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ABSTRACT 

 

Giving rise to the field of reverse logistics are the governmental legislations 

mandating used electronics take-backs and sustainable recovery, which often 

burden manufacturers with the challenge of high implementation costs but no 

guaranteed profitability. One way to tackle this challenge is to demystify the multi-

faceted uncertainties of product returns, namely timing, quantity and quality, that 

currently inhibit optimal design and operations of reverse logistics networks 

(RLN). In recognition of the limitations particularly caused by uncertainty of 

returns’ quality in the strategic, tactical and operational planning of the RLN, this 

research seeks to develop a forecast model for the prediction of the returns’ quality 

of future electronics returns. The proposed forecast model comprehensively 

incorporates three major factors that affect quality decisions which are usage, 

technological age and remaining economic value of expected product returns to 

predict its quality grade.  While technological age and economic trends can readily 

be established, the main complexity lies in modeling of usage-dependent reliability 

distribution of returned electronics. The novelty of the proposed forecast model 

lies in deducing usage distributions through segmentation of the consumer base by 

socioeconomic factors such as age, income, educational status and location. These 

usage distributions are then used to estimate remaining useful life of returned 

products and their components, the associated repair costs and the subsequent 

profitability of reprocessing based on economic value in the market. This research 

develops analytical models of expected return quality based on empirical usage 

distributions and pricing trends. The analytical models are then applied in Monte 

Carlo simulations to forecast expected returns’ quality from different urban and 

rural areas in Canada.  
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CHAPTER 1 

INTRODUCTION 

1.1 Birth of Sustainable Development 

The digital revolution, also known as the third industrial evolution, of the late 1950’s set 

the tone for the boom in the electronics industry which is still prevalent today. It began 

with the gradual shift of analogue systems into digital ones, ushering in the rapid 

adoption and proliferation of rapid computers for those who were able to afford it at that 

time. As the demand for this technology grew, so did the manufacturing capabilities of 

the industries which found themselves able to mass produce the digital products. With 

mass production, came the decrease in prices which meant that more people could afford 

it, further fueling the infiltration as well as the dependence of activities on these devices.  

The opportunities for financial gain were too lucrative for businesses to ignore. Very 

soon, the electronics industry began to seem like a race for rapid technological advances 

and new product launches that furthered mass sales. At the height of financial euphoria, 

no one was paying attention to the key enabler of such technological advances: the raw 

materials, metals and semiconductors, that were being depleted into making these 

electronics. All this mass production was only possible because of the readily available 

natural resources. But what would happen when these ran out? This realization gave birth 

to the concept of sustainable development. 

Sustainable development means using the natural resources available to satisfy the needs 

of this generation without diminishing the ability of the future generations to satisfy 

theirs. In the electronics industry, the adoption of sustainable development is the 

circulation of the resources from the old products that are no longer in use, to produce 

new products so that the net mining of virgin natural sources is reduced and the resources 

are conserved for the needs of the future generations. Under this concern, companies 

have adopted multiple product recovery management options such as repairing 

remanufacturing, or recycling (Ramani et al., 2010). In the words of Thierry et al., 

(1995), the term product recovery management means salvaging as much of the 

economical (and ecological) value as sensibly possible in order to reduce the residual 

waste.   
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In addition to conservation of non-renewable sources, concept of sustainable 

development extends to environmentally friendly disposal of the electronics that 

consumers no longer use, after they purchase a replacement. Electronics contain metals, 

chemical batteries, silicon chips and other materials, which if sent to landfills, can release 

toxic chemicals into the environment. This disposal issue is major concern today due to 

the rapid rate at which consumers are disposing electronics today. In Canada alone, 

nearly 40,000 mobile phone units are returned for recycling each day. This rapid 

generation of electronics waste is a byproduct of the same factors that incite sales of new 

purchases. In the smartphone industry for example, rapid technological advances, new 

functionality and designs, and pressure from marketing and sales incite consumers to 

replace their devices with new ones. At most times, their current devices are still 

functional but, because of the factors mentioned earlier, the consumers feel entitled to a 

new purchase. This has led to a shortened life cycle for smartphones. In the case for 

Canada, the average life of a phone is 30.6 months which means consumers are likely to 

upgrade their device in less than three years (Communcations Monitoring Report 2017).  

In addition to the factors that affect consumer behavior, tactics such as designed-for-

obsolescence also ensure new sales for the manufacturers. Smartphones today are not 

only less reliable in terms of functionality, but are also more difficult to repair. When a 

device fails due to malfunction of one component such as the microphone or speaker, 

consumers find it easier to buy a new device than repair it. The costs of repair have 

increased due to the sleek designs and intricate assembly and disassembly of the current 

generation of smartphones which require skilled labour (Ait-Kadi et al., 2012). This has 

contributed to an increasing sales and an even larger and more frequent rate of mobile 

phone returns reaching their end of use, thereby magnifying the disposal issue mentioned 

earlier.  The implementation of recovery options such as remanufacturing, repairing and 

recycling can ensure the safe disposal of these electronics as well. In order to enforce 

effective compliance of industries with the product recovery practices that facilitate 

sustainable development, government regulatory bodies in various countries have 

implemented strict legislations with regards to the recovery management of electronics 

and electrical wastes.  
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Under one such regulatory policy, the Extended Producer Responsibility (EPR) 

legislation was put into practice in Canada in 2009. Under the EPR, all original 

equipment manufacturers (OEMs) of electronics, electrical supplies, automobiles and 

parts, or any other product which has toxic materials, are mandatorily responsible for 

taking back their products from the consumers at the end of use, and performing product 

recovery operations in an eco-friendly way. Under the government policy, the OEM is 

usually responsible for funding any activities that are required to implement the EPR 

legislation.   

With the pressures of complying with EPR, OEMs were grappling with the difficult task 

of not only collecting their end-of-use products from their country-wide consumer base, 

but also with finding economic viability of the product recovery processes. This gave rise 

to the entire field of product recovery management which has gained exponential interest 

from both- industrial partners and academia. The common objective of this interest has 

been in maximizing the efficiency and profitability of all activities that fall under EPR 

compliance. Under the umbrella of sustainable development, these activities entailing 

product-take back schemes and recovery operations are collectively addressed under the 

term “reverse logistics”. 

1.1.1 Reverse Logistics: Challenges and Decisions 

Reverse logistics consists of a series of activities required to (1) collect used product from 

a consumer and (2) reprocess the used product using the recovery decisions available, in 

such a way so as to recover its leftover market value or dispose it in an environmentally 

friendly manner.  Based on this definition, the activities in reverse logistics can be split 

into 2 groups: product take-back and product reprocessing (or recovery). Within these 

two groups, there are many sub-activities that may overlap or directly affect the activities 

of the other. In literature, the term reverse logistics has been used interchangeably with 

reverse supply chains, where “logistics” is limited to the activities only pertaining to 

group 1 which is product take-backs, collection and transportation and “reverse supply 

chain” is comprehensive of all activities in both groups mentioned above.  

A typical reverse logistics network (RLN) consists of collection centers which accept 

used products from customers, reprocessing facilities and secondary markets, where 
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customers buy reprocessed products. It may seem that this RLN structure is analogous to 

the forward supply chain structure that consists of suppliers, manufacturers and demand 

markets but there is far more dissimilarity between the two types of networks than meets 

the eye. The stark differences in the two networks are adequately described by 

(Fleischmann, Krikke, Dekker, & Flapper, 2000) who addresses reverse and forward 

chains as “converging” and “divergent” networks respectively.  

The first difference arises from the supplier sources which, in the reverse supply chain 

context, are the consumers themselves. The consumers are located in large area spread 

out across cities and countries. In fact, in FSC, manufacturers actually try to expand their 

installed consumer base by gaining market share in as large an area as possible. However, 

during the collection of used product, the burden of collecting products from the large 

consumer base poses a logistics challenge because it requires large amounts of resources. 

The fact that the suppliers are located in so many places and the stream of goods is 

towards fewer reprocessing facilities is why Fleischmann (2001) addresses reverse supply 

chains as “convergent” networks. The issue of optimizing collection networks, schemes, 

routing and many other issues are addressed in a large body of literary work (Aras et al., 

2008; Min & Ko, 2006).  

The second, and more complex part of reverse logistics is the profit maximization of the 

recovery processes. There are generally three levels of recovery that are currently in 

practice: direct reuse, refurbish or remanufacturing, and materials recycling. In order to 

recover the costs of the product collections and sustain further profits from product 

recovery, companies must exercise acumen in the design and allocation of their 

reprocessing facilities. 

 It goes without saying that recovery business manufacturers and remanufacturers are not 

only driven by environmental regulations, but mainly motivated by potential profits from 

product or component recovery (Zikopoulos and Tagaras, 2007). Two critical issues that 

heavily impact maximizing profits from recovery are: designing of the reprocessing 

network, and selecting the optimal configuration of recovery strategies. Selection of 

optimal configuration means assigning the most economically viable recovery strategy 

from all possible alternatives for the product as a whole and for each component as well. 
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This process of assigning an appropriate recovery decision is complex, and varies from 

one unit of product to the other. To understand this complexity, it is first important to 

explain the three recovery processes. 

1.1.2 Recovery Processes 

Reuse: The first option, reuse, means to directly retail the returned product after some 

cleaning and repackaging. According to Geyer and Blass (2010), direct reuse of mobile 

electronics generates the highest profit margins. This is because it doesn’t require any 

reprocessing operations. Meng et al., 2017 also claim that reusing is also the most 

environmentally-friendly option. However, for a returned product to be eligible for direct 

reuse, it must satisfy two conditions (1) It should be completely functional with very little 

cosmetic wear, and (2) there must be a demand for that model in the market.  

For the purpose of this study, the term reusability is defined as the probability that a 

product that has been returned by the customer is found to be excellent functional status 

with only minor cosmetic wear such that it can be directly resold without any repairs. The 

product may require some cleaning and repackaging but it does not require any 

replacement of components and has not water damage. 

Refurbishing/Remanufacturing: The second recovery option is remanufacturing. 

Compared to recycling, this solution requires lesser resources and energy and is 

increasingly gaining attention because of its value-added potential and environment-

friendly features (Guide and Wassenhove, 2009; Deng et al., 2017; Ji et al., 2017). As 

one link of reverse logistics, remanufacturing is less dependent on virgin materials and 

more profitable compared with manufacturing. In remanufacturing of cellphones, the 

failed components, or the ones that do not meet the industry standards are replaced with 

new components. Thus, remanufacturing incurs the costs of disassembly, new 

components and the subsequent reassembly of the product, which are not applicable to 

direct reuse. However, the selling price of a remanufactured or refurbished product is 

usually more than the price of a reused product because the product has been reset to 

manufacturer’s quality. In such a case, the increase in revenue is generally large enough 

to offset the cost of remanufacturing. Having said that, not all returned products are 

eligible for remanufacturing. Similar to establishing reusability, it is important to gauge 
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the quality of the returned product and the current market trends before making a decision 

of whether to remanufacture or not.   

Part Harvesting: Sometimes, the activity of removing used components from a used 

device and selling them is more profitable than the process of remanufacturing. If the 

costs of remanufacturing are too high due to bad return quality, then part harvesting can 

be considered as a recovery option.  

Recycling: If the quality of the returned product is so bad that it requires extensive 

repairs, or, if the market value of the product has reached a point where the costs of 

remanufacturing outweigh the profits, then the appropriate recovery decision for it will be 

materials recycling. According to Geyer and Blass (2010), recycling is the least profitable 

recovery decision. However, it is an enabler for natural resource conservation and more 

environmentally friendly than mining of new materials. Therefore, even though an OEM 

may not find recycling to be compatible with their economic objectives, they must adhere 

to it due to environmental concerns.   

When would recycling be feasible? 

Sometimes the product returns can be of such low quality that the cost of repair or 

remanufacturing is too high and cannot be matched with the possible value on a 

secondary market (Ostlin et al., 2009). The recovery option that is slightly more 

favorable than recycling is directly selling used components by harvesting them from 

returned devices. Usually this is a low cost option that generates good profits as it 

requires no repairs, replacement with new parts or even reassembly (as is needed in 

remanufacturing). However, sometimes the revenue or demand of the used components 

may not justify the disassembly costs needed for extraction of the components. In such a 

case, the device would be assigned to recycling instead.   

As seen from the above discussion, the recovery decision of a product is highly 

dependent on two factors: the return quality, and the market value of the product. The 

dynamics of these two factors inject high level of complexity in the product recovery 

process and make the planning and management of reverse logistics highly challenging 

(Ondemir and Gupta, 2014).  
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The returns come with different qualities. Uncertainty in quality can impact various 

aspects of the reverse logistics process (Pochampally et al., 2008). When the quality of 

returned products is incorporated in the decision process, it is possible to develop more 

intelligent remanufacturing and disposal policies. 

1.2 Motivation 

The operational viability of any supply chain network depends on how well it was 

designed to sustain surplus in a multi-period setting. A supply chain surplus is defined as 

the net profit from all the supply chain activities which include planning, manufacturing, 

distributing, marketing and logistics (Chopra & Meindl, 2006) In reverse logistics the 

complexity of designing a network that is robust in the face of multi-dimensional 

uncertainties is challenging. The main uncertainties that hinder RLN planning are related 

to the volume, quality and timing of consumer product returns. These uncertainties arise 

from the randomness of consumer behaviour with regards to their usage patterns, their 

willingness to return the used product and at what point of time they decide to return. 

Several works in literature have attempted to quantify the uncertainties of return timing 

and return volumes using a wide range of optimization and simulation tools including 

stochastic programming, robust optimization, fuzzy techniques and forecasting methods. 

The most effective way of dispelling the impact of uncertainties on network design is 

through forecasting methods. Several works in literature attempt to forecast the timing of 

consumer returns such as Krikke et al., (1999), Kelle and Silver (1989) and Toktay 

(2001). Similarly, there have been several literary publications that effectively forecast 

the volume of consumer returns that can be expected to enter the reverse supply chain 

stream in a multi-period setting across a variety of product types (Marx-Gomez (2002), 

Hanafi (2008), Kannan et al., (2014), Temur and Bolat (2014), Ugurlu (2012)). A recent 

thesis by Pillai (2017) also addresses forecast of remanufacturing cores in a time-series 

analysis. Evidently, there is a plethora of substantial research dated as early as 1989 that 

can be used practically to optimize reverse logistics network decisions against risks that 

accompany the uncertainties in return timing and return quantities. Unfortunately, there is 

no presence of such a body of research on forecasting return quality although this factor 

plays a crucial part in network profitability.  
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Return quality is basically the quality grade of a product when it is returned by the 

consumer post-use. The random and individualistic consumer usage patterns induce a 

large variance in the return quality. The effect of return quality on the structure and 

operations of a reverse supply chain have been elaborated in many publications (Guide et 

al., (2006), Zikopoulos and Tagaras (2007), Ferguson et al., (2009), Ondemir and Gupta 

(2014), Liang et al., (2014), Meng et al., (2017)).While the importance of the effect of 

return quality has been well established, there is a lack of literature pertaining to 

forecasting of return quality of highly volatile and short-lived electronics products such 

as smartphones. Considering the vast tonnage of wastes that smartphones create all over 

the world, it is important to dedicate research that optimizes their reprocessing for faster 

and more efficient of product and materials recovery. This research is motivated by the 

need to demystify the volatility of return quality of end-of-use mobile electronics in order 

to facilitate the managerial decisions in the design and operations of their reverse supply 

chain.  

The sections that follow elaborate on what return quality means in the context of reverse 

logistics, what areas of management are impacted by its volatility, existing gaps in 

literature and finally, the objective this research attempts to fulfill. 

1.2.1 Return Quality Uncertainty 

 Exploitation of the remaining useful value in consumer returns has been identified as a 

promising source of revenues. In reverse logistics and product recovery, the term “useful 

value” is a transient quantity that is subjective to the product type, industry and the 

concerned stakeholder (OEM, third-party remanufacturer, government or consumer). In 

their book, Pochampally et al., (2008) mention that the definition of “value” must 

encompass all aspects of environmental, social and economic opportunities. The 

remaining value of any product will directly depend of the cost of repairs that it needs, 

and the potential profit it will generate when resold in the market. There is an inherent 

nexus between the cost of repairs and the quality of the used product when it is returned 

by the customer. While this correlation has been acknowledged in many literary works, 

there is very little literature available on trying to dispel the uncertainty of return quality.  
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Return quality, in the context of RL, is defined as the condition of a product unit when it 

is returned by a consumer at the end of its use. Based on the assessment of the quality of 

the product, it is assigned to an appropriate recovery decision. Authors in RL literature 

refer to return quality using various terms such as: input quality in remanufacturing 

(Denizel et al., 2004), condition of used product (Galberth and Blackburn, 2010), 

heterogeneity of input (Ferguson et al., 2009), or core quality (Teunter and Flapper 

2011). Return quality ratios, or simply quality ratios refers to the fraction of the total 

volume of returns that can be subjected to one of the recovery processes: direct reuse, 

remanufacturing or recycling. In most of the literature present, it is assumed that this 

quality ratio is deterministic (Zikopoulos and Tagaras, 2015). However, in reality the 

quality of returns is stochastic and random (Aras et al., 2004).  

The uncertainty in these quality ratios arises from the randomness that characterizes 

consumer behaviour (Ferguson et al., 2009). In the case of electronics, consumer 

purchasing frequency and daily usage behaviour largely depends on their income, social 

status and age. There is a nexus between these usage patterns and the product wear at the 

end of its use. Moreover, Zikopoulos and Tagaras (2015) mention that, in addition to 

these socioeconomic end-user characteristics, factors such as an individual’s motivation 

for returning product and the characteristics of the location of use (temperature and 

humidity) also affect the return quality of the product. Thus, it is established that return 

quality of each unit of returned product varies according to its length and intensity of 

usage and the environment in which it was used. This creates a huge uncertainty in return 

quality which greatly impacts profitability and decision making in reverse logistics on 

strategic, tactical and operational level of reverse supply chain management.  

A successful supply chain network is one that can sustain favorable surplus in a multi-

period setting, and ensure profit margins withstanding all the various possible 

uncertainties. In the field of reverse supply chains, this is no easy feat due to the 

uncertainties involved concerning timing, quantity and quality of returns. The variations 

in the return quality of products make it difficult to plan an optimal network. This inhibits 

maximization of profitability. In fact, the large variations in return quality can sometimes 
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offset the profitability of the recovery process, as explained by Denizel et al., (2010) in 

their case study on the IBM remanufacturing facility. 

This research is highly motivated by the roadblocks in reverse supply chain management 

that are caused by lack of return quality forecasting. The next section elucidates on these 

hindrances.  

1.2.2 Problem Description: Challenges under Quality Uncertainty  

This section describes the problems that arise in strategic and tactical management of 

reverse supply chain due to the uncertainty of return quality.  

Strategic Planning 

Designing supply chain networks is an exhaustive process that requires extensive 

research across a range of diverse areas from consumer behaviour and demand to location 

selection and in some case, even legislative measures.  

A central issue in strategic phase of SCM is the configuration of network design. The 

facilities and equipment required can incur large fixed costs which can only be justified if 

the network layout is optimized for profitability over long periods. The major aspects of 

network design are: 

1. Location decisions for facilities 

2. Number of facilities 

3. Capacity allocation    

A major determinant of the optimal number and capacity of the facilities is the forecasted 

demand for manufactured goods (Lambert, Riopel and Abdul-Kader, 2011). In forward 

logistics, demand forecasting is accepted as the most fundamental step in strategic 

planning. The decision to invest in facilities and the manufacturing equipment is 

dependent on this demand. In fact, 80% of a product value comes from its design stage 

which includes the fixed cost of its supply chain network (Pochampally et al., 2008). 

Forward chains have the advantage of robust forecast models that accurately predict 

demand trends, allowing economically justified investment in equipment and facilities 

network with assured profit margins. However, this is not the case in reverse supply 
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chains. Due to the unknown quality distribution, ‘traditional expectation-based 

optimization” which are generally adequate for forward supply chains, become 

completely incompetent in reverse supply chain planning (Jiang, Netessine, and Savin, 

2011).  

In the reverse supply chain, the conventional “demand for volume of goods” is replaced 

by “volume of returned goods”. The manufacturing equipment is replaced by more 

specialized reprocessing equipment essential for recovery processes such as machines for 

automatic disassembly, remanufacturing or cleaning of returned products. While forward 

chains need only one type of equipment which performs manufacturing and assembly, 

reverse supply chains need multiple types of specialized equipment based on the recovery 

methods. The returned products exhibit varying levels of wear and tear and thus, require 

tailored recovery operations. This is because consumer behaviour of electronics is not 

consistent. For e.g. a user who might be prone to overheating the device due to excessive 

usage, will return their phone with a much lower grade quality than another user who 

only uses the same type of device for basic functions. This gives rise to randomness in 

the quality of the returned products collected.  

It is usually unknown what volumes of the different quality grades are going to enter the 

reverse chain. As Ait-Kadi et al., (2012) mention, the efforts and resources needed to 

justify and support this type of uncertain returns are much more significant as compared 

to returns that would just fit one type of reprocessing option. To this end, investment in 

the rather expensive equipment required for reprocessing carries high levels of risk. It is 

necessary to take into account what type of specialized reprocessing equipment and what 

capacity is required for a viable network design.  Similar to forward chains where 

decision makers have forecasts of demands to assist them in deciding the number and 

capacity of manufacturing plants, the decision makers in reverse supply chains are also in 

need of forecasts of return volumes pertaining to variant quality grades. This information 

will enable them to generate higher profit margins by optimizing their fixed costs. 

