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Abstract 
 
 

The World Health Organization (WHO) has identified hypertension (HTN) as a 

global epidemic, and in accordance, has emphasized the need for cost effective, 

widely available alternative methods to lower blood pressure (BP) levels in all 

populations worldwide. Exercise, namely aerobic with dynamic resistance 

exercise as an adjunct, is a cornerstone method of reducing HTN. Recently, 

isometric handgrip (IHG) training, has become a formal recommendation of the 

American College of Cardiology (ACC), and the American Heart Association 

(AHA) in their recent guidelines. However, traditional IHG requires the use of a 

computerized dynamometer, which costs upwards of approximately $600 CAD, 

making the investigation of more cost-effective devices with a high probability for 

uptake warranted. However, prior to establishing the BP-lowering effectiveness 

of these devices, the acute stimuli need to be quantified. Therefore, the purpose 

of this thesis was to compare the heart rate (HR), BP, and rates of perceived 

exertion (RPE) to a bout of IHG performed using traditional computerized device 

and a more affordable inflatable stress ball (approximately $4 CAD) among 20 

healthy adults with normal BP (average age of 24.70 ± 5.13 years; average 

resting BP 107.93 ± 16.14/58.68 ± 6.77; average HR 66.01 ± 8.61; 10 women). 

No statistically significant differences between these two devices were observed 

with respect to HR, BP, and RPE (all p > 0.05). The similar cardiovascular and 

psychophysical responses between devices provide support for the potential use 

of the inflatable stress ball as an effective IHG device, and thus, lay the 

foundation for a future training study. 
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1.1 Cardiovascular Disease 

Cardiovascular disease (CVD) is the number one cause of death globally 

(WHO, 2017). CVD is a classification of disorders that affects the heart and blood 

vessels, and includes coronary heart (artery) disease, cerebrovascular disease, 

peripheral arterial disease, congenital heart disease, and acute events such as a 

myocardial infraction (heart attack) or stroke (WHO, 2017). In 2015, over 17 

million or 31% of all global deaths were attributed to CVD (WHO, 2017). CVD 

currently affects approximately 6% of Canadians (7% of men and 5% of women) 

(Statistics Canada, 2016a). The prevalence of CVD increases with age and 

affects approximately 18% of Canadians 65 years and older (Statistics Canada, 

2016a). In the province of Ontario, CVD was the listed cause for over 136,000 

individuals requiring hospitalization in 2012, and contributed to over 24,000 

deaths (Public Health Ontario, 2017). At the local level in Windsor-Essex, 

Ontario, more than 4,000 annual hospital admissions and over 800 deaths per 

year have been directly attributed to CVD (Public Health Ontario, 2017). These 

statistics provide evidence of the tremendous impact CVD has in Canada from a 

national, provincial and local perspective. 

The potential for developing CVD can be individually influenced by various 

modifiable and non-modifiable risk factors. Hypertension (HTN) is one such 

modifiable risk factor and is the leading cause of CVD, and CVD-related mortality 

(Ezzati et al., 2002; Daneai et al., 2011; Joffres et al., 2013; Benjamin et al., 

2017). HTN accounts for 50% of strokes and 49% of heart attacks globally 

(Padwal et al., 2016). In Canada, the burden of HTN is high from both a human 
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and an economic perspective. For example, a population-based study involving 

26 million Canadian adults found that all-cause mortality was consistently higher 

in people of any age who had HTN (Robitaille et al., 2012). Consequently, 

mortality was 2 to 4 times greater in those aged 20-49 years with HTN, and 

almost 2-fold greater in those aged 50 years and older with HTN (Robitaille et al., 

2012). In 2010, Canada spent approximately 14 billion dollars on HTN-related 

medical care, equating to over 10% of Canada’s overall healthcare costs 

(Weaver et al., 2015). This expense is projected to increase to over 20 billion 

dollars by the year 2020 (Weaver et al. 2015). With this projection date only two 

years in the future, increased understanding of HTN and approaches to reduce 

the associated prevalence are crucial and timely. 

1.2 Hypertension  

Blood pressure (BP) is essential to maintain the supply of oxygen-rich 

blood to working tissues by the arterial system (Tortora, G. J., & Nielsen, M., 

2009; McArdle et al., 2010). Arterial BP represents the force exerted by blood on 

the walls of the arteries during systole (contraction phase of the heart; systolic 

blood pressure or SBP) and diastole (relaxation phase of the heart; diastolic 

blood pressure or DBP) after a contraction of the heart muscle (McArdle et al., 

2010; Waghmare & Srivastava, 2016). Chronically high BP, or HTN, increases 

the force exerted on the arterial walls, which strains the cardiovascular system 

(McArdle et al., 2010), and contributes to neural, hormonal, and vascular 

dysfunction (Beevers et al., 2001; discussed in Section 1.2.2 on pg. 12). In brief, 

HTN contributes to over-activity of the sympathetic nervous system (SNS), 
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increased sodium and water retention, increased vasoconstriction, and increases 

in blood vessel rigidity (Flammer & Luscher, 2010; El Assar et al., 2013; Thomas 

& Dasgupta, 2015; see Section 1.2.3 on pg. 25). Over time, HTN can cause 

damage to arterial vessels, contributing to increased risk for CVD development 

and a reduced quality of life (McArdle et al., 2010). 

Hypertension (HTN) is a global epidemic and in Canada, is the most 

common chronic condition seen in primary care (WHO, 2013; Finley et al., 2018). 

In Canada, approximately 7.5 million people are living with HTN, which equates 

to 1 in 5 adults (Hypertension Canada, 2018). This is a troublesome number as 1 

in 5 Canadian adults are also unaware they are living with HTN (Hypertension 

Canada, 2018). In Ontario during the year 2014, residents with high BP 

comprised 18.5% of the population, which was higher than the national average 

of 17.7% (Statistics Canada, 2015a). Similar to CVD, HTN is also more 

prominent with age, which is concerning as the average age of Ontario’s 

population is 39.8 years, with 14.6% of the population older than the age of 65 

years (Statistics Canada, 2015a). By the year 2036, it is projected that older 

adults (defined as 65 years of age and older) will account for 25% of the 

population. As HTN occurs at a higher rate in older adults, this may have the 

potential to result in a higher incidence of people with HTN, impacting Ontarians, 

and ultimately Canada’s, future (Statistics Canada, 2015a). With HTN presently 

afflicting 1 in 5 people globally, and contributing to 9.4 million deaths related to 

complications with HTN, prevention and management strategies have come to 

the forefront in reducing CVD and CVD-related death worldwide (WHO, 2018a). 
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To understand why an individual may have high BP, HTN can be divided 

by root cause as either primary (essential) HTN or secondary (non-essential) 

HTN (Noel & Demper, 1994). Primary HTN accounts for approximately 95% of all 

cases of HTN and is heterogeneous in nature, with each individual having no 

definitive cause for high BP (Carretaro & Oparil, 2000). Secondary HTN is 

associated with specific conditions such as renal, adrenal, or hormonal disorders 

that cause sustained BP, and in these instances treatment of these conditions 

usually returns BP to a normal state (Viera & Neutze, 2010). 

In both instances, strong relationships exist between high resting BP 

values and the risk of CVD, renal disease, and mortality (Carretero & Oparil, 

2000). Evidence has suggested there is a linear relationship between BP and the 

incidence of stroke (Lawes et al., 2004; Ishikawa et al., 2007), where a higher 

level of BP would then increase the risk of incidence. Resting BP values below 

120 mmHg SBP and 80 mmHg DBP are considered within a normal range 

(McArdle et al., 2010; Leung et al., 2017; Nerenberg et al., 2018). Although 

continually evolving, HTN has traditionally been defined as having a resting BP of 

≥140/90 mmHg when using non-automated devices (e.g. sphygmomanometer) 

(Leung et al., 2017; Nerenberg et al., 2018). Recently, guidelines have included a 

≥135/85 mmHg cut-off when using automated office blood pressure (AOBP) 

devices (Leung et al., 2017; Nerenberg et al., 2018). HTN can be further 

classified by stages. For years, the stages of HTN have been described as: 

Stage 1 HTN as 140-159/90-99 mmHg and Stage 2 HTN as >160/100 mmHg 

(Daskalopoulou et al. 2015). However, the American College of 
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Cardiology/American Heart Association (ACC/AHA) have recently defined more 

conservative stages of HTN: Elevated (120-129/<80 mmHg), Stage 1 HTN (130-

139/80-89 mmHg), and Stage 2 HTN (≥140/≥90 mmHg, Whelton et al., 2018). It 

is unclear if these newly recommended stages will gain global support. 

Although previous guidelines have used the non-automated range for 

diagnosis, accumulating evidence supports the use of AOBP values ≥135/85 

mmHg as a more appropriate diagnostic guideline for HTN (Mancia et al., 2013; 

James et al., 2014; Leung et al., 2017; Nerenberg et al., 2018; Whelton et al., 

2018). Additionally, there is growing evidence to support ambulatory BP as a 

superior tool for diagnosis, as it measures BP over a 24-hour period (daytime: 

6am to 10pm, nighttime: 10pm to 6am, mean 24-hour) (Pickering et al., 2005; 

Leung et al., 2017; Nerenberg et al., 2018). Using ambulatory measures, HTN is 

defined as mean awake BP of ≥135/85 mmHg or mean 24-hour BP of ≥130/80 

mmHg (Leung et al., 2017; Nerenberg et al., 2018). Most individuals will have 

their highest pressures in the morning and lowest pressures at night, with the 

onset of sleep, decreasing BP by decreasing metabolic activity (Pickering, 1990). 

These BP measures taken at night can be used to examine “dipping status” 

(explained further in Section 1.2.1 on pg.7), or the gradual decrease in BP seen 

at the onset of sleep, where dipping <10% of their awake BP average would be 

classified as non-dipping (Pickering, 1990; Mancia & Verdecchia, 2015). This 

phenomenon of non-dipping has been shown to be present in hypertensive 

individuals and is associated with sleep apnea, diabetes, congestive heart failure, 

orthostatic hypotension, and Cushing’s syndrome (Pickering, 1990). While there 
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are many advantages to ambulatory measurement, non-automated and 

automated measures are common for clinical use as they are time and cost 

efficient (Pickering et al., 2005). 

1.2.1 Blood Pressure Measurement 

As briefly mentioned in Section 1.2 above, BP measurement is integral to 

the effective diagnosis and treatment of HTN. The most accurate measure is 

completed via insertion of a catheter equipped with a transducer into the radial 

artery measuring beat-to-beat systolic, diastolic, and mean arterial BP (Parati et 

al., 1989). Although this procedure remains the most accurate method, it is both 

costly and higher risk, requiring specialized training and personnel to perform 

correctly (Parati et al., 1989). Alternatively, there are other methods of measuring 

BP including: the non-automated method of auscultatory sphygmomanometry, 

and automated oscillometric methods (Pickering et al., 2005). Each of these 

methods involve occlusion of the brachial artery and are recommended in recent 

guidelines for BP measurement (Dasgupta et al., 2014; Leung et al., 2017; 

Nerenberg et al., 2018). 

Auscultatory Sphygmomanometry 
 

Auscultatory sphygmomanometry is used in office BP (OBP) 

measurement and performed by placing a cuff around the arm and inflating the 

cuff to a supra-SBP to collapse the brachial artery (Perloff et al., 1993). As the 

cuff gradually deflates, the appearance and disappearance of sound generated 

by arterial pulse waves, or Korotkoff sounds, determine the SBP and DBP, 

respectively (Perloff et al., 1993; Pickering et al., 2005). 
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There are several important limitations associated with this method that 

may influence its accuracy. For example, the level of skill of the practitioner 

identifying the Korotkoff sounds (Pickering et al., 2005), age-related hearing loss, 

decreased focus over long shift periods, parallax error (where BP could be over 

or underestimated based on the angle the practitioner is viewing the 

sphygmomanometer (Williams et al., 2009), and observer biases (practitioner 

altering results based on existing relationships) (Pickering et al., 2005; Sechrest 

et al., 2005) all play a role in obtaining accurate measurements. The device itself 

also has limitations, as cuffs that are larger in comparison to an individual’s arm 

may need more pressure to cause occlusion, which can also impact results 

(Sechrest et al., 2005). Although this method is convenient and time efficient, the 

collective limitations can lead to a misdiagnosis or an undiagnosed case of HTN 

(Pickering et al., 2005). Evidence has also shown that measurements taken via 

auscultatory sphygmomanometry are typically higher on average compared to 

automated methods (Myers et al., 2010). This may be due to white coat HTN, in 

which the presence of a clinician will increase the patient’s BP unintentionally, 

producing inaccurate readings of his or her true BP (Myers et al., 2010). This 

phenomenon is mitigated by using both oscillometry and ambulatory BP methods 

(Myers et al., 2010). 

Oscillometry 
 

Recently, oscillometric methods have become the preferred method for 

measuring and assessing resting BP, contributing to the popularization of AOBP 

measurement (Mancia et al., 2013). Similar to auscultatory sphygmomanometry, 
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oscillometry also uses occlusion of the brachial artery by an inflatable cuff (Alpert 

et al., 2014). However, a microprocessor within the device is used to detect the 

SBP and DBP via oscillatory signals (Alpert et al., 2014). Oscillometry does not 

involve the use of Korokoff sounds, but rather measures the amplitude of 

oscillometric pulses from the brachial artery (Alpert et al., 2014). The cuff inflates 

from 160 to 180 mmHg (for normotensive, inflation adjusts to be greater than 

SBP) for an adult individual and will be deflated in a controlled release via a small 

valve (Alpert et al., 2014). This controlled automated release then produces the 

oscillatory signals, which the microprocessor uses to create an estimate for mean 

arterial pressure (MAP) (Shahriari et al., 2003). Using the MAP in conjunction 

with the built-in algorithms, SBP and DBP are determined (Shahriari et al., 2003). 

HTN is determined at a lower range of ≥ 135/85 mmHg with this device due to 

the accuracy when compared to auscultatory sphygmomanometry, and recently 

this range has become a new diagnostic standard (Leung et al., 2017; Nerenberg 

et al., 2018; Whelton et al., 2018). This method can also be used to reduce the 

effects of white coat HTN (Myers et al., 2010; Myers et al., 2014). Home BP 

measurement is now a unique testing method, whereby AOBP is determined 

using a device in the patient’s own home by the patient themselves (Myers et al., 

2010; Myers et al., 2014). Research has shown that in both instances BP values 

are commonly seen to be lower than when acquired in clinical settings (Myers et 

al., 2010; Myers et al., 2014). 

Although this method requires less training time and has fewer 

interpersonal variations, a prominent concern is the variability between 
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oscillometric devices as different manufacturers use differing algorithms 

(Pickering et al., 2005; Alpert et al., 2014). As these specific algorithms are 

undisclosed between companies, results may differ between one individual and 

multiple AOBP models (Pickering et al., 2005; Alpert et al., 2014). Oscillometric 

methods may also be impacted by different factors that may influence detection 

of oscillometric signals within the cuff, one factor being arterial stiffness 

prominent in older individuals and may underestimate MAP, ultimately impacting 

SBP and DBP values (Pickering et al., 2005; Harvey et al., 2015). Another factor 

that may impact potential diagnosis is incorporation of home BP monitoring. This 

may also provide an accurate BP reading by reducing white coat HTN, as noted 

above, but automated home models introduce reporting bias into the diagnosis 

process (Myers et al., 2014). Reporting bias is when the patient responsible for 

reporting their BP results does so incorrectly based on his or her intentions (e.g. 

a patient who does not want to take HTN medication may report lower readings 

vs. a patient who has concerns about HTN risks may embellish their readings) 

(Myers et al., 2014). Reporting bias can be reduced via a machine that transmits 

results directly to the office (Myers et al., 2014). However, this added feature 

increases the cost effectiveness of home BP, which reduces the accessibility of 

this method (Myers et al., 2014). Despite the limitations AOBP, when it is 

compared to intra-arterial and auscultatory methods, in accordance with updated 

guidelines, it is regarded as an accurate method of measuring BP (Pickering et 

al., 2005; Alpert et al., 2014; Mancia et al., 2013; Leung et al., 2017; Nerenberg 

et al., 2018). 
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Ambulatory Blood Pressure 
 

Unlike sphygmomanometry or oscillometry that are typically constrained to 

a small number of readings in a clinical setting, ambulatory BP monitoring is used 

to collect BP readings several times over a 24-hour period (Turner et al., 2015). 

The measurement process is similar to the preceding methods as it involves a 

cuff being placed around the upper arm to measure BP at the brachial artery 

using oscillometric methods of BP calculation (O’Brien et al., 2001). The cuff is 

then connected to a monitor by an inflationary hose, which is programmed to 

measure BP (O’Brien et al., 2001). In this 24-hour period, BP is normally 

assessed every 30 minutes during the day (6am to 10pm), and every hour during 

night (10pm to 6am), which establishes BP means for different time periods (i.e. 

full 24-hours, daytime BP, nighttime BP) (Pickering et al., 2005; Turner et al., 

2015). This continuous measure of BP provides a superior prediction of 

cardiovascular risk when compared to the brief time periods measured from other 

methods (Turner et al., 2015). This advantage can also be attributed to the BP 

measurements being acquired during an individual’s daily activities, showing a 

broader range of BP changes, and providing a truer representation of BP (Turner 

et al., 2015). Nighttime measurements are of particular importance as, normally 

(excluding those who work midnights, where these same hours are spent 

awake), individuals will have a dip in BP from 10% to 20% of their average 

daytime BP (Su et al., 2008; Turner et al., 2015). Those who dip less than 10% 

are deemed “non-dippers” and are at a greater risk of developing HTN, sleep 

apnea, diabetes, congestive heart failure, orthostatic hypotension, and Cushing’s 
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syndrome (Pickering, 1990; Turner et al., 2015). This dip in BP is due to a 

reduction in SNS activity and an increase in PNS function, which reduces plasma 

epinephrine (E) and norepinephrine (NE) (Turner et al., 2015). However, 

conditions like sleep apnea can stimulate greater sympathetic outflow due to a 

lack of blood oxygen, which in turn increases BP by increasing SNS activity 

(Fletcher, 2001). Ambulatory measurement can detect this increased diurnal BP, 

providing evidence that BP measurement for 24-hour time periods provides a 

greater understanding of an individual’s BP profile. 

Ambulatory BP measurement has the benefit of portability allowing for the 

collection of data outside of the clinical setting (Pickering et al., 2005). However, 

this method does have its limitations. As ambulatory monitoring employs 

oscillometry, as noted above, the algorithms for determining BP differ from 

manufacturers (Pickering et al., 2005). Moreover, if an individual does not remain 

still during each BP measurement completed, or if the individual removes the cuff 

for bathing and reequips it incorrectly, insufficient results may be produced and 

ultimately lead to an improper assessment (Pickering et al., 2015). Despite these 

disadvantages, ambulatory BP measurement is superior in accuracy when 

compared to traditional methods (Myers et al., 2010; Myers et al., 2014). 

1.2.2 Blood Pressure Regulation 

Before understanding elevated BP levels and HTN pathophysiology, it is 

important to understand the mechanisms of BP control under normal conditions. 

Cardiovascular homeostasis is maintained by the regulation of several key 

physiological mechanisms including BP, amount of oxygen content within the 
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blood, and blood volume (Dampney, 2016). Cardiovascular homeostasis is 

important as it must be maintained to deliver oxygen to the working tissues 

(Dampney, 2016). 

To fully comprehend BP, the influencing components must be understood. 

BP is the sum of cardiac output (Q) and total peripheral resistance (TPR; see 

Equation 1), where, Q is the amount of blood pumped per contraction of the heart 

and TPR is the resistance of the vessels to the flow of blood (Waghmare & 

Srivastava, 2016). Cardiac output (Q) can be broken down further into stroke 

volume (SV) and heart rate (HR), where SV is the amount of blood ejected by 

each ventricle per contraction of the heart and HR is the number of heart beats 

per minute (see Equation 2) (McArdle et al., 2010). 

Equation 1: BP = Q x TPR 

Equation 2: Q = SV x HR 

Although BP may be broken down into the variables of Q and TPR, 

numerous interrelated neural, hormonal and local pathways govern Q, TPR, HR, 

and SV in an effort to maintain BP, and thus equilibrium (McArdle et al., 2010). 

