b) the firm is more likely to take car-strategy if link 2 is long and truck-to-car VOT ratio is low. 

(c) the firm is more likely to take truck-strategy if link 2 is short. 
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Proof: In (5.14) and (5.16), denote  

( ) ( ) ( ) ( )

( ) ( )

crit1* crit1* crit1* crit1* crit1*

1 1 2 1 1 1 1 2 1

crit1* crit1*

1 1 2 1

L L H L L L L L L H L L L

H
H H L H H L L

L

A t v nv t v v v t v nv t v v

v t v nv t v v




   = + − − + + + −
 

  + + + −
 

 

( ) ( ) ( ) ( )crit2* crit2* crit2* crit2* crit2*

1 1 2 1 1 1 1 2 1L L L L L H L L L L L L HB t v t v v nv v t v t v v nv   = − − + + + − +
 

 

crit1*

1

crit1* crit1*

1 1

ln L L L

L L L

v v v
C

v v v

 −
 = − 

− 
 

crit2*

1

crit2* crit2*

1 1

ln L L L

L L L

v v v
D

v v v

 −
 = − 

− 
 

It can be seen that, A  is an increasing function of crit1*

1Lv , B  is an increasing function of crit2*

1Lv , C  

is a decreasing function of crit1*

1Lv   and D  is a decreasing function of crit2*

1Lv . Since 
L  is greater than 

zero, A  and Cmust have the same positive or negative sign, so do B  and D . If crit1*

1Lv  or crit2*

1Lv  

is approaching zero, the value of C  or D is approaching plus infinity. If crit1*

1Lv  or crit2*

1Lv  is 

approaching 
Lv , the value of C  or D is approaching minus infinity. We further assume 

( ) ( )1 20L Lt t N  and ( ) ( )1 2 0L Lt N t , so the minimum value of B  is always less than zero and the 

maximum value of A  is always greater than zero. Based on the minimum value of A  and 

maximum value of B , we can obtain the sign of the numerator and denominator of 
L . There are 

totally eight scenarios. The minimum value of A  and maximum value of B  can be acquired as 

( ) ( ) ( ) ( )1 2 1 2min H
L H L L H H H H L

L

A t nv t v v t nv t v



   = − + +
 

 

( ) ( ) ( ) ( )1 2 1 2max L L L H L L L L HB t v t nv v t v t nv   = − + +
 

 

Scenario one: 

min 0A  , max 0B   

Scenario two: 

min 0A  , max 0B  . In C A  , with crit1*

1Lv  increasing from zero to 
Lv , A  equals zero first. 

Scenario three: 

min 0A  , max 0B  . In D B  , with crit2*

1Lv  increasing from zero to Lv , D  equals zero first. 

Scenario four: 

min 0A  , max 0B  . In C A  , with crit1*

1Lv  increasing from zero to Lv , A  equals zero first. In 

D B  , with crit2*

1Lv  increasing from zero to 
Lv , D  equals zero first. 

Scenario five: 

min 0A  , max 0B  . In C A  , with crit1*

1Lv  increasing from zero to 
Lv , C  equals zero first. 

Scenario six: 
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min 0A  , max 0B  . In C A  , with crit1*

1Lv  increasing from zero to 
Lv , C  equals zero first. In 

D B  , with crit2*

1Lv  increasing from zero to 
Lv , D  equals zero first. 

Scenario seven: 

min 0A  , max 0B  . In D B  , with crit2*

1Lv  increasing from zero to 
Lv , B  equals zero first. 

Scenario eight: 

min 0A  , max 0B  . In C A  , with crit1*

1Lv  increasing from zero to 
Lv , A  equals zero first. In 

D B  , with crit2*

1Lv  increasing from zero to 
Lv , B  equals zero first. 

In scenario one to four, we have 0A   and 0B  . With 
L increasing, 

2Hm decreases and 
1Hm

increases, meaning that the space of using car-strategy or truck-strategy is becoming bigger but 

the space of using car-truck mixed strategy is becoming smaller. In terms of link distance, 0A   

and 0B   implies that link 2 is long and truck-to-car VOT ratio is high. Under this circumstance, 

as 
L  increases, the firm is more likely to take either car-strategy or truck-strategy but less likely 

to take mixed-strategy. 

