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Abstract

An important issue in regression analysis of longitudinal data is model parsimony,

that is, finding a model with as few regression variables as possible while retaining

good properties of the parameter estimates. In this vein, joint modelling of mean

and variance taking into account the intra subject correlation has been standard

in recent literature (Pourahmadi, 1999, 2000; Ye and Pan, 2006; and Leng, Zhang,

and Pan, 2010). Zhang, Leng, and Tang (2015) propose joint parametric modelling

of the means, variances and correlations by decomposing the correlation matrix via

hyperspherical co-ordinates and show that this results in unconstrained parameteriza-

tion, fast computation, easy interpretation of the parameters, and model parsimony.

We investigate the properties of the estimates of the regression parameters through

semiparametric modelling of the means and variances and study the impact of this

to model parsimony. An extensive simulation study is conducted. Three datasets,

namely, a biomedical dataset, an environmental dataset and a cattle dataset are anal-

ysed.

In longitudinal studies, researchers frequently encounter covariates that are varying

over time (see for example Huang, Wu, and Zhou, 2002). We consider a generalized

partially linear varying coefficient model for such data and propose a regression spline

based approach to estimate the mean and covariance parameters jointly where the

correlation matrix is decomposed via hyperspherical co-ordinates. A simulation study

is conducted to investigate the properties of the estimates of the regression parameters

in terms of bias and standard error and to analyse a real data set taken from a multi-
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center AIDS cohort study.

The problem of model selection in regression analysis through the use of forward

selection, backward elimination and stepwise selection has been well developed in the

literature. The main assumption in this, of course, is that the data are normally

distributed and the main tool used here is either a t test or an F test. However,

properties of these model selection procedures in the framework of generalized linear

models are not well-known. We study here the properties of these procedures in

generalized linear models, of which the normal linear regression model is a special

case. The main tools that is being used are the score test, the F-test, other large

sample tests, such as, the likelihood ratio test and the Wald test; the AIC and the

BIC are included in the comparison. A systematic study, through simulations, of the

properties of this procedure is conducted, in terms of level and power, for normal,

Poisson and binomial regression models. Extensions for over-dispersed Poisson and

over-dispersed binomial regression models are also given and evaluated. The methods

are applied to analyse three data sets.

In practice, it often occurs that an abundance of zero counts arise in data where

a discrete generalized linear model may fail to fit but a zero-inflated generalized

linear model can be the ideal choice. Researchers often encounter a large number of

covariates in such model and need to decide which are potentially important. To find

a parsimonious model we develop a model selection procedure using the score test,

the Wald test and the likelihood ratio test; also the AIC and the BIC are included

in the comparison. Simulation studies are carried out to investigate the performance

of these procedures, in terms of level and power, for zero-inflated Poisson and zero-

inflated binomial regression models. The methodology is illustrated through two real

examples.
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Chapter 1

Introduction

In this dissertation, two important aspects are discussed: (i) joint estimation of mean

and covariance parameters in longitudinal data when the covariates are time invariant

and time variant, and (ii) model selection in generalized linear models and zero-

inflated generalized linear models.

Longitudinal data arise in many subject-matter areas such as biostatistics, medical

and public health sciences, environmental studies and social sciences. Longitudinal

studies are characterized by observing the same subjects repeatedly over a period of

time. For example, HIV patients may be followed over time and monthly measures

such as CD4 counts (CD4 cells are white blood cells that fight infection), or viral load

are collected to characterize immune status and disease burden respectively. Usually

the subjects are assumed to be independent, while repeated measures data of the

same subject are correlated and thus require special statistical techniques for valid

analysis and inference.

In longitudinal data analysis, it has been shown that the choice of covariance model

1



1.0 CHAPTER 1. INTRODUCTION 2

affects standard error estimates and failure to adopt an appropriate covariance struc-

ture can lead to a loss of efficiency in estimating the regression parameters (Liang

and Zeger, 1986; Diggle, Heagerty, Liang, and Zeger, 2002; Lin and Carroll, 2006).

Covariance model choice also affects predictions and imputations. Taylor and Law

(1998) show that individual predictions of future CD4 counts are noticeably affected

by assumptions about the covariance structure. Moreover inference on the covariance

structure itself is of interest when researchers try to understand biological processes

and to answer questions like how observations are correlated to each other. Thus, it

is important to get the covariance/correlation model correct.

To estimate mean and variance parameters in longitudinal data, several authors

have used different approaches (see for example, Liang and Zeger, 1986; Lin and

Carroll, 2006; Fan, Huang, and Li, 2007; Qu, Lindsay, and Li, 2000; Diggle et al.,

2002; and Fan and Wu, 2008). However, such approaches do not apply the correlation

structure directly and cannot flexibly incorporate covariates that may help to explain

the covariations. Joint modelling for the mean and covariance becomes a popular

approach to overcome this limitations for longitudinal data analysis; see for example,

Zhang, Leng, and Tang (2015), Leng, Zhang, and Pan (2010) and Pourahmadi (1999,

2000).

Zhang et al. (2015) propose a parametric method to estimate the mean and the

covariance parameters jointly in longitudinal data. However, in some applications

parametric regression model is too restrictive and cannot faithfully capture the true

underlying relationship between the response and covariate. In such cases nonpara-

metric or semiparametric models are appealing because they allow the data to speak

for themselves in determining the form of the relationship between the response and

covariates. In this dissertation we develop an estimation procedure for the mean and
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covariance parameters semiparametrically in longitudinal data.

Time varying coefficient models are the natural extension of classical parametric

models that provide a very important tool to explore the dynamic pattern in many

scientific areas, namely health science, epidemiology, economics and so on. In longitu-

dinal studies, researchers frequently encounter covariates that are varying over time.

For instance, to analyze the Multi-Center AIDS Cohort study, Huang, Wu, and Zhou

(2002) find that the baseline function varies over time. Also whether the effect of

PreCD4 is constant over time is unclear which motivate us to consider time varying

coefficient model. We develop an estimation procedure of the mean and covariance

parameters simultaneously for generalized partially linear varying coefficient model

in this dissertation.

The salience of model selection in regression analysis for normally distributed re-

sponse variable is very familiar and is extensively applied in many areas, for instance,

engineering, natural sciences, and social sciences. For model selection the use of for-

ward selection, backward elimination and stepwise selection has been well developed

in the literature. However, properties of these model selection procedures in general-

ized linear models are not well-known. Moreover, in practice, it often occurs that a

particular count (for example zero) may arise in the data more than the expected num-

ber. Examples include, the number of cigarettes smoked by students in a university,

the number of insurance claims for a certain type of risk, the number of earthquakes

by geographical location etc. A discrete generalized linear model may result in incon-

sistent estimates of such data, so a zero-inflated generalized linear model can be the

ideal choice. Considerable attention has been given to the problem of estimating the

parameters involved in the model. However, in practice, scientist encounter a large

number of covariates from where need to select potentially important covariates for
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the model. We investigate the properties of model selection in both generalized linear

models and zero-inflated generalized linear models in this dissertation.

In Chapter 2, we discuss some preliminaries and review joint mean-covariance re-

gression models, varying coefficient models in longitudinal data, C (α) test (Neyman,

1959), Wald test (Wald, 1943) and likelihood ratio test (Neyman and Pearson, 1928).

We also review generalized linear models and hyperspherical coordinates. Further-

more, we review the B-spline and the penalized spline smoothing technique.

In Chapter 3, we develop procedures for estimating mean and covariance parameters

semiparametrically in longitudinal data. To estimate non-parametric functions we use

regression splines. We further apply a penalized spline in order to investigate whether

it produces improvement in estimation of the non-parametric functions. A simulation

study is conducted to investigate the performance of the estimators of the regression

parameters in terms of bias and efficiency, the effect of fixing the number of knots

and the effect of misspecifying the error distribution (robustness study). Three real

data sets are analyzed.

In Chapter 4, we deal with generalized partially linear varying coefficient models

in longitudinal data and develop estimation procedures of mean and covariance pa-

rameters jointly. A regression spline is used to estimate the coefficient of time variant

covariates. A simulation study is performed to examine the performance of the es-

timated regression parameters in terms of bias and standard errors. The method is

applied to a real data set.

In Chapter 5, we develop model selection procedures for generalized linear models

using the score test. Other large sample tests, namely, the likelihood ratio test and the

Wald test are included in the comparison. A systematic study, through simulations,



1.0 CHAPTER 1. INTRODUCTION 5

of the properties of this procedure is conducted, in terms of level and power, for

normal, Poisson and binomial regression models. Extensions of the model selection

procedure for over-dispersed Poisson and over-dispersed binomial regression models

are also developed. The methods are applied to analyse three real data sets.

In Chapter 6, we derive model selection procedures for zero-inflated generalized

linear models using the score test, Wald test and likelihood ratio test. We further

consider model selection through AIC and BIC for comparison. A simulation study

is performed to investigate the properties of these procedures in terms of level and

power, for zero-inflated Poisson and zero-inflated binomial regression models. The

methodology is illustrated through two real examples.

Finally, conclusions of the thesis with the summary of findings and a plan for future

study are presented in Chapter 7.

It is noted that few topics are repeated in the chapters because the chapters are

intended for submission as distinct papers.



Chapter 2

Some Preliminaries and Review of

Current Literature

2.1 Joint Mean-Covariance Regression Model in

Longitudinal Data

Suppose longitudinal measurements yi = (yi1, . . . , yimi)
′, (i = 1, . . . , n) are collected

from n subjects at times ti = (ti1, . . . , timi)
′. Assume that yi ∼ N(µi,Σi), where µi =

(µi1, . . . , µimi)
′ and Σi are an mi × 1 vector and an mi ×mi positive definite matrix,

respectively. The mean µij of yij can usually be modelled by a linear regression,

µij = x′ijβ, where xij denotes the p×1 covariates associated with the j-th observation

of the i-th subject and β = (β1, . . . , βp)
′ is a vector of regression parameters.

Due to the positive definiteness of the covariance matrix Σi, it can be decomposed

by Cholesky decomposition. Then there exists a unique lower triangular matrix Ti

6
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with 1’s as diagonal entries and a unique diagonal matrix Di with positive diagonal

entries such that

TiΣiT
′
i = Di or Σ−1

i = T ′iD
−1
i Ti,

where the below-diagonal entries of Ti are the negatives of the coefficients of

ŷij = µij +

j−1∑
k=1

φijk(yik − µik),

where ŷij is the linear least squares predictor of yij based on its predecessors

yi(j−1), . . . , yi1 and the diagonal entries of Di are the prediction error variances (in-

novation variances) σ2
ij = var(yij − ŷij) for 1 ≤ j ≤ mi and 1 ≤ i ≤ n. Note that

φijk and log σ2
ij are unconstrained. Thus they may model in terms of covariates as

log σ2
ij = z′ijλ and φijk = w′ijkγ respectively, where zij and wijk are q×1 and d×1 vec-

tors of known covariates, and λ = (λ1, . . . , λq)
′ and γ = (γ1, . . . , γd)

′ are parameters

for the variances and correlations of yi, respectively.

Pourahmadi (1999) proposed the following joint mean-covariance model by com-

bining all three aforementioned models

µij = x′ijβ, log σ2
ij = z′ijλ, and φijk = w′ijkγ. (2.1)
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The maximum likelihood estimating equations for β, γ and λ are

n∑
i=1

X′iΣ
−1
i (yi − µi)) = 0,

n∑
i=1

Z∗i
′D−1

i (ri − Z∗i γ) = 0,

and

1

2

n∑
i=1

H ′i(D
−1
i ei − 1mi) = 0,

where the matrix Z∗i , of order mi × (q + 1), has typical row z∗ij
′ =

j−1∑
k=1

rikw
′
ijk. Also

Hi = (h′i1, . . . , h
′
imi

)′, ei = (ei1, . . . , eimi)
′, with eij = (rij−r̂ij)2 and r̂ij =

j−1∑
k=1

φijkrik are

the mi× (d+1) matrix of covariates and the mi×1 vector of squared fitted residuals,

respectively. The parameters β, γ and λ are obtained by solving estimating equations

using an iteratively re-weighted least squares algorithm.

It is noted that joint mean-covariance model (2.1) proposed by Pourahmadi (1999,

2000) is valid only for balanced longitudinal data. Pan and MacKenzie (2003) gener-

alized the model for unbalanced longitudinal data and Ye and Pan (2006) extended

further within the framework of generalized estimating equations. Although Pourah-

madi’s (1999, 2000) and Pan and MacKenzie’s (2003) methods require the normal

distributional assumption, the Ye and Pan (2006) approach depends on the existence

of the first four moments of responses only.

However all aforementioned models do not reveal the correlation structure between

longitudinal measurements directly and may encounter difficulty in interpreting the

covariation structure. To overcome this, most recently Zhang, Leng, and Tang (2015)

propose a joint mean-variance correlation modelling approach that targets directly

the variances and correlations in the longitudinal data. They decompose the correla-



2.2 Semiparametric Mean-Covariance Regression Model in Longitudinal Data 9

tion matrix via hyperspherical co-ordinates using angles and trigonometric functions.

Their proposed joint regression model for the means, variances and correlations is as

follows

g(µij) = x′ijβ, log σ2
ij = z′ijλ, and φijk = w′ijkγ,

where xij are the usual known covariates as mentioned earlier, zij and wijk may

contain baseline covariates, as well as polynomials in time (time related to longitudinal

data) and their interactions.

2.2 Semiparametric Mean-Covariance Regression

Model in Longitudinal Data

Model misspecification may produce biased estimation, which is even more severe than

misspecification of the covariance. It is natural to relax the parametric assumption

and an attractive approach is the semiparametric regression model which retains the

flexibility of the nonparametric model but avoids the need to use a fully nonparametric

model. Leng, Zhang, and Pan (2010) propose the following semiparametric models

for the mean and the covariance structure for longitudinal data

g(µij) = x′ijβ + f1(tij), log σ2
ij = z′ijλ+ f2(tij), and φijk = w′ijkγ,

where two nonparametric functions f1(·) and f2(·) are unknown smooth functions

which are parametrized by regression splines, and all of the regression parameters

are solved iteratively by fixing the other parameters. Here the term nonparametric
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is not meant that completely lack of parameters but that the number and nature of

the parameters are flexible and not fixed in advance.

2.3 Varying Coefficient Model in Longitudinal

Data

To study the association between the covariates and the response variable in longitu-

dinal data, the following linear model is used in practice:

y(t) = β0 + x′(t)β + ε(t), (2.2)

where both covariates and response variable are collected at time t. See for example

Diggle et al. (2002).

However model (2.2) does not allow the association to vary over time, even though

the covariates and the response variable change over time. To overcome this, Zeger

and Diggle (1994) propose a semiparametric model as follows

y(t) = β0(t) + x′(t)β + ε(t), (2.3)

where β0(t) in model (2.3) can be estimated by the kernel, polynomial and smoothing

spline methods (Brumback and Rice, 1998; Fan and Li, 2004).

The model (2.3) allows the intercept to vary over time only, not the coefficients

of the other covariates. However researchers sometime encounter a situation where

covariates are time variant, for instance in a Multi-Center AIDS Cohort study (Kaslow
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et al., 1987); whether or not PreCD4 has a constant effect over time is unclear. Taking

this into account Fan, Huang, and Li (2007) introduce a semiparametric varying-

coefficient partially linear model, in which the covariate effects are constant over time

for some covariates and time-varying for others, as follows

y(t) = x′(t)α(t) + z′(t)β + ε(t), (2.4)

where y(t) is the response variable, x(t) and z(t) are the covariate vectors at time t,

α(t) comprises p unknown smooth functions, β is a q-dimensional unknown parameter

vector and E [ε(t)|x(t), z(t)] = 0. They model the variance function nonparametrically

and correlation structure parametrically, but mainly focus on the improvement in the

estimation of the mean regression function using a possibly misspecified covariance

structure.

To model jointly the mean and the covariance, Qin, Mao, and Zhu (2015) propose

a general semiparametric model using the modified Cholesky decomposition. They

consider a generalized partially linear varying coefficient model

g(µij) = x′ijα(tij) + z′ijβ, φijk = w′ijkγ,

log(σ2
ij) = u′ijf(tij) + v′ijλ,

(2.5)

where xij ∈ Rp and zij ∈ Rq are covariate vectors for the time varying coefficients and

constant coefficients at time tij, respectively; wijk,uij and vij are (d× 1), (h× 1) and

(m× 1) vectors of covariates, respectively; β,γ and λ are the regression coefficients;

α(tij) and f(tij) comprises p and h unknown smooth functions. A regression spline-

based approach within the framework of generalized estimating equations is proposed
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to estimate the parameters in the mean and the covariance.

2.4 B-spline

Splines are used to describe complicated curves when the true functional form is not

known. A B-spline of order ` is a piecewise polynomial function of degree `− 1 in a

variable x. Any smooth function (say f(x)) can be approximated by B-spline basis

functions. Let a = a0 < a1 < · · · < akn < akn+1 = b be a partition of the interval

[a, b]. Using {ai} as the internal knots, the B-spline basis of order `, B
(`)
i (x), is defined

recursively as

B
(`)
i (x) =

x− ai
ai+`−1 − ai

B
(`−1)
i (x) +

ai+` − x
ai+` − ai+1

B
(`−1)
i+1 (x),

with

B
(1)
i (x) =

 1, ai ≤ x < ai+1

0, otherwise.

Then K = kn + ` B-spline basis functions of order ` form a basis for the linear spline

space. Thus f(x) can be approximated by f(x) =
K∑
i=1

αiB
(`)
i (x).

2.5 Penalized Spline

Although B-splines are a good option for estimation in goodness of fit, they may

under-fit or over-fit the data due to wrong number and location of knots selection.

Increasing the number of knots does not always provide a better fit (Griggs, 2013).

Moreover, too many knots may result in over fitting the data, and modelling noise
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instead of the signal. There is an optimal number of knots which can be found by

trial and error. However this can be time consuming, especially for large complicated

datasets.

To avoid this issue and optimize the fit, penalized spline (P-spline) imposes a penal-

ization upon the coefficients of the B-spline basis functions to optimize the fit (Eilers

and Marx, 1996), thus imposing a penalization upon the parameters α1, α2, . . . , αK ,

so that they are constrained such that

K∑
i=1

α2
i ≤ C.

Then minimize log-likelihood l subject to β′Dβ ≤ C, whereD =

 0p×p 0p×K

0K×p IK×K

 .
Using Lagrange multipliers we can solve the equation to find the optimal β̂ value

for a given λ value.

2.6 Hyperspherical Coordinate System

There is a unique correspondence between 3-dimensional Cartesian coordinate sys-

tems and 3-dimensional spherical coordinate systems. Every point (x1, x2, x3) ∈ R3

is represented by the 3-dimensional spherical coordinates (r, φ1, φ2) as follows

x1 = r cos(φ1),

x2 = r sin(φ1) cos(φ2),

x3 = r sin(φ1) sin(φ2),

(2.6)
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where 0 ≤ r <∞, 0 ≤ φ1 ≤ π, and 0 ≤ φ2 < 2π.

The n-dimensional hyperspherical coordinates, a generalization of the 3-dimensional

spherical coordinates, consist of a radial coordinate r and (n − 1) angular coordi-

nates φ1, . . . , φn−1, where the angles φ1, . . . , φn−2 range over [0, π] radians and φn−1

ranges over [0, 2π) radians. Similar to (2.6) it is possible to construct a unique cor-

respondence between n-dimensional Cartesian coordinate systems and n-dimensional

hyperspherical coordinate systems.

If (x1, . . . , xn) are the Cartesian coordinates, then xi(i = 1, . . . , n) can be expressed

in terms of r, φ1, . . . , φn−2, and φn−1 as follows

x1 = r cos(φ1),

x2 = r sin(φ1) cos(φ2),

x3 = r sin(φ1) sin(φ2) cos(φ3),

...

xn−1 = r sin(φ1) . . . sin(φn−2) cos(φn−1),

xn = r sin(φ1) . . . sin(φn−2) sin(φn−1).

2.7 Test Statistics

Let y1, y2, . . . , yn be a random sample of size n from a distribution that has a probabil-

ity density function f(y1, y2, . . . , yn;θ,φ). For the given data, the likelihood function

over the entire parameter space is given by

L(θ,φ|y1, y2, . . . , yn) =
n∏
i=1

f(yi|θ,φ).
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Suppose θ = (θ1, . . . , θk)
′ are parameters of interest, then φ = (φ1, . . . , φs)

′ are treated

as nuisance parameters.

In this section the C(α) test, score test, Wald test and likelihood ratio test

statistics are described below to test the null hypothesis H0 : θ = θ0, where

θ0 = (θ01, θ02, . . . , θ0k)
′. Note that under the null hypothesis the estimator of φ

is denoted by φ̂. Further, under the alternative hypothesis the estimators of θ and φ

are denoted by θ̃ and φ̃ respectively.

2.7.1 C(α) Test and Score Test

The C(α) test is evaluated by using the partial derivatives of the log-likelihood func-

tion with respect to the nuisance parameters and the parameters of interest calcu-

lated at the null hypothesis. Let L(θ,φ; y) be the likelihood function and l be the

log-likelihood function of the data. Define the partial derivatives of the log-likelihood

which are evaluated at θ = θ0 = (θ01, θ02, . . . , θ0k)
′ as

ψ =
∂l

∂θ

∣∣∣
θ=θ0

=

[
∂l

∂θ1

,
∂l

∂θ2

, · · · , ∂l
∂θk

]′ ∣∣∣∣∣
θ=θ0

and

γ =
∂l

∂φ

∣∣∣
θ=θ0

=

[
∂l

∂φ1

,
∂l

∂φ2

, · · · , ∂l
∂φs

]′ ∣∣∣∣∣
θ=θ0

.

Under the null hypothesis and mild regularity conditions,

(
∂l

∂θ
,
∂l

∂φ

)
follows a mul-

tivariate normal distribution with mean vector 0 and variance-covariance matrix
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I−1(θ,φ) (Cramer, 1946), where

I(θ,φ) =

Iθθ Iθφ

I ′θφ Iφφ


is the Fisher information matrix with elements

Iθθ = E

(
− ∂2l

∂θ∂θ′

∣∣∣
θ=θ0

)
, Iθφ = E

(
− ∂2l

∂θ∂φ′

∣∣∣
θ=θ0

)
, and Iφφ = E

(
− ∂2l

∂φ∂φ′

∣∣∣
θ=θ0

)
which are (k × k), (k × s) and (s× s) matrices respectively.

The C(α) test is based on the adjusted score S =
∂l

∂θ
−B ∂l

∂φ
, where B is the matrix

of partial regression coefficients that is obtained by regressing
∂l

∂θ
on

∂l

∂φ
. According

to Bartlett (1953), B and the variance-covariance matrix of S can be written as IθφI
−1
φφ

and Iθθ.φ = Iθθ − IθφI−1
φφI

′
θφ respectively. Thus the distribution of the adjusted score

S ∼MN(0, Iθθ.φ) and hence the distribution of S ′I−1
θθ.φS ∼ χ2

(k) (Neyman, 1959).

As the nuisance parameters φ = (φ1, φ2, . . . , φs)
′ are involved in this statistic, fol-

lowing Moran (1970), replacing
√
n consistent estimators of the nuisance parameters

by φ̃ = (φ̃1, φ̃2, . . . , φ̃s)
′ that are evaluated from the data.

