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ABSTRACT 

 

The weighted set covering problem is to choose a number of subsets to cover all the elements in a 

universal set at the lowest cost. It is a well-studied classical problem with applications in various 

fields like machine learning, planning, information retrieval, facility allocation, etc. Deep web 

crawling refers to the process of gathering documents that have been structured into a data source 

and can be retrieved through a search interface. Its query selection process calls for an efficient 

solution to the set covering problem. 

Within this context, the data follows the lognormal and power law distribution, and a TS-IDS 

algorithm has been proposed in the literature and demonstrated to outperform both the greedy and 

IDS algorithm. We have evaluated the performance of various greedy approaches to the set 

covering problem, including the TS-IDS, using open source dataset in the context of resource 

management. The data are sampled from a given roadmap with different coverage radius. 
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1.1 Overview 

CHAPTER 1 

INTRODUCTION 

 

One of the common problems faced by the people in today’s world is resource planning. Planning 

not only includes thinking about where to construct new places in a particular city, how to provide 

the resources to the people, but also includes how the resource can be optimally used. The answer 

to this problem comes with many techniques and out of all, one method can be the solution to the 

set covering problem. Searching for the smallest set of solution from a large set of solutions, which 

is extensively studied in many fields. 

1.1.1 Set Covering Problem 

 
Set Covering is a common problem in the field of computer science. It is one of Karp’s 21 NP- 

complete problem. Set covering is examined NP-Hard in optimization and search problems, NP- 

Complete in the decision-based problem. 

The problem related to Set Cover is a combinatorial optimization problem, which is seen in the 

real world context, where we have a collection of needs (eg., tasks, responsibilities) and a 

collection of resources (eg., employees or machines) and the task is to find a minimal set of 

resources to satisfy the need. 

Set covering means to choose a minimum number of subsets in such a way that they cover all the 

elements from a universal set. The main factor in the process is to reduce the cost of the chosen 

subset. 

There are various applications of set covering. 
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Some of them are as follows [1]: 

 

1. In operational research, we need to place the services so that it can be reached out by all 

the sites that are close to the facility. This is termed as Set Cover. Here, the base set is the 

set of all sites to be covered by the service locations. 

2. In planning, it is required to select how to place the resources in a city when the demands 

are dynamically changing. An alternative approach of Set Covering Problem is used to 

cover this entire requirement [3]. 

3. In terms of data quality, a set of simple rules could be used to illustrate the observed data 

in order to help users understand the structure in their data. Given a collection of rules that 

are consistent with the observed data, the tableau generation problem is to find a subset of 

rules which explains the data without redundancy. This is captured by applying Set Cover 

to the collection of rules [4]. 

4. For information retrieval, a query is used to retrieve the smallest set of documents to cover 

a set of topics i.e., to find a set cover [16]. 

Set covering problem is NP-Hard. There are typically two ways to solve this problem: exact and 

heuristic approaches. The exact algorithms are those that can give the optimal solution to an 

optimization problem. But in combinatorial problems, conventional methods are not efficient 

enough, especially when the problem is large and complex, including those based on branch and 

bound, branch and cut [5]. The best exact algorithm for the SCP is the one adopted in software 

package CPLEX and MINTO by [17]. A heuristic approach means a set of steps that do not 

guarantee an optimal solution. An approximation algorithm is the one that leads us reasonably 

close to an optimal solution. 
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1.2 Resource Management 

 
 

Before managing the resources, one should know what it means. It means managing of resources 

so that they can be provided effectively and efficiently when they are needed. Such resources can 

be human resource, financial resource, inventory, human skills or even Information Technology 

(IT), etc. We need to know the data, which will be required for effective resource management, 

including demand for it, availability of resources over the period of time, and how these resources 

will fit into the demand. As we know, resources are basically used to minimize the cost by using 

at maximum request. Resources should be allocated in a fair and balanced way. 

There are many key factors of resource management. Some examples are: - 

 

 

➢ Resource Plan: Everyone needs to plan for how to use it, for example, in the project plan, 

we need to consider resource plan as a key component, as it will contain the entire 

planning from the start till the end. 

➢ Resource Breakdown Structure: In breakdown structure, we breakdown the plan into 

some hierarchy to complete a particular project easily and effectively. 

 
1.3 Motivation 

 

In today’s world, we need resources for completing any specific task, whether it is by a human 

being or by machine. The main problem is the managing of resources, which needs to be studied 

in order to get the best use of resources for an extended period of time. In the field of planning, we 

need to think about the management of the resource, where various related problems need to be 

addressed. 
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In big firms like public or private sector, facility location is one of the critical components for 

planning. Facility Location is a well-established part of Operational Research in itself [7]. For the 

decision-making process, there are various models that can help, and out of all popular models, 

one is the facility location model in covering problem. The problem here is to determine both the 

number and the location of public facilities like schools, libraries, parks, fire station, etc. 

Another main reason for studying in this area is the need to properly plan things. Due to the fast 

growth of population, considering some resources has pushed us to think about finding a solution, 

in order to provide it to people in some way that demands can be completed in the best way. One 

real life example could be placing of the hospital in a city in such a way that, hospitals can be 

easily reached by the entire area of the city at a minimum cost. 

One existing solution to SC problem is the greedy approach, which follows the problem-solving 

heuristic, always making the choice of the movement that seems to be best and it always selects 

the set with a large number of uncovered items repeatedly. 

The TS-IDS algorithm by Wang et.al [8] has proven to be a better variation of greedy approach for 

query processing and it has also outperformed both IDS and greedy approach but hasn’t been 

applied to different applications. The testing of TS-IDS algorithm in the field of the resource 

management may give some good results. 

1.4 Problem Statement 

 
 

As the world is facing the problem of shortage of resources, there comes a need where it is required 

to either manage or get resources appropriately. Research on Set Covering has given many great 

results for planning and resource management problems. 
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A TS-IDS Algorithm for the set covering problem has been proposed by [8] within the context of 

web crawling and demonstrated to outperform the traditional greedy algorithm and IDS algorithm. 

In our present work, we measure the performance of the various greedy approaches on open-source 

datasets in the context of resource management. It includes the setting of resource allocation on a 

given road map with 1.9 million nodes. The dataset is taken from open source data provided by 

Stanford Network Analysis Project (SNAP). 