Neural Blood Pressure Regulation 
 

BP is controlled neurologically by the autonomic nervous system (ANS), 

which is comprised of the SNS and the parasympathetic nervous system (PNS) 

(McArdle et al., 2010). Sympathetic nerves innervate the heart and blood 

vessels, both of which are predominately regulated by sympathetic premotor 

neurons located in the lower brain stem, while the hypothalamus and vagal 

parasympathetic nerves innervate the heart and originate from the nucleus 
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ambiguous in the medulla oblongata (Dampney, 2016). The purpose of the SNS 

is to increase HR and myocardial contractility to facilitate an increase in SV, 

increasing vasoconstriction to improve venous return, and increasing blood flow 

to working tissues via vasoconstriction of the vascular beds of organs and 

uninvolved tissue (Nobrega et al., 2014). The opposite is true of the PNS, as 

activation causes a withdrawal of sympathetic activity, decreasing HR, 

decreasing TPR, and vasodilation of vascular beds where BP was previously 

reduced by vasoconstriction and SNS activity (Nobrega et al., 2014). For 

example, during exercise, PNS activity is reduced to then increase SNS activity 

to deliver oxygen-rich blood to working tissues by increases in HR, SV and TPR 

(Nobrega et al., 2014). 

Two key areas of the brain that co-ordinate ANS action are the central 

command (CC) centre and the cardiovascular control centre (CCC) (Victor et al., 

1995). The CC will respond to cardiovascular stress via transmission of efferent 

signals to the CCC (Michelini et al., 2015). Circulatory control is governed by two 

principles: i) the CC sets the basic pattern of motor activity to skeletal muscles 

and drives cardiorespiratory stimulation, and, ii) the feedback control 

mechanisms are driven by intrinsic/extrinsic receptors from cardiovascular areas 

and receptors within the active muscles and surrounding vasculature (Michelini et 

al., 2015). At the onset of physical activity (e.g., limb movement related to shifting 

from a seated position to standing), afferent signals from the body relay 

information to the CC via a multitude of negative feedback loops (e.g. increases 

in Q, changes in TPR, muscle contraction) (Michelini et al., 2015). The CC then 
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activates the CCC, which alters activity to the nerves that innervate the heart and 

blood vessels through sympathetic and parasympathetic mechanisms, ultimately 

influencing BP (Michelini et al., 2015). To achieve this feedforward response, the 

CC and CCC work in concert with feedback neural controllers located in the 

periphery, which consist of baroreceptors, chemoreceptors, and skeletal muscle 

receptors, to regulate BP (Michelini et al., 2015). 

The baroreceptors are stretch receptors located in the walls of the carotid 

sinus and aortic arch, which provide information regarding the BP in the vessels 

entering the brain and leaving the heart (Wehrwein & Joyner, 2013; Dampney, 

2016). Baroreceptors operate around a central point of BP (Osborn et al., 2005). 

When the artery is distended beyond a set point, there is an increase in afferent 

firing of signals to the CC (Wehrwein & Joyner, 2013). This signal is then relayed 

by both the SNS (innervation of the blood vessels and heart), and the PNS 

(innervation of the pacemaker cells of the sinoatrial node) (Wehrwein & Joyner, 

2013). The response is made by the CCC to inhibit SNS activation, reducing 

TPR, HR, and thus Q, and acting to ameliorate deviations from the central point 

of BP (Taylor et al., 2014). This return of BP to the set-point range by SNS 

suppression and PNS activation, slowing the heart and increasing vasodilation of 

peripheral tissue is known as the arterial baroreflex (McArdle et al., 2010; 

Dampney, 2016). Inversely, the opposite stimulus would elicit a similar response 

by the arterial baroreflex. With a drop in BP, afferent signaling would cause the 

CCC to increase SNS activation and PNS inhibition, increasing TPR, HR, and Q, 
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thus increasing BP to the central point (Michelini et al., 2015; Dampney et al., 

2016). 

Chemoreceptors are located in the carotid and aortic arteries and become 

activated by a change in partial pressure of oxygen in the arterial blood (PaO2), 

partial pressure of carbon dioxide in the blood (PaCO2), and pH content in the 

blood (H+ ions) (Gordan et al., 2015; Dampney, 2016). For example, if there is a 

drop in PaO2 and a rise in PaCO2 and H+ ions, the physiological response 

through activation of this reflex is to increase respiratory rate and depth (to 

increase alveolar ventilation) and increase BP to peripheral tissues that also 

increase HR and Q to meet the demand of oxygen needed by those tissues 

(Gordan et al., 2015; Dampney, 2016). An example of how chemoreceptor 

activity occurs can be seen in sleep apnea (Fletcher, 2001). Sleep apnea is a 

condition that reduces oxygen in the body during sleep caused by pauses in 

breathing (Fletcher, 2001). As a result, chemoreceptors sense this decrease in 

oxygen, which causes an increase of afferent signal firing to CC, and subsequent 

CCC-generated increases in SNS activity (Fletcher et al., 2001; Gordan et al., 

2015). This enhanced SNS activity increases vasoconstriction of vascular beds 

and ventilation to upregulate oxygen, thus increasing BP (Fletcher, 2001; Gordan 

et al., 2015; Michelini et al., 2015). 

There are also receptors located within skeletal muscle that help to control 

BP. The two main afferent receptors in this location that have an influence on BP 

are the type III mechanoreceptors and the type IV metaboreceptors (Leshnower 

et al., 2001). Mechanoreceptors sense stretch and conformational changes in the 
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arterial walls as a by-product of movement (similar to the baroreceptor) 

(Leshnower et al., 2001). Metaboreceptors respond to the accumulation of 

metabolic by-products of the working muscle such as lactic acid, potassium (K+), 

bradykinin, serotonin, and adenosine (Leshnower et al., 2001). During 

movement, muscle contractions cause stimulation of the mechanoreceptors, and 

when the oxygen demands of the muscle are not met along with by-product 

accumulation, metaboreceptors are activated (Belli et al., 2011). BP is controlled 

by afferent impulses from these receptors being transmitted to the CC, which 

then drives SNS to cause increases in ventilation and vasoconstriction of less 

involved vascular beds (Leshnower et al., 2001; Belli et al., 2011). This in turn 

will then cause a rise in BP through an increase in TPR, HR, and Q to meet 

demands of working tissue (Belli et al., 2011). 

Hormonal Control of Blood Pressure 
 

Both the SNS and the PNS are involved with the release of hormones in 

response to changes in BP homeostasis via parallel pathways. These hormones 

include epinephrine (E), norepinephrine (NE), acetylcholine (ACh), vasopressin, 

renin-angiotensin-aldosterone system (RAAS), and atrial natriuretic peptide 

(ANP) (Gordan et al., 2015). 

The main catecholamines that activate or deactivate sympathetic 

receptors in the cardiovascular system are E and NE (Gordan et al., 2015). 

These neurohormones accelerate sinoatrial node depolarization, causing the 

heart to beat faster (tachycardia), along with increasing myocardial contractility 

(McArdle et al., 2010). The force and rate of ventricular contraction will nearly 
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double under maximum sympathetic stimulation (McArdle et al., 2010), efficiently 

delivering oxygenated blood to working tissue. Postganglionic sympathetic nerve 

fibres extend to the smooth muscle layers of small arteries, arterioles, and 

precapillary sphincters located in target organs to regulate BP (McArdle et al., 

2010). These sympathetic nerve fibres contain E and NE receptors, that when 

stimulated through binding of catecholamines, alter BP effectively (McArdle et al., 

2010). There are two types of E and NE receptors located in these areas to 

induce changes, which are α-adrenergic and β-adrenergic receptors (Gordan et 

al., 2015). The α-adrenergic receptor group are separated into α1-adrenergic 

receptors located in most sympathetic target organs (excluding the heart), and 

α2-adrenergic receptors found in synaptic junctions of SNS nerve endings of 

vascular beds (Gordan et al., 2015). The β-adrenergic receptors are also 

separated into two main types. β1-adrenergic receptors are located in the heart, 

lungs, kidneys, and adipose tissue, while β2-adrenergic receptors are found in 

most sympathetic organ targets (Gordan et al., 2015). Sympathetic stimulation of 

α-1 and α2-adrenergic receptors induces vasoconstriction and stimulation of β2-

adrenergic receptors causes vasodilation (McArdle et al., 2010; Gordan et al., 

2015). Vasoconstriction and vasodilation manipulate the diameter of the blood 

vessel to adjust TPR (McArdle et al., 2010; Gordan et al., 2015). 

Vasoconstriction reduces the diameter of the blood vessel, increasing TPR and 

BP, while vasodilation will increase the diameter of the blood vessel, facilitating 

decreases in TPR and BP (McArdle et al., 2010). 
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Unlike the SNS, the PNS promotes relaxation and vasodilation, 

accomplished by release of the hormone ACh (McArdle et al., 2010). There are 5 

different muscarinic receptor subtypes in the body, of these receptors, the M2 

receptor is located in the heart and is the main binding site for ACh (Brodde et 

al., 2001). Stimulation of the M2 receptor has both chronotropic (effects that 

change HR) and inotropic effects (activation or deactivation of ion channels) in 

the atria, but only inotropic effects in the ventricle (Brodde et al., 2001). A 

decrease in HR occurs when ACh binds to the receptors on the sinoatrial node 

(chronotropic) and the atrioventricular node (inotropic), causing an inhibitory 

effect on adenyl cyclase, which then reduces intracellular cyclic AMP (cAMP) 

(Brodde et al., 2001; McArdle et al., 2010). This interaction causes a reduction of 

L-type calcium (Ca2+) current, which a constant influx of Ca2+ is needed for 

contractions of the heart (Brodde et al., 2001). This reduction of cAMP by binding 

of ACh is a regulatory mechanism of the PNS to reduce the force of contractions 

in the heart, resulting in a decrease in HR, thereby lowering Q and BP (Brodde et 

al., 2001). In this case, the purpose of the PNS is to reduce the sympathetic 

effects of the catecholamines, bringing the body back to homeostasis, or normal 

resting BP. This action is parallel to the baroreflex activity that occurs when there 

is an increase in BP, as sensory information relayed to the CC then is transmitted 

and acted upon by reducing SNS activity and increasing PNS activity. 

 Similar to the BP effects of E and NE, vasopressin will act to increase BP, 

but through fluid retention. Vasopressin release is triggered by the baroreceptor 

reflex (decrease in BP), chemoreceptors (decrease in blood oxygen), as well as 
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decreases in blood volume (Japundzic-Zigon, 2013). Vasopressin affects the 

kidney’s filtration system by increasing reabsorption of water in the collecting 

tubules of the kidneys, effectively increasing blood volume, and thus, BP (Gordan 

et al., 2015). Vasopressin’s action can be examined during exercise, as at higher 

exercise intensities the body will sweat to reduce surface temperature, thus, 

cooling the body (McArdle et al., 2010). In this instance, there may be significant 

fluid volume loss, which increases blood viscosity and the potential for 

dehydration (McArdle et al., 2010). Vasopressin is released to maintain adequate 

fluid balance in blood and reduce the decreases in BP, blood volume, and 

increases in plasma osmolality seen with sweating. BP to working tissues is thus 

maintained by adequate fluid balance in combination with an increase in TPR by 

vasoconstriction of major blood vessels (McArdle et al., 2010). 

Parallel to vasopressin, the RAAS becomes active when the body is in a 

state of hypovolemia and is triggered by a series of actions as followed: when 

baroreceptors detect a decrease in BP (in this case from reduced blood volume), 

when there is a decrease in blood concentrations of sodium chloride (i.e., salt), 

and, when there is a lowered rate of blood flow through the macula densa 

(located in the ascending loop of Henle just before the transition to the distal 

convoluted tubule in the kidney) (Gordan et al., 2015). The onset of decreased 

blood volume triggers the release of renin by the kidneys to transform 

angiotensinogen into angiotensin I, which is then converted into angiotensin II via 

angiotensin converting enzyme (Gordan et al., 2015). The product of angiotensin 

II is important as it has a direct effect on the cardiovascular system (Fyhrquist & 
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Saijonmaa, 2008). Angiotensin II stimulates angiotensin type 1 (AT1) and type 2 

(AT2) receptors to alter BP (Mehta & Griendling, 2007; Fyhrquist & Saijonmaa, 

2008). Activation of AT1 receptors is associated with sympathetic activation and 

release of E and NE, as it causes a generalized vasoconstriction, increasing TPR 

in the renal arteries and the afferent/efferent arterioles (Gordan et al., 2015). 

Angiotensin 1 (AT1) vasoconstriction is most dominant in arteries to the internal 

organs, diverting blood to skeletal muscle for increased oxygen delivery (Gordan 

et al., 2015). Angiotensin 1 (AT1) stimulation also increases sodium (Na+) 

reabsorption (which passively acts on water reabsorption) and is the precursor to 

aldosterone release from the adrenal cortex, which also increases Na+ intake 

(Mehta & Griendling, 2007). This increase in TPR via vasoconstriction combined 

with an increase in blood volume by sodium and fluid retention will cause a rise in 

BP. However, in contrast, when angiotensin II is bound to AT2 it counterbalances 

the effects of AT1, as AT1 is excitatory and AT2 is inhibitory. Angiotensin II is 

more likely to bind to AT2 receptors at higher blood concentrations, which 

stimulation will cause vasodilation, thought to be predominantly caused by nitric 

oxide (NO) release (a potent vasodilator discussed in further detail below) (Mehta 

& Griendling, 2007; Fyhrquist & Saijonmaa, 2008; Carey & Padia, 2013). 

Research regarding AT2 is relatively new when compared with that of AT1. 

However, it is hypothesized that AT2 receptors play a large role in natriuresis and 

diuresis, or secretion of sodium and water, respectively, via the kidneys (Carey & 

Padia, 2013). Equilibrium is maintained once angiotensin II has saturated AT1 

receptors (Carey & Padia, 2013). It has also been theorized that angiotensin II 
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could be converted to angiotensin III, which then binds to the AT2 receptor to 

balance the effects of AT1 (Carey & Padia, 2013). Although research is growing 

with regards to this topic, AT2 receptors need to be examined further to uncover 

the true physiological effects. 

Atrial natriuretic peptide (ANP) is secreted primarily from the atrial 

myocytes in response to increased angiotensin II, β-adrenergic receptor 

stimulation, and intravascular volume changes, which causes a localized stretch 

on the walls of the atria sensed by mechanoreceptors (Brenner et al., 1990). 

ANP secretion is also influenced by ACh, E and vasopressin (Brenner et al., 

1990). The central functions of ANP are to promote natriuresis and diuresis 

(excretion of Na+ and water) in the kidneys, in combination with vasodilation to 

reduce BP (Song et al., 2015). Vasodilatory properties of ANP can be observed 

during hypoxia, as ANP will be secreted to increase oxygen delivery back to the 

heart and to cause vasodilation in peripheral arteries to reduce BP (Dietz, 2005). 

Natriuresis and diuresis is accomplished by ANP through increases of cyclic 

guanosine monophosphate-dependent protein kinases (PKGs), which increases 

glomerular filtration, inhibits sodium and water reabsorption, and suppresses 

secretion of renin, which is the hormonal precursor for RAAS activation (Zeidel, 

1990; Theilig & Wu, 2015). Decreases in Q are also related to ANP mediated 

sympathetic and parasympathetic activity. ANP causes hypotension and 

suppresses the stimulatory effects of baroreceptor activation, which then reduces 

sympathetic activity and drives parasympathetic activity (Brenner et al., 1990). 

Relaxation of vascular smooth muscle cells then occurs by lowering intracellular 
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levels of Ca2+ and decreasing the vessel sensitivity to Ca2+, thus causing 

vasodilation (Carvajal et al., 2000). In summary, ANP lowers BP by reducing 

TPR through vasodilation of the peripheries and heart, excretion of sodium and 

fluid (reducing the total blood volume), and via reductions in HR (Song et al., 

2015). 

Local Control of Blood Pressure 
 

Working tissues release substances that are produced via increased 

metabolic demands, and these locally produced components help to regulate BP. 

During neural and hormonal regulation mechanisms, metabolic by-products are 

released from each pathway that may also aid in BP regulation locally (Beevers 

et al., 2001). Endothelial cells release local agents in response to increases in 

blood flow and shear stress caused by blood on vascular endothelium (McArdle 

et al., 2010). These regulators function to alter smooth muscle diameter through 

vasoconstriction and vasodilation and include: K+, NO, and endothelin-1 (ET-1), 

which may all work simultaneously to maintain homeostasis (McArdle et al., 

2010). 

Potassium (K+) is an abundant intracellular ion, which is used to create 

action potentials in a neuron (Haddy et al., 2006). The Na+-K+-ATPase pump 

helps to create action potentials by pumping K+ out of the plasma membrane and 

Na+ into the membrane (Haddy et al., 2006). When a muscle tissue becomes 

active, action potentials are created to meet the demands of the exercising 

tissues (Haddy et al., 2006). Due to the unequal nature of the pump an 

accumulation of K+ occurs resulting in hyperpolarization of the membrane 
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(Haddy et al., 2006). In this instance, this hyperpolarization causes a reduced 

Ca2+ influx into the cell, which then causes a dilation of the arteriole (Haddy et 

al., 2006). When there is a reduction of Ca2+, the blood vessels in the 

surrounding area have difficulties maintaining an increased TPR, as Ca2+ is 

needed for the contraction of the endothelium (Haddy et al., 2006). TPR is then 

reduced as vasodilation occurs in the area of increase K+ concentrations, which 

reduces BP locally. 

Nitric oxide (NO) is involved in various physiological processes and is 

continually synthesized by two different NO synthases (NOS), which are 

neuronal NOS (nNOS) and endothelial NOS (eNOS) (Lundberg et al., 2008; 

Lundberg et al., 2015). L-Citruline and NO are formed by eNOS and specific 

physiological cofactors (for example, reduced tetrahydrobiopterin or BH4) in the 

endothelium as a response to mechanical stimuli (Lundberg et al., 2008; 

Lundberg et al., 2015). NO diffuses into the underlying smooth muscle cells, 

which then will generate cyclic guanosine monophosphate (cGMP) (Lundberg et 

al., 2015). This process has a vital role in regulation of vascular tone and 

endothelial integrity as it causes vasodilation (Lundberg et al., 2015). NO will 

potentially pass through underlying cell membranes to neighbouring arterial walls 

to expand the vasodilatory effects (McArdle et al., 2010). TPR is then modified by 

increasing blood flow to tissues by gradually altering the arteriole size of 

surrounding tissues, effectively reducing BP. 

Endothelial cells release ET-1, a vasoconstrictor, which counterintuitively 

is not stored in these cells (Chester & Yacoub, 2014). Release of ET-1 is 
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dependent on mechanical stimulation (shear stress), hypoxia (reduced 

environmental oxygen), reduced levels of estrogens, glucose, thrombin, and 

competing vasoconstrictors (Chester & Yacoub, 2014). Factors that reduce the 

synthesis of ET-1 include increases in NO, ANP, and estrogen (Chester & 

Yacoub, 2014). Once synthesis of ET-1 occurs, ET-1 will bind to designated 

receptors located on vascular smooth muscle cells (Chester & Yacoub, 2014). 

ET-1 has three main binding sites in relation to BP regulation. When ET-1 binds 

to ETA or ETB2 it causes vasoconstriction of the smooth muscle, increasing TPR 

and BP (Gordan et al., 2015). When ET-1 is bound to ETB NO is released to 

facilitate vasodilation and decrease TPR and BP (Gordan et al., 2015). 

Vasoconstriction is also modulated through the stimulation of protein kinase C 

(PKC), and through an influx of calcium into the cell to facilitate contraction of the 

muscle (Chester & Yacoub, 2014). 

1.2.3 Pathophysiology of Hypertension 

Adequate BP control is reliant on the balance of Q and TPR with 

increases in one or both factors leading to the development and maintenance of 

HTN (Beevers et al., 2001). The specific mechanisms for these increases remain 

unclear, and are likely multifaceted and complex. HTN development is 

purportedly linked to dysfunction in one or more of the neural, hormonal, and 

local mechanism(s) that regulate systemic BP, and enhanced via a plethora of 

risk factors (Beevers et al., 2001). 