 

In scenario five and six, we have 0A   and 0B  . With 
L increasing, 

1Hm  and 
2Hm  both 

decrease, implying that the space of using car-strategy is becoming bigger but the space of using 

truck-strategy is becoming smaller. In terms of link distance, 0A   and 0B   implies that link 2 

is long and truck-to-car VOT ratio is low. Under this circumstance, as 
L  increases, the firm is 

more likely to take car-strategy. 

 

In scenario seven and eight, we have 0A   and 0B  . With 
L increasing, 

1Hm  and 
2Hm  both 

increase, implying that the space of using truck-strategy is becoming bigger but the space of using 

car-strategy is becoming smaller. In terms of link distance, 0A   and 0B   implies that link 2 is 

short. Under this circumstance, as 
L  increases, the firm is more likely to take truck-strategy. This 

completes the proof. 

 

We can see that, the perception error plays an important role in firm’s decision making of which 

strategy to choose. Under different circumstances, with different perception error, the firm’s 

likelihood of taking each strategy is different.  

 

 

5.6. Impact of L  and 
H  on profit-maximizing strategy 

 

In this section, we will discuss how the VOTs of car and truck users affect the profit-maximizing 

strategy. It is straightforward that, if a traveler’s VOT is large, she will be more time sensitive and 

thus more likely to choose the shorter path. In (5.14) and (5.16), given other parameters such as 

Lv , Hv  and L , crit1*

1Lv  can be seen as a function of L  and H  but crit2*

1Lv  is not related with either 
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L  or 
H . Based on (5.13) and (5.15), 

1Hm  and 
2Hm  can both be seen as functions of 

L  and 

H . 

 

From (5.14) we can obtain that 

( ) ( )

( ) ( )
( ) ( )

2 crit1* crit1*
crit1*

1 1 2 1
1

crit1* crit1*

1 1 2 12 crit1*crit1* crit1* crit1*
11 1 1

1

L H H H L H H L L
L

L
L L

L L H L L L

L LL L L L L

v t v nv t v vv

v v dD
t v nv t v v

dvv v v v v

 





−   + + −  =
  

  + + + + − +
 − −
 

 

It is obviously that we have crit1*

1 0L Lv    .  From (5.13), we can acquire that  

( ) ( )

( ) ( )

crit1*
crit1* crit1*1 1

1 1 2 1

crit1*
crit1* crit1* crit1* 1
1 1 1 2 1 crit1*

1

H L
H H L H H L L

L L

L
L L L H L L L L

L L

m v
t v nv t v v

v dD
nv t v nv t v v n

dv


 




    = − + + −
  

  − + + − −
  

 

which readily gives us 
1 0H Lm    . This tells us that, given 

H , 
1Hm  decreases with 

L , which 

means the space of taking truck-strategy is decreasing. For the VOT of truck users, from (5.14), 

we can obtain that 

( ) ( )

( ) ( )
( ) ( )

crit1* crit1*

1 1 2 1crit1*

1

crit1* crit1*

1 1 2 12 crit1*crit1* crit1* crit1*
11 1 1

1

H
H L H H L L

L L

H
L L

L L H L L L

L LL L L L L

v
t v nv t v v

v

v v dD
t v nv t v v

dvv v v v v







  − + + −
 

=
  

  + + + + − +
 − −
 

 

 

It is obviously that we have crit1*

1 0L Hv    . From (5.13), we can acquire that 

( ) ( ) ( ) ( )

( ) ( )

crit1* crit1* crit1* crit1*1
2 1 1 1 1 1 2 1

crit1* crit1*
crit1* crit1*1 1

1 1 2 1 crit1*

1

H
H L L H L H H H L H H L L

H

L L
H H L H H L L L

H H L

m
t v v t v nv nv t v nv t v v

v v dD
t v nv t v v n

dv



 
 

   = − − + − + + −
 

   − + + − −
  

    

If it holds  

( ) ( ) ( ) ( )crit1* crit1* crit1* crit1*

2 1 1 1 1 1 2 1 0H L L H L H H H L H H L Lt v v t v nv nv t v nv t v v  − − + − + + − 
 

