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ABSTRACT 

 

This thesis presents the research work that was conducted to model passenger mode 

choice behavior during the peak period in the Windsor-Essex area. The research focused 

on investigating the presence of preference heterogeneity in the mode choice process. 

While socio-economic characteristics are important variables influencing the type of 

chosen mode, identifying the presence of heterogeneity with regard to level-of-service 

(LOS) attributes across different socio-economic subgroups of population is also 

important. Using a dataset extracted from the 1997 Windsor-Essex Household Travel 

Survey, Multinomial and Mixed Logit models were developed. The results identified a 

number of significant socio-economic variables. Also, the results suggested the presence 

of heterogeneity among various population subgroups for work, non-work and shopping 

related trips. Simulations were performed to analyze the single and combined effects of 

various LOS and residential intensification initiatives on mode choice probabilities. The 

recommendations from this research provide useful insights about the factors influencing 

the choice of travel mode, as well as the impacts of policy initiatives on mode choice 

behavior. 
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CHAPTER I 

INTRODUCTION 

1.1 The Research Problem 

The mode choice of transportation is one of the most significant aspects of daily travel. 

Understanding and predicting travelers’ mode choice behavior is important to reduce the 

number of single-occupancy vehicle travel and encourage travelers to choose more 

sustainable modes such as public transit, walk, bicycle, etc. Travel demand is generated 

by individual travelers as a result of their choice of when, where and how to travel. Work 

related travel has long been considered as the major demand on the urban transportation 

network and a main contributor to the peak period severity. However, over the last two 

decades, changing life styles, increased auto ownership and time use patterns in many 

North American urban centers have resulted in a gradual increase in non-work travel 

during peak hours (Habib and Sasic, 2012). Non work travel demand is derived from 

activities that are not related to work and can partly be characterized by the need to make 

stops during the morning and evening commutes. It is obvious that understanding the 

mode choice behavior for both work and non work trips is essential to formulating 

efficient transportation control measures.  

 

In the context of transportation modeling, mode choice models were the primary 

applications of discrete choice theory in the 1960s and 1970s (Hendrickson, 1984). A 

behavioral principal known as Random Utility Maximization is the foundation of discrete 

choice models. Through this principal, a mathematical expression, based on the utility 

functions, is developed for predicting a person’s choice (Ben-Akiva and Lerman, 1985). 
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Mode choice models attempt to estimate trips between origin and destination for each 

travel mode. The models help analysts forecast the activity patterns of urban travel and 

levels of travel demand on a transportation network. In mode choice models, travelers’ 

socio-economic characteristics, departure time, route choice and LOS variables (travel 

time and cost) are typically utilized to characterize the traveler, trip and chosen mode        

(Xie et. al, 2003 and Koppelman and  Bhat ,2006). Based on these characteristics, the 

probability of choosing a particular mode can be predicted using discrete choice models 

(Ben-Akiva and Lerman, 1985). 

 

Traditionally, Multinomial Logit (MNL) and Nested Logit (NL) models have been used 

to predict mode choice behavior. However, these models cannot capture the difference in 

preference towards attributes of a specific mode among socio-economic groups called 

“heterogeneity”. To overcome this limitation, recent efforts have been focused on 

adapting more advanced discrete choice models such as Mixed Logit (MXL) model to 

predict mode choices. This research contributes to this emerging paradigm and attempts 

to address this knowledge gap by analyzing the choice of modes for work and non-work 

trips in the Windsor-Essex area of Ontario, Canada, using travelers’ survey data for the 

year 1997. Accounting for preference heterogeneity in mode choice of travel may allow 

for realistic projections of the reduction in auto mode share and increase in the mode 

shares of public transit and non-motorized mode such as walking and bicycle (Habib and 

Sasic, 2012). 
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Efficient transportation network stimulates economic growth. In the context of the 

Windsor-Essex area, the inherent auto preference and the lack of public transit beyond 

the administrative boundaries of the City of Windsor are causing inefficient traffic 

operations, hurting local economy and contributing towards environmental pollution. In 

order to reduce single-occupancy vehicle travel and influence travelers to choose more 

sustainable modes, such as carpool, public transit, walk and bicycle etc., it is important to 

understand and predict traveler’s mode choice behavior. With the advancements in Logit 

model estimation and availability of sophisticated simulation methods, renewed efforts 

are required to develop a state of the art independent and transferable mode choice model 

to analyze mode choice behavior for passenger travel in the Windsor-Essex area.  

 

1.2 The Research Objectives 

The objectives of this thesis are to develop mode choice models for work and non-work 

travel using the Mixed Logit model to identify the factors affecting travelers’ mode 

choice behavior. Emphasis is placed on identifying the sources of heterogeneity in the 

random parameters of the Mixed Logit model. Mixed Logit models will be estimated to 

identify factors influencing work and non-work mode choice and to account the 

heterogeneity in mode choice preferences. 

The specific objectives of this research are: 

1. To investigate the socio-economic and level-of-service (LOS) factors 

influencing travelers’ mode choice in the Windsor-Essex area; 

2. To investigate the existence of preference heterogeneity in  mode choice 

of passenger travel in peak period; 
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3. To employ the extended capabilities of Mixed Logit to estimate mode 

choice models for work and non-work related travel; 

4. To gain in-depth understanding of the behavioral process of traveler’s 

mode choice for work and non-work trips; 

5. To evaluate the impacts of different policy initiatives on the mode choice 

probabilities. 

 

These objectives will be achieved primarily by modeling the micro-data from the 

Windsor-Essex Household Survey, conducted in 1997. Windsor-Essex area land use, 

road transportation and public transit network datasets, provided by Desktop Mapping 

Technology Inc. (DMTI) and Statistics Canada will also be used to model the mode 

choice behavior of passenger travel in the Windsor-Essex area. 

 

1.3 Thesis Outline 

The thesis is organized as follows. Chapter II provides a description of choice behavior 

theory, elements of Random Utility discrete choice models, different types of Logit 

models and synthesis of literature concerning the mode choice modeling in transportation 

research. The chapter concludes with a summary of the models that have been commonly 

used in the past to model the mode choice behavior. 

 

Chapter III outlines the methods of analysis used in this research. The chapter also 

describes the study area, lists the sources of data needed for the research and techniques 
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for estimating LOS variables. The descriptive and preliminary analysis of the extracted 

dataset of Windsor- Essex Household Travel Survey is conducted in this chapter. 

 

Chapter IV provides analysis of data representation, results of data exploration for work 

and non-work trips. Estimation results of Multinomial and Mixed Logit models for work, 

non-work trips and shopping trips are presented. Model predictions, model elasticities 

and model simulations are conducted. 

 

In chapter V, the key findings of the research are summarized. Research contributions 

and transportation policy implications are discussed. Finally, the thesis concludes with 

some recommendations for future research. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Theory of Choice Behavior 

According to Ben-Akiva and Lerman, (1985) an ideal choice behavioral theory has three 

main elements. It should be descriptive, abstract and operational. In other words, the 

theory should postulate how individuals behave, it should not be limited to specific 

circumstances and the variables of the estimated models should be quantifiable. 

However, there is no universally accepted choice theory the meets all three requirements 

Ben-Akiva and Lerman, (1985). Most theories differ in the level of conceptualization of 

the process that results in observed choices, however the sequential decision-making 

processes such as, definition of choice problem, generation of alternatives and evaluation 

of attributes of alternatives, and implementation of observed choice are common to most 

of the choice theories. Discrete choice models rely on behavioral theory which represents 

the choice behavior of an individual person or group of person. The elements of 

disaggregate discrete choice models are disused in the next section. 

 

2.2 Elements of  Disaggregate Discrete Choice Models 

The following elements represent a set of procedures that define the basis of disaggregate 

discrete choice models (Ben-Akiva and Lerman, 1985): 

The Decision-Maker 

In disaggregate discrete choice models, individual person or group of persons such as 

families or households can be represented as an entity to take the role of decision maker. 

In general, the choice situations and tastes or preferences of individuals vary 
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considerably. And these differences in decision-making processes need to be taken into 

consideration. Due to the disaggregate nature of these models, the socio-economic 

characteristics of the decision-makers, such as gender, age, income, employment etc. play 

a vital role in modeling the choice behavior of the decision makers. 

The Alternatives 

Alternatives are the choice options available to a decision-maker in a given situation. The 

choices are made from a non-empty set of alternatives. The universal set of alternatives is 

determined from the environment of the decision-maker. Based on the feasibility and 

prior knowledge of certain alternatives, the decision maker, considers a subset of 

universal set, termed as choice set. The feasibility of alternatives is directly related to 

personal and environmental constraints such income, time availability, lack of service 

(e.g. in case of transit service) or lack of information. 

 

The Attributes 

The attributes of an alternative form the general characterization of its attractiveness. The 

attractiveness is evaluated in terms of attribute value that could be ordinal (speed 

perception of the alternative, e.g. auto is the fastest mode) or cardinal (travel cost of the 

alternative e.g.  $ 0.15/km). The choice of an alternative can vary among decision-makers 

and is largely conditional upon the attributes of each potential alternative. 

The Decision Rule 

Whenever the decision-maker is subjected to making a choice from a choice set 

containing two or more alternatives, a decision rule is needed. Essentially the decision 

rule is a mechanism, through which the decision maker processes all the available 
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information pertaining to choice set and the attributes of the alternatives forming the 

choice set and selects an alternative. A wide array of decision rules have been used in 

discreet choice applications. In the field of travel demand and mode choice modeling, the 

most commonly used decision rule is based on utility maximization theory. This decision 

rule is based on a single objective function, utility, which expresses the attraction or 

preference of an alternative in terms of its attributes. A detail description of this theory is 

presented in next section. 

 

2.2.1 Random Utility Maximization 

Discrete choice models predict the probability of individual’s choice among discrete 

alternatives (Train, 2009). Disaggregate discrete choice models allow for a more flexible 

representation of the policy variables. Unlike aggregate models, disaggregate models 

incorporate observed choices, made by individual travelers and can be applied at any 

aggregation level.  Disaggregate models are probabilistic and less likely suffer from 

biases due to correlation between aggregate units (Train, 2009). Random Utility 

Maximization principle is the most common theoretical base for discrete choice models. 

The principle states: 

A decision maker n chooses the alternative i that provides the greatest utility from a set of 

feasible discrete alternates (Train, 2009). The mathematical form of the utility is given as: 

                                                          Uni =  Vni + εni 

where Uni   is the utility for alternative i perceived by decision maker n; Vni   is the  

observable utility for alternative i by decision maker  n (deterministic/measurable part of 
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utility) and εni  is the estimation error for alternative i  by decision maker  n  ( random part 

of utility capturing uncertainty). 

Utility functions 

Utility functions,      are related to the indirect utility of choosing a particular alternative, 

which is expressed as a function of variables,     and corresponding coefficients,    . The 

general form of the utility functions is given below: 

    ∑      

 

  

 

where       represent coefficients and       represent the attributes of alternative i and 

decision maker n. 

 

Utility functions incorporate attributes that are exclusively related to alternatives and 

socio-economic characteristics of the commuters and reveal interaction between 

attributes of alternatives and characteristics of the commuters. The alternative attributes 

are measureable and are helpful in understating the process of commuter’s choice 

behavior among given alternatives, i.e. the commuters choose the mode with the highest 

utility.  

Generic Variables 

There are two types of variables (attributes), specified in utility functions,    . When the 

utility value of variables is deemed to be identical across the available alternatives, then 

the variables are treated as generic variables. Generic variables are used for all the 

alternatives with same weight or coefficients.  
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Alternative-Specific Variables 

Conversely, when variables with attributes specific to a certain alternatives are used in 

the model, then they are termed as alternative-specific variables. Alternative-specific 

variables with different weights are used for different alternatives. In certain situations 

travel time and travel cost are used as generic variables, with the assumption that a 

minute/a cent has same marginal (dis)utility whether it is incurred on auto or transit 

mode.  

 

Consider the following three alternative mode choice scenario: 1-Auto drive, 2- Auto 

Passenger, 3-Transit.  The functional form of utility functions is given below: 

V1 = 1TT1 +  TC1       ;              V2 = 2TT2 +  TC2            ;           V3 = 3TT3 +  TC3 

where, TT1, TT2 and TT3 are alternative specific variables; TC1, TC2 and TC3 are generic 

variables; TT = Travel time; TC = Travel cost and  ,   are  weights or coefficients of 

the variables. 

Alternative-specific constants 

 The presence of an alternative-specific constant in the utility functions is related to the 

systematic preference for each alternative. In other words it captures the average effect on 

the utility of all factors that are not included in the model. For n number of alternatives, 

(n-1) alternative-specific constant are needed in the Logit model. One constant is 

normalized to zero by not including in the model. The other constants in the utility 

functions of the model are interpreted relative to the constant which is normalized (Train, 

2009).  
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Specification of the utility in the presence of an alternative-specific constant takes the 

following form: 

                                                   V1 = 𝛳1+1TT1 +  TC1 

where, 𝛳1= Alternative-specific constant  

 

2.3 The Logit Model 

The Logit probability, Pni, of choosing an alternative i by a decision maker n from choice 

set   n , is given as (Train, 2009): 

                   Pni = Prob ( Vni +  ni > Vnj +  nj ,  ) where j   and  i,j   n      

                                            Pni = Prob ( nj –  ni < Vni – Vnj ) 

The Logit Model is obtained by assuming that error components (εnj – εni), are 

independently (no covariance) and identically (same variance) distributed across 

alternatives and/or individuals (Koppelman and Bhat, 2006). The implications of this 

assumption are that there is no covariance between errors for alternatives i and j, i.e. Cov 

(εnj – εni) =0 and error structure is identical for decision maker n and both alternatives i 

and j. The logistic distribution (or Gumbel) is used to derive the probability. The succinct 

closed form expression of Logit model for two alternatives is as follow: 

                     
         

                  
       ;                 

         

                  
 

These expressions are defined as a Binary Logit model, i.e. model with two alternatives. 

As shown in Figure 2.1, Gumbel distribution of error components (εnj – εni), closely 

approximates Normal distribution.  
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Figure 2.1 Gumbel and Normal Distributions for same Mean and Variance 

(Koppelman and Bhat, 2006) 

The Normal distribution assumption for error terms results in Multinomial Probit model 

(MNP). However, due to numerical and interpretation problems, the use of MNP in 

choice analysis is limited (Koppelman and Bhat, 2006). The variance of Gumbel 

 The mean   and variance 2
 

indicate the location and spread of the Gumbel distribution (Koppelman and Bhat, 2006). 

 

Figure 2.2 shows the sigmoid (S-shaped) relationship of Logit probability Pni to alternative 

i’s utility. Relative to other alternatives, the sigmoid shape limits the probabilities between 0 

(when the utility of alternative i is very low) and 1 (when the utility of alternative i is very 

high). This implies that when the utility of an alternative is relatively very high or very low, a 

small increase in the utility of this alternative will not substantially affect its probability of 

being chosen. When the probability is close to 0.5 (maximum slope along the sigmoid 

curve), the greatest effect of an increase in utility, on choice probability is observed. A 
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small improvement in attributes of an alternative can shift the mode choice resulting in 

larger change in probability (Train, 2009). 

   

Figure 2.2 The Sigmoid Logit Curve (Train, 2009) 

 

2.3.1 Multinomial Logit Model 

Logit model with more than two alternatives is referred to as the Multinomial Logit 

(MNL) model. The form of MNL model is given below: 

                                                         
         

∑              

 

Multinomial Logit model is also derived under the same assumption that the error terms 

of the utility functions are independent and identically Gumbel distributed (Train, 2009). 

MNL model has been a very popular choice for mode choice analysis since the 
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probabilities can be calculated without use of numerical integration or simulation 

methods. 

