
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2019

Performance evaluation of Max-Min Ant System Algorithm for Performance evaluation of Max-Min Ant System Algorithm for

Robot Path Planning in Grid Environment Robot Path Planning in Grid Environment

Satya Shree Sankini
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Sankini, Satya Shree, "Performance evaluation of Max-Min Ant System Algorithm for Robot Path Planning
in Grid Environment" (2019). Electronic Theses and Dissertations. 7733.
https://scholar.uwindsor.ca/etd/7733

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F7733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/7733?utm_source=scholar.uwindsor.ca%2Fetd%2F7733&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Performance Evaluation of Max-Min Ant System Algorithm for Robot Path

Planning in Grid Environment

by

Satya Shree Sankini

A Thesis

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2019

© Satya Shree Sankini, 2019

Performance Evaluation of Max-Min Ant System Algorithm for Robot Path

Planning in Grid Environment

by

Satya Shree Sankini

APPROVED BY:

C. Chen,

Department of Electrical and Computer Engineering

I. Ahmad,

School of Computer Science

D. Wu, Advisor

School of Computer Science

May 15th, 2019.

iii

Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyones copyright nor violate any proprietary rights and that any ideas, tech-

niques, quotations, or any other material from the work of other people included

in my thesis, published or otherwise, are fully acknowledged in accordance with

the standard referencing practices. Furthermore, to the extent that I have in-

cluded copyrighted material that surpasses the bounds of fair dealing within the

meaning of the Canada Copyright Act, I certify that I have obtained a written

permission from the copyright owner(s) to include such material(s) in my thesis

and have included copies of such copyright clearances to my appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that

this thesis has not been submitted for a higher degree to any other University

or Institution.

iv

Abstract

Path planning is an essential task for the robot to navigate and control its motion

in any environment. The optimal path needs to be rerouted each time a new obstacle

appears in front of the robot in the dynamic environment. This research focuses on

the MAX-MIN Ant System Algorithm(MMAS) which is an Ant Colony Algorithm

derived from Ant System(AS) and is different from it in terms of the pheromone

deposition. The effectiveness of this algorithm to obtain a near optimal solution

is illustrated by the means of experimental study. Using a greedier search than

the Ant System algorithm is one of the specific characteristics of the MMAS, which

will be studied in the research. The robot environment model is represented by

a grid which has obstacles whose positions change in each map that is used. Local

search routines and diversification mechanisms introduced by the previous researchers

are used to enhance the performance of the MMAS algorithm. To implement the

MMAS algorithm used in our research, the experiments are performed in MATLAB

development environment where a simulation program is designed, and the algorithm

is implemented in grid maps of sizes starting from the smallest grid 10x10 to the grid

of size 400x400. We implemented and analyzed the performance of the algorithm in

larger grid environments to understand how it would perform when the search space is

too huge; which would enable researchers to use the MMAS algorithm in experiments

involving real life environments. In our experiments a new obstacle is added after

every iteration of the algorithm which makes it challenging for the robots to find the

near optimal path. The performance evaluation of the MMAS algorithm is studied

and is also compared to that of the ACO algorithm when implemented in differently

sized grid maps.

v

Dedication

I would like to dedicate this thesis to my family.

Father: Venugopal Sankini

Mother: Swarooparani Ennelli Sankini

Sister: Dhana Shree Sankini

vi

Acknowledgements

I would like to express my sincere appreciation to my supervisor Dr. Dan Wu

for his constant guidance and encouragement during my whole Master’s period in

the University of Windsor. Without his valuable help, this thesis would not have

been possible. I would also like to express my appreciation to my thesis committee

members Dr.Chunhong Chen, and Dr.Imran Ahmad. Thank you all for your valuable

guidance and suggestions to this thesis. Last but not the least, I want to express my

gratitude to my parents, my sister and my friends who gave me consistent help over

the past two years.

vii

Contents

Declaration of Originality iii

Abstract iv

Dedication v

Acknowledgements vi

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Overview . 1

1.2 Thesis Motivation . 2

1.3 Problem Statement . 3

1.4 Thesis Organization . 4

2 Background Study 6

2.1 Key Concepts . 6

2.1.1 Mobile Robot Path Planning 6

2.1.2 Static Vs Dynamic Environment 8

2.1.3 Occupancy Grid Map . 8

2.2 Introduction to Ant Colony Optimization 9

viii

2.2.1 The ACO Metaheuristic . 11

2.2.2 Main ACO Algorithms . 15

2.3 MAX-MIN Ant System . 18

2.4 Changes made to the MMAS Algorithm 20

2.4.1 Addition of Diversification mechanisms[24] 20

2.4.2 Addition of local search routines[24] 20

2.5 Literature Review and Related Work 21

3 Environment Modeling and the Working of MMAS 23

3.1 Modeling of Robot Motion Environment 23

3.1.1 Robot movement in grid environment 25

3.2 Theoretical Explanation of Path Planning 26

3.3 Robot Path Planning Based on Max-Min Algorithm 30

4 Analysis, Evaluation of Results and Discussion 31

4.1 Simulation . 31

4.2 Parameter Settings . 31

4.3 The Implementation of Simulation Experiments 34

4.3.1 Collection of Maps Used in the Experiments 34

4.3.2 Collection of the Results . 41

4.3.3 Summary of the values obtained upon implementation of the

algorithms . 54

4.4 Evaluation of the Results . 57

4.4.1 Performance Evaluation Indexes 57

4.4.2 Performance Evaluation of the Algorithms 58

4.5 Discussion . 61

5 Conclusion and Future Work 63

ix

Bibliography 65

Appendix-Abbreviations 69

Vita Auctoris 70

x

List of Figures

Figure 1.1 Building blocks of navigation 2

Figure 2.1 Occupancy Grid Map . 9

Figure 2.2 Illustration of the behavior of the ants 10

Figure 2.3 Example of possible construction graphs for a four-city TSP

where components are associated with (a) the edges or with

(b) the vertices of the graph. 12

Figure 2.4 ACO algorithm . 14

Figure 2.5 Construction Graph . 16

Figure 3.1 An example of the grid map 25

Figure 3.2 The example of path re-routing 28

Figure 3.3 The example of path re-routing 29

Figure 3.4 The example of path re-routing 29

Figure 4.1 Map1: 10*10 Grid environment 35

Figure 4.2 Map2: 10*10 Grid environment 35

Figure 4.3 Map1: 20*20 Grid environment 36

Figure 4.4 Map2: 20*20 Grid environment 36

Figure 4.5 Map1: 40*40 Grid environment 37

Figure 4.6 Map2: 40*40 Grid environment 37

Figure 4.7 Map1: 100*100 Grid environment 38

Figure 4.8 Map2: 100*100 Grid environment 38

xi

Figure 4.9 Map1: 200*200 Grid environment 39

Figure 4.10 Map2: 200*200 Grid environment 39

Figure 4.11 Map1: 400*400 Grid environment 40

Figure 4.12 Map2: 400*400 Grid environment 40

Figure 4.13 Map1: 10*10 Grid environment after the (near) optimal path

is found by MMAS . 42

Figure 4.14 Map2: 10*10 Grid environment after the (near) optimal path

is found by MMAS . 43

Figure 4.15 Map1: 10*10 Grid environment after the (near) optimal path

is found by MMAS . 43

Figure 4.16 Map2: 10*10 Grid environment after the (near) optimal path

is found by ACO . 44

Figure 4.17 Map1: 20*20 Grid environment after the (near) optimal path

is found by MMAS . 44

Figure 4.18 Map2: 20*20 Grid environment after the (near) optimal path

is found MMAS . 45

Figure 4.19 Map1: 20*20 Grid environment after the (near) optimal path

is found ACO . 45

Figure 4.20 Map2: 20*20 Grid environment after the (near) optimal path

is found ACO . 46

Figure 4.21 Map1: 40*40 Grid environment after the (near) optimal path

is found by MMAS . 46

Figure 4.22 Map2: 40*40 Grid environment after the (near) optimal path

is found by MMAS . 47

Figure 4.23 Map1: 40*40 Grid environment after the (near) optimal path

is found ACO . 47

xii

Figure 4.24 Map2: 40*40 Grid environment after the (near) optimal path

is found ACO . 48

Figure 4.25 Map1: 100*100 Grid environment after the (near) optimal path

is found by MMAS . 48

Figure 4.26 Map2: 100*100 Grid environment after the (near) optimal path

is found by MMAS . 49

Figure 4.27 Map1: 100*100 Grid environment after the (near) optimal path

is found by ACO . 49

Figure 4.28 Map2: 100*100 Grid environment after the (near) optimal path

is found by ACO . 50

Figure 4.29 Map1: 200*200 Grid environment after the (near) optimal path

is found by MMAS . 50

Figure 4.30 Map2: 200*200 Grid environment after the (near) optimal path

is found by MMAS . 51

Figure 4.31 Map1: 200*200 Grid environment after the (near) optimal path

is found by ACO . 51

Figure 4.32 Map2: 200*200 Grid environment after the (near) optimal path

is found by ACO . 52

Figure 4.33 Map1: 400*400 Grid environment after the (near) optimal path

is found by MMAS . 52

Figure 4.34 Map2: 400*400 Grid environment after the (near) optimal path

is found by MMAS . 53

Figure 4.35 Map1: 400*400 Grid environment after the (near) optimal path

is found by ACO . 53

Figure 4.36 Map2: 400*400 Grid environment after the (near) optimal path

is found by ACO . 54

Figure 4.37 Performance comparison of MMAS and ACO in MAP 1 . . . 60

xiii

Figure 4.38 Performance comparison of MMAS and ACO in MAP 2 . . . 60

xiv

List of Tables

Table 4.1 Summary of the values obtained after the implementation of

MMAS and ACO algorithms. 55

Table 4.2 Performance Evaluation of the results. 59

Chapter 1

Introduction

1.1 Overview

Artificial intelligence (AI) is a branch of computer science that focuses on the creation

of intelligent machines whose working, and the reaction is similar to that of humans

