
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2019

A Voting Algorithm for Dynamic Object Identification and Pose A Voting Algorithm for Dynamic Object Identification and Pose

Estimation Estimation

Chandini Ravindranathan Nair
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Nair, Chandini Ravindranathan, "A Voting Algorithm for Dynamic Object Identification and Pose
Estimation" (2019). Electronic Theses and Dissertations. 7724.
https://scholar.uwindsor.ca/etd/7724

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7724&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7724?utm_source=scholar.uwindsor.ca%2Fetd%2F7724&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

A Voting Algorithm for Dynamic Object Identification and Pose Estimation

by

CHANDINI RAVINDRANATHAN NAIR

A THESIS

Submitted to the Faculty of Graduate Studies

Through Computer Science

In Partial Fulfilment of the Requirements for

The Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2019

© 2019 CHANDINI RAVINDRANATHAN NAIR

A Voting Algorithm for Dynamic Object Identification and Pose Estimation

by

Chandini Ravindranathan Nair

APPROVED BY:

G.Lan

Odette School of Business

A.Ngom

School of Computer Science

X.Yuan, Advisor

School of Computer Science

May 14, 2019

iii

Declaration of Originality

I confirm here that I am the sole creator of this thesis and no piece of this proposition has been

distributed or submitted for production.

I affirm to the best of my insight, my proposition does not encroach upon anybody's copyright nor

damage any restrictive rights and their thoughts, methods, citations, or some other material crafted

by other individuals incorporated into my postulation, circulation or something else, and are

entirely recognized as per the standard referencing hone. Moreover, I have included copyrighted

material that outperforms the limits of reasonable managing inside the significance of the Canada

Copyright Act. I affirm to acquire a composed consent from the copyright owner(s) to incorporate

such material(s) in my postulation and have included duplicates of such copyright clearances in

my reference section.

I pronounce this is a genuine copy of my thesis including any last updates, as affirmed by my thesis

advisory group and the Graduate Studies office, and this theory has not been submitted for a higher

degree to another University or Institution.

iv

Abstract

While object identification enables autonomous vehicles to detect and recognize objects from real-

time images, pose estimation further enhances their capability of navigating in a dynamically

changing environment. This thesis proposes an approach which makes use of keypoint features

from 3D object models for recognition and pose estimation of dynamic objects in the context of

self-driving vehicles. A voting technique is developed to vote out a suitable model from the

repository of 3D models that offers the best match with the dynamic objects in the input image.

The matching is done based on the identified keypoints on the image and the keypoints

corresponding to each template model stored in the repository. A confidence score value is then

assigned to measure the confidence with which the system can confirm the presence of the matched

object in the input image. Being dynamic objects with complex structure, human models in the

"COCO-DensePose" dataset, along with the DensePose deep-learning model developed by the

Facebook research team, have been adopted and integrated into the system for 3D pose estimation

of pedestrians on the road. Additionally, object tracking is performed to find the speed and location

details for each of the recognized dynamic objects from consecutive image frames of the input

video. This research demonstrates with experimental results that the use of 3D object models

enhances the confidence of recognition and pose estimation of dynamic objects in the real-time

input image. The 3D pose information of the recognized dynamic objects along with their

corresponding speed and location information would help the autonomous navigation system of

the self-driving cars to take appropriate navigation decisions, thus ensuring smooth and safe

driving.

v

Dedication

I dedicate this thesis work to God Almighty, my dear husband Mr. Navaneeth Narayanan, my

beloved parents Mr. Ravindranathan Nair and Mrs. Hemalatha R Nair, my loving brother Mr.

Vimal R Nair and the rest of my family and friends.

vi

Acknowledgements

First and foremost, I would like to express profound thankfulness to my supervisor, Dr. Xiaobu

Yuan, who has supported me throughout my thesis with his knowledge and expertise on this

exciting field of research. His ideas and suggestions have helped me become more creative,

without which I would not have been able to complete this research.

I would like to offer my sincere gratitude to the advisory group members, Dr. Alioune Ngom and

Dr. George Lan for their significant remarks and recommendations for my research.

I want to thank, my friend, Mr. Jonathan Ketel, Full Stack Developer, UNI3T, Montreal, for proof

reading this thesis book and providing his valuable suggestions.

I would like to thank all my friends, who have supported and helped me throughout my studies,

here in Canada. I also thank my parents, husband and family for their blessings and financial

support which enabled me to complete my studies successfully.

vii

Table of Contents

Declaration of Originality .. iii

Abstract .. iv

Dedication ... v

Acknowledgements .. vi

List of Figures .. ix

List of Abbreviations/Symbols ... xii

List of Tables ..xiii

Chapter 1: Introduction ... 1

1.1 Google’s Self Driving Car .. 3

1.2 Object Recognition – How do self-driving cars see? .. 4

1.3 Pose Estimation ... 5

Chapter 2: Literature Review .. 6

2.1 Object Recognition and Pose Estimation of Objects .. 6

2.2 Semantic Segmentation Techniques ... 8

2.2.1 Region Based Semantic Segmentation .. 10

2.2.2 Fully Convolutional Network Based Semantic Segmentation .. 13

2.2.3 Weakly Supervised Semantic Segmentation ... 13

2.3 Object Detection via Bounding Boxes .. 14

2.4 3D Object Recognition.. 15

2.5 Object Recognition and Pose Estimation of Cars using 3D Models ... 24

2.6 Object Recognition and Pose Estimation of Humans using 3D Models 31

2.7 Related Works ... 39

2.8 Thesis Statement ... 49

2.8.1 Problem Statement .. 49

2.8.2 Thesis Contribution ... 49

Chapter 3: Proposed System ... 52

3.1 Motivation ... 52

3.2 Relation of the thesis to other components of the overall system ... 53

3.2.1 Modules of the overall system directly related to the thesis research 55

3.3 Proposed Techniques for Dynamic Object Recognition and Pose Estimation 57

3.3.1 Object Recognition and Pose Estimation of Cars ... 58

viii

3.3.2 Object Recognition and Pose Estimation of Humans ... 62

3.4 Proposed Technique for Dynamic Object Tracking .. 64

3.5 Design of the Flowchart and Algorithms .. 67

3.5.1 The Proposed Algorithm for Recognition, Pose Estimation and Tracking of Dynamic

Objects in the Real-Time Input Image .. 70

3.5.2 The Proposed Voting Algorithm for Cars ... 71

3.5.3 The Proposed Object Tracking Algorithm .. 74

3.6 Time Complexity of the Proposed Algorithm ... 75

Chapter 4: Implementation and Experiments .. 77

4.1 Software Information .. 77

4.2 Experiments and Results of Object Recognition and Pose Estimation of Cars 78

4.2.1 Simulated input image with a single car ... 78

4.2.2 Real-time input image with a single car .. 84

4.2.3 Real-time input image with a car partially occluded by another car 88

4.2.4 Real-time input image with part of the vehicle missing.. 90

4.2.5 Real-time input image with objects other than cars or pedestrians 92

4.3 Experiments and Results of Object Recognition and Pose Estimation of Pedestrians 93

4.3.1 Input image with an adult on the road ... 93

4.3.2 Input image with an adult and child on the road ... 95

4.3.3 Real-time input image with pedestrians running across the road .. 97

4.3.4 Real-time input image with multiple people on road (Occluded humans) 98

4.4 Results of the Tracking of Dynamic Objects .. 100

4.5 Comparison and Discussions .. 102

4.5.1 Mean Average Precision ... 102

4.5.2 Estimation of Mean Average Precision using the proposed method 103

4.5.3 Results Comparison and Discussion: Cars .. 105

4.5.4 Results Comparison and Discussion: Humans .. 108

4.6 Observation and Limitations ... 110

Chapter 5: Conclusion and Future Work .. 112

References ... 114

Vita Auctoris ... 125

ix

List of Figures

Figure 1: Google’s Self-Driving Car prototype .. 4

Figure 2: Object recognition to identify different objects ... 6

Figure 3: Pose estimation in humans and cars .. 7

Figure 4: Object recognition in the context of autonomous cars .. 8

Figure 5: Semantic segmentation of objects on the road .. 9

Figure 6: The architecture of R-CNN (Image source: Girshick et al., 2014) .. 10

Figure 7: The architecture of Fast R-CNN. (Image source: Girshick, 2015) .. 11

Figure 8: An illustration of Faster R-CNN model. (Image source: Ren et al.,2016) 12

Figure 9: FCN Architecture .. 13

Figure 10: Weakly supervised semantic segmentation ... 14

Figure 11: Illustration of YOLO ... 15

Figure 12: Illustration of strategy suggested by Schmid and Mohr .. 19

Figure 13: A general 3D object recognition system.. 21

Figure 14: Graphical representation of SIFT algorithm .. 22

Figure 15: Process for Bag of Features Image Representation ... 23

Figure 16: Sample 3D car model (.obj) ... 24

Figure 17: Image Formation: Pinhole model (Perspective model) ... 25

Figure 18: Different views of 3D car model ... 26

Figure 19: Rendered images of 3D car models ... 27

Figure 20: Training and Inference stages of KeypointNet .. 28

Figure 21: SMPL model (orange) fit to ground truth 3D meshes (gray) .. 32

Figure 22: Representation of Standard Skinning .. 33

Figure 23: SMPL Model Pipeline ... 34

Figure 24: Part segmentation, Marking Correspondences and Surface Correspondence illustrative

representation .. 35

Figure 25: Left: The image and the regressed correspondence by DensePose-RCNN, Middle: DensePose

COCO Dataset annotations, Right: Partitioning and UV parametrization of the body surface 36

Figure 26: The user interface for collecting per-part correspondence annotations 36

Figure 27: The classification and regression steps of DensePose architecture ... 37

Figure 28: DensePose R-CNN architecture .. 38

Figure 29: Cross-cascading architecture ... 39

Figure 30: Flowchart of the overall system .. 53

Figure 31: Snippet of the repository ... 58

Figure 32: Object center candidates .. 60

Figure 33: Flowchart representing the proposed technique for object recognition and pose estimation of

dynamic objects .. 68

Figure 34: Flowchart depicting the proposed technique for object tracking from input video 69

Figure 35: Input image .. 78

Figure 36: Keypoints detected using KeypointNet ... 79

Figure 37: Matched model from the repository .. 80

Figure 38: Image centre coordinates ... 80

Figure 39: Object center candidates plotted on the image .. 81

x

Figure 40: Representation of results in each step.. 81

Figure 41: Car detected with confidence score = 1.0 .. 82

Figure 42: Step-wise results for the image of a car moving in the "Towards" direction 83

Figure 43: Step-wise results for the image of a car moving in the "Left" direction 83

Figure 44: A real time road scene with a single car .. 84

Figure 45: Cropping the detected car using ImageAI python library ... 85

Figure 46: Keypoint features identified using KeypointNet ... 85

Figure 47: Matched model from the repository .. 86

Figure 48: Object centre and object centre candidates .. 86

Figure 49: Step-wise representation of results for real time single car scenario ... 87

Figure 50: Car detected with confidence score = 1.0 in real time image .. 87

Figure 51: Real time road scene with multiple cars .. 88

Figure 52: Cars Detected and cropped using the ImageAI library and the Resnet model 89

Figure 53: Step-wise results for the image of a car partly occluded by the tyre of another car 89

Figure 54: Tractor unit without a trailer on the road ... 90

Figure 55: Step-wise results for vehicle with a missing part .. 91

Figure 56: Input images with no car or pedestrians .. 92

Figure 57: Keypoint features detected on images without cars or pedestrians ... 92

Figure 58: Input image with an adult on the road ... 94

Figure 59: Visualization of the isocontours of the UV fields in the image with an adult on the road 94

Figure 60: Textures mapped on the isocontours of the UV fields in an image with an adult on the road .. 95

Figure 61: Input image with an adult and a child crossing the road ... 95

Figure 62: Visualization of the isocontours of the UV fields in the image with an adult and a child

crossing the road ... 96

Figure 63: Textures mapped on the isocontours of the UV fields for an image with an adult and a child

crossing the road ... 96

Figure 64: Input image with two men running across the road ... 97

Figure 65: Visualization of the isocontours of the UV fields in an image with two men running across the

road ... 97

Figure 66: Textures mapped on the isocontours of the UV fields for an image with two men running

across the road... 98

Figure 67: Input image with multiple pedestrians (few partly occluded) crossing the road 98

Figure 68:Visualization of the isocontours of the UV fields in the image with multiple pedestrians (few

partly occluded) crossing the road .. 99

Figure 69: Textures mapped on the isocontours of the UV fields for an image with multiple pedestrians

(few partly occluded) crossing the road .. 99

Figure 70: Different frames of the input video tracking the car with the estimated speeds displayed on it

 .. 100

Figure 71: Different frames of the input video tracking the humans with the estimated speeds displayed on

it .. 101

Figure 72: Object recognition with Resnet model .. 106

Figure 73: Pictorial representation of how the proposed approach improves prediction confidence 107

Figure 74: Step-wise representation of results for input image of car with partial occlusion 107

Figure 75: Objects detected incorrectly instead of cars (Source: Tangruamsub et al.,2011) 108

Figure 76: Woman wearing a long skirt .. 109

xi

Figure 77: Pose estimation results after applying DensePose model .. 110

Figure 78: Two cars in two opposite directions with keypoints at similar coordinate positions 111

Figure 79: Failure case with output keypoints flipped in the case of the KeypointNet model 111

xii

List of Abbreviations/Symbols

HPE Human Pose Estimation

CNN Convolutional Neural Network

R-CNN Region Based Convolutional Neural Network

SMPL Skinned Multi-Person Linear Model

YOLO You Only Load Once

SURREAL Synthetic hUmans foR REAL tasks

LiDAR Light Detection and Ranging

ROI Region of Interest

FCN Fully Convolutional Network

SIFT Scale Invariant Feature Transformation

SOA Service Oriented Architecture

SURF Speeded Up Robust Features

xiii

List of Tables

Table 1: Review of object recognition and pose estimation methods ... 44

Table 2: Time complexity of the algorithm .. 76

Table 3: List of tools used for implementation of the proposed system ... 77

Table 4: Confusion Matrix .. 103

Table 5: Comparison of mAP ... 104

1

Chapter 1: Introduction

Human society is moving towards a future where cars will be able to drive by themselves and

travelers can just sit back and relax. Apart from the major players like Tesla, Google and Uber,

there are many other companies who have invested billions of dollars towards research in this area

to make the dream of a fully autonomous car a reality. With so much investment and interest in

driverless technology, it is easy to assume that self-operating cars are imminent, but they are still

far from being viable. Creation of such a sophisticated machine requires great expertise to ensure

smooth and safe driving. Object recognition and pose estimation of recognized objects are the two

most important tasks in the application of vehicle surveillance [91]. An accurate solution to these

problems will help with automatically analyzing a traffic scene. This includes the analysis of

crucial information for vehicle navigation like determining the vehicle speed, traffic frequency,

driver behaviour, or the shape and style of traffic participants. It is a known fact that there would

be a variety of objects on the road at any given time. These objects can be either moving or

stationary objects. In the context of self-driving vehicles, it is important to distinguish between the

moving and stationary objects in order to take the correct navigation decisions. Kolski et al. [74]

describes the objects like pedestrians and other vehicles which move on the road as dynamic

obstacles. Darms et al. [75] clearly defines static obstacles as objects which are assumed not to

move during the observation period, such as, buildings, traffic cones or parked cars which do not

participate actively in traffic. In contrast, Darms et al. [75] define dynamic obstacles as objects

which potentially move during the observation periods. Darms et al. [76] and Hu et al. [77]

categorize the moving objects as "dynamic objects" and the objects which do not move as "static

objects" in their works. Hu et al. [77] include blockages such as stones and construction signs into

the category of static objects. This research solely concentrates on object recognition and pose

2

estimation of moving objects like cars and pedestrians, on the road. More formally, this thesis

deals with object recognition and pose estimation of “dynamic objects” on the road.

A system with very high obstacle detection accuracy is required for a self-driving car, as lower

accuracies can lead to errors which can be dangerous and cost human lives [78]. Most of the

previous researches [1, 28, 84] use the mean average precision(mAP) (Section 4.5.1) as the

measure of the accuracy in the object detection and pose estimation predictions. For example, the

current state-of-the-art technique YOLOv2 has achieved a mAP of 78.6 [28]. Janai et al. [81]

discuss the importance of reliable object detection in the context of self-driving vehicles, in order

to avoid accidents that might be life-threatening. The work also discusses the difficulties in object

detection due to the wide variety of object appearances and occlusions caused by other objects.

Gao et al. [79] mention the bottlenecks in accuracy, efficiency, and timeliness of detection,

recognition, tracking, and segmentation techniques based on traditional RGB images due to

insufficient depth information. Gene Lewis [80] discusses the challenges in the object detection

problem ported to the self-driving vehicles, such as the optimization problems and the speed issues

of the object detection pipeline. Hence, even though 100% accuracy is almost impossible, there is

a need for continuous improvement in the confidence level with which an object is identified, until

it is safe to put self-driving vehicles on the road.

The aim of this research is to improve the confidence with which the system can confirm the

presence of an object or obstacle at a location in the input image. An object is identified, and its

3D pose is determined by making use of keypoint information from the 3D object models. A voting

algorithm is developed to vote out the best 3D model from the repository corresponding to the

dynamic object present in the input image. The voting algorithm also estimates a confidence score,

which signifies the confidence with which the system can confirm the presence of the identified

3

object in the input image. The term “voting” was adopted for this algorithm from a similar work

done by Tangruamsub et al. [1], where the authors used keypoint features from 2D images (instead

of 3D models used in this thesis) to vote out the best candidates for object recognition and pose

estimation. The identified object is then tracked to get its speed and location information. The

estimated pose information along with the speed and location information is then used to update

the recognized dynamic object on to a virtual city which acts as a repository of both the static and

dynamic objects on the road in real-time.