1.5 Contribution 

 
In our thesis, the contribution is we have tested different greedy approaches on the 5000 by 5000 

sample data where each dataset is of different coverage radius in total 50 sample data using SNAP 

dataset. We have also used two different cost definitions such as location and infrastructure cost 

where we have run our different greedy approaches ten times on each 50 sample dataset and last 

is the data distribution where we have calculated coefficient of variance for each dataset and 

compared with the improvement of it. 

The rest of this thesis is organized as follows: In Chapter 2, we define the problem and present the 

proposed approach. Chapter 3 provides a review of some of the concepts and terminologies that 

are related to this work and provides more details of the areas related to this research. It also 

includes a review of some of the closely related work of other researchers. Chapter 4 shows the 

results of experiments and Chapter 5 concludes the thesis with some suggested future work. 
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CHAPTER 2 

BACKGROUND 

In this chapter we introduce Coefficient of variance, which was used in TS-IDS algorithm [8] and 

greedy algorithm in the field of resource management. As seen in the paper, the TS-IDS has 

outperformed both greedy and weighted greedy algorithm in the field of web crawling. Our 

objective is to compare various greedy approaches on the roadmap dataset. 

2.1 Greedy Algorithm for Set Covering Problem: 

There are cases where the greedy algorithm (GA) results in an optimal solution. But, in many 

instances, this may not be achieved. For example, the set cover problem states the greedy algorithm 

may not result in an optimal solution. As we know already, the greedy algorithm does provide the 

“best” solution at each step. As it is said, a choice that is locally best doesn’t mean to be a globally 

best choice. In paper [21], [22], greedy algorithms are well known polynomial time approximation 

algorithm for set cover. Because of their easy implementation, they are commonly used the 

heuristic algorithm. 

In SCP, we know we are given a set of universal elements U such that |U| = n, and sets S1... Sk ⊆ 

 
U. A set cover is a collection C of some of the sets from S1…, Sk whose union is the entire universe 

 
U. Formally, C is a set cover if 𝑈𝑠𝑖∈𝑐𝑆𝑖 = 𝑈. We want to minimize cost |C|. 

 

Greedy Set Cover (M, N) 
 

1. U <- M 

2. X <- 𝜙 

3. While U ≠ 𝜙 do 

a. select an S ∈ N that maximizes |𝑆 ∩ 𝑈| 

b. U <- U - S 

c. X <- X ∪{S} 
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4. return X 

At each stage, the greedy approach will select the set Si that contains most uncovered elements in 

it. This step is repeated until all the elements in the set are covered. Let M = {1,2,3,4,5,6,7,8,9,10} 

be a universal set and S1= {1, 2, 3, 4, 5, 6}, S2= {1, 2, 3, 7, 8}, S3= {4,5,6,9,10}, S4= {7, 8, 9} 

and S5= {10}. Initially C is empty. 

 

In the first step, the greedy algorithm selects the set S1= {1,2,3,4,5,6} because it has better 

coverage than other subsets. The solution set is C = {S1}. 

In the next step, S4 has most uncovered elements {7,8,9}, hence the greedy will now select this 

set. Now the solution set is C= {S1, S2}. 

In the third step, S2 and S5 have only one uncovered element {10} and {10}. Any one of them will 

be selected. Let us select S5, so the solution set will be C= {S1, S2, S5}. Hence, all the elements 

of M set are covered. So C is the final solution. 

 

 1 2 3 4 5 

1 0 1 0 1 0 

2 0 1 1 1 0 

3 0 0 1 1 0 

4 1 1 1 1 1 

5 1 0 0 0 1 

nd 2 3 2 5 2 

𝒏
𝒘 

2 3 3 4 2 

𝒏
𝒘/
𝒏 
𝒅 

1 1 1.5 0.8 1 
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Fig 2.1: Sample matrix for the greedy algorithm 

 
The above figure shows an example matrix used in greedy algorithm, where nd stands for node 

degree, i.e., the number of nodes getting covered by a node, nw stands for new node frequency, 

i.e., the number of new nodes getting fetched by a particular node, nw/nd is used to determine 

which node should be the next solution node. 

2.2 TS-IDS algorithm 

 

In TS-IDS algorithm, the TS (term size) is the number of documents it can cover, i.e., document 

frequency, and IDS (inverse of document size) is used to define the document weight. It is assumed 

that the document importance depends on the sizes of the term, i.e., the number of documents it 

can cover, and on the number of terms it contains. The reason is that the large term will bring in a 

greater number of duplicates Therefore, we define the document importance to be proportional to 

the minimal term size in it. 

Definition: the document weight is defined as . The node with maximum 𝜇⁄𝑛𝑑 

will be selected. Here 𝜇 = min(𝑇𝑆). For example, in the following table node 4 will get selected 

as it has maximum value. 
 

1 2 3 4 5 

1 0 1.5 0 1.5 0 

2 0 1 1 1 0 

3 

 
4 

0 0 1.5 1.5 0 

0.4 0.4 0.4 0.4 0.4 

5 1 0 0 0 1 
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Nd 2 3 3 4 2 

𝒏𝒘 1.4 2.9 2.9 4.9 1.4 

𝒏𝒘/
𝒏 
𝒅 

0.7 0.966 1.133 1.225 0.7 

 

 

Fig 2.2: TS-IDS algorithm 
 

 

 

 

2.3 Roadmap 

 
Here roadmap is defined as a graph of roads containing the edge and node for connecting the 

particular areas. Each node represents an intersection, and each edge represents a road between 

two nodes. A matrix can be used to represent such a graph of nodes with 0-1 value denoting which 

node is connected to which another node. 

2.4 Setup Process 

 
The main purpose of our experiment is to test the performance of various greedy approaches in the 

field of resource management and to compare them. 
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Fig 2.3: Step by step process of the approach 

 
The first three steps are the part of the preprocessing where the data is taken from the raw dataset 

and converted into the subgraph, and a coverage matrix is created and then passed as the required 

input to the various greedy approaches. The next step is to calculate the coefficient of variance 

which is a major factor for comparing the approaches. The last step is the comparison of various 

greedy approaches, where all approaches will be implemented and run with the same input to test 

their performance. 

2.4.1 Raw Dataset 

 
The raw dataset is the actual data taken from the SNAP (Stanford Network Analysis Project) [48]. 