The above problem is acknowledged by Pochampally et al., (2008) in their book, where 

they mention that in current network design, some predefined configurations of what 

volumes will go for specific recovery options is used in the planning stages. They list 
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“possible processing options” as one of the network constraints.  They mention literature 

works that suggest directing products towards processing options by assuming 

proportions or fixed amounts for each recovery process. Other approaches can also 

configure a lower proportion of products to be cleanly disposed of whereas the remaining 

products are sent for remanufacturing. A higher proportion of repair, remanufacturing, 

updating or upgrading and a smaller portion for recycling is used for designing a network 

with a desired level of flexibility. They say that these “proportions” are decided so that 

they take into account technical, commercial, and environmental constraints. Such a 

practice leads to an overly conservative network design, which has a lot of scope for 

optimization with accurate quality ratio forecasts so that “predefined recovery 

configurations” do not have to be assumed. Moreover, this existing practice does not 

necessarily sustain profitability in multi-periods.  

Tactical Planning 

On a tactical and operational level, there are two major issues that can be addressed 

through the forecast model proposed in this research. These are deciding on used product 

acquisition policy, and planning the production lines for the recovery options that are 

available.  

Most reprocessing facilities purchase batches of returned products in fixed lots from 

informal or formal collectors. Usually these batches are aggregates of consumer returns 

across multiple collection points in an area and then consolidated into one larger batch for 

the collector. It is most often unknown what the functional state of the products in any 

given batch are. While some phones may be good enough for direct reuse after general 

cleaning, others might be completely malfunctioned and need costly repairs. Denizel, 

Ferguson and Souza (2010) identify this issue that, since a returned shipment vary in the 

quality of the cores, some cores will need more capacity to restore the unit to standard 

quality than others. These batches, regardless of how many bad phones are inside them, 

are quoted at a fixed selling price to the reprocessing facilities. While the batches are 

randomly tested and labeled with an expected quality ratio based on expertise, their 

precision cannot be reported. This concept of testing a sample of a returned batch, and the 

inherent errors of the statistical sample are discussed by Panagiotidou, Nenes and 
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Zikopoulos (2013). Earlier than that, Nikolaidis (2009) had developed a model to find the 

optimal acquisition and remanufacturing quantities under the effect of sampling 

inspection of the returned batches. Sometimes, a batch can have many malfunctioned 

devices or models that are aged and no longer have any market value. In such cases, it 

does not justify for the reprocessor to spend in their repairs as they do not generate any 

profitability from future sales. However, a reprocessor cannot demand a device-by-device 

test of each unit in a batch before purchasing, nor can they return a batch if they find it to 

be unprofitable. Thus the cost incurred of buying such a low quality batch is often a hefty 

financial loss for the reprocessor. The impact that overestimation of the quality of the 

returned batch on the profitability of remanufacturing is acknowledged by Van 

Wassenhove and Zikopoulos (2010). It would be financially beneficial for reprocessing 

facilities if they could get a quote for a batch based on an accurate estimation of the 

quality ratio of each batch rather than an estimate applied across all batches, a fact that is 

asserted by Denizel, Ferguson and Souza (2010) who mention that the acquisition price 

of used cores should be lower for lower quality grades. When the quote is based on the 

quality ratio, they know precisely what to expect from the box and can then decide if the 

cost of the box is justified against the potential profit it will generate for them. Since 

collections are aggregated into batches by region, this research avails the opportunity to 

estimate quality ratio of batches by accounting for regional differences through 

socioeconomic factors (See 3.2 Socioeconomic Usage Model).  

The first four steps for products that enter the value recovery stream are: gatekeeping, 

collection, inspection and sorting (Lambert, Riopel and Abdul-Kader, 2011). When a 

batch of returned products arrives at a reprocessing facility from collectors, it is standard 

inspection to perform functional tests on each unit in the batch in order to determine 

which reprocessing option is most feasible, and then sends them to the appropriate 

reprocessing department. This process is a fail-proof method of ensuring that each device 

generates maximum profit. However, this real-time method of incrementing the lot size 

that arrives at the different reprocessing production lines can induce extreme 

inefficiencies and variabilities in the production planning. Having uncertain knowledge 

of how much inflow of raw material (in this case, returned products) to expect for their 

production lines put the production planners at a disadvantage.  
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Moreover, variations in production input can reduce overall equipment efficiency of the 

line by causing increasing change over frequency and suboptimal utilization of the line 

capacity. Guide and Srivastava (1997) list unknown conditions of recovered parts and 

probabilistic recovery rate of parts among other factors that add complexity to inventory 

control and production planning. This is a contingency due to the random quality ratios of 

the batches fed into the line. For e.g. a remanufacturing line has a capacity of x units per 

day. A reprocessor purchases a batch of x units with an estimated quality ratio of 0.6 and 

another of 0.3 to make a day’s production. However, after sorting the devices from the 

batches, it is found that the quality ratios reported were significantly different. Then, in 

this case, the remanufacturing line capacity will not be optimized. If the quality ratios are 

lower, then the line will have excess capacity. If the quality ratios are found to be higher, 

then the reprocessor will incur an opportunity cost and will be at a loss. This loss is due 

to the fact that, for each day the remanufacturable units spend in the facility, they lose 

time value. Pochampally et al., (2008) name this as “loss of sale” cost. Since the 

secondary market value of electronics is highly sensitive to time, it is not profitable for 

the remanufacturer to incur a profit loss by decaying good quality cores at its facility. 

This dilemma is acknowledged by Ait-Kadi et al., (2012) where they state that companies 

must strike a balance between the acquisition price of the returned product-whether that 

is batch purchasing from collectors or incentives paid to the customers, and the resale 

value. Inherently, to gauge the resale value, they must also consider the various 

reprocessing paths that the recovered product may take (Pochampally et al., 2008). While 

the above mentioned example is for a remanufacturing line, the same concept applies to 

repairing or recycling equipment and lines.  

To conclude from the above discussion, equipping reprocessing facilities with accurate 

forecasts of the quality ratios empowers them to configure their batch purchases, plan 

their production lines efficiently and sustain favorable economic profits.   

1.2.3 Value of Prior Information on Return Quality 

From the above discussion it is clear that the return quality affects not only strategic 

decisions of network design, but also affects the tactical and operational decisions. From 

network design to capacity planning of reprocessing facilities, to acquisition policies and 
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production schedules, all of these activities are affected by the quality of the returned 

products. In order to enable effective managerial decisions at the correct time, it is 

important to have knowledge of the return quality forecasts based on the customer zones 

for a multi-period setting. 

What positive impact can a return quality forecast have on strategic planning?  

A forecast of return quality will empower the decision makers in reverse supply chains 

with the expected volume of returns that will be of good, moderate or bad quality in any 

given time period. This will allow them to make the following strategic decisions: 

1. Optimal location for reprocessing facilities 

2. Optimal number and capacity of reprocessing facilities based on the expected 

volume of returns in multi-period network 

3. Optimal supplier zones: In the case of RLN, the end-users are the suppliers 

(Fleischmann, 2001). Since consumers exhibit variability in device usage, they 

produce end products of different quality, which can be attributed as “suppliers 

with different return quality”. It is possible to assign nominal quality ratios to 

returned batches based on area of collection if a pattern between these two 

variables in established. some consumer areas will generate high quality of used 

products than others e.g. urban vs. rural. One way to correlate return quality by 

region is to characterize returned products based on the demographic profile of 

that region. This study attempts to achieve this through the proposed 

socioeconomic forecast model.    

By optimizing the fixed costs of the RLN, forecasts of return quality can greatly increase 

the reverse supply chain surplus. 

What positive impact can a return quality forecast have on tactical planning?  

Confidence in the quality ratio of returned batches through forecasts will enable more 

profit-based acquisition policies. Based on current market trends and the remanufacturers 

own production capacities, they will be able to configure how many batches to acquire, of 

what quality ratios and at what frequency. This added sense of control over their inputs 
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will allow them to efficiently plan their production schedules, comply with delivery times 

(due to better throughput management) and enhance their overall line efficiency. All this 

cannot be planned if the information of quality ratios is made available to the planners 

only after a batch enters the facility’s doors.  

1.3 Research Objective and Expected Contribution 

As seen from the above discussion, the random nature of the return quality of electronics 

can significantly reduce the surplus of sustainable supply chains. It is critical to 

accurately quantify what quality ratios to expect from returned products a priori to the 

strategical planning stage so that decision makers can design robust networks that can 

successfully generate financial profits in a multi-period setting. As a solution to this 

problem this research proposes a forecast model to predict the quality ratios of returned 

electronics. The main objective of this research is to: 

1. Create smartphones usage distributions by categorizing consumers by 

socioeconomic factors namely, age income, education and region.  

2. Use the categorization of products by socioeconomic factors to formulate 

probability distributions for the quality of end-of-use consumer returns  

3. Combine these formulated return quality distributions with economic trends to 

formulate a forecast model that will predict quality ratios of the future returns that 

will be subjected to direct reuse, remanufacturing or recycling.  

1.4 Description of Methodology   

The first step will be to use available data on smartphone usage characterized by age, 

income, gender, education and region to identify which of these factors play a significant 

part in determining smartphone usage and purchase behaviour. The independent variable 

will be the socioeconomic factors and the dependent variables will be (1) number of 

usage hours per day and (2) length of ownership of one smartphone device. Next step will 

be to identify the statistical distributions that govern the relationship between the input 

factors and the outputs. 

After the usage distributions have been established, the usage model will be used to 

calculate the functional status, or survival probability, of the used devices at the end-of-
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use. The usage distributions will be used in reliability calculations to determine the 

probability distribution of returned products that will survive at the time of their return. 

This survival probability will also be calculated for the crucial components of the device 

based on component selection.  

In the formulation of the forecast model, the survival distributions will be used in 

conjunction with economic depreciation trends of mobile devices and their components 

to predict the most suitable recovery option. To this end, the expected cost of repairs 

needed will be calculated based on the survival probabilities, and the expected revenues 

will be calculated based on the market price of the product in the current period. Then the 

difference of costs and revenue will be used to calculate the expected profit for each 

recovery option. The recovery option with the highest profit will be assigned to the used 

product.    

1.5 Scope and Limitations 

This section lists the assumptions and limitations of the proposed forecast model.  

Assumptions 

1. The phones were not stored for any period of time after their end of use. 

2. The year of release of the phone coincides with the start of the usage time 

3. One phone unit has not been reused by more than one age group. 

4. The usage intensity of the phone (such as the type of application: games, graphic 

content versus office usage) have not been taken into consideration. 

5. Probability of water damage and physical fall are the same across all age groups 

6. No lead time for reprocessing is taken into account. It is assumed that the time 

value of the product at the time of return stays the same while it’s being 

reprocessed  

7. At t=0, the quality of all phones is uniform with usage hours=0. 

Limitations 

This research provides an aggregate forecast model to predict future quality of returns. 

This information is intended to be useful in network design and production planning 
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phases. The model does not eliminate the need for the gatekeeping and inspection steps 

that are characteristic of the reverse logistic process and are instrumental in assigning the 

appropriate recovery decision to each device on an disaggregate level.  

1.6 Industry Selection  

The electronics waste generated from smartphones all over the world is a growing issue. 

The catalysts to this problem are the growing sales and the shortening life-cycle of 

smartphone devices. In 2017 alone, 1.5 billion units of mobile phones were sold 

worldwide, generating nearly US $500 billion in revenue. In North America, the 

smartphone penetration has peaked, and most of the smartphone sales are from 

replacement purchases i.e. consumers replacing their existing smartphone with a new 

one. Technological advancements, marketing activities, hardware obsolescence and the 

adoption of latest technology as a status symbol are all contributors to what spurs 

consumers to in the race to acquire the latest phone models, even when their old ones are 

perfectly functional. This phenomenon has led to shortening of the life-cycle of mobile 

phones. In Canada, the average length of ownership is about 30.6 months (CWTA, 2016).  

This means that the more sales, the more electronic waste accumulates. Thus, even 

though mobile phones are small, light in weight and use lesser materials than bigger 

electronics, they are contributing tonnes to the growing problem of WEEE management 

by virtue of their short life-cycles.  

In recognition of the criticality of managing wastes from smartphones, this study has 

chosen the smartphone industry for the numerical application of the proposed forecast 

model for return quality. 
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CHAPTER 2 

LITERATURE REVIEW 

Following the theme of return quality in reverse logistics, this section attempts to compile 

existing literature that establishes the inevitable existence of this uncertainty in RL. It 

also discusses relevant work which brings to light the various management issues which 

are impacted by the uncertainty in return quality, and how it is currently being addressed 

through qualitative methods that rely on human expertise and data-driven methods that 

employ electronic data logging systems. Lastly, it provides an overture of the forecasting 

method and the Monte Carlo simulation technique that will be used in this study.    

2.1 Quality Grades and Recovery Decisions 

Most of the work in literature classifies the quality of returned product in three discrete 

groups: good, moderate and bad. Literature in which quality grades are treated as discrete 

variables include Teunter and Flapper (2011).  However, in some literature, quality grade 

is also treated as a continuous variable (Galberth and Blackburn, 2010). Regardless of 

whether return quality is modeled as a discrete or continuous variable, it is almost always 

assumed to be deterministic. 

 In Zikopoulos and Tagaras (2015), the remanufacturability (a measure of quality) of a 

returned product is modeled as a continuous variable but with a known distribution. 

Regardless of the type of variable, the quality ratios have almost always been treated as 

deterministic parameters.   

Golany et al., (2001) assume a single quality grade for all returns, while Robotis et al., 

(2005) assume two distinct return qualities, each sourced from a separate supplier with no 

correlation. Zikopoulus and Tagaras also assume two quality grades: refurbishable and 

non-refurbishable. However, they upgrade the model presented by Robotis et al., (2005) 

by assuming that there is correlation between the stochastic distribution quality of returns 

collected from each of the two separate suppliers.    

Aras et al., (2004) also use two quality grades: high quality and low quality in their 

Markov Chain model to optimize inventory management of hybrid manufacturing 

systems. They assume that the probability distribution of the products being of either high 
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or low quality is already known. Similarly, Galberth and Blackburn (2010) considered the 

uncertainty in the quality condition of the returns and assumed that the quality grade 

followed a binomial distribution, the parameters of which are assumed to be known.  

Ferguson et al., (2009) use three quality grades: fit-for-scrap, fit-for-part-harvest and fit-

for-remanufacturing in their case study on an electronics company for evaluating the 

effect of quality grading before remanufacturing operations. 

In all the studies mentioned above, it is clear that the quality of the product has been used 

as an indicator to assign it to the appropriate recovery decision. However, none of the 

studies above mention the data source that forms the basis of their assumptions of 

choosing a distribution to model the quality ratios. All the studies mention that their 

stochastic modeling of the return quality is based off of expert opinion or historical data. 

While both of these may be a reliable source in electronics with long life cycles such as 

household appliances, they cannot be used as reliable sources with fast moving consumer 

electronics with short life cycle. This is because the trends pertaining to usage and returns 

of these electronics is constantly changing, which automatically reflects in the quality 

distribution of these products when they are returned at the post-consumer stage.  

2.2 Impact of Uncertainty of Return Quality (Economics/ Recovery Decisions) 

There is a large body of work that emphasizes the impact of uncertainty of return quality 

on various aspects of reverse logistics and its profitability (Zikopoukos and Tagaras 

2007; Aras et al., 2004; Teunter and Flapper 2011). A recent review by Ondemir and 

Gupta (2014) showed that quality was incorporated into a wide range of decision models 

for reverse logistics, which further proves that return quality is an important parameter in 

reverse supply chain planning.  

This section discusses relevant literature on how return quality can impact three main 

areas in RL: network configuration, procurement decisions and remanufacturing profits. 

The reason these three areas have been specifically chosen is because these are the areas 

where profitability can largely be enhanced with prior information on the quality ratios of 

future returns by means of forecasts. However, due to lack of forecasting models of 

return quality, all the existing academic research resorts to assumptive probability 
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distributions and scenario analysis for their optimization models (Aras et al., (2004); 

Zikopoulos & Tagaras (2007); Panagiotidou et al., (2017)).    

2.2.1 On Strategic Planning 

There is ample research which shows that the uncertainty of the return quality can have 

impact on network design, especially in a multi-period setting. In a reverse supply chain, 

network decisions include location, number and capacity of collection and disassembly 

centers, remanufacturing and recycling facilities. One may ask, how can return quality 

affect these decisions? The answer to this is analogous to the planning of manufacturing 

centers in the forward supply chain where it is common practice to study demand 

forecasts of different zones before selecting facility locations and deciding their capacity. 

Similar to that, in reverse supply chain it is important to forecast how many returned 

products will be arriving at the facility, the zones where they will be arriving from, and 

what kind of reprocessing capacity will be required. The decision-making with regards to 

reprocessing capacity is where the complexity of return quality has a large influence. 

Reprocessing capacity encompasses decisions such as capacity to repair, disassemble, 

remanufacture and parts inventory. In order to exploit economies of scale in a multi-

period setting, the remanufacturers must have enough knowledge of what kind of 

processing the future returns will need so that they can adjust their investments in their 

reprocessing production lines. By providing them with forecasts of return qualities, they 

will have information on what fractions of the returns will be expected to undergo repairs 

or what fraction will need refurbishing and what fraction of the arrival will only be fit for 

recycling. With this knowledge, they can optimize on their investments of facilities and 

equipment capacities as well. Some relevant literature with results that explore the effect 

of uncertainty in quality on strategic planning of the reverse supply chain are discussed in 

this section.   

Zikopoulus and Tagaras (2007) argue that a single-period problem is sufficient in the 

strategic planning of the RLN. However, this is inadequate for OEMs where the lifecycle 

of the product may be too short for example, cellphones. In other electronics where a 

single period can be of ten years or more, this model would be more suitable. In another 

study, Zikopoulus and Tagaras (2015) attempt to study the impact of sorting by quality 
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on the network design, especially the location of the sorting centers in the reverse 

logistics network. Their results suggest that when there is early classification of return 

quality in the reverse logistics network, poor quality does not affect profitability as 

compared to sorting in the later stages. This means that the network design is 

economically competent even if the returns are of very low quality and only fit for 

recycling. This is an important result because usually recycling of mobile electronics 

leads to economic losses (Geyer and Blass, 2010). On the contrary, this study by 

Zikopoulos and Tagaras shows that if the uncertainty of the return quality is reduced in 

the network design stage, then even low quality of returns can be profitable. Thus, it can 

be seen that quality information in the strategic stage is highly useful in profitability of 

network operations. The results of this study can be extrapolated to conclude that the 

earlier the information is collected on the expected quality ratios in network design and 

implementation stage, the more robust the profit margins will be to any future 

uncertainties in quality of returns. 

2.2.2 Procurement Decisions 

In supply chain management, procurement decisions involve lot sizing, frequency of 

delivery and supply selection. In the reverse supply chain, when procuring batches of 

returned products from third-party or informal collectors, the quality ratio of the batch 

plays a crucial part in pricing and procurement decisions, especially if the collection was 

not carried out by the OEM itself. Accurate information of the quality ratios of the batch 

can affect all three decisions of the procurement process. According to Panagiotidou et 

al., (2017), the most efficient practice of dealing with uncertain quality is to “quantify, 

reduce or even eliminate it before making procurement and disposition decisions”. This 

can only be done through forecasting of return quality. However, as per the discussion 

below, all the research that study procurement decisions in reverse logistics do so by 

optimizing against this uncertainty, rather than attempting to quantify or predict it.  

Procurement decisions under uncertain return quality have been addressed in multiple 

works including Robotis et al., (2005), Zikopoulos and Tagaras (2007) and Amin and 

Zhang (2013). A recent study that addresses this issue is by Yang, Ma and Talluri (2018). 

They devise an acquisition decision model with partial random yield information to 
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identify the impact it has on the remanufacturing process. They use robust optimization 

technique to model a remanufacturing system that is unaffected by the lack of prior 

information regarding the return quality of the batch.  

Several studies that acknowledge the importance of uncertainty in quality of returns often 

assume simplifications in their model for convenience.  For example, Robotis et al., 

(2005) assume two distinct return qualities, each sourced exclusively from a separate 

supplier with no correlation. Zikopoulus and Tagaras (2007) also assume two quality 

grades: refurbishable and non refurbishable. They upgrade the above mentioned model by 

assuming that the quantity of refurbishables in a batch follow a continuous random 

variable distribution and that there is correlation between the quality of returns collected 

from each of the two separate suppliers. However, they assume that the quality 

distributions of the two sources are already known. The problem with these two 

assumptions is that, if the collection centers are open to the general public with random 

usage behaviors. As such, the quality that accumulates at any given collection center is 

extremely heterogeneous. At least in the consumer electronics field, it is error-some to 

assume that the quality from each source is homogenous as assumed by Robotis (2005).  

Other studies that follow a similar concept are by Davey et al., (2005) for printers and 

Debo and Van Wassenhove (2005) for tires. They also optimize network under the 

assumption that each collection location will give them one consistent type of quality 

grade. 

The frequency of procurement as well as the lot size decisions of returned products is 

linked to the return quality. While Ferrer (1997) highlights the impact of uncertain quality 

on the timing of procurement, Panagiotidou et al., (2017) devise a model for the optimal 

lot sizing decisions of returned cores under the effect of return quality uncertainty. More 

specifically, in their model, they examine the procurement and production decisions in a 

hybrid system that exploits usage data to assess the quality condition of returned units. 

Under the assumption that both demand and returns quality are stochastic, they model 

two alternatives regarding the timing of new-products lot size determination relative to 

the actual returns quality realization (Panagiotidou et al., 2017). From the results of this 

study, it is seen that the acquisition policy can vary based on the quality ratio of the 

https://www-sciencedirect-com.ledproxy2.uwindsor.ca/science/article/pii/S0377221706010587#bib2
https://www-sciencedirect-com.ledproxy2.uwindsor.ca/science/article/pii/S0377221706010587#bib4
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returned batches. Based on the remanufacturability ratio of the batches available, and the 

production capacity of the OEM’s remanufacturing line, the OEM can make tactical 

decisions relating to economic order quantity to maximize throughput at reduced cost. It 

must be pointed out that the stochastic distribution for return quality used by the authors 

is based on expert opinion, a practice which is unreliable for the consumer electronics 

industry due to unpredictable and rapidly changing consumer trends.  