[20]. With the increase in the development of computer technology, control theory,

artificial intelligence theory, and sensor technology, robotic research has entered an

entirely new phase [21]. One of the essential branches of robotics is mobile robots; it

has received full recognition among the academicians around the world. Navigation

in Encyclopedia Britannica is defined as the science of providing directions to a craft

by determining its position, path, and the distance traveled [26]. For example, a craft

finding its path to the desired destination while avoiding collisions is the technique

of navigation [1]. Mobile robot navigation is thus the ability of a mobile robot to

get from one place to another in an orderly manner without any human intervention

to reach the targeted destination provided it has a perfect path planning system [1].

Path planning is defined as the determination of a path that a robot must take to

navigate over each obstacle from the start to the goal position in an environment [25].

2

In all applications of mobile robots, they perform the navigation tasks using the

following building blocks [20] in the Figure 1.1.

Figure 1.1: Building blocks of navigation [20].

It is evident from the Figure 1.1 that navigation of a mobile robot involves the

perception of the environment, localization and map building, cognition and path

planning and motion control. A lot of research has been done on path planning that

is said to be one of the main components of the robotic navigation systems in distinct

environments [5], [20], [26]. For a robot to successfully navigate, the environment has

to be sensed by it to avoid dangerous circumstances and have path planning modules

to steer towards a goal by itself.

1.2 Thesis Motivation

In the recent years, finding an optimal or a near optimal path(the final outcome) in

robot navigation problem has been an interesting challenge as it involves considering

factors such as the complexity of the environment in which the robot is placed, the

parameters used, the efficiency of the algorithm applied to the problem. The factors

mentioned previously can affect the final outcome. A lot of researchers have worked

and are still working in this area to propose different methods or techniques to ad-

dress the problem. Ant colony optimization algorithm(ACO) and its variants such as

3

the Max-Min Ant System(MMAS), Ant System Algorithm(AS); were introduced to

solve the problem of path finding in robotics. The algorithms are usually applied to

many combinatorial optimization problems. The main purpose of the combinatorial

optimization (CO) problems is to find an optimal object from a finite set of objects

[22]. Travelling Salesman Problem(TSP) is a combinatorial problem that has been

extensively used by researchers in [10] [20] [14] [24] [16] to study the performance of

ACO and its related algorithms.

MMAS was first introduced by Thomas Stutzle in the year 2000; it uses a greedier

search compared to the traditional ACO algorithm [24]. In [24] the performance of the

algorithm has been studied on the TSP problem. Later, the research on MMAS has

progressed to studying the performance when implemented on a grid map in a static

environment. On the contrary, in [21] MMAS has been implemented on a topological

map and the paths that need to be traveled by the ants are represented by a sequence

of actions that the ants should execute to reach the goal and the traveled distance

spent by ants was analyzed. However, the performance of the MMAS algorithm

was not evaluated when implemented on a large scale environment in both grid and

topological maps. The grid map represents the robot environment(search space) even

with minor details. Therefore, I found that as a motivation to further study the

performance of the MMAS algorithm on a grid map(of sizes starting from 10x10 until

400x400) in a dynamic environment and contribute to the field of research.

1.3 Problem Statement

This thesis focuses on the performance evaluation of the Max-Min Ant System Algo-

rithm(MMAS); a variant of the ACO algorithm in grid maps of smaller sizes such as

10x10, 20x20 and 40x40; and also on larger sizes of maps such as 100x100, 200x200

and 400x400 in a dynamic environment. The ACO algorithm is also implemented on

4

the same environments and the performance of the two algorithms is compared. We

have designed the maps and implemented the algorithm in MATLAB environment.

The changes such as adding diversification mechanisms and local search routines were

made to the MMAS algorithm by the previous researchers; were also used in our exper-

iments. The path length, the time taken by the algorithm to find a near-optimal path

and the iteration at the which the path is first found and also the iteration at which

the algorithm converges to a solution were recorded which helped us in analyzing the

performance of the algorithm. The performance of the algorithm was analyzed using

the best performance index, time performance index and the robustness performance

index.

1.4 Thesis Organization

Chapter 2 introduces the key concepts of our research such as the mobile robot path

planning, static vs dynamic environment, occupancy grid map. Later, the ACO al-

gorithm is introduced and is discussed in detail. A description of how the behavior

of the real ants inspires the ACO algorithms is given. Also, the three main types

of ACO algorithms: Ant System, Ant Colony System, MAX-MIN Ant System are

reviewed with more focus on the Max-Min Ant System Algorithm.

Chapter 3 explains the modeling of the robot motion environment using the grid

method and introduces two of the main techniques that can be used for marking the

grid. A path planning technique based on MMAS is explained and the technique of

path re-routing is also discussed.

In chapter 4, the performance evaluation of the ant colony algorithms performed by

other researchers are discussed. A brief description about the simulation environ-

ment and the necessary parameters is given. Based on the MATLAB, 6 comparative

experiments are designed in dynamic grid environemnts to study the performance

5

of the improved MMAS algorithm compared to the ACO algorithm in different grid

environments. The results obtained are given and an analysis of the obtained results

is mentioned and discussed clearly.

Chapter 5 summarizes the work of this thesis. The conclusions obtained through our

experiments are discussed and also the possible future work of our thesis is mentioned.

6

Chapter 2

Background Study

This chapter consists of all the parallel work used for the building of the key concepts

and the methods used in our research study. In this chapter, we explain the key

concepts of our thesis, we also discuss the Ant Colony Optimization Algorithm(ACO)

and Max-Min Ant System Algorithm(MMAS) in detail.

2.1 Key Concepts

In this section, we will discuss the key concepts to understand the research work done

in this thesis. Firstly, we will discuss the research area of the thesis and then we

will describe what is Static and Dynamic environment, Introduction to Ant colony

optimization and the Max-Min Ant System Algorithm.

2.1.1 Mobile Robot Path Planning

Mobile robots are commonly used in many industrial fields. Thus, the research on

path planning for a mobile robot to avoid the obstacles in its path is very important.

As discussed in Section 1.1, path planning enables the selection and identification of

a suitable path for the robot to traverse in the workspace area [5]. There are two

7

kinds of path planning; namely the global path planning and the local path planning.

The two main elements for global or deliberative path planning are [5]:

• Robot representation of the world in configuration space (C-space)

• Implementation of the algorithm

These two components are interrelated and significantly influence one another

in the process to determine a near optimal route for the robot to traverse in the

workspace within a reasonable amount of time [5]. If the information about the

environment is known, the global path can be planned offline before the robot starts

to move. This global path can assist the robot to traverse within the real environment

because the attainable near optimal path has been formed within the environment.

However, another category of path planning system known as local path planning was

introduced; where the robot finds the near-optimal path while dealing with obstacles.

The local path is usually constructed online when the robot avoids the obstructions

in an environment [17].

Based on the environment and their functioning to find the near optimal path,

the path planning algorithms can be classified into two categories , namely, local path

planning algorithms and global path planning algorithms. The local path planning

algorithms generate a path while the robot moves through the environment and can

produce a new path based on the environmental changes. While global path planning

algorithms need to have previous knowledge about the environment; therefore, the

environment should be static.

While Path Planning is an important instance in the process of finding the near

optimal path in an environment, localization holds an equally important role. Local-

ization is the problem for determining a robot’s position and orientation within the

environment(that is deduced to a map). For example, you’re in a room and browsing

the internet at night. Suddenly the lights go off. You want to turn the torch on, but

8

your torch is in the bedroom closet, and its far away from the room where you are

sitting. How will you reach there? The answer to the question is that; firstly, you

need to stand up from your chair move towards the room while walking you use your

hands as a sensor to sense where you are going. You touch the objects (landmarks)

that you’re already familiar with; like a door, wall, TV, etc., with your hands and find

out your position(localize) and move towards the closet(destination) in the bed room.

Therefore, we can say that by sensing the robot movements and the perceptions of

the environment the localization problem can be solved.

2.1.2 Static Vs Dynamic Environment

The environment has a substantial impact on the difficulty of robot path planning.

The environment used could either be static or dynamic. The environment in which

only the position of the robot changes is known as the static environment. Compara-

tively, in dynamic environments, the objects other than the robot are present whose

location or configuration changes over time. Most real environments are dynamic,

where the position changes of the objects present occur at a different range of speeds.