Independence from Irrelevant Alternatives (IIA) property 

The Independence from Irrelevant Alternatives (IIA) property is the main disadvantage of 

Logit model. This property implies that relative probability of choosing an alternative is 

independent of mode choice set.  More explicitly the property states: 

“The ratio of Logit probabilities for any pair of alternative i and k is independent of any 

other alternative other than i and k.” (Train, 2009). The property is expressed 

mathematically as follow: 

                                              Pni/Pnk = exp ( Vni – Vnk ) 

In other words relative odds of choosing alternative i over alternative k will remain 

unchanged even if new alternatives are made available. To elaborate the undesirable 

effect of IIA, consider the famous Red-Bus – Blue-Bus problem (Train, 2009). Say 

commuters’ mode choice shares for car and bus modes are 50% each. When a blue bus 

with the same utility as of red bus, is made available as an additional travel alternative   

(b = r), common sense and logic suggests that bus ridership should split evenly between 

red and blue bus (25% each) leaving car mode share unchanged. But Logit model 

predicts 33% modes share for each of the three alternatives.  Logit model assumes that 

the error terms in the utility are independent and there are zero correlations between the 

error terms. In the above problem, by assuming proportionality, Logit model under 

predicts car mode share and over predicts bus mode shares. 
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McFadden’s analysis paved the way of Generalized Extreme Value (GEV) family of 

models, which allow more flexible covariance structures (McFadden, 2000). By late 

seventies, McFadden, Ben-Akiva and Lerman and other researchers were able to develop 

independent random utility maximization specifications for GEV models. The main 

advantage of GEV models is that they partially relax the independence from irrelevant 

alternatives (IIA) assumption and yet have a closed form. The most widely used 

extension of GEV family of Logit models is Nested Logit model (Train, 2009).  

 

2.3.2 Nested Logit Model 

 Nested Logit (NL) model was developed to avoid the restrictive assumption of 

estimation errors being independent of each other. GEV models such as NL model offers 

variety of substitution pattern and assumes that the estimation errors for all alternatives 

are jointly distributed as generalized extreme value (Train, 2009). The structural form of 

Nested Logit model (Figure 2.3) for estimating mode choice of a decision maker n, 

between private or public modes (with grouped lower level modes) of transportation is 

given below: 

        

 

 

 

   

      

            Figure 2.3 Two-Levels Nesting Structure for Nested Logit Model  
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The resulting probabilities are given as: 

                      
           

∑             
           ;            

                

∑                   
 

where Pni|j   is the probability that decision maker n chooses mode i for a given mode type 

j, Vni|j   is the observable utility of mode i for decision maker n for a given mode type 

(private and public) j, Pnj   is the probability that decision maker n chooses mode type j 

and Inj   is the inclusive value of mode type j for decision maker n: 

                                                        [∑           

 

] 

 j   is the  scale parameter, representing sensitivity for lower level mode choice to upper 

level mode choice for mode type j. The value of scale parameter  j can vary from 0 to 1. 

 j = 1 implies zero correlation among nested mode pairs and NL model reduces to MNL 

model. 0<  j   <1 implies non-zero correlation among nested mode pairs with low values 

of  j indicating increased substitution among nested modes whereas  j =0 indicates 

perfect correlation among nested mode pairs resulting in deterministic mode choice. The 

values of  j<0 or  j>1 results in rejection of Nested Logit model as the values are not 

consistent with the theoretical derivation of Nested Logit. 

 

2.3.3 Estimation Technique 

Since the Logit probabilities take a closed form, the traditional maximum-likelihood 

estimation (MLE) method is used to maximize the probability, that choices predicted by 

model are indeed the observed choice. The following detail of Logit model estimation is 

adapted from Train, 2009. 
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The probability of decision-maker n choosing the alternative that was actually observed 

to be chosen is given as: 

    ∏      
   

 

 

 

where    =1, if decision-maker chose alternative i and 0 otherwise. Assuming that choice 

made by the decision-maker n is independent of that of other decision-makers, the 

probability of each decision-maker’s actual choice in sample N can be expressed as: 

     ∏∏ 

 

      
   

  

   

 

where   is a vector containing model parameters. To simplify the computational process, 

the natural logarithm of   is maximized instead of L and the log-likelihood function can 

be given as: 

      ∑  

 

   

∑          

 

 

The maximization of       is based on the assumption that the observed choice is the 

choice made in reality. The maximum likelihood estimates are the values of     that 

satisfy the first order condition, i.e.   
      

  
  .  And these values of    explain the 

effect of the specified variables in the utility functions of the choice, i.e. the alternative. 

 

2.3.4 Goodness-of-fit 

Statistical significance of model parameters (t-statistics) at specified confidence level and 

overall goodness-of-fit measures are criteria for Logit model validation. At a 90% 
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confidence level, if standard t-statistics is greater than or equal to 1.65, the variable is 

statistically significant.  

 

Likelihood ratio index is a statistic, widely used to explain the data-fit of the discrete 

choice models, such as Logit models. The model fit, interpreted in terms of Log-

likelihood ratio index, ρ
2
 is given as: 

                                              (ρ
2
)  =   

       

       
 

where,          is the Log-likelihood at convergence (i.e. with explanatory variables) and 

      is the Log-likelihood /restricted likelihood (i.e. without explanatory variables). ρ
2
 

vary from 0 to 1. Typically a value of ρ
2
 in the range of 0.3 – 0.5 suggest a good model 

fit. 

 

2.4 Mode Choice and Urban Transport Modeling System 

Mode choice modeling is the third sequential stage of the Urban Transportation Modeling 

System (UTMS). UTMS is a traditional trip-based four-phase modeling package used 

throughout North America and around the globe (Maoh et al., 2009). Each phase of 

UTMS consists of estimating a specific model for that particular phase. UTMS is mostly 

used to critically evaluate the impacts of land use patterns and transportation 

infrastructure on peak period, work related travel (Maoh et al., 2009). In the past years 

two UTMS models were estimated for Windsor-Essex area. The details of these models 

are presented in section 3.2 of Chapter III. The operational sequence of UTMS is 

depicted in Figure 2.4. 



  

19 

                     

 Figure 2.4 Operational Sequence of Urban Transportation Modeling System (UTMS) 

The Modal Split stage predicts the percentages of flow by different modes for trips 

between origin and destination. Logit family of models is a very popular method of 

choice for implementing the modal split phase of UTMS. 

 

2.5 Application of  Discrete Choice Models in Mode Choice Modeling 

2.5.1 Work Trips 

Discrete choice models offer a comprehensive analysis framework for identifying socio-

economic and transportation level-of-service (LOS) attributes affecting mode choice. The 

literature on mode choice for work related travel is extensive and covers wide range of 

modeling issues. Past research employed the Binary Logit model in mode choice analysis 

of work trips with two modes. For instance, Brown and Kahkeshan (1989) calibrated a 

Binary Logit model choice model for auto and transit work trips in Vancouver, Canada. 

The study concluded that both socio-economic variables and LOS variables (excluding 
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cost) influence mode choice. Similarly, Vega and Reynolds-Feighan (2008) investigated 

mode choice for work trips to key employment sub-centers using the binary Logit model. 

Substantial differences in travel mode choice probabilities between central and suburban 

employment locations were reported. The results also suggested that female commuters 

are less likely to use the private car than male commuters. 

 

By comparison, Multinomial Logit (MNL) models have been used when the number of 

modes is more than two. Commins and Nolan (2011) analyzed the effect of socio-

economic characteristics on the work trip mode choice. Travelers’ characteristics were 

incorporated in a Conditional Logit model (an extension of the MNL). The results 

showed that household composition, availability of public transport, journey time and 

work location are important factors in explaining the choice of mode to work.  

 

Lucas et al., (2007) developed MNL models to investigate the mode choice behavior of 

elderly travelers. Five consolidated trip purposes namely, work, shopping, personal, 

eating out, and “other” were considered in the analysis. The results suggested that seniors 

are more likely to travel by transit as opposed to drive alone, car-pooling and walk. Their 

study also concluded that the elderly are more sensitive to travel cost than travel time – 

when choosing auto or transit.  

 

Rieser-Schüssler and Axhausen (2012) incorporated latent variables representing 

attitudes, perceptions and preferences into their MNL model. The results suggested a 

correlation between the latent variables and travelers’ socio-economic characteristics. 
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Bernetti et al., (2008) developed a MNL model to study the relationship between socio-

demographic factors and mode choice in Trieste, Italy. The results indicated that different 

socio-demographic groups react differently to various LOS initiatives. Cherian and 

Sargious (1977) forecasted mode choice for work trips in Toronto using MNL models 

and concluded that socio-economic data was essential for developing a realistic mode 

choice model.  

 

Wilson et al., (1990) developed MNL models for intercity, business and non-business 

passenger travel in eastern and western regions of Canada. The study emphasized the 

significance of LOS variables in determining the mode choice. Day et al., (2010) 

investigated commuter trip timing and mode choice of work trips using MNL models. 

The study pointed to the existence of differences in the mode choice preferences among 

various occupation groups.  

 

While using the MNL model has been commonplace in mode choice analysis, the model 

is incapable of accounting for correlation among alternative modes. To overcome this 

limitation, the Nested Logit (NL) models have also been used in mode choice modeling. 

Shahangian et al., (2012) developed generalized NL models to investigate population 

heterogeneity and the significance of socio-economic variables affecting mode choice 

under LOS-oriented policies. The study identified gender-based differences in mode 

choice. Consequently, the authors concluded that gender factors need to be taken into 

consideration when designing modal shift policies.  
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Patterson et al., (2005) estimated MNL and NL models to analyze the gender difference 

in mode choice for work trips. Separate MNL and NL models were developed for whole 

population, male population and female population. Estimated inclusive value (IV) or 

scale parameters of all NL models were either outside the theoretical bound of 0 to 1, or 

very close to 1, implying unsuitable nesting structure. For all three categories of 

populations, the MNL models appeared to provide the best results. Female travelers were 

less inclined to use public transit and less sensitive to travel time than male travelers. 

Furthermore, female travelers were found to have higher preference for shared ride than 

male travelers. 

 

 Zaman and Habib (2011) studied commuters’ mode choice, in the context of travel 

demand management (TDM) policies by estimating NL models. The model results 

revealed that commuters’ choice of transit-oriented modes was highly sensitive to in-

vehicle travel time, out-of-vehicle travel time and fare.  

 

Although the NL model addresses some of the limitations of the MNL model, it cannot 

account for taste variation in the estimated parameters. In this regard, McFadden (2000) 

introduced simulation methods for practical estimation of open-form discrete choice 

models such as the Probit model and the Mixed Logit (MXL) model. The latter Logit 

relaxes the underlying behavioral assumptions used in the estimation of discrete choice 

models by allowing random taste variation, unrestricted substitution patterns, and 

correlation in unobserved factors over time (Train, 2009). The MXL model can estimate 

the extent to which individuals differ in their preferences for attributes of a given 
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alternative, thus providing more information than MNL and NL models (Train, 2009) 

MXL is also capable of  both , identifying sources of heterogeneity associated with the 

mean of population parameters, and the variances associated with random parameter 

distributions as well. Detailed information about the MXL model is provided in Chapter 

III. 

 

The review of the literature suggests a limited number of studies which used the MXL in 

mode choice analysis. Most of the existing studies have been focused on applications of 

the MXL to stated preference data. The use of MXL in the context of UTMS is not 

commonplace in the literature. Also, the emergence of the activity-based paradigm in 

travel demand modeling has benefited from the MXL model. For instance, Wan et al., 

(2011) developed an agent-based micro simulation model to simulate the mode choice 

decisions made by members of a household as part of the activities undertaken by those 

members in one day. The authors exploited the capabilities of the MXL model in their 

framework to estimate some of their mode choice models. Among several key findings, 

the results from the MXL analysis suggest a strong influence of unobserved preference 

heterogeneity.  

 

On the other hand, Cherchi and Cirillo (2008) estimated MXL mode choice models using 

panel data from a six-week travel diary. The authors report the presence of significant 

variability in the preferences for the different alternatives. Also, the estimates from their 

LOS variables (i.e. travel time and travel cost) exhibited a significant variation around the 

mean values. 
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2.5.2 Non Work Trips 

There have been numerous studies on mode choice for non-work trips using discrete 

choice models. In general, these studies have focused on mode choice behavior for a 

specific type of non-work trips such as shopping and recreational trips. The following 

section briefly summarizes the key findings of these studies. 

 

Some studies have analyzed mode choice for shopping trips. Hamed and Easa (1998) 

used disaggregate data collected in Amman, Jordan to develop MNL mode choice models 

for three categories of shopping activities - during home-to-work, during work-to-home 

and after work-to-home. The results suggested that the household socioeconomic 

characteristics such as auto ownership and household income greatly influence the 

commuter's mode choice for shopping trips. Auto was the preferred choice for shopping 

trips to non-local shops whereas taxi cabs were preferred for shopping trips to the 

downtown area. The study also found that travel time, origin of shopping trips and type 

of post-shopping activity had significant effects on mode choice. 

 

Bhat (1998) analyzed travel mode and departure time choice for urban shopping trips 

using MNL and ordered generalized extreme value (OGEV) models. The data for the 

analysis was obtained from the 1990 San Francisco Bay area travel survey. Socio-

economic factors such as gender, age and employment were significantly related to the 

mode choice. The effect of gender on mode choice indicated that females prefer to shop 

during the off peak (mid-day) and PM peak periods than the AM peak and evening 
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periods. It was also found that females were more likely to use transit than males. Older 

individuals were more likely to drive alone when shopping but individuals over 65 years 

of age were less likely to drive alone in the evening. Employed individuals were more 

likely to use auto for shopping than unemployed individuals. 

 

Su et al., (2009) studied elderly travelers’ mode choice behavior for shopping trips in 

London, United Kingdom using MNL and NL models for four travel modes, auto, auto 

passenger, public transit and walk. The results suggest that elderly travelers with high 

income prefer auto. The study also found out that elderly travelers considered higher 

number of stops on a given transit route more important than service frequency and they 

do not frequently choose two or more modes.  

 

Wang et al., (2010) analyzed the effect of socio-economic and LOS factors on mode 

choice for shopping trips in the cities of Shanghai and Shenzhen, China using binary and 

NL models. Model results show the effect of commuters’ attitude and trip-related factors 

on their mode choice. 

 

On the other hand, some studies analyzed traveler’s choice behavior for recreational trips. 

Agrawal and Schimek (2007) estimated Binary Logit models to study the correlations 

between different socio-economic factors and recreational walk trips. It was found that 

the people in the areas with extremely high and low population densities were more likely 

to walk when making recreational trips. Higher income and education also had a positive 

effect on recreational walking trips.   
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Pozsgay and Bhat (2001) estimated destination choice models for home-based 

recreational trips. The non-linear-in-parameters MNL model was estimated using the 

1996 Dallas-Fort Worth household activity survey. The result of the model indicated that 

older individuals were more sensitive to travel time and cost since they prefer closer 

recreational destinations. However, individuals with higher numbers of cars in 

households were less sensitive to travel time and cost.  

 

Some studies attempted to identify the heterogeneity for non-work trips using advanced 

discrete choice models. For instance, Habib and Sasic (2012) investigated commuter’s 

mode choice behavior for non-work trips during the peak period in the Greater Toronto 

and Hamilton Area (GTHA) using a generalized extreme value (GEV) model. The 

proposed model captured the influence of mobility tool (auto and transit pass ownerships) 

on non-work trips. Results suggested that providing incentives for higher transit pass 

ownership levels would be beneficial for social welfare. The study also concluded that 

better spatial coverage of transit service rather than increasing transit frequency, would 

attract more commuters for transit use.  

 

Greene et al., (2006) investigated the heterogeneity in the variance of unobserved effects 

using MXL models. The estimated heteroscedastic MXL model decomposed the variance 

heterogeneity in the random parameter estimates through an interaction with commuter’s 

socio-economic characteristics. The study indicated that accounting for variance 

heterogeneity within the random parameter distributions not only improves the 
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explanatory power of the model, but also provides behaviorally more sensible outputs in 

terms of travel time saving (VTTS) distributions. 

