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ABSTRACT 

The sources and processes, including re-emission of gaseous elemental mercury, 

affecting speciated atmospheric mercury (Hg) at Flin Flon, Manitoba were identified and 

quantified using the positive matrix factorisation (PMF) model and principal component 

analysis (PCA). The input data contain the concentrations of gaseous elemental mercury 

(GEM), gaseous oxidized mercury (GOM), particulate-bound mercury (PBM), PM2.5and its 

components (elements and ions), sulphur dioxide (SO2) as well as temperature, precipitation, 

relative humidity and wind speed. Eighty-one daily samples and twenty chemical species 

concentrations as well as meteorological parameters, measured from July 2010 to May 2011, 

were analysed. 

PMF identified six factors, namely secondary aerosol and re-emission, industrial, 

crustal/soil dust, road salt/biomass burning, Hg oxidation and coal combustion. Among the 

factors, secondary aerosol and re-emission, road salt/biomass burning and bromine source 

profiles contained one or two Hg forms. The bromine source and, secondary aerosol and re-

emission were the dominant GEM contributing factors with average contributions of 48% and 

43%, respectively. PMF most closely predicted the observed daily concentrations of PBM 

then GOM and PBM. 

PCA of the same concentration data set extracted six principal components. These were 

largely consistent with the PMF factors. A component identified as long-range transport of Hg 

with loadings on GEM and GOM only was identified by PCA. With inclusion of 

meteorological data in the input, the long-range transport of Hg was divided into re-emission 

and a new component, dispersion of GEM. Overall, PCA identified three Hg-associated 

components, including re-emission of GEM. The long-range transport of Hg predominantly 

contributed to GEM in PCA of dataset. The dispersion component’s contribution to GEM was 

dominant when meteorological data was included in the input. PCA most closely predicted 

PBM then GOM and GEM, regardless of whether or not meteorological data was included.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Mercury (Hg) is a metal with atomic number 80. Among other metals, it is an important 

one because it is the only metal ever known to be in liquid state under standard temperature 

and pressure (USEPA, 2007). Hg can slowly evaporate regardless of any change in the 

environmental conditions. Hg is typically found in the form of its ore cinnabar (mercury 

sulphite), which is commonly referred to as quicksilver because of its mobility. Because of the 

uniqueness and other properties of Hg including high specific gravity and constant volume of 

expansion, its economic significance in diverse areas of human activities including 

manufacturing, metallurgy, medicine and dentistry vastly increased during the industrial 

revolution. Due to the persistence, toxic and bioaccumulative nature of Hg, its presence in the 

environment has attracted global interest. Atmospheric Hg is bidirectional. Once Hg is 

emitted, it deposits in terrestrial and aquatic environment. Deposition in aquatic environment 

leads to build-up in aquatic food chain (Schroeder and Munthe, 1998).Consequently, it enters 

the human body via either inhalation or injection. Direct contact with Hg or inhalation into the 

body system can cause a series of complicated health conditions including respiratory system 

disorder and kidney malfunctions. The indirect impacts of atmospheric Hg are of greater 

concern. They through consumption of contaminated fish, wildlife, and plants that are 

contaminated with Hg (Meili et al., 2003, Wright et al., 2016). The consumption of Hg 

contaminated plants and animal species poses risks to the neurological, immune and 

reproductive systems (Rice et al., 2014). Indirect impacts of atmospheric Hg on wildlife 

include reduced reproduction, behavioural changes and changes in egg incubation times 

(Penglase et al., 2014).When Hg combines with trace elements such as gold, silver, zinc and 

cadmium, it forms alloys, otherwise known as amalgams. The most common of such 
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amalgams in use is dental amalgam. Globally, atmospheric Hg pollution caused by emissions 

from numerous point and non-point sources remains a major problem of concern for public 

health and wildlife. In the atmosphere, Hg goes through a series of complex chemistry and 

progresses via direct or indirect routes into human body and the ecosystem. The major health 

issues caused by exposure to atmospheric Hg have motivated the interest of different national 

and international environmental organizations, such as the United Nations (UN), Environment 

and Climate Change Canada (ECCC), United States Environmental Protection Agency 

(USEPA) and several other agencies of governments (UNEP, 2013), to set up control 

measures aimed at reducing the impacts. 

Numerous sources of atmospheric Hg, including natural and anthropogenic (human 

activity-induced) sources, exist. Another important source of atmospheric Hg is re-emission 

of Hg previously deposited from natural and anthropogenic sources on land, water or 

vegetation surfaces (Pirrone et al., 2010). The most important natural sources of atmospheric 

Hg include volcanoes, forest fires, volatilisation from oceans and water surfaces, and 

weathering of the earth surfaces (Gustin et al., 2000; Hedgecock et al., 2006). Large 

proportion of atmospheric Hg contributed by natural sources exists in gaseous phase and 

volatilization of Hg from ocean surfaces contributes about 70% of the total Hg emissions from 

natural sources (Gaffney and Marley, 2014). Re-emission of previously deposited Hg mostly 

affects ambient concentrations in the local environment. The re-emission of Hg previously 

deposited on land, water and vegetation surfaces are enhanced by biomass burning, land use 

type, exchange of gaseous Hg at the air-water/topsoil, soil/snow ice pack interfaces, and the 

prevailing meteorological conditions (Gustin et al., 2000; Pirrone et al., 2001). Anthropogenic 

sources of atmospheric Hg are numerous and predominantly occur via industrial processes 

such as fossil fuel (coal) combustion, metal smelting, artisanal and small scale gold mining, 

and chloro-alkali production (Pacyna et al., 2006, Veiga et al., 2006).The extent of Hg 
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pollution from anthropogenic sources largely depends on the magnitude of the emissions 

(Pirrone et al., 2010). When Hg is emitted, its behaviour in the atmosphere is mostly affected 

by its physical and chemical properties. Some selected properties of Hg are listed in Table 1.1. 

Table 1.1: Physical and chemical properties of Hg (Schroeder and Munthe, 1998) 

Property Measure 

Physical state at 0oC, 1atm Liquid 

Boiling point (oC) 357 

Melting point (oC) -39 

Specific gravity at 20oC 13.55 

Solubility in water at 20oC (g/l) 49.4 × 10-6 for Hg; 66 for HgCl2 

Electrical resistivity at 50oC (Ωm) 9.84 × 10-7 for Hg 

Vapour pressure at 1 atm  (Pa) 0.180 for Hg; 8.99 × 10-3 for HgCl2 

 

Atmospheric Hg is practically measured in three forms, which are operationally defined 

as gaseous elemental mercury (GEM or Hg0), gaseous oxidized mercury (GOM or Hg2+), and 

particulate bound mercury (PBM or Hgp) (Pandey et al., 2011). All the three Hg forms 

together are known as total atmospheric Hg. When GEM and GOM are added together, the 

total is known as total gaseous Hg, whereas GOM and PBM, added together constitute 

reactive Hg. Inter-conversion between these three Hg forms occurs via oxidation-reduction 

and adsorption reactions depending on the prevailing atmospheric conditions (Pacyna et al., 

2006). For instance, GOM can be produced by homogenous and heterogeneous chemical 

reactions of GEM with atmospheric oxidants such as O3, Br/BrO or OH (Subir et al., 2011). 

There seems be far-reaching agreement on which particular oxidant is most important under 

certain atmospheric conditions. Previous studies have shown the high tendencies of O3 to 

oxidize GEM in most cases. 

Emissions from anthropogenic sources, primarily combustion processes, contain all 

three forms of Hg in different proportions. Among the three Hg forms, GEM is the 

predominant form in ambient air (Gustin, 2011). Under standard atmospheric conditions, 

>95% of the total atmospheric Hg is GEM (Poissant et al., 2005). It has a northern 
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hemispherical background concentration of ~1.7 ng/m³ (Slemr et al., 2003). Atmospheric 

processes such as photochemical reactions rapidly transform GEM to GOM thereby 

increasing the GOM available for wet or dry deposition in the local environment (Poissant, 

1997). GOM and PBM are of low magnitude in the atmosphere approximately, less than 5% 

(Pacyna and Pacyna, 2002) and the uncertainties of their measurements are high. However, 

during special atmospheric reactions such as oxidation by ozone, GOM can be produced by 

rapid oxidation of GEM leading to elevated GOM concentrations (Lindberg et al., 2002). The 

impacts of natural sources and processes on atmospheric Hg concentrations may vary 

according to the geographical location and time. This depends on a number of factors 

including prevailing meteorological conditions, magnitude of exchange processes between 

soil and water surfaces, and the atmosphere, re-emission of Hg previously deposited on 

topsoil and vegetation from natural and anthropogenic sources, and the frequency of the 

occurrence of forest fires (Pirrone et al., 2010). Re-emission of previously deposited Hg can 

also influence the ambient GEM concentration levels particularly in areas that have previously 

been under the impacts of active industrial operations for many years. 

The reactivity, solubility and toxicity of each Hg form are different. The most stable 

form of Hg in the ambient air is GEM. It is inert and highly volatile. GEM has a residence 

time of 0.5 to 2 years (Schroeder and Munthe, 1998; Corbit et al., 2011). This allows it to 

undergo long-range transport over thousands of kilometres, making it evenly distributed 

globally, hence its universal description as a ‘global pollutant’ (UNEP, 2008). Long-range 

transport of Hg in the atmosphere is a major pathway via which Hg contaminates pristine 

ecosystem in remote locations (Fu et al., 2010). The concentration of GEM in ambient air is  

about 100-1000 times the concentrations of GOM and PBM. GOM and PBM are more 

reactive, highly soluble in water and less volatile than GEM. All the three Hg forms undergo 

dry and wet deposition but GOM and PBM are more quickly wet deposited than GEM. GOM 
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can remain in the air for hours to weeks (Schroeder and Munthe, 1998) whereas the removal 

of PBM from the atmosphere may depend on the size and diameter of the particles (Poissant 

et al., 2005). The short atmospheric residence times of GOM and PBM allows an increase in 

the rate of deposition locally with elevated levels near the ground around the source(Eckley et 

al., 2013). The vertical dispersion of GOM and PBM in the lower part of the atmosphere is 

constrained to the areas of their releases because of rapid scavenging via wet and dry 

deposition mechanisms (Lindberg et al., 2007). 

Flin Flon Manitoba’s Hudson Bay Mining and Smelting (HBM&S) complex has been a 

major copper and zinc mining, smelting and processing hub. Incidentally, Hg, among other 

metals, was a major constituent of the ore extracted and processed. Throughout its years of 

operation (~80 years), it was the largest atmospheric Hg point source in Canada, contributing 

as much as 6% of North America’s anthropogenic Hg releases (USEPA NEI, 2007). Mercury 

concentrations in Canada are higher in the eastern part than in the west due to the legacy of 

high emissions to the south (Depew et al., 2013). The amount of Hg released into the ambient 

air before the 1990s remained uncertain because no information was provided in the Canada’s 

National Pollutant Release Inventory (NPRI). However, between 1999 and 2009, the total 

average release rate of Hg from the stack was1093±261 kg/yr. (Environment Canada NPRI, 

2018). The plant permanently closed on July 1st, 2010 due to its age and changes in 

environmental regulations. Prior to the closure of the plant, the concentrations of Hg in Flin 

Flon was high due to large emission of Hg from HBM&S and caused severe damage to 

residents of the area. After the plant’s closure, some light industrial operations continued at 

the site. Despite a reduction in Hg emissions due to the plant closure, the atmospheric 

concentrations of Hg in the local environment remained above the background concentrations 

at other remote Canadian monitoring sites. The two nearest rural background monitoring sites 

include Experimental Lake Area, Ontario with average GEM of1.25±0.16ng/m³ and Bratt’s 
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Lake, Saskatchewan with average TGM of 1.24±0.18ng/m³ (Eckley et al., 2013).Flin Flon is 

remote (>450 km) from significant industrial and urban centres. 

This study recognizes and examines the elevated Hg concentrations measured at the Flin 

Flon sampling site immediately after the closure of the plant. However, the plant site remains 

a site of concern and further investigation into the re-emission sources and processes, 

influencing the atmospheric Hg concentrations, is needed given the consequent legacy of 

contamination of the local soil from long-term deposition of Hg and other air pollutants. . In 

previous studies of source apportionment of speciated atmospheric Hg, identification and 

quantification of major point sources of atmospheric Hg has been the common focus 

neglecting the significant influence of re-emission of distributed long-term Hg from 

contaminated soil. The input concentration dataset were analysed with two frequently used 

multivariate receptor models: Positive Matrix Factorization (PMF) model and Principal 

Component Analysis (PCA), in order to identify and quantify the sources and processes 

affecting the atmospheric concentration of Hg in Flin Flon. 

1.2 Objectives 

The objectives of this study are as follows: 

• To identify and quantify the sources and processes, including re-emission of gaseous 

elemental Hg, contributing to the ambient Hg at Flin Flon from July 2010 to May 2011; 

• To compare the results obtained from PMF and PCA techniques; 

• To assess the performances of PMF and PCA in reproducing the concentrations of 

speciated atmospheric Hg; 

• To evaluate the effects of including meteorological parameters on PCA extracted 

components. 
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This study will contribute to knowledge by: 

• Providing information on re-emission affecting ambient levels of Hg at Flin Flon, 

Manitoba but are not listed in the National Pollutant Release Inventory (NPRI) 

• The relationship between the meteorological conditions and changes in ambient Hg 

concentrations 

• Knowing the limitations of each modeling technique, performance and what other 

pollutants needed to be measured at the site for inclusion in future studies in order to 

improve the modeling results.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Mercury in the Environment 

2.1.1 Chemistry of atmospheric Hg 

Atmospheric Hg can continuously undergo physical and chemical transformations from 

one form to another before eventually being deposited back to ground level surfaces. Hg 

exists in three oxidation states denoted as Hg0, Hg+ and Hg2+ (Lin and Pehkonen, 1999; 

Petrucci et al., 2007). The chemical properties of Hg and its behaviour in the atmosphere are 

strongly dependent on its oxidation state (Otten et al., 2011). For instance, Hg0 is principally 

the dominant form in the gaseous phase and has long residence time but Hg+ is unstable at 

room temperature (Schroeder and Munthe, 1998). Conversely, Hg2+ either tends to be present 

in atmospheric water in dissolved form or absorbed on atmospheric particles in droplets (Ross 

and Vermette, 1995). 

