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ABSTRACT 

Microbial contamination of beach water negatively affects public health 

and the nation’s economy. Combined sewer overflows (CSO) and sanitary sewer 

overflows (SSO) have repeatedly been identified as major threats to water quality. 

UV radiation can be used to reduce the risk of bacterial pollution. In order to 

quantify the efficacy of UV treatment in a timely manner, real-time quantitative 

polymerase chain reaction (qPCR) methods are analyzed in this thesis. First, a 

robust qPCR-based method was developed to quantify UV inactivation of E. coli. 

This method employed long amplicon qPCR with various gene targets in order to 

do a scan of DNA damage and determine suitable gene targets for reliable 

quantification. UV-induced DNA damage was found to be widespread through the 

genome of E. coli. Of all the gene targets, the cell division genes were found to be 

the most sensitive and therefore, would serve as good targets for detecting UV 

inactivation through qPCR. Next, the developed method was applied to simulated 

CSO samples. The qPCR method was found to have a linear correlation with the 

culture-based technique between the UV dose range of 0 – 20 mJ/cm2. 

Additionally, the UV disinfection kinetics were analyzed for all the samples. It was 

found that a single-strain pure E. coli culture was more susceptible to UV damage 

than E. coli found in wastewater. Overall, UV disinfection is an effective means of 

reducing microbial contamination, and qPCR is a good surrogate for quantifying 

UV inactivation as opposed to the time-consuming culturing methods. 
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CHAPTER 1: 

INTRODUCTION TO THE STUDY 

General Introduction 

 Increasing populations and urbanization have compromised the world’s water 

resources. Fresh water used for drinking and recreation is contaminated by untreated 

sewage, toxic chemicals, pharmaceuticals and excess nutrients. The US Environmental 

Protection Agency (USEPA) identifies microbial contamination as one of the major 

causes of water impairment, and most commonly reported cause of water pollution 

nationwide (USEPA, 2012; Pandey et al., 2014). Combined sewer overflows (CSO) and 

sanitary sewer overflows (SSO) have repeatedly been identified as major threats to water 

quality (WHO, 2003; McLellan et al., 2007; Templar et al., 2016). Other sources include 

bird droppings, animal wastes, and stormwater runoff. From all these sources, various 

types of pathogens are transported and discharged into receiving waters. Exposure to 

polluted water can lead to gastrointestinal (GI) and some upper respiratory illnesses, 

which are of great concern to the public (DeFlorio-Barker et al., 2018). 

Need for Great Lakes Water Security 

 The Great Lakes contain over 20% of the world’s supply of freshwater, and over 

80% of North America’s surface freshwater (USEPA, n.d.). Aside from hosting a diverse 

array of plants, animals, and ecosystems, the Great Lakes basin is Canada’s densest 

population center and heavily contributes to the economic activity of the nation. 

Approximately 75% of Canada’s manufacturing, 80% of Ontario’s power generation, and 

95% of Ontario’s agriculture lands depend on the Great Lakes (Ministry of the 

Environment, Conservation and Parks, 2015). Due to its numerous economic advantages, 
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its regional economy is the fourth largest worldwide. Therefore, the strength and success 

of Ontario and Canada lies in the Great Lakes. 

 Recreational use and tourism in the Great Lakes region generated an estimated 

$12.3 billion in 2010 alone (Ministry of Environment, Conservation and Parks, 2016). 

However, the revenue from recreation and tourism is offset by the cost of water 

treatment, fisheries losses, health care and hospitalizations for those affected by 

waterborne illnesses (DeFlorio-Barker et al., 2018). With more people falling ill from 

poor recreational water quality, the public becomes more concerned about their quality of 

life and national water security. As such, there is a great need for providing proper and 

reliable measures to keep the Great Lakes secure and safe for everyone. 

Beach Water Quality and Monitoring 

 The health of swimmers is of particular importance. Unlike drinking water, which 

undergoes a treatment process before public exposure, there is no protective engineered 

control separating polluted waters and swimmers. To limit the risk, regulatory agencies 

post advisories and close beaches when they are deemed unsafe. As sewer overflows also 

degrade water quality, many municipalities aim to reduce the number of overflow events 

by upgrading their sewer infrastructure. However, the costly price tag makes it an 

unappealing option. Implementing disinfection technologies, on the other hand, provide a 

relatively lower cost and offer a wide range of treatment options (Tondera et al., 2015; 

Tondera et al., 2016; Eramo et al., 2017). 

 The threat of fecal contamination from untreated sewage is well-established 

(Templar et al., 2016). Specifically, pathogens from untreated human waste pose the 

greatest threat to humans. Direct detection of these pathogens in water is difficult as they 



 

3 
 

are present in low numbers and yet are highly infectious. As such, bacterial water quality 

is assessed by quantifying fecal indicator bacteria (FIB), using total coliform, fecal 

coliform, Escherichia coli, and enterococci. These indicator organisms have been 

extensively used to detect the presence and assess the health risk in both fresh and marine 

waters. Namely, the use of E. coli has been recommended by the European Commission 

(European Union, 2006), the World Health Organization (WHO, 2003), Health Canada 

(Health Canada, 2012), and the USEPA (Dufour 1984; USEPA 2012). E. coli is found in 

high concentration in the intestines of humans and other warm-blooded animals, and 

therefore, serves as a proxy to determine the level of fecal pollution in water. It best 

satisfies the fecal indicator organism criteria and thus is currently regarded as the “gold 

standard” in assessing microbial safety of water (Bridle, 2014). 

Ultraviolet Disinfection 

Since the discovery of toxic by-products formed through chlorination, advanced 

disinfection techniques have become more popular. In particular, ultraviolet (UV) 

disinfection has been increasingly used in recent years, as it is a physical disinfectant that 

does not result in the formation of any by-products. Exposure to UV-C light (254 nm) 

damages DNA by causing strand breaks and/or forming pyrimidine dimers. These dimers 

form kinks in the helical structure of DNA that result in inhibition of transcription and 

DNA replication. 

Methods of Quantification 

The efficiency of any disinfection technique is generally monitored by measuring 

the concentration of indicator bacteria, such as E. coli, using traditional culture-based 

methods. There are numerous conventional methods available including, but not limited 
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to: multiple tube fermentation (MTF), membrane filtration technique, and IDEXX 

Colilert. The IDEXX Colilert technique is an approved method for culturing. Samples for 

Colilert, as well as other traditional methods, need to be incubated for 18 – 24 hours. 

Beach water quality is very weather-dependent and can often change quite significantly 

with time, and thus this is a significant limitation of the culture-based methods. 

More recently, rapid culture-independent molecular techniques have been 

explored and applied for detecting waterborne microorganisms of concern. Rather than 

culturing the bacteria, these methods detect threats based on DNA found in the samples. 

The polymerase chain reaction (PCR) is a common molecular technique for DNA. In this 

reaction, a target DNA sequence is amplified in cycles with three steps: (1) denaturation, 

(2) annealing and (3) extension. The first step causes the double-stranded DNA to uncoil 

and become single-stranded, ready to be copied. In the second step, specific primers 

(forward and reverse) anneal to the DNA strands and provide a starting point for the 

DNA polymerase enzyme. Finally, the enzyme carries out polymerization by attaching 

complementary deoxyribonucleotide triphosphates (dNTP) to the growing synthesized 

DNA strand. 

Real-time quantitative PCR (qPCR) follows the same principles as regular PCR, 

but measures the amplification of PCR products by using fluorescent dyes. SYBR green, 

TaqMan probes, and molecular beacons are commonly used fluorescent systems for 

qPCR. Many qPCR protocols have been developed for the detection of waterborne 

microorganisms of concern, including one by the USEPA (Chern, 2011; Aslan, 2015). 

However, the majority of these protocols have not been developed with quantification of 

disinfection efficiency in mind. Whether chemical or physical disinfectants are used, they 
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alter the cell in different ways and the molecular detection methods developed thus far do 

not account for the discrepancies. Researchers have developed modified protocols, using 

additional steps, chemical reagents and dyes to minimize false-positive and false-negative 

qPCR results. Though qPCR-based techniques are much faster than conventional 

culturing methods, they still require some developments, especially for UV radiation. 

There is currently no consensus on a qPCR-based technique for quantifying UV 

disinfection efficiencies. 

 

Thesis Objectives 

 The main objective of this thesis was to address the issue of microbial 

contamination of recreational water using UV light as a disinfectant. In order to 

determine the efficacy of UV as a treatment option, both culture-based and qPCR-based 

methods will be used. The aim was to determine a correlation between the two techniques 

and determine if the rapid nucleic acid technique can be used as a surrogate for the more 

time-consuming traditional method. 

 The objective of Chapter 2 was to develop a reliable qPCR-based method that can 

quantify UV inactivation of E. coli. A review of relevant literature was conducted to 

determine the deficiencies in applying qPCR to UV-exposed samples. In order to 

quantify disinfection efficiency, the first objective was to identify the criteria for suitable 

gene targets and then use the E. coli genome to determine targets for qPCR. Primers were 

designed and tested for the selected targets, and standard curves were developed and 

evaluated. The next objective was to determine the effect of UV light on E. coli. This 
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study compared the culture-based and qPCR-based methods, short-amplicon (SA) and 

long-amplicon (LA) qPCR, and LA-qPCR of seventeen selected gene targets. Then 

correlations were tested for LA-qPCR versus IDEXX Colilert. The final aim was to 

suggest suitable target(s) that can be applied for quantifying UV disinfection with qPCR.  

 In Chapter 3, the primary aim was to evaluate the efficacy of UV treatment for 

managing microbial beach contamination using qPCR. The focus was specifically on 

fecal contamination of recreational waters caused primarily by CSO and SSO. For this 

study, simulated CSO (sCSO) samples were generated using wastewater. Since Ontario 

requires primary level treatment on CSO, primary-treated sCSO were also generated. The 

UV disinfection kinetics of the samples was first examined. Comparisons were made 

between inactivation rates of pure E. coli, untreated and primary-treated sCSO. Then, the 

disinfection efficiency was quantified using culture-based and qPCR methods. 

Correlations were developed between the two methods, and the applicability of the 

developed qPCR was discussed. 

 Finally, Chapter 4 summarizes the main conclusions from this investigation and 

provides future research recommendations based on the findings of this thesis. 
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CHAPTER 2: 

DEVELOPMENT OF ROBUST QPCR METHOD FOR QUANTIFYING UV 

INACTIVATION OF E. COLI 

Introduction 

 In recent years, more attention has been given to ultraviolet (UV) disinfection for 

water treatment. Compared to chemical disinfectants such as chlorine and ozone, it has a 

greater germicidal efficiency and does not produce any disinfection by-products. UV 

light is a physical disinfectant and its mechanism differs from that of chemical 

disinfectants. Specifically, UV-C (200 nm < λ < 280 nm) is a well-known mutagen at a 

molecular genetic level. Where chlorine and ozone oxidize the bacterial cell membrane 

causing it to rupture, UV disinfection generally maintains cellular integrity. UV-C light 

targets DNA, forming pyrimidine dimers in the helical structure that cause DNA to lose 

its functionality. 

 The evaluation of disinfection efficiency is commonly performed by applying 

standard microbiological methods which rely on culturing of E. coli. The culture-based 

methods for enumeration of E. coli have several limitations including the long incubation 

period required. For this reason, rapid molecular techniques have been proposed as 

alternatives to the traditional methods. One such technique is real-time quantitative 

polymerase chain reaction (qPCR) which amplifies and quantifies a specific region of the 

genome of a target organism. qPCR offers several advantages over the culture-based 

methods. It is able to provide quantitative results within a few hours and has a greater 

quantification range. Additionally, it is able to examined any microbe of interest. The 
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technique is promising enough for the USEPA to issue a draft method which uses qPCR 

for E. coli detection in recreational waters (Aslan et al., 2015). 

 To evaluate the performance of disinfection technologies, it is crucial to select an 

appropriate and reliable method. Currently, there are deficiencies that need to be filled 

before qPCR can be applied for quantifying UV disinfection efficiency. Firstly, UV light 

causes DNA damage at random points across the genome. When a small region of a gene 

is targeted in qPCR, it is not a good representation of the damage occurring over the 

entire genome and it may seem as though there is no damage. Whether quantifying 

bacteria, viruses or other organisms, amplification of short DNA fragments (less than 

200-bp) is easier, efficient, and is currently commonly used for such applications (Nocker 

et al., 2007; Süß et al., 2009; Banihashemi et al., 2012; Zhang et al., 2015; Ho et al., 

2016; Leifels et al., 2016; Kibbee & Ormeci, 2017; Xu et al., 2017). Banihashemi et al. 

(2012) used one short- and one long-amplicon for detecting DNA damage after a single 

UV dose to pure bacterial cultures, and found the long-amplicon was able to detect more 

damage. Their limited study has shown the potential for long amplicon qPCR (LA-

qPCR), but the 1000-bp amplicons used in their work may not be ideal. Ho et al. (2016) 

have argued that increasing amplicon length beyond 500-bp was not suitable. As 

amplicon length increases beyond this size, longer elongation times are required during 

qPCR amplification, which result in the formation of unspecific products. Furthermore, 

LA-qPCR tends to have a lower amplification efficiency which is a sign of a poor qPCR 

method. Ho et al. (2016) have suggested 500-bp to be a good compromise between the 

limited information gained from short amplicons and the issues that arise from very long 

amplicons. However, to date, there has been no work done using the suggested 500-bp 
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amplicon length for UV disinfection, nor have any correlations been made between 500-

bp qPCR and conventional culturing techniques. 

 The structure of DNA allows it to persist in the environment even after cell death. 

DNA-based qPCR methods quantify all DNA present in a sample, and cannot distinguish 

between live or dead cells. For enumeration, majority of cells are assumed to be living so 

this does not pose a concern. Thus, emphasis is put on selecting qPCR gene targets that 

are present in high concentration and specific to the bacteria of interest (i.e., E. coli). For 

quantifying disinfection, it is important to determine cell viability. Propidium monoazide 

(PMA), a photo-activated DNA intercalating dye, can be used to correct for false signal 

from membrane-compromised cells; thus, leaving only the signal from living cells. 