 

Bhat and Gossen (2004) examined the effects of household and individual socio-

demographics, land-use and density variables on recreational activity episodes by 

estimating a MXL model. Socio-demographic variables such as household size, income 

and family types had significant correlations with recreational activity. Land-use and 

density variables had no substantial impact on recreational trips on weekends. It was 

found that individuals in high-income households and with higher number of bicycles 

were more likely to only make recreational trips as oppose to mixed types of travel 

activities. It was also found that younger individuals were more likely to prefer 

recreational trips than older individuals. Furthermore individuals who reside in duplex 

dwelling units were more likely to make outdoor recreational trips but single parents 

were less likely to participate in pure recreation than the other individuals.  

 

Based on the literature review, there has been no comprehensive study on mode choice 

for non-work trips using MXL model. Accounting for heterogeneity in non-work trips 

helps formulate better traffic congestion control measures as non-work trips significantly 

contribute to total travel during peak periods. Thus, this thesis will employ the Mixed 

Logit model to investigate the preference heterogeneity in mode choice of individual trip 

makers for peak period work, non-work and shopping related travel in the Windsor-Essex 

area. 
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2.6 Chapter Summary 

The literature review offers valuable insight to the issues faced by researchers in mode 

choice modeling. These issues range from choice set consideration to model 

specifications issues. Collectively, in all the studies reviewed, tackling the model 

specifications issues represented a significant challenge for the researchers. Although 

many researchers have predicted mode choice using discrete choice models, there is 

limited number of studies which investigated variation in taste and the heterogeneity 

through the MXL model.  

 

An appropriately specified MXL model can effectively portray the complexities of travel 

behavior and improve the predictive ability of the model.  Furthermore, MXL has not 

been used in the development of the UTMS. Efforts towards bridging this gap will be 

attempted by developing MXL-based mode choice models for the peak period passenger 

travel in the Windsor-Essex area as will be discussed in the next two chapters.  
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CHAPTER III 

METHODS OF ANALYSIS 

3.1 Introduction 

This chapter presents the method of analysis used to accomplish the objectives of this 

thesis as outlined in section 1.2. A brief overview of study area and past modeling efforts 

is provided in next section. Section 3.3 introduces the dataset and provides description of 

different types of variables used in model estimation.  Details about GIS based road 

network, Transit Windsor network and estimation process of level-of-service (LOS) 

variables are also included in this section three. Preliminary analysis of dataset is 

presented in section 3.4. 

 

 Section 3.5 describes in details, the theoretical back ground of MXL model, used to 

develop the mode choice model for the Windsor-Essex Area.  The last two section 

presents model specifications and information about modeling apparatus. 

 

3.2 Study Area and Past Modeling Efforts 

The city of Windsor, located in Southwestern Ontario, is the southernmost city in Canada 

and is administrated separately from the Essex county government. The population of 

Windsor Essex area in 2011 was 319,246 (Statistics Canada, 2012). Famously known as 

the automotive capital of Canada, Windsor has long been associated with higher auto 

mode usage. Windsor’s auto dependent culture is rooted mainly in its automotive 

manufacturing sector. Economic growth and rising employment opportunities across the 

border in neighboring Detroit, Michigan have also led to the almost unsustainable auto 

reliance trend. Auto accounts for about 81% of the all the trips (work and non-work) 

http://en.wikipedia.org/wiki/Southwestern_Ontario
http://en.wikipedia.org/wiki/Canada
http://en.wikipedia.org/wiki/List_of_Ontario_separated_municipalities
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during the afternoon peak period (WALTS Report-1, 1999). In Windsor-Essex area, the 

non-work passenger trips accounts for about 30% of afternoon peak period trips. The 

afternoon peak period for passenger travel in Windsor is observed between 3:30 PM and 

6:30 PM whereas the morning peak period is about half the duration of afternoon peak 

period. The map of the study area in presented in Figure 3.1. 

 

  Figure 3.1 Map of the Windsor-Essex Area (IBI Group, 2006) 

Future development of transportation services in the Windsor-Essex area is perceived in 

the context of a master plan formulated with the findings of The Windsor Area Long 

Range Transportation Study (WALTS), conducted in 1997 and 1998 (WALTS Report-1, 

1999). The master plan was to provide guidelines for development of future 

transportation services /infrastructure in the Windsor-Essex area by year 2016.  The study 

area of WALTS included the City of Windsor, Towns of LaSalle and Tecumseh, 
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Townships of Sandwich South and Maidstone, and the Village of St. Clair Beach. After 

establishing existing transportation conditions through WALTS study, SYSTEM II traffic 

forecasting model was developed as a future forecast for planning purpose (WALTS 

Report-1, 1999).  Data from household travel survey of 1997, cordon survey and Average 

Annual Daily Traffic (AADT) count on the Windsor- Essex road network, was used for 

model estimation.  

 

The model forecasted traffic volumes based on the existing transportation conditions, 

land use and socio-economic characteristics of the Windsor Essex residents.  Based on 

the forecast certain travel demand management strategies, such as car pooling, expansion 

of transit service, bike and recreational way provisioning, were recommended to reduce 

auto mode share from an existing level of 85 % to 76% and to increase public transit 

ridership from 3% to 6 % by the year 2016.  Targeted auto occupancy for the year 2016, 

was established at 1.4 passenger /vehicle.  

 

In May 2002 WALTS Steering Committee and Essex County Council decided to develop 

the Essex-Windsor Regional Transportation Master Plan (EWRTMP). The regional plan 

inherited the policy guidelines from WALTS.  In a technical report published by IBI 

Group and Paradigm Transportation Solutions (2005) on EWRTMP, TransCad, a 

computerized UTMS model, was used for transportation forecasting in the Windsor- 

Essex area. The model effectively replicated the actual conditions. It was deemed as a 

valuable tool for forecasting future travel demands under various transportation network 

alternatives. The model simulated the allocation of trips to cars, transit buses, cycling and 
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walking. The model employed WALTS household travel survey data. The model took 

into account the impact of service provided by each mode such as auto, transit, cycling, 

and walking, based on the relative attractiveness of the mode. 

 

The above two studies employed SYSTEM II and TransCad UTMS models to forecast 

travel demand in Windsor-Essex Area. The mode choice modeling phase implemented in 

these studies lacked the use of zonal characteristics of origins and destinations as 

additional variables.  

 

Mode choice modeling requires traveler, trip and mode related data. This data is often 

obtained through household travel survey of concerned population. Quality and quantity 

of socio-economic, mode and trip related data directly relates to the extent of behavioral 

realism that can be reflected with Logit models (Hensher and Greene, 2002). In order to 

estimate MNL and MXL mode choice models for Windsor-Essex area, the research made 

use of the data from various sources. 

 

3.3 Data for Analysis 

3.3.1 The Windsor- Essex Household Travel Survey -1997 

To assess the present day travel demand, detailed information about travel characteristics 

of the Windsor-Essex’s residents is needed. This research made use of the Windsor- 

Essex household travel survey (telephonic) that was conducted for one month from April 

14 to May 14, 1997 from 3:00 PM to 6:00 PM. A specialized database software was used 

to generate geographically stratified, randomly generated, residential telephone number 
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database.  Data checks such as built-in logic and range were incorporated in the software 

to improve the quality of the collected data. The selected residents were requested to 

respond to a questionnaire that contained socio-economic characteristics, trip-making and 

various LOS attributes (traffic congestion, road system, bicycle network) of the Windsor-

Essex transportation network. The responses of residents were then recorded directly into 

the software. A total of 6,300 households were contacted during the survey. A copy of 

original WALTS questionnaire obtained from municipal archives section of Windsor 

Central Public Library, Windsor is provided in Appendix A (see Figure A-1). 

 

At the time of survey that estimated population in the study area was about 230,000 

persons with nearly 85,000 households (WALTS Report-1, 1999). Collected data 

contained traveler’s socio-economic characteristic such as age, sex, employment status, 

dwelling type and vehicle ownership. Information on number of trips made by each 

household, reason for trip, travel mode used and origin and destination for each trip was 

also recorded.  

 

After needful noise cleaning, the dataset extracted from the survey contained 2679 

records of individual trips makers. Four travel modes were identified namely, auto, public 

transit, walking and bicycle. Table 3.1 provides a detailed list of the categorical and 

continuous variables included in the extracted data set for model estimations. The table 

includes variables from, WALTS’ survey and additional zonal variables that were 

introduced in the dataset from external sources.  
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Table 3.1 Description of Variables used in Estimated Logit Models 

Variable  Definition of variables 

         

ti trip maker 

mode 1 – auto, 2 – transit, 3 – walk/bicycle 

choice  1 – selected mode, 0 – otherwise 

gender trip maker’s gender (1 – female, 0 – male) 

hhsize number of persons in the trip maker’s household 

AGE 

age1 1 if trip maker’s age is less than16 years, 0 otherwise 

age2 1 if trip maker’s age is between 16-25 years, 0 otherwise 

age3 1 if trip maker’s age is between 26-35 years, 0 otherwise 

age4 1 if trip maker’s age is between 36-45 years, 0 otherwise 

age5 1 if trip maker’s age is between 46-55 years, 0 otherwise 

age6 1 if trip maker’s age is between 56-65 years, 0 otherwise  

age7 1 if trip maker’s age is over 65 years, 0 otherwise (Reference Category) 

MOBILTY  

nveh  number of vehicles in the trip maker’s household 

nbic  number of bicycles in trip maker’s household 

DWELLING 

dwlapt 1 if trip maker reside in an apartment, 0 otherwise 

dwldplx 1 if trip maker reside in a duplex, 0 otherwise 

sfam 1 if trip maker reside in a single family dwelling, 0 otherwise 

dwlth 1 if trip maker reside in a townhouse dwelling, 0 otherwise 

dwlothr 1 if trip maker reside in other dwellings, 0 otherwise (Reference Category) 

EMPLOYMENT 

empstd 1 if trip maker is employed student, 0 otherwise 

fltemp 1 if trip maker is employed fulltime, 0 otherwise 

hmkr 1 if trip maker is homemaker, 0 otherwise 

emppt 1 if trip maker is  employed part time,  0 otherwise 

selfemp 1 if trip maker is self-employed, 0 otherwise 

studnt 1 if trip maker’s is student, 0 otherwise 

unemp 1 if trip maker is not employed, 0 otherwise  

emprtd 1 if trip maker is  retired, 0 otherwise(Reference Category) 

PEAK PERIOD 

pktime1 1 if trip is made between 3:00 pm-3:29 pm, 0 otherwise 

pktime2 1 if trip is made between 3:30 pm-3:59 pm, 0 otherwise 

pktime3 1 if trip is made between 4:00 pm-4:29 pm, 0 otherwise 

pktime4 1 if trip is made between 4:29 pm-4:59 pm, 0 otherwise 

pktime5 1 if trip is made between 5:00 pm-5:29 pm, 0 otherwise 

pktime6 1 if trip is made between 5:29 pm-6:00 pm, 0 otherwise (Reference Category) 

DERIVED 

femsfam 1 if trip maker is female and reside in a single family dwelling, 0 otherwise 

tpshop  1 if trip is made for shopping purpose,  0 otherwise 

age4sfam 1 if trip maker’s age is between 36-45 years  and resides in a single family, 0 otherwise  

studnt_ag12 1 of trip maker is student with age less than 26 years, 0 otherwise 

rvehocup ratio of number of vehicle to number of occupants in trip maker’s household for auto mode 

LOS 

ttime 

  

in-vehicle travel time for Auto and Transit and Walk/Bicycle(min) 

trc travel cost for auto and transit modes (dollars) 

ZONAL 

 hhinc average household income of trip maker in 1997(thousand dollars)  

eindex land use entropy index for Windsor-Essex area 

tc/hhinc ratio of travel cost to trip maker’s household income for auto and transit mode 
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These variables form the basis of the statistical analysis of this thesis. Model estimation 

in the initial phase of this research included the unrestricted choice set of four modes of 

travel. These modes were auto, transit, walk and bicycle. However, at later phase, the 

walking and bicycle modes were combined to represent a non-motorized mode. The 

combination of the two modes was deemed more appropriate since each mode on its own 

did not have a good representation in terms of the mode share. 

 

3.3.2 Zonal Variables 

 

House hold Income 
 

Average household income of the travelers in the WALTS survey was not recorded. 

Number of mode choice studies have concluded that travelers with higher household 

income are likely to afford car(s), and are less concerned with travel cost associated with 

auto mode. To represent this behavior in the model estimation, the average household 

income at Enumeration/Dissemination area level for the year 1997, was estimated using 

2006 and 2001 census information from Statistics Canada. The travel cost by auto mode 

was divided by the average household income. The derived variable tc/hhinc was 

introduced in model estimation to reflect the relative importance of cost, an individual 

trip makers places on the choice probability of certain mode. 

 

Entropy Index 

Entropy index, a measure of land use mixing was introduced in the model estimation in 

the study area, with the hypothesis that higher mixed land use (at census tract level) 

decreases automobile ownership in households and results in lower auto mode choice 

probability (Maoh and Tang, 2012). Conversely, travelers in more homogenous areas 
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would rely more on auto. The land use categories in the study area include commercial, 

industrial, government and recreation land use. Entropy index for census tract i is 

calculated using the expression: 

 

    
 ∑       

 
   

      
 

where,  

   
                               

                  
 

                              

  and K = total number of land-use categories in the study area. 

 

Entropy Index ranges from 0 to 1. A value 0 means perfectly homogeneous land use in 

census tract i. Conversely, 1 indicates a perfectly heterogeneous and an even distribution 

of all land use categories. An illustration of Entropy index of the Windsor-Essex area in 

1996 provided in Appendix B (see Figure B-4).  

 

Additional zonal variables such as ratio of travel cost to house hold income and entropy 

were introduced in the dataset to make the dataset more robust. However, these variables 

proved to be statistically insignificant and did not add to the explanatory power of 

estimated models. 
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3.3.3 GIS Data 

Travel time for individual travelers, for different modes of transportation, is normally 

calculated from network models and has great significance in model estimation (Bhatta 

and Larsen, 2011). Network models are developed by coding the existing road network in 

computerized UTMS such as TransCad, VISUM and implementing the network 

assignment stage of UTMS which yields link by link traffic flow and link travel time. The 

resulting travel time is then used to calculate travel cost for individual travelers. 

 

The WALTS survey data did not contain travel time for the individual trips made by 

various travel modes. The travel times for auto, public transit, walk and bicycle modes 

were calculated using the Network Analyst, an extension of ArcGIS
®

 Geographical 

Information System (GIS) software (ESRI, 2012). Given mild traffic congestion during 

peak period in the study area, free-flow travel time was deemed as a reasonable estimate 

of in-vehicle travel time.  

 

Trips were geo-coded using address locator (specifying the X-coordinates and Y-

coordinates of origin and destinations in GIS). GIS based Windsor-Essex road network 

and Transit Windsor datasets consist of pre-calculated lengths all freeways, major and 

minor urban and rural roads and specified speed limits. The New Route assignment was 

employed in Network Analyst. The New Route assignment estimates the shortest routes 

for given trips. This is done by first calculating the shortest road network distances 

between origin and destination on different segments of road lengths that define the route, 

and then these distances are divided by the specified speed limits for all the roads 

segments of the route. The resulting summed up travel time is free flow travel time. 
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Illustration of travel time estimation for auto mode is provided in Appendix B (see Figure 

B-1). 

 

Transit Windsor formed in 1977 is an important mode of travel for Windsor’s existing 

transportation network. The new transit terminal was opened in the summer of 2007.   

According to Transit Windsor, (2011) Transit Windsor operates 7 days a week and 

provides transportation to over 6 million passengers each year. The transit service 

coverage area is nearly 313 square kilometers and a population base of 209,000. The 

basic fleet size is 105 vehicles, 10% of which is off road, at any time for maintenance.  

 

In order to estimate the transit travel time more accurately Windsor Transit routes map 

published in March 1997 was acquired from municipal archives section of Windsor 

Central Public Library. Information on operating statistics, routes and service hours and 

fleet size were collected. To better reflect the transit conditions that existed at the time of 

household travel survey in 1997, present day transit routes were compared with the routes 

existed in 1997. Transit Windsor maps for the year 1997 and 2011 are provided in 

Appendix A (see Figure A-2 and Figure A-3).   