From a neural perspective, SNS over activity has been implicated in the 

development of primary HTN (Mancia et al., 1999; Beevers et al., 2001; Manolis 
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& Poulimenos, 2014). Elevated SNS activity increases the likelihood of HTN 

development through stimulatory effects on the cardiovascular system and 

kidneys to create increases in Q and TPR (Parati & Esler, 2012). In persons with 

established HTN, NE (see Section 1.2.2 for details, pg.12) is released in larger 

amounts, binding to adrenergic receptors and maintaining HR in an elevated 

state (Mancia et al., 1999), increasing Q and BP. Individuals with primary HTN 

have a higher SNS activity level than their normotensive counterparts (Thomas & 

Dasgupta, 2015). Grassi et al., (1998) demonstrated that with increasing stages 

of HTN, there was a markedly increased level of SNS activity. Researchers 

suggested that increased levels of plasma NE causes increased sympathetic 

outflow to the heart and kidneys (Fischer & Paton, 2012; Parati & Elser, 2012; 

Manolis & Poulimenos, 2014; Thomas & Dasgupta, 2015; Grassi & Ram, 2016). 

This increased sympathetic outflow increases HR, Na+ retention, and water 

retention via sympathetic denervation of the heart and renal tubules (Thomas & 

Dasgupta, 2015). 

Hypertension (HTN) is also a product of augmented sympathetic outflow 

to the kidneys, which affects the RAAS system (Grassi & Ram, 2016). Increased 

sympathetic activity to the juxtaglomerular cells cause an increase in renin 

release, which increases angiotensin II and impairs renal vasodilation (Thomas & 

Dasgupta, 2015; Grassi & Ram, 2016). This then upregulates aldosterone 

release, altering BP by augmenting retention of Na+ and fluids (passively), which 

together cause an increase in BP via vasoconstriction and elevated blood volume 

(Beevers et al., 2001; Singh et al., 2010; Thomas & Dasgupta, 2015). 
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At the local level, the endothelium can be examined as a contributor to 

HTN. Endothelium is the inner most layer of the vascular wall, which healthy 

endothelium is characterized by vasodilatory, anti-inflammatory, and anti-

thrombotic responses as described previously (see Section 1.2.2 pg.12). 

However, dysfunctional endothelium has a decreased response to local 

regulators of BP, in particular, the prominent vasodilator NO (Flammer & 

Luscher, 2010). This reduced efficacy affects vascular function by reducing 

vasodilatory response, and this has been observed in hypertensives and those 

with a family history of HTN (Panza et al., 1990; Taddei et al., 1992; Flammer & 

Luscher, 2010). 

A decreased bioavailability of NO, due to interaction with reactive oxygen 

species (ROS), may also facilitate HTN development and maintenance (Flammer 

& Luscher, 2010). Superoxide anion (O2-), which is a common form of ROS, can 

then transform NO to peroxynitrite (ONOO-) to reduce the bioavailability of NO 

(Spieker et al., 2000; Sindler et al, 2009; Harvey et al., 2015). Peroxynitrite 

(ONOO-) oxidizes tetrahydrobiopterin (BH4), an essential cofactor (a substance 

that is essential for an enzyme’s activity) for NO synthesis by eNOS, to an 

inactive form effectively reducing NO production (Sindler et al., 2009; Harvey et 

al., 2015). NO, as noted above, is a key factor for vasodilation as it modifies TPR 

passively by interacting with arterial walls, and without this effect of NO, BP will 

steadily increase as its availability is reduced (Sindler et al., 2009). However, this 

is not the only culprit hypothesized to increase BP at the local level. 
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Endothelin 1 (ET-1), a local vasoconstrictor to the endothelium (described 

in Section 1.2.2 pg.12), may be increased in the plasma and is proposed to be 

from increases in dietary salt, which increases the sensitivity of the renal tubules 

to other stimuli that facilitate ET-1, like hypoxia (Heimlich et al., 2015). The 

connection between a high dietary salt intake and the role of ET-1 increasing BP 

has also been linked to the reduction of NO bioavailability through activation of 

NADPH oxidase (NADPH oxidase is a membrane bound enzyme that transfers 

electrons from the NADPH molecule that is a byproduct in energy production), 

which also increases the production of ROS (Heimlich et al., 2015). Loomis et al., 

(2005) observed increased levels of ET-1 on rat aortic rings, which resulted in an 

increase in O2- and provided evidence of reduced NO. This concept was further 

tested by Heimlich et al., (2015), examining effects of high salt diets on mice, 

which resulted in increases in renal ET-1 and NADPH oxidase activity causing an 

increase in ROS (Babior, 1999). Thus, a decrease in NO bioavailability 

contributes to increases in BP through a multifaceted system, although future 

research involving human tissue may help to pinpoint exact mechanisms. 

Vascular dysfunction can also be attributed to increased vascular 

stiffness, which is a consequence of vascular remodeling (El Assar et al., 2013). 

Remodeling occurs through both structural and functional changes of the 

endothelium and smooth muscle cells, which cause disruption in communication 

between these cell types (El Assar et al., 2013). Arterial stiffness is an outcome 

of a decrease in arterial elasticity, facilitating an increase in BP (Zieman et al., 

2005; El Assar et al., 2013). Arterial walls contain a balance of collagen and 
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elastin to maintain function, and over the course of the aging process elastin 

fibers undergo fragmentation and thinning, which results in a transfer of 

mechanical load and stress to collagen (100-1000 stiffer than elastin) (El Assar et 

al., 2013). Through this process, stiffening of the artery occurs, causing an 

overall increase in Q and TPR, which increases BP. 

As noted above, numerous non-modifiable and modifiable factors increase 

an individual’s lifetime risk of developing HTN. Non-modifiable risk factors are 

those that cannot be manipulated to reduce the development of HTN, and 

include: genetics/family history, age, sex, ethnicity, and environmental factors 

(Maranon & Reckelhoff, 2013; Franceschini et al., 2014; Hicken et al., 2014; 

Harvey et al., 2015). Unlike non-modifiable risk factors, potential modifiable 

factors can be manipulated in order to decrease HTN development and 

occurrence. Modifiable risk factors related to the development of HTN include: 

obesity, diabetes mellitus, and tobacco smoking (Padwal et al., 2001). 

A gene carries specific information to form a trait, which is transferred from 

parents to children in the formation of that organism (Reece et al., 2013). 

Passing on these specific traits or conditions that determine an individual’s 

genetic make-up (Reece et al., 2013). Abnormal BP control is a heritable trait 

that may be passed through generations with genetic contribution to HTN ranging 

from 30-50% (Franceschini et al., 2014). However, determining genes directly 

responsible for HTN development has been challenging with exact genes 

remaining elusive (Franceschini et al., 2014). Due to the complex nature of HTN, 

it is possible that there is interplay between other genetic factors like age, race 



 
 

30 
 
 

and sex that may provide possible explanations for HTN development 

(Franceschini et al., 2014). 

Aging is a major non-modifiable risk factor in the development of HTN, 

and is associated with endothelial dysfunction, vascular remodeling, and 

increased vascular stiffness (Najjar et al., 2005; Harvey et al., 2015). Aging 

increases the likelihood of HTN at around age 45 years for men, and age 55 

years for women (Statistics Canada, 2016b). In Canada, approximately 9% of 

men and 6% of women aged 35-44 years have HTN (Statistics Canada, 2016b). 

This increases to around 20% and 13% of men and women, respectively, at ages 

45-54 years (Statistics Canada, 2016b). Prevalence of HTN becomes greater at 

age 75 years and older, with half of men (approximately 49%) and of women 

(approximately 55%) living with HTN (Statistics Canada, 2016b). The vascular 

changes associated with aging are thought to lead to chronic elevations of BP, 

including vascular remodeling, which occurs over the life span (El Assar et al., 

2013). Neural regulation also declines as we age, as muscarinic receptor activity 

(discussed in Section 1.2.2, pg.12) is weakened resulting in a decrease in SNS 

and PNS regulation of the heart (e.g. SNS modulation in times of stress to cause 

a rise in HR and BP) (Lakatta, 2015). Consequently, there is an increased level 

of plasma E and NE thought to engage these receptors in older individuals 

compared to younger individuals, which when combined with the decrease in 

clearance of the hormones, results in an increase in BP (Manolis & Poulimenos, 

2014; Lakatta, 2015). 
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Hypertension (HTN) development is different depending on the ethnicity of 

the individual (Hicken et al., 2014). For example, research has suggested African 

Americans are more likely to have HTN after age 45 years, be aware of their 

condition, and receive treatment, but are less likely to reach target BP values 

with treatment when compared to Caucasian Americans (Hertz et al., 2005; 

Howard et al., 2017). Possible physiological explanations have been explored, 

with some evidence suggesting that hypertensive African Americans have higher 

levels of ET-1 when compared to hypertensive Caucasian Americans (Ergul et 

al., 1996). Campia et al., (2004) highlighted that disparity in BP may be the result 

of increased receptor sensitivity to ET-1 in combination with higher plasma levels 

of ET-1 that may be creating elevations in BP. However, further study is needed 

to truly understand this HTN disparity, with future research focusing on a 

comparison of a broader range of ethnicities for a complete understanding. 

Similarly, there are also differences that exist between men and women 

regarding the development of HTN (Maranon & Reckelhoff, 2013). It has been 

suggested that in young healthy women β-adrenergic mediated dilation is greater 

in comparison to men, which provides some level of protection against SNS over-

activity and contributes to this group having lower resting BP (Kneale et al., 2000; 

Hart et al., 2012). Evidence indicates that this may be a reason why young 

women are less likely to be diagnosed with HTN when compared to young men 

of the same age (Hart et al., 2012). Specific mechanisms illuminating why β-

adrenergic receptor sensitivity is greater in women is unclear, although there is 

work from animal models to support the notion that estrogen increases the 
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receptor sensitivity (Hart et al., 2012). The absence of this protective component 

has been observed in post-menopausal women, with reduced levels of circulating 

estrogen related to a decrease in β-adrenergic receptor sensitivity (Hart et al., 

2012). In contrast, the hormone testosterone is also linked to differences in BP 

that may occur between sexes, potentially explaining why men are at a higher 

risk of developing HTN before the onset of menopause in women (where HTN 

appears equal for both men and women) (Kienitz & Quinkler, 2008; Zimmerman 

& Sullivan, 2013). For example, castration of spontaneously hypertensive male 

rats resulted in a decrease in BP and when these animal models were then given 

testosterone these observations become inversed (Kienitz & Quinkler, 2008). 

Testosterone is suggested to increase synthesis of NE, in which case may lead 

to an increase in SNS activity (Kienitz & Quinkler, 2008). However, research is 

inconclusive on the HTN disparity between the sexes based on testosterone 

levels, with evidence supporting reduced testosterone levels also associated with 

HTN development (Kienitz & Quinkler, 2008; Hart et al., 2012; Zimmerman & 

Sullivan, 2012). Future direction may include specialized treatment plans 

according to ethnicity and sex of an individual to promote effective treatment 

(Kienitz & Quinkler, 2008). 

Unlike the previous factors, environmental elements are part of an 

individual’s external living circumstances, but also contribute to HTN pathology to 

compound previously mentioned morphology. Air pollution, referred to as 

particulate matter (PM), has recently been studied, and related work provides 

evidence that air-pollutants effect HTN development (Cosselman et al., 2015). 
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Dvonch et al., (2009) examined the effects of ambient PM by daily BP 

measurements on 347 residents of Detroit, Michigan over a two-year period. 

Results of this study provided evidence that increased exposure to PM was 

associated with increased BP. Specifically, for every 10-μ/m3increase in PM 

there was also an increase in SBP of approximately 3 mmHg. Brook et al., (2014) 

found similar results acutely, as adults exposed to 2-hour periods of PM, which 

caused increases of 3-4 mmHg SBP. Speculated biological explanations include 

SNS over activity, arterial vasoconstriction, and endothelial dysfunction (Franklin 

et al., 2015). Although exact details of these biological mechanisms remain 

elusive, the evidence provided suggests that air pollution is a major contributor to 

the current HTN crisis, and is affected by both acute and chronic exposure 

(Franklin et al. 2015). 

With regards to obesity, a modifiable risk factor linked to HTN, higher 

levels of fat mass have been associated with higher levels of SBP and DBP 

(Leung et al., 2017; Nerenberg et al., 2018). In Canada, 30% of adults who were 

classified as overweight or obese were also classified as being hypertensive, 

compared to 12% of normal weight adults with HTN (Statistics Canada, 2015a). 

Research has indicated that obesity is linked to over activity of the SNS, and 

changes in renal Na+ and water retention (as discussed previously above) 

(Rahmouni, 2014). These changes have been seen in animal models as 

demonstrated by Armitage et al., (2012) by feeding a high fat diet to rabbits for a 

time period of 3 weeks. Rabbits who were fed this high fat diet gained 504 grams 

of excess fat over the 3-week test, which resulted in increased BP, HR, renal 
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sympathetic nerve activity, and impaired baroreflex function (Armitage et al., 

2012). As with the Armitage et al., (2012) study, evidence has shown renal 

sympathetic activity to be increased with obesity, altering BP further through fluid 

and Na+ retention in the renal tubules (Rahmouni et al., 2014). Lohmeier et al., 

(2012) observed this phenomenon by baroreflex stimulation in dogs fed high fat 

diets. When the dogs gained 50% of their original weight during feeding, marked 

increases in BP, HR, MAP, and sodium retention were observed. However, when 

baroreceptor activation by electrical stimulation was initiated, this induced state 

of HTN disappeared, with reductions in plasma NE and reduced rates of sodium 

reabsorption by the renal tubules. With these results in mind, control of excess 

weight has been incorporated into current HTN guidelines (Leung et al., 2017; 

Nerenberg et al., 2018) as a method of decreasing chances of HTN development 

or reducing BP in hypertensive individuals (as discussed below in Section 1.2.4 

Treatment, pg. 36). Excess weight is theoretically a modifiable risk factor as it 

can be commonly mitigated by proper diet and exercise to cause fat-mass 

reduction and an overall maintenance of more ideal body fat levels (McArdle et 

al., 2010). However, there are other factors that may prevent weight from being a 

completely modifiable factor as socioeconomic status may limit exercise and 

proper nutrition, or hormonal imbalances may create a level of difficulty the 

average person may not struggle with (Bhurosy & Jeewon, 2014; Mullur et al., 

2014). 

Diabetes is characterized by a malfunction in the action of insulin, the 

secretion of insulin, or both complications simultaneously, resulting in 
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hyperglycemia (American Diabetes Association, 2014). Approximately 90-95% of 

diabetes cases are classified as diabetes mellitus (also known as type 2 

diabetes, or adult onset diabetes), which consists of decreased insulin sensitivity 

and a relative insulin deficiency (American Diabetes Association, 2014). Although 

direct causes of diabetes mellitus are unknown, increases of abdominal body fat 

are commonly seen in those with a diagnosis, and ultimately, also contribute to 

the development of HTN (American Diabetes Association, 2014). It is theorized 

that an increase in SNS activity is linked to a greater chance of developing 

diabetes mellitus and HTN, creating an overlap between diseases (Sowers, 

2013). Oxidative stress and inflammation are increased with diabetes mellitus, 

and these occur concomitant to a decreased bioavailability of NO (Cheung & Li, 

2012; Sowers, 2013). This is accomplished through increases in SNS activity, 

which causes increases in the RAAS system activity that is common in diabetics 

(Cheung & Li, 2012). Malfunction in the endothelium may be due to 

overstimulation of angiotensin II release, which in turn fosters ROS formation 

reducing the effectiveness and bioavailability of NO (Cheung & Li, 2012). This 

decreased bioavailability then causes a reduced ability for endothelial-mediated 

vascular relaxation in the arteries, attenuating the capabilities of the body for 

vasodilation, thus, causing arterial stiffness, and a chronically elevated BP 

(Cheung & Li, 2012; Sowers, 2013). This can be characterized by a narrowing of 

the blood vessels, which increases TPR and results in BP to be higher in diabetic 

individuals (Sowers, 2013). Insulin resistance seen in type 2 diabetics is thought 
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to increase the SNS, which leads to the increases in ROS and HTN (Cheung & 

Li, 2012). 

Tobacco smoking has also been identified by the World Health 

Organization as a leading modifiable risk factor in developing HTN (WHO, 

2018b). Smoking cigarettes increases arterial stiffness, thus increasing TPR and 

BP (Kim et al., 2005). It also affects the cardiovascular system by means of two 

toxic chemicals: nicotine, and carbon monoxide (Leone, 2015). Receptor binding 

of nicotine stimulates the SNS through release of E and NE, effectively raising 

HR and SBP (Leone, 2015). Nicotine also promotes endothelial dysfunction as it 

causes a reduced bioavailability of NO through increased oxidative stress 

(Leone, 2015). This reduction of NO reduces the endothelium’s capability of 

vasodilation, and thus, contributes to an increase in BP (Leone, 2015). Carbon 

monoxide also contributes to increases in BP by causing hypoxia (Leone, 2015). 

Carbon monoxide is formed in the body when carbon binds to oxygen, and has 

the potential to then bind to hemoglobin (Leone, 2015). Once carbon monoxide is 

bound to hemoglobin, it forms carboxyhemoglobin reducing the efficiency of the 

blood to deliver oxygen to tissues (Leone, 2015). Hypoxia, in this case, causes 

an increase in HR and BP to adapt to this reduced efficiency in order to 

accommodate the reduced oxygen at the tissue. 

1.2.4 Treatment of Hypertension 

The goal of HTN treatment is to lower elevated BP to within clinical target 

ranges (Leung et al., 2017; Nerenberg et al., 2018). Although ever changing, it is 

generally recommended that OBP is controlled to below 140 mmHg SBP and 90 
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mmHg DBP, or ≤ 135 mmHg SBP and 85 mmHg DBP using AOBP or 

ambulatory devices (WHO, 2013; Leung et al., 2017; Nerenberg et al., 2018). 

The most recent AHA/ACC guidelines suggest a target for BP lowering to 

<130/80 mmHg, which was based on the success seen in the Systolic Blood 

Pressure Intervention Trial (SPRINT) study that incorporated targets of <120 

mmHg (Ambrosius et al., 2014; Whelton et al., 2018). Currently, lifestyle 

modifications and pharmacotherapy are cornerstone treatments for HTN 

management. 

The goal of lifestyle modifications is to recognize the condition(s) and 

manage all other identifiable risk factors for HTN (Weber et al., 2014). Treatment 

processes are usually a lifelong commitment, and termination of recommended 

lifestyle changes or pharmaceutical prescriptions may be life threatening (Weber 

et al., 2014). Endorsed lifestyle modifications include increasing physical activity, 

weight reduction, decreasing alcohol consumption, following the Dietary 

Approaches to Stopping HTN (DASH) diet, and an overall reduction of daily 

stress (Leung et al., 2017; Nerenberg et al., 2018). With regards to physical 

activity, the accumulation of 30-60 minutes of moderate intensity dynamic 

exercise (e.g., walking, running, cycling, swimming) 4-7 days per week in 

combination with daily activities is recommended to reduce BP (Leung et al., 

2017; Nerenberg et al., 2018). These guidelines are supported by 

complementary guidelines around the world (Mancia et al., 2013, Weber et al., 

2014; Pescatello et al., 2015; Leung et al., 2017; Nerenberg et al., 2018; Whelton 

et al., 2018). The 2017 AHA/ACC guidelines stress the importance of also 
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incorporating dynamic resistance exercise and isometric resistance exercise into 

exercise training programs for optimal BP control (Whelton et al., 2018). Dynamic 

resistance exercise recommendations include 90-150 minutes of training at 50%-

80% of an individual’s 1 repetition maximum, with 3 sets per exercise, 10 

repetitions per set, for at least 6 exercises total (Whelton et al., 2018). Decreases 

seen in hypertensives following said dynamic resistance training 

recommendations result in a BP reduction of approximately 4 mmHg (Whelton et 

al., 2018). Additionally, isometric resistance training, which has recently been 

added to the recommendations, employs an exercise program using a handgrip 

dynamometer (discussed further in Section 1.3, pg. 44), completing 4, 2-minute 

contractions at 30%-40% of an individual’s maximum voluntary contraction 

(MVC), separated by 1-minute rest periods (Whelton et al., 2018). Training 

should occur at least 3 times per week (Whelton et al., 2018).  With regard to 

diet, the DASH diet is a main recommendation for individuals living with HTN 

(Sacks et al., 2001). The DASH diet puts emphasis on fruits, vegetables, low fat 

dairy products, whole grains, poultry, fish, and nuts with small amounts of red 

meats, sweets, and sugary snacks (Sacks et al., 2001). 