However, UV radiation does not damage the membrane, so contribution from dead cells 

cannot be eliminated by PMA. UV light damages DNA directly, preventing DNA 

replication. However, if the gene target chosen is not essential for cell functioning, 

damage to that gene may not be reflective of the efficacy of disinfection. Currently, gene 

targets are not chosen based on importance to cell functioning. For example, rRNA genes 

are common PCR targets due to their high copy numbers and specificity to bacteria. Yet 

for determining disinfection efficiency, rRNA genes do not provide insight on essential 

functioning of the cell. For UV treatment, three gene target categories that better indicate 

cell viability were chosen in this study: UV repair, cell division, and metabolism. UV 

repair genes were chosen because damage to them would prevent the cell from repairing 

itself. Bacterial UV repair pathways were examined for determining target UV repair 

genes (Reuven et al., 1999; Goosen & Moolenaar, 2008; Janion, 2008). Next, cell 

division genes were chosen because damage to them would prevent the cell from 
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multiplying and increasing in number. The bacterial cell division pathway outlined in 

Ouellette et al. (2015) was used to identify key cell division genes. Lastly, metabolic 

genes were chosen to give insight on the cell’s overall health and its ability to maintain 

itself. The E. coli core metabolism map from the BiGG Model was used to identify 

important intersections that, if damaged, would reduce the production of essential 

metabolic precursors (Noor et al., 2010). To provide a comparison, rRNA genes which 

are commonly used were chosen as well. 

 Based on review of relevant literature, there is limited information available and 

no consensus on a reliable qPCR method for quantifying the efficacy of UV disinfection. 

The first objective of this study was to identify suitable gene targets that serve important 

functions. The second objective was to design and test primers, aiming for a 500-bp 

amplicon length. Consequently, standard curves for each primer set were evaluated for 

acceptable amplification efficiency and goodness of fit. The next objective was to 

determine the effect of UV on a pure E. coli culture by exposing it to UV in collimated 

beam experiments and calculating the efficiency of treatment through both a culturing 

technique and qPCR. This work also compared short and long amplicon qPCR results, 

and compared the newly selected target to the commonly used rRNA and uidA. 

Subsequently, correlations were developed for the LA-qPCR and culturing methods. The 

final goal was to suggest one or multiple gene target(s) that can be applied for 

quantifying UV disinfection with qPCR.  

 



 

13 
 

Materials and Methods 

Gene Target Selection Process 

 Gene targets were selected from three categories that would give insight on cell 

viability post-UV exposure. First, UV repair genes were chosen because damage to them 

would prevent the cell from repairing itself. Bacterial UV repair pathways were examined 

for determining target UV repair genes (Reuven et al., 1999; Goosen & Moolenaar, 2008; 

Janion, 2008). Next, cell division genes were chosen because damage to them would 

prevent the cell from multiplying and increasing in number. The bacterial cell division 

pathway outlined in Ouellette et al. (2015) was used to identify key cell division genes. 

Lastly, metabolic genes were chosen to give insight on the cell’s overall health and its 

ability to maintain itself. The E. coli core metabolism map from the BiGG Model was 

used to identify important intersections that, if damaged, would reduce the production of 

essential metabolic precursors (Noor et al., 2010). 

 To provide a comparison, rRNA genes which are commonly used were chosen as 

well. These genes not only help identify a bacterial species, but their products are 

essential for translation of RNA and the production of various proteins. 

 

Primer Design 

Primers were designed using Geneious 10.1 software. The sequences for target 

genes found in various E. coli strains were downloaded from the NCBI database. E. coli 

sequences were aligned with those of other common bacteria of concern and bacteria 

closely related to E. coli (i.e., Salmonella, Shigella, Citrobacter, Klebsiella, Enterobacter, 
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etc.). Primers were designed for regions specific to E. coli. Forward and reverse primer 

pairs met the following requirements: 

- 20 bp in length 

- 40 – 60% GC content 

- Primer pair ∆Tm less than 2°C 

- Avoid dinucleotide repeats 

- Avoid regions of secondary structures (i.e., hairpins, self-dimers, primer-dimers) 

- 3’ should end with C/G, or at least 2C/G in the last 5 bp 

- Tm ≈ 60°C 

- 410 – 530 bp amplicon length 

For comparison, two short amplicon primer pairs were chosen: 23S (EC23S857 F- 

and R-primers from Chern et al., 2011) and uidAS (Shahraki, unpub. data). 

Testing Primers 

Chosen primers (Table 1) were first tested on the NCBI BLAST database to 

determine overlaps with other microorganisms. Subsequently, all primers were tested 

using PCR and gel electrophoresis. PCR was conducted with a 25-µL reaction volume, 

containing: 16.4 µL nuclease-free water, 2.5 µL 10x Taq buffer, 3.5 µL 20-mM MgSO4, 

0.5 µL of each 10-mM F- and R-primer, 0.1 µL Taq polymerase, and 1 µL E. coli 

genomic DNA template. A negative control (nuclease-free water) was included. All 

reactions were conducted in duplicates. The program started with an initial incubation at 

95°C for 1 minute, followed by thirty-five cycles of 95°C for 15s, 60°C for 15s, and 72°C 

for 40s. The last step included one cycle of 72°C for 7 min to complete elongation. 
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PCR products were then run on a 2% agarose gel. The product size was measured 

against the DNA ladder to confirm that the designed primers only produced a single 

product and all products were the expected length. 

E. coli Culture 

E. coli ATCC® 8739™ cells were obtained in six 300-µL glycerol stock vials. A 

single vial was added to 20 mL sterile nutrient broth (Becton Dickinson) and incubated at 

37°C for 20 hours. Sterile nutrient broth agar plates were prepared with 1.5% agar. 

Cultured cells were streaked on the plates to separate colonies. A single isolated colony 

from the agar plates was inoculated in 40 mL sterile nutrient broth and incubated for 16 – 

24 hours at 37°C. The culture was then centrifuged for 20 min at 4,000 rpm. The nutrient 

broth supernatant was disposed and the settled cells were re-suspended in 20 mL sterile 

phosphate-buffered saline (PBS). Cell concentration was estimated using UV-vis 

spectrophotometry according to section 4.3.2. of the USEPA Draft Method C (Aslan et 

al., 2015). For developing standard curves, E. coli cells were serially diluted and aliquots 

in triplicate were frozen at -20°C until extraction. For UV exposure experiments, E. coli 

cells were diluted in 1 L sterile PBS to approximately 7-log cells per mL. 

UV Exposure Experiments 

UV exposure experiments were conducted with a low-pressure collimated beam 

apparatus (Trojan Technologies, Canada) according to manufacturer’s standardized 

protocols. Intensity measured at the sample surface with the IL1700 radiometer (Trojan 

Technologies, Canada). For each sample, 53-mL E. coli suspension was filled in clear 

glass petri dish with a stir bar. 3 mL was taken out for UVT readings using Real Tech 

Water’s UV254 portable meter with split sense technology. Based on the UVT readings, 
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an excel sheet was used to calculate the time required for the desired dose. Each dose was 

done in triplicate. Calculations for the dose accounted for the petri, divergence, and 

reflection factors as per Bolton & Linden (2003). 

After exposure, each sample was split into aliquots for DNA extraction and for 

culturing. Six 1.75-mL aliquots were frozen at -20°C for extraction, and the remaining 

sample was used for culturing. 

Culture-dependent Method 

IDEXX Colilert Quanti-Tray®/2000 was used as the culture-based method in this 

study. It is able to detect both total coliform and E. coli up to 2,419 MPN/100mL. Each 

sample, UV-exposed and non-exposed, was serially diluted with sterile PBS to a 

concentration that would be within the range of this method. 

DNA Extraction 

Frozen 1.75-mL samples were thawed at room temperature and centrifuged at 

10,000 rpm for 15 min. The supernatant was taken out and 400 µL sterile PBS was 

added. For each sample, 500 µL 1-mm sterile glass beads and 400 µL sucrose lysis buffer 

were added. Sucrose lysis buffer was made according to Shahraki et al. (2018). After 

adding lysis buffer, samples were subjected to bead-beating using the Mini-beadbeater-16 

(Lab Services BV, Nederland) for 40s three times at an intensity of 3,450 

oscillations/min. 100 µL 1% SDS and 50 µL 20 mg/mL lysozyme (Sigma-Aldrich, USA) 

were added to each tube. Samples were then incubated at 37°C on a shaker overnight. 

The next day, 2 µL of 20 mg/mL proteinase K (Thermo Scientific, USA) was added, and 

samples were again kept in the incubator at 37°C on a shaker overnight. Finally, the next 

morning, proteinase K was deactivated in a 95°C water bath for 10 min. The digest from
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Table 1: E. coli primers chosen for qPCR 

Category Gene Forward (5' -> 3' on + strand) Reverse (5' -> 3' on - strand) Product (bp) Tm 

rRNA 
rrsA CGGGGAGGAAGGGAGTAAAG CGGTCGACTTAACGCGTTAG 440 60 
rrlA GTGAGCTCGATGAGTAGGGC CCTTGCCGAAACAGTGCTCT 519 60 

UV repair 
uvrB TATGGTCTGGGCGATCCTGA AACAGTAGCCCAGCTCGTTC 475 60 
umuC TAAGCTTGCCAATCATGCGG ATTGAGCGCAAATGGTGACG 460 60 

Cell 
division 

ftsZ TTGGGTATCCTGACCGTTGC TTGTCGGAAGCAAATGCACG 500 60 
ftsQ CTCTGAACACGCGAAACAGC CCCTGCAACACTTCATTGGC 505 60 

Metabolic 

gltA TACGGTCCATAGCACGTTCC CAGCTGGCGACCGATTCTAA 440 60 
ptsG TGCGGGTAAACTGTCTGGTG CCAAATGCAGCAACCAGAGC 492 60 
pgl GACACAGGTTGTCGATGTGC CCCAGACATCCACTGAGCTG 527 60 
tktA GATGTCGCGAATAACGTGCC GGTTACGATCTGCCGATGGA 410 60 
fbaA CCGATTTTGGACATGCGCTC AAACAACTTCGCACTGCCAG 426 60 
tpiA GTTTACAGAGCCGCCGTACT GCAAAACGTGGACCTGAACC 454 60 
ppsA GTAACCCTGGTGCACACGAT TTCCGGAATGGGTGTTTCCG 430 60 
pck GTGGGCAGACAAAGGCAAAG CCGAAGAACACCGCAACATC 495 60 
dfp TGAGCTGGGTAAATGGGCTG TGATACCAGCGTGACGTTCG 478 60 
uidAL* ATAACGGTTCAGGCACAGCA TAATGGACTGGATTGGGGCC 455 60 
gadA CAATCATGCGTTTCGGGTCC CACGAAATGCGCGATGATGT 484 60 

Short 
amplicon 

23S GGTAGAGCACTGTTTtGGCA** TGTCTCCCGTGATAACtTTCTC** 88 60 
uidAS* GTAATGTTCTGCGACGCTCA AATAACGGTTCAGGCACAGC 70 60 

 *L is used to denote the long amplicon primers of the uidA gene, and S for short amplicon 
**Lower case nucleotide denotes deliberate mismatch basepair 
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each tube was plated in a 96-well extraction plate, and DNA was extracted by magnetic 

bead robotic extraction according to Shahraki et al. (2018). Extracts were kept in the 

freezer at -20°C until qPCR analysis. 

qPCR 

First, qPCR was used to create standard curves for each primer, developing a 

relationship between CT and the log cell numbers. Afterwards, DNA extracts from the 

UV exposure experiments were used with each primer set. Due to the large number of 

samples and primer pairs, 384-well qPCR plates were utilized with a 9-µL reaction 

volume. To prepare the 384-well plate, four 96-well plates were prepared with 12-µL 

reactions containing: 4.4 µL nuclease-free water, 6 µL 2x PowerUp™ SYBR® Green 

Master Mix (Applied Biosystems), 0.3 µL of each 10-mM F- and R-primers, and 1 µL 

DNA template. Then 9 µL was transferred from the four 96-well plates into a single 384-

well plate. The QuantStudio™ 12K Flex System (ThermoFisher Scientific) ran the 

following program: initial step at 95°C for 20s, followed by forty cycles of 95°C for 10s 

and 60°C for 20s. All results were exported into Microsoft Excel files for analysis. 

 

Results and Discussion 

Selected Gene Targets 

The first objective of this study was to identify appropriate gene targets for 

quantifying UV damage to E. coli cells. Three major gene function categories were 

chosen, representative of the cell function and viability: UV repair, cell division, and 

metabolism. Within each category, the goal was to choose a gene target that, if damaged, 
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would disrupt cellular function. For comparison, commonly used rRNA genes were also 

included. 

UV repair genes were selected because repair of UV damage would defeat the 

purpose of disinfection. Goosen & Moolenaar (2008) present an overview of different 

UV damage repair enzymes found in bacterial cells. Exposure to UV light induces an 

SOS-response in E. coli, and nucleotide excision repair (NER) is an important 

mechanism to remove DNA damage caused by UV light, environmental carcinogens, or 

other compounds that cause DNA structure damage. The uvrA, uvrB, and uvrC proteins 

play an important role in NER and any mutations in these proteins have resulted in UV 

sensitivity in E. coli (Goosen & Moolenaar, 2008). Of the three, uvrB plays an essential 

role, as it is needed to interact with both uvrA and uvrC in the NER reactions. Therefore, 

the uvrB gene was selected as one of the UV repair genes of interest, as damage to it 

would disrupt the cell’s ability to repair through NER. 

The SOS-response to UV light can also lead to SOS mutagenesis, creating a DNA 

polymerase that is capable of translesion replication (Reuven et al., 1999). The mutagenic 

gene umuC is activated by several other genes and is an important active agent for 

replicating across DNA lesions (Woodgate et al., 1989; Janion, 2008). Thus, umuC was 

chosen as the second UV repair gene of interest. It is representative of the cell’s last 

resort for error-prone repair. 