The dataset we adopted is a roadmap network of California. The map contains 1,965,206 nodes 

and 2,766,607 edges. 
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2.4.2 Subgraph 

 
It is always a difficult task when it comes to working with a large dataset due to some problems 

such as memory usage and hardware resources. In order to avoid these problems, we can use 

subgraph, which is obtained from the original graph. A subgraph is a regional network of roads 

formed from the original graph. 

 

Fig 2.4: Subgraph of 10 nodes 

 
The above figure is a subgraph of 10 nodes connected to each other, taken from the raw dataset. 

We are going to use this type of subgraph as input to create a coverage matrix. 

2.4.3 Coverage Matrix 

 
Coverage matrix is created from the connected subgraph. It is created with a defined coverage 

radius. Here, coverage refers to the nodes that are getting covered starting from a particular node. 

As the coverage radius increases, a greater number of nodes will get covered. For example, if 

radius is two for the matrix, then we say a node can cover its neighbours and neighbours of their 
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neighbours. The information is represented in the form of an adjacency 0-1 matrix. If the node gets 

covered it is marked as 1, otherwise 0. 

 

 

Fig 2.5: Coverage matrix for coverage value 2 

 
The above figure represents the subgraph in the form of a coverage matrix, where each row shows 

what nodes it can cover. For example, in the above matrix, the radius is two so, each node can 

cover its own neighbours and neighbours of their neighbours. In row 2, for example, 330657 can 

cover column 330660 and then can cover 330407 because it is a neighbor of 330660 and so on. 

The coverage matrix will now be the input for various greedy approaches. 

 

2.5 Coefficient of Variation 

 
A coefficient of variation (CV) can be defined as the measurement of relative variability. It is the 

ratio of the standard deviation σ to the mean µ. It is most commonly used in the field of physics 

and engineering for quality assurance studies and by economist and investor for modelling 

economics and estimating the volatility of a security. The main advantage of using CV is that it is 

unit less. It is also used for presenting the consistency of the data. Consistency refers to the 

uniformity of data distribution. It is also used to compare two datasets or samples. The coefficient 

of variation can be defined as: 
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CV can only be used for computing data measured on a ratio scale and only for non-negative 

values. It can only be used for data on the interval scale. In the above formula, x stands for the 

mean of the sample data, and s as standard deviation. 

The disadvantage of the Coefficient of Variation is that if the mean is close to zero it will reach 

infinity. 

In our experiment, for each sample, we calculate the CV. Once the coefficient of variance is 

calculated, we use the specific range of CV to analyze the improvement our algorithm shows. 

In our approach, we use the Coefficient of Variance formula in the setting of [34]. The dispersion 

of a node degree (deg) is measured using CV. According to the CV formula, mean is defined by 

the sum of node degrees over the total number of nodes in the sample 

 

The mean is also known as average node degree. The standard deviation (SD) is defined as 
 

 

 

where, m is the total number of nodes in the sample, is the calculated mean and deg is the degree 

of a node. From the above formula, we calculate the CV as follows: 
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Now we can use the above formula for comparing various greedy approaches on data with specific 

CV. 

2.6 Example 

 
An illustrative example is given on a small dataset. Here the dataset is of ten nodes and all steps 

are performed on it. Assume that we have the following subgraph from the raw dataset 

 

 
Fig 2.6: Subgraph of 10 nodes 

 

 

 
The plot view diagram of the subgraph is : 
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Fig 2.7: Connected subgraph of the 10 nodes 

 
Now the above subgraph is converted into 0-1 matrix with coverage radius 2. 

 

 

Table 2.1:0-1 matrix 

 
Now we apply the TS-IDS algorithm on the above matrix and calculate the node degree (nd), node 

weight ( 𝑛𝑤 ), and 𝑛𝑤/𝑛𝑑. First, we sum up all the values of each row then replace each 1’s in 

this row with the inverse of this sum. Then, we multiple each value with the minimum 𝑐𝑜𝑙𝑢𝑚𝑛 

value. The same will be done for all the rows and the resulting matrix will be: 
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Table 2.2: Matrix after calculating nf, nw, nf/nw 

 
Now we select the node with the maximum nf/nw value. From the above column 247282 is selected 

as it has the maximum value of 6. All rows covered by this row are then removed. This include 

column 247282. The resulting matrix after removing rows and columns will be: 

 

Table 2.3: Matrix after removing the rows covered by the first selected column 

 
Again the same process gets repeated. The next maximum value will get selected. This time, we 

select column 247281 and rows covered by this node will be removed. Then again the matrix will 

be updated. 
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Table 2.4: matrix after removing 2nd column 

 
Now in the 3rd round, column 247280 gets selected and rows covered by this node are removed. 

The solution contains nodes selected that are 247282,247281,247280 
 

node nd Nw Nw/nd cost Uniquerows 

247282 4 0.6 0.15 4 4 

247281 8 0.6 4.8 8 8 

247280 9 0.44 3.96 10 11 

 

 
Table 2.5: Results for TS-IDS Algorithm 

 
In the next example, a greedy algorithm will be performed on this 10 node sample. This algorithm 

will randomly select any node at the beginning because every node is initially marked as 1, and 

the final answer of nw/nd is 1. Let’s say it starts with 247112. 
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Table 2.6: Matrix for greedy algorithm 

 
At the beginning, we have calculated node degree(nd), node weight(nw) and new node value 

(nw/nd). Column 247112 is selected, and rows covered by this selected column will be removed 

and the matrix is updated. 

 

 

Table 2.7: Matrix after removing 1st column 

 
Again, the process will get repeated and the solution for the greedy algorithm will be as follow 

 

Node Nd Nw Nw/nd Cost Uniquerows 

247112 3 3 1 3 3 

247173 6 6 1 6 6 

247280 9 9 1 10 10 

 

 
Table 2.8: Results for Greedy Algorithm 
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CHAPTER 3 

REVIEWS 

This chapter discusses the set covering algorithms, especially its greedy approach, weighted greedy 

approach and previous work related to the problem. 

3.1 Set covering Algorithm 

 
To know about what exactly set-covering algorithm is, we need to know about what set covering 

problem means and its desired solution. 

According [13], the main idea behind the set cover problem is to select the minimum number of 

sets, so that those set covers all the elements of the original set with a minimum cost. 