1.1 Google’s Self Driving Car

Many companies like Tesla, Mercedes, Uber, Google, BMW, and Volvo already have their semi-

autonomous cars on the market. However, all of these require expensive hardware support and are

still far from being fully autonomous vehicles. Among them is Google’s Self Driving Car. Google

was the first company to make customer oriented driverless cars, but it is still far from viability.

The car uses many highly advanced pieces of hardware for obstacle detection and therefore the

overall cost of the vehicle is a major problem. However, this cannot be avoided as the vehicle

needs to be able to detect and avoid obstacles like other cars, pedestrians, cyclists and animals.

Google’s Self-Driving Car uses an array of detection technologies including sonar devices, stereo

cameras, lasers, and radar. The LiDAR on top of the car is considered the heart of object detection.

Google’s LiDAR system is great for generating an accurate map of the area surrounding the

vehicle, but it is not ideal for monitoring the speed of other cars in real time. Therefore, the front

and back bumper of the driverless car include radar. Hence, it is clear that many expensive

hardware devices are currently being used for accurate object recognition.

4

Figure 1: Google’s Self-Driving Car prototype

1.2 Object Recognition – How do self-driving cars see?

In addition to reducing human effort on the road, it is anticipated that self-driving cars will make

driving safer and therefore reduce the number of traffic accidents and fatalities. This will require

these vehicles to have highly accurate object recognition techniques. A large amount of machine

learning and computer vision research is currently focused on this area. Basically, there are two

categories of object recognition in the context of autonomous driving: - Semantic Segmentation

and Object Detection using rectangular bounding boxes [11]. However, these methods are mostly

done with 2D images. The novel idea used by the proposed system of this research makes use of

the keypoint feature information from 3D object models to identify the dynamic objects from a

real-time input image. The use of keypoint features extracted from 3D object models for object

matching and identification is anticipated to improve the confidence of object recognition.

5

1.3 Pose Estimation

In the context of self-driving vehicles, the pose estimation of objects on the road is very significant

in the autonomous navigation of the vehicle [12]. Pose estimation of recognized objects can be

classified into two:

a. Pose estimation of objects which do not change its structure significantly.

b. Pose estimation of objects whose structure may change.

Examples of objects whose structure does not significantly change include vehicles such as cars

and trucks. Whereas examples of objects whose structure does change significantly include people,

animals, and birds. This research also focuses on the pose estimation of identified objects on the

road, which will provide additional information for the autonomous navigation systems of the self-

driving vehicles, to take good navigation decisions.

In this thesis, Chapter 2 contains a detailed review of the previous work done on object recognition

and pose estimation in autonomous vehicles. It also includes the prerequisite techniques for the

proposed approach. Chapter 3 explains the proposed system in depth. Chapter 4 discusses the

different scenarios that were considered during the implementation of the proposed idea along with

the results obtained. Chapter 4 also compares and discusses the results obtained using the proposed

approach with the other existing approaches. Chapter 5 includes the conclusion of the anticipated

impact in this area of research.

6

Chapter 2: Literature Review

This chapter discusses the relevant background of recent works in object recognition and pose

estimation in the context of self-driving vehicles. This section also covers the technical background

of object recognition and pose estimation using 2D and 3D images and how it can be extended

with the proposed approach of using 3D object models to improve object recognition and pose

estimation tasks.

2.1 Object Recognition and Pose Estimation of Objects

Object recognition is a computer vision technique that identifies objects in images or videos.

Humans can easily spot people, objects, and other visual details when they view a photograph or

watch a video. The goal of machine learning is to teach a computer to do what comes naturally to

humans, specifically to gain a level of understanding of what objects an image contains. Figure 2

below shows an illustration of using an object recognition algorithm to identify if an object is a cat

or a dog [11].

Figure 2: Object recognition to identify different objects

7

Object recognition is one of the most important technologies used in autonomous vehicle

navigation. It allows the recognition of vehicles and pedestrians on the road or other objects such

as a lamppost or a stop sign.

Pose estimation is a general problem in computer vision where the position and orientation of an

object are detected [12]. It detects the keypoint locations that describe the object. Many prior works

have been done on pose estimation of objects having skeletal structures such as humans, birds or

animals, as well as on objects whose structure does not significantly change like that of cars. Figure

3 below depicts pose estimation in humans and cars [12].

Figure 3: Pose estimation in humans and cars

Many researchers have explored different techniques for object recognition and subsequent pose

estimation of objects on the road to improve the accuracy of object detection and ensure safe

driving. Apart from the fact that driverless cars reduce human efforts on the road, it is anticipated

8

to make driving safer and reduce the number of road accidents. This motive requires that these

cars need exemplary object recognition techniques. Plenty of different machine learning and

computer vision researches are happening in this area every day.

Figure 4: Object recognition in the context of autonomous cars

There are two major categories of object recognition in the context of autonomous driving:

a. Semantic Segmentation Technique

b. Object Detection via bounding boxes

The different approaches adopted so far in both the categories are discussed in detail in the below

sections.

2.2 Semantic Segmentation Techniques

The semantic segmentation technique is understanding an image at the pixel level. In semantic

segmentation each of the pixels gets labeled to identify an object belonging to a specific class. In

other words, a class is assigned to each pixel in the image.

9

Many of the existing advanced deep learning networks for self-driving vehicles are based on

semantic segmentation and objects are detected based on edge detection. Also, many pieces of

research like the works done by Teichmann et al. [14] and Ros et al. [15] deal with autonomous

driving technology based on the semantic segmentation technique.

Figure 5: Semantic segmentation of objects on the road

Some standard deep networks which are used as the basis of semantic segmentation systems are

AlexNet (Krizhevsky et al. [15]), VGG-16 (Simonyan et al. [16]), GooLeNet (Szegedy1 et al.

[17]), ResNet (He et al. [18]).

Basically, a semantic segmentation architecture can be broadly considered as an encoder

followed by a decoder.

There are three main approaches which are currently adopted:

a. Region Based Semantic Segmentation

b. Fully Convolutional Network Based Semantic Segmentation

c. Weakly Supervised Semantic Segmentation

10

2.2.1 Region Based Semantic Segmentation

The region-based methods generally follow the “segmentation using recognition” pipeline, which

first extracts free-form regions from an image and describes them, followed by region-based

classification. There are three main region based deep learning segmentation approaches which

were once state-of-the-art before the YOLO: R-CNN, Fast R-CNN and Faster R-CNN.

2014: R-CNN – An early application of CNN to object detection – The goal of R-CNN is to take

an image, and then correctly identify where the specific objects are within that image. The main

idea of R-CNN is composed of two steps. First, using selective search, it extracts about 2000

regions from the image. These are called the region proposals.

Figure 6: The architecture of R-CNN (Image source: Girshick et al., 2014)

These region proposals are wrapped into a square and fed into a convolutional neural network that

produces a 4096-dimensional feature vector as output. The convolutional neural network acts as a

feature extractor and the output dense layer consists of features extracted from the image. These

extracted features are then fed into a support vector machine, to classify the object present within

that candidate region proposal. However, the R-CNN has some issues. The training time of the

network is very high, as 2000 region proposals per image need to be classified. It is not easy to

implement the R-CNN in real time as it takes around 47 seconds for a single test image. Also,

11

since the selective search algorithm is a fixed algorithm, no learning happens at that stage. This

could lead to bad candidate region proposals.

2015: Fast R-CNN – Speeding up and Simplifying R-CNN – In Fast R-CNN instead of feeding

the region proposals to the CNN, the input image is fed to the CNN to generate a convolutional

feature map. The region of proposals is identified from the convolutional feature map and are then

wrapped into squares.

Figure 7: The architecture of Fast R-CNN. (Image source: Girshick, 2015)

By using a RoI pooling layer, it is reshaped into a fixed size so that it can be fed into a fully

connected layer. From the RoI feature vector, a softmax layer is used to predict the class of the

proposed region and the offset values for the bounding box. Fast R-CNN is faster than R-CNN as

there is no need to feed the 2000 region proposals to the convolutional neural network every time.

Instead, as mentioned above, the convolution operation is done only once per image and the feature

map is generated from it.

12

2016: Faster R-CNN – Speeding up Region Proposal

Both R-CNN and Fast R-CNN uses selective search to find out the region proposals, which is a

slow and time-consuming process affecting the performance of the network. Faster R-CNN is an

object detection algorithm that eliminates the selective search algorithm and lets the network learn

the region proposals. Just like the approach in Fast R-CNN, the image is provided as an input to

the convolutional network which provides a convolutional feature map.

Figure 8: An illustration of Faster R-CNN model. (Image source: Ren et al.,2016)

Instead of using the selective search algorithm on the feature map to identify the region proposals,

a separate network is used to predict the region proposals. The RoI pooling layer then reshapes the

predicted region proposals and is then used to classify the image within the proposed region and

predict the offset values for the bounding boxes.

13

2.2.2 Fully Convolutional Network Based Semantic Segmentation

The original Fully Convolutional Network (FCN) learns the mapping from pixels to pixels, without

extracting the region proposals. The main idea of FCN is to make the classical CNN take arbitrary-

sized images as input. CNNs have fixed fully connected layers which restricts them to accept and

produce labels for specifically sized inputs only. However, the FCNs have only convolutional and

pooling layers which give them the ability to make predictions on arbitrary-sized inputs. Figure 9

below shows the FCN architecture [46].

Figure 9: FCN Architecture

2.2.3 Weakly Supervised Semantic Segmentation

Most of the relevant methods in semantic segmentation rely on many images with pixel-wise

segmentation masks. However, manually annotating these masks is quite time-consuming,

frustrating and commercially expensive. The weakly supervised methods are dedicated to fulfilling

the semantic segmentation by utilizing annotated bounding boxes.

14

Figure 10: Weakly supervised semantic segmentation

2.3 Object Detection via Bounding Boxes

This technique bounds the location of an object in the frame with a rectangular box. There are

many high performing object detection models which detect multiple objects in a scene

simultaneously in a very short time. The bounding boxes are a simpler way to describe the location

of an object when compared to the segmentation technique. The CNNs could usually only classify

images with a single object that take a sizable portion of it. This issue was solved using the sliding

window approach. However, to identify the different object with various sizes, multiple window

sizes are required which needs to be slide over the image. However, this is computationally very

expensive and hence the YOLO was introduced. In case of the YOLO network, the image is split

up into a grid and the entire image is run through a convolutional neural network.

YOLO – You Only Load Once

You only load once (YOLO) is a state-of-the-art, real-time object detection system. YOLO applies

a single neural network to the full image. This network divides the image into regions and predicts

the bounding boxes along with probabilities for each region. These bounding boxes are weighted

15

by the predicted probabilities. One of the advantages of YOLO is that it looks at the whole image

during the test time. Unlike R-CNN, which requires thousands of networks for a single image,

YOLO makes predictions with a single network. This makes the algorithm extremely fast, over

1000 times faster than R-CNN and 100 times faster than Fast R-CNN. Figure 11 shows the

illustration of the YOLO [28].

Figure 11: Illustration of YOLO

2.4 3D Object Recognition

With the increased availability of 3D data and the 3D sensors popularization, the 3D object

classification and recognition area have had a growing boost in the last few years. There are various

applications for the methods developed in this area which range from the field of robotics, directed

to robot movement in environments and object manipulation by robotic arms, to the security

domain, where the techniques of recognition and classification of 3D objects are used to detect

possible danger objects. When considering a sophisticated technology like the autonomous

16

vehicles which deals with lives of people on the road, it seemed to be a good idea to make use of

the 3D model information of the different objects on the road for recognizing them in the real-time

images.

Object recognition is one of the basic application domains in computer vision. Extensive research

has been and is still being done in this area, especially in 3D. 3D object recognition can be defined

as the task of finding and identifying objects in the real world from an image or a video sequence.

Object recognition is still a hot research topic in computer vision because it has many challenges

such as viewpoint variations, scaling, illumination changes, partial occlusion, and background

clutter. Many approaches and algorithms are proposed and implemented to overcome these

challenges.

The object recognition research community can be split into two: Those who deal with 2D images

and those who deal with 3D point clouds or meshes. By projecting the scene onto a plane by

capturing the light intensity detected at each pixel, the 2D images can be created. Alternatively,

3D point clouds capture the 3D coordinates of points in the scene. The main difference between

two dimensional and three-dimensional data is that 3D data includes depth information whereas

2D data does not. Cheaper sensors have been developed to acquire the 3D data from the real

environments, such as RGB-D cameras. Mustafa et al. [47] and Krystof et al. [48] proposes works

which make use of RGB-D cameras for object recognition. RGB-D cameras, such as the Microsoft

Kinect, capture a regular color image (RGB) along with the depth (D) associated with each pixel

in the image. Since the approach is being applied to the self-driving vehicle domain, it is important

to first evaluate the different requirements and constraints for this application before deciding on

the 3D object recognition technique. Various applications impose different requirements and

constraints as discussed below:

17

a) Evaluation Time: In most of the industrial applications, the data need to be processed in

real-time. In the case of self-driving vehicles, evaluation time is crucial to determine the

correct navigation of the car in real time. The evaluation time depends strongly upon the

number of pixels covered by the object as well as the size of the image area to be examined.

b) Accuracy: In the autonomous driving application, the object position needs to be

determined very accurately. The error bounds cannot exceed more than a fraction of a pixel,

else it might result in disastrous events.

c) Recognition ability: In the scenario of autonomous driving, it is required that the rate of

false detection must be almost zero to ensure safe driving.

d) Invariance: In the autonomous driving scenario, it is worthwhile to achieve invariance with

respect to illumination, scale, rotation, background clutter, occlusion, and viewpoint

changes.

The 3D object recognition techniques can be categorized into four groups: geometry-based

methods, appearance-based methods, three-dimensional object recognition schemes, and

descriptor-based methods [29, 49,50,51,52]. In geometry- or model-based object recognition, the

knowledge of an object's appearance is provided by the user as an explicit CAD-like model. Only

the 3D shape is described and properties such as color and texture are not included. In contrast,

the Appearance-based methods do not require an explicit user-provided model for object

recognition. The object representations are usually acquired through an automatic learning phase,

and the model typically relies on surface reflectance properties.

Some methods intend to locate the 3D position of an object in a single 2D image, essentially by

searching for features which are invariant to viewpoint position. The overall system proposed in

this research tries to make use of this approach, where the 3D models of the objects are rendered,

18

and the 3D keypoints are determined by selecting the feature points that are invariant to viewpoint

position. This explained in detail in the next section.

Geometry – or – model-based object recognition techniques have many advantages like invariance

to viewpoint and illumination. Also, they have a well-developed theory as many effective

algorithms exist for analyzing and manipulating geometric structures. In contrast, most recent

research efforts have been centered on appearance-based techniques such as advanced feature

descriptors and pattern recognition algorithms. They typically include two phases. In the first

phase, from the set of reference images, a model is constructed. The set includes the appearance

of the object under different orientations, different illuminants and potentially multiple instances

of a class of objects, for example, cars. In the second phase, parts of the input image (sub-images

of the same size as the training images) are extracted, possibly by segmentation (by texture, color,

motion) or by exhaustive enumeration of image windows over the whole image. The recognition

system then compares an extracted part of the input image with the reference images. However,

the major limitation of the appearance-based approaches is that they require isolation of the

complete object of interest from the background and is hence sensitive to occlusion and require

good segmentation.

The three-dimensional object recognition schemes are used by some applications that require a

position estimate in 3D space and not just in the 2D image plane. Such systems make use of sensors

which generates 3D data and perform matching in 3D space. Another way to determine the 3D

pose of an object is to estimate the projection of the object location in 3D space onto a 2D camera

image. Such a data representation is not “full” 3D yet and therefore is often called 2.5D.

Now, when it comes to object recognition in "real-world" scenes, characterization with geometric

primitives like lines or circular arcs is not suitable and the algorithm must compensate for the

19

heavy background clutter and occlusion. Schmid and Mohr [53] suggested a two-way method for

image-content description. In the first step, the keypoints are detected, i.e. points that exhibit

salient characteristic like the corner of a building. Subsequently, for each interest point, a feature

vector called region descriptor is calculated. Each region descriptor characterizes the image

information available in a local neighborhood around one interest point. Figure 12 illustrates the

strategy suggested by Schmid and Mohr [53].

Figure 12: Illustration of strategy suggested by Schmid and Mohr

Object recognition can then be performed by comparing the information of region descriptors

detected in a scene image to the information of region descriptors in a model database. A similar

technique is being adopted in the proposed method. However, the proposed approach extracts

keypoint features from the 3D object models and stores them in a repository.

The 3D data are obtained using different methods which makes use of extra hardware, for e.g.

sensors. Most of the semi-autonomous cars now in the market, use a variety of expensive sensors

for this purpose. Cost is hence one of the drawbacks of the autonomous cars today. Stereo

photogrammetry or photogrammetry based on a block of overlapped images is the primary

20

approach for 3D mapping and object reconstruction using 2D images. Acquisition from acquired

sensor data is done using a variety of sensors, including stereo cameras, time of fight laser scanners

such as LiDARs, as well as infrared sensors such as the Microsoft Kinect or Panasonic DI-Imager.

All these sensors can only capture a single view of the object with a single scan. This view is

referred to as a 2½D scan of the object. Therefore, to capture the entire 3D shape of the object, the

sensor captures multiple instances of the object from different viewpoints. The process of

determining the similarity between the scene object and the model stored in a repository is one of

the important tasks in 3D object recognition. This is done by computing the distance between

feature vectors. In general, the recognition must search among the possible candidate features for

identification of the best match and then assign the label to the matched object in the scene [54].

Based on the characteristics of the shape descriptor, the 3D object recognition methods can be

divided into two main categories: global feature methods and local feature methods [54]. Figure

13 below shows a general 3D object recognition system [29]. Points from an image which gives

the best definition for an object are called the keypoint features and they are very important and

valuable in applications of image processing like object detection, object and shape recognition,

and object tracking. Extracting these keypoint features helps to find the same objects in another

image. Hence, it could be said that keypoints give the best information from an image.