Cell division was chosen as the second category because damage would prevent 

an increase in bacterial concentration. Ouellette et al. (2015) present the cell division 

pathway for bacterial cells based on an E. coli model. The process of cell division begins 
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with the recruitment of the ftsZ protein to the division site. The ftsZ gene encodes for an 

“early” division protein; therefore, it was selected as it can prevent initiation of cell 

division. Buddelmeijer & Beckwith (2004) mention three membrane proteins required for 

cell division of E. coli, and the most crucial of the three is ftsQ as the other two are 

dependent on it. For this reason, ftsQ was chosen as the second cell division target, and 

also represents a “late” cell division protein. 

Lastly, the health and viability of a cell is reflected by its cellular metabolism. Certain 

metabolites serve as precursors for downstream building blocks for the cell. Noor et al. 

(2010) list twelve precursor metabolites needed for biomass gain in E. coli. These 

precursors eventually produce amino acids, glycogen, nucleotides, etc. When choosing 

gene targets for metabolic pathways, the goal was to select those which would reduce the 

production of these precursor metabolites. Selected metabolic targets and the reasoning 

behind their selection is presented in Table 2. A map of the targets, including the 

precursor metabolites is presented in Figure 1. Collectively, the selected genes prevent 

the production of nine precursor metabolites. Certain genes that were chosen are not 

related to precursor metabolites; however, they serve another metabolic function. For 

example, presence of gadA helps E. coli survive extreme acidic conditions such as the 

low pH of a host’s stomach. 

16S and 23S were chosen as the rRNA gene targets. Both targets are commonly 

used for other molecular techniques such as next-generation sequencing (NGS) and 

provide a comparison for the other genes. rrsA is one of seven 16S rRNA genes and a 

component of the 30S small subunit ribosome. rrlA is one of seven 23S rRNA genes and
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Table 2: Selected metabolic genes and their reasoning 

Gene Reasoning 
gltA Encodes for citrate synthase 

Catalyzes the first reaction of the tricarboxylic acid (TCA) cycle 

TCA cycle is responsible for majority of the electron transfer which create 

energy (ATP) for a cell 

ptsG Encodes for component of glucose-specific phosphotransferase system 

(PTS) 

Transports glucose into the cell, which is later phosphorylated into glucose 

6-phosphate (G6P) 

G6P is an essential precursor metabolite 

pgl Encodes for 6-phosphogluconolactonase, an intermediate enzyme in the 

conversion of glucose into ribose 5-phosphate 

tktA Encodes for transketolase I (responsible for majority of transketolase 

activity compared to transketolase II) 

Catalyzes the reversible reaction between two precursor metabolites: 

glyceraldehyde 3-phosphate (G3P), ribose 5-phosphate 

fbaA Encodes for fructose-bisphosphate aldolase class II 

Catalyzes the reversible reaction during glycolysis and gluconeogenesis, 

forming or breaking down glyceraldehyde 3-phosphate (G3P) 

tpiA Encodes for triose-phosphate isomerase 

Catalyzes the isomerization between glyceraldehyde 3-phosphate (G3P) and 

dihydroxyacetone phosphate (DHAP) 

G3P is an essential precursor metabolite 

ppsA Encodes for phosphoenolpyruvate (PEP) synthase 

Synthesizes PEP from pyruvate and water 

PEP is an essential precursor metabolite 

pck Encodes for phosphoenolpyruvate (PEP) carboxykinase 

Synthesizes PEP from oxaloacetate 

PEP is an essential precursor metabolites 

dfp Encodes for a bi-functional protein that catalyzes two sequential reaction to 

synthesize coenzyme A 

Coenzyme A is needed to form acetyl-coA and succinyl-coA, two of the 

twelve essential precursor metabolites 

uidA Encodes for β-glucuronidase 

Used commonly as a qPCR target for E. coli 
Used in this study as a reference to current practice 

gadA Encodes for glutamate decarboxylase α 

Helps to maintain pH when exposed to extreme acidic conditions (i.e., 

human stomach) 
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Figure 1: Map of Core Metabolism of E. coli. Original map obtained from the BiGG Model, http://bigg.ucsd.edu/models/e_coli_core
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a component of the 50S large subunit ribosome. Problems with the ribosomal structure 

would eventually lead to arrested translation, as ribosomes are basically protein-

synthesizing machines.  

 

Figure 2: Standard curves for qPCR for two short amplicon gene targets. The no 
template control (NTC) had an undetermined CT. Cell counts less than 1,000 also had an 
undetermined CT value, and are not plotted. Error bars represent standard deviation 
between replicates. Some error bars are smaller than the markers. 

Standard Curves 

Standard curves were developed for each primer set. Determining qPCR 

efficiency based on the standard curves is very important for determining the 

performance of qPCR, as poorly optimized assays will have poor sensitivity and 

specificity. An optimized qPCR assay is described as one that is linear (R2 > 0.98), 

efficient (amplification efficiency 90 – 105%), and consistent across replicates. All of 

these factors were checked in this study before the primers were applied for UV exposure 

experiments. 

As the amplicon length increases, the efficiency of qPCR will decrease. Ho et al. 

(2016) reported amplification efficiencies dropped 20% when amplicon size was 

increased from 250-bp to 456-bp. In this study, the amplification efficiencies of the two 
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short-amplicon targets, uidAS and 23S, were 104.92% and 102.52%, respectively (Figure 

2). These targets both fall within the acceptable range of 90 – 105%. Efficiencies greater 

than 100% are a result of polymerase inhibition caused by excessive amounts of DNA or 

carry-over contamination (i.e., proteinase K, ethanol, SDS). Presence of inhibitors 

 

 

Figure 3: Standard curves for qPCR for two rRNA gene targets. The NTC had an 
undetermined CT. Error bars represent standard deviation between replicates. Some error 
bars are smaller than the markers. 

 

Figure 4: Standard curves for qPCR for two UV repair gene targets. The NTC had an 
undetermined CT. The highest point is neglected from the linear regression. Error bars 
represent standard deviation between replicates. Some error bars are smaller than the 
markers. 
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Figure 5: Standard curves for qPCR for two cell division gene targets. The NTC had an 
undetermined CT. The highest point is neglected from the linear regression. Error bars 
represent standard deviation between replicates. Some error bars are smaller than the 
markers. 

 

increases the CT value, causing a shallower slope which in turn results in an amplification 

efficiency greater than 100%. 

Figures 3 – 6 show the standard curves for all the targets selected. The first 

criteria for an optimized qPCR assay was met by all targets, with each target having an r-

squared value greater than 0.99. Most targets had a linear relationship down to 4-log 

cells; however, some targets were more sensitive and continued to be linear until 3-log 

cells. Anything less than 1,000 cells had an undetermined CT value and was not plotted. 

The second condition for the qPCR assays was to have an amplification efficiency 

between 90 – 105%. This criterion is primarily set for short amplicons. Work done with 

longer amplicons is expected to have lower efficiencies and therefore the range can be 

expanded. For long amplicons, if the amplification efficiency is found to be greater than 

80%, the primers may be used considering the remaining criteria for an optimized assay 

are met (Ho et al., 2016). The long-amplicon primer sets designed in this study all had 
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amplification efficiencies greater than 80%. Targets with the greatest efficiencies were 

the metabolic genes uidAL, gadA, and ppsA with 100.89%, 97.64% and 97.44%, 

respectively. 

While checking the amplification factors and efficiencies, the melt curves should 

also be taken into account. In this qPCR assay, SYBR Green was used as the fluorescent 

reporter. SYBR Green is a DNA-intercalating dye that binds to double-stranded DNA 

during the PCR process and emits a fluorescent signal that is quantified by the 

instrument. This dye is unspecific to the product, as it binds to any double stranded DNA 

product. Therefore, the melt curves should be assessed to ensure that a single product was 

formed and that the CT values are not skewed by additional PCR products. The melt 

curves for each primer set designed in this study was examined to ensure that there was 

only a single melting temperature (Appendix A).   

The last measure of a good qPCR assay was consistency between replicates. As 

shown by the standard deviation error bars in the graphs, the replicates produced similar 

results. 
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Figure 6: Standard curves for qPCR for metabolic gene targets. The NTC had an 
undetermined CT. The highest point is neglected from some of the linear regressions. 
Error bars represent standard deviation between replicates. Some error bars are smaller 
than the markers. 

Note: The CT value for 1,000 cells (3-log cells) with the pck primer set was 
undetermined, and therefore, not plotted. 
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Dose-Response of E. coli 

The dose-response curves for E. coli under UV light are presented in Figure 7. 

UV dose up to 20 mJ/cm2 are commonly applied for pure E. coli cultures (Hijnen et al., 

2006). Within this range, the culture based method shows approximately a 5.5-log 

reduction in culturable cells. After a dose of 20 mJ/cm2, the curve plateaus. On the other 

hand, the dose-response curve from LA-qPCR shows the damage continues to occur even 

after 20 mJ/cm2. It is assumed that damage continues to occur as long as there is DNA 

present, independent of whether the cell has lost culturability. It is important to note that 

traditional methods measure the ability of cells to culture and propagate on a specific 

media, whereas qPCR measures damage done to a specific region of the genome. 

Short amplicon qPCR was less sensitive at detecting damage compared to the 

long amplicon alternative (Figure 7(b) & (c)). Over the 100 mJ/cm2 range, short amplicon 

uidA was only able to detect two cycle changes, whereas the long amplicon was able to 

detect approximately a five cycle difference. Also, the short amplicon is less sensitive 

after 20 mJ/cm2, as damage continues to occur in other regions of the genome. This 

agrees with the work of other researchers that larger amplicons should be used as 

opposed to short amplicon when quantifying UV damage.  

The use of various gene targets allowed for a genomic scan of E. coli, and 

provided insight on the damage caused by UV light. This study found that UV causes 

widespread damage to the genome, as shown by the increase in CT of every selected gene 

target (Appendix A). 
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Figure 7: Inactivation curve of E. coli ATCC 8739 disinfected by UV-C as measured by 
(a) IDEXX Colilert Quanti-Tray®/2000, (b) long amplicon and (c) short amplicon qPCR 
of the same gene target, uidA. Error bars represent the standard deviation between 
triplicates. Some error bars are smaller than the size of the marker. 
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Analysis of rRNA Genes 

The two rRNA genes that were selected were both found in E. coli in high 

concentrations. The average CT values of rrsA and rrlA before UV exposure was 15.8 for 

both for 107 cells/mL. Of all the targets, they had the highest concentration and thus, met 

the first criterion of being a ‘good target’ for qPCR. These targets also met the second 

criterion, as they were both sensitive to UV damage and saw a 5-cycle change throughout 

the 0 – 100 mJ/cm2 dose range. Additionally, both targets are important for ribosomal 

activity and therefore, serve an important function in the cell. Thus, the selected rRNA 

targets are well-suited for quantifying disinfection using qPCR. 

The log reduction from IDEXX Colilert and the change in CT from qPCR using 

these targets were plotted, shown in Figure 8. Between the range of 0 – 20 mJ/cm2, the 

log reduction and change in CT were found to be directly proportional. Past this range, the 

log reductions did not increase further; however, the CT values continued to increase due  

 

Figure 8: Correlation between log reduction and change in CT for rRNA gene targets. 
Points marked with an X were used for the linear regression. 
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to ongoing DNA damage. A linear relationship was developed between log reduction and 

∆CT between 0 – 20 mJ/cm2 (up to 5-log reduction). To date, correlations such as these 

have not been developed for the rRNA targets, or any other gene target. A higher slope 

for this correlation implies that the target is more sensitive to UV damage. In the case of 

the rRNA targets, both genes had similar correlations and therefore, they are both equally 

sensitive to UV damage. However, if looking for a suitable rRNA target, rrlA is 

recommended as the R-squared value for this target was found to be better than rrsA. It 

can then be assumed that the damage done to rrsA is similar due to their similar 

inactivation rates. 

Analysis of UV Repair Genes 

The target concentration of the two selected UV repair genes was found to be 

high. The average CT values of uvrB and umuC before UV exposure was 17.5 and 16.6, 

respectively for 107 cells/mL. Each of them met the first criterion of being a ‘good target’ 

for qPCR. Additionally, both genes saw a 5-cycle change throughout the 0 – 100 mJ/cm2 

dose range. They were both sensitive enough to detect UV damage, and therefore, each 

met the second criterion mentioned earlier. Lastly, both gene targets serve important 

functions (NER and SOS mutagenesis), and damage done to these targets implies that the 

cells will not be able to undergo UV repair. Thus, both targets serve as good gene targets 

for quantification of UV disinfection through qPCR. 

Correlations were developed for the uvrB- and umuC-based qPCR results (Figure 

9). Again, there was a linear relationship between the UV dose range of 0 – 20 mJ/cm2. 

The slopes for both UV repair targets were not different, implying that the similar 

damage was done to both genes. However, the R-squared value for the umuC gene target 
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was poor compared to uvrB. Hence, if looking for a UV repair gene target, uvrB was 

found to be more suitable. It can be assumed that the damage done to the uvrB target is 

similar to the damage done to umuC.  

 

Figure 9: Correlation between log reduction and change in CT for UV repair gene targets. 
Points marked with an X were used for the linear regression. 
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For these targets, correlations between culture-based and qPCR methods were 

developed, again showing a linear relationship between 0 – 20 mJ/cm2 (Figure 10). The 

inactivation of both gene targets was found to be similar, with the ftsQ gene having a 

better correlation. Thus, if looking for a cell division gene target that is suitable for 

quantifying UV disinfection, ftsQ is recommended. The damage done to ftsZ can be 

assumed to be similar. 

 

Figure 10: Correlation between log reduction and change in CT for cell division gene 
targets. Points marked with an X were used for the linear regression. 

 

Analysis of Metabolic Genes 

A total of eleven metabolic gene targets were selected. All metabolic targets were 

found in high concentrations in E. coli, with CT values ranging from 17.0 to 18.5 for 107 

cells/mL. Thus, each of the eleven targets met the first condition of being a ‘good target’. 