Input 

 
Universal set U = {u1, u2, u3… uN} 

Subset S1, S2, S3…Sk ⊆ U 

Cost c1, c2, c3… cN 

 

Goal 

Find a set I ⊆ {1, 2, 3…n} minimizing cost ∑𝑖 ∈𝐼 𝑐𝑖 such that ⋃𝑖 ∈𝐼 𝑆𝑖 = U 

Another definition of set covering problem is the followings: 

Let A=(aij) be a 0-1 m x n matrix, and c= (cj) be an n-dimensional integer vector. The value cj (j ∈ 

 
N) represents the cost of column j, assuming that cj > 0 for j ∈ N. j ∈ N covers a row i ∈ M if aij=1. 

 
SCP calls for a minimum-cost subset S of columns, such that each row i ∈ M is covered by at least 

one column j ∈ S. A natural mathematical model for SCP is 
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min ∑𝑗∈ 𝑁 𝑐𝑗𝑥𝑗 (1) 

 
Subject to ∑𝑗∈ 𝑁 𝑎𝑖𝑗𝑥𝑗 ≥ 1, for all i ∈ M, (2) 

 
𝑥𝑗 ∈ {0,1}, j ∈ N (3) 

 
Here Equation (2) makes sure that each row is covered by at least one column and Equation (3) is 

the integrality constraint [15]. 

 
3.2 Related Work 

 
3.2.1 Classification of techniques for covering problem 

 

 

 

 
The exact procedure (Ex) is intended to achieve the optimal solution for the SCP. This category 

includes dynamic programming, branch and bound techniques. Heuristic (He) aims to achieve 

near-optimal solution also known as single pass heuristic, which means that the procedure will end 

very quickly on the basis of set guidelines if the objective function is not improved. Meta-Heuristic 

(M) contains tabu search, simulated annealing, Genetic Algorithm (GA), etc. all aiming to achieve 

global optimum for the given problem. Hybrid heuristic (Hy) is formed by combining two or more 

CP 

Ex He M Hy Sp 
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of the heuristic. Special techniques (Sp) consist of the techniques for the covering problem which 

are not coming under any of these categories. 

3.2.1.1 Exact Procedures 

 

Toregas et al. (1971) a linear programming model has been developed to solve the traditional SCP 

with equal cost in the objective. Patel (1979) used a dynamic programming approach to locate rural 

social service centers for the Dharmpur village in India. 

Chan and Yano (1992) a branch and bound algorithm have been developed with multiplier 

adjustment for the traditional SCP. 

Williams (2005) addressed the maximal covering sub-tree problem that applies to the design of the 

transport network and extensive facility location. Two objectives are involved in finding an optimal 

sub-tree, viz. minimizing the total arc cost or distance of the sub-tree and maximizing the sub-trees 

coverage of population or demand at nodes. The author also presented four new biobjective zero- 

one programming models, which have ‘integer-friendly’ solution properties and are relatively 

small in terms of the number of decision variables and constraints. 

Murry (2005) developed a model using the spatial structure to address complementary partial area 

services. The service coverage has been a fundamental aspect of geographic research. In particular, 

facility placement and associated coverage are central concerns in emergency services, transit route 

design, cartographic simplification, natural resource management and weather monitoring among 

others. The author also discussed the use of SCP, in geographic analysis. Problematic aspects of 

set coverage modelling across space are identified. The geographic information systems and 
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emphasized spatial information have accentuated spatial representation issues that need to be taken 

into the account in the modelling of service coverage. 

3.2.1.2 Heuristic 

 

Since the covering problem is combinatorial in nature, heuristic development is inevitable. Kuehn 

and Hamburger (1963) developed a heuristic program to locate a warehouse as a covering problem. 

Shannon and Ignizio (1972) developed a heuristic programming algorithm for warehouse location 

by taking into account the travel costs between the warehouse and the plants. This algorithm is 

based primarily on the add-and-drop technique. The author has assumed the upper limit for the 

number of warehouses to be located. 

In order to determine the economical number of manufacturing cells and cell arrangements, 

Panneerselvam and Balasubramanian (1985) developed a set covering heuristic. The algorithm 

addresses the total facilities design problem including machine grouping, cell layout, cell loading 

and estimation of machine requirements and its impact on idle time and overtime of the machines. 

Karmarkar et al. (1991) presented an interior point algorithm to solve computationally difficult 

SCPs. The interior point approach to the feasibility problem of 0-1 integer programming is based 

on the minimization of a non-convex potential function. The procedure generates a sequence of 

strict interior points of a polytype defined by a set of inequalities so that each consecutive point 

reduces the value of the potential function. The algorithm has an in-built module for two routines 

schemes to show how to proceed when a non-global local minimum is encountered. 
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El-Darzi and Mitra (1995) reviewed graph theoretic relaxations of the SCP and set partitioning 

problem. The greedy algorithm has been developed by the authors with a matching relaxation and 

a graph covering relaxation. 

Haddadi (1997) proposed from a classic idea a simple Lagrangian heuristic for the set cover 

problem. It produces an efficient solution only by the low-density set cover problems, which is its 

limitation. 

Paschos (1997) did a literature review on approximation minimum set covering, the minimum 

vertex covering, the maximum set packing and the maximum independent set problem. The author 

also discussed their approximation performance and their complexities. 

Four serial heuristics and four parallel heuristics were observed by Chakarvarty and Shekhawat 

(1992) for the minimum set cover problem. These algorithms perform a trade-off between the run 

time and solution quality. The parallel heuristics are derived from the serial heuristics, where it is 

shown that an increase in a number of processors does not degrade the solution quality. 

Flores et al. (1999) studied the test set compaction problem, which in digital system testing is a 

fundamental problem. The author has also studied the use of set covering models to the compaction 

of test sets, which can be used with any heuristic test compaction procedure 

.Effective set covering algorithm has been used for this purpose.They found that using the set co 

vering algorithms, the size of the computed test sets can often be reduced. 

Chuzhoy and Naor (2002) considered the classical vertex cover and set cover problems with the 

addition of hard capacity constraints. This means that the set can only cover a limited number of 

its elements and the number of copies available for each set is bounded. The author has developed 
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a 3-approximation algorithm which is based on randomized rounding with algorithms for 

unweighted vertex covering problem with hard capacities. They have shown that the weighted 

version is at least as difficult as a set cover problem. 