 

 In 1997, Windsor Transit operated 13 transit routes. Presently few of those routes have 

been merged together to form one single route (routes Dominion-B and Dominion-C were 

combined under one single route Dominion-5) and a new Transway 1c Express service 

has been introduced. Fleet size has marginally increased from 100 busses to 105 busses 

over a period of 15 years. Transit Windsor’s service population also increased from 
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200,000 in 1997 to 217,249 in 2011. The in-vehicle travel time for transit mode was 

estimated by using ArcGIS
®
 Network Analyst. An illustration of travel time estimation 

for transit mode is provided in Appendix B (see Figure B-2). 

The performance of any public transit, over time, is greatly influenced by socio-

economic, geographic and political environment. Windsor Transit lost ridership during 

mid-1990s, but it has been experiencing a slow recovery since 2000, with about a 3% 

increase in ridership from 2002 to 2003 (WALTS Report-1, 1999). WALTS study 

concluded that Transit Windsor system had a high revenue/cost (R/C) ratio with fares 

higher than average, when compared to transit operations in Brampton, Kitchener and 

London. According to Detroit River International Crossing Study Report (2005), from 

travel demands management (TDM) perspective, extension of Transit Windsor service 

into Tecumseh and LaSalle, is the most likely expansion. In WALTS study, a 6% transit 

mode share of peak hour trips was set as a target for year 2016 (WALTS Report-2, 1999). 

  

 In order to calculate travel time for the walk and bicycle mode, the Windsor-Essex road 

network speeds were modified. Based on a study of the walking speed data on 7,123 

pedestrians, Knoblauch et al., (1996) recommended mean walking speeds of 1.46 m/sec 

(5.26 km/hr) for pedestrians under 65 years and 1.20 m/sec (4.32 km/hr) for older 

pedestrians. Taking into consideration the relative proportions of pedestrians’ under and 

over the age of 65, a mean walking speed of 5 km/hr was adopted to calculate the travel 

time for walking trips. Different speeds for bicycle have been sighted in the academic 

literature. Typical average cruising speeds for bicycle vary from 14.3 km/hr to 26.6 km/hr 

whereas for intersection crossing, bicycle speeds may vary from 8.4 km/hr to 14 km/hr 
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(Pline, 1999). In Vancouver, the speed limit on bicycle boulevards is 30 km/hr (Pucher et 

al., 2011). The bicycle trips were mostly distributed in the downtown areas of Windsor-

Essex and since the road condition in downtown area is not great, a lower average speed 

of 15 km/hr was specified for calculating travel time for bicycle trips. Travel time for 

walk and bicycle trips were calculated separately. The travel time for a single trip made 

by the non-motorized mode i.e. walk/bicycle was calculated by averaging the travel times 

by walk and bicycle. Illustration of travel time estimation for walk/bicycle mode is 

provided in Appendix B (see Figure B-3). 

 

For travel cost estimation, the average annual per kilometer operating costs for various 

models of passenger vehicles, as suggested by the Canadian Automobile Association, 

were considered (CAA, 2011). The breakdown of per year operating cost of these 

vehicles is provided in Table 3.2. Assuming that the shares of auto trips by the three 

models of passenger vehicles (Mid Size SUV, Mini Van and Sedan) were equal, the 

average annual operating cost of $0.145/km was used for calculating the travel cost of 

trips using the auto mode. Network Analyst, was used to generate Origin-Destination 

(OD) cost matrix for auto trips   in the Windsor-Essex transportation network.  

 

Table 3.2 Average Annual Vehicle Operating Costs per km (CAA, 2011) 

 

 
Average Annual Operating Costs Per Kilometer  

Vehicle Model        Cruze 1lt  Grand Caravan  Toyota Prius  

Fuel  10.10 Cents  14.47 Cents  4.74 Cents  

Maintenance  2.43 Cents  2.98 Cents  2.73 Cents  

Tires  2.17 Cents  2.20 Cents  1.73 Cents  

Total  14.70 Cents  19.65 Cents  9.20 Cents  
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  Note: The costs were calculated based on 18,000 km of driving in the year 2011. 

 

Based on the average trip distance by transit mode, it was assumed that a trip was made 

on a single route. Thus, a fixed travel cost of $2.75 was specified for transit. Since the 

monetary cost does not incur for trips by the walk/bicycle mode (excluding the purchase 

cost of bicycles), travel cost of these trips was assumed to be zero.  

 

3.4 Descriptive and Preliminary Analysis of Extracted Dataset 

Socio-economic characteristics such as age, gender, household size and type, vehicle and 

bicycle ownership, trip purpose and employment status of trip makers in the dataset 

(sample) extracted from Windsor- Essex households travel survey are summarized in 

Table 3.3. Male accounted for an approximate 54% of the extracted sample. For the 

three-hour afternoon peak period, auto mode was favored choice among travel 

alternatives dominating with 83% of the trips. GIS spatial analysis revealed that auto trips 

were well distributed across the Windsor as would be expected. Nearly 95% of all area 

households had at least one car. 

 

Walking was second with 12% mode share. Walking trips were shown to occur mainly 

over short distances especially in the University of Windsor area. The rest of 5% was 

composed of Transit Windsor (3%) and bicycle (2%). Lower than average public transit 

can be attributed to the lack of transit operations beyond the City of Windsor. Public 

transit use was higher in employment areas including the downtown. 
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Table 3.3 Socio-economic Characteristics of the Extracted Dataset   

Socio-economic Proportions   Socio-economic Proportions 

Characteristics       Characteristics     

Gender 

   

Trip Purpose 

  Male 1443 (54) 

 

Returning Home 1690 (63) 

Female 1236 (46) 

 

Shopping 374 (14) 

  

  

 

Recreation 148 (6) 

Travel Mode 

 

  

 

Other 179 (7) 

Auto 2213 (83) 

 

Work 149 (6) 

Transit 92 (3) 

 

Passenger 111 (4) 

Walk 325 (12) 

 

School 28 (1) 

Bicycle 49 (2) 

   

  

  

  

 

Age 

 

  

Household Size 

 

  

 

0 - 15 years 269 (10) 

1 411 (15) 

 

16 - 25 years 383 (14) 

2 739 (28) 

 

26 -35 years 493 (18) 

3 504 (19) 

 

36 - 45 years 576 (22) 

4 and over 1025 (38) 

 

46 - 55 years 378 (14) 

  

  

 

56 - 65 years 236 (9) 

Household Type 

 

  

 

over 65 years 344 (13) 

Apartment 342 (13) 

   

  

Duplex 93 (3) 

 

Vehicle Ownership 

 

  

Other 33 (1) 

 

0 146 (5) 

Single Family 2143 (80) 

 

1 1007 (38) 

Townhouse 68 (3) 

 

2 1170 (44) 

  

  

 

3 254 (9) 

Employment Status 

 

  

 

4 and over 102 (4) 

Homemaker 107 (4) 

   

  

Full Time 1329 (50) 

 

Bicycle Ownership 

 

  

Part-Time 177 (7) 

 

0 1051 (39) 

Retired 456 (17) 

 

1 417 (16) 

Self Employed 47 (2) 

 

2 538 (20) 

Student 443 (17) 

 

3 297 (11) 

Employed Student 7 (0) 

 

4 and over 376 (14) 

Unemployed 113 (4) 
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 Total Number of  Observations 2679 

Note: Values in parenthesis are percentages rounded off to the significant digits. 

 

Work to home trips accounted for 63% of total trips followed by home based shopping 

trips at 14%.  Single occupant household constitutes 15% of total extracted dataset.  

Household with two occupants accounted for 28% and nearly 38% households had 4 or 

more occupants. Nearly 80 % of the households were single family dwellings while 13% 

of the household resided in apartments. Rest of the remaining household (7%) resided in 

duplexes, townhouses and other dwellings. 

 

36-45 years age group represented nearly 22% of all trip makers followed second by 26-

35 years age group with 18% of total extracted dataset. Senior citizens constituted third 

sizeable proportion of at 13%. Only 5% of household did not have any vehicle which 

suggests auto dominance for Windsor area whereas 39% of sample had no bicycle in 

household. Regarding the distribution of employment status for the extracted sample, 

nearly one half of residents had full time employment. Students and retirees accounted 

for 17% each of the extracted sample with third significant employment status being part 

time (7%). 

 

3.5 Modeling Approach  

3.5.1 Mixed Logit Model Formulation 

Development of simulation methods such as simulated maximum likelihood estimation 

paved the way of estimation of open-form discrete choice models. Mixed Logit model, a 

highly flexible random utility model allows correlation in unobserved factors over time 
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and is not restricted to Gumbel distribution (Train, 2009). Fast processing computers and 

sophisticated simulation methods have helped realize the true potential of Mixed Logit 

model (Train, 2009).  

Under the random utility maximization principle, an individual n chooses alternative 

mode i that provides the greatest utility from a set of feasible discrete alternatives J = {1, 

2, …, j}. Following the work of Train (2009), the utility function of mode i for decision 

maker n, is specified as follows: 

                                                                                                                        (3.5.1.1) 

where     is the observed (deterministic) component of the utility, and ni is the 

unobserved (random) component of the utility. The observed component is known to the 

researcher and, is typically a linear-in-parameter function that takes the form Vni = βn xni , 

where βn is a vector of coefficients (β1, β2 , …, βn) of observed variables representing the 

taste of individual n, and  xni represents observed variables (x1i , x2i , …, xni) related to the 

individual and alternative. The random terms account for all those attributes that have not 

been considered in the deterministic part of the utility. These terms represent model 

misspecification, unobserved factors and taste variations not controlled for in the 

estimated utility (Ben-Akiva and Lerman, 1985; Train, 2009;  Hensher et al., 2005). 

 

The values of both, observed and unobserved components βn, and ni of the utility Uni are 

known to the individual, choosing the alternative. In contrast, the researcher is only aware 

of the observed values forming the utility   . Starting from the assumption that ni’s are 

independently and identically distributed (iid extreme value), the choice probability of 
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alternative i conditional on βn can be formulated to the well-known Multinomial Logit 

model, that is:  

                                                           
  

exp         

∑ exp          
                                              (3.5.1.2) 

Since a coefficients like βn of a given observed variable represents individual n’s taste 

with respect to that variable, it becomes obvious that each individual n will have a 

particular conditional probability       
 that depends on a particular value   . 

Consequently, it is convenient to assume the existence of a range of    values (i.e. 

            which correspond to various heterogeneous groups exhibiting taste 

variation in the population of travelers.  

 

Typically, the analyst cannot observe the actual tastes or heterogeneous groups 

responsible for the variation in the taste. Instead, he can intuitively specify the probability 

distribution to which            will likely follow. As such,    is thought of as a 

random parameter where the probability of having a particular    value can be derived 

from a known probability density function like P(β| ), where   is a vector of the 

parameters characterizing the probability distribution P(β| ). Using P(β| ), the 

probability of each plausible random parameter    value can be calculated, that is: 

P(β1| ), P(β2| ), …, P(βt| ). Consequently, the unconditional choice probability     can 

be thought of as the weighted average of the MNL formula from equation 3.5.1.2 

evaluated at different values of   , with weights given by the density P(β| ), that is,  

                                                    ∑       
         

  1                                           (3.5.1.3) 
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The above formulation assumes that the probability density function P(β| ) is discrete. 

However, if the probability density P(β| ) is a continuous function, the unconditional 

choice probability can be expressed as the integral of       
over all possible values of  . 

Such integral is known in the literature as the Mixed Logit model (MXL) (Train, 2009).  

The estimation of the MXL generally involves estimating the mean value  of P(β| ), as 

well as the standard deviation . The choice probabilities in the Multinomial Mixed Logit 

model can now be written as: 

                                                   ∫       

 

 
                                                     (3.5.1.4) 

It should be noted that equation 3.5.1.4 would collapse to the conventional MNL if 

       is equal to 1. That is,   is fixed rather than being random and does not vary 

across a range of values as described above.  

 

3.5.2 Estimation Technique - Simulated Log Likelihood 

Due to its non-closed form, the integral in equation 3.5.1.4 cannot be evaluated 

analytically. Instead, simulations are performed in which the conditional choice 

probability       
 is calculated at various    values that are randomly drawn R times 

from the distribution       . Following this treatment, the choice probability     is 

approximated by  ̂   such that: 

                                                       ̂    
1

 
∑       

 
  1                                                (3.5.2.1) 

The resulting simulated choice probability  ̂   is then used to construct simulated log-

likelihood (SLL) function:  

                                                             ∑ ∑    ln    ̂                                           (3.5.2.2) 
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where     equals 1, if  individual n chooses alterative i, 0 otherwise. The value of 

  which maximizes SLL is referred to as maximum simulated likelihood estimator.  

 

3.5.3 Mixed Logit Model Specifications 

Appropriate specification of random parameters and their distribution is key to 

identifying the existence of preference heterogeneity in the sample population (Hensher 

and Greene, 2003). LOS variables are deemed as prime candidates for random parameters 

as they vary across individuals and alternatives. Furthermore, the interaction of LOS and 

different socio-economic variables identifies the covariates, responsible for preference 

heterogeneity. 

 

Distributions are approximate representation of real behavioral process (Hensher and 

Greene, 2003). The distribution of selected random parameters can be specified with 

many functional forms, such as normal, uniform and lognormal.  The normal and 

lognormal forms are commonly used.  Lognormal form is useful when the specified 

parameter needs to be a non-negative whereas a uniform distribution is more suited to 

represent dummy variables. 

 

The variables listed in Table 3.1 of section 3.3 are used to specify the utilities of the Logit 

models estimated in this thesis. With regards to LOS variables (i.e. travel time and travel 

cost), the a priori expectation is a negative sign indicating a disutility. This implies that 

an increase in travel time or travel cost for will lower the choice probability even further. 

With respect age and gender varying preferences for mode choice are reported in the 
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mode choice literature. It is expected that female travelers in general are likely to prefer 

transit or walk/bicycle more than their male counterparts. Older travelers are less likely to 

use auto mode. Regarding mobility tools, auto ownership is associated with positive 

effect on auto mode choice probabilities and a positive and statistically significant 

coefficient is expected for this parameter. Similarly bicycle ownership should also have a 

positive effect of walk/bicycle mode choice. 

 

With regard to trips makers’ housing or dwellings status, it is likely that travelers from 

single family (detached housed) from outer suburbs of the city will have higher 

preference for auto. Hence, a positive coefficient is expected for this parameter in the 

utility function of auto mode. On other hand, the trip makers living in apartment in inner 

suburbs of city in apartment dwellings, are likely choose transit 

 

In age and employment effects, the travelers in 26-35 years and 36-45 years age groups 

having full time employment are likely to have higher preference for auto as auto offers 

highest travel time reliability, which is an important consideration for travelers with full 

time jobs. On the other hand travelers who are either student or unemployed will more 

likely prefer cheaper transportation modes such as transit and walk/bicycle. A positive 

coefficient is expected for this parameter in the utility functions of transit and 

walk/bicycle mode.  

 

 Generally speaking, more occupants in the household are likely to generate higher auto 

trips, and hence higher preference for auto mode. A positive coefficient is expected for 
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this parameter in the utility function of auto mode. The specifications and utility 

functions of estimated MNL and MXL models are provided in Appendix C. 

3.6 Modeling Apparatus 

NLOGIT 4.0, an extension of LIMDEP (Econometric Software, Inc. 2011), commonly 

used to specify, estimate and validate discrete choice models was used to develop MNL 

and MXL mode choice models for passenger travel in the Windsor-Essex area. NLOGIT 

4.0 extends the capabilities of LIMDEP, the original discrete choice command. It can 

estimate up to four- level Nested Logit models as well as state of the art Mixed (random 

parameter) Logit model.  Estimation of mode choice models in NLOGIT follows as 

distinctive pattern of data structures. Data structure consists of set of multiple 

observations of each individual incorporating socio-economic and LOS attributes of 

individual travelers and alternatives.  
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CHAPTER IV 

RESULT AND DISCUSSIONS 

4.1 Data Representation-Results 

Linear regression models were estimated to check if the work trips mode shares in 

extracted dataset are representative of mode shares of the 1996 census data. The 

regression model takes the following form: 

                                           Y
m

i(Census) = β Y
m

i (WALTS) 

where Y
m

i(Census) is the share of mode m in census tract i according to the 1996 census 

data, Y
m

i (WALTS) is the share of mode m in census tract i according to the WALTS-197 

data and β is a parameter to be estimated.  

