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Abstract

In this thesis, we study the Perron-Frobenius theory for irreducible matrices and

irreducible family of commuting matrices in detail. We then apply it to study the

KMS states of the C∗-algebras of k-graphs. To be more precise, we define the Toeplitz

algebra T C∗(Λ) and C∗-algebra C∗(Λ) for a k-graph Λ. For r ∈ (0,∞)k, there

is a natural one-parameter C∗-dynamical system (T C∗(Λ), αr,R) induced from the

gauge action of Tk on T C∗(Λ). We study the KMS states on the dynamical system

(T C∗(Λ), αr,R). With suitable selections of r ∈ (0,∞)k and β ∈ (0,∞), with em-

phasis on Λ being strongly connected, it is shown that the KMS states are closely

related to the unimodular Perron-Frobenius eigenvector of Λ.
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CHAPTER 1

Introduction

The main aims of this thesis are to study the Perron-Frobenius theory (Chapter

2 to Chapter 4) and the Kubo-Martin-Schwinger (KMS) states on the C∗-algebras of

k-graphs (Chapter 6).

Chapter 2 and Chapter 3 are mainly referred from [1]. In Chapter 2, we study

primitive matrices. For a primitive matrix T we show the existence of a simple and

positive eigenvalue r which is the unique eigenvalue satisfying r = ρ(T ). This result is

known as the Perron-Frobenius theorem for primitive matrices (see Theorem 2.2.1).

Let T ∈ Mn(R) be a non-negative matrix. Define a directed graph E associated

with T in such a way that the indices of T are the vertices of E and T (u, v) is the

number of edges from the vertex v to the vertex u. In fact, T is called the coordi-

nate matrix of E. In Chapter 3, we give a classification of indices of a non-negative

matrix into different self-communicating classes. The directed graphs associated to

sub-matrices corresponding to self-communicating classes turn out to be strongly con-

nected; such sub-matrices are termed as irreducible matrices. It comes into notice

that primitive matrices are a particular case of irreducible matrices. We give the

Perron-Frobenius theorem for irreducible matrices (see Theorem 3.4.1) which is a

weaker version of the Perron-Frobenius theorem for primitive matrices. Some differ-

ences between these two theorems are also mentioned in the last theorem of Chapter

3.

In Chapter 4, we study higher-rank graphs (also known as k-graphs) which are, in

fact, the higher-dimensional analogues of directed graphs. For a k-graph, there are k

coordinate matrices. Our main focus is the study of strongly connected k-graphs, in

which case the family of coordinate matrices turns out to be a family of irreducible

1



1. INTRODUCTION 2

matrices. We study the Perron-Frobenius theory for an irreducible family of matrices

and later we give a Perron-Frobenius theorem for strongly connected k-graphs.

The Perron-Frobenius theory we study here has some applications in the study of

KMS states on the C∗-algebras of graphs, which we see in Chapter 6. First we study

the required background in Chapter 5 with an example of KMS states called Gibbs

states.

In Chapter 6, to warm up we start with studying the KMS states on C∗-algebras of

directed graphs. The last section of this chapter is of the most importance. We define

the Toeplitz algebra T C∗(Λ) and graph C∗-algebra C∗(Λ) for a k-graph Λ. We find

out that C∗(Λ) is a quotient of T C∗(Λ). Let r ∈ (0,∞)k. We give the subinvariance

relation for the dynamical system (T C∗(Λ), αr,R) in Proposition 6.3.14. Let ω be a

KMSβ state of (T C∗(Λ), αr,R). If Λ is strongly connected with coordinate matrices

Ai’s, then βri ≥ ln ρ(Ai). Moreover, if ω is a KMSβ state of C∗(Λ), then βri = ln ρ(Ai)

and consequently mω = (ω(tv)) ∈ [0, 1]Λ
0

turns out to be the unimodular Perron-

Frobenius eigenvector of Λ. If βri > ln ρ(Ai), then we construct all possible KMSβ

states of (T C∗(Λ), αr,R) in Theorem 6.3.22. We finish with providing a sufficient

condition that (T C∗(Λ), αr,R) has a unique KMS1 state in Theorem 6.3.23; followed

by a an example of computing the KMS1 states of a 1-graph.

Author’s contribution. The results in this thesis are primarily from [1], [3], [9]

and [10]. Additionally, the background of C∗-algebra and k-graphs are referred from

various references mentioned in the relevant sections. The author’s main contribution

in this thesis has been to provide the full details of the main results presented in

this thesis. In addition to that the author studies the behavior of canonical form

of irreducible matrices in detail in Section 3.3. Among the results whose proofs

have been substantially expanded, we can mention Theorems 2.2.1, 3.3.14, 3.4.5,

Proposition 4.1.5, Gibbs states in Section 5.3, Example 6.2.2, Propositions 6.2.15,

6.3.13, 6.3.14, Theorems 6.3.22, 6.3.23 and Example 6.3.24.



CHAPTER 2

Perron-Frobenius Theory For Primitive Matrices

In this chapter we introduce primitive matrices and give a detailed proof of the

Perron-Frobenius theorem for primitive matrices.

2.1. Preliminaries

Notation 2.1.1. (a) We denote the set of all n × m matrices over a field F by

Mn×m(F). If n = m then we write Mn×n(F) as Mn(F).

(b) We denote x ∈ Fn as a column vector x =
[
x1 x2 . . . xn

]t
.

(c) For T = [tij] ∈Mn(F), its kth power is denoted as T k = [t
(k)
ij ], where t

(k)
ij is the

(i, j)th entry of T k.

Definition 2.1.1. (a) A matrix T = [tij] in Mn×m(R) is said to be non-negative

if tij ≥ 0 for every i = 1, 2, . . . , n and j = 1, 2, . . . ,m and we write T � 0. If T � 0

and T 6= 0, then we write T � 0. Moreover, if tij > 0 for every i = 1, 2, . . . , n and

j = 1, 2, . . . ,m, then T is called strictly positive and we write T � 0.

(b) For A = [aij] and B = [bij] in Mn×m(F), we say A � B if aij ≤ bij and A ≺ B

if aij < bij for every i = 1, 2, . . . , n and j = 1, 2, , . . . ,m.

Lemma 2.1.1. Let A,B ∈ Mn×m(R), C ∈ Mm×s(R) and D ∈ Mt×n(R) such that

C � 0 and D � 0. Then A � B implies AC � BC and DA � DB.

Proof. Let A = [aij], B = [bij] and C = [cjk] such that A � B.

Then for every i = 1, 2, . . . , n, j = 1, 2, . . . ,m and k = 1, 2, . . . , s,

aij ≤ bij =⇒ aijcjk ≤ bijcjk, (as cjk ≥ 0)

=⇒
m∑
j=1

aijcjk ≤
m∑
j=1

bijcjk

3



2.1. PRELIMINARIES 4

=⇒ AC(i, k) ≤ BC(i, k) (by the definition of matrix multiplication)

=⇒ AC � BC.

Similarly, DA � DB. �

Lemma 2.1.2. If the sum of elements of each row (respectively column) of a matrix

A ∈Mn(C) is equal, then the sum is a right (respectively left) eigenvalue of A.

Proof. Case 1: If the sum of elements of each row of the matrix A is equal to r,

then x ∈Mn×1(C) with each entry equal to 1 is the right eigenvector associated to r,

i.e., Ax = rx. Hence r is a right eigenvalue of A.

Case 2: If the sum of elements of each column of the matrix A is equal to s, then

y ∈ M1×n(C) with each entry equal to 1 is the left eigenvector associated to s, i.e.,

yA = sy. Hence s is a left eigenvalue of A. �

Definition 2.1.2. Let A be a non-empty subset of a metric space and a function

f from A to R is said to be upper semi-continuous on A if lim sup
k→∞

f(xk) ≤ f(x0) for

any x0 ∈ A and any sequence {xk} in A such that xk → x0 as k →∞.

We have the following result from Appendix C of [1] which is used later in the

proof of Theorem 2.2.1.

Lemma 2.1.3. An upper semi-continuous function defined on a non-empty com-

pact metric space A attains its supremum at some point x0 in A.

Proof. Let a = sup
x∈A

f(x) for an upper semi-continuous function f on A. Notice

that a is finite. To the contrary let us suppose a is infinite. Then there exists a

sequence {xn} in A such that

(2.1.1) lim
n→∞

f(xn) = +∞.
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Since A is compact, there exists a subsequence {xnk}k of {xn}n in A which converges

to a point x0 ∈ A. Since f is upper semi-continuous on A,

lim
k→∞

xnk = x0 =⇒ lim sup
k→∞

f(xnk) ≤ f(x0).

Hence by (2.1.1), +∞ = lim sup
k→∞

f(xnk) ≤ f(x0) implies f(x0) = +∞ which is a

contradiction. Hence a = sup
x∈A

f(x) is finite. Then by definition of supremum there

exists a sequence {xk} in A such that lim
k→∞

f(xk) = a. Since A is compact and {xk} is

a sequence in A, there exists a subsequence {xki}i of {xk}k which is convergent, say

to x0 ∈ A. Clearly lim
k→∞

f(xk) = a implies lim
i→∞

f(xki) = a. Then

a = lim sup
i→∞

f(xki) ≤ f(x0) ≤ sup
x∈A

f(x) = a.

Hence f(x0) = a. �

Remark 2.1.4. a = lim sup
i→∞

f(xki) ≤ f(x0) also implies that a has to be finite.

2.2. Perron-Frobenius Theorem for Primitive Matrices

Definition 2.2.1. A square non-negative matrix T is said to be a primitive matrix

if there exists a positive integer k such that T k� 0.

Definition 2.2.2. Let T ∈Mn(C) and λ1, λ2, λ3, . . . ,λn be its eigenvalues. Then

the spectral radius of T , denoted by ρ(T ) is defined as ρ(T ) = max
1≤i≤n

{|λi|}.

Theorem 2.2.1. (The Perron-Frobenius theorem for primitive matri-

ces) Let T be a primitive matrix. Then we have the following properties:

(a) There exists a real and positive eigenvalue r.

(b) r = ρ(T ). Moreover, if r = |λi| for some eigenvalue λi, then r = λi.

(c) The eigenvector space associated to r is one dimensional.

(d) There exist left and right eigenvectors associated to r which are strictly pos-

itive.

(e) If 0 � B � T and β is an eigenvalue of B, then |β| ≤ r. Moreover, |β| = r

implies B = T .
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(f) r is a simple eigenvalue.

Proof. Let A := {x ∈ Rn : x � 0 and ||x|| = 1}, where ||.|| is the `1 norm given

as ||x|| =
n∑
i=1

|xi|. Also let T = [tij]. Define a function s : A→ R as

s(x) = min
1≤i≤n

(Tx)i
xi

for every x ∈ A.

The fraction
(Tx)i
xi

can be infinite if xi = 0. But since x ∈ A, one has 0 ≤ s(x) <∞.

(a) Now

s(x) = min
1≤i≤n

(Tx)i
xi
≤ (Tx)i

xi
for every i = 1, 2, . . . , n

=⇒ xs(x) � Tx.

Let 1t ∈ Rn be the row vector with all entries equal to 1. Then by Lemma 2.1.1, the

above inequality yields

(2.2.1) 1txs(x) � 1tTx.

Let K := max
1≤j≤n

∑n
i=1 tij. Clearly K is finite and independent of x. Then using Lemma

2.1.1 and the inequality (2.2.1), we get

1tT � 1tK =⇒ 1tTx � 1tKx =⇒ 1txs(x) � 1txK =⇒ s(x) ≤ K.

Hence sup
x∈A

s(x) ≤ K <∞. Now let

(2.2.2) r := sup
x∈A

s(x).
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Let u ∈ Rn be the column vector with all entries equal to
1

n
. Then u ∈ A. Since T

is a primitive matrix, it can’t have a column with all zeros. So

s(u) = min
1≤i≤n

(Tu)i
ui

= min
1≤i≤n

∑n
j=1 tij

1
n

1
n

= min
1≤i≤n

n∑
j=1

tij > 0.

Thus, 0 < s(u) ≤ r <∞. This shows that r is a positive finite number.

Claim 1: The function s : A→ R is an upper semi-continuous function.

Let x0 ∈ A and {xl} be a sequence in A such that xl → x0 as l→∞.

Since T is a finite dimensional matrix, it is a bounded and so a continuous linear

operator. So we have, as l→∞

(2.2.3) xl → x0 =⇒ Txl → Tx0 =⇒ (Txl)i → (Tx0)i =⇒ (Txl)i
(xl)i

→ (Tx0)i
(x0)i

.

Since s(xl) ≤
(Txl)i
(xl)i

for every i = 1, 2, . . . , n

=⇒ lim sup
l→∞

s(xl) ≤ lim sup
l→∞

(Txl)i
(xl)i

=⇒ lim sup
l→∞

s(xl) ≤
(Tx0)i
(x0)i

(by (2.2.3))

=⇒ lim sup
l→∞

s(xl) ≤ min
1≤i≤n

(Tx0)i
(x0)i

=⇒ lim sup
l→∞

s(xl) ≤ s(x0).

Claim 2: The set A is compact. Since A is bounded, it suffices to show that A is

closed. Let {xk} be a sequence in A such that xk → x as k → ∞ in the topology

induced by `1 norm. Since
∣∣ ||xk|| − ||x|| ∣∣ ≤ ||xk − x||, one can conclude ||xk|| → ||x||

as k →∞. Thus ||xk|| = 1 for every k implies ||x|| = 1. Also xk ≥ 0 implies (xk)i ≥ 0

for every k ∈ N and i = 1, 2, . . . , n. Now

xn → x =⇒ (xn)i → (x)i =⇒ (x)i ≥ 0 for every i = 1, 2, . . . , n.
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Hence x � 0 and so x ∈ A. This shows that A is compact. By Lemma 2.1.3, s(x)

attains its supremum in A. Thus there exists x̂ ∈ A, such that

r = min
1≤i≤n

(T x̂)i
(x̂)i

.

In particular we have

r ≤ (T x̂)i
(x̂)i

(i = 1, 2, . . . , n)

=⇒ x̂r � T x̂ or T x̂− x̂r � 0.(2.2.4)

Let z = T x̂− x̂r. Then z � 0. We shall show that z has all entries equal to zero. Let

us suppose there exists i ∈ {1, 2, . . . , n} such that (z)i > 0. Then

(T x̂− x̂r)i > 0 =⇒ T x̂− x̂r � 0.

Since T is primitive there exists k ∈ Z+ such that T k � 0 and so

T k(T x̂− x̂r) � 0

=⇒ T (T kx̂) � r(T kx̂)

=⇒ (TT kx̂)i > r(T kx̂)i (i = 1, 2, . . . , n)

=⇒ min
1≤i≤n

(TT kx̂)i
(T kx̂)i

> r

=⇒ min
1≤i≤n

(
T Tkx̂
||Tkx̂||

)
i(

Tkx̂
||Tkx̂||

)
i

> r.

Since x̂ ∈ A and T k � 0 implies T kx̂ � 0. Thus we get
T kx̂

||T kx̂||
∈ A such that

s
(

Tkx̂
||Tkx̂||

)
= min

1≤i≤n

(
T Tkx̂

||Tkx̂||

)
i(

Tkx̂

||Tkx̂||

)
i

> r, which is a contradiction to the definition of r in

(2.2.2). Hence z = 0, i.e.,

(2.2.5) T x̂ = rx̂.
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This shows that r is an eigenvalue of T which is real and positive.

(b) Let λ be any eigenvalue of T . Then there exists a norm-1 vector x 6= 0 such

that Tx = λx. Now for every i = 1, 2, . . . , n

λxi = (Tx)i =⇒ |λxi| = |(Tx)i| =⇒ |λ||xi| =
∣∣∣ n∑
j=1

tijxj

∣∣∣

=⇒ |λ| ≤ min
1≤i≤n

∣∣∣ n∑
j=1

tijxj

∣∣∣
|xi|

≤ min
1≤i≤n

n∑
j=1

tij|xj|

|xi|
= min

1≤i≤n

(Tx+)i
(x+)i

,(2.2.6)

where x+ = (|xi|) ∈Mn(R) and clearly x+ ∈ A. Hence from (2.2.2)

|λ| ≤ min
1≤i≤n

(Tx+)i
(x+)i

≤ r.

Since λ is an arbitrary eigenvalue of T , the above inequality shows that r = max
1≤i≤n

|λi| =

ρ(T ) (using Definition 2.2.2).

Now suppose |λ| = r. From (2.2.6), for every i = 1, 2, . . . , n we have

(Tx+)i
(x+)i

≥ |λ| =⇒ (Tx+)i ≥ |λ||xi| = r|xi| =⇒ Tx+ � rx+.

This inequality is completely similar to (2.2.4). So by same arguments we can get

Tx+ = rx+.

i.e., x+ is an eigenvector of T associated to r. Moreover, for some k > 0 we have

T k � 0. Thus

T kx+ = rkx+ =⇒ (T kx+)i = rk|xi| =⇒
n∑
j=1

t
(k)
ij |xj| = rk|xi|

=⇒
n∑
j=1

t
(k)
ij |xj| = |λkxi| =

∣∣∣ n∑
j=1

t
(k)
ij xj

∣∣∣ (as |λ| = r).
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Thus xj’s have the same direction, i.e., xj = |xj|eiθ for every j = 1, 2, . . . , n. Since λ

is an eigenvalue of T as assumed, i.e., λx = Tx, for every i = 1, 2, . . . , n

λxi = (Tx)i =⇒ λxi =
n∑
j=1

tijxj =⇒ λ|xi|eiθ =
n∑
j=1

tij|xj|eiθ

=⇒ λ|xi| =
n∑
j=1

tij|xj| =⇒ λx+ = Tx+.

Since T is primitive, there exists k > 0 such that T k � 0. Also λkx+ = T kx+. Now

T k � 0 and x+ � 0 =⇒ T kx+ � 0 =⇒ λkx+ � 0 =⇒ x+ � 0.

Hence λx+ = Tx+ and x+ � 0 implies λ is real and positive. Thus |λ| = r implies

λ = r.

(c) From (2.2.5 ) we already have an eigenvector x̂ of T associated to r. Let x 6= 0

be another eigenvector of T associated to r. Then by arguments in part (b), x+ is also

an eigenvector of T associated to r and satisfies x+ � 0. Let c ∈ C. Then η = x̂− cx

is also an eigenvector of T associated to r.

Let us assume that η 6= 0. So η is an non zero eigenvector of T and thus by

arguments in part (b), η+ is also an eigenvector of T associated to r and η+ � 0.

Since c is an arbitrary complex number, we can choose c in such a way that at

least for one j, x̂j − cxj = 0; i.e., η 6= 0 but at least one entry of η is zero. But this

contradicts the fact that η+ � 0. Hence η = 0. This gives us x̂ = cx, this shows that

every eigenvector of T associated to r is a multiple of x̂. Hence eigenvector space

associated to r is one dimensional.

(d) Since T is primitive, there exists k > 0 such that T k � 0. From (2.2.5) we

have T x̂ = rx̂, i.e., x̂ is an right eigenvector of T associated to r and x̂ � 0. Then

also one can get T kx̂ = rkx̂ which implies x̂ � 0.

Since transpose of a primitive matrix is also primitive and eigenvalues also remain

same, r is also an eigenvalue of T t possessing same properties in parts (a)-(c), hence

there exists a right eigenvector x of T t associated to r such that x � 0. Now T tx =
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rx =⇒ xtT = rxt, implies xt is the left eigenvector of T associated to r which is

strictly positive.

(e) Let 0 � B � T and β be an eigenvalue of B. Let y 6= 0 be a right eigenvector

of B associated to β, i.e., By = βy. Then for B = [bij], y = [yi] and for every

i = 1, 2, . . . , n

βyi =
n∑
j=1

bijyj =⇒ |βyi| =
∣∣∣ n∑
j=1

bijyj

∣∣∣ ≤ n∑
j=1

|bij||yj| =
n∑
j=1

bij|yj| =⇒ |β|y+ � By+.

Since B � T , by Lemma 2.1.1, By+ � Ty+. So

(2.2.7) |β|y+ � By+ � Ty+.

Let xt be a left strictly positive eigenvector of T associated to r. Then using Lemma

2.1.1 and the Inequality (2.2.7), we get

|β|xty+ � xtTy+ = rxty+ =⇒ |β| ≤ r (as xty+ � 0).

Now suppose |β| = r, then from (2.2.7), ry+ � Ty+. This is the same inequality as

in (2.2.4), so using the same arguments we can get ry+ = Ty+ and y+ � 0. Using

(2.2.7)

Ty+ � By+ � |β|y+ = ry+ = Ty+

=⇒ By+ = Ty+(2.2.8)

Since B � T , (2.2.8) is valid if, and only if, B = T .

(f) Recall that, for A ∈ Mn(F), we have A(AdjA) = (detA)I, where I is the

identity matrix of Mn(F). Thus

(rI − T ) Adj(rI − T ) = det(rI − T )I

and Adj(rI − T )(rI − T ) = det(rI − T )I.
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Since r is an eigenvalue of T , det(rI − T ) = 0. So we get

(rI − T ) Adj(rI − T ) = 0.(2.2.9)

Adj(rI − T )(rI − T ) = 0.(2.2.10)

Now (2.2.9) shows that any column of Adj(rI − T ) is either:

(i) a right eigenvector of T associated to r or

(ii) a column of zeros.

Similarly (2.2.10) shows that any row of Adj(rI − T ) is either:

(i) a left eigenvector of T associated to r or

(ii) a row of zeros.

Combining these factors, we can conclude that any column and any row of Adj(rI−T )

is either an eigenvector of T associated to r or the zero vector. But part (c) and part

(d) assure that there exist strictly positive left and right eigenvectors of T associated

to r and every eigenvector of T associated to r is unique to constant multiple. So no

non-zero eigenvector can have a zero entry in it. Thus Adj(rI − T ) is either

(i) a strictly positive matrix (every row and column is an eigenvector) or

(ii) a zeros matrix.

In what follows, we shall show that one entry of Adj(rI − T ) is positive which gives

that the case (i) holds.

The (n, n)th entry of Adj(rI − T ) is det(rI(n|n) − T (n|n)), where T (n|n) is the

matrix obtained from T by eliminating nth row and nth column and I(n|n) is the

corresponding identity matrix. Clearly

0 �

T (n|n) 0

0t 0

 � T

and the equality is � because being primitive T cannot have a column or row of all

zeros.
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Let B =

T (n|n) 0

0t 0

. Then using arguments in part (e) we can conclude that no

eigenvalue of B (so of T (n|n)) can have modulus greater than r. I.e., if λ1, λ2, . . . , λn−1

are the eigenvalues of T (n|n), then 0 ≤ |λi| < r for every i = 1, 2, . . . , n− 1. Also

det(xI(n|n)− T (n|n)) = 0 =⇒
n−1∏
i=1

(x− λi) = 0

• If λi is real, then r − λi > 0 implies det(rI(n|n)− T (n|n)) > 0.

• If λi is complex, then we must have eigenvalues in conjugates; i.e., we have

factors like

(r − λi)(r − λ̄i) = r2 − |λi|2 > 0. This implies det(rI(n|n)− T (n|n)) > 0.

Hence det(rI(n|n) − T (n|n)) > 0, so (n, n)th entry of Adj(rI − T ) is positive. Thus

Case (i) holds, i.e., Adj(rI − T ) � 0.

Write φ(x) = det(xI − T ) and differentiate (xI − T ) Adj(xI − T ) = φ(x)I with

respect to x. We have

d

dx
(xI − T ) Adj(xI − T ) + (xI − T )

d

dx
Adj(xI − T ) = φ′(x)I

=⇒ Adj(xI − T ) + (xI − T )
d

dx
Adj(xI − T ) = φ′(x)I.

Put x = r and multiply from right by x̂ to get

Adj(rI − T )x̂+ (rI − T )x̂
d

dx
Adj(xI − T )|x=r = x̂φ′(r)

=⇒ Adj(rI − T )x̂ = x̂φ′(r).

Since Adj(rI − T ) � 0 and x̂ � 0, we have φ′(r) > 0 which implies that r is not a

root of φ′(x). This shows that the algebraic multiplicity of r in det(xI − T ) is one.

Hence r is a simple eigenvalue. �

The eigenvalue r obtained in Theorem 2.2.1 also has some more special properties

which we discuss in following two corollaries.
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Corollary 2.2.2.

min
1≤i≤n

n∑
j=1

tij ≤ r ≤ max
1≤i≤n

n∑
j=1

tij

and the equality holds on either side implies the sum of all rows are same.

Proof. From Theorem 2.2.1(a), we have 0 ≤ s(u) ≤ r ≤ k, where u ∈ Rn be the

column vector with all entries equal to 1
n
, i.e.,

min
1≤j≤n

n∑
i=1

tij ≤ r ≤ max
1≤i≤n

n∑
j=1

tij <∞

=⇒ r ≤ max
1≤i≤n

n∑
j=1

tij.(2.2.11)

Since T is primitive, T t (transpose of T ) is also primitive with same unique highest

modulus eigenvalue r. Thus again from Theorem 2.2.1(a), we get

min
1≤j≤n

n∑
i=1

ttij ≤ r ≤ max
1≤i≤n

n∑
j=1

ttij

=⇒ min
1≤j≤n

n∑
i=1

tji ≤ r ≤ max
1≤i≤n

n∑
j=1

tji

=⇒ min
1≤j≤n

n∑
i=1

tji ≤ r namely min
1≤i≤n

n∑
j=1

tij ≤ r.(2.2.12)

Combining (2.2.11) and (2.2.12), we get

min
1≤i≤n

n∑
j=1

tij ≤ r ≤ max
1≤i≤n

n∑
j=1

tij.