Our idea of the dynamic grid map which is an occupancy grid map is that a

new obstacle is introduced at every iteration of the algorithm; it means that a new

obstacle is added or the position of the existing obstacles is altered after every cycle

of the implemented algorithm within the given value for the number of iterations.

This would make the environment completely new for the robot to traverse through

every time the algorithm is initiated because there is a new obstacle added.

We discuss the occupancy grid map in the Section 2.1.3

2.1.3 Occupancy Grid Map

The occupancy grid map is represented as a field of random variables in an evenly

spaced grid [27]. A value is assigned to each random variable that represents its

9

occupancy. The value of the variable can be one of the three:

• Free: Space has been explored, and the robot knows it is free of obstacles.

• Occupied: There are obstacles present in the grid and have been sensed by

the robot.

• Unknown: The grid has not been explored and no idea about its occupancy.

Figure 2.1: Occupancy numbered grid map.

The Figure 2.1 is the representation of the occupancy grid map. In the figure it is

clear that each grid is numbered starting from 1 to 100, the black objects represent

the obstacles that have occupied the grids.

2.2 Introduction to Ant Colony Optimization

Ant Colony Optimization (ACO) was first introduced and proposed by Marco Dorigo

in his Ph.D. thesis in 1992 [6]. It was inspired by the food-seeking behavior of the

ant colony, and it is said to be a metaheuristic. According to Dorigo, the behavior

of a single ant seems quite simple. However, he also mentioned in his research that

10

multiple ants can cooperate to form an enormous social group to accomplish many

other complicated tasks. The ants initially wander randomly to explore the envi-

ronment near their nest, while searching for food. Different paths can be chosen by

different ants to explore in compliance with their random behavior [6]. As soon as a

food source is determined by an ant; it carries a bearable amount of food on its way

back to its nest.

By a lot of research and study; biologists have found that ants leave some chemical

substance on the paths that were traversed by them, which is called pheromone, and

the quantity of pheromone is inversely proportional to the length of the route. It

was also mentioned in Dorigo’s research in 1992 that the ants can also perceive the

pheromone when they pass the path, and their actions could be influenced by the

concentration of pheromone. However, the amount of the pheromone left may vary

depending on the quality and quantity of the food. Then, other ants now can choose

the route that has denser pheromone (which can be treated as a better route) and

guides them to the food source. This behavior will also cause the formerly better

path to becoming even much better by aggregating more pheromones. This behavior

of the ants is depicted in Figure 2.2.

Figure 2.2: Illustration of the behavior of the ants [10].

11

We can see that the nest of the ants in Figure 2.2 is denoted by A and the food

source is denoted by E. In Figure 2.2 (a), (b) and (c), the space between the starting

(A) and the goal positions(E) is the environment that is to be explored by the ants.

In Figure 2.2(a) the ants move freely between the points A and E.

However, in Figure 2.2 (b) an obstacle is placed unevenly to cut off the path

between the points A and E. The longer part of the obstacle is denoted by H, and

the shorter part is denoted by C. Once the obstacle is added the ants have to now

choose between the paths AC or AH to reach the food source E. At first, the ants

randomly choose either of the paths AH or AC. After a considerable amount of

time, the ants realize that taking the path AC makes them reach the point E faster

because that is the shortest path. Therefore, more number of ants follow this path

and as they leave some amount of pheromone while traversing, the concentration of

the pheromone on the path AC is higher compared to that on the path AH. This

eventually leads to all the ants taking the path ACE than the path AHE making

the concentration of pheromone on the former path denser.

This behavior of the ant colony is termed as metaheuristic, which is said to be

the main concept of the ant colony optimization which falls under the category of

the approximate algorithms. The approximate algorithms are used to obtain the

near-optimal solutions to solve hard combinatorial optimization problems (CO).

2.2.1 The ACO Metaheuristic

ACO has been formalized into a metaheuristic for combinatorial optimization prob-

lems by Dorigo et.al in the year 1992 and 1996. A metaheuristic is a general-purpose

algorithmic framework that can be applied to different optimization problems with a

few modifications. For example, In order to apply ACO to a given a combinatorial

optimization problem we would need an adequate model [27],

Here we consider that a model P consists of:

12

• A search space S defined over a finite set of discrete decision variables Xi, where

i = 1, 2,n.

• A set of Ω constraints among the variables.

• An objective function f : S → R+
0 to be minimized.

Figure 2.3: Example of possible construction graphs for a four-city TSP where com-
ponents are associated with (a) the edges or with (b) the vertices of the graph [27].

Figure 2.3 shows the example of possible construction graphs for a four city TSP

problem, as depicted by the researchers in [27]. In the Figure 2.3 (a), the components

of the TSP are associated with edges that means 1, 2, 3, 4 are the vertices(i.e, cities)

and c12, c24, c34, c13, c23, c14 are the edges that show the relationship between the ver-

tices. In the Figure 2.3 (b), the components are associated with the vertices of the

graph; which means that the edges are considered as nodes represented by c12,, c14

and the lines connecting the nodes show the relation between the vertices. When a

CO problem has to be solved, a finite set of solution components C are to be derived.

Each possible solution components are associated to a pheromone value τ . Initially,

13

pheromone value τij is associated with the solution component cij; where i and j are

the cities.

One of the essential components of the ACO metaheuristic is the pheromone

model. In ACO, by traversing the fully connected graph GC(V,E); where V is the

set of vertices and E is a set of edges. The mentioned connected graph GC can be

obtained by representing the solution components C either by vertices or by edges.

A partial solution is built when the ants move from one vertex to vertex along the

edges of the graph. A certain amount of pheromone is deposited by the ants on the

components traversed(either on the vertices or the edges). However, the amount of

4τ is dependent of the quality of the solution found. Therefore, the successive ants

use the pheromone information to plan their path on the most favourable regions of

search space i.e the graph. Usually, a set of n variables represent a solution; where

a city is associated with each variable. For example, Xi is a variable which indicates

the city to be visited after i. The pairs of cities to be visited one after the another

are represented by the solution components cij = (i, j) where, i and j are the cities;

which means that the city j should be immediately visited after city i . Therefore,

in this scenario of the construction graph the vertices are the cities to be traversed

and the edges are the solution components. Therefore, the ants would deposit the

pheromone on the edges. However, a construction graph could also be obtained by

representing solution components as vertices on which the pheromone is deposited.

This method of obtaining a construction graph is not very popular but is nonetheless

correct [16].

The Figure 2.4 is an ACO metaheuristic. Once initialized, the algorithm iterates

over three phases: solutions are constructed at each phase by the ants, a local search

is applied to improve the solutions after which the pheromone is updated[27].

14

Figure 2.4: ACO Algorithm [2].

The three main algorithmic components: ConstructAntSolutions, ApplyLocalSearch,

UpdatePheromones are explained further in detail.

• ConstructAntSolutions

Artificial ants can be viewed as probabilistic useful methods that collect ar-

rangements as progressions of parts of the arrangement. The limited arrange-

ment of finite set of the solution components C = cij where i = 1,, n and

j = 1, | Di | [2]. A solution construction commences from an empty partial

solution Sp = ∅. At every construction step, the partial solution Sp is elongated

by adding a feasible solution component from the set N(Sp) ⊆ C, which is

defined as the set of components that can be appended to the current partial

solution Sp without violating any of the constraint values. The determination

of a solution component from N(Sp) is supervised by a stochastic mechanism,

which is biased by the pheromone correlated with each of the elements of N(Sp).

• ApplyLocalSearch

LocalSearch is usually included in state-of-the-art ACO algorithms [6]. Af-

ter all the ants finished the partial solution construction in one iteration, the

pheromone should be updated to increase its value to keep a strong association

with the good or promising solutions. There are two main steps:

– Decrease all the pheromone values through pheromone evaporation.

15

– Increase the pheromone levels associated with a chosen set of good solu-

tions.

Once solutions have been built, and before refreshing the pheromone, it is com-

mon to augment the solutions obtained by the ants by a local search. This

phase, which is exceptionally problem-specific, is optional although it is usually

included in state-of-the-art ACO algorithms.

• UpdatePheromones

The pheromone update aims to raise the pheromone values correlated with ben-

eficial or promising solutions and to reduce those that are associated with poor

ones. Usually, this is obtained (i) by lowering all the pheromone values through

pheromone evaporation, and (ii) by raising the pheromone levels associated with

a chosen set of good solutions.

2.2.2 Main ACO Algorithms

A lot of research on the ACO algorithms and their implementation has been done

previously; such as in [23], [6], [11], [21] and [24] among the others. The main ACO

algorithms are:

• Ant System Algorithm (AS)

• Ant Colony System Algorithm (ACS)

• Max-Min Ant System Algorithm (MMAS)

Further in this section, we will discuss the implementation of three main algorithms

of the Ant Colony Optimization on the Travelling Salesman Problem; with more

emphasis on the MMAS algorithm as it is the basis of our thesis.

16

Ant System Algorithm

Ant System is the first ACO algorithm proposed in the literature [7] and [9]. The

main characteristic of this algorithm is that the pheromone values are updated by all

the m ants that have built a solution, at each iteration.