The atmosphere is an important media, not for transporting Hg only but also a transient 

reservoir where various Hg transformations affect its transport characteristics and depletion 

rate. Oxidation of Hg0 is the most important process of Hg depletion from the atmosphere 

(Gworek et al., 2017; Schroeder and Munthe, 1998). Because Hg0 is dominant in the ambient 

air, its depletion and gas-to-particle conversion are often preceded by oxidation reaction 

(Sommar et al., 2001). Hg0 has numerous oxidation pathways in the atmosphere and can occur 

either in the gas or in aqueous phases. Gas-phase reactions with oxidants like O3, NO3˙, OH˙ 

and H2O2are not well understood because there are substantial uncertainties regarding the 

reaction rates with these oxidants (Han et al., 2004; Ariya et al., 2015). The main oxidation 

reaction with Hg0 is with O3(Gworek et al., 2017). Oxidation reactions of Hg0in the aqueous 

phase is more important than gaseous phase oxidation due to its higher rate of reaction in 

water (Han et al., 2004). Previous laboratory study (Hall, 1995) found that Hg0 reaction with 
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O3 is the most likely reaction in the gas phase but the reaction constant is still very small. In 

the Arctic, sub-Arctic and Antarctica, oxidation of Hg is mediated by sunlight and bromine 

atoms derived from atmospheric reactive halogens with marine sea salt in surface 

snow/icepack or aerosols (Balabanov and Peterson, 2003; Ariya et al., 1998). The halogens 

can react directly with Hg0 or via further reaction with O3 from halogen oxide radicals 

(BrO˙/ClO˙) which undergo reaction with Hg0 and convert it to Hg2+. The primary halogen 

atoms (Br/Cl) and molecular halogens (Br2/Cl2) have also been found to oxidize Hg0 to HgBr2 

and HgCl2, respectively (Pal and Ariya, 2004; Horowitz et al., 2017). Some possible reactions 

of Hg0 with a variety of other oxidants have been investigated using their thermodynamic 

dataset, and these suggested that O3 and Cl2 are important oxidants of Hg0 (Ariya et al., 2002) 

while SO2 and NO inhibit reduction of Hg2+ to Hg0 (Zhao et al., 2006). Oxidation of Hg0with 

free radicals (HO2˙, HO˙ and NO3˙) is also an important pathway of Hg0 depletion particularly 

during daytime in the atmosphere (Lin and Pehkonen, 1999). The following equations 

illustrate different reactions of Hg0 with O3 and few other oxidants (Gworek et al., 2017; 

Petrucci et al., 2007): 

Hg0
(g) + O3(g)   Hg0O(aq)+ O2(g)   

  Hg0
(aq) + Cl(g)   HgCl(g) 

  Hg0
(aq) + Br(g)   HgBr(g)   

  Hg2+
(aq) + BrO(g)  HgBrO(g)   

(aq) = aqueous 

(g) = gas phase molecule 

2.1.2 Mercury cycle 

Once Hg is emitted into the environment from natural and anthropogenic sources, it 

undergoes constant cycling and recycling via a biogeochemical cycle. There are a number of 

steps involved in Hg cycling in the environment. In Figure 1.1, Hg is initially emitted from 
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natural and anthropogenic sources, and from re-emission sources. Based on Hg speciation, 

elemental Hg can last for a considerable period in the atmosphere and is eventually dispersed 

during turbulent conditions. The elemental vapour then undergoes oxidation in the presence of 

sunlight to form inorganic Hg, which combines with water vapour; undergo deposition back 

to the earth’s surface as rain or snow. The Hg-rich rainwater is deposited in soil surface and 

water bodies. In soil, the deposited Hg accumulates and reduces to elemental form via some 

photo-induced reactions or action of bacteria (Lindberg et al., 2007) until physical events such 

as biomass burning and/or forest fires mobilize it and eventually it gets re-emitted back to the 

atmosphere and is again conveyed during air mass movement until it gets deposited far away. 

 
Figure 2.1: Mercury cycling in the environmental media (adapted from Tewalt et al., 

2001) 

 

In surface water, inorganic Hg can be converted into insoluble Hg sulphide (HgS) which 

is further acted upon by microorganisms that process sulphate into the most toxic Hg 

compound, called as methylmercury (CH3Hg). These microorganisms are either consumed by 

the organisms next higher up in the food web or the microorganisms potentially release 

CH3Hg from their body into the water where it is adsorbed on plankton, which is also 

consumed by organisms higher up the food chain. This pattern continues with small fish being 

progressively consumed by bigger and bigger fish until humans or other animals high up in 
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the food web eventually consume the fish. Alternatively, both Hg0and CH3Hg in soil and 

water surface can vaporize and be re-emitted back into the atmosphere and cycles in the 

environment. 

2.2 Fate, Transformation and Transport of Atmospheric Hg 

2.2.1 Emissions 

Atmospheric Hg is from natural and anthropogenic origins. The emissions from natural 

processes are primarily in elemental form (Schroeder and Munthe, 1998). It is imperative to 

know that Hg emissions could result from two natural components: Hg present as part of pre-

industrial equilibrium and Hg mobilized by physical processes from geological deposits and 

added to atmospheric load. Anthropogenic Hg releases are however, dominated by industrial 

and combustion processes that release Hg into the atmosphere (Pacyna et al., 2006). Gaseous 

Hg emissions include both Hg0 and Hg2+, while the emission of Hg-rich particles compose 

primarily of oxidized compounds due to the relatively high vapour pressure of Hg0. Hg0 and 

Hg2+ absorbed or bound to particles increase the Hgp content in the atmosphere. The 

speciation of Hg in emission plumes is often dependent on the type of processes and the fuel 

used (e.g. coal, oil, municipal waste) and operating temperature. Anthropogenic activities on 

sites that are no longer operational still continue to emit significant amount of Hg into the 

atmosphere from historically contaminated soil. 

2.2.2 Transformation and transport 

As previously stated, Hg0 stays longer in the atmosphere than Hg2+ and Hgp and thus is 

evenly distributed in the troposphere. Hg2+and Hgp may be deposited relatively quickly by wet 

scavenging and dry deposition processes, hence the short residence time. Longer residence 

times are also possible to occur. The residence time of Hgp in the atmosphere may sometimes 

approach that of Hg0 (Porcella et al., 1996). The transformation of Hg0 to Hg2+ and Hgp in 

cloud water demonstrates a likely mechanism by which Hg0ambient air can be deposited into 
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the soil and water. This deposition can often occur far away from the releasing source. Hg0 

uptake in cloud water could be slow (Gallup, 2018) because it is insoluble. Hg2+is expected to 

deposit at a faster rate instantly after release than Hgp with an assumption that most of the 

particles are less than one microgram in diameter. The large variation in atmospheric 

residence time between Hg0 and other Hg forms leads to very much larger scales of transport 

and deposition of Hg0. Generally, emission of Hg0 from anthropogenic sources, its fluxes 

from contaminated soils and water bodies and natural emissions all contribute to a global 

atmospheric load. Atmospheric circulation of Hg on a global scale can take Hg0 from their 

point of release and transport them anywhere on the globe before transformation and 

deposition occur. Hg2+ and Hgp are likely to deposit to the earth’s surface before they 

thoroughly mix with the atmosphere. 

2.2.3 Deposition 

Deposition of Hg is simply the removal of Hg dispersed in the atmosphere via wet and 

dry deposition mechanisms. Once in the atmosphere, Hg2+ and Hgp are often subjected to 

faster removal than Hg0 (Shannon and Voldner, 1994). Both Hg2+ and Hgp are primarily 

subject to dry deposition (i.e. deposition in the absence of precipitation) at significant rates 

when and where their measureable concentrations exist. The deposition velocity of Hgp is 

dependent on the state of the atmosphere and particle size (Zhang et al., 2012; Wright et al., 

2016). Hg2+and Hgp can also be subjected to wet deposition through scavenging by 

precipitation. Overall, Hg2+ undergoes more rapid and effective removal by both dry and wet 

deposition processes than Hgp (Shannon and Voldner, 1994) due to the high reactivity and 

water solubility of Hg2+. Contrarily, H0 may not be susceptible to any major direct deposition 

to the soil because it has high vapour pressure and lower water solubility. Although, Hg0 could 

be formed in soil and water due to the chemical reduction of Hg2+, this Hg0 is expected to 
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volatilize into the ambient atmosphere. The reduction of Hg2+ to Hg0 in aqueous systems 

could reduce the amount of Hg2+ available for methylation. 

There is a potential for deposition of Hg0 through plant-leaf uptake. It has been 

reported that forest canopies could accumulate Hg0 via gas exchange at the surface of leaves 

followed by Hg assimilation in the leaf interior during the daylight hours. This process causes 

downward flux of Hg0 from the atmosphere thereby leading to high deposition velocity of 

Hg0. At lower ambient concentrations, the forests appear to act as a source of Hg0 to the 

atmosphere, with measured Hg flux in the upward direction. This may be explained by the 

volatilization of Hg0 from the soil. 

2.2.4 Re-emission 

The re-emission of Hg from topsoil and water surfaces into the atmosphere 

predominantly results from the formation of Hg0 in the soil and natural waters. In this process, 

Hg emitted from anthropogenic sources is deposited to the soil mainly as Hg2+,which is 

subsequently reduced to Hg0 by some bacteria and re-emitted back into the atmosphere. The 

soil Hg content, in most cases, controls Hg0 evasion under comparable weather conditions 

including high solar radiation and temperature (Lin et al., 2010). According to Mason et al. 

(1995), re-emission processes account for ~30% of the total Hg flux from soil to the 

atmosphere. Eckley et al. (2015) reported an elevated soil Hg0 efflux after a closure of a huge 

base-metal smelter in Canada. A recent study by Zhu et al. (2018) in China also indicated that 

Hg0concentration in soils near a closed smelter was found to be up to two orders of magnitude 

higher than the local background soil concentration. This increase was linked to the 

cumulative deposition of industrial plant Hg emissions. Mason et al. (1995) further estimated 

that total Hg re-emissions has increased by a factor of 4.5 since pre-industrial use and has 

increased the concentrations in the atmospheric and oceanic reservoirs by a factor 3. This 

scenario was attributed to increased local deposition. The affinity of Hg species for soil 
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mainly results in soil acting as a large reservoir for anthropogenic-related deposited Hg. Thus, 

even if emissions from anthropogenic sources were to cease totally, the efflux of Hg from soil 

into the atmosphere might be expected to remain elevated for many years afterwards. 

Nevertheless, re-emission of Hg previously deposited on soil from natural and anthropogenic 

sources will continue to have significant effects on the atmospheric concentrations of Hg. 

2.3 Health Impacts from Exposure to Hg 

All known Hg compounds are toxic (Bernhoft, 2012) and have devastating impacts on 

human health regardless of the amount. The impact of atmospheric Hg can be direct or 

indirect depending on the exposure route. Although, the background Hg concentrations in 

ambient air is about 1.7 ng/m³ (Ebinghaus et al., 2003), this is not perceived as high enough to 

cause direct human health problems. Once Hg2+is deposited into soil and water, it is converted 

by some active microorganisms under acidic and anaerobic conditions to the more toxic form 

known as methylmercury. Methylmercury (CH3Hg) enters human body predominantly 

through consumption of fish and shellfish leading to escalated health problems such as the 

case of Minamata disease in Japan in 1956. Exposure to CH3Hg is of more concern than Hg0 

because the body absorbs approximately 95% of the CH3Hg ingested through the 

gastrointestinal tract, lung and skin (Al-Zubaidi and Rabee, 2017) compared to 50-100% 

absorption of elemental Hg vapour inhaled via the lungs. Exposure to Hg during pregnancy is 

of most concern, because it inhibits the development of an unborn baby’s brain (Lando and 

Lo, 2014). CH3Hg can cross the placenta and readily pass through the blood-brain, with 

higher levels of CH3Hg reported in fetal than in maternal circulation (Kim and Zoh, 2012). 

Infants and young children with developing body organs are highly vulnerable to damages 

from exposure to CH3Hg because it causes learning disabilities in children. Studies have also 

shown that exposure to small increase in Hg concentration adversely affect the heart and 
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circulatory system. Mercury inhaled can also cause neurological and behavioural disorders 

causing memory loss, irritability and social withdrawal (Ratcliffe et al., 1996). 

2.4 Source Apportionment Methods 

Investigations into the sources and processes affecting air pollutant concentrations at a 

receptor are performed using multivariate receptor models. Receptor models are used to 

explore the variance in a concentrations dataset, in order to identify and quantify air pollutant 

sources, including speciated Hg. It has also aided in examining the influence of emission, 

transport, transformation and deposition processes involving speciated Hg concentrations at 

receptor locations (Cheng et al., 2015). Numerous receptor model applications require varying 

degrees of knowledge about the sources. In Figure 2.2, the level of knowledge required by 

various types of receptor models are shown. 

 
Figure 2.2: Types of receptor models in order of the knowledge required about the  source 

prior to modelling (Reprinted from Source apportionment of particulate matter in Europe: A 

review of methods and results by Viana, M., Kuhlbusch, T., Querol, X., Alastuey, A., 

Harrison, R., Hopke, P., …Hitzenberger, R. (2008), Journal of Aerosol Science,39(10), p. 

829.Copyright 2008 by Elsevier) 

 

Among these multivariate models, the most frequently used ones in concentration data 

analysis include Chemical Mass Balance (CMB) model (Heaton et al., 1992; Watson et al., 

2001), Principal Component Analysis (PCA) (Lynam and Keeler, 2006; Temme et al., 2007) 

and Positive Matrix Factorization (PMF) (Keeler et al., 2006; Brown et al., 2007). 
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Mathematically, the concentration of an air pollutant measured at a receptor location is 

expressed as the sum of the products of the pollutant compositions and contributions from 

sources. The CMB model had been used in previous studies to determine the contributions of 

sources to particulate matter and volatile organic compounds in ambient air and pollutants in 

soil. An assumption in the CMB model is that all significant sources of air pollutants have 

been identified and their emissions fully quantified (Chow and Watson, 2002). However, this 

assumption is physically invalid in Hg apportionment studies because there may be sources 

potentially affecting the ambient concentrations, which had not been physically identified and 

reported the in emission inventory. For this singular reason, CMB is rarely used for source 

apportionment of speciated atmospheric Hg. PMF and PCA have mostly been used in 

apportionment of particulate matter (Viana et al., 2008). An important advantage of PMF and 

PCA over CMB is that the knowledge about the sources and their profiles is not an initial 

requirement to apply both methods. They only require the input of ambient Hg data with or 

without meteorological data (Hopke, 2016). 