Now we shall show that if one side of equality holds then the sum of all rows are

equal.

Case 1: Suppose that min
1≤i≤n

n∑
j=1

tij = r. To the contrary, assume that not all row

sums are the same. Let T̃ be a matrix such that T̃ � T and all row sums of T̃ are

equal to r. By Lemma 2.1.2, r is an eigenvalue of T̃ . So by Theorem 2.2.1(e), T̃ = T ,
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which is a contradiction to the fact that not all row sums of T are the same. Hence

all row sums of T are equal and are equal to r.

Case 2: Suppose that r = max
1≤i≤n

n∑
j=1

tij. To the contrary, assume that not all row

sums are the same. Let T̄ = [t̄ij] be a matrix such that T � T̄ and all row sums of T̄

are equal to r. So again by Lemma 2.1.2, r is an eigenvalue of T̄ . Since T̄ has positive

entries at least in the same positions as of T (it may has more positive entries), T̄ is

primitive. Hence by above theorem, there exists a unique highest modulus eigenvalue

of T̄ , say r′. Then by above result of this corollary we get

r = min
1≤i≤n

n∑
j=1

t̄ij ≤ r′ ≤ max
1≤i≤n

n∑
j=1

t̄ij = r.

This implies r′ = r. Hence from Theorem 2.2.1(e) T̄ = T , which is a contradiction to

the fact that T does not have all row sums equal to r.

Hence if either of the equality holds, then all row sums are equal (and are actually

equal to r). �

Corollary 2.2.3. Let vt and w be positive left and right eigenvectors of T asso-

ciated to r, which are normed so that vtw = 1. Then

Adj(rI − T )

φ′(r)
= wvt.

Proof. In Theorem 2.2.1(f), we proved that every row (column) of Adj(rI − T )

is a multiple of an left (right) positive eigenvector of T associated to r. In particular

when every row is a multiple of a left positive eigenvector, let us say that eigenvector

be xt =
[
x1 x2 . . . xn

]
and when every column is a multiple of a right positive

eigenvector, let us say that eigenvector be y =
[
y1 y2 . . . yn

]t
. Then the matrix
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Adj(rI − T ) must be of the form:

Adj(rI − T ) =


y1x1 y1x2 . . . y1xn

y2x1 y2x2 . . . y2xn
...

... . . .
...

ynx1 ynx2 . . . ynxn

 .

Thus

Adj(rI − T ) = yxt.

But by Theorem 2.2.1(c), eigenvectors associated to r are unique up to constant

multiples. Thus there are c1, c2 > 0 such that y = c1w and xt = c2v
t. Hence

(2.2.13) Adj(rI − T ) = c1c2wv
t.

Now in the proof of part (f), we got

Adj(xI − T ) + (xI − T )
d

dx
Adj(xI − T ) = φ′(x)I.

putting x = r and pre-multiplying vt

vt Adj(rI − T ) + vt(rI − T )
d

dx
Adj(xI − T )|x=r = vtφ′(r)

=⇒ vt.Adj(rI − T ) = vtφ′(r) =⇒ vtc1c2wv
t = vtφ′(r) using(2.2.13)

=⇒ φ′(r) = c1c2,

as desired. �

From Theorem 2.2.1(c) the eigenvector space associated to r is one dimensional.

Suppose that there exists another eigenvector y ∈ A of T associated to r such that

y � 0 and ||y|| = 1. Then being non-negative and of same norm in the same one-

dimensional eigenvector space of T associated to r, y = x̂. Thus such x̂ with ||x̂|| = 1

is unique.

Definition 2.2.3. The eigenvalue r of T obtained in Theorem 2.2.1 is called

the Perron-Frobenius (PF) eigenvalue and its corresponding unique positive (left or
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right) eigenvector x̂ with ||x̂|| = 1, is called the Unimodular Perron-Frobenius (UPF)

eigenvector.

The norm we used in Theorem 2.2.1 is `1-norm over Rn. In this thesis we usually

use the same `1-norm over Rn, otherwise specified.



CHAPTER 3

Perron-Frobenius Theory For Irreducible Matrices

In this chapter we study the structure of non-negative matrices with the help of

graph theory and then we introduce irreducible matrices. Later we state and prove

the Perron-Frobenius theorem for irreducible matrices.

3.1. Some Basics of Graph Theory

Definition 3.1.1. A directed graph E = (E0, E1, r, s) consists of two sets E0 and

E1 and two functions r, s : E1 → E0. The elements of E0 are called vertices and

elements of E1 are called edges. For each edge e we call s(e) the source of e and r(e)

the range of e.

An edge e ∈ E1 can therefore be thought of as traveling from s(e) to r(e).

Let v, u ∈ E0 and A ⊆ E∗. Then we define vA := {e ∈ A : r(e) = v}, Au := {e ∈ A :

s(e) = v}, and vAu := {e ∈ A : s(e) = u, r(e) = v}.

Definition 3.1.2. The coordinate matrix A of a graph E = (E0, E1, r, s) is defined

as a matrix with entries A(v, u) =
∣∣vE1u

∣∣, where
∣∣vE1u

∣∣ denotes the cardinality of

the set vE1u.

Definition 3.1.3. A graph is called row finite if vE1 is a finite set for every

v ∈ E0. That is, in the coordinate matrix of the graph, the sum of entries in every

row is finite.

Definition 3.1.4. Let E be a directed graph and u, v ∈ E0.

(a) If vE1 = ∅, then v is called a source.

(b) If E1u = ∅, then u is called a sink.

In this thesis we assume every graph is row-finite and has no sources.

18
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Definition 3.1.5. A path in a directed graph E is of the form µ = µnµn−1 . . . µ2µ1,

where µ1, µ2, . . . , µn are edges satisfying r(µi) = s(µi+1), i = 1, 2, . . . , n− 1.

Note that n is called the length of µ. If n = 1, then the path µ is just an edge.

We extend the definitions of r and s to paths by defining r(µ) = r(µn) and

s(µ) = s(µ1).

Definition 3.1.6. We denote by En the set of all paths of length n. Define

E∗ =
⋃
n≥1

En, which is called path space of E.

Definition 3.1.7. A directed graph E is said to be strongly connected if for every

u, v ∈ E0, uE∗v 6= ∅.

3.2. Structure of Non-Negative Matrices

In this section, we classify the indices of non-negative matrices and study the

structure of non-negative matrices.

Definition 3.2.1. A sequence (i, i1, i2, . . . , it−1, j) for t ≥ 1 (i0 = i) from the

index set {1, 2, . . . , n} of a non-negative matrix T is said to form a chain of length t

between the ordered pair (i, j) if

tii1ti1i2ti2i3 . . . tit−1j > 0.

If i = j, such a chain is called a cycle of length t between i and itself.

Note 3.2.1. In Definition 3.2.1, we may WLOG assume that for a fixed pair (i, j)

i 6= ik and j 6= ik for every k = 1, 2, . . . , t − 1 to obtain a minimal length chain or

cycle.

Let T be a non-negative matrix with index set {1, 2, . . . , n}. We define a directed

graph E associated to T as follows: {1, 2, . . . , n} are the vertices of E and the (i, j)th

entry of T denotes the number of edges from the vertex j to the vertex i.

Definition 3.2.2. Let i, j be arbitrary indices from the index set {1, 2, . . . , n}

of matrix T . We say that j leads to i and write i ← j if there exists a chain
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(i, i1, i2, . . . , ik−1, j) of length k between the ordered pair (i, j). If j does not lead to

i, we write i8 j. We say that i and j communicate if i← j and j ← i and we write

i↔ j.

Remark 3.2.2. If there exists a chain (i, i1, i2, . . . , ik−1, j) between (i, j), then one

has tkij ≥ tii1ti1i2ti2i3 . . . tit−1j > 0. So j leads to i if, and only if, there exists k ≥ 1

such that tkij > 0. Let E be the directed graph associated to a non-negative matrix

T with index set {1, 2, . . . , n}. From Definition 3.1.5, a chain between (i, j) of length

t is actually a path of length t from the vertex j to vertex i.

Now we shall classify the indices of a non-negative matrix in two different classes

as follows:

Definition 3.2.3. (a) If i ← j and j 6← i, then the index j is called inessential.

An index which leads to no index at all is also called inessential (this arises when the

matrix T has a column of zeros).

(b) An index j is called essential if there is at least one i such that i← j and for

every i such that i← j one can have j ← i.

If E is the directed graph associated to a non-negative matrix T . A vertex v

is inessential if either v is a sink or there exist a vertex u such that uE∗v 6= ∅ but

vE∗u = ∅. Whereas, a vertex v is essential if v is not a sink and for every index u

such that uE∗v 6= ∅ one has vE∗u 6= ∅.

Classification of Indices. (a) We can now divide all essential indices in essential

classes in such a way that all the indices belonging to one class communicate with

each other but can not lead to any index outside the class.

(b) Also, all inessential indices which communicate with some indices can also

be divided into inessential classes in such a way that all inessential indices which

communicate with each other will belong to same class (indices in an inessential class

may lead to some indices outside the class).

Since classification of indices of a non-negative matrix only depends on the position

of positive elements, one can conclude that any two non-negative matrices having
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positive entries at same corresponding places will have the same classification of their

indices. In order to unify the classification we introduce the following definition:

Definition 3.2.4. The incidence matrix of a non-negative matrix T = [tij] is

defined as

T̃ (i, j) =

1, if tij 6= 0.

0, if tij = 0.

Hence any two non-negative matrices with the same incidence matrix will have

the same index classification.

In the following example, we will see how to easily classify and group indices with

the help of graphs.

Example 3.2.3. A non-negative matrix T has incidence matrix

T̃ =



1 2 3 4 5 6 7 8 9

1 1 1 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 1 0

3 0 1 0 0 0 1 1 0 0

4 0 0 0 1 0 0 0 0 1

5 0 0 0 0 1 0 0 0 0

6 0 0 0 0 0 1 0 1 0

7 0 1 1 0 0 0 0 0 0

8 0 0 0 0 0 0 0 1 0

9 0 0 0 1 0 0 0 0 1


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The associated graph is given as:

1

Fig. 1:

2 3 6

8

7

4

Fig. 2:

9 5

Fig. 3:

• Figure 1 shows that {3, 7} is an essential class, while {1, 2}, {6} and {8}

are inessential class.

• Figure 2 shows {4, 9} is an essential class.

• Figure 3 shows {5} is an essential class.

Now with the help of classification of indices, we shall seek a canonical form of a

non-negative matrix as follows:

Canonical Form. A non-negative matrix T may be put into the canonical form

by first relabeling the indices in a specific manner by keeping the following rules into

consideration:

• Relabeling the indices using the same indexing set {1, 2, . . . , n}.

• Rewriting T by performing a simultaneous permutations of rows and columns

of the matrix.

Simultaneous permutations of rows and columns only transform the original matrix

T to another matrix Tc such that T = P−1
m . . . P−1

2 P−1
1 TcP1P2 . . . Pm, where Pi is

a square invertible matrix for i = 1, 2, . . . ,m. This transformation of T does not

alter its powers (i.e., powers of T are also similarly transformed) and the set of its

eigenvalues also remains unchanged.

The canonical form is attained by first taking the indices of one essential class (if

any) and renumbering them consecutively using the lowest integers and following by
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the indices of other essential classes, if any, until the essential classes exhausted. The

numbering is then extended to inessential classes (if any) which are arranged in an

order such that an inessential class occurring earlier(thus higher in arrangement) does

not lead to any inessential class occurring later (i.e., any element of an inessential class

higher in arrangement should not lead to any element of inessential class occurring

later).

Example 3.2.4. For the matrix T in Example 3.2.3, the essential classes are {5},

{4, 9}, {3, 7} and inessential classes are {1, 2}, {6}, {8}. Note that class {8} can not

be ordered before {1, 2} or {6} as 8 leads to 2 and 6. Hence

.

The canonical form of a non-negative matrix T consists of square diagonal blocks

corresponding to communicating classes, zero to the below of each communicating

class block but at least one non-zero entry above each inessential class unless it

corresponding to an index which leads to no other index. Thus we can write more
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general version of the canonical form of T as

T̃c =



T1 0 . . . 0

0 T2 . . . 0
...

...
. . .

... R

0 0 . . . Tz

0 Q


,

where the Ti, i = 1, 2, . . . , z, correspond to the z essential classes and Q corresponds

to the inessential classes with R 6= 0 in general and Q itself having structure analogous

to T such that there may be non-zero elements to the above of its diagonal blocks.

Q =


Q1

Q2 S
. . .

0 Qw

 .

Now, in most applications we are interested in the behavior of powers of T .

T k =



T k1 0 . . . 0

0 T k2 . . . 0
...

...
. . .

... Rk

0 0 . . . T kz

0 Qk


and Qk =


Qk

1

Qk
2 Sk

. . .

0 Qk
w.

 .

It follows that, in order to study the behavior of powers of T , it will be considerable

to study the powers of the diagonal block sub-matrices corresponding to self commu-

nicating classes. The evolution of Rk and Sk is complicated, in fact it will be sufficient

if we only want to study the essential indices.

Definition 3.2.5. A sub-matrix corresponding to a single self-communicating

class is called irreducible.
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Note 3.2.5. In general, there are cases in which all indices of a non-negative

matrix fall into non-self-communicating classes; for example T =

0 0

1 0

. But we

need to show that, normally there is at least one self-communicating (indeed essential)

class of indices present for any non-negative matrix T .

Lemma 3.2.6. A non-negative matrix T ∈Mn(R) with at least one positive entry

in each row possesses at least one essential class of indices.

Proof. Suppose that every row has at least one positive entry but all indices

are inessential. This implies that for any index j ∈ {1, 2, . . . , n} there is at least one

i ∈ {1, 2, . . . , n} such that i← j but j 6← i. Let i1 be any index. Then by assumption

we can find i2 such that i2 ← i1 but i1 6← i2. Similarly we can find i3 such that i3 ← i2

but i2 6← i3. Repeating the same argument, we can find a sequence i1, i2, . . . , in+1

such that

in+1 ← in ← · · · ← i2 ← i1 but ik 6← ik+1 and hence

ik−1 6← ik+1, ik−2 6← ik+1, . . . , i3 6← ik+1, i2 6← ik+1 and i1 6← ik+1,
(3.2.1)

for k = 1, 2, . . . , n. i.e., an index in the sequence cannot lead to any index occurring

prior to that index.

Since the sequence i1, i2, . . . , in+1 is a set of n + 1 indices, each chosen from the

set {1, 2, . . . , n}. Hence by Pigeonhole principle at least one index repeats in the

sequence which contradicts the fact (3.2.1). �

Definition 3.2.6. If i← i, then d(i) is called the period of the index i if it is the

largest common divisor of those k ∈ Z+ for which t
(k)
ii > 0.

Definition 3.2.7. Let {a1, a2, a3, . . . } be an infinite set of positive integers. If dk

is the greatest common divisor of a1, a2, . . . , ak, then the greatest common divisor of

the infinite set {a1, a2, a3, . . . } is defined by d = lim
k→∞

dk.
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The limit d ≥ 1 clearly exists since {dk} is a decreasing sequence of integers greater

than equal to 1 and it must be attained after a finite number of k’s.

Lemma 3.2.7. Let T ∈ Mn(R) such that T � 0 and i, j be any two indices such

that i↔ j. Then d(i) = d(j).

Proof. It is sufficient to show that d(i) ≤ d(j). Since i↔ j, there exist p, q ∈ Z+

such that t
(p)
ij > 0 and t

(q)
ji > 0. Now, t

(p+q)
ii ≥ t

(p)
ij t

(q)
ji > 0 implies d(i)

∣∣p + q. Let

s ∈ Z+ be such that t
(s)
jj > 0 (such an s exists as i ↔ j implies j ← j). Now,

t
(p+q+s)
ii > t

(p)
ij t

(s)
jj t

(q)
ji > 0 implies d(i)

∣∣p + q + s. Thus d(i)
∣∣s. Hence d(i) divides any

positive integer s for which t
(s)
jj > 0. So by the definition of d(j), d(i) ≤ d(j). �

Lemma 3.2.7 shows that the period of all indices in a communicating class (essen-

tial or inessential) is same. So define period of a commuting class as:

Definition 3.2.8. The period of a communicating class is defined as the period

of any index in the class.

Example 3.2.8. Consider the same matrix T from Example 3.2.3. The Periods

of communicating classes are given as below:

Essential classes Inessential classes

{5} has period 1 as t55 > 0. {1, 2} has period 1 as t22 > 0.

{4, 9} has period 1 as t44 > 0. {6} has period 1 as t66 > 0.

{3, 7} has period 2 as t33 = 0 and t
(k)
33 >

0, for k = 2n, n ∈ N. {8} has period 1 as t88 > 0.

3.3. Irreducible Matrices

We now give a more precise definition of irreducible matrices than in Definition

3.2.5. We introduce a canonical form of irreducible matrices on the basis of classifi-

cation of indices of irreducible matrices and study the behavior of subclasses given

by the canonical form.
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Definition 3.3.1. A non-negative matrix T = [tij] ∈Mn(R) is called irreducible

if for every pair of indices (i, j) from its index set {1, 2, . . . , n}, there exists a positive

integer m = m(i, j) such that t
(m)
ij > 0.

In terms of graph theory, a non-negative matrix T is said to be irreducible if the

directed graph associated to T is strongly connected.

According to the classification of indices of non-negative matrices it is clear that

all indices of an irreducible matrix are essential. So there is only one communicating

class that is the entire index set. Moreover, by Lemma 3.2.7 and Definition 3.2.8 we

have the following definition.

Definition 3.3.2. The period of an irreducible matrix is defined as the period of

any of its index.

Definition 3.3.3. An irreducible matrix is said to be cyclic (or periodic) with

period d if d > 1. It is said to be acyclic (or aperiodic) if d = 1.

In view of Definition 3.2.6 and Definition 3.3.2 the following lemma supports

the definition of the period of an irreducible matrix. This lemma will be used in

classification of indices of an irreducible matrix.

Lemma 3.3.1. Let T = [tij] be an irreducible matrix of period d. Then there is

N0 ∈ N, depending on i such that t
(kd)
ii > 0 for every integers k ≥ N0.

To prove this lemma we need the following lemma.

Lemma 3.3.2. A semigroup S of positive integers contains all but finitely many

positive multiples of its greatest common divisor (gcd).

Proof. Let d be the gcd of all elements of S. Dividing every element of S by d,

we can reduce the problem to the case d = 1. From Definition 3.2.7 d = 1 must be the

gcd of some finite elements of S, say, a1, a2, . . . , ak. Hence we can write 1 =
k∑
i=1

aiγi,

where γi ∈ Z. Then some of aiγi’s are positive and some are negative. Let m be the

sum of positive aiγi’s and n be the sum of negative aiγi’s. That is, m−n = 1, clearly
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m,n > 0 and are linear combinations of ai’s. So m,n ∈ S as S is a semigroup. Let

q ∈ Z such that q ≥ n(n − 1). By division algorithm we have q = an + b, where

a, b ∈ Z, 0 ≤ b < n and a ≥ (n− 1). Since m− n = 1,

q = an+ b = an+ b(m− n) = (a− b)n+ bm ∈ S

as S is a semigroup and m,n ∈ S. Hence all q ≥ n(n − 1) belong to S. That is, all

multiples of d = 1 but finitely many belongs to S. �

Proof of Lemma 3.3.1. Let A := {kd : k ∈ Z+ and t
(kd)
ii > 0}. Since d is the

period of T , there exists l > 0 such that t
(ld)
ii > 0. This implies ld ∈ A, so A 6= ∅. Let

kd, sd ∈ A. Then t
(kd)
ii > 0 and t

(sd)
ii > 0. So t

(kd+sd)
ii = t

[d(k+s)]
ii ≥ t

(kd)
ii t

(sd)
ii > 0. This

shows that kd+ sd ∈ A. Hence A is closed under addition and clearly d is the gcd of

elements of A. So by Lemma 3.3.2, A must contain all sufficiently large multiples of

d, i.e., t
(kd)
ii > 0 for k ≥ N0, where N0 > 0 is some integer. �

The following theorem gives us a unique way of classifying indices of an irreducible

matrix to construct a canonical form.

Theorem 3.3.3. Let j be any fixed index from the index set {1, 2, . . . , n} of an

irreducible matrix T = [tij] with period d. Then for every index i, there exists a unique

integer ri in the range 0 ≤ ri < d such that

(a) t
(s)
ij > 0 implies s ≡ ri(mod d),

(b) t
(kd+ri)
ij > 0 for k ≥ N(i), where N(i) is an integer dependent on i.

Proof. Let j ∈ {1, 2, . . . , n} be fixed and i ∈ {1, 2, . . . , n} be an arbitrary index.

(a) For the indices i and j, there exists s, r, p ∈ Z+ such that t
(s)
ij > 0, t

(r)
ij > 0 and

t
(p)
ji > 0. Then t

(s+p)
ii ≥ t

(s)
ij t

(p)
ji > 0 and t

(r+p)
ii ≥ t

(r)
ij t

(p)
ji > 0. Since d is the period of T ,

d
∣∣(s+ p) and d

∣∣(r + p). Thus

(3.3.1) d
∣∣s+ p− r − p =⇒ d

∣∣s− r =⇒ s ≡ r(mod d).

WLOG, let 0 ≤ r < d. Hence for s ∈ Z+ such that t
(s)
ij > 0 implies that s ≡ r( mod d)

and r clearly depends on i (so it can be written as ri). Now we shall show the
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uniqueness of ri. Let there exists d > r′ ≥ 0 such that s ≡ r′(mod d). Then

r ≡ r′(mod d), using (3.3.1). Thus d
∣∣r′ − r. Since 0 ≤ r < d and 0 ≤ r′ < d,

r′ − r = 0, proving the uniqueness of ri.

(b) From part (a) for s ∈ Z+ such that t
(s)
ij > 0 we have s ≡ ri(mod d) or s =

md + ri for some m ∈ Z. Hence t
(md+ri)
ij > 0. Since the period of T is d, by Lemma

3.3.1 there exists N0 > 0 such that t
(pd)
ii > 0 for every p ≥ N0. Let N(i) = N0 + m.

Hence if k ≥ N(i) = N0 +m implies k = p+m for some p ≥ N0,

t
(kd+ri)
ij = t

(pd+md+ri)
ij ≥ t

(pd)
ii t

(md+ri)
ij > 0.

�

Definition 3.3.4. Theorem 3.3.3 gives us a unique ri for every index i and is

called a residue class modulo d.

Definition 3.3.5. The set of indices i in {1, 2, . . . , n} corresponding to the same

residue class modulo d is called a subclass of the class {1, 2, . . . , n} and is denoted by

Cr (0 ≤ r < d).

Remark 3.3.4. (a) As a conclusion of Theorem 3.3.3 we can actually define Cr

for all non-negative integers r by putting Cr = Crj if r ≡ rj(mod d).

(b) Clearly there are d numbers of subclasses Cr and are disjoint with union equal

to {1, 2, . . . , n}.

Example 3.3.5. Let us find the subclasses of the indices of the matrix

T =



1 2 3 4 5 6

1 0 0 1 1 0 0

2 1 0 0 0 1 0

3 0 1 0 0 0 0

4 0 1 0 0 1 0

5 0 0 1 0 0 1

6 0 1 0 0 0 0


1

Graph :

2 5

3

4

6
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From the above graph we can easily see that d = 3. Now fix j := 1. Then using

Theorem 3.3.3, we get

• For i = 1, t
(s)
11 > 0, by Lemma 3.3.1 s = kd for every sufficiently large k (as

the period is 3). So r1 = 0. i.e., 1 ∈ C0.

• Let i = 2. From the graph we can see that the index 1 is going to the index 2

through one edge, through a path of 4 edges, through a path of 7 edges and

so on. This shows that t
(s)
21 > 0 implies s = 3n + 1, so r2 = 1. i.e., 2 ∈ C1.

Similarly we can calculate the following:

• For i = 3, t
(s)
31 > 0 implies s = 3n+ 2, so r3 = 2. i.e., 3 ∈ C2.

• For i = 4, t
(s)
41 > 0 implies s = 3n+ 2, so r4 = 2. i.e., 4 ∈ C2.

• For i = 5, t
(s)
51 > 0 implies s = 3n+ 3, so r5 = 0. i.e., 5 ∈ C0.

• For i = 6, t
(s)
61 > 0 implies s = 3n+ 2, so r6 = 2. i.e., 6 ∈ C2.

Hence C0 = {1, 5}, C1 = {2} and C2 = {3, 4, 6}.

Now let’s take j := 2. Then

• For i = 1, t
(s)
12 > 0 implies s = 3n+ 2, so r1 = 2. i.e., 1 ∈ C2.

• For i = 2, t
(s)
22 > 0 implies s = 3k for every sufficiently large k (as period is

3), so r2 = 0. i.e., 2 ∈ C0.

• For i = 3, t
(s)
32 > 0 implies s = 3n+ 1, so r3 = 1. i.e., 3 ∈ C1.