 

based on (5.13), we have 1 0Hm  , so truck-strategy will never be adopted. If 1 0Hm  , or namely, 

truck-strategy can be used, it always holds that 

( ) ( ) ( ) ( )crit1* crit1* crit1* crit1*

2 1 1 1 1 1 2 1 0H L L H L H H H L H H L Lt v v t v nv nv t v nv t v v  − − + − + + − 
 

 

which readily gives us 1 0H Hm    . This tells us that given L , 
1Hm  increases with H , which 

means the space of taking truck-strategy is increasing. 
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Since crit2*

1Lv  is not related with either 
L  or 

H , we only need to consider 
2Hm . From (5.15), it is 

easy to obtain that 

( ) ( )crit2* crit2* crit2*2
1 1 1 2 1

H
L L L L L L H

L

m
nv t v t v v nv



   = − + − +
 

 

( ) ( )crit2* crit2*2
2 1 1 1

H
H L L H H L

H

m
t v v nv t v




= − + −


 

It is straightforward that 
2 0H Lm    , which means that, given 

H , 
2Hm  decreases with 

L , 

so the space of taking car-strategy is increasing. If ( ) ( )crit2* crit2*

2 1 1 1H L L H H Lt v v nv t v− +  , 
2 0Hm  , so 

car-strategy will always be used. If 
2 0Hm  , we will have 

2 0H Hm    , which means that given 

L , 
2Hm  increases with 

H , so the space of taking car-strategy is decreasing. We readily have 

the following proposition: 

 

Proposition 5.3. If 
1 0Hm   and 

2 0Hm  , 

(a) Given 
H , 

1Hm  and 
2Hm  both decrease with 

L . 

(b) Given 
L , 

1Hm  and 
2Hm  both increase with 

H . 

 

Under Proposition 5.3(a), the firm is more likely to take car-strategy. Under Proposition 5.3(b), 

the firm is more likely to take truck-strategy. 

 

 

5.7. Impact of 
Lv  on profit-maximizing strategy 

 

In this section we will discuss how the proportion of car users impact the firm’s profit-maximizing 

strategy. The total PCE units in the network N  is fixed. We have ( )H Lv N v n= − . From (5.14) 

and (5.16), with other parameters 
L , 

L  and 
H  given, crit1*

1Lv  and crit2*

1Lv  can both be seen as 

functions of 
Lv . Similarly, 

1Hm  and 
2Hm  can also be seen as functions of 

Lv . 

 

From (5.14), we can obtain that 

( ) ( )
( ) ( )

( ) ( )
( )

crit1*
crit1* crit1* 1

1 1 2 1 2crit1* crit1* crit1* crit1*
crit1* 1 1 1 1
1

crit1* crit1*

1 1 2 1crit1* crit1* crit
1 1 1

1 1 1

1

H L
H L H H L L

L L L L L L L L
L

L
L

L L H L L L

L L L L L

vdD
t v nv t v v

dv n v v v v vdv

dv
vdD

t v nv t v v
dv v v v



 



 
    + + + − + +
   − −

 =

 + + + − +
− ( )

21* crit1*

1

1

L Lv v

 
 +
 −
 

   

It can be seen that crit1*

1 0L Ldv dv  . 

From (5.13), we can obtain that 
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( ) ( ) ( ) ( ) 

( ) ( )

crit1*
crit1* crit1* crit1* crit1*1 1

1 1 2 1 1 1 2 1

crit1*
crit1* 1
12crit1* crit1* crit1*

1 1 1

1

1 1

H L
L L L H L L L H H L H H L L

L L

L L
L L

L LL L L L L

dm dv
n t v nv t v v t v nv t v v

dv dv

n dv
v v

dvv v v v v

 





       = + + − − + + − −      

 
 

 − + − 
 −  −
 

  

Let 

( ) ( )