 

Theoretically, if the WALTS data is representative of the census data, then the value of β 

should be equal to 1 for any given mode m. The results of the linear regression models 

are presented in Table 4.1. 

 

Table 4.1 Result of Regression Models  

Model No. Regression Model β t-statistics R
2
 

1 Auto Mode 0.95 41.37 0.97 

2 Transit Mode 0.82 3.26 0.16 

3 Walk/Bicycle Mode 0.30 6.01 0.40 

 

The results suggest that auto and transit modes had better representation than the 

walk/bicycle. However, the model fit (R
2
 value) for the transit mode was the lowest 

among other two modes. Furthermore, the variability in the walk/bicycle mode was 

higher when compared to transit mode. Over all the results of the regression model 
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indicate acceptable level of data representation. A table containing modes shares 

percentages for auto, transit and walk/bicycle (at census tract level) for 1996 census and 

WALTS data is provided in Appendix B (see Table B-1). Furthermore, the mode shares 

of 1996 census and WALTS data, presented in graphical context, are also provided in 

Appendix B (see Figure B-5 to Figure B-10). 

 

4.2 Descriptive Analysis of Work Trips Dataset  

In this thesis, subsets of the dataset extracted from Windsor-Essex household travel 

survey were used to model mode choice for peak period work, non-work and shopping 

trips in the Windsor-Essex area in Ontario, Canada. The subsets contained traveler’s 

socio-economic characteristics such as age, sex, employment status, dwelling type and, 

vehicle and bicycle ownership. Information on the number of trips made by each 

household, and trip purpose, travel mode, origin and destination for each trip was also 

recorded. Two motorized travel modes – auto (A), public transit (T) and one non-

motorized mode – walk/bicycle (O) were identified to model mode choice. 

 

The work trip subset contains trip records of 812 trip makers returning home from work. 

Table 4.2 shows the summary of cross tabulations of socio-economic characteristics and 

travel modes. The shares of auto, transit and walk/bicycle were 92.8%, 1.5%, and 5.7%, 

respectively. Male accounted for an approximate 56% of the sample. Travelers in the 26-

35 and 36-45 years age groups accounted for nearly 60% of the sample. 84% of the 

households were single family dwellings while 9% of the travelers resided in apartments. 

88% of the travelers had full time employment.  
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Table 4.2 Statistics of Mode Shares by Socio-economic Factors of the Work Trips Dataset   

Socio-economic    Mode  

Characteristics Auto Transit Walk/Bicycle Totals 

Gender                 

Male 423 (52.09) 6 (0.74) 25 (3.08) 454 (55.91) 

Female 331 (40.76) 6 (0.74) 21 (2.59) 358 (44.09) 

Total 754 (92.86) 12 (1.48) 46 (5.67) 812 (100.00) 

Age 

 

  

 

  

 

  

 

  

0 - 15 years 1 (0.12) 0 (0.00) 4 (0.49) 5 (0.62) 

16 - 25 years 86 (10.59) 3 (0.37) 8 (0.99) 97 (11.95) 

26 -35 years 207 (25.49) 1 (0.12) 16 (1.97) 224 (27.59) 

36 - 45 years 243 (29.93) 4 (0.49) 12 (1.48) 259 (31.90) 

46 - 55 years 179 (22.04) 2 (0.25) 5 (0.62) 186 (22.91) 

56 - 65 years 35 (4.31) 2 (0.25) 1 (0.12) 38 (4.68) 

over 65 years 3 (0.37) 0 (0.00) 0 (0.00) 3 (0.37) 

Total 754 (92.86) 12 (1.48) 46 (5.67) 812 (100.00) 

Dwelling Type                 

Apartment 60 (7.39) 0 (0.00) 15 (1.85) 75 (9.24) 

Duplex 23 (2.83) 0 (0.00) 3 (0.37) 26 (3.20) 

Other 6 (0.74) 0 (0.00) 3 (0.37) 9 (1.11) 

Single Family 646 (79.56) 12 (1.48) 24 (2.96) 682 (83.99) 

Townhouse 19 (2.34) 0 (0.00) 1 (0.12) 20 (2.46) 

Total 754 (92.86) 12 (1.48) 46 (5.67) 812 (100.00) 

Employment Status                 

Employed Student 1 (0.12) 0 (0.00) 0 (0.00) 1 (0.12) 

Full Time 674 (83.00) 8 (0.99) 33 (4.06) 715 (88.05) 

Homemaker 3 (0.37) 0 (0.00) 1 (0.12) 4 (0.49) 

Part-Time 41 (5.05) 2 (0.25) 5 (0.62) 48 (5.91) 

Retired 5 (0.62) 0 (0.00) 0 (0.00) 5 (0.62) 

Self Employed 15 (1.85) 0 (0.00) 0 (0.00) 15 (1.85) 

Student 12 (1.48) 2 (0.25) 7 (0.86) 21 (2.59) 

Unemployed 3 (0.37) 0 (0.00) 0 (0.00) 3 (0.37) 

Total 754 (92.86) 12 (1.48) 46 (5.67) 812 (100.00) 

Household Size 

        1 87 (10.71) 1 (0.12) 15 (1.85) 103 (12.68) 

2 190 (23.40) 4 (0.49) 3 (0.37) 197 (24.26) 

3 148 (18.23) 1 (0.12) 16 (1.97) 165 (20.32) 

4 and over 329 (40.52) 6 (0.74) 12 (1.48) 347 (42.73) 

Total 754 (92.86) 12 (1.48) 46 (5.67) 812 (100.00) 

Auto Ownership 

 

  

      0 8 (0.99) 2 (0.25) 11 (1.35) 21 (2.59) 

1 222 (27.34) 4 (0.49) 25 (3.08) 251 (30.91) 

2 371 (45.69) 5 (0.62) 9 (1.11) 385 (47.41) 

3 102 (12.56)  0 (0.00) 1 (0.12) 103 (12.68) 

4 and over 51 (6.28) 1 (0.12) 0 (0.00) 52 (6.40) 

 Total 754 (92.86) 12 (1.48) 46 (5.67) 812 (100.00) 

Note: Values in parenthesis are percentages. 
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Households with two occupants constituted nearly 25% of the sample with 43% of 

dataset consisted of households with four or more occupants. 97% of households had at 

least one car. Multiple trips were recorded for households with more than one occupant.  

 

Auto mode shares were the highest among all modes for both male and female - 52% and 

41%, respectively. Travelers in age group 36-45 years accounted for 32% (243/754) of 

total trips by auto mode shares and were the highest among all modes.  

 

Nearly 86% (646/754) of auto users had single family dwelling and 89% (674/754) of 

auto users had full-time employment. On the other hand, the total walk/bicycle mode 

share of 5.67% was fairly split between male and female (3.08% and 2.59% 

respectively). Travelers in age group of 26-35 years of age accounted for nearly 35% 

(16/46) of total trips by walk/bicycle.  

 

The temporal distribution of work trips by mode is presented in Figure 4.1. For the three-

hour afternoon peak period, shares of each mode were generally consistent. Highest auto 

trips were observed during 5:00-5:29 PM in the three hour peak period. 

 

The trip distances for work trips made by the three modes of travel were analyzed. Auto 

trips had the highest standard deviation (8.30) of trip distance among all modes whereas 

the standard deviations for transit and walk/bicycle trips were nearly similar (4.34 and 

4.14 respectively). The average trips distance by auto, transit and walk/bicycle modes 
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were 10.0 km, 8.5 km and 2.9 km respectively. The statistics of trip distances by different 

modes are summarized in Table 4.3. 

Figure 4.1 Temporal Distribution of Work Trips by Mode. 

   Note: Values within the stacked bars are the number of trips by respective modes. 

 

Table 4.3 Statistics of Trip Distance (km) by Modes for Work Trips 

 Measure Auto Transit Walk/Bicycle 

    Minimum 0.09 2.43 0.17 

Maximum 61.45 16.27 21.92 

Mean 10.02 8.51 2.91 

Standard Deviation 8.30 4.34 4.14 

No. of Trips 754 12 46 
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4.3 Descriptive Analysis of Non Work Trips Dataset 

The non work subset contains the trip records of 448 trip makers making home based 

non-work (shopping, recreational and other) trips. 

 

 

              Figure 4.2 Mode Shares of Non Work Trips by Trip Purpose. 

Note: Values within the stacked bars are the number of trips by respective modes 

 

Figure 4.2 shows the proportions of shopping, recreational and other trips by three modes 

of travel. Shopping trips accounted for nearly 51% of total trips while the recreational 

and other trips had shares of 26% and 23% respectively. Auto was the by far the most 

favored choice of mode for three trip purposes. Nearly 83% of all non-work trips were 
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made by auto, followed by walk/bicycle at 14%, while the transit accounted for only 3% 

of total trips. 

 

Table 4.4 shows the summary of cross tabulations of socio-economic characteristics and 

travel modes for non work trips. Females were in majority and accounted for an 

approximate 56% of the subset sample. Travelers older than 65 years accounted for 

nearly 31% of the total subset sample followed by 36 - 45 years age group with 16% and 

56 -65 years group with nearly 14% of all travelers. Nearly 76% of the trips makers 

resided in single family dwellings while approximately 16% of the travelers resided in 

apartments. About 40% of the travelers were retirees followed second by fulltime 

employed travelers with 27% share of total sample.  

 

Households with two occupants constituted nearly 38% of the sample with 22% of subset 

consisted of households with four or more occupants. Nearly 92% of households owned 

at least one car. Auto mode shares were the highest among all modes for males and 

females - 36% and 47%, respectively.  Nearly 30% (113/373) of auto trips were attributed 

to travelers over 65 years of age. Nearly 81% (301/373) of auto users lived in single 

family dwellings and 40 % (148/373) of auto users were retirees. On the other hand, 

walk/bicycle mode shares for male and female were 6.5% and 7% of total trips 

respectively. Travelers over 65 years of age accounted for nearly 34% (21/62) of total 

walk/bicycle trips.  
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Table 4.4  Statistics of Mode Shares by Socio-economic Factors of Non-work Trips 

Dataset 

Socio-economic                    Mode Distributions 

Characteristics Auto Transit Walk/Bicycle      Totals 

 

Gender                 

Male 163 (36.38) 4 (0.89) 30 (6.70) 197 (43.97) 

Female 210 (46.88) 9 (2.01) 32 (7.14) 251 (56.03) 

Total 373 (83.26) 13 (2.90) 62 (13.84) 448 (100.00) 

 

Age                 

0 - 15 years 22 (4.91) 0 (0.00) 6 (1.34) 28 (6.25) 

16 - 25 years 34 (7.59) 2 (0.45) 10 (2.23) 46 (10.27) 

26 -35 years 52 (11.61) 1 (0.22) 6 (1.34) 59 (13.17) 

36 - 45 years 61 (13.62) 1 (0.22) 10 (2.23) 72 (16.07) 

46 - 55 years 39 (8.71) 1 (0.22) 3 (0.67) 43 (9.60) 

56 - 65 years 52 (11.61) 3 (0.67) 6 (1.34) 61 (13.62) 

over 65 years 113 (25.22) 5 (1.12) 21 (4.69) 139 (31.03) 

 Total 373 (83.26) 13 (2.90) 62 (13.84) 448 (100.00) 

 

Trip Purpose                 

Shopping 194 (43.30) 7 (1.56) 29 (6.47) 230 (51.34) 

Recreation 89 (19.87) 1 (0.22) 26 (5.80) 116 (25.89) 

Other 90 (20.09) 5 (1.12) 7 (1.56) 102 (22.77) 

Total 373 (83.26) 13 (2.90) 62 (13.84) 448 (100.00) 

 

Dwelling Type                 

Apartment 43 (9.60) 7 (1.56) 21 (4.69) 71 (15.85) 

Condo 1 (0.22) 0 (0.00) 0 (0.00) 1 (0.22) 

Duplex 11 (2.46) 0 (0.00) 3 (0.67) 14 (3.13) 

Triplex 1 (0.22) 0 (0.00) 0 (0.00) 1 (0.22) 

Single Family 301 (67.19) 5 (1.12) 35 (7.81) 341 (76.12) 

Townhouse 10 (2.23) 1 (0.22) 1 (0.22) 12 (2.68) 

Other 6 (1.34) 0 (0.00) 2 (0.45) 8 (1.79) 

 Total 373 (83.26) 13 (2.90) 62 (13.84) 448 (100.00) 

 

Employment Status                 

Employed Student 2 (0.45) 0 (0.00) 0 (0.00) 2 (0.45) 

Full Time 113 (25.22) 1 (0.22) 7 (1.56) 121 (27.01) 

Homemaker 34 (7.59) 1 (0.22) 1 (0.22) 36 (8.04) 

Part-Time 18 (4.02) 0 (0.00) 5 (1.12) 23 (5.13) 

Retired 148 (33.04) 5 (1.12) 27 (6.03) 180 (40.18) 

Self Employed 8 (1.79) 0 (0.00) 1 (0.22) 9 (2.01) 

Student 27 (6.03) 2 (0.45) 10 (2.23) 39 (8.71) 

Unemployed 23 (5.13) 4 (0.89) 11 (2.46) 38 (8.48) 

 Total 373 (83.26) 13 (2.90) 62 (13.84) 448 (100.00) 
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Table 4.4 - Continued 

Socio-economic                    Mode Distributions 

Characteristics Auto Transit Walk/Bicycle      Totals 

 

Household Size                 

1 59 (13.17) 8 (1.79) 27 (6.03) 94 (20.98) 

2 152 (33.93) 2 (0.45) 16 (3.57) 170 (37.95) 

3 78 (17.41) 0 (0.00) 8 (1.79) 86 (19.20) 

4 and over 84 (18.75) 3 (0.67) 11 (2.46) 98 (21.88) 

Total 373 (83.26) 13 (2.90) 62 (13.84) 448 (100.00) 

 

Auto Ownership                 

0 5 (1.12) 9 (2.01) 22 (4.91) 36 (8.04) 

1 171 (38.17) 2 (0.45) 29 (6.47) 202 (45.09) 

2 158 (35.27) 2 (0.45) 11 (2.46) 171 (38.17) 

3 31 (6.92)   0 (0.00) 0 (0.00) 31 (6.92) 

4 and over 8 (1.79) 0 (0.00) 0 (0.00) 8 (1.79) 

Total 373 (83.26) 13 (2.90) 62 (13.84) 448 (100.00) 

Note: Values in parenthesis are percentages. 

 

The temporal distribution of non-work trips by purpose is presented in Figure 4.3(a). 

Highest trips (28%) were observed in the first half hour of peak period. Nearly 47% of all 

non-work trips were made in the first half of peak period i.e from 3:00 pm to 4:29 PM.  

 

The temporal distribution of non-work trips by mode is presented in Figure 4.3(b). 

Highest auto trips were made in the first half hour of peak period. For the remaining 

afternoon peak period, shares of auto trips show a gradual decline. Apart from the first 

half hour of peak period, the shares of transit and walk/bicycle trips were generally 

consistent for the rest of peak period. 
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                                                                      (a) 

                                                                      (b) 

      Figure 4.3 Temporal Distributions of Non Work Trips by (a) Trip purpose (b) Mode 

       Note: Values within the stacked bars are the number of trips by respective modes 
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The statistics of non work trip distances by the three modes are summarized in Table 4.5 

As observed in the case of work trips, for non work trips, auto mode had the highest 

standard deviation (7.84) of trip distance among all modes whereas the standard 

deviations for trips made by transit and walk/bicycle modes were 4.86 and 4.48 

respectively. The average trips distance by auto, transit and walk/bicycle modes were 

7.84 km, 8.87 km and 2.76 km respectively. 

