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ABSTRACT 

 

We explore change detection using videos of change-free paths to detect any changes that 

occur while travelling the same paths in the future. This approach benefits from learning 

the background model of the given path as preprocessing, detecting changes starting from 

the first frame, and determining the current location in the path. Two approaches are 

explored: a geometry-based approach and a deep learning approach.  

In our geometry-based approach, we use feature points to match testing frames to 

training frames. Matched frames are used to determine the current location within the 

training video. The frames are then processed by first registering the test frame onto the 

training frame through a homography of the previously matched feature points. Finally, a 

comparison is made to determine changes by using a region of interest (ROI) of the direct 

path of the robot in both frames. This approach performs well in many tests with various 

floor patterns, textures and complexities in the background of the path.  

In our deep learning approach, we use an ensemble of unsupervised 

dimensionality reduction models. We first extract feature points within a ROI and extract 

small frame samples around the feature points. The frame samples are used as training 

inputs and labels for our unsupervised models. The approach aims at learning a 

compressed feature representation of the frame samples in order to have a compact 

representation of background. We use the distribution of the training samples to directly 

compare the learned background to test samples with a classification of background or 

change using a majority vote. This approach performs well using just two models in the 

ensemble and achieves an overall accuracy of 98.0% with a 4.1% improvement over the 

geometry-based approach.    
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CHAPTER 1 

Introduction 

 

1.1 Computer Vision 

The field of Computer Vision aims at understanding images at a high level to perform 

vision-based tasks. Images can be captured using different sensors to acquire different 

information, such as, an RGB camera for colour, LIDAR for depth and many more. 

Information from lower level image processing methods can be utilized in order to 

extract higher level information, which in turn provides valuable information to perform 

related tasks in many fields.   

 Computer vision can be applied to many fields with a visual component. 

Computer vision does not aim to reproduce the biological vision system, but instead aims 

to reproduce the system’s functions. As a result, there are a large number of fields where 

computer vision exists, such as motion detection, autonomous navigation, scene 

reconstruction and recognition, augmented reality (AR), object recognition, object 

tracking and many more high level vision-based tasks. 

 Motion detection aims to track the movement of an object or person. For example, 

background subtraction (to be discussed further in section 1.3) can be used in a 

surveillance camera to monitor a specific area to automate motion detection, see Figure 1. 

Motion detection is not limited to video surveillance, as it can be useful to track gestures, 

posture and actions for possible applications in many areas, such as, Human-Computer 

Interaction (HCI) and Augmented Reality (AR).  
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Many applications of motion detection can be incorporated into an augmented 

reality device. Gesture recognition can be useful for device interaction to allow a user the 

ability to react to a virtual scene and/or objects without the use of a controller, see Figure 

2. Movement can be tracked for virtual object placement and occlusion. For example, a 

person might walk in front of a virtual object and occlude part of the view of said object, 

thus requiring the ability to understand a 3D environment. 

 

Figure 1. A surveillance camera monitoring a path and detecting a 

person’s activity. (Image acquired from https://www.ips-

analytics.com/en/products/ips-videoanalytics-new/server-based/ips-

motion-detection.html). 

Placement of virtual objects in augmented reality requires the ability to recognize 

and reconstruct the scene. Scene reconstruction requires information about the 3D space 

of the scene, including depth. An RGB camera can be used to recognize the scene, but an 

image does not have depth information. This is because the camera projects a 3D space 

into a 2D space to acquire the image, thus losing depth information through the loss of 

the third coordinate of each pixel. In computer vision, many solutions can be applied to 

this problem to acquire depth. For example, structure-from-motion can acquire depth 

https://www.ips-analytics.com/en/products/ips-videoanalytics-new/server-based/ips-motion-detection.html
https://www.ips-analytics.com/en/products/ips-videoanalytics-new/server-based/ips-motion-detection.html
https://www.ips-analytics.com/en/products/ips-videoanalytics-new/server-based/ips-motion-detection.html
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from many sequential images captured from a single camera, or more sensors can 

contribute information, such as a second camera for stereo vision, or other sensors like 

LIDAR and RADAR for depth coordinates from a time-of-flight (ToF) sensor. With 

depth information, the scene can be reconstructed virtually using estimated 3D 

coordinates of each pixel in order to project virtual objects into the scene.  

 

Figure 2. An image from Microsoft’s HoloLens 2 live demonstration. The 

user is interacting with virtual objects viewed from the created holograms 

within the HoloLens headset. The cameras on the headset detect the user’s 

gestures and allows the user to adjust differently styled buttons and sliders 

(seen in the image) just by grabbing them in air. (Image acquired from 

https://www.youtube.com/watch?v=uIHPPtPBgHk). 

In the last of our examples of fields in computer vision, we have applications to 

object recognition. The biological system uses object recognition for many tasks, such as 

reading the individual characters in a sentence or entire words at one time, understanding 

our environment from the objects that surround us, and immediately recognizing a person 

from their face. With recent developments in deep learning, object recognition has greatly 

advanced in computer vision through the use of training data and deep learning models. 

https://www.youtube.com/watch?v=uIHPPtPBgHk
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We further explain deep learning in computer vision in section 1.2, background 

subtraction in section 1.3, obstacle detection in section 1.4, and change detection in 

section 1.5. We present the problem statement in section 1.6, possible applications in 

section 1.7, and finally the thesis organization in section 1.8. 

1.2 Deep Learning 

Computer vision has progressed rapidly through the use of deep learning. Specifically, 

we utilize deep learning models, such as the Convolutional Neural Network (CNN), to 

process images. At a high level, CNNs are special neural networks that use shared 

parameters in order to scan images. Computer vision also makes use of dimensionality 

reduction models, such as the autoencoder structure. An autoencoder aims to reduce the 

incredibly high dimensionality of an input image (for computer vision tasks) into a set of 

features that can be decoded to reproduce the original input image.  

A neural network is a collection of nodes, called neurons, and weighted node 

connections, see Figure 3. An input is flown through layers of neurons in order to 

produce an output. In the case of computer vision, inputs can be images and the 

associated outputs are labels for classification or ranges (continuous values) for 

regression tasks. Each neuron is connected to several other neurons with an associated 

weight to each connection. Inside the neuron is an activation function that transforms 

inputs non-linearly. The neuron takes the dot product between the previous layer of 

neurons and the connected weights as input. The output of the neuron is a non-linear 

transformation of the dot product using the neuron’s activation function, such as ReLU, 

Sigmoid, Tanh, and more. This is repeated for all the connected neurons through the 

network until an output node is reached. The final output is formatted to fit the criteria of 
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the problem in the case of classification or regression using functions, such as SoftMax, 

Sigmoid, and more. 

The neurons of a neural network can be viewed as feature detectors where a given 

input is encoded into numeric values (features) as it is passed through the layers of the 

network. Each layer would ideally (not always the case) learn progressively more 

complex features of an input. The features are detected using a dot product to make a 

comparison of the weighted connections and the outputs of the previous layer of neurons 

(or the input itself). The neuron will output a value for the resulting comparison, which 

represents a more complex and high level feature composed of the previously detected 

features. At a high level, the network simply aims to learn its weighted parameters 

through training of various input and output examples to detect valuable features of the 

data. This then acts like a function relating the input examples to the output examples, 

and can be, ideally, generalized to a larger set of related unseen inputs and outputs. 

A loss function and gradient descent algorithm are used to tune the weights of the 

neural network into producing the appropriate outputs. The loss function acts as a 

mechanism to measure the difference between the currently poor output of the network 

and expected (labelled/training) output of a given input. From there, the gradient descent 

algorithm calculates gradients of each weight and the series of connected neurons through 

back propagation based on the amount of loss described by the loss function. Gradient 

descent describes the estimated direction to tune the weights while back propagation is 

the process of tuning each weight as we backpropagate through the network 

nodes/weights. As a result, each weight is slightly tuned for better results with each 

training sample (or group of samples).  
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Figure 3. An image of a cat is used as an input to 64 nodes, called 

neurons. These neurons feed into several layers of neurons (in the case of 

deep learning) until an output neuron is reached for a final classification 

of cat or not cat. Each neuron compares the connected weights to the 

output of the previous neuron (or an input value) through a dot product. 

Training data, a loss function and gradient descent are used to tune the 

weighted parameters of the network (the “??” over the connections) to 

properly classify the image as a cat. (Image acquired from 

https://homes.cs.washington.edu/~bornholt/post/nnsmt.html). 

 CNNs are neural networks designed to be more efficient for images. Images are 

generally very large and costly to process. A neural network must have an input weight 

for every pixel of an image. This is unrealistic in most cases, especially high resolution 

images. To overcome this problem, CNNs use shared parameters to process and scan an 

image. A neural network, called a filter in this case, processes a very small portion of the 

image to produce a feature of the area. The filter is scanned using the same parameters 

(hence the term shared parameters) over the entire image to produce a feature for each 

region. There may be several filters processing the image and producing output, which 

together create a set of feature maps as an output. This process of scanning is known as a 

convolution. We can apply the convolution step to the produced feature maps of previous 

layers with new filters. This allows the CNN to obtain the desired growth in feature 

complexity the original neural network achieves by stacking layers of neurons. We may 

also process feature maps with pooling and activation functions to further focus 

processing on specific regions of an image using max pooling, or to process the image 

https://homes.cs.washington.edu/~bornholt/post/nnsmt.html
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non-linearly using an activation function. Once the feature map is small enough, we feed 

the feature map entirely to a normal fully connected neural network to finally classify the 

image. See Figure 4 for an example of a sequence of CNN steps. Training the CNN is 

similar to training the neural network where we update the weights using a loss function 

and gradient descent. The shared parameters of the filters are updated by accumulating 

the gradient of contributing inputs processed by the shared parameter.  

 

Figure 4. Here an image of a vehicle is processed by a convolutional 

neural network to recognize whether the image is a car, truck, airplane, 

ship or horse. Each column is a different step in the CNN process used 

(flowing from left to right). The boxes represent features produced in the 

current step of several filters. The first step is a convolution of shared 

parameters to generate a feature map. The next is the use of an activation 

function known as ReLU for non-linear processing. Occasionally pooling 

is used to focus processing on key information. Finally, a neural network 

is used to process the features and classify the image as a car. (Image 

acquired from http://cs231n.github.io/convolutional-networks/). 