( ) ( )

crit1* crit1*

1 1 2 1

crit1* crit1*

1 1 2 1

H L H H L L

L L H L L L

t v nv t v v
k

t v nv t v v

 + + −
=

 + + −
 

If 
H Lk n   , we have crit1*

1 1L Ldv dv  ; If crit1*

1 1L Ldv dv  , we have 
H Lk n   . But we cannot 

obtain the sign of 
1H Ldm dv ,actually, through numerical analysis, in most practical cases, it holds 

H Lk n    and 

crit1* crit1*

1 1 1L L

L L

v dv

v dv
   

so we have 
1 0H Ldm dv   

 

From (5.16), we can obtain that 

( ) ( )

( ) ( )
( ) ( )

crit2*

1
2crit2* crit2* crit2*

crit2* 1 1 1
1

crit2* crit2*

1 1 2 12 crit2*crit2* crit2* crit2*
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1 1
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v dE
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
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 
 +
 − −
 =

 
  + + + − + +

 − −
 

 

It can be seen that crit2*

1 0L Ldv dv  . Based on (5.15), we can obtain 

( ) ( )
crit2* crit2*

crit2* crit2*2 1 1
2 1 1 1 crit2*

1

H L L
H H L L H H L L

L L L L

dm dv dvdE
t v v nv t v n

dv dv dv dv
   = − − + + −

 
 

It can be seen that 
2 0H Ldm dv  . 

2Hm  decreases with 
Lv . We readily have the following 

proposition. 

 

Proposition 5.4. For a fixed N, if the proportion of car users increases, regardless of perception 

error, the space of using car-strategy is increasing.  

 

This means that, with car accounting for a relatively large portion of total traffic flow, the firm is 

more likely to take car-strategy. 

 

In this chapter we used three subsections to analyze the impact of perception error, each group 

user’s VOT and proportion of car users on the firm’s profit-maximizing strategy. We find out that, 

under different circumstances, with different perception error, the firm’s likelihood of taking each 
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strategy is different. If car users’ VOT is relatively large to the truck user, the likelihood of 

adopting car-strategy is high. If truck users’ VOT is relatively large to the car user, the likelihood 

of adopting truck-strategy is high. If the perception error of car users is small, with truck users 

accounting for a relatively large portion of total traffic flow, the firm is more likely to take truck-

strategy. If the proportion of car users is relatively large, the firm is more likely to take car-strategy, 

regardless of the perception error. 

 

 

5.8. Conclusions 

 

In this chapter, we studied the toll road profit maximization problem under mixed travel behaviors 

of cars and trucks. We considered that truck users follow deterministic user equilibrium and car 

users follow stochastic user equilibrium. This setup is realistic, as truck users are much more 

sensitive to travel cost than car users. We first introduced the mixed model by giving conditions 

of the mixed user equilibrium. Then by giving conditions of the integrated equilibrium, we defined 

two critical pricing curves for the truck users, which helps us outline the integrated equilibrium 

area. It is shown that the profit-maximization problem need only consider the integrated 

equilibrium range (including the two boundary critical curves). By using the Kuhn-Tucker 

condition to solve the profit maximization problem, we defined two critical pavement damage cost 

for trucks. Depending on the critical pavement damage cost, the firms can accordingly take car-

strategy, truck-strategy or car-truck mixed strategy. Then we analyzed the impacts of the 

perception error, VOT of each group user and proportion of car users on the firm’s profit 

maximizing strategies. We found that, as the perception error of car users decreases, the firm’s 

likelihood of taking each strategy changes differently under different conditions of link length and 

truck-to-car VOT ratio. Regarding the impact of each group’s VOT, we found that, the likelihood 

of the firm taking the car-strategy increases with the VOT of cars and decreases with the VOT of 

trucks, and the likelihood of the firm taking the truck-strategy decreases with the VOT of cars and 

increases with the VOT of trucks. We also found out that, if the proportion of car users is relatively 

large, the firm is more likely to take car-strategy, regardless of the perception error. 
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CHAPTER 6 

 

 

MAJOR FINDINGS AND EXTENSIONS 

 

 
This chapter summarizes the major contributions of this dissertation. Unsolved problems and 

possible extensions are also pointed out. 

 

 

6.1. Major findings 

 

This dissertation contributes to road pricing studies in the following aspects. 