Each target was sensitive enough to UV light, thereby meeting the second condition. On 

average, a 5-cycle change was seen throughout the 0 – 100 mJ/cm2 range. The function of 

each of the targets was mentioned in Table 1. With the exception of gadA and uidA, the 

ftsZ
y = 0.3484x - 0.0023

R² = 0.8305

0

1

2

3

4

5

6

0 2 4 6

∆C
T

Log Reduction

Rep 1 Rep 2 Rep 3

ftsQ
y = 0.3624x + 0.168

R² = 0.878

0

1

2

3

4

5

6

0 2 4 6
Log Reduction



 

35 
 

remaining nine targets serve an important role in the core metabolism of E. coli. 

Therefore, those nine meet the third measure of a ‘good target’. gadA and uidA, though 

present in high concentrations and sensitive, are only important in certain conditions, 

(i.e., acidic environments, catalysis of complex carbohydrates).  

Again, correlations were developed for all eleven gene targets (Figure 11). Most 

metabolic targets were similar to one another. The most sensitive of all the targets was 

found to be tpiA, and the least sensitive was gltA. The uidA target had the best R-squared 

value of 0.9422. However, use of the uidA should be avoided as mentioned earlier, it does 

not serve an important function. Any of the nine gene targets mentioned earlier can be 

used as suitable targets for qPCR, as they all have similar slopes and good R-squared 

values. 
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Figure 11: Correlation between log reduction and change in CT all metabolic gene 
targets. Points marked with an X were used for the linear regression. 

ppsA
y = 0.2984x + 0.0227

R² = 0.8448

0

1

2

3

4

5

6

0 2 4 6

∆C
T

Log Reduction

Rep 1 Rep 2 Rep 3

pck
y = 0.3148x + 0.1242

R² = 0.8989

0

1

2

3

4

5

6

0 2 4 6
Log Reduction

dfp
y = 0.3097x + 0.1185

R² = 0.9404

0

1

2

3

4

5

6

0 2 4 6

∆C
T

Log Reduction

uidAL
y = 0.2808x + 0.0355

R² = 0.9422

0

1

2

3

4

5

6

0 2 4 6 8
Log Reduction

gadA
y = 0.2798x + 0.1274

R² = 0.8592

0

1

2

3

4

5

6

0 2 4 6

∆C
T

Log Reduction



 

38 
 

Comparison of All Targets 

Most of the selected gene targets in this study served as good options for 

quantifying UV disinfection through qPCR. The target concentration for all the selected 

genes was similar for 106 cells, as shown in Table 3. rRNA gene targets are used for 

enumeration because they are easily detected. This study shows that the other targets can 

also be easily detected, yet provide more information on cell functioning post-

disinfection than the rRNA genes. In order to compare the seventeen targets against one 

another, the total change in CT over the linear range of 0 – 20 mJ/cm2 was compared. 

Figure 12 shows this comparison for each gene target within each category. In term of 

sensitivity, the cell division targets were found to be the most sensitive to UV light (Table 

3, Figure 12).  

Table 3: Summary table of all gene targets 

Gene CT for 
106 cells 

∆CT from  
0 – 20 

mJ/cm2 

Amp. 
efficiency 

Correlation 
R2 

Important 
for cell 

function 

Good 
marker? 

rrsA 24.2 1.89 86% 0.897 No Good 
rrlA 23.4 1.79 92% 0.925 No Good 
uvrB 24.5 1.82 87% 0.860 Yes Very good 
umuC 24.9 1.91 83% 0.773 Yes Very good 
ftsZ 24.3 2.31 87% 0.831 Yes Excellent 
ftsQ 25.2 2.35 86% 0.878 Yes Excellent 
gltA 25.6 1.78  84% 0.834 Yes Very good 
ptsG 25.3 1.75 84% 0.864 Yes Very good 
pgl 25.6 1.96 90% 0.908 Yes Very good 
tktA 25.3 1.91 91% 0.850 Yes Very good 
fbaA 25.2 1.95 96% 0.833 Yes Very good 
tpiA 25.5 1.84 91% 0.920 Yes Very good 
ppsA 25.8 1.94 97% 0.845 Yes Very good 
pck 25.9 1.87 89% 0.899 Yes Very good 
dfp 24.5 1.79 90% 0.940 Yes Very good 
uidA 24.7 1.70 101% 0.942 No Good 
gadA 24.3 1.82 98% 0.859 No Good 
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For quantifying UV disinfection with qPCR, it is not necessary to use all 

seventeen selected gene targets. It is preferred that a single reliable target be used. From 

the results of this study, it is recommended that ftsQ be used for measuring UV 

disinfection efficiency. This target was found in high concentration in E. coli, most 

sensitive for quantifying UV-induced DNA damage, served an important cellular 

function, and had a good correlation with culture based methods. On the other hand, if 

other genes are of interest for some work, a ratio of the change in CT between the gene 

and ftsQ may be used to determine the damage. However, it should be kept in mind that 

the ratios from this study should only be used with a pure E. coli 8739 culture, or should 

be recreated with the different sample in order to be applied. 
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Figure 12: Average change in CT from UV Dose 0 – 20 mJ/cm2. Error bars represent standard deviation of replicates. 
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Conclusion 

In order to develop a robust qPCR method for quantifying UV inactivation of E. 

coli, long amplicon qPCR was applied with various gene targets, as short amplicons were 

not sensitive. The results of this study show that UV causes widespread damage across 

the genome. There was a correlation between the qPCR method and conventional culture-

based methods, within the commonly used UV dose range. This correlation allows the 

qPCR method to serve as a faster alternative to the conventional culture-based methods, 

and the log reduction can be estimated from the curve. It is recommended that for 

application the ftsQ gene be used as the target for qPCR. However, if for some reason, 

another gene target is of interest, a ratio can be made between the response of the two 

genes. Thus, multiple primers do not need to be used. The method developed in this study 

worked well for a pure E. coli culture. Real-world samples, such as wastewater, may pose 

challenges due to the presence of suspended particles, different E. coli strains, and 

interference from other bacteria. Application of the method developed in this study needs 

to be tested with real-world samples. 
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CHAPTER 3: 

APPLICATION OF QPCR METHOD FOR EVALUATING UV TREATMENT 

OPTIONS TO MANAGE MICROBIAL BEACH CONTAMINATION 

Introduction 

 Pollution of recreational waters has been of public concern for decades, especially 

microbial pollution from fecal sources. In most municipalities, urban stormwater and 

sanitary sewage are conveyed in separate sewers. However, older sections of many cities 

are still serviced by combined sewer systems, which transport both stormwater and 

sanitary sewage to the wastewater treatment plant (WWTP). At times of heavy 

precipitation, the large volume can exceed the capacity of the plant, resulting in both 

stormwater and sanitary sewage being released as part of combined sewer overflow 

(CSO). Separated sanitary sewers may also be overwhelmed during wet weather 

conditions, resulting in sanitary sewer overflows (SSO). Urban wet weather pollution is 

recognized as a major source of water quality impairment, including in the Great Lakes 

region (Weatherbe & Sherbin, 1994; Marsalek & Rochfort, 2004; McLellan et al., 2007; 

Templar et al., 2016). Recreational waters contaminated by fecal pollution pose a serious 

threat to human health. 

 Disinfection of CSO is required in Ontario in areas upstream of recreational 

waters, under Procedure F-5-5 (MOECC, 2016). During wet weather conditions, the 

minimum level of treatment required is primary treatment or equivalent. To meet this 

requirement, some cities (such as Windsor, ON) employ a retention treatment basin 

(RTB) which collects CSO and offers a primary level of treatment by settling solids 
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through polymer coagulation. The effluent should be disinfected to less than 1,000 E. coli 

per 100 mL (monthly geometric mean). The most common processes for disinfection 

include chlorination, ozonation, and ultraviolet (UV) radiation. Compared to the chemical 

disinfectants, UV light does not produce hazardous by-products and therefore, would be 

the preferred option. Furthermore, as a result of primary treatment, the reduced 

suspended solids concentration allows UV light to be more effective. Additionally, 

having an RTB may reduce the cost of infrastructure required for implementing UV 

disinfection. Since the main concern of sewer overflows is the fecal contamination 

component, disinfection of CSO or SSO can be considered to be similar to disinfection of 

wastewater. Disinfection of wastewater has been widely studied. The use of UV radiation 

for disinfection of wastewater was first introduced in the 1970s and has since become 

highly developed and implemented in treatment plants around the world (Whitby & 

Scheible, 2004). Although many studies on wastewater disinfection have been done, few 

studies have been conducted to explore the effectiveness of different disinfectants on 

CSO or SSO (Tondera et al., 2015; Tondera et al., 2016; Eramo et al., 2017). Of these 

studies, the focus has been on chemical disinfectants and less on UV light. 

 The effectiveness of UV and the sensitivity of a selected microorganism for UV 

can be described by the inactivation kinetics (Lazarova et al., 1999; Gehr et al., 2003; 

Hijnen et al., 2006). Inactivation is defined as the reduction of the concentration of 

culturable microorganisms (N) due to the exposure to a disinfectant of a certain 

concentration (C) during a specific contact time (t). UV inactivation kinetics can be 

described similar to chemical disinfectants, with the first-order disinfection model of 
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Chick (1908) and Watson (1908). There is a linear relationship between log inactivation 

and the UV dose as described by the following equation: 

log!" $
%#
%"
& = 	−*+ 

 where Nt is the microbial concentration after contact time t, N0 is the initial microbial 

concentration, k is the inactivation rate constant (cm2/mJ), and D is the UV dose 

(mJ/cm2). Microorganisms that are more sensitive to UV have a high k-value and require 

a lower UV dose for inactivation. Previous work has been done on the UV disinfection 

kinetics of bacterial cultures, drinking water and wastewater, but there is lack of 

information on the kinetics of UV disinfection of CSO. 

 Evaluating the performance of disinfection technologies has been primarily done 

with standard microbiological methods that rely of culturing. Due to the long incubation 

times required by these methods, rapid molecular techniques such as real-time 

quantitative polymerase chain reaction (qPCR) methods have been investigated. A 

limited number of studies have been done on the applicability of qPCR for quantifying 

disinfection of wastewater (Chatzisymeon et al., 2011; Li et al., 2014; Kibbee & Ormeci, 

2017). Again, the focus of these studies has been on chemical disinfectants such as 

ozone. The reason for this is because chemical disinfectants directly damage the cell 

membrane, and qPCR-based techniques have been proposed to take into account the 

membrane damage (i.e., PMA-qPCR). Due to the different disinfection mechanism of 

UV light, there is no consensus on a qPCR method that would be able to reliably quantify 

UV disinfection. The previous chapter developed a qPCR-based method and 

demonstrated its applicability for a pure E. coli culture exposed to various UV doses. 
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However, the applicability of the method for quantifying UV disinfection efficiency of 

CSO was not tested. Due to the various bacterial strains and populations present in CSO, 

the UV inactivation may be significantly different than that of a single-strain E. coli 

culture.  

This study explored the effectiveness of UV disinfection on CSO. Due to lack of 

information on inactivation kinetics for CSO, the first objective was to determine the 

inactivation rates for treated and untreated CSO and also compare with the kinetics of a 

pure E. coli culture. After conducting UV exposure experiments, disinfection 

performance was quantified through culture-based and qPCR-based methods. 

Correlations were developed between the log reduction and DNA damage of UV-exposed 

samples. The final objective of this work was to check the applicability of the developed 

qPCR method from Chapter 2 to quantify UV inactivation of CSO samples, and to 

compare the results of the CSO samples with those of a pure E. coli culture. 

 

Materials and Methods 

Sample preparation 

As the main concern of CSO/SSO is the untreated wastewater component, 

artificially generated CSO/SSO samples were used for this study. Approximately 1-L of 

each raw wastewater (WW) and primary treatment effluent was collected from the Little 

River Wastewater Treatment Plant (Windsor, ON, Canada). To simulate CSO/SSO, raw 

WW and primary effluent were each diluted 50:50 with sterile tap water. Each sample 

was stirred in a flask for 10 – 15 minutes before UV exposure experiments to ensure 
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proper mixing and prevent settling of particles. Two replicates were conducted from 

January 2019 – February 2019. 

E. coli ATCC® 8739™ cells were obtained in six 300-µL glycerol stock vials. A 

single vial was added to 20 mL sterile nutrient broth (Becton Dickinson) and incubated at 

37°C for 20 hours. Sterile nutrient broth agar plates were prepared with 1.5% agar. 

Cultured cells were streaked on the plates to separate colonies. A single isolated colony 

from the agar plates was inoculated in 40 mL sterile nutrient broth and incubated for 16 – 

24 hours at 37°C. The culture was then centrifuged for 20 min at 4,000 rpm. The nutrient 

broth supernatant was disposed and the settled cells were re-suspended in 20 mL sterile 

phosphate-buffered saline (PBS). Cell concentration was estimated using UV-vis 

spectrophotometry according to section 4.3.2. of the USEPA Draft Method C (Aslan et 

al., 2015). For developing standard curves, E. coli cells were serially diluted and aliquots 

in triplicates were frozen at -20°C until extraction. For UV exposure experiments, E. coli 

cells were diluted in 1 L sterile PBS to approximately 7-log cells per mL. 

UV Exposure Experiments 

UV exposure experiments were conducted with a low-pressure collimated beam 

apparatus (Trojan Technologies, Canada) according to manufacturer’s standardized 

protocols. Intensity measured at the sample surface with the IL1700 radiometer (Trojan 

Technologies, Canada). For each sample, 53-mL E. coli suspension was filled in clear 

glass petri dish with a stir bar. 3 mL was taken out for UVT readings using Real Tech 

Water’s UV254 portable meter with split sense technology. Based on the UVT readings, 

an excel sheet was used to calculate the time required for the desired dose. Each dose was 

done in triplicate. Calculations for the dose accounted for the petri, divergence, and 
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reflection factors as per Bolton & Linden (2003). After UV exposure, each sample was 

split into aliquots for DNA extraction and for culturing. 