Tsuyoshi and Toshihiro (2002) developed a modified version of the greedy algorithm for a set 

cover problem with two weights. They showed two sets of weights, viz. subsets weights restricted 

to one and a constant weight ‘d’. The algorithm produces the same approximation bound. 

3.2.1.3 Meta-Heuristic 

 

A local search heuristic for large SCP is provided by Jacobs and Brusco (1995).This heuristic is 

based on the simulated annealing algorithm and uses an improvement routine that provides lowcost 

solutions within a reasonable amount of CPU time. 

In its genetic algorithm approach, Huang et al. (1994) considered the SCP's new penalty function 

and mutation operator to deal with the constraints. While approaching the optima, the mutation 

operator approaches on either side of the feasible or infeasible borders. This actually reduces the 

search time to half. The author used the new penalty function for handling the constraints. 

By modifying the basic genetic procedure, including a new fitness crossover operator, Beasley a 

nd Chu (1994) developed a genetic algorithm based heuristic for non - unicost SCP, a variable 

mutation rate and a heuristic feasibility operator tailored specifically for the set cover problem. 

The heuristic is suitable to generate an optimal solution for problems of small size, which is its 

limitation. 
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Lorena and Lopes (1997) developed and applied a genetic algorithm to computationally difficult 

SCPs. This genetic algorithm implementation reaches high-quality computational results for 

difficult SCPs, arising in computing the 1-width of incidence matrix of Steiner triple systems. 

For the SCP proposed by Catalano and Malucelli (2001), the parallel randomized heuristic is an i 

terative and an embedded constructive heuristic in a randomized procedure.The first heuristic g 

roup is obtained by randomizing the choices made at each stage of the construction of the solutio 

 

n. The second heuristic group is obtained by introducing random perturbation of the cost of the 

problem instance. The author also discussed a different parallel implementation of the heuristic. 

Yoichi et al. (2001) examined the covering problem applied to geographic feature analysis. They 

compared the geographical feature analysis of the SCP search area based on the genetic cro ssover 

operator with the standard genetic analysis using Genetic Local Search. The author concluded that 

the geographical feature analysis based on the crossover is the most powerful. 

Ermis et al. (2002) developed a meta-heuristic vibrational genetic algorithm to solve the problem 

of covering location in continuous space where the demand centers are served independently from 

independent supply centers. It is more of a covering problem rather than the set covering location 

problem. The algorithm uses a vibrational mutation that periodically introduces a random 

amplitude wave into the population starting with the initial step of the genetic process. 

3.2.1.4 Hybrid heuristic 

 

Caprare et al. (1999) presented a Lagrangian-based heuristic for large-scale SCP and the same was 

refined to give the best solution. The algorithm uses sub-gradient optimization to reduce computing 

time, coupled with pricing techniques. It is a replacement algorithm for the GREEDY procedure. 
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A genetic algorithm for time-satisfaction based SCP is an integer programming for minimizing the 

total fixed cost, rather than set covering location problem. This is designed using a mixed genetic 

algorithm, strategies proposed by Yun-Feng et al. (2005). 

Vasko et al. (2005) surveyed several hybrid algorithms for the assessment of computational 

performance, using genetic algorithms for the SCP. The Greedy Randomized Adaptive Search 

Procedure (GRASP) is designed by genetic algorithm and local neighbourhood search approach. 

Laifenfeld et al. (2006) considered the problem of finding the minimum identifying code in a graph, 

a designated set of vertices in which the neighbourhood uniquely overlaps at any vertex on the 

graph in order to show that it is computationally equivalent to SCP. The author has presented an 

approximation algorithm, based on SCP greedy approach. The identification of the code problem 

is a special case of the test problem and thus the test- case approximation can be used to produce 

’good-identifying’ codes. The entropy-based approximation applied to graphs gives 

different edge probabilities. 

 

In order to find a minimal logical function in the design of logical circuits, Seda (2007) develope 

d an approach to genetic algorithm based heuristic to solve SCP. The author compared the result 

with the Quine-McCluskey method. The proposed algorithm is used in setting the parameter for 

minimizing the Boolean functions. 

In order to solve the SCP using three techniques, Gouwanda and Ponnambalam (2008) develope d 

an evolutionary search technique viz mathematical model using LINGO, GA toolbox from 

MATLAB and ACO programmed in MATLAB. The author concluded that LINGO has performed 

well in solving SCP as an optimization tool, but the GA tool does not perform well despite its 
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flexibility. The combination of all the three techniques for solving SCP takes more time to solve 

the problem. 

 
3.2.1.5 Special Techniques 

 

Solar et al. (2002) showed a Parallel Genetic Algorithm (PGA) model to solve the SCP. 

Experimental results obtained with a binary representation of the SCP show that in terms of the 

number of generations needed to achieve solutions of acceptable quality, PGA only evaluates a pth 

part of the global population, instead of the process followed in the sequential genetic algorithm. 

3.2.2. Deep Web Crawling Using a New Set Covering Algorithm 

 

Wang et.al. [2] introduced a new algorithm for deep web crawling. To understand this concept, we 

first need to know the hidden web, deep web crawling and query selection. 

Deep Web 

 

Deep Web [26], also known as the invisible web is generated from the data source such as database 

or file system, and cannot be accessed by the people through URLs. Most of the people use various 

search engines like google for searching information on the web. The deep web is much larger than 

the surface web [25]. According to [27], the hidden web comprises nearly 550 billion documents 

which are 2,000 times greater than surface web. 

Deep Web Crawler 

 

Fetching the information from the hidden web is termed as deep web crawling. It helps in web 

indexing. Web crawler [28], [29], [30] crawls one page at a time through websites unless all pages 
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are indexed. This helps in collecting data about links and website related to them, meta tag 

information, the web page content and much other information related to it. It also keeps track of 

URLs being already downloaded to avoid same page downloading again. They help in sending the 

queries against the index and provides the webpage matching the query. 

Query Selection 
 

Query selection is the process of selecting queries in such a way that they cover the maximum 

number of documents. There are many existing works facing this particular problem like [31], [32], 

[33], [34]. 

A solution related to this problem can be a random selection of some words from a dictionary. 

But, this solution may not be efficient because a large number of queries may not match with some 

pages, or may cause too many overlapping returns. Recently, several algorithms [31], [32], [33] 

have been developed for selecting queries from the downloaded documents, instead of selecting 

queries from a dictionary, that are retrieved by previously submitted queries to the deep web data 

source. 