2.4.1 Source apportionment by PMF model 

The PMF model is a multivariate statistical model developed in the mid-1990s (Paatero 

and Taper, 1994). It has been applied to numerous ambient concentration data obtained from 

different locations including urban, semi-urban and rural locations(Viana et al., 2008). PMF 

has also been applied in apportioning speciated atmospheric Hg in the ambient atmosphere at 

Kejimkujik National Park, Nova Scotia (Liao, 2016; Xu et al., 2017) as well as Hg in 

precipitation (Keeler et al., 2006) to the respective potential sources. One important feature of 

PMF is the input of uncertainties data, which allows individual variable data point to be 

weighted in order to resolve the factorization problem (Paatero and Taper, 1994). The use of 

uncertainties in the PMF model makes it a non-data-sensitive method where non-

representative data including missing values, below detection limit (BDL) values and outliers 
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could be managed by the model thereby reducing their influence on the results (Paatero and 

Taper, 1994). Additionally, the PMF model algorithm constraints the source profiles and 

contributions to be non-negative allowing more physically realistic solutions to be obtained 

(Reff et al., 2007).The PMF algorithm begins from the fundamental mass balance formula 

shown in Equation 2.1(USEPA, 2014): 

𝑋𝑖𝑗 =  ∑ 𝑔𝑖𝑘
𝑝
𝑘=1 𝑓𝑘𝑗 +  𝑒𝑖𝑗 

where, 

 𝑋𝑖𝑗 is the concentration of jth chemical species measured in the ith sample 

𝑔𝑖𝑘 is the contribution from source k to the ith sample 

𝑓
𝑘𝑗

 is the mass fraction of the jth species from the source k 

𝑒𝑖𝑗 is the residual (the difference between input values and predicted values) 

p is the number of resolved factor representing the sources   

It follows that PMF model decomposes an input concentration data into source profiles 

and source contributions. Before running the model, no prior information about the sources is 

needed. The model solves equation (2.1) through a weighted least squared algorithm and 

computes the factor profiles and factor contributions by minimizing the objective function Q, 

given as: 

𝑄 =  ∑ ∑ [
𝑋𝑖𝑗− ∑ 𝑔𝑖𝑘𝑓𝑘𝑗

𝑝
𝑘=1

𝛔𝑖𝑗
]

2
𝑚
𝑗=1

𝑛
𝑖=1  

where, 

𝛔ij is the uncertainty associated with each concentration measurement.  

The weighting of each data point using individual uncertainty estimates optimizes the 

information inherent in the data. Any problematic data point could therefore, be suitably 

weighted in this way. Furthermore, all the elements in the factor mass fractions and factor 

contributions are constrained to be non-negative in order to make the solution physically 

realistic (Paatero and Tapper, 1994). 

2.1 

2.2 
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Uncertainty = √ (Error fraction × Concentration)² + (0.5 × MDL)²   

In the input file for this work, rows are the dates of measurements (i.e. sampling dates) 

while each  chemical species has a column. The PMF model does not run if there is missing 

data in the input file. Missing data require treatment outside the model before PMF can run. 

According to the PMF5.0 user guide, uncertainties are calculated using two methods. The first 

is observation-based uncertainties, which reflect sampling and measurement errors. The 

second method is equation-based uncertainty calculated using concentrations, error fractions 

and method detection limit. The user specifies the error fraction based on the measurement 

and knowledge of the species calculated. Uncertainty equations (Equations 2.3a&b) based on 

method detection limits (MDL) are given below: 

Uncertainty = (5/6) * MDL   

for concentration  ≤  MDL 

          (2.3b) 

for concentration>MDL 

Specific variables known as markers are used to identify the sources and these are 

expected to be present in the input data. These markers are categorized as ‘good’, ‘bad’ or 

‘weak’ (USEPA, 2014). The model uses markers categorized as good, weak ones are 

automatically down-weighted and the bad ones are excluded from the analysis. In PMF 

models, specific source markers in the input should not be categorized as bad. For instance, 

SO2 is a source marker for coal combustion. Categorizing SO2 as ‘bad’ in the input file will 

make coal combustion identification to be difficult. This categorization also applies to 

identifying other sources such as biomass burning and road salt sources using their respective 

source markers: K+, Mg, Na and Cl. In cases when information in the data set is insufficient 

for categorising the chemical species, the signal-to-noise (S/N) ratio is used. The S/N ratio 

shows whether the variability in the concentration data is real or within the noise of the data 

(USEPA, 2014). The variables with S/N ratio <0.5 should be set as ‘bad’ and variables with 

S/N ratio between 0.5 and 1.0 is set as ‘weak’. Total variable could be specified by the user to 

2.3a 
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help in the post-processing of the results such as the percentage of the total mass in each of 

the factors. The total variable is an artificial variable, which is the total mass of the same 

species type. For instance, if the input data are mainly PM2.5 and its components, PM2.5 mass 

is calculated and chosen as the total variable (USEPA, 2014). Because total variable could 

have a significant impact on the result, it is required to be categorized as ‘weak’ variable. The 

concentration time series and concentration scatter plot are other tools that can help to analyse 

input data before running the PMF model. The concentration time series helps to examine if 

there are measurements that deviate from trends in the data. The samples with unusual data 

are then excluded from the data set. The concentration scatter plot indicates the correlation 

between two user-specified variables. A correlation between two variables is an indication 

that they are associated with the same source (USEPA, 2014). The user specifies three 

parameters including number of runs, number of factors and seed number. The number of runs 

recommended by USEPA is 20 because this allows the stability of the result to be evaluated 

(USEPA, 2014). The start of iteration is the seed number. PMF accept either a random start or 

fixed point. For the determination of the number of factors, several methods could be used to 

select a range of factors. The maximum individual column mean (IM) and individual 

maximum standard deviation (IS) of the scaled residual matrix are evaluated to determine the 

factor range (Lee et al., 1999). When the number of factors attains a critical value, IM and IS 

will experience a drastic drop. The change in Q values can also provide helpful information 

on deciding the number of factors (Viana et al., 2008). Different number of factors in the 

range determined by IM, IS and change in Q-value are required to be conducted and the 

interpretability of the results is checked. The final solution is a compromise of the trend of 

lines of these three parameters (Ceasari et al., 2016). 

The factor profiles, source contributions and the residuals (difference between the 

measured and modeled concentrations) are the PMF outputs. There are three kinds of output 
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profiles (1) concentrations of each variable in each factor, (2) percentage of a variable’s total 

mass for each variable in each factor and (3) the percentage of total mass within the factor for 

each variable in each factor. To calculate the predicted concentrations of the species of 

interest from the kth source, each species concentrations from the kth source are multiplied by 

the source contributions. The sum of the products is added up. Adding the concentrations 

from all factors yields the overall model-predicted concentration of the variable of interest, 

which is equivalent to the Xij value in Equation 2.1. Sources with high percentage 

contributions indicate that the sources contribute majorly to the receptor concentration. The 

performance indices in the PMF model are Q-values, scaled residuals and regression statistics. 

Other indices include the predicted/observed scatter plot and time series plots. 

PMF factor profiles for Hg source apportionment are interpreted using major variables 

e.g.  speciated atmospheric Hg with co-pollutants including PM2.5 mass, elements and ions on 

PM2.5, and gaseous compounds measured concurrently at the same site with pre-selected cut 

off point on PMF factor profiles. Because speciated atmospheric Hg are emitted in different 

proportions by a variety of sources, it may be difficult to specifically identify a source using 

Hg species alone. The ease of source profile interpretation arises when characteristic air 

pollutants for potential sources are combined with speciated atmospheric Hg. For instance, the 

coal combustion source has been identified with the a profile containing GEM, GOM, PBM, 

PM2.5 and SO2 because PM2.5 and SO2are markers for coal combustion (Lynam and Keeler, 

2006).Similarly, a profile with GEM and K+ was identified as biomass burning in another 

study because K+ is a marker for biomass burning (Tao et al., 2017). 

2.4.2 Source apportionment by PCA 

Principal component analysis (PCA) is a multivariate data reduction method. It is 

practically used for reducing a large set of concentration data containing inter-correlated 

variables to a smaller set of uncorrelated components/factors. In the PCA method, the major 
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goal is to reduce the dimensionality of a complex data set, with little loss in the information 

contained in it. PCA is among the most common data analysis methods used in air quality 

studies (Pires et al., 2008 Chang et al., 2009) as well as soil and sediment data analysis 

(Bhuiyan et al., 2010). The original variables in the data set are projected into a new reference 

frame, which minimizes the variance in the data set. The factors derived after the reduction 

are called the principal components (PCs) and are extracted in decreasing order of 

significance in terms of explaining the maximum variance in the data. The first PC explains as 

much of the variance in the data set as possible and each succeeding PC explains as much of 

the information in the remaining variability as possible (Jollife, 2002). The PCs consist of 

some of the original variables from the data set, which are specific source markers. The new 

uncorrelated variables in the PCs represent a particular linear combination of the original 

variables (Davis, 2002). 

The input of PCA includes chemical species concentration and/or meteorological 

measurement. The PCA method is data-sensitive and requires that the input data be pre-

treated before using PCA in order to obtain a more suitable data set for its application 

(Reimann et al., 2002). A data set having variables with different numerical ranges could 

result in incorrect PCs because the variables with the largest variance in the data will have 

major influence on results (Reimann et al, 2002). In addition, outliers are needed to be 

removed prior to applying PCA on data sets. If outliers contain essential information, they can 

bias the results (Reimann et al., 2002). Normalization makes both large and small 

concentration data points  have the same influence. The normalization formula is given as: 

Xik=   
𝐶𝑖𝑘− 𝐶𝑖

𝜎𝑖
 

where: 

Xik is the standardized value of the ith species in the sample k 

(2.4) 
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Cik is the concentration of species i in sample k 

Ci is the average concentration for the ith species over all observations 

σi is the standard deviation of species concentration over all samples. 

The analysis using the following statistical tests assess the suitability of a data set for 

PCA: The first statistical test is the Kaiser-Meyer-Olkin (KMO) measure of sampling 

adequacy. According to Tabachnick and Fidell (2001), a KMO value >0.6 indicates good 

factor analysis. The second statistical test is Bartlett’s Test of Sphericity. The input data set 

with significant level of Bartlett’s Test of Sphericity is p<0.05. Three primary methods are 

used to determine the number of factors to retain in PCA. The first method is based on the use 

of a scree plot. The scree plot is a line graph showing the eigenvalues (representing the 

variance) on the vertical axis and the respective number of PCs on the horizontal axis (Figure 

2.2). When the scree plot is carefully examined, the curve tends to drop sharply for the first 

PCs until it reaches a point commonly referred to as an “elbow”. The number of principal 

components to select is provided by the PC number at the elbow point or just above. The 

second important method is known as Kaiser’s criterion. It requires only the PCs having an 

eigenvalue (variance) >1 to be retained. The last method of selecting the number of PCs to 

retain is based on the cumulative variance. Since the first few PCs are thought to account for a 

large percentage of the total variance, only the PCs, which represent 70-80% of the 

cumulative percentage of the variance, are selected. 

 
Figure 2.3: Example of scree plot for PCA. Eigenvalue (variance) on y-axis 
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After the initial extraction of the PCs, rotations are usually applied after fixing the 

number of PCs in order to obtain a clearer pattern of factor loadings so that the PCs can be 

interpreted as realistic sources. Typical types of rotations employed include varimax, 

quartimax and equamax (Joliffe, 2002). Among these three rotations, varimax rotation is often 

used to find a rotation that maximizes the variance of the first principal component extracted. 

Thus, a rotation must be defined and usually the choice of varimax method is the default 

criteria in statistical packages. Other rotation methods could also be used but may produce 

different results. 

There are many outputs of PCA with the commonly used ones in bold form in Table B. 

The majorly used outputs contain the percent variance of the data explained by each of the 

rotated components and a table illustrating the component/factor loadings. The loadings are 

the correlation coefficients between the variables in the data set and the components/factors. 

The factor loadings are used to characterise the sources. User cut-off values are considered 

major loadings. The factor loadings can be positive or negative. High loadings between a 

variable and a PC show that the variable is associated with the direction of the maximum 

amount of variation in the data set (Joliffe, 2002). The interpretation of the components is 

based on assessing variables with large component loadings (Cheng et al., 2013). More than 

one variable can be loaded on a PC, explaining its origin (pollution source or chemical 

process). The closer to unity the loading on a PC is, the stronger the correlation with that 

component. The major limitation of PCA is that it provides negative scores, which might not 

always have direct physical interpretation (Tauler et al., 2004). PCA of a dataset does not 

require specific statistical software. Any basic statistical packages such as IBM SPSS® can be 

used. Each component is assigned to sources and processes by comparing with variables with 

the same sign in the results of other studies. When source markers are lacking in PCA input, 

the interpretation of factors may be subjective (Viana et al., 2008).The contribution of PCA 
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identified sources are estimated using the Absolute Principal Component Scores (APCS). As 

the component, scores are in normalised form with mean of zero and standard deviation equal 

to 1, the true zero value for each factor score is calculated by introducing an artificial sample 

with all species concentrations as zero. The APCS for each component can then be estimated 

by subtracting the component scores of the artificial sample from the component scores of 

each one of the true samples. Regression of the concentration data for Hg species on these 

APCS gives the estimates of the coefficients which covert the APCS into the source 

contribution to each sample. The source contribution can now be computed by using the 

multiple linear regression procedure according to the relationship below:  

Ci = (b0)i+∑ 𝐴𝑃𝐶𝑆𝑝 ∗  𝑏𝑝𝑖 

where,  

 Ci= is the arithmetic mean concentration of species i 

 (b0)i is the constant term of multiple linear regression for pollutant i 

bpi is the coefficient of multiple regression of the source p for pollutant i 

 APCSp is the scaled value of rotated factor p for the considered sample 

APCSp*bpi is the contribution of source p to Ci in a sample 

p is the source from 1, 2, 3,….,n 

To illustrate a PCA output, an extract from the work of Liao (2016) is used. According 

to Liao (2016), the variables with loadings >0.25 were considered as the major variables of 

the PCs. The naming of PCs was done using the major variables. PC1 was named 

combustion/industrial emission because it is characterised with high positive loading of 

variables including O3, SO2, Ca2+, HNO3, K
+, NH4

+, NO3
- and SO4

2-. Because of the positive 

signs on the loadings, it means they either increase together or decrease together. HNO3, NO3
- 

and SO4
2- in this component were associated with transport of combustion/industrial 

emissions. Their precursors (SO2 and NOx) may be oxidised during transport. The high 

positive loading of NH4
+ indicates release of ammonia from local or regional agricultural 

activities, which could react with HNO3 or H2SO4 to form NH4
+. Moderate loading on O3 
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indicates transport of combustion emission because its precursors (NOx and VOC) are rich in 

combustion emissions. The positive loading on PBM indicates coal combustion.PCA has  

been applied several times in source apportionment of gaseous and particulate matter 

pollutants (Song et al., 2006; Chang et al., 2009; Deng et al., 2018), ambient trace metals 

(Huang et al., 2013) and speciated atmospheric Hg (Cheng et al., 2009; Huang et al., 2010). 