On the same subject of procurement under quality uncertainty, Aras et al., (2004) show 

that incorporation of returned product quality in the remanufacturing and disposal 

decisions can directly have significant impact on cost savings. Further, the results of their 

study suggest that prioritizing higher quality returns in remanufacturing is a better policy 

because the revenue generation from the sales of these remanufactured products will be 

higher. This emphasizes on the need for the OEMs to know, with reasonable accuracy, 

the quality ratios of the batches before they purchase them.  

In relation to the acquisition price of used products, Denizel, Ferguson and Souza (2010) 

state that “any unused cores may be salvaged at a value that increases with their quality 

level”. This can be extrapolated to mean that if the quality ratio of the cores is higher, 

they can be allowed to be sold at a higher price. Bakal and Akcali (2006) also studied the 

impact of random quality in remanufacturing on pricing decisions in reverse supply 

chains. A batch of returns is always a mix of used products of all quality grades. While 

making procurement decisions, it would be in the best interest of the OEM to know if the 

price they are paying for a batch is worthwhile for them and will generate sufficient 

revenue to at least cover the acquisition price. Accurate pricing of these batches is only 

possible if the information on their return quality of the products is known before the 

purchase is made. While it is possible to test and grade each and every unit in the batch to 

find the quality ratio, this is a time-consuming and expensive method. Thus, it can be 

seen that accurate information on quality ratios is needed for accurate pricing of returned 

batches.  

Another interesting issue with procurement decisions is that the acquisition policy that an 

OEM adopts will change based on the lifecycle stage of the product. In other words, the 

quality ratio of batches that firm seeks to acquire will depend on the secondary market 
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value for that particular product. An illustration of this concept can be through the 

smartphone market. In the early stages of a smartphones release, there is higher demand 

for remanufactured versions of the product as compared to the demand in the declining 

stages of the phones lifecycle. Based on the demand, the revenues for the remanufactured 

product will be much higher in the early stages than in the decline stages. Therefore, a 

firm may find it justified to pay a higher price for a batch with a high quality of returns in 

the early stages because the profits are higher. In the declining stages of the product 

cycle, the firm may rather procure batches with lower quality grades as those will cost 

cheaper. In the declining stage, it will make no sense for the firm to buy batches of high 

quality returns when there is no longer any avenue for the sale of the remanufactured 

product. Thus it can be seen that the acquisition policy of returned batches will vary 

based on the life cycle of the product. This concept is covered in literature by Ostlin et 

al., (2009).  

Yang, Ma and Talluri (2018) propose a low-cost and high-reliability approach that can 

assist remanufacturers in making effective acquisition decisions when a small sample size 

is provided. However, sampling is still necessary in this case and must be postponed until 

the collection of the batch. In a multi-period setting with dynamic consumer trends, this 

practice does not provide any benefit for advanced tactical planning because the historical 

data becomes irrelevant with changing consumer behavior.  

Any decisions of procurement, as discussed above, will directly be linked to the 

profitability of the recovery processes that follow the acquisition. The next sub-section 

discusses literature that highlights the impact of uncertainty of quality on 

remanufacturing profits.  

2.2.3 On Remanufacturing Profits 

Two of the main characteristics that differentiate remanufacturing from new product 

production are uncertainty in the number of returned products and uncertainty in 

the quality of the returns (Denizel, Ferguson and Souza, 2010).Since cores are collected 

from various sources, such as customer returns and cancelled orders, demonstration and 

trial units, overstocks, products damaged during shipping, and lease returns, the quality of 

acquirable cores is highly variable, which impacts the design and cost savings of 
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remanufacturing processes (Yang, Ma and Talluri, 2018). The logic behind varying 

remanufacturing costs is that different quality of returns will require different processing 

times and resources. The lower the quality, the higher the remanufacturing costs, which 

means lower profit margins. One of the earlier research work that address profitability of 

reuse operations under uncertain quality is by Zikopoulus and Tagaras (2007). They 

study lot-sizing decisions and the optimal number of returns that must be remanufactured 

for a single-period case.  

In addition to remanufacturing costs, inherent high uncertainty and variability of 

acquirable cores, hinders effective production planning and efficient control of 

remanufacturing systems as well (Guide and Jayaraman, 2000; Guide and Van 

Wassenhove, 2001). Inefficient planning can have a direct impact on the throughput and 

profitability of the production line. Unlike the forward supply chain where cycle time for 

the production of each unit remains constant, the cycle time in reprocessing of units 

varies depending on the level of repairs required for each unit. This uncertainty hinders 

effective production planning and foresight of throughput. Especially in the electronics 

field where the price of remanufactured products is highly sensitive to time and untimely 

delivery to secondary markets can incur penalty costs, the uncertainty in return quality 

plays a major part in dictating profitability. This area can greatly be optimized with 

forecasts of return quality.   

This issue of optimizing production planning under different and uncertain quality levels, 

has also been studied by (Denizel, Ferguson and Souza, 2010). They identify the issue 

that some cores will need more production capacity to restore the unit to standard quality 

than others. This will affect remanufacturing profits- a batch with much lower quality 

will yield higher labour costs. In a period where demand may not be high enough or the 

product value is not favourable, the revenues may not be able to offset the high 

remanufacturing costs. For this reason, confidence in return quality before acquisition can 

be considered as a significant player in ensuring profit margins. 

Uncertainty of the quality of returned products translates into high variabilities in 

remanufacturing costs and lead times which can be disruptive to the production line and 

impact throughput efficiency and production costs. To this end, Aras et al., (2004) study 
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how inventory management and how cost savings of hybrid remanufacturing systems can 

be maximized under the impact of the uncertainty of return quality.  

In remanufacturing, the final state of all products is reset to the same standard, and is 

independent of the quality level of the cores that they originated from (Ferguson et al., 

2009). The revenue from all remanufactured products will be the same, regardless of 

what the input quality of the core was. However, the cost to remanufacture them will 

directly depend on the quality of the core. The worse the quality of the core, the higher 

the remanufacturing cost. In order to maximize the remanufacturing profit, the company 

must make an effort to acquire cores of higher quality. This can only be done through an 

accurate estimation of return quality through forecasts.  

Liao, Deng and Shen (2018) further contribute to the research on quality-dependent 

remanufacturing costs by formulating a functional relationship between a continuous 

quality condition distribution and unit remanufacturing cost based on discrete data and 

substituted it into the profit equation for further optimization analysis. 

As can be seen from the above discussion, the return quality spectrum affects many 

strategic and tactical decisions in reverse supply chain management. The research 

available today uses return quality distributions based on expert opinions or historical 

data. While these sources can be a reliable source for equipment and electronics with 

stable life-cycles and predicted usage behaviors such as household goods, construction 

machinery, automobiles etc., they are hardly reliable for fast moving consumer 

electronics such as mobile electronics. The primary reason for this is the spontaneity in 

the consumer purchase and return behavior as well as the differences in usage behavior of 

each consumer. For reverse supply chains of these industries, there has been no academic 

work that seeks to address how the uncertainty in return quality can be addressed. One 

might argue that the quality data can be obtained from inspection and testing of the 

returned products. While this practice helps in operational decisions, it does not help in 

advanced managerial decisions that are required for design and implementation of the 

network in the first place. To enable these, return quality forecasts are a crucial tool.   
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2.3 Methods of Forecasting Return Quality in Present Literature 

On the value of prior information of return quality, many companies have implemented 

tailored techniques that can provide them with historical data in lieu of return quality 

forecasts. These techniques can be classified into two broad categories: sorting data and 

usage data.  

2.3.1 Historical Sorting Data as Predictor of Quality 

Sorting data is basically the historical record of how many returned units were assigned 

to reuse, refurbish or recycling. Based on these records, the companies can generate 

trends or estimate quality ratios, which can help them predict the future quality of returns. 

This method is a time dependent method because, in order to generate reliable quality 

trends, the companies will have to collect data over many periods. An additional 

drawback of this method is that, any change in consumer behaviours will create a ripple 

effect in the characteristics of the returned products. This will deem a historical data 

irrelevant. For this reason, the sorting method is limited to products that will not show 

alternating trends in consumer purchasing, usage and return behaviour over multiple 

periods. Only in such a case would it be worthwhile to generate return quality forecasts 

based on historical data.   

In addition to that sorting criteria changes with time based on changing life cycle of 

product, user perception and marketing value. For example, ReCellular relies on its 

suppliers of used products to classify returned cell phones in different quality categories 

based on a number of technical and visual criteria. While the technical and visual criteria 

will remain the same over time, the market value of the product, which plays a key role in 

the recovery decision (and hence the quality grade), will not remain the same. Thus, the 

overall sorting criteria will change. So even though the historical data from sorting can be 

used to establish expert ratios, it cannot help in long term multi-period planning where 

the decision factors influencing quality grades are themselves constantly changing. 

Therefore, sorting data cannot help in reliable quality forecasts in dynamic products. 

2.3.2 Data-Driven Predictors of Return Quality 

One of the most common methods of data-driven usage monitoring is through installing 

electronic data loggers, sensors or RFID into an electronic system. Once a consumer 
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returns the product, the usage data generated from these components is read to categorize 

the residual quality returned product. This method is widely practiced in many industries 

including Hewlett-Packard for computers and Bosch for power-tools. Simon et al., (2001) 

recorded the full life histories of washing machines using a life cycle data acquisition 

(LCDA) system. Guide et al., (2008) proposed a two-step disposition policy based on 

‘data from US Navy depots, under the command of Naval Industrial Capabilities 

NAVAIR 4.0D’. Mashhadi and Behdad (2017) reported that the remanufacturer ‘records 

the return date for each computer and retrieves the Self-Monitoring Analysis and 

Reporting Technology data of the hard drives’ which can help in calculation of the 

reusability level of the hard disk drives. 

To same effect, RFID technology has also found an application in determining quality of 

used products. For example, Kim and Glock (2014) examine the benefits of RFID-tagged 

returnable containers in order to reduce uncertainty in timing of returns. Several 

publications consider the implementation of RFID in reverse logistics for improving the 

visibility of returns quality (Asif, 2011).  

Drawbacks of data-driven systems  

1. Firstly, it must be remembered that the usage data can only be read after a device 

is returned. Thus, while the usage monitoring system reduces the time of physical 

sorting and testing, it does not provide any assistance in strategic planning of the 

reverse supply chain unless large amounts of data are collected which is similar to 

the issue discussed earlier with regards to sorting-based quality estimates. On the 

same note, Meng et al., (2017) use condition monitoring data to create a 

distribution of remaining useful life in the planning of component recovery.  

2. The infrastructure needed for data-driven methods may be too expensive for 

remanufacturers. From the cost of the extra sensory components, the equipment 

required to read the data from the sensors to the large data processing and storage 

that maybe required for meaningful usage of historical data to generate quality 

forecasts, the costs of such a method may not be justified, especially if the life 

span of the product is short.  

https://www-sciencedirect-com.ledproxy2.uwindsor.ca/science/article/pii/S037722171630683X#bib0014
https://www-sciencedirect-com.ledproxy2.uwindsor.ca/science/article/pii/S037722171630683X#bib0002
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3. For short life-cycle products, it is redundant to spend resources on life-cycle and 

usage data collection. 

4. The usage data cannot be the sole parameter in forecasting the return quality. It 

fails to take into account the market demand, economic trends and the 

profitability. Ultimately, it must be used in conjunction with other parameters. 

This inaccuracy of employing usage data to ascertain true quality of the product is 

defined as “rather loose” by Panagiotidou et al., (2017). 

5. In order to generate meaningful forecast trends of return quality, storage of large 

amounts of life time data from a large number of users is needed. This can 

provide a huge economic strain. 

From the above discussion it is seen that for short life-cycle electronics, there must be a 

faster way to generate quality forecasts which are flexible enough to factor in not only 

usage data, but also market trends and economic viability of the various recovery options. 

Such forecast models are lacking in present literature. Two studies that come very close 

to devising such forecasts models are by Sabagghi et al., (2015) for the case of laptop 

batteries, Mashhadi and Behdad (2017) for hard disk drives and Liang et al., (2014) for 

the remanufacturing of electric vehicle batteries. These studies effectively use empirical 

usage data based on aggregate consumer behavior to predict return quality.   

2.3.3 Empirical Data Models 

The reusability model devised by Mashhadi and Behdad (2017) uses empirical laptop 

usage data from a sample population of students from a school which is used to generate 

probability distributions for the remaining useful life of the batteries. This data is then 

used with the exponential reliability distribution of the batteries and a linear cost model 

for remanufacturing to calculate the expected profits from three possible recovery 

options: refurbishing, remanufacturing and recycling. A similar reusability model is 

developed by the authors in which empirical usage data of hard disk drive is used in 

conjunction with remaining useful life and economic value to generate a reusability index 

value. The reusability index value of all the returned products is then used in K-means 

clustering to find out the total number of returns assigned to each recovery option.  
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Another study that successfully incorporates empirical data on consumer usage with 

economic trends to predict return quality is by Liang et al., (2014) for the case of lithium 

batteries in electric vehicles. They model consumer usage based on historical data and 

model consumer return behaviour using inverse Gaussian distribution to create a joint 

probability distribution for the remaining useful life of the battery. By coupling this with 

the time-dependent economic viability of the remanufacturing process, they formulate a 

distribution for the return quality of vehicle batteries.  

One commonality in the studies by Sabaghhi et al., (2015), Mashhadi and Behdad (2017) 

and Liang et al., (2014) is that their choice of product is one with a reliable and stable 

usage pattern. Both laptop computers and automobiles also have long life-cycles and 

relatively stable and predictable market trends as compared to the volatility of the mobile 

phone market. The consumer behaviour in the laptop and automobile industry is less 

spontaneous because these are expensive purchases and people are not likely to buy or 

replace them within a few months. New product launches, feature upgrades, or marketing 

strategies do not incite consumers to replace their cars or laptops as easily as 

smartphones. The vulnerability of the smartphone consumerism creates a challenge in 

predicting consumer usage and hence, predicting return quality.     

Since this research seeks to establish return quality as a dependent variable of socio-

economic factors, the next section discusses literature that has previously taken these 

factors into account for modeling of consumer behaviour.  

2.4 Consumer Behaviour and Socioeconomic Factors 

This section discusses relevant literature which has demonstrated a correlation between 

socioeconomic factors and the recycling and smartphone usage behaviours of a particular 

region.  

2.4.1 Reverse Logistics Context 

This section discusses literature that involves socioeconomic factors in studying 

consumer behavior in commercial returns, recycling in general, and recycling WEEE.  
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Socioeconomic factors used to study commercial returns  

Pei (2015) studies the consumers’ motivation behind commercial returns. He classifies 

commercial returns into two categories: legitimate returns and illegitimate returns. 

Legitimate returns are defined as returns with valid reasons such as product defects, 

product not meeting expectations or any other valid reason. Illegitimate returns are 

defined as buyers’ remorse, unethical returns after short term usage, or other 

opportunistic return reasons. Pei makes an effort to study the trends in legitimate and 

illegitimate return behaviours by grouping the participants in his study based on their age, 

gender, income, education and race.  

His results suggest that age is a positive influencer, meaning that as people get older they are 

more likely to exhibit legitimate return behavior as opposed to illegitimate returns. As age 

increases, older consumers have higher expectations for the products than do younger 

consumers, thus they are more likely to make legitimate returns. Similarly, gender plays a 

part as well as it was found that women are more likely to behave legitimately than men. 

Income and education was also a strong influencer. Consumers with higher incomes are more 

likely to return the product, legitimately and opportunistically. Additionally, people with 

higher education levels were found to indulge lesser in illegitimate returns. Thus, Pei (2015) 

concluded in his thesis that socioeconomic factors are a valid determinant of commercial 

returns.  

Socioeconomic factors used to study recycling rates  

In her report to the Waste Diversion Committee in Ontario, Brock (2012) studies the impact 

of socioeconomic factors of the different municipalities in Ontario, and the subsequent 

recycling rates of these regions. She uses recycling tonnage report published by Waste 

Diversion Ontario (WDO) in 2006 based on the collections from the 196 municipalities in 

Ontario.Specific socioeconomic factors that were considered in this study include: the 

percentage of rented households in the municipality, the percentage of individuals who hold a 

university degree, population density and the region in which the municipality is located. The 

main contribution of this study was that among all the factors considered, the education level 

of a society was a very strong variable in determining recycling behavior the rate of waste 

diversion of a specific region.   
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Socioeconomic factors used to forecast WEEE returns in RLN 

Similar results that show strong relation between education and recycling participation were 

found through a pilot mobile collection program in Malaysia by Hanafi et al., (2013). In their 

study, mobile collection booths were set up in a university and two office buildings. Their 

study found that educational level of the participant, their awareness of the benefits of the 

program as well as the level of corporate involvement shown by their employer were all 

positive influencers of a person’s willingness to recycle their electronics.  Thus, both studies 

by Pei (2015) and Hanafi et al., (2013) suggest that educational level is a strong input 

variable to judge recycling behaviours.   

In a prior study by Hanafi (2008) in the context of Australia, socioeconomic factors 

particularly age, income, population density and education level, have been successfully 

used as input variables to forecast the return quantities of mobile phones. The proposed 

fuzzy model was trained based on prior collections from all the cities in Australia, and 

they tested against another set of data. The mean square error of the results was found to 

be less that 20%. Another similar study by Temur and Bolat (2014) uses the same socio-

economic factors in a fuzzy expert system to create a forecast model for the expected 

return quantities from unknown cities by training the fuzzy system based on a data set of 

known cities in Turkey. A prior study by Ugurlu (2012) proposed a multiple linear 

regression model with socio-economic factors as input variables to predict the return rate 

of white goods in Turkey. Thus, these three studies corroborate the relevance of using 

socio-economic factors to study consumer behaviour, particularly return quantities of 

electronics, in reverse logistics.  However, there is no present literature on how 

socioeconomic factors can be used in reverse logistics to create similar forecasts for 

return quality.  

This study proposes such a socioeconomic forecast for return quality by exploiting the 

link between return quality and product usage. Since return quality is predetermined by 

product usage, it would be necessary to study the usage behaviour patterns of the public. 

This can easily be done on an aggregate level if the consumers are categorized by 

socioeconomic factors, and their usage behaviours are studied.  



 

34 

 

The next section validates the logic behind formulating usage behaviours based on 

socioeconomic factors by presenting relevant publications.  

2.4.2 Smartphone Usage Behaviour Context  

A study by Pew Internet Research (2004) on the effect of demographic factors on length 

of internet usage per day establishes that there is indeed a strong correlation between the 

two. They found that, in addition to age, regional differences have a large influence on 

the total time that users spend browsing the internet.  On the note that previous literature 

proposed as a general concept that young Internet users tended to use the Internet as a 

communications device whereas older (30 and up) tended to use the Internet as a device 

for information retrieval, this study attempted to gauge if the purpose of usage was 

reflected in the number of hours spent on the internet. To this end, it was found that older 

individuals — as defined by 30–49 years of age did in fact have a statistically significant 

difference in usage of the Internet. Moreover, the younger group used the Internet only 

about 25 percent of the time whereas the older group used it about 50 percent of the time.  

A study was conducted by University of California Los Angeles in collaboration with 

Microsoft which correlates smartphone usage based on different consumer groups to model 

rate of energy drainage and use the data for resource optimization (Falaki et al., 2010). The 

main segmentation in this study that was driven by socio-economic factors was occupation 

namely student vs. knowledge worker. Three metrics that were used to measure smartphone 

usage of the different users are: session lengths, inter-arrival time between sessions, and 

application popularity. The results of this study found that, while the statistical models for 

usage were common across users they were governed by different parameter values 

depending on the characteristics of the user group.  

In a similar light, Biljon and Kotze (2008) Studied the impact of cultural background on 

mobile phone usage and adoption. They categorized the participants in their study by two 

factors: age and ethnic group. Through the results of this study it was found that there is a 

distinct difference in the usage of mobiles between people above 30, and people below 30. 

This difference is strongly motivated by the fact that people below 30 use mobiles diligently 

for communication where as people above 30 do not solely rely on mobile phones for 
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communication. Thus, this study corroborates a dependence of mobile usage on the users’ 

age.  

2.4.4 Conclusion: Applicability of Socioeconomic factors in this study 

From the above section of the literature review, it has been established that 

socioeconomic factors not only affect consumers’ participation in reverse logistics 

activities, but are also a strong indicator of product usage patterns.  

Combining this information forms the rationale that socioeconomic factors can be used 

successfully to determine the usage of mobile phones, which can then be used to predict 

their return quality when these phones are returned into the reverse logistics stream. The 

proposed forecast model for return quality is developed on the basis of this logic.  

2.5 Thesis Contribution 

From the discussion so far, specific issues have been identified as missing from the RL 

literature which this thesis aims to resolve.  

2.5.1 Gap in Literature 

The following issues have been identified as missing from the RL literature 

1. There is no cost-effective and stand-a-lone tool to simulate usage data of the 

population. Present practices of using historical data or condition monitoring to 

generate usage behavior take a lot of time and require extensive infrastructure 

which may not be justified for short life-cycle electronics. 

2. There is no forecast model that predicts usage-dependent end-of-use quality for 

mobile devices based on socio-economic factors. 

3.  Present literature uses fixed probability distributions, regardless of the 

characteristics of each consumer and zone for modeling return quality. This issue 

of trying to have different probability distributions based on the unique socio-

economic profile of different zones has not been used to forecast return quality.  