Thus the test statistic becomes

χ2
C(α) = S̃ ′Ĩ−1

θθ.φS̃,

which is asymptotically distributed as chi-squared with k degrees of freedom (Neyman,

1959).

Note that if the nuisance parameter φ is replaced by its maximum likelihood esti-

mator φ̂, then the adjusted score function S reduces to ψ. The C (α) statistic then
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becomes

S1 = ψ̂′Î−1
θθ.φψ̂,

which is a score test (Rao, 1948).

2.7.2 Wald Test

The Wald test (Wald, 1943) statistic is given by

W =
(
θ̃ − θ0

)′ [
cov
(
θ̃
)]−1 (

θ̃ − θ0

)
,

where cov (θ) is the inverse of Fisher information matrix whose (j, k)-th element is

E
[
− ∂2l
∂θj∂θk

]
.

2.7.3 Likelihood Ratio Test

The likelihood ratio test (Neyman and Pearson, 1928) is the ratio of the maximized

likelihood function under the null hypothesis to that under the alternative hypothesis

and is defined as

Λ =
L
(
y1, y2, . . . , yn;θ0, φ̂

)
L
(
y1, y2, . . . , yn; θ̃, φ̃

) .

Taking ln on both sides, the likelihood ratio test statistic can be written as

LR = −2 ln Λ = 2(l̃1 − l̂0),
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where l̂0 and l̃1 are the maximized log-likelihood under the null hypothesis and under

the alternative hypothesis respectively.

2.7.4 Comparison of Three Test Statistics

From large sample probability theory, we know that under certain regularity condi-

tions, if the null hypothesis H0 holds, the score, Wald and LR test statistics asymp-

totically follow a central Chi-square distribution with k degrees of freedom (see for

example Agresti, 2007). Thus, for a fixed significance level α > 0, the null hypothesis

is rejected if the value of a test statistic is greater than χ2
α(k) value.

The score test is particularly attractive to many researchers because one needs

to study the distribution of the test statistic under the null hypothesis only. It

often maintains, at least approximately, a preassigned level of significance and often

produces a statistic that is simple to calculate.

On the contrary, the other two asymptotically equivalent tests (Wald test and LR

test) require estimates of the parameters under the alternative hypothesis and often

show liberal or conservative behaviour in small samples. In general these two tests

are considered for large samples. For more about the comparison of three tests, the

reader may look at Rao (2005).

2.8 Generalized Linear Models

A generalized linear model (GLM) is the generalization of ordinary linear regression

models that allows for response variables that have error distribution models other
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than a normal distribution. It is comprised of three components, namely, a random

component, a systematic component, and a link function and can be described as

follows

i) Suppose that the joint probability function of the response variable Y with mean

µ can be written in the form

f(y; θ) = exp
[
φ−1 {yθ − b(θ)}+ C(y, φ)

]
.

for some known functions b(.), C(.), canonical or natural parameter θ, and constant φ

which may be known or a parameter to be estimated. This is said to be in canonical

form.

ii) The systematic component connects a set of covariates with a linear predictor in

the form

η =

p∑
j=1

Xjβj.

iii) The link function is a monotone differentiable function of the mean that con-

nects the random and the systematic components. The model links the mean µ to the

linear predictor η by η = g(µ), where the link function g(.) is a monotone differentiable

function. The mean and the variance of Y are E(Y ) = b′(θ) and var(Y ) = φb′′(θ)

respectively (Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989).



Chapter 3

Joint Estimation of Mean and

Covariance Parameters in

Longitudinal Data

3.1 Introduction

In the statistical literature, methods to understand the relationship of explanatory

variables on each individual outcome variable are well developed and widely applied.

However, in most health-related studies, given the technological advancement and

sophisticated methods of obtaining and storing data, a need to perform joint analysis

of mean and covariance parameters simultaneously and accounting for the correlations

is in high demand since a good covariance modelling approach improves statistical

inference of the mean of interest (Liang and Zeger, 1986; Diggle et al., 2002; Lin

and Carroll, 2006). Furthermore, the covariance structure itself may be of scientific

20



3.1 Introduction 21

interest (Fan and Wu, 2008).

Suppose longitudinal measurements yi = (yi1, . . . , yimi)
′ and covariate vectors (xi1,

. . . , ximi)
′ (i = 1, . . . , n), with xij = (xij1, . . . , xijp)

′ for j = 1, . . . ,mi, collected from

n subjects, are observed at times ti = (ti1, . . . , timi)
′. In longitudinal data analysis,

in order to avoid biased estimation, it is important that statistical analysis takes into

account that the repeated observations yij, j = 1, . . . ,mi are correlated (Liang and

Zeger, 1986; Diggle et al., 2002; Lin and Carroll, 2006). Accordingly we assume that

yi ∼ N(µi,Σi), where µi = (µi1, . . . , µimi)
′, Σi = DiRiDi, Di = diag(σi1, . . . , σimi),

and Ri = (ρijk)
mi
j,k=1 is the correlation matrix of yi with ρijk = corr(yij, yik) being the

correlation between the jth and kth measurements of the ith subject. The main purpose

in such longitudinal studies is to estimate the parameters involved in the means, the

variances and the correlation matrices. This can be done by maximizing the log-

likelihood or by solving the maximum likelihood estimating equations. However, the

constraints involved in the correlation parameters create a challenge. This can be

overcome by decomposing the correlation matrix by Cholesky decomposition.

Zhang, Leng, and Tang (2015) proposed to parametrize the correlation matrix

Ri for subject i (we suppress i) via hyperspherical co-ordinates by the Cholesky

decomposition R = TT ′, where T = (Tjk) is a lower triangular matrix given by

T =



1 0 0 · · · 0

c21 s21 0 · · · 0

c31 c32s31 s32s31 · · · 0

...
...

...
. . . 0

cm1 cm2sm1 cm3sm2sm1 · · ·
m−1∏
l=1

sml


,
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where cjk = cos(φjk) and sjk = sin(φjk) are trigonometric functions of angles φjk.

For subject i, the total number of angles φijk (1 ≤ k < j ≤ mi) is mi(mi − 1)/2,

which is the same as that of the free parameters in the correlation matrix. The

decomposition of R has several advantages (i) diagonal elements of TT ′ are 1, and

all other elements fall between -1 and 1, (ii) TT ′ is always non-negative definite,

satisfying the requirements of a correlation matrix, and (iii) the angles φjk of T as

parameters are unconstrained in the range [0, π). It also establishes a hierarchical

connection between the correlations and the angles (for further discussion on this see

Zhang et al., 2015). They then propose a joint regression model for the means, the

variances and the correlations as

g(µij) = x′ijβ, log σ2
ij = z′ijλ, φijk = w′ijkγ,

where xij are the usual known covariates as mentioned earlier, zij and wijk may

contain baseline covariates, as well as polynomials in time (time related to longitudinal

data) and their interactions. The unknown regression parameters β,λ and γ are of

dimensions p× 1, d× 1 and q × 1 respectively. In practice we may choose wijk as a

polynomial of time lag (tik − tij). Zhang et al. (2015) estimate the parameters β,λ

and γ via the quasi-Fisher scoring algorithm.

Zhang et al. (2015, pp 237) suggest future research on modelling the means, vari-

ances and correlations nonparametrically and semiparametrically. In this Chapter

we investigate the properties of the estimates of the regression parameters through

semiparametric modelling of the means and variances and study the impact of this

to model parsimony. For the purpose of comparison we consider three models.

Model 1: the parametric model given above,
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Model 2: a model in which only the means are modelled semiparametrically, which

is,

g(µij) = x′ijβ + f1(tij), log(σ2
ij) = z′ijλ, φijk = w′ijkγ,

Model 3: a model in which the means and the variances are modelled semiparamet-

rically, which is,

g(µij) = x′ijβ + f1(tij), log(σ2
ij) = z′ijλ+ f2(tij), φijk = w′ijkγ.

In Model 2 and Model 3, f1(·) and f2(·) are smooth functions parametrized by re-

gression splines.

As in Zhang et al. (2015) we decompose the correlation matrix via hyperspherical

co-ordinates and as in Lang, Zhang, and Pan (2010) we use B-spline to estimate the

unknown functions f1(·) in Model 2 and f1(·) and f2(·) in Model 3. Four further

investigations were conducted. The first of these is to see the performance of the

estimators of the regression parameters in terms of bias and efficiency. The second is

to see the effect of fixing the knots in spline smoothing. The third is a robustness study

where the normality assumption of the error distribution is replaced by a mixture of

normal distributions and the fourth is to see whether use of a penalized spline results

in improved estimation of the non-parametric functions in comparison to using B-

spline.

Section 3.2 deals with the method of estimation of the parameters of Model 3 in

which the correlation matrix is decomposed via hyperspherical co-ordinates and the

unknown functions f1(·) and f2(·) are estimated using B-spline basis functions. Esti-
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mation in Model 2 is discussed as a special case of Model 3. An extensive simulation

study is conducted and results are summarized in Section 3.3. Three real data sets,

a CD4 cell data (Kaslow et al., 1987) set, a set of cattle data (Kenward, 1987), and

Progesterone hormone data (Brumback and Rice, 1998) are analyzed in Section 3.4.

A discussion follows in Section 3.5.

3.2 Estimation in Joint Semiparametric Models

3.2.1 Review of the Estimation of Parameters of Model 1

In longitudinal measurement each subject yi ∼ N(µi,Σi). Then the joint density

function of yi(i = 1, . . . , n) is

f(y1, . . . ,yn) =
n∏
i=1

1√
(2π)mi |Σi|

exp

(
−1

2
r′iΣ

−1
i ri

)
,

where ri = yi − µi, Thus without the constant, the minus twice log-likelihood of the

parametric model (3.1) is

−2l =
n∑
i=1

[
log |DiRiDi|+ r′iD

−1
i R−1

i D−1
i ri

]
.

The parameters β, λ and γ are obtained by solving the following estimating equa-
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tions via the quasi-Fisher scoring algorithm

T1(β;λ,γ) =
n∑
i=1

X′i∆iΣ
−1
i (yi − µi) = 0,

T2(λ;β,γ) =
1

2

n∑
i=1

Z′i(qi − 1mi) = 0,

and

T3(γ;β,λ) =
n∑
i=1

mi∑
j=1

[
∂ log Tijj
∂γ

(ε2ij − 1) + εij

j−1∑
k=1

bijkεik

]
= 0

respectively, where ∆i = ∆i(Xiβ) = diag{ġ−1(x′i1β), . . . , ġ−1(x′imiβ)}, ġ−1(·)

is the derivative of the inverse link function g−1(·), µ(·) = g−1(·), qi =

diag(R−1
i D−1

i rir
′
iD
−1
i ), and bijk =

j∑
l=k

∂Tilk
∂γ

aijl with aijl being the (j, l) element of

T−1
i .

3.2.2 Estimation in Model 3 based on B-spline

As discussed in Section 3.1, following Leng et al. (2010) we propose joint regression

semiparametric modelling of the means and the variances as

g(µij) = x′ijβ + f1(tij), log(σ2
ij) = z′ijλ+ f2(tij), and φijk = w′ijkγ,

where f1(·) and f2(·) are unknown smooth functions which are parametrized by re-

gression splines. As in Zhang et al. (2015), we parametrize Ri via hyperspherical

co-ordinates. For simplicity, we assume that f1 and f2 have the same smoothness

property. Without loss of generality, we assume that the domain of tij is in the in-

terval [0, 1] with partitions 0 = a0 < a1 < · · · < akn < akn+1 = 1. Using the ai’s as

knots, we have K = kn + ` normalized B-spline basis functions of order ` that form a
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basis for the linear spline space. The B-spline basis of order `, B
(`)
i (t), is defined as

B
(`)
i (t) =

t− ai
ai+`−1 − ai

B
(`−1)
i (t) +

ai+` − t
ai+` − ai+1

B
(`−1)
i+1 (t),

and

B
(1)
i (t) =

 1, ai ≤ t < ai+1

0, otherwise.

Note that B
(`)
i (t) is a polynomial function of degree `−1. More details on the construc-

tion of a B-spline basis can be found in Schumaker (1981). Thus f1(t) and f2(t) are

approximated by π′(t)α and π′(t)α̃, respectively, where π(t) = (B
(`)
1 (t), . . . , B

(`)
K (t))′

is the vector of basis functions and α, α̃ ∈ RK are the spline coefficient vector. Let

πij = π(tij). With this notation, the nonlinear regression models can be linearized

as in what follows

g(µij) = x′ijβ + π′(tij)α = Π′ijθ,

log(σ2
ij) = z′ijλ+ π′(tij)α̃ = Υ′ijρ, and

φijk = w′ijkγ,

where Π′ij = (x′ij,π
′
ij), Υ′ij = (z′ij,π

′
ij), θ = (β′,α′)′ and ρ = (λ′, α̃′)′. Suppose Πi =

(Π′i1,Π
′
i2, . . . ,Π

′
imi

)′,Υi =
(
Υ′i1,Υ

′
i2, . . . ,Υ

′
imi

)′
. Thus, now the parameters of interest

are θ, ρ, and γ. Let ri = yi−µi. Then, εi = (εi1, . . . , εimi)
′ = T−1

i D−1
i ri ∼ N(0, Imi).
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Denoting l to be the log-likelihood apart from a constant it can be shown that

−2l = −2
n∑
i=1

li =
n∑
i=1

log |Σi|+
n∑
i=1

(yi − µi)′Σ−1
i (yi − µi)

=
n∑
i=1

log |DiRiDi|+
n∑
i=1

r′iD
−1
i R−1

i D−1
i ri

=
n∑
i=1

mi∑
j=1

(log σ2
ij + log T 2

ijj + ε2ij)

Define ∆i = ∆i(Πiθ) = diag{ġ−1(Π′i1θ), . . . , ġ−1(Π′imiθ)} where ġ−1(·) is the

derivative of the inverse link function g−1(·) and note that µ(·) = g−1(·). Then

∂li
∂θ

=
∂µ′i
∂θ

Σ−1
i (yi − µi(Πiθ))

= Π′i∆iΣ
−1
i (yi − µi(Πiθ))

∂li
∂γ

= −
mi∑
j=1

[
∂ log Tijj
∂γ

+
∂εij
∂γ

εij

]

=

mi∑
j=1

[
−∂ log Tijj

∂γ
−

(
−∂ log Tijj

∂γ
εij −

j−1∑
k=1

bijkεik

)
εij

]

=

mi∑
j=1

[
∂ log Tijj
∂γ

(ε2ij − 1) + εij

j−1∑
k=1

bijkεik

]
,

where bijk =
j∑
l=k

∂Tilk
∂γ

aijl with aijl being the (j, l) element of T−1
i and

∂Tijk
∂γ

=


Tijk{−wijk tan(φijk) +

k−1∑
l=1

wijl
tan(φijl)

}, k < j

Tijk
k−1∑
l=1

wijl
tan(φijl)

, k = j
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∂li
∂ρ

= −1

2

mi∑
j=1

[
Υij + 2

∂εij
∂ρ

εij

]

=
1

2

[
−

mi∑
j=1

Υij +

mi∑
k=1

Υik

(
mi∑
j=k

aijk
rik
σik

εij

)]

=
1

2

[
−

mi∑
j=1

Υij +

mi∑
k=1

Υik

(
mi∑
j=k

aijk
rik
σik

(
j∑
l=1

aijl
ril
σil

))]

=
1

2
Υ′i (qi − 1mi) ,

where qi = diag
(
R−1
i D−1

i rir
′
iD
−1
i

)
.

Thus the estimating equations for θ,ρ and γ are

U1 =
n∑
i=1

Π′i∆iΣ
−1
i (yi − µi(Πiθ)) = 0,

U2 =
1

2

n∑
i=1

Υ′i(qi − 1mi) = 0,

and

U3 =
n∑
i=1

mi∑
j=1

[
∂ log Tijj
∂γ

(ε2ij − 1) + εij

j−1∑
k=1

bijkεik

]
= 0

respectively, where ∆i = ∆i(Πiθ) = diag{ġ−1(Π′i1θ), . . . , ġ−1(Π′imiθ)}, ġ−1(·)

is the derivative of the inverse link function g−1(·), µ(·) = g−1(·), qi =

diag(R−1
i D−1

i rir
′
iD
−1
i ), and bijk =

j∑
l=k

∂Tilk
∂γ

aijl with aijl being the (j, l) element of

T−1
i . As in Zhang et al. (2015) these equations are solved by the quasi-Fisher scoring

algorithm which is described in Appendix A.
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3.2.3 Estimation in Model 2 based on B-spline

If we consider a semiparametric model with only the mean having semi-parametric

term as g(µij) = x′ijβ + f1(tij), log(σ2
ij) = z′ijλ, and φijk = w′ijkγ, then we need to

estimate θ, λ, and γ which are obtained by solving

V1 =
n∑
i=1

Π′i∆iΣ
−1
i (yi − µi(Πiθ)) = 0,

V2 = 1
2

n∑
i=1

Z′i(qi − 1mi) = 0,

and

V3 =
n∑
i=1

mi∑
j=1

[
∂ log Tijj

∂γ
(ε2ij − 1) + εij

j−1∑
k=1

bijkεik

]
= 0.

These equations can also be solved using the algorithm in Appendix A. At convergence

the variance-covariance of θ̂, λ̂, and γ̂ are obtained by inverting the Fisher information

matrix given in Appendix A.

3.2.4 Penalized Spline

The B-spline methodology, in some applications, produces overfitting of the data

(Carroll, Maca, and Ruppert, 1999). In such cases penalized spline (P-spline) has

been used to overcome this (Eilers and Marx, 1996). So, here, we further use the

penalized spline in Model 2 instead of the B-spline to see whether it produces im-

provement in estimation of the non-parametric functions. As in Section 3.2.3, f1(·)

can be approximated by π′(t)α. Now, we impose a penalization upon the parameters

α1, α2, . . . , αK , so that they are constrained such that
K∑
i=1

α2
i ≤ C.
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With this constraint the log-likelihood apart from a constant can be written as

−2l =
n∑
i=1

[
log |Σi|+ (yi − µi(Πiθ))′Σ−1

i (yi − µi(Πiθ))
]
− τθ′Dθ,

where τ > 0 is a constant and D =

 0p×p 0p×K

0K×p IK×K

 .
Using Lagrange multipliers, the score equations for θ,λ, and γ can be written as

W1 = −
n∑
i=1

Π′i∆iΣ
−1
i ∆i(yi − µi) + τDθ = 0,

W2 = 1
2

n∑
i=1

Z′i(qi − 1mi) = 0,

and

W3 =
n∑
i=1

mi∑
j=1

[
∂ log Tijj

∂γ
(ε2ij − 1) + εij

j−1∑
k=1

bijkεik

]
= 0.

All these equations can then be solved using the same algorithm as we used in Section

3.2.2. All of the block components of the Fisher information matrix remain the same

as Model (3.2.3) except I11 which in this case is

I11 = −E
[
∂2l

∂θ∂θ′

]
=

n∑
i=1

Π′i∆iΣ
−1
i ∆iΠi + τD.

3.2.5 Knot Selection

The importance of knot selection in spline smoothing work has been well described in

two pioneering papers by He et al. (2005) and Leng et al. (2010). These authors found

that knot selection is less critical for the estimation of β than for the estimation of the

nonparametric functions involved in model 2 and model 3 discussed in Section 3.1.
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However, in most situations, they found it appropriate to use the sample quantiles

of {tij, i = 1, . . . , n, j = 1, . . . ,mi} as knots. We follow their suggestion and note

that the number of knots is not prespecified, rather, it depends on the total sample

size N =
n∑
i=1

mi. Through a detailed asymptotic theoretical study, Leng et al. (2010)

show that the number of internal knots to be used is the integer part of N1/5.

3.3 Simulation Study

As indicated in Section 3.1, an extensive simulation investigation is conducted in this

section. Our purpose in this simulation, in addition to the study of the performance

of the estimators of the regression parameters in terms of bias and efficiency, is to

study the effect of fixing the number of knots and the effect of misspecifying the

error distribution (robustness study). These simulations are performed in Sections

3.3.1, 3.3.2, and 3.3.3. A further study, in Section 3.3.4, is conducted to compare

performance of the estimation methods using B-spline and penalized spline.

3.3.1 Study 1: Properties of the regression parameters

For this purpose we generate response data from each of the 3 models (Model 1,

Model 2, and Model 3)

yij = xij1β1 + xij2β2 + eij, log(σ2
ij) = zij1λ1 + zij2λ2;

yij = xij1β1 + xij2β2 + f1(tij) + eij, log(σ2
ij) = zij1λ1 + zij2λ2;

and

yij = xij1β1 + xij2β2 + f1(tij) + eij, log(σ2
ij) = zij1λ1 + zij2λ2 + f2(tij).
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For each model, values of parameters considered were (β1, β2) = (1, 0.5), (γ1, γ2) =

(0.35, 0.5) and (λ1, λ2) = (−0.5, 0.2). Following Leng et al. (2010) we generate the

observation times as in what follows.

For each individual we consider a set of scheduled time points {0, 1, 2, . . . , 12}. At

each scheduled time, except time 0, each individual has a 20% probability of missing

a fixed time point. To make it irregular and unequal time distances for different

individuals a uniform [0, 1] random variable is added to a non skipped scheduled

time. This results in different observed time points tij per subject. However, tij is

transformed onto [0, 1] while analysis.

For covariates, we take xij1 = tij +δij, where δij follows the standard normal distri-

bution and xij2 is generated from a Bernoulli(0.5) distribution. The nonparametric

functions are taken as f1(t) = cos(πt), and f2(t) = sin(πt). The error (ei1, . . . , eimi)

is generated from a multivariate normal distribution with mean 0 and covariance

Σi = DiRiDi, where Ri = TiT
′
i with wijk = (1, tij − tik)′, zij = xij. The expected

sample size (for the calculation of the number of knots) is about 1040 (=100×13×0.8).

The number of knots is taken to be 4 ≈ 10401/5 (He et al., 2005). Here, as can be

seen, the number of knots is not prespecified.

Bias of the estimates of the parameters of all three models along with their standard

errors, and MSE of the non-parametric functions f1 and f2, based on 1000 replications,

are given in Table 3.1. Figure 3.1 displays the true and the fitted curves for the non

parametric functions f1 and f2 of Model 3. Figure 3.2 displays the true and the fitted

curve for the non parametric function f1 of Model 2.

Table 3.1 shows that our semiparametric methods yield similar bias property of the

estimates as compared to that for the parametric model. Both the functions yield
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Table 3.1: Bias and standard error of the estimated parameters based on 1000 repli-
cations

Parameter
True Parametric

Semiparametric Semiparametric
value with mean with mean and var

(Model 1) (Model 2) (Model 3)
Bias SE Bias SE Bias SE

β1 1.0 0.0000 0.0000 0.0000 0.0002 0.0001 0.0003
β2 0.5 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001
γ1 0.35 0.0003 0.0013 0.0066 0.0014 0.0031 0.0023
γ2 0.5 0.0004 0.0023 0.0066 0.0025 0.0056 0.0041
λ1 -0.5 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001
λ2 0.2 0.0000 0.0002 0.0000 0.0002 0.0000 0.0002

MSE(f̂1) 0.0119 0.0109

MSE(f̂2) 0.1129

small MSE, which along with Figure 3.1 and Figure 3.2, show that both the true and

the fitted curves are very close in both models.
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Figure 3.1: Nonparametric functions (green) and their fitted curves (blue) of Model
3

3.3.2 Study 2: Properties of the regression parameters and

the functions f1 and f2 when number of knots are fixed

We carry out a similar simulation study as in Study 1 using Model 3. However in

this study, the number of knots is prespecified. We redo the simulations of Section

3.1 by fixing the number of knots as kn = 10 and kn = 20. Table 3.2 summarizes the
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Figure 3.2: Nonparametric function (green) and the fitted curve (blue) of Model 2

results which show that as the number of knots increase, the MSE of the estimated

functions f1 and f2, bias and standard error of the estimates of the parameters also

increase.