Finally, another important neural network is the autoencoder. The 

autoencoder simply aims to compress an input into a feature representation, 

known as dimensionality reduction. The network is built on two steps, an 

encoding of the input and a decoding of features. The relationship of both 

portions of the network can be seen in Figure 5. Previous networks discussed are 

generally used as supervised learning models. This means that the model is given 

http://cs231n.github.io/convolutional-networks/
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the opportunity to learn from labelled outputs, such as Cat or Not Cat. The 

autoencoder is an unsupervised approach where there are no associated labels to 

any input, because it simply learns the feature space of the inputs. The encoder 

portion of the network is a simple neural network with features as outputs, 

essentially skipping the final “output” layer with classification data. In order to 

train the network, a decoder is used to reproduce the original image. The decoder 

is just another neural network taking the features of the encoder as input and 

producing the original image as output, though it is expanding into outputs rather 

than shrinking into features. Together they make a large network. The images (or 

samples) are used as both the input and the training “label” of the network. The 

loss function compares the output image of the autoencoder to the original image 

and describes the amount information lost between the images. Finally, gradient 

descent adjusts the weighted connections to tune the network. The encoder and 

decoder portions of the network can be split and used individually to compress 

(encode) or decompress (decode) samples.  

1.3 Background Subtraction 

Background subtraction is a task where we aim to extract foreground information from a 

sequence of images obtained through a stationary camera. Ideally, the images will have 

each pixel labelled as black for background and white for foreground to visualize the 

segmentation of the foreground, see Figure 6. This information can be used in a variety of 

fields aiming to track motion, like video surveillance and gesture recognition.  
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Figure 5. Example structure of an autoencoder with a single layer 

representing the features (neurons coloured in blue / placed in the center). 

The input is on the left, encoded into features in the middle and decoded 

into the original input on the right. The network can be detached to use the 

encoder and decoder individually. Many more layers can be incorporated 

into the autoencoder for a deeper network. (Image acquired from 

https://www.jeremyjordan.me/autoencoders/). (Best seen in colour). 

 

 Background subtraction has some areas of difficulty and limitations. The 

sequence of images must be stationary. Often, this is not the case as camera jitter can be 

present in the video feed, so methods must adapt to some movement. The background 

may have some background noise or circular movement such as waves, grass/tree leaves 

moving in the wind, and more. These motions should not be considered part of the 

foreground. 

https://www.jeremyjordan.me/autoencoders/
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Figure 6. Example of extracting the foreground using a background 

subtraction technique, mixture of gaussian (MOG). (Images acquired from 

https://docs.opencv.org/3.4/d1/dc5/tutorial_background_subtraction.html).  

Sometimes foreground movement may become part of the background, and other 

times the background can become part of the foreground, due to some movement. For 

example, a  driving car is considered foreground, but when the car is parked it should 

merge into the background. At the same time, a parked car can be part of the background, 

but when the car is moved it should appear as the foreground. Another example would be 

a floor mat which is considered part of the background. When someone comes around 

and moves the mat in a different location, it should appear as foreground while being 

moved, but merge with the background once stationary. There’s a related problem known 

as ghosting where the initial location of a moved background object might remain as a 

detected foreground, despite nothing being there. We are left with the “ghost” of the 

object since the new background appears different from when the background object was 

occupying that location. For example, in Figure 7 the mat that was moved will leave a 

new background in its initial location, and could be detected as foreground since the new 

floor is different from the mat. This would leave us with two mats detected, where one is 

the ghost of the original.  

https://docs.opencv.org/3.4/d1/dc5/tutorial_background_subtraction.html
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Figure 7. Example of the ghosting effect where a mat has been moved to 

another location leaving the ghost of the mat in its original position. 

(Image acquired from [12]). 

 Other difficulties can include lighting changes. For outdoor systems, light can 

shift from day to night, clouds can cause sudden lighting changes, and shadows can move 

with the sun. Lighting changes should be considered as part of the background and the 

background model should adjust for dynamic changes through time. Additionally, sudden 

bright areas, such as glares, can occur due to shinny surfaces and take up a large area of 

the image. These glares should have no affect on the background or foreground objects. 

Other lighting changes might be darker, such as shadows. Shadows caused by 

background objects must be modeled over time if any movement occurs. Foreground 

objects might also cause shadows creating difficulties in our foreground detection. We do 
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not want to include shadows in this case (though some algorithms include options to 

detect shadows), thus the background model must be flexible in lighting conditions.  

1.4 Obstacle Detection 

Obstacle detection aims to detect obstructions of a path being travelled by an automated 

vehicle (or to assist a person). For example, a robot travelling down a hallway might see 

potential obstacles, such as people, walls, and other objects, along the path. The robot 

does not have prior knowledge of the path’s floor or structure and must determine where 

it is safe to travel. Obstacle detection relies on sensors to detect potential hazards, such as 

one or more of the following: RGB camera, LIDAR, RADAR, ultrasonic, and more. For 

example, a simple robot travelling a path might just need a single RGB camera, but a 

self-driving vehicle might require several RGB cameras and depth sensors such as 

RADAR and/or LIDAR (see Figure 8). 

 Obstacle detection has some areas of difficulty depending on the sensors used. 

LIDAR might detect depth and overall 3D structure with high precision, but is expensive 

and has low resolution. RADAR is generally less precise and slower than LIDAR, but 

can penetrate through weather such as rain and snow. RGB cameras are affected by 

lighting conditions, but are generally fast, precise, have high resolution, and are 

inexpensive. In that case, our focus will be on the use of a single RGB camera, known as 

monocular vision. 

 The main difficulty of monocular vision in obstacle detection is modelling the 

floor and pixel depth. Monocular vision in obstacle detection relies on detecting obstacles 

that appear different from the ground. Though depth can be estimated through a series a 

frames, this is a computationally expensive process. Trying to model the ground 
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appearance can lead to difficulties, such as sudden glares due to a shiny surface or a 

sudden change in floor textures and patterns. Other difficulties can include obstacles that 

appear similar to the floor creating false negatives.   

 

Figure 8. Tesla’s autonomous vehicle sensors. Not shown are side facing 

and rear facing cameras. Sensor FOV is shown in this image and how 

each vehicle is detected using 8 cameras, RADAR and 12 ultrasonic 

sensors. (Image best seen in colour). (Image acquired from 

https://medium.com/self-driving-cars/tesla-enhanced-autopilot-overview-

l2-self-driving-hw2-54f09fed11f1).  

1.5 Change Detection 

While obstacle detection aims at detecting obstructions and hazards to a path being 

travelled, change detection while travelling a path only considers a change in the path. 

Obstacle detection considers everything, apart from the ground, as a hazard or a 

detectable object. The main difference between change detection and obstacle detection is 

the background that is being modelled. Monocular vision obstacle detection methods 

generally aim to model the ground, but a change detection method (in the context of 

https://medium.com/self-driving-cars/tesla-enhanced-autopilot-overview-l2-self-driving-hw2-54f09fed11f1
https://medium.com/self-driving-cars/tesla-enhanced-autopilot-overview-l2-self-driving-hw2-54f09fed11f1
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change detection in a path) would ideally model everything that is part of the path, such 

as walls and other stationary objects.   

Change detection aims at detecting a difference from prior knowledge. For 

example, change detection in the form of background subtraction would extract the 

foreground based on prior knowledge of the background (such as a video feed of the 

area), so that the segmentation only contains relevant information. In a similar way, 

applying change detection to obstacle detection would result in the detection of 

obstructions that differ from prior knowledge of the path. For example, the walls would 

be considered known and not a detectable change. At the same time, something missing 

from prior knowledge can be considered as a detectable change (such as a missing wall), 

but this might not be important for methods, such as background subtraction due to 

problems like ghosting.  

1.6 Problem Statement 

We aim to implement change detection in a travelled path using monocular vision. We 

are provided with a training video of the scene to be travelled. This video is ideally 

obstacle free and any objects included in the video are considered part of the path. The 

training video will show the path travelled in full. The robot that will be travelling the 

path is assumed to know the path it must travel and the directions it must take. When the 

robot travels the path during the test phase, it can utilize this training data to determine 

any changes along the path, such as unseen obstacles. The detectable obstacles of a path 

do not include elements such as walls and other objects within the training video. If a 

detection occurs, the robot will simply halt, and either wait for further instructions or wait 

for the change to be resolved (for example a person crossing the path).  
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1.7 Applications 

This problem can be applied for robots travelling known paths, such as factory robots 

with repetitive tasks with a need to detect possible obstructions and changes in their path. 

This would allow for informed decisions about stopping or obstacle avoidance and other 

operations available. This problem can also be applied to automated robots, such as home 

cleaning robots where the environment is known. These robots can scan the environment 

to learn the path which can be used as the training video. This would allow for detection 

of new obstacles or movement of furniture to adapt to the environment. This could 

provide an advantageous cost reduction and easy environment training with just a single 

camera for detection.  

1.8 Organization 

This thesis is organized as follows: Chapter 2 reviews literature in background 

subtraction and obstacle detection. Chapter 3 will go over a geometry-based approach to 

solve the problem described in section 1.6. Chapter 4 will go over a second approach to 

solve the problem with the use of deep learning using an ensemble technique. Finally, 

chapter 5 will go over experimentation with results, and the thesis will be concluded in 

chapter 6.  
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CHAPTER 2 

Previous Works 

 

This chapter reviews literature related to change detection. We review work focused in 

two main areas: background subtraction and obstacle detection. For background 

subtraction in section 2.1, we focus on modelling background scenes using a stationary 

camera. Section 2.1.1 reviews geometry-based techniques, while section 2.1.2 reviews 

use of machine learning and deep learning techniques in background subtraction. We 

continue with obstacle detection in section 2.2 where we focus on monocular vision 

based obstacle detection methods. Finally, in section 2.3, we describe the relationship 

between our work and both background subtraction and obstacle detection. 

2.1 Background Subtraction 

2.1.1 Geometry-Based Approaches 

Oliver et al. [1] perform segmentation using an eigen space of the scene. The eigen space 

is computed using several frames from history to build a mean-image and a covariance 

matrix. They decompose the covariance matrix using an eigenvalue decomposition. 

Finally, they use Principal Component Analysis (PCA) to reduce the space, and the 

eigenspace model is created using the eigen vectors. This method is beneficial for moving 

objects which do not appear in the same area for long. The model is unlikely to keep the 

moving object in the model after using PCA, and it allows for segmentation of the 

background. 

Stauffer and Grimson [2] proposed the Gaussian mixture model (GMM) method. 

Each pixel is independently modelled using k gaussian distributions. This allows several 
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different events to be modelled when the pixel no longer views the same location in the 

real world due to jitter or background movement. The pixels belonging to the background 

will gain weight while lowering variance as more data is assigned to the associated 

distributions. Thus, any model the foreground produces will have a very low weight and 

high variance compared to the background models. Overtime, if the foreground remains 

in place, the data will accumulate in the foreground models by gaining more weight and 

lowering variance, while the background models lose weight from lack of data through a 

decaying process. In this case, the foreground will become the background which reduces 

ghosting. The method requires a history to build the gaussian distributions. Authors in [3] 

and [4] automate the number of components selected for the set of GMMs for each pixel 

through a derivation from the maximum likelihood of the multinomial distribution (a 

generalization of the GMM). Chen et al. [5] build on the GMM method by first using 

image segmentation and merging regions of consecutive frames. Gaussian Mixture 

Models are then used to model these regions, and foreground extraction is then 

performed.  