4. The probability distributions for quality used in literature are inadequate because 

they fail to incorporate the multi-dimensional factors that affect recovery 

decisions. This issue has only been addressed by Liang et al., (2014) for the case 

of batteries.  
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2.5.2 Thesis Contribution 

The gaps in literature helped develop the research objectives that have been outlined in 

Section 1.3 Research Objective and Expected Contribution.  

The main contribution of this thesis will be a socioeconomic forecast model for return 

quality that can add value of information and reduce uncertainty of quality in the 

planning and execution of a reverse logistics networks. By using aggregate consumer 

behaviour based on socioeconomic factors to formulate usage distributions, the model 

will prove to be an inexpensive tool that can provide quick results, as compared to 

existing data-driven methods of generating return quality data. Additionally, the 

superposition of economic trends with the usage model will increase the relevance and 

applicability of the model.  

2.6 Background on Methodology/Techniques used in the Model 

This section elaborates on the techniques that will be employed in the formulation of the 

forecast model that will be presented in this thesis. The main idea is to create an 

aggregate forecast model for return quality using socio-economic factors as input 

variables. Monte Carlo Simulation will be used to create a population scenario. The 

forecast model will then be applied to the population scenario to generate meaningful 

results.  

2.6.1 Aggregate Forecast Models 

In order to sustain a competitive edge, successful companies are always planning ahead. 

Aggregate forecasts models of future trends play a crucial part in allowing them to do so.  

In conventional forward supply chains, aggregate forecasts usually include demand for 

the company's products over a long period of time. Exceptional forecasts will be 

comprehensive of impact of the companies’ own marketing strategies on their demand as 

well the impact of their competitors’ activities. Factors that enable these forecasts include 

backorders, marketing information, seasonal trends and pricing strategies. Additionally, 

the company needs to factor in the impact that future innovations in its industry could 

have on its products. All of these factors come under aggregate demand forecasts. 
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In forward supply chain, aggregate forecasting has widespread applications. The 

mathematical technique has also been applied in reverse logistics to predict the forecasts 

of the volumes of returned products from different cities. Hanafi (2008) devises a fuzzy-

based aggregate forecast based on socioeconomic factors to predict the quantity of mobile 

returns from different cities in Australia. Temur and Bolat (2014) use fuzzy expert 

systems to predict return quantities of electronics on an aggregate level from the cities in 

Turkey. Similary, Ugurlu (2012) used SAA method to forecast city-based collections of 

household appliance wastes in Turkey.  

Thus, aggregate forecasting has been established as a useful technique in regional based 

forecasting. This thesis uses aggregate forecasting to predict return quality of mobile 

electronics from different regions. The population samples from each region are modeled 

using Monte Carlo methods.     

2.6.2 Monte Carlo Simulations 

Monte Carlo simulations are computation methods that use repeated random sampling in 

order to obtain final results (Liang et al., 2014). In order to deal with uncertainties, it is 

necessary to resort to stochastic programming techniques. Usually in stochastic 

programming, it is necessary to create a scenario based on known probability 

distributions of the events that are being modeled. A scenario is a plausible occurrence of 

events in a system. One way of generating scenarios is using Monte Carlo Simulations.  

Monte Carlo Methods can be used to generate samples of a given number of equiprobable 

and independent events. The scenarios are created using known probability distributions 

of the concerned parameters. The reliability of the results of a Monte Carlo simulation are 

limited by the accuracy of the probability distributions that are used in the scenario 

generation.   

In relation to management of risk and uncertainty in supply chain management, many 

published works have used Monte Carlo simulations as a reliable means of scenario 

modeling. Some recent examples include Heidary and Aghaie (2018) who use is it in a 

simulation-optimization case of the newsvendor problem, Mangla et al., (2014) use it to 

model risks in the operation of green supply chains, Liang et al., (2014) use Monte Carlo 
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for forecasting quality of lithium batteries in remanufacturing, and Schaefer et al., (2019) 

who use a hybrid Monte Carlo method with Analytical Hierarchy Process (AHP) to 

model water risks in supply chains. 
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CHAPTER 3  

MATHEMATICAL MODELS 

3.1 Model Description/Metrics for Recovery Decisions  

Recovery decision depends on the quality of the returned product, the costs of the 

recovery operations and the profit that each of the recovery operations are expected to 

generate based on market demand. It is necessary to make quality-driven decisions to 

achieve effective and efficient recovery. It is even more crucial to have information on 

prior forecasts of the expected ratios for each recovery process.  In order to make 

forecasts of return quality, the same factors that affect recovery decisions must be used to 

predict what quality of returns will arrive.  

The proposed forecast model addresses the issue of quality grading by incorporating three 

major factors listed below: 

1. Quality of the used product 

2. Cost of recovery operations 

3. Economic value of the product and its parts  

These factors have been explained in further detail below. 

Firstly, the quality of the used product will depend on the intensity of usage. While each 

customer uses their device in unique ways, there is sufficient literature to establish that 

fact that general usage trends can be deduced based on clustering of consumers by their 

socioeconomic factors. The forecast model devised in this research categorizes product 

returns based on the socio-economic factors governing the consumer base. By analyzing 

the differences in product usage patterns, purchase and recycling behaviours based on the 

age, income, education of a consumer, this model attempts to forecast what the quality of 

their returned product might be.  

The second factor is the cost of recovery. The level of usage, and hence product wear and 

tear, will automatically dictate the cost of the recovery operations. Products with heavy 

usage, and thus more wear, will have a higher probability of component failure and bad 

cosmetic conditions than products with lower usage. This impact of usage on recovery 
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costs has been mentioned diligently in literature as one of the primary variables in reverse 

logistics process (Geyer et al., 2007; Zikopoulos and Tagaras, 2007; Panagiotidou et al., 

2017). The recovery costs will also be affected by the costs of replacement parts, which 

in turn will change in time. Since the recovery costs vary per individual unit with time, 

the profitability will also vary in every period. Therefore, pros and cons of all recovery 

options must be weighed before a recovery decision is predicted.   

This leads us to the third factor which is economic trends. The repair cost is not the only 

factor that determines profitability. In fact, the time-dependent market pricing and 

demand for the product also contribute to the profitability. Therefore, it is important to 

formulate time-dependent economic value of products in order to calculate expected 

profits from recovery operations accurately.  For this reason, this model also takes into 

account various economic trends that can impact the profitability of recovery decisions. 

The variations in the selling price of refurbished goods with time determine the 

profitability of remanufacturing decisions. Market value is influenced by many factors 

including new releases, technological age, popularity of a model, and marketing 

strategies of both new and remanufactured products. In recent times, part harvesting is 

gaining momentum in the smartphone industry. For some smartphone models, the market 

demand for its components may outlive the demand for that whole product. To enhance 

the practical relevance of the forecast model, economic trends of used parts have also 

been taken into account. 

Figure 1 aptly summarizes how the two factors mentioned above, cost of recovery and 

market value, change with the usage level and the life cycle stage of the product. 

 

Figure 1 Quality-dependent costs of recovery. Adapted from Ostlin et al., (2009) 
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Figure 2 in the next section attempts to illustrate the above description of the dynamics at 

play when deciding profit-based recovery decisions for used electronics.   

3.1.1 Schematic for Influencers of Recovery Decisions 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Socioeconomic Usage Model 

In their book, Pochampally et al., (2008) mention that product wear and end quality can 

be estimated from consumer specificities amongst other things like date of marketing, 

environment of use and sensors and gauges.  

Following that logic, in this study it is assumed that return quality of end-of-use mobile 

devices can also be gauged by consumer specific demographic data. The logic behind is 

that much of the usage behaviours of a consumer’s device is governed by their social 

factors like their age, income and social status. In addition to the daily usage, the rate at 

Quality/ Functional Status (u) 

of: 

 Whole Product 

 Components  

Profits 

(u,t) 

Revenue 

(u,t) 

Technological 

 Age (t) 

Market Demand 

(t) 

Key: Factor Dependent on  

(u)= usage  

(t)= time 

(u,t)= usage and time 

Figure 2 Interplay of factors that affect recovery decisions in 

RLN 
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which consumers replace their devices, and how they choose to dispose their devices is 

also determined by these factors. A report by CWTA (2016) clearly defines these 

differences in behaviour. In addition, according to a research published by Pews Internet 

Research (2016), there is statistical correlation between the internet usage of the 

population based on these social factors.  

Since the usage of a device varies based on consumer attributes, an attempt is made to 

characterize returned products based on the socioeconomic factors that govern consumer 

behaviours on an attribute level. This section contains a description of how relevant 

socioeconomic factors have been selected for calculating smartphone usage in particular. 

Then, a model is developed for usage distributions based on the selected factors. This 

usage model will be used as a tool to forecast the functional quality, in other words 

survival probability, of the expected end-of-use returns. 

3.2.1 Factor Selection using Statistical Methods 

The following sections describe how age, income, education level and region influence 

the number of hours a consumer spends on their mobile device daily

Based on relevant literature, the socioeconomic factors that tend to affect the behaviour 

of consumers in the realm of internet usage are: age, income status, type of occupation, 

gender, geographical location and educational level.  

In order to find which of these have high statistical significance on a user’s daily device 

usage, a chi square test of association with an alpha level of 5% has been performed. The 

data used in the analysis was gathered from a survey conducted by Forum Research Poll 

in January 2018 in Canada. The data was collected through telephonic and online polls. 

The survey asked members of the population questions pertaining to their age, income 

group, highest level of education, gender, province of residence and how many hours 

they spend on their smartphones on a daily basis. The results of the survey were 

published in a two-way table for each factor separately, in which the columns represented 

the different groups of each factor, and the rows represented intervals of daily hours of 

usage, ranging from 0 to 5 hours per day. The age groups used in the study were from 18-

34, 35-44, 45-54, 55-63 and 64+. Similarly, the household income groups used in the 
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study were: <$20K, $20K-$40K, $40K-$80K, $80K-$100K, $100K-$250K and $250K+. 

The education levels used in the study ranged from below secondary schooling all the 

way to post graduate studies. The permissions for the use of the data published by the 

Forum survey in this can be found in Appendix B. 

Below, is an illustration of the hypothesis setup for the chi-square tests followed by 

tabulated results. This test for independence was carried on the survey data using Minitab 

18® with a significant level of 95%. The full results obtained from the software can be 

found in Appendix C.  

Results Conclusions from Statistical Analysis 

Through the above statistical analysis in this research, it has been proven that the main 

socio-economic factors that influence the daily hours spent on smartphones by an 

individual are age and income. All other factors namely gender, region of location and 

education have not shown statistical correlation with daily usage. This is because the p-

value for age and income was found to be 0.000 and 0.001, which is significantly less 

than the alpha value of 0.05. Therefore, the null hypothesis is rejected and it is concluded 

that daily usage of smartphones is not independent of age and income. The p-value for 

all other factors is greater than the alpha value, therefore the null hypothesis for these 

factors is accepted.   

Chi-Square Test of Independence 

H0: Age and daily usage are independent 

Ha: Age and daily usage are not independent 

α = 5% 

If p-value< 0.05, reject null hypothesis 
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Table 1 Hypothesis testing results for association between socioeconomic factors and 

daily usage 

 Category Null Hypothesis Chi 

Score 

P-

Value 

Result 

 

AGE 

18 to 65+ Age and daily usage are 

independent 

75.066 0.000 Rejected 

55 to 65, 

65+ 

Age and daily usage after 

55 are independent 

3.259 0.353 Accepted 

 

INCOME 

<$20K to 

$80K 

Income and daily usage 

are independent 

38.080 0.001 Rejected 

$80K to 

$100K+ 

Income and daily usage 

after $80K are 

independent 

1.931 0.587 Accepted 

 

EDUCATION 

High 

school to 

Post grad 

Education and daily usage 

are independent 

11.373 0.251 Accepted 

GENDER Male or 

Female 

Gender and daily usage 

are independent 

1.593 0.661 Accepted 

 

 

REGION/ 

PROVINCE 

Atlantic, 

ON, BC 

and MB 

Geographic location and 

daily usage are 

independent 

11.813 0.224 Accepted 

Atlantic & 

ON 

Provincial region and 

daily usage are 

independent 

6.771 0.080 Accepted 

ON & MB Provincial region and 

daily usage are 

independent 

5.058 0.168 Accepted 

 

 

Intergroup-Correlation 

The chi-test square test of independence was also carried out between two consecutive 

groups under the same factor. Based on these results, it was found that all age groups are 

characterized by statistically distinct distributions except for the two age groups 55-64 

and 65+. The p-value of this test was found to be 0.353, which is larger than the alpha 

value of 0.05. This means that the members of these two age groups have statistically 

similar daily usage distributions. The conclusion of this test is that, after the age of 55 
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years, the daily usage becomes independent of age. Therefore, in the usage model 

developed in this study, one single usage distribution will be used to represent mobile 

users of both age groups.       

 In addition to that, similar analysis was performed for the income groups. The results of 

these tests suggest that the two income groups of $100K-$250K and $250K+ have similar 

daily device usage behaviours. The p-value for this test was 0.587 which is larger than 

0.05. Thus it was concluded that after the $80K income bracket, daily device usage 

becomes independent of income status. 

Going forward in this research, this section has established that the two dominant 

socioeconomic factors that affect smartphone usage, and hence the return quality, are age 

and income.  

In the next section, the usage distributions for each age group and income group will be 

shown.   

3.2.2 Usage Distribution Based on Age  

The following distributions show the smartphone usage behavior of people from different 

age groups. The graphs from Figure 3 to Figure 5 show the probability distributions for 

18-35, 35-54 and above 55 years of age. Since the age groups 55-64 and 65+ have similar 

usage distributions, they have been superimposed on a single histogram, clearly showing 

an overlap of more than 90% See Figure 5. This further signifies the argument that daily 

usage becomes independent of age after 55 years.   

For the age group 18-34, the daily usage hours have been modeled as normal instead of 

uniform distribution. This is because using the uniform distribution leads to equal usage 

probabilities for up to 24 hours a day. This is inaccurate as the probability of using a 

phone for 24 hours cannot be the same as the probability of using it for 5 hours a day, 

which is more likely for the given age group. This introduces anomalies in the results of 

the forecast model that deviate from an accurate representation of return quality ratios.   
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Figure 3 Daily usage for Age 18-34 

 

Figure 4 Daily usage for Age 35-44 
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Figure 5 Daily Usage for Age 45-54 

Length of Ownership versus Age 

The distributions below show the probability distribution of length of usage of one device 

with respect to time. In other words, the distributions below depict the length of time a 

user will hold on to their device before returning it. According to the data collected, it has 

been found that the parameters of these distributions are different depending on the 

concerned age groups. The graphs from Figure 7 to Figure 9 show the probability 

distributions for 18-35, 35-54 and above 55 years of age. The data used in this analysis 

was collected in a survey by Canadian Wireless Telecommunications Association 

through a dual mode telephonic and online survey in Canada in 2017. The permissions to 

use the data from the concerned study can be found in Appendix B. However, reprinting 

of data tables is not possible.  
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Figure 6 Daily usage for ages 55 and above 
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Figure 7 Length of usage for 18-34 

 

Figure 8 Length of usage for ages 35 to 54 
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Figure 9 Length of usage for ages 55 and above 

3.2.3 Usage Distribution Based on Income 

The following distributions show the smartphone usage behaviour of people from 

different income groups.  

 

Figure 10 Daily Usage for income below $20K  
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Figure 11 Daily usage for income $20K to $40K 

 

Figure 12 Daily Usage of income from $40K to $60K 
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Figure 13 Daily usage for income $60K to $80K 

 

Figure 14 Daily usage of income $80K and above 
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3.2.4 Social Factors Selection: Conclusion  

From the hypothesis testing, it is clear that the two main factors that have significant 

impact on daily usage of mobile devices are: age and income. The p-values for these tests 

were 0.00 and 0.001 respectively, both of which are much lower than the alpha value of 

0.05. This strengthens the argument that daily device usage is strongly dependent on age 

and income of its user.  

Although other socio-economic factors such as education level also show variations in 

usage behaviour, their differences do not hold as much significance as age and income. 

Based on the data available in this study, the p-value for these variables were much larger 

than the significance level chosen for this study, thereby validating the null hypothesis. 

Therefore, they shall not be considered for the purpose of this research.  

Going forward in the research, the two main socio-economic factors that will be used in 

the forecast model are age and income distributions of the population.  

3.2.5 Usage Model Formulation 

This research attempts to develop a usage model based on social factors in order to 

determine the total hours that a device has been used at the time of its return. The 

objective of such a model is to predict the functional reliability of the electronic devices. 

To collect the historical quality data effectively, the variable can be represented by 

sensors that record running time of the entire machine lifetime (Simon et al., 2001) 

How is Usage Model defined in this study?  

For the purpose of this study, a usage model is defined as mathematical modelling of how 

many total hours a particular device has been used for at the time of its return. 

Mathematically, the ‘total hours’ is calculated as the product of two input variables: daily 

hours of usage d and total length of ownership t. The usage model can simply be 

represented as: 

𝑇𝑜𝑡𝑎𝑙 ℎ𝑜𝑢𝑟𝑠(𝑢, 𝑡) = 𝑑𝑎𝑖𝑙𝑦 ℎ𝑜𝑢𝑟𝑠 𝑢𝑠𝑎𝑔𝑒 (𝑑) 𝑥 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ𝑠 (𝑡) 𝑥 30
𝑑𝑎𝑦𝑠

𝑚𝑜𝑛𝑡ℎ
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Since the daily hours of usage, d, and the length of ownership t vary across each age 

group, it is obvious that the ‘total hours’ distribution will also be different for each age 

group 

What is the importance of the usage model in this study? 

When determining return quality, the most important factor is the functional status of the 

device (Mashaddi and Behdad, 2017). If the device has been used for longer total hours, 

the probability of having a lower functional status is higher. Conversely, if a product has 

been used for relatively lesser hours, the overall failure probability of the components and 

the product will be higher.  In order to forecast the functional status, or in other words, 

the reliability, of the product, it is crucial to quantify and plot the distribution for total 

usage in hours. Since the total usage profiles are different for each age group, then the 

functional reliability of the returned devices will also be different.  

3.3 Usage-based Reliability Model 

Reliability is the probability that a product achieves the function for which it has been 

designed in a given period of time and in given conditions. To be able to forecast the end 

quality of a used product, before the testing and inspection stage, failure rate and 

reliability calculations can give a good idea of whether a mobile unit will be functional or 

not, thereby playing a part in quality determination (Ostlin et al., 2009). Since reliability 

depends on usage hours, the usage model described in the above section will be used in 

the reliability calculations. Additionally, the reliability of the individual components can 

also be calculated if their failure rate is known. Since the mobile phone is an electronic, 

the modeling of its reliability is more complex than that of mechanical devices. The 

following sections address how the reliability calculations for the whole mobile product 

and the reliability of its individual components have been addressed for the case 

presented in this research.  

3.3.1 Usage-based Product Reliability 

The calculation of an entire product’s reliability is a complex process which requires data 

of the failure rate on each of its constituting components and also information of the 

arrangement of the components- whether they are in series or parallel. Regardless of 
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whether the components of electronic devices are arranged in series or parallel, the 

overall reliability is always limited by the component with the highest failure rate.  

In order to accurately predict the reliability of used phones at the end-of-use stage, it is 

necessary to carry out a systems reliability assessment by mapping out the component 

arrangement inside the cellular phone, and conducting fault mode analysis. However, this 

detailed assessment of reliability falls outside the scope of this study. In order to simplify 

the reliability calculations of smartphones, an attempt has been made to study existing 

literature that can provide close enough estimates for the system reliability of 

smartphones.  

 

 

According to the literature survey on this subject, two studies were found which collect 

field failure data of smartphones, censor the data, and fit the data to parametric 

distributions to find a suitable failure rate distribution for smartphone systems. Two main 

studies that follow this method are by Tiwari and Roy (2013) and Wang and Huang 

(2011). While Tiwari proposes a cox proportional hazard distribution to model the 

survival function of smartphones, Wang et al., have found that lognormal distribution is 

the most appropriate distribution to model failure rate of the smartphones. The solution 

methodology in this research uses the methods defined by Wang and Huang (2011).  

In this study, the field return data was input into Minitab and arbitrary censoring was 

used to calculate the lognormal parameters for the distribution that would estimate the 

failure rate of smartphones. The data set consisted of number of days and number of 

failures in the specified number of days. Data set was collected for a period of 360 days. 

Figure 15 Example of reliability block diagram 
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Table 2 Example of the data table format used to generate failure distribution 

Start End Censored Units Failure Units 

0 30   

31 60   

… ….   

331 360   

 

According to the results, the parameters for the log normal distribution for modeling the 

failure of smartphones was found to have a location of 11.07 and scale of 2.49. The log 

normal plot for the specified parameters is shown in Error! Reference source not 

found.. From this plot, it can be seen that the survival probability gradually decreases as 

the number of days of usage increases. Therefore, this distribution has been used to 

calculate the probability that a phone survives for a given length of time without any type 

of failure.  

 

Figure 16 Product survival function 

3.3.2 Usage-based Component Reliability 

It is crucial to pursue quality-driven decision-making for component recovery because 

quality is a dominant factor for component salvage value and its recoverability (Meng et 

al., 2017). Since quality depends on functional reliability, it is important to calculate 

reliability of the components in advance, to predict which components are more likely to 

fail. This forecast of component quality can help production planners with spare parts 

inventories.  
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One of the main problems with calculating the reliability of electronic components is that 

they follow a random failure pattern. Unlike mechanical components that fail with 

respect to how the product has been used, electronic components usually don’t follow the 

same failure curve (Ostlin et al., 2009). Their model also attempts to calculate marginal 

reusability of components. 

Usually for mechanical components or even lithium batteries, remaining useful life 

(RUL) serves as a useful measure of quality. However, for electronic components present 

in mobile phones such as microphones, speakers, cameras, home buttons or touch 

screens, there is no way to calculate RUL. In this study, it has been assumed that the 

electronic components have a constant failure rate with respect to time or usage. The 

failure probability and reliability of relevant components are then calculated using the 

exponential distribution. This method is used for LCD and battery failure probabilities. 