 

2.4.3 Treatment of missing data 

Ambient concentrations data from continuous measurements are not often devoid of 

missing data. In environmental quality monitoring, missing data frequently occur due to 

equipment failure, routine maintenance and human errors (Noor et al., 2015). In source 

apportionment studies, e.g. apportionment of speciated atmospheric Hg, treatment of missing 

data is an essential step because some receptor models do not accept missing values (Liao, 

2016). Therefore, it is imperative to handle missing data before performing source 

apportionment analysis to prevent inaccurate results. Two important methods of dealing with 

missing data in receptor modeling include exclusion (listwise deletion and pairwise deletion) 

and imputation. Listwise deletion removes all cases or samples with one or more missing data. 

Particularly, if the missing data is limited to a small number of measurements, it may be ideal 

to remove them from analysis without distorting the information in the data. However, if there 

are many missing data for one variable, listwise deletion causes a large reduction in data set 

and may biases the results because it favours variables with high concentrations (Huang et al., 

2010). However, pairwise deletion removes the information when needed in the analysis and 

thus uses the entire available data. The advantage of this technique is that it increases the 

power of the data analysis. However, the disadvantage of pairwise deletion is that it reduces 

the number of variables in dataset thereby ending up with few data in which information in 

the data might have been distorted, making result interpretation difficult (Noor et al., 2015). 

The imputation method involves replacing missing data with predicted value based on 



26 

 

available measurements. The measures of central tendency of the measurements are 

commonly used in imputation. This method is important because it does not consider the time 

series characteristics between variables. Mean imputation is the most common technique used 

in previous Hg source apportionment studies (Liao, 2016; Michael et al, 2016) but it has a 

disadvantage of reducing the variance in the dataset and could also be affected by outliers in 

the dataset (Noor et al., 2015). If a data set consists of many missing values, exclusion of such 

missing data may reduce the variance and subsequently affect further analysis. However, PCA 

calculations do not require inclusion of all variables at a time. Thus, all treatment explained 

above could be accepted by PCA. When PMF and PCA results are to be compared, the same 

treatment of missing values is required. 

2.5 Past studies of source apportionment of speciated atmospheric Hg 

Quite a number of individual-site source apportionment studies of ambient speciated Hg 

using PMF model and PCA have been published. A review of past studies on source 

apportionment of speciated Hg is available in Cheng et al. (2015). Hg source profiles 

generated in these studies and sources identified as potential Hg sources contain one or 

combination of Hg forms and other air pollutants including gaseous pollutants (O3, SO2, CO, 

NOx) and particulate matter components (elements and ions). Additionally, atmospheric 

processes that affect ambient Hg concentrations have also been identified using 

meteorological parameters such as temperature, relative humidity, wind speed and solar 

radiation, which are associated with Hg factors (Huang et al., 2010; Eckley et al., 2015; Liao, 

2016). The PMF profiles used for interpreting Hg sources in many studies were similar, 

majorly linking ambient Hg with local or regional sources using major air pollutant variables 

as source markers. 

In North America, source profiles have been derived with PMF model at receptor locations 

including Toronto (Cheng et al., 2009) and Kejimkujik National Park (Cheng et al., 2013; 
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Liao, 2016) in Canada; Detroit, Michigan (Lynam and Keeler, 2006) and Mississippi (Ren et 

al., 2014) in USA; Xiamen (Xu et al., 2015) and Mt Changbai (Liu et al., 2019) in China. 

These and similar Hg apportionment studies at different locations identified sources that 

mostly represented Hg sources including combustion (e.g. coal combustion, biomass burning, 

mobile source, and incineration of wastes) and industrial (iron and zinc smelting). Most of the 

sources identified showed profiles representing Hg sources with combination of Hg forms and 

specific source markers such as SO2 for coal combustion, Al, Fe, Si, Zn, K for crustal/soil 

dust and SO4
2-, NO3

- and NH4
+ as regional source. The consideration and use of source 

markers in source apportionment of atmospheric Hg has provided interpretable profiles for 

identifying specific Hg sources influencing receptor sites. For instance, the PMF model factor 

profile containing GOM, PM, HNO3, NH4
+ and SO4

2- as the major variables of the factor was 

identified as combustion emission in Liao (2016). Another factor identified to be 

photochemistry and re-emission of Hg has a profile with major variables comprising of GEM, 

GOM, PBM, PM, O3, Ca2+ and K+. Atmospheric processes including photochemistry, wet 

deposition, gas-phase oxidation and condensation on particles, during winter, also play 

important role in the variation in ambient Hg concentration (Cheng et al., 2013; Liao, 2016). 

Previous studies have also revealed consistent diurnal and seasonal patterns in ambient Hg 

concentrations with GEM correlating significantly with temperature in winter and GOM with 

O3 in summer (Dual et al., 2017). Re-emission of gaseous phase Hg has also been identified at 

sites previously under the influence of heavy industrial operations particularly in Canada 

(Eckley et al., 2015) and China (Zhu et al., 2018). 

Principal component analysis of a seven-month ambient data containing Hg and other 

gases showed that GEM, PBM and SO2correlated strongly with a component suggesting that 

coal combustion was an important source of GEM and PBM  (Duan et al., 2017). They also 

found out that gas-to-particle partitioning might also be another source of PBM because this 
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component was had loadings on GOM and PBM with few other air pollutants. Conversion of 

GEM to GOM in the presence of sunlight is an important reaction in atmospheric Hg research. 

Selin and Jacob (2008) suggested that a substantial contribution to speciated atmospheric Hg 

was due to photochemical conversion of GEM emitted from distance sources. Li et al (2017) 

analysed 17 months of PBM concentrations in Jinan, China together with gaseous pollutants 

including SO2, CO and NOx and inferred coal-fired industries, cement plants and traffic 

emissions as potential local sources affecting Hg at the site. The source apportionment of 

speciated atmospheric Hg by Cheng et al (2009) using PMF and PCA suggested industrial 

sources including chemical production, metal production rather than coal combustion 

contributed majorly to measured Hg levels in Toronto, Canada. 

2.6 Inter-comparison of receptor models 

Inter-comparison of receptor models entails the evaluation of the outcomes of two or more 

source apportionment methods on the same dataset. The application of two or more receptor 

models for results comparison in source apportionment studies has been suggested (Viana et 

al., 2008; Callén et al., 2009). For instance, if a receptor model identifies a factor representing 

two sources, i.e. a factor containing profiles relating to two or more sources, and another 

model, using the same dataset, could split the mixture into two or more distinct and realistic 

factors, then the latter has a better performance in resolving the collinearity in source profiles 

than the former. The main advantage of models comparison is that one receptor model stands 

a chance to compensate for the other’s limitations in the reconstruction of the measured 

pollutant concentrations. A comparison study by Cheng et al. (2013) utilised PCA, APCS and 

back trajectories to identify the differences in sources affecting speciated Hg at a coastal site 

and an inland site. The study revealed major differences in sources and atmospheric Hg 

processes between a coastal and inland site. The PCA and back trajectory data suggested that 

the coastal site was affected by evasion of GEM from the ocean. In another study by Caselli et 
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al. (2006), relative root mean square errors (RRMSE) were used to evaluate the goodness of 

the reconstruction of the samples, parameters and source profiles derived from an urban 

atmospheric particulate in the literature. This used two receptor models: Absolute Principal 

Component Scores (APCS) and Target Transformation Factor Analysis (TTFA).The results 

were quite different in both methods. The percent errors (Error %) in APCS and TTFA were 

found to be 79% and 101%, respectively, indicating that APCS rebuilt the source profile 

better than TTFA. The source contribution to the mean value of the sample was also better 

described by APCS than TTFA when the contributions from a crustal source (with lowest 

mean contribution to the samples) were considered. Another comparison study showed that 

ambient samples were better reproduced by APCS with error of 56% than TTFA with error 

percentage of 199 (Caselli et al., 2006). In another comparison study, Viana et al (2008) 

evaluated the comparability of three receptor models (CMB, PCA and PMF) in reconstructing 

the daily concentrations of PM10 in an industrial area in northeast Spain using three 

parameters. The study found that dispersion between the modelled and observed PM10 

concentration was lowest in CMB (R² = 0.93, slope 0.93) but minimal in PMF (R² = 0.83, 

slope = 0.96) and PCA (R² = 0.86, slope = 0.86). Similarly, Callén et al (2009) also found 

reasonable agreement between PCA and PMF reconstructed source profiles in the daily PM10 

concentrations data. However, these differences in receptor modeling results are sometimes 

expected because receptor models are based on markedly different theoretical approaches. 

The combined use of different types of receptor models would therefore, likely solve the 

limitations of each of the models by reconstructing a more robust solution based on their 

strengths (Viana et al., 2008). 
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CHAPTER 3 

METHODOLOGY 

3.1 Study Area 

The study site(Figure 3.1) is in Flin Flon, Manitoba (55.77o N, 101.88o W, elevation: 

304m, Eckley et al., 2013). Manitoba experiences humid continental climate with severely 

cold mean temperature of -24.5 oC in winter and relatively warmer mean temperature of 23.7 

oC in summer (Eckley et al., 2013). Annual precipitation in Flin Flon is 345 mm falling as rain 

and 146 cm falling as snow (Weather station ID: 5050920, ECCC, 2018). The city has a 

population of 5363 in Manitoba and 229 in Saskatchewan (Statistics Canada, 2018) with the 

majority of the city in Manitoba. Residents of Flin Flon travel south into Saskatchewan and 

north into Manitoba. The Hudson Bay Mining and Smelting (HBM&S) complex is an 

important industrial site in Flin Flon, which is located in the remote boreal forest environment 

in West-central Manitoba near the border with Saskatchewan. 

 
Figure 3.1: Location of Hg, SO2 and PM2.5 sampling sites, HBM&S facility with emission 

>20kg/yr. based on NPRI, meteorological stations for hourly temperature, RH, WS and daily 

precipitation. 
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The HBM&S complex is approximately 600 km northwest of Winnipeg. It was formerly 

the largest point source of atmospheric Hg in Canada. Other major industrial site of 

significance in the study area with record of Hg releases to the Canada’s National Pollutant 

Release Inventory (NPRI) is beyond 400 km radius of the sampling site. At Flin Flon, mining 

operations started in December 1927 followed by smelting in the late 1930 with the natural 

ore removal from an open pit and refinement at the plant (Franzin et al., 1979). Mercury was a 

natural constituent of the processed ore. In 1974, the originally designed 30 m stack was 

replaced with a 251 m stack to ensure effective dispersion of the process emissions in the 

atmosphere before reaching the ground. Due to the age of the smelter and changes in 

environmental laws, the facility was closed on July 1st, 2010 after eight decades of active 

operations. Before the closure, various air pollutants including Hg, SO2 and airborne 

particulates containing toxic components were largely emitted into the atmosphere. Based on 

available information on Hg releases at the study site, past annual air emissions were not 

documented until the late 1990s. The historical Hg emissions from HBM&S decreased 

tremendously from 1999to 2010. The large reduction over the years could be attributed to 

increased efficiency in control technology and strict enforcement of environmental laws and 

regulations (CCME, 2011). The estimates of annual air releases from HBM&S facility ranged 

from 1400 kg/yr. in 1999 to an average of 1019±347 kg/yr. in 2000-2010.However, 

Environment Canada reported four point sources of atmospheric Hg in Manitoba between 

2010 and 2011. These include three metal production plants and a limestone production plant 

(Listed in Tables A1 and A2). The highest Hg emission in 2010 was reported for HBM&S 

(Table A1) while the following year (2011) reported zero emission for the same facility 

(Table A2). Because Flin Flon area is on the border with Saskatchewan, the record of Hg 

point source emissions in Saskatchewan were also listed included (Listed in Tables A3 and 

A4). In Saskatchewan, three power generating plants, a metal production plant, two trailer 
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production plants and a metal smelting plant were reported in 2010 and 2011. Beside Hg 

emissions, Vale Canada Limited, located at 276 km northeast of site, reported the largest SO2 

emission of 183,397 tonnes between 2010 and 2011. HBM&S also reported 58,306 tonnes of 

SO2during the study period. 

3.2 Monitoring data 

3.2.1 Speciated Hg 

Continuous 2-hr measurements of GEM, GOM and PBM were taken at Flin Flon site 

from July 21st, 2010 to May 7th, 2011 using a Tekran 1130/1135/2537 ambient speciation 

system (Tekran Inc., Canada). During the operation of the instrument, ambient air was 

sampled on Teflon® filter via a KCl-coated annular denuder, and a Quartz fibre filter coupler 

impactor which is designed to remove <2.5 µg particles at flow rates of 10.0 litres per minute 

(ECCC, 2016). The sampled air flows over the quartz denuder coated with KCl in the 1130 

unit, which collects GOM and PBM, and then passes via a quartz regenerated particulate filter 

in the 1135 unit where PBM is collected. GEM passes via the 1130 and 1135 collection units 

and a T-Junction in the sample line then conveys a fraction of the inlet air at a flow rate of 1.0 

litre per minute into the 2537 analyser where GEM is pre-concentrated for five minutes prior 

to analysis by amalgamation on pure gold cartridges used as Hg adsorbent (ECCC, 2016). 

GEM is removed from the cartridges by thermal desorption and detected using Cold Vapour 

Atomic Fluorescence Spectrophotometer (CVAFS) (ECCC, 2016). GEM was measured 

continuously in the 2537 unit every five minutes. The sampling methods are currently the 

most acceptable methods for measuring GOM and PBM although past studies have reported 

that these methods may be under the interference of O3, water vapour and other compounds 

(Lyman et al., 2010, Huang et al., 2013). 

Visual examination of the GEM, GOM and PBM data revealed the following: twenty-

two missing data each in July, two in August, one in September and fourteen in October 2010. 
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In 2011, two data points were missing for each of GEM and PBM, one for GOM in January, 

nine missing values for each Hg forms in February and twenty-four data each in May. The 

quality of speciated Hg data was checked using the Environment Canada Research Data 

Management and Quality Control (RDMQ) module. All the Hg data were obtained from the 

National Atmospheric Chemistry (NAtChem) Database and Analysis Facility of the 

Environment Canada (ECCC, 2010a,). 

3.2.2 PM2.5 speciation 

The PM2.5 samples were collected at the monitoring site under the National Air 

Pollution Surveillance (NAPS) program of the Environment Canada from July 2010 to May 

2011. Integrated twenty-four-hour PM2.5 (particulate matter with aerodynamic diameter 

<2.5µg/m³) samples were collected at a flow rate of 16.7 litres per minute on a 47 mm 

diameter Teflon filter installed on a sequential dichotomous (Dichot) sampler (CCME, 2011) 

using a 1-in-3 day collection frequency for element characterisation and 1-in-6 day collection 

frequency for water-soluble ions. In total, forty-two chemical components including elements 

and ions were measured on each PM2.5 samples. The list of components and analytical 

methods were presented in Table 3.1. All PM2.5 samples were routinely analysed by the 

Analysis and Air Quality Section (AAQS), Air Quality Research Division (AQRD) of the 

Environment Canada located in Ottawa, Canada. PM2.5 mass concentration was determined by 

gravimetric method using microbalance to weigh the Teflon® filter before and after sampling. 