Table 3.2: Bias and standard error of the estimated parameters based on 1000 repli-
cations when knot is prespecified

Parameter True
Semiparametric Semiparametric

value with mean and var with mean and var
when knot=10 when knot=20

Bias SE Bias SE
β1 1.0 0.000 0.0002 0.000 0.0002
β2 0.5 0.000 0.0001 0.000 0.0001
γ1 0.35 -0.0215 0.0024 -0.0419 0.0034
γ2 0.5 -0.0036 0.0041 -0.0057 0.0050
λ1 -0.5 0.000 0.0001 0.000 0.0001
λ2 0.2 0.000 0.0001 0.000 0.0001

MSE(f̂1) 0.4966 0.5164

MSE(f̂2) 0.3740 0.6423
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3.3.3 Study 3: A robustness study. Properties of the regres-

sion parameters and the functions f1 and f2 when error

follows mixture of normal distributions

Again, another study, similar to what was done in study 1, has been conducted,

in which, for generating the response data of Model 2 and Model 3, we consider a

mixture of two multivariate normal distributions with error distributions Nmi(0,Σi)

and Nmi(0, 0.252Σi) with equal probability. The results for the simulation study

are displayed in Table 3.3 which show that the bias and the standard errors of the

estimates, and the MSE of f1 remain almost the same as those in study 1. However,

MSE of the fitted function f2 in Model 3 increases significantly.

In summary, the mixed modelling affects only the MSE of the estimate of f2 in the

semiparametric Model 3.

Table 3.3: Simulation results for Study 3 in Model 2 and Model 3 over 1000 replica-
tions when error terms follow mixture of normal distribution; n=100

Parameter
True Semiparametric Semiparametric Semiparametric Semiparametric
value (Model 2) (Model 2) (Model 3) (Model 3)

(without mixed) (with mixed) (without mixed) (with mixed)
Bias SE Bias SE

β1 1.0 0.0000 0.0002 0.0000 0.0002 0.0001 0.0003 0.0001 0.0002
β2 0.5 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001
γ1 0.35 0.0066 0.0049 -0.0032 0.0063 0.0031 0.0023 0.0088 0.0024
γ2 0.5 0.0066 0.0050 -0.0086 0.0082 0.0056 0.0041 0.0135 0.0044
λ1 -0.5 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.000 0.0001
λ2 0.2 0.0000 0.0002 0.0000 0.0001 0.0000 0.0002 0.000 0.0002

MSE(f̂1) 0.0119 0.0119 0.0109 0.0110

MSE(f̂2) 0.1129 0.6935
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3.3.4 Study 4: Comparison of using B-spline and penalized

spline in Model 2

A further study is conducted to compare the B-spline and the penalized spline to

estimate the nonparametric function f1 in Model 2. The estimation procedure to

estimate all parameters are discussed in Section 3.2.4. To generate the response

variable we consider the same mean and variance models as those in study 1 and the

results are presented in Table 3.4. Further, Figure 3.3 displays the fitted curve of

function f1 under both the B-spline and the penalized spline. Results in Table 3.4

and Figure 3.3 show no advantage of using the penalized spline over the B-spline.

Table 3.4: Bias ans standard error of the estimated parameters in Model 2 based on
1000 replications using B-spline and penalized spline

Parameter True
Semiparametric Model 2

value B-spline Penalized spline
Bias SE Bias SE

β1 1.0 0.0000 0.0002 0.0000 0.0002
β2 0.5 0.0000 0.0001 0.0000 0.0001
γ1 0.35 0.0066 0.0014 0.0066 0.0014
γ2 0.5 0.0066 0.0025 0.0065 0.0025
λ1 -0.5 0.0000 0.0001 0.0000 0.0001
λ2 0.2 0.0000 0.0002 0.0000 0.0002

MSE(f̂1) 0.0119 0.0119
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Figure 3.3: Nonparametric functions (green) and their fitted curves (blue)
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3.4 Analysis of Three Real Data Sets

In this Section we analyze three real data sets, namely a CD4 cell data set, a

set of cattle data, and a Progesterone hormone data set. The first two data sets

are available in jmcm package in R and third data set is available at the web site

https://content.sph.harvard.edu/fitzmaur/ala2e/. All of these data sets are analysed

by using the semiparametric Model 3.

3.4.1 Analysis of CD4 cell data

The data comprise CD4 cell counts of 369 HIV-infected men. In total there are

2376 observations with multiple repeated measurements taken for each individual at

different times, covering a period of approximately eight and a half years. The number

of measurements for each individual varies from 1 to 12 taken at unequally spaced

time points.

This data set has been analysed by others in the past (for example, Zeger and

Diggle, 1994 and Ye and Pan, 2006). Most recently Zhang et al. (2015), in order to

jointly model the mean, correlation and variance structures, fit polynomial regressions

of time

g(µij) = β0 + xijβ1 + · · ·+ xpijβp,

φijk = γ0 + wijγ1 + · · ·+ wqijγq,

log(σ2
ij) = λ0 + zijλ1 + · · ·+ zdijλd,

where wijk = tij − tik.
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They found in terms of Bayesian Information Criterion

BIC(p, q, d) = −2l̂max/n+ (p+ q + d+ 3) log(n)/n,

where l̂max is the maximum of the log-likelihood, that the model with (p, q, d) =

(8, 1, 1) is the most parsimonious having 13 parameters including the intercept terms

β0, γ0 and λ0 with l̂max = −4892.72 and BIC =26.72.

We now analyze these data using our method of semiparametric modelling devel-

oped in Section 3.2.2. The results, in terms of l̂max and BIC of the parametric and

the semiparametric models, are given in Table 3.5. Note that here we provide all rele-

vant information of the 6 most parsimonious models of which the most parsimonious

model has (p, q, d) = (4, 1, 1) with l̂max = −4877.41 and BIC =26.58. This model

has 9 parameters as opposed to 13 parameters of the model obtained by Zhang et al.

(2015).

Table 3.5: CD4 cell data: A comparison of various models using parametric (Zhang
et al., 2015) and semiparametric approaches

(p, q, d) No. of par.
Parametric Semiparametric

l̂max BIC l̂max BIC
(4,1,1) 9 -4910.87 26.76 -4877.41 26.58
(3,1,1) 8 -4926.88 26.83 -4882.11 26.59
(8,1,1) 13 -4892.72 26.72 -4874.40 26.63
(8,3,1) 15 -4890.44 26.75 -4871.66 26.64
(3,3,3) 12 -4919.52 26.85 -4879.37 26.64
(8,3,3) 17 -4886.36 26.76 -4872.74 26.68

3.4.2 Analysis of cattle data

This data set consists of 30 cows’ 11 bi-weekly weight measurements over a 133-day

period to study the effect of treatments on intestinal parasites. Here measurement

times were common across animals and no observations were missing. Several authors
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analyzed these data; see for example, Pourahmadi (1999, 2000), Pan and MacKenzie

(2003). Recently Zhang et al. (2015) also analyzed these data using the polynomials

given in Section 3.4.1 and obtained the most parsimonious model having (p, q, d) =

(8, 2, 2) with l̂max = −754.02 and BIC = 51.97. We analyze these data by our proposed

method Model 3 and find that the most parsimonious model has (p, q, d) = (5, 2, 1)

with l̂max = −749.53 and BIC = 51.22 (see Table 5).

Table 3.6: Cattle data: A comparison of various models using parametric (Zhang et
al., 2015) and semiparametric approaches

(p, q, d) No. of par.
Parametric Semiparametric

l̂max BIC l̂max BIC
(5,2,1) 11 -762.81 52.10 -749.53 51.22
(5,2,2) 12 -760.61 52.07 -749.56 51.33
(8,2,2) 15 -755.00 52.03 -754.02 51.97
(9,3,1) 16 -756.92 52.28 -755.83 52.20
(9,3,4) 19 -752.82 52.34 -752.03 52.29
(7,2,2) 14 -761.67 52.37 -760.37 52.28
(8,4,7) 22 -749.90 52.49 -749.19 52.44

3.4.3 Analysis of Progesterone hormone data

These data consist of repeated progesterone metabolite (pregnanediol-3-glucuronide,

PdG) measures from day -8 to day 15 in the menstrual cycle (day 0 denotes ovulation

day) on a sample of 22 conceptive cycles from 22 women and 29 non-conceptive cycles

from another 29 women to study of early pregnancy loss. Altogether 1130 observations

were obtained from 51 women, with each woman contributing 9 to 24 observations

over time.

As in Brumback and Rice (1998), we take a log transformation of these data to

make the normality assumption reasonable. Analysis of these data show that the most

parsimonious model, using the semiparametric Model 3, has (p, q, d) = (2, 2, 1) with

l̂max = 31.34 and BIC = -0.61 (see Table 3.7). This compares favourably, compared
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to the parametric Model 1, which has (p, q, d) = (7, 3, 7) with l̂max = 27.31 and BIC

= 0.47 (see Table 3.7).

Table 3.7: Progesterone hormone data: A comparison of various models using para-
metric (Zhang et al. [1]) and semiparametric approaches

(p, q, d) No. of par.
Parametric Semiparametric

l̂max BIC l̂max BIC
(2,2,1) 8 -71.66 3.43 31.34 -0.61
(2,2,2) 9 -66.59 3.31 31.34 -0.54
(2,1,1) 7 -129.58 5.62 16.01 -0.09
(2,1,4) 10 -66.98 3.40 16.38 0.12
(3,1,4) 11 -28.97 1.98 16.38 0.21
(3,1,5) 12 -28.20 2.03 19.58 0.16
(2,1,6) 12 -65.84 3.51 23.73 -0.005
(3,2,3) 11 -32.85 2.14 31.34 -0.38
(7,3,7) 20 27.31 0.47 42.06 -0.11

3.5 Discussion

We develop a joint estimation procedure for the mean (regression) and the variance

parameters in longitudinal data using semiparametric modelling of the mean and

the variance, regression spline, and by decomposing the correlation matrix via hy-

perspherical co-ordinates. Through an extensive simulation study we compare our

method with the parametric method by Zhang et al. (2015). Further, the effect of

the misspecification of the error distribution and of the number of knots used in the

estimation of the nonparametric functions, and whether the penalized spline proce-

dure improves the estimation of the nonparametric functions over the B-spline are

investigated. Furthermore three real data sets are analysed.

The main findings of the simulation study are: (a) the parametric modelling and the

semiparametric modelling produce similar bias and efficiency property of the regres-

sion parameters, (b) increasing the number of knots in the spline procedure decreases
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the efficiency of the estimates of the nonparametric functions, and (c) use of the pe-

nalized spline does not improve the efficiency of the estimates of the nonparametric

functions.

The main advantage of the semiparametric modelling, however, is shown in the

analysis of three real data sets, the results of which are summarized in Table 3.8,

which produces significant model parsimony. For example, in the Cattle data the most

parsimonious model given by Zhang et al. (2015) shows (p, q, d) = (8, 2, 2), where

p = degree of polynomial in mean, q = degree of polynomial in correlation in time

lag and d = degree of polynomial in variance. Whereas, our semiparametric approach

shows the most parsimonious model to have (p, q, d) = (5, 2, 1). Similar parsimony

advantages are seen in the analysis of the CD4 cell data and the Progesterone hormone

data.

Table 3.8: Most parsimonious model with number of parameters

Data
Parametric Semiparametric

(p, q, d) Number of (p, q, d) Number of
parameters parameters

CD4 (8,1,1) 13 (4,1,1) 9
Cattle (8,2,2) 15 (5,2,1) 11

Hormone (7,3,7) 20 (2,2,1) 8



Chapter 4

Joint Estimation of Mean and

Covariance Parameters in

Generalized Partially Linear

Varying Coefficient Models for

Longitudinal Data

4.1 Introduction

In longitudinal data regression modelling, in some instances, time variant regression

coefficients play an important role. For example, consider a subset of data from the

Multi-Center AIDS Cohort study (Kaslow et al., 1987), analyzed by Qin, Mao, and

Zhu (2015), that includes repeated measurements of physical examinations, labora-
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tory results and CD4 cell percentage along some covariates of 283 homosexual men

who became HIV-positive between 1984 and 1991.

The response variable y(t) is the CD4 cell percentage of a subject at distinct time

points after HIV infection. Huang, Wu, and Zhou (2002) took three covariates: smok-

ing status, age and PreCD4. They analyze this data set to describe the trend of mean

CD4 percentage depletion over time and to evaluate the effects of cigarette smoking,

pre-HIV infection CD4 percentage and age at HIV infection on the mean CD4 per-

centage after the infection. They consider the following model

y(t) = β0(t) + β1(t)smoking + β2(t)age + β3(t)preCD4 + ε,

where β0(t) can be interpreted as the baseline function.

The results of the hypothesis testing of Huang et al. (2002) show that the baseline

function varies over time; neither smoking nor age has a significant impact on the

mean CD4 percentage, and whether or not PreCD4 has a constant effect over time is

unclear which motivate us to consider a time varying coefficient model.

In a recent paper Zhang, Leng, and Tang (2015) consider that covariate effects

are time invariant, and we extend their model to include time variant covariates

effects. Qin, Mao, and Zhu (2015) proposed a general semiparametric model for the

mean and the covariance simultaneously using the modified Cholesky decomposition.

We consider a generalized partially linear varying coefficient model (GPLVCM) and

propose a regression spline based approach model to estimate mean and variance

jointly by decomposing the correlation matrix via hyperspherical coordinates.

In Section 4.2 we describe how to decompose the correlation matrix by using hyper-
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spherical coordinates. Furthermore, approximation of time variant terms by B-spline

basis is given in Section 4.3. The proposed model and estimation procedure are pre-

sented in Section 4.4. A simulation study and real data analysis are given in Sections

4.5 and 4.6, respectively.

4.2 Decomposing Correlation Matrix via Hyper-

spherical Coordinates

A correlation matrix can be decomposed by hyperspherical coordinates. The follow-

ing Lemma (Pourahmadi and Wang, 2015) shows the relationship between Cholesky

decomposition of order m × m correlation matrix R = TT ′ and the hyperspherical

parameterization of T = (Tjk).

Lemma: (a) A positive definite correlation matrix R = (ρjk) can be decomposed as

R = TT ′ where T is a lower triangular matrix given by

T =



1 0 0 · · · 0

c21 s21 0 · · · 0

c31 c32s31 s32s31 · · · 0

...
...

...
. . .

...

cm1 cm2sm1 cm3sm2sm1 · · ·
m−1∏
l=1

sml


,

where cjk and sjk represent cos(φjk) and sin(φjk) respectively,

(b) The matrix T is unique if its diagonal entries are positive or equivalently if the

angles are restricted to the range (0, π).
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Note that there are m(m − 1)/2 unique angles φjk which vary freely in the range

(0, π). For more details readers are referred to Pinheiro and Bates (1996), Rebonato

and Jackel (2000), and Rapisarda et al. (2007). Thus the elements of R are of the

form

ρjk = cj1ck1 +

j−1∑
l=2

cjlckl

l−1∏
p=1

sjpskp + ckj

j−1∏
p=1

sjpskp, 1 ≤ j < k ≤ m.

The advantage of this decomposition is that we can directly parametrize the corre-

lation matrix unconstrainedly using the hyperspherical coordinates which avoids the

need to go through the concepts of partial correlations.

4.3 B-spline

The unknown function f(t) can be approximated by a regression spline. Note that a

regression spline is a piecewise polynomial function smoothly connected at its knots.

Without loss of generality, we assume that the domain of tij lies in the interval [0, 1].

Let 0 = a0 < a1 < · · · < akn < akn+1 = 1 be a partition of the interval [0, 1]. Using

{ai} as the internal knots, we have K = kn + ` normalized B-spline basis functions

of order ` as
{
B

(`)
1 (t), . . . , B

(`)
K (t)

}
that form a basis for the linear spline space where

B
(`)
i (t) is defined as

B
(`)
i (t) =

t− ai
ai+`−1 − ai

B
(`−1)
i (t) +

ai+` − t
ai+` − ai+1

B
(`−1)
i+1 (t),

and

B
(1)
i (t) =

 1, ai ≤ t < ai+1

0, otherwise.
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Thus f(t) is approximated by π(t)′α where π(t) =
(
B

(`)
1 (t), . . . , B

(`)
K (t)

)′
and α ∈

RK is the vector of spline coefficients.

The advantage of regression spline is that it linearizes the nonparametric function

so any algorithm designed for linear models can be directly applied to partially linear

models. Moreover the B-spline can provide a good approximation with a small number

of knots (He et al., 2002).

We consider a cubic spline of order 4 as it is usually smooth enough to fit usual

smooth functions which is extensively used in practice (Wolberg and Alfy, 2002).

Similar to He et al. (2005), the number of the internal knots kn is taken to be the

integer part of N1/5 where N is the total number of distinct values of {tij}.

4.4 Generalized Partially Linear Varying Coeffi-

cient Models

Suppose for subject i(i = 1, . . . , n), yi = (yi1, . . . , yimi)
′ is collected at time ti =

(ti1, . . . , timi)
′. Each observation consists of a response variable yij and covariate

vectors xij and zij, which are taken from the i-th subject at time tij. We denote the

conditional mean and variance of yij by µij and σ2
ij respectively given the covariates

xij and zij at time tij.

We assume that yi ∼ N(µi,Σi) where µi = (µi1, . . . , µimi)
′, Σi = DiRiDi, Di =

diag (σi1, . . . , σimi), and Ri = (ρijk)
mi
j,k=1 is the correlation matrix of yi where ρijk =

corr(yij, yik) is the correlation between the j-th and k-th measurements of the i-th

subject.
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Similar to Zhang et al. (2015), we decompose the correlation matrix Ri via hyper-

spherical coordinates to decompose Ri = TiT
′
i as discussed in Section 4.2. Since µij,

φijk and log σ2
ij are unconstrained, motivated by Qin et al. (2015), we propose the

following generalized partially linear varying coefficient model (GPLVCM):

g(µij) = x′ijα(tij) + z′ijβ,

φijk = w′ijkγ,

and

log(σ2
ij) = u′ijf(tij) + v′ijλ,

where xij ∈ Rp and zij ∈ Rq are covariate vectors for the time varying coefficients and

constant coefficients at time tij, respectively; wijk,uij and vij are (d× 1), (h× 1) and

(m× 1) vectors of covariates, respectively; β,γ and λ are the regression coefficients;

α(t) = (α1(t), . . . , αp(t))
′ and f(t) = (f1(t), . . . , fh(t))

′ comprises p and h unknown

smooth functions respectively. Zhang et al. (2015) method is a special case of this

model.

For simplicity, we assume that all αl(t) and fs(t) have the same smoothness property

for 1 ≤ l ≤ p and 1 ≤ s ≤ h. Using the procedure of regression spline as discussed

in Section 4.3, all unknown smooth functions αl(t) and fs(t) are approximated by

regression spline π′(t)ψl and π′(t)ϕs, respectively, where π(t) = (B1(t), . . . , BK(t))′ is

the vector of basis functions, and ψl = (ψl,1, . . . , ψl,K) and ϕl = (ϕl,1, . . . , ϕl,K) are

the spline coefficient vectors. Then, the nonlinear regression models can be linearized
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as in what follows

g (µij) = Π′ijΨ + z′ijβ = Π̃′ijΘ, φijk = w′ijkγ,

and

log
(
σ2
ij

)
= Υ′ijΨ̃ + v′ijλ = Υ̃′ijΛ,

where Πij = (xij,1π
′(tij), . . . , xij,pπ

′(tij))
′, Π̃ij = (Π′ij, z

′
ij)
′, Θ = (Ψ′,β′)′, Ψ =

(ψ′1, . . . , ψ
′
p)
′ ∈ RpK , Υij = (uij,1π

′(tij), . . . , uij,hπ
′(tij))

′, Υ̃ij = (Υ′ij,v
′
ij)
′, Λ =

(Ψ̃′,λ′)′, Ψ̃ = (ϕ′1, . . . , ϕ
′
h)
′ ∈ RhK . Define Π̃i =

(
Π̃′i1, . . . , Π̃

′
imi

)′
and Υ̃i =(

Υ̃′i1, . . . , Υ̃
′
imi

)′
for i = 1, . . . , n.

Let ri = yi − µi. Then, εi = (εi1, . . . , εimi)
′ = T−1

i D−1
i ri ∼ N(0, Imi). Thus the

minus twice log-likelihood, up to a constant, can be written as

−2l =
n∑
i=1

mi∑
j=1

(log σ2
ij + log T 2

ijj + ε2ij).

Thus, now the parameters of interest are Θ, γ and Λ. Omitting details, by usual

derivations, the maximum likelihood estimating equations for Θ, γ and Λ are

U1 =
n∑
i=1

Π̃′i∆iΣ
−1
i (yi − µi) = 0,

U2 = −
n∑
i=1

mi∑
j=1

[
∂ log Tijj
∂γ

(ε2ij − 1) + εij

j−1∑
k=1

bijkεik

]
= 0,

and

U3 =
1

2

n∑
i=1

Υ̃′i(qi − 1mi) = 0,

where bijk =
j∑
l=k

∂Tilk
∂γ

aijl with aijl being the (j, l) element of T−1
i , qi = diag(R−1

i D−1
i rir

′
iD
−1
i ),
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∆i = ∆i(µi(Θ)) = diag{ġ−1(Π̃′i1Θ), . . . , ġ−1(Π̃′imiΘ)} where ġ−1(·) is the derivative

of the inverse link function g−1(·) with µ(·) = g−1(·). Note that the notation
0∑

k=1

represents zero throughout the Chapter when j = 1.

To solve aforementioned score equations we apply the following quasi-Fisher scoring

algorithm where the parameters of interest Θ, Λ and γ are solved sequentially one by

one by keeping fixed other parameters in optimization:

Step 1 : Select initial values of the parameters as Θ(0),Λ(0) and γ(0). Set k = 0

Step 2 : Evaluate Σi by using Λ(k) and γ(k). Update Θ as

Θ(k+1) = Θ(k) + I−1
11 U1|Θ=Θ(k)

Step 3 : Given Θ = Θ(k+1), update Λ and γ by using

 γ(k+1)

Λ(k+1

 =

 γ(k)

Λ(k

+


 I22 I23

I32 I33


−1 U2

U3


 ∣∣∣

γ=γ(k), Λ=Λ(k)

Step 4 : Set k ← k + 1 and repeat steps 2 and 3 until a preferred convergence criteria

is satisfied.