As we got a brief idea about the hidden web, deep web crawler, and query selection, consider the 

paper [2]. In this paper, the author presented a new algorithm named weighted greedy algorithm 

for the set covering along with greedy algorithm. The major task was to select the set of queries 

with low cost. As it was impossible to select queries directly from a large database, one solution 

was to select the queries from the sample of the database. It was shown that queries selected from 

the sample database performed well on the original database and also on a sample [31]. 

They created a four-step framework for deep web crawling: 

 

i. Randomly select documents from original database to build a sample. 
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ii. Create a query pool i.e. a set of queries based on sampleDB.By using 

sampleDB and query pool, select a proper set of queries. iv. Map those 

selected queries to the original database. 

 

Weighted Greedy Algorithm 

 
The following step by step process leads to covering different rows at each step. An interesting 

question is: Does it make a difference in covering a row earlier or later? In a greedy strategy, all 

newly covered rows are considered having a unit cost, and there is no difference in whether they 

are being covered earlier or later. 

 
 

 

Table 3.1: Matrix A 

In the above table 1, as we can see row d1 and d7 are getting only covered by q3 and q4 

respectively. Due to this, they should get covered first as soon as possible. To understand properly, 

let’s say q4 is assigned as initially selected column and then the unique solution is {q4, q5, q3} 

with the cost 14. But the optimal solution can be {q4, q3, q1} with the cost 13. We can reach this 
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optimal solution if q3 or q4 is set as an initial column. The greedy method failed to find an optimal 

solution, in this case, because it does not consider covering d1 and d7 by using q3 and q4 as early 

as possible [34]. 

Now we came to know there is a variation between covering elements earlier or later. The second 

question is how to measure such variation for covering a row earlier or later. Let’s say for each 

row i, it was shown in [12] that if the number of columns that row i can cover is larger, it is better 

to cover it later. 

The two main reasons behind it: 

 
• When row i is covered at a high coverage (in later steps) and most of the rows are already 

covered, more columns covering row i means that there could be more possibilities to select 

a small-cost column which covers few new rows (of course, at high coverage, no column 

can take many new rows) [12]. 

• When row i is covered at a low coverage (in earlier steps) and most of the rows are not 

covered yet, more columns covering row i means that there are more possibilities to cause 

overlapped coverage, i.e., row i will be covered many times. 

 
 

Now, we consider qw(j) a good measurement than new(j) because it gives information regarding 

 

(1) how many documents can be gained by selecting query qj and (2) how quickly the document 

should be considered to be covered. Thus, the new/cost has been replaced by qw/cost for query 

selection. The related algorithm is called Weighted Greedy Algorithm. 

Based on the above definition for document and query weight, [34] presented the Weighted Greedy 

Algorithm shown as Algorithm 2. 

Algorithm 2: Weighted greedy algorithm. 
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Input: SampleDB, Query Pool QP, m x n Matrix A, where m= |SampleDB| and n= |QP| Output: 

a set of queries Q 

Process: 

1. Q = null 

 

2. Let B =(𝑏𝑖𝑗) be a m x n matrix and ; 

3. Based on the matrix B, we calculate the query weight for each term and select 𝑞𝑗 that 

 

minimizes  into Q ; 

4. Check if the queries in Q can cover all documents in Sample DB. If yes, the process ends; 

 

5. Update matrix B by removing the selected query and the documents that are covered by the 

query. Go to Step 3. 

Example Based on the matrix shown in Table 1, the initial weights of the documents and the 

queries are given in Table 2. In the first step of Algorithm 2, row q4 holds the maximum value of 

qw = cost (1.85). It is selected as the first query, hence the corresponding q4 is set to 1. For 

convenience to the explanation, the column q4 and the covered rows, i.e., d2, d6, d7 and d9 are 

removed from the matrix A, and the resulting corresponding weighted matrix is shown in Table 3. 

 

Table 3.2: Initial Weight table of Matrix A 
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In the second and third steps, q3 and q1 are selected respectively and the solution of the weighted 

greedy is X = (1; 0; 1; 1; 0), and its cost is 13(4+5+4). 

Table 3.3: Second step weight table of Example 

 
 

As it is shown in table 3, only 4 queries and five documents are left now, the process will repeat 

until all the queries are covered. Table 4 shows the final result. 

 

 

 

Table 3.4: Result of example for a weighted greedy method 

 
Here, queries q4, q3 and q1 are selected in each step respectively. In the table above, the cost is 

the total number of documents the query can fetch. The unique rows denote the number of total 

unique documents fetched by the query. 
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2.2.3. TS-IDS Algorithm for Query Selection in the Deep Web Crawling 

 
In paper [8], the authors introduced a new algorithm for deep web crawling. The paper states that 

the importance of documents depend on the size of the terms and on the number of terms it 

contains. The size of a term is the number of documents the term can cover or document frequency. 

If there are less terms in a document, it can be covered with less redundancy, so it is of less 

importance in query selection. If a document contains large terms, the covering cost will be more, 

due to large terms. 

Document of this type is more important, and the importance is proportional to the term size within 

the document. 

Based on the above understanding, TS-IDS algorithm was proposed for selecting the queries. It 

out performs both traditional greedy and IDS algorithm. 

 
 

3.2.3.1 The TS-IDS algorithm The 

Query Selection Problem 

We are a given set of documents D = {𝐷1, 𝐷2,…, 𝐷𝑚} and a set of terms T = {𝑇1, 𝑇2,….., 𝑇𝑛}. 

Every document contains a set of terms. Each term covers a set of documents. Undirected bipartite 

graph G(D, T, E) is formed by documents and terms where each node is in D or T, E is a set of 

edges between T and D (E ⊆ T × D). There is an edge between a document and a term iff the term 

is present in the document. The document-term matrix A = (𝑎𝑖𝑗) is used to represent the graph 

where 

 

 

Let 𝑑𝑖𝐷 and 𝑑𝑗𝑇   represent the degrees of the document 𝐷𝑖 and term 𝑇𝑗 (the size of document and 

term) resp, where . 
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For  each  document  𝐷𝑖 ,  document  weight  is  denoted  by 𝑤𝑖.  The  weight  of  document  𝐷𝑖,  

is proportional to the minimal term size of the terms connected to 𝐷𝑖, and inversely proportional 

to its document size, i.e., 

From the above definition, the TS-IDS can be expressed in Fig. Here, m’ is the number of 

documents in the new matrix after removing the covered documents. The new document weight 

of a term 𝑇𝑗, denoted by 𝜇𝑗, is the sum of all document weight containing of term 𝑇𝑗 i.e., 𝜇𝑗 = 

. Comparing this with the 𝜇𝑗 used in the greedy algorithm where , the 

only difference between TS-IDS and greedy algorithm is the a weight of the documents i.e., 𝑤𝑖. 