Wang et al. [6] create the method Flux Tensor with Split Gaussian models 

(FTSG). They combine two techniques for background subtraction using K GMMs and a 

Flux Tensor approach [7], [8]. Flux tensor is a motion detection technique which is 

resistant to "complex scenes, lighting conditions and environmental variables" [7], but it 

requires infrared technology, which is not our focus. This paired with GMM allows them 

to "handle challenges such as shadows, illumination changes, dynamic background, 

stopped and removed objects" [6] for the purpose of motion detection. The GMM greatly 
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enhances this method in combination with other sensors, showing the importance of 

advancing monocular vision techniques.  

 In [9], [10], authors implement the sigma-delta method. First, they calculate the 

median of each pixel based on the given history of input images. Then, the difference is 

taken between the current frame and the median image to calculate a motion likelihood 

measure. The variance is computed in a similar way to the median for a measure of the 

temporal activity. Finally, each pixel is classified as background or foreground based on 

whether the motion likelihood outweighs the temporal activity. This allows classification 

of background pixels when there is a cyclic motion in the background such as grass or 

waves. With background noise cycling at a consistent rate the model will account for that 

motion in the variance and only classify this movement as foreground when the motion 

likelihood outgrows the variance.  

Mandellos et al. [11] use background subtraction to track vehicles over highways. 

The method slowly builds a median image as the background model waiting for vehicles 

to pass through the highway. The assumption is that the background will be present more 

often than the vehicles over time. This allows the algorithm to isolate the background 

from the vehicles to create the background model. They further compare the median 

image to new frames and finetune the segmentation. 

 In [12], authors proposed the ViBe method. As they describe in their paper, “our 

proposed technique stores, for each pixel, a set of values taken in the past at the same 

location or in the neighborhood. It then compares this set to the current pixel value in 

order to determine whether that pixel belongs to the background, and adapts the model by 
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choosing randomly which values to substitute from the background model” [12]. The 

method requires a history of each pixel in order to build the background model.  

 St-Charles et al. [13], [14] proposed the SuBSENSE method. The method aims to 

automate parameter changes when considering different or dynamic scenes. They 

consider the built background model, the current frame, the frame distance, and pixel 

movement to automatically adjust parameters as needed. 

Sedky at al. [15] propose the Spectral-360 approach. They model the background 

using a physics based dichromatic reflection model. The model assumes physical 

properties: "there is a single light source that can be a point source or an area source; the 

illumination has a constant [Spectral Power Distribution (SPD)] across the scene and the 

amount of illumination can vary across the scene" [15]. They use a history of 60 training 

frames to calculate the Correlated Colour Temperature (CCT) and the Surface Spectral 

Reflectance (SSR). They build their model and use the SSR and CCT to compare with 

new frames using an adaptive threshold to achieve a segmentation. 

Wang and Dudek [16] use a history of frames to build K short-term templates and 

a long-term template in an extended version of the background subtraction algorithm 

AMBER [17]. These templates are composed of pixel values of the history using a 

background value and an efficacy counter. The templates are ordered by the efficacy. The 

long-term template is always first, as they place the values of highest efficacy in that 

template. To classify pixels, all are considered foreground until a pixel matches one of 

the K + 1 templates. If a match occurs, the pixel is considered background and they 
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proceed to update the templates. Ghosting is handled by updating the background model 

with foreground pixels that have gone unchanged for a period of time. 

 Zeng et al. [18] propose an algorithm for background subtraction called 

Background Subtraction with Real-Time Semantic Segmentation (RTSS). They run 

SuBSENSE [14] as the background subtraction algorithm and ICNet [19] as the semantic 

segmentation algorithm in parallel to perform background subtraction through a 

combination of their segmentations. SuBSENSE provides non-parametric background 

subtraction and they further merge ICNet's segmentation for enhanced results. 

SuBSENSE uses various functions to achieve a parameter-free design, see Figure 9 for a 

diagram of the approach. They ([18]) further incorporate ICNet's segmentation into the 

raw segmentation portion of SuBSENSE, rather than relying entirely on the foreground 

segmentation (see Figure 10). Combining these two segmentations allow for results 

exceeding some deep learning approaches. 

2.1.2 Machine Learning Approaches 

Cheng and Gong [20] propose a generalization of batch learning 1-SVM to classify each 

pixel as background or foreground. They focus on efficiency and use parallel programing 

to achieve real time processing at over 80 FPS.  

 Gregorio and Giordano [21] use weightless neural networks (WNN) (see [22] for 

original paper on the WNN method) for background subtraction. They use pixels to 

represent network nodes to classify the background and foreground. They maintain a 

history of pixels for better classification to account for lighting and other changes. [23] 

uses weightless neural networks to track motion to allow a robot to follow a leader. The 

network aims at predicting a window of the subject to follow within the frame.  
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Figure 9. The SuBSENSE approach described in [14]. An input frame is 

compared to the maintained background model. The background model is 

maintained through several functions dynamically updating thresholds for 

segmentation, distance and noise levels. Finally a foreground 

segmentation is produced and post processing is performed on the 

resulting segmentation. (Image acquired from [14]). 

 

Figure 10. The proposed method in [18]. They alter the SuBSENSE 

approach in [14] (see also Figure 9) by using ICNet’s segmentation [19] 

of the image along with a foreground segmentation produced by the 

algorithm to refine results in post processing. (Image acquired from [18]). 

Braham and Droogenbroeck [24] perform background subtraction in their 

proposed method by using a Convolutional Neural Network (CNN). They use 150 frames 

of a video sequence to obtain a grayscale temporal median. They train the network using 

a ground truth of sequences labelled by either humans or generated labels using another 
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background subtraction algorithm. From there the CNN performs background subtraction 

using the current and median frame. Babaee et al. [25] also perform background 

subtraction using a CNN with additional post processing to smooth out the resulting 

background subtraction. They trained their network using the output of SuBSENSE.  

Ciocca and Schettini [26] use an ensemble approach to perform background 

subtraction. They use several different background subtraction methods combined, using 

a genetic algorithm. They show that a combination of some of the simpler algorithms can 

perform better than any of the more complex algorithms they tested.  

Sakkos et al. [27] use a convolutional network to perform background subtraction 

without a background model. They use 10 frames as input, but the frames are not 

concatenated as one input. They use four parallel convolution steps, each with 4 frames 

as input from a sequence of 10 frames (see Figure 11). The CNN further merges the 

convolution outputs. An upsampling of the output of the CNN at various steps are used to 

produce a full resolution background subtraction. Their model is trained on all scenes in 

the tested datasets, rather than each individual scene. 

Authors in [28] use a convolutional autoencoder to produce a background 

subtraction. The input is the foreground segmentation of three other methods: 

SuBSENSE [14], FTSG [6], and CwisarDH+ [29] (based on weightless neural networks). 

The segmentations of these algorithms are encoded in order to extract features of the 

techniques (see Figure 12). The features are decoded into a segmentation of the 

foreground and trained on the ground truth segmentation. They show their approach 

performs better than the individual methods used in the network. 
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Figure 11. Convolution steps of the background subtraction network 

proposed in [27]. A series of images are fed into the CNN in parallel 

allowing for a 3D convolution for background subtraction. Yellow 

represents upsampling of the segmented foreground with connected 

outputs from the CNN. (Image acquired from [27]). (Best seen in colour).  

 

 

Figure 12. The structure of the proposed convolutional autoencoder used 

for background subtraction. This approach uses segmentations of three 

other background subtraction algorithms as input, then encodes them into 

features. The network decodes the features into a segmentation seen in the 

output. (Image acquired from [28]). (Best seen in colour). 
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2.2 Obstacle Detection 

Lorigo et al. [30] use a three component system for obstacle detection. Each system uses 

a different method of detection through brightness, RGB, and HSV. They slide a window 

over vertical strips of the image to detect obstacle boundaries. Detected edge segments 

are combined to create a smooth boundary segmentation of the obstacle. Commands are 

generated for their robot based on the boundaries imposed by the detected edges. They 

tested this robot in different environments with the camera placed relatively close to the 

ground.  

 Ulrich and Nourbakhsh [31] use a ROI to convert the entire frame into a 

segmentation of the ground in black and possible obstacles in white. They use a 

histogram of the hue and intensity of the HSI colour space within a ROI covering the 

direct path of the robot. This models the ground and is then compared to the rest of the 

frame for classification. Obstacles cannot be present in the ROI and the ROI must be 

sufficiently large enough to model the ground. This method was tested using a robot in 

both indoor and outdoor environments. Similarly, Raj et al. [32] also use a histogram of 

the image to classify the image into ground and obstacle segmentations.  

 Michels et al. [33] performs obstacle detection in a forest a using remote 

controlled vehicle. They train a linear regression model to estimate depth of trees using 

both simulated and real data. They use windows scanned vertically along strips of the 

image to estimate tree boundaries and obtain controls for the remote car to avoid 

collision. The locations of trees are determined by their horizontal position in the image 

and a regression score for depth.  
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 Li and Birchfield [34] train an SVM model to classify vertical and horizontal lines 

obtained through edge detection. This allows them to generate a segmentation through 

connected vertical and horizontal lines to determine the wall-floor boundaries. This 

provides the estimated safe region to navigate, though they do not directly attempt to 

detect obstacles aside from the walls. The method has difficulty with textured floor 

patterns, which creates confusion for wall boundaries due to the lines generated from the 

textures.  

 Jia et al. [35] perform detection on roads. Obstacles are detected in the bottom 

half of the image, up to the horizon of the roads tested. They use a two consecutive 

frames (TCF) approach to analyze feature points and calculate their change between 

frames. Then, they filter feature points that should be kept through a confidence measure 

based on the calculated height and distance of each feature point. They show good results 

in the KITTI dataset at detecting objects by differentiating obstacles from their shadows 

and other lane markings to avoid false positives through a sense of height and depth. 

Souhila and Karim [36] use optical flow in a sequence of images to detect 

obstacles. Optical flow is the measure of 2D motion induced by a 3D motion in a 3D 

scene. They calculate several vectors over consecutive frames which describe the 

movement of pixels through their intensities, which in turn provides the 2D motion. They 

estimate the Focus of Expansion (FOE) which is the point where the motion vectors are 

directed away (or expanding from) in the 2D image plane, see Figure 13. They use the 

information from optical flow to estimate the time to contact and depth information. 

Finally, the robot will make a decision to turn away from larger flows and attempt to 
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balance out the amount of flow on the left and right sides of its view. The method relies 

on the flow of an obstacle to be greater than the flow of a safe region to travel.  

 

Figure 13. Example FOE given many motion vectors (arrows). The left 

(L / Hl) and right (R / Hr) motion vectors are estimated and are pointed 

left and right, respectively, from the FOE. (Image acquired from [36]). 