• For i = 4, t
(s)
42 > 0 implies s = 3n+ 1, so r4 = 1. i.e., 4 ∈ C1.

• For i = 5, t
(s)
52 > 0 implies s = 3n+ 2, so r5 = 2. i.e., 5 ∈ C2.

• For i = 6, t
(s)
62 > 0 implies s = 3n+ 1, so r6 = 1. i.e., 6 ∈ C1.

Hence C0 = {2}, C1 = {3, 4, 6} and C2 = {1, 5}.

Now let’s take j := 4. Then

• For i = 1, t
(s)
14 > 0 implies s = 3n+ 1, so r1 = 1. i.e., 1 ∈ C1.

• For i = 2, t
(s)
24 > 0 implies s = 3n+ 2, so r2 = 2. i.e., 2 ∈ C2.

• For i = 3, t
(s)
34 > 0 implies s = 3n+ 3, so r3 = 0. i.e., 3 ∈ C0.

• For i = 4, t
(s)
44 > 0 implies s = 3k for every sufficiently large k (as period is

3), so r4 = 0. i.e., 4 ∈ C0.

• For i = 5, t
(s)
54 > 0 implies s = 3n+ 4, so r5 = 1. i.e., 5 ∈ C1.



3.3. IRREDUCIBLE MATRICES 31

• For i = 6, t
(s)
64 > 0 implies s = 3n+ 3, so r6 = 0. i.e., 6 ∈ C0.

Hence C0 = {3, 4, 6}, C1 = {1, 5} and C2 = {2}.

In Example 3.3.5 we see that changing the initial fixed index j does not actually

change anything. In support of this we have the following lemma.

Lemma 3.3.6. The residue classes does not depend on the initial choice of fixed

index j. An initial choice of another index merely subjects the subclass to a cyclic

permutation.

Proof. Let T = [tij] be an irreducible matrix with period d. Suppose j is

the fixed index and we take a new fixed index j′. Let r′i denote the residue class

corresponding to i with respect to j′. Let rj′ be the residue class corresponding to j′

with respect to the fixed index j. Now

t
(md+r′i+kd+rj′ )

ij ≥ t
(kd+r′i)
ij′ t

(md+rj′ )

j′j .

By Theorem 3.3.3(b) for sufficiently large k and m, above inequality yields

t
(md+r′i+kd+rj′ )

ij ≥ t
(kd+r′i)
ij′ t

(md+rj′ )

j′j > 0.

So by Theorem 3.3.3(a), for i there exists ri such that 0 ≤ ri < d and

(3.3.2) md+ r′i + kd+ rj′ ≡ ri(mod d) =⇒ r′i ≡ ri − rj′(mod d).

This shows that new residue classes r′i are equal to ri− rj′ modulo d, i.e., the residue

classes remains same but their order of occurrence changes by a cyclic permutation.

�

Note 3.3.7. This property of composition of residue classes can also be referred

as the order of occurrence of subclasses remains constant up to a cyclic permutation.

Remark 3.3.8. With the help of Lemma 3.3.6 we can find different subclasses in

Example 3.3.5 generated by changing the initially fixed j. Just for this example let’s
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denote the subclasses with respect to a fixed j by Cj
r where r = 0, 1, 2. Initially the

subclasses with respect to j = 1 are C1
0 = {1, 5}, C1

1 = {2} and C1
2 = {3, 4, 6}.

Let j′ = 2. Since 2 ∈ C1
1 , rj′ = 1. Then using (3.3.2) we have r′i ≡ ri−rj′( mod d).

So

r′1 ≡ 0− 1 ≡ 2(mod 3), r′2 ≡ 1− 1 ≡ 0(mod 3), r′3 ≡ 2− 1 ≡ 1(mod 3),

r′4 ≡ 2− 1 ≡ 1(mod 3), r′5 ≡ 0− 1 ≡ 2(mod 3), r′6 ≡ 2− 1 ≡ 1(mod 3).

Thus C2
0 = {2}, C2

1 = {3, 4, 6} and C2
2 = {1, 5}.

Now let j′ = 3. Since 3 ∈ C1
2 , rj′ = 2. Then using (3.3.2) we have r′i ≡ ri −

rj′(mod d). So

r′1 ≡ 0− 2 ≡ 1(mod 3), r′2 ≡ 1− 2 ≡ 2(mod 3), r′3 ≡ 2− 2 ≡ 0(mod 3),

r′4 ≡ 2− 2 ≡ 0(mod 3), r′5 ≡ 0− 2 ≡ 1(mod 3), r′6 ≡ 2− 2 ≡ 0(mod 3).

Thus C3
0 = {3, 4, 6}, C3

1 = {1, 5} and C3
2 = {2}.

Now let j′ = 4. Since 4 ∈ C1
2 , rj′ = 1. Then using (3.3.2) we have r′i ≡ ri −

rj′(mod d). So

r′1 ≡ 0− 2 ≡ 1(mod 3), r′2 ≡ 1− 2 ≡ 2(mod 3), r′3 ≡ 2− 2 ≡ 0(mod 3),

r′4 ≡ 2− 2 ≡ 0(mod 3), r′5 ≡ 0− 2 ≡ 1(mod 3), r′6 ≡ 2− 2 ≡ 0(mod 3).

Thus C4
0 = {3, 4, 6}, C4

1 = {1, 5} and C4
2 = {2}.

Observation 3.3.9. By Remark 3.3.8, we get the same subclasses. In fact the

order of occurrence of these subclasses remains same, only notation changes with a

cyclic permutation. Moreover, we observe that the index we fixes initially always

falls under the subclass C0, so if we know the order of occurrence of these subclasses

then we don’t really need to do any calculation to find every particular subclass. For

example for the same matrix as in Example 3.3.5 if we fix j = 5, then the subclasses

will be C0 = {1, 5}, C1 = {2} and C2 = {3, 4, 6} or if we fix j = 6, the subclasses will

be C0 = {3, 4, 6}, C1 = {1, 5} and C2 = {2}.

Canonical Form for Irreducible Matrices. Let m be a positive integer. Let

i be an index such that t
(m)
ij > 0 for some j, note that such i exists. In fact, otherwise

Tm would have jth column entirely zero and so are its higher powers. This contradicts
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the irreducibility of T . Then by Theorem 3.3.3, m ≡ ri(mod d) implies i ∈ Cri . Now

let k be any index such that t
(m+1)
kj > 0. Then similarly m+1 ≡ ri+1( mod d) implies

k ∈ Cri+1
. Hence it follows that looking at the jth column, the positive entries occur,

for successive powers, in successive subclasses.

We can define a canonical form for irreducible matrices. If d > 1, (there are more

that one subclasses exist), a canonical form of T is possible by relabeling the indices

so that indices of C0 comes first, then C1 next and so on.

Example 3.3.10. Continuing Example 3.3.5, the subclasses of the matrix T are

C0 = {1, 5}, C1 = {2} and C2 = {3, 4, 6}. The matrix and its canonical form are

given as follows

T =



1 2 3 4 5 6

1 0 0 1 1 0 0

2 1 0 0 0 1 0

3 0 1 0 0 0 0

4 0 1 0 0 1 0

5 0 0 1 0 0 1

6 0 1 0 0 0 0


and the canonical form of above matrix can also be written as

Tc =


C0 C1 C2

C0 0 0 Q02

C1 Q10 0 0

C2 0 Q21 0

, where Q02 =

1 1 0

1 0 1

 , Q10 =
[
1 1

]
and Q21 =


1

1

1

 .
In view of the above example, we have the following definition:
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Definition 3.3.6. The canonical form for irreducible matrix is given as follows:

Tc =



C0 C1 C2 . . . Cd−2 Cd−1

C0 0 0 0 . . . 0 Q0,d−1

C1 Q10 0 0 . . . 0 0

C2 0 Q21 0 . . . 0 0
...

...
...

...
. . .

...
...

Cd−2 0 0 0 . . . 0 0

Cd−1 0 0 0 . . . Qd−1,d−2 0


,

where Qr,r−1, for r = 0, 1, 2, . . . , d− 1 (keeping in consideration that r, or subscript,

is modulo d) is a non-negative matrix with some specific properties.

Note that all indices in the above definition are modulo d.

Remark 3.3.11. If T is an irreducible matrix, then for r, s = 0, 1, 2, . . . , d− 1 the

elements of Cr leads to the elements of Cs. More specifically the elements of Cr−1

leads to the elements of Cr through an edge, this connection between two consecutive

subclasses is particularly represented by Qr,r−1. In Example 3.3.5, we have C0 =

{1, 5}, C1 = {2} and C2 = {3, 4, 6}. Thus

Q02 =


3 4 6

1 1 1 0

5 1 0 1

, Q10 =
( 1 5

2 1 1
)

and Q21 =


2

3 1

4 1

6 1

.
Moreover, in this particular example, the entries in these matrices are particularly

1 and 0, because either the indices have an edge between them or there is no edge.

However entries could be other than 1 or 0 in specific conditions, we will see that in

following example.

Example 3.3.12. Consider the following irreducible matrix T:
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T =



2 5 1 3 6 4 7 8

2 0 0 0 0 0 0 0 1

5 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 0

3 1 0 0 0 0 0 0 0

6 1 0 0 0 0 0 0 0

4 0 0 1 1 1 0 0 0

7 0 0 0 0 0 1 0 0

8 0 0 0 0 0 1 0 0


7 4 8 2

5 1 6

3

We can clearly see from the graph that d = 4 and the subclasses are

C0 = {2, 5}, C1 = {1, 3, 6}, C2 = {4} and C3 = {7, 8}. The canonical form of T is

Tc =



C0 C1 C2 C3

C0 0 0 0 Q03

C1 Q10 0 0 0

C2 0 Q21 0 0

C3 0 0 Q32 0

,

where Q03 =

0 1

1 0

 , Q10 =


0 1

1 0

1 0

 , Q21 =
[
1 1 1

]
and Q32 =

1

1

.

Now we observe the powers of Tc:

T 2
c =



C0 C1 C2 C3

C0 0 0 Q03Q32 0

C1 0 0 0 Q10Q03

C2 Q21Q10 0 0 0

C3 0 Q32Q21 0 0

.
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For r modulo 4, Qr,r−1Qr−1,r−2 represents the path connection, more precisely, the

number of paths of length two from the elements of subclass Cr−2 to the elements of

subclass Cr. For example Q21Q10 =
( 2 5

4 2 1
)

shows paths of length two from 2 to 4

are two in number and there is only one path of length two from 5 to 4. Similarly in

T 3
c =



C0 C1 C2 C3

C0 0 Q03Q32Q21 0 0

C1 0 0 Q10Q03Q32 0

C2 0 0 0 Q21Q10Q03

C3 Q32Q21Q10 0 0 0

,

Qr,r−1Qr−1,r−2Qr−2,r−3 represents the number of paths of length three from the ele-

ments of subclass Cr−3 to the elements of subclass Cr.

Since d = 4, T 4
c is of very special form

T 4
c =



C0 C1 C2 C3

C0 Q03Q32Q21Q10 0 0 0

C1 0 Q10Q03Q32Q21 0 0

C2 0 0 Q21Q10Q03Q32 0

C3 0 0 0 Q32Q21Q10Q03

.

That is, each diagonal matrix represents the number of paths of length four from

elements of each subclass to the elements of itself and it also justifies the definition

of period.

Remark 3.3.13. Since matrix multiplication for the matrices of order 3× 3 and

above behaves likewise, we can conclude the general properties of Qr,r−1 and their mul-

tiplications for any d ≥ 3. As an entry of T kc , the entries ofQr,r−1Qr−1,r−2 . . . Qr−(k−1),r−k

represents the number of paths of length k from the elements of subclass Cr−k

to the elements of subclass Cr. If k = d, then T dc becomes a diagonal matrix

such that Qr,r−1Qr−1,r−2 . . . Qr−(d−1),r is the (r + 1)th diagonal block entry, for r =
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0, 1, 2, . . . , d − 1, whose entries represents the number of paths of length d from the

elements of subclass Cr to the elements of Cr itself, (thus Qr,r−1Qr−1,r−2 . . . Qr−(d−1),r

is a square matrix). Note that these diagonal matrices may have zero entries in

them, i.e., they are non-negative. However, the following theorem ensures that these

diagonal block matrices are primitive.

Theorem 3.3.14. Let T = [tij] be an irreducible cyclic matrix with period d. Then

the diagonal block matrices Qr,r−1Qr−1,r−2 . . . Qr−(d−1),r for r = 0, 1, 2, . . . , d−1 of the

matrix T dc are primitive. Moreover, the powers of T may be studied in terms of powers

of primitive matrices.

Proof. In view of Observation 3.3.9, for a specific selection of initial index any

subclass can be named under C0. So it is sufficient to show that

A := Q0,d−1Qd−1,d−2 . . . Q1,0

is primitive. The entries of A are of the form t
(d)
ij such that i, j ∈ C0. Fix j ∈ C0,

from Theorem 3.3.3(b) t
(kd)
ij > 0 for every integer k > Nj(i), where Nj(i) depends on

i and fixed j.

Let N = max{Nj(i) : i, j ∈ C0}. Then for every i, j ∈ C0, t
(kd)
ij > 0 for every

integer k > N . Hence Ak � 0. This shows that A := Q0,d−1Qd−1,d−2 . . . Q1,0 is

primitive.

Now the diagonal block matrices of

T dc =


Q0,d−1Qd−1,d−2 . . . Q1,0 0 . . . 0

0 Q1,0Q0,d−1 . . . Q2,1 . . . 0
...

...
. . .

...

0 0 . . . Qd−1,d−2Qd−2,d−3 . . . Q0,d−1


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are primitive. For k ∈ Z+,

T dkc =


Q0,d−1Qd−1,d−2 . . . Q1,0 0 . . . 0

0 Q1,0Q0,d−1 . . . Q2,1 . . . 0
...

...
. . .

...

0 0 . . . Qd−1,d−2Qd−2,d−3 . . . Q0,d−1



k

=


(Q0,d−1Qd−1,d−2 . . . Q1,0)k . . . 0

0 . . . 0
...

. . .
...

0 . . . (Qd−1,d−2Qd−2,d−3 . . . Q0,d−1)k

 .

This implies the powers which are integral multiples of the period may be studied with

the aid of primitive matrix theory. Also T dk+1
c , T dk+2

c , . . . , T
dk+(d−1)
c can be considered

as T dk+1
c = (T dkc )T , T dk+2

c = (T dkc )T 2, . . . , T
dk+(d−1)
c = (T dkc )T (d−1). �

Notice that the period d is assumed to be strictly greater than 1 in the construction

of the canonical form of an irreducible matrix. If the period d = 1, then only one

subclass will exist and a canonical form will make no sense. However, we have the

following theorem in support of irreducible matrices with period d = 1.

Theorem 3.3.15. An irreducible acyclic (d = 1) matrix T = [tij] is primitive,

and the converse is also true.

Proof. Clearly if the period of T is d = 1, then there is only one subclass of

the index set, consisting of the index set itself. Thus the whole matrix represents the

number of edges from the elements of the subclass to the elements of the subclass

itself which is indeed the form of the diagonal block matrix of T d. So by Theorem

3.3.14 T is primitive.

Conversely let T is primitive, we shall show that T is irreducible with period

d = 1. Clearly T is irreducible. Let i be any index. Since T is primitive, there exists

k such that t
(k)
ii > 0 and so t

(k+1)
ii > 0. Hence gcd(k, k + 1) = 1 implies d = 1. �
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3.4. Perron-Frobenius Theorem for Irreducible matrices

We see that a primitive matrix is an irreducible matrix with period d = 1. In

this section we state and give a precise proof of Perron-Frobenius theorem for irre-

ducible matrices. Later we observe that number of highest modulo eigenvalues of an

irreducible matrix is dependent on its period.

Theorem 3.4.1. (The Perron-Frobenius theorem for irreducible matri-

ces) Suppose T = [tij] is an irreducible matrix. Then all assertions (a) to (f) of

Theorem 2.2.1 hold except that (b) is replaced by a weaker statement which is just

r = ρ(T ).

Proof. In this proof we shall show that the condition of being primitive of T in

Theorem 2.2.1 can be replaced by the condition of T being irreducible.

Part (a) of Theorem 2.2.1 holds up to (2.2.4). Beyond this we shall show that if

z = T x̂− x̂r � 0, then z = 0. Let us assume z � 0. Then there exists i ∈ {1, 2, . . . , n}

such that (z)i > 0, i.e., (T x̂− x̂r)i > 0 implies

(3.4.1) T x̂− x̂r � 0.

Clearly (I + T )k = T k + (some non-negative matrices). This shows that I + T

is irreducible. Moreover, if I + T = [t̃ij], then t̃ii > 0 for every i ∈ {1, 2, . . . , n}

implies period of I + T is 1. Hence by Theorem 3.3.15, I + T is primitive. That

is, for some k ∈ Z+, (I + T )k � 0. Thus on multiplying (I + T )k to (3.4.1) we

get, T (I + T )kx̂ − (I + T )kx̂r � 0 =⇒ T (I + T )kx̂ � (I + T )kx̂r, so for every

i ∈ {1, 2, . . . , n},

(T (I + T )kx̂)i >((I + T )kx̂)ir

=⇒ r <
(T (I + T )kx̂)i
((I + T )kx̂)i

=⇒ r <min
i

(T (I + T )kx̂)i
((I + T )kx̂)i
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=⇒ r <min
i

(
T (I+T )kx̂
||(I+T )kx̂||

)
i(

(I+T )kx̂
||(I+T )kx̂||

)
i

.

This is a contradiction to the definition of r as (I+T )kx̂
||(I+T )kx̂|| ∈ A. Hence our assumption

z � 0 is not true which shows that z = 0, i.e., T x̂ = x̂r.

Proof of part (b) is same as in Theorem 2.2.1 except for the ”moreover part” as

we don’t have the uniqueness of highest modulo eigenvalue. Proof of (c), (e) and (f)

are the same as in Theorem 2.2.1, whereas part (d) can be proved with the help of

Theorem 3.4.3. �

Note 3.4.2. (1) Corollaries 2.2.2 and 2.2.3 also hold for irreducible matrices since

the condition of being primitive used specifically in these corollaries can easily be

replaced by the condition of being irreducible.

(2) The unimodular eigenvector x̂ of T associated to r is also unique.

Definition 3.4.1. In Theorem 3.4.1, the eigenvalue r of T is called the Perron-

Frobenius eigenvalue or PF eigenvalue and its corresponding (left or right) unique

unimodular positive eigenvector x̂ is called the unimodular Perron-Frobenius eigen-

vector, in this paper we refer this eigenvector by UPF eigenvector.

Theorem 3.4.3. (The Subinvariance Theorem) Let T = [tij] ∈Mn(R) be an

irreducible matrix, s ∈ R+ and y � 0 ∈ Rn satisfying Ty � sy. Then

(a) s ≥ r, where r is the PF eigenvalue of T . Moreover, s = r if, and only if,

Ty = sy; and

(b) y � 0.

Proof. (a) We have Ty � sy. Let x̂t � 0 be the left UPF eigenvector of T

associated to the PF eigenvalue r. Then by Lemma 2.1.1,

x̂tTy � sx̂ty =⇒ rx̂ty � sx̂ty =⇒ r ≤ s.

Now let r = s and let us assume Ty � ry with strict inequality in at least one

place. Then again by Lemma 2.1.1 we get, x̂tTy � rx̂ty =⇒ rx̂ty � rx̂ty, with
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strict inequality in at least one place, which implies r < r, which is absurd. Hence

Ty = ry.

Now let Ty = sy. Then by Lemma 2.1.1,

x̂tTy = sx̂ty =⇒ rx̂ty = sx̂ty =⇒ r = s.

(b) Let y � 0. Then there are at least one zero and at least one non zero entries

in y. Let i, j ∈ {1, 2, . . . , n} such that yi = 0 and yj > 0. Since T is irreducible, there

exists m > 0 such that t
(m)
ij > 0. Now

0 < t
(m)
ij yj ≤

n∑
k=1

t
(m)
ik yk =

(
Tms

)
i
≤ smyi (as Ts � sy implies Tms � smy),

i.e., smyi > 0 implies yi > 0, which is a contradiction. Hence y � 0. �

Note 3.4.4. (1) The vector y in Theorem 3.4.3 is called a subinvariant for T .

(2) If y � 0 is an eigenvector of T and Ty = sy, for some positive number s, then

by Theorem 3.4.3(a) s = r. This implies that every non-negative eigenvector of an

irreducible matrix T is associated to its PF eigenvalue r.

The following theorem will emphasize the main difference between the Perron-

Frobenius theorem for primitive matrices and for irreducible matrices.

Theorem 3.4.5. For a cyclic matrix T with period d > 1, there are precisely d

distinct eigenvalues λ with |λ| = r, where r is the PF eigenvalue of T . Moreover,

these eigenvalues are: r ei2π
k
d , k = 0, 1, . . . , d− 1.

Proof. Let us consider the canonical form Tc of T . From Theorem 3.3.15, for

every i = 0, 1, . . . , d − 1, the diagonal block matrices Qi,i+1Qi+1,i+2 . . . Qi+d−1,i of T dc

are primitive. Take an arbitrary ith diagonal block matrix Qi,i+1Qi+1,i+2 . . . Qi+d−1,i

of T dc . Let r(i) be its PF eigenvalue and y(i) � 0 be its UPF eigenvector associated

to r(i). Then

Qi,i+1Qi+1,i+2 . . . Qi+d−1,iy(i) = r(i)y(i).
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Multiplying Qi−1,i from the left at both sides, we get

Qi−1,iQi,i+1Qi+1,i+2 . . . Qi+d−1,iy(i) = r(i)Qi−1,iy(i).

Since subscripts are modulo d, Qi+d−1,i = Qi−1,i and so we get

(3.4.2) Qi−1,iQi,i+1Qi+1,i+2 . . . Qi+d−2,i−1

(
Qi−1,iy(i)

)
= r(i)

(
Qi−1,iy(i)

)
.

Since Qi−1,i � 0 and y(i) � 0, Qi−1,iy(i) � 0. So Qi−1,iy(i) is a non-negative eigen-

vector of Qi−1,iQi,i+1Qi+1,i+2 . . . Qi+d−2,i−1 associated to r(i). Hence by Note 3.4.4(2)

r(i − 1) = r(i). Since i is arbitrary, for every i = 0, 1, . . . , d − 1, r(i) is constant ,

say equal to r̃. This shows that every primitive diagonal block matrix of T dc have the

same PF eigenvalue. Moreover, by Theorem 2.2.1(b) every diagonal block matrix has

a unique eigenvalue with highest modulus value. Also since eigenvalues of T dc consists

of the eigenvalues of its diagonal block matrices, the PF eigenvalue of T dc is r̃ with

algebraic multiplicity d.

Since eigenvalues of T dc are the dth power of some eigenvalues of Tc, there must be

d number of eigenvalues of Tc, so of T , with greatest modulo, having dth power equals

to r̃. Theorem 3.4.1 assures that the positive dth root of r̃ has to be r. All other dth

roots of r̃, say λ, satisfies |λ| = r, are of the form λ = r ei2π
k
d , k = 1, 2, . . . , d− 1.

It only remains to show that for k = 1, 2, . . . , d − 1 there exists an eigenvector

of Tc associated to r ei2π
k
d . Let y =

[
y0 y1 . . . yd−1

]t
be a UPF eigenvector of Tc

associated to r, where yj’s are the subvectors of components corresponding to the

subclasses Cj. Then

0 0 0 . . . 0 Q0,d−1

Q10 0 0 . . . 0 0

0 Q21 0 . . . 0 0
...

...
...

. . .
...

...

0 0 . . . 0 Qd−2,d−1 0





y0

y1

y2

...

yd−1


= r



y0

y1

y2

...

yd−1


.(3.4.3)
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Let ỹk =



e2π(0) k
d y0

e2π(1) k
d y1

e2π(2) k
d y2

...

e2π(d−1) k
d yd−1


. Clearly ỹ0 = y. Now using (3.4.3) we have

Qj,j+1e
2π(j+1) k

d yj+1 = e2π(j+1) k
dQj,j+1yj+1 = e2π(j+1) k

d ryj = re2π k
d e2πj k

d yj,

which implies

Tcỹk =



0 0 0 . . . 0 Q0,d−1

Q10 0 0 . . . 0 0

0 Q21 0 . . . 0 0
...

...
...

. . .
...

...

0 0 . . . 0 Qd−2,d−1 0





e2π(0) k
d y0

e2π(1) k
d y1

e2π(2) k
d y2

...

e2π(d−1) k
d yd−1.


= re2π k

d ỹk.

Hence ỹk is an eigenvector of Tc, so of T , associated to the eigenvalue re2π k
d . �

Note 3.4.6. If λ 6= 0 is any eigenvalue of T , then the numbers λe2π k
d , k =

0, 1, . . . , d− 1 are also eigenvalues of T .

Theorem 3.4.5 also holds for d = 1. In fact, for d = 1, the irreducible matrix T is

a primitive matrix by Theorem 3.3.15. So Theorem 3.4.5 states that T has only one

eigenvalue of highest modulo, which is the PF eigenvalue itself; and this statement

coincides with part (b) of Theorem 2.2.1.