Although these methods are effective, unfortunately many Canadians are 

not meeting daily requirements for physical activity or diet (Statistics Canada, 

2015b). This is exemplified by the fact that most Canadian’s waking hours are 

sedentary 68% for men and 69% for women), and only 25% of the population are 

accumulating 150 minutes of moderate to vigorous aerobic physical activity per 

week as per the guidelines (Colley et al., 2018). Moreover, less than 40% of 
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Canadians aged 12 years or older eat fruits or vegetables 5 or more times per 

day (Statistics Canada, 2015b). 

When lifestyle modifications are insufficient in lowering BP to within the 

clinical target, pharmacological treatments are then prescribed along with 

lifestyle-related treatments (Weber et al., 2014). Common medications 

prescribed include angiotensin enzyme inhibitors, which reduce the conversion of 

angiotensin I to angiotensin II, and angiotensin receptor blockers, which bind to 

the receptor to prevent vasoconstriction by angiotensin II. Other medications 

include thiazide and thiazide-like diuretics, which increase sodium excretion by 

the kidneys; Ca2+ channel blockers, which block inward flow of Ca2+ ions 

through the L channels of the arterial smooth muscle cells, lowering TPR and BP; 

and β-blockers which prevent E from increasing HR and BP (Weber et al., 2014). 

1.2.5 Exercise Training 

Effects of Acute Aerobic Exercise on Blood Pressure 
 

Acute exercise has the potential to lower resting BP levels post-exercise, 

an occurrence named post-exercise hypotension (PEH) (Halliwill et al., 2014). 

The effect has been observed for up to 22 hours after the completion of a bout of 

aerobic exercise (Chen & Bonham, 2010; Halliwill et al., 2014); individuals with 

higher pre-exercise levels experience the largest reductions (Syme et al., 2006). 

In general, average reductions in BP following a bout of aerobic exercise for 

normotensives and hypertensives are 8/9 mmHg and 10/7 mmHg SBP and DBP, 

respectively (MacDonald, 2002). 
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Although most PEH studies to date have involved resting BP as a primary 

outcome, work by Ciolac et al., (2008) in post-menopausal women provided 

evidence of 24-hour BP lowering after an acute bout of aerobic exercise. 

Specifically, post-bout reductions in 24-hour SBP, 24-hour DBP, daytime SBP, 

daytime DBP, nighttime SBP, and nighttime DBP were observed. Of interest, it 

has been suggested that PEH may be a useful predictor for how an individual will 

respond to chronic exercise training with BP-lowering (Ciolac et al., 2008). 

Kiviniemi et al., (2015) demonstrated this concept by an acute aerobic exercise 

test followed by a training protocol. Pre-training PEH-related decreases in SBP 

was related to post-training reductions in resting SBP (Kiviniemi et al., 2015). 

Although the potential mechanisms are elusive, it has been proposed that 

the phenomenon can be explained by two different mechanisms. The first, 

baroreceptor resetting (in which GABAergic interneurons exert less inhibitory 

effects on barosensitive neurons, leading to a decrease in sympathetic outflow) 

or the second, a sustained level of post-exercise vasodilation caused by 

histamine receptor activation (Chen & Bonham, 2010; Halliwill et al., 2014). 

Effects of Chronic Aerobic Exercise on Blood Pressure 
 

Chronic effects of aerobic exercise have been extensively researched, 

with concrete evidence for reductions in resting BP. Generally, research has 

shown that aerobic exercise training interventions elicit average BP reductions of 

approximately 2/2 mmHg and 7/5 mmHg for normotensives and hypertensives, 

respectively (Cornelissen et al., 2013). Extensive research has been completed 

to support the efficacy of aerobic training in lowering resting BP despite the 
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multitude of modalities (walking, running, cycling, organized sport), intensities 

(30-90% of maximal oxygen reserve), durations (30-60 minutes), and frequencies 

(1-7 days per week) implemented (Pescatello et al., 2004; Lamina, 2010; Dimeo 

et al., 2012; Krustrup et al., 2013; Arca et al., 2014; Börjesson et al., 2016). 

The mechanisms responsible for BP reductions seen with chronic aerobic 

exercise participation remain inconclusive, although it is speculated several 

components are involved (e.g. neural, hormonal, local) and that reductions in BP 

due to aerobic training can be attributed to changes to TPR rather than Q 

(Pescatello et al., 2005). This also coincides with the notion that a decrease in 

SNS activity due to aerobic training will increase vasodilation, effectively 

decreasing TPR and BP (Pescatello et al., 2005). Aerobic exercise performed for 

prolonged periods may reduce BP locally via reductions in ET-1 and ROS, while 

increasing bioavailability of NO, which has recently been shown in animal models 

during an 8-week training program (Maeda et al., 2001; Pescatello et al., 2004; 

Braga et al., 2015; Wilson et al., 2016). Exercise induced anatomical adaptations 

of the heart may also have an influence on BP, with aging endurance athletes 

(65 years or older) having lower end systolic/diastolic volumes in both the left 

ventricle and right ventricle in combination with similar increases in left ventricle 

wall thickness seen in younger endurance athletes (Whyte et al., 2004; Wilson et 

al., 2016). 

 There is a growing body of research examining the effects of chronic 

aerobic training on ambulatory BP (Cardoso et al., 2010). Current meta-analysis 

suggests an average reduction in daytime BP of approximately 3/3 mmHg and 3-
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12/3-7 mmHg for normotensives and hypertensives, respectively (Gayda et al., 

2012; Cornelissen et al., 2013). Dimeo et al., (2012) demonstrated the effects of 

an 8-week treadmill exercise program on 50 participants with resistant HTN, 

where the use of 2 or more antihypertensive drugs were ineffective to lowering 

BP alone. Completion of the protocol resulted in a decrease in daytime 

ambulatory SBP and DBP. 

Effects of Acute Dynamic Resistance Exercise on Blood Pressure 
 

An acute bout of dynamic resistance exercise using large muscle groups 

to lift weights through a series of dynamic movements produces immediate 

increases in both SBP and DBP up to 400 mmHg and 200 mmHg, respectively 

(MacDougall et al., 1985; Mayo et al., 1999). Intramuscular pressure created by 

compression of the vasculature causes a drastic increase in TPR, which 

increases in BP (Mayo et al., 1999). 

Sympathetic nervous system (SNS) activity is also enhanced, increasing 

NE secretion to augment HR and BP and provide adequate amounts of 

oxygenated blood to working tissues (Mayo et al., 1999; Kraemer & Ratamess, 

2005). However, the intensity of the working muscle activated and the amount of 

muscle mass that is activated proportionally determines the increase in BP to the 

acute bout of dynamic resistance exercise (Mayo et al., 1999). BP is also linked 

to the phase of the lift, where the onset of the lifting phase will increase BP to 

maximal levels, followed by a decrease in BP once the lift is completed, and an 

increased BP level during the lowering phase of a lift (MacDonald, 2002). 

Similar to acute aerobic exercise, evidence suggests that PEH occurs 
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after an acute bout of dynamic resistance exercise, with limited research 

involving ambulatory BP methods (Pescatello et al., 2004; Cardoso et al., 2010). 

Melo et al., (2006) conducted experiments using a low-intensity strength training 

protocol on medicated hypertensive women aged 41-50 years (n= 11, resting BP 

= <160 mmHg/ 105 mmHg). Participants underwent low intensity resistance 

exercise performed in a random order with an interval of at least 7 days. 

Ambulatory BP was taken, with awake SBP, and DBP significantly lower in 

exercise groups compared to control groups, with 21-hour readings yielding a 

drop from approximately 128 mmHg/ 80 mmHg to 123 mmHg/76 mmHg, 

respectively. Simão et al., (2005) also examined hypotensive effects after acute 

resistance exercise with varying intensity, varying volume, and alternate training 

methods. After each training session, participants were outfitted with ambulatory 

BP monitors to determine post-exercise BP. The major finding of the study was 

PEH response duration may be related to resistance exercise training volume at 

high intensities, with PEH occurring for 60 minutes after 6 exercises and 50 

minutes after 5 exercises. Recent meta-analysis research indicates PEH occurs 

60-90 minutes post-exercise, with BP reductions proportional to pre-exercise 

values, and larger muscle groups eliciting a greater PEH response (Casonatto et 

al., 2016). These findings do coincide with previous research; therefore, continual 

study of this phenomenon must be completed in order to fully understand the 

mechanisms behind PEH following a bout of dynamic resistance exercise (Simão 

et al., 2005; Melo et al., 2006). 
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Effects of Chronic Dynamic Resistance Exercise on Blood Pressure 

The literature regarding dynamic resistance training on BP is not as 

extensive as it is with aerobic training (Cardoso et al., 2010). A meta-analysis 

exploring randomized controlled trials of dynamic resistance training lasting at 

least 4 weeks facilitated SBP and DBP reductions of 4 mmHg in normotensives 

and 4/2 mmHg in hypertensives (Cornelissen et al., 2011). The latter results 

(hypertensives) findings were not statistically significant, but this may be due to 

the small body of work completed in the field (Cornelissen et al., 2011). However, 

more recent research conducted by Mota et al., (2013) investigated the effects of 

prolonged training on older adult, hypertensive women (n=64). Exercise sessions 

were conducted three times per week for 16 weeks with increasing load (Month 

1: light intensity; Month 2: 60% 1RM; Month 3: 70% 1RM; and Month 4: 80% 1 

RM). Results showed an approximate difference in SBP of 14 mmHg and DBP of 

4 mmHg. Moreira et al., (2016) then completed a study of similar design on 20 

medicated hypertensive women over the age of 60 years with 12 weeks of 

incremental dynamic resistance training. As with previous work, higher baseline 

BP was related to high acute BP responses, which then manifested as a greater 

BP lowering response to prolonged resistance training. Results of these studies 

indicate that PEH response seen acutely is related to long term effects of 

resistance training, similar to aerobic exercise (Moreira et al., 2016). However, 

whether the mechanisms are the same is still unclear. 

Currently, there is limited research with regards to the ambulatory BP-

lowering effects of dynamic resistance training, but the data to date suggests a 
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lack of effect (Blumenthal et al.,1991; Pescatello et al., 2004; Cardoso et al., 

2010). 

1.3 Isometric Resistance Exercise 

A more novel intervention in the field of HTN management is isometric 

resistance training, in particular isometric handgrip (IHG) training. IHG training 

has emerged as a promising strategy that may be especially effective for 

reducing BP in individuals who have difficulty managing their HTN (Brook et al., 

2013; McGowan et al., 2017). A typical IHG protocol involves the use of a 

computerized handgrip dynamometer with participants performing 4, 2-minute 

sustained squeezes (isometric contractions), each separated by 1-minute rest 

intervals (Badrov et al., 2013). The 2-minute isometric contractions are 

performed at 30% of an individual’s MVC and most often completed bilaterally 

(Brook et al., 2013; McGowan et al., 2017). The individual is usually guided 

through the described process via onscreen instructions and prompts displayed 

on the computerized handgrip dynamometer. IHG training is typically performed 

3-5 times per week for 8-10 weeks (Brook et al., 2013; Millar et al., 2014; Inder et 

al., 2016; McGowan et al., 2017). Reductions in resting BP due to IHG training 

have been noted in a wide array of individuals ranging from young adults (18-30 

years) to older adults (>60 years), including those with and without HTN 

(McGowan et al., 2007; Badrov et al., 2013; Millar et al., 2014; Inder et al., 2016). 

After years of accumulating evidence supporting the effectiveness of IHG training 

in BP control, the ACC/AHA supports its use as a treatment for HTN 

management, and cites it as a “Best Proven Nonpharmacological Interventions 
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for Prevention and Treatment of Hypertension” in their most recent guidelines 

(Whelton et al., 2018). The CHEP are less specific in their recommendation, and 

acknowledge a lack of adverse effects with handgrip training (Brook et al., 2013; 

Leung et al., 2017; Nerenberg et al., 2018; Whelton et al., 2018). This type of 

treatment may also bridge the gap for individuals who are incapable of 

participating in or sustaining aerobic or dynamic resistance exercise-based 

treatments, and may be a remedy for the growing burden of HTN in low-middle 

income countries (Carlson et al., 2014). 

Effects of Acute Isometric Handgrip on Blood Pressure 

During an isometric muscle contraction, the underlying vasculature 

becomes compressed and occlusion of blood flow occurs (Smith et al., 2005). 

This reduced blood flow causes an accumulation of local metabolites (lactate, 

adenosine triphosphate, K+, and H+), which activates a mechanism known as 

the exercise pressor reflex (EPR) (Smith et al., 2005). SNS activity is then 

increased by the EPR relaying afferent signals to the CC, thus increasing HR and 

ultimately blood flow to the working tissues (Smith et al., 2005). Although 

definitive mechanisms as to how IHG affects BP remain unclear, the BP lowering 

effects have been documented through many studies. Current data supports only 

modest and transient increases in SBP and DBP (∆ 12-38/7-23 mmHg) during 

the contraction phase of the traditional IHG protocol (4, 2-minute isometric 

contractions each separated by 1-minute rest intervals) for most people studied 

thus far, even in those with HTN (Wiley et al., 1992; McGowan et al., 2006; Millar 
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et al., 2009; Araujo et al., 2011; Millar et al., 2014; McGowan et al., 2017; Smart 

et al., 2017). 

The effects of an acute bout of IHG exercise on PEH are under-

investigated. Millar et al., (2009) and Araujo et al., (2011) had both observed 

PEH following 4, 2-minute sustained isometric contractions at 30% of the 

participant’s MVC with 1-minute rest periods in between each contraction, with 

PEH of -3 mmHg SBP in older normotensive individuals and -12 mmHg SBP/-11 

mmHg DBP in young normotensives. In contrast, Bartol et al., (2012) did not 

observe PEH following an acute IHG bout in a population of well controlled, 

medicated hypertensives, either at baseline or following an additional 8 weeks of 

3X/week IHG training. However, results of this study may have been impacted by 

the medication regimens of the participants. Similarly, Olher et al., (2013) did not 

find any instance of PEH after acute bouts of IHG at any intensity in a similar 

cohort of individuals medicated for HTN. Ash et al., (2017) investigated the 

antihypertensive effects of both acute aerobic sessions and acute IHG sessions 

in middle aged adults with prehypertension and obesity, and only observed PEH 

following the aerobic exercise bout. However, it is important to note that the 

amount of time engaged in aerobic exercise was far greater to be appropriately 

compared, and the IHG group was under-powered statistically. Further 

investigation is needed to fully understand the interaction between varying 

populations, differing IHG methods, and intensities with regards to PEH. 
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Effects of Chronic Isometric Handgrip on Blood Pressure 

The most current meta-analysis of randomized trials cites average post-

training BP reductions of 5/4 mmHg, with greater reductions seen in individuals 

with HTN (Inder et al., 2016). However, there is evidence that inter-individual 

differences may occur with this type of training. Work from Millar et al., (2008) 

suggested post-menopausal women experienced greater post-training BP 

reductions in comparison to men of a similar age. In general, the small overall 

number of women that have participated in IHG training trials to date make the 

effects of sex difficult to ascertain (McGowan et al., 2017). With respect to age, 

the most recent meta-analyses data provided evidence that adults > 45 years of 

age experience larger reductions in MAP than those < 45 years of age (Inder et 

al., 2016). Individuals with high pre-training SBP reactivity to math and isometric 

contraction stress tasks also appear highly responsive to IHG training (McGowan 

et al., 2017; Somani et al., 2017). 

There is a lack of research regarding duration, intensity, and volume of 

training (Lawrence et al., 2015), yet training for ≥ 8 weeks appears to elicit larger 

reductions in SBP (7 mmHg vs. 3 mmHg), although there is no difference seen in 

DBP when making this comparison (Inder et al., 2016). In Wiley et al., (1992), the 

first of two studies consisted of testing IHG on subjects with high-normal resting 

DBP, performing the isometric handgrip contractions for 2-minutes at 30% of an 

MVC, with a 3-minute rest between each set of 2-minute contractions, 3 days per 

week for 8 weeks. Training resulted in a decline of both SBP and DBP of 

approximately 13 mmHg and 15 mmHg, respectively. In the second study, 
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borderline hypertensive participants were chosen to complete 4, 45 second 

contractions at 50% MVC with 1-minute rest intervals between contractions, 5 

days per week for 5 weeks. Training resulted in significant reductions in SBP and 

DBP pressure of 10 mmHg and 9 mmHg, respectively. Badrov et al., (2013) 

investigated the effects of IHG volume on BP-lowering effectiveness in 

normotensive women. Participants were either categorized into IHG3 or IHG5, 

which consisted of training 4, 2-minute contractions at 30% MVC for either 3 

times per week or 5 times per week for 8 weeks. Both groups had similar 

reductions in SBP (6 mmHg), yet the IHG5 group achieved significant BP 

reductions after 4 weeks of training, while the IHG3 group only showed these 

reductions after 8 weeks of training. 

Although only IHG training appears in current BP-lowering guidelines 

(Leung et al., 2017; Nerenberg et al., 2018; Whelton et al., 2018), there is 

evidence to suggest that isometric leg (IL) training elicits similar BP-lowering 

benefits, although much of the work has been conducted in normotensive 

populations. Previous experimentation has involved a general practice of double 

leg contractions based on 20-50% of the individuals MVC, consisting of 4, 2-

minute isometric contractions separated by 3-minute rest periods, taking place 3 

times per week for up to 4-8 weeks (Gill et al., 2015). Devereux et al., (2010) 

demonstrated that 4 weeks of IL training reduced SBP and DBP by 5 mmHg and 

3 mmHg, respectively, in a cohort of young healthy adults. 

With respect to investigations involving exercise intensity and BP-lowering 

effect, Wiles et al., (2010) investigated intensity levels of IL training on BP. 
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Participants (n=33) were divided into control, high intensity (20% MVC), or low 

intensity (10% MVC) grouping, which required IL training (4, 2-minute isometric 

contractions separated by 1-minute recovery) 3 times per week for 8 weeks. 

Changes seen in resting BP were significant for high intensity and for low 

intensity, systolic, diastolic, and MAP. This demonstrated that lowering BP can 

be achieved at a wide range of intensities when using IL protocols. Baross et al., 

(2012) then replicated this study using 14% MVC for the high intensity group and 

8% MVC for the low intensity group. Significant changes in BP (MAP and SBP) 

were only seen in the high intensity group after training. 

The mechanisms responsible for the demonstrated reductions in BP 

following IHG training remain unclear. As noted previously, HTN is associated 

with dysfunctional vagal HR modulation, increased SNS activity and vascular 

dysfunction (Anderson et al., 1989; Singh et al., 1998; Faulx et al., 2003). Work 

to date supports improved vagal control of HR (Taylor et al., 2003; Millar et al., 

2014), reduced sympathetic activity (Taylor et al., 2003) augmented arterial 

compliance and vascular function (McGowan et al., 2006, McGowan et al., 2007; 

Badrov et al., 2013; Millar et al., 2014), enhanced oxidative capacity (Peters, et 

al., 2006), and reduced Q (Wiles et al., 2017) as potential contributors to the BP-

lowering effects of IHG training. 

1.4 Alternative Devices: Stress Ball 

Although the benefits of IHG training have been documented as described 

above, the high cost of the computerized IHG dynamometer employed (> $699 

CAD; Zona Health, 2018) and lack of insurance coverage for the device creates 
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an economic barrier to its implementation (McGowan et al., 2017). Previous 

studies have identified the importance of developing cost-effective alternative 

devices or techniques as a method of broadening isometric resistance training as 

a viable treatment option for individuals with HTN (Millar et al., 2008; Zhang et 

al., 2014; Wiles et al., 2017). The WHO has also endorsed the implementation of 

cost effective, efficient, and innovative ways to reduce BP (WHO, 2017). 

Early evidence suggests that alternative and affordable 

devices/techniques elicit short-term training-induced reductions in BP. With 

respect to IHG training, Millar et al., (2008) provided support for the BP-lowering 

effects of a spring-loaded IHG device in normotensive older adults. Participants 

who trained 3 times per week for 8 weeks at an intensity ranging from 15 to 30 

pounds of force (depending on their baseline maximum force or MVC), 

experienced post-training SBP and DBP reductions of 10 mmHg and 2 mmHg, 

yet no changes were observed in the control group. This study provided the first 

evidence to suggest IHG training with a cost-effective device can elicit the same 

results. However, it is unclear if these results are generalizable to younger 

normotensive or older hypertensive cohorts, or if they can be replicated using 

other low-cost devices. 