 

Due to public acceptance reason, for peak hour congestion pricing, it may be politically 

unacceptable to charge a toll price that is too high or charge a toll for a period that is too long. 

Motivated by this, we study bottleneck coarse tolling in a constrained optimization setup, where 

there is a maximum acceptable toll level and a maximum acceptable toll window length. Three 

widely used coarse tolling models are studied, the ADL, Laih and braking models. The basic user 

behavioral difference between these three models are: in the ADL model, toll non-payers form a 

mass arrival at the bottleneck following the last toll payer’s arrival at the bottleneck; in the Laih 

model, a separated waiting facility is built aside of the bottleneck for toll non-payers to wait until 

the toll ends; in the braking model, toll non-payers can choose to defer their arrival at the bottleneck 

to avoid paying the toll. In all three models, we consider proportional user heterogeneity, and focus 

on the case that the unconstrained optimal toll level and toll window length exceed the maximum 

acceptable upper bounds. 

 

We find that, in the ADL and the Laih models, the constrained optimal coarse tolling chooses the 

maximum acceptable toll level and toll window length, which is consistent with the traditional 

insight that, because the toll replaces the queuing delay and thereby reduces the total system cost, 

increasing the toll in both toll price and tolling period will improve the system efficiency. While 

this is not surprising, an important new insight regarding the ADL model is established: under 

constrained optimization, because it is impossible to eliminate the queues at both the starting and 

the ending moments of the tolling period, in the ADL model the priority is to start the tolling period 

as late as possible to eliminate the queue at the toll ending moment only. This insight is never 

reported in traditional unconstrained coarse tolling studies. We find that, if the toll window length 

constraint is too stringent (the upper bound is too small), then any toll price will make the total 

system cost greater than the no-toll equilibrium, and thus no toll should be charged. When the toll 

window length constraint is not too stringent, the optimal solution chooses the maximum 

acceptable toll window length, while the optimal toll price may be an interior solution (i.e., less 

than the maximum acceptable level). 
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Comparing the three models, one common result is that the constrained optimal tolling scheme in 

all three models chooses the maximum acceptable toll window length. It should be noted that this 

result is not trivial for the braking model with heterogeneous users, where the trade-off between 

toll payers and non-payers makes the total system cost nonlinear and non-monotonic in toll 

window length. This result holds in the braking model with heterogeneous users because we 

proved that, when toll price is charged at the optimal level, the net effect of increasing the toll 

window length is positive in improving the total system cost. The Laih model and the braking 

model have a common feature that the total system cost depends on the toll level and toll window 

length rather than the specific toll window position. Therefore, in these two models the constrained 

optimal tolling scheme has a range of toll window positions. By contrast, the ADL model requires 

the toll window to be positioned as late as possible to minimize the queuing delay of the mass 

arrival users. A unique feature of the braking model is that the constrained optimal toll price may 

be less than the maximum acceptable level. This is because, unlike the ADL and Laih models, in 

the braking model there is a trade-off between toll payers and non-payers, which, depending on 

the toll window length, may give an interior optimal toll price. 

 

In summary of all three models, in designing bottleneck coarse tolling, when the unconstrained 

optimal solution exceeds the toll level and toll window length upper bounds, it is generally safe to 

push the toll window length to its upper bound. When the mass arrival behavior has to be 

considered, the specific position of the toll window matters, i.e., the later the better. When the 

braking behavior has to be considered, it may not be optimal to charge the maximum acceptable 

toll level. 

 

Inspired by the behavioral difference of the ADL, the Laih and the braking model and to better 

capture the commuters’ travel behavior, a new coarse tolling model “overtaking model” is 

developed to study the coarse tolling problem during morning peak hour. The overtaking behavior 

is featured by that the toll payers can overtake those braking commuters (toll non-payers) to take 

advantage of the tolling period to pay toll to pass the bottleneck. This would allow commuters to 

brake and in the meanwhile can make the bottleneck fully utilized during the tolling period, i.e., 

eliminate the somewhat unrealistic unused period in the braking model. Such overtaking behavior 

can easily be observed in the morning commute period. The overtaking model systematically 

combines the Laih model and the braking model together, capturing both of their properties. The 