CHAPTER 4

Perron-Frobenius Theory for Strongly Connected k-Graphs

We first study the Perron-Frobenius theory for family of non-negative commuting

matrices in this chapter. Later we introduce higher-rank graphs (or k-graphs) and

study how a strongly connected k-graph is related to a family of commuting matrices.

Then we state and prove a Perron-Frobenius theorem for strongly connected k-graphs.

4.1. Perron-Frobenius Theory For Commuting Matrices

Lemma 4.1.1. Let A and B be two commuting irreducible matrices. Then the

UPF eigenvectors of A and B are equal.

Proof. Let x be the UPF eigenvector of A associated to the PF eigenvalue r.

Then ABx = BAx = rBx. Hence Bx is an eigenvector of A. Also B � 0 and x � 0

implies Bx � 0. Hence by Theorem 3.4.1(c) Bx is a scalar multiple of x. i.e., there

exists a positive number s such that Bx = sx. Now Theorem 3.4.3(a) ensures that s

is the PF eigenvalue of B. Hence A and B have the same UPF eigenvector x. �

Definition 4.1.1. Let {A1, A2, . . . , Ak} ⊂ Mn(R) be a family of non-negative

commuting matrices, m = (m1,m2, . . . ,mk) ∈ Nk and F be a finite subset of Nk. We

use the multi-index notation

Am :=
k∏
i=1

Amii and AF :=
∑
m∈F

Am.

We say that the family {A1, A2, . . . , Ak} is irreducible if each Ai 6= 0 and there exists

a finite subset F ∈ Nk such that AF � 0.

Remark 4.1.2. (a) When k = 1 the above definition coincides with the definition

of irreducible matrix, i.e., a matrix A is irreducible in the sense of Definition 3.3.1 if,

44
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and only if, {A} is an irreducible family. Let A = [aij] ∈ Mn(R) be an irreducible

matrix. Then for every (i, j) there exits s ∈ N such that a
(s)
ij > 0. Let mi,j = min{s ∈

N : a
(s)
ij > 0}. Let F = {mi,j : i, j = 1, 2, . . . , k}. Clearly F is a non-empty finite

subset of N. Then AF =
∑
m∈F

Am � 0. Conversely, let {A} be an irreducible family.

Then there exists a finite subset F ∈ N such that AF � 0. Now 0 ≺ AF =
∑
m∈F

Am

implies for every (i, j)th entry of A there exists some m ∈ F such that Am(i, j) > 0,

i.e., a
(m)
ij > 0. This justifies that A is an irreducible matrix.

(b) In an irreducible family of matrices, the individual matrix Ai may not be

irreducible. For example let {A1, A2} ∈ M2(R), where A1 =

0 1

0 1

 and A2 =0 1

1 0

. Take F = {(1, 1), (1, 2)}. Then AF = A1A2 + A1A
2
2 =

1 1

1 1

. Hence

{A1, A2} is an irreducible family but A1 is not irreducible. Therefore Definition 4.1.1

is a generalization of Definition 3.3.1.

The following lemma is the subinvariance theorem for non-negative matrices which

is very useful in later results.

Lemma 4.1.3. Let B ∈Mn(R) be a non-negative matrix. Suppose that 0 � x ∈ Rn

and λ ≥ 0 satisfies Bx � λx. Then λ ≥ ρ(B). Moreover, if Bx = λx, then λ = ρ(B).

Proof. Let B = [bij]. If B � 0 (then it is primitive), then the proof is given by

Theorem 3.4.3.

Let some entries in B be zero. Define a matrix Bk as Bk(i, j) =

bij, if bij 6= 0

1
k
, if bij = 0

.

Then clearly {Bk} is a sequence of strictly positive matrices such that Bk → B as

k → ∞. Now fix ε > 0. Since Bx � λx, for sufficiently large k one has Bkx ≺

(λ+ ε)x. Hence by Theorem 3.4.3(a) λ+ ε ≥ ρ(Bk). Since ε > 0 is arbitrary, we get

λ ≥ ρ(Bk) for large k. Also we have a result from [7] which states that the roots of

a polynomial vary continuously with its coefficients. One has ρ(Bk) → ρ(B) which

implies λ ≥ ρ(B).
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Now if Bx = λx, then the above result also holds, i.e., λ ≥ ρ(B). Also by

Definition 2.2.2 we have λ ≤ ρ(B). Hence λ = ρ(B). �

Note 4.1.4. Lemma 4.1.3 clearly shows that if x � 0 is an eigenvector of B

and By = λy, for some positive number λ, then λ = ρ(B). This implies that for a

non-negative matrix B every non-negative eigenvector is associated to ρ(A).

In view of Definition 4.1.1, for an irreducible family of matrices {A1, A2, . . . , Ak},

AF � 0 which clearly implies that AF is, in particular, a primitive matrix. So we can

use the Perron-Frobenius theorem for primitive matrices (Theorem 2.2.1) to study

the Perron-Frobenius theory for irreducible family of matrices as follows:

Proposition 4.1.5. Suppose that {A1, A2, . . . , Ak} is an irreducible family in

Mn(R). Let F be a finite subset of Nk such that AF � 0 and let x̂ be the UPF

eigenvector of AF . Then we have the following properties:

(a) (i) The vector x̂ is the unique strictly positive unimodular common eigen-

vector of all Ai’s associated to ρ(Ai) and ρ(Ai) > 0.

(ii) If z ∈ Cn and Aiz = ρ(Ai)z for every i = 1, 2, . . . , k, then z ∈ Cx̂.

(b) Suppose y ∈ Rn, y � 0 and λi ∈ R such that λi ≥ 0 for i = 1, 2, . . . , k

satisfies Aiy � λiy for i = 1, 2, . . . , k. Then

(i) y � 0 and λi ≥ ρ(Ai) for every i = 1, 2, . . . , k;

(ii) if λi = ρ(Ai) and ||y|| = 1, then y = x̂.

(c) ρ(An) =
k∏
i=1

ρ(Ai)
ni > 0 for every n ∈ Nk.

Proof. Let {A1, A2, . . . , Ak} be an irreducible family. So there exists a finite

subset F ∈ Nk such that AF � 0 (in particular AF is primitive as well as irreducible).

(a)(i) For i = 1, 2, . . . , k, we have

AF (Aix̂) = Ai(AF x̂) = rFAix̂ (as the family {A1, A2, . . . , Ak} is commuting),

where rF is the PF eigenvalue of AF . This shows that Aix̂ is a non-negative eigen-

vector of AF associated to rF . By Theorem 2.2.1(c) one can get Aix̂ = λix̂ for some
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scalar λi. Now Ai � 0 and x̂ � 0 implies λi > 0. So using Lemma 4.1.3 we get

λi = ρ(Ai). Hence for every i = 1, 2, . . . , k, one has that x̂ is an eigenvector of Ai

associated to ρ(Ai), i.e., Aix̂ = ρ(Ai)x̂. Since Ai � 0 and x̂ � 0, ρ(Ai) > 0.

To prove uniqueness, let y ∈ Rn such that y � 0 and ||y|| = 1 be a common

eigenvector of all Ai. Then in view of Note 4.1.4, we have for every i = 1, 2, . . . , k

(4.1.1) Aiy = ρ(Ai)y.

Now using (4.1.1) one can have

(4.1.2)

AFy =
(∑
n∈F

k∏
i=1

Anii

)
y =

∑
n∈F

( k∏
i=1

Anii y
)

=
∑
n∈F

k∏
i=1

ρ(Ai)
niy =

(∑
n∈F

k∏
i=1

ρ(Ai)
ni
)
y.

Hence y is an eigenvector of AF associated to
∑
n∈F

k∏
i=1

ρ(Ai)
ni . Since AF is irre-

ducible, Note 3.4.4(2) guarantees that

(4.1.3) rF =
∑
n∈F

k∏
i=1

ρ(Ai)
ni .

Thus y is an eigenvector of AF associated to rF such that y � 0 and ||y|| = 1. From

Theorem 2.2.1(c) we get x̂ = y.

(a)(ii) Suppose Aiz = ρ(Ai)z. Hence in view of arguments proving (4.1.1) and

(4.1.2), we can get AF z =
( ∑
n∈F

k∏
i=1

ρ(Ai)
ni

)
z and (4.1.3) assures that AF z = rF z.

Thus z is an eigenvector of AF associated to rF . So from Theorem 2.2.1(c) we get

z ∈ Cx̂.

(b)(i) Lemma 4.1.3 shows that λi ≥ ρ(Ai). Now we shall show that y � 0. Since

y 6= 0, there exists s ∈ {1, 2, . . . , n} such that ys > 0. Now fix j ∈ {1, 2, . . . , n}. Also

we have AF � 0 for some F ∈ Nk, so there exits m ∈ F such that Am(j, s) > 0.

Now using the given condition Aiy � λiy for every i = 1, 2, . . . , n and the multi-index
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notation λm =
k∏
i=1

λmii , we have

(
λmy

)
j

=
( k∏
i=1

λmii y
)
j
≥
( k∏
i=1

Amii y
)
j

= (Amy)j ≥ Am(j, s)ys > 0.

Hence 0 < (λmy)j = λmyj implies yj > 0. This shows that y � 0.

(b)(ii) Now suppose λi = ρ(Ai). So we get Aiy � ρ(Ai)y for i = 1, 2, . . . , k and

AFy =
(∑
n∈F

k∏
i=1

Anii

)
y =

∑
n∈F

k∏
i=1

Anii y �
∑
n∈F

k∏
i=1

ρ(Ai)
niy =

(∑
n∈F

k∏
i=1

ρ(Ai)
ni
)
y

=rFy using (4.1.3).

Hence Theorem 3.4.3(a) yields thatAFy = rFy, i.e., y is a eigenvector ofAF associated

to the PF eigenvalue rF such that ||y|| = 1. Then By Theorem 2.2.1(c) we get y = x̂.

(c) We have

Anx̂ =
k∏
i=1

Anii x̂ =
k∏
i=1

ρ(Ai)
nix̂ (using (a)(i)).

This implies that x̂ is an eigenvector of An associated to
k∏
i=1

ρ(Ai)
ni . Since from (a)(i)

ρ(Ai) > 0 for every i = 1, 2, . . . , n and x̂ � 0, one has An � 0. Hence Note 4.1.4

assures that
k∏
i=1

ρ(Ai)
ni = ρ(An). �

4.2. Category Theory

In order to define k-graphs we need some basic concepts from category theory.

Definition 4.2.1. A category C consists of two sets C0 and C∗. The elements of C0

are called objects of C and the elements of C∗ are called morphisms from one object

of C to another. For A,B ∈ C0 we define homC(A,B) is the set of all morphisms

from A to B. For f ∈ homC(A,B) and g ∈ homC(B,C) there exists a morphism

g ◦ f ∈ homC(A,C) called the composition of the morphisms f and g that satisfies:

(i) If f ∈ homC(A,B), g ∈ homC(B,C) and h ∈ homC(C,D) are three morphisms,

then h ◦ (g ◦ f) = (h ◦ g) ◦ f .
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(ii) For each object B ∈ C0 there exists a morphism IB : B → B such that for any

f : A → B and g : B → C we have IB ◦ f = f and g ◦ IB = g. Such a morphism is

called the identity morphism for B ∈ C0.

When there is no confusion, we denote homC(A,B) by hom(A,B).

Definition 4.2.2. In a category C, for f ∈ hom(A,B), we say A is the domain

or source of f , which is denoted by s(f) and B is the range of f , which is denoted

by r(f).

Definition 4.2.3. In a category C, a morphism f ∈ hom(A,B) is called an

equivalence if there is another morphism g ∈ hom(B,A) such that g ◦ f = IA and

f ◦ g = IB. If f ∈ hom(A,B) is an equivalence, then A,B are called equivalent.

Example 4.2.1. (a) Let S0 be the class of all sets. For A,B ∈ S0, let hom(A,B)

be the set of all functions from A to B. Then S is clearly a category. A morphism

f ∈ hom(A,B) is an equivalence if, and only if, f is bijective.

(b) Let G0 be the class of all groups. For A,B ∈ G0, let hom(A,B) be the set of

all group homomorphisms from A to B. Then G is clearly a category. A morphism

f ∈ hom(A,B) is an equivalence if, and only if, f is an isomorphism.

(c) A group G can be considered as a category with one object G itself. By

Cayley’s Theorem every element of G can be considered as a bijection from G to

itself. So we define hom(G,G) as the set of elements of G. Clearly the composition of

morphisms is given by the group operation of G which is associative and the identity

element of G is the identity morphism.

(d) Similarly a monoid S is a category with one object S itself where morphisms

are the elements of the monoid S.

(e) Being a monoid, from (d) above (Nk,+) is a category with one object Nk itself.

The morphisms are the elements of Nk. The composition of morphisms is given by

the addition defined on the elements and the identity morphism is 0 ∈ Nk. This

category will play an important role in next section.
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(f) Let E = (E0, E1, r, s) be a directed graph. We define a category, named, the

Path Category of E denoted by P(E). The objects in P(E) are the elements of E0,

i.e., the vertices in E, and the morphism are the elements of E∗, i.e., the finite paths

in E. The composition of morphisms is the composition of paths and the identity

morphism for v ∈ E0 is the path from v to itself which is the vertex v itself.

Definition 4.2.4. A category C is said to be countable if C0 and C∗ are countable

sets.

Definition 4.2.5. Let C and D be two categories. A functor F : C → D is a pair

of functions satisfying the following properties: the object part of F : C0 → D0 maps

each object C in C to an object F (C) in D, and the morphism part of F : C∗ → D∗

maps each morphism f : C → C ′ in C to a morphism F (f) : F (C) → F (C ′) in D,

such that

(a) the identity morphisms are preserved under the functors, i.e., for any A ∈ C,

FIA = IFA, and

(b) F (g ◦ f) = F (g) ◦ F (f) whenever g ◦ f is defined g, f ∈ C∗.

Note 4.2.2. The above defined functor is also known as covariant functor.

4.3. k-Graphs

In this section we consider Nk as a category (See Example 4.2.1(e)). Let {ei}ki=1

be its standard generators.

Definition 4.3.1. A higher rank graph or k-graph (Λ, d) is a countable category Λ

together with a functor d : Λ→ Nk, called the degree map, with the following unique

factorization property: For every morphism λ ∈ Λ, with d(λ) = m + n (n,m ∈ Nk),

there exist unique morphisms µ, ν ∈ Λ such that d(µ) = m, d(ν) = n and λ = µν.

Note 4.3.1. We define Λn to be the set d−1(n). We call it the set of morphisms

of Λ of degree n. Since we are regarding k-graphs as generalized graphs, we refer to

the elements of Λn as paths of degree n.
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The above definition of Λn is consistent when n = 0. The following lemma gives

a precise proof of this consistency.

Lemma 4.3.2. Let (Λ, d) be a k-graph. Then the objects of Λ are the morphisms

of Λ of degree zero.

Proof. Let v be an object in Λ. Then using Definition 4.2.5, we get

(4.3.1) d(Iv) = Idv = INk = 0.

Let λ be a morphism of degree zero with range v, i.e., d(λ) = 0 and r(λ) = v. So by

factorization there exist unique morphisms µ, ν ∈ Λ such that d(µ) = d(ν) = 0 and

λ = µν. Using (4.3.1), for this factorization we can choose

µ = Iv, ν = λ or µ = λ, ν = Is(λ).

Hence by uniqueness λ = Iv. This shows that any morphism of degree zero is

actually the identity morphism of its range, i.e., {λ ∈ Λ : d(λ) = 0} = {Iv :

v is an object in Λ}. Thus we can identify the objects of Λ with {λ ∈ Λ : d(λ) = 0}.

Hence the objects of Λ are the morphisms of Λ of degree zero. �

To visualize a k-graph Λ we draw its 1-skeleton, which is the directed graph

(Λ0,
k⋃
i=1

Λei , r, s) with edges in each Λei .

Example 4.3.3. (1) A 1-graph is actually a path category P(E) of a directed

graph E with the degree map d : E∗ → N defined by d(µ) = |µ|. In other words we

can view 1-graph Λ as the path category of the directed graph (Λ0,Λ1, r, s).

(2) Nk is also a k-graph. Let Λ = Nk with the identity map on Nk. Then the

edges in its 1-skeleton are {ei}ki=1. The 1-skeletons of the 1-graph N, 2-graph N2 and

3-graph N3 are given as follows:
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N

e1 = 1

e1

N2

e1 = (1, 0), e2 = (0, 1)

e1 e2

N3

e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1)

e3

e1 e2

(3) Let Λ be a 2-graph whose 1-skeleton is given below:

ve1 f1e2 f2

Then d(e1) = d(e2) = (1, 0) and d(f1) = d(f2) = (0, 1).

(4) Define the k-graph Ωk by setting the objects of Ωk as Ω0
k = Nk, the morphisms

Ωk = {(p, q) : p, q ∈ Nk and p ≤ q} and the degree map d : Ωk → Nk defined as

d(p, q) = q − p. Define the composition by (p, q)(q, r) = (p, r) for (p, q), (q, r) ∈ Ωk.
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The 1-skeleton of 2-graph Ω2 looks like:

...
...

...
...

. . . q . . .

. p . . . . .

. . . . . . .

e k l

f g

h j

Here the edges in Ωe1
2 are the horizontal arrows in blue color and the edges in Ωe2

2 are

the vertical arrows in red color, where e1 = (1, 0) and e2 = (0, 1). Clearly d(p, q) =

(2, 1) and so it can be written as d(p, q) = (1, 0)+(1, 0)+(0, 1) = (1, 0)+(0, 1)+(1, 0) =

(0, 1) + (1, 0) + (1, 0). So it has three factorizations (p, q) = efg = hkg = hjl, where

e, k, l ∈ Ωe1
2 and f, g, h, j ∈ Ωe2

2 .

Definition 4.3.2. We say that Λ is finite if Λn is finite for every n ∈ Nk. Also Λ

is said to be row-finite if vΛei is a finite set for every v ∈ Λ0 and i = 1, 2, . . . , k.

For a k-graph Λ, we assume that Λei 6= ∅ for every i = 1, 2, . . . , k. Otherwise we

can consider Λ as a (k − 1)-graph.

Notation 4.3.1. (a) For a k-graph Λ we use the convention that for v ∈ Λ0 and

X ⊆ Λ, vX := {µ ∈ X : r(µ) = v}, Xv := {µ ∈ X : s(µ) = v} and uXv := {µ ∈ X :

s(µ) = v, r(µ) = u}.

(b) In a k-graph Λ. v ∈ Λ0 is called a source if for every i = 1, 2, . . . , k, vΛei = ∅.

In this thesis we always assume that every k-graph Λ is row-finite and has no

source.
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4.4. Perron-Frobenius Theory for Strongly Connected k-Graphs

In this section we relate a strongly connected k-graph with an irreducible family of

matrices. Then we state and prove a Perron-Frobenius theorem for strongly connected

k-graphs.

Definition 4.4.1. A k-graph Λ is said to be strongly connected if for every v, w ∈

Λ0, the set vΛw is non-empty.

Definition 4.4.2. Let Λ be a finite k-graph. For i = 1, 2, . . . , k we define Ai

be a matrix in MΛ0(R) with entries Ai(v, w) = |vΛeiw| for v, w ∈ Λ0. We call

A1, A2, . . . , Ak the coordinate matrices of Λ.

Remark 4.4.1. The set vΛeiw contains all ith color edges µ such that s(µ) = w

and r(µ) = v.

The following lemma gives a precise relation between a strongly connected k-graph

and irreducible family of matrices.

Lemma 4.4.2. Let Λ be a finite k-graph with coordinate matrices A1, A2, . . . , Ak.

Then Ai’s are non-zero pairwise commuting matrices. Furthermore Λ is strongly

connected if, and only if, {A1, A2, . . . , Ak} is an irreducible family of matrices.

Proof. Since for every i = 1, 2, . . . , k Λei 6= ∅, Ai’s are non-zero matrices. For

v, w ∈ Λ0 and i, j = 1, 2, . . . , k, we have

AiAj(v, w) =
∑
u∈Λ0

Ai(v, u)Aj(u,w) =
∑
u∈Λ0

|vΛeiu||uΛejw|

=|vΛei+ejw| = |vΛej+eiw| = AjAi(v, w).

(4.4.1)

So AiAj = AjAi. Hence Ai’s are pairwise commuting.

Now suppose that Λ is strongly connected. Then for every v, w ∈ Λ0, vΛw 6= ∅.

So there exists nv,w ∈ Nk such that

(4.4.2) vΛnv,ww 6= ∅, i.e., |vΛnv,ww| > 0 for every v, w ∈ Λ0.
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Let F := {nv,w : v, w ∈ Λ0}. Clearly F is a non-empty finite subset of Nk. Now using

multi-index notation, for every s, t ∈ Λ0 we have

(4.4.3) AF (s, t) =
∑

v,w∈Λ0

Anv,w(s, t) ≥ Ans,t(s, t) =
k∏
i=1

A
n
(i)
s,t

i (s, t),

where n
(i)
v,w is the ith coordinate of nv,w. From (4.4.1) we have AiAj(v, w) = |vΛei+ejw|,

so by induction and using (4.4.2), for every t, s ∈ Λ0 we get

(4.4.4) A
n
(i)
s,t

i (s, t) = |sΛn
(i)
s,teit| =⇒

k∏
i=1

A
n
(i)
s,t

i (s, t) = |sΛ
k∑
i=1

n
(i)
s,tei

t| = |sΛns,tt| > 0.

Hence (4.4.3) and (4.4.4) yields AF (s, t) > 0 for every s, t ∈ Λ0. This shows that

{A1, A2, . . . , Ak} is an irreducible family.

Conversely let us suppose {A1, A2, . . . , Ak} be an irreducible family. So there

exists F ∈ Nk such that AF � 0. Now AF =
∑
n∈F

An implies for v, w ∈ Λ0 there exists

n ∈ F such that An(v, w) 6= 0. From (4.4.1) we have An(v, w) = |vΛnw| implies

|vΛnw| 6= 0. So vΛnw 6= ∅. Hence Λ is strongly connected. �

Now we state a Perron-Frobenius theorem for strongly connected k-graphs and

the proof can easily be obtained by Theorem 4.1.5. So we consider it as a corollary

of Theorem 4.1.5.

Corollary 4.4.3. Let Λ be a strongly connected finite k-graph. Let {A1, A2, . . . , Ak}

be the coordinate matrices of Λ. Then

(a) each ρ(Ai) > 0 and for n ∈ Nk we have ρ(An) =
k∏
i=1

ρ(Ai)
ni > 0;

(b) there exists a unique non-negative vector xΛ ∈ RΛ0
with unit norm such that

Aix
Λ = ρ(Ai)x

Λ for every i = 1, 2, . . . , k; moreover, xΛ � 0;

(c) if z ∈ CΛ0
and Aiz = ρ(Ai)z for every i = 1, 2, . . . , k, then z ∈ CxΛ; and

(d) if y ∈ RΛ0
such that y � 0, has unit norm and Aiy = ρ(Ai)y for every

i = 1, 2, . . . , k, then y = xΛ.

Proof. (a) Lemma 4.4.2 shows that the family {A1, A2, . . . , Ak} is an irreducible

and pairwise commuting family. So (a) follows from Proposition 4.1.5(a)(i) and (c).
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(b) Proposition 4.1.5(a)(i) yields that the UPF eigenvector xΛ of AF is the unique

non-negative unimodular common eigenvector of A′is. Also by the definition of UPF

eigenvector xΛ � 0.

(c) This follows from Proposition 4.1.5(a)(ii).

(d) This follows from Proposition 4.1.5(b)(ii). �

Definition 4.4.3. Let Λ be a strongly connected finite k-graph. We call the

vector xΛ of the above corollary, the unimodular Perron-Frobenius (UPF) eigenvector

of Λ.



CHAPTER 5

Some Basics for C∗-Algebras and KMS States

In this chapter we provide some basics for C∗-algebras, C∗-dynamical systems and

Kubo-Martin-Schwinger (KMS) states, which will be needed later. As an example,

Gibbs states are discussed at the end of this chapter.

5.1. Basic Definitions and Some Results

The definitions and results in this section are taken from [5], unless otherwise

stated. The first subsection consists of some basics of a C∗-algebra and positive

elements in a C∗-algebra.

5.1.1. C∗-Algebras.

Definition 5.1.1. Let A be a vector space over C. The space A is called an

algebra if it is equipped with a binary operation (usually called multiplication) from

A× A to A such that for every A,B,C ∈ A and α ∈ C

(a) A(BC) = (AB)C, (b) A(B + C) = AB + AC and

(c) α(AB) = (αA)B = A(αB).

Definition 5.1.2. Let A be an algebra. A map ∗ : A → A mapping an element

A ∈ A to some element A∗ ∈ A is called an involution, or adjoint operator, of the

algebra A if it has the following properties:

(a) A∗∗ = A, (b) (AB)∗ = B∗A∗ and (c) (αA+ βB)∗ = ᾱA∗ + β̄B∗,

for A,B ∈ A and α, β ∈ C. An algebra with an involution is called a *-algebra.

Definition 5.1.3. An algebra A is called a normed algebra if there is a norm ||.||

defined on A which satisfies ||AB|| ≤ ||A|| ||B|| for all A,B ∈ A.

57
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Definition 5.1.4. (a) The topology induced by the metric defined by the norm

on a normed algebra A is called the uniform topology. If A is complete with respect

to the uniform topology then it is called a Banach algebra.