It is noted that block components of Fisher information matrix I are I11, I12, I13,
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I22, I23 and I33 which are of the form

I11 = −E
[

∂2l

∂Θ∂Θ′

]
=

n∑
i=1

Π̃′i∆iΣ
−1
i ∆iΠ̃i,

I12 = −E
[

∂2l

∂Θ∂γ ′

]
= −

n∑
i=1

[
Π̃′i∆i

∂Σ−1
i

∂γ ′
(E(yi)− µi)

]
= 0,

I13 = −E
[

∂2l

∂θ∂Λ′

]
= 0,

I22 = −E
[

∂2l

∂γ∂γ ′

]
=

n∑
i=1

mi∑
j=1

[
2
∂ log Tijj
∂γ

∂ log Tijj
∂γ ′

+

j−1∑
k=1

bijkb
′
ijk

]
,

I23 = −E
[

∂2l

∂γ∂Λ′

]
=

n∑
i=1

mi∑
j=1

[
∂ log Tijj
∂γ

Υ̃′ij +
1

2

j−1∑
k=1

bijk

j∑
l=k

aijlTilkΥ̃
′
il

]
,

I33 = −E
[

∂2l

∂Λ∂Λ′

]
=

1

4

n∑
i=1

Υ̃′i
[
Imi +R−1

i ◦Ri

]
Υ̃i,

where ‘◦’ represents the Hadamard product.

4.5 Simulation

A simulation study is conducted in this section to investigate the performance of the

estimators of the regression parameters in terms of bias and efficiency. We generate

response data from the model

yij = xij1α1(tij) + xij2α2(tij) + zij1β1 + zij2β2 + eij,

φijk = γ1wijk1 + γ2wijk2,

and

log
(
σ2
ij

)
= uij1f1(tij) + uij2f2(tij) + vij1λ1 + vij2λ2,
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for i = 1, . . . , 100, j, k = 1, . . . ,mi, α1(t) =
√
t, α2(t) = sin(2πt), f1(t) = 0.5 sin(πt)

and f2(t) = 0.5 cos(πt).

Observation times are in general scheduled but may be randomly missed in practice.

Similar to Leng et al. (2010) we generate the observation times in the following way.

We take a set of scheduled time points {0, 1, 2, . . . , 12} for each subject. At each

scheduled time, except time 0, each subject has a 20% probability of missing that

fixed time point. To make irregular and unequal time distances for different subjects,

a uniform [0, 1] random variable is added to a non skipped scheduled time which

produces different observed time points tij per subject. Note that tij is converted

onto [0, 1] in simulation.

We further take xij1 = 1 to include an intercept term. Other covariates are chosen

as follows: for a given tij, (xij2, δij)
′ is generated from a bivariate normal distribution

with mean 0, marginal variance 1 and correlation 0.5, and zij2 follows a Bernoulli(0.5)

distribution and is independent of xij2 and zij1. We take zij1 = δij + tij. The

error (ei1, . . . , eimi) is generated from a multivariate normal distribution with mean

0 and covariance Σi = DiRiDi, where Di and Ri are described in Section 4.2. Take

wijk = (1, tij − tik)
′,uij = xij,vij = zij. For values of regression parameters we

take (β1, β2) = (1, 2), (γ1, γ2) = (0.5, 0.6) and (λ1, λ2) = (−0.5, 0.2). The expected

sample size is about 1040 = 100× 13× (1− 0.2). The number of knots is taken to be

4 ≈ 10401/5 (He et al., 2005).

We generate 1000 data sets to calculate the bias of the estimates of the parameters

of our proposed method with standard errors which is presented in Table 4.1 and

MSE of α1, α2, f1 and f2 are presented in Table 4.2.

Table 4.1 and Table 4.2 show that proposed method provides efficient estimates
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Table 4.1: Bias and Standard error of the estimated parameters based on 1000 repli-
cations

Parameter True value Sample mean Bias Standard error
β1 1.0 1.0000 0.0000 0.0214
β2 2.0 2.0001 0.0001 0.0256
γ1 0.5 0.4994 -0.0006 0.0071
γ2 0.6 0.5986 -0.0014 0.0071
λ1 -0.5 -0.5000 0.0000 0.0286
λ2 0.2 0.2001 0.0001 0.0496

Table 4.2: MSE of time varying functions

Function α̂1 α̂2 f̂1 f̂2

MSE 0.0211 0.0142 0.0749 0.0135

for the mean regression models and gives consistent estimates for the covariance

components.

4.6 Real Data Analysis: A Multi-Center AIDS

Cohort Study

We consider a subset from the Multi-Center AIDS Cohort Study as discussed in

Section 4.1, where the data include repeated measurements of physical examinations,

laboratory results and CD4 cell counts and percentages of 283 homosexual men who

became HIV-positive between 1984 and 1991. Each patient was supposed to have

measurements taken every 6 months, but it often happened that patients missed

or rescheduled their appointments. Therefore, each patient had a different number

of repeated measurements and the true observation times were not equally spaced.

Each patient has minimum 1 and maximum 14 measurements for these data. Further
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details about the design, methods and medical implications of the study can be found

in Kaslow et al. (1987).

Let x1 be PreCD4, z1 be smoking status (1 for a smoker and 0 for a non-smoker) and

z2 be age for each i-th subject. Huang et al. (2002) showed that the baseline function

varies over time and whether or not x1 has a constant effect over time is unclear so

we consider time varying coefficients for both. Note that x1 and z2 are standardized

variables with mean 0 and standard deviation 1. We consider the response y as the

log-transformed CD4 cell percentage of a subject at distinct time points after HIV

infection. To model jointly the mean and covariance structures for the data, we use

the following model for mean and variances:

µij = α1(tij) + α2(tij)x1,ij + β1z1,ij + β2z2,ij, and

log(σ2
ij) = f1(tij) + f2(tij)x1,ij + λ1z1,ij + λ2z2,ij,

where α1(t), α2(t), f1(t) and f2(t) are varying coefficient terms.

In addition for modelling the correlation matrix, similar to Qin et al. (2015), we

choose wijk = (1, tij − tik, (tij − tik)2)
′
. We estimate all regression parameters as well

as standard error (SE) and compare with Qin et al. (2015) method in Table 4.3,

which indicates that our method has smaller standard error.

4.7 Discussion

We develop a joint estimation procedure for the mean and variance parameters in a

generalized partially linear varying coefficient model for longitudinal data by decom-
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Table 4.3: Estimates of regression coefficients and their standard error

Parameter
Proposed Method Qin et al. Method
Estimate SE Estimate SE

β̂1 -0.004 0.029 0.056 0.032

β̂2 0.011 0.012 0.014 0.015
γ̂1 1.261 0.027 0.846 0.048
γ̂2 -0.102 0.024 -0.559 0.048
γ̂3 0.024 0.005 0.084 0.010

λ̂1 0.268 0.073 -0.445 0.202

λ̂2 -0.009 0.033 -0.140 0.123

posing the correlation matrix via hyperspherical coordinates. A simulation study as

well as real data analysis indicates that our method fits better. By our method we

can include a time variant covariates term, which is more flexible than Zhang et al.

(2015).



Chapter 5

Model Selection in Generalized

Linear Models

5.1 Introduction

The importance of model selection in regression analysis for a normally distributed

response variable is well known and is widely used in many fields of study, such as, en-

gineering, biomedical sciences, and social sciences. Consider a normal linear regression

model with response variables y = (y1, . . . , yn)′ and p covariates X = (1n,x1, . . . ,xp)

with xi = (x1i, . . . , xni)
′ and regression parameters β = (β0, β1, . . . , βp)

′ that follow

y = Xβ + ε, where ε = (ε1, . . . , εn)′ are i.i.d. and εi ∼ N(0, σ2) distribution. In this

setting, the interest is to obtain a regression model with as few regression parameters

as possible (parsimonious). The popular method in use, in practice, is one of: forward

selection, backward elimination, and stepwise selection procedures through a test of

significance of a single regression coefficient, for example, test of H0 : βj = 0, using the

55
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F test (Beale, 1970; Kutner, Nachtsheim, Neter, and Li, 2013). Other model selection

procedures, such as, the Akaike information criterion (AIC) (Akaike, 1974) and the

Bayesian information criterion (BIC) (Schwarz, 1978) are also available. However,

properties of these model selection procedures are not well-known.

The purpose of this Chapter is to study the properties of these procedures in gen-

eralized linear models of which the normal, Poisson, and binomial regression models

are special cases.

There are two aspects to the model selection procedure: (a) finding a suitable test

statistic for testing the significance of a single regression coefficient, for example, to

test H0 : βj = 0, which performs best in holding an appropriate level of significance,

say 5% and has overall best power property and (b) finding a model selection proce-

dure using this suitable test statistic, which, again, has the best property with respect

to level and power.

For (a) we develop three large sample test statistics, namely, the score test, the

likelihood ratio test (LR), and the Wald test. These three tests along with the usual

F test are compared using a simulation study.

The score test (Rao 1947) is a special case of the C(α) test (Neyman, 1959) where

the nuisance parameters are replaced by maximum likelihood estimates that are
√
n-

consistent; here, n denotes the number of observations used in estimating the parame-

ters. The score test is particularly appealing as we only have to study the distribution

of the test statistic under the null hypothesis which is that of the basic model. It

often maintains, at least approximately, a preassigned level of significance and often

produces a statistic that is simple to calculate. On the contrary, two other asymp-

totically equivalent tests (LR test and Wald test) require estimates of the parameters
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under the alternative hypothesis and often show liberal or conservative behaviour in

small samples. For further discussion on this, see Rao (2005).

For (b) an extensive simulation study is conducted to compare the properties of

the forward selection procedure using the best statistic found in (a), the AIC and the

BIC. More discussion of these is given in section 5.3.

In Section 5.2 we develop the three large test statistics, which are then specialized

for data from the normal, the Poisson and the binomial distributions. The F statistic

used in model selection for data from normal is also discussed. Results of an exten-

sive simulation study are reported in Section 5.2.4 and Section 5.3. Extensions for

over-dispersed Poisson and over-dispersed binomial regression models are given and

evaluated in Section 5.4. Some examples are given in Section 6.4 and a discussion

follows in Section 5.6.

5.2 Generalized Linear Models and the Test Statis-

tics

5.2.1 Generalized Linear Models

Let Yi be the independent response variables with mean µi and variance φVi, where

Vi is the variance that Yi, (i = 1, . . . , n) is assumed to have under the generalized

linear model. Further, suppose that µi = h(ηi) and η = Xβ, where h(.) is the inverse

link function, X = [xir] is the n × p matrix and β = (β0, β1, . . . , βp)
′ is the vector

of regression parameters. Further we assume that xi0 = 1 so that β0 is the intercept

parameter.
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5.2.2 The Test Statistics

Our interest is to develop a test statistic for testing the hypothesis that one of the

β parameters is zero. As such we consider the null hypothesis H0 : βj = 0 against

Ha : βj 6= 0 for j = 0, 1, . . . , p.

In the GLM framework, the probability density function of y for φ = 1 is given by

f(y; θ) = exp [a(θ)y − g(θ) + c(y)] , (5.1)

where θ is related to η and when a natural link function is used θ = η = Xβ. Then

the log-likelihood can be written as is

l =
n∑
i=1

[a(θi)yi − g(θi) + c(yi)]

from which the score function is obtained as

∂l

∂βj
=

n∑
i=1

yi − µi
Vi

∂µi
∂ηi

xij,

where µi = E(yi) =
g′(Xiβ)

a′(Xiβ)
,
∂µi
∂ηi

= h′(Xiβ) and

Vi = var(yi) =
g′′(Xiβ)a′(Xiβ)− a′′(Xiβ)g′(Xiβ)

(a′(Xiβ))3
, where ′ denotes differentiation

with respect to θ. To estimate the parameters βk, k = 0, 1, . . . , p, we need to solve

∂l

∂βk
= 0 which are non-linear in nature in βk, so must be solved iteratively (McCullagh

and Nelder, 1989).

Note that under the null hypothesis we estimate βk for k = 0, 1, . . . , j−1, j+1, . . . , p.

Denote these estimates by β̂k. Further, under the alternative hypothesis we estimate



5.2 Generalized Linear Models and the Test Statistics 59

βk, for k = 0, 1, . . . , p. Denote these estimates by β̃k.

The Likelihood Ratio Test

Let l̂ and l̃ be the maximized log-likelihood under the null and the alternative hy-

pothesis, respectively. Then, the likelihood ratio statistic is LRj = 2
(
l̃ − l̂

)
.

The Wald Test

The Wald test statistic is given by Wj = β̃j
/√

var(β̃j), where var(β̃j) is obtained

from the Hessian matrix at the end of the iterative process.

The Score Test

The score test is a special case of the C(α) test which is based on the partial

derivatives of the log-likelihood function with respect to the nuisance parameters

and the parameters of interest evaluated at the null hypothesis. Suppose δ = βj and

θ = (β0, β1, . . . , βj−1, βj+1, . . . , βp)
′. Define the partial derivatives of the log-likelihood

which are evaluated at δ = 0 as

ψ =
∂l

∂δ

∣∣∣
δ=0

=

[
∂l

∂βj

] ∣∣∣∣∣
δ=0

and

γ =
∂l

∂θ

∣∣∣
δ=0

=

[
∂l

∂β0

,
∂l

∂β1

, · · · , ∂l

∂βj−1

,
∂l

∂βj+1

, · · · , ∂l
∂βp

]′ ∣∣∣∣∣
δ=0

.

The C(α) test is based on the adjusted score S =
∂l

∂δ
−B ∂l

∂θ
, where B is the matrix of

partial regression coefficients that is obtained by regressing
∂l

∂δ
on

∂l

∂θ
. The variance-
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covariance of S is D − AB−1A′, where D = E

[
− ∂

2l

∂β2
j

] ∣∣∣∣∣
δ=0

, A = E

[
− ∂2l

∂βj∂βk

] ∣∣∣∣∣
δ=0

(k 6= j), which is a 1× p vector and B = E

[
− ∂2l

∂βk∂βt

] ∣∣∣∣∣
δ=0

(k, t 6= j) which is a p× p

matrix. After replacing θ in S,A,B and D by θ̂, the C(α) statistic takes the form

Sj = S ′(D − AB−1A′)−1S,

which is approximately distributed as chi-squared with 1 degree of freedom.

Now, define

wi =

(
∂µi
∂ηi

)2

V −1
i ,

W = diag(w1, . . . , wn)|βj=0, xj = (x1j, . . . , xnj)
′, and

Xj =



1 x11 · · · x1(j−1) x1(j+1) · · · x1p

1 x21 · · · x2(j−1) x2(j+1) · · · x2p

...
...

...
...

...
...

...

1 xn1 · · · xn(j−1) xn(j+1) · · · xnp


.

Then

S =
∂l

∂βj

∣∣∣∣∣
βj=0

=
n∑
i=1

[
wi(yi − µi)

∂ηi
∂µi

xij

] ∣∣∣∣∣
βj=0

, D =
n∑
i=1

wix
2
ij

∣∣∣
βj=0

= x′jWxj,

A =
n∑
i=1

xijwi
(
1, xi1, . . . , xi(j−1), xi(j+1), . . . , xip

) ∣∣∣
βj=0

= x′jWXj,

B = X ′jWXj, and D − AB−1A′ = x′jW
[
In −Xj

(
X ′jWXj

)−1
X ′jW

]
xj.

Replace β0, β1, . . . , βj−1, βj+1, . . . , βp by their MLE’s under the null hypothesis. Then
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the score test statistic is

Sj =
Ŝ2

x′jŴ

(
In −Xj

(
X ′jŴXj

)−1

X ′jŴ

)
xj

. (5.2)

The above score test can also be obtained from Pregibon (1982). For testing a

subset q of the regression parameters equal to zero, Pregibon (1982) obtains a score

test given by

PSq = s′Xq

(
X ′qW

1
2MpW

1
2Xq

)−1

X ′qs,

where Mp = I −W 1
2Xp(X

′
pWXp)

−1X ′pW
1
2 , W = W

1
2W

1
2 and S = sX.

Using q = 1 in the above, the score test becomes PS1 = S ′
(
x′jW

1
2MpW

1
2xj

)−1

S.

Now

x′jW
1
2MpW

1
2xj = x′jW

1
2

(
I −W

1
2Xp(X

′
pWXp)

−1X ′pW
1
2

)
W

1
2xj

= x′jW
1
2W

1
2xj − x′jW

1
2W

1
2Xp(X

′
pWXp)

−1X ′pW
1
2W

1
2xj

= x′jWxj − x′jWXp

(
X ′pWXp

)−1
X ′pWxj

= x′jW
[
In −Xp

(
X ′pWXp

)−1
X ′pW

]
xj.

Therefore

PS1 = S ′
(
x′jW

1
2MpW

1
2xj

)−1

S

=
S2

x′jW
[
In −Xp

(
X ′pWXp

)−1
X ′pW

]
xj
,

which is identical to Sj.
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Asymptotically (for large n), the distribution of each of the test statistics LRj, W
2
j ,

and Sj converges to χ2(1) (Neyman, 1959). Therefore, for a fixed significance level

α > 0, we reject the null hypothesis if the value of a test statistic is greater than

χ2
α(1).

The F Test

The F statistic used in model selection for data from normal is

NF =
SSR(xj|x1, . . . ,xj−1,xj+1, . . . ,xp)/df1

SSE(x1, . . . ,xp)/df2
,

where SSR(xj|x1, . . . ,xj−1,xj+1, . . . ,xp)= SSE(x1, . . . ,xj−1,xj+1, . . . ,xp)−

SSE(x1, . . . ,xp), df1 = 1 and df2 = n− p− 1. Here SSE means error sum of squares

and NF ∼ F (1, n− p− 1) if H0 holds (Kutner et al. 2013; pp-267).

5.2.3 Special Cases

We now give the expressions for the three test statistics LRj, Wj, and Sj for the special

cases for which the data distribution is normal, Poisson, and binomial respectively.

In each situation, however, for robustness study, we include the same normal theory

test statistic given in Section 5.2.2.
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(i) For the N(µ, σ2) distribution with link function ηi = µi these statistics are

LRNj =
−1

σ2

[
(yi − µ̃i)2 − (yi − µ̂i)2] ,

WNj =
β̃j√

1
σ̃2

n∑
i=1

x2
ij

, and

SNj =

(
n∑
i=1

(
yi−µ̂i
σ̂2

)
xij

)2

x′jW
(
I −Xj

(
X ′jWXj

)−1
X ′jW

)
xj
,

where µ̃i = β̃0+β̃1xi1+· · ·+β̃pxip, µ̂i = β̂0+β̂1xi1+· · ·+β̂j−1xi(j−1)+β̂j+1xi(j+1)+

· · ·+ β̂pxip, W = diag(1/σ̂2, . . . , 1/σ̂2) and σ̂2 =

(
n∑
i=1

(yi − µ̂i)2

)/
n.

(ii) For the Poisson(λ) distribution, the link function is ηi = log(λi). After deriva-

tion and simplification we obtain the corresponding test statistics for Poisson

distributed data as

LRPj = 2
[
(yi log λ̃i − λ̃i)− (yi log λ̂i − λ̂i)

]
,

WPj =
β̃j√
n∑
i=1

λ̃ix2
ij

, and

SPj =

(
n∑
i=1

(
yi − λ̂i

)
xij

)2

x′jW
(
I −Xj

(
X ′jWXj

)−1
X ′jW

)
xj
,

where λ̃i = exp(β̃0 + β̃1xi1 + · · ·+ β̃pxip), λ̂i = exp(β̂0 + β̂1xi1 + · · ·+ β̂j−1xi(j−1) +

β̂j+1xi(j+1) + · · ·+ β̂pxip) and W = diag(λ̂1, . . . , λ̂n).

(iii) Finally, for the Binomial(m, p) distribution with link function ηi = log(
pi

1− pi
)
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the corresponding statistics are

LRBj = 2

[(
yi log

p̃i
1− p̃i

+mi log(1− p̃i)
)
−
(
yi log

p̂i
1− p̂i

+mi log(1− p̂i)
)]

,

WBj =
β̃j√

n∑
i=1

mip̃i(1− p̃i)x2
ij

, and

SBj =

(
n∑
i=1

(yi −mip̂i)xij

)2

x′jW
(
I −Xj

(
X ′jWXj

)−1
X ′jW

)
xj
,

where
p̃i

1− p̃i
= exp

(
β̃0 + β̃1xi1 + · · ·+ β̃pxip

)
,

p̂i
1− p̂i

= exp
(
β̂0 + β̂1xi1 + · · ·+ β̂j−1xi(j−1) + β̂j+1xi(j+1) + · · ·+ β̂pxip

)
and

W = diag (m1p̂1(1− p̂1), . . . ,mnp̂n(1− p̂n)).

5.2.4 Simulation

A simulation study is now conducted to compare the behaviour of the four test statis-

tics, namely, the score, LR, Wald, and F, in terms of empirical level and power, for

testing the significance of a single regression coefficient. We consider a two-variable

regression model with link function µ = β0 + β1x1 + β2x2, λ = exp(β0 + β1x1 + β2x2),

and
p

1− p
= exp(β0 + β1x1 + β2x2) for N(µ, σ2), Poisson(λ), and Bin(m, p) distribu-

tions respectively.

Suppose our interest is to test H0 : β2 = 0 against Ha : β2 6= 0 in each case.

For empirical levels we take β0 = 1, β1 = −1, and β2 = 0. For power we take

β0 = 1, and β1 = −1 and different values of β2 as given in Table 5.1 for normal and

Poisson distributed data, and Table 5.2 for binomially distributed data. For data
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from the binomial distribution, the level and power results may be affected by the

binomial index m. To check this we conduct simulations for m = 10, m = 20, and

m = 40. For both level and power we consider sample sizes n = 10, 20, 30 and 50 for all

distributions. Each simulation experiment is based on 10,000 replicated samples. The

level and power results are presented in Table 5.1 for normal and Poisson distribution

and in Table 5.2 for binomial distribution.