Figure 2.5: Construction Graph.

For example, assume the Ant System as a connected construction graph consisting

of vertices and edges as shown by Figure 2.5; represents a 5 city TSP problem. In

the figure 2.5 the nodes a,b,c,d,e are the cities and the lines connecting them are the

edges. Here, for a vertex pair (ab) and edge (a,b), the pheromone would be denoted

by τab, associated with the edge joining cities a and b, is updated as follows:

τab ← (1− ρ).τab + Σm
k=14 τ kab (2.1)

where ρ is the evaporation rate, m is the number of ants, and the quantity of

pheromone deposited on edge (a, b) by ant k which is denoted by 4τ kab. It can be

represented by the equation (2.2) where Q is a constant, and Lk is the length of the

tour constructed by ant k in the present iteration.

τ kab =


Q

Lk
, if ant k used edge (a,b) in its tour

0, otherwise

(2.2)

17

By having the τab value, the probability for ant k to go to vertex b from a is

calculated as shown in the equation (2.3).

P k
ab =


ταab.η

β
ab

ΣCal∈N(sp).τ
α
al.η

β
al

ifCab ∈ N(sP),

0 otherwise,

(2.3)

In equation (2.3) the first condition is satisfied only if Cab belongs to the set of

possible components which is here denoted by N(Sp). It means that vertices (a,l)

where l is a city not yet visited by the ant k. The relative effect of the pheromone

versus the heuristic information ηab is controlled by the parameters α and β, which

is given by the equation (2.4), where dab is the distance between cities a and b,

ηab =
1

dab
(2.4)

Similar to which the process was described in theoretical explanation in Section

2.2.1, in each iteration, based on the paths traveled by each ant, the pheromone τab

on each edge of the connected construction graph is updated using equation (2.2).

Ants will traverse through the graph probabilistically choosing next vertex by us-

ing equation (2.3) when the next round of iteration begins, based on the updated

pheromone.

Ant Colony System

The Ant Colony System (ACS) was first introduced in 1996 [8]. The same author has

proposed the concept of ant colony optimization in his Ph.D. thesis in 1992 [6]. A

local pheromone update was added to the pheromone update performed at the end

of the process of construction of a solution.

18

According to [13], the three main aspects in which the ACS differs from the Ant

System are:

i) A direct way to balance between the exploration of new edges and exploitation

of a priori and registered knowledge on the problem is provided by the state transition

rule.

ii) The global updating rule is applied only to edges which relate to the best ant

tour.

iii) A local pheromone updating rule (local updating rule, for short) is applied

while ants are constructing a solution. The quantity of pheromone on the traversed

edges is updated by the ants while constructing their tour using the local updating

rule. The pheromone updating rules are outlined so that they tend to give more

pheromone to edges which should be visited by ants [13].

2.3 MAX-MIN Ant System

The Max-Min algorithm was first proposed in the year 2000 by T. Stutzle and H.H.

Hoos. Many studies were conducted on ACO [4], [23], [26] which have shown that

by stronger exploitation of the best solutions (obtained during the search and the

exploration of the environment) the performance of the algorithm could be improved.

However, in [24] the author has introduced the concept of using a greedier search

in the MMAS algorithm; the introduced concept potentially aggravates the problem

of premature stagnation of the search. MAX-MIN Ant System differs in three key

aspects from the Ant System, namely:

• Only one single ant adds pheromone after each iteration. That is done to exploit

the best solutions found during an iteration or the run of the algorithm [24].

This ant could be the one who found the best solution in the current iteration

(iteration-best ant) or the one who found the best solution from the beginning

19

of the trial (global-best ant).

• The range of possible pheromone trails on each solution component is limited

to an interval [τmin, τmax], to avoid stagnation of the search [24].

• The pheromone trails are initialized to τmax, to achieve a higher exploration of

solutions at the beginning of the algorithm [24].

Pheromone Trial Updating

The modified pheromone trail update rule is given by

τij(t+ 1) = ρτij(t) +4τ bestij (2.5)

where [∆τ]bestij = 1/(Lbest); here, Lbest is the length of the tour of the best ant.

It could either be the best tour found in the present iterationiteration-best, Lib or

the best solution found since the initialization of the algorithm Lbs (best so far) or a

combination of both.

The notion of convergence for MAX-MIN Ant System which is needed in deter-

mining the values of pheromone trial limits was introduced in [24]. The concept of

convergence of MMAS differs in one slight but important aspect from the concept of

stagnation [10]. All ants follow the same path in stagnation. However, in situations

of convergence, it is not the similar case due to the use of the pheromone trail limits.

Pheromone trail initialization

In MMAS the pheromone trails are initialized in such a way that after the first iter-

ation all pheromone trails correspond to τmax(1). The strategy of all the pheromone

trials corresponding to τmax(1) can easily be achieved by setting τ(0) to some arbi-

trarily high value. The trails will be forced to register values within the set limits,

after the first iteration of MMAS in particular, they will be set to τmax(1). During the

20

first iterations of the algorithm, this type of trail initialization is chosen to increase

the exploration of solutions.

2.4 Changes made to the MMAS Algorithm

2.4.1 Addition of Diversification mechanisms[24]

The diversification mechanism is used and to check if that allows MMAS to converge

to a very high-quality solution. Two variants which contrast in the degree of search

diversification are examined. Firstly, the pheromone trials are reinitialized to τmax as

given below,

τ ∗ij(t) = τij(t) + δ(τmax(t)− τij(t)) (2.6)

However, this corresponds to setting δ = 1 in the equation above whenever the

pheromone trail strengths on almost all paths are not contained in Sgb(global best

solution) are very close to τmin (minimun pheromone value).

Once the algorithm is reinitialized, the search fgb (iteration best solution) is ap-

plied as done at the start of the algorithm. The best solution found since the reini-

tialization of the pheromone trials is used instead of Sgb, by doing this more search

diversification is obtained. The Max-Min Ant System algorithm is then allowed to

converge to another high-quality solution.

2.4.2 Addition of local search routines[24]

Local search algorithms commence from a complete initial solution and try to find a

better solution in an agreeably defined neighborhood of the current solution. In its

most basic version, known as the iterative improvement, the algorithm searches the

21

neighborhood for an correcting solution. If such a solution is found, it displaces the

current solution, and the local search resumes. These steps recur until no improving

neighbor solution can be attained in the neighborhood of the current solution and

the algorithm ceases in a local optimum (the best solution in among the available

solutions in a neighborhood in an environment).

2.5 Literature Review and Related Work

In [10] the authors proposed the ant system as a new approach to stochastic com-

binatorial optimization. They have studied the performance of the ACO algorithm

on a TSP problem in a static envirnment. Their basic idea was that if at a given

point an agent (ant) has to choose between different options for its next move and

the one actually chosen results to be good, then in the future that choice will appear

more desirable than it was before. Also, the authors in [10] have shown that the Ant

System problem could be applied to different CO problems.

The authors in [10] introduced the ACO meta heuristic algorithm. The ACO

meta heuristic was implemented on a TSP problem in a static environment. They

have also discussed the importance of the trial visibility and Trial persistence.

Later, in [24] the authors have introduced the MMAS algorithm. The algorithm’s

performance was evaluated when implemented o a TSP problem. The results obtained

indicated that the performance of the algorithm was better when compared to the

ACO algorithm as the former one uses a greedier search.

In addition to the research that has been discussed in the above paragraphs, the

authors in [21] have implemented the MMAS algorithm on an evolutionary compu-

tation problem in which the robots should explore the environment at the same time

they plan the path. The authors have used a Topological Map to represent their

environment. The proposed MMAS algorithm provided a very good performance in

22

relation to a genetic algorithm.

23

Chapter 3

Environment Modeling and the

Working of MMAS

3.1 Modeling of Robot Motion Environment

Autonomous navigation describes a higher level of performance since it applies ob-

stacle avoidance simultaneously with the robot steering toward a given target [4].

Therefore, it implies an environment with known and unknown obstacles, and it in-

corporates global path planning algorithms [3] to organize the robots path amidst the

known obstacles, as well as local path planning for real-time obstacle escape.

One standard technique for map representation that does not bear from data

associations is to utilize occupancy grid maps to approximate the environment. An

occupancy grid map depicts the environment as a block of cells, each one either

seized so that the robot cannot pass through it, or abandoned, so that the robot can

traverse it. Grid method is used to establish the environmental model to simulate the

actual working area of the robot which in turn helps to avoid the complex calculations

that may arise otherwise when dealing with the boundaries of the obstacle. In the

application of the grid method, the division of the grid size is critical. The grid maps

24

we used in our experiments are the occupancy grid maps.

An initial implementation of occupancy grid maps was used by Moravec in his

research in 1988 to automatically prepare a map of the environment. Sensor readings

were matched to the map, altering the possibility that observed cells are filled. For

example, a sonar sensor returns the nearest object within a cone, so the cells in the

extent of the cone closer than the reading are probably unoccupied. Moravec in

1988 represented each cell in his reasearch as a possibility of being traversable and

initializes them to an obscure value. He illustrated a probabilistic technique to update

cells for several types of sensors and supplied a procedure to permit the map to be

renewed as the robot moves [15].