Similarly, Wiles et al., (2017) investigated cost effective methods of IL by 

the effects of a 3 times per week wall squat (4, 2-minute bouts at 95% of HRpeak, 

with 2-minute rest between bouts) 4 week training program on resting BP in 

young, normotensive men. Post-training reductions in SBP (4 mmHg), DBP 

(3mmHg), and MAP (3 mmHg) were observed. Although this method meets a 
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cost-effective model for isometric training, it does not meet feasibility due to the 

required lower limb strength that is necessary for participation. Thus cost-

effective, widely available options must continually be explored to find the best 

option for isometric training.  

An alternative and even less expensive device than the spring-loaded 

device previously investigated (Millar et al., 2008), one not reliant on calibration 

equipment to regulate force, and one that can be performed by individuals with 

mobility issues, balance issues, or barriers that may prevent exercise involving 

lower extremities is the widely known “stress ball”. Recent work by Morrin et al., 

(2018) lay a foundation for designing effective IHG protocols on non-

computerized, non-spring-loaded devices. Using a pre-HTN and HTN cohort, it 

was demonstrated that a perceived exertion (CR-10) of 6 during a 2-minute IHG 

contraction is equivalent to approximately 30% MVC (Morrin et al., 2018). To 

date, no study has investigated the acute (during a bout) or chronic (training) 

effects of IHG on BP or other indices of cardiovascular and psychophysical 

function when using a stress ball. 

1.5 Summary 

HTN is the leading cause of CVD-related mortality, making it a substantial 

contributor to global disease burden (WHO, 2017). With the number of CVD-

related deaths increasing each year (WHO, 2017), effective BP control is 

essential, and a critical public health concern. The prevention and successful 

treatment of HTN is now a global health priority of the WHO (WHO, 2013). 

Current HTN treatment options include: reduction in excess body fat, cessation of 
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smoking, changes in diet (DASH diet), increases in physical exercise (following 

guideline recommendations), and pharmacotherapy (Nerenberg et al., 2018; 

Whelton et al., 2018). 

Despite these published widespread recommendations, successful BP 

control is suboptimal, creating a need for new, innovative, time efficient, and 

cost-effective methods to reduce HTN (Newson & Kemps, 2007; WHO, 2017). 

IHG training is one such method, and has been recently endorsed by governing 

bodies for BP management (Nerenberg et al., 2018; Whelton et al., 2018). 

However, most isometric resistance training protocols present barriers limiting 

their use – whether it be expensive hand or leg dynamometer devices, difficult to 

calibrate spring-loaded IHG devices, or challenging wall squats. As such, long-

term application of isometric resistance training as a BP-lowering treatment is 

unlikely for many individuals in North America and worldwide (Millar et al., 2011; 

Zona Health, 2018). As IHG training, and not IL training, is the endorsed method 

of training, exploring inexpensive and widely available IHG alternatives, such as 

the “stress ball” should be a priority. The enhanced feasibility, low maintenance, 

and inexpensive nature (approximately $4 CAD) of the stress ball aligns with the 

global (WHO, 2017) emphasis on reducing barriers to effective BP management. 
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2.1 Introduction 
 
Cardiovascular disease (CVD) is the number one cause of death globally 

(WHO, 2017). In 2016, over 17 million or 31% of all global deaths were attributed 

to CVD (WHO, 2017). Hypertension (HTN; traditionally defined as resting blood 

pressure (BP) ≥140/90 mmHg; Gee et al., 2014; Nerenberg et al., 2018; Whelton 

et al., 2018; Williams et al., 2018) is the leading cause of CVD and CVD-related 

mortality, and the number one modifiable risk factor (Ezzati et al., 2002; Daneai 

et al., 2011; Joffres et al., 2013; Benjamin et al., 2017). Already affecting more 

than 1 billion people worldwide (Fisher & Curfman, 2018), the World Health 

Organization (WHO) has identified HTN as a global epidemic (WHO, 2013).  

Cornerstone recommendations for the prevention, treatment and 

management of HTN include a reduction in alcohol consumption, cessation of 

tobacco smoking, maintenance of a healthy body weight, improvements in diet 

and increases in physical exercise (e.g., aerobic exercise together with dynamic 

resistance training), in addition to routine activities of daily living (Nerenberg et 

al., 2018; Whelton et al., 2018). When lifestyle modifications alone do not 

successfully control BP to within clinical target ranges (Eckel et al., 2014), 

pharmacotherapy is used concomitantly (Owen et al., 2010; Leung et al., 2017; 

Nerenberg et al., 2018; Whelton et al., 2018). Despite these intervention 

strategies, less than 50% of those with HTN have their condition controlled to 

target levels (Go et al., 2013). This may be attributable to many factors, such as 

non-adherence to medication, diet and/or physical activity regimens, and the cost 

of treatment (Brook et al., 2013; McGowan et al., 2017). Therefore, it is crucial to 
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develop complementary and cost-effective strategies that can be used alone or in 

conjunction with traditional BP-lowering interventions to better control BP (WHO, 

2017). 

Accordingly, alternative strategies have been investigated over the years 

with varying degrees of success (e.g., meditation, biofeedback, device-guided 

breathing), including isometric handgrip (IHG) training (Brook et al., 2013; 

McGowan et al., 2017). After decades of accumulating proof-of-concept 

evidence, the AHA/ACC now endorses IHG training as a treatment for HTN 

management, citing it as a “Best Proven Nonpharmacological Interventions for 

the Prevention and Treatment of Hypertension” in their most recent guidelines 

(Brook et al., 2013; Whelton et al., 2018). Typically, an IHG protocol involves the 

use of a computerized handgrip dynamometer with participants performing 4, 2-

minute sustained squeezes (isometric contractions), each separated by 1-minute 

rest intervals (Badrov et al., 2013), at 30% of an individual’s maximum voluntary 

contraction (MVC) performed 3-5 times per week for 8-10 weeks (Brook et al., 

2013; Millar et al., 2014; Inder et al., 2016; McGowan et al., 2017). However, 

there is concern over the accessible and economic feasibility of using such 

devices for widespread implementation. 

The high cost of the computerized IHG dynamometer (> $600 CAD; Zona 

Health, 2018) and lack of insurance coverage for the device creates an economic 

barrier to its widespread uptake and implementation (Millar et al., 2008; Zhang et 

al., 2014; McGowan et al., 2017; WHO, 2017). This notion of using an alternative 

and affordable handgrip device has already been supported in the literature as 
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an approach to elicit short-term training-induced reductions in BP for 

normotensive older adults (Millar et al., 2008). Using a spring-loaded IHG device, 

participants completed an 8 week, 3 times weekly, IHG training program, or were 

part of a non-exercising control group. Participants randomized to the IHG group 

trained at an intensity ranging from 15 to 30 pounds of force, depending on their 

baseline maximum force or MVC. Pre-post reductions of 10 mmHg for systolic 

BP and 3 mmHg for diastolic BP were observed with training, yet no change was 

observed in the control group. 

An alternative and even less expensive device than the spring-loaded 

dynamometer previously investigated (Millar et al., 2008), one not reliant on 

calibration equipment to regulate force, and one that can be performed by 

individuals with mobility issues, balance issues, or barriers that may prevent 

exercise involving lower extremities, is the widely known “stress ball”. Recent 

work by Morrin et al., (2018) lay a foundation for designing effective IHG 

protocols with alternative IHG devices. Using a pre-HTN and HTN cohort, it was 

demonstrated that a rating of perceived exertion (CR-10; RPE) of 6 during a 2-

minute IHG contraction is equivalent to 30% MVC (Morrin et al., 2018). To date, 

no study has investigated the acute (during a bout) or chronic (training) effects of 

IHG on BP or other indices of cardiovascular and psychophysical function when 

employed using a stress ball. 

Before a long-term training investigation can be undertaken, it is important 

to first examine and compare the acute stimuli of the inflatable stress ball with the 
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computerized device, including cardiovascular (BP and heart rate, HR), and RPE 

(similar to Morrin et al., 2018) responses. 

2.2 Purposes and Hypotheses 

The primary objective of the present investigation was to test the 

hypothesis that an acute bout of IHG utilizing an inexpensive, readily available 

inflatable stress ball would elicit a similar cardiovascular response (e.g., 

elevations in BP and HR) as the traditional computerized dynamometer device. 

In addition, it was anticipated that an acute bout of IHG would elicit a similar RPE 

of approximately 6 using both devices. 

2.3 Clinical Significance 

 The current study extends the body of IHG training work and provides a 

base for future training studies designed to investigate the effects of less 

expensive devices on BP-reduction. The demonstration of similar cardiovascular 

and RPE responses to a bout of IHG using a computerized device (Zona Health, 

2018) and an inexpensive inflatable stress ball (approximately $4 CAD) suggests 

that IHG training performed using the latter may have similar BP-lowering benefit. 

Further, gaining a greater understanding of the subjective RPE will address a 

gap exposed by Morrin et al. (2018) and generate knowledge that will inform 

programing decisions as to the feasibility of device as a standard of care 

treatment. Thus, this project lays the foundation for future studies to test efficacy 

and outcome benefit, further promoting IHG as a treatment option for BP 

management. Importantly, this work aligns with the WHO’s request for valid 

prevention strategies that are equally cost-effective. 
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2.4 Methods 

2.4.1 Study Participants 
 

Participants (healthy adults, ≥ 18 years old, resting BP <135/85 mmHg, no 

overt disease, not taking prescription medication with the exception of birth 

control pills, over the counter medications (e.g., Tylenol, Benedryl) from within 

southwestern Ontario were recruited (Appendix A). All participants provided 

written and informed consent (Appendix B), and all procedures were cleared by 

the University of Windsor’s Research Ethics Board. 

2.4.2 Study Design 

Following consent and determination of eligibility, participants completed a 

familiarization and testing session. Each of these sessions involved the 

measurement of HR and BP while performing a bout of IHG on i) a computerized 

IHG device (Zona Series 2, Zona Health, Boise, ID, USA, Appendix C) and, ii) a 

store-bought inflatable ball (Part Number 020500, AllBall, Sportime, Thailand. 

www.Amazon.com, Appendix D). The order of the two IHG methods 

(computerized IHG device and inflatable ball) were randomized for each 

participant with a 30-minute stabilization period between each bout. Total time to 

complete the collective procedures was approximately 3 hours and included 2 

points of contact. 

Visit 1: Eligibility and Familiarization (approximately 1 hour) 

Following informed consent, initially eligible participants completed the 

Physical Activity and Readiness Questionnaire plus (PAR-Q+; Appendix E) and a 

medical questionnaire (Appendix F) with the intent to screen for any ailments that 
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may exclude them from participating. Additionally, resting BP was measured after 

10 minutes of seated rest to ensure inclusion BP criterion was met (<135/85 

mmHg) according to standard protocol (Dinamap Carescape v100, Critikon 23-

33cm cuff, Tampa, Florida, USA; see Appendix G). Four measurements were 

acquired, with 2-minute rest periods between each measurement, and the last 3 

BP values averaged. Participants meeting all eligibility criteria proceeded to 

protocol familiarization. 

During the familiarization session, participants practiced the testing day 

procedures. The session began with determination of maximal voluntary 

contraction (MVC) on each device. The MVC for the computerized device (Series 

2, Zona Health, Boise, ID, USA, see Appendix C) was automatically calculated 

from internal linear load cells, using either the right or left hand (depending on 

randomization). MVC for the inflatable stress ball (Part Number 020500, AllBall, 

Sportime, Thailand. www.Amazon.com, see Appendix D) was calculated using a 

digital air pressure gauge (Fox 40 International, 340 Grays Road, Hamilton, 

Ontario, Canada, 2016, see Appendix H). Then respective 30% MVC were 

calculated; for the computerized IHG device this calculation was done 

automatically, and for the inflatable stress ball the following equation was used: 

Equation 1: S= Max PSI x 0.30; 

where S represents the 30% value, and Max PSI is the maximum air displaced; 

the value displayed on the air gauge. 

Once completed, the participant performed a 2-minute IHG bout at 30% 

MVC using their right hand. After the bout was finished, the participant was given 
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the chance to review the CR-10 scale (Appendix I) and have their BP measured 

as per testing day procedures. After a 1-to-2-minute rest period, this process was 

completed on the left hand and the alternative device was used for the second 

bout to ensure minimal fatigue experienced during this familiarization session. 

Visit 2: Testing Day (approximately 1.5 hours) 
 

After confirmation of ongoing consent (Appendix B), and at least 24 hours 

after the familiarization session, a single testing session occurred. All participants 

were tested in the morning to control for the effects of circadian rhythm on BP, 

and in a temperature-controlled room. Participants refrained from vigorous 

physical activity over the previous 24 hours, were tested 2 hours postprandial 

(i.e. 2 hours after eating) and at least 12 hours post-caffeine consumption. To 

minimize the effects of a full bladder on BP, participants were asked to void his or 

her bladder prior to testing. 

Participants were seated for the duration of the testing period, with both their 

right and left forearms resting on a table in front of them at an approximate 90-

degree angle. Participants were outfitted with the necessary equipment to assess 

BP and HR (Dinamap Carescape v100, Critikon 23-33cm cuff, Tampa, Florida, 

USA, see Appendix G). Resting BP was measured following 10 minutes of 

seated rest as per the protocol described above. The protocols were separated 

by a 30-minute rest period (minimum) or until the participant’s BP had returned to 

near resting values. 

In both conditions, the IHG bout consisted of 4, 2-minute bilateral (right and 

left hand) contractions at 30% MVC each separated by a 1-minute rest period, 
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where BP and HR are measured every minute and RPE was recorded after each 

contraction (see Figure 1). 

Figure 1: Testing Protocol 

Note: Light blue line is the end of seated rest, each orange line is a blood pressure (BP) and 
heart rate (HR) measurement completed with automated office blood pressure measurements 
(AOBP) via Dinamap. Protocol began with a maximum voluntary contraction (MVC), where 30% 
was calculated for both the Right (R) and Left (L) hands. After the participant engaged in 4, 2-
minute bilateral isometric handgrip (IHG) contractions, where a subjective rating of perceived 
exertion (RPE) was recorded after each contraction. After, there is a 30-minute stabilization 
period where BP and HR were measured. Once 30 minutes was complete the protocol began at 
the yellow MVC square again with the second device. 

2.4.3 Statistical Analysis 

Two-way repeated measures ANCOVA (RMANCOVA) were used to 

determine the effects of IHG device (independent variables: computerized or 

inflatable stress ball) on BP (SBP, DBP), HR and CR-10 scores (dependent 

variables). To determine specific differences between means, Boneferroni post-

hoc test(s) were employed where appropriate. 

All data were analyzed using IBM SPSS Statistics 23 software (SPSS Inc., 

Chicago, Illinois, USA) and statistical significance was determined at p ≤ 0.05. 
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Data is presented as mean and standard deviation (x̄ ± SD). Assumptions of 

sphericity were met for all conditions, with the exception of DBP, where the 

assumption for the two-way interaction between device and time was violated 

(x2(2) = 11.31, p = 0.05). Thus, Greenhouse-Gieser was employed (€= 0.70). 

2.5 Results 

Twenty participants met the eligibility criteria and were enrolled in the 

study (see Table 1), satisfying the minimum requirements for adequate power. All 

participants completed visit 1 and visit 2, and adhered to pre-testing instructions. 

Table 1: Participant Characteristics 
Variable Baseline Value 
Men (#) 10 

Women (#) 10 
Age (years)      24.70 ± 5.13 
Mass (kg)  74.16 ± 18.15 
Height(cm) 171.67 ± 12.43 

Resting SBP (mmHg)  107.93 ± 16.14 
Resting DBP (mmHg) 

Resting HR (bpm) 
58.68 ± 6.77 
66.01 ± 8.61 

Note: SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate. 
Values are mean ± standard deviation (x̄ ± SD). 

 
2.5.1 Comparison of Blood Pressure and Heart Rate  

RMANCOVA revealed statistically significant BP and HR differences 

between devices, whereby SBP and DBP were higher when the IHG protocol 

was performed using the inflatable stress ball, yet there was a greater HR 

response to the Zona-performed protocol (all p ≤ 0.05). Importantly, these 

differences disappeared after review of pairwise comparison analyses (see Table 

2 and Appendix J, K, L). The details of the analyses are as follows: 

With respect to SBP, interaction effects for device and time (F (3,48) = 

4.52, p = 0.007); device and order (F (1,16) = 5.06, p = 0.04); device, time and 
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order (F (3,48) = 2.84, p = 0.05); and device, time and fitness (F (3,48) = 3.14, p 

= 0.03) were observed. As noted above, pairwise comparisons eliminated 

statistically significant differences in SBP between devices (F (1,16) = 5.980, p = 

0.615). Main effects were also observed for time (F (3,48) = 3.31, p=0.03), device 

(F (1,16) = 5.98, p = 0.03), and sex (F (1,16) = 4.51, p = 0.05), yet pairwise 

analyses revealed sex to be the only meaningful comparison in that men had a 

significantly higher SBP response throughout the IHG protocols when compared 

to women (x̄ ± SD (mmHg): 10.92 ± 1.13 for men and 7.40 ± 1.01 for women). 

Between-subject differences for device, time, order, and fitness were not 

observed. 

Statistically significant differences in DBP were observed for both device 

(F (1,16) = 5.111, p = 0.038), and time (F (3,48) = 3.285, p = 0.029). Like SBP, 

pairwise comparison of each device denoted that although the inflatable stress 

ball elicited a slightly higher DBP throughout the protocol, this was not 

statistically significant (F (1,16) = 5.111, p = 0.35). However, unlike SBP, a main 

effect of time was observed such that DBP was significantly higher in IHG 

contraction 4 than it was during contraction 2 (CI 95%, 0.995 to 7.055, p = 

0.006). 

Regarding HR, statistically significant interactions were observed between 

device and order of device (F (1,16) = 22.91, p = 0.00), as were main effects for 

device (F (1,16) = 19.40, p = 0.00) and time (F (3,48) = 5.95, p = 0.00). In 

contrast to BP, pairwise comparison of the devices revealed a higher HR 

response when the IHG protocol was performed using the computerized device, 
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yet like SBP and DBP, this difference was not statistically significant (F (1,16) = 

19.40, p = 0.73). Further, the effect of order dissipated upon examination of 

between-subjects effects (F (1,16) = 0.23, p = 0.64). No other meaningful 

pairwise comparisons were revealed. 

Overall, when the covariates of sex, device order, and fitness were 

removed from the analysis, there were no statistically significant data to report 

between devices. 

Table 2: Cardiovascular Effects  
Variable Computerized Device Inflatable Stress Ball 

SBP (mmHg) 8.23 ± 9.47 9.10 ± 7.36 
DBP (mmHg) 7.13 ± 7.77 8.86 ± 9.90 

HR (bpm) 6.98 ± 7.50 6.53 ± 8.20 
Note: SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate. 
Values are mean ± standard deviation (x̄ ± SD).  
 
2.5.2 Comparison of Subjective Rating of Perceived Exertion  

Analysis by RMANCOVA indicated an interaction of time and sex (F (3,48) 

= 2.83, p = 0.048) for RPE, and main effects for time (F (3,48) = 4.81, p = 0.005) 

and fitness (F (1,16) = 5.062, p = 0.04). However, no main effects were observed 

for sex, order and device regarding RPE. Although initially statistically significant 

based on between-subjects interactions (F (1,16) = 5.062, p = 0.039), analysis of 

pairwise comparisons revealed a lack of effect of fitness on RPE. Moreover, 

pairwise comparison of devices indicated that the computerized device was 

perceived to require greater effort by 0.337 (CI 95%, -0.27 to 0.94), but this result 

was also not statistically significant (F (1,16) = 0.51, p = 0.26). In contrast, 

pairwise comparison of contractions revealed some statistically significant 

differences, but these differences were not meaningful (see Table 3). 
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Table 3: Subjective Rating of Perceived Exertion  
Scale Device Grand 

Mean 
Cont. 1 Cont. 2 Cont. 3 Cont. 4 

RPE (1-10) Computerized +/- 5.76 
1.83 

+/- 5.25   
1.80†‡ 

+/- 5.60   
1.79†‡ 

+/- 6.05   
1.93*+ 

+/- 6.15   
1.79*+ 

RPE (1-10) Inflatable 
Stress Ball 

+/- 5.42  
1.78 

+/- 5.10   
1.59†‡ 

+/- 5.00   
1.69†‡ 

+/- 5.70   
1.78*+ 

+/- 5.90   
2.02*+ 

Note: Rating of perceived exertion (RPE). Values are mean ± standard deviation (x̄ ± 
SD). 
*Significant differences from contraction 1, +Significant differences from contraction 2,   
†Significant differences from contraction 3, ‡Significant differences from contraction 4.  
 