Table 5.1: Empirical level (EL) and power (in %) of the four test statistics; α = 0.05

Distr.
Size

Test
EL

Empirical Power
(n) β2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Score 7.80 7.85 7.90 8.17 8.66 9.06 9.76 10.54 11.19 12.09 13.34

10 Wald 9.29 9.37 9.64 9.87 10.31 10.87 11.62 12.50 12.99 14.36 15.45
LR 11.57 11.63 11.89 12.19 12.92 13.26 14.38 14.98 15.49 16.87 18.61
F 5.15 5.28 5.45 5.55 5.70 6.12 6.66 7.46 7.86 8.53 9.64

Score 6.57 6.58 6.80 7.47 8.01 9.14 10.38 13.23 14.31 16.39 19.35
Normal 20 Wald 7.17 7.11 7.45 8.11 8.68 9.96 11.19 14.36 15.34 17.58 20.46

LR 7.92 7.99 8.30 8.94 9.57 11.08 12.22 15.56 16.81 19.03 22.14
F 5.32 5.52 5.64 6.26 6.82 7.82 8.82 11.25 12.38 14.31 17.23

Score 5.96 6.01 6.45 7.73 8.67 10.77 12.85 16.16 19.26 22.98 25.66
30 Wald 6.42 6.35 6.75 8.15 9.17 11.43 13.38 16.78 20.08 23.76 26.58

LR 6.83 6.78 7.42 8.71 9.84 12.17 14.18 17.78 21.15 24.95 27.76
F 5.33 5.45 5.89 6.91 7.83 9.67 11.61 15.12 17.94 21.10 23.72

Score 5.61 6.14 6.60 8.20 11.25 14.64 17.61 22.10 28.57 34.03 40.51
50 Wald 5.77 6.42 6.79 8.43 11.62 15.18 18.05 22.56 29.11 34.70 41.09

LR 6.09 6.75 7.09 8.80 12.05 15.71 18.48 23.25 29.88 35.45 41.96
F 5.28 5.60 6.19 7.77 10.46 13.84 16.70 21.12 27.56 32.80 39.32

Score 5.09 5.96 7.80 11.02 17.16 22.56 30.25 37.84 47.75 54.68 62.69
10 Wald 4.59 5.37 7.22 10.22 16.24 21.53 29.00 36.56 46.37 53.54 61.65

LR 5.42 6.33 8.04 11.39 16.41 23.16 30.59 38.42 48.64 55.56 63.54
F 0.09 0.14 0.22 0.28 0.32 0.40 0.53 0.73 1.05 1.13 1.41

Score 4.74 6.00 11.56 19.42 31.01 44.85 58.27 70.13 79.45 87.37 91.98
Poisson 20 Wald 4.61 5.84 11.41 19.11 30.64 44.53 57.90 69.80 79.14 87.11 91.86

LR 4.80 6.14 11.66 19.58 31.19 45.12 58.73 70.39 79.58 87.53 92.25
F 0.02 0.00 0.01 0.04 0.04 0.14 0.22 0.57 0.97 1.24 1.98

Score 4.83 8.50 15.38 27.95 45.02 62.09 76.17 86.93 93.34 96.69 98.59
30 Wald 4.79 8.44 15.30 27.70 44.89 61.93 76.06 86.85 93.28 96.65 98.55

LR 4.82 8.59 15.37 28.00 45.24 62.10 76.31 87.08 93.45 96.74 98.58
F 0.01 0.01 0.01 0.01 0.12 0.23 0.31 0.80 1.66 2.20 3.70

Score 4.85 9.42 22.10 44.88 66.33 83.94 93.96 97.85 99.51 99.89 99.98
50 Wald 4.84 9.43 22.04 44.78 66.27 83.91 93.93 97.83 99.50 99.89 99.98

LR 4.81 9.45 22.12 44.94 66.40 84.08 93.98 97.87 99.51 99.88 99.98
F 0.00 0.00 0.01 0.02 0.11 0.30 0.96 2.45 5.05 9.43 13.82

Results in Table 5.1 show that for normally distributed data, the score test and the

F test maintain level reasonably well, although, the score test shows some inflated

level. As a result, it shows some inflated power. The other two statistics (Wald and

LR), show liberal behaviour. Because of this, these two statistics show higher power



5.2 Generalized Linear Models and the Test Statistics 66

Table 5.2: Empirical level (EL) and power (in %) of the four test statistics in binomial
distribution; α = 0.05

Size
Test

EL
Empirical Power

(m,n) β2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Score 4.87 5.58 7.03 9.23 12.38 16.21 21.11 27.23 33.16 40.14 46.17
Wald 4.44 5.02 6.32 8.44 11.47 15.10 19.56 25.73 31.54 38.25 44.46

(10,10) LR 5.20 6.05 7.39 9.66 12.95 16.83 21.88 28.03 33.95 40.80 46.80
F 0.55 0.80 0.96 1.01 1.47 2.16 2.80 3.75 5.08 6.72 8.14

Score 4.99 6.19 8.82 13.08 19.81 27.72 36.89 47.03 55.77 63.77 70.34
Wald 4.75 5.92 8.45 12.65 19.19 26.92 36.08 46.11 54.93 62.92 69.71

(20,10) LR 5.19 6.31 9.03 13.30 19.97 28.09 37.39 47.58 56.06 64.15 70.71
F 0.00 0.01 0.00 0.02 0.05 0.06 0.17 0.18 0.42 0.59 0.88

Score 4.96 6.79 12.59 21.55 33.67 47.59 60.52 71.35 79.71 85.84 89.87
Wald 4.83 6.57 12.38 21.26 33.33 47.18 60.11 71.01 79.42 85.69 89.78

(40,10) LR 5.03 6.89 12.68 21.69 33.86 47.66 60.71 71.50 79.89 85.88 89.99
F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.01

Score 5.37 6.12 9.71 14.26 21.50 30.95 41.20 51.76 61.75 70.84 78.90
Wald 5.04 5.89 9.27 13.74 20.94 30.15 40.49 51.07 60.94 70.00 78.30

(10,20) LR 5.47 6.27 9.90 14.58 21.78 31.22 41.64 52.40 62.17 71.10 79.27
F 0.19 0.23 0.45 0.79 1.55 2.85 4.70 7.35 11.37 16.63 22.80

Score 5.30 7.10 13.43 23.86 37.02 53.01 67.69 78.72 86.70 92.63 95.83
Wald 5.18 6.98 13.21 23.46 36.68 52.61 67.22 78.45 86.55 92.53 95.81

(20,20) LR 5.30 7.20 13.49 24.03 37.20 53.19 67.97 78.72 86.84 92.72 95.90
F 0.00 0.00 0.01 0.00 0.01 0.02 0.09 0.12 0.46 0.89 1.43

Score 5.37 9.14 22.10 42.02 62.80 79.42 90.62 95.66 98.24 99.40 99.71
Wald 5.31 9.10 21.96 41.84 62.70 79.31 90.54 95.64 98.24 99.39 99.71

(40,20) LR 5.37 9.23 22.16 42.16 62.92 79.48 90.68 95.69 98.26 99.41 99.71
F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

Score 5.35 7.04 11.01 19.80 31.08 44.40 58.13 69.15 79.91 88.09 92.52
Wald 5.23 6.82 10.74 19.33 30.47 43.89 57.64 68.81 79.55 87.88 92.31

(10,30) LR 5.40 7.18 11.18 19.98 31.33 44.61 58.45 69.51 80.09 88.27 92.59
F 0.08 0.19 0.36 1.05 2.26 4.53 8.67 13.76 22.16 32.39 42.40

Score 5.49 8.79 17.90 33.99 54.11 71.67 85.21 92.22 96.74 98.79 99.45
Wald 5.43 8.64 17.73 33.70 53.79 71.50 85.03 92.14 96.69 98.78 99.45

(20,30) LR 5.46 8.83 17.91 34.25 54.22 71.88 85.26 92.28 96.79 98.80 99.48
F 0.00 0.00 0.00 0.01 0.00 0.03 0.14 0.35 0.88 2.36 4.38

Score 5.29 11.95 31.16 57.93 81.60 93.48 98.17 99.49 99.88 99.98 99.98
Wald 5.22 11.90 30.99 57.81 81.56 93.45 98.16 99.49 99.88 99.98 99.98

(40,30) LR 5.30 11.97 31.24 57.94 81.68 93.52 98.18 99.49 99.88 99.98 99.98
F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01

Score 5.24 7.77 16.28 30.41 46.97 65.41 79.71 89.45 95.40 98.27 99.32
Wald 5.12 7.66 16.15 30.08 46.73 65.09 79.53 89.30 95.30 98.24 99.31

(10,50) LR 5.26 7.79 16.43 30.59 47.16 65.53 79.80 89.54 95.48 98.28 99.33
F 0.03 0.05 0.52 1.89 4.12 10.02 19.47 33.85 49.03 64.54 78.18

Score 5.12 10.22 27.59 52.74 75.87 90.60 97.08 99.13 99.84 99.94 100
Wald 5.08 10.11 27.49 52.54 75.74 90.53 97.08 99.12 99.84 99.94 100

(20,50) LR 5.19 10.30 27.73 52.84 75.87 90.66 97.08 99.15 99.84 99.94 100
F 0.00 0.00 0.00 0.01 0.01 0.06 0.36 1.39 4.98 12.47 24.67

Score 4.92 15.75 47.95 81.18 95.42 99.37 99.96 99.99 100 100 100
Wald 4.92 15.72 47.87 81.16 95.42 99.37 99.96 99.99 100 100 100

(40,50) LR 4.97 15.78 47.91 81.20 95.44 99.37 99.96 99.99 100 100 100
F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.06

than the other two tests.

Results in Table 5.1 and Table 5.2 show that for data from the Poisson and binomial

distributions, the F test performs very badly. The other 3 statistics hold level very
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well and their power performances are also similar. Further, results in Table 5.2 show

that the size of the binomial index m does not have any effect on size and power of

the tests. So, in subsequent sections we choose m = 40 as the binomial index.

That the F test does well for data from the normal distribution is reassuring. So,

in Section 5.3, we use this test in the study of the performance of the model selection

procedures. For data from the Poisson and binomial distributions we use the score

test as it has a very simple form, does not need estimates of the regression parameters

under the alternative hypothesis, and its level and power properties are, at least, as

good as that of the LR and the Wald tests.

5.3 Model Selection

5.3.1 Empirical Level and Power

Following the findings in Section 5.2, our model selection criterion for normally dis-

tributed data is based on testing the significance of a single regression coefficient βj

using the F test given in Section 5.2.2. Also as discussed in Section 5.2.4, for data

from the Poisson and the binomial distributions we use the score test statistic SPj

and SBj, respectively, given in Section 5.2.3. Our purpose here is to make a compar-

ative study of performance of forward selection, AIC and BIC with respect to level

and power. The other two procedures, backward elimination and stepwise selection

are not included in our study, as in practice, these produce a similar final model as

that obtained by the forward selection procedure.

Although these model selection procedures are well known, to be helpful to the
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readers, we give a brief description of these below.

Forward Selection Procedure: The forward selection starts with only one vari-

able in the model. So, if the model has p regression variables, apart from the intercept,

we fit p regression models and calculate the value of the score test statistic for each

model. If the score test statistic for testing H0 : βj = 0, for example, is found to

be the largest and significant at a specified level of significance, we then keep this

variable in the model. We then continue this process by adding one more variable,

each time, until no more variables can be included in the model. At the end the final

model will have q ≤ p variables.

AIC and BIC Criteria: For p covariates in the regression model, we first con-

struct all possible (2p − 1) models and choose the model having smallest value of

AIC = −2l + 2p. The process is similar for BIC = −2l + ln(n)p.

As mentioned earlier our purpose is to find the most parsimonious model. Here

we illustrate a method of calculating the empirical level using a p variable Poisson

regression model with ln(λ) = β0 +β1x1 +· · ·+βpxp. For given values of the regression

parameters and simulated values of the regression variables, we obtain a sample of size

n from the Poisson(λ) distribution. We then use the score test statistic for testing

H0 : βj = 0 and a model selection procedure, for example, the forward selection

procedure and find a model of a subset of the regression variables. We repeat this

process 10,000 times and find 10,000 models. If the given value of βj, is very small,

we want to see that the regression variable xj is in the final model. We then count

the number of models in which the variable xj is included. Let this number be s.

Then the empirical level for rejecting H0 : βj = 0 is s/10, 000. Empirical power is

calculated similarly by taking a larger value of βj during the simulation process.
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Simulation Study

Now, we conduct a simulation study to compare the performance of the model se-

lection procedures, the forward selection, the AIC and the BIC with respect to em-

pirical level and power. We consider a 4-variable regression model. Data are drawn

from the normal N(µ, σ2) regression model, the Poisson(λ) regression model, and the

Binomial(m, p) regression model with

µ = β0 + β1x1 + β2x2 + β3x3 + β4x4,

λ = exp(β0 + β1x1 + β2x2 + β3x3 + β4x4), and

p

1− p
= exp(β0 + β1x1 + β2x2 + β3x3 + β4x4)

respectively. Suppose we would like to test H0 : β1 = 0. To calculate the empirical

level for each distribution we choose β1 = 0.001 (a very small value) and for empirical

power we take different values of β1 as given in Table 5.3. The rest of the parameters

are set at σ2 = 2, β2 = −0.3, β3 = 0.2, β4 = 0.3 for normal and Poisson distributions

and m = 40, β2 = 0.2, β3 = −0.1, and β4 = −0.2 for the binomial distribution. For

each distribution 10,000 replicated samples are taken for sample size n = 10, 20, 30

and 50.

For the forward selection procedure we consider α = 0.05. Note that for the other

two procedures α cannot be fixed.

The level and power results are presented in Table 5.3 which show that the forward

selection method using the F test for normally distributed and the score test for

Poisson and binomially distributed data always produces a reasonable empirical level

(close to the nominal level) irrespective of sample size. The other two procedures, the
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Table 5.3: Empirical level (EL) and power (in %) of model selection by the forward
selection using the score test (Forward-S), forward selection using F test (Forward-F),
the AIC, and the BIC; based on 10,000 replications

Dist.
Size

Method
EL

Empirical Power
(n) β1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Forw-F 5.09 5.48 5.34 5.82 6.10 6.11 6.77 7.86 7.95 9.11 9.56

10 AIC 30.94 31.66 32.31 32.47 33.05 33.12 34.20 35.41 36.08 37.18 40.22
BIC 27.17 27.83 28.32 28.56 28.86 29.19 30.09 31.34 32.35 33.20 36.25

Forw-F 4.96 5.58 5.67 6.22 7.32 7.93 9.61 10.84 12.85 15.20 16.50
Normal 20 AIC 21.40 21.53 22.72 23.69 25.72 27.66 29.55 31.41 35.01 39.22 41.26

BIC 12.32 12.53 13.19 13.77 15.72 17.21 18.82 21.18 23.85 27.16 29.55
Forw-F 4.68 5.25 5.76 6.79 8.10 10.39 11.57 14.40 17.55 21.24 23.58

30 AIC 18.87 20.39 20.30 22.35 25.01 28.12 30.94 35.33 39.38 44.07 48.34
BIC 8.23 8.94 9.59 10.83 12.68 15.27 17.33 20.97 24.54 28.57 31.46

Forw-F 5.18 5.41 6.24 8.36 10.35 13.80 17.54 21.67 26.71 32.20 38.93
50 AIC 18.28 18.94 19.99 23.94 27.39 33.15 38.08 43.62 49.93 57.08 63.04

BIC 5.87 6.19 6.98 9.34 11.46 14.98 18.97 23.36 28.91 34.45 41.03
Forw-S 6.93 8.53 9.84 12.27 16.58 22.27 27.73 32.98 41.26 47.11 53.98

10 AIC 19.08 21.77 23.40 26.61 32.98 39.36 46.25 51.88 59.80 64.21 70.92
BIC 16.28 18.64 20.73 23.63 29.57 35.66 42.66 48.44 56.68 61.13 68.34

Forw-S 7.01 8.33 12.20 19.26 28.33 38.91 49.33 62.48 71.04 79.04 86.55
Poisson 20 AIC 18.06 19.59 26.85 36.34 48.18 59.23 70.53 80.46 86.63 91.11 94.96

BIC 10.87 12.16 17.63 25.56 36.63 47.58 59.69 71.45 79.01 85.75 91.56
Forw-S 6.52 8.53 15.21 25.88 40.22 54.97 69.85 80.33 89.06 93.48 96.82

30 AIC 17.13 20.23 31.01 44.98 62.01 75.49 85.95 92.23 96.60 98.16 99.20
BIC 8.08 10.41 18.21 30.06 45.41 60.83 74.85 84.68 92.06 95.46 97.89

Forw-S 5.75 9.46 21.49 41.32 62.66 79.40 90.61 96.69 98.83 99.62 99.87
50 AIC 15.71 22.87 40.92 63.18 80.95 91.90 97.02 99.16 99.80 99.9 99.98

BIC 5.47 9.23 21.42 41.32 62.73 79.56 91.02 96.79 99.02 99.64 99.90
Forw-S 6.93 9.14 14.03 20.82 30.86 41.57 53.03 64.12 71.59 78.82 84.68

10 AIC 18.54 21.34 28.43 38.00 49.14 60.52 70.59 78.97 84.12 88.78 92.23
BIC 16.03 18.54 25.18 34.54 45.64 57.23 67.65 76.69 82.38 87.15 91.19

Forw-S 6.73 9.99 20.98 37.45 56.55 73.18 84.48 92.07 95.86 98.36 99.06
Binomial 20 AIC 17.38 22.81 39.18 59.48 75.77 88.02 94.06 97.41 98.81 99.70 99.86

BIC 10.43 14.57 28.20 47.29 66.26 80.88 89.85 95.08 97.84 99.22 99.64
Forw-S 6.20 12.21 29.28 53.98 75.26 90.12 96.24 98.97 99.77 99.90 99.97

30 AIC 16.88 26.33 49.26 74.42 89.40 96.81 99.14 99.80 99.95 100 100
BIC 7.71 14.84 33.73 59.68 80.04 92.56 97.47 99.34 99.83 99.97 99.99

Forw-S 5.47 16.04 46.67 77.80 94.77 99.22 99.82 100 100 100 100
50 AIC 16.47 33.71 68.36 90.77 98.64 99.87 99.99 100 100 100 100

BIC 5.46 15.90 46.31 77.76 94.90 99.30 99.84 100 100 100 100

AIC and BIC produce a highly inflated type I error. The BIC, however, does well for

large sample size (n = 50) in which case its power performance is also comparable to

that of the forward selection procedure using the score test.

Thus, for normal regression models, our recommendation is to use the forward

selection procedure using the F test. For Poisson and binomial regression models

our recommendation is to use the forward selection procedure using the score test

for small to moderate sample sizes and for large n (n ≥ 50) the BIC should be used
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because it has simple form and is easy to compute.

5.4 Over-dispersed Poisson and Over-dispersed

Binomial Regression Models

In this section we extend the methods and ideas developed in Sections 5.2 and 5.3 for

model selection for Poisson and binomial regression models to over-dispersed Poisson

and over-dispersed binomial regression models. Specifically, we deal with model selec-

tion procedures in negative binomial regression model and beta binomial regression

models. Here also we first develop the score, the LR and the Wald tests for testing the

significance of a single regression variable and then for model selection we compare

the forward selection, the AIC and the BIC procedures.

5.4.1 Negative Binomial Regression Model

Consider the Negative binomial (NB) distribution with probability mass function

f(y;m, c) = Γ(y+c−1)
Γ(c−1)y!

( cm
1+cm

)y( 1
1+cm

)c
−1
, (5.3)

for y = 0, 1, 2, . . . , m > 0, c > −1/m with mean E(y) = m and variance var(y) =

m(1+cm) (see Piegorsch, 1990). We denote this distribution as NB(m, c). In equation

(5.3), the term c represents the dispersion parameter which is constant. Clearly, when

c→ 0, the NB distribution reduces to the Poisson distribution with parameter m.

Let yi, i = 1, . . . , n, be a random sample from the NB(mi, c) distribution with
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mi = exp(x′iβ) = exp(β0 +xi1β1 +· · ·+xipβp). Then
∂mi

∂βj
= mixij. The log-likelihood

of the NB regression model then, is

l =
n∑
i=1

{
yi log(mi)− (yi + c−1) log(1 + cmi) +

yi∑
j=1

log[1 + c(j − 1)]
}
.

The first and second order partial derivatives of the log-likelihood function with re-

spect to the parameters β and c and their expected values are given in Appendix

B.

Derivation of the test statistics

We follow the same procedure to find the score test for testing H0 : βj = 0 as described

in Section 5.2.2. Omitting the details, the score, the Wald and LR statistics are

SNBj =S ′(D − A1B
−1
11 A

′
1)−1S =

(
n∑
i=1

(yi−m̂i)xij
1+ĉm̂i

)2

x′jW
(
In −Xj

(
X
′
jWXj

)−1
X
′
jW
)
xj
,

WNBj =θ̃
/√

var(θ̃) = θ̃
/√√√√ n∑

i=1

m̃i

1 + c̃m̃i

x2
ij,

LNBj =2
n∑
i=1

{
yi log

m̃i

m̂i

− (yi + c̃−1) log(1 + c̃m̃i)

+ (yi + ĉ−1) log(1 + ĉm̂i) +

yi∑
l=1

log

[
1 + c̃−1(l − 1)

1 + ĉ−1(l − 1)

]}
,

where wi =
m̂i

1 + ĉm̂i

, W = diag(w1, . . . , wn), m̂i = exp(β̂0 + β̂1xi1 + · · ·+ β̂j−1xi(j−1) +

β̂j+1xi(j+1) + · · · + β̂pxip) and m̃i = exp(x′iβ̃) where β̃ is the maximum likelihood

estimate of β under the alternative hypothesis.
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Simulation

We conduct here two simulation studies; the first is to compare the performance of

three test statistics and the other is to compare the performance of model selection

by forward selection, AIC and BIC.

Empirical Level and Power of the score, the Wald, and the LR Tests:

Data are simulated from the negative binomial regression model NB(m, c) with link

function m = exp(β0 + β1x1 + β2x2). We would like to test the null hypothesis

H0 : β2 = 0 against Ha : β2 6= 0.

For empirical levels: We simulate response data from the negative binomial regres-

sion model with c = 0.03, β0 = 2, β1 = −0.3, β2 = 0. For power, different values of

β2 are taken as in Table 5.4. The independent variables x1 and x2 are generated from

the standard normal distribution.

Table 5.4: Empirical level (EL) and power (in %) of the three test statistics in negative
binomial distribution; based on 10,000 replications and α = 0.05

Size
Test

EL
Empirical Power

(n) β2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Score 4.58 5.53 9.24 15.84 23.66 34.23 45.39 55.89 64.35 71.95 79.30
10 Wald 6.74 7.87 13.19 20.99 31.70 44.16 55.27 66.22 74.06 80.57 86.99

LR 6.07 7.04 11.84 19.66 29.60 41.73 52.85 63.78 72.03 78.74 85.78
Score 4.85 8.07 17.01 32.94 51.67 68.32 81.37 90.17 95.25 97.66 98.83

20 Wald 6.43 10.09 20.59 38.04 56.92 73.49 85.09 92.65 96.72 98.41 99.26
LR 5.82 9.30 19.09 36.14 55.04 71.87 84.03 91.87 96.33 98.2 99.12

Score 4.70 10.18 25.29 47.87 69.99 87.17 94.84 98.37 99.46 99.82 99.93
30 Wald 5.80 11.98 28.29 52.41 73.44 89.53 95.97 98.81 99.62 99.89 99.95

LR 5.35 11.18 26.89 50.50 72.06 88.64 95.46 98.65 99.56 99.87 99.95
Score 4.96 12.95 40.10 71.07 91.21 97.96 99.62 99.93 100 100 100

50 Wald 5.78 14.40 42.59 73.56 92.28 98.20 99.71 99.94 100 100 100
LR 5.37 13.73 41.57 72.42 91.80 98.12 99.68 99.94 100 100 100

The level and power results are presented in Table 5.4. The results show that the

score test has best level property (empirical level close to the nominal level). The

other two statistics show some inflation of the empirical level compared to the nominal

level which results in some higher power for the Wald and the LR statistics. So, here
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also we use the score test statistic in model selection using the forward selection

procedure.

Empirical Level and Power of Model Selection: A simulation study is con-

ducted similar to that in Section 5.3 to compare the property of the model selection

procedure through forward selection using the score test with the other two criteria

AIC and BIC.

Data are taken from the NB(m, c) distribution with m = exp(β0 + β1x1 + β2x2 +

β3x3 + β4x4), β0 = 2, β1 = 0.001, β2 = −0.3, β4 = −0.1 for empirical level and values

of β1 are given in Table 5.5 for power. The value of c is taken c = 0.03. Further, as

in Section 5.3, sample sizes and nominal level are chosen for n = 10, 20, 30 and 50

and α = 0.05. The level and power results are presented in Table 5.5.