Similarly to [36], authors in [37] use a simple corner detector to obtain feature 

points in order to reconstruct the scene from optical flow. They use this information to 

detect obstacles ahead of a vehicle. While driving the car, other cars and motions greatly 

affect the estimation of the estimated FOE using optical flow. Instead, they use straight 

lines from the edges of the lane lines of the road where the intersection of the straight 

lines are estimated to be the FOE, see Figure 14. Using this FOE, they estimate distance 

information and reconstruct the scene which provides the obstacle information through 

height and depth. 
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Figure 14. Parallel lane lines are interesting at a point infinitely far away 

due to camera projection. If we are travelling forward within the lane 

boundaries, we can expect the scene to expand (roughly) from this point. 

We can use this point as an estimate of the FOE. (Image acquired from 

[37]).  

 Authors in [38] use several images in a monocular camera to reconstruct the 

scene. The method aims at detection approaching obstacles within a vehicle’s rear-view 

camera. The method has three key steps: first they detect feature points in the series of 

frames, then they reconstruct the scene, and finally classify points to detect obstacles. 

They use feature points with constant motion on the ground region and discard feature 

points with low quality disparity. These feature points are used to estimate vehicle 

motion. From there, they reconstruct the scene using matched feature points and 

triangulation equations for depth information. Triangulation is a process where we take a 

point of an image, and its identical point in another image (another view of the same 

scene), and calculate the depth and/or third coordinate of that scene point using 

calibration information of the camera. Each feature point is then labelled as an obstacle or 

part of the ground features. They use the height of the vehicle's camera as their threshold 

for obstacle classification where feature points below 20% of the camera’s height are 

considered part of the ground. Finally, they report the nearest obstacle back to the driver. 

 Zhou and Li [39] assume that the ground plane will have the largest number of 

feature points. This assumption allows them to estimate the ground plane from the ground 

features using a ground plane homography. The robot is assumed to be moving on wheels 
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which mostly stabilizes the camera movement, thus creating a smooth movement in 

ground features. Then, they calculate a normalized homography of the ground plane 

using RANSAC. A homography is a matrix which describes the transformation between 

two views of a scene. In this case, they use a sequence of images from a monocular 

camera and estimate the ground plane with the homography. RANSAC allows them to 

search for the dominant plane (of the many possible ground planes) given the outlier 

obstacle points. A homography can be calculated using 4 points from each plane. As 

mentioned before, potential obstacles may cause error in the calculations of the 

homography. Thus, choosing any 4 points can result in a bad homography and a bad 

estimation of the ground plane. RANSAC searches for the best set of points (or a local 

minimum) to calculate the best estimate of the homography. Given many points of the 

ground plane (including obstacles), RANSAC searches for 4 points that result in a 

homography plane closest to all points, allowing for error and removal of outliers. The 

dominant ground plane is likely to be chosen, if it contains a significantly large amount of 

feature points, and the ground can be determined. Once the ground plane is determined, 

the feature points can be classified as part of the ground plane or part of an obstacle based 

on their distance from the plane. 

 Conrad and DeSouza [40] modify the Expectation Maximization (EM) algorithm 

with the ground plane homography in order to cluster feature points as part of the ground 

plane or part of an obstacle. EM is an unsupervised clustering machine learning 

algorithm. This means that there are no associated labels to any data point. The EM 

algorithm simply aims to find a relationship in the data through a grouping known as 

clusters. EM groups the data by finding a probability distribution for each cluster through 
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a two-step iterative process. EM depends on an initial guess of the samples and cluster 

distributions, then iterates in a two-step process. In the first step, the algorithm proceeds 

to fit a number of distributions to the labelled data, depending on the number of 

predefined clusters. In the second step, the samples are assigned to the nearest 

distribution and relabeled. This process will iterate until the distributions stabilize 

between the two steps. Finally, the algorithm is left with several clusters of similar 

samples. In the case of detecting obstacles, they cluster feature points with a modified 

EM algorithm. The algorithm is designed to cluster the data based on the ground plane 

homography between two images. Feature points that are part of the ground plane are 

grouped, while other points are grouped as obstacle points. See Figure 15 for an example 

of the resulting classification of feature points. 

 Kumar et al. [41] first calculate point correspondences between two frames using 

feature points. Then, they calculate the ground plane homography using optical flow and 

classify features as part of the ground plane, part of an obstacle, or ambiguous. Image 

segmentation is performed on the image and they further classify entire regions of the 

segmentation as an obstacle or part of the ground plane. The segmented regions are 

classified by the majority of labelled points in that region. 

Kumar et al. [42] use ground plane homographies using two images and detect 

superpixels on the image to cluster similarly neighbouring pixels together forming 

"superpixels." They perform edge detection and filter lines that are not vertical. They 

further warp the image into a different perspective to filter out lines that are not part of 

the obstacles, since it is expected that floor lines will not deviate nearly as much as 

obstacle lines. They use a Markov Random field using the superpixels and edges to 
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finally classify each pixel as the floor or an obstacle. The Markov Random field is used 

as an undirected probabilistic graph where the superpixels are nodes, the edges (that were 

previously detected in the image) are the edges connecting the superpixel nodes, and the 

cost function is the resulting segmentation. The resulting segmentation outlines obstacles 

from ground plane. 

 

Figure 15. Feature points classified as ground plane (black) or part of an 

obstacle (light blue). (Image acquired from [40]). (Best seen in colour). 

Lee et al. [43] improve on the proposed method in [42] and use an improved 

Inverse Perspective Mapping (IPM) approach that is beneficial to camera placements that 

are low to the ground. Floor models are updated based on edge detections through time 
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and a ROI is used to classify each pixel as the floor or an obstacle. The system relies on 

the number of edges, so if at any point the number of edges become inconsistent, they 

further process the image to detect obstacles. They test a robot vacuum indoors in the 

same indoor scene for a total precision, false positive rate, and recall of 81.4%, 5.9%, and 

74.4%, respectively. Their results improve on [42], which achieved (in the same data) a 

total precision, false positive rate, and recall of 57.4%, 14.2%, and 37.6%, respectively. 

However, they needed to modify the algorithm in [42] to fit low camera placements.  

Xie et al. [44] use reinforcement learning to train a robot obstacle avoidance. 

They use two connected architectures to perform depth estimation and produce Q-values 

in the reinforcement learning Q-network. The Q-values provide information on the 

actions of the robot, such as linear action and angular action. The input to the 

reinforcement model is the output of a depth estimating CNN. This CNN takes an RGB 

image as input and produces a depth map of the scene as output. See Figure 16 for the 

overall structure of the model. Training takes place in a simulator and testing takes place 

in the real world, however, they needed to add noise, by blurring part of the simulated 

input images, for better results in the real world. They test the robot in a few scenes and 

show some examples of the robot circling around a room filled with randomly placed 

obstacles. Similarly, authors in [45] use 4 consecutive depth maps and a CNN trained 

through reinforcement learning. The CNN has two convolution steps and is finally fed 

into a fully connected neural network. The resulting outputs are 8 Q-values where 3 are 

actions for linear velocity and 5 are actions for angular velocity. The network is trained in 

simulation, though the depth maps are acquired through a depth sensor rather than a 

CNN, as in [44]. 
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Authors in [46] use a horizon line of the image to detect obstacles for small flying 

vehicles that know their altitude. The idea is that the horizon line will intersect obstacles 

at the same height of the robot which will provide an uncertainty level applied to the 

obstacle above and below the horizon line. Note that this means obstacles completely 

below or above the horizon line will not be considered as obstacles. The ground and sky 

are less likely to intersect the horizon line and a higher certainty is labelled to those 

pixels. The uncertain pixels are classified as obstacle points and the certain pixels as non-

obstacle points using a random forest classifier. See Figure 17 for an example 

segmentation of obstacles in the KITTI dataset. 

 

Figure 16. This is the architecture of the convolutional neural network 

described in [44]. They use a depth prediction CNN and a Q-network to 

produce actions based on the resulting depth. The network is trained 

through reinforcement in a simulation. (Image acquired from [44]).  

Xue et al. [47] detect obstacles at a far distance, see Figure 18. They use a 

combination of an occlusion edge map and a regressor. The occlusion edge map is 

generated by using a far-to-near approach to estimate edges at different distances in the 

image/scene, with a fusion of edges in a near-to-far approach of the same image. This 

allows detection of edges around obstacles at many different distances in the scene. 

Finally, superpixeling is performed to completely fit edges around the small obstacles at 

different distance levels. They use random forest to generate a high regression value for 

obstacles based on four features: (1) Edge and Structure, (2) Pseudo Distance, (3) 
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Objectness Score (calculated likelihood a box contains an obstacle), and (4) Colour. 

Using these features they are able to predict obstacles at various distances in an image.  

 

Figure 17. Example obstacle segmentation in the KITTI dataset using the 

horizon line approach described in [46]. They provide an example for 

each row. From left to right, columns show: an input RGB image, a 

classification of the horizon, an uncertainty map of potential obstacles that 

intersect the horizon line (red is obstacle, blue is non-obstacle) and finally 

an obstacle map where white is obstacle and black is non-obstacle. (Image 

acquired from [46]). (Best seen in colour). 

 

Figure 18. Example of the type of obstacle the authors in [47] aim to 

detect. The obstacle is placed at a far distance and is relatively small in the 

image. The obstacle is highlighted with a red square as seen in the 

zoomed version in the bottom left corner of the image. The image is from 

the Lost and Found dataset. (Image acquired from [47]). (Best seen in 

colour).  
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2.3 Relation to our Work in Change Detection 

Our work in change detection uses components from both background subtraction and 

obstacle detection fields. At the same time, our work is not completely part of either field. 

In this section, we will go over the differences and relationships of our work to both 

background subtraction and obstacle detection. 

First, background subtraction methods aim to model the background of a scene 

using a stationary camera. We also aim to model the background of the scene (of the path 

we are travelling), though the camera is not stationary. This is a key difference in both 

approaches since background subtraction techniques have the opportunity to use 

hundreds of frames of the same portion of the scene and have a large description of the 

dynamic changes of each pixel, such as lighting and background motions. Our work uses 

a single video of the current path travelled resulting in just a few frames of information 

for a given portion of the scene.  

Finally, monocular vision obstacle detection methods do not use a training video 

of the path. Using a video of the scene allows us to differentiate, with a much higher 

confidence, important changes from general obstacles that are part of scene. This is an 

advantage in robots that travel known paths multiple times to perform a task. The robot is 

assumed to know where it is travelling and we simply aim to detect sudden changes in the 

path, which could harm either the robot or the person and/or object in the robot’s direct 

path. Another key benefit to the use of a training video is the ability to determine the 

robot’s current location within the path. We can match the robot’s current view of the 

scene to a location within the training video. This can alleviate the need for a Global 
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Positioning System (GPS) and allow positioning in environments lacking a GPS signal, 

such as basements and tall buildings.  
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CHAPTER 3 

Geometry-Based Methodology 

 

In this chapter we present our methodology for the geometry-based approach with the use 

of vision techniques. In section 3.1, we explain the motivation of the method with a slight 

overview of the approach. In section 3.2, we explain the details of the methodology of the 

geometry-based approach.  