Culture-based Method 

IDEXX Colilert Quanti-Tray®/2000 was used as the culture-based method in this 

study. It is able to detect both total coliform and E. coli up to 2,419 MPN/100mL. Each 

sample was diluted with sterile PBS to a concentration that would be within the range of 

this method. 

DNA Extraction 

Frozen samples were thawed at room temperature and centrifuged at 10,000 rpm 

for 15 minutes. The supernatant was taken out and 400 µL of sterile PBS was added. For 

each sample, 500 µL of 1-mm sterile glass beads and 400 µL of sucrose lysis buffer was 

added. Sucrose lysis buffer was made according to Shahraki et al. (2018). After adding 

lysis buffer, samples were subjected to bead-beating using the Mini-beadbeater-16 (Lab 

Services BV, Nederland) for 40 seconds (three times) at an intensity of 3,450 

oscillations/min. 100 µL of 1% SDS and 50 µL of 20 mg/mL lysozyme (Sigma-Aldrich, 

USA) were added to each tube. Samples were then incubated at 37°C on a shaker 

overnight. The next day 2 µL of 20 mg/mL proteinase K (Thermo Scientific, USA) was 

added, and the samples were again kept in the incubator at 37°C on a shaker overnight. 

Finally, the next morning, proteinase K was deactivated in at 95°C water bath for 10 

minutes. 

The digest from each tube was plated in a 96-well extraction plate, and DNA was 

extracted by magnetic bead robotic extraction according to Shahraki et al. (2018). 

Extracts were kept in the freezer at -20°C until qPCR analysis. 
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qPCR 

DNA extracts from UV exposure experiments were used with various primer sets. 

Due to the large number of samples and primer sets, 384-well qPCR plates were utilized 

with a 9-µL reaction volume. To prepare the 384-well plate, four 96-well plates were 

prepared with 12-µL reactions containing: 4.4 µL nuclease-free water, 6 µL 2x 

PowerUp™ SYBR® Green Master Mix (Applied Biosystems), 0.3 µL each of 10-mM F- 

and R-primers, and 1 µL DNA template. Then 9 µL was transferred from the fourt 96-

well plates into a single 384-well plate. The QuantStudio™ 12K Flex System 

(ThermoFisher Scientific) ran the following program: initial step at 95°C for 20s, 

followed by forty cycles of 95°C for 10s and 60°C for 20s. All results were exported into 

Microsoft Excel files for analysis. 

 

Results and Discussion 

Dose-Response of E. coli 

A typical dose-response curve of E. coli shows two stages: an initial steep decline 

attributed to the suspended free-swimming bacteria which are easily exposed to UV light, 

followed by a second step with a much shallower slope, referred to as tailing. Figure 13 

shows the dose-response curve of the three sample types in this study: (a) pure E. coli 

ATCC® 8739™ culture, (b) sCSO (50% raw WW, 50% tap water), and (c) primary-

treated sCSO (50% primary effluent, 50% tap water).  

From Figure 13, it can be noted that the inactivation rate of pure E. coli is higher 

than that of E. coli derived from wastewater, whether untreated or primary-treated. This 

difference in inactivation rate may be due to several factors. Firstly, the cultured E. coli is  
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Figure 13: Dose-response curves for (a) pure E. coli ATCC® 8739™, (b) sCSO, and (c) 
primary-treated sCSO. Error bars represent standard deviation. Some error bars are 
smaller than the size of the marker. 
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a single strain, whereas multiple strains of E. coli are present in wastewater. Strain 

diversity has been established as a reason for observed differences in UV sensitivity 

(Sommer et al., 2000; Malley et al., 2004; Hijnen et al., 2006). Secondly, the metabolic 

state of E. coli can be another reason for the difference in inactivation rates. For pure 

culture experiments, the E. coli cells were harvested when in a growth phase. On the 

other hand, bacteria in wastewater can be present in a stationary phase due to 

unfavourable environmental conditions and stress. Bacteria exposed to UV light while in 

the growth phase are easily inactivated compared to cells in a stationary phase (Malley et 

al., 2004; Hijnen et al., 2006). Additionally, the turbidity of wastewater has an influence 

on the effectiveness of UV disinfection. Low inactivation rates are observed in 

wastewater due to suspended solids which either absorb or scatter UV light, shade 

microorganisms, or shield embedded microorganisms (Madge & Jensen, 2006; Azimi et 

al., 2012). Lastly, the level of particle association also affects a cell’s susceptibility to UV 

light. If microorganisms are present on the ‘loose shell’ (i.e., the outer layer of a particle), 

they are easier to damage than those compacted in the core of a wastewater biofloc 

(Ormeci & Linden, 2002; Azimi et al., 2012). 

The concept of tailing of the dose-response curve is well-known; however, the 

cause is still under debate. Several reasons have been hypothesized to date, including but 

not limited to: experimental bias, highly resistant subpopulations, aggregation of 

microorganisms, and particle association. In general, Hijnen et al. (2006) found tailing 

occurs when at least 99% of the initial microorganisms have been inactivated. 

Microorganisms more susceptible to UV light see greater than 99% damage before tailing 

starts to occur. From Figure 13 (a), it is noted that tailing occurs after 5-log reduction for 
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E. coli 8739. On the other hand, the dose response curves of untreated sCSO and 

primary-treated sCSO begin to tail after approximately 2.5- and 3.5-log reduction, 

respectively. This further enforces the conclusion that environmental bacteria, such as the 

E. coli strains found in wastewater, are more resistant to UV light than a single-strain E. 

coli exposed to near-ideal laboratory conditions. 

UV disinfection kinetics also vary for untreated and treated wastewater. At the 

primary level of wastewater treatment, coagulation polymers are added to aid in the 

settling of suspended particles. Based on the logic presented by Madge & Jenson (2006) 

and Azimi et al., (2012), the reduction in suspended solids should increase the UV 

inactivation rate. This is illustrated in Figure 13 (b) and (c), as the slope of the primary-

treated sCSO was shown to be approximately twice the slope of untreated sCSO. To 

achieve a 2-log reduction, or 99% removal, a UV dose of 20 mJ/cm2 is required for 

untreated sCSO, whereas half the dose is needed for primary-treated sCSO. The presence 

of particles in wastewater hinder UV disinfection. As noted from the dose-response 

curves, the E. coli culture sees a single log-linear relationship between dose 0 – 20 

mJ/cm2. However, treated and untreated sCSO samples see (1) an initial steep decline, 

followed by (2) a slightly shallowed slope, and eventually (3) a plateau. Based on the 

literature, the first rate represents the inactivation of free-swimming cells and the second 

may be due to the shade or shielding of particles on microorganisms. Since the primary-

treated sCSO had fewer suspended solids, the second rate is two times higher than that of 

untreated sCSO and inactivation continues to occur past 3-log reduction. 
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Using the qPCR method, a greater reduction was observed in the primary treated 

samples, showing the reduction in suspended solids increased the amount of DNA 

lesions. DNA damage was observed in all the selected targets in this study, to a greater 

degree in primary-treated sCSO and to a lesser degree in untreated sCSO. Nonetheless, 

UV light caused widespread damage to the genome of wastewater E. coli (Appendix B). 

Widespread damage was also observed in pure E. coli; however, the extent of damage 

was to a greater degree in the culture (Figure 14). It can be noted that although the 

culture-based dose-response curves show tailing, damage continued to occur to the DNA 

of the cells. It is hypothesized that DNA damage would continue to occur, regardless of 

cell viability, as long as DNA is present. Thus, it is important to note that the two 

methods measure two different parameters: conventional culturing techniques measure 

the ability of cells to propagate on a specific media, whereas molecular techniques such 

as qPCR measure the amount of damage done to a specific region of DNA. 

 

Figure 14: DNA damage to rrsA gene in sCSO (left) and E. coli (right) samples. Error 
bars represent standard deviation in replicates. Some error bars are smaller than the 
markers. 
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Table 4: Initial cell count per 100 mL from Colilert and estimated from qPCR standard 
curves 
 Untreated sCSO Primary-treated sCSO 
IDEXX Colilert 1.30 x 106 7.28 x 105 
 

rrsA 2.73 x 107 1.68 x 107 
rrlA 1.59 x 107 1.33 x 107 
uvrB 2.68 x 107 7.77 x 106 
umuC 2.04 x 107 1.45 x 107 
ftsZ 1.17 x 107 6.24 x 106 
ftsQ 1.54 x 107 9.82 x 106 
ptsG 1.65 x 107 9.24 x 106 
pgl 2.13 x 107 1.66 x 107 
pck 3.22 x 107 1.89 x 107 
uidA 9.90 x 106 7.83 x 106 

 

Analysis of rRNA Genes 

 Two rRNA genes, rrsA and rrlA, were selected for quantifying E. coli. They were 

both found in high concentration in the pure culture. Since the concentration of E. coli 

was lower in the sCSO samples as compared to the pure culture, it was expected that the 

CT value would be higher. Both targets were still quantifiable in untreated and primary-

treated sCSO. For rrsA, the average initial CT values were 25.5 and 26.2 for untreated and 

primary-treated sCSO, respectively. The rrlA gene had similar concentration, with 

average CT values of 25.4 and 25.7 for untreated and primary-treated sCSO. The cell 

concentration of the untreated and primary-treated sCSO samples as determined by 

IDEXX Colilert is shown in Table 4. Using the qPCR results and the standard curves 

developed in the previous chapter, the estimated initial cell counts were determined, as 

shown in Table 4. For comparison, the cell count numbers as determined by IDEXX 

Colilert for each sample were also tabulated. The estimated cell counts using the two 

rRNA genes were 1.1 – 1.4 log greater than the most probable number (MPN) determined 

by IDEXX Colilert. It was assumed that the difference in numbers was due to the 
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designed primers not being specific enough to E. coli. The lack of specificity resulted in 

the quantification of other bacteria with similar gene sequences as E. coli. Nonetheless, 

the results from qPCR still quantified DNA damage, whether the damage was done to E. 

coli or to another bacterial cell closely related to E. coli. 

  

Figure 15: Correlation of culture-based and qPCR-based methods for rRNA genes with 
untreated and primary-treated sCSO samples. 
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using any kind of gene target. Both targets have similar slopes within the linear range, 

which implies that damage occurs to both genes at a similar rate. The rrsA targets had a 

better r-squared value than the rrlA gene.  

The results vary between the pure E. coli 8739 culture and the sCSO samples. The 

slopes observed with sCSO samples were slightly greater than those of pure E. coli. 

Again, it was hypothesized that this increase was due to the lack of specificity of the 

primers, detecting DNA damage of E. coli and other bacteria whereas the Colilert method 

quantified only E. coli reduction. One commonality was that the slopes of rrsA and rrlA 

were not different from each other within a particular sample. Damage occurs to both 

genes at the same rate, therefore, either target may be used for qPCR and its results would 

be indicative of the damage done to the other gene. 

Analysis of UV repair genes 

The two UV repair genes for quantifying E. coli were uvrB and umuC. Both were 

found in high concentration in the pure culture, and were still quantifiable in the sCSO 

samples. For the uvrB gene, the average initial CT values were 25.7 and 27.7 for raw and 

primary-treated sCSO, respectively. The average initial CT values for umuC were 27.0 

and 27.6 for raw and primary-treated sCSO, respectively. Based in these results and the 

standard curves developed in Chapter 2, the estimated initial cell counts were determined 

and tabulated in Table 4. The estimated cell counts for the two UV repair genes were 1.2 

– 1.3 log higher than the MPN from IDEXX Colilert. It was hypothesized that the 

difference in numbers was due to the lack of specificity of the primers designed. This 

may have caused the detection of bacterial cells with similar gene sequences as E. coli.   

qPCR still measured DNA damage done, whether it was to E. coli or other bacteria. 
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The log reduction from the culture-based method and the DNA damage quantified 

from the qPCR method were plotted (Figure 16). A linear relationship was observed 

between the range of 0 – 20 mJ/cm2. Out of this range, continued DNA damage was 

observed, however, there was no further reduction in the number of cultured cells. The 

two targets have similar slopes within the linear range but the r-squared value for umuC 

was better than that of uvrB. 

 

Figure 16: Correlation of culture-based and qPCR-based methods for UV repair genes 
with untreated and primary-treated sCSO samples. 
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and other bacteria, whereas the plotted log reduction from Colilert was of solely E. coli. It 

should be noted that for a particular type of sample, the damage done to both UV repair 

genes occurred at similar rates and the slopes were within 10% error. Therefore, either 

UV repair target may be used for qPCR and its results would be representative of the UV-

induced damage to the other gene. 

Analysis of Cell Division Genes 

  The ftsZ and ftsQ genes were selected as the cell division targets, and both had 

similar target concentrations. The average initial CT values for ftsZ were 26.8 and 27.9 for 

untreated and primary-treated sCSO, respectively. For ftsQ, the average initial CT values 

were 27.3 and 28.1 for untreated and primary-treated sCSO, respectively. From the 

results, the estimated cell counts based on the two cell division genes were 0.9 – 1.1 log 

higher than the MPN from IDEXX Colilert. The difference in the counts may be due to 

the primers used, which may not be specific to E. coli. However, the qPCR method still 

quantified the damage done to DNA by UV light, whether it was E. coli DNA or DNA of 

a similar bacteria. 

 Correlations were developed for the two different methods using the cell division 

genes (Figure 17). There was again a linear relationship between the UV dose range of 0 

– 20 mJ/cm2. The two targets similar slopes within the linear range for each sample type. 
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Figure 17: Correlation of culture-based and qPCR-based methods for cell division genes 
with untreated and primary-treated sCSO samples. 
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the linear range (Chapter 2, Figure 12). ptsG was the least damaged, pgl was the most 

damaged, pck was representative of the average damage to all metabolic targets. uidA 

was selected because it is commonly used as a qPCR target for E. coli and served as a 

comparator. The four targets were found to have similar target concentrations, with 

average CT values ranging from 26.8 – 27.3 for untreated sCSO, and 27.5 – 28.0 for 

primary-treated sCSO. The estimated cell counts based on these four targets was 0.9 – 1.4 

log greater than the MPN determined through IDEXX Colilert, most likely due to the 

lack of specificity of the primers. Nonetheless, the qPCR method quantified DNA 

damage caused by UV, whether E. coli or other bacteria were damaged. 