21

Figure 13: A general 3D object recognition system

Some of the important feature extraction techniques are discussed briefly below:

A. Harris Corner Detector: Harris and Stephens [55] developed an approach to extract corners

and infer the contents of an image. In the context of the autonomous vehicles, it requires

that the car recognizes static objects like buildings on the roadside. The detection of corner

points of buildings will give more information regarding the pose and shape of the

buildings. A corner is so special because, as it is the intersection of two edges and

represents a point in which the directions of these two edges change. The Harris corner

detector is popular because it is independent of rotation, scale, and illumination variations.

B. The SIFT Algorithm: Lowe [56] developed a feature detection and description technique

called SIFT (Scale Invariant Feature Transformation). The keypoints are extracted and

described as a vector. The resulting vectors can be used to find reliable matches between

different images for object recognition, camera calibration, and 3D reconstruction. SIFT

consists of three basic stages. First, the keypoints are extracted from the image. Then, these

22

keypoints are described as 128 vectors. Finally, the last step is the matching stage. This is

depicted in Figure 14 below [29].

Figure 14: Graphical representation of SIFT algorithm

C. The SURF Algorithm: Bay et al. [57] developed the SURF Algorithm which is based on

the SIFT algorithm [56]. It achieves higher speed than SIFT using integral images and

approximations. These integral images are used for convolution. Like SIFT, SURF also

works in three main stages: extraction, description, and matching. The difference between

SIFT and SURF is that SURF extracts the features from an image using integral images

and box filters.

D. The ORB Algorithm: The ORB algorithm has several advantages over the more established

vector-based descriptors such as SIFT and SURF. ORB [58] is scale and rotation invariant,

robust to noise and affine transformations. The algorithm is a combination of the FAST

keypoint detection with oriented keypoints added to the algorithm.

E. The Bag-Of-Features Algorithm: A Bag of Features method proposed by Stephen et al.

[59], represents images as order less collections of local features. At a high level, the

23

procedure for generating a Bag of Features image representation is illustrated in Fig 15 and

summarized as follows [59]:

1) Build Vocabulary: Extract features from all images in a training set. Vector quantize, or

cluster, these features into a “visual vocabulary,” where each cluster represents a “visual

word” or “term.” In some works, the vocabulary is called the “visual codebook.” Terms in

the vocabulary are the codes in the codebook.

2) Assign Terms: Extract features from a novel image. Use Nearest Neighbors or a related

strategy to assign the features to the closest terms in the vocabulary.

3) Generate Term Vector: Record the counts of each term that appears in the image to

create a normalized histogram representing a “term vector.” This term vector is the Bag of

Features representation of the image. Figure 15 below represents the Process for Bag of

Features Image Representation [29].

Figure 15: Process for Bag of Features Image Representation

24

All the previous works have done 3D object recognition from three different aspects: 3D object

recognition from range images, 3D local descriptors, and 3D object recognition based on stereo

vision. The method proposed in this research aims to use similar keypoint feature extraction

technique followed by feature matching approach, using 3D object models. The KeypointNet [23]

model is used for extracting the keypoint features from the 3D models after rendering it which

serves as input to the proposed system which will be discussed in detail in Chapter 3.

2.5 Object Recognition and Pose Estimation of Cars using 3D Models

The proposed system uses 3D models in the .obj file format for building up the input repository

with the keypoint features extracted from these models. Figure 16 below shows a sample 3D car

model (.obj). The OBJ file extension is known as Wavefront 3D Object File which was developed

by Wavefront Technologies. The .obj is a file format used for a three-dimensional object

containing 3D coordinates (polygon lines and points), texture maps, and another object

information [61].

Figure 16: Sample 3D car model (.obj)

The .obj images need to be rendered to extract the optimal set of keypoints for recovering the

relative pose between two views of an object.

25

Rendering of the 3D model

The image formation is the process by which a 3D representation of a scene is reduced to a 2D

representation of that same scene, an image.

3D scene → transformation → 2D image

Figure 17 below illustrates the Image Formation: Pinhole model [62].

Figure 17: Image Formation: Pinhole model (Perspective model)

An image point (pixel), given by its image coordinates, is the result of a three-step transformation

of a physical point defined in a scene reference frame.

The following three steps are applied in sequential order: 3D Euclidean Transformation, 3D-2D

transformation, 2D-2D transformation.

a. A 3D Euclidean Transformation – 3D rigid displacement where a scene point, initially

defined in the scene reference frame, is transformed so that they would be defined in the

26

camera reference frame. This transformation has 6 parameters corresponding to a 3D

rotation and 3D translation.

b. A 3D-2D Transformation – 3D points defined in the camera reference frame are projected

onto the image plane. These new points are called normalized coordinates.

c. A 2D-2D Transformation – The normalized coordinates expressed in the scene metrics,

undergo a 2D affine transformation to become defined in pixels in the image plane

reference frame.

After the three steps, a perspective projection of the 3D point, P = (X, Y, Z, 1) onto the pixel p =

(u, v, 1) is done using the projection matrix information. u and v can be defined using below

equations [62]:

𝑢 =
𝑚11𝑋+𝑚12𝑌+𝑚13𝑍+𝑚14

𝑚31𝑋+𝑚32𝑌+𝑚33𝑍+𝑚34

𝑣 =
𝑚21𝑋+𝑚22𝑌+𝑚23𝑍+𝑚24

𝑚31𝑋+𝑚32𝑌+𝑚33𝑍+𝑚34

It is clear from the above equation of u and v that, u and v coordinates make use of the X, Y, Z

information of the image plane onto the pixel, thus saving the depth information.

Results of rendering a car model (.obj)

Consider the 3D car model from ShapeNet [60] dataset, shown in Figure 18 below.

Figure 18: Different views of 3D car model

27

Blender tool along with python scripting is used to render the 3D object model to 2D images with

different possible orientations. The script also generates the rigid relative transformations of the

different 3D object views onto the camera reference frame as discussed before.

For the 3D car model shown in Figure 18, below are some of the rendered images in different

views.

Figure 19: Rendered images of 3D car models

The next task is to extract keypoints from these rendered images which would serve as input into

the proposed algorithm of this research. The approach by Suwajanakorn et al. [23], presents

“KeypointNet” which is an end-to-end geometric reasoning framework to learn an optimal set of

category-specific 3D keypoints, along with their detectors. This architecture is being used by the

proposed system to extract the keypoint features from the 3D models. The details of KeypointNet

are discussed below.

KeypointNet

All the prior works used supervised task for finding keypoints from 3D objects, where a list of

keypoints is given, and the goal is to proximate to those keypoints. However, selection and

consistent annotation of keypoints in images of an object category are expensive and ill-defined.

The KeypointNet model[23], finds the optimal set of 3D keypoints for a downstream task, without

keypoint ground truth. Basically, when a rendered image is passed through KeypointNet, it

predicts an ordered list of 3D keypoints, defined as pixel coordinates and associated depth values.

28

The network focuses on the task of relative pose estimation at training time, were given two views

of the same object with a known rigid transformation T, the aim is to predict optimal lists of 3D

keypoints, P1 and P2 in the two views that best match one view to the other as depicted in Fig 20

below [23].

Figure 20: Training and Inference stages of KeypointNet

An objective function O (P1, P2) is formulated, based on which one can optimize a parametric

mapping from an image to a list of keypoints. The objective consists of two primary components:

• A multi-view consistency loss that measures the discrepancy between the two sets of points under

the ground truth transformation.

• A relative pose estimation loss, which penalizes the angular difference between the ground truth

rotation R vs. the rotation 𝑅̂ recovered from P1 and P2 using orthogonal procrustes.

There is a pair of images (I, I') of the same object from different viewpoints in each training tuple,

along with their relative rigid transformation T ϵ SE (3) which transforms the underlying 3D shape

from I to I'. T has the following matrix form:

 𝑇 = [𝑅3 𝑥 3 𝑡3 𝑥 1

0 1
] , where R and t represents 3D rotation and translation respectively.

29

The goal of the multi-view consistency loss is to ensure that the keypoints track consistent parts

across different views. To ensure that a 3D keypoint in one image projects onto the same pixel

location as the corresponding keypoint in the second image, the approach assumes a perspective

camera model with a known global focal length f. [x, y, z] denotes 3D coordinates, and [u, v]

denotes pixel coordinates. The projection of a keypoint [u, v, z] from the image I into the image I'

(and vice versa) is given by the projection operators:

[𝑢̂, 𝑣, 𝑧̂, 1]𝑇 ~ 𝜋𝑇𝜋−1([𝑢, 𝑣, 𝑧, 1]𝑇)

[𝑢′̂, 𝑣′̂, 𝑧′̂, 1]𝑇 ~ 𝜋𝑇−1𝜋−1([𝑢′, 𝑣′, 𝑧′, 1]𝑇) [23]

where, for instance, 𝑢̂ denotes the projection of u to the second view, and 𝑢̂' denotes the projection

of u' to the first view. Here, π: R4 ⟶ R4 represents the perspective projection operation that maps

an input homogeneous 3D coordinate [x, y, z, 1] T in camera coordinates to a pixel position plus

depth:

𝜋([𝑥, 𝑦, 𝑧, 1]𝑇) = [
𝑓𝑥

𝑧
,

𝑓𝑦

𝑧
, 𝑧, 1]𝑇 = [𝑢, 𝑣, 𝑧, 1]𝑇

The symmetric multi-view consistency loss is defined as [23]:

Lcon =
1

2𝑁
∑ ||[𝑢𝑖, 𝑣𝑖, 𝑢𝑖′, 𝑣𝑖′]𝑁

𝑖=1
T – [û𝑖′, ṽ𝑖′, û𝑖, ṽ𝑖]T||2

The pose estimation objective is a differentiable objective that measures the misfit between the

estimated relative rotation 𝑅̂ (computed via Procrustes’ alignment of the two sets of key points)

and the ground truth R. The pose estimation objective is defined as [23]:

Lpose = 2 arcsin(
1

2√2
)||Ř − 𝑅||F)

30

Empirically, the pose estimation objective helps significantly in producing a reasonable and natural

selection of latent keypoints, leading to the automatic discovery of interesting parts such as the

wheels of a car. This is because these parts of the car are geometrically consistent within an object

class (e.g., circular wheels appear in all cars), easy to track, and spatially varied, all of which

improve the performance of the downstream task. Hence, this approach for keypoint detection

seemed very appropriate for the proposed system.

KeypointNet Architecture

In order to ensure the translation equivariance for the mapping from images to keypoints, the

network outputs a probability distribution map gi(u; v) that represents how likely keypoint i is to

occur at pixel (u, v), with Σu,v gi(u, v) = 1. A spatial softmax layer is used to produce such a

distribution over image pixels. Then the expected values of these spatial distributions are computed

to recover a pixel coordinate as [23]:

[ui, vi]
T = ∑ [𝑢 . 𝑔𝑖(𝑢, 𝑣), 𝑣 . 𝑔𝑖(𝑢, 𝑣)]𝑢,𝑣

T

For the z coordinates, a depth value is predicted at every pixel, denoted di (u, v), and computed as

[23]:

zi = ∑ 𝑑𝑖(𝑢, 𝑣)𝑔𝑖(𝑢, 𝑣)𝑢,𝑣

All kernels for all layers are 3×3, and 13 layers of dilated convolutions is stacked with dilation

rates of 1, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 1, all with 64 output channels except for the last layer

which has 2N output channels, split between gi and di. LeakyRelu and Batch Normalization is used

for all layers except the last layer. The output layers for di have no activation function, and the

channels are passed through a spatial softmax to produce gi. Finally, gi and di are then converted

to actual coordinates pi using the above equations.

31

2.6 Object Recognition and Pose Estimation of Humans using 3D Models

In the context of autonomous driving, there are a variety of objects to consider on the road. In the

scope of this research, only dynamic objects on the road are considered. As discussed earlier, this

can be mainly classified into two groups: 1) The objects whose structure does not change

significantly, for e.g. cars, trucks, cycle and 2) Objects whose structure changes significantly, for

e.g. humans, animals, and birds. Once the object recognition is done and the keypoints are detected

and matched, it gives the coordinate information of the keypoints and the matched 3D model of

the recognized object from the repository along with the pose information.

The pose estimation in case of objects whose structure doesn’t change much is straight forward.

As discussed in section 2.5, KeypointNet uses the pose estimation objective which helps

significantly in producing a reasonable and natural selection of latent keypoints, leading to the

automatic discovery of interesting parts of the object, such as the wheels of a car. Hence the

keypoint coordinate information itself gives the pose of the car on the road. In the proposed system,

the direction of car movement (Left, Right, Towards, Away) is retrieved from the annotation file

of the matched model. This information is then used by our virtual city module (discussed in

chapter 3) for updating the recognized object information in the virtual city.

The pose estimation for the objects whose structure changes, like that of humans is not this easy.

A good literature survey was done in this area due to the complexity of determining the 3D pose

and shape of the humans on road. Since most of the approaches only dealt with single humans in

an image, it didn’t seem convenient for use in the proposed system of autonomous driving as there

would be always multiple people on the road. However, the approach by Guler et al. [40], called

the “DensePose”, establishes dense correspondences between an RGB image and a surface-based

representation of the human body, referred to as dense human pose estimation. The approach

32

introduces the first manually-collected ground truth dataset for the task, by gathering dense

correspondences between the SMPL model [41] and the person appearing in COCO dataset. The

SMPL model is briefly explained below, before diving deep into the approach and implementation

details of the DensePose.

SMPL: A Skinned Multi-Person Linear Model

Realistic human body models are important for many graphics, economics and computer vision

applications. Many of the realistic models are from data but are not compatible with the existing

rendering engines. In contrast, the SMPL model accurately represents a wide variety of body

shapes in natural human poses. The parameters of the model are learned from data including the

rest pose template, blend weights, pose-dependent blend shapes, identity-dependent blend shapes,

and a regressor from vertices to joint locations. Figure 21 below shows the SMPL model(orange)

fit to ground truth 3D meshes(gray) [41].

Figure 21: SMPL model (orange) fit to ground truth 3D meshes (gray)

SMPL is compatible with existing graphics pipeline because it is based on standard skinning

methods. Figure 22 below represents the standard skinning [64].

33

Figure 22: Representation of Standard Skinning

A skinned body model defines the vertices of a template T and a rest pose, joint positions J and

blend weights W. Given the pose of the skeleton 𝜃, skinning computes the vertex locations of the

mesh using a linear blending of the vertices based on rotations of different parts. SMPL contains

template mesh T in an initial pose and sets to the template to represent the new body shapes and

pose-dependent shape changes. From training scans the shape blend shapes are learned, that

capture the variation in human shape. Adding different combinations of shape blend shapes

produces different body shapes. SMPL predicts the joint positions for a given body shape as the

function of mesh vertices. These are shown in white dots in Fig 23 below. From training scans of

people in many poses, the pose blend shapes are learned that capture how real bodies differ from

blend skin bodies. Given a pose, SMPL computes the linear contribution of these blend shapes,

the correct skinning errors and produce realistic pose-dependent deformations. Finally, SMPL uses

standard blend skinning to transform the deformed template shape to the desired pose. The shape

blend shapes are learned from approximately 4000 body scans from US and European CEASAR

[42] datasets.

34

Figure 23: SMPL Model Pipeline

This SMPL models are used in the “DensePose” for 3D human pose estimation.

DensePose: Dense Human Pose Estimation in the Wild

The DensePose basically establishes dense correspondences between an RGB image and surface-

based representation of the human body. The authors (Guler et al. [40]) mapped out every single

pixel of a human body in the video/image. Any human in an image or video is a 2D grid of pixels,

which humans can indeed tell is a 3D object represented by a 2D grid. The same must be achievable

by the machine, i.e. transform the 2D human into a 3D model. DensePose tries to create a

“correspondence”, which is a computer vision term that is a measure of how well the pixels in one

image correspond to pixels in another image. Here it is a 2D to 3D image correspondence. Since

it requires that all the pixels be as close together as possible it is called dense correspondence. This

method would require some object detection, object segmentation and pose estimation. As shown

in Figure 24 below, in the first stage the annotators were asked to delineate regions corresponding

to visible, semantically defined body parts like the Head, Torso, Lower/Upper Arms, Lower/Upper

35

Legs, Hands, and Feet. Figure 24 below shows Part segmentation, Marking Correspondences and

Surface Correspondence [40].

Figure 24: Part segmentation, Marking Correspondences and Surface Correspondence

illustrative representation

In Figure 24, the red cross indicates the currently annotated point. The surface coordinates of the

rendered views localize the collected 2D points on the 3D model.

For heads, hands, and feet, the annotators used the manually obtained UV fields provided in the

SMPL model [41]. For rest of the parts, the annotators obtained the unwrapping via multi-

dimensional scaling applied to pairwise geodesic distances. The UV fields for the resulting 24

parts are visualized in Figure 25 below. All these annotations where labelled with their

corresponding 3D body part which acted as the label. This was done for 50K human images of the

COCO dataset which summed up to be a total of 5 million manually annotated correspondences

yielding the new DensePose-COCO dataset. The annotators estimated the body part behind the

clothes so that for instance wearing a large skirt would not complicate the subsequent annotation

of correspondences. In the second stage, every part region is sampled with a set of roughly

equidistant points obtained via k-means. In order to simplify this task, the part surface is 'unfolded'

by providing six pre-rendered views of the same body part and allows to place landmarks on any

36

of them (Figure 26). In Figure 25, the picture in left shows the image and the regressed

correspondence by DensePose-RCNN. The middle image shows the DensePose COCO Dataset

annotations and the picture in the right shows Partitioning and UV parametrization of the body

surface [40].

Figure 25: Left: The image and the regressed correspondence by DensePose-RCNN, Middle:

DensePose COCO Dataset annotations, Right: Partitioning and UV parametrization of the body

surface

This allows the annotator to choose the most convenient point of view by selecting one among six

options instead of manually rotating the surface. As a point is indicated on any of the rendered part

views, its surface coordinates are used to simultaneously show its position on the remaining views

– this gives a global overview of the correspondence. Figure 26 below shows the user interface for

collecting per-part correspondence annotations [40].