Algorithm 3: TS-IDS algorithm. 

 

Input: SampleDB, Query Pool QP, m x n Matrix A, where m= |SampleDB| and n= |QP| Output: 

a set of queries Q 

 
 

while not all docs covered do 

 

Find j that maximizes  

 
𝑥𝑗 = 1; 

 
Remove column j; 

 

Remove all rows that contain 𝑇𝑗; 
 

 in the new matrix 

End 
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There are many existing covering problems, where customers receive services depending on the 

distance between the customer and the service provider. In covering problem, services provided 

 

 
 

Fig 3.5: - A deep web data source is modelled as a bipartite graph [8] 

 
In the above example, as we can observe, document 7 and 6 has degree 3 and 1 respectively, 

depicting that document 7 has more chances to get captured then document 6. Accordingly, 

document 𝐷6 is more important that 𝐷7. According to the definition of TS-IDS, 𝐷6 will be 

captured first, and 𝐷7 will be captured more than once. Considering a term, say 𝑇4 in the solution 

set ,we ca n observe in the figure that 𝐷7 contributes only one third portion of new document, as 

𝐷7 can be covered again by other terms. Hence, the importance of document 𝐷𝑖 is inversely 

proportional to size of the document  

Therefore, we are going to apply this algorithm to operational research and test its performance for 

comparison between various greedy approach’s to see if TS-IDS gives better results in other 

fields also. 

3.2.4. Covering problem in Facility Location 
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There are many books that have dealt with covering problem in details and among all, [38] has 

done a significant contribution. They divided the covering problem into two major categories: 

network location problem and cyclic network problem. 

This paper [44] gave a solution for locating emergency medical vehicle service at all the sites to 

be covered, so that users at each point in the graph is able to find a service. They followed an 

approach where it first covered all those locations which are less accessible, and covered later on 

those locations which could be covered by many services. This work ensures the coverage of all 

the locations in the network while minimizing the number of facilities. 

 
 

Another paper [41], showed how to decide ‘good’ locations for facilities on a network. It has gained 

a lot of attention in the last few years. This paper is about the facility-location problem with the 

special constraint on the maximum time or distance a user can spend to reach the closest service. 

The main problem stated in this paper is to minimize the total number of service facilities required 

to meet the response time or distance standards for each of the users. This standard is identical for 

The first covering problem introduced in [41] was about the location of the center of a network, 

where the center of a network is the point of the network from which the distance to the furthest 

point is a minimum. The purpose of the model was to cover the node depending on the number of 

police required on the network highway, which was an application of vertex covering problem. 

The first mathematical model was introduced [41] used for the allocation of emergency service 

facilities. This is an application of set covering problem with equal costs. The sets consist of the 

facility points reachable within a specified time or distance. One constraint is presented for each 

demand point requiring to be covered and linear programming is used to solve the covering 

problem. 
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all facility locations in terms of cost. The solution is the number and location of the facilities that 

can provide the desired service. 

The authors presented an example of locating fire stations. Once a response time is given, then for 

every point in demand, there must be a fire station located within s time units. It is assumed that 

each facility has response capability at all times. The desired solution is to locate the minimum 

number of fire stations that satisfy the response-time requirement. 
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CHAPTER 4 

EXPERIMENT 

In this chapter, we present our experimental results obtained from various greedy approaches. The 

purpose is to test various greedy approaches to find which one is better than the others in our setup. 

4.1 Dataset 

 

The experimentation is performed on several regional maps obtained from the dataset. The dataset 

is of 1,965,206 nodes. We use approximately 5,000 nodes for our experimentation. The input is of 

two different types: one has coverage radius 1 and other has coverage radius greater than 1. Various 

greedy approaches have been implemented and run on 50 regional map with coverage radius 1 and 

the other 50 maps with coverage radius greater than 1. We will check the improvement of various 

greedy approaches in different situations like different coverage radius and different cost 

definitions. 

The approaches are performed on approximately 5000 x 5000 nodes matrix. We have executed the 

corresponding code on the different coefficient of variance ranges. Here, the CV represents the 

spreading of node coverage degree. 

The below graph presents the out degrees of the nodes in two situations: one with coverage radius 

1, and other with coverage radius larger than one. The table below presents the two different sets 

of sample data. The results are for 50 sample maps, each with approximately 5000 rows and 5000 

columns. 
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Fig 4.1: Distribution of coverage degree on radius 5 
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Fig 4.2: Distribution of coverage degree on radius 7 
 

 
 

 
Fig 4.3: Distribution of coverage degree on radius 12 

 
The above graph is the distribution of node degrees i.e., out degrees of the nodes under different 

coverage radius 5, 7, 12. The table shows the maximum and minimum out degree obtained from 

the given coverage radius. The results are taken from 5000 by 5000 rows and columns. Table 4.4 

shows the maximum, minimum node degree. 

In above figures 4.1, 4.2 and 4.3 we present the distribution of node degree on different coverage 

radius, where the x-axis represents the node id in the sample matrix and the y-axis represents the 

out-degree of each node. 

In table 4.4, the maximum out-degree column and minimum out-degree column shows the 

maximum and the minimum number of out-degree for each coverage radius. 
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Coverage Radius Maximum Out 

Degree 

Minimum 

 
Out Degree 

5 119 7 

7 246 14 

12 486 29 

 

 

Table 4.4: Distribution of Node 
 

4.2 Cost Definition 

 

We will use different cost definitions to see how the performance of the algorithm will be affected. 

There are two types of cost definitions: - 

Infrastructure Cost: 

 

With this type, the cost of selecting a node is one. The problem is similar to the traditional set cover 

problem, in which the goal is to minimize the number of nodes selected. This is also known as a 

set covering with unit cost. Examples include the cost for building a school, food services or fuel 

station. 