 Graphs correlating the log reduction and change in CT were made for the four 

metabolic targets (Figure 18). Between the UV range of 0 – 20 mJ/cm2, there was a linear 

relationship. Within this range, the ptsG gene was still the least damaged and the pgl was 

the most, with approximately 20% difference between the two. 

 In comparison with the correlations developed from the pure culture, the sCSO 

samples had greater slopes. It is assumed that the higher slope is due to the qPCR method 

detecting more damage (i.e., from E. coli and other bacteria), whereas the culture method 

is quantifying only E. coli. For pure culture, treated and untreated sCSO, the pgl gene 

continued to show the most damage, and the ptsG continued to show the least damage. 

Comparison of All Targets 

 All targets had similar target concentrations and could be easily detected using 

qPCR, with the rRNA genes having the highest target concentration and the ftsQ gene 

having the least. Each target estimated a higher cell count that the IDEXX Colilert  
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Figure 18: Correlation of culture-based and qPCR-based methods for selected metabolic 
genes with untreated and primary-treated sCSO samples. 
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method, which suggests that none of the targets were specific to E. coli and require 

improved primer design. The uidA target was the closest in estimating the E. coli count, 

but still on average 1-log higher. Nonetheless, the amount of UV damage that occurs is 

the difference between the CT value at a specific dose and the initial CT value. Even if the 

damage being detected is from other non-E. coli cells, UV is still fulfilling its role as a 

disinfectant. Furthermore, it induces damage to all the targets and therefore, causes 

widespread damage. As damage is done to gene targets that serve important functions, 

the cell will not be able to survive. 

 

Figure 19: Change in CT for each target from UV dose 0 – 20 mJ/cm2 for all samples 

 

 Correlations were developed for targets within each category, and all showed a 

linear relationship between the range of 0 – 20 mJ/cm2. Figure 19 compared the change in 

CT for each target within the linear dose range of 0 – 20 mJ/cm2 for all three sample 
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types: pure E. coli 8739, untreated sCSO, and primary-treated sCSO. With the pure E. 

coli culture, all gene targets had greater damage than with the CSO samples. This shows 

that the pure E. coli was more sensitive to UV than the E. coli obtained from wastewater. 

The particles in wastewater provided shielding to some E. coli from the UV light. With 

the pure E. coli, the cell division genes were found to be more sensitive. However, with 

the CSO samples, UV repair genes, cell division genes and metabolic genes are all 

equally sensitive. Between the CSO samples, the primary treatment aided in the 

effectiveness of UV to damage DNA. Overall, the results show that there is variation 

between the pure culture and sCSO samples. Therefore, if applying qPCR as a surrogate 

method for quantifying UV disinfection of CSO, CSO samples should be used for 

developing the correlations. 

 

Conclusion 

In order to target a major source of recreational water contamination, the 

effectiveness of UV radiation on CSO treatment was evaluated. UV kinetics showed that 

E. coli from wastewater was more resistant than E. coli grown in an ideal laboratory 

setting. The observed differences were assumed to be due to several factors: strain 

diversity, metabolic state, particle association and low water quality. UV disinfection 

efficiencies were quantified using IDEXX Colilert, a culturing technique, and qPCR. 

Based on the results of this study, the developed qPCR method can be applied for real-

world application, such as quantifying UV disinfection of CSO. Evaluation of DNA 

damage to various gene targets demonstrated that UV light caused widespread genomic 

damage. The reduction from both culture-based and qPCR-based method were correlated 
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for each gene target and were linear within a certain range. Using the correlations, the 

qPCR method can serve as a rapid surrogate for traditional culture-based techniques. It is 

recommended that correlations be made with real CSO samples rather than simulated 

CSO or pure bacterial cultures. 



 

67 
 

References 

Aslan, A., Kinzelman, J., Dreelin, E., Anan'eva, T., & Lavendar, J. (2015). A guidance 
document for testing recreational waters using USEPA qPCR method C.  

Azimi, Y., Allen, D., & Farnood, R. (2012). Kinetics of UV inactivation of wastewater 
bioflocs. Water Research, 46, 3827-3836. doi:10.1016/j.watres.2012.04.019 

Banihashemi, A., Van Dyke, M., & Huck, P. (2012). Long-amplicon propidium 
monoazide-PCR enumeration assay to detect viabl Campylobacter and 
Salmonella. Journal of Applied Microbiology, 113, 863-873. doi:10.1111/j.1365-
2672.2012.05382.x 

Bolton, J. R., & Linden, K. G. (2003). Standardization of methods for fluence (UV dose) 
determination in bench-scale UV experiments. Journal of Environmental 
Engineering, 129(3), 209-215. 

Chatzisymeon, E., Droumpali, A., Mantzavinos, D., & Venieri, D. (2011). Disinfection of 
water and wastewater by UV-A and UV-C irradiation: application of real-time 
PCR method. Photochemical & Photobiological Sciences, 10, 389-395. 
doi:10.1039/c0pp00161a 

Chick, H. An investigation of the Laws of Disinfection. J. Hyg., 8, 92, 1908. 

Eramo, A., Morales Medina, W., & Fahrenfeld, N. (2017). Peracetic acid disinfection 
kinetics for combined sewer overflows: indicator organisms, antibiotic resistance 
genes, and microbial community. Environmental Science Water Research & 
Technology. doi:10.1039/c7ew00184c 

Gehr, R., Wagner, M., Veerasubramanian, P., & Payment, P. (2003). Disinfection 
efficiency of peracetic acid, UV and ozone after enhanced primary treatment of 
municipal wastewater. Water Research, 37, 4573-4586. doi:10.1016/S0043-
1354(03)00394-4 

Hijnen, W., Beerendonk, E., & Medema, G. (2006). Inactivation credit of UV radiation 
for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Research, 
40, 3-22. doi:10.1016/j.watres.2005.10.030 

Hoyer, O., 1998. Testing performance and monitoring of UV systems for drinking water 
disinfection. Water Supply 16 (1/2), 424–429. 

Kibbee, R., & Ormeci, B. (2017). Development of a sensitive and false-positive free 
PMA-qPCR viability assay to quantify VBNC Escherichia coli and evaluate 
disinfection performance in wastewater effluent. Journal of Microbiological 



 

68 
 

Methods, 132, 139-147. doi:10.1016/j.mimet.2016.12.004Noor, E., Eden, E., 
Milo, R., & Alon, U. (2010). Central carbon metabolism as a minimal 
biochemical walk between precursor for biomass and energy. Molecular Cell, 39, 
809-820. doi:10.1016/j.molcel.2010.08.031 

Lazarova, V., Savoye, P., Janex, M., Blatchley III, E., & Pommepuy, M. (1999). 
Advanced wastewater disinfection technologies: state of the art and perspectives. 
Water Science & Technology, 40, 203-213. 

Li, D., Tong, T., Zeng, S., Lin, Y., Wu, S., & He, M. (2014). Quantification of viable 
bacteria in wastewater treatment plants by using propidium monoazide combined 
with quantitative PCR (PMA-qPCR). Journal of Environmental Sciences, 26, 299-
306. doi:10.1016/S1001-0742(13)60425-8 

Madge, B., & Jensen, J. (2006). Ultraviolet disinfection of fecal coliform in municipal 
wastewater: effects of particle size. Water Environment Research, 78(3), 294-304. 

Malley, J.P., Ballester, N.A., Margolin, A.B., Linden, K.G., Mofidi, A., Bolton, J.R., 
Crozes, G., Laine, J.M., Janex, M.L., 2004. Inactivation of Pathogens with 
Innovative UV Technologies. American Research Foundation and American 
Water Works Association, 2004. 

Mamane-Gravetz, H., Linden, K.G., 2005. Relationship between physiochemical 
properties, aggregation and UV inactivation of isolated environmental spores in 
water. J. Appl. Microbiol. 98, 351–363. 

Marsalek, J., & Rochfort, Q. (2004). Urban wet-weather flows: sources of fecal 
contamination impacting on recreational waters and threatening drinking-water 
sources. Journal of Toxicology and Environmental Health, 67, 1765-1777. 
doi:10.1018/15287390490492430 

McLellan, S., Hollis, E., Depas, M., Van Dyke, M., Harris, J., & Scopel, C. (2007). 
Distribution and fate of Escherichia coli in Lake Michigan following 
contamination with urban stormwater and combined sewer overflows. Journal of 
Great Lakes Research, 33, 566-580. 

MOECC. (2016, March 8). F-5-5 Determination of treatment requirements for municipal 
and private combined and partially separated sewage systems. Retrieved from 
https://www.ontario.ca/page/f-5-5-determination-treatment-requirements-
municipal-and-private-combined 

Nocker, A., Sossa, K., & Camper, A. (2007). Molecular monitoring of disinfection 
efficacy using propidium monoazide in combination with quantitative PCR. 



 

69 
 

Journal of Microbiological Methods, 70, 252-260. 
doi:10.1016/j.mimet.2007.04.014 

Ormeci, B., Linden, K.G., 2002. Comparison of UV and chlorine inactivation of particle 
and non-particle associated coliforms. Water Sci. Technol.: Water Supply 2 (5-6), 
403–410. 

Shahraki, A., Chaganti, S., & Heath, D. (2018). Assessing high-throughput 
environmental DNA extraction methods for meta-barcode characterization of 
aquatic microbial communities. Journal of Water and Health, 17(1), 37-49. 
doi:10.2166/wh.2018.108 

Sommer, R., Haider, T., Cabaj, A., Pribil,W., Lhotsky, M., 1998. Time fluence 
reciprocity in UV disinfection of water. Water Sci. Technol. 38 (12), 145–150. 

Sommer, R., Lhotsky, M., Hairder, T., Cabaj, A., 2000. UV inactivation, liquid-holding 
recovery, and photoreaction of E. coli OH157 and other pathogenic E. coli strains 
in water. J. Food Prot. 63 (8), 1015–1020. 

Süß, J., Volz, S., Obst, U., & Schwartz, T. (2009). Application of a molecular biology 
concept for the detection of DNA damage and repair during UV disinfection. 
Water Research, 43, 3705-3716. doi:10.1016.watres.2009.05.048 

Templar, H., Dila, D., Bootsma, M., Corsi, S., & McLellan, S. (2016). Quantification of 
human-associated fecal indicators reveal sewage from urban watersheds as a 
source of pollution to Lake Michigan. Water Research, 100, 556-567. 
doi:10.1016/j.watres.2016.05.056 

Tondera, K., Klaer, K., Gebhardt, J., Wingender, J., Koch, C., Horstkott, M., . . . 
Pinnekamp, J. (2015). Reducing pathogens in combined sewer overflows using 
ozonation or UV irradiation. International Journal of Hygiene and Environmental 
Health, 218, 731-741. doi:10.1016/j.ijheh.2015.09.002 

Tondera, K., Klaer, K., Koch, C., Hamza, I. A., & Pinnekamp, J. (2016). Reducing 
pathogens in combined sewer overflows using performic acid. International 
Journal of Hygiene and Environmental Health, 219, 700-708. 
doi:10.1016/j.ijheh.2016.04.009 

Watson, H.E. A note on the variation of the rate of disinfection with change in the 
concentration of the disinfectant. J. Hyg. 8, 536, 1908. 

Weatherbe, D., & Sherbin, G. (1994). Urban drainage control demonstration program of 
Canada's Great Lakes Cleanup Fund. Water Science & Technology, 29, 455-462. 
doi:10.2166/wst.1994.0694 



 

70 
 

Whitby, E., & Scheible, K. (2004). The history of UV and wastewater. IUVA News, 6(3), 
15-26. 

  



 

71 
 

CHAPTER 4: 

CONCLUSIONS 

  

Freshwater contamination attributed to high bacterial counts has been the most 

reported cause of water impairment in recent years (Marsalek & Rochfort, 2004; USEPA, 

2012; Pandey et al., 2014). There have also been an increasing number of hospitalizations 

due to waterborne illnesses. The health of swimmers is of particular importance, because 

these individuals may come in direct contact with contaminated water. To limit the risk to 

bathers, regulatory agencies post advisories or close beaches when bacterial 

concentrations exceed certain thresholds. However, citizens continue to fall ill from poor 

recreational water quality, and this raises public concern. There is additional economic 

concern since beach closures and health care expenses reduce recreation and tourism 

revenue (DeFlorio-Barker et al., 2018). 

A significant portion of the contamination has been due to urbanization, or more 

specifically, urban wet weather flow. Many municipalities still employ combined sewer 

systems, which tend to overflow during large rainfall events. These combined sewer 

overflows (CSO) transport not only stormwater runoff, but also untreated sewage to 

receiving waters. Similarly, sanitary sewer overflows (SSO) may also occur as a result of 

heavy precipitation, also transporting untreated sewage. Understanding the hazard that 

these sewer overflows pose to human health, regulatory agencies such as the Ministry of 

Environment and Climate Change (MOECC) have put together procedures and 

regulations to establish controls for overflow events (MOECC, 2016). In Ontario, 

Procedure F-5-5 describes the minimum level of treatment required for CSO that occur in 
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areas upstream of recreational waters, including primary level treatment of solids and 

disinfection. For disinfection, three types of methods are commonly used: chlorination, 

ozonation, and UV radiation. Compared to the other two chemical disinfectants, UV light 

has gained popularity over time, as it does not produce any known disinfection by-

products and has a greater germicidal ability. Therefore, UV was chosen as the 

disinfectant for this thesis. 

The efficacy of treatment is generally measured by standard microbiological 

methods, which involve culturing techniques. The main drawback of these methods is the 

long incubation times, thereby delaying beach advisories for the public. Thus, rapid 

molecular techniques have been explored as alternatives. Currently, the USEPA has 

issued Draft Method C for Escherichia coli detection using qPCR (Aslan et al., 2015). 

Others have also developed qPCR-based techniques for detection of various waterborne 

microorganisms. Yet these methods have been suggested for detection and monitoring 

purposes only, and application with disinfection technologies has not been tested. 