Table 5.5: Empirical level (EL) and power (in %) of model selection by forward
selection using score test, AIC and BIC in negative binomial distribution; based on
10,000 replications

Size
Method

EL
Empirical Power

(n) β1
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Forward 3.80 4.05 5.04 7.06 9.57 13.23 16.84 22.06 27.63 32.55 38.05
10 AIC 23.55 24.18 30.50 37.17 45.99 56.40 64.41 72.19 78.25 83.23 87.64

BIC 20.53 21.22 27.51 33.70 42.32 52.79 60.92 69.25 75.76 80.95 85.77
Forward 4.81 5.49 8.90 13.82 21.25 29.95 40.27 51.03 61.39 70.03 79.00

20 AIC 19.08 24.46 38.04 54.20 71.16 83.52 90.73 95.47 97.63 99.03 99.41
BIC 11.30 15.37 26.39 41.39 59.74 74.27 84.46 91.46 95.12 97.66 98.73

Forward 4.86 6.68 11.77 20.47 33.26 46.77 61.55 72.86 83.32 89.71 93.74
30 AIC 18.26 26.68 46.99 69.74 85.26 94.46 98.03 99.46 99.77 99.95 100

BIC 8.59 14.62 30.52 53.73 74.19 87.76 94.80 98.08 99.20 99.76 99.99
Forward 4.85 8.15 18.64 34.59 54.58 73.04 86.24 94.13 97.85 99.00 99.78

50 AIC 18.26 26.68 46.40 26.61 32.98 39.36 46.25 51.88 59.80 64.21 70.92
BIC 8.59 14.62 20.73 23.63 29.57 35.66 42.66 48.44 56.68 61.13 68.34

Results in Table 5.5 show similar performance of the forward selection procedure

with the score test as the test statistic as in Table 5.4, namely, that its level is close

to the nominal level. The other procedures show highly inflated empirical level, even

for large n (n = 50). For n=10, 20, 30 power of the forward selection procedure

is the lowest, because the other two procedures have highly inflated empirical level.
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For n=50 power of the forward selection procedure is smaller than that of the other

two procedures for smaller values of β2(= .05, .10). However, as β2 increases power

of the forward selection procedure increases dramatically as compared to the other

two procedures, even though the forward selection procedure holds level, where as

the other procedures are liberal.

5.4.2 Beta Binomial Regression Model

Suppose Y follows a beta binomial distribution with mean µ and dispersion parameter

θ, denoted by Y ∼ BB(k, µ, θ) if Y has the following probability function

P (Y = y) =

 k

y


y−1∏
r=0

(µ+ rθ)
k−y−1∏
r=0

(1− µ+ rθ)

k−1∏
r=0

(1 + rθ)

,

for y = 0, 1, . . . , k, 0 ≤ µ ≤ 1 and θ ≥ max [−µ/(k − 1),−(1− µ)/(k − 1)] with mean

E(Y ) = kµ and variance var(Y ) = kµ(1− µ)[1 + (k − 1)φ], where φ = θ/(1 + θ) (see

Williams, 1975; Paul, 1982).

Note that, as θ → 0 the BB(k, µ, θ) tends to the Binomial(k, µ) distribution, and for

θ = 0, we have var(Y ) = kµ(1− µ), and the BB(k, µ, θ) becomes the Binomial(k, µ)

distribution.

Let yi, i = 1, . . . , n be a random sample from the BB(ki, µi, θ), then the log-

likelihood is

l =
n∑
i=1

[
yi−1∑
r=0

log(µi + rθ) +

ki−yi−1∑
r=0

log(1− µi + rθ)−
ki−1∑
r=0

log(1 + rθ)

]
.
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The mean µi is assumed to follow the logistic model µi(x
′
i,β) =

exp(x′iβ)

1 + exp(x′iβ)
.

Then
∂µi
∂βj

= µi(1 − µi)xij. The first and second order partial derivatives of l with

respect to the parameter β and θ and their expected values are given in Appendix B.

Derivation of the test statistics

Using the same procedure as given in Section 5.2, the score test statistics for testing

H0 : βj = 0 is

SBBj =

(
n∑
i=1

(
yi−1∑
r=0

1

µ̂i+rθ̂
−

ki−yi−1∑
r=0

1

1−µ̂i+rθ̂

)
µ̂i(1− µ̂i)xij

)2

V̂j
,

where
µ̂i

1− µ̂i
= exp(β̂0 + β̂1xi1 + · · · + β̂j−1xi(j−1) + β̂j+1xi(j+1) + · · · + β̂pxip) and β̂

and θ̂ are the maximum likelihood estimates of β and θ under the null hypothesis

and V̂j = Vj(µ̂, θ̂) with

Vj = x′j

[
W −

(
W − 1

a
UU ′

)
XjV

−1
1 X ′jW −

(
I −WXj

(
X ′jWXj

)−1
X ′j

)
UV −1

2 U ′
]
xj,

W = diag(w1, . . . , wn), U = (u1, . . . , un)′,

wi = (p1i + p2i)µ
2
i (1− µi)2, ui =

1

θ
[−µip1i + (1− µi)p2i]µi(1− µi),

V1 = X ′j

(
W − 1

a
UU ′

)
Xj, V2 = a− U ′Xj

(
X ′jWXj

)−1
X ′jU,

a =
1

θ2

n∑
i=1

(
µ2
i p1i + (1− µi)2p2i − p3i

)
, p1i =

ki∑
r=1

Pr(yi ≥ r)

[µi + (r − 1)θ]2
,

p2i =

ki∑
r=1

Pr(yi ≤ ki − r)
[1− µi + (r − 1)θ]2

, and p3i =

ki∑
r=1

1

[1 + (r − 1)θ]2
.
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The Wald test and LR test statistics are as follows

WBBj =θ̃
/√

var(θ̃) = θ̃
/√√√√ n∑

i=1

(p1i + p2i)µ̃2
i (1− µ̃i)2x2

ij,

LBBj =2
n∑
i=1

[
yi−1∑
r=0

log
µ̃i + rθ̃

µ̂i + rθ̂
+

ki−yi−1∑
r=0

log
1− µ̃i + rθ̃

1− µ̂i + rθ̂
−

ki−1∑
r=0

log
1 + rθ̃

1 + rθ̂

]
,

where β̃ and θ̃ are the maximum likelihood estimates of β and θ under the alternative

hypothesis with
µ̃i

1− µ̃i
= exp(x′iβ̃).

Simulation Study

Two simulation studies are conducted in this subsection: the first is to compare the

performance of three test statistics and other one is to compare the performance of

model selection by forward selection through the score test and using AIC and BIC.

Empirical Level and Power of score, Wald, and LR Tests: We take data

from the beta binomial regression model BB(k, µ, θ) with link function
µ

1− µ
=

exp(β0 + β1x1 + β2x2) and would like to test the null hypothesis H0 : β2 = 0 against

Ha : β2 6= 0.

We simulate data from the beta binomial regression model BB(k, µ, θ) with k = 40,

θ = 9, β0 = 1, β1 = −0.5, and β2 = 0 for empirical level and different values of β2

given in Table 5.6 for power. The independent variable x1 and x2 are generated from

the standard normal distribution. The level and power results are presented in Table

5.6.

Table 5.6 clearly shows that score test performs well in terms of level when n is

small. However Wald and likelihood ratio test perform well when n is big. Moreover
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Table 5.6: Empirical level (EL) and power (in %) of the three test statistics in beta
binomial distribution; based on 10,000 replications and α = 0.05

Size
Test

EL
Empirical Power

(n) β2
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Score 8.07 8.85 11.69 13.26 15.86 20.09 22.95 27.64 32.08 36.80 40.88
10 Wald 13.93 15.11 17.76 19.56 23.39 27.78 32.58 37.63 42.07 48.50 53.38

LR 10.47 11.79 14.42 16.20 19.25 23.86 27.99 33.90 38.49 44.55 49.44
Score 7.47 8.60 10.95 16.12 21.30 27.54 34.97 40.67 47.27 52.61 56.11

20 Wald 8.27 9.69 12.85 18.56 26.55 34.81 43.85 53.47 62.57 69.59 75.50
LR 7.32 8.64 11.54 17.16 24.94 32.72 42.01 51.20 60.89 67.81 74.05

Score 6.96 8.34 12.24 18.16 26.18 35.61 44.60 51.94 43.45 48.16 52.51
30 Wald 7.00 8.90 13.82 21.43 32.45 45.17 57.16 68.25 70.52 79.41 84.83

LR 6.38 8.26 12.93 20.42 31.25 43.81 55.75 67.02 69.66 78.48 84.08
Score 6.71 8.92 15.22 25.40 37.17 49.66 59.78 67.86 73.32 75.47 77.70

50 Wald 5.96 8.85 16.96 30.61 47.57 63.78 77.83 87.73 93.88 96.92 98.77
LR 5.79 8.46 16.44 29.99 46.63 63.05 77.15 87.28 93.56 96.68 98.70

empirical power of Wald and likelihood ratio test are close and higher than score test

for any sample size.

Empirical Level and Power of Model Selection: We conduct a simulation

study similar to Section 5.3 to investigate the behaviour of model selection through

the score test using the forward selection procedure in terms of level and power. We

further consider model selection using AIC and BIC for comparison.

To calculate empirical level we generate data from the beta binomial regression

model BB(k, µ, θ) with
µ

1− µ
= exp(β0 + β1x1 + β2x2 + β3x3 + β4x4). We choose

k = 40, β0 = 1, β1 = 0.001, β2 = −0.5, β3 = 0.4 and β4 = 0.5 for empirical level.

We take different values of β1 as given in Table 5.7 for empirical power. For each

distribution 10,000 replicated samples are taken for sample size n = 10, 20, 30 and

50. For the forward selection procedure we consider α = 0.05. The level and power

results are presented in Table 5.7.

Table 5.7 shows that the level of forward selection using the score test performs

better than the other two procedures when n is small (n = 10) although the level is

not very close to the nominal level. BIC performs better than other two procedures
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Table 5.7: Empirical level (EL) and power (in %) of model selection by forward
selection using score test, AIC and BIC in beta binomial distribution; based on 10,000
replications

Size
Method

EL
Empirical Power

(n) β1
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Forward 17.84 18.92 20.69 22.98 25.35 27.07 30.47 32.34 34.98 38.72 40.37
10 AIC 33.51 34.87 35.05 36.96 40.18 43.09 46.37 50.91 53.62 57.17 61.85

BIC 29.78 31.25 31.38 33.29 36.38 39.43 42.82 46.93 50.12 53.31 58.59
Forward 25.78 27.43 29.44 33.53 36.98 42.40 47.14 50.83 56.05 59.98 63.42

20 AIC 22.89 24.35 28.80 33.22 39.70 46.92 54.29 61.23 68.35 72.86 78.66
BIC 14.38 15.20 18.69 22.93 28.52 35.12 42.34 49.20 56.89 62.18 68.74

Forward 31.41 34.58 37.40 41.52 47.42 52.12 59.21 64.15 68.85 73.76 77.53
30 AIC 20.28 22.39 29.12 38.93 49.30 59.18 70.23 78.53 84.62 89.56 93.50

BIC 9.71 11.21 15.91 24.09 33.12 42.49 54.51 63.57 72.38 79.23 85.35
Forward 41.50 43.30 48.17 53.46 58.68 64.90 72.01 78.06 82.12 86.85 89.86

50 AIC 18.74 21.58 31.52 45.13 59.25 71.97 82.52 89.80 93.94 97.02 98.53
BIC 6.46 8.26 15.11 24.86 37.34 51.01 64.62 76.37 83.81 90.37 94.38

when n is large (n = 50). Empirical power of model selection using AIC and BIC are

close.

5.5 Real Data Analysis

To further illustrate the effectiveness of the model selection procedure, we apply this

in three real data sets, namely, normal data, count data and over-dispersed data re-

spectively. The first two data sets are previously analysed in the book Applied Linear

Statistical Models by Kutner et al. (2013) and both data sets are available on the

website

“http://users.stat.ufl.edu/ rrandles/sta4210/Rclassnotes/data/textdatasets/index.html”.

The third data set is previously analysed by Lawless (1987) and is provided in this

Chapter.

Example: 1 We consider a data set about predicting survival time in patients

undergoing a particular type of liver operation. From each of 54 patients, the following

information is taken under consideration as covariates: x1: blood clotting score, x2:
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prognostic index, x3: enzyme function test score, x4: liver function test score, x5:

age, in years, x6: indicator variable for gender (0 = male, 1 = female), and x7 and x8

represent indicator variables for history of alcohol use as follows

Alcohol Use x7 x8

None 0 0
Moderate 1 0

Severe 0 1

See Kutner et al. (2013), page 350.

The response variable is survival time and following Kutner et al. (2013) a log

transformation is applied to the response variable to make the normality assumption

more plausible. In Table 5.8 we provide the variables that entering the model associ-

ated with each step of analysis by using forward selection procedure through the score

test and find that 4 covariates (blood clotting, prognostic index, enzyme function test

score, and history of severe alcohol use) are significant out of 8 covariates, a similar

conclusion to Kutner et al. (2013) where they apply forward selection using the F

test.

Table 5.8: Variable to enter model using forward selection procedure through score
test

Step 1st 2nd 3rd 4th
Variable x3 x2 x8 x1

Score test 23.09 22.24 18.40 12.61

Example: 2 We consider a count data set which is about the total number of

customers who live within a 10-mile radius of Miller Lumber Company stores and

visited during a two-week period. A survey is conducted with 110 customers and

the following information is taken under consideration as covariates: x1: number of

housing units, x2: average income, in dollars, x3: average housing unit age, in years,
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x4: distance to nearest competitor, in miles and x5: distance to store, in miles. The

response variable y is the number of customers who visited the stores.

Using the forward selection procedure through the score test we find that all co-

variates are significant which agrees with the analysis done in the book where they

use the likelihood ratio test. Table 5.9 presents the variables that entering the model

associated with each step of analysis by using forward selection through the score

test.

Table 5.9: Variable to enter model using forward selection procedure through score
test

Step 1st 2nd 3rd 4th 4th
Variable x5 x4 x2 x1 x3

Score test 258.13 36.00 13.83 15.63 4.38

Example: 3 We use the data from Lawless (1987) on Ames salmonella assay given in

Margolin, Kaplan, and Zeiger (1981). Margolin et al. (1981) reported that quinoline

was studied by W. Speck (unpublished) as part of the Environmental Mutagenesis

Test Development Program at the National Institute of Environmental Health Sci-

ences. The data in Table 5.10 were obtained from a test with Salmonella strain TA98

and induced rat liver homogenate S9. Dimethyl Sulfoxide was the solvent control, and

each was replicated three times. So, the regression variable is the dose level having

values 0, 10, 33, 100, 333 and 1000, and for each dosage there are 3 observations.

Table 5.10: Ames salmonella assay Data

x 0 10 33 100 333 1000
15 16 16 27 33 20

y 21 18 26 41 38 27
29 21 33 60 41 42

For finding the appropriate model, we take x1 as dose level, x2 = log(x1 + 10).

Lawless (1987) used an approximation to Morgan et al.’s (1981) single hit model,



5.6 Summary 82

namely assume the full model satisfies

mi = exp(β0 + β1xi + β2 log(xi + 10)).

Our purpose is to select as simple a model as possible. Table 5.11 represents values

of χ2-statistics of the variables entering the model through forward selection using

three test statistics associated with each step of analysis.

Table 5.11: Test statistic value for variable to enter model using score, Wald and LR
test statistics

Step Variable
Score test Wald test LR test

χ2 χ2 χ2

1 x2 4.03 6.15 4.97
2 x1 4.71 6.44 5.56

Thus, the final model selected by the forward selection method using all the test

statistics is E(yi) = exp(β0 + β1xi1 + β2xi2).

5.6 Summary

In this chapter, the score test procedure is developed for testing the significance of

any covariate in generalized linear models. Simulation studies show that the score test

performs satisfactorily and better than Wald and the likelihood ratio test in terms

of empirical level and power under various choices of sample size. Model selection

procedure is further developed using the score test through forward selection and is

made a comparison with model selection using AIC and BIC. Model selection using the

F test is also considered. Simulation studies show that, for small to moderate sample

sizes, forward selection using the score test performs better in terms of level and power
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than all other selection techniques in all distributions except normally distributed data

where the F test performs better. Model selection on negative binomial and beta

binomial regression models are also developed and similar conclusions are drawn.

Thus, our recommendation is to use the forward selection procedure using the F

test for normal regression models. For Poisson, binomial, negative binomial and

beta binomial regression models, our recommendation is to use the forward selection

procedure using the score test for small to moderate sample sizes and for large n

(n ≥ 50) the BIC should be used as it is computationally much simpler.



Chapter 6

Model Selection in Zero-inflated

Generalized Linear Models

6.1 Introduction

Count data or proportional data arise in many biological and epidemiological studies.

Discrete generalized linear model (Poisson or binomial) is a very widely used and

popular model in analysing of such data. However, in practice, it often occurs that

a particular count (for example zero) may arise in the data more than the expected

number. For example, consider the number of insurance claims for a certain type

of risk. A discrete generalized linear model may not fit such data well, so a zero-

inflated generalized linear model (ZIGLM) may be more appropriate (Mullahy, 1986;

Lambert, 1992). For more details regarding ZIGLM readers are referred to Cameron

and Trivedi (1998, 2005). Considerable attention has been given to the problem of

estimating the parameters involved in the model. However, in practice, one is faced

84
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with a large number of covariates from which we need to select potentially important

covariates for the model that motivate us to develop the model selection procedure.

In this chapter we develop the model selection procedure in ZIGLM of which zero-

inflated Poisson and zero-inflated binomial regression models are considered as special

cases. For model selection using the hypothesis testing paradigm, first we require a

suitable test statistic for testing the significance of any covariate which performs best

in holding an appropriate level of significance and has overall best power. Then we

need to find a model selection procedure using that suitable test statistic which has

the best property with respect to empirical level and power.

In Section 6.2 we develop score test, Wald test and likelihood ratio test statistics

to test the significance of single covariate in ZIGLM, which are then specialized for

data from the zero-inflated Poisson and the zero-inflated binomial distribution. An

extensive simulation study is conducted to compare the behaviour of the three test

statistics, in terms of empirical level and power to test the significance of a single

regression coefficient.

The model selection procedure is developed in Section 6.3. An extensive simulation

study is performed to compare the properties of the forward selection procedure using

the three test statistics. For comparison we further include model selection using

the Akaike information criterion (AIC) (Akaike, 1974) and the Bayesian information

criterion (BIC) (Schwarz, 1978). Two examples are presented in Section 6.4 and a

discussion follows in Section 6.5.
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6.2 Zero-inflated Generalized Linear Models and

the Test Statistics

6.2.1 Zero-inflated Generalized Linear Models

Consider the natural exponential family distribution with probability density function

f(y, θ) as

f(y; θ) = exp[a(θ)y − g(θ) + c(y)],

where y represents the response variable and θ is an unknown parameter. The zero-

inflated exponential family is defined by

P (Y = y) =

 ω + (1− ω)f(0; θ), y = 0

(1− ω)f(y; θ), y > 0,
(6.1)

where ω presents the zero inflation parameter. Note that it is possible to take ω < 0,

provided that ω ≥ −f(0, θ)/(1−f(0, θ)). The mean and variance of y in this model are

(1 − ω)g′(θ)/a′(θ) and (1 − ω)(a′(θ))2

(
g′′(θ)− a′′(θ)g′(θ)

a′(θ)
+ ω(g′(θ))2

)
respectively

(Deng and Paul, 2000).

Let y1, y2, . . . , yn be a random sample of size n from the distribution (6.1) with

θi = θi(Xi;β), a function of some p × 1 vector of covariates Xi and a vector of

regression parameters β for i = 1, . . . , n. Using γ =
ω

1− ω
, the log-likelihood can be
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written as

l(γ, θ; y) =
n∑
i=1

li(γ, θi; yi)

=
n∑
i=1

[
− log(1 + γ) + I{yi=0} log(γ + f(0; θi)) + I{yi>0} log f(yi; θi)

]
=

n∑
i=1

[− log(1 + γ) + I{yi=0} log (γ + exp(−g(θi) + c(0))) +

I{yi>0} (a(θi)yi − g(θi) + c(yi))],

where I is the indicator function. For our convenience, replace f(0; θi), a(θi) and g(θi)

with f0, ai and gi respectively. The first and second order partial derivatives of l with

respect to the parameters θi and γ and their expected values are given in Appendix

B.

To test the null hypothesis H0 : βj = 0 against Ha : βj 6= 0 involved in θi =

θi(Xi;β), we derive the score test, Wald test and likelihood ratio test statistics in

subsequent sections.

6.2.2 The Score Test

Similar to Chapter 5, omitting details, the score test statistic takes the form Sj =

S ′(D−AB−1A′)−1S where the parameter of interest is βj and the nuisance parameters

are β0, β1, . . . , βj−1, βj+1, . . . , βp and γ with

S =
∂l

∂βj

∣∣∣
βj=0

, D = E

[
− ∂

2l

∂β2
j

] ∣∣∣∣∣
βj=0

,
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A =

(
A1 A2

)
and B =

 B11 B12

B′12 B22

, where

A1 = E

[
− ∂2l

∂βj∂βk

] ∣∣∣∣∣
βj=0

(k 6= j), A2 = E

[
− ∂2l

∂βj∂γ

] ∣∣∣∣∣
βj=0

,

B11 = E

[
− ∂2l

∂βk∂βt

] ∣∣∣∣∣
βj=0

(k, t 6= j), B22 = E

[
− ∂

2l

∂γ2

] ∣∣∣∣∣
βj=0

,

B12 = E

[
− ∂2l

∂βk∂γ

] ∣∣∣∣∣
βj=0

(k 6= j).

Hence

S =
∂l

∂βj

∣∣∣
βj=0

=
n∑
i=1

∂li
∂θi

∂θi
∂βj

∣∣∣
βj=0

=
n∑
i=1

(
I{yi=0}

f0(−g′i)
γ + f0

+ I{yi>0}(a
′
iyi − g′i)

)
∂θi
∂βj

∣∣∣
βj=0

.

Using E
[
I{yi=0}

]
=

γ + f0

1 + γ
and E

[
I{yi>0}

]
=

1− f0

1 + γ
and assume W be a n × n

diagonal matrix with i-th diagonal element

wi = E

[
−∂

2li
∂θ2

i

]
= − γf0(g′i)

2

(1 + γ)(γ + f0)
+

g′′i
1 + γ

− 1− f0

1 + γ
a′′iE(yi),

and U be a p× 1 vector with i-th element

ui = E

[
− ∂2li
∂θi∂γ

]
= − f0g

′
i

(1 + γ)(γ + f0)
,

and

a = E

[
− ∂

2l

∂γ2

]
=

n∑
i=1

1− f0

(1 + γ)2(γ + f0)
.
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Let Z be an n × p matrix with (i, k)-th element
∂θi
∂βk

, (i, k 6= j) and zj =

(
∂θ1

∂βj
, · · · , ∂θn

∂βj
)′.

Thus

A1 = E

[
− ∂2l

∂βj∂βk

] ∣∣∣
βj=0

(k 6= j)

=
n∑
i=1

E

[
−∂

2li
∂θ2

i

∂θi
∂βj

∂θi
∂βk
− ∂li
∂θi

∂θi
∂βj

∂θi
∂βk

] ∣∣∣
βj=0

= z′jWZ,

A2 = E

[
− ∂2l

∂βj∂γ

] ∣∣∣
βj=0

=
n∑
i=1

E

[
− ∂2li
∂θi∂γ

∂θi
∂βj

] ∣∣∣
βj=0

= z′jU.