According to Milstein’s research in 2008 in [18], to build an occupancy grid map,

it is required to determine the occupancy probability of each cell. Although, assumed

that it is not surely accurate, especially when acknowledging nearby cells representing

the equivalent physical object. As a result, the probability of a distinct map m, can

be factored into the product of the different probabilities of it’s cells.

The probability of a precise cell is simple to ascertain, given the robots location and

sensor readings since it is defined by whether the robot observes the cell as unoccupied

or occupied [18]. The Occupancy grid mapping refreshes a map according to a sensor

reading at a location so that, as evidence accrues, the map becomes accurate.

Milstein in his research in [18], mentioned an example where we consider each

cell of the map to be an independent object, which can be either present or absent.

Although independence is usually not entirely valid, it was assumed to be so.

The assumptions can therefore be summarized as follows:

(1) 2D definite space is the environment in which the mobile robot moves.

(2) The movable trajectories of the dynamic objects can be estimated for the

future, keeping the speed of the robot constant.

(3) Every time the robot makes a move it is directed to the grid center. The

25

environment information can be centered in the current grid center [18].

3.1.1 Robot movement in grid environment

In a grid environment, the number of obstacles are lesser in number in some instances

compared to the others depending on the experiments being constructed (it is a

decision to be made by the researcher.

Figure 3.1: An example of the grid map.

For example, the Figure 3.1 is a two dimensional workspace with obstacles. The

workspace would be divided into rows and columns composed of grids which are of

equal size.The black grids denote the obstacles, and other white grids denote the free

grids. Therefore, this method is based on the concept of occupancy grids. However,

the size and the location of the obstacles present are unknown. The starting point

of the algorithm implemented is set to the bottom left grid of the workspace. The

grid cells are numbered from left to right starting from the bottom left grid which is

numbered as 1 and the destination grid that is the top right grid is numbered as 100.

26

The robot aims to search an optimal or near optimal path from the start to the

destination grid (goal). We adopt two main methods for grid marking, namely the

Rectangular coordinate method and the Serial number method.

• Serial number method: From the bottom left of the grid map, coding the

grid from bottom to top, from left to right as shown in Figure 3.1. The serial

number is from 1 to 100. The grid using the serial number method to mark is

gn, e.g., the grid of serial number 1 is marked as g1.

• Rectangular coordinate method: The method in which every grid coordi-

nate is indicated with central point (x, y). The grid using Rectangular coordi-

nate method is g(x, y), e.g., the grid of serial number 1 is marked as g(0.5, 0.5).

The starting point of robot path planning is assigned as g1 in the bottom left

of the map, likewise, the target point of robot path planning as g100.

To simulate the real ant colony seeking food behavior in the given example in

the Figure 3.1, we assume that the starting point of robot path planning g1, and the

target point gn as a food source.

3.2 Theoretical Explanation of Path Planning

Once the modeling of the environment and the process of marking the grid is done,

we would initialize the robot at grid g1 and wait for it to navigate itself through

the environment and reach the grid g100.As discussed in Section 1 Navigation is a

methodology that allows guiding a mobile robot to achieve a mission through an

environment with obstacles healthily and safely. The two basic tasks included in

navigation are the localization, and path planning.

According to the survey by Nirmala et.al in 2016, it can be said that the strategy

used to find the solution consists of the two operations such as the recognition of a

set of navigation and operation goals [19].

27

In the experiments implemented in this thesis, we have used grid maps with obsta-

cles. The ants have a planned path from the starting to the goal position. However,

once the algorithm is implemented, and a new obstacle is added everytime, in a while

the agents would have to re-route their path from their current position which is

assumed to be the start position after a new obstacle is added, and then a path is

planned from that point to the goal position.

This process is repeated every time a new obstacle is added. The Figures 3.2, 3.3,

3.4 depict the way the robots plan their path. In these figures the black and the grey

objects represent the obstacles, the red line represents the path travelled by the ants

, the dotted red line represents the previous path travelled by the ants; the grid on

the bottom most left is the starting position of the ants and the grid on the top most

right is the goal position. The process of path planning and path rerouting is further

explained in detail.

In the Figure 3.2 the ants is placed at the starting position. A few obstacles

are already present in the environment. Once the algorithm is run, the robot starts

following the path towards it’s destination which here is represented by the red line.

28

Figure 3.2: The example of path re-routing(a).

In the Figure 3.3 the black coloured blocks represent the newly added obstacles,

the grey coloured blocks represent the obstacles that were previously added. The

robot has to analyze and plan it’s path from the grid that it was present in which is

considered as the starting point after the new obstacles are added. The robot moves

from that point towards its goal position following a totally different path that it had

planned earlier before the obstacles were added.

29

Figure 3.3: The example of path re-routing(b).

The ants finally reach the destination grid after rerouting their path every time

they encounter an obstacle. This is shown in the Figure 3.4.

Figure 3.4: The example of path re-routing(c).

30

3.3 Robot Path Planning Based on Max-Min Al-

gorithm

In the research of the MMAS algorithm, it has been found that the algorithm solves

the TSP problem successfully. But before applying MMAS on the field of robot path

planning, many changes to the traditional algorithm have to be made based on the

features of robot path planning. It introduces τmax (upper) and τmin (lower) bounds

to the values of the pheromone trails, as well as a distinctive initialization of their

values.

In practice, the permitted range of the pheromone trail strength is limited to the

interval that is [τmin, τmax], and the pheromone trails are initialized to the upper trail

limit, which induces a higher exploration at the start of the algorithm [24]. The

MMAS algorithm was modified by Stuzle et.al in the year 2000 after he introduced

the algorithm in the year 1999, to achieve faster convergence speeds while still finding

shorter paths.

The experimental results are given in chapter 4 and conclusion in chapter 5.

31

Chapter 4

Analysis, Evaluation of Results and

Discussion

In this chapter, we shall discuss the experiments conducted in detail. Also we have

summarized and analyzed all of the results obtained.

4.1 Simulation

All the experiments were conducted on a PC with device specifications a 3.40GHz

Intel CORE i7-6700 processor, 8 GB of RAM and 64-bit Windows operating system.

All the simulation programs have been compiled using MATLAB.

4.2 Parameter Settings

• The number of ants m :

The number of ants m has an important influence on the overall performance

of the ant colony optimization algorithm. In general, the capability of the algo-

rithm could be increased using a certain number of ants. However, if the number

of ants m is oversize, the pheromone variation would be reduced to average and

32

the convergence speed is slowed down, on the contrary, if the number of ants m

is too few, the stability of the algorithm is reduced, and the problem of early

stagnation would occur [12]. In our thesis we have set the number of ants as

20 for the grids 10x10, 20x20 and 40x40. However, the number of ants required

to implement the algorithms for the grids 100x100, 200x200 and 400x400 had

to be more than 20 since the grid maps are of large sizes an it would help in

better exploration of the environment and converge to a near optimal solution

in feasible amount of time. However, when we initially used just 20 ants for the

larger grid environments, we came across few problems which will discussed in

the Section 4.5.

• The combination of parameters α, β, ρ:

The relative importance of pheromone accumulated by ant colony is reflected by

α which is the impact index of pheromones, and the relative importance of the

heuristic information is reflected by β which is the impact index of a heuristic

factor.

The pheromone evaporation rate ρ reflects the intensity of the interaction be-

tween ants, which is directly related to the global search ability and conver-

gence speed of the ACO and related algorithms. The global search ability of

the MMAS algorithm can be improved by increasing the value of ρ. However,

the convergence speed of the algorithm is reduced.

As a matter of fact, the roles of α, β and ρ are closely related. While apply-

ing the Ant colony optimization algorithms on robot path planning, the wrong

combination setting of α, β and ρ will eventually slowdown the solution speed

and the quality of the results would be degraded. In our thesis we have used

the following values for all the experiments: α = 5, β = 5 and ρ = 0.5.

33

• The pheromone values τmax and τmin:

In MMAS, we set the maximum pheromone trail τmax to an estimate of the

asymptotically maximum value.

To determine reasonable values for τmin , we use the following assumptions as

mentioned in [24],

– The best solutions are found shortly before search stagnation occurs. In

such a situation the probability of re-constructing the global-best solution

in one algorithm iteration is significantly higher than zero. Better solutions

may be found close to the best solution found.

– The main influence on the solution construction is determined by the rel-

ative difference between upper and lower pheromone trail limits, rather

than by the relative differences of the heuristic information.

Stutzle and Hoos have introduced a formula to calculate the maximum and the

minimum trial limit values which are assumed to be approximate [24].

τmin = τmax.
1− (Pbest)

−(1−n)

avg − 1(Pbest)−(1−n)
(4.1)

where avg is the average number of components that can be chosen in con-

struction steps, Pbest is the probability of constructing the best solutions, and

n represents the number of components in the constructed solution.

• Pheromone Intensity Q:

Pheromone intensity Q is the total amount of pheromone released by the ant

colony left on the paths they traveled after a single iteration. The larger the Q,

the faster the pheromone accumulation on the paths of the ant colony, the con-

vergence speed of the algorithm is improved [28]. However, when Q is oversize,

34

the algorithm easily fall into a local optima.