Location Cost: 

 

With this type, the cost of the node is the out-degree of the node. For example, a mobile phone 

operator wants to provide service to a currently uncovered geographical region. Six locations are 

being considered for installation of towers for this purpose. Hence the out degree for each location 

will be ten if ten villages are getting covered by each location and cost will be ten. 
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4.3 Results 

 

The data is separated into two parts, each with two subparts. The first part is with coverage radius 

1 and the other with a radius greater than 1. Then we test different approaches of greedy on these 

two categories using two different frameworks of cost definitions. 

We used 50 sample maps with coverage radius 1 and 50 maps with a radius greater than 1. Then 

different greedy approaches are tested ten times on each sample map using cost definitions and the 

average value is taken from the solution nodes of each approach and then it is reported. We run all 

the algorithms, ten times in order to check how many numbers of solution nodes are getting 

selected at each execution and also to check their performance on each cost definition. 

The improvement is defined by the cost of greedy (𝐶𝑔) subtract the cost of various greedy 

approach’s and divided by the cost obtained from the greedy. 

 

 

 

IMP 

Fig 4.5: Formula for calculating Improvement 

 
In our experiment, the new TS-IDS algorithm gave better results on our dataset as the following 

tables and figures show: 

Cost calculated in all different scenarios by the TS-IDS algorithm is always less than that from the 

greedy algorithm. 

For a better analysis of the result, we took four random rows from the 50 improvement results. 

= 
−𝐶

𝑤 

𝐶𝑔 



43  

 

 
 

Fig 4.6: Greedy Algorithm vs TS-IDS algorithm, in Location Cost 
 

Coverage Radius Greedy Algorithm TS-IDS Algorithm Improvement % 

3 207 182 12 

7 198 152 23 

10 535 400 25 

15 576 553 39 

 

 
Table 4.7: Greedy Algorithm vs TS-IDS algorithm, in Location Cost 
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Fig 4.8: Greedy Algorithm vs other Approach, in Location Cost 

 
Coverage Radius Greedy Algorithm Other Approach Improvement % 

3 207 163 21 

7 233 171 26 

10 470 336 28 

15 198 112 43 

 

 
Table 4.9: Greedy Algorithm vs other Approach, in Location Cost 

 

 

 
Fig 4.10: Greedy Algorithm vs TS-IDS algorithm, in Infrastructure Cost 

 

Coverage Radius Greedy Algorithm TS-IDS Algorithm Improvement % 

3 358 333 6 

4 453 415 8 

6 384 334 12 

8 321 276 14 
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Table 4.11: Greedy Algorithm vs TS-IDS algorithm, in Infrastructure Cost 
 

 

 

Fig 4.12: Greedy Algorithm vs other approach, in Infrastructure Cost 
 

Coverage Radius Greedy Algorithm Other Approach Improvement % 

3 358 317 11 

4 341 416 17 

6 218 172 21 

8 229 175 23 

 

 
Table 4.13: Greedy Algorithm vs other approach, in Infrastructure Cost 

 
We run three algorithms, the Greedy, the TS-IDS algorithm and the other approach. Fig 4.6 and 

fig 4.8 show the comparison of these algorithms in terms location cost fig 4.10, fig 4.12 is 

infrastructure cost. The TS-IDS algorithm outperforms the greedy algorithm in each execution by 

31% in location cost. The other approach outperforms the greedy algorithm by 21% in location 

cost. Also in infrastructure cost, the TS-IDS outperforms the greedy algorithm by 14% and the 
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other approach outperforms the greedy by 24%. Hence, TS-IDS algorithm and the other approach 

achieves better improvement than the greedy algorithm in every execution. 

The result is the comparison of the greedy approaches that are executed ten times for the same 

dataset. 

 
 

 

Fig 4.14: Location Cost 
 

 

Fig 4.15: Infrastructure Cost 

 
From fig 4.14 and 4.15, we can see that the average cost of the greedy algorithm is more than the 

other two approaches with different cost definitions. In the figure, the greedy algorithm forms 
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larger number of solution sets than the others. The cost can be associated with location cost, cost 

of building facilities etc. 

4.4 Data Distribution 

 

The major idea in the two weighted greedy algorithms is that the rows should never be evaluated 

the same. There must be uniqueness in covering the different rows. If all rows are getting covered 

by the matching number of the columns, i.e., if the out-degree of each node is the same then all 

algorithms give the same result. That means, if the weight of all the nodes is the same, then TSIDS 

algorithm will be the same as of greedy algorithm. We can only predict the cost saving when there 

are different node coverage degrees. That is, the different node should have different coverage 

degrees. More the dispersion of node coverage degree, the larger improvement we get. 

We calculate the improvement of the different greedy approaches to the CV. Once improvement 

has been calculated, the data is plotted on the graph that represents the improvement matched with 

CV. 

The below figures show the relationship between the improvement of the various greedy 

approaches and the Coefficient of Variance for all sample maps. 
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Fig 4.16: Relation between Improvement and CV for Location Cost 
 

 

 

Fig 4.17: Relation between Improvement and CV for Infrastructure Cost 

 
In the above figure, the x-axis represents the coefficient of variance points and the y-axis represents 

the improvement of TS-IDS algorithm over the greedy algorithm 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1. Summary of research and table 

 
In this thesis, we tested different greedy approaches in the resource allocation field. The experiment 

is carried out using different cost definitions. The result shows that, same as in web crawling, we 

get better results than greedy algorithm. The results obtained from the two cost definitions show 

that this algorithm can be used when considering different cost definition. 

TS-IDS algorithm was first designed for deep web crawling, but the results from our work convey 

that it can be used in other fields also. In our work, results were obtained using real data with 

different CV ranges. 

The newly proposed algorithm outperformed both the greedy algorithm and the TS-IDS algorithm 

in terms of the number of solution nodes. The application of the proposed algorithm with its 

costeffectiveness can be useful in the field of resource allocation. 

5.2. Future work 

 

Due to a limited number of resources, allocating resources is a big problem. As we can observe, 

TS-IDS gave better results in our setup, but there are things that need to be considered in future 

improvement. 

One aspect could be to test it in different fields of computer science to check if there are any other 

applications of the algorithm in other fields also. As there are various other applications of the set 

covering problem, it can also be tested in all those applications to check if it can work in other 
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fields or not. We can also write some good algorithms, using the idea of this algorithm according 

to the requirement in the future. 
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