Table 4.5 Statistics of Trip Distance (km) by Modes for Non Work Trips 

Measure      Auto       Transit    Walk/Bicycle 

Minimum 0.05 1.47 0.01 

Maximum 62.14 13.12 21.67 

Mean 7.85 8.88 2.76 

Standard Deviation 8.11 3.86 4.27 

No. of Trips 373 13 62 

 

 

4.4 Model Estimation for Work Trips 

4.4.1 Results - Multinomial Logit Model 

The results pertaining to the MNL model in Table 4.6 indicate that travel time, travel 

cost, automobile ownership, full-time employment and dwelling type are statistically 

significant. A positive alternative-specific constant for walk/bicycle mode (ASCwalk/bic) 

suggests travelers’ general preference for walking/bicycling, other things being equal. 

Only one constant was used in the model as no other constants were statistically 

significant. The estimated model is also well behaved with a ρ
2
 value of 0.33. The 

coefficients of the LOS variables (travel time and travel cost) for motorized travel modes 
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(auto and transit) are negative as expected. Likewise, the coefficient of travel time for 

non-motorized travel mode (walk/bicycle) is also negative and noticeably significant.  

 

Auto ownership emerged as a significant factor for choosing the auto mode to commute. 

A higher number of automobiles in the household will increase the propensity of 

choosing the car. Similarly, more bikes in the household increases the propensity of 

choosing walk/bicycle as the preferred mode for transportation. Fulltime employees value 

travel time reliability and as such are more likely to choose auto over other modes of 

transportation. Furthermore, no age-related variables were found to be statistically 

significant in the MNL model. This result suggests that age is not a dominant predictor of 

mode choice for work trips in the study area. 

 

Travelers living in a single family dwelling are more likely to also use auto and transit. 

This could be because a disproportional number of single family dwellings in Windsor 

are located in the inner and outer suburbs. Given the large spatial extent of Windsor and 

the sprawling nature of its residential land use, workers living in the suburbs will be more 

prone to choosing auto to commute especially given that the transit service does not cover 

suburban areas. On the other hand, workers living in the inner suburbs might choose 

transit or drive to/from work. Furthermore, the results suggest that students are more 

likely to travel by transit. This is likely because many students have low income and 

potentially do not own vehicles. Also travel cost for transit is cheaper. Likewise, the 

model shows that students are more likely to travel by walk/bicycle to work. 
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Table 4.6 Estimated Parameters of MNL and MXL Models for Work Trips 

Variable 

 

 

           MNL         MXL 

Utility 

Functions  Value  (t-stat) 

    

Value   (t-stat) 

Non-Random Parameters 

     ASC walk/bic   O  2.208  (3.56) 3.717   (4.42) 

βttnm   O -0.079 (-3.97)              

βttm  A,T -0.141 (-1.80) -0.172      (-1.83) 

βtrc  A,T -0.994 (-2.12) -1.169  (-2.08) 

βnveh   A 1.679 (5.91) 1.831  (5.79) 

βnbic   O 0.352 (2.88) 0.356  (2.44) 

βfltemp   A 0.965 (2.14) 1.033  (2.01) 

βsfam_A   A 1.083 (2.65) 1.704  (3.28) 

βsfam_T   T 2.751 (2.42) 4.062  (2.80) 

βstudn_T   T 2.867 (2.95) 2.964  (2.95) 

βstudnt_O O 1.994 (2.48) 1.385 

     

(1.23)*  

Random Parameter           

(Normally Distributed) 

     ttnm O  
 

-0.161 (-4.28) 

Heterogeneity in mean, 

Parameter: Variable 

      ttnm:age1 

 
 

 

0.130 (2.43) 

ttnm:femsfam 

 
 

 

0.032 (2.35) 

Derived standard deviation of 

parameter distributions 

     
 ttnm      0.043 (3.19) 

 

Number of observations 

 

 812  812 

Number of explanatory 

variables 

 

   11    14 

Log-likelihood at convergence 

 

-160.43 -147.62 

Log-likelihood at β=0 

 

-238.51 -238.51 

Log-likelihood ratio index (ρ
2
) 

 

      0.33       0.38 

 

          

Note: All parameters are significant at 10 % significance level, A: Auto, T: Transit,  

O: Walk/Bicycle, * :  Not significant at 10% significance level 
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4.4.2 Results - Mixed Logit Model 

As shown in Table 4.6, with the exception for the variable representing students using 

non-motorized mode of travel (i.e. βstudnt_O), the results of the MXL model are consistent 

with those reported for the MNL model in terms of expected signs and statistical 

significance. The different LOS variables were specified as random parameters to 

identify variation in taste with respect to these variables. The random parameters were 

estimated from the modeled population over a number of draws (Halton sequences) with 

20 replications. These parameters are termed as unconditional random parameters as they 

are not conditioned on any individual choice level, but rather on the sample population as 

a whole (Hensher at al., 2005). The analysis suggests variation in taste in only the travel 

time for the non-motorized mode. The mean of the estimated random parameter for this 

LOS variable, ttnm, is negative and statistically significant. The coefficient of the derived 

standard deviation of the parameter distribution, ttnm, is also statistically significant, 

suggesting the presence of heterogeneity among the modeled travelers. This implies that 

travelers’ preference towards travel time by non-motorized mode varies among different 

socio-economic subgroups.  The decomposition of heterogeneity represented by its mean 

and standard deviation is depicted in Figure 4.4. 

 

Figure 4.4 Preference Heterogeneity in ttnm Parameter 
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In order to identify the source of this heterogeneity, the interaction between various 

socio-economic attributes with the random parameter was investigated. In the final model 

specifications, age and gender were sensitive to travel time for non-motorized modes. 

The positive coefficient for the interaction between ttnm and age1 suggests that travelers 

with age less than 16 years have stronger preference of choosing walk/bicycle mode than 

the other age groups. Similarly, female travelers living in single family dwellings 

(femsfam) show a stronger preference to non-motorized modes as indicated by the 

positive coefficient ttnm:femsfam. An explanation of the heterogeneity results maybe that 

these socio-economic groups prefer short-distance work trips (i.e. they prefer working 

closer to their houses) which makes it possible for them to walk or bike to work. Another 

explanation could be that some of these workers are less likely to afford driving auto or 

taking transit compared to the other socio-economic groups. 

 

Overall, the MXL model provides a better model fit (ρ
2 

= 0.38) than MNL model as it is 

able to capture the heterogeneity of travelers’ preferences.  

 

Model Predictions for Work Trips  

Accuracy of model estimation was evaluated by comparing predicted and observed mode 

choices as shown in Table 4.7. The diagonal values represent the number of correct 

predictions of mode choices by the model. The percentage of correct prediction of auto 

mode (95%) was higher than transit (8%) and walk/bicycle mode (43%). This is 

potentially due to lower observations of trips by transit and walk/bicycle modes in the 

dataset. The overall percentage of correct predictions was 91%. 
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Table 4.7 MXL Model Predictions for Work Trips 

Mode 
      Predicted Mode Choices       Observed  Mode Choices 

Auto Transit Walk/Bicycle 

 

Auto Transit Walk/Bicycle 

Auto 717 11 26 

 

754 0 0 

 

(95) 

   

(100) 

  Transit 10 1 1 

 

0 12 0 

  

(8) 

   

(100) 

 Walk/Bicycle 25 1 20 

 

0 0 46 

  

  

(43)    (100) 

  Note: The numbers in parenthesis are percentages. 

 

4.5 Sensitivity Analysis of  Work Trips Mode Choice 

4.5.1 Direct and Cross Elasticities of LOS Variables 

Understanding and quantifying the response to changes in attributes of alternatives has 

practical use in mode choice modeling.  Logit choice probabilities are function of the 

values of the attributes that define the utility of the alternatives and have the capability of 

reflecting the response to changes in attributes of alternatives (Koppelman and Bhat, 

2006). Often it is desired to know the likely gain in the choice probability of an 

alternative in response to a policy action (such as decreased fare/increased frequency). In 

the context of Logit models, Direct Elasticity,       

   , is expressed as change in choice 

probability (the response variable) of alternative i for unit changes in the value of 

attributes (the explanatory variable) of that particular alternative (Koppelman and Bhat, 

2006). 

                                                     

         1      
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where,    = parameter value, for the attribute in the utility;     = the attribute level at 

which the elasticity is being computed;     = choice probability of an alternative i.  

 

Whereas Cross Elasticity,        

   , is expressed  as  change in choice probability (the 

response variable) of an alternative k for unit changes in the value of attributes (the 

explanatory variable) associated with other alternative i (Koppelman and Bhat, 2006). 

                                                      

             

where,    = choice probability of an alternative k. 

 

Sensitivities of mode choice to different variables were analyzed based on elasticities of 

the mode choices predicted by the MXL model. Aggregate direct and cross elasticities of 

travel time and cost for the three modes are presented in Table 4.8. Due to their small 

magnitudes, the elasticities were multiplied by 100. The values represent averages of 812 

observed individual mode choices.  

             

Table 4.8 Aggregate Direct Elasticities of LOS variables for Work Trips 

Mode 

Aggregate Direct Elasticity 

Travel time 

 

Travel cost 

Auto -0.05 

 

-0.05 

Transit -2.78 

 

-3.20 

Walk/Bicycle -5.15 
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Table 4.9 Aggregate Cross Elasticities of LOS variables for Work Trips 

Mode 

            Aggregate Cross Elasticity 

                 Travel time 

  

         Travel cost 

Auto       Transit      Walk/Bicycle Auto          Transit 

Auto  0.42 0.10 

 

 0.05 

Transit 1.58  0.10 

 

1.60  

Walk/Bicycle 1.41 0.03    1.40 0.04 

 

The direct elasticities of mode choice to travel time and travel cost were the lowest for 

auto among the three modes as shown in Table 4.8. This shows that auto users are less 

sensitive to travel time and travel cost than users who travel by transit and walk/bicycle. 

On the other hand, the cross elasticities of mode choice to travel time and cost by auto 

were higher for transit and walk/bicycle as indicated in Table 4.9. This implies that the 

people who travel by transit and walk/bicycle perceive auto as a more competitive mode 

than non-auto modes (i.e. transit or walk/bicycle) and their mode choice is more sensitive 

to attributes of auto. 

 

4.5.2 Model Simulations for Work Trips 

Model simulation (what-if-analysis) is another powerful tool offered by NLOGIT. The 

simulators of NLOGIT are used to re-compute the mode shares under the effects of 

change in attributes on the choice probability. NLOGIT allows the analysis of model 

elasticities through simulation of simple and compound scenario.  
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The scenarios are used to quantify traveler’s response to specific mode choice when a 

particular attribute is changed in a specified way. In essence, these simulations help to 

analyze the effect of policy measures on mode choice probabilities 

 

Various LOS scenarios were created to quantify traveler’s response to choice of specific 

mode when a particular attribute was increased or decreased. In the simple scenario, 

sensitivity of mode shares to the travel cost for auto was examined. According to Figure 

4.5 (a), as the travel cost for auto was increased in the increments of 25%, 50%, 75% and 

100%, auto mode share was decreased by 1%, 3%, 6% and 10%, respectively. A 100% 

increase in travel cost for auto mode resulted in a gain of 8% and 2% in mode shares by 

transit and walk/bicycle modes, respectively. 
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                                                                          (b) 

         Figure 4.5 Predicted Mode Shares in the (a) Simple and (b) Compound Scenarios. 

In the compound scenario, sensitivity of mode shares to the travel cost for auto and the 

travel time for transit was examined. According to Figure 4.5 (b), as the travel cost for 

auto was increased in increments of 25%, 50%, 75% and 100% and the travel time for 

transit was reduced by 25%, auto mode share was decreased by 4%, 8%, 12% and 17%, 

respectively. A 100% increase in auto travel cost with 25% reduction in transit travel 

time resulted in a gain of 15% and 2% in mode shares by transit and walk/bicycle mode, 

respectively. 
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4.6 Model Estimation for Non Work Trips 

4.6.1 Results - Multinomial Logit Model  

Table 4.10 presents results of estimated MNL and MXL models for non-work trips.  In 

the results pertaining to the MNL model, the coefficient of the travel time for motorized 

travel modes, βttm (auto and transit) is of expected negative sign but statistically 

insignificant, whereas for non-motorized mode (walk/bicycle), the coefficient of travel 

time, βttnm is noticeably significant and of expected negative sign as well. This suggests 

that travel time reliability for motorized modes (auto and public transit), is not an 

important consideration in mode choice decisions for non-work trips in the study area. 

The coefficient of travel cost for the motorized travel modes, βtrc is statistically 

significant and of negative sign as expected. 

 

The coefficients of travelers’ mobility status, βnveh (automobile ownership), employment 

status βfltemp, βhmkr (full-time, home-maker) and dwelling type βdwlapt (apartment dwelling) 

are statistically significant. The results pertaining to these socio-economic indicators are 

intuitive and plausible. Auto ownership has always been deemed as a significant factor 

for choosing the auto mode to commute. A higher number of automobiles in the 

household will increase the propensity of making non-work trips. Fulltime employees are 

generally concerned with travel time reliability and as such are more likely to choose auto 

over other modes of transportation. A negative coefficient of home-maker variable for 

transit mode can be attributed to the fact that the travelers with home-maker status are 

more committed to fulfilling family obligations and are likely to have travel time 

constraints, thereby demonstrating their lower preference for transit mode.  
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Table 4.10 Estimated Parameters of MNL and MXL Models for Non Work Trips  

 Variable 

 

 

 

Utility 

Functions 

      MNL 

 

     MXL 

Value   (t-stat) 

  

Value (t-stat) 

ASCwalk/bic   O 1.912 (4.46) 

 

4.443 (4.62) 

βttnm   O -0.045 (-4.08) 

 

          

βttm A,T -0.044 (-1.22)* 

 

-0.012 (-0.30)* 

βtrc A,T -0.616 (-2.50) 

 

-0.446 (-1.66) 

βnveh   A 1.813 (6.53) 

 

2.541 (5.85) 

βhmkr   O -1.993 (-1.85) 

 

-2.461 (-1.89) 

βfltemp   A 0.834 (1.91) 

 

0.575 (0.97)* 

βstudnt   T 1.227 (1.48)* 

 

2.001 (2.14) 

βdwlapt   T 1.409 (2.29) 

 

1.489 (2.23) 

βtpshop   A 0.708 (2.28) 

 

0.823 (1.91) 

Random Parameter  

(Normally Distributed) 

    ttnm   O 

 

 -0.21 (-3.11) 

Heterogeneity in mean,  

Parameter: Variable 

    ttnm:unemp 

  

 0.094 (2.78) 

ttnm:studnt_ag12 

  

 0.116 (2.60) 

Derived standard deviations  

of parameter distributions 

   ttnm 

   

0.110 (2.63) 

 

Number of observations                   448        448 

No. of explanatory Variables                     10          13 

Log-likelihood at convergence                  -167.88       -146.29 

Log-likelihood at β=0                 -236.97       -236.97 

Log-likelihood ratio index (ρ
2
)                      0.29            0.38 

   Note: All parameters are significant at 10 % significance level, A: Auto, T: Transit,  

O: Walk/Bicycle, * :  Not significant at 10% significance level 

 

Travelers living in apartments dwelling are more likely to also use transit than any other 

mode. This could be because most of these dwellings in Windsor are located in the inner 

suburbs and have immediate access to transit. A positive coefficient of tpshop variable 
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for auto mode indicates travelers’ preference for the particular mode, when the trip is 

made specifically for shopping purpose. 

 

The findings suggest that travelers’ mobility and employment status, dwelling type and 

trip purpose are the key predicator of mode choice for non-work trips in the study area. ρ
2
 

value reflects the quality of the estimated Logit model. A ρ
2
 value of 0.29 implies that the 

estimated MNL model provides satisfactory data fit. 

 

4.6.2 Results - Mixed Logit Model 

As shown in Table 4.10, with the exception of estimates of βfltemp   and  βstudnt for auto and 

transit modes respectively, the results of the MXL model for non-work trips are generally 

consistent ( in terms of expected signs and statistical significance ) with those reported 

for the MNL model. The coefficient of travel cost for auto and transit modes is 

marginally insignificant. This result is justifiable as travelers are often perceived to trade-

off travel cost with trip purpose when it comes to non-work travel such as shopping and 

recreational trips. 