• The number of iteration Nc:

To ensure the algorithm can search the optimal path within the number of

iterations, the value of Nc should be set larger. In this thesis, under the 10*10

grid environment map, Nc = 100, under the 20*20 grid environment map, Nc

= 400, under the 40*40 grid environment map, Nc = 1600, under the 100*100

grid environment map, Nc = 10000, under the 200*200 grid environment map,

Nc = 40000, under the 400*400 grid environment map, Nc = 160000.

4.3 The Implementation of Simulation Experiments

The aim of the thesis as mentioned in Section 1.3 is to implement the improved MMAS

algorithm in larger dynamic grid maps. However, we have not only implemented the

MMAS algorithm in a smaller grid environment but also on a larger environment to

check for its scalability. Obstacles are set in every map whose position is unknown to

the robot The experiments are later performed on 6-different sizes of the grid maps.

The performance of the MMAS is also studied and compared with the ACO algorithm

on different maps implemented by the previous researchers.

4.3.1 Collection of Maps Used in the Experiments

In this section we showcase the grid maps used in all of our experiments.

.

35

Figure 4.1: Map1: 10*10 Grid environment.

Figure 4.2: Map2: 10*10 Grid environment.

The Figures 4.1 and 4.2 represent the 10*10 grid maps

36

Figure 4.3: Map2: 20*20 Grid environment.

Figure 4.4: Map2: 20*20 Grid environment.

The Figures 4.3 and 4.4 represent the 20*20 grid maps.

37

Figure 4.5: Map1: 40*40 Grid environment.

Figure 4.6: Map2: 40*40 Grid environment.

The Figures 4.5 and 4.6 represent the 40*40 grid maps.

38

Figure 4.7: Map1: 100*100 Grid environment.

Figure 4.8: Map2: 100*100 Grid environment.

The Figures 4.7 and 4.8 represent the 100*100 grid maps.

39

Figure 4.9: Map1: 200*200 Grid environment.

Figure 4.10: Map2: 200*200 Grid environment.

The Figures 4.9 and 4.10 represent the 200*200 grid maps.

40

Figure 4.11: Map1: 400*400 Grid environment.

Figure 4.12: Map2: 400*400 Grid environment.

The Figures 4.11 and 4.12 represent the 400*400 grid maps.

In our maps the obstacles are randomly generated. After every iteration (one cycle

of the algorithm) a new obstacle is added or the position of the existing obstacles

changes or both. We decide the position of the obstacles in the map as we assign

each cell that has to be blocked(which means an obstacle is placed in the cells that are

blocked). For example, in a map1 we have obstacles in grid g3, g6, g7 . We implement

41

the algorithm on a map M; where M represents all the scenarios of the maps in

which the algorithm was implemented which are denoted as map1, map2, map3 etc.

During the first iteration the obstacles are placed in the grid g3, g6, g7 which we can

consider as map1; once a best path is found the positions of the obstacles are changed

from g3, g6, g7 to g5, g8, g9 which is considered as the map2 on which the algorithm is

implemented again with a record of the pheromone values that were updated after

finding the best path in map1. Again in map3 the positions of the obstacles are

changed and the implemented again without re-initializing it. Similarly, the positions

of the obstacles is changed for every iteration and the algorithm is implemented until

it reaches the maximum number of iterations. Sometimes, once the position of the

obstacles is changed and the obstacle might not be in the grids that are a part of

the best path, therefore it would not cause any changes to the path length. As we

use the pheromone update rules, by the time the algorithm reaches the maximum

iteration the best paths found at every iteration would contain a pheromone value.

But there would be one path with the most concentration of pheromone, it is known

as the near-optimal path. The length of the near-optimal path is the value of the

convergence rate of the algorithm. Therefore, we note the iteration at which the

algorithm has begun to converge and gives the same path length(which is the optimal

path length) until the maximum iteration is reached. In our approach since we utilize

all the iterations as well as all the pheromone values in order to narrow down to the

optimal path value; we can say that we do not waste any of the resources or the

parameters used.

4.3.2 Collection of the Results

In this subsection we represent the grid maps with the paths obtained after the

algorithms were implemented.

The Figures 4.13, 4.14, 4.15, 4.16 represent the 10*10 grids; The Figures 4.17, 4.18,

42

4.19, 4.20 represent the 20*20 grid maps; The Figures 4.21, 4.22, 4.23, 4.24 represent

the 40*40 grid maps; The Figures 4.25, 4.26, 4.27, 4.28 represent the 100*100 grid

maps; The Figures 4.29, 4.30, 4.31, 4.32 represent the 200*200 grid maps; The Figures

4.33, 4.34, 4.35, 4.36 represent the 400*400 grid maps. In a 10*10 grid map, the grids

are numbered from 1 to 100, with the grid1 being the starting point and the grid100

being the destination point. The start and the destination grids are marked with

yellow dots in the maps. The blue line represents the predicted path (for the MMAS

algorithm) and the red line represents the near optimal path found by the algorithms.

The values obtained (the length of the paths and the other parameters) by imple-

menting these algorithms are shown and discussed in the next section.

Figure 4.13: Map1: 10*10 Grid environment after the (near) optimal path is found
by MMAS.

43

Figure 4.14: Map2: 10*10 Grid environment after the (near) optimal path is found
by MMAS.

Figure 4.15: Map1: 10*10 Grid environment after the (near) optimal path is found
by ACO.

44

Figure 4.16: Map2: 10*10 Grid environment after the (near) optimal path is found
by MMAS.

Figure 4.17: Map1: 20*20 Grid environment after the (near) optimal path is found
by MMAS.

45

Figure 4.18: Map2: 20*20 Grid environment after the (near) optimal path is found
MMAS.

Figure 4.19: Map1: 20*20 Grid environment after the (near) optimal path is found
ACO.

46

Figure 4.20: Map2: 20*20 Grid environment after the (near) optimal path is found
ACO.

Figure 4.21: Map1: 40*40 Grid environment after the (near) optimal path is found
by MMAS.

47

Figure 4.22: Map2: 40*40 Grid environment after the (near) optimal path is found
by MMAS.

Figure 4.23: Map1: 40*40 Grid environment after the (near) optimal path is found
ACO.

48

Figure 4.24: Map2: 40*40 Grid environment after the (near) optimal path is found
ACO.

Figure 4.25: Map1: 100*100 Grid environment after the (near) optimal path is found
by MMAS.

49

Figure 4.26: Map2: 100*100 Grid environment after the (near) optimal path is found
by MMAS.

Figure 4.27: Map1: 100*100 Grid environment after the (near) optimal path is found
by ACO.

50

Figure 4.28: Map2: 100*100 Grid environment after the (near) optimal path is found
by ACO.

Figure 4.29: Map1: 200*200 Grid environment after the (near) optimal path is found
by MMAS.

51

Figure 4.30: Map2: 200*200 Grid environment after the (near) optimal path is found
by MMAS.

Figure 4.31: Map1: 200*200 Grid environment after the (near) optimal path is found
by ACO.

52

Figure 4.32: Map2: 00*200 Grid environment after the (near) optimal path is found
by ACO.

Figure 4.33: Map1: 400*400 Grid environment after the (near) optimal path is found
by MMAS.

53

Figure 4.34: Map2: 400*400 Grid environment after the (near) optimal path is found
by MMAS.

Figure 4.35: Map1: 400*400 Grid environment after the (near) optimal path is found
by ACO.

54

Figure 4.36: Map2: 400*400 Grid environment after the (near) optimal path is found
by ACO.

4.3.3 Summary of the values obtained upon implementation

of the algorithms

In this section we show and explain the summary of the path length values, time

frame and the iteration values obtained after implementing the MMAS and the ACO

algorithms.

55

Maps MMAS Iteration for MMAS ACO Iteration for ACO

Path Length Time(seconds) Optimal Conv Path Length Time(seconds) Optimal Conv

Experiment 1
Map1 15.6476 10.35 6 54 24.6476 14.72 9 59

Map2 17.8955 13.05 8 56 24.8955 16.46 12 62

Experiment 2
Map1 33.7568 16.78 25 216 47.7568 23.45 33 236

Map2 36.8429 18.56 31 224 47.8439 25.24 44 248

Experiment 3
Map1 84.7652 149.45 96 864 97.5624 153.61 130 944

Map2 88.6476 168.89 128 896 102.6332 174.43 176 992

Experiment 4
Map1 212.5926 165.79 623 5402 218.6476 174.64 927 5920

Map2 224.2841 182.96 801 5780 231.4457 210.56 1253 6271

Experiment 5
Map1 492.53 208.91 2405 21601 510.75 217.72 3618 23690

Map2 523.86 227.59 3244 22495 547.56 241.95 4877 24802

Experiment 6
Map1 1074.56 546.24 9601 86404 1102.62 589.68 14421 94400

Map2 1124.47 696.79 12804 89609 1149.85 748.46 19220 99204

Table 4.1: Summary of the values obtained after the implementation of MMAS and
ACO algorithms.