Similarly

B11 = E

[
− ∂2l

∂βk∂βt

] ∣∣∣
βj=0

(k, t 6= j) = Z ′WZ, B22 = E

[
− ∂

2l

∂γ2

] ∣∣∣
βj=0

= a,

B12 = E

[
− ∂2l

∂βk∂γ

] ∣∣∣
βj=0

(k 6= j) = Z ′U, D = E

[
− ∂

2l

∂β2
j

] ∣∣∣
βj=0

= z′jWzj.

None of the expected value of mixed partial derivatives equal zero, so AB−1A′ =

A1B
−1
11 A

′
1 + A2B

−1
21 A

′
1 + A1B

−1
12 A

′
2 + A2B

−1
22 A

′
2, where

A1B
−1
11 A

′
1 = z′jWZV −1

1 Z ′Wzj, A2B
−1
21 A

′
1 = −1

a
z′jUU

′ZV −1
1 Z ′Wzj,

A1B
−1
12 A

′
2 = −z′jWZ (Z ′WZ)

−1
Z ′UV −1

2 U ′zj, A2B
−1
22 A

′
2 = z′jUV

−1
2 U ′zj,

with V1 = Z ′
(
W − 1

a
UU ′

)
Z and V2 = a− U ′Z (Z ′WZ)−1 Z ′U .

After some simplification

AB−1A′ = z′j

[(
W − 1

a
UU ′

)
ZV −1

1 Z ′W +
(
I −WZ (Z ′WZ)

−1
Z ′
)
UV −1

2 U ′
]

zj.



6.2 Zero-inflated Generalized Linear Models and the Test Statistics 90

Hence Vj = D − AB−1A′ becomes

z′j

[
W −

(
W − 1

a
UU ′

)
ZV −1

1 Z ′W −
(
I −WZ (Z ′WZ)

−1
Z ′
)
UV −1

2 U ′
]

zj.

Therefore the score statistic is

Sj =
Ŝ2

V̂j
,

where

S =
n∑
i=1

(
I{yi=0}

f0(−g′i)
γ + f0

+ I{yi>0}(a
′
iyi − g′i)

)
∂θi
∂βj

∣∣∣
βj=0

, and

Vj = z′j

[
W −

(
W − 1

a
UU ′

)
ZV −1

1 Z ′W −
(
I −WZ (Z ′WZ)

−1
Z ′
)
UV −1

2 U ′
]

zj

with Ŝ and V̂j replaced by S(θ̂, γ̂) where θ̂ and γ̂ are the maximum likelihood estimates

under the null hypothesis.

6.2.3 The Wald Test

The Wald test statistic is given by

Wj =
β̃j√

Var(β̃j)
=

β̃j√
n∑
i=1

w̃i

(
∂θ̃i
∂βj

)2
,

where wi and
∂θi
∂βj

are given in Section 6.2.2 and w̃i and θ̃i are evaluated under

alternative hypothesis.



6.2 Zero-inflated Generalized Linear Models and the Test Statistics 91

6.2.4 The Likelihood Ratio Test

Let l̂ and l̃ be the maximized log-likelihood under the null and the alternative hy-

pothesis respectively. Then, the likelihood ratio statistic is

LRj = 2
(
l̃ − l̂

)
= 2

n∑
i=1

[
− log(1 + γ̃) + I{yi=0} log(γ̃ + exp(−g(θ̃i) + c(0))) + I{yi>0}{a(θ̃i)yi − g(θ̃i)}

]
−

2
n∑
i=1

[
− log(1 + γ̂) + I{yi=0} log(γ̂ + exp(−g(θ̂i) + c(0))) + I{yi>0}{a(θ̂i)yi − g(θ̂i)}

]
.

Note that under some regularity conditions, Sj, W
2
j and LRj asymptotically con-

verge to χ2(1). Therefore, for a fixed significance level α > 0, we reject the null

hypothesis, if each test statistic is greater than χ2
α(1).

6.2.5 Special Cases

We now give the expressions for the three test statistics Sj, Wj, and LRj for the

special cases for which the data distribution is zero-inflated Poisson and zero-inflated

binomial respectively.

(i) Zero-inflated Poisson Regression Model

For the zero-inflated Poisson distribution ZIP(λ, γ), Suppose θi = log λi = x′iβ. Then

we have a(θi) = θi, g(θi) = eθi . In this case Z = X and zj = xj. Therefore the score
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test statistic for testing H0 : βj = 0 is

SPj =

(
n∑
i=1

(
−λ̂ie−λ̂i
γ̂+e−λ̂i

I{yi=0} + (yi − λ̂i)I{yi>0}

)
xij

)2

V̂j
,

where λ̂i = exp(β̂0 + β̂1xi1 + · · · + β̂j−1xi(j−1) + β̂j+1xi(j+1) + · · · + β̂pxip) and β̂ and

γ̂ are the maximum likelihood estimates of β and γ under the null hypothesis and

V̂j = Vj(λ̂, γ̂) with

Vj = x′j

[
W −

(
W − 1

a
UU ′

)
XV −1

1 X ′W −
(
I −WX (X ′WX)

−1
X ′
)
UV −1

2 U ′
]

xj,

wi =
−λie−λiγ + γ + e−λi

(1 + γ)(γ + e−λi)
λi, ui =

−λie−λi
(1 + γ)(γ + e−λi)

, and

a =
n∑
i=1

1− e−λi
(1 + γ)2(γ + e−λi)

.

The Wald test and likelihood ratio test statistics are

WPj =
β̃j√

n∑
i=1

−λ̃ie−λ̃i γ̃+γ̃+e−λ̃i

(1+γ̃)(γ̃+e−λ̃i )
λ̃ix2

ij

, and

LRPj = 2[
(
− log(1 + γ̃) + I{yi=0} log(γ̃ + e−λ̃i) + I{yi>0}(yi log λ̃i − λ̃i)

)
−(

− log(1 + γ̂) + I{yi=0} log(γ̂ + e−λ̂i) + I{yi>0}(yi log λ̂i − λ̂i)
)

],

where λ̃i = exp(β̃0 + β̃1xi1 + · · ·+ β̃pxip) and λ̂i = exp(β̂0 + β̂1xi1 + · · ·+ β̂j−1xi(j−1) +

β̂j+1xi(j+1) + · · ·+ β̂pxip).

The maximum likelihood estimates of βk (∀k 6= j; k = 1, . . . , p) and γ are obtained
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by solving the equations

n∑
i=1

[
I{yi=0}

−λie−λi
γ + e−λi

+ I{yi>0}(yi − λi)
]
xik = 0, and

n∑
i=1

[
− 1

1 + γ
+ I{yi=0}

1

γ + e−λi

]
= 0.

(ii) Zero-inflated Binomial Regression Model

For the zero-inflated binomial distribution ZIBin(m, p, γ), assume θi = log

(
pi

1− pi

)
=

x′iβ. Then a(θi) = θi, g(θi) = mi log(1 + eθi), f0 = f(0; θi) = (1 − pi)mi . Here also

Z = X and zj = xj. Thus the score test statistics for testing H0 : βj = 0 is

SBj =

(
n∑
i=1

(
−f̂0mip̂i
γ̂+f̂0

I{yi=0} + (yi −mip̂i)I{yi>0}

)
xij

)2

V̂j
,

where
p̂i

1− p̂i
= exp

(
β̂0 + β̂1xi1 + · · ·+ β̂j−1xi(j−1) + β̂j+1xi(j+1) + · · ·+ β̂pxip

)
and β̂

and γ̂ are the maximum likelihood estimates of β and γ under the null hypothesis

and V̂j = Vj (p̂, γ̂) with

Vj = x′j

[
W −

(
W − 1

a
UU ′

)
XV −1

1 X ′W −
(
I −WX (X ′WX)

−1
X ′
)
UV −1

2 U ′
]

xj,

wi = − γf0m
2
i p

2
i

(1 + γ)(γ + f0)
+
mipi(1− pi)

1 + γ
,

ui =
−mipif0

(1 + γ)(γ + f0)
, and

a =
n∑
i=1

1− f0

(1 + γ)2(γ + f0)
.
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The Wald test and likelihood ratio test statistics are

WBj =
β̃j√

n∑
i=1

[
−

γ̃m2
i
(1−p̃i)

mi p̃2
i

(1+γ̃)(γ̃+(1−p̃i)
mi )

+
mip̃i(1−p̃i)

1+γ̃

]
x2ij

, and

LRBj = 2[(− log(1 + γ̃) + I{yi=0} log(γ̃ + (1− p̃i)mi)+

I{yi>0}(yi log p̃i
1−p̃i +mi log(1− p̃i)))−

(− log(1 + γ̂) + I{yi=0} log(γ̂ + (1− p̂i)mi)+

I{yi>0}(yi log p̂i
1−p̂i +mi log(1− p̂i)))],

where
p̃i

1− p̃i
= exp(β̃0 + β̃1xi1 + · · · + β̃pxip) and

p̂i
1− p̂i

= exp(β̂0 + β̂1xi1 + · · · +

β̂j−1xi(j−1) + β̂j+1xi(j+1) + · · ·+ β̂pxip).

Note that the maximum likelihood estimates of βk (∀k 6= j; k = 1, . . . , p) and γ are

obtained by solving the equations

n∑
i=1

(
−f0mipi
γ + f0

I{yi=0} + (yi −mipi)I{yi>0}

)
xik = 0, and

n∑
i=1

(
− 1

1 + γ
+
I{yi=0}

γ + f0

)
= 0.

6.2.6 Simulation

A simulation study is conducted to assess the performance of the three test statis-

tics, in terms of empirical level and power, for testing the significance of a single

regression coefficient. We consider a two-variable regression model with link function

λ = exp(β0 + β1x1 + β2x2), and
p

1− p
= exp(β0 + β1x1 + β2x2) for ZIP(λ, γ), and

ZIBin(m, p, γ) distributions respectively.

Suppose our interest is to test H0 : β2 = 0 against Ha : β2 6= 0 in each case. For
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empirical level in zero-inflated Poisson distributed data we take β0 = 1 and β1 = −0.3,

and β2 = 0. For power we take β0 = 0.3 and β1 = −0.9 and different values of β2 as

given in Table 6.1.

For zero-inflated binomial distributed data we take m = 40, β0 = 0.2, β1 = −0.1

and β2 = 0 to calculate level and for power we take β0 = 0.2, β1 = −0.1 and different

values of β2 as given in Table 6.1. For both distributions we take γ = 0.25.

Table 6.1: Empirical level (EL) and power (in %) of the three test statistics; α = 0.05

Distr
Size

Test
EL

Empirical Power
(n) β2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Score 5.13 5.66 6.25 8.52 10.53 14.37 17.79 23.34 27.32 32.48 36.93

10 Wald 12.20 12.69 13.07 15.84 18.81 23.04 27.86 33.75 39.86 46.71 51.62
LR 7.99 8.43 9.30 11.68 14.54 18.90 23.26 29.50 35.39 42.20 46.88

Score 5.18 6.42 8.96 13.95 21.11 28.55 38.18 47.38 55.71 64.21 71.11
20 Wald 8.50 10.39 12.41 18.44 25.68 35.22 45.21 55.56 66.38 74.46 81.33

LR 6.44 7.83 10.09 15.70 23.27 32.29 42.71 52.59 62.65 71.68 78.52
Score 4.93 6.23 12.12 19.05 30.00 42.82 55.80 66.57 75.94 82.76 88.39

ZIP 30 Wald 6.99 8.32 14.61 22.45 33.86 47.75 61.42 73.62 82.54 89.40 93.90
LR 5.73 7.02 13.03 20.44 31.77 45.43 59.25 71.03 80.21 87.48 92.36

Score 4.85 7.14 13.88 24.03 39.59 54.72 69.03 80.12 87.48 92.58 95.35
40 Wald 6.57 8.89 15.86 26.14 42.71 58.64 74.14 84.71 91.91 95.75 97.78

LR 5.45 7.87 14.54 24.68 41.22 57.41 72.22 83.20 90.67 94.78 97.29
Score 5.09 8.20 16.27 30.75 47.73 65.84 78.99 88.59 93.76 96.82 98.51

50 Wald 6.23 9.21 17.48 32.55 50.86 69.27 82.11 91.42 95.98 98.48 99.40
LR 5.40 8.34 16.52 31.15 49.12 67.87 81.14 90.33 95.18 97.89 99.19

Score 4.24 6.35 11.52 20.26 31.01 42.04 54.07 63.27 70.82 76.97 81.00
10 Wald 7.10 9.45 14.76 23.58 35.72 47.88 61.18 70.66 78.34 84.98 88.81

LR 4.96 7.14 12.35 21.27 32.84 45.06 57.92 67.55 75.05 81.57 86.05
Score 5.00 8.66 21.67 40.10 60.34 76.15 86.04 93.07 96.04 97.72 98.62

20 Wald 6.08 9.69 22.76 42.29 63.43 79.85 89.38 95.68 98.05 99.21 99.67
LR 5.32 8.95 22.20 41.18 62.35 78.54 88.42 94.80 97.70 98.79 99.46

Score 5.04 11.09 29.72 56.89 79.79 90.85 96.38 98.80 99.51 99.81 99.96
ZIBin 30 Wald 5.59 11.83 30.90 59.08 81.80 93.04 97.86 99.37 99.79 99.93 100

LR 5.16 11.32 30.27 58.73 81.28 92.33 97.37 99.18 99.71 99.90 99.99
Score 4.86 13.23 39.62 70.43 89.00 97.07 99.25 99.81 99.99 99.99 100

40 Wald 5.33 13.80 41.05 72.20 90.52 98.04 99.60 99.89 100 100 100
LR 4.99 13.59 40.45 71.68 90.01 97.72 99.53 99.86 100 100 100

Score 4.94 15.76 48.08 79.42 94.95 98.94 99.92 99.99 100 100 100
50 Wald 5.38 16.02 49.13 80.93 95.91 99.28 99.97 99.99 100 100 100

LR 5.12 15.83 48.82 80.40 95.52 99.13 99.94 100 100 100 100

Results in Table 6.1 show that for data from the zero-inflated Poisson and zero-

inflated binomial distribution, the score test holds nominal level very well and power

performance of all three tests for both distributions is also similar. LR test also

performs better for the zero-inflated binomial distribution.
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As the score test and likelihood ratio tests perform well, in Section 6.3, we again

consider all three test statistics in the study of the performance of the model selection

procedures.

6.3 Model Selection

Model selection criteria mainly used here are based on hypothesis testing using the

score test, Wald test and likelihood ratio test. In general, our main focus is to select

the most significant explanatory variables to simplify the regression model. There

are three widely used approaches in stepwise regression: forward selection, backward

elimination and bidirectional selection. The main tool here we use is forward selection

procedure. The other two procedures are not included in our study, as in most

situations these procedures produce the same final model. We further consider model

selection using AIC and BIC for comparison. For more details about these procedures

readers may see Draper and Smith (1998).

We apply the following procedure for calculating the empirical level using a p

variable regression model, for example, zero-inflated Poisson regression model with

ln(λ) = β0 + β1x1 + · · · + βpxp. We first generate a sample of size n from the zero-

inflated Poisson ZIP(λ, γ) distribution for given values of the regression parameters

and simulated values of the regression variables. We then use the test statistic for

testingH0 : βj = 0 and a model selection procedure, for example, the forward selection

procedure and find a model of a subset of the regression variables. We repeat this

process 10,000 times and find 10,000 models. If the given value of βj is very small,

we want to see if the regression variable xj is in the final model. We then count the

number of models in which the variable xj is included. Let this number be c. Then
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the empirical level for rejecting H0 : βj = 0 is c/10, 000. Empirical power is calculated

similarly by taking a larger value of βj during the simulation process.

We intend here to make a comparative study of performance of forward selection

using the score test, Wald test and LR test statistics; and model selection using the

AIC and BIC with respect to level and power.

6.3.1 Simulation

A simulation study is conducted to examine the performance of model selection

through the score test, Wald test and LR test using forward selection in terms of

empirical level and power, and the test are compared with one another. We further

consider model selection using AIC and BIC.

We consider a 4-variable regression model. Data are drawn from the zero-inflated

Poisson ZIP(λ, γ) regression model and the zero-inflated binomial ZIBin(m, p, γ) re-

gression model with

λ = exp(β0 + β1x1 + β2x2 + β3x3 + β4x4), and

p

1− p
= exp(β0 + β1x1 + β2x2 + β3x3 + β4x4)

respectively. Suppose we would like to test H0 : β1 = 0. To calculate the empirical

level for each distribution we choose β1 = 0.001 (a very small value) and for empirical

power we take different values of β1 as given in Table 5.3. The rest of the parameters

are set at γ = 0.25, m = 40, β2 = −0.3, β3 = 0.2, β4 = 0.3 for zero-inflated Pois-

son and zero-inflated binomial distribution. For each distribution 10,000 replicated

samples are taken for sample size n = 10, 20, 30, 40 and 50.
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For forward selection procedure we consider α = 0.05. Note that for the other two

procedures α cannot be fixed. The level and power of model selection in zero-inflated

Poisson and zero-inflated binomially distributed data are presented in Table 6.2 and

Table 6.3 respectively. In both tables For-S, For-W and For-L represent forward

selection using score, Wald and Likelihood ratio test respectively.

Table 6.2: Empirical level (EL) and power (in %) of model selection in zero-inflated
Poisson distribution

Dist.
Size

Method
EL

Empirical Power
(n) β1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
For-S 7.07 7.11 8.12 9.71 11.67 15.09 19.25 22.05 26.32 29.78 33.71
For-W 13.82 13.81 14.88 16.28 18.72 21.44 26.30 30.26 35.05 39.07 44.62

10 For-L 9.37 9.04 10.09 11.60 14.35 17.22 22.09 25.64 30.19 34.72 40.16
AIC 26.65 26.83 28.80 30.86 33.89 38.44 41.83 46.41 50.95 56.89 59.95
BIC 22.83 23.31 24.89 26.94 30.21 34.36 39.01 42.76 47.37 54.04 56.81

For-S 7.36 8.19 11.06 14.88 20.29 27.77 35.62 43.30 50.38 57.86 63.78
For-W 10.93 11.91 14.67 19.21 25.28 32.96 41.09 49.68 57.88 65.77 72.80

20 For-L 7.92 9.04 11.62 16.03 21.97 29.42 38.17 46.26 54.82 62.73 69.34
AIC 20.96 22.11 27.20 33.75 41.22 50.08 58.76 67.43 74.37 80.25 84.48
BIC 13.20 13.58 17.59 23.55 30.39 39.16 47.32 57.02 65.46 71.97 77.81

For-S 7.26 8.72 13.13 19.99 28.95 38.99 49.53 60.61 69.53 76.90 82.51
For-W 9.07 10.82 15.42 22.79 32.01 43.00 54.99 65.97 75.74 83.04 88.66

ZIP 30 For-L 7.60 8.94 13.05 20.41 29.88 40.77 52.35 63.71 73.07 80.68 86.65
AIC 19.67 22.13 28.84 39.29 51.97 62.41 73.21 82.15 87.92 92.76 95.50
BIC 9.58 11.90 16.76 25.27 36.45 46.65 59.44 70.30 78.27 85.74 90.93

For-S 7.13 9.16 15.33 24.88 37.30 51.52 64.21 75.10 83.03 89.08 92.87
For-W 8.58 10.38 16.23 26.66 40.01 54.52 67.85 79.45 87.42 92.65 96.08

40 For-L 7.08 9.09 14.80 25.06 38.27 52.48 65.81 77.60 85.54 91.54 95.19
AIC 18.30 21.21 32.34 45.26 60.28 74.29 84.07 91.11 95.16 97.22 98.55
BIC 7.84 9.32 17.68 27.27 41.34 56.45 69.75 80.17 88.57 92.83 95.96

For-S 6.86 9.41 17.51 30.59 46.42 62.72 75.13 84.77 91.27 94.92 96.97
For-W 7.60 10.49 18.63 31.53 49.05 65.65 78.73 87.97 93.82 97.04 98.63

50 For-L 6.58 9.17 17.20 30.30 47.36 63.68 77.24 86.65 92.79 96.34 98.01
AIC 17.47 22.45 34.87 51.81 68.33 81.90 90.47 95.55 97.98 99.22 99.67
BIC 6.48 9.33 17.45 30.96 47.41 64.79 77.71 88.26 93.86 96.83 98.71

Both Tables 6.2 and 6.3 show that the forward selection method using score test

always produces a reasonable empirical level (close to the nominal level) and better

than the other four procedures irrespective of sample size. Model selection using AIC

and BIC produce highly inflated type I error when sample size is small although the

BIC does well for sample size n = 50. The powers of all procedures are almost similar.

Thus our recommendation is to use forward selection through the score test for
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Table 6.3: Empirical level (EL) and power (in %) of model selection in zero-inflated
binomial distribution

Dist.
Size

Method
EL

Empirical Power
(n) β1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
For-S 9.59 10.61 13.27 18.43 23.96 30.67 38.34 46.13 53.20 59.11 64.95
For-W 13.43 14.09 17.08 21.38 26.95 33.90 42.32 50.09 57.83 64.36 70.19

10 For-L 9.50 10.58 13.36 18.38 24.37 31.52 39.54 47.45 55.32 61.63 67.64
AIC 21.58 23.21 27.57 34.10 41.98 50.42 58.14 64.78 71.16 76.15 80.03
BIC 19.06 20.46 24.55 30.99 38.39 46.94 55.09 61.96 68.61 74.02 78.38

For-S 7.80 10.10 17.95 29.98 43.76 58.25 70.34 79.45 85.86 90.04 93.40
For-W 9.29 11.79 19.80 31.89 46.79 61.52 73.21 82.66 89.04 93.24 95.84

20 For-L 7.91 10.22 18.53 30.68 45.15 60.11 72.17 81.45 87.71 92.04 94.92
AIC 18.09 21.98 33.43 50.21 65.70 77.73 87.08 92.57 95.74 97.67 98.60
BIC 11.06 13.99 23.30 38.51 54.76 68.52 80.14 88.03 92.48 95.42 97.55

For-S 6.29 10.77 23.73 43.24 62.89 78.04 88.22 93.99 96.83 98.48 99.20
For-W 7.43 11.82 25.69 45.31 65.62 80.97 90.56 95.58 97.94 99.19 99.64

ZIBin 30 For-L 6.57 10.84 24.61 44.32 64.57 80.01 89.75 95.10 97.63 98.98 99.51
AIC 16.51 24.18 42.79 65.36 82.26 92.35 96.82 98.68 99.62 99.79 99.98
BIC 7.70 12.42 28.06 48.77 69.66 84.98 92.37 96.70 98.69 99.39 99.84

For-S 5.66 11.36 29.79 55.26 77.37 90.07 96.23 98.58 99.50 99.87 99.94
For-W 6.23 12.02 31.35 58.38 80.00 91.86 97.40 99.13 99.77 99.96 99.97

40 For-L 5.77 11.56 30.60 57.23 78.89 91.29 97.01 98.94 99.68 99.94 99.96
AIC 15.61 26.69 51.96 76.48 91.63 97.23 99.28 99.86 99.95 99.99 99.99
BIC 5.99 12.15 33.13 58.88 80.74 92.84 97.64 99.44 99.80 99.95 99.97

For-S 5.26 13.19 36.56 66.93 87.40 96.06 99.01 99.74 99.94 99.98 100
For-W 5.66 14.01 38.14 68.93 89.35 97.06 99.42 99.90 99.99 100 100

50 For-L 5.45 13.50 37.40 68.09 88.66 96.64 99.28 99.85 99.99 100 100
AIC 15.62 29.29 59.18 83.71 95.72 99.14 99.81 99.97 100 100 100
BIC 5.17 13.48 37.76 67.56 88.42 96.98 99.32 99.87 99.97 100 100

small to moderate sample sizes as it has a very simple form, and does not need

estimates of the regression parameters under the alternative hypothesis. For large

sample size (n ≥ 50), BIC can be used due to its simple form as well as easy of

computation.