(b) A Banach algebra A with involution and has property ||A|| = ||A∗|| for all

A ∈ A is called a Banach *-algebra.

Definition 5.1.5. A C∗-algebra is a Banach *-algebra A with the C∗-identity

||A∗A|| = ||A||2 for every A ∈ A.

Note 5.1.1. The C∗-identity in Definition 5.1.5 combined with the submulti-

plicity of the norm in Definition 5.1.3 yields ||A|| = ||A∗|| as ||A||2 = ||A∗A|| ≤

||A∗|| ||A|| =⇒ ||A|| ≤ ||A∗||. Interchanging the roles of A and A∗ we can get

||A|| = ||A∗||.

Example 5.1.2. (1) Let H be a Hilbert space and B(H) be the set of all bounded

linear operators on H. Define the sum and product for operators f, g ∈ B(H) as:

(f + g)(x) = f(x) + g(x) and (fg)(x) = f(g(x)). Define a norm on A ∈ B(H)

as ||A|| = sup{||Ax|| : x ∈ H, ||x|| = 1}. Also the involution defined on B(H) maps

A ∈ B(H) to A∗ ∈ B(H), where A∗ is the adjoint of A that satisfies 〈Ax, y〉 = 〈x,A∗y〉

for x, y ∈ H and 〈·, ·〉 is the inner product defined on H.

With respect to the operations and the norm defined above, B(H) is a Banach

∗-algebra. Moreover, using the Cauchy-Schwartz Inequality, we get

||A||2 = sup{||Ax||2 : x ∈ H, ||x|| = 1} = sup{〈Ax,Ax〉 : x ∈ H, ||x|| = 1}

= sup{〈x,A∗Ax〉 : x ∈ H, ||x|| = 1} ≤ sup{||A∗Ax|| : x ∈ H, ||x|| = 1}

= ||A∗A|| ≤ ||A∗|| ||A|| = ||A||2 .

This show that B(H) is a C∗-algebra.

(2) For an n-dimensional Hilbert space H over C, B(H) is isomorphic to Mn(C).

Thus Mn(C) is also a C∗-algebra. Moreover, involution on Mn(C) is given by the

transpose conjugate (usually called the adjoint of a matrix).
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Definition 5.1.6. The identity 1 of an algebra A is an element of A such that

A = 1A = A1 for every A ∈ A. An algebra with identity is also called a unital algebra.

In this thesis, all C∗-algebras are assumed to be unital.

Definition 5.1.7. Let A be a unital algebra. Then an element A ∈ A is said

to be invertible if there exists an element A−1 ∈ A, the inverse of A, such that

AA−1 = 1 = A−1A.

Remark 5.1.3. Every invertible element has a unique inverse. Also if A and B

are invertible, then

(a) (A−1)−1 = A, (b) (AB)−1 = B−1A−1, (c) (A∗)−1 = (A−1)∗.

Definition 5.1.8. Let A be a unital algebra over C. The resolvent rA(A) of an

element A ∈ A is defined as rA(A) := {λ ∈ C : (λ1−A)−1exists}. The spectrum σA(A)

of A ∈ A is defined as σA(A) := {λ ∈ C : (λ1− A)−1 does not exist} = C \ rA(A).

Definition 5.1.9. An element A of a *-algebra A is said to be positive if it is self-

adjoint and its spectrum σA(A) consists of non-negative real numbers. For a positive

A ∈ A, we write A ≥ 0. Also we can say A ≥ B if and and only if A−B ≥ 0.

Theorem 5.1.4. Let A be a C∗-algebra and A ∈ A be a self-adjoint element. Then

the following are equivalent.

(a) A is positive.

(b) A = B2 for a self-adjoint B ∈ A.

(c) A = B∗B for some B ∈ A.

Proposition 5.1.5. Let A be a C∗-algebra and A,B ∈ A. Then

(a) A ≥ B ≥ 0 implies ||A|| ≥ ||B|| and (b) A ≥ 0 implies A ||A|| ≥ A2.

Now in the following subsection we define ∗-morphism between C∗-algebras in

order to define C∗-dynamical system in further sections.



5.1. BASIC DEFINITIONS AND SOME RESULTS 60

5.1.2. Representations.

Definition 5.1.10. A *-morphism between two *-algebras A and B is a mapping

π : A→ B such that for all A,B ∈ A and α, β ∈ C

(a) π(αA+ βB) = απ(A) + βπ(B), (b) π(AB) = π(A)π(B), (c) π(A∗) = π(A)∗.

The following lemma ensures that all *-morphisms between C∗-algebras are auto-

matically continuous.

Lemma 5.1.6. Let A and B be two C∗-algebras and π be a *-morphism of A into

B. Then

(a) π is positivity preserving, i.e., π(A∗A) is positive; and

(b) π is continuous, moreover, ||π(A)|| ≤ ||A|| for every A ∈ A.

Proof. (a) Clearly we can write π(A∗A) = π(A)∗π(A). So by Theorem 5.1.4

π(A∗A) is positive.

(b) From Proposition 5.1.5(b) we have 0 ≤ (A∗A)2 ≤ A∗A ||A∗A||. So Part (a) of

this lemma implies that 0 ≤ π(A∗A)2 ≤ π(A∗A) ||A∗A||. Now by Proposition 5.1.5(a)

we get

||π(A)||4 = ||π(A∗A)||2 ≤ ||π(A∗A)|| ||A∗A|| = ||π(A)||2 ||A||2 =⇒ ||π(A)|| ≤ ||A|| .

�

Definition 5.1.11. A *-morphism π from A to B is called a *-isomorphism if it

is a bijection.

Definition 5.1.12. A representation of a C∗-algebra A is defined to be a pair

(H, π), where H is a complex Hilbert space and π is a *-morphism of A into B(H).

A representation (H, π) is said to be faithful if π is a *-isomorphism. The space

H is called the representation space, the operators π(A) for A ∈ A are called the

representatives of A. We say that π is a representation of A on H.

Proposition 5.1.7. Let (H, π) be a faithful representation of a C∗-algebra A.

Then we have the following properties:
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(a) kerπ = {0}; (b) ||π(A)|| = ||A|| ∀ A ∈ A.

Definition 5.1.13. A *-automorphism τ of a C∗-algebra A is defined to be a

*-isomorphism of A onto itself.

Corollary 5.1.8. A *-automorphism τ of a C∗-algebra A is norm preserving,

i.e., ||τ(A)|| = ||A|| for every A ∈ A.

5.2. C∗-Dynamical Systems and KMS-States

This section consists of some basic definitions and results from [5] and [6] which

will be used in Chapter 6.

Recall that a group with a topology defined on it which is locally compact is called

a locally compact group.

Definition 5.2.1. [5] A C∗-dynamical system is a triplet (A, G, τ), where A is a

C∗-algebra, G is a locally compact group, and τ is a strongly continuous representation

of G in the automorphism group of A, i.e., τ : G → Aut(A) such that τe = I,

τg1τg2 = τg1g2 for all g1, g2 ∈ G, and g 7→ τg(A) is continuous in norm for each A ∈ A,

where e ∈ G is the identity and I is the identity map on A.

Remark 5.2.1. In the above definition, we say g 7→ τg(A) is continuous in norm,

if there exists a net {gk} in G such that gk → g for some g ∈ G, then for every A ∈ A

||τgk(A)− τg(A)|| → 0.

Note 5.2.2. In the following we only consider the one-parameter C∗-dynamical

system (A,R, τ). For simplicity we denote such a system simply by (A, τ).

Definition 5.2.2. Let (A, τ) be a one-parameter C∗-dynamical system. An ele-

ment A ∈ A is said to be τ -analytic if the function t 7→ τt(A) extends to an entire

function on the complex plane. The set of all τ -analytic elements in A is denoted by

Aτ .

Note 5.2.3. [6] (1) Aτ is a dense *-subalgebra of A in the uniform topology

defined on A.
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(2) Aτ is τ -invariant, i.e., if A ∈ Aτ , then τt(A) ∈ Aτ for every t ∈ R.

Now we define a state over a C∗-algebra, KMS condition and some important

results.

Definition 5.2.3. A linear functional ω over a *-algebra A is defined to be positive

if ω(A∗A) ≥ 0 for every A ∈ A.

Definition 5.2.4. A positive linear functional ω over a C∗-algebra A with ||ω|| =

1 is called a state.

Lemma 5.2.4. (Cauchy-Schwartz Inequality) Let ω be a positive linear func-

tional over a *-algebra A. It follows that for every A,B ∈ A

(a) ω(A∗B) = ω(B∗A), (b) |ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B).

Proposition 5.2.5. Let ω be a linear functional over a C∗-algebra A. If ω is

positive, then for A,B ∈ A

(a) ω(A∗) = ω(A), (b) |ω(A)|2 ≤ ω(A∗A) ||ω|| ,

(c) |ω(A∗BA)| ≤ ω(A∗A) ||B|| , (d) ||ω|| = sup{ω(A∗A), ||A|| = 1}.

Proposition 5.2.6. Let A is a unital C∗-algebra and ω be a positive linear func-

tional over A. Then ||ω|| = ω(1).

Definition 5.2.5. Let (A, τ) be a C∗-dynamical system. A state ω over A is

defined to be τ -KMS state at value β ∈ R or a (τ, β)-KMS state if

ω(AB) = ω(Bτiβ(A)) for every A,B ∈ Aτ .

Lemma 5.2.7. Let ω be a (τ, β)-KMS state over a C∗-algebra A and β ∈ R \ {0}.

Then ω is τ -invariant, i.e., ω(τt(A)) = ω(A) for all A ∈ A and for every t ∈ R.

Proof. Let β ∈ R \ {0} and A ∈ Aτ . Then by Definition 5.2.2 the function

f(t) = τt(A) for t ∈ R extends to an entire function on the complex plane, i.e.,
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f(z) = τz(A) for z ∈ C is an entire function. So

(5.2.1) lim
h→0

τz+h(A)− τz(A)

h
exists for every z ∈ C.

Define F (z) = ω(τz(A)). Since ω is a linear bounded (so is continuous) functional,

we can get

lim
h→0

ω(τz+h(A))− ω(τz(A))

h
= ω

(
lim
h→0

τz+h(A)− τz(A)

h

)
.

Thus in view of (5.2.1), we can conclude that F is differentiable everywhere on C. So

F is an entire function. Furthermore

|F (z)| = |ω(τz(A))| ≤ ||ω|| ||τz(A)||

= ||τz(A)|| (as ||ω|| = 1)

= ||τRe z(τi Im z(A))|| ≤ ||τi Im z(A)|| (by Lemma 5.1.6(b)).(5.2.2)

Let D := {z ∈ C : 0 ≤ Im z ≤ |β|} and M := sup{||τix(A)|| : x ∈ [0, |β|]}. Then

(5.2.2) yields that |F (z)| ≤M for every z ∈ D.

Now,

F (z + iβ) = ω(1τiβ(τz(A))) = ω(τz(A)1) = F (z) (as ω is a KMS state).

This implies F is periodic with the period of iβ. Hence |F (z)| ≤M for every z ∈ C.

Thus F is a bounded entire function. So by Lioville’s theorem F has to be a constant

function. Hence for any z ∈ C

F (z) = F (0) =⇒ ω(τz(A)) = ω(τ0(A)) = ω(A).

In particular, ω(τt(A)) = ω(A) for all A ∈ A and for every t ∈ R. �

Note 5.2.8. In Lemma 5.2.7, we can observe that if the representation τ of R is

extended to a representation of C in the automorphism group of A, then even ω is

τ -invariant.
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Proposition 5.2.9. Let A be a C∗-algebra and ω be a state over A. Let β ∈ R.

Then the following are equivalent.

(a) ω is a (τ, β)-KMS state over A.

(b) ω(τ−iβ
2
(B)τiβ

2
(A)) = ω(AB) for all A,B ∈ Aτ .

Proof. If β = 0, the result is trivial.

(a) =⇒ (b): Let us suppose ω is a (τ, β)-KMS state over A with β ∈ R \ {0}. Let

A,B ∈ Aτ . Then we have

ω(AB) = ω(Bτiβ(A)) = ω
(
Bτiβ

2

(
τiβ

2
(A)
))

= ω
(
τiβ

2

(
τ−iβ

2
(B)τiβ

2
(A)
))

= ω
(
τ−iβ

2
(B)τiβ

2
(A)
)

(by Note 5.2.8).

(b) =⇒ (a): Assume that

(5.2.3) ω(AB) = ω(τ−iβ
2
(B)τiβ

2
(A)) for all A,B ∈ Aτ .

Let A ∈ Aτ and define F (z) = ω(τz(A)). Then the first part of Lemma 5.2.7 shows

that F (z) is an entire function and |F (z)| ≤ ||τi Im z(A)||.

Let D := {z ∈ C : 0 ≤ Im z ≤
∣∣β

2

∣∣} and M := sup{||τix(A)|| : x ∈ [0,
∣∣β

2

∣∣]}. Then

|F (z)| ≤M for every z ∈ D. Now

F (z + i
β

2
) = ω(1τiβ

2
(τz(A))) = ω

(
τ−iβ

2

(
τiβ

2
(τz(A))

)
τiβ

2
(1)
)

(using (5.2.3))

= ω(τz(A)) (as τiβ
2
(1) = 1)

= F (z).

This implies F is periodic with the period of iβ
2
. Hence |F (z)| ≤M for every z ∈ C.

Thus F is a bounded entire function. So by Lioville’s theorem F has to be a constant

function. Hence for any z ∈ C

F (z) = F (0) =⇒ ω(τz(A)) = ω(τ0(A)) = ω(A).
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Thus ω is τ -invariant. Hence from (5.2.3)

ω(AB) = ω(τ−iβ
2
(B)τiβ

2
(A)) = ω

(
τiβ

2
(τ−iβ

2
(B)τiβ

2
(A))

)
= ω(Bτiβ(A)).

This implies that ω is a (τ, β)-KMS state. �

5.3. An Example of KMS States: Gibbs States

In this section we will give an example of KMS states on the C∗-algebra Mn(C).

Lemma 5.3.1. Let H ∈ Mn(C). Then the function f : C → Mn(C) defined as

f(a) = eaH is continuous.

Proof. WLOG, assume H 6= 0. Let a, b ∈ C and A = max{|a|, |b|}. Then

||f(a)− f(b)|| =
∣∣∣∣eaH − ebH

∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣∑
m≥0

am

m!
Hm −

∑
m≥0

bm

m!
Hm

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣∑
m≥0

am − bm

m!
Hm

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣∑
m≥1

am − bm

m!
Hm

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣∑
m≥1

(a− b)(am−1 + · · ·+ bm−1)

m!
Hm

∣∣∣∣∣
∣∣∣∣∣

≤|a− b|
∑
m≥1

|am−1|+ · · ·+ |bm−1|
m!

||Hm||

≤|a− b|
∑
m≥1

mAm−1

m!
||Hm||

=|a− b| ||H||
∑
m≥1

Am−1

(m− 1)!
||H||m−1

=|a− b| ||H|| eA||H|| .

Hence if a→ b then f(a)→ f(b). This shows that f(a) = eaH is continuous. �
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Lemma 5.3.2. Let H ∈Mn(C) be a self-adjoint matrix and τ : R→ Aut(Mn(C))

be defined by τt(A) = eitH A e−itH for A ∈Mn(C). Then (Mn(C), τ) is a C∗-dynamical

system.

Proof. Let A,B ∈Mn(C) and a, b ∈ C. Then

(a) τt(aA+ bB) = eitH(aA+ bB) e−itH = aτt(A) + bτt(B)

(b) τt(AB) = eitH AB e−itH = eitH Ae−itHeitHB e−itH = τt(A)τt(B)

(c) τt(A
∗) = eitH A∗ e−itH =

(
e−ītH

∗
A eītH

∗ )∗
=
(

eitH A e−itH
)∗

= (τt(A))∗

This shows τt is a *-morphism.

(d) Since τt(A) = 0 =⇒ eitH A e−itH = 0 =⇒ A = 0 =⇒ kerA = {0}, i.e., τt

is injective.

(e) Let A ∈Mn(C). Then τt(e
−itH A eitH) = A.

This shows that τt is a *-automorphism.

Now let A ∈Mn(C) and s, t ∈ R. Then

(a) τ0(A) = ei0H A e−i0H = A implies τ0 = I.

(b) τtτs(A) = τt(e
isH A e−isH) = eitH eisH A e−isH e−itH = ei(t+s)H A e−i(t+s)H =

τt+s(A).

(c) Let {gk} be a net in R such that gk → g for some g ∈ R. Then using Lemma

5.3.1, we get

igk → ig =⇒ eigkH → eigH =⇒ eigkH Ae−igkH → eigH A e−igH .

So for every A ∈Mn(C), t 7→ τt(A) is continuous in norm.

This shows that (Mn(C), τ) is a C∗-dynamical system. �

Theorem 5.3.3. Let H ∈Mn(C) be a self-adjoint matrix. Let ωβ be a functional

defined on Mn(C) as

ωβ(A) =
tr(e−βH A)

tr(e−βH)
for all A ∈Mn(C).

Then ωβ is the unique (τ, β)-KMS state for (Mn(C), τ). This state is called a Gibbs

state.
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We need the following results to prove this theorem.

Lemma 5.3.4. If A ∈Mn(C), then tr(A∗A) ≥ 0.

Proof. Let A ∈Mn(C). Let A(i, j) = aij and so A∗(i, j) = aji. Then

A∗A(i, i) =
n∑
k=1

A∗(i, k)A(k, i) =
n∑
k=1

akiaki =
n∑
k=1

|aki|2.

That is, every diagonal entry of A∗A is positive. Hence tr(A∗A) ≥ 0. �

Lemma 5.3.5. A linear functional f on Mn(C) is a scaler multiple of the trace

functional if, and only if, f(AB) = f(BA) for every A,B ∈ Mn(C). Moreover,

f(A) =
f(I)

tr(I)
tr(A).

Proof. Let f be a functional on Mn(C) such that f(AB) = f(BA) for every

A,B ∈ Mn(C). Let Eij ∈ Mn(C) such that the (i, j)th entry is 1 and zero elsewhere.

Then EijEkl =

Eil, if j = k

0, if j 6= k
. Now for i 6= j

(5.3.1) f(Eij) = f(Ei1E1j) = f(E1jEi1) = f(0) = 0

and for i = j

(5.3.2) f(Eii) = f(Ei1E1i) = f(E1iEi1) = f(E11).

Now let I be the identity matrix. Then f(I) = f(
n∑
i=1

Eii) =
n∑
i=1

f(Eii) =
n∑
i=1

f(E11) =

nf(E11). So (5.3.2) yields

(5.3.3) f(Eii) =
f(I)

n
.

Let A ∈Mn(C). Then A =
∑

1≤i,j≤n
aijEij. So

f(A) = f
( ∑

1≤i,j≤n

aijEij
)

=
∑

1≤i,j≤n

aijf(Eij)

=
n∑
i=1

aiif(Eii) (using (5.3.1) and (5.3.2))
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=
n∑
i=1

aii
f(I)

n
(using (5.3.3))

=
f(I)

n
tr(A) =

f(I)

tr(I)
tr(A).

The Converse holds true trivially. �

Proof of Theorem 5.3.3. Let H ∈Mn(C) be a self-adjoint matrix and β ∈ R.

Let ωβ be a functional on Mn(C) defined as

(5.3.4) ωβ(A) =
tr(e−βH A)

tr(e−βH)
.

First we shall check that ωβ is a state of Mn(C). Let A ∈ Mn(C). Since H is

self-adjoint, 1
2
H is also self-adjoint. So

(5.3.5) e−βH = e−β
1
2
H e−β

1
2
H = (e−β

1
2
H)∗ e−β

1
2
H .

Thus by Lemma 5.3.4 tr(e−βH) > 0. Also

ωβ(A∗A) =
tr(e−βH A∗A)

tr(e−βH)
=

tr(A e−βH A∗)

tr(e−βH)
(as tr(AB) = tr(BA))

=
tr(A(e−β

1
2
H)∗ e−β

1
2
H A∗)

tr(e−βH)
(by (5.3.5))

=
tr
((

e−β
1
2
H A∗

)∗(
e−β

1
2
H A∗

))
tr(e−βH)

≥ 0 (by Lemma 5.3.4).

This shows that ωβ is a positive functional. Also by Proposition 5.2.6 we can conclude

that

||ω|| = ω(I) =
tr(e−βH I)

tr(e−βH)
= 1.

This proves that ω is a state.

Now we show that ωβ satisfies the KMS condition. For this, let A,B ∈ Mn(C).

Then

ωβ(Bτiβ(A)) =
tr
(

e−βH Bτiβ(A)
)

tr(e−βH)
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=
tr
(

e−βH B e−βH A eβH
)

tr(e−βH)

=
tr
(

e−βH A eβH e−βH B
)

tr(e−βH)

(
as tr(ST ) = tr(TS)

)
=

tr
(

e−βH AB
)

tr(e−βH)
= ωβ(AB).

Finally we show the uniqueness of ωβ. Let us assume φ be another state on Mn(C)

which satisfies the KMS condition. Then for A,B ∈Mn(C)

(5.3.6) φ(AB) = φ(Bτiβ(A)) = φ(B e−βH A eβH)

Let us define a map φ̃(A) = φ(A eβH). Then for A,B ∈ B(H) and using (5.3.6), we

get

φ̃(AB) = φ(AB eβH) = φ(B eβH e−βH A eβH) = φ(BA eβH) = φ̃(BA).

Hence from Lemma 5.3.5 φ̃ is a scalar multiple of trace functional. In particular

φ̃(A) =
φ̃(I)

tr(I)
tr(A)

=⇒ φ(A eβH) =
φ(eβH)

tr(I)
tr(A).(5.3.7)

Let A = A e−βH in (5.3.7). Then

(5.3.8) φ(A) =
φ(eβH)

tr(I)
tr(A e−βH).

Now let A = e−βH in (5.3.7). Then

(5.3.9) φ(I) =
φ(eβH)

tr(I)
tr(e−βH) =⇒ φ(eβH) =

tr(I)

tr(e−βH)
φ(I) =

tr(I)

tr(e−βH)
.

Substituting (5.3.9) in (5.3.8), we get

φ(A) =
tr(A e−βH)

tr(e−βH)
= ωβ(A).

�



CHAPTER 6

KMS States of the C∗-Algebras of k-Graphs

In this chapter, we first provide some necessary background for the Toeplitz al-

gebra T C∗(Λ) and graph C∗-algebra C∗(Λ) of a (row-finite) k-graph Λ (without

sources). Then we apply the results from previous chapters to study their KMS

states. The main sources of this chapter are [8], [9], [10] and [6].

6.1. Background

Definition 6.1.1. Let H be a Hilbert space. Let M ⊆ H be a closed subspace.

Then we have the decomposition H = M ⊕M⊥. The orthogonal projection onto M ,

denoted by PM , is a bounded linear operator on H such that for x ∈ H, x = m+m′,

where m ∈M and m′ ∈M⊥, we have PM(x) = m.

Note that P ∈ B(H) is a projection if, and only if, P = P ∗ = P 2.

Definition 6.1.2. A linear operator S on H is called a partial isometry if S is

an isometry on M = (kerS)⊥. We call M the initial space and N = SM the final

space of S.

Proposition 6.1.1. Let H be a Hilbert space. Let S ∈ B(H). Then the following

statements are equivalent:

(a) S is a partial isometry;

(b) S∗S is an orthogonal projection PM onto M = (kerS)⊥;

(c) S = SS∗S.

Proof. (a) =⇒ (b) Let S is a partial isometry. In order to prove S∗S is an

orthogonal projection PM onto M = (kerS)⊥.

Claim: 〈(S∗S − PM)h, h〉 = 0 for all h ∈ H.

70
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If m ∈ (kerS)⊥, then

〈S∗Sm,m〉 = ||Sm||2 = ||m||2 = 〈m,m〉 = 〈PMm,m〉

=⇒ 〈(S∗S − PM)m,m〉 = 0.(6.1.1)

Since S∗S and PM are zero on kerS and both have range in (kerS)⊥, we can get

(6.1.2) S∗S = PMS
∗SPM .

Let h ∈ H such that h = m + m′, where m ∈ (kerS)⊥ and m′ ∈ kerS. Then

PMh = m ∈ (kerS)⊥. So we can get

〈(S∗S − PM)h, h〉 = 〈PM(S∗S − PM)PMh, h〉 (by (6.1.2))

= 〈(S∗S − PM)PMh, PMh〉

= 〈(S∗S − PM)m,m〉 = 0 (by (6.1.1)).

Hence in view of polarization identity

4 〈(S∗S − PM)h, h′〉 =
3∑

n=0

〈(S∗S − PM)(h+ inh′), h+ inh′〉 for every h, h′ ∈ H,

we conclude that 〈(S∗S − PM)h, h′〉 = 0 for every h, h′ ∈ H. So (S∗S−PM)h = 0 for

every h ∈ H.

(b) =⇒ (c) S∗S is an orthogonal projection PM onto M = (kerS)⊥. Then

(S∗S)2 = S∗S. So we can get

||S − SS∗S||2 = ||(S − SS∗S)∗(S − SS∗S)||

= ||(S∗ − S∗SS∗)(S − SS∗S)||

= ||S∗S − S∗SS∗S − S∗SS∗S + S∗SS∗SS∗S||

=
∣∣∣∣S∗S − 2(S∗S)2 + (S∗S)3

∣∣∣∣ = 0.