Therefore, the ultimate goal for Chapter 2 was to develop a robust method that 

would be able to quantify UV inactivation of E. coli. In order to achieve this, long 

amplicon qPCR (LA-qPCR) was used with various gene targets. The study conducted a 

genomic scan of E. coli to determine the effect of UV light on different areas of the 

genome. The results from this study show evidence of widespread damage across the 

genome, affecting many essential genes and impairing many crucial cellular functions. 

Furthermore, certain targets were found to be more susceptible to UV damage than 

others. In particular, the cell division genes ftsZ and ftsQ were more damaged after UV 

exposure, whereas the metabolic genes were the least damaged. Damage done to the 
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conventionally used rRNA gene targets was similar to that of both UV repair and 

metabolic genes. 

Another objective of Chapter 2 was to determine a ‘good target’ that can be used 

for quantifying UV damage to E. coli with qPCR. It was determined that a suitable target 

should be present in high concentration in E. coli, and be sensitive enough to detect UV 

damage. Since the sample only contained E. coli 8739 cells, specificity to E. coli was not 

tested. All targets were found in high concentration and sensitive. Overall, the cell 

division genes ftsZ and ftsQ were the most sensitive to damage. These targets were 

suggested to be used for quantifying UV damage. If damage done to other gene targets is 

of interest, a ratio can be calculated based on this study to determine the damage done to 

the selected target as compared to the cell division gene.  

Lastly, results from Chapter 2 showed the correlation between culture-based and 

qPCR-based methods. The correlation plots show a linear relationship up to a 5-log 

reduction, or a UV dose of 20 mJ/cm2. Applying these correlations allows qPCR to serve 

as a surrogate to the conventional culturing method, and significantly reduces the time 

between sampling and reporting. 

In Chapter 3, the application of the developed qPCR method was tested with 

artificially generated CSO samples. These samples were made with one-part wastewater 

and one-part tap water. The main risk lies in the untreated wastewater. As per Procedure 

F-5-5, primary-treated CSO samples were also used to determine the effect of treatment 

on UV disinfection. 
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 UV disinfection kinetics revealed several difference between the pure E. coli 

culture used in Chapter 2 and the simulated CSO (sCSO) samples used in Chapter 3. The 

effectiveness of UV was lower for sCSO, which was assumed to be attributed to the 

diversity of bacterial strains in wastewater, the different physiological states of the cells, 

the association with or shielding by particles. All of these factors have been mentioned in 

previous studies as limiting the disinfection capabilities of UV light (Gehr et al., 2003; 

Hijnen et al., 2006). Primary treatment improved the efficacy of UV disinfection. The 

inactivation rates were found to be twice as fast as the untreated sCSO samples. For a 2-

log reduction, primary-treated effluent required 10 mJ/cm2 of UV, whereas the untreated 

needed twice as much. Additionally, for the primary effluent, UV inactivation continued 

to occur past 3-log, whereas the dose-response curve of the untreated sCSO started 

tailing. 

 The developed qPCR method was used to quantify the damage done to various 

gene targets. All gene targets showed damage, again emphasizing that UV light causes 

widespread damage to the genome. When applying this method to the real-world 

samples, it was found that the primers designed may not be specific to only E. coli. The 

primers over-estimated the initial E. coli count, as compared to Colilert. Nonetheless, 

damage was still calculated as the difference between pre-UV and post-UV exposure. 

The amount of DNA damage caused by UV was also found to be greater than the pure E. 

coli 8739 culture. 

 The correlations developed for the sCSO samples were linear in the range of 0 – 

20 mJ/cm2, similar to the pure culture. Although the primer may not be specific enough, 

the correlations still indicate that the qPCR method can be used as a surrogate for 
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traditional methods. It is recommended that correlations be made using primers that are 

more specific to E. coli. 

 

Recommendations for Future Work 

 Molecular techniques for quantifying bacteria, such as qPCR, are much faster 

than the conventional culturing techniques. It must be noted that when determining 

disinfection efficiencies, the two methods have different aims: culturing methods 

quantify the reduction in culturability (often as log reductions), and qPCR techniques 

quantify the damage of a specific target area in the genome. qPCR methods may be 

DNA- or RNA-based. Although DNA-based methods are easier and more commonly 

used, RNA methods have several advantages. RNA provides more information on the 

viability of a cell, and especially with the controversy of viable but non-culturable 

(VBNC) post-UV exposure, RNA would give a better representation of the viable 

bacterial population. Weigel et al., (2017) use a technique called molecular viability 

testing (MVT) which correlates the viability of a cell with its ability to rapidly produce 

rRNA precursors (pre-rRNA) in response to nutritional stimuli. After UV exposure, 

samples were briefly exposed to nutrients in order to increase the amount of pre-rRNA. It 

was assumed that only those cells that are viable would be able to produce pre-rRNA. 

This is an improvement from DNA, since even when cell death occurs, the structure of 

DNA is stable enough to allow it to persist in the environment. Detecting DNA from dead 

cells would skew the results. On that note, future work should aim to develop and test a 

robust RNA-based qPCR method for quantifying UV disinfection.  
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 Another improvement that can be made on the method development side is the 

use of more specific primers and employing TaqMan probes. In this study, SYBR Green 

qPCR was used. SYBR Green is a fluorescent dye used in molecular biology as a nucleic 

acid stain. It binds to double-stranded DNA (dsDNA), and once attached, it absorbs blue 

light and emits an intense green signal which is quantified by the qPCR machine. This 

technique is not target-specific because the dye will bind to any dsDNA fragment. Often 

primer-dimers give false signal from SYBR Green. TaqMan is an alternative to SYBR 

Green to monitor the process of amplification. This technique uses a dual-labeled probe, 

which are DNA oligonucleotides that have a fluorescent reporter on the 5’ end and a 

quencher on the 3’ end. When the report and quencher are in close proximity, no signal is 

given off. During the elongation step of PCR, Taq polymerase degrades the probe, 

separating the reporter and quencher and thereby emitting a fluorescent signal which the 

qPCR machine detects. Compared to SYBR Green, TaqMan is more specific because the 

unique design of the probe allows for specific PCR products (Tajadini et al., 2014). In 

this study, SYBR Green was chosen as the method since it is easier to use and cheaper, 

especially with all the gene targets. However, results from this thesis show that it is 

crucial to have specific PCR products if qPCR methods are to be applied in real-world 

situations. 

Lastly, to expand on the application of qPCR for detecting UV inactivation, other 

sources of recreational water pollution should be explored. Although CSO and SSO are 

the major sources of pollution, there are other non-point sources such as stormwater 

runoff, bird droppings and animal wastes. The pollution from CSO and SSO was studied 

in this thesis because there is infrastructure already in place that allows for 
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implementation of disinfection technologies. For example, UV disinfection may be 

implemented with overflow retention basins. Aiming to reduce beach closures, a research 

group from the University of Wisconsin implemented an on-site treatment system 

(Reimer et al., 2018). This type of system is able to address non-point source pollution. In 

an inland lake, a five-sided polypropylene barrier enclosed the swimming area of the 

beach. Within this area, an inlet pipe took in water which passed through an on-site 

portable treatment system and was then discharged back into the beach through the 

effluent pipe. The on-site treatment system used three steps: straining of heavy debris, 

filtration of fine particles, and finally disinfection using UV light. This system was the 

first of its kind to be successfully employed in the US. The application of such on-site 

UV treatment trailers should be explored further.  

The study conducted by Reimer et al. (2018) used Colilert-18 to quantify the 

efficacy of UV disinfection. The application of qPCR methods for these types of systems 

should also be explored, in order to report results faster. One possible drawback of using 

qPCR with beach water is the low cell count. With the primers and techniques used in 

this thesis, the qPCR was not sensitive enough to detect the low cell concentrations that 

are expected to be found in beach water.  Large volumes of beach water would need to be 

filtered in order to detect some qPCR signal. 

Overall, UV radiation is an effective disinfection technique that can be used to 

decrease the microbial pollution from CSO and SSO to receiving waters. Additionally, 

qPCR is a very promising technique that serves as a faster alternative to traditional 

culture-based methods. In addition to being used for detection and monitoring, it can be 

used for quantifying UV disinfection efficiencies. 
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APPENDICES  

Appendix A: Supplementary Information for Chapter 2 

  

Figure 20: qPCR-based dose-response curves of rRNA genes, rrsA (left) and rrlA (right). 
Error bars represent the standard deviation between replicates. Some error bars are 
smaller than the markers. 

Table 5: qPCR results for rrsA, used for dose-response curve. 
Target Replicate Dose CT AVG St. Dev. 

rrsA 

1 

0 16.053 0.149 
5 16.432 0.182 

10 16.954 0.113 
20     
50 19.110 0.390 

100 20.626 0.248 

2 

0 15.755 0.147 
5 16.259 0.058 

10 16.465 0.119 
20 17.593 0.104 
50 18.515 0.317 

100 20.975 0.067 

3 

0 15.543 0.069 
5 15.750 0.182 

10 16.757 0.120 
20 17.475 0.113 
50 18.485 0.446 

100 19.540 0.454 
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Table 6: qPCR results for rrlA, used for dose-response curve. 

Target Replicate Dose CT AVG St. Dev. 

rrlA 

1 

0 15.754 0.176 
5 16.550 0.055 

10 17.023 0.090 
20     
50 18.324 0.301 

100 20.381 0.317 

2 

0 15.986 0.091 
5 16.068 0.129 

10 16.930 0.124 
20 17.734 0.137 
50 18.223 0.270 

100 19.987 0.400 

3 

0 15.792 0.060 
5 16.269 0.048 

10 17.004 0.136 
20 17.616 0.028 
50 18.804 0.497 

100 20.464 0.081 
 

 

   
Figure 21: qPCR-based dose-response curves of UV repair genes, uvrB (left) and umuC 
(right). Error bars represent the standard deviation between replicates. Some error bars 
are smaller than the markers. 
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Table 7: qPCR results for uvrB, used for dose-response curve. 
Target Replicate Dose CT AVG St. Dev. 

uvrB 

1 

0 17.558 0.070 
5 18.378 0.144 

10 18.896 0.163 
20     
50 21.846 0.256 

100 22.802 0.315 

2 

0 17.385 0.117 
5 18.363 0.116 

10 18.875 0.145 
20 19.145 0.085 
50 20.792 0.363 

100 23.031 0.053 

3 

0 17.572 0.079 
5 18.017 0.125 

10 18.478 0.087 
20 19.459 0.076 
50 20.960 0.486 

100 21.917 0.130 
 

Table 8: qPCR results for umuC, used for dose-response curve. 
Target Replicate Dose Ct Avg St Dev 

umuC 

1 

0 16.574 0.097 
5 17.378 0.176 

10 17.979 0.107 
20     
50 20.673 0.374 

100 22.443 0.313 

2 

0 16.604 0.092 
5 17.466 0.069 

10 17.514 0.183 
20 18.518 0.072 
50 19.651 0.484 

100 21.859 0.310 

3 

0 16.451 0.033 
5 16.990 0.144 

10 17.062 0.122 
20 18.355 0.110 
50 19.840 0.537 

100 21.404 0.332 
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Figure 22: qPCR-based dose-response curves of cell division genes, ftsZ (left) and ftsQ 
(right). Error bars represent the standard deviation between replicates. Some error bars 
are smaller than the markers. 

 

 

 

Table 9: qPCR results for ftsZ, used for dose-response curve. 
Target Replicate Dose Ct Avg St Dev 

ftsZ 

1 

0 17.050 0.124 
5 17.785 0.160 

10 18.297 0.148 
20     
50 21.561 0.259 

100 22.477 0.359 

2 

0 16.789 0.054 
5 17.363 0.103 

10 17.697 0.116 
20 19.214 0.124 
50 20.044 0.180 

100 21.902 0.384 

3 

0 16.692 0.065 
5 17.011 0.098 

10 17.557 0.101 
20 18.894 0.176 
50 20.058 0.532 

100 21.573 0.345 
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Table 10: qPCR results for ftsQ, used for dose-response curve. 

Target Replicate Dose Ct Avg St Dev 

ftsQ 

1 

0 16.611 0.027 
5 17.540 0.045 

10 18.173 0.095 
20     
50 21.035 0.403 

100 21.761 0.489 

2 

0 17.019 0.118 
5 17.837 0.150 

10 18.384 0.159 
20 19.390 0.133 
50 21.212 0.226 

100 22.406 0.514 

3 

0 17.432 0.086 
5 18.371 0.125 

10 18.632 0.078 
20 19.768 0.118 
50 21.708 0.454 

100 22.869 0.180 
 

 

  

Figure 23: qPCR-based dose-response curves of two metabolic genes, gltA (left) and 
ptsG (right). Error bars represent the standard deviation between replicates. Some error 
bars are smaller than the markers.
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Table 11: qPCR results for gltA, used for dose-response curve. 

Target Replicate Dose Ct Avg St Dev 

gltA 

1 

0 17.875 0.116 
5 18.948 0.096 

10 19.215 0.109 
20     
50 21.843 0.333 

100 22.916 0.366 

2 

0 17.854 0.077 
5 18.738 0.029 

10 19.025 0.069 
20 19.725 0.104 
50 20.791 0.406 

100 23.290 0.262 

3 

0 17.750 0.096 
5 18.403 0.130 

10 18.731 0.028 
20 19.439 0.110 
50 20.883 0.461 

100 22.216 0.036 

Table 12: qPCR results for ptsG, used for dose-response curve. 
Target Replicate Dose Ct Avg St Dev 

ptsG 

1 

0 17.425 0.084 
5 18.485 0.166 

10 18.788 0.190 
20     
50 21.432 0.316 

100 22.991 0.270 

2 

0 17.597 0.130 
5 18.464 0.105 

10 18.950 0.088 
20 19.340 0.055 
50 20.732 0.100 

100 21.809 0.305 

3 

0 17.298 0.106 
5 17.907 0.090 

10 18.334 0.158 
20 19.049 0.087 
50 20.513 0.286 

100 22.735 0.179 
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Figure 24: qPCR-based dose-response curves of two metabolic genes, pgl (left) and tktA 
(right). Error bars represent the standard deviation between replicates. Some error bars 
are smaller than the markers. 