Figure 26: The user interface for collecting per-part correspondence annotations

37

The next task is to train a deep network that predicts dense correspondences between image pixels

and surface points. The authors of DensePose [40], introduce improved architectures by combining

the DenseReg [65] approach with the Mask-RCNN architecture [66], yielding the ‘DensePose-R-

CNN’ system. Cascaded extensions of DensePose-RCNN are developed that further improve

accuracy. In the first step, a network classifies a pixel as belonging to either the background or one

of the several region parts that give a rough estimate of the surface coordinates. This is essentially

a labeling task that can be trained using gradient descent. In the second step, a regression model

would indicate the exact coordinates of the pixel within the region part. Formally, in the first stage

it will assign position L to the body part C that has the highest likelihood as calculated by the

classification branch and in the 2nd stage it would use the regressor to place the point L in the

continuous coordinate pair (u, v) as shown in Figure 27 below [67].

Figure 27: The classification and regression steps of DensePose architecture

Both the classification and regression tasks are trained by minimizing a respective loss function.

But the regression loss is only considered for a part if the pixel is within a specific part. It requires

a lot of task for a single network, like part segmentation and pixel localization. The technique of

38

Region of Interest pooling is used to create regions and feed the resulting features into region-

specific branches. This decomposes the complexity of the task into controllable modules, all of

which could be trained jointly in an end to end approach. Therefore, it is a fully convolutional

network on top of ROI pooling, that is, entirely devoted to two tasks. That is generating a

classification and regression head that provide part assignment and part coordinate predictions.

DensePose-R-CNN architecture is shown in Figure 28.

Figure 28: DensePose R-CNN architecture

To improve the accuracy of the model a technique called cascading is used. Cascading means using

a collection of models with all the collected information from the output of one model as additional

information for the next classifier in the cascade.

39

Figure 29: Cross-cascading architecture

The output of the ROI aligns module feeds into the dense network as well as network for masking

and keypoint tasks. The first stage predictions from all tasks are then combined and fed into a

second stage refinement unit of each branch.

‘DensePose’ predicts the pose of multiple humans and humans occluded by other humans or

objects even in situations with a lot of distractions. It also predicts body parts behind the clothing.

This makes it the best approach to be adopted into the overall proposed system.

2.7 Related Works

Table 1 below depicts the prominent works done so far by the researchers in this area along with

their accomplishments and scope of improvements.

40

Title Author Year Accomplishments Scope of

Improvement

Discovery of

latent 3D

keypoints via

end-to-end

geometric

reasoning

S.

Suwajanakorn,

N. Snavely, J.

Tompson, and

M. Norouzi.

2018 An end-to-end

geometric reasoning

framework based on

deep learning

architecture, to learn an

optimal set of category-

specific 3D keypoints

from rendered 3D

models of cars, that are

optimized for the

downstream pose

estimation task.

No confidence

measures of the

detected keypoints on

the real-time input

images are estimated to

evaluate the

performance of pose

estimation.

YOLO9000:

Better, Faster,

Stronger

Joseph Redmon,

Ali Farhadi

2016 A state-of-the-art, real-

time object detection

system using deep

learning architecture,

that can detect over

9000 object categories

with high accuracies.

Uses the normal 2D

image COCO dataset

for the deep learning

network and still has

scope to improve the

accuracy when used for

sophisticated systems

like autonomous

41

vehicles which deals

with human lives on the

road.

3D YOLO: end-

to-end 3D object

detection using

point clouds

Ezeddin Al

Hakim

2018 A LiDAR based 3D

object detection model

that operates in real-

time, with emphasis on

autonomous driving

scenarios.

The proposed model

takes point cloud data

as input and outputs 3D

bounding boxes with

class scores in real-

time.

Less accurate, when

compared to YOLOv2,

which is currently the

state-of-the-art.

3D object

recognition

using a voting

algorithm in a

real-world

environment

S.

Tangruamsub,

K. Takada, and

O. Hasegawa

2011 An object detection and

pose estimation

method based on a

voting technique, using

keypoint features

extracted from images

giving improved

Uses normal 2D images

and an existing feature

extraction technique

like SIFT or SURF and

does not exploit the 3D

object models as is done

our approach.

42

average precision and

detection time.

Towards 3D

Human Pose

Estimation in

the Wild: a

Weakly-

supervised

Approach

Xingyi Zhou,

Qixing Huang,

Xiao Sun,

Xiangyang Xue,

Yichen Wei

2017 A weakly-supervised

transfer learning

method that uses mixed

2D and 3D labels in a

unified deep neural

network which gives

the 3D pose of the

human in the image

with good results.

Even though the 3D

poses with (x, y, z)

coordinates are

determined a complete

reconstruction of the

human 3D model for the

pose in the real-time

input image is not done.

Deeply Learned

Compositional

Models for

Human Pose

Estimation

Wei Tang, Pei

Yu and Ying

Wu

2018 Exploits deep neural

networks with a

hierarchical

compositional

architecture and

bottom-up/top-down

inference stages to

learn the

compositionality of

human bodies. In

addition, the approach

proposes a novel bone-

Uses 2D images and

manual annotations for

all images which is

labour intensive. Does

not necessarily give the

3D information of the

human in the image.

43

based part

representation.

Unite the

People: Closing

the Loop

Between 3D and

2D Human

Representations

Christoph

Lassner, Javier

Romero, Martin

Kiefel, Federica

Bogo, Michael

J. Black, Peter

V. Gehler

2017 An approach to create

high quality 3D body

model fits for multiple

human pose datasets

called the UP-3D

dataset with rich

annotations. This

dataset is then used to

train models which

predicted 31 segments

and 91 landmark

locations on the human

body giving state-of-

the-art results for 3D

human pose and shape

estimation.

The 3D model

configuration does not

always match the image

evidence and it only

recovers a rough pose. It

also does not handle

occluded or multi-

person scenarios.

Neural Body

Fitting:

Unifying Deep

Learning and

Model-Based

Mohamed

Omran

Christoph

Lassner Gerard

Pons-Moll Peter

2018 The approach

integrates a statistical

body model within a

CNN, leveraging

reliable bottom-up

It does not support

challenging settings

involving multiple,

possibly occluded,

people.

44

Human Pose and

Shape

Estimation

V. Gehler Bernt

Schiele

semantic body part

segmentation and

robust top-down body

model constraints. It

presents a robust,

efficiently trainable

framework for 3D

human pose estimation

from 2D images

DensePose:

Dense Human

Pose Estimation

In The Wild

Rıza Alp Güler,

Natalia

Neverova,

Iasonas

Kokkinos

2018 An approach to

establish dense

correspondence

between human pixels

of an RGB image to the

3D surface of human

body. This seems to be

very suitable in the

context of autonomous

vehicles as it handles

large amounts of

occlusion, scale, and

pose variation.

This approach has space

for improvement when

applied to a different

domain like the self-

driving vehicles. For

example, integrating

our voting algorithm to

this approach would

help improve the

confidence of pose

estimation.

Table 1: Review of object recognition and pose estimation methods

45

The previous researches in object recognition used different approaches with the state-of-the-art

being deep learning approaches, like YOLO. In most of the previous approaches either semantic

segmentation or object detection using rectangle bounding boxes was applied. For example,

AlexNet (Krizhevsky et al. [16]), VGG-16 (Simonyan et al. [17]), GooLeNet (Szegedy1 et al. [18])

and ResNet (He et al. [19]) all delivered promising deep learning architectures with high accurate

results, for use in semantic segmentation tasks of objects. A region based semantic segmentation

approach was used by R-CNN (Girshick et al. [25]) in 2014. This was first replaced by a version

with improved performance, the Fast-R-CNN (Girshick et al. [26]) in 2015 and later by the Faster-

RCNN (Girshick et al. [27]) in 2016. These approaches were once state-of-the-art before YOLO

(Redmon et al. [28]) was introduced. YOLO tremendously decreased the computation time of

training the model by loading the image into the network only once, unlike the other methods

which use the selective search algorithm which requires greater computational time. All these

approaches use 2D images to train their models and to perform object recognition.

Object recognition is still a hot research topic in computer vision because it has many challenges

such as viewpoint variations, scaling, illumination changes, partial occlusion, and background

clutter. The major difference between two- and three-dimensional data is that 3D data include

depth information which is not included in 2D data. There are many previous works which were

implemented to overcome these challenges. The method proposed in this research aims to make

use of the keypoint features extracted from 3D models to improve the confidence with which the

system can confirm the presence of a recognized object at a location. Hence, a deep review was

done on the previous works in different domains which did object recognition by extraction of the

keypoint features. The survey paper by Carvalho et al. [8] comprises works of around 446 different

approaches for object recognition using features of 3D models.

46

Many previous works make use of keypoint feature extraction from 2D images, RGB-D images,

3D models and point cloud data for solving the object recognition problem of 3D objects in

different domains. For example, Tangruamsub et al. [1], adopted an approach of learning and

matching between model and image objects using a voting technique for object recognition and

posterior pose estimation in the context of the car domain. Shimamura et al. [3] adopted a method

of local feature extraction, followed by a candidate’s verification on the database and posterior

matching evaluation through a geometric verification based on consistency constraints to handle

3D viewpoint changes under cluttered scenes for robust object recognition. Wohlkinger et al. [4]

used RGB-D images with CAD to address the problem of real-time 3D shape-based object class

recognition. The work presents its scaling to many categories and the reliable perception of

categories using a novel shape descriptor for partial point clouds based on shape functions which

are capable of training on synthetic data and classifying objects from a depth sensor in a single

partial view in a fast and robust manner. The approach by Socher et al. [5] uses a deep learning

architecture based on a combination of convolutional and recursive neural networks (CNN and

RNN) for learning features and classifying RGB-D images. Chi Li et al. [6] uses RGB-D images

for semantic scene segmentation, partitioning the scene in different object regions, and object pose

estimation through a model registration method.

As mentioned earlier, the approach used in this research is different from the above methods as

the proposed idea aims to extract keypoint features from 3D models of objects on the road and

apply a voting algorithm to match it with the real-time input image features and determine the

presence of the object with high confidence value along with the pose of the recognized object.

Shah et al. [7] uses 3D object models to present a local surface description technique for automatic

three-dimensional (3D) object recognition using detection of highly repeatable keypoints by

47

computing the divergence of the vector field at each point of the surface. Suwajanakorn et al. [23]

uses the approach of an end-to-end geometric reasoning framework based on deep learning

architecture, to learn an optimal set of category-specific 3D keypoints from rendered 3D car

models which are optimized for the downstream pose estimation task. The KeypointNet model

[23] is used in this research for extracting the keypoint features from the 3D models and the real-

time input images, which serve as input to the proposed algorithm. This is explained in detail in

Chapter 3.

Unlike objects which do not significantly change their structure, such as cars or trucks, object

recognition and 3D pose estimation in case of the humans is complicated due to the complex

structure and rich variation in poses, clothing, hairstyle, body shapes, occlusions, viewpoints,

motion blur, and other factors. Various works have been done in this area recently and hence it is

currently one of the hot topics in computer vision. Tang et al. [2] and Zhou et al. [34] use 2D image

datasets as proposed by Sapp et al. [30], Johnson et al. [31], Andriluka et al. [32] and Ionescu et

al. [33], for the human pose estimation task. Zhou et al. [34] uses a weakly-supervised transfer

learning method that uses a 2D pose estimation sub-network with a 3D depth regression sub-

network in a unified deep neural network which gives the 3D pose of humans in the image with

good results. Tang et al. [2] exploit deep neural networks with hierarchical compositional

architecture and bottom-up/top-down inference stages to learn the compositionality of human

bodies along with a novel bone-based part representation. The 2D keypoint prediction in humans

has seen considerable progress in recent years and could be considered nearly solved in the works

by Tang et al. [2], Insafutdinov et al. [9], Newell et al. [10] and Ramakrishna et al. [44].

The above discussed approaches do not make use of 3D human body models. Since the overall

approach of the proposed system tries to utilize 3D models; works using 3D models to determine

48

human pose and shape were reviewed further. However, 3D pose estimation from single images

remains a challenge. An approach to creating high-quality 3D human body model fits for multiple

human pose datasets called the UP-3D dataset with rich annotations is used in the work by Lassner

et al. [38]. This dataset is then used to train models which predicted 31 segments and 91 landmark

locations on the human body giving state-of-the-art results for 3D human pose and shape

estimation. Varol et al. [35] and Saint et al. [37] present 3D human datasets. In the work by Saint

et al. [37], the authors present a dataset named, 3DBodyTex, which consists of 3D body scans with

high-quality texture information along with a fully automatic method for body model fitting to a

3D scan. The approach used in Varol et al. [35] presents the SURREAL (Synthetic hUmans foR

REAL tasks) dataset with synthetically generated but realistic images of people rendered from 3D

sequences of human motion capture data. The approach by Loper et al. [41] is used by most of the

human pose estimation research to generate the 3D human body shapes. SMPL (A skinned Multi-

Person Linear Model) [41] is a realistic 3D model of the human body that is based on skinning and

blend shapes and is learned from thousands of 3D body scans. Based on the parameters provided

it generates body images from the learned thousands of 3D body shapes. Omran et al. [39] use an

approach that integrates a statistical body model within a CNN, leveraging reliable bottom-up

semantic body part segmentation and robust top-down body model constraints. It presents a robust,

efficiently trainable framework for 3D human pose estimation from 2D images. However, in

Lassner et al. [38], the 3D model configuration does not always match the image evidence and

only recovers a rough pose. The approach used in both the works of Lassner et al. [38] and Omran

et al. [39] cannot handle occluded or multi-person scenarios.

Guler et al. [40], introduced an approach to establish dense correspondences between human pixels

of an RGB image to the 3D surface of the human body. This seems to be very suitable in the

49

context of autonomous vehicles as it handles large amounts of occlusion, scale, and pose variation

and hence this approach is adopted by the proposed system for human pose estimation discussed

later in Chapter 3.

2.8 Thesis Statement

2.8.1 Problem Statement

The literature suggests that there is need for continuous improvement in the confidence level with

which an object is identified, until it is safe to put self-driving vehicles on the road. The input into

the proposed system is the image frames of the video of a real-time road scene captured by the

camera attached to a self-driving vehicle. The main goal of this thesis is to perform object

recognition and subsequent pose estimation of the dynamic objects from these image frames with

the help of 3D object model information stored in the repository. The object tracking module

provides additional information like the speed and location of the recognized object. The

combination of the 3D information of the recognized dynamic object along with its speed and

location is the output from the system and is anticipated to allow the autonomous navigation

system of the self-driving vehicles to recognize the presence of a dynamic object at a given location

with improved confidence which helps the system to take appropriate navigation decisions, thus

ensuring smooth and safe driving.

2.8.2 Thesis Contribution

The major contributions of this thesis can be summarized as follows:

50

• The proposed system matches keypoint features of the dynamic objects in the input image

with the keypoint feature information of 3D object models stored in the repository to find

a suitable matching 3D model for each of the dynamic objects present in the input image.

A voting algorithm has been developed for this purpose which also estimates a confidence

score that signifies the confidence of the object identification. The results of the proposed

approach show that this 3D model information improves the confidence of recognition and

pose estimation of the dynamic objects in the input image.

• Once the cars and pedestrians in the input image are recognized, the proposed system tracks

these objects in order to get their location and speed information.

• The 3D dynamic object model information along with their speed and location details are

then used to update a virtual city with these objects in real-time.

• The information of the dynamic objects from the virtual city can then be used by the

autonomous navigation system of the self-driving vehicles to take appropriate navigation

decisions.

The previous works on recognition and pose estimation of dynamic objects, in the context of

autonomous driving show the need for continuous improvement in the confidence level of obstacle

detection before it is safe to put these self-driving vehicles on the road. The proposed system

improves the confidence level of recognition and subsequent pose estimation of dynamic objects

on the road. This thesis concentrates solely on cars and pedestrians under the dynamic object

category. In the case of cars, the keypoint features of the cars in the input image are matched with

the keypoint feature information of 3D car models stored in the repository. This research makes

use of the KeypointNet [23] model to extract keypoints corresponding to very specific parts of a

car (for example wheels and headlights). This helps in finding a suitable matching 3D car model

51

from the repository for the car identified in the input image. In the case of pedestrians, the complex

structure of the human body makes the pose estimation task cumbersome. Building a 3D human

model repository is a labour-intensive task which is beyond the scope of this thesis work. Hence,

the DensePose [40] deep learning network developed by the Facebook research team is adopted

and integrated into the proposed system of this research. DensePose [40] establishes dense

correspondences between the pedestrians in the input image and a 3D surface-based representation

of the human body. Once the cars and pedestrians in the input image are recognized, these objects

are tracked to get their location and speed information. The objects are tracked from different

frames of the input video and their location and speed information are determined. With the help

of the results obtained, this research claims that the use of keypoint feature information extracted

from 3D object models helps estimate the pose of objects with improved confidence, when

compared to methods like Tangruamsub et al. [1] which use keypoint feature information extracted

from 2D images or when compared to other deep learning techniques [28,84] for object recognition

in self-driving vehicles.

52

Chapter 3: Proposed System

This chapter discusses the proposed system developed for the recognition and pose estimation of

dynamic objects on the road, followed by the tracking of recognized objects, in the context of self-

driving vehicles. The chapter contains the algorithm used to identify the dynamic objects with their

pose and confidence scores. Once the dynamic objects are recognized, the proposed system tracks

these objects to get their location and speed information. Additionally, the chapter discusses the

relationship and contributions of this thesis to the other components of an overall system which

was developed to tackle the various problems that are prevalent in self-driving vehicles today.

3.1 Motivation

There has been a lot of research taking place in the field of autonomous driving these days and yet

a fully automated vehicle is still a dream. Additionally, the semi-autonomous cars that are available

on the market, have recently been involved in pedestrian fatalities. For example, the two recent

deaths involving Uber and Tesla vehicles using driverless systems have raised the debate on safety

to such a level that it threatens to significantly delay or derail the adoption of the technology. It is

clear that still there is a lot of room for improvement in the technologies used for autonomous

vehicles. This system proposes a new approach to improve the object recognition and pose

estimation techniques, which is discussed in detail in the following sections.