The PM2.5 mass was divided by volume of air (at ambient conditions) that passed through the 

filter (CCME, 2011). The particle-loaded Teflon filters were analysed for elemental 

components using Energy Dispersive X-ray Fluorescence (EDXRF) spectrometry and for 

soluble anions and cations using Ion Chromatography (IC) (CCME, 2011). The PM2.5data 

were obtained from the Environment and Climate Change Canada’s National Air Pollutant 

Surveillance (NAPS) program database (ECCC, 2010b). 
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Table 3.1: PM2.5 speciation and analytical instruments 

Sampler/Module 
Collection 

medium 

Laboratory 

Analysis 
Variable measured 

Dichot Partisol 

Speciation 

Sampler 

47 mm 

Teflon® 

 

Gravimetry PM2.5Mass 

X-ray 

fluorescence 

Aluminium, Silicon, Sulphur, 

Potassium, Calcium, Titanium, 

Vanadium, Chromium, Manganese, 

Iron, Nickel, Zinc, Selenium, Bromine, 

Rubidium, Strontium, Cadmium, Tin, 

Antimony, Caesium, Barium, Lead 

Ion 

Chromatography 

Sulphate, Nitrate, Chloride, Sodium, 

Ammonium, Fluoride, Acetate, Formate, 

Propionate, MSA, Nitrite, Oxalate, 

Bromide, Phosphate, Lithium, 

Potassium, Magnesium, Calcium, 

Strontium, Barium 

 

3.2.3 Sulphur Dioxide (SO2) 

Hourly continuous SO2concentrations from July 2010 and May 2011 were measured at 

the Environment Canada’s National Air Pollution Surveillance (NAPS) site in Flin Flon. The 

detailed sampling protocol for measuring SO2concentrations at all the designated NAPS sites 

across Canada including Flin Flon is provided in the ambient air monitoring protocol for 

PM2.5 and Ozone Canada-wide standards (CCME, 2011). The sampling technique for 

measuring sulphur dioxide concentration at the site is ultraviolet fluorescence method. The 

most important primary source of SO2 in the atmosphere is power generating plant burning 

coal as fuel. The detection of SO2 at the site is likely influenced by industrial emissions point 

sources in the area. SO2 gas often transforms via oxidation reaction to form secondary product 

known as sulphuric acid aerosols or sulphates and the reaction takes place in the gas phase, 

liquid phase or on solid surfaces (CCME, 2011). The hourly SO2 data collected was converted 

to daily averages to match with the measurement resolution of other pollutants in the data set. 

The data was provided by Environment and Climate Change Canada via the NAPS database 

(ECCC, 2010b). 
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3.3.4 Meteorological data 

The conditions of the atmosphere including seasonality can have significant influence on 

the variations in ambient concentrations of speciated Hg (Cheng et al., 2015). Meteorological 

measurements are commonly included in model input to aid source apportionment of 

speciated Hg and also because change in the ambient concentrations of Hg could occur under 

certain conditions of the atmosphere (Liao, 2016). Based on weather conditions at the site, the 

study period can be divided into four seasons, summer (July-August), autumn (September-

November, winter (December-February and spring (March-May). The meteorological data 

used in this study included hourly temperature, relative humidity, wind speed, and daily 

precipitation measurements. The hourly data were continuous measurements at a local 

weather station (climate ID: 5050919) located at a distance of 154.15 km southeast of the 

sampling site. The station characteristic include latitude 54.41o, longitude 101.41o with 

elevation of 303.9 m (ECCC, 2010c). Because hourly precipitation data was not available at 

this station, the daily data were measured at another nearby station (climate ID: 5050920) 

located at a distance of 148.7 km from the sampling site. The station’s information include 

latitude 54.46o, longitude 101.53o and elevation of 320.0 m (ECCC, 2010c). All 

meteorological data were extracted from the historical weather data archive available on the 

Environment and Climate Change Canada’s website (ECCC, 2010c). 

3.3 Emission Data 

Although, air pollutants emitted directly into the atmosphere react and are often 

conveyed from their origin to various receptors via air mass movement, it is expected that 

source apportionment of ambient speciated Hg in similar manner to other air pollutants will 

directly implicate sources identified as important Hg sources at Flin Flon site using emission 

inventory information. Examining emission inventory is therefore, regarded as a crucial step 

for conducting source apportionment of speciated Hg. As discussed earlier, adequate 
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knowledge of the Hg sources at the site may be helpful prior to conducting receptor modeling 

of ambient speciated Hg for realistic interpretation of the results. For this study, available 

annual point source emission data including Hg, SO2, NO2, NH3, PM2.5, and Zn emissions 

from the facilities in Manitoba and Saskatchewan were extracted from the Canada’s National 

Pollutant Release Inventory (Environment Canada’s NPRI, 2018) and listed in Tables A1 to 

A4. Facilities within a radius of 700 km of the sampling site in Flin Flon were considered as 

the major point sources with significant emissions. The NPRI of Canada is a comprehensive 

document containing the annual air pollutant releases at the national, provincial and territorial 

levels and is accessible online free of charge for public use in research and policy formulation. 

3.4 Data screening 

The screening of the atmospheric concentrations data is an important initial step in 

apportioning air pollutants to their respective sources or source categories. Recent advances in 

ambient measurement technology have enabled us to measure air pollutants at very low 

concentrations. However, due to inherent limitations of analytical sampling methodologies, 

air pollutant data sets often contain several observations that are reported as missing and 

below analytical detection limit (Rao et al., 1991). Consequently, measurements below 

detection limit are commonly excluded from statistical analysis because of their potential 

effects on modeling results. In the data set used, not all air pollutants, particularly PM2.5 

components, were useful. This is because some of the components were frequently detected in 

quantities below their detection limits by the measuring equipment and this might be expected 

to complicate the statistical analysis resulting in large uncertainty in the results (Cheng et al., 

2016). The data screening procedures were carried out in order to treat the inherent features of 

the data set including below detection limit data, outliers and insufficient species. Firstly, the 

annual data was counted using the excel function ‘count’ and the expected annual data for 

each species was noted. The data counts for the study period are listed in Table 3.2. 
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Table 3.2: Monitoring data counts and the percentage of data below detection limit (BDL) 

from July 2010 to May 2011.  

Parameter Total 

data 

expected 

Total data 

available 

DL % 

BDL 
% missing     

Hg species 

GEM (ng/m³) 1790 1790 0.1 0 0     

GOM (pg/m³) 1790 1790 2 51 0     

PBM (pg/m³) 1790 1789 2 25 0.06     

1-in-3 days 

Parameters 

 (µg/m³) 

Total 

data 

expected 

Total data 

available 

DL % 

BDL 

Parameter 

(µg/m³) 

Total 

data 

expected 

Total data 

available 

BDL % 

BDL 

PM2.5 112 65 0.465 10 Zn 112 65 0.002 17 

Al 112 65 0.007 10 Se 112 65 0.005 100 

Si 112 65 0.004 19 Br 112 65 0.004 100 

S 112 65 0.002 7 Rb 112 65 0.003 100 

K 112 65 0.002 10 Sr 112 65 0.004 100 

Ca 112 65 0.002 34 Cd 112 65 0.009 100 

Ti 112 65 0.002 83 Sn 112 65 0.012 100 

V 112 65 0.001 52 Sb 112 65 0.013 100 

Cr 112 65 0.002 97 Cs 112 65 0.040 100 

Mn 112 65 0.002 62 Ba 112 65 0.031 100 

Fe 112 65 0.003 10 Pb 112 65 0.009 100 

Ni 112 65 0.002 69      

1-in-6 days 
Parameter 

 (µg/m³) 

Total 

data 

expected 

Total data  

available 

DL %BDL Parameter 

 (µg/m³) 

Total 

data 

expected 

Total 

data 

available 

BDL % 

BDL 

PM2.5 56 32 0.465 20 Nitrite 56 32 0.007 100 

SO4
2- 56 32 0.007 13 Oxalate 56 32 0.007 19 

NO3
- 56 32 0.014 17 Br- 56 32 0.014 100 

Cl- 56 32 0.007 18 PO4
3- 56 32 0.021 100 

Na+ 56 32 0.002 0 Li+ 56 32 0.000 100 

NH4
+ 56 32 0.003 7 K+ 56 32 0.004 13 

F- 56 32 0.001 93 Mg2+ 56 32 0.001 20 

Acetate 56 32 0.007 87 Ca2+ 56 32 0.001 13 

Formate 56 32 0.007 100 Sr- 56 32 0.001 100 

Propionate 56 32 0.007 100 Ba2+ 56 32 0.001 100 

MSA 56 32 0.007 93 Total ions 56 32   

Gaseous 

SO2 (ppm) 336 336 0.002 71      

Meteorological  

data 

Temp(oC) 335 335        

RH(%) 335 335        

Preci (mm) 335 335        

WS (m/s) 335 335        
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3.4.1 Below detection limit 

The equation used to calculate the percent of data below the detection limit is provided 

in Equation 3.1 below. Simply explained, the percentage of the data below the detection limit 

was obtained by dividing the number below detection limit data by the total data available. 

% 𝐵𝐷𝐿 =  
# 𝐵𝑒𝑙𝑜𝑤𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑙𝑖𝑚𝑖𝑡

𝑇𝑜𝑡𝑎𝑙𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
× 100  (3.1) 

With the calculated percentage of BDL for all species, allPM2.5 components having greater 

than 20% of the measurements below their individual detection limits were excluded. Based 

on this screening threshold, all the components for both years that met and those that did not 

meet the requirement were selected and listed in Table 3.3.  

Table 3.3: PM2.5 components data with ≤20% BDL and >20% BDL  

BDL ≤20% BDL >20% 

Element Ion Element Ion 

Al SO4
2- Ti F- 

Si NO3
- V acetate 

K Cl- Cr formate 

Ca Na+ Ni propionate 

Fe NH4
+ Se MSA 

Zn Oxalate Br- nitrite 

S K+ Rb Br- 

Br Mg2+ Sr PO4
2-  

Ca2+ Cd Li+   
Sn Sr-   
Sb Ba2+   
Cs 

 

  
Ba 

 

  
Pb 

 

  Mn  

 

 

For this study, speciated Hg and SO2 data were exempted from the application of the 20% 

threshold level. This preference was given to speciated Hg because they are the pollutants of 

focus of this study while SO2was preferentially treated due to its relevance in source 

apportionment of atmospheric Hg. It is worthy of mention at this point that SO2 is an excellent 

marker indicative of coal combustion (Reff et al., 2007) and coal combustion is a major 
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source of GEM, GOM and PBM although they are emitted in different proportions (Cheng et 

al., 2015) 

3.4.2 Linear correlation test 

Pairs of PM2.5 components including sulphur and sulphate, elemental and soluble 

calcium, elemental and soluble potassium were respectively present in the ambient monitoring 

data used in this study. The statistical relationships between each pair of these variables were 

checked with linear correlation plots. These component pairs measured by both IC and 

EDXRF were carefully selected by examining their correlation coefficients and data 

availability. Wherever there was strong agreement between the pair of species, there was no 

advantage to incorporating both species in the analysis. Common considerations when 

preparing data set for statistical analysis have been stated by Reff et al. (2007). Sulphur was 

removed from the data sets due to strong and statistically significant correlation with sulphate 

(ANOVA, R² = 0.92, p-value <0.05, Figure 3.2a). In previous source apportionment studies, 

either SO4
2- or sulphur has been used but not both (Reff et al., 2007). The common 

justification in the selection for removing one species is to prevent counting sulphur atoms 

more than once by the receptor models (Kim and Hopke, 2004). The same reason also applies 

to Ca and Ca+. For this pair of species, Ca was discarded due to significant correlation with 

Ca2+ (ANOVA, R² = 0.96, p-value<0.05, Figure 3.2b). In the case of total K and soluble K+, 

the correlation was weak but statistically significant (ANOVA, R² = 0.42, p-value <0.05, 

Figure 3.2c) indicating that separate sources are responsible for the variations in their 

concentrations. This led to the decision to retain both variables in the analysis of the data set. 

It is important to note that in source apportionment of air pollutants, soluble K+ is an excellent 

marker for biomass burning while elemental K represents an indicator of crustal or soil dust 

(Deng et al., 2018). 
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3.4.3 Outliers 

Outliers are observations that deviate markedly from the trend of other measurements in 

a data set. They occur in ambient data due to errors in measurements or during a power failure 

affecting the measuring equipment. It is important to identify and remove outliers prior to 

conducting source apportionment because their presence can lead to large uncertainty in the 

analysis results (Cheng et al., 2016). In the application of PMF model, the presence of outliers 

can affect the outputs by making it harder for the model to fit the species of the data set. The 

visual inspection of the two-hourly data for speciated Hg revealed unusually high data points 

at some periods during the measurements campaign. The criterion adopted to handle the 

outliers from the data set was that for a variable, the concentrations measured just before and 

after a measurement should be less than the annual mean plus six times the standard deviation. 

For 2010 PBM data set, two outliers including 316.7 pg/m³ on August 18th, 2010 and 221 

pg/m³ on October 2010were detected. GOM had outliers of 45.7pg/m³ on March 31stand 

695.1pg/m³ on January 29th, 2011. The data points were removed based on the reason that the 

concentrations before and after them were above the annual mean plus six times the standard 

deviation. All SO2 and PM2.5concentration measurements were within the acceptable levels. 

The respective species scatter plots for the SO2 and all PM2.5 components selected for this 

source apportionment study are presented in Tables E1 to E17. 

3.5 Data Processing 

Data processing in the context of this work involves preparing the screened ambient air 

pollutants data in one file primarily in the format acceptable by the PMF model and PCA. The 

post-screening data set was in the initial stage, prepared for input into PMF model and PCA 

by combining the annual screened data into a single excel file because a count of the sample 

size fell short of the acceptable size to give reasonable results for both methods. The selected 

species measurements were adjusted to make the time interval consistent throughout the 
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measurements period because different measurement intervals were observed in the data set. 

Because the PM2.5, SO2and precipitation data were with daily values, the 2-hr speciated Hg 

data, and hourly temperature, relative humidity and wind speed were individually calculated 

into daily averages for consistency. For this analysis, both 1 in 3 days and 1 in 6 days PM2.5 

data were utilised in order to determine the sources affecting ambient speciated Hg at the site. 