 

 

Table 13: qPCR results for pgl, used for dose-response curve. 
Target Replicate Dose Ct Avg St Dev 

pgl 

1 

0 18.109 0.092 
5 18.860 0.169 

10 19.210 0.196 
20     
50 21.794 0.379 

100 22.857 0.337 

2 

0 18.503 0.149 
5 19.021 0.125 

10 19.569 0.030 
20 20.499 0.115 
50 21.607 0.172 

100 23.079 0.090 

3 

0 18.151 0.039 
5 18.523 0.095 

10 19.154 0.139 
20 20.076 0.051 
50 20.909 0.691 

100 22.262 0.273 
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Table 14: qPCR results for tktA, used for dose-response curve. 
Target Replicate Dose Ct Avg St Dev 

tktA 

1 

0 17.999 0.165 
5 18.385 0.207 

10 18.784 0.079 
20     
50 21.181 0.234 

100 21.967 0.424 

2 

0 17.793 0.075 
5 18.489 0.134 

10 18.607 0.179 
20 19.794 0.115 
50 21.258 0.287 

100 22.585 0.464 

3 

0 17.873 0.164 
5 18.134 0.193 

10 18.927 0.204 
20 19.696 0.053 
50 20.529 0.615 

100 22.204 0.515 
 

 

Figure 25: qPCR-based dose-response curves of two metabolic genes, fbaA (left) and 
tpiA (right). Error bars represent the standard deviation between replicates. Some error 
bars are smaller than the markers. 
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Table 15: qPCR results for fbaA, used for dose-response curve. 
Target Replicate Dose Ct Avg St Dev 

fbaA 

1 

0 18.104 0.185 
5 18.587 0.097 

10 18.890 0.195 
20     
50 20.927 0.244 

100 22.023 0.061 

2 

0 17.709 0.083 
5 18.605 0.181 

10 18.936 0.120 
20 19.727 0.068 
50 21.717 0.201 

100 22.850 0.627 

3 

0 17.740 0.172 
5 18.276 0.105 

10 18.797 0.093 
20 19.612 0.064 
50 21.034 0.552 

100 22.671 0.628 

Table 16: qPCR results for tpiA, used for dose-response curve. 
Target Replicate Dose Ct Avg St Dev 

tpiA 

1 

0 17.790 0.109 
5 18.670 0.104 

10 19.506 0.181 
20     
50 21.565 0.298 

100 22.659 0.590 

2 

0 17.408 0.069 
5 18.217 0.377 

10 18.674 0.053 
20 19.198 0.108 
50 21.178 0.469 

100 21.923 0.196 

3 

0 18.107 0.125 
5 18.893 0.143 

10 19.461 0.164 
20 20.001 0.097 
50 21.168 0.680 

100 23.298 0.329 
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Figure 26: qPCR-based dose-response curves of two metabolic genes, ppsA (left) and 
pck (right). Error bars represent the standard deviation between replicates. Some error 
bars are smaller than the markers. 

 

 

Table 17: qPCR results for ppsA, used for dose-response curve. 
Target Replicate Dose Ct Avg St Dev 

ppsA 

1 

0 17.389 0.083 
5 17.964 0.117 

10 18.192 0.054 
20     
50 20.964 0.296 

100 22.432 0.300 

2 

0 17.037 0.142 
5 17.836 0.050 

10 18.096 0.295 
20 19.008 0.034 
50 20.111 0.208 

100 22.218 0.214 

3 

0 17.055 0.076 
5 17.198 0.175 

10 18.013 0.095 
20 18.958 0.110 
50 20.226 0.548 

100 21.664 0.095 
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Table 18: qPCR results for pck, used for dose-response curve. 

Target Replicate Dose Ct Avg St Dev 

pck 

1 

0 17.519 0.055 
5 18.351 0.160 

10 19.283 0.180 
20     
50 21.343 0.257 

100 22.026 0.036 

2 

0 17.283 0.104 
5 17.970 0.205 

10 18.203 0.122 
20 19.111 0.199 
50 20.741 0.208 

100 22.663 0.629 

3 

0 18.091 0.112 
5 18.703 0.045 

10 19.309 0.152 
20 20.000 0.081 
50 21.973 0.293 

100 22.821 0.308 
 
 

  
Figure 27: qPCR-based dose-response curves of two metabolic genes, dfp (left) and 
uidAL (right). Error bars represent the standard deviation between replicates. Some error 
bars are smaller than the markers. 
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Table 19: qPCR results for dfp, used for dose-response curve. 

Target Replicate Dose Ct Avg St Dev 

dfp 

1 

0 17.847 0.165 
5 18.352 0.067 

10 19.245 0.178 
20     
50 21.345 0.288 

100 23.004 0.075 

2 

0 17.893 0.430 
5 18.799 0.121 

10 19.270 0.366 
20 19.682 0.068 
50 21.888 0.153 

100 22.995 0.137 

3 

0 18.199 0.144 
5 18.750 0.364 

10 19.445 0.397 
20 19.998 0.094 
50 22.141 0.033 

100 22.667 0.095 
 
Table 20: qPCR results for uidAL, used for dose-response curve. 

Target Replicate Dose Ct Avg St Dev 

uidAL 

1 

0 17.242 0.105 
5 17.691 0.129 

10 18.314 0.093 
20     
50 20.743 0.180 

100 22.280 0.158 

2 

0 17.172 0.177 
5 17.533 0.114 

10 18.134 0.235 
20 18.859 0.080 
50 20.077 0.074 

100 21.916 0.210 

3 

0 17.262 0.404 
5 17.831 0.428 

10 18.329 0.185 
20 18.980 0.085 
50 20.116 0.192 

100 21.760 0.227 
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Figure 28: qPCR-based dose-response curves of metabolic gene, gadA. Error bars 
represent the standard deviation between replicates. Some error bars are smaller than the 
markers. 
 
 
Table 21: qPCR results for gadA, used for dose-response curve. 

Target Replicate Dose Ct Avg St Dev 

gadA 

1 

0 16.903 0.151 
5 17.596 0.042 

10 18.043 0.097 
20     
50 20.688 0.395 

100 22.315 0.421 

2 

0 17.068 0.051 
5 18.037 0.083 

10 18.115 0.178 
20 18.924 0.083 
50 20.614 0.326 

100 22.277 0.226 

3 

0 17.315 0.255 
5 17.752 0.218 

10 18.261 0.301 
20 19.097 0.030 
50 20.445 0.293 

100 22.259 0.224 
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Figure 29: qPCR-based dose-response curves of two short amplicon targets, 23S (left) 
and uidAS (right). Error bars represent the standard deviation between replicates. Some 
error bars are smaller than the markers. 
 
 
 
 
Table 22: qPCR results for 23S, used for dose-response curve. 

Target Replicate Dose Ct Avg St Dev 

23S 

1 

0 18.135 0.060 
5 18.577 0.135 

10 19.119 0.126 
20     
50 19.882 0.058 

100 20.108 0.117 

2 

0 18.232 0.051 
5 18.428 0.083 

10 19.099 0.061 
20 19.475 0.023 
50 19.879 0.188 

100 20.350 0.049 

3 

0 17.973 0.105 
5 18.259 0.043 

10 18.803 0.234 
20 19.327 0.055 
50 19.824 0.054 

100 20.176 0.132 
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Table 23: qPCR results for uidAS, used for dose-response curve. 

Target Replicate Dose Ct Avg St Dev 

uidAS 

1 

0 18.531 0.178 
5 19.234 0.176 

10 19.497 0.077 
20     
50 20.675 0.276 

100 20.859 0.073 

2 

0 18.704 0.243 
5 19.242 0.196 

10 19.735 0.090 
20 20.023 0.141 
50 20.458 0.188 

100 20.747 0.116 

3 

0 18.688 0.290 
5 19.133 0.342 

10 19.313 0.065 
20 19.783 0.378 
50 20.486 0.512 

100 20.953 0.156 
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Figure 30: Melt curve for rRNA gene rrsA 
 

 
Figure 31: Melt curve for rRNA gene rrlA 
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Figure 32: Melt curve for UV repair gene uvrB 
 

 
Figure 33: Melt curve for UV repair gene umuC 
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Figure 34: Melt curve for cell division gene ftsZ 
 

 
Figure 35: Melt curve for cell division gene ftsQ 
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Figure 36: Melt curve for metabolic gene gltA 
 

 
Figure 37: Melt curve for metabolic gene ptsG 
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Figure 38: Melt curve for metabolic gene pgl 
 

 
Figure 39: Melt curve for metabolic gene tktA 
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Figure 40: Melt curve for metabolic gene fbaA 
 

 
Figure 41: Melt curve for metabolic gene tpiA 
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Figure 42: Melt curve for metabolic gene ppsA 
 

 
Figure 43: Melt curve for metabolic gene pck 
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

60 65 70 75 80 85 90 95 100

-d
F/

dT
 (%

/°
C)

Temperature (°C)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

60 65 70 75 80 85 90 95 100

-d
F/

dT
 (%

/°
C)

Temperature (°C)



 

102 
 

 
Figure 44: Melt curve for metabolic gene dfp 
 

 
Figure 45: Melt curve for metabolic gene uidAL 
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Figure 46: Melt curve for metabolic gene gadA 
 

 
Figure 47: Melt curve for USEPA’s 23S gene 
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Figure 48: Melt curve for uidAS 
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Appendix B: Supplementary Information for Chapter 3 
 

 
Figure 49: qPCR-based dose-response curves of rRNA genes, rrsA (left) and rrlA (right). 
Error bars represent the standard deviation between replicates. Some error bars are 
smaller than the markers. 
 
Table 24: qPCR results for rRNA genes, used for dose-response curves 

Target Type Dose Ct Avg St Dev 

rrsA 

raw 

0 25.455 0.091 
10 25.841 0.113 
20 26.163 0.092 
50 26.715 0.375 

100 27.577 0.250 

primary 

0 26.242 0.171 
10 26.834 0.073 
20 27.273 0.069 
50 27.640 0.496 

100 29.088 0.172 

rrlA 

raw 

0 25.415 0.058 
10 25.932 0.104 
20 26.081 0.089 
50 27.187 0.391 

100 28.216 0.399 

primary 

0 25.690 0.186 
10 26.239 0.131 
20 26.710 0.174 
50 27.511 0.028 

100 28.905 0.224 
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Figure 50: qPCR-based dose-response curves of UV repair genes, uvrB (left) and umuC 
(right). Error bars represent the standard deviation between replicates. Some error bars 
are smaller than the markers. 
 
 
Table 25: qPCR results for UV repair genes, used for dose-response curves 

Target Type Dose Ct Avg St Dev 

uvrB 

raw 

0 25.722 0.071 
10 26.177 0.069 
20 26.688 0.147 
50 27.953 0.151 

100 29.268 0.260 

primary 

0 27.701 0.124 
10 28.586 0.031 
20 29.108 0.145 
50 30.124 0.189 

100 31.179 0.157 

umuC 

raw 

0 27.040 0.081 
10 27.546 0.101 
20 28.052 0.167 
50 29.215 0.316 

100 30.455 0.622 

primary 

0 27.644 0.189 
10 28.671 0.181 
20 29.115 0.097 
50 30.037 0.201 

100 31.280 0.303 
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Figure 51: qPCR-based dose-response curves of cell division genes, ftsZ (left) and ftsQ 
(right). Error bars represent the standard deviation between replicates. Some error bars 
are smaller than the markers. 
 
Table 26: qPCR results for cell division genes, used for dose-response curves 

Target Type Dose Ct Avg St Dev 

ftsZ 

raw 

0 26.848 0.166 
10 27.265 0.083 
20 27.736 0.126 
50 28.637 0.181 

100 29.889 0.335 

primary 

0 27.856 0.158 
10 28.685 0.132 
20 29.169 0.119 
50 29.853 0.196 

100 31.324 0.261 

ftsQ 

raw 

0 27.337 0.065 
10 27.830 0.116 
20 28.254 0.146 
50 29.264 0.113 

100 30.584 0.280 

primary 

0 28.058 0.174 
10 28.886 0.099 
20 29.593 0.153 
50 30.417 0.298 

100 31.700 0.424 
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Figure 52: qPCR-based dose-response curves of metabolic genes, ptsG (top left), pgl (top 
right), pck (bottom left), and uidA (bottom right). Error bars represent the standard 
deviation between replicates. Some error bars are smaller than the markers. 
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Table 27: qPCR results for three metabolic genes, used for dose-response curves 
Target Type Dose Ct Avg St Dev 

ptsG 

raw 

0 27.093 0.153 
10 27.544 0.113 
20 27.881 0.124 
50 28.981 0.425 

100 29.922 0.313 

primary 

0 28.010 0.129 
10 28.769 0.087 
20 29.204 0.093 
50 30.130 0.218 

100 31.479 0.300 

pgl 

raw 

0 27.060 0.152 
10 27.533 0.130 
20 28.004 0.187 
50 29.043 0.318 

100 30.477 0.433 

primary 

0 27.456 0.289 
10 28.555 0.330 
20 28.809 0.100 
50 29.673 0.192 

100 30.747 0.214 

pck 

raw 

0 26.831 0.187 
10 27.276 0.115 
20 27.709 0.063 
50 29.100 0.477 

100 30.046 0.248 

primary 

0 27.675 0.212 
10 28.388 0.020 
20 28.992 0.204 
50 30.114 0.386 

100 30.951 0.236 
 
 
 
 
 
 
 
 
 
 
 



 

110 
 

Table 28: qPCR results for metabolic gene uidA, used for dose-response curves 
Target Type Dose Ct Avg St Dev 

uidAL 

raw 

0 27.282 0.157 
10 27.787 0.183 
20 28.104 0.096 
50 29.806 0.274 

100 31.256 0.269 

primary 

0 27.623 0.078 
10 28.327 0.173 
20 28.882 0.113 
50 29.706 0.244 

100 30.991 0.552 
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