Hence S = SS∗S.
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(c) =⇒ (a) Let S = SS∗S. Recall that the projection PM on a closed subspace M

ofH is the unique operator such that PMh ∈M and h−PMh ⊥M for all h ∈ H. Now

Let h ∈ H. For k ∈ kerS, we have 〈S∗Sh, k〉 = 〈Sh, Sk〉 = 0. So S∗Sh ∈ (kerS)⊥.

Also for every h ∈ H

S = SS∗S =⇒ S(h− S∗Sh) = (S − SS∗S)h = 0

=⇒ h− S∗Sh ∈ kerS =⇒ h− S∗Sh ⊥ (kerS)⊥.

Hence S∗S is the projection PM onto (kerS)⊥. Now for h ∈ (kerS)⊥ we have

||Sh||2 = 〈Sh, Sh〉 = 〈S∗Sh, h〉 = 〈h, h〉 = ||h||2 .

This shows that S is a partial isometry. �

In general, in a C∗-algebra we have the following definition:

Definition 6.1.3. In a C∗-algebra A, an element S in A is called a partial isometry

if it satisfies S = SS∗S and an element P in A is called a projection if it satisfies

P 2 = P = P ∗.

Definition 6.1.4. Let S be a partial isometry, we call S∗S the initial projection

and SS∗ the range projection of S.

6.2. KMS States on the C∗-Algebras of Directed Graphs

In this section we define the Toeplitz algebras T C∗(E) for directed graphs and

introduce KMS state on the C∗-dynamical system (T C∗(E), α), where α is the rep-

resentation induced by the gauge action of T C∗(E).

Definition 6.2.1. Let E be a directed graph. A Toeplitz-Cuntz-Krieger E-family

{S} in a C∗-algebra A consists of projections {Sv ∈ A : v ∈ E0} satisfying SvSw = 0

for v 6= w and partial isometries {Se ∈ A : e ∈ E1} satisfying

S∗eSe = Ss(e) for every e ∈ E1; and(TCK1)
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Sv ≥
∑

{e∈E1:r(e)=v}

SeS
∗
e .(TCK2)

Remark 6.2.1. The relation (TCK2) implies that the range projection SeS
∗
e of

Se is dominated by Sr(e), i.e., SeS
∗
e ≤ Sr(e). Thus we can conclude that range of SeS

∗
e

is contained in the range of Sr(e) and we can write it as

(6.2.1) Se = SeSs(e) = Sr(e)Se.

The following example will ensure that for any row-finite directed graph there is

at least one Toeplitz-Cuntz-Krieger E-family.

Example 6.2.2. Let E be a row-finite directed graph. Let hµ be the characteristic

function for µ ∈ E∗ on E∗ and let H := `2(E∗) = span{hµ : µ ∈ E∗}. For v ∈ E0 let

Sv be the projection onto span{hµ : r(µ) = v}; more precisely Sv is given as

(6.2.2) Svhµ =

hµ, if r(µ) = v

0, otherwise
.

For e ∈ E1 let Se be the partial isometry in the C∗-algebra B(H) defined as

(6.2.3) Sehµ =

heµ, if s(e) = r(µ)

0, otherwise.

Then we claim that {S} is a Toeplitz-Cuntz-Krieger E-family in the C∗-algebra B(H).

In fact, in view of (6.2.3), S∗e is given as:

(6.2.4) S∗ehµ =

hµ
′ , if µ = eµ′

0, otherwise
.

Now let µ ∈ E∗ and e ∈ E0. Then

S∗eSehµ =

S
∗
eheµ, if s(e) = r(µ)

0, otherwise
(by (6.2.3))
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=

hµ, if s(e) = r(µ)

0, otherwise.
(by (6.2.4))

=Ss(e)hµ (by (6.2.2)).

Also,

SeS
∗
ehµ =

Sehµ
′ , if µ = eµ′

0, otherwise
(by (6.2.4))

=

heµ
′ , if µ = eµ′

0, otherwise
(as µ = eµ′ =⇒ r(µ′) = s(e))(6.2.5)

=

hµ, if µ = eµ′

0, otherwise
.

This clearly shows that the range projection SeS
∗
e is a projection onto span{hµ : r(e) =

r(µ)} and for v ∈ E0, span{hµ : r(e) = r(µ) = v} is a subset of span{hµ : r(µ) = v}.

Hence for every e ∈ E1 such that r(e) = v the range of SeS
∗
e is contained in the range

of Sv. Thus

(6.2.6) Sv ≥ SeS
∗
e for every e ∈ E1 such that r(e) = v.

Moreover, for e, f ∈ vE1 such that e 6= f and hµ ∈ H, we have

〈
SeS

∗
ehµ, SfS

∗
fhµ
〉

=

〈hµ, hµ〉 , if µ = eν = fσ

0, otherwise

If µ = eν = fσ, then e and f cannot be distinct edges, which is a contradiction.

Hence
〈
SeS

∗
ehµ, SfS

∗
fhµ
〉

= 0 and so {SeS∗e : e ∈ vE1} is a family of mutually

orthogonal projections. This implies
∑

e∈vE1

SeS
∗
e is a projection. Hence by (6.2.6), we

get Sv ≥
∑

{e∈E1:r(e)=v}
SeS

∗
e .
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The following theorem from [15, Theorem 4.1] implies that there is a universal

C∗-algebra generated by Toeplitz-Cuntz-Krieger E-families.

Theorem 6.2.3. Let E be a row-finite directed graph. Then there is a C∗-algebra,

denoted by T C∗(E), generated by Toeplitz-Cuntz-Krieger E-family {s} such that for

every Toeplitz-Cuntz-Krieger E-family {Q} in any C∗-algebra B, there is a homo-

morphism πQ of T C∗(E) into B which satisfies πQ(se) = Qe for every e ∈ E1 and

πQ(sv) = Qv for every v ∈ E0.

In view of the above theorem, we call the Toeplitz-Cuntz-Krieger E-family {s}

having the universal property. From now on we always denote the universal Toeplitz-

Cuntz-Krieger E-family by the lowercase {s} and a Toeplitz-Cuntz-Krieger E-family

denoted by the uppercase {Q}.

Definition 6.2.2. The C∗-algebra T C∗(E) generated by the universal Toeplitz-

Cuntz-Krieger E-family {s} is called the Toeplitz algebra of the graph E.

Let E be a row-finite directed graph. Let µ ∈ E∗ be a path of length n. Then

µ = µ1µ2 . . . µn, where µi ∈ E1 for every i = 1, 2, . . . , n.

Let {S} be a Toeplitz-Cuntz-Krieger E-family. Now we can extend the partial isome-

tries for edges to the partial isometries for the paths by defining

Sµ := Sµ1Sµ2 . . . Sµn .

In fact, repeated applications of (TCK1) give

S∗µSµ =(Sµ1Sµ2 . . . Sµn)∗Sµ1Sµ2 . . . Sµn

=S∗µnS
∗
µn−1

. . . S∗µ2(S
∗
µ1
Sµ1)Sµ2 . . . Sµn

=S∗µnS
∗
µn−1

. . . S∗µ2Ss(µ1)Sµ2 . . . Sµn

=S∗µnS
∗
µn−1

. . . S∗µ2(Sr(µ2)Sµ2) . . . Sµn (as s(µ1) = r(µ2))

=S∗µnS
∗
µn−1

. . . S∗µ2Sµ2 . . . Sµn (using (6.2.1))
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...

=S∗µnSµn = Ss(µn) = Ss(µ)

and then by Proposition 6.1.1 Sµ is a partial isometry.

Now we show that the range projections SeS
∗
e are mutually orthogonal for any

Toeplitz-Cuntz-Krieger E-family {S}. We need the following lemma in order to prove

this.

Lemma 6.2.4. Let P and Q be two projections on a Hilbert space H such that

||P +Q|| ≤ 1. Then P and Q have orthogonal ranges.

Proof. Let h ∈ PH. Then

1 ≥ ||P +Q|| =⇒ ||h||2 ≥ ||Ph+Qh||2

= ||h+Qh||2

=〈h+Qh, h+Qh〉

=〈h, h〉+ 〈h,Qh〉+ 〈Qh,Qh〉+ 〈Qh, h〉

= ||h||2 + 3〈Qh,Qh〉 (as Q = Q2 = Q∗)

= ||h||2 + 3 ||Qh||2 .

This implies ||Qh|| = 0. So Qh = 0, and thus QP = 0. �

Corollary 6.2.5. Let {S} be a Toeplitz-Cuntz-Krieger E-family. Then the pro-

jections {SeS∗e : e ∈ E1} are mutually orthogonal.

Proof. Let e, f ∈ E1 be such that r(e) = r(f) = v for some v ∈ E0. Then by

(TCK2) we have Sv ≥ SeS
∗
e + SfS

∗
f . Using Proposition 5.1.5, we get

||Sv|| ≥
∣∣∣∣SeS∗e + SfS

∗
f

∣∣∣∣ =⇒ 1 ≥
∣∣∣∣SeS∗e + SfS

∗
f

∣∣∣∣ .
Thus by Lemma 6.2.4, SeS

∗
e and SfS

∗
f are orthogonal.
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Now if e, f ∈ E1 such that r(e) 6= r(f), then again using (TCK2) we have

(6.2.7) Sr(e) ≥ SeS
∗
e and Sr(f) ≥ SfS

∗
f .

Since Sr(e) and Sr(f) are orthogonal, the inequalities in (6.2.7) shows that SeS
∗
e and

SfS
∗
f are orthogonal. �

Lemma 6.2.6. Let {S} be a Toeplitz-Cuntz-Krieger E-family. Then S∗eSf =

δe,fSs(e) for every e, f ∈ E1, where δe,f is the Kronecker delta function.

Proof. Let e, f ∈ E1. Then

S∗eSf =S∗eSeS
∗
eSfS

∗
fSf (as Se = SeS

∗
eSe)

=

S
∗
e0Sf , e 6= f (using Corollary 6.2.5)

S∗eSe, e = f (as Se = SeS
∗
eSe).

=

0, e 6= f

Ss(e), e = f (using (TCK1)).

Hence S∗eSf = δe,fSs(e). �

The following corollary gives us a product formula for range projections.

Corollary 6.2.7. Let {S} be a Toeplitz-Cuntz-Krieger E-family in a C∗-algebra

B. Then for µ, ν, σ, τ ∈ E∗, we have

(6.2.8) (SµS
∗
ν)(SσS

∗
τ ) =


Sµσ′S

∗
τ , if σ = νσ′

SµS
∗
τν′ , if ν = σν ′

0, otherwise.

This is called the product formula.

Proof. Let µ, ν, σ, τ ∈ E∗. Then
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Case 1: |ν| ≤ |σ|.

Let σ = ασ′, where |α| = |ν|. Then

(SµS
∗
ν)(SσS

∗
τ ) = (SµS

∗
ν)(SαSσ′S

∗
τ ) (as σ = ασ′).

If ν = α, then

(SµS
∗
ν)(SσS

∗
τ ) =Sµ(S∗νSν)Sσ′S

∗
τ

=SµSs(ν)Sσ′S
∗
τ

=SµSr(σ′)Sσ′S
∗
τ (as σ = ασ′ =⇒ s(ν) = s(α) = r(σ′))

=SµSσ′S
∗
τ (using (6.2.1))

=Sµσ′S
∗
τ .

If ν 6= α, then suppose that ν = ν1ν2 . . . νn and α = α1α2 . . . αn. Let i be the smallest

integer such that νi 6= αi. Now

S∗νSα =(Sν1Sν2 . . . Sνn)∗Sα1Sα2 . . . Sαn(6.2.9)

=S∗νnS
∗
νn−1

. . . S∗ν2S
∗
ν1
Sα1Sα2 . . . Sαn

=S∗νnS
∗
νn−1

. . . S∗νiSs(νi−1)Sαi . . . Sαn (using (TCK1) and (6.2.1))

=S∗νnS
∗
νn−1

. . . S∗νiSr(νi)Sαi . . . Sαn

=S∗νnS
∗
νn−1

. . . S∗νiSαi . . . Sαn (using (6.2.1))

=0 (using Lemma 6.2.6).

Case 2: |σ| < |ν|.

Now take ν = βν ′, where |β| = |σ| and repeat a similar argument as in Case 1. One

can get (SµS
∗
ν)(SσS

∗
τ ) = SµS

∗
τν′ if β = σ and (SµS

∗
ν)(SσS

∗
τ ) = 0 if β 6= σ.

Hence (6.2.8) is proved. �

The C∗-algebra generated by the universal Toeplitz-Cuntz-Krieger E-family {s}

is same as the C∗-algebra generated by the family {sµs∗ν : µ, ν ∈ E∗, s(µ) = s(ν)}. We
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have the following lemma from [18, Lemma 3.3] which will give us a clear structure

of the C∗-algebra T C∗(E) for any directed graph E.

Lemma 6.2.8. Let A be a C∗-algebra and X ⊆ A. Then there is a C∗-algebra

C∗(X) generated by the X, which is the intersection of all C∗-subalgebras containing

X. If X is closed under multiplication and involution, then C∗(X) = spanX.

Remark 6.2.9. In view of the product formula in Corollary 6.2.7 we can see that

the family {sµs∗ν : µ, ν ∈ E∗, s(µ) = s(ν)} is closed under multiplication; and clearly

is closed under involution. Thus by Lemma 6.2.8 we can have

T C∗(E) = span{sµs∗ν : µ, ν ∈ E∗, s(µ) = s(ν)}.

Now we introduce Cuntz-Krieger E-family for a directed graph E and the C∗-

algebra C∗(E) generated by the universal Cuntz-Krieger E-family. Later we charac-

terize the relation between T C∗(E) and C∗(E).

Definition 6.2.3. Let E be a directed graph. If a Toeplitz-Cuntz-Krieger E-

family {S} also satisfies

(CK2) Sv =
∑
e∈vE1

SeS
∗
e for every v ∈ E0,

then {S} is called a Cuntz-Krieger E-family.

As with the Toeplitz algebra T C∗(E) there is a C∗-algebra C∗(E) generated by

the universal Cuntz-Krieger E-family {s}.

The following result from [8, Lemma 2.6] tells us about the relation between

T C∗(E) and C∗(E).

Proposition 6.2.10. Let T C∗(E) be the Toeplitz algebra generated by the Toeplitz-

Cuntz-Krieger E-family {s}. Let J be the closed two-sided ideal generated by {sv −∑
e∈vE1

ses
∗
e : v ∈ E0} and q : T C∗(E)→ T C∗(E)/J be the quotient map. Let s̄e = q(se)

for every e ∈ E1 and s̄v = q(sv) for every v ∈ E0. Then

(i) {s̄} is a Cuntz-Krieger E-family which generates T C∗(E)/J , and
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(ii) if {S} is a Cuntz-Krieger E-family in a C∗-algebra B, then there exists a

homomorphism π̄S : T C∗(E)/J → B which satisfies π̄S(se) = Se for every

e ∈ E1 and π̄S(sv) = Sv for every v ∈ E0.

Remark 6.2.11. The above proposition shows that C∗(E) is isomorphic to

T C∗(E)/J .

Definition 6.2.4. An action γ of T = {z ∈ C : |z| = 1} on the Toeplitz algebra

T C∗(E) defined as γz(sµs
∗
ν) = z|µ|−|ν|sµs

∗
ν is called the gauge action of T C∗(E).

The γ defined in Definition 6.2.4 is an action because it satisfies (a) γzγw = γzw for

all z, w ∈ T; (b) γ1 = I; and (c) z 7→ γz(a) is continuous for each fixed a ∈ T C∗(E).

We define a representation α : R → Aut T C∗(E) such that αt := γeit , where γ

is the gauge action of T C∗(E). Then (T C∗(E), α) is a C∗-dynamical system. From

now on we reserve the notation (T C∗(E), α) for this C∗-dynamical system.

Note 6.2.12. Note that the representation α : R→ Aut T C∗(E) can be extended

from R to a representation on C. In that case we define αz := γeiz for every z ∈ C.

Remark 6.2.13. From Note 5.2.8, we can conclude that if ω is a KMSβ state on

(T C∗(E), α), then ω(αz(sµs
∗
ν)) = ω(sµs

∗
ν) for every µ, ν ∈ E∗ and z ∈ C. Now let

−i ln z ∈ C. Then

ω(sµs
∗
ν) = ω(α−i ln z(sµs

∗
ν)) = ω(γei(−i ln z)(sµs

∗
ν) = ω(γz(sµs

∗
ν)).

This shows that ω is γ-invariant. Note that for z ∈ C, ln z = ln |z|+ iArg(z).

In what follows, we shall study two important results related to KMS state of

T C∗(E). However Lemma 5.2.7 plays vital role in these results. So we assume

β ∈ R \ {0} for the following two results.

Lemma 6.2.14. A state ω on (T C∗(E), α) is a KMSβ state if, and only if,

ω
(
(sµs

∗
ν)(sσs

∗
τ )
)

= e−β(|µ|−|ν|) ω
(
(sσs

∗
τ )(sµs

∗
ν)
)
.
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Proof. In view of Proposition 5.2.9, it is sufficient to show that

e−β(|µ|−|ν|) ω
(
(sσs

∗
τ )(sµs

∗
ν)
)

= ω
(
α−iβ

2
(sσs

∗
τ )αiβ

2
(sµs

∗
ν)
)
.

Now

e−β(|µ|−|ν|) ω
(
(sσs

∗
τ )(sµs

∗
ν)
)

=ω
(
(sσs

∗
τ ) e−β(|µ|−|ν|)(sµs

∗
ν)
)

=ω
(
(sσs

∗
τ )γe−β(sµs

∗
ν)
)

=ω
(
(sσs

∗
τ )αiβ(sµs

∗
ν)
)

=ω
(
αiβ

2

(
α−iβ

2
(sσs

∗
τ )αiβ

2
(sµs

∗
ν)
))

=ω
(
α−iβ

2
(sσs

∗
τ )αiβ

2
(sµs

∗
ν)
)

(using Note 5.2.8).

�

Proposition 6.2.15. A state ω is a KMSβ state on (T C∗(E), α) if, and only if,

(6.2.10) ω(sµs
∗
ν) = δµ,ν e−β|µ| ω(ss(µ)).

Proof. First suppose that ω is a KMSβ state on (T C∗(E), α).

Case 1: Let µ = ν. Then using (TCK1), we get s∗νsµ = s∗µsµ = ss(µ). Since ω satisfies

KMS condition, we have

ω(sµs
∗
ν) = ω(s∗ναiβ(sµ)) = e−β|µ| ω(s∗νsµ) = e−β|µ| ω(ss(µ)).

Case 2: Let µ 6= ν.

Sub-case 2.1: Let |µ| = |ν|. Then repeating the same argument as in (6.2.9) one

can get s∗νsµ = 0. So

ω(sµs
∗
ν) = ω(s∗ναiβ(sµ)) = e−β|µ| ω(s∗νsµ) = 0.

Sub-case 2.2: Let |µ| 6= |ν|. From Remark 6.2.13 we have that ω is γ-invariant.

Then

ω(sµs
∗
ν) = ω(γz(sµs

∗
ν)) = z|µ|−|ν|ω(sµs

∗
ν)
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=⇒
∫
T

ω(sµs
∗
ν)dz =

∫
T

z|µ|−|ν|ω(sµs
∗
ν)dz

=⇒ ω(sµs
∗
ν)

∫
T

dz = ω(sµs
∗
ν)

∫
T

z|µ|−|ν|dz

=⇒ ω(sµs
∗
ν) = 0 (using Cauchy’s Integral Theorem).

Hence ω(sµs
∗
ν) = δµ,ν e−β|µ| ω(ss(µ)).

Now suppose that ω is a state on T C∗(E) satisfying 6.2.10. In view of Lemma

6.2.14 it is sufficient to show that

ω
(
(sµs

∗
ν)(sσs

∗
τ )
)

= e−β(|µ|−|ν|) ω
(
(sσs

∗
τ )(sµs

∗
ν)
)

Let µ, ν, σ, τ ∈ E∗. Then using the product formula from (6.2.8) one can get

ω((sµs
∗
ν)(sσs

∗
τ )) =


ω(sµσ′s

∗
τ ), if σ = νσ′

ω(sµs
∗
τν′), if ν = σν ′

0, otherwise.

Since ω(sµs
∗
ν) = δµ,ν e−β|µ| ω(ss(µ)), we get

(6.2.11) ω((sµs
∗
ν)(sσs

∗
τ )) =


e−β|τ |ω(ss(τ)), if σ = νσ′ and τ = µσ′

e−β|µ|ω(ss(µ)), if ν = σν ′ and µ = τν ′

0, otherwise.

Similarly,

ω((sσs
∗
τ )(sµs

∗
ν)) =


e−β|σ|ω(ss(σ)), if τ = µσ′ and σ = νσ′

e−β|ν|ω(ss(ν)), if µ = τν ′ and ν = σν ′

0, otherwise.
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=⇒ e−β(|µ|−|ν|) ω((sσs
∗
τ )(sµs

∗
ν)) =


e−β(|µ|−|ν|) e−β|σ|ω(ss(σ)), if τ = µσ′ and σ = νσ′

e−β(|µ|−|ν|) e−β|ν|ω(ss(ν)), if µ = τν ′ and ν = σν ′

0, otherwise.

=


e−β(|µ|−|ν|+|σ|) ω(ss(σ)), if τ = µσ′ and σ = νσ′

e−β|µ| ω(ss(ν)), if µ = τν ′ and ν = σν ′

0, otherwise.

(6.2.12)

Case 1: τ = µσ′ and σ = νσ′, then s(τ) = s(σ′) = s(σ) and

|µ| − |ν| = |µσ′| − |νσ′| = |τ | − |σ| =⇒ |τ | = |µ| − |ν|+ |σ|.

So by (6.2.12), we get

e−β(|µ|−|ν|) ω((sσs
∗
τ )(sµs

∗
ν)) = e−β(|µ|−|ν|+|σ|) ω(ss(σ))

= e−β|τ | ω(ss(τ)) = ω((sµs
∗
ν)(sσs

∗
τ )) (by (6.2.11)).

Case 2: µ = τν ′ and ν = σν ′, then s(µ) = s(µ′) = s(ν). So by (6.2.12), we get

e−β(|µ|−|ν|) ω((sσs
∗
τ )(sµs

∗
ν)) = e−β|µ| ω(ss(ν)) = e−β|µ| ω(ss(µ)) (by (6.2.11)).

Case 3: ω((sµs
∗
ν)(sσs

∗
τ )) = e−β(|µ|−|ν|)ω((sσs

∗
τ )(sµs

∗
ν)) = 0.

Hence ω((sµs
∗
ν)(sσs

∗
τ )) = e−β(|µ|−|ν|) ω((sσs

∗
τ )(sµs

∗
ν)). �

6.3. KMS States on the C∗-Algebras of k-Graphs

In this section we introduce the Toeplitz algebras T C∗(Λ) for k-Graphs and then

study KMS states on the C∗-dynamical system (T C∗(Λ), αr). This section is referred

from [3], [8] and [10].

Notation 6.3.1. Let ~m = (m1,m2, . . . ,mk), ~n = (n1, n2, . . . , nk) ∈ Rk. Then we

use the notation

~m ∨ ~n =
(

max(m1, n1),max(m2, n2), . . . ,max(mk, nk)
)
,
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~m ∧ ~n =
(

min(m1, n1),min(m2, n2), . . . ,min(mk, nk)
)
.

Definition 6.3.1. For µ, ν ∈ Λ, we define the minimal extension for the ordered

pair (µ, ν) as

Λmin(µ, ν) = {(η, ζ) : η, ζ ∈ Λ, µη = νζ and d(µη) = d(µ) ∨ d(ν)}.

Lemma 6.3.1. For m,n, p, q ∈ Nk such that m+ p = n+ q. Then m+ p = m ∨ n

if, and only if, p ∧ q = 0.

Proof. Let us suppose m+ p = m ∨ n. Then for each i = 1, 2, . . . , k

pi = (m ∨ n)i −mi = max(mi, ni)−mi =

0, if ni < mi

ni −mi, if ni ≥ mi

.

Thus, qi = mi − ni + pi =

mi − ni, if ni < mi

0, if ni ≥ mi

.

So min(pi, qi) = 0 for every i = 1, 2, . . . , k which implies p ∧ q = 0.

Conversely, suppose that p ∧ q = 0, i.e., min(pi, qi) = 0 for every i = 1, 2, . . . , k.

If pi 6= 0, then qi = 0. Somi+pi = ni impliesmi+pi = max(mi, ni), i.e., m+p = m∨n.

If pi = 0, then mi = mi + pi = ni + qi implies mi + pi = max(mi, ni), i.e., m + p =

m ∨ n. �

Lemma 6.3.2. Let (η, ζ) ∈ Λmin(µ, ν) for µ, ν ∈ Λ. Then d(η) ∧ d(ζ) = 0.

Proof. Let (η, ζ) ∈ Λmin(µ, ν). Then µη = νζ and d(µη) = d(νζ) = d(µ) ∨ d(ν).

This implies

d(µ) + d(η) = d(ν) + d(ζ) and d(µ) + d(η) = d(µ) ∨ d(ν).