 

Travel time for non-motorized mode was specified as random parameter to identify 

preference heterogeneity in taste for different population subgroups. The random 

parameter was estimated from the modeled population over a number of draws (Halton 

Sequences) with 15 replications. The analysis suggests variation in taste in the travel time 

for the non-motorized walk/bicycle mode. The mean of the estimated random parameter 

(for non-motorized travel time), ttnm, is negative and statistically significant. The 
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coefficient of the derived standard deviation of the parameter distribution, ttnm, is also 

statistically significant, suggesting the presence of heterogeneity among the modeled 

travelers. This implies that travelers’ preference towards travel time by non-motorized 

mode varies among different socio-economic subgroups. 

 

In order to identify the source of this preference heterogeneity, the interaction between 

various socio-economic attributes with the random parameter was investigated. In the 

final model specifications, employment status and age proved sensitive to travel time for 

non-motorized modes. The positive coefficient of the interaction term ttnm and unemp 

suggests that travelers with no employment are less sensitive to travel time for 

walk/bicycle mode than other socio-economic subgroups. Similarly, students with age 

less than 26 years (studnt_ag12) demonstrate a stronger preference towards non-

motorized modes as indicated by the positive coefficient of ttnm:studnt_ag12. As evident from 

the results, the of MXL model provide a much richer interpretation of influence of LOS 

and socio-economic variables on mode choice for population subgroups. Overall, the 

MXL model provides a better model fit (ρ
2 

= 0.38) than MNL model as it is able to 

capture the heterogeneity of travelers’ preferences.  

 

Model Predictions for Non Work Trips 

Accuracy of parameters estimates of MXL model for non-work trips was evaluated by 

comparing predicted and observed mode shares as shown in Figure 4.6. The percentage 

of correct predictions of auto mode (89%) was higher than transit (23%) and walk/bicycle 

mode (48%). This is potentially due to lower observations of trips by transit and 
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walk/bicycle modes in the dataset. The overall percentage of correct predictions was 

81.5%.                           

 

Figure 4.6 MXL Model Predictions for Non Work Trips 

 

4.7 Sensitivity Analysis of  Non Work Trips Mode Choice 

Sensitivities of mode choice to different variables were analyzed based on elasticities of 

the mode choices predicted by the MXL model for non work trips.  

 

4.7.1 Direct and Cross Elasticities of LOS and Socio-economic variables. 

Aggregate direct and cross elasticities of LOS variables for the three modes of travel are 

presented in Table 4.11 and Table 4.12. Due to their small magnitudes, the elasticities 

were multiplied by 100. The values represent averages of 448 observed individual mode 

choices.  

0

50

100

150

200

250

300

350

400

450

500

Auto Transit Walk/Bicycle Total

373 

13 

62 

448 

332 

3 
30 

365 

N
u

m
b

er
 o

f 
T

ri
p

s 

Mode 

Observed Choices

Correctly Predicted Choices



  

75 

Table 4.11 Aggregate Direct Elasticities of LOS Variables for Non Work Trips 

Mode 

Aggregate Direct Elasticity 

Travel time 

 

Travel cost 

Auto -0.006 

 

-0.030 

Transit -0.144 

 

-1.184 

Walk/Bicycle -1.360 

 

 

 

Table 4.12 Aggregate Cross Elasticities of LOS Variables for Non Work Trips 

Mode  

              Aggregate Cross Elasticity 

Travel time 

 

Travel cost 

Auto       Transit      Walk/Bicycle Auto          Transit 

Auto  0.006 0.145 

 

 0.042 

Transit 0.079  0.145 

 

0.434  

Walk/Bicycle 0.042 0.003  

 

  

 

The direct elasticities of mode choice to travel time and travel cost for auto mode were 

the lowest among the three modes as shown in Table 4.11. This shows that auto users are 

less sensitive to travel time and travel cost than people who travel by transit and 

walk/bicycle.  

 

On the other hand, the cross elasticities of mode choice to travel time by walk/bicycle 

were higher for auto and transit as shown in Table 4.12. This implies that the people who 

travel by motorized modes perceive walk/bicycle as a more competitive mode than the 

other motorized mode (i.e. auto or transit) and their mode choice is sensitive to attributes 

of walk/bicycle.  
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Aggregate direct and cross elasticities of LOS variables for the three modes of travel are 

presented in Table 4.13 and Table 4.14. The direct elasticities of mode choice to vehicle  

Table 4.13 Aggregate Direct Elasticities of Socio-economic Variables for Non Work 

Trips 

Change in    Aggregate Direct Elasticity   

 Socio-economic Attributes Auto Transit Walk/Bicycle 

Auto Ownership 

 

0.252     

 

 

Apartment Dwellings       0.208 

 

 

 

 

Table 4.14 Aggregate Cross Elasticities of Socio-economic Variables for Non Work Trips 

Change in              Aggregate Cross Elasticity 

 Socio-economic Attributes Auto Transit Walk/Bicycle 

Auto Ownership    -3.554     -2.321 

Apartment Dwellings -0.029          -0.012 

 

ownership and apartment dwellings are reasonably high as indicated in Table 4.13 

suggesting their potential  impact in residential intensification process. As shown in 

Table 4.14, the cross elasticities of auto ownership by auto mode for transit and 

walk/bicycle are significantly higher. This indicates that vehicle ownership in the study 

area is strongly correlated with auto mode choice. 

 

4.7.2 Model Simulations for Non Work Trips 

NLOGIT allows the analysis of model elasticities through simulation of scenarios 

accommodating various LOS initiatives. These simulations help to analyze the effect of 
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policy measures on mode choice probabilities. Various scenarios were tested to quantify 

traveler’s response to choice of specific mode when particular attributes were increased 

or decreased. The results are presented in Figure 4.7. In scenarios 1 and 2, sensitivity of 

mode shares to the travel cost for auto and the travel time for transit was examined.  

 

In scenario-1 the travel cost for auto was increased by 25%. In scenario 2, the travel cost 

for auto was increased by 25% and travel time for transit was decreased by 10%. No 

appreciable mode share changes were observed in both scenarios. 

 

 In scenario-3, travel time for transit was decreased by 10% and a 25% growth of 

residential dwellings was assumed. The measures resulted in auto mode share reduction 

of 3% and subsequent gains of 2% and 1% for transit and walk/bicycle.  

 

In scenario-4, travel cost of auto was increased by 25%, travel time for transit and 

walk/bicycle was decreased by 10% and 5% respectively. Furthermore a simultaneous 

2.5% reduction in auto ownership and a 25% growth in apartment dwellings were also 

assumed for the same scenario.  

 

The combined effect of these LOS and residential intensification initiatives in scenario-4, 

demonstrated significant reduction in mode share of auto (11%) and increase in mode 

shares of transit (5%) and walk/bicycle (6%). 
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  Figure 4.7 Predicted Mode Shares for Non Work Trips under Various Scenarios 

 

4.8 Model Estimation for  Shopping Trips 

Shopping trips constituted more than 50% of the total non work trips. A separate MXL 

model for shopping trips was estimated to investigate the mode choice behavior of 

travelers for this specific trip purpose. 

 

4.8.1 Results - Mixed Logit Model for Shopping Trips 

The results of estimated MXL model are presented in Table 4.15. Estimates for LOS 

variables, i.e. travel time and travel cost for motorized modes (auto and transit) are of 

expected negative sign but statistically insignificant. Parameter estimates for vehicle 

ownership and employment status (βnveh, βstudnt) are intuitive and consistent with the 

findings of MXL model for non-work trips. The positive coefficients of variable hsize_T 
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and hsize_O (household size) for transit and walk/bicycle suggest that households with 

higher number of persons are conducive to making more transit and walk/bicycle 

shopping trips as oppose to auto shopping trips. This unique finding is specific to the 

study area and can be explained by the relatively lower proportion (21%) of auto mode 

share for households with four or more persons.  

 

The estimates of random parameter ttnm, of non-motorized travel time, ttnm and ttnm, are 

of expected sign and are statistically significant. The LOS results indicate that choice of 

motorized modes (i.e. auto and transit) for shopping trips  is not governed by LOS 

variables (travel time and travel cost) and preference heterogeneity exists among the 

modeled travelers in the study area.  

 

The source of preference heterogeneity in non-motorized travel time was traced back to 

age, employment and dwelling status. The negative coefficient of the interaction term 

ttnm and fltemp suggests that travelers with full time employment have lower preference 

of choosing walk/bicycle mode than traveler in the other socio-economic subgroups. An 

explanation of this behavior maybe that trips makers with this specific attribute, are more 

likely to afford automobiles, which makes it possible for them use auto as a favored mode 

of transport for making shopping trips. On the other hand the positive coefficient for the 

interaction between ttnm and age4sfam implies that travelers age 36-45 years residing in 

single family dwellings are less sensitive to non-motorized travel time and show a 

stronger preference of choosing walk/bicycle mode than the other age groups with any 

other dwelling status.  
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Table 4.15 Estimated Parameters of MXL Models for Shopping Trips 

Variable 

 

     Utility Functions 

  

         MXL 

  

   Value (t-stat) 

ASCwalk/bic O 

  

     7.861 (3.30)   

βttnm O 

    

          

 βttm A,T 

    

-0.049 (-0.48)* 

 βtrc A,T 

    

-0.679 (-1.19)* 

 βnveh A 

    

 5.536 (3.94) 

 βdwlapt T 

    

 1.986 (1.51)* 

 βhsize_T T 

    

 0.926 (1.96) 

 βhsize_O O 

    

 0.997 (1.74) 

 βfspouse A 

    

 4.717 (2.26) 

 βstudnt O 

    

 5.186 (1.80) 

 Random Parameter 

(Normally Distributed) 

      ttnm                  O 

   

-0.845 (-2.54) 

 Heterogeneity in mean, 

Parameter: Variable 

      ttnm:fltemp 

    

-0.235 (-1.70) 

 ttnm:age4sfam 

    

 0.218 (1.65) 

 Derived standard deviations  

of parameter distributions 

     ttnm          0.451 (2.47)   

 

Number of observations 

  

            230 

 No. of explanatory Variables 

  

              13 

 Log-likelihood at convergence 

  

            -57.53 

 Log-likelihood at β=0 

  

          -117.52 

 Log-likelihood ratio index (ρ
2
) 

  

               0.51 

 

     Note: All parameters are significant at 10 % significance level,  A: Auto, T: Transit,  

O: Walk/Bicycle, * :  Not significant at 10% significance level 

 

A spatial analysis of trip origins of this particular socio-economic group indicates that 

travelers are located mostly in the inner suburbs of city and are likely to prefer walk or 

use bicycle for going to shopping places that are in close proximity to their dwellings. 

The estimated MXL mode has a ρ
2
 value of 0.51 which indicates excellent data fit. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

This thesis presents the findings from the research conducted to model the mode choice 

behavior of passenger travel in the Windsor-Essex area, with a focus on investigating 

preference heterogeneity in the mode choice. 

 

State of the art random parameter Mixed Logit approach was used to model the travel 

behavior. The dataset for model estimation was extracted from the Windsor-Essex 

household survey conducted in 1997. Level-of-service (LOS) variables, household 

income and entropy index variable, for the study area were calculated from external 

sources. Passenger travel was categorized mainly into two categories, work and non-

work. The following objectives have been accomplished by this thesis: 

 

1. Investigate the socio-economic characteristics and LOS variables influencing 

travelers’ mode choice in the Windsor-Essex area; 

2. Investigate the existence of preference heterogeneity in  mode choice for work 

and non-work trips; 

3. Utilize the extended capabilities of Mixed Logit to estimate mode choice models 

for work and non-work related travel; 

4. Gain in-depth understanding of the behavioral process of traveler’s mode choice 

for work and non-work trips; 

5. Evaluate the impacts of different policy initiatives on the mode choice 

probabilities. 
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Findings from work and non-work MXL models are summarized in the next section. The 

last two sections highlight the contributions of this thesis and recommendations for future 

research. 

 

5.1 Summary of Findings 

5.1.1 Work Trips 

This thesis analyzed mode choice of work trips for the Windsor-Essex area in Ontario, 

Canada using Multinomial and Mixed Logit models. The models predicted mode choice 

based on socio-economic characteristics of individual travelers and trip characteristics 

obtained from a subset of the Windsor-Essex Household Travel Survey. Results 

pertaining to LOS variable (travel time and travel cost) are consistent with those found in 

mode choice literature. The results showed that traveller’s age, dwelling type, vehicle and 

bicycle ownership and employment type, and travel time and cost for each mode are 

significantly associated with mode choice. The results also showed that housing type, 

employment status and vehicle ownership are correlated with the auto mode.  

 

Although both Multinomial and Mixed Logit models showed similar results, Mixed Logit 

model provided better model fit. The latter model was also able to identify 

“heterogeneity” of traveler’s preference towards attributes of a specific mode among 

different socio-economic groups. It was found that travelers younger than 16 years and 

female travelers with single family dwelling are more sensitive to travel time by non-

motorized modes (walk or bicycle) than the other socio-economic groups. This indicates 

that variation in taste exists among travelers and can be accounted for using the Mixed 
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Logit model. These findings are in line with the findings of Day et al., 2010. However, 

caution should be exercised in generalizing these findings. Overall, the Mixed Logit 

model in thesis context helped to better explain the travel behavior of workers. 

Furthermore, the simulation results conducted with the estimated Mixed Logit model 

provided insights about the consequences of particular transportation initiatives.  

 

The model was used to examine the impacts of enhancing transit services while 

accounting for an inevitable increase in auto travel cost. An appreciable reduction of 17% 

in auto mode share was observed in a scenario accommodating LOS initiatives. Such 

analysis can help predict the likely shifts in mode as was illustrated in the previous 

section.  

 

5.1.2 Non Work trips 

This thesis estimated Multinomial and Mixed Logit models for non work trips in the 

Windsor-Essex area in Ontario, Canada. Socio-economic and trip characteristics of 448 

individual travelers for non-work trips were obtained from a dataset extracted from the 

Windsor-Essex Household Travel Survey conducted in 1997 and were considered for 

modeling the mode choice behavior. A Mixed Logit model for shopping trips (230 

observations from non work subset) was also estimated separately.  

 

The model results showed that the travel time reliability for motorized modes (auto and 

public transit), is not an important consideration in mode choice decisions for both non-

work and shopping trips whereas the opposite was true for non-motorized mode 
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(Walk/Bicycle). Travel cost for motorized mode is marginally significant for non-work 

trips but for shopping trips it has no bearing on auto and transit mode choice. Vehicle 

ownership was significantly associated with auto mode choice for both non-work and 

shopping trips. 

 

Although the parameter estimates of both Multinomial and Mixed Logit models for non 

work trips were largely consistent, Mixed Logit model provided a much richer 

interpretation of commuter’s mode choice behavior by identifying preference 

heterogeneity of traveler’s towards the attributes of Walk/bicycle mode among different 

socio-economic groups.  

 

Preference heterogeneity analysis for non-work trips revealed that the unemployed trip 

makers and students (age less than 26 years) are less sensitive to travel time by non-

motorized modes (walk or bicycle) than other socio-economic groups. Both subgroups 

show a show a higher preference to non-motorized modes. Variation in taste for non-

motorized mode for shopping trips exists among travelers with full time employment and 

travelers residing in single family dwellings, aged 36-45 years. The former are more 

sensitive to travel time by non-motorized mode, whereas the later show a higher 

preference towards non-motorized modes. These unique findings are relevant to study 

area, but can be generalized in broader context. 

 

Accounting for the heterogeneity in non-motorized mode for non-work tips may allow for 

more realistic projections of the reduction in auto mode share and increase in the mode 
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shares of transit and non-motorized mode such as walking/bicycle. The MXL model for 

non-work trips was used to examine the impacts different policy initiatives, such as 

improving transit services, promoting residential intensification, while accounting for an 

inevitable increase in auto travel cost. Under the combined effect of various initiatives, a 

significant reduction (11%) in auto mode share was observed whereas transit share 

increased from 3% to 8%. The simulation results provide insights about the effects of 

particular policy initiatives. Finally, in order to reduce auto dependence and purse 

travelers to choose more sustainable modes such transit, walk and bicycle for non-work 

travel, the research recommends that the impacts of transportation and residential 

initiatives on mode choice, targeted at specific socio-economic groups be evaluated.  