3.1 Motivation 

In this approach, we use geometry-based techniques to detect changes along a path. The 

method is split into two main steps. First, we analyze a set of test frames in order to 

determine our current location within the training video. This provides us with a 

neighbourhood within the training video of possible matching training frames to the 

given test frame. The second step is to have the robot proceed and start detecting 

obstacles. Changes are detected through a comparison of the current testing frame and the 

best matching training frame. The search for the best matching training frame is found 

within a few seconds of the current location within the training video. See Figure 19 

where we provide a visual for the setup of the comparison between both matching 

frames. The comparison uses histograms of a ROI to detect a change in the variance of 

the colours in both frames. The robot may halt if a detection occurs. Otherwise, we 

proceed with the next test frame and shift the neighbourhood to center around the 

previously matched training frame in search of the next match.  
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Figure 19. We visualize how two frames are set up for comparison. The 

test frame with changes (on the right) is registered onto the best matching 

training frame (on the left). This aligns the scenes in both frames. Then 

the ROI can be placed in the same area of both frames overlooking the 

same portion of the scene. (Best seen in colour). 

3.2 Geometry-Based Approach 

A high level pseudocode is presented in Algorithm 1. The algorithm only presents two 

procedures, one to determine the current location, as seen in section 3.2.1, and the other is 

the overall change detection approach, once a location is determined. The algorithm runs 

the first procedure only one time, then the second afterwards. We discuss first how the 

location is found in section 3.2.1 and how we match frames in section 3.2.2. From there, 

we explain how we compare matching frames through frame registration in section 3.2.3. 

Finally, the process to detect a change is explained in section 3.2.4. 
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3.2.1 Determining Current Location 

Initially, the robot must determine its current location within the given training video, 

essentially positioning itself within the path. The robot may be halted during this process 

since we have no information on possible path obstructions. Once a location is 

determined, we can start change detection from the first frame. The process of 

determining the initial position of the robot is a one-time step and does not need to be 

performed once detection starts. The location will be updated as the robot travels through 

the path.  

In order for the robot to position itself, we consider a set of N initial testing 

frames. In our experiments, 2 frames were enough to determine a reliable location. 

Choosing N greater than 2 allows for more confidence in the current location for dynamic 

and moving background elements. For each of the N frames, we perform a grid search 

along the entire training video to find their respective best matching training frame. We 

define the best matching frame as the most similarly positioned training frame through a 

compromise between real world location and camera angle. Neither of these metrics are 

available to us directly, so we perform frame matching through feature point registration 

which is further explained in section 3.2.2.  Finally, once all frames have their respective 

matches, we consider the median position within the training video. This is the most 

frequently occurring position and is the probable area of the training video within the 

path on which we are currently positioned.  
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Once a location is determined, this allows us to significantly reduce the search 

space to a very small neighbourhood of the training video centered on the determined 

location. Given this neighbourhood, we can perform frame matching starting from the 
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first testing frame. Once a match is found, in order to keep the neighbourhood moving 

with the robot, we center the neighbourhood around the new match location. This gives 

us the next search space for successive testing frames. The update of the search space 

reduces the probability of mismatching a frame, since most frames within the 

neighbourhood are expected to match the next test frame. The range of neighbourhood 

depends on the speed of the robot. For example, if the robot has a normal smooth pace, 

then it will only require a second of the search space centered around the determined 

location. However, at higher or inconsistent speeds (in relation to the speed of the 

training video) the range should initially remain 3-4 seconds and reduce or extend 

overtime. This essentially acts as a prediction of the next position based on the movement 

of previous positions of matched frames in the training video.  

See Figure 20 where we show the change in match score for every single frame 

using just two consecutive frames. A large downward spike in the error is shown where 

the matches are correctly found, thus using a grid search algorithm with a low enough 

error threshold would allow us to avoid comparing every frame and limit the search to 

areas that are below the error threshold. We show in Figure 21 and Figure 22 how to 

obtain scene recognition using this approach using all of our tested scenes. The same 

spike in error is shown for the correctly matched frame within the correct scene. We 

repeated this test for every scene and each was correctly determined.  
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Figure 20. We plot the matching score (Y-Axis, pixel error) of two 

frames (red and blue lines) when compared to every frame in the training 

set (X-Axis, frame number). The top graph shows our search for a 

matching frame that would be located at the beginning of the training 

video. The bottom graph shows a similar comparison using the same 

video, but we search for a matching frame near the middle of the training 

video (at frame number 1000 roughly). (Best seen in colour). 
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Figure 21. We combined all of our training videos of various scenes, each 

scene is separated by a vertical line. We search for the best matching 

frame roughly centered in the eighth scene. (Best seen in colour). 

 

Figure 22. We combined all of our training videos of various scenes, each 

scene is separated by a vertical line, similarly to Figure 21. We search for 

the best matching frame roughly centered in the second scene. (Best seen 

in colour).  
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3.2.2 Frame Matching 

We perform frame matching by feature point registration. We use the feature point 

detector ORB [48] to extract feature points from all the training frames and testing frames 

processed. Feature point extraction of the training set can be performed prior to testing 

through preprocessing.  

 We tested many feature point algorithms such as ORB, SIFT [49], and SURF 

[50]. ORB has no license restrictions, unlike SIFT and SURF, and is shown in their paper 

[48] to perform two orders of magnitude faster with similar results. In our 

experimentations, ORB performed significantly faster than both SIFT and SURF and 

allowed us to match frames with similar accuracy.  

A feature point algorithm will generally use keypoints and descriptors to detect a 

feature point. The descriptors are used to describe a small region of the image based on 

the keypoints detected and the algorithm’s methodology. A feature point is a point of 

interest in an image such as a corner where two lines meet at an angle. Thus the feature 

point descriptor will describe this in terms of features, ideally invariant of scale and 

orientation. The algorithm takes into consideration the descriptors and choses the best as 

feature points. ORB uses FAST [51], [52] to detect keypoints and BRIEF [53] for their 

descriptors. These algorithms are chosen for their speed. Unfortunately, FAST and 

BRIEF do not account for rotation, so the authors of ORB created versions of these 

algorithms to allow for rotational invariance. Finally, a brute force matcher can be used to 

compare feature point descriptors and allow for matched points between frames.   

Given a testing frame and a training frame, we assign a score to how well they 

match. This score is calculated by the Euclidian deviation in matched feature point 



 

44 
 

coordinates (between both frames) after performing registration. In other words, both 

matching feature points have an X and Y coordinate within their respective frames. If the 

scene did not move between the frames, they would have the same (X, Y) coordinate and 

the Euclidean distance would be 0. Otherwise, error is introduced and the movement 

distance contributes to the match score. To do this, we use a brute force matcher 

(explained earlier) to match feature points between the two frames. We then remove large 

outlier feature point matches that have matched in a different region of their respective 

frame. We used a distance of 40% of the frame’s diagonal length as a distance threshold. 

We do not expect feature points on the ground to match points on the ceiling, for 

example. 

We now perform the feature point registration through an SVD routine. We can 

consider the feature points of each frame as a cluster of points in a 2D Euclidean space 

through their pixel coordinates. Each point will have a connection to their matching point 

in the opposite frame. We first translate the clusters so that their mean is positioned at the 

origin of their respective space. To find the best rotation of the clusters, we calculate a 

covariance matrix of the point connections. Note that we do not adjust for scale since this 

is one of our frame matching constraints where we want to keep a sense of positioning 

within the path. Using this covariance matrix, we can perform SVD to decompose the 

covariance matrix into three matrices where the outer decomposition is made up of 

eigenvectors and the inner matrix is a diagonal matrix of eigenvalues. By removing the 

diagonal matrix we can use the resulting matrix to find the best registration between the 

two clusters. Now that we have found the best translation and rotation of the clusters, we 

can register one cluster onto the other. The clusters will not match perfectly and will 
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leave some error due to feature points that have moved with the scene or potential 

obstacles, and changes mismatching with scene points. Given this new registration, we 

calculate an error by an average of the Euclidean distance of the matching feature points. 

Any error function may be used here such as MSE and other error based functions.  

Finally, the best matching training frame can be determined using this score. The 

lowest score is considered the best match. The score will be at its lowest when the scene 

is in the best compromise between camera angle and scene location. This way we may 

perform frame registration which is explained in the next section. 

3.2.3 Frame Registration 

Once we find the best matching training frame for our given testing frame, we compare 

the frames for potential changes. Before performing change detection, we register one 

frame onto the other. That way, the scenes will be aligned and comparison can be 

performed though a ROI of the direct path, to be explained in more detail in section 3.2.4.  

 To perform frame registration, we can use the same feature point matches we 

calculated when we performed the frame matching process. Using the original points on 

the frames and their connection to points on the opposing frame, we can calculate their 

homography using RANSAC. A homography is a matrix that describes the 

transformation of one view of a particular scene to another view of the same scene. A 

homography requires just four matched points between both views to describe the 

transformation of every pixel in the view. A homography is built for the transformation 

of one plane to another given four matching points on the plane. It is not always possible 

to perfectly matched feature points, so RANSAC allows us to search for four candidate 
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points of an entire set of matched feature points. RANSAC will attempt to find a 

homography that best suits the majority of points in the space.  

Here we consider the matching frames themselves as 2D planes (of pixels) and 

describe the transformation of the entire test frame to the training frame using previously 

matched feature points. We can use this homography to perform a perspective 

transformation on every pixel of one frame and register them onto the other frame. This 

will align the scenes between the frames where we can directly compare the frames at a 

pixel level, explained in the next section.  

3.2.4 Change Detection 

In the previous section, we registered the testing frame onto the training frame using a 

perspective transformation which will align the scenes of each frame. The resulting frame 

from registration will have the same dimension of the original frame with the transformed 

frame cut off where it moves beyond the frame borders and blacked out where no pixel 

information is available. This way, we can place a ROI in the exact same location of both 

the training and testing frame to overlook the same area of the scene. We used a 

quadrilateral ROI positioned in the direct path of the robot for detections near the ground 

level.  

 Comparison between the test frame and the training frame are now reduced to a 

comparison of the ROI of each frame. We use a histogram comparison of the HSV colour 

space between the ROI of both frames. A direct pixel comparison of both ROIs performs 

poorly. This is due to inaccuracies in the frame registration and slight movement in the 

scene. To overcome these inaccuracies, we create a histogram of both of the ROIs (using 

the pixels from the HSV colour space) and compare the histograms for possible changes. 
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This comparison works well for large changes, but smaller changes go undetected since 

they do not produce enough of a change in the histogram to overcome the background 

noise of the scene. We want to detect all changes, large and small, so we split the ROI 

into a grid system. That way, we compare a histogram of each grid region with the same 

region of the other frame’s ROI. This allows for detection of both large and small 

changes since the regions are small enough to detect small changes while detection of 

large changes is unaffected by the change in size of the area.  