For components that do not have time-based failure rates, it is not feasible to model their 

failure reliability calculations. For these components, failure probabilities have been 

calculated using the Bernoulli trial method. 

Component selection and failure modes 

Based on a report by Blancco (2017), it was found that some of the most common failure 

reasons which cause customers to return their phones are:  

 Display damage 

 Water damage 

 Home button failure  

 Battery life reduction (capacity and discharge rate) 

Based on these failure reasons, a research was carried out to find what spare parts were 

available in the market, and whether the spare part availability coincided with the most 

common failure reasons. The list of the most common spare parts listed online for sale 

was found to be: 

 LCD screens 

 Home buttons with flex (which includes microphone and speaker) 
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 Volume buttons 

 Back cameras 

 Front Cameras 

 Charging port 

Based on the internet price listing, these components were the ones that sustained the 

highest prices over a long period of time. It was also found that these components have a 

market for both used and brand new parts.   

Calculation of failure probabilities of used components  

In this study, it is assumed that failure rate of components can either be calculated 

through exponential failure probability calculations, or through Bernoulli trial 

probabilities. Specifically, exponential reliability calculations are carried out for batteries 

and LCD modules. For other components namely, home button, charging port, and 

camera, individual failure probabilities from returned batches have been calculated as per 

data in a report from Square Trade (2010). Table 3 summarizes how the failure 

probabilities chosen for each component that has been included in this study. 

Table 3 Failure probabilities for different components 

Component/ 

Damage type 

Symbol Probability taken from: Failure 

Probability 

LCD accident 

damage 

𝜆DROP SquareTrade (2010) and local 

repair shop 

Bernoulli trial 

Water Damage 𝜆W SquareTrade (2010) and local 

repair shop 

Bernoulli trial 

LCD functional 

damage (LCD) 

𝜆LCD Manufacturer’s quality assurance 

reports show mean number of 

hours to failure of screen 

functionality 

Exponential 
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Home button (HB) 𝜆HB Local repair shop data on average 

probability of home button repairs  

Bernoulli trial 

Charging port (CP) 𝜆CP Local repair shop Bernoulli trial 

Back Camera (BC) 𝜆BC Local repair shop data on average 

probability of camera failures 

Bernoulli trial 

Battery (B) 𝜆B Average life span of 1000 cycles 

are used to calculate mean time to 

failure 

Exponential 

 

Calculation of the failure probabilities for components with Bernoulli failure 

probabilities 

From Table 3, it can be seen that accidental damage and water damage have been 

assumed to follow Bernoulli trial failure probabilities. The reason that a Bernoulli 

distribution was chosen to represent these failures is because these values of failure 

probabilities were taken from a report by Square Trade which reports them for the failed 

phone batches that they collected. Therefore, time-based reliability calculations for them 

are redundant. To exemplify, consider the probability that a screen of a phone cracks 

because a person dropped it, or the phone gets damaged through water; these are not 

events whose probability increases or decreases with time. Therefore, the event of these 

two failures cannot have exponential probabilities. However, it can be a discrete 

probability such that there is a probability of success (failure event happening) or 

probability of failure (accident event not happening). Similar analogy applies to the 

failures of home buttons and cameras. The data to establish these probabilities has been 

collected from a report published by Square Trade (2010).  

Based on the data collected from the local repair shop it has been found that: out of every 

30 phones that come for repair, 20 are from accidental cracks in screen, around 4 are for 

charging port replacement. Thus the probabilities have been taken as 0.66 for accidental 

screen damage and for failure of charging port where a replacement was required, the 
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probability is 4/30= 13%. Probability where charging port just needed cleaning is 15% 

for the repair shop. Similar failure probabilities have been calculated based on a report 

published by Square Trade (2010).  

Table 4 lists the failure probabilities that will be used in this research. While only the 

values found by Square Trade (2010) will be used, the local repair shop data has also 

been included in the table, where possible, for comparison. The reason that the local 

repair shop values will not be used is that these values are biased and not random, as 

compared to Square Trade.  

For the components that are assumed to follow a Bernoulli trial, the probability of 

survival will be: 

𝑆𝑖 = 1 − 𝑝𝑖 

Where pi is the probability that the event of failure has occurred.  

Table 4 Bernoulli probabilities for failure of components 

Damage Type/ 

Component 

Local Repair 

Shop Data 

Square Trade (2010) Bernoulli probability 

of failure event Pi 

Cracked display 20/30= 66% 18.24% 0.1824 

Water damage 20%  4.8% .048 

Home button  N/A 11% .11 

Charging port 13%  4% .04 

Camera N/A 1.8% .018 

 

Calculation of the failure rates of components with exponential failure distributions 

Battery life and LCD failure probabilities have been modeled with exponential 

distributions based on the logic that total runtime does in fact increase the probability of 

their failure. This means that their failure probability (or survival probability) is a 

function of total usage hours.  
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For the components that are assumed to follow an exponential distribution, the 

probability of survival will depend on the total usage hours, u. The survival will be 

calculated in the following way: 

𝑅(𝑢) = 𝑒−𝜆𝑢 

Since it is assumed that the lifetime distributions of phone battery and LCD each follow 

an exponential distribution, it is important to first calculate their constant failure rate 𝜆. 

1/𝜆 is defined as the mean time to failure of a component in hours.  

The next sections detail the parameters and calculations for the failure probabilities of 

batteries and LCDs. 

3.3.3 Usage based Reliability Calculations for Batteries  

Parameters and Variables: 

u= total usage in (hrs) 

b= no of hours the battery can run on a single charge cycle. In other words, it is the usage 

time taken to go from 100% charge to below 20%.  

c= cycles 

noc= total number of battery cycles consumed 

Ω= maximum number of cycles for smartphone battery  

Mean Cycles to Failure (MCTF)= manufacturer’s specified life span of battery 

𝜆B= constant failure rate for battery (/cycle) = 1/MCTF 

PB(u)= probability of dead battery after u hours of total usage 

Assumptions and Constants: 

b= 9 hours 48 mins= 9.8 (hrs/cycle) (assumed to remain constant throughout battery life, 

and for all usage intensities) 

Ω= 1000 cycles 
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MCTF= 500 cycles  

Calculations 

1. Number of remaining cycles after u hours of usage 

𝒏𝒐𝒄 =
𝒖

𝒃
=

𝒉𝒓𝒔

𝒉𝒓𝒔
𝒄𝒚𝒄𝒍𝒆

= # 𝒐𝒇 𝒄𝒚𝒄𝒍𝒆𝒔 

2. Probability of failure of battery after u total usage hours 

𝑃𝐵(𝑢) => 𝐹(𝑛𝑜𝑐) =  ∫ 𝜆𝑒−𝜆𝑐
𝑛𝑜𝑐

0

 𝑑𝑐 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝐹(𝑛𝑜𝑐) = 1 − 𝑒−𝜆𝑛𝑜𝑐 

3. Reliability of battery after u total usage hours  

𝑅𝐵(𝑢) = 1 − 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

𝑅𝐵(𝑢) = 1 −  𝑃𝐵(𝑢) 

𝑅𝐵(𝑢) = 1 − [1 −  𝑒−𝜆𝑛𝑜𝑐] =  𝑒−𝜆𝑛𝑜𝑐  

3.3.4 Usage-based Reliability Calculations for LCD 

The LCD failure mode used for this study is the reduction of backlight luminescence by 

50 percent. Each LCD backlight comes with a half-life which dictates the total runtime at 

which the backlight will reduce to 50%. At this point, the LCD does not pass the quality 

control for refurbished quality grade and therefore, must be replaced.  

Half life for backlight= 3500 hours with exponential decay 

𝜆LCD= constant failure rate for LCD = 1/MCTF 

Calculations 

To calculate the depreciation constant k (also known as constant failure rate) of the 

backlight based on half-life value: 
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ln (
𝑁(𝑡0.5)

𝑁(𝑡 = 0)
) =  −𝑘𝑡0.5 

ln(0.5)

−3500
=  𝑘 =  0.000194  

3.4. Economic Factors 

In addition to the usage and reliability of the product, other factors also play a part in 

recovery decisions. According to Guide and Jayaraman (1999), product life-cycle along 

with the technical and economic issues that are linked to the product life cycle play a 

crucial part in optimum recovery decisions in remanufacturing. Ait-Kadi et al., (2012) 

also mention that reprocessing option depends on product age at the time of return. 

In order to incorporate the life-cycle of the product and the effect it has on the economic 

trends, the following section discusses secondary market dynamics in the context of both, 

used products as well as used mobile phone components.  

3.4.1 Product Life Cycle 

The life-cycle of a product and the consequent disposal rate, for both products and 

components, has a great impact on the profitability of remanufacturing (Ostlin et al., 

2009; Ait-Kadi et al., 2012; Meng et al., 2017). The life cycle of a product consists of the 

many stages: design, production, distribution, use and end of life. Some literature in 

business and marketing management also describes the life cycle stages as: introduction, 

growth, maturity and decline stages. The definition of product life-cycle that is most 

relevant to this thesis is the one that describes the evolution of a product, measured by its 

sales over time (Ostlin et al., 2009).   

During each life-cycle stage, a different set of stakeholders will be involved. For 

example, in the early design stages, it is mainly the manufacturers that are involved. In 

the later production and distribution stages, consumers and distributors have more 

involvement. As shown in Figure 17 below, the cost of the product on the society begins 

to rise right from the production stage and reaches its height towards the end of use. 

Therefore, in the end-of-life, stages, recyclers, remanufacturers and other parties related 

to sustainable development may find more involvement.  
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The applicability of reverse logistics exists in each of the product life cycle stages and 

leads to three different types of returns. The characteristics of the life-cycle and its effects 

on the reversed supply chain have been discussed by Rogers and Tibben-Lembke, (2001). 

In the early stages of production and distribution, the returns are classified as commercial 

returns due to defects or buyers’ remorse (Potdar, 2010). The returns in the early stages 

are usually of high quality and suitable for remanufacturing without the need for sorting 

decisions (Ostlin et al., 2009). Returns during the Use stage of the cycle are usually due 

to customers replacing their phones with newer purchases due to one of many reasons 

such as software failure, accidental damage or other component failures. Additionally, 

returns in this stage can simply be because the user decided to upgrade their phone to a 

newer specification available in the market.  

Finally, in the end of life stage, the returns are primarily due to loss of functionality of 

complete phone failure or technological obsolescence. According to Ostlin et al., (2009) 

who studied the relation between supply and demand curves of cores for 

remanufacturing, there is a high number of returns in this stage but since the demand for 

the remanufactured product is very low, it makes remanufacturing less economically 

viable.   

It can be deduced that the greatest uncertainty in the return quality will be for the returns 

in the Use stage. This is because the reasons for returns are a mix, and largely vary from 

one customer to the other. It is also in this stage of the product lifecycle where recovery 

processes will yield more profitability.  

Why is life cycle important in recovery decisions? 

Depending on the stage of the life cycle, the rate of product return and the demand for 

remanufactured product will also vary. This shift in demand will dictate the market value 

of the product and thus, influence the profitability of the remanufacturing decision. 

Therefore, in each stage, the optimal fraction of returned product that will classify for 

remanufacturing will vary on both, the quality of the returns and the market value of the 

product.  
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Figure 17 Costs on product life cycle. Originally by Alting (1993), adapted from the 

version by Chouinard et al (2008). 

There are two studies, by Aydin et al., (2015) and Ostlin et al., (2009), which model the 

demand of remanufactured product with respect to its life cycle stage. Comparison of 

these two studies establishes that the demand for remanufactured products has the 

following key characteristics:  

1. Right from the introductory stage of the product, there is demand for 

remanufactured product 

2. The remanufactured product demand continues to increase even during declining 

stage up to a certain point. It peaks during this decline phase then starts to 

decrease. 

3. While the number of remanufactured products decreases, the demand for them is 

sustained for a long time, well beyond the death of the new product sales. 

The only difference in the two studies is that Aydin et al., (2015) assumes there is a lag 

between the first period when initial product launch happens, and the second period in 

which demand for remanufactured product picks up. On the other hand, Ostlin et al., 

(2009) shows that the demand for both- new and remanufactured units begins 

simultaneously. The applicability of either model will vary based on the product type that 

is chosen and the pricing strategies at play.   

For example, in the early stages of a new model smartphone launch, a company may 

experience frequent returns due to infantile failures. The company will refurbish these 
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products and sell them in the same primary market as refurbish-grade. However, they 

may or may not reduce the price of the refurbished product. If the demand for this new 

model is high, they may capitalize on that by selling their refurbished phones at a price 

that is almost the same as the price of a new unit. Customers on the other hand, may not 

find it worthwhile to save just $15-$20 for a refurbished phone and will opt for a new 

unit instead. This way, the company is regulating their product value in the market by 

controlling the disparity between the price of a new and refurbished unit. In such a case, 

Aydin et al.’s (2015) model will be a more precise representation.  

 

Figure 18 New and remanufactured product sales based on Aydin et al., (2015) and Ostlin 

et al., (2009) 

The above discussion reinforces the dependence of recovery decisions on the market 

value of the product. Through market demand segmentation for remanufactured products, 

many studies including Aydin et al., (2015) and Ostlin et al., (2009) have found that the 

demand and sales price for remanufactured products are time dependent. Since the 

market value will establish profit margins, it must be taken into account when forecasting 

the recovery decisions of future returns. In order to reflect market value of products and 

their constituting components in the proposed forecast model, the next section studies 

current value trends using real-time pricing data from e-commerce price lists. Through 
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curve fitting, these trends are used in the formulation of equations that will be used in the 

forecast model to incorporate time-dependent economic value in the recovery decision 

process. 

3.4.2 Secondary Value for Product 

The market value of any product in the market is never stagnant. It is affected by new 

releases, technological advancements, marketing activities of competitors and consumer 

demand. In fact, Ostlin et al., (2009) uses an exponential price function on, stating that 

once a new product is launched, its price is always decreasing over time, especially for 

consumer products such as smartphones and computers. Exponential modeling of product 

prices is also prevalent in other works (Ferrer, 1997; Kwak and Kim (2012); Liao, Deng 

and Shen (2018); Bayus, 1993; Pazoki and Abdul-Kader, 2016).  

In the proposed model, we firstly corroborate the exponential pricing trends by collecting 

pricing data of used and new products from 2013 and 2019 from e-commerce websites. 

The plots for the pricing of trends of refurbished phones are shown in Figure 19. 

The pricing data for the smartphone was collected from the website and tabulated in 

Microsoft Excel. Through curve fitting, it was found that 4th degree polynomial curve and 

the exponential curve offer the best fits for the data points, with R-square values of 0.91 

and 0.8368 respectively. For the case of this study, the exponential equation was chosen 

to represent the market value of the refurbished/remanufactured smartphone. Although 

the polynomial curve offers greater R-square value, which means greater accuracy, it was 

discarded so that the model aligns better with the literature that establishes exponential 

distributions as the general form for modeling price depreciations.  

3.4.3 Secondary Value for Used Parts 

The concept of reusing modules of components is not novel for larger machinery and 

computer electronics. However, in the field of mobile phones, this concept is relatively 

new and very little published work exists on the market for used phone parts. According 

to Ferguson et al., (2009), parts that have been salvaged from used products can also be 

used to fill “spares and warranty part vectors”.  
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Figure 19 Market value for refurbished phone from online pricing data  

Is parts harvesting a justified recovery option for smartphones?  

Used parts sold through e-commerce are usually not certified by any quality standards 

such as ISO. In spite of this, there is a high demand for parts of both, new and older 

models. The lack of quality assurance certificates is replaced by the high level of 

confidence that the e-commerce websites have instilled through features likes “seller 

ratings” and “customer reviews” for both the sold parts and the seller. Moreover, features 

like easy returns enhance the comfort that customers feel when committing to purchase of 

these used parts online. The motivation for this do-it-yourself mindset is further fueled by 

numerous videos and visual material online that thoroughly demonstrate how to open 

your device, replace common parts and reassemble the device. The strong support for this 

practice is clearly visible through the recent movement on the internet supporting the 

“Right to Repair’. The movement gained momentum after a high-end phone brand 

recently called for its refurbished products to be listed on the world’s largest e-commerce 

website (Amazon), only if they were being sold by brand-certified refurbish sellers.  

Explanation for demand of used parts belonging to older models  

Usually demand for used parts gain momentum when manufacturers stop production of 

spare parts belonging to older models. This is because manufacturers don’t want to make 

inventories of parts that might not be needed as the product enters the decline stage and 

the risk of obsolescence is too high for them to invest in production of these parts. This 
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creates a market for remanufactured components or possibly reused components (Ostlin 

et al., 2009). Usually a popular phone model even if it is a few years old, still remains in 

use by the customers, an example of this is iPhone 6. It is usually common to see popular 

models directly reused through adults passing the device down to younger children. 

When such phones fail, the customer seeks to repair them. However, the replacement 

parts needed for the repair are no longer in the market because of the technological 

obsolescence of the phone. In such cases, there is a demand for components of a very old 

model but no supply from the OEMs, who have stopped production of those older part 

families (Ait-Kadi et al., 2012). This demand for parts of older models can then be 

satisfied, rather successfully, through used component market.  A good example of this is 

the iPhone 5, which in spite of being over 6 years old, shows an upward trend for pricing 

of its used LCD parts in the online market. Figure 20 shows a rise in component prices at 

the 6th year. This corroborates the study by Ostlin et al., (2009) that suggests that part 

harvest can have great potential late in the product life-cycle.   

Explanation for demand of used parts belonging to newer models 

The costs of spare parts for latest phone models are very high during the first year or so. 

One of the most sought after part is the LCD screen of phones. For high end models, the 

cost of a replacement screen manufactured by the OEM starts at $300, which is usually 

one third of the price of the phone. In fact, in the early phases of the release, even 

refurbished display screens are valued at high prices. In such cases, customers may find 

cheaper options for the replacement if they opt for parts that were extracted from used 

phones. If the extracted part is from the original manufacturer, then even as a used part, it 

sells at a higher price. Thus, it can be seen that reprocessors can exercise great 

profitability by extracting used parts from returned phones if they find that other recovery 

options are not profitable enough. 

Equation formulation of price of used components 

From the literature, the price of components has usually been shown to follow an 

exponential decay trend (Ostlin et al., 2009; Guide et al., 2006; Ferrer, 1997). The general 

form of the equation proposed by Ferrer (1993) is: 

𝑉(𝑡) = 𝑉(𝑜) ∗ 𝑡−𝑎 
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Where, V(t) is the time dependent component price, V(o) is the initial price, t= time since 

release and a is a component-specific parameter obtained by regression analysis of the 

retail prices of the new components. 

For the purpose of this study, the exponential equations for each component are 

formulated based on the pricing data of the components collected from online stores. The 

data is then plotted and fitted to the exponential curve to derive the time-based price 

trend. The pricing for used parts was taken primarily for ebay and Mobile Sentrix. 

The following Figure 20 exemplifies how the equations have been formulated by 

illustrating the market value of used LCDs for two models of the iPhone. Display Type A 

represents that 4.7” display screens present in the recent iPhone 7 model, and Display 

Type B represents screens from iPhone 5 which is a much older model. It was found that 

exponential curve offers the best fit for Display A, with an R-square value of 0.9691. 

However, for Display Type B it was found that fourth degree polynomial offers a better 

fit that exponential trend, yielding an R-square value of 0.8393 (See Figure 20, Display 

Type B). From this analysis, the question arises, why does polynomial fit better, when, in 

general, exponential is the most widely accepted distribution for pricing trends? The next 

section seeks to answer this question.   

 

Figure 20 Market value for used LCDs from pricing data on e-commerce sites 

Why does price of used LCD increase for Display Type B? 
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At a glance of Figure 19, it is clear that the price for Display A is constantly decreasing 

but the price for Display B increases for some time after the 5th year. To understand this, 

it must be kept in mind that Display B corresponds to model iPhone 5, whose LCD has 

not been used in any other product families in the years that follow. On the contrary, the 

4.7” display represented in Display Type A is common across three products: the iPhone 

6,7,8. This means that over the years, the OEM has sustained production and distribution 

of Display Type A as opposed to Display Type B. Following with the logic, it can be said 

that used parts pricing is influenced by who the manufacturers for those parts are. If the 

OEMs are still producing those parts, the prices will be lower as compared to when they 

stop producing them (Ostlin et al., 2009). The dynamic dependence of spare parts pricing 

on OEM manufacturing has been demonstrated through an automotive case study 

involving Volvo. Spare parts pricing also fluctuates based on the manufacturing 

capabilities of third party parts suppliers as well (Ostlin et al., 2009).  

Additionally, it can be seen that the rise in the value of the used OEM LCD happens 

around the 6th year, which corresponds to the time when after-market copies of the 

display enter the market (See Figure 21). The presence of third party spare parts increases 

the value of the LCD parts that were manufactured by the OEM regardless of whether 

they are used parts.  

Conclusion of Parts Harvesting 

From the discussion above, it can be affirmed that the secondary market for used parts is 

a viable market for the smartphone industry and strong enough to receive consideration in 

scientific work. The value of the used part will be influenced by the market value of the 

product family, its life-cycle stage and the production suppliers. To this end, “part 

harvesting” has been included in this research as a recovery option to sustain optimum 

profitability in the later stages of the life cycle where both returns quality and 

remanufacturing revenue are unfavourably low.   

The next section tabulates the pricing equations that will be used in this study. As 

discussed above, the equations have been formulated from pricing data collected from 

online shops that sell used and new OEM parts. 
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Figure 21 Value trend for refurbished LCD part. Harvestcellular, Jones (2017) 

3.5 Equations for Pricing of New and Used OEM Components 

This section compiles the equations used to model the pricing of the used and new 

components. The data from which these trends were derived is available in Appendix E. 