 
Figure 3.2: Scatter plots of (a) SO4

2-(IC) and sulphur (XRF) (b) Ca and Ca+ 

and (c) K and K+ from July 2010 to May 2011. 

 

(c) 
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3.6 Treatment of missing data 

For the treatment of the missing values in the input concentrations data, conventional 

exclusion and imputation are the two methods commonly used. In this work, the imputation 

method was applied in filling up the missing data for GEM, GOM, PBM, 

PM2.5concentrationand components. The following procedures were followed. Step 1: Cross 

correlations among the three speciated Hg and sixteen PM2.5 components including six 

elements, nine soluble ions and PM2.5 mass were initially conducted. Among the three Hg 

forms, PBM was selected to estimate consecutive missing (n>2) PM2.5 components and mass, 

because PBM significantly correlated with more PM2.5 components (nine components) than 

GOM (correlated with four components) and GEM had no correlations with 

PM2.5components. Linear regression equations between PBM and each of sixteen PM2.5 

components were derived using excel data analysis tool. Step 2: For missing one or two 

consecutive speciated Hg data, PM2.5mass and component samples, the average of equal 

number of chemical species measurements before and after the missing data were used as 

imputation. For example, GEM is missing on October 5th, 2010 and October 6th, 2010, 

imputations for the two consecutive missing GEM data are the average of the four GEM 

measurements on October 3rd and 4th, 2010 and October 7th and 8th, 2010. Step 3: For missing 

more than two-consecutive speciated Hg data, mean imputations from the same number of 

samples before and after the missing data were applied. For example, GEM samples were 

missing for four consecutive days from November 5th, 2010 to November 8th, 2010, 

imputations for the four missing GEM data were the averages of the data on all the four days 

before (November 1st, 2011 to November 4th, 2011) and all four days after (November 9th, 

2011 to November 12th, 2011) the missing dates. Step 4: For missing more than 2-consecutive 

PM2.5 mass and component samples, linear regression was used to estimate each missing 

PM2.5 mass and components by using PBM concentration on that day. 
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After imputation process was completed, there were 292 samples (July 7th, 2010 to May 

5th, 2011) in the full dataset.  Out of all the 292 samples in the full dataset, there were 97 

samples when PM2.5 mass and elements were expected to be measured. This reduced data set 

was denoted as dataset 1. In the 97 reduced samples, there were 16 samples with imputation 

of Hg data. After removing the 16 samples with Hg imputation, there were 81 samples finally 

left in the reduced data set. This was then denoted as dataset 2. Dataset 2 was subsequently 

used for the apportionment of speciated Hg at the site. 

3.7 Choice of receptor models 

Among numerous receptor models (RMs) currently in use for source apportionment of 

air pollutants, three commonly and most recently used methods include chemical mass 

balance (CMB), principal component analysis (PCA) and positive matrix factorization (PMF). 

The input, output and computation requirements of each model are presented in Table 3.4. 

The selection of the appropriate receptor modelling method depends on prior knowledge of 

the sources and source profile. Based on the input-output requirements for CMB, it is the most 

suitable receptor model to use particularly when the number of sources is well known and 

their composition profiles measured (Viana et al., 2008). In this study, since the sources and 

their composition profiles were not available, CMB model was not relevant. However, the 

PMF and PCA have found numerous applications especially when the sources and their 

profiles are unknown. As complex as these techniques may be in terms of their mathematical 

framework, they do not require prior knowledge about the sources and hence do not need 

source profiles as input (Viana et al., 2008). However, quantitative knowledge of potential 

sources may be of necessity for easy interpretation of the solution in both methods (Viana et 

al., 2008). Emission inventory and databases such as SPECIATE databases (USEPA, 2014) 

may be of importance because they contain information that can help to interpret the modeling 

results from the PMF model and PCA. In the practical application of PMF and PCA, both 
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models have their strengths and weaknesses. For instance, PMF requires both concentration 

dataset and their uncertainties as input whereas PCA allows the inclusion of meteorological 

data in the input. This is an advantage that PCA has over PMF because some Hg sources and 

processes are more likely to occur under certain environmental conditions e.g. combustion 

process occurring in winter due to high heat demand and oxidation of GEM in summer. 

Table 3.4: Details input-output requirements of CMB, PCA and PMF (Viana et al., 2008) 

 CMB PMF PCA 

Inputs 

• Emission profiles 

• Receptor concentration data 

• Uncertainty estimates 

• Receptor concentration data 

• Uncertainty estimates 

• Receptor concentration 

data and/or 

meteorological data 

Output 
• Source contribution 

• Model performance index 

• Source profiles 

• Source contributions 

• Model performance index 

• Source factors 

• Performance index 

Computation 

• Specific software 

downloadable freely on US 

EPA website 

• Selection of input source 

profile- time consuming 

• Source contribution- time 

consuming 

• Proprietary software 

downloadable freely on US 

EPA website 

• Source identification –fast 

• Source contribution – fast 

• Input data preparation – 

time consuming 

• No specific software 

required 

• Source identification- 

fast 

 

3.8 PMF Model setup and performance evaluation 

In recent years, PMF model has frequently evolved to address the uncertainty in source 

apportionment of air pollutants at numerous monitoring site including rural and urban 

locations (Hopke 2016). For the analysis of the data set, EPA PMF5.0 specifically designed 

by USEPA for source apportionment of air quality data was used (USEPA, 2014). The 

application software of the model is available freely for download from USEPA’s website for 

air quality researchers. The setup of PMF5.0 is presented in Table 3.5. The uncertainty 

estimates were calculated using the equation-based method. For speciated Hg uncertainty, the 

error fraction was set at10% because the concentrations of GOM and PBM were low and have 

high percentage of below detection limits data (Liao, 2016).For PM2.5 and SO2, the error 

fraction was set as 10% of their concentrations. In the PMF modeling method, there are two 

approaches of handling missing data by the model. These approaches include listwise deletion 
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and pairwise deletion. Listwise deletion removed completely all rows of samples having one 

or more missing values. This often results in large reduction of the sample size and causes the 

number to reduce below a sample size expected to yield a satisfactory or realistic solution. 

Apart from speciated Hg data, all of the PM2.5 variables have many missing data at different 

time of measurement. After imputation and regression analysis were carried out on the data 

set, the model excluded no sample but reduction in the correlation among the variables was 

observed. Table C1 contains the cross correlation between input variables before imputation 

while Table C2 contains correlations after imputation was carried out to treat the missing data. 

After loading the input data and the uncertainty data in the PMF model, statistical checks 

provided by the model were used to assess the variations in the data set. The time series plots 

of the variable concentrations were checked to observe if there were concentration spikes, 

which could have been caused by real pollution events. No spikes were observed in the time 

series graphs concentrations for speciated Hg. For the PMF model, categorization of variables 

is an important step. In this study, all variables used were categorized as strong.  

Table 3.5: PMF model handling of missing data and sample size 
 

Treatment 
Missing data 

handling 
Sample 

size (N) 
Minimum 

sample size* 
Other default 

settings 

Data set 

2 

Imputation of 

mean and 

linear 

regression 

Complete 

data use 
81 60 

Number of runs 

(20), random start, 

listwise deletion 

 *Hopke, 2016 

The S/N ratio as required in PMF model was not used because the uncertainties were set to a 

fixed fraction of the concentrations (USEPA, 2014). No species was selected as the total 

variable because the input data contained both particulate matter and gaseous air pollutants 

but the analysis actually focused mainly on Hg species. The default value of 20 was used as 

the number of runs to evaluate the stability of the PMF. To determine the number of factors, 

multiple PMF model runs setting the number of factors from 3 to 9 were performed. A visual 

display of the Q values by PMF and the individual maximum column mean (IM) and 
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individual maximum column standard deviation (IS) calculated from the scaled residuals were 

plotted and visually inspected. The Q values represent the goodness of fit of the data set by 

PMF model. Each Qrobust value was calculated by the model with exclusion of those data 

points not fit by PMF while the Qtrue value makes use of all data points (USEPA, 2014).The 

IM and IS parameters were calculations from the scaled residuals and are used to reduce the 

range of meaningful solutions in the PMF model (Lee et al., 1999). After inspecting the lines, 

a range of possible number of factors was chosen. 

After each of the runs with 3-9 factors, the Q (robust), Q (true) and the convergence 

were examined. The converged run showing the lowest Q (robust) value was highlighted and 

only the converged run was further analysed  (USEPA, 2014). All runs in each chosen factor 

were convergent. Both Q (robust) and Q (true) values had small variations among 20 runs 

indicating stable PMF results (USEPA,2014). The run with the minimum Q (robust) value, 

also identified as the best base run for each factor, was further analysed. In the apportionment 

of speciated Hg, the model fit and uncertainties were are usually evaluated using the scaled 

residuals to ensure they are randomly distributed within ±3 standard deviations and/or 

evaluating the results using regression analysis between the measured and modeled 

observations. If the number of scaled residuals was between +3 and -3, it is an indication that 

PMF model fits the variable well (USEPA, 2014). Species with scaled residuals beyond +3 

and -3 were further evaluated using observed/predicted scatter plot and time series graphs. 

The regression statistics used include the coefficient of determination (R²), slope (S) and the 

p-value. The R² represents the proportion of the variance explained by PMF. The closer R² is 

to one, the better the model performance. If R² is closer to one and the slope is closer to zero 

than one, this shows that the model fits the data well but the variance in the data was small. 

The p-value for each Hg species is expected to be <0.05. The right number of factors chosen 

was based on the performance analysis of PMF and physical meanings of the components 
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obtained. The factor profiles in the final solution were assigned to sources using source 

emissions profiles for Hg available from previous Hg apportionment outcomes in the 

literature. 

The contributions of factors to the total predicted Hg concentrations and ratios of 

predicted Hg concentrations to measured Hg concentrations were calculated to verify the 

findings derived from Observed/Predicted time series. Factors with average Hg contributions 

larger than 10% were thought to be the major Hg sources, which have a large impact on 

ambient Hg concentrations. Special observation of re-emission sources were done in order to 

know their contributions to the ambient concentrations of Hg at the receptor site. When the 

average predicted/observed ratio was close to unity, the model was thought to reproduce the 

measured concentrations well. The PMF factors resolved were assigned to the sources based 

on the comparison of the major variables contained in the factors and markers of the source 

profiles in the literature. The variables percentages larger than 0.25 were used as the major 

variables of the factor. The factors were assigned to the sources with similar major variables. 

3.9 PCA setup and performance evaluation 

The analysis of the dataset using PCA was conducted using IBM® SPSS v25. The data 

set, with the same treatment of missing data, was used so that comparison of the results could 

be done. The setup of the data for PCA is presented in Table 3.6. The data set input met the 

restrictive sample size requirement of (50+m), where m is the number of variables (Thurston 

and Spengler, 1985). For the dataset, initial PCA was conducted with and without the 

meteorological data. PCA allows the inclusion of weather parameters whereas the PMF model 

does not. This is an advantage PCA has over the PMF model because PCA has no constraint 

of non-negativity of factors profiles and contributions. The suitability of the dataset for PCA 

was determined using the Kaiser-Meyer-Olkin measure of Sampling Adequacy (KMO<0.6) 

and Bartlett’s test of Sphericity (p < 0.05). For the PCA, the number of components to retain 
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was determined using Kaiser’s Criterion, which states that the components with eigenvalue 

>1should be retained. 

Table 3.6: PCA handling of missing data and sample size 

 Treatment Handling of 

missing data 
Sample size 

(N) 
Required 

sample size 

(50+m)* 

Other settings 

Dataset 

2 

Imputation of 

mean and 

linear 

regression 

Complete 

data use 
81 
 

70a, 74b 
 

Listwise 

deletion, 

eigenvalue (>1), 

varimax rotation 
m is the # of species, awithout meteorology factors, bwith meteorological factors,*Thurston and Spengler, 1985 

Since the imputation ensures the utilization of the complete data input, the default listwise 

deletion box in PCA was checked. When the input data was imported into SPSS from an excel 

file, the KMO and Bartlett’s test, coefficient of determination and other user-desired output 

boxes including components scores, correlation matrix were checked. To determine the 

number of factors to retain in PCA, the Kaiser criterion (retain principal components with 

eigenvalue >1) and one more components was used. After obtaining the principal components 

with eigenvalue >1 from the initial run, the analysis was rerun for the second time with the 

extracted number of principal components fixed. The extracted principal components were 

rotated with orthogonal (varimax) rotation. 

The communalities and extractions are other two important statistical PCA outputs, 

shown in form of fractions and the two numbers add up to one. The communality of each 

species represents the squared loadings on all components extracted. It is the total amount of 

variance, which an original variable shares with all other variables included in the analysis. 

This value is analogous to Pearson’s r in regression analysis. If the communality is close to 

one and the extraction close to zero, the variable shares a large amount of variance with other 

variables in the data set. The varimax rotated PCA results of the fixed and one added 

components were also examined. If the result improved with the added component, the result 

was preferred, else the result for the fixed components was used. Other PCA outputs, 

categorised as used or unused, are listed in Table B. The interpretability of the principal 
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components is also an important task in PCA (Lynam and Keeler, 2006; Cheng et al., 

2009).The interpretation of the principal components was done by examining the variable 

loadings on the components. The loadings on the variables indicate the extent of the 

relationship between the variables and the component. An ideal case is for a loading to be 

close to positive or negative one. The sign on the loadings (positive or negative) from PCA is 

indicative of the relationship between the component and a variable. After rotating the result 

using with varimax rotation, the components were then assigned to Hg sources by examining 

the variable loadings on source markers and comparison with outcomes of previous studies 

and NPRI emission data. 

3.10 Estimation of PCA components contributions 

As the traditional PCA is useful for identifying the factors contributing the ambient Hg, 

it does not directly provide an apportionment of the mass. However, the overall average 

contributions of each PCA component to each Hg form and the profiles associated with each 

component were quantitatively determined for the data set with and without meteorological 

data. The principal component scores, which is the composite measure created for each 

observation on each extracted component in PCA, were transformed into absolute values 

called the Absolute Principal Component Scores, APCS (Thurston and Spengler,1985). The 

APCS is determined by calculating the component scores for absolute zero concentrations and 

uses them to rescale the component scores from PCA. The procedure is briefly explained as 

follows: the measured concentrations of each chemical species in each sample were 

normalised using equation 2.4 in section 2.4.2. 

The component scores obtained from PCA are in normalized form, with average of zero 

and standard deviation equal to one. The true zero value for each component was calculated 

by introducing an artificial sample (Z0) in which the concentrations of all the species were set 

to zero. The normalisation of the artificial sample was done using equation 3.2 below: 
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(𝑍0)i=
 (0− 𝐶𝑖)

𝑠𝑖
= 

−𝐶𝑖

𝑠𝑖
   (3.2) 

The APCS of each component were then estimated by subtracting the component scores 

for this artificial sample from the component scores of each of the true samples. The 

concentrations of each of GEM, GOM and PBM were then regressed on the calculated APCS. 