53

3.2 Relation of the thesis to other components of the overall system

This research work is related to the overall system shown in Figure 30. The relation and

contributions of this thesis to the overall system is discussed below.

There are basically six different modules for this system which are interconnected with each other.

Figure 30: Flowchart of the overall system

54

The overall system primarily deals with the creation of a virtual city from open source/cloud VGI

data such as 2D street views and satellite images. This virtual city contains 3D models of static

objects like buildings and variable objects like trees. Apart from this, a repository containing the

3D models of dynamic objects (such as cars) is created separately. The module marked in blue in

Figure 30 shows the real-time video (image sequence) passed as input into the overall system. The

keypoint features of the input image are identified along with the orientation details. The module

marked in yellow in Figure 30 is the static and variable object elimination module. In this module,

the identified keypoint features of the static objects like buildings or variable objects like trees in

the input image are matched with the 3D models of these static objects present in the virtual city.

The matching of the keypoint features of static objects in the input image with the keypoints of the

3D models of the static objects in the virtual city verifies the presence of the static or variable

object at a location. Once verification is done, the static and variable objects are removed and only

the dynamic objects are retained. This reduces the processing time as only the recognition of the

objects which would impact the navigation of the car need to be taken care of. The module marked

in red in Figure 30 is the area dealt with by this thesis. This module handles the object recognition

and pose estimation of the dynamic objects present in the input image. This module additionally

tracks the recognized object from multiple frames of the input video. The recognized object with

its pose information along with the objects speed and location details are used to update the virtual

city with the identified dynamic objects in real-time. The module marked in light green in Figure

30 updates the simulation of the dynamic objects in to the virtual city and uses this information

along with IoT (internet of things) to determine the navigation of the self-driving vehicle.

55

3.2.1 Modules of the overall system directly related to the thesis research

The modules of the overall system which are directly related to this thesis are mainly the virtual

city module (marked in green), the extraction of object features module (marked in pink) and the

dynamic object detection module (marked in light green). The virtual city module and the

extraction of object features module act as input into the proposed system. The dynamic object

detection module then uses the output from the proposed system for determining the navigation

decisions of the self-driving vehicle. The three modules which signify the contribution of this

thesis to the overall system are explained in detailed below.

1. Creation of the Virtual City: A virtual city is first created from open source VGI data

such as 2D street views and satellite images. 3D structural files are extracted with 3D

structures of the buildings. These are rendered, and the final 3D structure is obtained, with

the geolocation information externally mapped on to the model. By extracting real-world

images and georeferencing them, the textures are mapped onto buildings in the 3D model.

In this way, a virtual city with static objects like buildings and variable objects like trees is

created. Later this virtual city is updated with dynamic objects in real-time. The virtual city

with 3D static, variable and dynamic object model information present in real-time road

scenes is used by the autonomous navigation system to determine the correct navigation

decisions for the self-driving car. This module is marked using a dark green rectangle box

in Figure 30.

2. Key point Extraction and Dataset Creation: As discussed earlier, in the scope of this

thesis only cars and humans are considered in the category of dynamic objects. In the case

of cars, the 3D object models stored in the repository are rendered as mentioned in Section

2.4.1. KeypointNet [23] is used to extract the keypoint features from different rendered

56

views of 3D car models. The coordinate information of the identified keypoints of the

rendered image, orientation information details of each keypoint and the direction that the

car is moving in (Left, Right, Towards, Away) are stored in annotation files. In the case of

humans, the DensePose [40] model is adopted and integrated into the overall system for

human pose estimation. The DensePose [40] model has its own manually-collected ground

truth dataset called the COCO-DensePose dataset which annotates dense correspondence

between the image and a 3D surface model by asking the annotators to segment the image

into semantic regions and to then localize the corresponding surface point for each of the

sampled points on any of the rendered part images. The surface coordinates of the rendered

views localize the collected 2D points on the 3D model.

The dynamic object recognition module uses this repository for matching the keypoint

features of the dynamic objects in the input image with the keypoint feature information of

the 3D object models stored in the repository, and a suitable 3D model corresponding to

the object in the input image is retrieved. This module is marked using a pink rectangle

box in Figure 30.

3. Dynamic Object detection using IoT: This module uses the information from the

dynamic object recognition module to update the virtual city with dynamic objects on the

road in real-time. The recognized object with its pose information along with the speed and

location of the objects are used to update the virtual city with the identified dynamic objects

in real-time. Prior knowledge about the dynamic, static and variable objects from the virtual

city and IoT is then used to determine the appropriate navigation decision of the self-

driving car. This module is marked using a light green rectangle box in Fig 30.

57

3.3 Proposed Techniques for Dynamic Object Recognition and Pose Estimation

The dynamic object recognition and pose estimation module is the most crucial module in

determining the navigation of an autonomous car. With deep learning techniques being the state-

of-the-art in object recognition and pose estimation, the aim of this thesis is to create an algorithm

which will further improve the confidence with which the system can confirm the presence of an

object at a given location in an input frame. As discussed in chapter 2, the 3D object models contain

additional depth information which helps the system recognize the 3D structure of objects in an

input frame. This idea is exploited in this research, and a repository of rendered images of 3D

object models is used to match the objects in the input image and find the best suitable 3D model

from the repository for the each of the dynamic objects present in the input image. The use of 3D

object models is anticipated to improve the confidence of object recognition and the information

from the 3D models will provide the overall system with crucial information to help determine the

navigation decisions of the self-driving vehicle in real-time. This thesis deals only with cars and

pedestrians in the category of dynamic objects. However, in future this work can be extended to

other objects like bicycles, buses, animals, and birds.

The proposed technique developed for both cars and pedestrians, makes use of the datasets created

by identifying the keypoints on 3D object models. The most suitable matching 3D model for each

of the dynamic objects in the input image is then retrieved using the keypoint information stored

in the repository or dataset.

For cars, a repository is created with keypoint information for different rendered views of 3D car

models (from the ShapeNet dataset [60]). However, due to the complex structure of humans, the

labour-intensive task of manually creating such a repository is beyond the scope of this thesis

work. Hence the DensePose [40] model which has its own manually-collected ground truth dataset

58

called the COCO-DensePose dataset has been adopted and integrated into our system for 3D pose

estimation of pedestrians on the road. The sections below discuss the approach adopted in the case

of cars and humans in detail.

3.3.1 Object Recognition and Pose Estimation of Cars

As mentioned earlier, a repository is initially created with rendered images of 3D car models in

different orientations and views. For each of these rendered images, the keypoint coordinate

information and the direction in which the vehicle is moving is stored in separate annotation files.

Since the work of the overall system is still in progress, in the efforts to test the proposed algorithm,

a small repository with the above-mentioned information was created as shown in Figure 31 below.

Figure 31: Snippet of the repository

59

The repository contains one folder for each of the rendered images. Rendered images in different

orientations and views were considered to make the repository rich enough to test the prototype.

Each folder contains four files as shown in Figure 31.

The folder contains a file which is the rendered image of the 3D car model in a particular

orientation and view. Another file containing the rendered car image with the keypoint features

plotted on it is also present in the folder. Apart from these, the folder contains two annotation files.

One of the annotation files contains details of the (u,v) coordinates of the keypoint features. The

other annotation file contains the direction in which the car is moving in the rendered image.

Currently, four directions are being considered by the system: Left, Right, Towards, Away. This

labeling is used by the algorithm to predict the direction in which the car is moving in the real-

time image.

The repository with the keypoint information of the rendered images of 3D car models in different

possible views serves as the dataset for finding a suitable matching 3D model along with the pose

information for each of the cars identified in the real-time input image. The new approach

developed for this purpose is discussed below.

3.3.1.1 The New Approach

A voting algorithm has been developed which is inspired by the approach proposed by

Tangruamsub et al. [1]. Consider a real-time input image with a single car on the road. The single

car scenario is used for explaining the algorithm and the special scenarios (occlusion and a car

partly invisible due to some obstacle) which are discussed in the later sections. The keypoints are

identified on the real-time input image using the KeypointNet model [23]. First, the algorithm

60

compares the keypoints of the input image with the set of keypoints belonging to each rendered

image in the repository and find the best match among them. Once the matched model is found,

the rest of the unmatched feature points are back-projected on to the input image. For each of these

keypoints the object centre candidates are found and the ones at a distance greater than the pre-

defined threshold from the center of the image are removed. To make sure that all keypoints are

part of a single object in the image, a clustering technique has been developed to group the object

centre candidates. The idea is that, if all the object centre candidates are close to each other then

there is a high chance that the object exists. This idea is again inspired by the work of Tangruamsub

et al. [1], where they used a similar approach to cluster the feature points of 2D images. This is

well depicted in Figure 32 below [1].

Figure 32: Object center candidates

The number of clusters and the keypoints within each cluster is then used to assign a confidence

score value which gives information about the presence of the number and pose of objects at that

location in the frame. The definition of the term confidence score and the method used in this

research to calculate it is discussed in detail below.

61

3.3.1.2 Confidence Score

In the context of machine learning, the term "confidence" is simply the probability of some event.

If an event has high probability, it means it has high confidence [82,83]. In the same way, the term

"confidence score", is used in the scope of this research, as a measure of the probability of the

object being at a given location in the real-time input image.

In the work by Tangruamsub et al. [1], in order to determine the presence and position of an object

in an input image, the authors clustered the object centre candidates computed from matching

keypoints and used the number of cluster elements as a confidence measure. This technique of

using the number of cluster elements to determine the confidence score was adopted by this

research. However, in this work, the confidence score is calculated as a probability value between

0.0 and 1.0, with 1.0 representing the highest confidence value and 0.0 representing the lowest

confidence value. The proposed algorithm first checks if all keypoints which matched with the

template model fall into a single cluster. This signifies that all keypoints are close to each other

and the input image contains only single object. If all keypoints match, then the confidence of the

object being present at the location is high and the confidence score is calculated as:

confidence score =
Number of matched keypoints

Number of matched keypoints in the cluster
 = 1.0

If the cluster does not contain all keypoints that matched with the template model, then the

confidence score is calculated as:

confidence score =
Number of matched keypoint features

Total number of keypoint features in the cluster

This gives the confidence or the probability of the object being at that location.

62

In special cases like occluded objects in a single image, more than one cluster will be formed as

some of the object centre candidates corresponding to the different keypoints would be far from

each other. In such cases, if any of the clusters have very few object centre candidates

corresponding to the keypoints (<=4 keypoints), then the confidence of the object being present at

that location must be very low. Hence, in such cases, the formula below is used to calculate the

confidence score:

confidence score =
Number of matched keypoint features in the cluster

Total number of matched keypoint features

This is necessary because, the number of features in the cluster is very low, even for a small number

of matched features the probability would be high, which would not give an accurate measure of

the presence of the object at that location. However, considering the entire set of identified

keypoints, would give the confidence score of the object being at that location.

The proposed voting algorithm explained in section 3.5.2 below, clearly defines how the

confidence score is calculated from the number of matched keypoints in the different cases.

The experiments and results of the different scenarios discussed in Chapter 4, will help with

understanding the details of the algorithm.

3.3.2 Object Recognition and Pose Estimation of Humans

In the case of pedestrians, the pose estimation is challenging due to the higher complexity and

flexibility of the human body as well as the larger variation in poses. Building the 3D human model

repository is a labour-intensive task which is beyond the scope of this thesis work. Therefore, the

DensePose [40] deep learning network developed by the Facebook research team is adopted and

63

integrated into the proposed system of this research for pedestrian pose estimation. DensePose [40]

establishes dense correspondences between pedestrians in the input image and a 3D surface-based

representation of the human body. The DensePose [40] system, primarily created a manually-

collected ground truth dataset called the COCO-DensePose dataset by gathering dense

correspondences between the SMPL model [41] and the persons appearing in the COCO dataset

[63]. The DensePose [40] system accomplished the task of creating the COCO-DensePose dataset

through a novel annotation pipeline which exploits 3D surface information during annotation. In

the first stage of the annotation pipeline, the annotators were asked to segment the image into

semantic regions of the human body like the head, torso, lower/upper arms, lower/upper legs,

hands, and feet, and to then localize the corresponding surface point for each of the sampled points

on any of the rendered part images. In the second stage, the surface coordinates of the rendered

views localize the collected 2D points on the 3D model. The DensePose [40] system gathered

annotations for 50K humans, collecting more than 5 million manually annotated correspondences.

The COCO-DensePose dataset is then used to train a deep network that predicts dense

correspondences between the input image pixels and surface points. The architectures of the

DenseReg [65] approach and the Mask-R CNN system [66] were combined to develop the

DensePose-RCNN system. The DensePose-RCNN is a fully convolutional network that combines

classification and regression tasks. In the first step, the pixel is classified as belonging to either the

background or one of several region parts which provide a coarse estimate of the surface

coordinates. In the second step, a regression system indicates the exact coordinates of the pixel

within the part. Cascaded extensions of DensePose-RCNN were developed to further improve the

accuracy of the system. The DensePose [40] system successfully estimates human body pose while

handling a large variability of scales, poses, and occlusion. The DensePose [40] model is integrated

64

into the proposed system which delivers dense correspondence by regressing body surface

coordinates at any image pixel of pedestrians in the input image.

3.4 Proposed Technique for Dynamic Object Tracking

After the task of object recognition and pose estimation, the dynamic objects are tracked using the

real-time input video. The speed of the moving vehicles and pedestrians is determined and passed

to the “Dynamic object detection using IoT” module (Refer Section 3.2). This additional

information along with the updated 3D model from the virtual city can be used to ensure safe

driving. Object tracking in video is a classic computer vision problem. It consists not only of

detecting the object in a scene, but also of recognizing the object in each frame. There are various

computer vision algorithms which perform object tracking. Traditionally, speed detection was

achieved by directly measuring the distance from the camera to the vehicle in order to calibrate

the speed of the vehicle across the frames. For speed cameras specifically, Doppler radar

technology is used to measure the change of microwaves reflected from a vehicle in order to obtain

the speed at which it is moving. Here, the input video stream is used to detect the speed of the

vehicles and pedestrians across different frames of the video. In video surveillance, normally some

features of the moving objects are extracted using which the object is tracked. The approach

developed by Kagita et al. [69] uses the Haar Cascade Classifier to identify the vehicles/vehicle

boundaries. The Haar cascade classifier can be created for any object with the OpenCV python

library [68]. To build the Haar cascade positive (images containing the object to be tracked) and

negative (images without the object to be tracked) images are needed. The OpenCV library has the

function opencv_createsamples which can be used to create a set of positive samples. Once the

negative and positive sample images are collected, two description files need to be created. The

65

file named bg.txt contains the information for the negative samples. The function

opencv_createsamples, create the positive samples along with the description file named info.lst

which contains the following information: image filename, the number of objects in the image,

and their locations. The location information contains the x and y coordinates, the width and the

height of the rectangular bounding box for the object within the image. The function

opencv_createsamples uses the file named info.lst to create the vector file, by passing the location

of the info.lst, the number of images to be present in the file, and the dimensions of the image to

be kept in this file. At this point, the Haar classifier is trained using the files mentioned previously:

bg.txt, info.lst and vector file. The command “opencv_traincascade” is used to train the classifier

which uses the above files and the number of stages required to train as input parameters. After

training the file cascade.xml is created, which can now be used to track object of interest in any

new video. For most common objects like cars, buses, bikes or pedestrians the trained .xml files

are easily available. Therefore, object tracking can be easily done with the help of the OpenCV

python library.

Once a vehicle and its location information are detected in a video, the next task is to find the

speed at which the vehicle is moving by considering the different frames of the video sequence.

The midpoints of the bounding boxes surrounding the vehicle are obtained and used as the

"position" of the vehicle which will be compared to the position in future frames. The distance a

vehicle has travelled in the image plane would be the relative difference, measured in pixels, at

various vehicle positions in subsequent frames. The time is calculated as [69]:

Time = Number of pixels progressed by vehicle/frames per second

Distance is calculated as [69]:

66

Distance = sqrt(mid1*mid1+mid2*mid2), where mid1 and mid2 are the positions of the vehicle in

frame one and two respectively.

If the difference is less than 10 pixels, then the car is assumed to be stationary and is neglected

when updating values. To generalize the direction in which the vehicle is progressing subjecting

to change in pixel values, Manhattan distance is being calculated between the centroids of the

vehicles in subsequent frames and the resulting pixel value is converted from the image plane to

the object plane. In this research the same approach has been implemented for pedestrians, by

using the file cascade.xml corresponding to pedestrians for the detection of pedestrians followed

by their speed estimation. Once the speed of the vehicle in the image plane is calculated, the pixel

values obtained can then be converted into measures representative of object plane, using the

distance of the object from the camera attached to the vehicle using the formula [69]: exact distance

to object (mm) = focal length (mm) * real height of the object (mm) * image height (pixels)/object

height (pixels) * sensor height (mm). This would help in determining the relative distance between

the moving car and the moving object on the road and hence calculate the relative speed. Also in

autonomous driving scenarios, precise 3D localization and trajectory estimation is of fundamental

importance. In order to prevent collisions, it is crucial to be aware of the extent and the orientation

of objects in world space, especially for objects close to the camera. Osep et al., [92] proposes a

tracking framework which exploits both 2D and 3D measurements for object tracking in self-

driving vehicles. Use of 3D bounding boxes assist in locating the objects in world coordinates.

Osep et al., [92] introduced a novel 2D-3D Kalman filter, which is keeping both an image- and a

world-space (position and size) estimate. These estimates are loosely coupled to ensure the

consistency of a track. This coupling enables us to track distant objects and continue these tracks

with more precise information in the close range, while smoothly transitioning between the

67

modalities. The use of 3D bounding boxes for object tracking would be useful to get the

measurements in world coordinates and can be considered as a future scope to this thesis work.

The results for object tracking using the proposed method are shown in Chapter 4.