If we consider a single grid region of the ROI from our grid system, we can 

compute two histograms: one for the training frame and the other for the testing frame. 

We compare the two histograms by first taking their absolute difference. This will 

subtract each entry of the histograms and take their absolute value, resulting in a new 

histogram with positive entries. We then compute the variance of the resulting histogram. 

We repeat this three times for the components of the HSV colour space: one for the hue, 

one for the saturation, and one for the gray scale component.  

All three components will provide a variance for their respective histograms. To 

reduce noise, we consider a threshold for each type of histogram. After performing a 

comparison, if the value meets the histogram’s respective threshold we keep the value 

unchanged. Otherwise, the value is reset to 0. Given three comparison values for a grid 

region, we must make a decision on whether we see a change. This is done by summing 

all three variance values and using a final threshold to make the classification.  

In machine learning terms, the first three thresholds can be considered as feature 

detectors. We do not require these thresholds to be updated on every scene change as they 
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are meant to detect features, but can be optionally changed. The final classification 

threshold requires training to optimize the detection rates, thus requiring a validation set 

with a few test obstacles. Adding weights to the comparison values can extent the 

approach to a small neural network design, though we do not have any direct training 

data for additional weights, so this was not included.  

 Finally, each testing frame can be processed to perform change detection with 

their respective matched training frames. To sum up this approach, we first find the 

robot’s current location. We reduce the search space to a small neighbourhood of this 

location and start to perform change detection. Change detection is performed in three 

steps: first, by finding the best matching training frame, second, by registering the frames 

and aligning the scene within the frames, and third, by a comparison of both frames 

through a direct comparison of their histograms within a ROI.   



 

49 
 

CHAPTER 4 

Deep Learning Methodology 

 

In this chapter we present our methodology for the deep learning approach with the use 

of an ensemble of deep learning models. In section 4.1, we explain the motivation behind 

the method and attempts taken to solve the problem. In section 4.2, we explain the 

methodology of the deep learning approach. 

4.1 Motivation 

In this approach we aim to solve the problem through the use of machine learning or deep 

learning methods. The idea is to simply extract feature points from the change-free 

training video and train a model to learn the samples as a one class classification. The 

model would classify feature points from test frames as either part of the learned class or 

part of an unseen class, such as an obstacle or a change. This type of approach would 

allow for training without labels and classification without seeing any obstacles or using 

a validation set for parameter tuning.  

 In our first attempt, we tried to use a 1-SVM, which is built to learn a single class 

and detect outliers as part of another unseen class. We first extracted feature points from 

the training video and trained the model using the feature point descriptors as the training 

samples. The difficulty with 1-SVM is a parameter that needs to be tuned in order to 

determine the sensitivity to outliers. This parameter was a threshold for the percentage of 

the training data to be considered outliers. We could consider the entire training set as 

part of the class, but this causes overfitting problems. Unfortunately, a threshold slightly 

larger than optimal will cause the model to learn a very large space as the class and detect 
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nothing during testing. Similarly, a threshold slightly too small will cause the model to 

detect the background as a change and perform more randomly than accurately. 

Considering the difficulty of finding the optimal threshold automatically, we decided to 

try other models.  

 In our next attempt, we considered using a deep learning model known as a 

Generative Adversarial Network (GAN). The feature points did not provide enough 

information about the area to be useful in training our deep learning model and did not 

provide us with any information on the quality of the generated samples. Instead, we took 

a small sample image for every feature point as the feature point neighbourhood. The 

sample images are centered at their respective feature point within the frame. These 

samples were used as training data for the GAN. Once trained, the model learns two 

important utilities, one through the generator and one through the discriminator. The first 

utility generates sample images with similar features to the training data through the 

generator. The second discriminates samples between real and generated images known 

as the discriminator. The generator provides us with validation that the model has learned 

some features from the image by comparing the generated images to real samples. If the 

generator has learned to generate similar images to the training data, it is likely that the 

discriminator has learned how to discriminate the learned features. We use the 

discriminator to perform the classification where each sample image of a given test frame 

will be labelled as generated or real. Ideally, obstacles would look different from the 

learned samples and cause the discriminator to classify them as generated, or in other 

words, as a change. Background samples would be classified as real since they should be 

indistinguishable from the generated samples. Unfortunately for this approach, training 
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GANs is known to be difficult and automating this process for each training video is not 

feasible. The instability of the network causes the generator to learn static noise more 

often than not, so we decided to try other methods.  

 In our final attempt we replaced the GAN with a simple autoencoder. The 

autoencoder was able to learn features automatically between scenes, but with the 

drawback of the missing discriminator for classification. Instead, we used the encoder 

portion of the network along with the generated features to make predictions. 

Classification decisions on testing samples is performed using a distance function. The 

distance function allows us to compare the features of the test sample to the features of a 

training sample. We compared a test sample to each training sample to find a “match” 

using the distance function and a threshold. If a match is found, we consider the test 

sample part of the background, otherwise it is a detected change. This method showed 

promising results where there was very few false positives, but with the drawback of a 

low true positive rate. Essentially, the model found some obstacles with a low precision. 

Unfortunately, we have a threshold which cannot be determined automatically, needing a 

validation set and either labels or a human expert.  

 In section 4.2, we will describe our final deep learning approach which solves 

these problems and alleviates the need for threshold tuning and training labels by using 

an ensemble of unsupervised models.  
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4.2 Deep Learning Approach 

4.2.1 Ensemble of Unsupervised Models Introduction 

Our deep learning approach incorporates several unsupervised dimensionality reduction 

models using a majority vote as the final decision for classification. This ensemble 

technique relieves us of the need for manual parameter changes through deep learning 

and the need for validation data for parameter tuning through the use of a final vote. 

 The overall approach is as follows. We must first choose the model(s) and build 

the approach, described in section 4.2.2. We choose the model(s) structure and 

parameters which will go unchanged in all future tests, so that the structure and 

parameters of all components will remain fixed (unless dynamically updated by the 

system) for all future training and testing, regardless of scene change. Next, in section 

4.2.3, we describe the necessary preprocessing and training involved once a training 

video is provided. Finally, in section 4.2.4 we describe the testing process and how we 

detect changes.  

4.2.2 Model Structure and Parameters 

The deep learning method uses several unsupervised deep learning models which 

together provide information for a classification vote. We use a majority vote of all the 

built classifiers to determine a final decision for any change detections. The method 

avoids any parameter tuning or labelled validation data for scene learning and testing.  

First, the structure of the method must be determined for future use. We must 

define the number of models, their structure, and decision thresholds. The method is 

adaptive, so additional models will not affect previously built models and will only 

contribute towards the final vote. A good model for an ensemble approach is a classifier 
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that is more accurate than random. We chose a model through a small test scene, 

unrelated to any other test. This test scene is not used for parameter tuning, but to 

evaluate its performance and determine if it is a good candidate for the ensemble 

technique.  

For example, we just need to determine if the model is worth incorporating into 

the approach. In our specific experiments, we found two models which had a high true 

negative score, but did not detect all changes. Both models demonstrated a good ability to 

reproduce most large features from the images. Combining these two models will allow 

for a more precise detection of many more changes compared to individual use. The more 

models used, the more accurate the method is at predicting change detections, and the 

more precise detections become. In this case, model structure or type is not important, but 

rather its ability to detect meaningful features and be relatively accurate. We fixed two 

models, one is an autoencoder and the other is a convolutional autoencoder. Both models 

are small in the number of parameters used. Their decision thresholds will be based on a 

mean and standard deviation of both of the training samples and the learned features, not 

from the test scene.  

4.2.3 Preprocessing and Learning 

Once a training video is provided, our approach first extracts feature points viewed in a 

ROI from every frame, see Figure 23 for a visualization of the set up. The goal of the 

approach is to first learn the class of these feature points and to classify unseen points 

during the test phase (obtained in a similar ROI) as obstacle or part of the learned scene. 

This ROI is flexible and we can consider widened, shrunk and/or different positioning of 

the ROI. We could even consider multiple ROIs in different sections of the frame each 



 

54 
 

with different models trained and focused on those particular areas. Note that our 

experiments only consider the most simple case of using the bottom quarter of the frame 

as a ROI. If we considered using another ROI, an additional ROI on the bottom third 

quarter of the frame could be used for further validation of any seen obstacles. The 

second ROI would start at the midpoint of the frame and extend down to the start of the 

original ROI (at the horizontal white line in Figure 23), allowing for two detection 

systems at different distance levels. 

 

Figure 23. Visualization of the set up for the ensemble approach. We do 

not show a training frame here, but training samples are taken from the 

entire bottom quarter of the image as seen by the horizontal line on the 

test frames. During testing we reduce that area on the left and right edges 

shown with the vertical lines. Together they build the ROI of the direct 

path. We show three frames: the right shows feature points classified as 

background, the middle frame shows the feature points classified as a 

change and the black frame on the left helps visualize the same obstacle 

points which may be hard to see in the middle frame. (Best seen in 

colour). 

 Once feature points are detected in the training frames, we attract the training data 

from them. We extract a neighbourhood of each feature point as a small image of the 

frame. The size of this sample image would be configurable to each of the models for any 
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sample size. Note that the sample size is chosen during the model building phase seen in 

section 4.2.2, which will go unchanged once a final model is chosen. This is not a tunable 

parameter and will remain fixed with its respective model structure for the life of the 

approach or until the model is removed from the ensemble. 

 In the general case of the approach, we consider N dimensionality reduction 

models. These are unsupervised models and do not require labels, so the training data is 

enough to learn. In our design, we used N=2 models where one is a simple autoencoder 

and the other is a convolutional autoencoder. See Figure 24 for an example of the sample 

images regenerated from these models. Since we used two models, future models can be 

added without ever modifying the existing models and they will simply contribute 

another vote to the final decision mechanism. Finally, each model is trained on the 

extracted data and learns features through dimensionality reduction.  

A classification of a sample is performed using a distance function. We aim to 

classify a test sample through a comparison of a set of automatically selected training 

samples. At a high level, if one sample from the training set is “similar” to the test 

sample, it is classified as part of the scene. Otherwise, if the test sample is “dissimilar” to 

every sample in the training set, then it is considered to be a change. Note that we 

actually reduce the training set to avoid large computations from these comparisons by 

removing redundant training samples. 

We define the “similarity” between samples as the Mahalanobis distance of the 

models’ encoded features, called a similarity score. Each model has their respective 

distance function which provide a similarity score between two samples. All that is 



 

56 
 

required for the Mahalanobis distance is a covariance matrix and two samples as vectors 

for comparison.  

 

Figure 24. We show a grid of images and four 3x3 collections of samples. 

The top left and bottom left sections are exactly the same for visual 

comparison with the sections on the right side. They are the 9 training 

samples provided to the autoencoders. The area on the top right is the 

regenerated samples from the first autoencoder (after encoding each 

sample and decoding the features). The area on the bottom right is the 

regenerated samples of the convolutional autoencoder.  