overtaking behavior is incurred a constant unit cost. Specifically, the overtaking model reduces to 

the Laih model when the unit overtaking cost approaches zero, and reduces to the braking model 

when the unit overtaking cost is too high.  The optimal tolling scheme is investigated based on 

equilibrium profile with capacity waste and without capacity waste. Unlike the ADL and the Laih 

model, in overtaking model, tolling scheme causing capacity waste could be better than tolling 

scheme without capacity waste. It is found that, the optimal tolling scheme is affected by the unit 

overtaking cost and one critical unit overtaking cost is defined. For small unit overtaking cost, the 

optimal tolling scheme is featured by the overtaking model’s equilibrium profile where the first 

toll payer arrives at t+ , the last overtaking commuter arrives at t− , and no capacity waste exists; 

for large unit overtaking cost, the optimal tolling scheme is to set the toll high enough to prevent 

users from overtaking, because from system cost perspective, it is better to make commuters 
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braking instead of overtaking (i.e., the toll is pushed to critical level to make no commuter 

overtake). This is because reducing overtaking cost is more beneficial for system when unit 

overtaking cost is high. Although the wasted tolling period can be fully utilized through lowering 

the toll to make commuters overtake, the system cost will be increased by doing so. 

 

In the aspect of infrastructure financing, we studied the toll road profit maximization problem 

under mixed travel behaviors of cars and trucks. Private provision of public roads (tunnels, bridges, 

etc.) is increasing around the world. Profit maximization is typically the goal of a private firm, so 

for the government, understanding the profit-oriented behavior of the firm is necessary for 

choosing suitable regulations. We considered that truck users follow deterministic user equilibrium 

and car users follow stochastic user equilibrium. This setup is realistic, as truck users are much 

more sensitive to travel cost than car users. We first introduced the mixed model by giving 

conditions of the mixed user equilibrium. Then by giving conditions of the integrated equilibrium, 

we defined two critical pricing curves for the truck users, which helps us outline the integrated 

equilibrium area. It is shown that the profit-maximization problem need only consider the 

integrated equilibrium range (including the two boundary critical curves). By using the Kuhn-

Tucker condition to solve the profit maximization problem, we defined two critical pavement 

damage cost for trucks. Depending on the critical pavement damage cost, the firms can accordingly 

take car-strategy, truck-strategy or car-truck mixed strategy. Then we analyzed the impacts of the 

perception error, VOT of each group user and proportion of car users on the firm’s profit 

maximizing strategies. We found that, as the perception error of car users decreases, the firm’s 

likelihood of taking each strategy changes differently under different conditions of link length and 

truck-to-car VOT ratio. Regarding the impact of each group’s VOT, we found that, the likelihood 

of the firm taking the car-strategy increases with the VOT of cars and decreases with the VOT of 

trucks, and the likelihood of the firm taking the truck-strategy decreases with the VOT of cars and 

increases with the VOT of trucks. We also found out that, if the proportion of car users is relatively 

large, the firm is more likely to take car-strategy, regardless of the perception error. 

 

 

6.2. Future extensions 

 

Almost every contribution of this dissertation is associated with new or old unsolved problems. 

Thus it is important to point out possible future extensions of the studies done in this dissertation. 

 

An important extension worth studying is the constrained optimization for the overtaking model. 

How the constraints on toll level and toll window length affects the overtaking behavior is a 

promising topic to investigate. Another extension regarding the overtaking model is to consider 

heterogeneous VOT and investigate how the VOT distribution affects the equilibrium profile and 

optimal tolling scheme. 

 

For the profit maximization problem, numerical analysis will be conducted to support the current 

findings and study the impact of link distance on the firm’s strategy. To study link distance impact, 

the BPR function will be used in numerical analysis. Another extension is to model competition 
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between two toll roads in the presence of cars and trucks. Each road is operated by an independent 

firm trying to maximize its own profit. A competitive Nash-Equilibrium will be derived to solve 

this problem. The competition between two toll roads can be applied to the two bridges connecting 

Windsor and Detroit. The profit maximizing strategy taken by each firm under competition could 

have important insights on the government’s regulations imposed on toll roads. 
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