The resultant regression coefficients were then employed to transform the APCS into the 

source contributions to each Hg form in each sample. The source contributions to the 

observed Hg concentration were thereafter calculated using the generated multiple linear 

regression equation 3.3below. The average of the product APCSp*bpi on all samples 

represents the average contribution of all the sources. 

𝐶𝑖 =  (𝑏0)𝑖 +  ∑ 𝐴𝑃𝐶𝑆𝑝 ∗  𝑏𝑝𝑖
𝑝
𝑛=1   (3.3) 

where,  

Ci is the observed concentration of pollutant i 

(b0)i is the constant term of multiple regression for pollutant i 

bpi is the coefficient of multiple regression for the source p for pollutant i 

APCSp is the scaled value of the rotated component p for the considered sample. 

APCSp*bpi is the contribution of source p to the observed concentration Ci in a sample 

In APCS, source contribution estimates can be positive or negative because there is no 

restriction imposed on the results (Miller et al., 2002). However, from engineering point of 

view, a source cannot have a negative percentage of elements and cannot contribute a negative 

mass to the receptor concentration of an air pollutant. Therefore, any component with negative 

mass contribution percentage in APCS was assumed to be zero. The percentage contributions 

were determined using the equation 3.4: 

Overall contribution (%) = 
Component′s contribution averaged overall samples

Sum of average contributions from all components
× 100        (3.4) 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 PMF Results 

4.1.1 Estimation of number of factors 

In most cases, deciding the right number of factors in PMF modeling is often 

challenging. A common strategy is to examine the response of the model’s statistical 

parameters including the Q, IM and IS, plotted against a range of number of factors (Reff et 

al., 2007). In this study, the calculated Q, and IM and IS values, obtained from PMF 

simulations initialised with three, four, five, six, seven, eight and nine factors, respectively, 

are presented in Tables D1 and D2. The plots of these three parameters against the number of 

factors are shown in Figures. 4.1 and 4.2. 

 
Figure 4.1: Plot of Qrobust and Qtrue against the number of factors 

 

 
Figure 4.2: Plot of IM and IS against the number of factors 
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Inspecting the response of the Q values in Figure 4.1, the transition from 4 to 5 factors 

resulted in a sharp drop in the Qrobust and Qtrue. Further increase of the number of factors from 

six to nine resulted in a regular decrease of Qrobust and Qtrue. In a similar manner, it can be seen 

on Figure 4.2 that IS and IM were also sensitive to the changing number of factors. Increasing 

the number of factors from4 to 5 led to a sharp drop in IM and IS, similar to the Q-value lines.  

There was a regular decrease in IS as the number of factors increased above 5. However, the 

IM nearly became insensitive above 7 factors. It has been reported by Ceasari et al. (2016) 

that the reasonable number of factors is a compromise of the trends of the lines of Q, and IM 

and IS. Thus, the comparative analysis of the behaviour of Q, IM and IS in relation to the 

number of factors suggested that a reasonable number of factor lies within 5, 6 and 7 factors. 

It is important to know that specifying too many factors in PMF model might further 

dissociate a real factor into two or more non-existing sources, making it difficult to identify 

the correct sources. Contrarily, choosing too few factors will likely result in the combination 

of sources of different nature. This can lead to underestimation of emissions from real sources 

(Wang et al., 2018).Thus, to choose the real factors to interpret the PMF model results from 

this study, the solutions of 5, 6 and 7 factors were further explored and compared. 

4.1.2 Comparison of 5, 6 and 7-factor profiles 

Determination of the real number of factors is a critical step in PMF model data 

analysis. To choose the final number of factors among 5, 6 and 7, the first method used was to 

compare the respective factor profiles. The full factor profiles of the 5, 6 and 7 factors are 

provided in Tables 4.1, 4.2 and 4.3, respectively. In the 5-factor profiles (Table 4.1), F3, 

which was identified as secondary aerosol, re-emission, and Hg oxidation, was, in the 6 

factors, separated into F1 (secondary aerosol and re-emission), and F5 (Hg oxidation) (Table 

4.2).  
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Table 4.1: Profile of five factors (% of species sum) with major variables >25% in bold, blanks <15%) 
 

F1 F2 F3 F4 F5 

GEM 
 

 75  15 

GOM 
 

 58  31 

PBM     81 

SO2    87  

PM 28 23 37 
 

 

Al 77  16   

Br 
 

 67  22 

Fe 54 36 
 

  

K 71  24   

Si 90     

Zn  86    

NH4
+   85   

Ca2+     85 

Cl-     69 

Mg2+     71 

NO3
-     76 

Oxalate   38  47 

K+ 
 

 35  52 

Na+   16  73 

SO4
2-   86  

 

Factor 

name 

Crustal/ 

soil dust 

Industrial  secondary aerosol and 

re-emission/Hg 

oxidation 

Coal 

combustion 

Road salt/ biomass 

burning 

 
Table 4.2: Profile of six factors (% of species sum) with major variables >25% in bold, blanks <15%) 
 

F1 F2 F3 F4 F5 F6 

GEM 41   
 

49  

GOM 36   20 41  

PBM    75   

SO2      88 

PM 18 22 21  29  

Al   66  16  

Br   
 

 87  

Fe  31 52  
 

 

K   49  44  

Si   79    

Zn  79     

NH4
+ 78 

 
    

Ca2+    84   

Cl-    57 28  

Mg2+    67 
 

 

NO3
-    63 32  

Oxalate 39   47 
 

 

K+ 21   41 31  

Na+ 
 

  59 31  

SO4
2- 79 

     

Factor 

name 

Secondary 

aerosol and 

re-emission 

Industrial Crustal/soil 

dust 

Road salt+ 

biomass burning 

Hg  

oxidation 

Coal 

combustion 
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Both F1 and F5 have GEM and GOM as major variables of the profiles. The secondary 

aerosol and re-emission factor (F1) has major variables containing GEM, GOM, NH4
+, 

oxalate and SO4
2- whereas for the Hg oxidation factor (F5), the major variables were GEM, 

GOM, PM2.5 and Br. The GEM in F3 of 5 factors was apportioned to both F1 and F5 in the 6-

factor profiles. In the 5-factor profile, K+, found among the major variables in F3, moved to 

the Hg oxidation profile (F5) in the 6-factor profile. The separation of the secondary aerosol 

and re-emission (F1), and Hg oxidation (F3) in the 6-factor solution represented a significant 

improvement in the profiles with easy interpretation of the profiles. Thus, for the 6 factors, the 

presence of GEM, GOM and source markers in the profiles of the secondary aerosol and re-

emission factor (F1) and GEM, GOM, PM2.5 and Br in the Hg oxidation (F5) made it easier to 

identify the factors as Hg sources. All other major variables used to characterise crustal/soil 

dust (F1), industrial (F2), coal combustion (F4) and, road salt and biomass burning (F5), 

respectively in the 5 factors remained in the respective profiles in the 6 factors. A 

rearrangement of the positions of factors was observed in the 6 factors. However, in the 

analysis result of the 7 factors (Table 4.3), further dissociation of industrial (F2) into two 

factors including a zinc factor (F1) and an iron factor (F6) with no other major variables on 

each profile was observed but this was not useful for the Hg analysis because Hg was not a 

major variable on either factor. The interpretation of the 7-factor solution was not satisfactory 

compared with the 5 and 6 factors. Therefore, the 5 and 7-factor solutions were eliminated. 

The 6 factors were considered the most reasonable. 

4.1.3 Comparison 5, 6 and 7 factors’ distribution of scaled residual 

The second option considered to evaluate the solutions of 5, 6 and 7 factors was the 

analysis of the distribution of the respective scaled residuals. The scaled residuals are useful in 

determining how well the PMF model fits each species in a data set. In a data set, if a species 
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has many scaled residuals, it may be an indication that the species is poorly fit (USEPA, 

2014). 

Table 4.3: Profile of seven factors (% of species sum) with major variables >25% in bold, blanks 

<15%) 
 

F1 F2 F3 F4 F5 F6 F7 

GEM     51  43 

GOM     42  37 

PBM   75  
 

 
 

SO2  
 

 88 
 

 
 

PM  21   22  25 

Al  66   
 

 
 

Br  
 

  45  23 

Fe  35   
 

52 
 

K  58   25   

Si  74    24  

Zn 68     
 

 

NH4
+       83 

Ca2+   81     

Cl-   57  18   

Mg2+   68  
 

  

NO3
-   60  28   

Oxalate   46  
 

 38 

K+   39  29  22 

Na+   61  19  
 

SO4
2-   

 
 

 
 84 

Factor 

name 

Zn 

source 

Crustal/soil 

dust 

Road salt+ 

biomass burning 

Coal 

combustion 

Hg  

oxidation 

Iron 

source 

Secondary 

aerosol and 

re-emission 

 

A species with good fit is expected to have all the residuals within -3 and +3 standard 

deviations and a symmetrical distribution (USEPA, 2014). The distribution of scaled residuals 

of GEM, GOM and PBM for the 5, 6 and 7 factors are presented in Table 4.1.As can be seen 

on Table 4.1, the PMF solution with 7 factors has the lowest number of scaled residuals for all 

the three Hg species thus agreeing with the expected threshold boundaries. It is clear from the 

distribution of the scaled residuals that as the number of factor increased the number of scaled 

residuals outside +3 and -3 reduced. In this case, because the chemical profiles of the 7 factors 

showed a higher level of difficulty in interpretation due to the single major variable on some 

of the factors, the 6-factor solution was preferred. 
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Table 4.4: Scaled residuals of PMF solutions (N = 81) 

  Criteria 

Number of 

factors 

Mercury 

form 

Distribution Number of scaled 

residual beyond ±3 

5 

GEM Spread out 10 

GOM Spread out 5 

PBM Concentrated at zero 2 

6 

GEM Spread out 8 

GOM Skewed 3 

PBM Skewed 3 

7 

GEM Spread out 3 

GOM Skewed 3 

PBM Concentrated at zero 2 

 

4.1.4 Comparison of 5, 6 and 7 factors regression statistics 

The regression statistics of the5, 6 and 7 factors were shown in Table 4.5. The statistical 

parameters include the coefficient of determination (r²), slope of regression (S) and p-value 

for GEM, GOM and PBM and were calculated by the PMF model. These parameters depict 

how well the model is able to fit the Hg species (USEPA, 2014). They were determined by the 

model by correlation of the observed concentrations of each Hg form and the predicted 

concentrations. A satisfactory (e.g. r2>0.5) PMF solution is expected to have r² values and 

slope as close to one as possible and p-value <0.05 since the exact number of sources 

affecting ambient concentrations of air pollutants at a receptor site is rarely known. As can be 

seen in Table 4.2, the PMF model had an improvement in r² values for GEM and GOM from 5 

to 7 factors while the r² value for PBM was strong for PBM in all the runs. For the slope and 

p-value, similar improvement from 5 to 7 factors was also observed for all the Hg forms 

except GOM. The final decision to retain the 6-factor solution in the PMF analysis focused on 

the ease of interpreting the factors as compared to the 5 and 7 factors. Hence, the PMF with 6 

factors was also resolved to be most acceptable. 
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Table 4.5: Regression diagnostics of PMF solutions (N = 81) 

  Criteria  

Number of 

factors 

Mercury 

form 

Coefficient of 

determination (r2) 

Slope of 

regression (S) 

p-value 

5 

GEM 0.146 0.398 0.027 

GOM 0.379 0.336 0.088 

PBM 0.981 0.915 0.005 

6 

GEM 0.285 0.521 0.132 

GOM 0.440 0.349 0.109 

PBM 0.981 0.942 0.013 

7 

GEM 0.532 0.650 0.113 

GOM 0.479 0.353 0.090 

PBM 0.983 0.952 0.005 

 

4.1.5 Interpretation of PMF factors 

Six factors, which represented the sources of affecting ambient Hg at Flin Flon, were 

identified in PMF. The profiles of the six factors are presented in Table 4.2. In Table 4.2, the 

rows represent the percentages of species apportioned to each factor while the columns are the 

species in each factors. For each factor, the variables emphasized as major variables in the 

profiles were those >25% (in bold). The time series of the factor contributions to each Hg 

form with temperature and wind speed are shown in Figures.4.3, 4.4 and 4.5, respectively. 

Factor 1 was characterised by the major variables comprising GEM (41%), GOM 

(36%), NH4
+ (78%), Oxalate (39%) and SO4

2- (79%). This factor was named secondary 

aerosol and re-emission. SO4
2-and NH4

+were the dominant species of the factor. The gaseous 

precursor of SO4
2- is SO2, which is an excellent marker for identifying coal combustion 

processes. SO2 may likely oxidize during atmospheric transport from the source to the 

sampling site. A search through the NPRI revealed four point sources with significant 

emissions of SO2. These sources include Vale Canada Limited and HBM&S in Manitoba 

(listed in Tables B1 and B2), and two power-generating stations in Saskatchewan (listed in 

Tables B3 and B4) .Vale Canada Limited, processing non-ferrous metal, is located northeast 

of the sampling site at a distance of 276 km. The total air emission reported between 2010 and 
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2011 was 260,014 tonnes per year (sum of SO2emissions in Tables B1 and B2). HBM&S, a 

major iron and steel production plant reported annual air releases of 58,234 tonnes in 2010 

(Table B1) and 72 tonnes in 2011 (Table B2). The Boundary Dam and Poplar River power 

stations in Saskatchewan reported total air releases of 86,247 and 82,147 tonnes per year, 

respectively. 

 
Figure 4.3: Time series relationship of PMF factor contributions to GEM with 

temperature and wind speed. 

 

 

 
Figure 4.4: Time series relationship of PMF factor contributions to GOM with 

temperature and wind speed 
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Figure 4.5: Time series relationship of PMF factor contributions to PBM with 

temperature and wind speed 

 

GEM and GOM are also major variables of this factor. The presence of GEM is an 

indication of re-emission because the local soil might be rich in previously deposited Hg 

(Eckley et al., 2015). The factor contribution time series of GEM and GOM showed similar 

fluctuation pattern during the study period with peaks in the late summer and early autumn 

(Figures 4.3 and 4.4). The statistical relationships between the factor contributions to GEM 

and temperature were very weak and statistically insignificant in the summer (R2=0.29, 

p>0.05, N=13), winter (R2=0.19, p>0.05, N=26) and spring (R2=0.10, p>0.05, N=15) and 

moderately weak in the autumn (R2=0.32, p>0.05, N=26). The overall correlation coefficient 

between the factor contributions to GEM and temperature was very weak and statistically 

insignificant (R2=0.19, p>0.05, N=81). This indicates that re-emission is not likely the 

dominant source contributing to GEM but other sources of GEM, which are not reported in 

NPRI may be present. The contributions to GOM (Figure. 4.4) and PBM (Figure. 4.5) also 
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varied across seasons peaking at the same season with GEM. GOM formation is suspected to 

occur from atmospheric oxidation of GEM but maker species to confirm this process are 

available. NH4
+in this factor suggests the transformation of NH3 from agricultural activities 

(Liao, 2016) and emissions from fertilizer production. A major source of NH3, based on 

NPRI, was Kosh Fertilizer Canada located southeast of the site. NH3 is an essential species for 

neutralization of acidic components of the atmospheric air including H2SO4 (Pichfor et al., 

2009; Hoet al., 2018) yielding NH4
+micro-particles. Oxalate is also an emphasised variable of 

the factor. A study by Jiang et al. (2011) has shown a strong correlation between oxalate, and 

SO4
2- and NH4

+, indicating common process of formation. 