Table 5 Equations for pricing of new spare components 

 New OEM Part 

Component Distribution Equation R-Square 

Home button Linear = -1.82t+11.385 0.9038 

Charging Port Linear (-1.7882t)+12.59 0.9886 

Back camera Linear = -9.016t+52.632 0.9151 

Battery Exponential =28.39*exp(-0.276*t) 0.8477 

LCD Exponential =344.99*exp(-0.089*t) .9776 
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Table 6 Equations for pricing of used parts from parts harvest 

 Used OEM Part 

Component Distribution Equation R-Square 

Home button Constant Averaged at $20 - 

Charging Port Linear -4.1657t+34.571 =0.5309 

Back camera Exponential 129.52*(exp(-0.539*t)) 0.8556 

Battery Constant Averaged at $18.5 - 

LCD 3rd Order 

polynomial 

= -3.178t3+ 48.295t2- 237.09t+ 

412.42 

1.00 

 

The next chapter outlines the methodology for the proposed forecast using the usage 

model and the pricing equations formulated in this section.   
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CHAPTER 4 

SOLUTION METHODOLOGY 

4.1 Proposed Forecast Model: Description and Algorithm 

1. Create scenario using Monte Carlo simulation for population using age or income 

distributions for a specific region 

2. Generate daily device usage data using probability distribution for each age group 

3. Generate length of ownership in months using probability distribution for each 

age group 

4. Calculate total usage hours from daily usage and length of ownership  

5. Calculate length of ownership in years by dividing it by 12 

6. Calculate probability of smartphone survival at time of return t based on usage 

data  

7. Calculate failure rate of components based on the exponential probabilities or 

Bernoulli trials, depending on the component.   

8. Calculate expected profit from reuse option 

9. Calculate expected profit from remanufacture option 

10. Calculate expected profit from parts harvest option 

11. Calculate maximum profit from recycling 

12. Assign quality grade based on maximum profit 

13. Accumulate counts for each recovery decision 

14. Calculate quality ratios for each option: reuse, remanufacture, parts harvest and 

recycling. 

15. Repeat simulation for another region with region specific demographic data as 

described in 1. above 

16. Discuss differences in trends form the results generated for different regions and 

the applicability of the results 
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4.2 Profit-based Recovery Decisions  

Profit model is a maximization of expected profit generated from four value recovery 

processes namely: direct reuse, remanufacture, parts harvest and material recycling. 

Based on the usage and timing of return, expected profits for the four value recovery 

processes are calculated. Then, the returned product is categorized based on recovery 

option with the largest profit margin.   

In order to assign the most profitable recovery option to the predicted return, all the 

possible profit values are calculated from each recovery option. Then, the recovery option 

with the highest profit is assigned to that unit.  

Equation 1: Profit-based recovery decision 

Recovery Optionj = maxprofit{Reuse, Remanufacture, Parts-Harvest, Recycling} for all j 

Where j= a unit product from a batch of returns   

The proposed set of equations for the calculation of the profits from the four recovery 

processes is listed below. 

Equation 2: Expected Profit from Reuse 

EP_Reuse(u, t) = P(R|u) ∗ Sp(t) − (Cost of Trans + Insp + Clean + Repackage) 

Where P(R|u) is the conditional probability that a product is eligible for reuse, and Sp(t) 

is the selling price of the product with used condition at time t 

Equation 3: Expected Profit from Remanufacturing 

EP_Remanf(u, t) = Remanf. Product Selling Price(t) − Remanf Cost(u, t) 

Where selling price is derived from the economic trends and the usage-dependent 

Remanf Cost(u,t) is calculated using Equation 4 shown below. 
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Equation 4: Usage-dependent Remanufacturing Cost 

Remanf Cost(u, t) = Trans+. . + ∑ Pi(u) ∗ Component Pricei(t)

i

 

Where Pi(u) is the probability of failure of the component after being used for u hours 

 Component Price(t) is the current market value of the required component. 

Equation 5: Expected Profit from Parts Harvest 

EP_PartsHarvest =  ∑ Xi(t) ∗ (1 − Pi(u)

i

) 

Where Xi(t) is the selling price of a used component i in the market at time t, (1-Pi(u)) is 

the probability that the component i is still functional after u hours of usage, since Pi(u) 

represents the probability of failure of the component. 

Equation 6: Expected Profit for Materials Recycling 

EP_Recycling = $v per unit device 

In this study, the value of v is assumed to be constant at $5.66 based on the metal 

retrieval value for all iPhone models from Movaluate.com (Movaluate, 2019).  

4.3 Development of the Profit Equations 

This section elaborates on the logic of how Equations 2 to 6 were formulated  

4.3.1 Reusability Profit Function 

This section explains formulation of Equation 1. 

This definition of reuse has been adapted from Kwak and Kim (2012), further adapted by 

Pandian and Abdul-Kader (2017), who define the functional condition for reuse as 

follows: 

1. Product can turn on, dial and receive calls and messages.  

2. No screen damage. 

3. No water damage 
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4. Good cosmetic condition. 

The goal of this section is to probabilistically predict how many incoming products in a 

given batch will be eligible for direct reuse without the need for disassembly or part 

repairs.  

Reusability requires that all the components of the device are in functional state. Based 

on that, the first step is to calculate the probability that a phone that is returned after t 

years has no failures. This is done in the following way. 

P(R|t)= Probability that a phone fails after t years of ownership 

The following is a description of the logic used in the calculation of P(R|u).  

By definition, for a phone to be eligible for reuse, all its components should be 

functional. This means that even if one component has mal-functioned; the product is 

directly not eligible for reuse. The functional status of the components can be assessed 

from their probability of survival. Since the probability of failure of all components is not 

the same, each of them need to be analyzed separately.  

This essentially means that there should be no failures for the device at the time of return. 

In order to calculate this probability, the proposed forecast model uses the empirical 

failure distribution devised by Wang and Huang (2013) who propose a log normal 

distribution for survival function of phones. The method of finding the parameters for the 

distribution has been discussed in Section 3.3.1 on page 54.   

Profit Calculation from Reuse 

Although the costs for reuse option are minimal, the expected profits will directly be 

dependent on the selling price of the phone in the secondary market at the time of return 

t. Thus the time-dependent profit from Reuse can be calculated in the following way: 

EP_Reuse(u, t) = P(R|u) ∗ Sp(t) − (Cost of Trans + Insp + Clean + Repackage) 

Where Sp(t) is the selling price of the product with used condition at time t 



 

78 

 

For modelling purposes, the costs of transportation, inspection, cleaning and repackaging 

can be eliminated because these costs do not depend on usage u or the time of return t and 

also because they will usually be constant for all returns in a single period.  

4.2.2 Remanufacturability: Profit Function 

Remanufacturing cost for each returned product is different because it depends on two 

factors: the usage condition of the product (Panagiotidou et al., 2017; Liao, Deng & Shen, 

2018) and the time-dependent cost of the replacement components. The following steps 

are assessed for calculations of remanufacturing costs: 

1. What is the cumulative usage hours of the device? 

2. At the given usage, what is the probability of failure of each component? 

3. If one component fails, it needs to be replaced. How much would it cost to buy the 

replacement component at the present market value? 

4. The total expected cost would be depended on failure probability and cost to replace a 

specific component. 

In previous work, Ferrer (1997) developed a model for calculating the cost of 

remanufacturing a computer. The drawback of Ferrer’s equation is that it does not 

consider a usage-dependent failure probability, thereby leading to a cost equation that is 

unrealistically constant over time. Ferrer’s equation is as follows: 

Remanufacturing Cost = Transport + ⋯ + required components 

Where the cost of required components depends of the probability of failure and the price 

of the new component needed for replacement: 

Cost of required Components =  ∑{(Pi) ∗ Component Price}

𝐼

 , for all i  

Where i = component number, Pi = probability that a component fails.  

Another example of a remanufacturing cost equation is proposed by Panagiotidou et al., 

(2017). In this study, they calculate the remanufacturing cost as a function of the quality 
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grade only. Similarly, Liao, Deng and Shen (2018) also assume that “cores of the same 

rank are considered to have the same unit remanufacturing cost”. They do not consider 

the probabilities of which components will have failed, and what the cost of their 

replacements will be. Their calculation of the remanufacturing cost equation is shown 

below: 

Expected Remanufacturing Cost of batch = ∑ cr(q) ∗ p(q)
Ql

q=0
 

Where, as per their equation they use the following notations: 

q= quality grade 

p(q)= probability that a product with quality q is remanufacturable, with known 

distribution 

cr(q)= cost of remanufacturing based on quality q 

Ql= Number of remanufacturable units available after inspection 

This equation is lacking because: 

1. The probability distribution for quality p(q), is assumed to be known, and is not 

calculated empirically from usage data. 

2. The cost of remanufacturing is not calculated from the cost of the components 

that required replacement. It is possible that 2 products that fall under the same 

quality grade need different sets of component replacements. In such a case, the 

remanufacturing cost of the two products will be different because the cost of the 

different components is not all the same.  

Thus, it can be seen that the equations proposed previously in literature fall short of 

representing totally accurate remanufacturing costs. These equations have been improved 

in this study to represent a more time and usage-dependent model for remanufacturing 

cost as described hereon.  
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Proposed Equation for Remanufacturing Cost 

In order to present a more relevant version of Ferrer’s (1997) and Panagiotidou et al.’s 

(2017) equations for remanufacturing cost, this research proposes an updated version of 

the equation which comprehensively takes into account the total usage of the device to 

calculate the probability of component failure and also the age of the components to 

calculate their price. This method provides a more precise estimate of the 

remanufacturing costs.  The proposed equation which is developed in this study is as 

below: 

Remanf Cost(u, t) = Trans+. . + ∑ Pi(u) ∗ Component Pricei(t)

i

 

Where Pi(u) is the probability of failure of the component after being used for u hours, 

Component Pricei (t) is the current market value of the component required, N is the 

batch size, x is number of successes.  

Calculation of Remanufacturing Profit 

Just as remanufacturing cost is a function of time, remanufacturing profit is also not 

constant throughout the secondary life of the product. Although remanufactured products 

are renowned for yielding high revenues, their profit margins are not constant over time. 

The main reason for this is that the selling price of a remanufactured product is largely 

governed by the consumer behaviour in the secondary market.  

Remanf. Profit(t) = Remanufactured Product Selling Price(t) − Remanufacturing Cost(u, t) 

An interesting observation from the above equation is that the profit generated from any 

single device will actually depend on the usage of the returned device, or rather, its 

original state. Thus, if a production planner sees a batch of returns with a bad quality ratio 

that will not generate enough profits due to high costs, they can choose a more profitable 

recovery option. Similarly, if a planner sees a batch of bad quality returns but knows the 

particular model is highly in demand in the secondary market, they will find those same 

higher remanufacturing costs to be financially viable. This, once again, emphasizes the 

need for accurate estimates for quality ratios. 
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4.2.3 Part Harvesting Profit Function 

For the case of mobile phones, part harvesting is a relatively new practice which is 

usually applicable exclusively to the high-end smartphone market. The recovery value of 

parts harvesting is positively associated with component quality (Meng et al., 2017). This 

means that devices with less usage will generally have components with high quality and 

thus, yield higher profits. 

The proposed equation for expected profits from used parts comprehensively takes into 

account the probability that a component is alive after being used for u hours, and the 

revenue that will be generated based on its time-dependent selling price. For simplicity in 

calculation, the disassembly costs associated with parts harvest are discarded.  

Expected Profit from Used Parts =  ∑ Xi(t) ∗ (1 − Pi(u)

i

) 

Where: Xi(t) is the selling price of a used component i in the market at time t, Pi(u) is the 

probability that the component i fails after u hours of usage. 

The model in this study includes the major components namely: battery, LCD, home 

button, camera, and charging port. In reality, the reprocessor can actually harvest many 

more parts from a device and gain higher profits. However, since the listed components 

are the ones that retain highest economic value with time, the other components have not 

been included. Parts that are found to not be profitable through direct selling can be sent 

to materials recycling and still generate value. 

4.2.4 Material Recycling Profit Function 

There are many useful materials in a mobile phone including gold, copper and aluminum, 

that can be separated and reprocessed to replace the mining of new metal resources.  

For the purpose of this study, the profit from recycling is modelled as a fixed constant 

value, modeled after the study by Mashhadi and Behdad (2017). Recycling profit is 

independent of the functional state or the product age because it is only linked with 

material recovery. Geyer and Blass (2010) claim recycling as the least profitable recovery 

option for smartphones. However, this is subjective to the life-cycle stage of the product.  
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For this study, we will work under the assumption that, at any given time or life-cycle 

stage, the profit from recycling is far lesser than the profit from reuse, remanufacturing or 

part harvesting. The value of v is taken as $5.66. The proposed equation is 

𝑅𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔 𝑝𝑟𝑜𝑓𝑖𝑡 = $𝑣 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑑𝑒𝑣𝑖𝑐𝑒 

4.4 Summary  

This chapter outlined the algorithm that will be used in the forecast model and related the 

profit equations for all the possible recovery operations. For each expected return, the 

expected profits will be calculated based on the usage of the used product and the time of 

the return. The product will then be assigned to recovery option with the highest profit 

margin. 

The next chapter describes the data collection and setup for the scenario generation. The 

scenarios designed in the next chapter will be simulated using Monte Carlo methods and 

then the forecast model algorithm will be applied to these scenarios to generate expected 

return quality from various regions. 
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CHAPTER 5 

NUMERICAL EXAMPLE FOR FUTURE RESULTS   

5.1 Data Collection 

In order to simulate the results of the forecast model in the Canadian context, rural and 

urban communities from 5 provinces in Canada have been chosen. To gain a good 

representation of the country, provinces have been chosen based on their location. 

Beginning from the west coast, British Columbia was chosen. For the representation of 

the east, Quebec was chosen. To cover the Atlantic provinces separately and better 

analyze their unique trends Newfoundland and Labrador was chosen from the east coast. 

To represent central regions in Canada, Manitoba has been selected. Ontario, being the 

most populated province has been included for obvious reasons.  

From each province, an urban population center and rural population center has been 

chosen. For the case of Ontario, rural communities have further been separated as Rural-

North and Rural-South to gain a better insight into the product returns across the 

provinces. The age and income distributions of the chosen regions have been tabulated in 

Table 7. It must be noted that the income represents total household income before tax.  

The data for these distributions is available through Statistics Canada (Statistics Canada, 

2016). 

The consumer behaviour pertaining to daily usage hours and length of ownership has 

been categorized by the user’s age, income, community type and province of location. 

The empirical distributions for these have been deduced from the survey data published 

by Forum Research (See 3.2 Socioeconomic Usage Model) and are presented below in 

Table 8. For space conservation, Weibull notation has been trimmed to X~W(scale, 

shape). The normal distribution is denoted using the standard notation X~N(mean, 

standard deviation).     
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Table 7 Age and income distributions of cities for scenario development  

Province City Population 

Density 

/km2 (2016) 

Community  

Type 

Age 

Distribution 

Profile (%) 

Income Distribution  

Profile (CAD$) (%) 

Ontario Toronto 4334.4 Urban 18-34:29.81 

35-44: 17.31 

45-54: 17.98 

55+: 34.90 

<20k: 13.22 

20-40k: 16.97 

40-60k: 15.74 

60-80k: 13.0 

Above 80k: 41.1 

Ontario Kingston 274.4 Rural 18-34: 27.21 

 35-44: 14.39 

45-54: 17.17 

55+: 41.24 

<20k: 10.48 

20-40k: 17.39 

40-60k: 16.55 

60-80k: 14.144 

Above 80k: 41.42 

Ontario Algonquin 

Highlands 

2.3 Rural-South 18-34: 10.47 

35-44: 7.85 

45-54: 15.23 

55+: 66.39 

<20k: 8.597 

20-40k: 19.09  

40-60k: 20.361 

60-80k: 18.55 

Above 80k: 32.12 

Ontario Windsor  1483.8 Urban 18-34: 25.87 

35-44: 15.658 

45-54: 18.50 

55+: 39.96 

<20k: 14.55 

20-40k: 20.57 

40-60k: 18.61 

60-80k: 13.72 

Above 80k: 32.55 

Ontario City of 

Sault Ste. 

Marie 

328.6 Medium 

Urban 

18-34: 21.64 

35-44: 13.56 

45-54: 17.07 

55+: 47.75 

<20k: 11.23 

20-40k: 20.50 

40-60k: 17.47 

60-80k: 13.24 

Above 80k: 37.54 

British 

Columbia 

Vancouver 5492.6 Urban 18-34: 31.79 

35-44: 17.42 

45-54: 17.59 

55+: 33.19 

<20k: 14.96 

20-40k: 16.05 

40-60k: 15.32 

60-80k: 12.87 

Above 80k:40.80 

British 

Columbia 

Okanagan 

Falls 

649.4 Rural 18-34: 9.564 

35-44: 11.158 

45-54: 17.003 

55+: 61.63 

<20k: 11.79 

20-40k: 23.58 

40-60k: 19.81 

60-80k: 14.62 

Above 80k:29.72 

British 

Columbia 

Fort-St. 

John 

1040.3 Rural 18-34: 41.519 

35-44: 21.087 

45-54: 16.324 

55+: 21.053 

<20k: 4.94 

20-40k: 9.75 

40-60k: 10.70 

60-80k: 10.95 

Above 80k: 63.73 
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Province City Population 

Density 

/km2 (2016) 

Community  

Type 

Age 

Distribution 

Profile (%) 

Income Distribution  

Profile (CAD$) (%) 

Quebec Montreal 4662.1 Urban 18-34: 30.05 

35-44: 18.384 

45-54: 16.41 

55+: 35.15 

<20k: 16.809 

20-40k: 22.42 

40-60k: 19.66 

60-80k: 13.47 

Above 80k:22.64 

Quebec Alma 156.6 Rural 18-34: 20.0 

35-44: 14.085 

45-54: 17.021 

55+: 48.89 

<20k: 12.19 

20-40k: 21.02 

40-60k: 19.81 

60-80k: 14.65 

Above 80k: 32.33 

Manitoba Winnipeg 1518.8 Urban 18-34: 28.32 

35-44: 17.24 

45-54: 17.56 

55+: 36.88 

<20k: 9.735 

20-40k: 16.57 

40-60k: 17.10 

60-80k: 14.86 

Above 80k: 41.74 

Manitoba East St. 

Paul 

223.2 Rural 18-34: 18.24 

35-44: 14.202 

45-54: 21.44 

55+: 46.09 

<20k: 1.69 

20-40k: 5.368 

40-60k: 8.44 

60-80k: 9.66 

Above 80k: 74.85 

ATL (NF) St. John’s  Urban 18-34: 29.38 

35-44: 15.90 

45-54: 17.39 

55+: 37.325 

<20k: 11.48 

20-40k: 17.78 

40-60k: 14.51 

60-80k: 12.68 

Above 80k: 43.55 

ATL (NF) Bay Bulls   Rural 18-34: 23.1 

35-44: 22.22 

45-54: 18.22 

55+: 37.78 

<20k: 7.08 

20-40k: 12.39 

40-60k: 11.50 

60-80k: 10.62 

Above 80k: 60.18 

Table 8 Distributions for consumer behavior based on socio-economic factors 

Factor Sub-Groups Daily Usage in Hours Length of Ownership 

in Months 

Age 18-34, N=233 X~N(2.106,1.100) X~W(28.50, 1.982) 

35-44, N=250 X~W(1.820, 1.675) X~W(33.27, 2.138) 

45-54, N=190 X~W(1.571,1.621) X~W(33.27, 2.138) 

55+, N=542 X~W(1.182, 1.421) X~W(37.10, 2.267) 

Income Below $20K, N=102 X~N (1.922,1.206) N/A 

$20K-$40K, N=191 X~W(1.824, 1.540) N/A 

$40K-$60K, N=134 X~W(1.438, 1.475) N/A 
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Factor Sub-Groups Daily Usage in Hours Length of Ownership 

in Months 

Income $60K-$80K, N=168 X~W(1.770, 1.509) N/A 

$80K+, N=417 X~W(1.643, 1.624) N/A 

Community 

Type 

Urban, N=2208 N/A X~N(29.62,14.82) 

Rural, N=736 N/A LogN(0.6399, 3.184) 

Province Ontario, N=274 X~W(1.756,1.514) X~W(33.81, 2.087) 

British Columbia X~W(1.750,1.577) X~N(30.35, 15.02) 

Manitoba, N=110 X~N (1.7,1.090) X~W(31.17,1.948) 

Quebec, N=237 X~W(1.587,1.543) LogN(.6113, 3.192) 

Atlantic Region, 

N=171 

X~W(2.039,1.696) X~N(31.19, 14.59) 

 

5.2 Scenario Development  

This section shows how the various scenarios have been developed for the simulation.   

Table 9 Scenario development 

  

  Age Income Community Province 

Age x x x Scenario 1 

Income x x x Scenario 2 

Community x x x Scenario 3 

Province x x x Scenario 4 

 

Scenario 1: In this scenario, the forecast model will be used to draw a comparison (1) 

between different regions of Ontario and (2) among major cities across provinces. In this 

scenario, only the effect of the age distribution and the provincial distributions on daily 

usage and length of ownership will be tests.  

For testing between different regions of Ontario, the daily usage distribution and the 

length of ownership distribution will be generated based on the age group percentages of 

various places. The results of this test will allow the observation of the different age 
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groups on return quality. The results of this scenario are presented in Section 6.1.1 

Comparison of Quality Ratios for Regions in Ontario based on Age. 