2.6 Discussion 

 The long-term effects of IHG training on BP have been well documented 

(Inder et al., 2016). However, widespread uptake and continued participation in 

this form of exercise training has been hindered by the barrier of accessibility, 

including cost, for the computerized device traditionally used. This study 

illustrated that a cost-effective alternative can replicate acute HR and BP results 

of more expensive and traditional IHG devices, laying a foundation for future 

training studies. 

Seminal work by Millar et al., (2008) comparing a less expensive, 

alternative IHG device with the traditional, more expensive computerized model 

found that following an 8 week training protocol there were statistically significant 

decreases in both systolic and diastolic blood pressure (SBP and DBP). Although 

the alternate IHG device was effective, there were numerous drawbacks, and the 

notion of conducting research with other stand-alone, cost-effective devices 

emerged (Millar et al., 2008; Inder et al., 2016; Whelton et al., 2018). The current 

study adds to the literature as one of few studies examining the acute effects of 
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an IHG bout on the cardiovascular system, and concomitant RPE. Furthermore, it 

is the only known study to date to directly compare the traditional, costly 

computerized device with a cost-effective option such as an inflatable stress ball. 

Data from the current study was comparable to previous studies when 

examining acute increases in BP during IHG exercise (Araujo et al., 2011; Olher 

et al., 2013). As hypothesized, there were no statistical differences observed 

between each device based on the examination of SBP, DBP, and HR. With no 

significant differences between devices this introduces that IHG using inflatable 

stress balls may facilitate a cost effective, widely available treatment opportunity 

for lowering BP worldwide (WHO, 2013; WHO, 2017). Future studies need to 

explore the long-term effect on BP adaptations with training. 

Ratings of perceived exertion provide important insight into the potential 

for IHG. The current study offers support for long-term feasibility in that both 

devices elicit a similar engagement of perceived effort felt. Building on this 

exciting potential was the observation that 30% MVC equated to an RPE of 5-6 

for each contraction, a finding similar to work of Morrin et al., (2018). A prominent 

limiting factor of the device investigated in the seminal work of Millar et al., (2008) 

was that trained personnel were required to regulate the IHG training intensity. 

Importantly, the current study provides insight into the ability of the participant to 

self-regulate IHG exercise without the computerized device. The possibility that 

an individual can use the inflatable stress ball, self-regulating 30% based on the 

scale (approximately a 6), and without trained personnel, raises the feasibility 

and effectiveness of the device. 
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Overall, this work provides evidence that individual effort given to engage 

in IHG exercise is the same for an inflatable stress ball as it was for the 

computerized device. Moreover, these findings in combination with 

implementation of the inflatable stress ball may allow a broader range of people 

to participate in IHG exercise due to the affordability and comfortability of the 

device, thereby addressing the call made by WHO (2017). Ultimately, this lays 

the foundation to have a global impact on reducing BP through scaling up of IHG 

training as a standard of care for the treatment of HTN with long-term adherence 

to this form of exercise more likely. 

2.7 Research Impact and Future Directions 

The current study demonstrated similar cardiovascular (HR and BP 

responses) and psychophysical (RPE) responses to a bout of IHG using a 

traditional computerized device and an alternative inexpensive inflatable stress 

ball. Thus, there are potential indications for promoting treatment compliance 

over the long-term using the inflatable stress ball, while adding to the weight of 

evidence recently provided by Morrin et al. (2018). These findings provide a 

foundation for future studies to test efficacy and outcome benefit, further 

promoting IHG as a treatment option for BP management. 

 Importantly, the current study is in alignment with the key health priorities 

of the WHO, which emphasizes enhanced feasibility, low maintenance, and 

inexpensive ways to effectively prevent, treat and manage HTN (WHO, 2017). In 

addition to providing an alternative device for the treatment of HTN worldwide, 

the current study and the potential implementation of the affordable inflatable 
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stress ball provides support to meet these needs. These findings are of a 

particular relevance to individuals residing in low to middle income countries 

(LMIC) where HTN rates contribute to 75% of the global disease burden (WHO, 

2017). This high prevalence rate is concomitant to poorer rates of HTN 

awareness, treatment and control (Mills et al., 2015). Healthcare system-, 

provider- and/or patient-level barriers, such as lack of access to care, high 

provider burden, poor healthcare staffing, low patient health literacy, and lack of 

treatment adherence, are also contributing factors (Mills et al., 2015; Musinguzi 

et al., 2015). Taken together, implementation of cost effective, readily available 

BP-lowering treatments that work, have a low provider burden, and offer a high 

potential for uptake and long-term continuation are urgently needed in LMICs. 

The potential to offer IHG training using an inflatable stress ball as a BP-lowering 

standard of care treatment in primary care is timely and enticing. 
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Appendices 
 
 
Appendix A: Recruitment Poster, Email Script, Presentation Script 

Do you think you have normal blood 
pressure?  

  
If so, you may be eligible to participate in a study examining the effects of 

handgrip exercise on blood pressure.  

If you are interested and would like more information please call: (519) -253-
3000  

ext. 4979 or email: richardu@uwindsor.ca  
Jared 
Richards: 
richardu@
uwindsor.
ca 
519-253-
3000 ext. 
4979 
 

Jared 
Richards: 
richardu@
uwindsor.
ca 
519-253-
3000 ext. 
4979 
 

Jared 
Richards: 
richardu@
uwindsor.
ca 
519-253-
3000 ext. 
4979 
 

Jared 
Richards: 
richardu@
uwindsor.
ca 
519-253-
3000 ext. 
4979 
 

Jared 
Richards: 
richardu@
uwindsor.
ca 
519-253-
3000 ext. 
4979 
 

Jared 
Richards: 
richardu@
uwindsor.
ca 
519-253-
3000 ext. 
4979 
 

Jared 
Richards: 
richardu@
uwindsor.
ca 
519-253-
3000 ext. 
4979 
 

Jared 
Richards: 
richardu@
uwindsor.
ca 
519-253-
3000 ext. 
4979 
 

  

This study has been cleared by the University of Windsor’s Research Ethics Board  

 
 

   
 

             
 



 
 

107 
 
 

 

Email to be sent by Sharon Horne, the Human Kinetics Administrative Assistant 
to Department Head and Graduate Program Secretary and Undergraduate 
Program Secretary after receiving the email from Mr. Richards along with a 
request to forward it to all Human Kinetics Students: 

 

"Attention all people over the age of 18 years. If you think you have normal blood 
pressure, you may be eligible to participate in a research study being conducted 
by researchers in the Department of Kinesiology at the University of Windsor. 
We are investigating the effects of isometric (constant squeeze) handgrip 
exercise on your blood pressure and heart rate. For more information please 
contact Jared at 519-253-3000 ex. 4979 or richardu@uwindsor.ca” 

 

Presentation to be delivered by Mr. Richards when speaking to a group of 
individuals from research laboratories, undergraduate classes and/or community 
exercise facilities 

“Hello everyone, my name is Jared Richards, and I am a Master’s Student at the 
University of Windsor conducting research in the Department of Kinesiology. My 
colleagues and I are investigating the effects of isometric, or constant squeeze, 
handgrip exercise on blood pressure and heart rate.  We are looking to compare 
expensive computerized devices and cheaper alternatives, like stress balls, to 
see if they are different. If you are over the age of 18 and think you have normal 
blood pressure than you may be eligible to participate. Feel free to contact me by 
phone at 519-253-3000 ex. 4979 or by emailing me at richardu@uwindsor.ca. 
Thank you for your time. 
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Appendix B: Letter of Consent and Letter of Information 

Note: Each of these are found on the pages following. 
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 CONSENT TO PARTICIPATE IN RESEARCH 
 
Title of Study: Getting the Best GRIP on Blood Pressure Control: Are 
Stress Balls and Handgrips Equally Effective? 
 
You are invited to participate in a research study conducted by Mr. Jared Richards from 
the Faculty of Human Kinetics at the University of Windsor. 
 
If you have any questions or concerns about the research, please feel to contact 
co-investigators Mr. Jared Richards BHK, MHK Candidate (richardu@uwindsor.ca), 
Dr. Cheri McGowan, PhD (mcgowanc@uwindsor.ca) and Dr. Paula van Wyk, PhD 
(pvanwyk@uwindsor.ca)  

 
PURPOSE OF THE STUDY 
 
Our research group and others have shown that isometric (constant squeeze) exercise 
training using a computerized isometric handgrip device (isometric handgrip, IHG) lowers 
resting blood pressure (BP) in younger and older people, and in those with and without 
high BP. Currently, computerized IHG is very expensive, therefore, it is important to 
determine if a store purchased inexpensive inflatable ball (similar to a stress ball) does 
something similar. The purpose of this study is to investigate if the two devices of differing 
costs cause similar body cardiovascular responses (e.g. BP and heart rate). 
 
In order to participate in this study, you must have a normal BP (<135/85 mmHg), and 
you must be over 18 years old. If you have a disorder, or any known ailments, are a 
chronic smoker (nicotine, vaping, and/or marijuana), or are taking any medications that 
influence your cardiovascular system (other than the birth control pill) you may be 
ineligible to participate. If you have a physical limitation impairing your ability to exercise 
you may also be ineligible to participate.   
 
PROCEDURES 
 
If you volunteer to participate in this study, you will be invited to attend two lab sessions: 
 
First Visit: Familiarization and Information Session (1 Hour) 
 
You will meet with the study investigators at the Physical Activity and Cardiovascular 
Research (PACR) Laboratory (Room #240, Human Kinetics Building, University of 
Windsor, Windsor, Ontario, Canada) where you will receive a consent form and 
information sheet about the study. At this time, one of the study investigators will explain 
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all parts of the study. If you are still interested in participating in the study, you will sign 
the consent form and fill out two brief medical questionnaires. If you are still eligible to 
participate, you will then have your BP measured in your upper right arm, similar to how 
it is taken at a doctor’s office. In brief, your resting BP will be measured in your upper right 
arm after 10 minutes of seated rest. Your BP will be measured 4 times, with 2 minutes of 
rest between measures. If you are still eligible to participate, you will then have an 
opportunity to practice all parts of the study. 
 
Second Visit: Testing Day (1.5 Hours) 
 
If you are still interested in participating in the study, you will visit the lab at least 24 hours 
following first visit. 
 
In order to participate on the testing day ongoing consent will be needed. It is also 
important that you refrain from participation in strenuous exercise (e.g., difficult, high 
intensity exercise that causes heavy breathing, sweating, and muscle fatigue) for 24 
hours before the testing day, and to avoid caffeine, consumption of alcohol, and over the 
counter medication for at least 12 hours before. All testing will be scheduled to take place 
2 hours after your last meal, in a quiet, temperature-controlled room in the presence of 
the study investigators. You will be asked to go to the washroom prior to testing, as a full 
bladder can increase BP. 
 
For the duration of the test, you will be asked to remain seated with your arms at a 90-
degree angle placed on a table in front of you. You will be outfitted with a blood 
pressure cuff around your right arm to take BP and heart rate (HR) measurements. 
These measures will be collected continuously for 10 minutes prior to, during, and for at 
least 30 minutes following each isometric handgrip (IHG) bout. Next, you will be given 
10 minutes of seated rest. Following the rest period, BP measurements will be taken in 
order to establish your baseline measurements. Following these measurements, your 
maximum voluntary contraction (MVC; hardest squeeze) will be calculated using each 
handgrip (traditional, computerized IHG and the inflatable ball) in order to determine the 
intensity to which the IHG bouts will be performed. 
 
Next, you will be asked perform, in random order, an IHG protocol on the computerized 
IHG device and the store-bought inflatable ball. The protocols will be separated by a 30- 
minute rest period (minimum) or until your BP has returned to near resting values. In both 
conditions, the IHG bout will consist of 4, 2-minute bilateral (right and left) contractions 
at 30% of the MVC, each separated by 4-minute rest period. Following each 2-minute 
contraction, you will be asked to rate your level of perceived exertion using a 1-10 scale. 
Upon completion of the final bout of handgrip, there will a final stabilization period to 
ensure that your BP returns to near pre-exercise values.  
 

POTENTIAL RISKS AND DISCOMFORTS 
 
During the study, it is possible you may experience tingling in the upper arm due to the 
inflation of the blood pressure cuff, but this should subside when the cuff deflates. Muscle 
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fatigue in the hand may occur in the hand during the protocols due to the IHG bouts. 
However, because this is an acute single session study, proper technique and instruction 
will be given to participants, which results in minimal risk. 
 
Please contact one of the study investigators if you feel any adverse effects from 
completing any portion of the study, and/or if you have any questions or concerns. If 
you experience any adverse effects during any testing procedure, first line response will 
be provided.  
 

 
 

POTENTIAL BENEFITS TO PARTICIPANTS AND/OR TO SOCIETY 
 
You may not experience any direct benefit by participating in this single session study, 
however you will learn how your heart rate and blood pressure changes during a bout of 
handgrip exercise. However, if we prove our theories, evidence of the equivalence of an 
inflatable ball in comparison to the traditional, more expensive computerized IHG may lay 
the groundwork for future studies investigating the use of affordable, commercially 
available handgrips as a means to lower BP. 
 
COMPENSATION FOR PARTICIPATION 
 
All participants will receive a Kinesiology Research item (e.g., T-shirt) of their choice upon 
completion of the study. 
 

CONFIDENTIALITY 
 
Any information that is obtained in connection with this study that can identify you will 
remain confidential. 
 
To ensure your confidentiality, following your consent, you will be assigned a study code. 
Your name will not be mentioned in any publication or presentation, and you will be 
identified with only your study code on all collection tools (electronic or otherwise). All 
paper data will be stored in the locked laboratory (PACR Lab, Room #240, Human 
Kinetics Building, University of Windsor). Information stored on computer will be 
password-accessible only. With respect to final disposal, all paper records (including 
medical and physical activity readiness questionnaires) will be shredded after 5 years.  
 
PARTICIPATION AND WITHDRAWAL 
 
You can choose whether to be in this study or not, and your participation or lack of it will 
not influence your participation in another study. If you volunteer to be in this study, you 
may withdraw at any time prior to July 25th without consequences of any kind. The 
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investigator may withdraw you from this research if circumstances arise which warrant 
doing so. In any of the cases described above, you will still receive a Kinesiology research 
item of your choice.  
 
FEEDBACK OF THE RESULTS OF THIS STUDY TO THE 
PARTICIPANTS 
 
Results will be posted at the completion of the study on approximately August 25th under 
the University of Windsor’s Research Ethics Board (REB) website at: 
http://www.uwindsor.ca/reb  
 

 
 

SUBSEQUENT USE OF DATA 
 
These data may be used in subsequent studies, in publications and in presentations. 
However, your privacy will be upheld with the use of your unique subject study code 
under all circumstances. Data may be used as a foundation for future study of store-
bought, readily available IHG, and/or merged with other data sets for comparison. 
 

 
RIGHTS OF RESEARCH PARTICIPANTS 
 
If you have questions regarding your rights as a research participant, contact:  Research 
Ethics Coordinator, University of Windsor, Windsor, Ontario, N9B 3P4; Telephone: 519-
253-3000, ext. 3948; e-mail:  ethics@uwindsor.ca 

 
SIGNATURE OF RESEARCH PARTICIPANT/LEGAL 
REPRESENTATIVE 
 
I understand the information provided for the study: Getting the Best GRIP on Blood 
Pressure Control: Are Stress Balls and Handgrips Equally Effective? Response as 
described herein. My questions have been answered to my satisfaction, and I agree to 
participate in this study.  I have been given a copy of this form. 
 

______________________________________ 
Name of Participant 

 
______________________________________  

 ___________________ 
Signature of Participant       Date 
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SIGNATURE OF INVESTIGATOR 
 
These are the terms under which I will conduct research. 
 

_____________________________________  
 ____________________ 

Signature of Investigator      Date 
 
 
 
 
 
 
 
 

Second Visit (Ongoing Consent): 
 

I understand the information provided for the study: Getting the Best GRIP on Blood 
Pressure Control: Are Stress Balls and Handgrips Equally Effective? described herein. 
My questions have been answered to my satisfaction, and I agree to participate in this 
study.  I consent (agree) to continue being a participant in this study. 
 

______________________________________ 
Name of Participant 

 
______________________________________  

 ___________________ 
Signature of Participant       Date 

 
 

_____________________________________  
 ____________________ 

Signature of Investigator      Date 
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LETTER OF INFORMATION FOR CONSENT TO PARTICIPATE IN 
RESEARCH 
 
 
Title of Study: Getting the Best GRIP on Blood Pressure Control: Are 
Stress Balls and Handgrips Equally Effective? 
 
You are invited to participate in a research study conducted by Mr. Jared Richards from 
the Faculty of Human Kinetics at the University of Windsor. 
 
If you have any questions or concerns about the research, please feel to contact 
co-investigators Mr. Jared Richards (richardu@uwindsor.ca), Dr. Cheri McGowan, 
PhD (mcgowanc@uwindsor.ca) and Dr. Paula van Wyk, PhD 
(pvanwyk@uwindsor.ca)  

 
PURPOSE OF THE STUDY 
 
Our research group has shown that isometric (constant squeeze) exercise training using 
a computerized isometric handgrip device (isometric handgrip, IHG) lowers resting blood 
pressure (BP) in younger and older people, and in those with and without high BP. 
Currently, computerized IHG is very expensive, therefore, it is important to determine if 
a store purchased inexpensive inflatable ball (similar to a stress ball) has similar results 
to the more expensive devices. The purpose of this study is to investigate if the two 
devices of differing costs cause similar body cardiovascular responses (e.g. BP rates). 
 
In order to participate in this study, you must have a normal BP (<135/85 mmHg), and 
you must be over 18 years old. If you have a disorder or any known ailments, are a chronic 
smoker (nicotine, vaping, and/or marijuana), or are taking any medications that influence 
your cardiovascular system (other than the birth control pill) you may be ineligible to 
participate. If you have a physical limitation impairing your ability to exercise you may also 
be ineligible to participate.  

 
PROCEDURES 
 
If you volunteer to participate in this study, you will be invited to: 
 
First Visit: Familiarization and Information Session (1 Hour) 
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You will meet with the study investigators at the Physical Activity and Cardiovascular 
Research (PACR) Laboratory (Room #240, Human Kinetics Building, University of 
Windsor, Windsor, Ontario, Canada) where you will receive a consent form and 
information sheet about the study. At this time, one of the study investigators will explain 
all parts of the study. If you are still interested in participating in the study, you will sign 
the consent form and fill out brief medical questionnaires. If you are still eligible to 
participate, you will then have your BP measured in your upper arm, similar to how it is 
taken at a doctor’s office. In brief, your resting BP will be measured in your upper right 
arm after 10 minutes of seated rest. Your BP will be measured 4 times, with 2 minutes of 
rest between measures. If you are eligible to participate, you will then have an opportunity 
to practice all parts of the study. 
 
Second Visit: Testing Day (1.5 Hours) 
 
If you are still interested in participating in the study, you will visit the lab at least 24 hours 
following first visit. 
 
In order to participate on the testing day ongoing consent will be needed. It is also it 
important that you refrain from participation in strenuous exercise (e.g., difficult, high 
intensity exercise that causes heavy breathing, sweating, and muscle fatigue) for 24 
hours before the testing day, and to avoid caffeine, consumption of alcohol, and over the 
counter medication for at least 12 hours before. All testing will be scheduled to take place 
2 hours after your last meal, in a quiet, temperature-controlled room in the presence of 
the study investigators. You will be asked to go to the washroom prior to testing, as a full 
bladder can increase BP. 
 