The Table 4.1 shows the tabulated summary of all the values obtained upon

implementing the algorithms (in the columns Iteration for MMAS and ACO; the sub

column ”optimal” means that the iteration at which the optimal path was found

and ”conv” means that the iteration at which the algorithm converged to the final

solution). From the Table 4.1 we can infer that for the Experiment 1 which consists of

the 10*10 grid maps, the near optimal path length obtained by the MMAS algorithm

is 15.6476 in 10.35seconds. The optimal path length by the MMAS for this experiment

is initially found at the iteration number 6 but later as the algorithm was still building

solutions and the path convergence was obtained at iteration number 54. However,

the optimal path length obtained by the ACO on the same map is 24.6476 in 14.72

seconds. This optimal path was found by the ACO, initially at iteration number 9

but the path convergence was achieved at iteration number 59. For the next scenario

that is the MAP 2 the algorithms are implemented on the same sized grid map where

a new obstacle is introduced. In this scenario the MMAS achieves a path length of

17.8955 in 13.05 seconds in the 8th iteration and the convergence rate is obtained at

the 56th iteration. On the contrary, the ACO algorithm has achieved a path length

56

of 24.8955 in 16.46 seconds in the 12th iteration and the convergence rate is obtained

at 62nd iteration.

Upon looking at the Table 4.1 carefully, we can notice that for the experiments

performed the path length obtained by the MMAS algorithm in almost all of the

scenarios is less when compared to the ACO algorithm. It is also clear that the time

taken by the ACO algorithm to find a path is also more when compared to the MMAS

algorithm.

However, the performance of the MMAS algorithm slows down as we increase the

size of the grid maps. In the Experiment number 2 where we use a 20*20 grid map

number 1 the optimal path length obtained is 33.7568 in 16.78 seconds and the path

length was obtained at 25th iteration whereas the convergence was achieved at 216th

iteration. For the same map the path length obtained by the ACO is 47.7568 in 23.45

seconds at 33rd iteration and converges at the 236th iteration. The values obtained

by the algorithms when implemented in a 40*40 grid map that is the Experiment

number 4 are 84.7652 in 149.45 seconds at 96th iteration and convergence is at 864th

iteration; for the MMAS. In the same map the path length is 97.5624 in 153.61 seconds

at 130th iteration and the convergence at the 944th iteration; for the ACO.

A similar kind of increasing trend is observed as we go through each column from

the Experiment 1 to Experiment 6 for different parameters such as the path length,

time, iteration at which the optimal path was found and the iteration at which the

convergence of the solution has occurred for both MMAS and the ACO algorithm.

Since the size of the grid is increased that is the search space is increased the processing

time for the algorithms also increases. We will further evaluate the results obtained

in the Figure ?? in the section 4.4.

57

4.4 Evaluation of the Results

4.4.1 Performance Evaluation Indexes

In order to comprehensively measure the performance of the ant colony algorithm,

the following basic indexes to evaluate the performance of ant colony algorithm are

used which have been introduced in [28]:

The Best Performance Index:

Let EO represents the best performance index, the formula is as follows:

Eo =
cb − c∗

c∗
∗ 100 (4.2)

where cb represents the optimal value obtained by the algorithm; c* represents

the theoretical optimal value. When the theoretical optimal value is unknown,it is

replaced by the best known value. The optimal performance index is used to measure

the optimal optimization degree of the ant colony algorithm. The smaller of the value

means that the optimal performance of the ant colony algorithm is better.

The Time Performance Index

Let ET represents the time performance index, the formula is as follows:

ET =
Ia ∗ T0
Imax

∗ 100 (4.3)

where Ia represents the algorithm’s number of iterations when it meets conver-

gence condition(In this paper, Ia refers to the iteration number when the mean path

length tend to be stable); T0 represents the average execution time of one iteration;

Imax represents the algorithm’s number of iterations. The time performance index is

used to measure the search speed of the ant colony algorithm. The smaller of the ET

58

means that the convergence speed of the ant colony algorithm is quicker.

The Robustness Performance Index

Let ER represents the robustness performance index, the formula is as follows:

ER =
ca − c∗

c∗
∗ 100 (4.4)

where ca represents the average path length value; c* represents the theoretical

optimal value. When the theoretical optimal value is unknown, it is replaced by the

best known value. The smaller of the ER means that the stability of the ant colony

algorithm is better.

4.4.2 Performance Evaluation of the Algorithms

The performance evaluation results of the algorithms implemented are given in the

Table 4.2.

59

MAP1 MAP2

Eo ET ER Eo ET ER

Experiment 1
MMAS 0.18 2.26 0.6 0.25 2.34 1.1

ACO 0.27 3.62 1.0 1.8 4.88 2.7

Experiment 2
MMAS 0.39 2.75 2.6 0.43 3.18 2.51

ACO 1.46 3.4 4.72 2.91 5.49 5.16

Experiment 3
MMAS 0.85 2.92 8.6 1.3 3.98 4.83

ACO 3 4.11 9.1 4.16 6.78 11.2

Experiment 4
MMAS 1.2 3.28 12.4 1.8 4.26 14.85

ACO 4.1 4.7 16.75 5.66 7.9 19.1

Experiment 5
MMAS 1.5 5.64 14.93 2.84 5.82 17.9

ACO 4.6 8.13 19.28 7.2 9.16 24.18

Experiment 6
MMAS 2 9 18.52 3.8 7.2 21.2

ACO 5.3 13.2 22.31 9.74 11.35 29.37

Table 4.2: Performance Evaluation of the results.

Looking at the performance evaluation results shown above in the Table 4.2, we

can incur that the Best performance index of the MMAS algorithm is always less than

that of the ACO algorithm. For example, in Experiment 1; for the MMAS and the

ACO the E0 = 0.18percent and E0 = 0.27percent. It means that the performance of

the MMAS algorithm was better in the MAP 1 when compared to the performance

of the ACO algorithm. The time performance index and the robustnes performance

index are also evaluated for. A similiar kind of performance trend as in MAP 1 was

observed when the algorithms’ performances were evaluated in MAP 2.

To study an compare the performances of the algorithms in the experiments we

would have to keep looking row-wise in Table 4.2 to understand the comparision

between the two algorithms.

60

As mentioned in the Subsection 4.4, the smaller the values of E0, ET , ER; the

better is the performance of the algorithm. Therefore, if we compare all the values

of the MMAS performance indexes to the values of the ACO performance indexes

we can say that the MMAS has performed better than the ACO algorithm in the

experiments.

The Figure 4.37 and 4.38 are the graphical representation of the comparison of

the performance evaluation indexes of the two algorithms in the MAP 1 and MAP 2;

as shown in the Table 4.2.

Figure 4.37: Performance comparison of MMAS and ACO in MAP 1.

Figure 4.38: Performance comparison of MMAS and ACO in MAP 2.

61

4.5 Discussion

In the Experiment 1 implemented on 10*10 grid maps, the MMAS and the ACO

algorithms have performed well because they were able to converge to a near optimal

solution in the end. However, the MMAS was able to converge to a solution faster.

In the Experiment 2 and 3 where the MMAS and the ACO Algorithms were

implemented on a 20*20 and 40*40 grid maps, the MMAS algorithm was still able to

find the solutions quicker than the ACO algorithm.

However in Experiment 4,5 and 6(in the 100*100, 200*200, 400*400); the MMAS

has slowed down a bit when compared to its speed in the previous Experiments

1,2,3. The ACO algorithm has been performing relatively slow when compared to

the MMAS overall. As the size of the search space that is the size of the maps

increases the convergence speed of the algorithms has reduced drastically.

On comparing the performance of this algorithm with that of the ACO on all

the six set of map sizes, we can say that the performance of the MMAS is better

than that of the ACO algorithm because the ACO converges to a solution late than

the improved MMAS algorithm. Larger grid maps such as 40*40, 100*100, 200*200

and 400*400 haven’t been used before by researchers to implement the algorithm and

check for its scalability. Therefore experiments have been conducted in the larger

grid maps which are also one of the main contributions of this thesis. The optimal

path obtained by the algorithm in the environment after the change in the obstacles

position is shown in the Figures 4.13, 4.14, 4.3, 4.4, 4.21, 4.22, 4.25, 4.26, 4.29, 4.30,

4.33, 4.34 . Comparing the time taken by the algorithm we can see that its capability

to do so is more in the smaller environments even if the agents had to reroute their

path because of the increase in the workspace area.

In the grid environment the MMAS algorithm has a range of the pheromone values

that can be deposited by the ants while traversing through the environment.According

to the theory of the addition of diversification mechanism as stated in 2.4.1 and 2.4.2,

62

the best solution that has been found since the re-initialization of the pheromones is

used which is in turn increasing the search diversification. That helped the MMAS

algorithm to converge to a better quality solution which is the near optimal path

in our experiments. Also, using the technique of adding local search routines where

the algorithm is constantly searching for better solution in its neighborhood and

if one such solution is found then it replaces that with the current solution. The

algorithm has repeated this process until no better solution could be attained in the

neighborhood.

Therefore, We could anticipate that the smaller of the grid size, the more accurate

the representation of the obstacles. But at the same time, a considerable amount of

storage is required, and the search range of the algorithm will increase exponentially.