For comparison of different major cities in Canada based on provincial usage 

distributions, the simulations are carried out with daily usage and length of ownership 

distributions based on the province in which the city is located. The results from this 

analysis are presented in Section 6.1.3 Comparison of Quality Ratios from Major Cities 

in Canada  

Scenario 2: This scenario is created in order to analyse the effect of household income on 

the return quality ratio. The daily usage distribution is modeled based on the percentage 

of the population in each income group. The length of ownership is modeled based on the 

province wide trend. For this scenario, three places in Ontario namely, Toronto, Kingston 

and Windsor are chosen because they correspond to three different community types: 

large urban, rural and medium urban respectively. Thus, the aim of this scenario is to 

study the effect of varying income distributions on the return quality of used 

smartphones. The results from this scenario are discussed in Section 6.1.2 Comparison of 

Quality Ratios by Income Distributions.   

Scenario 3: In this scenario, the return quality ratios from rural and urban areas are 

generated based on the daily usage and length of ownership distributions derived 

specifically for rural and urban areas. This scenario is different from the comparison of 

rural and urban areas done in Scenario 1, which was based on age distributions. However, 

in scenario 3, age distributions are kept uniform, and only the effect of rural and urban 

distributions is studied. Since there’s only one model for rural and urban distributions (no 

data is available for rural behavior based on province or region), it is assumed that the 

results of this scenario represent the comparison of rural and urban areas throughout 

Canada.  The results of this scenario are presented in Section 6.1.4 Comparison of 

Quality Ratios from Rural and Urban Areas in Ontario. 

Scenario 4: In this scenario, the overall return quality from entire province is compared 

with that of the return quality from another province. The daily usage and length of 
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ownership distributions are solely based on provincial distributions. The factors age, 

income and community type are not taken into account.   

5.3 Simulation Set-up 

To run the Monte Carlo simulation, a random population was generated with a sample 

size of 106. The age distribution and the length of ownership distribution was assigned to 

the entries in this sample using random numbers. The example below shows how the 

random population was generated for the specific case of Toronto based on its unique age 

distribution. Part of the code for the Monte Carlo sample generation is shown in Figure 

22. 

 

 

 

 

 

How the number of samples were generated 

Different dustributions 

Screen shot age percentages 

 

The corresponding MATLAB code is as shown below: 

 

Figure 22 MATLAB code for random sample generation 

In the snippet of the code in Figure 22, it can be seen that the variables p1, p2, p3, and p4 

denote the percentages in Toronto for each age group. N= 1,000,000 is the number of 

Step 1: Input Age profile for 

Toronto: 

18-34 = 29.81%  

35-44 = 17.31% 

45-54 = 17.98% 

55+    = 34.90% 

Step 2: Input Distributions for each age group 

Age Group Daily Usage Length of Ownership 

18-34 X~N(2.106,1.100) X~W(28.50, 1.982) 

35-44 X~W(1.820, 1.675) X~W(33.27, 2.138) 

45-54 X~W(1.571,1.621) X~W(33.27, 2.138) 

55+ X~W(1.182, 1.421) X~W(37.10, 2.267) 
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total samples. The total daily usage distribution was stored in a matrix “a” as shown in 

line number 4. Thus, the line 4 shows that the daily usage distribution will be randomly 

generated based on the proportion of age group Figure 22. To explain further, consider 

the following part of the code in Line 4: 

a= [abs(normrnd(2.105,1.093, p1*N,1));…..]; %age proportion a 

 

This part of the code corresponds to generating the population for the first age group, 

which is from 18-34. The normrnd function in MATLAB generates random numbers 

based on the parameters of a normal distribution. The format of the normrnd function is: 

normrnd(mean, standard deviation, number of rows, number of columns. Since the daily 

usage distribution is modeled by a normal distribution with mean of 2.105 and standard 

deviation 1.093, these values are entered in the normrnd function. Since p1 is the 

percentage of the population which falls under this age group, the total number of 

samples (or rows) for this age group will be p1*N. The number of columns will be 1. For 

other age groups, the Weibull random distribution has been used, for which the command 

follows the format wblrnd(scale, shape).   

Similarly, the values for the length of ownership distribution were calculated and stored 

in a matrix called ‘l”, as shown in Line number 6-7 of the MATLAB code Figure 22.  

The simulation was run on a system on a 64-bit Windows 10 operating system with 12 

GB RAM and a 3.40 GHz i-7 intel core processor.   The time for each simulation run was 

found using the tic () and toc() command in MATLAB. On average, the time for each 

Monte Carlo run with 1 million samples was found to be 5.5 seconds, as shown in Figure 

23. 

 

Figure 23 Elapsed time for single simulation run 
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CHAPTER 6 

 RESULTS AND ANALYSIS  

6.1 Graphical Results and Analysis 

This section discusses the results generated from the forecast model as per the scenarios 

outlined in Section 5.2.  

The results are presented in the form of bar charts and scatter graphs for effective visual 

analysis. The bar charts have been generated based on the return quality ratios by time 

period, denoted by the symbol T. Thus, the graph for T=1, depicts the return quality 

ratios for the first year, T=2 depicts the ratios for the second year and so on.  

The x axis of the bar charts denote recovery numbers 1,2,3,4. The significance of these 

numbers is as follows: 

Recovery Number 1 = Reuse option 

Recovery Number 2 = Remanufacturing option 

Recovery Number 3 = Parts harvesting option 

Recovery Number 4 = Recycling option 

The y axis of the bar graphs denotes the quality ratios for each corresponding recovery 

number.     

6.1.1 Comparison of Quality Ratios for Regions in Ontario based on Age 

Inputs 

The daily usage distributions and length of ownership distributions based on each age 

group have been used to study the effect of different age profile percentages of different 

communities in Ontario.  

Discussion 

The chart in Figure 24 shows the different quality ratios for the four recovery options as 

generated by different cities in the first year (T=1). The four recovery number 1,2,3,4 
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correspond to the recovery options reuse, remanufacture, parts harvest and recycle 

respectively. Thus, the bars above the “number 1” on the x axis can be interpreted as: 

what ratio of the returns from a given city in year 1 will be eligible for reuse? Similarly, 

the bars above the “number 2” on the x-axis can be interpreted as: what ratios from a 

given city can be expected to be sent to remanufacturing in year 1? From Figure 24, it can 

be seen that all returns in year 1, regardless of total usage, are attributed to either 

recovery option 1 and 2 only, which correspond to reuse and remanufacturing 

respectively. The probability of a returned phone being eligible for reuse in the first year 

is estimated at 0.6 for collections in Kingston and St. Sault Marie, 0.65 for Toronto and 

Windsor, and 0.69 for Algonquin Highlands. This means that from all returned batches in 

year 1 from the afore mentioned cities, the quality grade of returns from Algonquin will 

be the highest. Similarly, reading the bars above “number 2” on the x axis in Figure 24, it 

can be seen that the remanufacturing probability for Kingston and St. Sault Marie in year 

1 is 0.4, 0.35 for Toronto and Windsor and 0.31 for Algonquin Highlands. The figure also 

shows that there are no significant variations in the quality ratios across different regions. 

Additionally, it should be noted that no returns seem to be assigned to recovery option 3 

and 4 for the first year. This means that regardless of the usage level, whether low of 

high, reuse and remanufacturing will always be the most profitable recovery options in 

the first year.   

The results in Figure 25 suggest that at T=2 year, 95% of the returns will be eligible for 

remanufacturing, with the remaining going for reuse.  

For T>=3, it can be seen that the remanufacturing ratios of the returned batches decrease 

with time. The trend for Toronto is unique and it can be seen that the quality ratios are 

much higher as compared to other regions. This observation is significant because for 

T=1 and T=2, the ratios from Toronto were the same as those from other regions. 

However, for T>3, the quality ratios from all other regions continue to be congruent, 

except for Toronto.  
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Analysis 

Based on the results, there is no significant difference between quality ratios calculated 

based on age distributions profiles alone, while keeping all other factors (such as 

community type: rural vs. urban) constant.  

Toronto, in spite of being the largest population center cannot be taken as an accurate 

representation of the entire province of Ontario and its population centers. Even large 

population centers, such as Windsor, are not similar to Toronto. This is clear in Figure 26   

which shows the large variation between the quality ratios from Toronto and other 

regions within Ontario for T=>3.  

The higher quality ratios from Toronto can be attributed to a larger percentage of 

population between the ages 18-44, which is the age group with lower lengths of 

ownership. This means that residents of Toronto replace their phones more often, 

yielding lower cumulative usage hours, thereby generating higher quality grade returns.    

Similarly, for the case of Algonquin for T=1, the slightly higher reuse quality ratios are 

due to the larger percentage of users in the age groups 40 and above, which results in 

lower daily usage hours and subsequently, higher quality.  

 

Figure 24 Quality ratios for Ontario Regions, T=1 
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Figure 25 Quality ratios for Ontario regions, T=2 

 

Figure 26 Remanufacturing ratios for Ontario regions 

From Figure 27, it can be seen that the recovery option of parts harvest becomes relevant 

for the regions in Ontario after T=5 (or the fifth year). This is a valid result because the 

market value of remanufactured phones in the fifth year reaches a lower end, at about 

30% of its original value, as shown in Figure 37. Moreover, new model releases in the 

duration of 5 years means that the particular model may not be able to incur new sales. 
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Therefore, remanufacturing it would seem less feasible. However, there may still be users 

of that particular model who already own it. When they need repairs, parts for a release as 

old as six years may not be available in the market. To satisfy this demand of repairs of 

old models, the model’s results, which suggest parts harvest ratios as profitable recovery 

options for the fifth year on wards, are justified.   

 

Figure 27 Parts harvest ratios for Ontario regions 

Applicability for Ontario 

It can be tempting to assume that, since Toronto is the largest population center in 

Ontario, it would be befitting to assume that all cities in Toronto follow the same quality 

ratio trend. However, any network design made on this assumption would lead to an 

overestimation of profitability, and a network configuration that demands more capacity 

than needed for remanufacturing. The network design may also yield a larger number of 

facilities to optimize over the large travel distances across consumer zones in a large 

province such as Ontario, all of which will be error-some. Additionally, since network 

designs are meant to be designed for a long period of time, one cannot neglect the trends 

for T=>3 and solely base their strategic planning on T=1 and T=2 which, in fact, do 

suggest that Toronto is the same as other regions. However, to gain a holistic view for 

decision-making, it is critical to look at detailed trends beyond the first two years.   
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In addition to that, it is necessary to take the current collection schemes in Ontario when 

assessing the usability of these results for the collectors and reprocessors in Ontario. At 

first glance of Figure 24 and Figure 25 for T=1 and T=2, it would seem that any batch 

collected in Ontario in the first two years will yield the same quality ratios. However, this 

is a very error-some assumption. This is because the collection process in Ontario is such 

that the used phones collected by various third party collectors or even retail shops are 

first consolidated before being shipped for reprocessing. Consolidation takes place to take 

advantage of economies of scale and avail cheaper transportation costs. If one whole 

batch in T=1 was coming from, for e.g., Algonquin Highlands alone, then it could be said 

with confidence that quality ratio of the batch has 90% units for direct reusability. 

However, the collections from Algonquin Highlands, like other regions, are combined 

with collections from neighbouring regions and sent together. This means that the 

nominal quality of the batch will now be dependent on the qualities from all the regions, 

and thus, be lower than the individual quality ratios. The results presented in this section 

make it possible to calculated predicted quality ratios of a batch based on which regions it 

was collected from. For example, if a batch has collections for Kingston and Sault Marie, 

then in T=1, the quality ratios of the batch for reuse will be 0.6x0.6= 0.36. The results 

from this study allow for pricing decisions to be made while taking into consideration the 

different quality ratios from multiple regions of origins.  

In addition to that, it must be kept in mind that consolidation of returns is not always 

done for the same time period all the time. Keeping in mind the concept of economic 

order quantity, it is necessary to factor in the longer time that is needed to collect a good 

volume of returns from smaller population centers, than the time needed to collect the 

same number of returns from larger population centers. The results can be applied to 

solve this problem as well. Since the results predict quality ratios based on time period, 

they allow the effective calculation of quality ratios from different regions based on 

different time periods. For illustration, an example is presented for the case of Kingston 

and Algonquin Highlands again for 2 periods.   

Assume a batch is ordered every 2 time periods. Assume time value is constant. Kingston 

collects 40 units in T=1 and T=2. Algonquin Highlands collects 30 units in T=1 and T=2. 
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R1, R2 represent reuse and remanufacturing ratios respectively.  The data is displayed in 

Table 10. 

Total units= 140 

Probability of reuse = (0.6*40+ 0.68*30) + (0.03*40+0.05*30)= 47 units/140 = 0.3357 

Probability of remanufacture = 1-0.3357 = 0.66 

Table 10 Exemplar data for quality calculation 

 T=1  T=2  

Kingston 40, R1= 0.6, R2=0.4   40, R1=0.03, R2=0.97 

Sault Marie 30 R1= 0.68, R2=0.32 30, R1=0.05, R2=0.95  

 

Based on the sample data, a batch with collections from Kingston and Algonquin over 2 

time periods would have a reuse quality ratio of 0.33, and a remanufacture quality ratio of 

approximately 0.66. These ratios are significantly different from the reuse and 

remanufacture ratios for either region based on T=1 or T=2.  

As such, the concerned parties may be able to optimize their shipping frequencies by 

timing and quantities and even expected quality ratios. It would be more economically 

viable to ship a batch after two time periods if it has 33% reuse rate, than to ship after 

every single time period. Thus, results from this model contribute in such acquisition 

policy decisions especially after the first 2 years.  

Thus it can be seen that the results from the solution proposed in this research comply 

with the research objective of creating a forecast model for return quality ratios such that 

it can improve profitability and decision making at strategic, tactical and operational 

stages. 

6.1.2 Comparison of Quality Ratios by Income Distributions 

According to the Bass Diffusion theory, the purchasing behaviour of consumers can be 

classified as innovators, early adopters, early majority, late majority, and laggards. The 
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groups from innovators to early majority are the ones with a higher rate of adoption. This 

essentially means that when a new product is released, they are the first to purchase it, 

thereby “adopting” it faster. For the context of this study, this “rate of adoption” 

translates as a factor that can influence the length of ownership. In other words, higher 

rate of adoption means more frequent purchases and quicker disposal of the previous 

device. Therefore, the rate of adoption can theoretically have an effect on the quality 

ratios. Under the assumption that income and consequently, spending power, is a decisive 

factor in whether a consumer falls under early majority or late majority, an attempt is 

made to use the forecast model in this study to compare the return quality ratios based on 

the income distributions of different places in Ontario.  Theoretically, communities with 

larger percentage of people falling in higher income brackets must generate higher 

quality ratios. 

Inputs 

The daily usage distribution was based on the individual income groups. The distribution 

for length of ownership was kept uniform across all income groups. Since the individual 

length of ownership data is not available for income groups, the provincial distribution 

was used.    

Toronto, Kingston and Windsor have been chosen for this comparison because they 

represent three different communities: large urban, medium urban and rural, respectively. 

The percentage of households with an income above $80K are the same for Kingston and 

Toronto at around 41%. However, they are slightly lower for Windsor at 32%.   

Discussion 

According to the results it can be seen that the quality ratios of reuse, remanufacturing 

and parts harvest over a period of T years are similar for Kingston and Toronto. The 

following observations have been made from the results: 

1. Windsor generally follows the same trend as the two other cities but shows some 

differences.   

2. In Figure 28 it can be seen that Windsor generates higher reuse ratios at a faster rate in 

year 1 compared to Toronto and Kingston. All three cities generate the same maximum 
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quality ratios for reuse which peaks at 0.35 before year 1. However, after the end of year 

1, the reuse quality ratio for Windsor depreciates faster as well, meaning, the quality 

becomes lower than the other two cities. The same exact trend can be seen for the 

remanufacturing ratios in Figure 29. However, it must be noted that the peak of the 

Windsor curve is higher.  This means that around the year 2 mark, the quality ratios of 

returns in Windsor will be higher than Toronto and Kingston.  

3. Similarly, for the parts harvest trends, Windsor generates higher ratios at a faster rate 

and depreciates at to its lowest value by the seventh year, which is much earlier than 

Toronto and Kingston.  

 

Figure 28 Income based reuse ratios 

 

Figure 29 Income based remanufacture ratios 
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Figure 30 Income based parts harvest ratios 

Analysis 
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imperative to have information about the length of ownership, since that is the major 

factor that discerns between the purchasing behaviours of the different categories of 

consumers. Since that information is missing, it is unclear how much of an impact 

income can have on quality ratios. The length of ownership dictates the profitability of 

reuse and remanufacturing operations and so, the relevant data on that would greatly 

affect the income based results generated in this study. This can be an area of future 

analysis when sufficient data is available on income-based length of ownership trends.  

6.1.3 Comparison of Quality Ratios from Major Cities in Canada 

It can be assumed that the social construct of a large urban city is such that it has a 

majority of innovators, early adopters and early majority. Other communities such as 

medium urban and rural areas will have purchasers that fall under the category of late 

majority and laggards. If the theory that the Bass diffusion model can affect return quality 

is true, then all cities should generate similar quality ratios. In order to analyze this 

statement, and whether the behaviour of all urban areas in Canada is uniform, regardless 

of the geographical (or provincial) location, the results of the model for some major 

population centers in Canada are compared in Figure 31. By keeping time period in each 

figure constant (for e.g. T=1, T=2), an attempt is made to study the differences in quality 

ratios of the cities purely based on daily usage behaviour.  

Inputs 

The daily usage distribution for each city and the length of ownership was based on the 

provincial distribution. 

 Discussion and Analysis 

1. For each time period T=1, T=2 and T=>3, as shown in Figure 31, Figure 32, and 

Figure 33 respectively, it is observed that Toronto, Vancouver and Winnipeg have 

the same ratios for reuse and remanufacturing. This means that these cities have 

no difference in return quality, in spite of different geographical locations. Thus, 

the consumers’ usage and return behaviours in these three cities can be described 

as similar.  

2.  Figure 31 shows the return quality ratios for the first year (T=1) for major cities 

in Canada namely, Toronto, Vancouver, Montreal, Winnipeg, and St. John’s. In 
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this figure, it can be seen that all the returns in the first year are either assigned to 

reuse (recovery number 1), or to remanufacturing (recovery number 2). The ratios 

of reuse and remanufacturing for Toronto and Vancouver are both the same. 

When it comes to reuse, St. John’s seems to generate the highest quality. 

Montreal, on the other hand shows lowest reuse quality and highest 

remanufacturing quality ratio. Analysing the age group distribution of these two 

places, it is found that Montreal has a larger percentage of population in the ages 

18-44 (48 %), than compared to St. John’s, which has 44% in the same age group. 

This means that the users in Montreal have longer daily usage hours than the users 

in St. John’s. This difference in total usage hours leads to higher reuse quality 

ratios for St. John’s as compared to Montreal.    

3. Figure 28 shows the return quality ratios for the second year (T=2) for major 

cities in Canada. From this figure it can be seen that out of all cities, St. John’s 

has the highest reuse ratios for the second year. This is attributed to the 

explanation that St. John’s has a lower percentage of people in the age group 18-

44. This means that the daily usage hours in St. John’s are comparatively shorter, 

thus returns are of a higher quality grade which make more of them eligible for 

reuse. All other cities generate significant ratios for remanufacturing. Once again 

in the second year it is seen that the model assigns zero returns towards recovery 

number 3 and 4 (with the exception of Montreal), which correspond to parts 

harvest and recycling. This is a valid result because in the first two years the 

economic value of the phone is high enough to make reuse and remanufacturing 

profitable regardless of the usage level. Once again, the remanufacturing ratios for 

Toronto and Vancouver are the same. Winnipeg generates higher remanufacturing 

ratios than other cities because it has lower reuse ratios. This is due to the fact that 

for the age group of 55+, Winnipeg has a percentage of 36, as compared to 

Toronto’s 34%. This means that the length of ownership for Winnipeg is longer, 

which means that in T=2, more returns are collected in Winnipeg than in Toronto. 

Longer length of ownership means longer total usage hours. This means that the 

quality grade of the returns will be lower, and therefore, the ratio for 

remanufacturing will be longer.    



 

102 

 

4. The quality ratios for Montreal are significantly different in each time period 

compared to the other cities. At T=1, shown in Figure 31, Montreal generates 

lower reuse ratios, and higher remanufacturing ratios. Since T=1 signifies that 

length of ownership is fixed at 1 year for this graph, the differences in the ratios 

must stem from the disparity in the daily usage hours between the residents of 

Montreal as compared to residents of other cities. Another anomaly with Montreal 

as compared to other major cities is that for T=>3, it generates larger ratios for 

parts harvest and recycling, rather than remanufacturing, as shown in Figure 33. 

The reason for this is that the return distribution for Quebec is a log normal trend. 

Compared to the Weibull return distributions for Ontario and British Columbia, 

the lognormal trend signifies that returns will be incoming for much longer years 

for Quebec as compared to the other two provinces mentioned. Due to the 

increase in length, the returns are more likely to be suitable for parts harvesting or 

recycling rather than reuse and remanufacturing.  From Figure 34, it can be seen 

that the remanufacturing ratios rapidly converge to zero for Montreal while they 

are sustained for up to 7 years for other cities.  

5. From Figure 34, it can also be seen that the quality ratios for remanufacturing are 

not uniform with time but rather follow a decay trend. Additionally, it can be seen 

that the ratios also vary by the region of location. Once again, the ratio trends of 

Vancouver and Toronto are exactly congruent. Winnipeg exhibits higher quality 

for year 3, but that rapidly decays below Toronto’s ratios. This can be explained 

by a comparison of the usage behaviours between Toronto and Winnipeg. The 

median daily usage hours for Ontario are 1.35 hours, while that of Manitoba are 

1.68 hours. Additionally, the median length of ownership for Ontario is 28 

months, and that of Manitoba is 25 months, which is around the 2-year mark.  