3.5 Design of the Flowchart and Algorithms

The flowchart representing the complete proposed technique is depicted in Figure 33 below. The

real-time image obtained from the cameras of the self-driving vehicle is the input to the system.

The 3D models corresponding to the dynamic objects in the input image along with the pose

information obtained from the u, v coordinates of the keypoints of the objects, is the output of the

system. Additionally, the recognized objects are tracked using multiple frames of the input video

(sequence of images) to obtain the speed and location of the objects. The object tracking technique

is depicted in a separate flowchart in Figure 34.

68

Figure 33: Flowchart representing the proposed technique for object recognition and pose

estimation of dynamic objects

The proposed system has an additional object tracking module to track the speed and location of

the dynamic objects in the input video sequence. The flowchart in Figure 35, depicts the proposed

technique for tracking cars and pedestrians from the input video (sequence of image frames).

69

Figure 34: Flowchart depicting the proposed technique for object tracking from input video

70

3.5.1 The Proposed Algorithm for Recognition, Pose Estimation and Tracking of

Dynamic Objects in the Real-Time Input Image

The step-wise algorithm of the proposed technique for the recognition and pose estimation of

dynamic objects followed by tracking of the recognized objects from the real-time input image is

discussed below.

Algorithm 1: The proposed technique for recognition and pose estimation of dynamic objects

followed by tracking of the recognized objects from the real-time input image

INPUT: The real-time input image captured by the camera sensor of the self-driving car

OUTPUT: The 3D pose information along with the speed and location details of all dynamic

objects present in the input image.

Step 1: Identify the keypoint features from the real-time input image.

Step 2: If the object is a car, do steps 3 to 7, else if the object is a human, do steps 8 to 10

Step 3: Match the keypoint features of the car in the input image with the keypoint features of the

rendered images of 3D car models stored in the repository.

Step 4: If a suitable matching car model is found, do step 6 and step 7, else do step 5.

Step 5: Update the repository with more rendered images of different 3D car models.

Step 6: Apply the proposed voting algorithm and estimate the confidence score value.

Step 7: Output the confidence score along with the direction of car movement obtained from the

annotation file of the matched template model for each of the cars recognized in the input image.

Step 8: Apply the DensePose-RCNN model pre-trained with the COCO-DensePose dataset and

retrieve the UV coordinates of the pixels within each body part of the pedestrians in the input

image.

Step 9: Visualize the isocontours of the UV fields on the pedestrians in the input image.

Step 10: Map the textures on to the isocontours of the UV fields and visualize the 3D human pose

estimated from these UV coordinates.

Step 11: Track each of the recognized dynamic objects (cars and pedestrians) from the input video

to determine their location and speed.

Step 12: End

71

The proposed voting algorithm to estimate the confidence score value of the recognized cars in the

input image is discussed in detail in section 3.5.2 and the proposed algorithm for the tracking of

the dynamic objects to determine their location and speed is discussed in detail in section 3.5.3.

3.5.2 The Proposed Voting Algorithm for Cars

The Voting and Clustering techniques are explained in detail below. In the work by Tangruamsub

et al. [1], the authors developed a similar voting algorithm, using 2D images. This approach by

Tangruamsub et al. [1] is compared with the proposed method and in order to prove that the use

of 3D models gives better results.

Algorithm 2: The voting technique for determining the confidence scores of objects in the

real time image

INPUT: The repository with rendered images and their corresponding keypoint coordinate

information, orientation details and the direction of the car.

OUTPUT: The confidence scores for the object in the image along with its direction of movement.

Step 1: Each keypoint of the input image is matched with the keypoints of the models stored in the

repository by calculating the distance between the jth keypoint feature of the input image to the ith

key point feature of the template model as:

 j1NN = arg min j dij [1]

 dij - is the distance between qj and pi

 qj - the j-th keypoint feature of the input image

 pi - the i-th keypoint feature of a template model.

This distance is compared to all keypoint features of the template models to find the best template

model match. If the distance exceeds the predefined threshold in all matches, it is concluded that

qj does not match any template model. Repeat for all keypoints in the input image and the template

model, T, with maximum matched keypoints is selected as the best match. If none of the keypoints

of the input image match with any of the template models, go to Step 11.

Step 2: Save the matched key points and unmatched keypoints of T in separate lists.

72

Step 4: Back project the unmatched keypoints of the T on to the real time car image.

Step 5: Find the centre of the input image as (𝐶𝑥, 𝐶𝑦).

Step 6: Find the distance of all the keypoints to the center of the real time image and remove all

the points which are farther than a specific threshold.

Step 7: Find the object centre candidates from the matched features using the formula below:

[1]

 σtemp – scale of a keypoint

 θtemp - orientation of a keypoint of a matched template model

 σin – scale of a keypoint of an input image

 θin – orientation of a keypoint of an input image

 Δx, Δy – distance vector from the keypoint to the object centre

Step 8: Apply the clustering technique on these object center candidates to determine the

confidence score of the car being at the location in the specified direction.

Step 9: If the clusters are determined and confidence scores predicted. Go to Step 10.

Step 10: Insert a bounding box over the image and display the confidence score, along with the

direction of the car as determined from the annotation file of the matched template model.

Step 11: Add more models to the repository until the repository is rich enough to handle any input

car image in any orientation.

Step 12: End

The Clustering Technique

The voting algorithm explained above uses the following clustering technique in order to find the

cluster into which an object center candidate belongs. This algorithm helps to determine if there is

more than one prominent cluster in an image. This is useful for determining the presence of more

than one car in the real-time input image and for other occlusion scenarios.

73

Algorithm 3: Clustering technique for grouping the object center candidates

INPUT: The set of object centre candidates O and cluster list C.

OUTPUT: The confidence scores for different cluster determined by the algorithm

Step 1: Let O be the set of all object centre candidates and n be the total number of elements in O.

Assign any random element from set O (here the first element in the list is chosen) to the first

cluster C1.

Step 2: Set an intra-cluster distance d.

Step 3: For all each of the remaining elements of O, repeat step 4 to step 6.

Step 4: For all the clusters currently in list C, do step 5.

Step 5: Compute the distance of Oi to every element present in the cluster Ck. The distance formula

used:

d = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

where Oi = (x1, y1) and Oj = (x2, y2).

If the distance of between Oi and any other element of Ck exceeds the threshold d, do Step 6,

otherwise assign Oi to the same cluster, and go back to step 3.

Step 6: If Oi, doesn’t fit into any cluster, assign it to a new cluster and add it to end of the list C.

Step 7: Once all the elements Oi of O are assigned to different clusters, find the number of clusters

formed.

Step 8: If the number of clusters = 1, go to step 9 else go to step 12.

Step 9: Apart from the object center candidates corresponding to the back projected keypoints,

check if, the cluster contains object center candidates which correspond to the keypoints in the

matched set of feature points, M, that was saved in Step 2 of the voting algorithm. If yes, do Step

10, else do Step 11.

Step 10: Assign confidence_score = 1.0

Step 11: Assign confidence_score =
Number of matched keypoint features

Total number of keypoint features in the cluster

Step 12: If number of clusters > 1, for each cluster, repeat step 13 and 14

Step 13: Check the number of object centre candidates corresponding to the matched set M in the

cluster. Let this count be denoted as ‘mi’.

Step 14: Check the number of points p within the cluster. If p > 1 and < =4, go to step 15, else go

to step 16.

74

Step 15: Compare the cluster set with the matched set, and if none of the points belong to it, assign

confidence_score = 0.0 and assign label = ‘WARNING’ instead of ‘CAR’, else set

confidence_score as: confidence_score =
Number of matched keypoint features(mi) in the cluster

Total number of matched keypoint features

Step 16: Compare the cluster set with the matched set, and if number of matched keypoints = 0,

do step 17, else if number of matched keypoints > 4, do step 9 else do step 18.

Step 17: Assign confidence_score = 0.0 and assign label = ‘WARNING’ instead of ‘CAR’.

Step 18: Assign confidence_score as:

confidence score =
Number of matched keypoint features(mi) in the cluster

Total number of matched keypoint features

Step 19: End

Note that confidence scores are set as a value between 0.0 and 1.0, with 1.0 showing the highest

confidence.

Once the different clusters have confidence scores assigned, the keypoint coordinates of each

cluster is used to determine the bounding box for each object. The output displays the bounding

box around the object with the confidence score and the direction that the car is moving in retrieved

from the annotation file of the matched model.

3.5.3 The Proposed Object Tracking Algorithm

Algorithm 4: The proposed technique for tracking dynamic objects from the input video

INPUT: The real-time input video captured by the camera of the self-driving car

OUTPUT: The speed and location details of all the dynamic objects present in the input video.

Step 1: Split the input video into image frames using built-in functions from the OPENCV Python

libraries.

Step 2: Use the pre-trained Haar Cascade classifier for cars and humans to detect the vehicles and

pedestrians in each image frame.

Step 3: Save the detected objects with bounding box location details.

75

Step 4: Determine the position, mid, of each object in consecutive frames from the midpoints of

the bounding box surrounding each object.

Step 5: Determine the distance as: sqrt (mid1 * mid1 + mid2 * mid2) from the positions mid1 and

mid2 of the objects in frame one and frame two respectively.

Step 6: Determine the time as: Number of pixels progressed by the object/ frames per second.

Step 7: Output the speed computed from the distance and time as: Speed = Distance / Time.

Step 8: End

The main algorithm of the proposed technique in Section 3.5.1 and the sub-algorithm in Section

3.5.2 and Section 3.5.3, help in the 3D pose estimation of the dynamic objects in the input image

and provides additional information of their location and speed by tracking these dynamic objects

from the input video in real-time. The combination of this information from the proposed system

is used by the overall system to update the dynamic objects on-to the virtual city which is later

used by the autonomous navigation system of the self-driving vehicle to take appropriate

navigation decisions.

3.6 Time Complexity of the Proposed Algorithm

The time complexity is calculated based on the programmatical implementation. The proposed

technique starts with keypoint feature matching between the input images and the rendered images

of 3D object models stored in the repository. Since each keypoint feature(i) of the input image is

matched with the keypoint features (j) of all the models (n) stored in the repository, the time

complexity for this task is calculated as O (i * j * n). The voting algorithm determines the object

center candidates for all matched keypoint features (x) of the input image plus the unmatched

keypoint features back-projected from the matched template model from the repository (y). Thus,

76

the time complexity for this task is calculated as O(n), where n = x + y. After applying the

clustering technique, confidence scores are estimated for each cluster formed based on the number

of keypoint features in each cluster. The time complexity for this task is calculated as O(m), where

m is the number of clusters formed. Once the object is identified and the pose estimated, the

recognized object is tracked to determine the location and speed of the object, using multiple

frames of the input video. The time complexity for object tracking thus depends on the number of

dynamic objects present in the video. The time complexity determining both the location and speed

of the objects is therefore calculated as, O(n), where n is the number of dynamic objects present in

the input video.

Module Time Complexity Details

Keypoint feature matching

between the input object and

the objects stored in the

repository.

O (i * j * n)

i = number of keypoints

identified on the input image

j = number of keypoints

identified on the rendered

images of 3D models stored

in the repository

n = number of rendered

images of 3D models stored

in the repository

Voting Technique &

Confidence Score estimation

Detection of the object centre

candidates – O (n)

n = number of matched

keypoints plus the back-

projected keypoints from the

matched template model from

repository on the input object.

Confidence score assignment

– O(m)

m = number of

clusters(objects) formed.

Object Tracking Determination of location

using bounding box – O(n)

n = number of dynamic

objects in the input video

Determination of speed –

O(n)

n = number of dynamic

objects in the input video

Table 2: Time complexity of the algorithm

77

Chapter 4: Implementation and Experiments

The proposed approach was implemented on Windows using the Python programming language.

During the implementation phase of this research work, different Python and OpenCV libraries

were used. The list of software and tools used are given below.

4.1 Software Information

The entire implementation of the thesis was done on an Alienware 1.5.0 x64-based Desktop,

with NVIDIA version 8.1.940.0 and one Intel64 ~ 3192 Mhz GPU.

Item Details

OS

Windows/ Linux

Languages

Python v3.7.1

IDE

Jupyter Notebook, Anaconda Prompt

Python libraries

OpenCV, Tensorflow, Pytorch, Scikit, CUDA

10.0, ImageAI

Tools

Blender, 3D viewer

Table 3: List of tools used for implementation of the proposed system

78

4.2 Experiments and Results of Object Recognition and Pose Estimation of Cars

The proposed algorithm has been implemented by creating a small repository of 3D car models

from the ShapeNet dataset [60]. In the scope of the overall system, the repository of car models

must be updated with 3D models of a variety of real time cars. However, since this module is still

a work in progress, the proposed algorithm has been tested with a limited number of 3D car models

from the ShapeNet dataset [60] which resembles real-time cars. Initially before attempting with

real-time car images, some rendered images of the cars currently available in the repository were

placed onto road backgrounds to create a real time feel and effect. This was done in order to check

how well the algorithm would perform if the 3D car models in repository are very close to the real-

time car images.

The algorithm was tested on different scenarios and it gave decent results. Each of these scenarios

are discussed below with the results obtained.

4.2.1 Simulated input image with a single car

Consider the below input image with a single car on the road.

Figure 35: Input image

79

The KeypointNet model [23] identifies the keypoint features of the input image (Figure 35). It can

be observed that few feature points are detected outside of the object on the image. The proposed

voting algorithm removes the points which do not lie on the object by determining the object centre

candidates and eliminating the points which lie outside a pre-defined threshold distance from the

centre.

Figure 36: Keypoints detected using KeypointNet

When implementing the voting algorithm, as discussed above, each of the feature points are

matched with the models in the repository in order to find the matching template model. Figure 37

shows the matching model from the repository after applying the algorithm.

80

Figure 37: Matched model from the repository

Next, the image centre is determined which is then used to find the object center candidates, as

discussed in the algorithm above.

Figure 38: Image centre coordinates

As discussed in Step 6 and Step 7 of the voting algorithm, all the keypoints lying outside of the

object are eliminated and the object center candidates are determined as shown in Figure 39 below.

81

Figure 39: Object center candidates plotted on the image

The results in each step are shown in Figure 40 below.

Figure 40: Representation of results in each step

Finally, the confidence score value is determined as discussed in the algorithm. In this example all

keypoint features came under a single cluster and matched with the points on template model from

repository. Therefore, a confidence score of 1.0 is assigned as explained in the algorithm. This

signifies that the object is present at that location with a very high confidence level. This is

82

programmatically represented with a bounding box and the confidence score value printed on it as

shown in Figure 41 below. The direction of the car is also determined from the annotation file of

the matched template model from the repository.

Figure 41: Car detected with confidence score = 1.0

Two more examples are shown below. The first one, shows the step-wise results of a single car

moving in the “Left” direction and the second shows the step-wise results of a single car moving

“Towards” the autonomous car.

83

Car moving Towards

Figure 42: Step-wise results for the image of a car moving in the "Towards" direction

Car moving Left

Figure 43: Step-wise results for the image of a car moving in the "Left" direction

84

4.2.2 Real-time input image with a single car

In case of the real-world road scenes, there would be multiple cars on the road. Therefore, it is

required to initially identify the individual cars on the road and then crop them separately, as the

pre-requisite for the KeypointNet model [23] is that the images be in 128 x 128 size for detecting

the keypoints. The voting algorithm is then applied to determine the confidence score value with

which the presence of the car can be confirmed at that location.

For this purpose, the python library, ImageAI (Olafenwa et al. [72]), is used that helps software

developers easily integrate state-of-the-art computer vision technologies into new applications.

The RetinaNet [72] model is used for object detection in real time. The comparison section

discusses how the method improves the confidence of the presence of object at a given location.

While considering the real-time road scenes, the camera attached to the autonomous vehicle

captures different frames. The Figure 44 below shows one such scene.

Figure 44: A real time road scene with a single car

The ImageAI python library along with the RetinaNet model [72], detects the object and crops it

using the functions within the ImageAI python library as shown in Fig 45 below.

85

Figure 45: Cropping the detected car using ImageAI python library

The keypoints detected using KeypointNet [23] as shown in Figure 46 below.

Figure 46: Keypoint features identified using KeypointNet

The matched model from the repository is shown in Figure 47 below.

86

Figure 47: Matched model from the repository

Note that it was challenging to find a model matching the cars in the real time input image with

the same orientation and view. The repository developed by the proposed overall system needs to

be updated with real-time 3D car models as part of future work. The image centre and object centre

candidates are determined using the algorithm. See Figure 48 below.

Figure 48: Object centre and object centre candidates

87

The clustering algorithm is then applied and the confidence score value of the object at the

location is determined. The step wise flow is shown in Figure 49 below.

Figure 49: Step-wise representation of results for real time single car scenario

Figure 50: Car detected with confidence score = 1.0 in real time image

88

The proposed algorithm works quite well for a single car in the real-time input image. The

algorithm was also tested on some special cases such as images with cars partly occluded by

another car and images in which only a part of the vehicle is present (like the head of a trailer).

The algorithm gave decent results in these scenarios. Each scenario is discussed in the sections

below.

4.2.3 Real-time input image with a car partially occluded by another car

Most often multiple cars are found on the road and there are situations where one car is partially

covered by another car or a small part of another car.

Consider the image of a real-time road scene in Figure 51 below.

Figure 51: Real time road scene with multiple cars

After applying the ImageAI python library and the Resnet model [72] for getting the cropped

images of each of the identified cars as discussed in section 4.2.2, the different car images are

obtained as shown in Figure 52 below.

89

 (a) (b) (c)

Figure 52: Cars Detected and cropped using the ImageAI library and the Resnet model

As discussed in the above scenarios, when using the proposed algorithm, the image centre and

object centre candidates are found to determine the keypoints that lie on the object. Figure 53

shows the results of the different steps of the algorithm.