Then by Lemma 6.3.1, we conclude d(η) ∧ d(ζ) = 0. �
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Definition 6.3.2. Let Λ be a k-graph. A Toeplitz-Cuntz-Krieger Λ-family {Tλ}

consists of partial isometries {Tλ : λ ∈ Λ} such that

{Tv : v ∈ Λ0} are mutually orthogonal projections;(T1)

TλTµ = Tλµ whenever s(λ) = r(µ);(T2)

T ∗λTλ = Ts(λ) for every λ ∈ Λ;(T3)

for every v ∈ Λ0 and n ∈ Nk, we have Tv ≥
∑
λ∈vΛn

TλT
∗
λ ;(T4)

for every µ, ν ∈ Λ, we have T ∗µTν =
∑

(η,ζ)∈Λmin(µ,ν)

TηT
∗
ζ .(T5)

Remark 6.3.3. (1) In (T5) we consider any empty sum as 0.

(2) The relation (T4) implies that the range projection TλT
∗
λ of Tλ is dominated

by Tr(λ), i.e., TλT
∗
λ ≤ Tr(λ). Thus we can conclude that range of TλT

∗
λ is contained in

the range of Tr(λ), i.e.,

(6.3.1) Tλ = TλTs(λ) = Tr(λ)Tλ.

As Example 6.2.2 for directed graphs, we have a similar example for k-graphs (see

[16, Example 7.4]).

Proposition 6.3.4. Let Λ be a k-graph. Let hλ be the characteristic function on

Λ for λ ∈ Λ and H = `2(Λ). Let Tµ be a partial isometry defined by

Tµhλ =

hµλ, s(µ) = r(λ)

0, otherwise.

Then {Tµ : µ ∈ Λ} is a Toeplitz-Cuntz-Krieger Λ-family.

The following proposition from [17, Theorem 3.1.5] implies that there is a universal

C∗-algebra generated by Toeplitz-Cuntz-Krieger Λ-families.

Proposition 6.3.5. Let Λ be a k-graph. Then there exists a C∗-algebra denoted

by T C∗(Λ) generated by a Toeplitz-Cuntz-Krieger Λ-family {tλ : λ ∈ Λ} such that for
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every Toeplitz-Cuntz-Krieger Λ-family {Tλ : λ ∈ Λ} in a C∗-algebra B, there exists a

homomorphism πT of T C∗(Λ) into B which satisfies πT (tλ) = Tλ for every λ ∈ Λ.

In view of the above proposition, we call the Toeplitz-Cuntz-Krieger Λ-family

{tλ} having the universal property. From now on we always denote the universal

Toeplitz-Cuntz-Krieger Λ-family by the lower case family {tλ : λ ∈ Λ}.

Definition 6.3.3. In view of the above proposition we say that T C∗(Λ) has the

universal property, and T C∗(Λ) is called the Toeplitz algebra of Λ.

Lemma 6.3.6. Let {Tλ} be a Toeplitz-Cuntz-Krieger Λ-family. Then {TλT ∗λ : λ ∈

Λn} are mutually orthogonal for each n ∈ Nk.

Proof. Let λ, µ ∈ Λn. If r(λ) = r(µ) = v for some v ∈ Λ0, then from (T4) we

get

Tv ≥ TλT
∗
λ + TµT

∗
µ =⇒ 1 ≥

∣∣∣∣TλT ∗λ + TµT
∗
µ

∣∣∣∣ (by Proposition 5.1.5).

Thus Lemma 6.2.4 implies that TλT
∗
λ and TµT

∗
µ are orthogonal.

Now if r(λ) 6= r(µ), then again using (T4) we have

Tr(λ) ≥ TλT
∗
λ and Tr(µ) ≥ TµT

∗
µ .

Since Tr(λ) and Tr(µ) are orthogonal, the above inequalities show that TλT
∗
λ and TµT

∗
µ

are orthogonal. �

Lemma 6.3.7. For µ, ν ∈ Λ such that d(µ) = d(ν), we have

T ∗µTν = δµ,νTs(µ).

Proof. Let µ, ν ∈ Λ such that d(µ) = d(ν). Then

T ∗µTν =T ∗µTµT
∗
µTνT

∗
ν Tν (as Tµ = TµT

∗
µTµ)

=

T
∗
µ0Tν , if µ 6= ν (by Lemma 6.3.6)

T ∗µTµ, if µ = ν (as T = TµT
∗
µTµ)
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=

0, if µ 6= ν

Ts(µ), if µ = ν (using (T3)).

Hence T ∗µTν = δµ,νTs(µ). �

Lemma 6.3.8. Let {Tλ} be a Toeplitz-Cuntz-Krieger Λ-family in a C∗-algebra B.

Then for µ, ν, σ, τ ∈ Λ we have

(TµT
∗
ν )(TσT

∗
τ ) =

∑
(η,ζ)∈Λmin(ν,σ)

TµηT
∗
τζ .

Proof. Let µ, ν, σ, τ ∈ Λ. Then

(TµT
∗
ν )(TσT

∗
τ ) = Tµ(T ∗ν Tσ)T ∗τ =Tµ

( ∑
(η,ζ)∈Λmin(ν,σ)

TηT
∗
ζ

)
T ∗τ (using (T5))

=
∑

(η,ζ)∈Λmin(ν,σ)

TµTηT
∗
ζ T
∗
τ

=
∑

(η,ζ)∈Λmin(ν,σ)

TµηT
∗
τζ .

�

Remark 6.3.9. In view of the product formula in the above lemma and using

Lemma 6.2.8, we can conclude that

T C∗(Λ) = span{tµt∗ν : µ, ν ∈ Λ}.

Now we introduce Cuntz-Krieger Λ-family for a k-graph Λ and the C∗-algebra

C∗(Λ) generated by a universal Cuntz-Krieger Λ-family. Later we characterize the

relation between T C∗(Λ) and C∗(Λ).

Definition 6.3.4. A Toeplitz-Cuntz-Krieger Λ-family is said to be a Cuntz-

Krieger Λ-family if (T4) is replaced by

(CK) for every v ∈ Λ0 and n ∈ Nk, we have Tv =
∑
λ∈vΛn

TλT
∗
λ .
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As with the Toeplitz algebra T C∗(Λ) there is a C∗-algebra C∗(Λ) generated by the

universal Cuntz-Krieger Λ-family {tλ}.

The following proposition proved in [8, Lemma 5.4] gives a relation between

T C∗(Λ) and C∗(Λ).

Proposition 6.3.10. Let T C∗(Λ) be the Toeplitz algebra generated by the univer-

sal Toeplitz-Cuntz-Krieger Λ-family {tλ}. Let J be the two-sided closed ideal generated

by {tv −
∑

λ∈vΛei
tλt
∗
λ : v ∈ Λ0, i = 1, 2, . . . , k} and q : T C∗(Λ)→ T C∗(Λ)/J be the quo-

tient map. Let t̄λ = q(tλ). Then

(i) {t̄λ} is a Cuntz-Krieger Λ-family which generates T C∗(Λ)/J , and

(ii) if {Tλ} is a Cuntz-Krieger Λ-family in a C∗-algebra B, then there exists a

homomorphism π̄T : T C∗(Λ)/J → B which satisfies π̄T (t̄λ) = Tλ for every

λ ∈ Λ.

Remark 6.3.11. The above proposition shows that a C∗(Λ) is isomorphic to a

quotient of T C∗(Λ).

We introduce a representation αr on T C∗(Λ) and then we study the KMS states

of the C∗-dynamical system (T C∗(Λ), αr).

Definition 6.3.5. Define an action γ of Tk on T C∗(Λ) such that γz ∈ Aut T C∗(Λ)

defined as

γz(tµt
∗
ν) = zd(µ)−d(ν)tµt

∗
ν ,

where zd(µ)−d(ν) =
k∏
i=1

z
d(µ)i−d(ν)i
i (the multi-index notation is used). This action γ is

called the gauge action of T C∗(Λ).

Definition 6.3.6. Let r ∈ (0,∞)k. We define a representation αr : R →

Aut T C∗(Λ) such that αrt := γeitr , where γ is the gauge action of T C∗(Λ). Then

(T C∗(Λ), αr) is a C∗-dynamical system.

Note 6.3.12. (1) As defined in Definition 6.3.6,

αrt (tµt
∗
ν) = γeitr(tµt

∗
ν) = eitr·(d(µ)−d(ν)) tµt

∗
ν ,
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where r · (d(µ)− d(ν)) =
k∑
i=1

ri(d(µ)i − d(ν)i).

(2) For t ∈ R the map t 7→ eitr·
(
d(µ)−d(ν)

)
tµt
∗
ν extends to an analytic function

z 7→ eizr·
(
d(µ)−d(ν)

)
tµt
∗
ν for z ∈ C.

From now on we use the notation (T C∗(Λ), αr) for the above defined C∗-dynamical

system unless specified.

Proposition 6.3.13. Let β ∈ [0,∞), r ∈ (0,∞)k and ω be a state on T C∗(Λ).

(a) If ω is a KMSβ state of (T C∗(Λ), αr), then for every µ, ν ∈ Λ with d(µ) =

d(ν)

ω(tµt
∗
ν) = δµ,ν e−βr·d(µ) ω(ts(µ)).

(b) If

(6.3.2) ω(tµt
∗
ν) = δµ,ν e−βr·d(µ) ω(ts(µ)) for every µ, ν ∈ Λ,

then ω is a KMSβ state of T C∗(Λ).

(c) If r ∈ (0,∞)k has rationally independent coordinates, then ω is a KMSβ of

(T C∗(Λ), αr) if, and only if, (6.3.2) holds.

Proof. (a) Let us suppose ω is a KMSβ state of (T C∗(Λ), αr). Let µ, ν ∈ Λ with

d(µ) = d(ν). Then using Lemma 6.3.7, we get

ω(tµt
∗
ν) =ω(t∗να

r
iβ(tµ)) = e−βr·d(µ) ω(t∗νtµ) = δµ,ν e−βr·d(µ) ω(ts(µ)).

(b) Now suppose that ω is a state of T C∗(Λ) which satisfies (6.3.2).

For µ, ν ∈ Λ such that s(µ) 6= s(ν) we have

(6.3.3) tµt
∗
ν = tµt

∗
µtµt

∗
νtνt

∗
ν = tµts(µ)ts(ν)t

∗
ν = 0 (by (T1)).

Let µ, ν, σ, τ ∈ Λ.

Case 1: s(µ) 6= s(ν) or s(σ) 6= s(τ). Then by (6.3.3) either tµt
∗
ν = 0 or tσt

∗
τ = 0.

So ω(tµt
∗
νtσt

∗
τ ) = 0. This shows that ω(tµt

∗
νtσt

∗
τ ) = ω(tσt

∗
τα

r
iβ(tµt

∗
ν)).
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Case 2: s(µ) = s(ν) and s(σ) = s(τ). Then from Lemma 6.3.8 we get

ω(tµt
∗
νtσt

∗
τ ) =

∑
(η,ζ)∈Λmin(ν,σ)

ω(tµηt
∗
τζ)

=
∑

(η,ζ)∈Λmin(ν,σ)

δµη,τζ e−βr·d(µη) ω(ts(µη)) (using (6.3.2))

=
∑

{(η,ζ)∈Λmin(ν,σ):µη=τζ}

e−βr·d(µη) ω(ts(η)).

(6.3.4)

Similarly,

(6.3.5) ω(tσt
∗
τ tµt

∗
ν) =

∑
{(γ,λ)∈Λmin(τ,µ):σγ=νλ}

e−βr·d(σγ) ω(ts(γ)).

In order to prove that ω is a KMSβ state of (T C∗(Λ), αr), we need to show that

ω(tµt
∗
νtσt

∗
τ ) = ω(tσt

∗
τα

r
iβ(tµt

∗
ν)) = e−βr·(d(µ)−d(ν)) ω(tσt

∗
τ tµt

∗
ν).

Thus in view of (6.3.4) and (6.3.5), we need to show that

∑
{(η,ζ)∈Λmin(ν,σ):µη=τζ}

e−βr·d(µη)ω(ts(η))

=
∑

{(γ,λ)∈Λmin(τ,µ):σγ=νλ}

e−βr·
(
d(µ)−d(ν)+d(σγ)

)
ω(ts(γ)).

(6.3.6)

Let (η, ζ) ∈ Λmin(ν, σ) such that µη = τζ. Since (η, ζ) ∈ Λmin(ν, σ), Lemma 6.3.2

implies that

(6.3.7) d(η) ∧ d(ζ) = 0.

Also µη = τζ implies d(µ) + d(η) = d(τ) + d(ζ). Thus from (6.3.7) and by Lemma

6.3.1 we get

d(µ) + d(η) = d(µ) ∨ d(τ), i.e, d(µη) = d(µ) ∨ d(τ).
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Hence (η, ζ) ∈ Λmin(µ, τ) or (ζ, η) ∈ Λmin(τ, µ). Also (η, ζ) ∈ Λmin(ν, σ) implies that

σζ = νη. Thus

(ζ, η) ∈ {(γ, λ) ∈ Λmin(τ, µ) : σγ = νλ}.

Similarly for (γ, λ) ∈ (γ, λ) ∈ Λmin(τ, µ) such that σγ = νλ one can get

(λ, γ) ∈ {(η, ζ) ∈ Λmin(ν, σ) : µη = τζ}.

So we can conclude that the map (η, ζ) 7→ (ζ, η) is a bijection map from the indexing

set of left hand sum of (6.3.6) onto the indexing set of right hand sum of (6.3.6).

Thus to prove (6.3.6), it is sufficient to show that the (η, ζ)th term in left hand sum

of (6.3.6) is equal to the (ζ, η)th term in the right hand sum of (6.3.6).

Now (ζ, η) ∈ {(γ, λ) ∈ Λmin(τ, µ) : σγ = νλ} implies that σζ = νη which clearly

shows that s(η) = s(ζ) and d(σζ) = d(νη). Thus (ζ, η)th term in right hand sum of

(6.3.6) is

e−βr·
(
d(µ)−d(ν)+d(σζ)

)
ω(ts(ζ)) = e−βr·

(
d(µ)−d(ν)+d(νη)

)
ω(ts(η))

= e−βr·
(
d(µ)+d(η)

)
ω(ts(η)) = e−βr·d(µη) ω(ts(η)),

which is the (η, ζ)th term of the left hand sum of (6.3.6).

(c) Let r ∈ (0,∞)k have rationally independent coordinates. We need to show

that ω is a KMSβ state if, and only if, (6.3.2) holds.

First let us suppose ω is a KMSβ state of (T C∗(Λ), αr). Let µ, ν ∈ Λ such that

s(µ) = s(ν) (otherwise tµt
∗
ν = 0 and a same argument as in Case 1 of part (a) gives

the result).

If d(µ) = d(ν), then the part (a) of this proposition gives the result.

If d(µ) 6= d(ν), then

ω(tµt
∗
ν) = ω(t∗να

r
iβ(tµ)) = e−βr·d(µ) ω(t∗νtµ)

= e−βr·d(µ) ω(tµα
r
iβ(t∗ν)) (using KMS condition)

= e−βr·d(µ) ω(tµ(αriβ(tν))
∗)
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= e−βr·d(µ) eβr·d(ν) ω(tµt
∗
ν) = e−βr·(d(µ)−d(ν)) ω(tµt

∗
ν).(6.3.8)

Since r has rationally independent coordinates,

d(µ) 6= d(ν) =⇒ r · (d(µ)− d(ν)) 6= 0 =⇒ e−βr·(d(µ)−d(ν)) 6= 1.

Thus (6.3.8) is valid if, and only if ω(tµt
∗
ν) = 0. Hence we got

ω(tµt
∗
ν) =

e−βr·(d(µ)−d(ν)) ω(tµt
∗
ν), if d(µ) = d(ν)

0, otherwise
,

which clearly states that ω(tµt
∗
ν) = δµ,ν e−βr·d(µ) ω(ts(µ)).

Conversely, let ω satisfies the equation (6.3.2). Then the proof is given by part

(b) of this proposition. �

Since C∗(Λ) is a quotient of T C∗(Λ), we can construct a representation ᾱr :

R → AutC∗(Λ) such that ᾱrt (ā) = π(αrt (a)) for every a ∈ T C∗(Λ), where αr is the

representation induced by the gauge action (see Definition 6.3.6) and π is the quotient

map. Then (C∗(Λ), ᾱr) is a C∗-dynamical system.

The following proposition is the subinvariance relation in (T C∗(Λ), αr).

Proposition 6.3.14. Let Λ be a finite k-graph and Ai be its coordinate matrix for

i = 1, 2, . . . , k. Let r ∈ (0,∞)k, β ∈ [0,∞) and ω be a KMSβ state of (T C∗(Λ), αr).

(a) Define mω = (mω
v ) ∈ [0, 1]Λ

0
by mω

v = ω(tv). Then mω � 0 and
∑
v∈Λ0

mv =

1 (we call such mω a probability measure on Λ0). Also for every K ⊆

{1, 2, . . . , k} we have
∏
i∈K

(1− e−βri Ai)m
ω � 0.

(b) The KMSβ state ω factors through a KMSβ state of (C∗(Λ), ᾱr) if, and only

if, Aim
ω = eβrimω for every i = 1, 2, . . . , k.

To prove this proposition we need the following three lemmas.

Lemma 6.3.15. Let A be a C∗-algebra. Let ai ∈ A for every i = 1, 2, . . . , n and let

∅ 6= K ⊆ {1, 2, . . . , n}. Let x ∈ A such that x2 = x, xai = aix = ai and write a∅ = x.
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Then

(6.3.9)
∏
i∈K

(x− ai) =
∑
J⊆K

(−1)|J |(
∏
j∈J

aj).

Proof. We shall prove this by induction on n. For n = 1, we have K = {1}.

The right hand side of (6.3.9) is

(−1)|∅|(a∅) + (−1)|{1}|a1 = x− a1,

which is equal to left hand side of (6.3.9).

Let us assume the result is true for n = m, i.e., for K ⊆ {1, 2, . . . ,m} (6.3.9)

holds.

We need to prove that the result holds for n = m+ 1. Let K ⊆ {1, 2, . . . ,m} and

K ′ = K
⋃
{m+ 1}. Then∏

i∈K′
(x− ai) =

∏
i∈K

(x− ai)(x− am+1)

=
(∑
J⊆K

(−1)|J |(
∏
j∈J

aj)
)

(x− am+1) (by the induction asumption)

=
∑
J⊆K

(−1)|J |(
∏
j∈J

aj)(x− am+1)

=
∑
J⊆K

(
(−1)|J |(

∏
j∈J

aj)x− (−1)|J |(
∏
j∈J

aj)am+1

)
=
∑
J⊆K

(
(−1)|J |(

∏
j∈J

aj)− (−1)|J |(
∏
j∈J

aj)am+1

)
(as ajx = aj)

=
∑
J⊆K′

(−1)|J |(
∏
j∈J

aj).

�

Lemma 6.3.16. Let K ⊆ {1, 2, . . . , k}. For J ⊆ K and v ∈ Λ0, we write eJ :=∑
j∈J

ej, where {ei} are the standard generators of Nk and tJ =
∑

µ∈vΛeJ
tµt
∗
µ ∈ T C∗(Λ);

also we write t∅ := tv and ti = t{i} for i ∈ {1, 2, . . . , k}. Then
∏
i∈K

(tv − ti) =∑
J⊆K

(−1)|J |tJ .
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Proof. The relation (T4) clearly infers that

ti =
∑
µ∈vΛei

tµt
∗
µ ≤ tv =⇒ tvti = ti and titv = ti.

Hence by Lemma 6.3.15, we get

(6.3.10)
∏
i∈K

(tv − ti) =
∑
J⊆K

(−1)|J |
(∏
j∈J

tj
)
.

Suppose ∅ 6= L ⊆ J \ {i}. Then

(6.3.11) ei ∨ eL = ei ∨
∑
j∈L

ej =
∑

j∈L∪{i}

ej = eL
⋃
{i}.

Now

titL =
∑
µ∈Λei

tµt
∗
µ

∑
λ∈ΛeL

tλt
∗
λ

=
∑
µ∈Λei

∑
λ∈ΛeL

tµt
∗
µtλt

∗
λ

=
∑
µ∈Λei

∑
λ∈ΛeL

tµ
( ∑
{(η,ζ):µη=λζ and d(µη)=ei∨eL}

tηt
∗
ζ

)
t∗λ (by (T5))

=
∑
µ∈Λei

∑
λ∈ΛeL

∑
{(η,ζ):µη=λζ and d(µη)=ei∨eL}

tµtηt
∗
ζt
∗
λ (by (6.3.11))

=
∑
µ∈Λei

∑
λ∈ΛeL

∑
{(η,ζ):µη=λζ and d(µη)=eL∪{i}}

tµηt
∗
λζ (by (T2))

=
∑

γ∈vΛ
eL∪{i}

tγt
∗
γ = tL∪{i}.

Thus we can conclude that
∏
j∈J

tj = tJ . So (6.3.10) yields

∏
i∈K

(tv − ti) =
∑
J⊆K

(−1)|J |tJ .

�

Lemma 6.3.17. [9] Suppose (A, τ) is a C∗-dynamical system and J is a closed

two-sided ideal in A generated by a set P of projections which are fixed by τ . Let Aτ be
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the family of τ -analytic elements of A which is τ -invariant and dense in A. Moreover,

for every a ∈ Aτ , there is a scalar-valued function fa satisfying τz(a) = fa(z)a. If φ

is a KMSβ state of (A, τ) and φ(p) = 0 for every p ∈ P, then φ factors through a

KMS state of A/J .

Proof. We know that φ factors through a KMS state of A/J if, and only if,

there exists a KMS state φ̃ of A/J such that φ = φ̃ ◦ π, where π is the quotient map

from A to A/J . In order to show this, it is sufficient to show that φ vanishes on J

and φ̃ is a KMS state. Let a ∈ A, p ∈ P . Then

|φ(pap)|2 ≤φ(p∗p)φ((ap)∗ap) (by Theorem 5.2.4(b))

=φ(p)φ(pa∗ap) = 0 (as p∗ = p = p2 and φ(p) = 0).

This clearly shows that φ vanishes on pAp.

Now fix a, b ∈ Aτ . Since the elements of P are fixed by τ , we have τt(ap) = τt(a)p

for every t ∈ R. This shows that ap is τ -analytic with τz(ap) = τz(a)p = fa(z)ap.

Thus KMSβ conditions give

φ(apb) =φ((ap)(pb))

=φ((pb)τiβ(ap)) = fa(iβ)φ(pbap) = 0 (as φ vanishes on pAp).

Since Aτ is dense in A and φ is continuous and linear, φ(apb) = 0 for every a, b ∈ A

and hence φ vanishes on J .

Note that φ̄ is a state of the C∗-dynamical system (A/J , τ̄), where τ̄ is the

representation defined as τ̄t(ā) = π(τt(a)) for every a ∈ A. Now we shall prove that

φ̃ satisfies KMS condition. Let ā, b̄ ∈ Aτ/J . Then

φ̃(āb̄) = φ̃ ◦ π(ab) = φ(ab)

= φ(bτiβ(a)) (as φ is a KMS)

= φ̃ ◦ π(bτiβ(a)) = φ̃(b̄τ̄iβ(ā)).

Hence φ̃ is a KMS state of (A/J , τ̄). �
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Proof of Proposition 6.3.14. (a) Since projections are positive and ω is also

positive, we can conclude that mω � 0. Moreover,∑
v∈Λ0

mω
v =

∑
v∈Λ0

ω(tv) = ω(
∑
v∈Λ0

tv) = ω(1) = 1.

Let K ⊆ {1, 2, . . . , k} and v ∈ Λ0. Then using the notation as in Lemma 6.3.16, we

get ti =
∑

µ∈vΛei
tµt
∗
µ ≤ tv, for every i = 1, 2, . . . , k. This implies ti = titv = tvti. Recall

that the product of two commuting bounded positive operators is positive. Hence∏
i∈K

(tv − ti) ≥ 0. Thus using positivity of ω and Lemma 6.3.16, we get

0 ≤ ω(
∏
i∈K

(tv − ti)) = ω
(∑
J⊆K

(−1)|J |tJ
)

=
∑
J⊆K

(−1)|J |ω(tJ)

=
∑
J⊆K

(−1)|J |
( ∑
µ∈vΛeJ

ω(tµt
∗
µ)
)

=
∑
J⊆K

(−1)|J |
( ∑
µ∈vΛeJ

e−βr.eJ ω(ts(µ))
)

(by Proposition 6.3.13)

=
∑
J⊆K

(−1)|J | e−βr.eJ
( ∑
µ∈vΛeJ

mω
s(µ)

)
=
∑
J⊆K

(−1)|J | e−βr.eJ
( ∑
w∈Λ0

|vΛeJw|mω
w

)
=
∑
J⊆K

(−1)|J | e−βr.eJ
( ∑
w∈Λ0

AeJ (v, w)mω
w

)
=
∑
J⊆K

(−1)|J | e−βr.eJ
(
AeJmω

)
v

=
∑
J⊆K

(−1)|J |
∏
j∈J

e−βrj
(
(
∏
j∈J

Aj)m
ω
)
v

(as eJ =
∑
j∈J

ej)

=
∑
J⊆K

(−1)|J |
(
(
∏
j∈J

e−βrj Aj)m
ω
)
v

=
(∑
J⊆K

(−1)|J |(
∏
j∈J

e−βrj Aj)m
ω
)
v
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=
((∑

J⊆K

(−1)|J |(
∏
j∈J

e−βrj Aj)
)
mω
)
v

=
((∏

i∈K

(I − e−βri Ai)
)
mω
)
v

(by Lemma 6.3.15).