6. Essentially, this means that Manitobans may use their phones for slightly longer 

per day, but return them much earlier than users in Ontario. That’s why, at T=3, 

the ratio of Winnipeg is higher. However, for T>3, the impact of longer daily 

usage hours for Manitobans becomes more visible, leading to the decay in 

remanufacturing ratios as shown in Figure 34. Because Ontarians have a lower 
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daily usage value, they sustain higher quality ratios as represented by the ratio 

trend for Toronto. 

7. No matter what the total usage hours of any device is, it will always be profitable 

to reuse or remanufacture it in the first year. This is due to high market value of 

product.  

 

Figure 31 Quality ratios for major cities, T=1 

 

Figure 32 Quality ratios for major cities, T=2 
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Figure 33 Quality ratios for major cities, T larger than 2 

 

Figure 34 Remanufacturing ratios for major cities 
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WEEE clean-up act. Thus, when designing the reverse logistics network for a vast area 

like Ontario it becomes important to make a distinction between rural and urban 

communities, and incorporate the disparity in strategic planning of a province wide RLN, 

in order to make sure the network design is sustainable and profitable across all consumer 

zones. 

Inputs 

 In order to study the quality ratios of returned products from urban and rural, the 

simulation was run with daily usage distribution for urban from Forum Research, and 

length of ownership distribution for urban from CWTA, 2016. To generate rural results, 

the simulation was run with the inputs for the corresponding rural distributions from the 

same sources.  

Discussion of results 

The results support the hypothesis that rural and urban areas generated significantly 

different quality ratios in each year.  Through observation of the results it can be deduced 

that: 

1. Rural areas generate very less quantity that is eligible for reuse only in the first 

year. For remanufacturing, the rural areas generate significant quantities spread 

out over the first 5 time periods but nothing after that. The highest quality ratio for 

remanufacturing from rural areas would occur around the first year only. After 

that, the ratio keeps decreasing.  

2. On the contrary, urban areas generate reusable quantities continuously for up to 

two years. Additionally, the ratios of remanufacturable units generated by urban 

areas remain considerable higher up to the 5th year (or T=5).  

Comparing the results for urban and rural areas, it can be seen that urban areas generate 

more quantities for Recovery Option 1 & 2, which correspond to reuse and 

remanufacture. Conversely, rural areas generate more return quantities in latter years, 

thereby generating higher ratios for parts harvest and recycling. 

Another observation is that rural areas generate significant amount of recyclable phones. 

However, the spectrum for urban ratios does not show any ratios for recycling. This is 
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observed as where there is no scatter line observed corresponding to Recovery Number 4 

(which denotes recycling), for urban ( 

 

Figure 35) as compared to the scatter line for rural areas (Figure 36).    

Analysis of results  

The results suggest that urban users generate higher return qualities than rural areas. This 

can be explained by the fact that urban users have shorter length of ownership. Therefore, 

they return their phones quicker, with lesser cumulative run time than rural users.  

On the contrary, the length of ownership of users in rural areas is modeled by a 

lognormal distribution. This means that the peak number of returns will occur within the 

earlier years but the return behaviours of the rest of the people will exhibit an 

exaggerated delay. In other words, rural users will hold on to their devices for longer 

before they purchase a new one. This means that at the time of return, their devices will 

have a larger number of cumulative run time hours. Due to this, the phone will be more 

prone to failure. Moreover, due to the long time in years, the market value of the phone 

will deem it unprofitable for remanufacturing. Therefore, it is seen that more returns from 

rural areas end up as recycling than returns from urban areas.  

 

 

Figure 35 Returns from urban areas 
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Figure 36 Returns from rural areas 

6.1.5 Comparison of Model Trends with Literature  

Much of the research that studies the impact of uncertain return quality on network 

logistics makes the assumption that the quality distribution is:  

 Known and deterministic 

 Constant with time 
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However, through the analysis of the results generated in this research, it is evident that 
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Market price for reused and remanufactured product  

Firstly, according to Ostlin et al., (2009), it is seen that the market price for the reused 

and remanufactured products both follow exponential decay trends in Figure 37. 

However, the decay rate of remanufactured products is slower, which means that it 

generates higher market value than reused product. A comparison of the same trends 

based on the equations of the proposed forecast model shows that they align with trends 

by Ostlin et al., (2009) as shown in Figure 1. It can be seen that the market reuse price of 

the model is always lesser than the market price for the manufactured product.  

Secondly, the same authors also suggest that the remanufacturing cost of the product 

increases exponentially as the quality of the returned core (or the usage level) goes from 

high to low. The corresponding trend for this as per the forecast model is shown in Figure 

38 . A comparison between Ostlin et al.’s (2009) trend and the forecast model trend leads 

to the following discussion: 

 Both trends suggest that the remanufacturing cost increases as the quality level 

decreases.  

 However, unlike Ostlin et al.’s (2009) suggestion that the remanufacturing cost 

increases infinitely, the current model suggests that the remanufacturing cost 

increases until it reaches a peak after which the cost stays the same regardless of 

the usage level. An attempt is made to explain this difference below. 

Explanation for difference in trend  

In order to analyze the forecast model’s behaviour in reaching a maximum value for 

remanufacturing cost, it is important to consider the input variables that govern it: the 

total usage hours (u), and the market value of the components at time (t).  

As the total usage hours increase, the component failure rate will increase until it reaches 

a point where all components have failed. Beyond this point, no matter how much more 

usage hours the device accumulates, the failure probability will stay the same i.e. all 

components have failed and thus, all components need to be replaced.  
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Figure 37 Comparison of reused and remanufactured market value 

Similarly, for the time-dependent market value of components, the value follows a 

depreciation curve which will eventually lead to low values that are negligible.  

Thus, both input variables that are used in the calculation of remanufacturing cost hit a 

limit. The highest remanufacturing cost will occur when all components have failed and 

need to be replaced. As the market value of these replacement components decreases and 

stabilizes, the remanufacturing cost will also stabilize. Thus the trend depicted in Figure 

38, which suggest that remanufacturing cost will eventually reach a constant value 

irrespective of usage level is justified and seems more appropriate for this case than 

Ostlin et al.’s (2009) suggestion that it rises infinitely.  

An additional comparison is made between the remanufacturing cost and the 

remanufacturing profitability with respect to usage level as shown Figure 39. It can be 

seen that as usage level (or total hours) go from low to high, the remanufacturing cost 

increases until it reaches the maximum. However, the profits decrease exponentially with 

the increase in usage until they reach 40% of their initial value. The result suggests that 

after this, the profitability will depreciate at a lower rate. This is actually in line with the 

market trend for iPhones that depreciate their value to 37% very rapidly before their 

value can stabilize. After hitting 37%, the market value of the model usually spends a 
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significant time (in years) between 37% to 25% but it doesn’t seem to reach to the value 

of zero, as evident from the current market price of iPhone 4 even after more than 6 years 

of release.      

 

Figure 38 Remanufacturing costs with respect to quality 

 

Figure 39 Comparison between remanufacturing costs and profit 
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6.2 Sources of Error and Sensitivity Analysis 

In order to establish the robustness of the forecast model, the sources of errors must be 

mentioned. Firstly, one source of error is in the statistical reliability of the data which was 

taken from the Forum Research Survey. This data was published in the form of 

percentages of people for each age and income group that use their phone for a certain 

number of hours. The sample size of survey was uniform for all provinces and age 

groups. This can lead to an inaccuracy due to the larger population of some provinces 

such as Ontario as compared to other provinces. Moreover, the reliability of the survey 

data really depends on how accurately the respondents represented themselves in terms of 

their socioeconomic status, and whether they were reporting their absolute daily usage 

hours without any bias. Thus it can be seen that the source of errors in the survey can 

produce some numeric errors into the forecast model. However, this would not affect the 

overall contribution of the forecast model which asserts the statistical differences in the 

quality ratios based on age groups and region of location, nor would it change the 

mathematical formulation of the model.      

A second source of error is in the reliability calculations of the LCD module of a 

smartphone. The LCD module has several failure modes: stuck pixels, backlight failure, 

backlight brightness reduction, unresponsiveness, delayed response, etc. Due to lack of 

availability of sufficient literature on the numerical calculations of the LCD reliability 

that takes into account all the failure modes, this model only considers the backlight 

brightness reduction in its reliability calculations.  

Finally, another source of error stems from the absence of having any empirical or 

historic information of return quality ratios based on region and age groups. Availability 

of such data would allow the mean square error calculations which would help to 

establish the tolerance level of the forecast model.    

In order to establish some degree of robustness for the forecast model in the absence of 

relevant data that would be need for error calculations, sensitivity analysis has been 

carried out in lieu.    
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In part 1 of the sensitivity analysis, a comparison is made between the results for different 

survival functions for LCD module. Since LCD module is the one of the costliest 

component of the smartphone, its failure probability will highly affect the profitability of 

recovery decisions. In all the models so far, exponential failure probability has been used 

for the LCD module, as shown for the case of Toronto in Figure 40 and Figure 42. In 

Figure 41 and Figure 43, the LCD failure is modeled using the empirical failure 

distribution devised based on failure data by Wang (2011), who proposes a Burr XII 

distribution for LCD survival. It can be seen that the change in LCD survival rate has a 

profound effect on the results of the model. Under the exponential distribution, the model 

generates sufficient ratios for all three recovery options: reuse, remanufacture and parts 

harvest. However, under the empirical distribution, there are no ratios for parts harvest. A 

comparison of the survival probabilities in Figure 44 shows that the exponential failure 

probabilities decay much faster than the empirical model for the same total usage hours. 

Therefore, they depict a higher probability of failure. Comparatively, the empirical model 

shows higher rates of survival for the same total usage hours.        

 

Figure 40 Histogram for Toronto with exponential LCD failure 
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Figure 41 Histogram for Toronto with empirical LCD failure 

 

Figure 42 Toronto spectrum with exponential LCD failure 
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Figure 43 Toronto spectrum with empirical LCD failure distribution 

 

Figure 44 Comparison of LCD survival probabilities from exponential and empirical 

distributions 
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with the results in Figure 42 (base case with MCTF=500), it can be seen that lesser 

returns are allotted to remanufacturing when leads to some feasibility for recycling. 

However, it can be said that the effect of battery failure rate is not as high as the effect of 

the LCD failure rate on the results of the model.    

6.3 Applicability 

This section discusses the applicability of the results from the forecast model for various 

parties in reverse logistics. It also discusses what kind of products the model can be used 

for, and its adaptability in the face of dynamic consumer behaviours. 

 

 

Figure 45 Toronto spectrum with battery mean failure at 1000 cycles 

6.3.1 Applicability for OEMs, Retailers, Third Party, and Governmental 

Reprocessors  

OEM’s: The results from this model can be used by OEMs to plan their reverse logistics 

network design, make procurement decisions based on each period, and increase the 

profitability of their recovery processes overall.  
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Retailers: The results of the model may not be directly applicable for retailers because 

they are mainly concerned with collection, and not carrying out reprocessing activities. 

Therefore, the value that the information this model brings to the network design or 

operations of reverse logistics network is not directly applicable to retailer. Moreover, 

retailers usually take part in gatekeeping, which means they assess the device quality at 

the time of acceptation from the user. This means that they have accurate information of 

individual units, albeit after they are collected. As such, there is no scope for prior 

information generated through a forecast model for the retailers. However, if a retailer 

successfully creates a database for each device collected in terms of its usage level, 

location of collection, and quality grade, then this data can be used to validate and 

improve the accuracy of the proposed forecast model.   

Third Party Collectors: Through the results of this forecast, one can predict which 

regions and which time periods will generate high quality ratios. Based on this, third 

party collectors can allocate their collection efforts wisely and also use the results for 

forecasting or quoting the price for their collected batches before the physical collection 

of the used phones or sample testing.  

Governmental Reprocessors: Among all the concerned parties in reverse logistics, 

governmental agencies are the ones that prioritize environmental benefits more than 

economic profitability. As such, it is in the best interest of the governmental agencies to 

reduce the overall WEEE from a province, rather than just generate profits. The results of 

this model can help the government gauge WEEE quality ratios in all areas, rural or 

urban, of a province or the country at large. Based on these results, the government can 

perhaps subsidise collection and reprocessing of WEEE from areas that do not seem 

lucrative enough for other parties in the RLN to initiate reverse logistics activities there. 

Moreover, the province wide recycling ratios estimation can help effectively plan the 

number and capacity of the recycling depots required. Results of this model can also be 

used for governments of different provinces to collaborate and build a more robust 

country-wide system for WEEE waste reduction. Since Canada is so large area wise, the 

long travel distances, which ultimately lead to higher transportation costs and carbon 

emissions, can be ignored if governments collaborate with each other. For e.g. WEEE 



 

117 

 

returns from Kingston might be sent to a reprocessing facility in Montreal instead of one 

in Southern Ontario so as to save on transportation costs. This is one way through which 

the results of this may help governmental reprocessing schemes.  

6.3.2 Applicability to Product 

The forecast model devised in this study is more appropriate for short lived electronic 

products as compared to large white goods. This is because the purchase behaviour of 

large white goods is more or less stable and can be forecasted effectively through historic 

data. In addition to that, the usage distribution of large white goods is deterministic and 

measured on household level. It does not vary based on individualistic socioeconomic 

characteristics. Therefore, the applicability of the forecast model is for short-lived 

consumer electronics, specifically smartphones. 

Within the smartphone industry, this model would be more useful for phones which 

actually sustain appreciable market value over time, and phones for which there is a 

substantial secondary market for reused and refurbished quality grades.  Since the model 

also considers the concept of selling used parts from the phone through parts harvest, it 

would be safe to say that the model cannot be applied to smartphone brands whose 

components do not retain value in the used parts market.  

6.3.3 Adaptability of the Model for Future Trends 

Since consumer behaviour, especially in the smartphone industry is not known to follow 

any time series pattern until date, it is safe to say the usage and length of ownership 

distributions used in this study are bound to change. However, this will not negate the 

applicability of the model. This is because the model allows the parameters or 

distribution types of the input variables to easily be changed so as to reflect current 

distributions changes in customer behavior. On a speculative note, in the future, when the 

consumer behaviour in the smartphone industry converges or reaches a stable state, the 

usage distributions may not be subject to changes in parameters. At that point, the 

parameters in the model would not need to be updated so frequently. Regardless, the 

changes in parameter do not translate as a need for any changes in the underlying system 

of equations of the forecast model. 
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CHAPTER 7 

 CONCLUSION AND FUTURE RESEARCH 

7.1 Conclusion 

Return quality is a widely uncertain parameter in reverse logistics that can potentially 

affect the profitability of product recovery operations. It is caused by the unique and 

largely varying consumer behavior, especially of short lived electronics. In order to plan 

a cost-effective reverse supply chain for these electronics, it is crucial to have a 

quantitative forecast of the return quality ratios over multiple periods. 

To this end, this research proposes a forecast model for return quality which can help fill 

the gap in present literature. Since, the root cause of randomness in return quality is the 

variations in consumer behavior, this research proposes a model which can gauge 

consumer behavior by finding usage trends based on socioeconomic factors such as age, 

income, education and region of location. Based on these consumers’ usage trends, the 

model then assesses usage-based failure rates of used product, market trends and 

technological age of the product for future returns to predicts the optimum recovery 

decisions for future returns. The main contribution of this research is in determining the 

relation between product categorization by socio-economic factors and the return quality. 

Through the results generated in the research, it can be seen that return quality ratios are, 

in fact, dependent on the age group, and the location of the user. A comparison of the 

return quality ratios for the major cities in Canada showed that provincial location also 

plays a part in determining the quality distribution. However, some major cities exhibited 

the same quality ratios regardless of being from different provinces, such as Toronto and 

Vancouver. In addition, the results suggest that the variations in daily usage hours based 

on income groups do not affect quality distribution at a significant level. However, it 

remains to be seen how length of ownership based on income groups alters the results for 

future work.     

Through detailed explanation of the results, it has been established how the results 

generated by the model can be used by various parties such as OEMs, retailers and 

informal collectors. An explanation has also been provided as to how the results can be 
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applied to contribute to the process of reverse logistics network design, procurement 

decisions and improving profitability of the recovery processes. 

7.2 Recommendations for Future Research 

Future research can work towards quantifying the error of the results, and improving the 

reliability of the forecast model. In order to achieve this, it would firstly be necessary to 

record data of the quality level of returned phones along with their date of purchase, daily 

usage and date of return. Through collection of real life data, it would be possible to 

calculate an error value for the results of the forecast model. 

 It is also recommended that future research make an attempt to include cosmetic 

condition, along with the functional condition, of the phone as part of the failure 

probabilities as well, and factor in the cost of replacing the outer casings. This model 

only considers functional condition. 

The presented model only concerns passive user returns through consumers’ inherent 

willingness to return. As such, it provides estimates of the base case. In order to forecast 

overall quality ratios and model the effect of product take-back schemes, the model can 

be altered to reflect acquisition costs such as constant incentivized returns, or quality-

based incentivized returns. Future research can model the effect of such costs on the 

resulting quality ratios. Additionally, in future models, the costs of disassembly for parts 

harvest, inventory costs, and also the costs associated with discarding parts that cannot be 

resold can also be included. 

The proposed forecast model, as a first of its kind that predicts future quality ratios, 

provides a strong mathematical framework that can be further built upon to improve 

accuracy and reliability of various other phenomenon that affect return quality. 
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APPENDICES  

Appendix A Device usage and ownership distributions by provincial 
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Appendix B Copyright permission from CWTA 

The data from the report was used to generate the length of ownership distribution for the 

different age groups and different provinces in Canada. 

Ashley Sverdrup-Yap via nanosresearch.onmicrosoft.com  

 

May 15, 2019  

2:36 PM (44 

minutes ago) 

  

 

to me 

 
 

Hi Aamirah, 

We just confirmed with the Canadian Wireless Telecommunication Association (CWTA 

who sponsored the study) and you are more than welcome to use the data found in this 

report: 

http://www.nanos.co/wp-content/uploads/2018/06/2017-1097-CWTA-Recycling-

Populated-report-Public-Version.pdf 

Regards,  

Ashley Sverdrup-Yap 

Assistant to the President 

Telephone  613.234.4666 x237 

Skype execassistnr 

  

More information > http://www.nanos.co 

Nanos live data portal (ballot, economic sentiment, issues) 

> http://www.nanos.co/dataportal/ 

 

  

https://support.google.com/mail/answer/1311182?hl=en
http://www.nanos.co/wp-content/uploads/2018/06/2017-1097-CWTA-Recycling-Populated-report-Public-Version.pdf
http://www.nanos.co/wp-content/uploads/2018/06/2017-1097-CWTA-Recycling-Populated-report-Public-Version.pdf
http://www.nanos.co/
http://www.nanos.co/dataportal/
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Appendix C Copyright permission from Forum Research Inc. 

The following thread of emails shows approval to use data set published by Forum 

Research Inc.  

>On Tuesday, April 30, 2019, Gary Milakovic <G****@forumresearch.com> wrote: 

Hi Aamirah, 

You apply to use the data through the dataverse. You’d request the Federal dataset from 

Jan 2018 (ensure the codebook has the questions you want) and then you’d be able to use 

the data in your research.  

 https://dataverse.scholarsportal.info/dataverse/forumresearch 

 Gary 

From: Aamirah Mohammed Ashraf 
Sent: Tuesday, April 30, 2019 10:55 

To: Gary Milakovic 

Subject: Re: Permission to use Forum Research News Release in Student Research 

Hello Gary, 

Yes, I had a librarian from the University of Toronto retrieve this news release from data 

verse for me a while back. I had applied and received access after a few days. So does 

that mean I’m all set? Do I need any other written authorization?  

Once again thank you for prompt help! 

Aamirah Mohammed  

 

 

 

 

 

mailto:G****@forumresearch.com
https://dataverse.scholarsportal.info/dataverse/forumresearch
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Gary Milakovic <G****@forumresearch.com> 

 

Apr 30, 2019, 

11:25 AM 

  

 

to me 

 

 

Hi Aamirah, 

 

That's all you need. 

 

Thanks!    

Gary 
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Appendix D Permission to use data through Dataverse Portal 

Dataverse portal access received for use of data presented in Forum Reseach Inc. 

Dataverse Support <DATAVERSE-SUPPORT-L@listserv.utoronto.ca> 

 

 Mon, Feb 11, 

8:46 AM 

  

 

to me 

 

 

Hello,  

Access granted for files in dataset: Forum Research Political Poll - Federal Issues 

(Canada) 2018 (view 

at https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/FZO8

KC). 

 

You may contact us for support at DATAVERSE-SUPPORT-

L@LISTSERV.UTORONTO.CA. 

 

Thank you, 

Dataverse Support 

 

  

https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/FZO8KC
https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP2/FZO8KC
mailto:DATAVERSE-SUPPORT-L@LISTSERV.UTORONTO.CA
mailto:DATAVERSE-SUPPORT-L@LISTSERV.UTORONTO.CA
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Appendix E Data and trends for New and Used Component Pricing 

The following table shows pricing for new OEM parts by year. This price data was taken 

from ebay (2019) and Mobile Sentrix (2019) in April 2019. 

Year 2013 2015 2016 2017 2018 

t 6 5 3 2 1 

Component/Model 5S 6 7 8 XS 

Home button $1.16 $1 $7 $7.26 N/A 

Charging port $1.71 $4.1 $6.85 $8.68 $11.2 

Display New $16.09 $25.76 $47.54 $73.93 $348.88 

Camera New $3 $2.96 $21.5 $38.81 $39.77 

Battery $6.35 $6.89 $9.98 $12.89 $29.83 

 

The following table shows pricing for used OEM parts by year. 

Model 5S 6 7 8 

Year 2013 2015 2016 2017 

t 6 4 3 2 

Home button 26.69  6.97 20 

Charging port 8.8 24 13 30 

Display  42 33.38 50 106 

Camera Used 6.5 8.52 30 52 

 

 

y = -1.7887x + 12.59
R² = 0.9886
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