Figure 53: Step-wise results for the image of a car partly occluded by the tyre of another car

In this case, its evident that the main car is partly covered by wheels of the car behind it. The

proposed algorithm correctly separates the keypoints identified on the wheels of the car behind

into a different cluster. In this case, two clusters are formed. After identifying keypoints, model

matching, back projecting model keypoints and removing key points far from centre, a total of 13

keypoints are obtained. Out of these 13 keypoints, 9 keypoints are the matched keypoints plus the

back projected keypoints. The second cluster contains one of the matched keypoint. Hence if the

90

first cluster contains the rest of the nine keypoints, a high confidence score value is assigned to it.

The first cluster containing all object centre candidates of the prominent car in the image, has 11

keypoints and the second cluster has just 2 keypoints. In the first cluster, 8 points match the

template model (which includes all the matched and back projected keypoints), hence as

mentioned in our algorithm, a high confidence score = 8/8 = 1.0 is assigned to that cluster. However

only 1 point in 2nd cluster matches the template model, hence a very low confidence score of 1/9

= 0.1 is assigned to it as depicted in Figure 53.

4.2.4 Real-time input image with part of the vehicle missing

Consider the input image shown in Figure 54 below, where only the head of the trailer is moving

on the road.

Figure 54: Tractor unit without a trailer on the road

91

When the repository only has the 3D model of the entire truck, i.e. the tractor unit along with its

trailer (Figure 55), then the algorithm identifies the missing part of the vehicle. Initially, the

keypoints of the input image match with the keypoints of the 3D model of the truck. Then the

unmatched keypoints are back projected, and the object centre candidates are determined. Once

the points lying far from the object centre are removed, the clustering technique is applied. Two

clusters were formed. The first cluster had four keypoints matching the “matched” keypoint set

(obtained in Step 2 of the proposed algorithm) and the back projected set of keypoints. Hence, a

confidence score of, 4/10 = 0.4 was assigned to it. However, the second cluster didn’t have any

keypoints which matched with the ‘matched’ keypoint set (obtained in Step 2 of the proposed

algorithm) and only had keypoints matching with the back projected set. Therefore, as discussed

in the algorithm, a confidence score of, 0/10 = 0.0 was assigned to the second cluster. The step-

wise results are displayed in Figure 55 below.

Figure 55: Step-wise results for vehicle with a missing part

The results of the proposed voting technique applied on cars shows how the keypoint features

extracted from 3D models help in estimating the confidence of object recognition and determining

92

the occluded and missing parts of a vehicle. The next section discusses the experiments and results

of object recognition and pose estimation of pedestrians in the real-time input.

4.2.5 Real-time input image with objects other than cars or pedestrians

Consider the images in Figure 56 below with no car or pedestrians in it.

Figure 56: Input images with no car or pedestrians

The 3D keypoint features detected on these images does not match with any of the keypoint

features of the rendered images of 3D models stored in the repository and hence goes unrecognized

by our system, as expected.

Figure 57: Keypoint features detected on images without cars or pedestrians

93

Figure 57 depicts the keypoint features detected on images without the objects of interest. This

again signifies the advantage of using latent 3D keypoints for object recognition, rather than 2D

feature points, as the 3D keypoints detects the interesting parts of different objects. Also, the

orientation information of the keypoints of different rendered 3D models stored in the repository

used for matching the dynamic objects in the input image helps in identifying the exact object,

rather than giving false predictions.

4.3 Experiments and Results of Object Recognition and Pose Estimation of Pedestrians

As discussed in section 3.3.2 of chapter 3, due to the challenges in mapping the 2D human images

to 3D models of the human body and the tedious effort and time required to create the repository

of human 3D models in different pose and type along with labelling of their keypoint features,

"DensePose"[40] model has been adopted for 3D human pose estimation in the scope of the overall

system. The source code of “DensePose” [40], publicly available in their GitHub repository [73]

was used to test the functioning of the overall system in different road scenarios. The different

scenarios and their corresponding results are given below.

4.3.1 Input image with an adult on the road

Consider the input image of an adult on road as in Figure 58 below.

94

Figure 58: Input image with an adult on the road

The “DensePose” determines the UV coordinates from the human 3D models as explained in

section 3.3.2. The visualization of the isocontours of the UV fields are shown in Figure 59 below.

Figure 59: Visualization of the isocontours of the UV fields in the image with an adult on the

road

The textures are then mapped on to the isocontours of the UV fields to get the complete look and

feel of the 3D models. This is depicted in Figure 60 below.

95

Figure 60: Textures mapped on the isocontours of the UV fields in an image with an adult on the

road

4.3.2 Input image with an adult and child on the road

Consider the input image of an adult and a child on road as in Figure 61 below.

Figure 61: Input image with an adult and a child crossing the road

The visualization of the isocontours of the UV fields are shown in Figure 62 below.

96

Figure 62: Visualization of the isocontours of the UV fields in the image with an adult and a

child crossing the road

The textures are then mapped on-to the isocontours of the UV fields to get the complete look and

feel of the 3D models. This is depicted in Figure 63 below.

Figure 63: Textures mapped on the isocontours of the UV fields for an image with an adult and a

child crossing the road

97

4.3.3 Real-time input image with pedestrians running across the road

Consider an input image with two men running across the road as shown in Figure 64 below.

Figure 64: Input image with two men running across the road

The visualization of the isocontours of the UV fields are shown in Figure 65 below.

Figure 65: Visualization of the isocontours of the UV fields in an image with two men running

across the road

The textures are then mapped on-to the isocontours of the UV fields to get the complete look and

feel of the 3D models. This is depicted in Figure 66 below.

98

Figure 66: Textures mapped on the isocontours of the UV fields for an image with two men

running across the road

4.3.4 Real-time input image with multiple people on road (Occluded humans)

Consider an input image with multiple pedestrians (few partly occluded) on the road as shown in

Figure 67 below.

Figure 67: Input image with multiple pedestrians (few partly occluded) crossing the road

The visualization of the isocontours of the UV fields are shown in Figure 68 below.

99

Figure 68:Visualization of the isocontours of the UV fields in the image with multiple

pedestrians (few partly occluded) crossing the road

The textures are then mapped on to the isocontours of the UV fields to get the complete look and

feel of the 3D models. This is depicted in Figure 69 below.

Figure 69: Textures mapped on the isocontours of the UV fields for an image with multiple

pedestrians (few partly occluded) crossing the road

The above results show that the “DensePose” model [40], can handle a variety of human poses on

the road, multiple humans on the road, humans which are partly occluded by other humans or

100

objects, and short or tall humans. The scope of improvements to this model is discussed in section

4.6.

4.4 Results of the Tracking of Dynamic Objects

As explained in section 3.4, object tracking for cars and pedestrians on the road is also done as

part of this research. The objects along with their speed in km/hr is depicted with rectangular

bounding boxes. Figure 70 below, shows the different frames of the input video with the object

tracking details in cars.

Figure 70: Different frames of the input video tracking the car with the estimated speeds

displayed on it

101

Similarly, the Figure 71 below, shows the different frames of the input video with the object

tracking details in pedestrians.

Figure 71: Different frames of the input video tracking the humans with the estimated speeds

displayed on it

As discussed in section 3.4, the distance a vehicle has travelled in the image plane would be the

relative differences in pixels at various vehicle positions in the subsequent frames. To get the exact

speed of an object, it is required to traverse a few frames in order to have an idea of the distance it

covers over the frame. The speed and location details are also passed on to the virtual city for

updating the recognized dynamic objects.

102

4.5 Comparison and Discussions

As mentioned in the introduction, most of the previous researches [1, 28, 84] use the mean average

precision(mAP) as the measure of accuracy in the object detection and pose estimation predictions.

Therefore, it is important to first define the term mean average precision before using it to compare

the results of the proposed approach with that of the previous works.

4.5.1 Mean Average Precision

AP (Average precision) is a popular metric in measuring the accuracy of object detectors like

Faster R-CNN or SSD, etc. Average precision computes the average precision value for the recall

value over 0 to 1[85]. Precision and Recall may be defined as below [89]:

Recall: is the fraction of relevant instances that are retrieved.

R =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 =

𝑇𝑃

𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 , where, TP is the True Positive and FN is the False Negative.

Precision: is the fraction of retrieved instances that are relevant.

P =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 =

𝑇𝑃

𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
 , where, the TP is the True Positive and FP is the False Positive.

mAP (mean average precision) is the average of AP. In some context, the AP for each class is

computed and averaged. But in some contexts, they mean the same thing. In the state-of-the-art

YOLOv3 approach [88] there is no difference between AP and mAP [85].

103

4.5.2 Estimation of Mean Average Precision using the proposed method

Due to limited open source 3D model car datasets closely matching real-time cars and other

constraints like the time taken to render each model and to create corresponding annotation files,

so far, the proposed algorithm was tested with 100 models in the repository and 40 real-time

images. The 4 different pose labels, Left, Right, Towards and Away are used to determine the

direction in which the car is moving on the road.

The confusion matrix table was used to calculate the mean average precision. A confusion

matrix is a table that is often used to describe the performance of a classification model (or

"classifier") on a set of test data for which the true values are known [90]. The table below shows

the confusion matrix obtained using the proposed approach for the test set of 40 input images.

Predicted Pose of the Cars

Actual Pose

of the Cars

 Left Right Towards Away

Left 8 1 0 0

Right 3 12 0 0

Towards 0 0 6 0

Away 0 0 0 10

Table 4: Confusion Matrix

The actual poses are the direction of the car in the input image. And the predicted poses are the

direction of the car specified in the annotation file of the matched model found from the repository

by the proposed approach.

104

From the formula of precision defined in Section 4.5.1, the precision values for each of the poses

of the car is calculated as below [86,87]:

P(Left) =
8

(8+3+0+0)
 = 0.727

P(Right) =
12

(1+12+0+0)
 = 0.923

P(Away) =
6

(0+0+6+0)
 = 1.00

P(Towards) =
10

(0+0+0+10)
 = 1.00

The mean Average Precision is then calculated as:
(0.727 + 0.923 + 1.00 + 1.00)

4
 = 0.9107 = 91.07 %

Table 5 contains the mAP values estimated for object recognition in state-of-the-art deep learning

approaches, approach by Tangruamsub et al. [1] and the approach proposed in this thesis.

Existing deep learning approaches

Approach mAP

YOLOv2 on VOC2007 78.6

3D YOLO based on LiDAR data

(Hakim,2018 [84]) 65.10

*1Comparison with Tangruamsub et al., 2011

Approach

Number of Models/Images in

Repository

Number of Test

Images mAP

Tangruamsub et al. 553 544 86

Our method 100 40 91.07

Table 5: mAP values for different approaches

*Comparison with the approach using voting algorithm for object recognition and pose estimation

by extracting feature points from 2D data.

105

The repository needs to be updated with more car models and their corresponding annotation

files in order to test the proposed approach with additional input images.

4.5.3 Results Comparison and Discussion: Cars

Having discussed the results of the proposed approach on different scenarios of cars, the way in

which this approach would improve object recognition in the context of autonomous driving is

discussed below.

4.5.3.1 Advantages of the proposed system

The major advantages that were observed as a result of using 3D models for object recognition

and subsequent pose estimation of the dynamic objects in the proposed system are discussed

below.

a. Improvement in confidence of object recognition and pose estimation

The state-of-the-art deep learning models (ResNet, YOLO) detects objects with high accuracy.

However, applications like that of autonomous vehicles which involve the lives of humans on the

road require even more precise and accurate predictions. This is one of the reasons that even with

a lot of advancements in deep learning or other machine learning techniques, a fully autonomous

vehicle is still far from viability. Figure 72 below shows the output of object detection with the

accuracy of the predicted object using the Resnet model [72]. The prediction gives an accuracy of

92.847% that the detected object is a car.

106

Figure 72: Object recognition with Resnet model

The proposed approach aims to improve the accuracy level by using 3D car models and compare

the real-time image keypoints with that of the 3D model keypoint features. The use of 3D object

models helps us to make use of the depth and orientation information which help detect very

specific keypoints of the car (like the wheels and headlights). This keypoint features help us to

assign a confidence score to the detected object as explained in the voting algorithm.

Therefore, it can be claimed that the algorithm would help to improve the confidence that the

detected object is a car at that location. The proposed algorithm gave a confidence score = 1.0

(highest confidence value) that the object is present at the location if all keypoints identified match

exactly with the template model keypoints. Apart from just detecting the object with a confidence

value the algorithm also gives the direction of the moving car (Left, Right, Away, Towards). This

is pictorially represented in Figure 73 below.

107

 HIGH CONFIDENCE!!

Figure 73: Pictorial representation of how the proposed approach improves prediction

confidence

Figure 74 below depicts another example in which the back tyre of the car is occluded. The 3D

model of car in the same orientation is retrieved from the repository by the system. The system

detects the car in the image with high confidence after back projecting the keypoint features of the

matched template model onto it.

Figure 74: Step-wise representation of results for input image of car with partial occlusion

Hence it is clear than the use of keypoint features extracted from 3D models not only yield better

confidence for object recognition but also can be used for back-projection for the purpose of object

verification.

108

b. No incorrect detection of objects by the system

Tangruamsub et al.,2011 [1] discusses the cases of incorrect detections in their official paper. The

system proposed in [1] recognizes cow, cycle and cat instead of cars as shown in Figure 75.

Figure 75: Objects detected incorrectly instead of cars (Source: Tangruamsub et al.,2011)

As discussed in section 4.2.5, the proposed system can filter the images having no car or pedestrian,

thus avoiding incorrect detections. This signifies the advantage of using latent 3D keypoints for

object recognition (Figure 57), rather than feature points extracted from 2D images. Also, the

orientation information of the keypoints of different rendered 3D models stored in the repository

used for matching the dynamic objects in the input image helps in identifying the exact object,

rather than giving incorrect detections.

4.5.4 Results Comparison and Discussion: Humans

In the context of autonomous driving, the human pose estimation is very crucial, as even a slight

error in estimation can cost human lives. The “DensePose” model [40], has given good results in

109

a variety of scenarios, like scenes with multiple persons, pedestrians occluded by other pedestrians

or objects, and short and tall pedestrians. The official paper of DensePose claims an AP (Average

Precision) of 87.5 in case of pose estimation obtained through cascading. “DensePose”, instructs

the annotators to estimate the body part behind the clothes, so that for instance wearing a long skirt

would not complicate the subsequent annotation of correspondences. Though this is very useful in

many applications, in the context of autonomous driving, it is important to know the exact location

of the legs behind the long skirt. For instance, consider the woman in Figure 76 below. The results

after applying the “DensePose” model [40] are shown in Figure 77 below. As expected it predicts

the limbs behind the long skirt. Now, suppose that the women in the figure is handicapped and

does not have legs. In the case of autonomous driving, this information is very crucial to make

suitable navigation decisions. The proposed voting technique can be integrated into this approach

to determine a confidence score value of the body part being there at that location in the image.

This additional information would improve the confidence with which the autonomous car could

take navigation decisions.

Figure 76: Woman wearing a long skirt

110

Figure 77: Pose estimation results after applying DensePose model

However, with limited resources and manpower, creating the repository with the different human

models with their corresponding keypoint annotations is cumbersome. Therefore, it is kept aside

as future scope of the overall proposed system.

4.6 Observation and Limitations

The proposed approach finds the suitable matching car model from the repository in most cases.

Therefore, the correct direction of the car is also retrieved from the annotation files corresponding

to the matched template model in most cases.

However, it was observed that in some scenarios where the “Left” pose and “Right” pose of the

cars look very similar (for cars whose front and back look somewhat similar), like the two cars

shown in Figure 78, the pattern of keypoints detected look very similar, and hence the template

models match with each other even though they are in a different pose. The confusion matrix

(Table 3) also shows that the “Left” and “Right” poses were wrongly predicted in some cases. The

111

KeypointNet model [23] also reports in their official paper that the orientation network fails to

predict correct orientation and the output keypoints are flipped in the case of cars whose front and

back look similar. This is shown in Figure 79 which is taken from the official paper of the

KeypointNet model [23]. This is another area of the system which has scope for improvement in

the future.

Figure 78: Two cars in two opposite directions with keypoints at similar coordinate positions

Figure 79: Failure case with output keypoints flipped in the case of the KeypointNet model

112

Chapter 5: Conclusion and Future Work

Most of the leading car companies today are looking forward to making the dream of a fully

autonomous car a reality, with an eye on the huge impact or revolution it would create. There are

several advantages that an autonomous car offers. These include less traffic, increased safety, and

less wastage of time on driving. However, for the autonomous cars to perform with zero faults or

accidents, it is required that the machine does object recognition and pose estimation of the

different objects on the road just as the human brain does. This requires the machine to understand

the 3D structure of any object it sees on the road. The aim of the proposed approach is to make the

system recognize the 3D structure of the objects on the road with the help of 3D object models.

The virtual city, proposed in this research, contains 3D models of the buildings and other static

objects on the road. This information is used by the car to determine the presence of a building (or

tree) and get its 3D views which helps it to take the correct navigation decisions. The dynamic

objects are identified, and their corresponding 3D models are retrieved from the repository. In

addition to that, the object is tracked to determine its speed and location information using

bounding boxes. All this information is sent to the virtual city where the simulated dynamic objects

are updated in real-time.

Even though the 3D models of cars or other objects are expensive, it is worth the investment when

it comes to the safety of humans on the road. This approach of using 3D models and extracting the

keypoints of the significant parts of the cars, human body, and buildings have proved to improve

the object recognition confidence. As discussed in Chapter 4, the experiments show that the

proposed algorithm was able to handle the special cases of cars occluded by other cars or identify

obstacles when a part of the car is missing. It is anticipated that once all the modules of the overall

system are completed, much better results can be produced. This means the completion of a fully

113

updated dynamic object repository with rendered images of real-time car models, and completion

of other modules like the static and variable object elimination which would improve the overall

performance of the system.

Though the proposed approach has given decent results, there is a lot of room for improvement.

As discussed, in section 4.5.3, the human pose estimation needs to be improved to be able to handle

all scenarios in the context of the autonomous driving domain. Also, currently the proposed

algorithm uses a set of pre-defined threshold values (Refer to the algorithm in section 3.5.2), which

have been determined by running a variety of different experiments. Automating the task of finding

the threshold values for the voting and clustering algorithm can be taken up as future work. Also,

the KeypointNet model [23], can be modified to extract a different number of keypoints and then

update the repository accordingly. The proposed system can then use this new set of keypoints.