(b) Proposition 6.3.10(b) states that C∗(Λ) is the quotient of T C∗(Λ) by the ideal

J generated by the projections {tv −
∑

λ∈vΛei
tλt
∗
λ : v ∈ Λ0, 1 ≤ i ≤ k}. Now

ω
(
tv −

∑
λ∈vΛei

tλt
∗
λ

)
= ω(tv)−

∑
λ∈vΛei

ω(tλt
∗
λ)

= mω
v −

∑
λ∈vΛei

e−βri ω(ts(λ)) (by Proposition 6.3.13)

= mω
v −

∑
w∈Λ0

e−βri |vΛeiw|ω(tw)

= mω
v −

∑
w∈Λ0

e−βri Ai(v, w)mw

= mω
v − e−βri(Aim

ω)v.(6.3.12)

If ω factors through a state of C∗(Λ), then ω vanishes on the generators of J , i.e.,

ω
(
tv −

∑
λ∈vΛei

tλt
∗
λ

)
= 0. Thus the equation (6.3.12) yields mω = e−βri Aim

ω.

Conversely, let us suppose mω = e−βri Aim
ω. Then the equation (6.3.12) implies

that ω vanishes on the generators of J . Also

αrz(tv −
∑
λ∈vΛei

tλt
∗
λ) = αrz(tv)−

∑
λ∈vΛei

αrz(tλt
∗
λ)

= eizr·d(v) tv −
∑
λ∈vΛei

eizr.(d(λ)−d(λ))(tλt
∗
λ) = tv −

∑
λ∈vΛei

tλt
∗
λ.

This shows that αr fixes the generators of J . Moreover, for all tµt
∗
ν ∈ T C∗(Λ), the

analytic function fa(z) = eizr.(d(µ)−d(ν) satisfies αrz(a) = fa(z)a. Thus Lemma 6.3.17

implies that ω factors through a KMSβ state of T C∗(Λ)/J ∼= C∗(Λ). �

Corollary 6.3.18. Suppose Λ is a strongly connected finite k-graph. Let r ∈

(0,∞)k and ω is a KMSβ state of (T C∗(Λ), αr). Then βri ≥ ln ρ(Ai) for every

i = 1, 2, . . . , k.
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Proof. Define mω = (mω
v ) ∈ [0, 1]Λ

0
by mω

v = ω(tv). Since tv is a projection so

is positive and ω is positive, ω(tv) ≥ 0. This implies mω � 0. Apply Proposition

6.3.14(a) to the singleton set K = {i}, we get (1− e−βri Ai)m
ω � 0 for i = 1, 2, . . . , k.

This clearly implies that

(6.3.13) Aim
ω � eβrimω.

Since Λ is a finite k-graph, Ai’s are non-negative matrices for every i = 1, 2, . . . , k

having at least one non zero-entry. Thus using Lemma 4.1.3 and the inequality

(6.3.13) we conclude that eβri ≥ ρ(Ai). Moreover, since Λ is strongly connected, by

Corollary 4.4.3(a) one has ρ(Ai) > 0. So βri ≥ ln ρ(Ai). �

Corollary 6.3.19. Suppose that Λ is a strongly connected finite k-graph. Let r ∈

(0,∞)k and ω is a KMSβ state of (C∗(Λ), ᾱr). Then βri = ln ρ(Ai) for i = 1, 2, . . . , k.

Proof. Define mω = (mω
v ) ∈ [0, 1]Λ

0
by mω

v = ω(tv). Then by Proposition

6.3.14(b) mω satisfies Aim
ω = eβrimω for every i = 1, 2, . . . , k. Since each Ai is

non-negative, the moreover part of Lemma 4.1.3 implies that eβri = ρ(Ai). Thus by

Corollary 4.4.3(a), ρ(Ai) > 0. So βri = ln ρ(Ai). �

In part (c) of Proposition 6.3.13 it is assumed that r has rationally independent

coordinates in order to show that d(µ) 6= d(ν) implies r · d(µ) 6= r · d(ν) which makes

ω(tµt
∗
ν) = 0 in the equation (6.3.8). However, it is possible that if d(µ) 6= d(ν), then

ω(tµt
∗
ν) = 0 without assuming that r has rationally independent coordinates. For

that we need to restrict the value of β in the following theorem from [10, Theorem

5.1].

Theorem 6.3.20. Let Λ be a finite k-graph and Ai’s be the coordinate matrices

of Λ for i = 1, 2, . . . , k. Let r ∈ (0,∞)k and β ∈ (0,∞) such that βri > ln ρ(Ai) for

i = 1, 2, . . . , k. Then a state ω of (T C∗(Λ), αr) is a KMSβ state if, and only if,

(6.3.14) ω(tµt
∗
ν) = δµ,ν e−βr·d(µ) ω(ts(µ)) for all µ, ν ∈ Λ.
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With the help of Theorem 6.3.20 we now give a precise method to find all possible

KMSβ states of (T C∗(Λ), αr). For that we need the following lemma.

Lemma 6.3.21. Suppose Λ is a finite k-graph and Ai’s are the coordinate matrices

of Λ for i = 1, 2, . . . , k. Let β ∈ [0,∞) and r ∈ (0,∞)k such that βri > ln ρ(Ai) for

every i = 1, 2, . . . , k. Then the series
∑
n∈Nk

e−βr·nAn converges in the operator norm

to
k∏
i=1

(I − e−βri Ai)
−1.

Proof. The N th partial sum is given by:

(6.3.15)
∑

0≤n≤N

e−βr·nAn =
∑

0≤n≤N

k∏
i=1

e−βri·ni Anii =
k∏
i=1

( Ni∑
ni=0

e−βrini Anii

)
.

For every i we have βri > ρ(Ai) and a result from [11, Lemma VII.3.4] implies

that
Ni∑
ni=0

e−βri·ni Ani converges to (I−e−βri Ai)
−1 in operator norm as Ni →∞. Since

N →∞ ⇐⇒ Ni →∞ for all i, the the sum in (6.3.15) converges to
k∏
i=1

(I−e−βri Ai)
−1

as N →∞. �

Theorem 6.3.22. Let Λ be a finite k-graph and let Ai be the coordinate matrices

of Λ for i = 1, 2, . . . , k. Suppose r ∈ (0,∞)k and β ∈ (0,∞) such that βri > ln ρ(Ai)

for i = 1, 2, . . . , k.

(a) For v ∈ Λ0, the series
∑
µ∈Λv

e−βr·d(µ) converges to a sum yv ≥ 1. Set y =

(yv) ∈ [1,∞)Λ0
, and consider ε ∈ [0,∞)Λ0

. Then m :=
k∏
i=1

(I − e−βri Ai)
−1ε

satisfies Aim � eβrim for i = 1, 2, . . . , k; m is a probability measure on Λ0

if, and only if, ε · y = 1.

(b) Suppose ε ∈ [1,∞)Λ0
such that ε · y = 1 and set m :=

k∏
i=1

(I − e−βri Ai)
−1ε.

Then there is a KMSβ state ωε of (T C∗(Λ), αr) satisfying

(6.3.16) ωε(tµt
∗
ν) = δµ,ν e−βr·d(µ)ms(µ).

(c) The map ε 7→ ωε is a bijection from Σβ = {ε ∈ [0,∞)Λ0
: ε · y = 1} to the set

of all KMSβ states of (T C∗(Λ), αr).



6.3. KMS STATES ON THE C∗-ALGEBRAS OF k-GRAPHS 100

Proof. (a) Let v ∈ Λ0. Now∑
µ∈Λv

e−βr·d(µ) =
∑
n∈Nk

∑
µ∈Λnv

e−βr·n

=
∑
n∈Nk

∑
w∈Λ0

e−βr·n |wΛnv| =
∑
n∈Nk

∑
w∈Λ0

e−βr·nAn(w, v).
(6.3.17)

Lemma 6.3.21 implies that
∑
n∈Nk

e−βr·nAn converges in operator norm. So for every

fixed w ∈ Λ0, the series
∑
n∈Nk

e−βr·nAn(w, v) converges. Also since Λ is finite, the

sum (6.3.17) converges. Moreover, the sum is at least 1 because e−βr·nAn(w, v) are

non-negative and e0A0(v, v) = 1.

Let m :=
k∏
i=1

(I − e−βri Ai)
−1ε. Then by Lemma 6.3.21, we can conclude that

(6.3.18) m =
∑
n∈Nk

e−βr·nAnε

Then clearly m ≥ 0 and∑
v∈Λ0

mv =
∑
v∈Λ0

∑
n∈Nk

(e−βr·nAnε)v =
∑
v∈Λ0

( ∑
n∈Nk

(
e−βr·nAn

)
ε
)
v

=
∑
v∈Λ0

∑
n∈Nk

∑
w∈Λ0

e−βr·nAn(v, w)εw

=
∑
w∈Λ0

εw

(∑
v∈Λ0

∑
n∈Nk

e−βr·n |vΛnw|
)

=
∑
w∈Λ0

εw

( ∑
µ∈Λw

e−βr·d(µ)
)

= ε · y.

Hence m is a probability measure if, and only if, ε · y = 1.

(b) To construct ωε, we use Proposition 6.3.5 with the Toeplitz-Cuntz-Krieger

Λ-family from Proposition 6.3.4. Define a linear functional ωε on T C∗(Λ) as:

ωε(a) =
∑
λ∈Λ

∆λ〈πT (a)hλ, hλ〉 for a ∈ T C∗(Λ),

where ∆λ = e−βr·d(λ) εs(λ) for λ ∈ Λ.
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Now, let a∗a ∈ T C∗(Λ) be a positive element, then

ωε(a
∗a) =

∑
λ∈Λ

∆λ〈πT (a∗a)hλ, hλ〉 =
∑
λ∈Λ

∆λ〈πT (a)∗πT (a)hλ, hλ〉

=
∑
λ∈Λ

∆λ〈πT (a)hλ, πT (a)hλ〉

=
∑
λ∈Λ

∆λ ||πT (a)hλ||2 .

Since ∆λ ≥ 0, ωε is a positive functional.

Now fix v ∈ Λ0, then∑
µ∈vΛ

Λµ =
∑
n∈Nk

∑
µ∈vΛn

e−βr·d(µ) εs(µ) =
∑
n∈Nk

e−βr·d(µ)
( ∑
w∈Nk

∑
µ∈vΛnw

εw

)
=
∑
n∈Nk

e−βr·d(µ)
( ∑
w∈Nk

|vΛnw|εw
)

=
∑
n∈Nk

e−βr·d(µ)
( ∑
w∈Nk

An(v, w)εw

)
=
∑
n∈Nk

e−βr·d(µ)
(
Anε

)
v

=
( ∑
n∈Nk

e−βr·d(µ) Anε
)
v

= mv(6.3.19)

Since ε · y = 1, part (a) of this theorem implies that m is a probability measure. So

(6.3.20) 1 =
∑
v∈Λ0

mv =
∑
v∈Λ0

∑
µ∈vΛ

Λµ =
∑
µ∈Λ

∆µ.

Thus by Proposition 5.2.6, we get

||ωε|| = ωε(1) = ωε(
∑
v∈Λ0

tv) =
∑
v∈Λ0

ωε(tv)

=
∑
v∈Λ0

∑
λ∈Λ

∆λ〈πT (tv)hλ, hλ〉

=
∑
v∈Λ0

∑
λ∈Λ

∆λ〈Tvhλ, hλ〉

=
∑
v∈Λ0

∑
λ∈vΛ

∆λ〈hλ, hλ〉
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=
∑
v∈Λ0

∑
λ∈vΛ

∆λ =
∑
µ∈Λ

∆µ = 1 (by (6.3.20)).

So ωε is a state. Now,

ωε(tµt
∗
ν) =

∑
λ∈Λ

∆λ〈TµT ∗ν hλ, hλ〉 =
∑
λ∈Λ

∆λ〈T ∗ν hλ, T ∗µhλ〉.

But

(6.3.21) 〈T ∗ν hλ, T ∗µhλ〉 =

1, λ = µλ′ = νλ′

0, otherwise

Also by the unique factorization, µλ′ = νλ′ implies µ = ν. So 〈T ∗ν hλ, T ∗µhλ〉 = 0 if

µ 6= ν implies ωε(tµt
∗
ν) = 0 if µ 6= ν. If µ = ν, then

ωε(tµt
∗
µ) =

∑
λ∈Λ

∆λ〈πT (tµt
∗
µ)hλ, hλ〉

=
∑
λ∈Λ

∆λ〈T ∗µhλ, T ∗µhλ〉

=


∑
λ∈Λ

∆λ, if λ = µλ′

0, otherwise

(by (6.3.21))

=
∑
µλ′∈Λ

∆µλ′ .

Thus

ωε(tµt
∗
ν) =


∑

µλ′∈Λ

∆µλ′ , if µ = ν

0, otherwise.

and ∑
µλ′∈Λ

∆µλ′ =
∑
µλ′∈Λ

e−βr·d(µλ′) εs(µλ′)

= e−βr·d(µ)
∑

λ′∈s(µ)Λ

e−βr·d(λ′) εs(λ′)
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= e−βr·d(µ)
∑

λ′∈s(µ)Λ

∆λ′ = e−βr·d(µ) ms(µ) (by (6.3.19)).

Hence ωε(tµt
∗
ν) = δµ,ν e−βr·d(µ) ms(µ).

Now in order to prove that ωε is a KMSβ state, by Proposition 6.3.13(b) it is

sufficient to prove that ms(µ) = ωε(tsµ).

ωε(ts(µ)) =
∑
λ∈Λ

∆λ〈πT (ts(µ))hλ, hλ〉

=
∑
λ∈Λ

∆λ〈Ts(µ)hλ, hλ〉

=
∑
λ∈Λ

∆λ〈Ts(µ)hλ, Ts(µ)hλ〉 (as Ts(µ) = T 2
s(µ) = T ∗s(µ))

=
∑

λ∈s(µ)Λ

∆λ (by (6.3.21))

=ms(µ) (by (6.3.19)).

(c) Let ε ∈ Σβ. Then by part (b) of this Theorem ωε is a KMSβ state of (T C∗(Λ), αr).

Moreover, if ε′ ∈ Σβ such that ε 6= ε′, then by part (b) of this theorem ωε 6= ωε′ . So

the map ε 7→ ωε is injective.

Now let ω be a KMSβ state of (T C∗(Λ), αr). Then by Proposition 6.3.14, mω =

(mω
v ) ∈ [0, 1]Λ

0
, where mω

v = ω(tv), is a probability measure which satisfies ε :=
k∏
i=1

(I−e−βri Ai)m
ω � 0. So mω =

k∏
i=1

(I−e−βri Ai)
−1ε and by part (a) of this theorem,

ε · y = 1. Now compare the formula (6.3.14) in Theorem 6.3.20 with (6.3.16), we can

conclude ωε = ω. This shows that the map ε 7→ ωε is surjective. �

Theorem 6.3.22 gives all possible KMSβ states when βri > ln ρ(Ai). However if

we create a condition when βri = ln ρ(Ai), then for a strongly connected k-graph Λ,

we formulate a unique KMS state of (T C∗(Λ), αr) for a specific value of r with the

help of Theorem 6.3.22.

Theorem 6.3.23. Let Λ be a strongly connected finite k-graph. Suppose Ai’s are

the coordinate matrices of Λ and let r = (ln ρ(A1), ln ρ(A2), . . . , ln ρ(Ak)) ∈ (0,∞)k
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such that r has rationally independent coordinates. Let xΛ be the UPF eigenvector

for Λ.

(a) Then there is a unique KMS1 state ω of (T C∗(Λ), αr) such that

ω(tµt
∗
ν) = δµ,ν e−r·d(µ) xΛ

s(µ) for all µ, ν ∈ Λ.

(b) This state in (a) factors through a state ω̃ of the quotient C∗(Λ). The state

ω̃ is the only KMS1 state for (C∗(Λ), ᾱr).

Proof. Let {βn} be a decreasing sequence of real numbers such that βn → 1.

Since Λ is a strongly connected, by Proposition 4.1.5(a)(i) xΛ is a common eigen-

vector to all Ai’s associated to the eigenvalue ρ(Ai), i.e., Aix
Λ = ρ(Ai)x

Λ for all

i = 1, 2, . . . , k.

Moreover, xΛ is strictly positive and a unimodular vector. These imply xΛ is a

probability measure satisfying

Aix
Λ = ρ(Ai)x

Λ � eβn ln ρ(Ai) xΛ = eβnri xΛ (as for every n, βn ≥ 1).

Since βnri > ln ρ(Ai), Theorem 6.3.22(b) with ε =
k∏
i=1

(I − e−βn Ai)x
Λ gives a KMSβn

state ωn satisfying

(6.3.22) ωn(tµt
∗
ν) = δµ,ν e−βnr·d(µ) xΛ

s(µ).

Recall that the Banach-Alaoglu Theorem states that, for any normed space X, the

closed unit ball of the dual space X∗ is compact with respect to the weak∗ topology.

So if we consider the state space of T C∗(Λ), Banach-Alaoglu Theorem implies that it

is weak∗ compact. Hence there exist a subsequence {ωnl} of the sequence {ωn} which

is convergent. Let ωnl → ω. Now from (6.3.22), we get

(6.3.23) ω(tµt
∗
ν) = δµ,ν e−r·d(µ) xΛ

s(µ).

To show the uniqueness, let ψ be a KMS1 state for (T C∗(Λ), αr). Then by Proposi-

tion 6.3.14(a) mψ = (ψ(tv)) is a probability measure satisfying (I−e− ln ρ(Ai) Ai)m
ψ �
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0 or Aim
ψ � ρ(Ai)m

ψ. Using Lemma 4.1.3, we get Aim
ψ = ρ(Ai)m

ψ, and clearly∣∣∣∣mψ
∣∣∣∣ = ψ

( ∑
v∈Λ0

tv

)
= ψ(1) = 1. Thus we get that mψ is a unimodular eigenvector

of Ai associated to ρ(Ai). Hence Proposition 4.1.5(a) assures that mψ = xΛ. Since r

has rationally independent coordinates, Proposition 6.3.13(c) implies that

ψ(tµt
∗
ν) = δµ,ν e−r·d(µ) xΛ

s(µ) for all µ, ν ∈ Λ.

Thus the equation (6.3.23) yields that ψ = ω.

(b) For mω = xΛ, we have Aim
ω = ρ(Ai)m

ω. So Proposition 6.3.14(b) implies

that ω factors through a KMS state ω̃ of (C∗(Λ), ᾱr), i.e.,

(6.3.24) ω = ω̃ ◦ π.

To show the uniqueness, let ψ̃ be a KMSβ state of (C∗(Λ), ᾱr). Then ψ̃ ◦π is a KMSβ

state of (T C∗(Λ), αr), where π is the quotient map from T C∗(Λ) to C∗(Λ). Now

Proposition 6.3.14(b) implies that

Aim
ψ̃◦π = ρ(Ai)

βmψ̃◦π.

Using the same arguments of part (a), we can conclude that mψ̃◦π = xΛ. So Aix
Λ =

ρ(Ai)
βxΛ and thus Proposition 4.1.5(a) implies that

ρ(Ai)
β = ρ(Ai) for all i = 1, 2, . . . , k.

Since r has rationally independent coordinates, there exists ρ(Ai) which is not equal to

one. We can conclude that β = 1. By the uniqueness of KMS1 state of (T C∗(Λ), αr)

we get ψ̃ ◦ π = ω and (6.3.24) assures that ψ̃ = ω̃. �

Example 6.3.24. Let us consider a directed graph E, which is indeed a 1-graph

with its coordinate matrix given as follows:

v w
A =

0 1

1 0


Then the degree map d : E∗ → N is defined by d(µ) = |µ|.
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Let β = 1 and r = 1. Then by Theorem 6.3.22 we can calculate KMS1 states on

(T C∗(E), α1). Let y = (yv) ∈ [1,∞)E
0
, where yv =

∑
µ∈E∗v

e−|µ|. Now

∑
µ∈E∗v

e−|µ| =
∑
n∈N

e−n =
e

e−1
.

Then y =
[ e

e−1

e

e−1

]t
. Let ε ∈ [1,∞)E

0
which satisfies ε · y = 1. If ε =

[
u v

]t
,

then

ε · y = 1 =⇒ u
e

e−1
+ v

e

e−1
= 1

=⇒ u+ v = 1− e−1 .(6.3.25)

Hence

m = (I − e−1A)−1

u
v

 =

 1 − e−1

− e−1 1

−1 u
v


=

1

1− e−2

 1 e−1

e−1 1

u
v

 =
1

1− e−2

u+ v e−1

u e−1 +v

 .

(6.3.26)

Note that m =
1

1− e−2

u+ v e−1

u e−1 +v

 is a probability measure as mv ≥ 0 for every

v ∈ E0 and∑
v∈E0

mv =
1

1− e−2

(
u+ v e−1 +u e−1 +v

)
=

1

(1− e−1)(1 + e−1)

(
(u+ v)(1 + e−1)

)
=1 (by (6.3.25)).

Hence by Theorem 6.3.22, the KMS1 states on (T C∗(E), α1) are given by:

ωε(tµt
∗
ν) = δµ,ν e|µ|ms(µ),

where m is given by (6.3.26) and u, v ∈ [1,∞) satisfies (6.3.25). Moreover, part (c)

of Theorem 6.3.22 assures that these are the only KMS1 states.



Bibliography

[1] E. Seneta, Non-Negative Matrices and Markov Chains. Second edition, Springer, 1981.

[2] Christopher Robin. Heathcote, Probability: Elements of the mathematical theory. New York :

Wiley Interscience Division.

[3] Astrid an Huef, Marcelo Laca, Iain Raeburn and Aidan Sims, KMS states on the C-algebra of a

higher-rank graph and periodicity in the path space. Journal of Functional Analysis 268 (2015),

1840-1875.

[4] Iain Raeburn, Graph Algebra. CBMS Regional Conference Series in Mathematics, vol. 103, Amer.

Math. Soc., Providence, 2004.

[5] O. Bratteli and D.W. Robinson, Operator Algebra and Quantum Statistical Mechanics I.

Springer-Verlag New York Inc. 1979.

[6] O. Bratteli and D.W. Robinson, Operator Algebra and Quantum Statistical Mechanics II.

Springer-Verlag New York Inc. 1979.

[7] G. Harris and C. Martin, The roots of polynomial vary continuously as a function of the coeffi-

cients. Proc. Amer. Math. Soc. 100 (1987), 390-392.

[8] R. McNamara, KMS states of graph algebras with a generalized gauge dynamics. PhD Thesis,

University of Otago, Dunedin, New Zealand. 2015.

[9] Astrid an Huef, Marcelo Laca, Iain Raeburn and Aidan Sims, KMS states on the C*-algebras of

finite graphs. J. Math. Anal. Appl. 405 (2013), 388-399.

[10] Astrid an Huef, Marcelo Laca, Iain Raeburn and Aidan Sims, KMS states on C*-algebras

associated to higher-rank graphs. Journal of Functional Analysis 266 (2014), 265-283.

[11] N. Dunford and J.T. Schwartz, Linear Operators Part 1: General Theory. Interscience Publish-

ers, New York. 1958.

[12] J. Derezinski and Claude-Alain Pillet, KMS States. Dept of Mathematical Methods in Physics,

Warsaw Univ, Hoza 74, 00-682, Warsaw Poland.

[13] Thomas W. Hungerford, Algebra. Graduate Text in Mathematics, Springer-Verlag New York

Inc. 1974.

[14] John B. Conway, A Course in Operator Theory. Graduate Studies in Mathematics Vol 21,

Amer. Math. Soc. 2000.

107



BIBLIOGRAPHY 108

[15] N. Fowler and I. Raeburn, The Toeplitz algebra of a Hilbert bimodule. Univ. Math. J. 48 (1999),

no. 1, 155-181.

[16] Iain Raeburn and Aidan Sims, Product Systems of Graphs and The Toeplitz Algebras of Higher-

Rank Graphs. J. Operator Theory 53:2 (2005), 399-429.

[17] Aidan Sims, C*-Algebras Associated to Higher-Rank Graphs. PhD Thesis, University of New-

castle, NSW. 2003.

[18] Nathan Brownlowe, Introduction To KMS States. School Of Math. and Stat., Univ of Sydney,

NSW 2006.



Vita Auctoris

NAME: Samandeep Singh

PLACE OF BIRTH: Jammu and Kashmir, India

YEAR OF BIRTH: 1991

EDUCATION: K. V. Nagrota High School, Jammu, India, 2009

University of Jammu, B.Sc.(4 year), Jammu, India, 2013

University of Jammu, Diploma, Jammu, India, 2014

Conestoga College, Certificate, Kitchener, ON, 2017

University of Windsor, M.Sc., Windsor, ON, 2019

109


	Perron-Frobenius theory and KMS states on higher-rank graph C*-Algebras
	Recommended Citation

	tmp.1556901361.pdf.lNmCs