63

Chapter 5

Conclusion and Future Work

This thesis mainly focuses on the mobile Robot Path Planning Problems based on the

Ant Colony Optimization variant algorithm, i.e., the Max-Min Ant System Algorithm.

To be specific, the research work of the thesis is listed below:

• Firstly, the actual working environment of the mobile robot is modeled. Envi-

ronmental modeling adopts grid method. The actual working environment is

divided into grids of the same size, and the grids are containing obstacles are

grayed out. Two methods; Serial number method and the rectangular coordi-

nate to identify all grids and they could be well commuted to each other. The

other Robot Path Planning problem based on the Ant Colony Algorithm is a

process that through the interaction and cooperation between the individual of

the ant colony, they will avoid all obstacles to find an optimal path from the

starting grid to the target grid.

• Secondly, we made modifications to the MMAS algorithms as per the techniques

introduced by previous researchers . For example, we applied diversification

mechanisms based on the pheromone initialization and addition of local search

routines that are described in Section 2.4

• Lastly, Based on the MATLAB platform the thesis tests the algorithm on grid

64

maps of 6 different sizes to verify the validity and effectiveness of the MMAS

Algorithm under the different maps used.

Several conclusions could be summarized through the results of the six group

experiments:

• The ability of the MMAS algorithm to find the optimal solution, convergence

speed and stability are higher when implemented on a grid map of smaller size.

• When dealing with the grid maps of larger sizes the ability of the algorithm to

search the near optimal solution is same but the time taken is on an increasing

trend with the increase in the size of the map.

• However, the speed and stability are fast in a smaller environment when com-

pared to the large maps, no matter how the complexity of the map and the

start and the destination path vary.

We could conclude by saying that MMAS is suitable and effective in solving RPP

considering its processing time and stability. However, the research work in this thesis

also has some limitations mainly reflecting on the following aspects.

• The experiments in this thesis are set on a grid map, instead performing on the

real-time environment could be done in the future work.

• However, since we mentioned that the larger the grid size the obstacles couldn’t

be represented accurately and the time taken to find the solution is more. So

an attempt to reduce the amount of time taken to find a solution on the grid

maps of the size larger than 400*400 could be an extended work of this thesis.

65

Bibliography

[1] Jens Christian Andersen. Mobile robot navigation. 2007.

[2] Christian Blum. Ant colony optimization: Introduction and recent trends.

Physics of Life reviews, 2(4):353–373, 2005.

[3] Johann Borenstein and Yoram Koren. Optimal path algorithms for autonomous

vehicles. In Proceedings of the 18th CIRP Manufacturing Systems Seminar, pages

5–6, 1986.

[4] Michael Brand, Michael Masuda, Nicole Wehner, and Xiao-Hua Yu. Ant colony

optimization algorithm for robot path planning. In Computer Design and Appli-

cations (ICCDA), 2010 International Conference on, volume 3, pages V3–436.

IEEE, 2010.

[5] N Buniyamin, N Sariff, WAJ Wan Ngah, and Z Mohamad. Robot global path

planning overview and a variation of ant colony system algorithm. International

journal of mathematics and computers in simulation, 5(1):9–16, 2011.

[6] Marco Dorigo. Optimization, learning and natural algorithms. PhD Thesis,

Politecnico di Milano, 1992.

[7] Marco Dorigo, Mauro Birattari, Christian Blum, Maurice Clerc, Thomas Stützle,

and Alan Winfield. Ant Colony Optimization and Swarm Intelligence: 6th In-

66

ternational Conference, ANTS 2008, Brussels, Belgium, September 22-24, 2008,

Proceedings, volume 5217. Springer, 2008.

[8] Marco Dorigo and Luca Maria Gambardella. Ant colony system: a cooperative

learning approach to the traveling salesman problem. IEEE Transactions on

evolutionary computation, 1(1):53–66, 1997.

[9] Marco Dorigo, V Maniezzo, and A Colorni. Positive feedback as a search strategy.

dipartimento di elettronica, politecnico di milano. Technical report, Italy, Tech.

Rep. 91-016, 1991.

[10] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: optimiza-

tion by a colony of cooperating agents. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), 26(1):29–41, 1996.

[11] Marco Dorigo and Thomas Stützle. The ant colony optimization metaheuristic:

Algorithms, applications, and advances. In Handbook of metaheuristics, pages

250–285. Springer, 2003.

[12] Hai-Bin Duan. Ant colony algorithms: theory and applications. Chinese Science,

2005.

[13] Luca Maria Gambardella and Marco Dorigo. Solving symmetric and asymmetric

tsps by ant colonies. In Evolutionary Computation, 1996., Proceedings of IEEE

International Conference on, pages 622–627. IEEE, 1996.

[14] Gengqian Liu, Tiejun Li, Yuqing Peng, and Xiangdan Hou. The ant algorithm

for solving robot path planning problem. In null, pages 25–27. IEEE, 2005.

[15] Mauro Birattari Marco Dorigo and Thomas Stutzle. Sensor fusion in certainty

grids for mobile robots.

67

[16] Mauro Birattari Marco Dorigo and Thomas Stutzle. Ant colony optimization

artificial ants as a computational intelligence technique. IEEE COMPUTA-

TIONAL INTELLIGENCE MAGAZINE, pages 28–39, 2006.

[17] Hui Miao and Yu-Chu Tian. Robot path planning in dynamic environments

using a simulated annealing based approach. 2008.

[18] Adam Milstein. Occupancy grid maps for localization and mapping. In Motion

Planning. InTech, 2008.

[19] G Nirmala, S Geetha, and S Selvakumar. Mobile robot localization and naviga-

tion in artificial intelligence: Survey. Computational Methods in Social Sciences,

4(2):12, 2016.

[20] Purushothaman Raja and Sivagurunathan Pugazhenthi. Optimal path plan-

ning of mobile robots: A review. International Journal of Physical Sciences,

7(9):1314–1320, 2012.

[21] Valéria de C Santos, Fernando S Osório, Cláudio FM Toledo, Fernando EB Otero,

and Colin G Johnson. Exploratory path planning using the max-min ant system

algorithm. In Evolutionary Computation (CEC), 2016 IEEE Congress on, pages

4229–4235. IEEE, 2016.

[22] Alexander Schrijver. A course in combinatorial optimization. TU Delft, 2000.

[23] Thomas Stützle and Marco Dorigo. Aco algorithms for the traveling salesman

problem. Evolutionary algorithms in engineering and computer science, pages

163–183, 1999.

[24] Thomas Stützle and Holger H Hoos. Max–min ant system. Future generation

computer systems, 16(8):889–914, 2000.

68

[25] Ioan Susnea, Viorel Minzu, and Grigore Vasiliu. Simple, real-time obstacle

avoidance algorithm for mobile robots. In 8th WSEAS International Conference

on Computational Intelligence, Man-Machine Systems and Cybernetics (CIM-

MACS09), 2009.

[26] Guan-Zheng Tan, Huan He, and Aaron Sloman. Ant colony system algorithm

for real-time globally optimal path planning of mobile robots. Acta automatica

sinica, 33(3):279–285, 2007.

[27] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT

press, 2005.

[28] Chenhan Wang. Comparative research on robot path planning based on ga-aca

and aca-ga. 2017.

69

Appendix-Abbreviations

• ACO : Ant Colony Optimization

• ACS : Ant Colony System

• AS : Ant System

• MMAS: Max-Min Ant System

• CO : Combinatorial Optimization

• TSP : Travelling Salesman Problem

70

Vita Auctoris

NAME: Satya Shree Sankini

PLACE OF BIRTH: Telangana,India

EDUCATION: Bachelor of Technology in Computer

Science, GuruNanak Institutions Tech-

nical Campus, Telangana, India, 2016.

Master of Science in Computer Science,

University of Windsor, Windsor,

Ontario, Canada, 2019.

	Performance evaluation of Max-Min Ant System Algorithm for Robot Path Planning in Grid Environment
	Recommended Citation

	Declaration of Originality
	Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Overview
	Thesis Motivation
	Problem Statement
	Thesis Organization

	Background Study
	Key Concepts
	Mobile Robot Path Planning
	Static Vs Dynamic Environment
	Occupancy Grid Map

	Introduction to Ant Colony Optimization
	The ACO Metaheuristic
	Main ACO Algorithms

	MAX-MIN Ant System
	Changes made to the MMAS Algorithm
	Addition of Diversification mechanismsstutzle2000max
	Addition of local search routinesstutzle2000max

	Literature Review and Related Work

	Environment Modeling and the Working of MMAS
	Modeling of Robot Motion Environment
	Robot movement in grid environment

	Theoretical Explanation of Path Planning
	Robot Path Planning Based on Max-Min Algorithm

	Analysis, Evaluation of Results and Discussion
	Simulation
	Parameter Settings
	The Implementation of Simulation Experiments
	Collection of Maps Used in the Experiments
	Collection of the Results
	Summary of the values obtained upon implementation of the algorithms

	Evaluation of the Results
	Performance Evaluation Indexes
	Performance Evaluation of the Algorithms

	Discussion

	Conclusion and Future Work
	Bibliography
	Appendix-Abbreviations
	Vita Auctoris