The vector samples are simple. We use the distance function’s respective 

autoencoder to encode the frame samples into a vector of features. Now, we must build 

the covariance matrix for each distance function. For each model, we first encode all of 

the training samples into feature vectors. Then, the encoded samples are used to build a 
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covariance matrix. The encoded samples will describe the feature distribution of the path 

allowing for a description of the covariance of the model with respect to the path. 

Together, both the covariance of the feature space and the encoded samples are used to 

build the similarity score. Thus, each model will have to build a distance function by first 

training, then encoding the training samples as vectors, and finally calculating a 

covariance matrix of the sample features.   

Once each model has a distance function built, we need to define a threshold over 

the similarity score to determine a proper classification decision (or particular vote of that 

model). With one model, we would usually need validation data and an expert with labels 

to find the optimal threshold. With an ensemble approach, the voting mechanism allows 

room for error and lenient thresholds for the individual models that make up the 

ensemble. To determine a threshold automatically, we use the encoded training set for 

this information.  

First we calculate the mean of the feature space as a mean vector. This vector 

represents the average encoded sample. From there, we calculate the similarity score of 

each training sample to the mean vector. That way we end up with a list of how different 

each sample is from the average. We can compute the mean and standard deviation of the 

list of similarity scores to describe the expected variation of the data. We determine that 

two samples are relatively similar if their similarity score is below TJ = µJ + σJ. TJ is the 

threshold of the model J which is calculated from µJ (the mean) and σJ (the standard 

deviation) of similarity scores. In other words, we can capture the majority of the space 

as part of the scene, by using the mean and standard deviation of the similarity scores, 

while outliers will be considered as obstacle. Ideally, this will allow us to reduce the 
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training set for each model to a few candidate training samples, which describe their 

portion of the feature space.  

This distance threshold captures a large portion of the space, but not the whole 

space. In this case, the advantage of using an ensemble approach is the ability to capture 

many portions of the feature space with different models. However, this would require 

many more models to fit the whole space. So, rather than extending the approach with 

more models, we extending the range of each model. This is why we compare a given test 

frame to the many samples of the training set. Each training sample can represent a 

portion of a model’s feature space. A test frame is likely to be similar to one of the many 

training samples when using the threshold TJ that captures a large portion of the space.  

However, including many training samples for comparison is costly. We do not 

want to compare each test sample to every training sample, so we reduce the training 

space into a small set that we call a comparison set. We remove redundant training 

samples using the previously described similarity functions and respective threshold TJ. 

First, we pick a sample at random. Then, we remove all other samples from the set that 

match the chosen sample using the similarity function. We continue this process until 

either the set is exhausted or we reach the limit of M samples, configured to each model 

during the building stage described in section 4.2.2. In our experiments 200-1000 

samples were sufficient for each model depending on the complexity of the floor pattern. 

The samples are ordered based on the number of redundant samples found and chosen 

from largest to smallest. Outdoor floor patterns have many more small features and 

inconsistent patterns, compared to indoor environments, which require more comparison 

samples to retain the large amount of information. Depending on the scene, an indoor 
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space will require 200-500 samples while an outdoor scene will require closer to 1000 

samples. If even more samples are required, this would result from a lengthier video with 

a change in scene or floor patterns. In this case, it is best to add additional models rather 

than more comparison samples. The method will automatically adjust the number of 

samples needed, with a hard limit of 1000 samples, based on the reduction of the space as 

mentioned earlier. If more models are used, less comparison samples are needed for each 

model. In our case we used 2 models which require more comparison samples to retain 

the background model, especially in outdoor environments.  

 Finally, we will sum up the preprocessing stage. First, we extracted feature points 

from a ROI of each frame in the training video. We then extract frame samples around 

each feature point used as the training data. We train N=2 unsupervised dimensionality 

reduction models using the extracted frame samples. From there, we build the similarity 

function of each model using the model’s encoded training samples. Finally, we remove 

redundant training samples using the built similarity function and reduce the comparison 

set to M samples (for each model). All of this is automated and done through 

preprocessing. In the next section, we will explain how we evaluate a test video with 

potential changes using our ensemble of unsupervised models, along with their respective 

comparison sets and similarity functions.  

4.2.4 Evaluation and Postprocessing 

Processing of obstacles and changes can begin from the first frame within a similar ROI 

to the training set. We reduce the left and right boundaries of the ROI to account for large 

horizontal movements. Similarly to the training frames, we extract feature points from the 
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test frames, and further extract the frame samples centered at each feature point. We want 

to classify each sample as a change or part of the background.  

Now, we will explain how a single test sample will be classified. For each model, 

we will encode the sample into features. That way we are left with N vector 

representations of the sample. For each representation/encoding, we have a comparison 

set designed for the specific model responsible for the encoding. So, we compare the 

encoding to the M samples of the comparison set using the model’s similarity function. 

Finally, the model will vote that the sample is part of the background if one of the 

model’s M comparison samples match the test sample. Otherwise, all of the model’s 

comparison samples are exhausted, and the model votes the sample as a detected change. 

Each model will make a prediction vote on their respective encoding of the sample. A 

final decision is made through a majority vote. This process is repeated for each sample 

within the test frame. 

In our experiments, we chose N=2 models with 200-1000 comparison samples 

each, thus taking a maximum of N*1000*K comparisons per frame, where K is the 

number of feature points in the given frame. Processing time strongly depends on the 

density of feature points, especially the number of points detected as a change. A possible 

improvement on processing can be made by reducing the ROI to a PxQ grid. We evaluate 

a single feature point for every given region of the frame’s grid if a feature happens to be 

detected in that region. Then, our computations will be reduced to a maximum of 

N*1000*P*Q comparisons where P*Q << K (significantly less than). Processing of the 

set of PxQ feature points is expected to be much more efficient and consistent compared 
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the entire set of K feature points. We processed all K points in our experiments since 

inconsistent processing times were not a problem in our setup.  

 Further false positives can be reduced with postprocessing. This involves using 

information from several frames to make a final prediction. We can consider a group of F 

frames, which are generally 3-7 consecutive frames depending on video FPS. In the first 

frame, we classify each feature point as described in our method. In the next frame, we 

first extract feature points and remove redundant points before extracting a frame sample 

for predictions. This is done by using a feature point matcher between the first and 

second frame’s feature points. That way we have a likely prediction for each point in the 

second frame from the matched points of the first frame. We remove any point in the 

second frame that was matched to a point classified as the background in the first frame, 

and keep the label. Essentially, we reduce the majority of the computation of the frame 

and almost all of the computation if there are no existing changes. Feature points matched 

to points classified as a change will be processed again in our ensemble of models for a 

second prediction. We will also make a prediction for any remaining unmatched points. 

We continue this process between the second and third frame, the third and fourth frame, 

and so on until we build our group of F frames. In summary, if a group of matched points 

are classified as a change in all F frames, they will remain as a detection within their 

respective frame. If a point is classified as background in any of the F frames, all of the 

previously matched points are relabeled as background, and all future points within the 

group of F frames are not further processed and are labelled as background. This greatly 

benefits the approach in travelled path segments that are change-free. If there are no 

changes in the path, entire frames (except for a few unseen feature points) can be 
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processed without any model predictions. This way, most of the processing time only 

occurs on the first frame of each group or in frames with a detected change.  

 Finally, we will sum up the evaluation of test data. First, feature points are 

selected within a test frame’s ROI. Frame samples are extracted and classified by each 

model using their respective comparison set and similarity function. Finally, a majority of 

the votes determines the final prediction for each sample. Further processing 

improvements can be made through the use of a grid to evaluate the frame evenly. 

Moreover, postprocessing is performed using a feature point matcher to reduce the need 

to evaluate points labelled as the background from previous frames and reduce potential 

false positives.   
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CHAPTER 5 

Results and Discussion 

 

In this chapter we explain our experimentation and present our results of both the 

geometry-based approach in section 5.1 and the deep learning approach in section 5.2 

using the same data. Finally we compare both approaches in section 5.3. The data 

consists of 15 obstacle-free training videos and 17 test videos of varying lengths. There 

are 8 different scenes tested. Test videos of the same scene are either filmed in different 

directions or with the use of different obstacles. Training videos only contained the 

background of the path and no additional obstacles. The tests were filmed using a 

cellphone camera at 60 FPS. We walked down each path with the camera hand held at 

waist height.   

5.1 Geometry-Based Results  

5.1.1 Testing Methodology 

The geometry-based approach needs parameter tuning for different scenes. In this case, 

we used the first test video of each scene as a validation set to tune the final threshold 

parameter. We also used the same parameter when testing the other test video(s) of the 

same scene. There are two outdoor scenes for a total of four different outdoor tests. The 

other scenes are filmed indoors incorporating different textures and floor patterns, as well 

as glare and shiny floors. Some scenes are filmed in cluttered backgrounds with many 

different objects laying in the background of the path. Some scenes will also change floor 

texture along the path. 
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 We did not optimize the code for this approach or aim for real-time processing. It 

currently operates at 2 FPS on a laptop, but can reach much higher speeds with more 

efficient processes in frame management, histogram creation/comparison, and ROI 

segmentation. As a result we only tested 4 frames for every second of the input videos, 

which were filmed at 60 FPS. This is enough to have an overall understanding of the 

detection of changes within each test. 

5.1.2 Testing Results 

We display our results of our tests in Table I. We provide results for the number of 

obstacles detected, the number of mismatched frames, as well as the accuracy, TP rate 

and TN rate. The accuracy is the percentage of frames classified properly (using all 

frames tested). The TP rate is the percentage of frames containing changes that were 

classified properly. Similarly, the TN rate is the percentage of change-free frames that 

were classified properly. 

Test ID 9 was a special case where we walked down three sets of stairs with a 

backpack laying in the middle of the stairs as a change. See Figure 25 for a variety of 

detections within different scenes. Unfortunately, this scene was only filmed with one 

test, so we used the beginning obstacle free portion of the video for parameter tuning. We 

did not include this scene in our overall results, but it is mentioned in Table I for 

comparison with the deep learning approach.  

 We consider only testing videos when calculating the overall accuracy, TP and 

TN result. In other words, we took the average over each metric using testing videos with 

ID 2, 4, 5, 6, 8, 11, 13, 15, and 17 as mentioned in the Scene column using “-Test” as the 

test label. We achieved an overall accuracy of 93.94%, an overall TP rate of 96.30% and 
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an overall TN rate of 93.05%. We were able to detect 35 out of 36 obstacles within the 

test videos.  

Table I 

Test results of change detection of paths in different scenes using the 

geometry-based approach. We mention the scene and it’s use for training 

or testing under the column “Scene”. 