The time complexity of the system can be reduced considerably if deep learning techniques are

integrated into the system to recognize the dynamic objects belonging to different classes (cars or

pedestrians) initially and then apply the proposed algorithm for pose and confidence score

estimation. This is another area for future scope. Finally, the proposed system can also be extended

to other dynamic objects like animals and birds or any other objects which would impact driving

on the road.

114

References

[1] S. Tangruamsub, K. Takada, and O. Hasegawa, “3d object recognition using a voting algorithm

in a real-world environment,” in Proceedings of the 2011 IEEE Workshop on Applications of

Computer Vision (WACV), ser. WACV ’11. Washington, DC, USA: IEEE Computer Society,

2011, pp. 153–158. [Online]. Available: http://dx.doi.org/10.1109/WACV.2011.5711497

[2] Wei Tang, Pei Yu and Ying Wu, "Deeply Learned Compositional Models for Human Pose

Estimation", ECCV 2018, SpringerLink: https://link.springer.com/conference/eccv

[3] Jun SHIMAMURA, Taiga YOSHIDA, Yukinobu TANIGUCHI, Hiroko YABUSHITA,

Kyoko SUDO, and Kazuhiko MURASAKI, "The method based on view-directional consistency

constraints for robust 3D object recognition", MVA2015 IAPR International Conference on

Machine Vision Applications, May 18-22, 2015, Tokyo, JAPAN

[4] W. Wohlkinger and M. Vincze, “Ensemble of shape functions for 3d object classification,” in

2011 IEEE International Conference on Robotics and Biomimetics, Dec 2011, pp. 2987–2992

[5] R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng, “Convolutional-recursive deep

learning for 3d object classification,” in Proceedings of the 25th International Conference on

Neural Information Processing Systems, ser. NIPS’12. USA: Curran Associates Inc., 2012, pp.

656–664. [Online]. Available:http://dl.acm.org/citation.cfm?id=2999134.2999208

[6] C. Li, J. Bohren, E. Carlson, and G. D. Hager, “Hierarchical semantic parsing for object pose

estimation in densely cluttered scenes,” in 2016 IEEE International Conference on Robotics and

Automation (ICRA), May 2016, pp. 5068–5075

115

[7] S. A. A. Shah, M. Bennamoun, and F. Boussaid, “A novel feature representation for automatic

3d object recognition in cluttered scenes,” Neurocomputing, vol. 205, pp. 1 – 15, 2016. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0925231215017385

[8] Luís Eduardo Ramos de Carvalho, Aldo Von Wangenheim, “Literature review for 3D object

classification/recognition”, 2017.

[9] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele. Deepercut: A deeper,

stronger, and faster multiperson pose estimation model. In Proc. of the European Conference on

Computer Vision (ECCV), 2016

[10] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. In

Proc. of the European Conference on Computer Vision (ECCV), pages 483–499.Springer, 2016

[11] Object recognition: https://www.mathworks.com/solutions/deep-learning/object-

recognition.html

[12] Human pose estimation: https://www.learnopencv.com/deep-learning-based-human-pose-

estimation-using-opencv-cpp-python/

[13] Semantic segmentation blog: https://medium.com/intro-to-artificial-intelligence/semantic-

segmentation-udaitys-self-driving-car-engineer-nanodegree-c01eb6eaf9d

[14] Marvin Teichmann, Michael Weber, Marius Zollner, Roberto Cipolla and Raquel Urtasun,

"MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving",2018 IEEE Intelligent

Vehicles Symposium (IV) Changshu, Suzhou, China, June 26-30, 2018

[15] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, Antonio M. Lopez, "The

SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban

116

Scenes", The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp.

3234-3243

[16] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks”, 2012 ImageNet Competition

[17] Karen Simonyan , Andrew Zisserman, “VERY DEEP CONVOLUTIONAL NETWORKS

FOR LARGE-SCALE IMAGE RECOGNITION”, Published as a conference paper at ICLR 2015

[18] Christian Szegedy1 , Wei Liu2 , Yangqing Jia1 , Pierre Sermanet1 , Scott Reed3 , Dragomir

Anguelov1 , Dumitru Erhan1 , Vincent Vanhoucke1 , Andrew Rabinovich4, “Going Deeper with

Convolutions”, published at CVPR2015

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian SunDeep, "Residual Learning for Image

Recognition", The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016,

pp. 770-778

[20] https://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html

[21] R-CNN tutorial: https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-

detection-algorithms-36d53571365e

[22] Semantic segmentation using deep learning: https://medium.com/nanonets/how-to-do-

image-segmentation-using-deep-learning-c673cc5862ef

[23] S. Suwajanakorn, N. Snavely, J. Tompson, and M. Norouzi. Discovery of latent 3D keypoints

via end-to-end geometric reasoning. In NIPS, 2018.

[24] Beginner’s guide to object detection for self driving cars:

https://skymind.ai/wiki/autonomous-vehicle

117

[25] Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, "Rich feature hierarchies for

accurate object detection and semantic segmentation",arXiv:1311.2524v5 [cs.CV] 22 Oct 2014

[26] R. Girshick. Fast R-CNN. In ICCV, 2015.

[27] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection

with region proposal networks. In NIPS, 2015.

[28] Joseph Redmon, Ali Farhadi, “YOLO9000: Better, Faster, Stronger”,

http://pjreddie.com/yolo9000/, 2016

[29] Khaled Alhamzi, Mohammed Elmogy, Sherif Barakat, "3D Object Recognition Based on

Image Features: A Survey", International Journal of Computer and Information Technology

(ISSN: 2279 – 0764) , Volume 03 – Issue 03, May 2014

[30] Sapp, B., Taskar, B.: Modec: Multimodal decomposable models for human pose estimation.

In: IEEE Conference on Computer Vision and Pattern Recognition.(2013) 3674–3681

[31] Johnson, S., Everingham, M.: Clustered pose and nonlinear appearance models for human

pose estimation. In: British Machine Vision Conference. (2010)

[32] Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation: New

benchmark and state of the art analysis. In: IEEE Conference on computer Vision and Pattern

Recognition. (2014) 3686–3693

[33] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6m: Large scale datasets and

predictive methods for 3d human sensing in natural environments. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 36(7):1325– 1339, Jul 2014

118

[34] Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, Yichen Wei, "Towards 3D Human

Pose Estimation in the Wild: a Weakly-supervised Approach", arXiv:1704.02447v2 [cs.CV] 30

Jul 2017

[35] Gul Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev,

Cordelia Schmid,"Learning From Synthetic Humans",The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017, pp. 109-117

[36] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler1, Javier Romero, Michael

J. Black, "Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single

Image", Springer International Publishing,2016

[37] Alexandre Saint, Eman Ahmed, Abd El Rahman Shabayek, Kseniya Cherenkova, Gleb

Gusev, Djamila Aouada1 and Bjorn Ottersten, "3DBodyTex: Textured 3D Body Dataset",

https://www.researchgate.net/publication/327263103, 2018

[38] Christoph Lassner, Javier Romero, Martin Kiefe, Federica Bogo, Michael J. Black, Peter V.

Gehler, "Unite the People: Closing the Loop Between 3D and 2D Human Representations",

arXiv:1701.02468v3 [cs.CV] 25 Jul 2017

[39] Mohamed Omran, Christoph Lassner, Gerard Pons-Moll, Peter V. Gehler, Bernt Schiele,

"Neural Body Fitting: Unifying Deep Learning and Model-Based Human Pose and Shape

Estimation", arXiv:1808.05942v1 [cs.CV] 17 Aug 2018

[40] Rıza Alp Guler, Natalia Neverova, Iasonas Kokkinos, "DensePose: Dense Human Pose

Estimation in The Wild", arXiv:1807.03146v2 [cs.CV] 23 Nov 2018

119

[41] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. SMPL: A skinned multi-

person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–248:16, Oct.

2015.

[42] ROBINETTE, K., BLACKWELL, S., DAANEN, H., BOEHMER, M., FLEMING, S.,

BRILL, T., HOEFERLIN, D., AND BURNSIDES, D. 2002. Civilian American and European

Surface Anthropometry Resource (CAESAR) final report. Tech. Rep. AFRL-HEWP-TR-2002-

0169, US Air Force Research Laboratory.

[43] ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S., RODGERS, J., AND

DAVIS, J. 2005. SCAPE: Shape Completion and Animation of PEople. ACM Trans. Graph. (Proc.

SIGGRAPH 24, 3, 408–416

[44] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose machines. In Proc.

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[45] V. Ramakrishna, T. Kanade, and Y. Sheikh. Reconstructing 3D human pose from 2D image

landmarks. Proc. of the European Conference on Computer Vision (ECCV), pages 573– 586, 2012.

[46] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic

segmentation", In CVPR, 2015.

[47] Mohamad, Mustafa. "3D Object Recognition using Local Shape Descriptors." Tech. rep.

School of Computing Queen's University Kingston, Ontario, Canada, 2013.

[48] Litomisky, Krystof. "Consumer RGB-D Cameras and their Applications." Tech. rep.

University of California, 2012.

120

[49] Treiber, Marco. An Introduction to Object Recognition Selected Algorithms for a Wide

Variety of Applications. Springer-Verlag London Limited, 2010.

[50] Yang, Ming-Hsuan. "Object Recognition". University of California at Merced. n.d.

[51] Matas, Jir and Stepan Obdrzalek. "Object recognition methods based on transformation

covariant features." Proc of European signal processing conf on EUSIPCO (2004).

[52] Outline of object recognition. http://en.wikipedia.org/wiki/Outline_of_object_recognition. 3

2014.

[53] Schmid, C. and R. Mohr. "Local Grey Value Invariants for Image Retrieval." IEEE

Transactions on Pattern Analysis and Machine Intelligence, 19:530–535 (1997).

[54] Liang-Chia Chen, Hoang Hong Hai, Xuan-Loc Nguyen and Hsiao-Wen Wu. "Novel 3-D

Object Recognition Methodology Employing a Curvature-Based Histogram" International Journal

of Advanced Robotic Systems 10 (2013).

[55] Harris, C. and M. Stephens. "A Combined Corner and Edge Detector." Alvey Vision

Conference, 147–151 (1988).

[56] Lowe, D.G. "Distinctive Image Features from Scale-Invariant Viewpoints." International

Journal of Computer Vision, 60:91–111(2004).

[57] Herbert Bay, Tinne Tuytelaars and Luc Van Gool. "SURF: Speeded Up Robust Features."

Computer Vision–ECCV 2006. Springer Berlin Heidelberg (2006).

[58] Rublee, Ethan, et al. "ORB: an efficient alternative to SIFT or SURF." Computer Vision

(ICCV), 2011 IEEE International Conference on. IEEE, 2011.

121

[59] O’hara, Stephen and draper, bruce a. "Introduction to the Bag of Features Paradigm for Image

Classification and Retrieval." arXiv preprint arXiv:1101.3354 (2011).

[60] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo

Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, Fisher Yu,

"ShapeNet: An Information-Rich 3D Model Repository",arXiv:1512.03012v1 [cs.GR] 9 Dec

2015.

[61] Details about 3D object files, https://www.reviversoft.com/file-extensions/obj

[62] B.Boufama, "Image Formation and Camera Model", Lecture Notes, University of Windsor.

[63] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James

Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollar, "Microsoft COCO:

Common Objects in Context", arXiv:1405.0312v3 [cs.CV] 21 Feb 2015

[64] SMPL: A Skinned Multi-Person Linear Model (SIGGRAPH Asia 2015): Presentation video:

https://www.youtube.com/watch?v=kuBlUyHeV5U.

[65] R. A. Guler, G. Trigeorgis, E. Antonakos, P. Snape, S. Zafeiriou, and I. Kokkinos. Densereg:

Fully convolutional dense shape regression in-the-wild. In CVPR, 2017. 2, 5

[66] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn. CVPR, 2017. 2, 5, 6, 10

[67] DensePose tutorial video: https://www.youtube.com/watch?v=EMjPqgLX14A

[68] Haar Cascade OpenCV python tutorial : https://pythonprogramming.net/haar-cascade-object-

detection-python-opencv-tutorial/

[69] Mohan Kagita, "Real time Vehicle Speed and Lane Detection", UNSW,Sydney,Australia,

https://github.com/kmr0877/Realtime-Object-Tracking-using-Opencv

122

[70] Aditya Pai, "Real Time Detection and Classification of Vehicles and Pedestrians Using Haar

Cascade Classifier with Background Subtraction", https://github.com/AdityaPai2398/Vehicle-

And-Pedestrian-Detection-Using-Haar-Cascades

[71] Sultan Daud Khan, "Estimating Speeds and Directions of Pedestrians in Real-Time Videos:

A solution to Road- Safety Problem", Conference: Ageing AI 2013 The Challenge of Ageing

Society: Technological Roles and Opportunities for Artificial Intelligence.

[72] ImageAI Python: https://towardsdatascience.com/object-detection-with-10-lines-of-code-

d6cb4d86f606

[73] “DensePose” GitHub repository: https://github.com/facebookresearch/Densepose

[74] S. Kolski, D. Ferguson, C. Stachniss, and R. Siegwart, “Autonomous driving in dynamic

environments”, in Proc. Workshop on Safe Navigation in Open and Dynamic Environments at the

2006 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2006), Oct. 9-15, 2006,

Beijing, China. Piscataway, NJ: IEEE, 2006.

[75] Darms, M., Rybski, P., Urmson, C.,” Vehicle Detection and Tracking for the Urban Grand

Challenge”, AAET - Automatisierungs-, Assistenz- und eingebettete Systeme fr Transportmittel,

Symposium 13./14. Feb 2008, Braunschweig, 2008.

[76] Darms, M., Rybski, P., & Urmson, C. (2008b). Classification and tracking of dynamic objects

with multiple sensors for autonomous driving in urban environments. In Proceedings of the 2008

IEEE Intelligent Vehicles Symposium, Eindhoven, the Netherlands (pp. 1192–1202). IEEE

https://github.com/facebookresearch/Densepose

123

[77] X. Hu, L. Chen, B. Tang, D. Cao, and H. He, ‘‘Dynamic path planning for autonomous driving

on various roads with avoidance of static and moving obstacles,’’ Mech. Syst. Signal Process., vol.

100, pp. 482–500, Feb. 2018.

[78] How to Self-Driving Cars See, Computer Vision for Object Detection:

https://towardsdatascience.com/how-do-self-driving-cars-see-13054aee2503

[79] Gao HB, Cheng B, Wang JQ, Li KQ, Zhao JH, Li DY. Object classification using CNN-based

fusion of vision and LIDAR in autonomous vehicle environment.IEEE Trans Ind Inform

2018;99:1.

[80] Gene Lewis,"Object Detection for Autonomous Vehicles", Stanford University, Stanford, CA

[81] J. Janai, F. Guney, A. Behl, and A. Geiger. Computer vision for autonomous vehicles:

Problems, datasets and state-ofthe-art. arXiv preprint arXiv:1704.05519, 2017.

[82] Meaning of confidence, Machine learning theory: http://hunch.net/?p=317

[83] Difference between confidence and accuracy in machine learning:

https://stats.stackexchange.com/questions/310559/difference-between-confidence-and-accuracy

[84] Ezeddin Al Hakim, “3D YOLO: end-to-end 3D object detection using point clouds”,

Stockholm, Sweden 2018

[85] Mean Average Precision for Object Detection: https://medium.com/@jonathan_hui/map-mean-

average-precision-for-object-detection-45c121a31173

[86] Computing mean average precision/recall for multiclass/multi-label classification:

https://stats.stackexchange.com/questions/21551/how-to-compute-precision-recall-for-multiclass-

multilabel-classification

https://towardsdatascience.com/how-do-self-driving-cars-see-13054aee2503
http://hunch.net/?p=317
https://stats.stackexchange.com/questions/310559/difference-between-confidence-and-accuracy
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173
https://stats.stackexchange.com/questions/21551/how-to-compute-precision-recall-for-multiclass-multilabel-classification
https://stats.stackexchange.com/questions/21551/how-to-compute-precision-recall-for-multiclass-multilabel-classification

124

[87] Performance measure on multiclass classification: https://www.youtube.com/watch?v=HBi-

P5j0Kec

[88] Joseph Redmon, Ali Farhadi, "YOLOv3: An Incremental Improvement", University of

Washington

[89] Dr. Robin Gras, Lecture Slides: Artificial Intelligence, University of Windsor.

[90] Confusion matrix terminology: https://www.dataschool.io/simple-guide-to-confusion-matrix-

terminology/

[91] Zhong-Hua Hao, Shi-Wei Ma, "Object recognition and pose estimation using appearance

manifolds",Hao, ZH. & Ma, SW. Adv. Manuf. (2013) 1: 258. https://doi.org/10.1007/s40436-013-

0022-5

[92] A. Osep, W. Mehner, M. Mathias, and B. Leibe, “Combined image-and world-space tracking

in traffic scenes,” in Robotics and Automation (ICRA), 2017 IEEE International Conference on.

IEEE, 2017.

https://www.youtube.com/watch?v=HBi-P5j0Kec
https://www.youtube.com/watch?v=HBi-P5j0Kec
https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
https://doi.org/10.1007/s40436-013-0022-5
https://doi.org/10.1007/s40436-013-0022-5

125

Vita Auctoris

 NAME: Chandini Ravindranathan Nair

 PLACE OF BIRTH: Ernakulam, Kerala, India

 YEAR OF BIRTH: 1991

 EDUCATION: Bachelor of Technology, 2008-2012

 Cochin University of Science and

 Technology, Ernakulam, Kerala, India

 Master of Science in Computer Science,

 2017- 2019

 University of Windsor, Windsor, ON

	A Voting Algorithm for Dynamic Object Identification and Pose Estimation
	Recommended Citation

	tmp.1560992408.pdf.eglbH