6.4 Real Data Analysis

To further illustrate the effectiveness of the proposed approach, we apply forward

selection procedure in two zero-inflated real data sets. Both data sets are available

on http://faculty.econ.ucdavis.edu/faculty/cameron/racd2/RACD2programs.html.

Example: 1 We consider a data set from Gurmu and Trivedi (1996) on 659 obser-
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vations about their number of recreational boating trips to Lake Somerville, Texas in

1980. The covariates are x1= facility’s subjective quality ranking on 1 to 5; x2 = 1 if

engaged in water-skiing at the lake; x3= household income of the head of the group;

x4= equal 1 if user’s fee paid at Lake Somerville; x5, x6 and x7 are dollar expenditure

when visiting Lake Conroe, Lake Somerville and Lake Houston respectively. The

number of recreational boating trips is considered as the dependent variable. The

data are zero-inflated as more than 65% of the respondents reported taking no trips

in the survey period.

We provide score test statistic value of the variables entering the model associated

with each step in forward selection procedure in table 6.4.

Table 6.4: Variable to enter model using forward selection procedure through score
test

Step 1st 2nd 3rd 4th 5th 6th
Variable x4 x6 x7 x2 x3 x1

Score test 348.20 115.41 151.98 64.45 20.50 9.20

Table 6.4 show that all covariates are significant except x5 which is consistent with

Cameron and Trivedi (1998, pp-209).

Example: 2 We consider a data set from Deb and Trivedi (1997) on 4406 indi-

viduals, aged 66 and over, who are covered by Medicare public insurance program.

The data are originally obtained from the US National Medical Expenditure Survey

(NMES) conducted in 1987 and 1988. About 15% of the visits are counted as zero

counts.

We consider the number of physician office visits as the dependent variable and

x1 = number of hospital stays; x2 = number of chronic conditions; x3 = number of

years of education; x4 = family income; and x5 = age, as covariates.
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In table 6.5 we provide values of score test statistics of the corresponding variables

that enter the model associated with each step in the forward selection procedure.

Table 6.5: Variable to enter model using forward selection procedure through score
test

Step 1st 2nd 3rd 4th 5th
Variable x1 x2 x3 x5 x4

Score test 1551.51 811.90 89.75 17.51 11.30

Table 6.5 shows that all covariates are significant.

6.5 Discussion

In this chapter, we develop model selection procedure in ZIGLM using the score,

Wald and LR test statistics. We further consider model selection using the AIC and

BIC. Simulation studies show that forward selection using the score test and LR test

perform better than the Wald test. Moreover model selection using AIC and BIC

produces highly inflated type I error when sample size is small although the BIC

does well for sample size n = 50. Thus our suggestion is to use the forward selection

procedure using the score test for small to moderate sample sizes and for large n

(n ≥ 50) BIC should be used as it is computationally much simpler.



Chapter 7

Summary and Plan for Future

Research

7.1 Summary

We develop the procedure of joint estimation of mean and covariance parameters semi-

parametrically for longitudinal data in Chapter 3. An extensive simulation study is

done and overall findings are: both the parametric modelling and the semiparametric

modelling produce similar bias and efficiency properties of the regression parameters;

increasing the number of knots in the spline procedure decreases the efficiency of the

estimates of the nonparametric functions; and use of the penalized spline does not

improve the efficiency of the estimates of the nonparametric functions. However, the

great benefit of the semiparametric modelling is shown in the analysis of three real

data sets to find parsimonious models.

To incorporate time varying covariates in longitudinal data, we develop a joint esti-

102
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mation procedure for the mean and the covariance parameters in generalized partially

linear varying coefficient model by decomposing the correlation matrix via hyper-

spherical co-ordinates in Chapter 4. The simulation study and the real data analysis

are used to illustrate the proposed approach.

In Chapter 5, score, Wald and likelihood ratio test statistics are developed to

test the significance of a single covariate in generalized linear models. Simulation

studies show that the score test maintains nominal level very well among all three

test statistics under various choice of sample sizes. Based on the score test, the

selection procedure is further developed through forward selection and is made a

comparison using F test, AIC and BIC in terms of level and power. Model selection on

negative binomial and beta binomial regression models are also developed. According

to simulation studies, our suggestion is to use the forward selection procedure through

the F test for normal regression models and for Poisson, binomial, negative binomial

and beta binomial regression models one should use the forward selection procedure

through the score test for small to moderate sample sizes and BIC for large n (n ≥ 50).

In Chapter 6, a model selection procedure in ZIGLM is developed using the score,

the Wald and the LR test statistics and show a comparison is made with model se-

lection using AIC and BIC. Simulation studies show forward selection using the score

test and the LR test perform well. Based on simulation studies, our recommendation

is to use the forward selection procedure through the score test for small to moderate

sample sizes and for large n (n ≥ 50) BIC should be used as it is easy to compute.
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7.2 Future Research

In longitudinal data, missing responses and covariate measurement error are very

commonly seen in practice. However ignoring measurement error or omitting missing

covariates may produce inconsistent estimators (Little and Rubin, 2002; Carroll et al.,

2012; Wang et al., 2008; Yi et al., 2012). The problem of how to handle either missing

responses or covariate measurement error under the linear setting is well developed

in the literature. However, properties of these in longitudinal settings are not well-

known. Most recently Qin, Zang, and Zhu (2016) discuss this issue and propose

simultaneous estimation of mean and covariance parameters of partially linear models

in generalized estimating equation settings. It will be interesting to incorporate the

correlation matrix directly via hyperspherical coordinates and develop a methodology

to improve estimation of the parameters.

To estimate mean and covariance parameters simultaneously in longitudinal data

most authors consider continuous data. However researchers often encounter longitu-

dinal observations that contain a substantial number of discrete variables (see for ex-

ample Lynn, 2009; Molenberghs and Verbeke, 2005). Recently Tang, Zhang, and Leng

(2017) developed a procedure to estimate mean-correlation regression parameters for

a family of discrete responses. Our plan is to extend their model semiparametrically

as well as nonparametrically.



Appendix A

A.1 Solution of Estimating Equations of Model 3

We apply the quasi-Fisher scoring algorithm to solve estimating equations of Model

3 where the parameters θ, ρ and γ are solved sequentially one by one with other

parameter kept fixed in optimization:

Step 1 : Choose initial values of the parameters as θ(0), ρ(0) and γ(0). Set k = 0

Step 2 : Calculate Σi by using ρ(k) and γ(k). Update θ as

θ(k+1) = θ(k) + I−1
11 U1|θ=θ(k)

Step 3 : Given θ = θ(k+1), update γ and ρ by using

 γ(k+1)

ρ(k+1

 =

 γ(k)

ρ(k

+


 I22 I23

I32 I33


−1 U3

U2


 |γ=γ(k),ρ=ρ(k)

Step 4 : Set k ← k + 1 and repeat steps 2 and 3 until a desired convergence criteria is
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satisfied.

Note that block components of Fisher information matrix I are:

I11 = −E
[
∂2l

∂θ∂θ′

]
=

n∑
i=1

Π′i∆iΣ
−1
i ∆iΠi,

I12 = −E
[

∂2l

∂θ∂γ ′

]
= −

n∑
i=1

[
Π′i∆i

∂Σ−1
i

∂γ ′
(E(yi)− µi)

]
= 0,

I13 = −E
[

∂2l

∂θ∂ρ′

]
= 0,

I22 = −E
[

∂2l

∂γ∂γ ′

]
=

n∑
i=1

mi∑
j=1

[
2
∂ log Tijj
∂γ

∂ log Tijj
∂γ ′

+

j−1∑
k=1

bijkb
′
ijk

]
,

I23 = −E
[

∂2l

∂γ∂ρ′

]
=

n∑
i=1

mi∑
j=1

[
∂ log Tijj
∂γ

Υ′ij +
1

2

j−1∑
k=1

bijk

j∑
l=k

aijlTilkΥ
′
il

]
,

I33 = −E
[

∂2l

∂ρ∂ρ′

]
=

1

4

n∑
i=1

Υ′i
[
Imi +R−1

i ◦Ri

]
Υi,

where ‘◦’ represents the Hadamard product and all other necessary symbols are de-

fined in page 27. Note that for two matrices A and B of the same dimension m× n,

the Hadamard product A◦B is a matrix of the same dimension as the operands, with

elements given by [A ◦B]ij = [A]ij [B]ij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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A.2 Block Components of Fisher Information Ma-

trix of the Estimating Equations of Model 2

I11 = −E
[
∂2l

∂θ∂θ′

]
=

n∑
i=1

Π′i∆iΣ
−1
i ∆iΠi,

I12 = −E
[

∂2l

∂θ∂γ ′

]
= −

n∑
i=1

[
Π′i∆i

∂Σ−1
i

∂γ ′
(E(yi)− µi)

]
= 0,

I13 = −E
[

∂2l

∂θ∂λ′

]
= 0,

I22 = −E
[

∂2l

∂γ∂γ ′

]
=

n∑
i=1

mi∑
j=1

[
2
∂ log Tijj
∂γ

∂ log Tijj
∂γ ′

+

j−1∑
k=1

bijkb
′
ijk

]
,

I23 = −E
[

∂2l

∂γ∂λ′

]
=

n∑
i=1

mi∑
j=1

[
∂ log Tijj
∂γ

Z ′ij +
1

2

j−1∑
k=1

bijk

j∑
l=k

aijlTilkZ
′
il

]
,

I33 = −E
[

∂2l

∂λ∂λ′

]
=

1

4

n∑
i=1

Z′i
[
Imi +R−1

i ◦Ri

]
Zi,

where ‘◦’ represents the Hadamard product.



Appendix B

B.1 Expected Values of the Mixed Partial Deriva-

tives in Negative Binomial Regression Model

First and second order partial derivatives of the log-likelihood function of negative

binomial regression model with respect to the parameters β and c are

∂l

∂βj
=

n∑
i=1

yi −mi

mi(1 + cmi)

∂mi

∂βj
,

∂l

∂c
=

n∑
i=1

[
log(1 + cmi)

c2
− mi(yi + c−1)

1 + cmi

+

yi∑
l=1

l − 1

1 + c(l − 1)

]
,

∂2l

∂βj∂βk
=

n∑
i=1

[
yi −mi

mi(1 + cmi)

∂2mi

∂βj∂βk
− yi + 2cmiyi − cm2

i

m2
i (1 + cmi)2

∂mi

∂βj

∂mi

∂βk

]
,

∂2l

∂βj∂c
= −

n∑
i=1

(yi −mi)mi

(1 + cmi)2

∂mi

∂βj
,

and

∂2l

∂c2
= −

n∑
i=1

[
yi∑
l=1

(
l − 1

1 + c(l − 1)

)2

+ 2c−3 log(1 + cmi)−
2c−2mi

(1 + cmi)
− (yi + c−1)m2

i

(1 + cmi)2

]
.
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Assume mi = exp(x′iβ) = exp(β0 + xi1β1 + · · ·+ xipβp), then
∂mi

∂βj
= mixij, then

E

[
− ∂2l

∂βj∂βk

]
=

n∑
i=1

mi

1 + cmi

xijxik and

E

[
− ∂2l

∂βj∂c

]
= 0.

B.2 Expected Values of the Mixed Partial Deriva-

tives in Beta Binomial Regression Model

First and second order partial derivatives of log-likelihood of beta binomial regression

model with respect to the parameters β and θ are

∂l

∂βj
=

n∑
i=1

[
yi−1∑
r=0

1

µi + rθ
−

ki−yi−1∑
r=0

1

1− µi + rθ

]
∂µi
∂βj

,

∂l

∂θ
=

n∑
i=1

[
yi−1∑
r=0

r

µi + rθ
+

ki−yi−1∑
r=0

r

1− µi + rθ
−

ki−1∑
r=0

r

1 + rθ

]
,

∂2l

∂βj∂βk
= −

n∑
i=1

[
yi−1∑
r=0

1

(µi + rθ)2
+

ki−yi−1∑
r=0

1

(1− µi + rθ)2

]
∂µi
∂βj

∂µi
∂βk

+

n∑
i=1

[
yi−1∑
r=0

1

µi + rθ
−

ki−yi−1∑
r=0

1

1− µi + rθ

]
∂2µi
∂βj∂βk

,

∂2l

∂βj∂θ
=

n∑
i=1

[
−

yi−1∑
r=0

r

(µi + rθ)2
+

ki−yi−1∑
r=0

r

(1− µi + rθ)2

]
∂µi
∂βj

, and

∂2l

∂θ2
=

n∑
i=1

[
−

yi−1∑
r=0

r2

(µi + rθ)2
−

ki−yi−1∑
r=0

r2

(1− µi + rθ)2
+

ki−1∑
r=0

r2

(1 + rθ)2

]
.
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In order to obtain the expected values of the mixed partial derivatives in the beta

binomial regression model, we need to evaluate the following terms

E

[
yi−1∑
r=0

1

(µi + rθ)2

]
, E

[
ki−yi−1∑
r=0

1

(1− µi + rθ)2

]
,

E

[
yi−1∑
r=0

r

(µi + rθ)2

]
, and E

[
ki−yi−1∑
r=0

r

(1− µi + rθ)2

]
.

Now,

E

[
yi−1∑
r=0

1

(µi + rθ)2

]
=

ki∑
yi=0

[
yi−1∑
r=0

1

(µi + rθ)2

]
Pr (yi)

= 0 +

Pr (yi = 1)

(µi + 0 · θ)2
+

Pr (yi = 2)

(µi + 0 · θ)2
+
Pr (yi = 2)

(µi + 1θ)2
+

Pr (yi = 3)

(µi + 0 · θ)2
+
Pr (yi = 3)

(µi + 1θ)2
+
Pr (yi = 3)

(µi + 2θ)2
+

...

+
Pr (yi = ki)

(µi + 0 · θ)2
+
Pr (yi = ki)

(µi + 1θ)2
+ · · ·+ Pr (yi = ki)

(µi + (ni − 1)θ)2

=
Pr (yi ≥ 1)

(µi + (1− 1)θ)2
+

Pr (yi ≥ 2)

(µi + (2− 1)θ)2
+ · · ·+ Pr (yi ≥ ki)

(µi + (ki − 1)θ)2
.

=

ki∑
r=1

Pr (yi ≥ r)

[µi + (r − 1)θ]2
.
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E

[
ki−yi−1∑
r=0

1

(1− µi + rθ)2

]
=

ki∑
yi=0

[
ki−yi−1∑
r=0

1

(1− µi + rθ)2

]
Pr (yi)

=
Pr (yi = 0)

(1− µi + 0 · θ)2
+

Pr (yi = 0)

(1− µi + 1θ)2
+ · · ·+ Pr (yi = 0)

(1− µi + (ki − 1)θ)2
+

Pr (yi = 1)

(1− µi + 0 · θ)2
+

Pr (yi = 1)

(1− µi + 1θ)2
+ · · ·+ Pr (yi = 1)

(1− µi + (ki − 2)θ)2
+

Pr (yi = 2)

(1− µi + 0 · θ)2
+

Pr (yi = 2)

(1− µi + 1θ)2
+ · · ·+ Pr (yi = 2)

(1− µi + (ki − 3)θ)2
+

...

+
Pr (yi = ki − 2)

(1− µi + 0 · θ)2
+
Pr (yi = ki − 2)

(1− µi + 1θ)2
+

+
Pr (yi = ki − 1)

(1− µi + 0 · θ)2
.

=
Pr (yi ≤ ki − 1)

(1− µi + (1− 1)θ)2
+

Pr (yi ≤ ki − 2)

(1− µi + (2− 1)θ)2
+ · · ·+ Pr (yi ≤ 0)

(1− µi + (ki − 1)θ)2
.

=

ki∑
r=1

Pr (yi ≤ ki − r)
[1− µi + (r − 1)θ]2

.

E

[
yi−1∑
r=0

r

(µi + rθ)2

]
=

ki∑
yi=0

[
yi−1∑
r=0

r

(µi + rθ)2

]
Pr (yi)

=

ki∑
yi=0

[
yi−1∑
r=0

rθ

θ(µi + rθ)2

]
Pr (yi)

=

ki∑
yi=0

[
yi−1∑
r=0

µi + rθ − µi
θ(µi + rθ)2

]
Pr (yi)

=
1

θ

ki∑
yi=0

[
yi−1∑
r=0

Pr (yi)

(µi + rθ)

]
− µi

θ

ki∑
yi=0

[
yi−1∑
r=0

Pr (yi)

(µi + rθ)2

]

= −µi
θ

ki∑
yi=0

[
yi−1∑
r=0

Pr (yi)

(µi + rθ)2

]
since E

[
∂l

∂βj

]
= 0

= −µi
θ

ki∑
r=1

Pr (yi ≥ r)

[µi + (r − 1)θ]2
.
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Similarly

E

[
ki−yi−1∑
r=0

r

(1− µi + rθ)2

]
= −1− µi

θ

ki∑
r=1

Pr (yi ≤ ki − r)
[1− µi + (r − 1)θ]2

.

Suppose µi follows the logistic model µi(x
′
i,β) =

exp(x′iβ)

1 + exp(x′iβ)
. Then

∂µi
∂βj

= µi(1−

µi)xij. Also assume

ki∑
r=1

Pr (yi ≥ r)

[µi + (r − 1)θ]2
= p1i,

ki∑
r=1

Pr (yi ≤ ki − r)
[1− µi + (r − 1)θ]2

= p2i, and

ki−1∑
r=0

1

(1 + rθ)2
=

ki∑
r=1

1

[1 + (r − 1)θ]2
= p3i.

Thus

E

[
− ∂2l

∂βj∂βk

]
=

n∑
i=1

E

[
yi−1∑
r=0

1

(µi + rθ)2
+

ki−yi−1∑
r=0

1

(1− µi + rθ)2

]
∂µi
∂βj

∂µi
∂βk

=
n∑
i=1

(p1i + p2i)µ
2
i (1− µi)2xijxik.

E

[
− ∂2l

∂βj∂θ

]
=

n∑
i=1

E

[
yi−1∑
r=0

r

(µi + rθ)2
−

ki−yi−1∑
r=0

r

(1− µi + rθ)2

]
∂µi
∂βj

=
n∑
i=1

[−µip1i + (1− µi)p2i]
µi(1− µi)

θ
xij.
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In order to calculate E

[
− ∂

2l

∂θ2

]
, replace θ−1 by ψ. Then the log-likelihood becomes

l =
n∑
i=1

[
yi−1∑
r=0

log(µiψ + r) +

ki−yi−1∑
r=0

log((1− µi)ψ + r)−
ki−1∑
r=0

log(ψ + r)

]
.

Differentiating l with respect to ψ twice, we have

∂2l

∂ψ2
= −

n∑
i=1

[
µ2
i

yi−1∑
r=0

1

(µiψ + r)2
+ (1− µi)2

ki−yi−1∑
r=0

1

((1− µi)ψ + r)2
−

ki−1∑
r=0

1

(ψ + r)2

]
.

Now

E

[
− ∂2l

∂ψ2

]
=

n∑
i=1

E

[
µ2
i

yi−1∑
r=0

1

(µiψ + r)2
+ (1− µi)2

ki−yi−1∑
r=0

1

((1− µi)ψ + r)2
−

ki−1∑
r=0

1

(ψ + r)2

]

=
n∑
i=1

ki∑
yi=0

[
µ2
i

yi−1∑
r=0

1

(µiψ + r)2
+ (1− µi)2

ki−yi−1∑
r=0

1

((1− µi)ψ + r)2

]
Pr (yi)−

n∑
i=1

ki∑
yi=0

[
ki−1∑
r=0

1

(ψ + r)2

]
Pr (yi)

=
n∑
i=1

[
µ2
i

ki∑
r=1

Pr (yi ≥ r)

[µiψ + (r − 1)]2
+ (1− µi)2

ki∑
r=1

Pr (yi ≤ ki − r)
((1− µi)ψ + (r − 1))2

−
ki−1∑
r=0

1

(ψ + r)2

]
.

Since E

[
− ∂

2l

∂θ2

]
= θ−4

[
− ∂2l

∂ψ2

]
, then

E

[
− ∂

2l

∂θ2

]
=

n∑
i=1

[
µ2
i

θ2

ki∑
r=1

Pr (yi ≥ r)

[µi + (r − 1)θ]2
+

(1− µi)2

θ2

ki∑
r=1

Pr (yi ≤ ki − r)
(1− µi + (r − 1)θ)2

]
−

1

θ2

n∑
i=1

ki−1∑
r=0

1

(1 + rθ)2

=
1

θ2

n∑
i=1

[
µ2
i p1i + (1− µi)2p2i − p3i

]
.
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B.3 Expected Values of the Mixed Partial Deriva-

tives in Zero-inflated Generalized Linear Mod-

els

Suppose the log-likelihood l of zero-inflated generalized linear model is written in the

form l =
n∑
i=1

li. Then the first and second order partial derivatives of li with respect

to θi and γ are as follows

∂li
∂θi

= I{yi=0}
f0(−g′i)
γ + f0

+ I{yi>0}(a
′
iyi − g′i)

∂li
∂γ

= − 1

1 + γ
+ I{yi=0}

1

γ + f0

∂2li
∂θ2

i

= I{yi=0}

(
f0(−g′i)2

γ + f0

− f 2
0 (−g′i)2

(γ + f0)2
+
f0(−g′′i )

γ + f0

)
+ I{yi>0}(a

′′
i yi − g′′i )

∂2li
∂θi∂γ

= I{yi=0}
−f0(−g′i)
(γ + f0)2

∂2li
∂γ2

=
1

(1 + γ)2
− I{yi=0}

1

(γ + f0)2

We have

E
[
I{yi=0}

]
= Pr(yi = 0) =

γ + f0

1 + γ
and

E
[
I{yi>0}

]
= Pr(yi > 0) = 1− Pr(yi = 0) =

1− f0

1 + γ
.

Hence expected values of mixed partial derivatives are as follows

E

[
−∂

2li
∂θ2

i

]
= −γ + f0

1 + γ

(
f0(−g′i)2

γ + f0

− f 2
0 (−g′i)2

(γ + f0)2
+
f0(−g′′i )

γ + f0

)
− 1− f0

1 + γ
(a′′iE[yi]− g′′i )

= − γf0(g′i)
2

(1 + γ)(γ + f0)
+

g′′i
1 + γ

− 1− f0

1 + γ
a′′iE(yi)
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E

[
− ∂2li
∂θi∂γ

]
= −γ + f0

1 + γ

−f0(−g′i)
(γ + f0)2

= − f0g
′
i

(1 + γ)(γ + f0)

E

[
−∂

2li
∂γ2

]
= − 1

(1 + γ)2
+
γ + f0

1 + γ

1

(γ + f0)2
=

1− f0

(1 + γ)2(γ + f0)
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