 

5.2 Research Contributions 

5.2.1 Methodological Contributions 

The lack of applications of the Mixed Logit (MXL) model in travel mode choice analysis 

was part of the motivation of this thesis. This thesis employed the MXL approach to 

model the mode choice behavior of passenger travelers during the peak period in the 

Windsor-Essex Area, and thereby contributes to this emerging paradigm in the field of 

transportation research. Mixed Logit model is the least restrictive in its behavioral 

assumptions when compared to its predecessors, i.e. the traditional Multinomial Logit 

(MNL) and Nested Logit (NL) models. Due to inherent rigid assumptions, MNL and NL 

models provide single point coefficients for the whole sample population. Therefore, 

these conventional models cannot capture the difference in preference towards attributes 

of a specific mode among various socio-economic groups, also known as “heterogeneity” 
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in choice behavior. By accounting for this heterogeneity in preference, the MXL model 

provides a richer and significantly better representation of the travelers’ mode choice 

behavior. This can be discerned from the consistently higher ρ
2
 values of the estimated 

MXL models in this thesis. The source of this superior explanatory power resides in the 

ability of the MXL model to explicitly estimate the mean and variance of the randomly 

specified variables, thereby taking into account both the observed and unobserved effects 

in the revealed choices. Furthermore, the novel and unique findings from this thesis pave 

the way for future research while the rest add credence to the existing knowledge found 

in mode choice modeling literature. 

 

5.2.2 Formulation of Policy Initiatives 

Formulation of efficient transportation demand initiatives and polices is a very important 

aspect of transportation planning. It requires understanding on how to influence people to 

reduce auto use and choose more sustainable modes such as, shared ride, public transit, 

walk, bicycle etc. The simulations carried out in this thesis helped to analyze the effect of 

policy measures on mode choice probabilities. By simulating the changes in LOS and/or 

socio-economic attributes that are envisioned in the different scenarios, the mode share 

probabilities can be re-calculated and the response to the proposed policy initiative can be 

quantified. 

 

In this thesis, the mode share probabilities for work and non-work travel were simulated 

in simple and compound scenarios. Various LOS scenarios were created to quantify 

traveler’s response to choice of specific mode, when a particular attribute increases or 
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decreases. The results of simulations for work related travel revealed that the increase in 

mode share of transit mode was primarily due to induction of auto mode commuters who 

were persuaded to switch to transit mode due to not only the higher cost of auto mode but 

also the lowered travel time for transit mode. The results reinforce the idea that, a reliable 

transit system with a good spatial coverage in the Windsor-Essex Area is critical for the 

success of any transportation demand initiatives. Over all, the simulation results were 

intuitive and plausible and could be used to formulate LOS initiatives in conjunction with 

ever increasing fuel costs.  

 

With regard to non-work travel, simulations were performed to analyze the single and 

combined effects of various LOS and residential intensification initiatives on mode 

choice probabilities. The results suggest that under the combined effect of increasing fuel 

costs, measures such as improvements in transit service, extra provisioning of 

walk/bicycle facilities and availability of more apartment dwellings in the inner suburbs 

can lead to appreciable decline in the auto dependence in the Windsor-Essex area. 

 

5.3 Research Limitations and Future Research 

Accurate estimation of LOS attributes such as travel time and travel cost for different 

travel modes at the micro level is very important. The limitations in this research are 

primarily due to the absence of actual travel time and cost perceived by travelers in the 

travel survey data. The research had to rely on calculated values which might not reflect 

the actual in-vehicle travel time for the observed trips. The same could be said about the 

vehicle operating costs, which was also calculated from external sources. Despite these 
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limitations, the results of estimated MXL models are useful to policy makers as they 

provide insight into traveler’s behavior and identify factors influencing transport mode 

choice of passenger travel in the study area. With regard to these limitations, it is 

therefore recommended that any future travel survey should include the LOS variables.  

 

The Windsor-Essex Household survery-1997 data used in this thesis was based on the 

revealed preferences of travelers. Revealed preference data reflects the actual choices that 

existed at the time of survey. However in order to gauge travelers’ response to planned 

(hypothetical) choice situations, stated preference data is commonly used to record 

travelers’ preference or choices (Train, 2009). Stated perfect data can be used to reflect 

any level of variation in the attributes of an alternative. Combining both revealed and 

stated preference data in choice behavior analysis provides desired level of variation in 

attributes and actual predicted choices (Train, 200). It is therefore, recommended that the 

future travel surveys should also incorporate stated preference data. The prospects of 

recording panel data (travel diaries), in which repeated choices for each traveler are 

obtained over time, should also be explored.  The use of panel data enables MXL model 

to capture even the slight daily variation in mode choice behavior. 

 

As for the recommendation of the modeling approach for future research, this research 

recommends the application of the MXL model in mode choice analysis, due to its ability 

to overcome the limitations of the MNL and NL models and to identify the preference 

heterogeneity in the sub-groups of a sample population. 
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APPENDICES 

APPENDIX A 

 

 

 

 

 

 

 

 

       WALTS Questionnaire and Transit Windsor Maps for the Years 1997 and 2012  
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      Figure A-1 Original WALTS Questionnaire (Windsor Public Library, 2011)
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Figure A-2 Transit Windsor – 1996 Routes (Windsor Public Library, 2011) 
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Figure A-3 Transit Windsor – 2011 Routes (Transit Windsor, 2011)
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APPENDIX B 

 

                                  

 

 

 

 

 

 

 

 

LOS Estimation, Entropy Index and Data Representation Analysis 
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Figure B-1 Illustration of Travel Time Estimation using Network Analyst for Auto Trips in the Windsor-Essex Area  
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Figure B-2 Illustration of Travel Time Estimation using Network Analyst for Transit Trips in the Windsor-Essex Area 
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Figure B-3 Illustration of Travel Time Estimation using Network Analyst for Walk/Bicycle Trips in the Windsor-Essex Area  
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           Table B-1 Data Representation – Work Trips Mode Shares Comparison 

                          Stats Canada 1996              WALTS 1997 

CTUID Auto(%) Transit(%) W/B(%) 

 

Auto(%) Transit(%) W/B(%) 

5590000 0.903 0.034 0.063   0.929 0.015 0.057 

5590001 0.966 0.013 0.021 

 

1.000 0.000 0.000 

5590002 0.986 0.014 0.000 

 

1.000 0.000 0.000 

5590003 0.956 0.009 0.034 

 

0.913 0.043 0.043 

5590004 0.953 0.013 0.034 

 

0.935 0.000 0.065 

5590005 0.966 0.006 0.028 

 

0.962 0.000 0.038 

5590006 0.941 0.000 0.059 

 

1.000 0.000 0.000 

5590007 1.000 0.000 0.000 

 

1.000 0.000 0.000 

5590008 0.884 0.000 0.116 

 

0.000 0.000 1.000 

5590009 0.772 0.110 0.118 

 

0.833 0.000 0.167 

5590010 0.873 0.043 0.084 

 

0.895 0.053 0.053 

5590011 0.951 0.022 0.027 

 

0.917 0.000 0.083 

5590013 0.812 0.074 0.113 

 

0.778 0.000 0.222 

5590014 0.854 0.060 0.086 

 

1.000 0.000 0.000 

5590015 0.950 0.020 0.030 

 

0.875 0.000 0.125 

5590016 0.899 0.006 0.095 

 

1.000 0.000 0.000 

5590017 0.850 0.034 0.116 

 

0.923 0.077 0.000 

5590018.01 0.908 0.044 0.048 

 

0.955 0.045 0.000 

5590018.02 0.868 0.070 0.062 

 

1.000 0.000 0.000 

5590019.01 0.934 0.042 0.024 

 

1.000 0.000 0.000 

5590019.02 0.954 0.022 0.024 

 

0.958 0.042 0.000 

5590020 0.903 0.050 0.046 

 

1.000 0.000 0.000 

5590021 0.878 0.040 0.082 

 

1.000 0.000 0.000 

5590022 0.860 0.030 0.111 

 

0.895 0.000 0.105 

5590023 0.844 0.053 0.102 

 

0.750 0.000 0.250 

5590024 0.847 0.069 0.084 

 

1.000 0.000 0.000 

5590025 0.788 0.074 0.138 

 

1.000 0.000 0.000 

5590026 0.751 0.089 0.160 

 

1.000 0.000 0.000 

5590028 0.815 0.068 0.117 

 

0.909 0.000 0.091 

5590029 0.681 0.127 0.192 

 

0.750 0.083 0.167 

5590030 0.823 0.043 0.134 

 

0.882 0.000 0.118 

5590031 0.642 0.108 0.250 

 

1.000 0.000 0.000 

5590032 0.640 0.092 0.268 

 

0.750 0.000 0.250 

5590033 0.663 0.109 0.228 

 

0.222 0.000 0.778 

5590034 0.805 0.105 0.090 

 

0.833 0.083 0.083 

5590035 0.635 0.120 0.244 

 

0.400 0.000 0.600 

5590036 0.879 0.037 0.084 

 

0.875 0.000 0.125 

5590037 0.845 0.062 0.093 

 

0.909 0.091 0.000 



 

 

98 

 

        
 

                                  Stats Canada 1996                 WALTS 1997 

CTUID Auto(%) Transit(%) W/B(%) 

 

Auto(%) Transit(%) W/B(%) 

 

5590038 0.771 0.135 0.094 

 

0.750 0.000 0.250 

5590039 0.860 0.081 0.059 

 

1.000 0.000 0.000 

5590040 0.897 0.058 0.045 

 

0.917 0.000 0.083 

5590041 0.920 0.031 0.049 

 

0.913 0.043 0.043 

5590042 0.927 0.028 0.045 

 

0.933 0.000 0.067 

5590043 0.941 0.031 0.028 

 

0.964 0.000 0.036 

5590100 0.981 0.000 0.019 

 

0.923 0.000 0.077 

5590101 0.989 0.000 0.011 

 

0.950 0.050 0.000 

5590102 0.975 0.000 0.025 

 

1.000 0.000 0.000 

5590110 0.958 0.003 0.039 

 

1.000 0.000 0.000 

5590120.01 0.981 0.000 0.019 

 

0.967 0.000 0.033 

5590120.02 0.971 0.000 0.029 

 

1.000 0.000 0.000 

5590120.03 0.970 0.004 0.026 

 

0.969 0.031 0.000 

5590130 0.992 0.000 0.008 

 

0.975 0.025 0.000 

5590140 0.992 0.000 0.008 

 

1.000 0.000 0.000 

5590150 0.934 0.000 0.066 

 

1.000 0.000 0.000 

5590160 0.936 0.004 0.060 

 

1.000 0.000 0.000 

5590170 0.984 0.000 0.016 

 

1.000 0.000 0.000 

           Note: W/B means Walk/Bicycle 

 

 

 

 

 

 

 

 

Table B-1 -Continued 
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Figure B-4 Land Use Entropy Index of Windsor-Essex Area 
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Figure B-5 Auto Mode Shares – Census Tracts 1996  
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Figure B-6 Auto Mode Shares – WLATS 1997  
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Figure B-7 Transit Mode Shares – Census Tracts 1996 
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Figure B-8 Transit Mode Shares – WLATS 1997  
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Figure B-9 Walk/Bicycle Mode Shares – Census Tracts 1996  
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Figure B-10 Walk/Bicycle Mode Shares – WLATS 1997 
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APPENDIX C 

                   

 

 

 

 

 

 

 

 

 

 

Specifications and Utility Functions for the MNL and MXL Models 
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Work Trips Dataset  

MNL Model Specifications for Work Trips: (Modes: Auto, Transit, Walk Bicycle)  

NLOGIT ; 

Lhs = mode; 

Choices = auto, transit, walk/bicycle; 

Model:  

U(auto)               =      βttm *  ttime  +  βnveh * nveh  +  βfltemp * fltemp  +  βtrc * trc  +  

                                    βsfam_A *  sfam   / 

 

U(transit)            =     βttm *  ttime   +  βtrc *trc  +  βstudnt_T * studnt  +  βsfam_T * sfam   / 

 

U(walk/bicycle)   =   ASCwalk/bic  +   βttnm *  ttime  +  βnbic * nbic  +  βstudn_O * studnt $  

                                                 

 

MXL Model Specifications for Work Trips: (Modes: Auto, Transit, Walk Bicycle)  

Calc;ran(10000)$ 

NLOGIT ; 

Lhs = mode; 

Choices = auto, transit, walk/bicycle; 

Halton; 

Rpl=age1,femsfam; 

Fcn =  ttnm(n|#11)  

Pts=20; 

Model:  

U(auto)               =      βttm *  ttime  +  βnveh * nveh  +  βfltemp * fltemp  +  βtrc * trc  + 

                                   βsfam_A * sfam   / 

 

U(transit)            =     βttm *  ttime   +  βtrc * trc  +  βstudnt_T * studnt  +  βsfam_T * sfam   / 

 

U(walk/bicycle)   =   ASCwalk/bic  +   βttnm *  ttime  +  βnbic * nbic  +  βstudn_O * studnt $  

                                         

Prob = Probs ; 

Utility = u1;  

Crosstab; 

Describe $ 
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Non Work Trips Dataset 

MNL Model Specifications for Non Work Trips: (Modes: Auto, Transit, Walk Bicycle)  

 

NLOGIT ; 

Lhs = mode; 

Choices = auto, transit, walk/bicycle; 

Model:  

 

U(auto)               =      βttm *  ttime  +  βnveh * nveh  +  βfltemp * fltemp  +  βtrc * trc  +  

                                    βtpshop * shopp     / 

 

U(transit)            =     βttm *  ttime   +  βtrc * trc  +  βdwlapt * dwlapt  +  βstudn * studnt / 

 

U(walk/bicycle)   =   ASCwalk/bic  +   βttnm *  ttime  +    βhmkr * hmkr $  

                                                 

 

 

MXL Model Specifications for Non Work Trips: (Modes: Auto, Transit, Walk Bicycle)  

 

Calc;ran(10000)$ 

NLOGIT ; 

Lhs = mode; 

Choices = auto, transit, walk/bicycle; 

Halton; 

Rpl= unemp, studnt_ag12 

Fcn =  ttnm(n)  

Pts=15; 

Model:  

 

U(auto)               =      βttm *  ttime  +  βnveh * nveh  +  βfltemp * fltemp  +  βtrc * trc  +  

                                    βtpshop * shopp     / 

 

U(transit)            =     βttm *  ttime   +  βtrc *trc  +  βdwlapt * dwlapt  +  βstudn * studnt / 

 

U(walk/bicycle)   =   ASCwalk/bic  +   βttnm *  ttime  +    βhmkr * hmkr $  

                                                 

Prob = Probs ; 

Utility = u1;  

Crosstab; 

Describe $ 
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Shopping Trips Dataset 

MXL Model Specifications for Shopping Trips: (Modes: Auto, Transit, Walk Bicycle)  

 

Calc;ran(10000)$ 

NLOGIT ; 

Lhs = mode; 

Choices = auto, transit, walk/bicycle; 

Halton; 

Rpl= age4sfam , fltemp 

 Fcn =  ttnm(n)  

Pts=10; 

Model:  

 

U(auto)               =      βttm *  ttime  +  βnveh * nveh  +  βtrc * trc  + βfspouse * femhmkr / 

 

U(transit)            =     βttm *  ttime   +  βtrc * trc  +  βdwlapt * dwlapt  +  βhsize_T * hhsize  / 

 

U(walk/bicycle)   =   ASCwalk/bic  +   βttnm *  ttime  +    βstudnt * studnt + 

                                    βhsize_O  * hhsize  $  

                                                 

 

Prob = Probs ; 

Utility = u1;  

Crosstab; 

Effects; 

Describe $ 
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