For the duration of the test, you will be asked to remain seated with your arms at a 90-
degree angle placed on a table in front of you. You will be outfitted with a blood 
pressure cuff around your right arm to take BP and heart rate (HR) measurements. 
These measures will be collected continuously for 10 minutes prior to, during, and for at 
least 30 minutes following each isometric handgrip (IHG) bout. Next, you will be given 
10 minutes of seated rest. Following the rest period, BP measurements will be taken in 
order to establish your baseline measurements. Following these measurements, your 
maximum voluntary contraction (MVC; hardest squeeze) will be calculated using each 
handgrip (traditional, computerized IHG and the inflatable ball) in order to determine the 
intensity to which the IHG bouts will be performed. 
 
Next, you will be asked perform, in random order, an IHG protocol on the computerized 
IHG device and the store-bought inflatable ball. The protocols will be separated by a 30- 
minute rest period (minimum) or until your BP has returned to near resting values. In both 
conditions, the IHG bout will consist of 4, 2-minute bilateral (right and left) contractions 
at 30% of the MVC, each separated by 4-minute rest period. Following each 2-minute 
contraction, you will be asked to rate your level of perceived exertion using a 1-10 scale. 
Upon completion of the final bout of handgrip, there will a final stabilization period to 
ensure that your BP returns to near pre-exercise values.  
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POTENTIAL RISKS AND DISCOMFORTS 
 
During the study, it is possible you may experience tingling in the upper arm due to the 
inflation of the blood pressure cuff, but this should subside when the cuff deflates. Muscle 
fatigue in the hand may occur in the hand during the protocols due to the IHG bouts. 
However, because this is an acute single session study, proper technique and instruction 
will be given to participants, which results in minimal risk. 
 
Please contact one of the study investigators if you feel any adverse effects from 
completing any portion of the study, and/or if you have any questions or concerns. If 
you experience any adverse effects during any testing procedure, first line response will 
be provided.  
 

 
 

POTENTIAL BENEFITS TO PARTICIPANTS AND/OR TO SOCIETY 
 
You may not experience any physical direct benefit by participating in this single session 
study. However, if we prove our theories, evidence of the equivalence of an inflatable ball 
in comparison to the traditional, more expensive computerized IHG may lay the 
groundwork for future studies investigating the use of affordable, commercially available 
handgrips as a means to lower BP. 
 
COMPENSATION FOR PARTICIPATION 
 
All participants will receive a Kinesiology Research item of their choice (e.g. shirt) upon 
completion of the study. 
 

CONFIDENTIALITY 
 
Any information that is obtained in connection with this study that can identify you will 
remain confidential. 
 
To ensure your confidentiality, following your consent, you will be assigned a study code. 
Your name will not be mentioned in any publication or presentation, and you will be 
identified with only your study code on all collection tools (electronic or otherwise). All 
paper data will be stored in the locked laboratory (PACR Lab, Room #240, Human 
Kinetics Building, University of Windsor). Information stored on computer will be 
password-accessible only. With respect to final disposal, all paper records (including 
medical and physical activity readiness questionnaires) will be shredded after 5 years.  
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PARTICIPATION AND WITHDRAWAL 
 
You can choose whether to be in this study or not, and your participation or lack of it will 
not influence your participation in another study. If you volunteer to be in this study, you 
may withdraw at any time prior to July 25th without consequences of any kind. The 
investigator may withdraw you from this research if circumstances arise which warrant 
doing so. In any of the cases described above, you will still receive a Kinesiology 
Research item of your choice.  
 
FEEDBACK OF THE RESULTS OF THIS STUDY TO THE 
PARTICIPANTS 
 
Results will be posted at the completion of the study on approximately August 25th under 
the University of Windsor’s Research Ethics Board (REB) website at: 
http://www.uwindsor.ca/reb  
 
SUBSEQUENT USE OF DATA 
 
These data may be used in subsequent studies, in publications and in presentations 
however your privacy will be upheld with the use of your unique subject study code under 
all circumstances. Data may be used as a foundation for future study of store-bought, 
readily available IHG, and/or merged with other data sets for comparison. 
 
RIGHTS OF RESEARCH PARTICIPANTS 
 
If you have questions regarding your rights as a research participant, contact:  Research 
Ethics Coordinator, University of Windsor, Windsor, Ontario, N9B 3P4; Telephone: 519-
253-3000, ext. 3948; e-mail:  ethics@uwindsor.ca 
 
SIGNATURE OF INVESTIGATOR 
 
These are the terms under which I will conduct research. 
 
 

_____________________________________  
 ____________________ 

Signature of Investigator             Date 
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Appendix C: Computerized IHG Device 

 

 
a) Top view 

 
b) Side view to show the area for the hand grip 

 
Computerized Isometric Handgrip tool, Zona (Zona Series 3, Zona Health, Boise, ID, 
USA) 
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Appendix D: Inflatable Stress Ball 

 

 
Inflatable Stress Ball (Part Number 020500, AllBall, Sportime, Thailand. 
www.Amazon.com) 
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Appendix E:  Physical Activity Readiness Questionnaire Plus (PAR-Q +)  
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Appendix F:  Intake Medical Questionnaire  

 
Participant Code: ________________    Date of Birth (MM/YYYY): _________________    Height: __________________ 
Mass: _________________________ Phone: (___) 

__________________ 
Postal Code: 
_______________________ 
 

FOR EMERGENCY Notify:  Relationship:  
Address:_____________________________________________________________________ 
Phone: (___) _______________ 
 
Family Doctor’s Name: ______________________ Date of Last Physical: ______________________ 
Please Check YES or NO for each of the following: YES NO 
1. Have you ever been hospitalized?........................................................................................................... 
- If YES, please specify: 

  

Have you ever had surgery?......................................................................................................................... 
- If YES, please specify: 

  

2. Are you presently taking any medications or pills (including aspirin and other over-the-counter 
medications?................................................................................................................................................ 
- If YES, please specify: 

  

Are you presently taking any vitamins, supplements, and/or herbal supplements?...................................   
3. Do you have any allergies (medicine, food, bees or other stinging insects)?.......................................... 
- If YES, please specify: 

  

4. Have you ever passed out during or after exercise?................................................................................   
Have you ever been dizzy during or after exercise?....................................................................................   
Have you ever had chest pain during or after exercise?..............................................................................   
Do you have high blood pressure (hypertension) or low blood pressure (hypotension)?..........................   
Have you ever been told that you have a kidney problem?........................................................................   
Have you ever been told that you have joint instability?............................................................................   
Have you ever been told that you have a stomach problem?.....................................................................   
Have you ever been told that you have a heart problem?..........................................................................   
Have you ever been told that you have a heart murmur?...........................................................................   
Do you have a machine that regulated your heart beat?............................................................................   
Have you ever had racing of your heart or skipped heartbeats?.................................................................   
Has anyone in your family died of heart problems or a sudden death before age 50 years?.....................   
5. Do you have any skin problems (itching, rashes, acne)?..........................................................................   
If you get a cut, does it take you a long time to stop bleeding?..................................................................   
If you experience a blow to a muscle, do you bruise easily?.......................................................................   
6. Do you have Diabetes?.............................................................................................................................   

7. Do you have Asthma or any other breathing problems?......................................................................... 
- If YES, please specify: 

  

8. Do you have any type of cardiovascular disease?.................................................................................... 
- If YES, please specify: 

  

9. Have you had any other medical problems (infectious mononucleosis, etc.)?........................................   
10. Have you had any medical problems since your last physical?..............................................................   
11. Do you smoke?.......................................................................................................................................   

12. Do you aerobically exercise (e.g. walking) for > 30 minutes, > 2 times per week?................................   
13. Do you currently take any birth control medications?........................................................................... 
- If YES, please specify: 

  

14. Date of last menstrual cycle: 
Please explain any physical limitations that may prevent you from completing this study? 
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Appendix G: Automated Oscillometry Device / DINAMAP 

 

 
 
 
(Dinamap Carescape v100, Critikon 23-33 cm cuff, Tampa, Florida, USA) 
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Appendix H: Digital Air Pressure Gauge 

 

 
Used to determine MVC with the inflatable ball 
Digital Ball Gauge (Fox 40 International, 340 Grays Road, Hamilton, Ontario, Canada, 
2016) 
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Appendix I: Borg CR-10 Scale (RPE) 
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Appendix J: Systolic Blood Pressure Results 

 

Mauchly's Test of Sphericitya 
Measure:   MEASURE_1   

Within Subjects Effect Mauchly's W 
Approx. Chi-

Square df Sig. 

Epsilonb 
Greenhouse-

Geisser 
Device 1.000 .000 0 . 1.000 
Time .494 10.371 5 .066 .752 
Device * Time .586 7.859 5 .165 .747 

 
 

Tests of Within-Subjects Effects 
Measure:   MEASURE_1   

Source 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial 
Eta 

Squared 

Noncent. 
Paramete

r 
Observed 
Powera 

Device Sphericity 
Assumed 

697.925 1 697.925 5.980 .026 .272 5.980 .632 

Greenhouse-
Geisser 

697.925 1.000 697.925 5.980 .026 .272 5.980 .632 

Huynh-Feldt 697.925 1.000 697.925 5.980 .026 .272 5.980 .632 
Lower-bound 697.925 1.000 697.925 5.980 .026 .272 5.980 .632 

Device * SEX Sphericity 
Assumed 

10.361 1 10.361 .089 .770 .006 .089 .059 

Greenhouse-
Geisser 

10.361 1.000 10.361 .089 .770 .006 .089 .059 

Huynh-Feldt 10.361 1.000 10.361 .089 .770 .006 .089 .059 
Lower-bound 10.361 1.000 10.361 .089 .770 .006 .089 .059 

Device * Option Sphericity 
Assumed 

590.340 1 590.340 5.058 .039 .240 5.058 .561 

Greenhouse-
Geisser 

590.340 1.000 590.340 5.058 .039 .240 5.058 .561 

Huynh-Feldt 590.340 1.000 590.340 5.058 .039 .240 5.058 .561 
Lower-bound 590.340 1.000 590.340 5.058 .039 .240 5.058 .561 

Device * Fitness Sphericity 
Assumed 

295.696 1 295.696 2.534 .131 .137 2.534 .322 

Greenhouse-
Geisser 

295.696 1.000 295.696 2.534 .131 .137 2.534 .322 

Huynh-Feldt 295.696 1.000 295.696 2.534 .131 .137 2.534 .322 
Lower-bound 295.696 1.000 295.696 2.534 .131 .137 2.534 .322 

Error(Device) Sphericity 
Assumed 

1867.354 16 116.710      
Greenhouse-
Geisser 

1867.354 16.00
0 

116.710      
Huynh-Feldt 1867.354 16.00

0 
116.710      

Lower-bound 1867.354 16.00
0 

116.710      
Time Sphericity 

Assumed 
452.150 3 150.717 3.310 .028 .171 9.930 .719 

Greenhouse-
Geisser 

452.150 2.255 200.542 3.310 .043 .171 7.463 .624 

Huynh-Feldt 452.150 3.000 150.717 3.310 .028 .171 9.930 .719 
Lower-bound 452.150 1.000 452.150 3.310 .088 .171 3.310 .402 
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Time * SEX Sphericity 
Assumed 

264.266 3 88.089 1.935 .137 .108 5.804 .468 

Greenhouse-
Geisser 

264.266 2.255 117.210 1.935 .155 .108 4.362 .397 

Huynh-Feldt 264.266 3.000 88.089 1.935 .137 .108 5.804 .468 
Lower-bound 264.266 1.000 264.266 1.935 .183 .108 1.935 .258 

Time * Option Sphericity 
Assumed 

83.673 3 27.891 .613 .610 .037 1.838 .168 

Greenhouse-
Geisser 

83.673 2.255 37.112 .613 .566 .037 1.381 .150 

Huynh-Feldt 83.673 3.000 27.891 .613 .610 .037 1.838 .168 
Lower-bound 83.673 1.000 83.673 .613 .445 .037 .613 .114 

Time * Fitness Sphericity 
Assumed 

139.985 3 46.662 1.025 .390 .060 3.074 .261 

Greenhouse-
Geisser 

139.985 2.255 62.088 1.025 .377 .060 2.310 .226 

Huynh-Feldt 139.985 3.000 46.662 1.025 .390 .060 3.074 .261 
Lower-bound 139.985 1.000 139.985 1.025 .326 .060 1.025 .159 

Error(Time) Sphericity 
Assumed 

2185.615 48 45.534      
Greenhouse-
Geisser 

2185.615 36.07
4 

60.587      
Huynh-Feldt 2185.615 48.00

0 
45.534      

Lower-bound 2185.615 16.00
0 

136.601      
Device * Time Sphericity 

Assumed 
587.052 3 195.684 4.515 .007 .220 13.545 .856 

Greenhouse-
Geisser 

587.052 2.241 262.004 4.515 .015 .220 10.116 .767 

Huynh-Feldt 587.052 3.000 195.684 4.515 .007 .220 13.545 .856 
Lower-bound 587.052 1.000 587.052 4.515 .050 .220 4.515 .515 

Device * Time * 
SEX 

Sphericity 
Assumed 

278.175 3 92.725 2.139 .108 .118 6.418 .512 

Greenhouse-
Geisser 

278.175 2.241 124.151 2.139 .127 .118 4.794 .433 

Huynh-Feldt 278.175 3.000 92.725 2.139 .108 .118 6.418 .512 
Lower-bound 278.175 1.000 278.175 2.139 .163 .118 2.139 .280 

Device * Time * 
Option 

Sphericity 
Assumed 

369.855 3 123.285 2.844 .047 .151 8.533 .646 

Greenhouse-
Geisser 

369.855 2.241 165.068 2.844 .066 .151 6.373 .552 

Huynh-Feldt 369.855 3.000 123.285 2.844 .047 .151 8.533 .646 
Lower-bound 369.855 1.000 369.855 2.844 .111 .151 2.844 .354 

Device * Time * 
Fitness 

Sphericity 
Assumed 

408.790 3 136.263 3.144 .034 .164 9.432 .695 

Greenhouse-
Geisser 

408.790 2.241 182.445 3.144 .050 .164 7.044 .598 

Huynh-Feldt 408.790 3.000 136.263 3.144 .034 .164 9.432 .695 
Lower-bound 408.790 1.000 408.790 3.144 .095 .164 3.144 .385 

Error(Device*Ti
me) 

Sphericity 
Assumed 

2080.410 48 43.342      
Greenhouse-
Geisser 

2080.410 35.85
0 

58.031      
Huynh-Feldt 2080.410 48.00

0 
43.342      

Lower-bound 2080.410 16.00
0 

130.026      
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a. Computed using alpha = .05 

 
 

Tests of Between-Subjects Effects 
Measure:   MEASURE_1   
Transformed Variable:   Average   

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Intercept 856.767 1 856.767 11.174 .004 .411 
SEX 345.676 1 345.676 4.508 .050 .220 
Option 54.038 1 54.038 .705 .414 .042 
Fitness 151.336 1 151.336 1.974 .179 .110 
Error 1226.814 16 76.676    

 
 
 

Pairwise Comparisons 
Measure:   MEASURE_1   

(I) Device (J) Device 
Mean Difference 

(I-J) Std. Error Sig.a 

95% Confidence Interval for 
Differencea 

Lower Bound Upper Bound 
1 2 -.875 1.708 .615 -4.496 2.746 
2 1 .875 1.708 .615 -2.746 4.496 

 
Based on estimated marginal means 
a. Adjustment for multiple comparisons: Bonferroni. 

 
 
 
 
 
 

Pairwise Comparisons 
Measure:   MEASURE_1   

(I) Time (J) Time 
Mean Difference 

(I-J) Std. Error Sig.a 

95% Confidence Interval for 
Differencea 

Lower Bound Upper Bound 
1 2 -1.975 1.434 1.000 -6.288 2.338 

3 -1.550 .908 .642 -4.280 1.180 
4 -5.125 1.796 .069 -10.528 .278 

2 1 1.975 1.434 1.000 -2.338 6.288 
3 .425 1.602 1.000 -4.395 5.245 
4 -3.150 1.514 .324 -7.705 1.405 

3 1 1.550 .908 .642 -1.180 4.280 
2 -.425 1.602 1.000 -5.245 4.395 
4 -3.575 1.642 .268 -8.514 1.364 

4 1 5.125 1.796 .069 -.278 10.528 
2 3.150 1.514 .324 -1.405 7.705 
3 3.575 1.642 .268 -1.364 8.514 

 
Based on estimated marginal means 
a. Adjustment for multiple comparisons: Bonferroni. 
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Appendix K: Diastolic Blood Pressure Results 

Mauchly's Test of Sphericitya 
Measure:   MEASURE_1   

Within Subjects Effect Mauchly's W 
Approx. Chi-

Square df Sig. 

Epsilonb 
Greenhouse-

Geisser 
Device 1.000 .000 0 . 1.000 
Time .652 6.305 5 .279 .776 
Device * Time .464 11.310 5 .046 .702 

 
Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial 
Eta 

Squared 

Noncent. 
Paramete

r 
Observed 
Powera 

Device Sphericity 
Assumed 

655.809 1 655.809 5.111 .038 .242 5.111 .565 

Greenhouse-
Geisser 

655.809 1.000 655.809 5.111 .038 .242 5.111 .565 

Huynh-Feldt 655.809 1.000 655.809 5.111 .038 .242 5.111 .565 
Lower-bound 655.809 1.000 655.809 5.111 .038 .242 5.111 .565 

Device * SEX Sphericity 
Assumed 

329.576 1 329.576 2.569 .129 .138 2.569 .326 

Greenhouse-
Geisser 

329.576 1.000 329.576 2.569 .129 .138 2.569 .326 

Huynh-Feldt 329.576 1.000 329.576 2.569 .129 .138 2.569 .326 
Lower-bound 329.576 1.000 329.576 2.569 .129 .138 2.569 .326 

Device * Option Sphericity 
Assumed 

330.025 1 330.025 2.572 .128 .138 2.572 .326 

Greenhouse-
Geisser 

330.025 1.000 330.025 2.572 .128 .138 2.572 .326 

Huynh-Feldt 330.025 1.000 330.025 2.572 .128 .138 2.572 .326 
Lower-bound 330.025 1.000 330.025 2.572 .128 .138 2.572 .326 

Device * Fitness Sphericity 
Assumed 

20.553 1 20.553 .160 .694 .010 .160 .066 

Greenhouse-
Geisser 

20.553 1.000 20.553 .160 .694 .010 .160 .066 

Huynh-Feldt 20.553 1.000 20.553 .160 .694 .010 .160 .066 
Lower-bound 20.553 1.000 20.553 .160 .694 .010 .160 .066 

Error(Device) Sphericity 
Assumed 

2052.853 16 128.303      
Greenhouse-
Geisser 

2052.853 16.00
0 

128.303      
Huynh-Feldt 2052.853 16.00

0 
128.303      

Lower-bound 2052.853 16.00
0 

128.303      
Time Sphericity 

Assumed 
257.801 3 85.934 3.285 .029 .170 9.856 .716 

Greenhouse-
Geisser 

257.801 2.327 110.796 3.285 .042 .170 7.645 .631 

Huynh-Feldt 257.801 3.000 85.934 3.285 .029 .170 9.856 .716 
Lower-bound 257.801 1.000 257.801 3.285 .089 .170 3.285 .399 

Time * SEX Sphericity 
Assumed 

62.676 3 20.892 .799 .501 .048 2.396 .209 

Greenhouse-
Geisser 

62.676 2.327 26.936 .799 .474 .048 1.859 .186 



 
 

132 
 
 

Huynh-Feldt 62.676 3.000 20.892 .799 .501 .048 2.396 .209 
Lower-bound 62.676 1.000 62.676 .799 .385 .048 .799 .134 

Time * Option Sphericity 
Assumed 

76.969 3 25.656 .981 .410 .058 2.943 .251 

Greenhouse-
Geisser 

76.969 2.327 33.079 .981 .395 .058 2.282 .221 

Huynh-Feldt 76.969 3.000 25.656 .981 .410 .058 2.943 .251 
Lower-bound 76.969 1.000 76.969 .981 .337 .058 .981 .154 

Time * Fitness Sphericity 
Assumed 

210.588 3 70.196 2.684 .057 .144 8.051 .618 

Greenhouse-
Geisser 

210.588 2.327 90.505 2.684 .074 .144 6.245 .538 

Huynh-Feldt 210.588 3.000 70.196 2.684 .057 .144 8.051 .618 
Lower-bound 210.588 1.000 210.588 2.684 .121 .144 2.684 .338 

Error(Time) Sphericity 
Assumed 

1255.481 48 26.156      
Greenhouse-
Geisser 

1255.481 37.22
9 

33.723      
Huynh-Feldt 1255.481 48.00

0 
26.156      

Lower-bound 1255.481 16.00
0 

78.468      
Device * Time Sphericity 

Assumed 
126.433 3 42.144 1.475 .233 .084 4.425 .365 

Greenhouse-
Geisser 

126.433 2.106 60.037 1.475 .243 .084 3.106 .300 

Huynh-Feldt 126.433 2.887 43.788 1.475 .235 .084 4.259 .357 
Lower-bound 126.433 1.000 126.433 1.475 .242 .084 1.475 .208 

Device * Time * 
SEX 

Sphericity 
Assumed 

12.295 3 4.098 .143 .933 .009 .430 .074 

Greenhouse-
Geisser 

12.295 2.106 5.839 .143 .877 .009 .302 .071 

Huynh-Feldt 12.295 2.887 4.258 .143 .928 .009 .414 .074 
Lower-bound 12.295 1.000 12.295 .143 .710 .009 .143 .065 

Device * Time * 
Option 

Sphericity 
Assumed 

116.847 3 38.949 1.363 .265 .079 4.089 .340 

Greenhouse-
Geisser 

116.847 2.106 55.486 1.363 .270 .079 2.871 .279 

Huynh-Feldt 116.847 2.887 40.468 1.363 .266 .079 3.936 .332 
Lower-bound 116.847 1.000 116.847 1.363 .260 .079 1.363 .196 

Device * Time * 
Fitness 

Sphericity 
Assumed 

49.701 3 16.567 .580 .631 .035 1.739 .161 

Greenhouse-
Geisser 

49.701 2.106 23.601 .580 .574 .035 1.221 .140 

Huynh-Feldt 49.701 2.887 17.213 .580 .625 .035 1.674 .159 
Lower-bound 49.701 1.000 49.701 .580 .457 .035 .580 .111 

Error(Device*Ti
me) 

Sphericity 
Assumed 

1371.518 48 28.573      
Greenhouse-
Geisser 

1371.518 33.69
4 

40.705      
Huynh-Feldt 1371.518 46.19

9 
29.687      

Lower-bound 1371.518 16.00
0 

85.720      
 
a. Computed using alpha = .05 
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Tests of Between-Subjects Effects 
Measure:   MEASURE_1   
Transformed Variable:   Average   

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Intercept 901.207 1 901.207 2.460 .136 .133 
SEX 130.007 1 130.007 .355 .560 .022 
Option 2.239 1 2.239 .006 .939 .000 
Fitness 79.651 1 79.651 .217 .647 .013 
Error 5861.906 16 366.369    

 
Pairwise Comparisons 

Measure:   MEASURE_1   

(I) Device (J) Device 
Mean Difference 

(I-J) Std. Error Sig.a 

95% Confidence Interval for 
Differencea 

Lower Bound Upper Bound 
1 2 -1.738 1.791 .346 -5.534 2.059 
2 1 1.738 1.791 .346 -2.059 5.534 

 
Based on estimated marginal means 
a. Adjustment for multiple comparisons: Bonferroni. 