 

5.1.3 Discussion 

This approach had an overall consistent score between the TP rate and TN rate. We 

detected almost every obstacle such as clear water bottles, small coins, and large items 

like a backpack. We processed many different scenes with varying floor patterns, some 

were homogeneous, some with inconsistent tile patterns, and some with occasional floor 

defects. We also processed scenes cluttered with different objects and backgrounds. 

Occasionally we had to turn corners where the entire ROI was on a wall and door frames. 

See Figure 26 for examples of difficult cases. Detection in all these circumstances 

performed well due to the ability to match frames with the dataset and tracking the 
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location within the scenes. Causes for classification errors were some glares and 

imperfect homographies for the perspective transformation.  

 
Figure 25. Six examples of detections in different scenes. Top row detects 

a backpack, middle row detects water bottles, the bottom row detects an 

umbrella. (Best seen in colour). 
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Figure 26. Four examples of difficult cases are shown. The top row 

shows a corner turned with a doorway on the wall. The bottom row shows 

some examples of the variety of floor patterns tested. (Best seen in 

colour). 

 

5.2 Deep Learning Results  

5.2.1 Testing Methodology 

In our deep learning approach, we processed each test without any parameter change. 

This means the models did not have any adjustments to any of their parameters such as 

learning rates, decision thresholds, and more. That way we can use each video in our data 

as a test instead of sacrificing one for validation and parameter tuning.  

Processing time depends highly on the number of feature points. For a consistent 

processing frame rate, it was mentioned that we can choose to evaluate only one feature 

point for a given region of the frame, if a feature point exists in that region. Since we 



 

68 
 

filmed our test videos to simulate a robot, we are not affected by inconsistent processing 

times, so we processed all feature points. Processing frame rate was well above 30 FPS in 

change-free frames due to the low number of feature points in indoor scenes, but mostly 

due to the processing saved from matching feature points between frames. When 

obstacles are introduced, we saw a large number of feature points that must be processed 

in each frame, which reduces the speed to under 10 FPS. The processing rate of the 

change-free segments benefit greatly from our efficient handling of consecutive frames. 

We mentioned feature points were matched between frames to assign a guess for the 

labels of consecutive frames. We processed groups of 4 frames before forcing the models 

to re-evaluate each background feature point.  

5.2.2 Testing Results 

We display our results in Table II. Each test ID is exactly the same test ID and video 

from Table I. We also display exactly the same information aside from the number of 

mismatched frames, which does not relate to this approach.  

 

 

 

 

 

 

 



 

69 
 

Table II 

Test results of change detection of paths in different scenes using the deep 

learning approach. The ID number of the test matches the ID number of 

the tests in Table I.  

 

We processed 100% of the frames and considered all test videos for our overall 

results since we did not need any parameter adjustments. This gives us a total of roughly 

32,500 testing frames. We achieved an overall accuracy of 96.31%, a TP rate of 81.25% 

and a TN rate of 97.03%. We were able to detect 60 of 66 obstacles. We placed a water 

bottle in almost every scene tested, some of the time it went undetected, other times the 

label or cap was detected. The low TP rate was due to these instances and frames 

containing portions of the water bottles that were undetected, such as the see-through 

bottom. See Figure 27 for an example of test ID 9, see Figure 28 for examples of various 

detections and see Figure 29 for a high glare environment. 
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Figure 27. We show three rows of frames separated by the red lines. We 

removed the top 50% of the frames to save space. From bottom to top, we 

move past the backpack and show the detected changes in the left and 

middle frames. We show feature points classified as background in the 

rightmost frame. (Best seen in colour). 
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Figure 28. Three example detections in different scenes. (Best seen in 

colour). 



 

72 
 

 

 

Figure 29. Detection on a reflective, high glare floor. (Best seen in 

colour). 
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5.2.3 Discussion 

We used only two models in our ensemble approach to show a worst case performance. 

The models were constrained to a maximum of 70 epochs and a maximum of 45,000 

training samples (with 5000 validation samples). Some scenes generated a significant 

amount of samples at over 200,000 training samples, thus showing a need for more 

models to capture the majority of space. While we detected 60 of the 66 obstacles, 

precision in the TP rate was low. For example, in Figure 27, many feature points are still 

classified as background while they are clearly on an obstacle. This is alright for this 

circumstance since we simply aim to detect the change, even at a low precision. This is 

where the ensemble approach can really improve detection by having more feedback of a 

given feature point and improving overall precision. Generally in ensemble approaches, 

the more models that contribute to the final vote, the better the accuracy (and precision in 

this case) of the classification, as long as the models are more accurate than random.  

5.3 Comparison 

In Table III, we present a table containing the results of both approaches on a single row 

(for each test). Note that the geometry-based approach required training, so tests 1, 3, 7, 

9, 10, 12, 14 and 16 were used for training purposes. The results of these training tests are 

included for a direct comparison with the deep learning approach, which ran without 

parameter tuning. There is a large variety in the performance of both approaches. The key 

difference is that the geometry-based approach is appearance-based, while the deep 

learning approach is feature-based. Detection in the geometry-based approach relies on 

the colour distribution of a given change to stand out from the background of the scene. 

This is advantageous in the detection of homogeneous obstacles which appear differently 

from the background using colour alone. This is reflected in the results where the 
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geometry-based approach is able to detect smooth obstacles, like a laptop case, and 

difficult to see obstacles, such as water bottles. 

Table III 

Direct comparison of the tests displayed in Table I and Table II. The test 

ID numbers match the ID numbers of the tests in Table I and Table II. We 

present the results of the geometry-based approach on the left and the 

results of the deep learning approach on the right.  

 

 Water bottles were present (one or more, either empty or full) in almost every 

scene as a difficult case. The deep learning method is a feature-based approach, so 

features were analyzed on the cap, the label, and the base of the water bottles that meet 

the ground features. See Figure 30, the method classifies one feature point on the water 

bottle as an obstacle in the left/middle frames. The deep learning method does not have 

enough understanding of the scene to fully differentiate the features of the water bottle 
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compared to the background of the scene, which is the source of many errors. For 

example, later on in the scene shown in Figure 31, the features of the ground are very 

similar to the features of the water bottle. The darker label of the bottle is similar to the 

darkened sidewalk and the cap is similar to the white patches of the salt distributed on the 

path (filmed in the winter).  

A way forward to prevent misclassifications of appearance based features, such as 

colour, would be to introduce colour and lighting noise to the training samples. This 

would force the models to learn features of the path rather than colour based features. 

Moreover, we used just two models in our ensemble approach. This is not enough to fully 

understand the scene and differentiate the background from the water bottle at this level. 

For example, we could generate many more feature points on the path (see the lack of 

feature points in the background frame (right side) of Figure 30) and increase the number 

of models trained on the path. Training is important for this approach and a variety of 

training methods can be taken.  

We currently have two models. We can extend the ensemble approach by two 

more models (the same models even) and train the additional models on misclassified 

samples from the training video. We can repeat this process until we are satisfied that the 

scene is learned or until there are no large improvements to be made. This would allow 

for a detailed understanding of the scene and a focus on hard-to-classify samples.  

Another approach is training by sections of the training video. We have an 

algorithm capable of determining the robot’s current location, which can be applied to the 

deep learning method. Here we can train on similar sections of the scene and create an 
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ensemble of models for each portion of the scene. During the testing phase, the location 

detection algorithm would allow us to determine in which section of the scene the robot 

is currently positioned. This would allow us to use the specific set of ensemble models 

we used to classify the samples from that particular section of the scene. This could 

prevent features in later portions of the scene from interfering with earlier portions of the 

scene, such as the salt and darkened sidewalk compared to the water bottle. Training as 

well as the number of models used is the limiting factor of the currently tested approach, 

both can expand the method’s ability to learn the scene.  

For current results, the geometry-based method performed the best when 

considering the number of obstacles detected properly. The deep learning approach 

shows its worst-case performance using just two models. Note that training was limited to 

50,000 samples for both models in the deep learning approach (45,000 training, 5,000 

validation). Some scenes generated over 200,000 training samples depending on the 

ground features (such as outdoor scenes) and video length. As a result, better use of the 

training data gives an opportunity for the deep learning approach to exceed the geometry-

based approach.  

  



 

77 
 

 

Figure 30. Detection of one point on the water bottle. There are a low 

number of background feature points present in the background of the 

path (see the frame on the right). The middle and left frames show points 

classified as obstacle. Many of the feature points are not classified 

properly and results in a misclassified obstacle. (Best seen in colour). 

 

Figure 31. Another frame from the same scene shown in Figure 30. The 

sidewalk is darkened resembling the label of the water bottle in Figure 30 

while the salt on the path resembles the white portions of the water bottle. 

(Best seen in colour).  
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CHAPTER 6 

Conclusion and Future Work 

 

In conclusion, we presented two approaches to detect changes along a path: one 

geometry-based and the other based on deep learning. Our geometry-based approach has 

a clear advantage at detecting various different obstacles while filtering out the various 

background information of the path using a single camera. Additionally to those benefits, 

our deep learning approach is free of any parameter tuning and has a clear path of 

improvement. We achieved an overall accuracy of 93.94%, a TP rate of 96.30%, and a 

TN rate of 93.05% in our geometry-based approach. We also achieved an overall 

accuracy of 96.31%, a TP rate of 81.25%, and a TN rate of 97.03% in our deep learning 

approach.  

Both approaches can have false detections due to both dynamic lighting changes 

and glares, while also missing detections of homogeneous obstacles and more difficult 

obstacles, such as water bottles. In the geometry-based approach, it is a balance between 

filtering out glares and detecting homogeneous obstacles (in relation to the ground 

features). Future work can improve on the histogram comparison to account for lighting 

changes. Further improvements can focus on automated parameter tuning and dynamic 

parameter tuning over the course of a test. We can use this information in conjunction 

with a better precision of detected changes within the ROI to allow the robot to make 

informed decisions on given tasks or obstacle avoidance.  

In our deep learning approach, the use of the training samples can be greatly 

improved. Several models can focus on different data and even difficult to classify 
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training samples. To build more models into the approach, we could try classifying the 

training data using the first models trained. It is expected that all samples are part of the 

background, so we can focus training of new models (with the same structure) on 

misclassified samples, since the scene has not been fully learned. Models can also be 

trained to ignore lighting changes through the use of lighting noise. Samples can be 

adjusted many different ways (even differently on both input and output) to force the 

model to learn features rather than colour distributions.  

By improving the models and their training data, more work can be done to build 

a precise detection method that could improve accuracy in distinguishing changes from 

the background. Moreover, the method’s ROI can be expanded or even several ROIs can 

be considered for redundancy or detection in other portions of the frame. For example, 

several ROIs at ground level placed along the path could detect obstacles at different 

distance levels.  

Additionally, the method already has a precise location of a detected change. We 

can use the feature point locations of detected changes, and we could perform clustering 

on groups of points to create an overall structure of potential obstacles present in the 

frame. This can benefit the robot in automated tasks or obstacle avoidance with the use of 

type, size, and location of a given obstacle.   
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