 
Pairwise Comparisons 

Measure:   MEASURE_1   

(I) Time (J) Time 
Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 
Differenceb 

Lower Bound Upper Bound 
1 2 1.200 1.011 1.000 -1.842 4.242 

3 -1.550 1.013 .874 -4.598 1.498 
4 -2.825 1.472 .438 -7.253 1.603 

2 1 -1.200 1.011 1.000 -4.242 1.842 
3 -2.750 1.004 .088 -5.771 .271 
4 -4.025* 1.007 .006 -7.055 -.995 

3 1 1.550 1.013 .874 -1.498 4.598 
2 2.750 1.004 .088 -.271 5.771 
4 -1.275 1.268 1.000 -5.089 2.539 

4 1 2.825 1.472 .438 -1.603 7.253 
2 4.025* 1.007 .006 .995 7.055 
3 1.275 1.268 1.000 -2.539 5.089 

 
Based on estimated marginal means 
*. The mean difference is significant at the .05 level. 
b. Adjustment for multiple comparisons: Bonferroni. 
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Appendix L: Heart Rate Results 

Mauchly's Test of Sphericitya 
Measure:   MEASURE_1   

Within Subjects Effect Mauchly's W 
Approx. Chi-

Square df Sig. 

Epsilonb 
Greenhouse-

Geisser 
Device 1.000 .000 0 . 1.000 
Time .655 6.230 5 .285 .833 
Device * Time .855 2.299 5 .807 .901 

 
Tests of Within-Subjects Effects 

Measure:   MEASURE_1   

Source 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial 
Eta 

Squared 

Noncent. 
Paramete

r 
Observed 
Powera 

Device Sphericity 
Assumed 

1299.683 1 1299.683 19.40
2 

.000 .548 19.402 .985 

Greenhouse-
Geisser 

1299.683 1.000 1299.683 19.40
2 

.000 .548 19.402 .985 

Huynh-Feldt 1299.683 1.000 1299.683 19.40
2 

.000 .548 19.402 .985 

Lower-bound 1299.683 1.000 1299.683 19.40
2 

.000 .548 19.402 .985 

Device * SEX Sphericity 
Assumed 

124.112 1 124.112 1.853 .192 .104 1.853 .249 

Greenhouse-
Geisser 

124.112 1.000 124.112 1.853 .192 .104 1.853 .249 

Huynh-Feldt 124.112 1.000 124.112 1.853 .192 .104 1.853 .249 
Lower-bound 124.112 1.000 124.112 1.853 .192 .104 1.853 .249 

Device * Option Sphericity 
Assumed 

1534.601 1 1534.601 22.90
9 

.000 .589 22.909 .994 

Greenhouse-
Geisser 

1534.601 1.000 1534.601 22.90
9 

.000 .589 22.909 .994 

Huynh-Feldt 1534.601 1.000 1534.601 22.90
9 

.000 .589 22.909 .994 

Lower-bound 1534.601 1.000 1534.601 22.90
9 

.000 .589 22.909 .994 

Device * Fitness Sphericity 
Assumed 

186.122 1 186.122 2.779 .115 .148 2.779 .347 

Greenhouse-
Geisser 

186.122 1.000 186.122 2.779 .115 .148 2.779 .347 

Huynh-Feldt 186.122 1.000 186.122 2.779 .115 .148 2.779 .347 
Lower-bound 186.122 1.000 186.122 2.779 .115 .148 2.779 .347 

Error(Device) Sphericity 
Assumed 

1071.778 16 66.986      
Greenhouse-
Geisser 

1071.778 16.00
0 

66.986      
Huynh-Feldt 1071.778 16.00

0 
66.986      

Lower-bound 1071.778 16.00
0 

66.986      
Time Sphericity 

Assumed 
517.773 3 172.591 5.947 .002 .271 17.842 .940 

Greenhouse-
Geisser 

517.773 2.500 207.113 5.947 .003 .271 14.868 .904 

Huynh-Feldt 517.773 3.000 172.591 5.947 .002 .271 17.842 .940 
Lower-bound 517.773 1.000 517.773 5.947 .027 .271 5.947 .630 
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Time * SEX Sphericity 
Assumed 

154.012 3 51.337 1.769 .166 .100 5.307 .432 

Greenhouse-
Geisser 

154.012 2.500 61.606 1.769 .176 .100 4.423 .389 

Huynh-Feldt 154.012 3.000 51.337 1.769 .166 .100 5.307 .432 
Lower-bound 154.012 1.000 154.012 1.769 .202 .100 1.769 .240 

Time * Option Sphericity 
Assumed 

196.354 3 65.451 2.255 .094 .124 6.766 .536 

Greenhouse-
Geisser 

196.354 2.500 78.543 2.255 .107 .124 5.639 .483 

Huynh-Feldt 196.354 3.000 65.451 2.255 .094 .124 6.766 .536 
Lower-bound 196.354 1.000 196.354 2.255 .153 .124 2.255 .292 

Time * Fitness Sphericity 
Assumed 

215.626 3 71.875 2.477 .073 .134 7.430 .579 

Greenhouse-
Geisser 

215.626 2.500 86.252 2.477 .085 .134 6.192 .523 

Huynh-Feldt 215.626 3.000 71.875 2.477 .073 .134 7.430 .579 
Lower-bound 215.626 1.000 215.626 2.477 .135 .134 2.477 .316 

Error(Time) Sphericity 
Assumed 

1392.924 48 29.019      
Greenhouse-
Geisser 

1392.924 39.99
9 

34.824      
Huynh-Feldt 1392.924 48.00

0 
29.019      

Lower-bound 1392.924 16.00
0 

87.058      
Device * Time Sphericity 

Assumed 
119.648 3 39.883 1.571 .209 .089 4.714 .387 

Greenhouse-
Geisser 

119.648 2.702 44.281 1.571 .213 .089 4.246 .365 

Huynh-Feldt 119.648 3.000 39.883 1.571 .209 .089 4.714 .387 
Lower-bound 119.648 1.000 119.648 1.571 .228 .089 1.571 .218 

Device * Time * 
SEX 

Sphericity 
Assumed 

38.366 3 12.789 .504 .681 .031 1.512 .145 

Greenhouse-
Geisser 

38.366 2.702 14.199 .504 .663 .031 1.361 .139 

Huynh-Feldt 38.366 3.000 12.789 .504 .681 .031 1.512 .145 
Lower-bound 38.366 1.000 38.366 .504 .488 .031 .504 .102 

Device * Time * 
Option 

Sphericity 
Assumed 

90.539 3 30.180 1.189 .324 .069 3.567 .299 

Greenhouse-
Geisser 

90.539 2.702 33.508 1.189 .323 .069 3.213 .282 

Huynh-Feldt 90.539 3.000 30.180 1.189 .324 .069 3.567 .299 
Lower-bound 90.539 1.000 90.539 1.189 .292 .069 1.189 .177 

Device * Time * 
Fitness 

Sphericity 
Assumed 

108.895 3 36.298 1.430 .246 .082 4.290 .355 

Greenhouse-
Geisser 

108.895 2.702 40.302 1.430 .249 .082 3.864 .334 

Huynh-Feldt 108.895 3.000 36.298 1.430 .246 .082 4.290 .355 
Lower-bound 108.895 1.000 108.895 1.430 .249 .082 1.430 .203 

Error(Device*Ti
me) 

Sphericity 
Assumed 

1218.355 48 25.382      
Greenhouse-
Geisser 

1218.355 43.23
2 

28.182      
Huynh-Feldt 1218.355 48.00

0 
25.382      

Lower-bound 1218.355 16.00
0 

76.147      
a. Computed using alpha = .05 
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Tests of Between-Subjects Effects 

Measure:   MEASURE_1   
Transformed Variable:   Average   

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Intercept 397.234 1 397.234 1.985 .178 .110 
SEX 23.775 1 23.775 .119 .735 .007 
Option 45.735 1 45.735 .229 .639 .014 
Fitness 20.175 1 20.175 .101 .755 .006 
Error 3202.225 16 200.139    

 
Pairwise Comparisons 

Measure:   MEASURE_1   

(I) Device (J) Device 
Mean Difference 

(I-J) Std. Error Sig.a 

95% Confidence Interval for 
Differencea 

Lower Bound Upper Bound 
1 2 .450 1.294 .733 -2.293 3.193 
2 1 -.450 1.294 .733 -3.193 2.293 

 
Based on estimated marginal means 
a. Adjustment for multiple comparisons: Bonferroni. 

 
Pairwise Comparisons 

Measure:   MEASURE_1   

(I) Time (J) Time 
Mean Difference 

(I-J) Std. Error Sig.a 

95% Confidence Interval for 
Differencea 

Lower Bound Upper Bound 
1 2 .075 1.267 1.000 -3.738 3.888 

3 -.350 .923 1.000 -3.128 2.428 
4 -2.225 1.444 .857 -6.569 2.119 

2 1 -.075 1.267 1.000 -3.888 3.738 
3 -.425 1.200 1.000 -4.034 3.184 
4 -2.300 1.284 .552 -6.161 1.561 

3 1 .350 .923 1.000 -2.428 3.128 
2 .425 1.200 1.000 -3.184 4.034 
4 -1.875 1.037 .536 -4.994 1.244 

4 1 2.225 1.444 .857 -2.119 6.569 
2 2.300 1.284 .552 -1.561 6.161 
3 1.875 1.037 .536 -1.244 4.994 

 
Based on estimated marginal means 
a. Adjustment for multiple comparisons: Bonferroni. 
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Appendix M: Rating of Perceived Exertion Results 

Mauchly's Test of Sphericitya 
Measure:   MEASURE_1   

Within Subjects Effect Mauchly's W 
Approx. Chi-

Square df Sig. 

Epsilonb 
Greenhouse-

Geisser 
Device 1.000 .000 0 . 1.000 
Time .716 4.914 5 .427 .814 
Device * Time .825 2.836 5 .726 .883 

 
 

Tests of Within-Subjects Effects 
Measure:   MEASURE_1   

Source 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial 
Eta 

Squared 

Noncent. 
Paramete

r 
Observed 
Powera 

Device Sphericity 
Assumed 

1.680 1 1.680 .514 .484 .031 .514 .104 

Greenhouse-
Geisser 

1.680 1.000 1.680 .514 .484 .031 .514 .104 

Huynh-Feldt 1.680 1.000 1.680 .514 .484 .031 .514 .104 
Lower-bound 1.680 1.000 1.680 .514 .484 .031 .514 .104 

Device * SEX Sphericity 
Assumed 

4.524 1 4.524 1.385 .256 .080 1.385 .198 

Greenhouse-
Geisser 

4.524 1.000 4.524 1.385 .256 .080 1.385 .198 

Huynh-Feldt 4.524 1.000 4.524 1.385 .256 .080 1.385 .198 
Lower-bound 4.524 1.000 4.524 1.385 .256 .080 1.385 .198 

Device * Option Sphericity 
Assumed 

.740 1 .740 .227 .640 .014 .227 .073 

Greenhouse-
Geisser 

.740 1.000 .740 .227 .640 .014 .227 .073 

Huynh-Feldt .740 1.000 .740 .227 .640 .014 .227 .073 
Lower-bound .740 1.000 .740 .227 .640 .014 .227 .073 

Device * Fitness Sphericity 
Assumed 

.002 1 .002 .001 .982 .000 .001 .050 

Greenhouse-
Geisser 

.002 1.000 .002 .001 .982 .000 .001 .050 

Huynh-Feldt .002 1.000 .002 .001 .982 .000 .001 .050 
Lower-bound .002 1.000 .002 .001 .982 .000 .001 .050 

Error(Device) Sphericity 
Assumed 

52.254 16 3.266      
Greenhouse-
Geisser 

52.254 16.00
0 

3.266      
Huynh-Feldt 52.254 16.00

0 
3.266      

Lower-bound 52.254 16.00
0 

3.266      
Time Sphericity 

Assumed 
9.523 3 3.174 4.811 .005 .231 14.433 .879 

Greenhouse-
Geisser 

9.523 2.442 3.900 4.811 .009 .231 11.749 .821 

Huynh-Feldt 9.523 3.000 3.174 4.811 .005 .231 14.433 .879 
Lower-bound 9.523 1.000 9.523 4.811 .043 .231 4.811 .540 

Time * SEX Sphericity 
Assumed 

5.594 3 1.865 2.826 .048 .150 8.478 .643 
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Greenhouse-
Geisser 

5.594 2.442 2.291 2.826 .061 .150 6.902 .576 

Huynh-Feldt 5.594 3.000 1.865 2.826 .048 .150 8.478 .643 
Lower-bound 5.594 1.000 5.594 2.826 .112 .150 2.826 .352 

Time * Option Sphericity 
Assumed 

1.631 3 .544 .824 .487 .049 2.471 .215 

Greenhouse-
Geisser 

1.631 2.442 .668 .824 .467 .049 2.012 .195 

Huynh-Feldt 1.631 3.000 .544 .824 .487 .049 2.471 .215 
Lower-bound 1.631 1.000 1.631 .824 .378 .049 .824 .137 

Time * Fitness Sphericity 
Assumed 

.197 3 .066 .100 .960 .006 .299 .067 

Greenhouse-
Geisser 

.197 2.442 .081 .100 .936 .006 .244 .065 

Huynh-Feldt .197 3.000 .066 .100 .960 .006 .299 .067 
Lower-bound .197 1.000 .197 .100 .756 .006 .100 .060 

Error(Time) Sphericity 
Assumed 

31.671 48 .660      
Greenhouse-
Geisser 

31.671 39.07
3 

.811      
Huynh-Feldt 31.671 48.00

0 
.660      

Lower-bound 31.671 16.00
0 

1.979      
Device * Time Sphericity 

Assumed 
1.230 3 .410 .700 .557 .042 2.100 .187 

Greenhouse-
Geisser 

1.230 2.648 .464 .700 .540 .042 1.854 .177 

Huynh-Feldt 1.230 3.000 .410 .700 .557 .042 2.100 .187 
Lower-bound 1.230 1.000 1.230 .700 .415 .042 .700 .123 

Device * Time * 
SEX 

Sphericity 
Assumed 

1.438 3 .479 .819 .490 .049 2.457 .214 

Greenhouse-
Geisser 

1.438 2.648 .543 .819 .478 .049 2.168 .201 

Huynh-Feldt 1.438 3.000 .479 .819 .490 .049 2.457 .214 
Lower-bound 1.438 1.000 1.438 .819 .379 .049 .819 .136 

Device * Time * 
Option 

Sphericity 
Assumed 

2.799 3 .933 1.594 .203 .091 4.781 .393 

Greenhouse-
Geisser 

2.799 2.648 1.057 1.594 .209 .091 4.220 .365 

Huynh-Feldt 2.799 3.000 .933 1.594 .203 .091 4.781 .393 
Lower-bound 2.799 1.000 2.799 1.594 .225 .091 1.594 .221 

Device * Time * 
Fitness 

Sphericity 
Assumed 

2.716 3 .905 1.546 .215 .088 4.639 .382 

Greenhouse-
Geisser 

2.716 2.648 1.026 1.546 .220 .088 4.095 .355 

Huynh-Feldt 2.716 3.000 .905 1.546 .215 .088 4.639 .382 
Lower-bound 2.716 1.000 2.716 1.546 .232 .088 1.546 .216 

Error(Device*Ti
me) 

Sphericity 
Assumed 

28.103 48 .585      
Greenhouse-
Geisser 

28.103 42.37
0 

.663      
Huynh-Feldt 28.103 48.00

0 
.585      

Lower-bound 28.103 16.00
0 

1.756      
 
a. Computed using alpha = .05 
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Tests of Between-Subjects Effects 

Measure:   MEASURE_1   
Transformed Variable:   Average   

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Intercept 508.994 1 508.994 32.348 .000 .669 
SEX 1.050 1 1.050 .067 .799 .004 
Option 36.612 1 36.612 2.327 .147 .127 
Fitness 79.651 1 79.651 5.062 .039 .240 
Error 251.756 16 15.735    

 
 

Pairwise Comparisons 
Measure:   MEASURE_1   

(I) Device (J) Device 
Mean Difference 

(I-J) Std. Error Sig.a 

95% Confidence Interval for 
Differencea 

Lower Bound Upper Bound 
1 2 .337 .286 .255 -.268 .943 
2 1 -.337 .286 .255 -.943 .268 

 
Based on estimated marginal means 
a. Adjustment for multiple comparisons: Bonferroni. 

 
 
 

Pairwise Comparisons 
Measure:   MEASURE_1   

(I) Time (J) Time 
Mean Difference 

(I-J) Std. Error Sig.b 

95% Confidence Interval for 
Differenceb 

Lower Bound Upper Bound 
1 2 -.125 .165 1.000 -.621 .371 

3 -.700* .172 .005 -1.217 -.183 
4 -.850* .232 .012 -1.547 -.153 

2 1 .125 .165 1.000 -.371 .621 
3 -.575* .165 .018 -1.071 -.079 
4 -.725* .184 .007 -1.279 -.171 

3 1 .700* .172 .005 .183 1.217 
2 .575* .165 .018 .079 1.071 
4 -.150 .162 1.000 -.638 .338 

4 1 .850* .232 .012 .153 1.547 
2 .725* .184 .007 .171 1.279 
3 .150 .162 1.000 -.338 .638 

 
Based on estimated marginal means 
*. The mean difference is significant at the .05 level. 
b. Adjustment for multiple comparisons: Bonferroni. 
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