Factor 2 displayed two major variables including high percentage of Zn (79%) and 

moderate percentage of Fe (31%).This was named industrial because these species are the air 

pollutant  markers of industrial processes relating to metal production (Song et al., 2006). Zn 

is the dominant chemical species in this factor and 79% of the variance is explained. Based on 

the NPRI data, HBM&S is a major source of Zn with annual air emissions of 62 tonnes in 

2010 (quoted from TableB1) and 1.5 tonnes, representing 98% reduction, is reported in 2011. 

The presence of Fe in this factor is consistent with metal processing. An important source of 

Fe in the atmosphere is metal processing emissions. From the emission data on the NPRI, Fe 

was not in the sources used in this study because some sources that could be emitting Fe were 

not considered. The absence of Hg in this factor is unexpected because HBM&S emitted both 

Hg and Zn, according to the NPRI data. Thus, it may be necessary to speculate that the Hg 

emitted from HBM&S has been washed out via wet deposition processes during plume aging 

in the air (Lindberg, 1980). The speciation of Hg in the plume enhances Hg deposition with 

GOM and PBM more susceptible to rapid wash out because of their high solubility (Poissant 

et al., 2004). Therefore, the absence of Hg is an indication that the factor may be contributing 

little or no Hg to the ambient concentrations. The time series check of the factor contributions 
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to GEM and PBM showed clear seasonal variations with peaks once in the autumn and twice 

in the winter. 

Factor 3 was identified as crustal/soil dust because it accounted for high percentages of 

the variability in Al (66%), Fe (52%), K (49%) and Si (79%). All the dominant elements of 

this factor (Al, Fe, K and Si) are abundant elements in crustal and soil dust resuspension 

(Xiong et al, 2017). The factor contribution to ambient Hg was statistically insignificant (p 

>0.05). No Hg form was apportioned to this factor indicating that the factor contribute little or 

no Hg at the site. 

Factor 4 was identified as road salt and biomass burning. This factor explains high 

variability in PBM (75%), Ca2+ (84%), Cl- (57%), Mg2+ (67%), NO3
- (63%), oxalate (47%), 

K+ (41%) and Na+ (59%). Mg2+, Na+ and Cl- are markers of marine aerosol but the Flin Flon 

site is not in close proximity to the ocean. Therefore, these  pollutant markers are likely 

related to the application of salt used inroad snow control (Cheng et al., 2012; Deng et al., 

2018). The presence of K+ indicates biomass burning emission because it is commonly used to 

identify the contribution from biomass burning related activities (Deng et al., 2018). Biomass 

burning, such as residential wood burning, was identified as a source of PBM in the winter 

(Dicosty et al., 2006; Simone et al., 2017). However, there is tendency for high uncertainty in 

this factor because NPRI data on road salt/biomass burning are not available. Comparison of 

the factor profile with past Hg studies was therefore the option available to interpret the 

factor. In the laboratory and field studies by Obrist et al. (2007), up to 30% of PBM was 

found to be present in the Hg released by biomass burning. Determining the speciation and 

whether PBM is a direct emission or if it is a product of GEM oxidation within the plume 

were not known. However, PBM mass emissions were found to correlate strongly (R2=0.67) 

with particulate matter (Obrist et al., 2007).Further investigation of this factor using the time 

series of the factor contributions to PBM showed that there were spikes in the summer and 
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spring, and this seasonal trend showed a disconnection with residential wood burning 

emissions. A critical examination of the predicted seasonality in the factor contributions to 

PBM points to contributions from forest fires or occasional crop residue burning. According 

to the Manitoba Newsletter (Manitoba Co-operator, 2017), crop residue burning is a common 

agricultural practice in Manitoba although authorization for such practices, for those who 

choose to burn crop residue, is an important requirement. Open burning in the daytime are 

allowed by law between November 16 and July 31 of every year. 

F5 was named Hg oxidation. This factor accounted for high percentages of GEM (49%), 

GOM (41%), PM2.5 (29%) and Br (87%) and moderate percentages of K (44%), Cl- (28%), 

NO3
-(32%), K+ (31%) and Na+ (31%) variations. As can been seen from the factor profile, Br 

is the dominant species with the highest percentage. This is an indication of an environment 

that is rich in bromine. Although, the results of previous Hg studies showed that the oxidation 

of Hg is facilitated by ozone but there were high uncertainties with this reaction. However, the 

oxidation rates of Hg by bromine have been shown to be very fast, which explains Hg 

depletion events (Goodsite et al., 2004).The source of Br at Flin Flon is uncertain because Br 

emission data was not available in the NPRI. Atmospheric bromine has previously been 

associated with traffic emissions, as this element is a major component in fuel additives 

(Khodeir et al., 2012), but Flin Flon is a small city with low population and may likely not be 

affected by traffic emissions. The time series of Br concentration in the atmospheric PM2.5 

showed that the concentrations were high in the spring, which is likely to support GEM 

oxidation to GOM.A thermodynamic study of GEM conversion in the atmosphere has shown 

that the rate of GEM oxidation by atomic bromine is faster than oxidation by O3(Holmes et 

al., 2010). As can be seen from Figures 4.3 and 4.4, contributions from this source to GEM 

and GOM concentrations varied with highest contributions in summer 2010 and spring 2011. 



63 

 

F6 was identified as coal combustion. This factor explained high percentage of the 

variation in SO2. This species only was apportioned by PMF to this factor. SO2 is a known 

marker for coal combustion source (Zhu et al., 2018). Coal combustion source identified by 

Lee et al (2003) contained SO2, SO4
2- and NH4

+as major variables of the factor but the PMF 

model, in this case, failed to associate SO4
2- and NH4

+ with this factor. In the input correlation 

table (Table C2), SO2 correlated significantly positively with SO4
2- indicating that 

transformation of SO2 to sulphate during transport is a likely reaction. Since coal combustion 

is an important source of atmospheric Hg (Carpi, 1997), the factor profile shows a lack of Hg. 

A check of the Canada’s NPRI revealed that the closest significant Hg point source in 

Manitoba in 2010 was HBM&S (Hg = 283 kg/yr), which coincidentally emitted significant 

amount of SO2 (58,234 tonnes). In the following year (2011), the Hg emission from the plant 

drastically reduced to zero and SO2emission was 72 tonnes. Aside HBM&S, other major 

source of SO2, based on the NPRI data, is Vale Canada limited, a metal processing plant 

located at 276 km northeast of the sampling site, which had high emissions in 2010 (134,617 

tonnes) and also in 2011 (125,379 tonnes). Regional emission of SO2 is also a likely source 

affecting the site but the verification of this is beyond the scope of this work. The time series 

of SO2 concentrations clearly shows large fluctuations in 2010 but the variation was less in 

2011. In a larger regional west coast in New York, analysis of the trend of Hg showed lower 

Hg concentrations alongside reduced SO2 concentrations (Zhou et al., 2017). 

4.1.6 Seasonal and overall source contributions 

The four seasons, spanning the entire ambient Hg data and the data size in each season, 

were the summer (July-August, 2010, N=13), autumn (September-November, 2010, N=26), 

winter (December 2010 – February 2011, N=27) and spring (March – May, 2011, N=15). The 

average seasonal contributions of PMF resolved factors to GEM, GOM and PBM in all the 

four seasons are shown in Figures 4.6, 4.7 and 4.8, respectively. According to Duan et al. 
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(2017), the pattern of variations in factor contributions to ambient Hg often depends on the 

type and magnitude of source contributions, prevailing meteorological conditions and other 

important factors. In this study, distinct variations in the seasonal average contributions of the 

PMF factors to speciated Hg were observed (ANOVA, p <0.05). For GEM (Figure 4.6), the 

Hg oxidation, and secondary aerosol and re-emission factors were respectively, the dominant 

contributing factors in the summer, winter and spring. In summer, both factors contributed 

approximately 1.2 and 0.7 ng/m³, respectively, to GEM. Among all the factors, the average 

contribution from the Hg oxidation was highest in summer and lowest in autumn. Although 

re-emission contributed the most in spring, its seasonal variation was small. However, the 

GOM contributions in the summer from Hg oxidation and road salt/biomass burning factors 

were nearly the same (~2 ng/m³) but varied in other seasons (Figure 4.7). For PBM (Figure 

4.8), Hg oxidation factor was the dominating factor in the summer, winter and spring. 

 
Figure 4.6: Average seasonal contributions of PMF resolved factors to GEM 

 

 

 
Figure 4.7: Average seasonal contributions of PMF resolved factors to GOM 
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Figure 4.8: Average seasonal contributions of PMF resolved factors to PBM 

 

The overall contributions of each factor to the three Hg forms and their ranks are 

presented in Table 4.4. As can be seen on Table 4.4, the Hg oxidation contributed the largest 

to GEM with an average of 48%. This was followed by the secondary aerosol and re-emission 

(average 42%) and industrial (average 5%) factors, among all the six PMF factors. The Hg 

oxidation factor contribution to GOM was the greatest with an overall average contribution of 

43%. This was followed by the secondary aerosol and re-emission (average 40%), and road 

salt and biomass burning (average 15%) factors. Among all the six factors identified, the road 

salt and biomass burning factor dominated the overall contribution to PMB with an average of 

48%. Since neither road salt application nor wood burning for heat generation is applicable in 

the summer season, and this factor dominated the PBM contributions in summer, the high 

PBM in summer is speculated to be forest fire or seasonal open burning of crop residue and 

weeds, which is a common land preparation practice in agriculture for new planting season. 

Such practice is capable of mobilising Hg-rich soil particles from surfaces to the atmosphere. 

This seasonality in biomass burning was observed by Cheng et al., 2014.The factor 

contribution to PBM was followed by the Hg oxidation factor (average 25%) and then the 

secondary aerosol and re-emission (average 22%). 
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Table 4.6: Estimated annual source contributions to speciated Hg (rank in bracket) 

  Secondary 

aerosol and 

re-emission 

Industrial 
Crustal/

soil dust 

Road salt+ 

biomass 

burning 

Hg 

oxidation 

Coal 

combustion 

 

GEM 

(%) 

Min 0 0 0 0 0 0 

Max 100 30 0 50 98 0 

Average 42(2nd) 5(3rd) 0 4(4th) 48(1st) 0 

Median 45 4 0 2 47 0 

GOM 

(%) 

Min 0 0 0 0 0 0 

Max 99 0 16 83 95 1 

Average 40(2nd) 0 3(4th) 15(3rd) 43(1st) 1(5th) 

Median 40 0 2 8 45 0 

PBM 

(%) 

Min 0 0 0 0 0 0 

Max 100 43 44 98 86 1 

Average 22(3rd) 6(4th) 0 48(1st) 25(2nd) 0 

Median 15 2 3 51 22 0 

 

4.1.7 Performance of PMF using pred/obs scatter plot 

In order to measure the performance of PMF model in source apportionment of air 

pollutants, an important criterion is that the model must reproduce the original data (Hopke, 

2016). One of the methods to achieve this is to check the correlation coefficient between 

predicted and observed concentrations. The scatter plots of the predicted and observed 

concentrations of GEM, GOM and PBM are shown in Figures 4.9, 4.10 and 4.11 respectively. 

As can be seen in these Figures, the correlation coefficient between the predicted and 

observed GEM concentrations (Figure 4.9) was very weak among the three Hg species (R² = 

0.28, slope 0.54, p-value <0.05). Based on these performance indices, the re-emission of GEM 

was not well extracted in PMF analysis most likely because the input dataset consisted mostly 

of PM2.5 speciation and more emphasis was placed on PM2.5 by the model. It is important to 

note that GEM re-emission does not depend on PM2.5and the limitations of the non-

availability of data for other gaseous species might result in high uncertainty in the PMF 

result. The correlation coefficient between the predicted and observed GOM concentrations 

(Figure 4.10) was relatively weak but significant (R² = 0.44, slope = 1.26, p-value <0.05). 

However, the correlation coefficient between the predicted and observed concentrations of 
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PBM (Figure 4.11) was the strongest and significant (R² = 0.98, slope = 1.05, p-value <0.05) 

indicating that PMF model reproduced PBM better than GEM and GOM. 

 
Figure 4.9: Pred/Obs concentrations scatter plot for GEM in PMF model 

 

 

 
Figure 4.10: Pred/obs concentration scatter plot for GOM in PMF model 

 

 
Figure 4.11: Pred/obs concentration scatter plot for PBM in PMF model 
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4.1.8 Performance of PMF using pred/obs time series plot 

The time series of the predicted/observed GEM, GOM and PBM concentrations were 

plotted to further assess the performance of PMF in reproducing the daily concentrations. The 

time series of GEM, GOM and PBM are shown in Figs. 4.12, 4.13 and 4.14, respectively. 

According to the PMF5.0 user guide (USEPA, 2014),the model performance is high and 

acceptable when the observed daily concentrations of pollutant species are well tracked. By 

visual inspection of the time series, GEM concentrations were mostly under-predicted in 

October and November, over-predicted in March and April and relatively tracked the 

concentrations in July and August. There were large fluctuations in the model predicted GEM 

concentrations in the summer (July-August) and autumn (September-October) but less in 

winter (December-February) and spring (March-April) as shown in Figure 4.12. In some 

instances, the concentrations of GEM were frequently high during the summer due to high 

temperature resulting from high solar radiation that increases soil temperature, thereby 

enhancing re-emission of GEM from surfaces (Maxwell et al., 2013; Tao et al., 2017). High 

fluctuations in GEM were observed in spring and autumn in Miyun County in China (Zhang 

et al., 2013). Blanchard et al., 2002) found a winter maximum for GEM and this is consistent 

with the findings of Stamenkovic et al. (2007) in the Reno airshed in the USA. Many other 

studies found different seasonal fluctuations in GEM concentrations. As a result, there is no 

consensus on the season with highest fluctuations (Han et al., 2004). However, these 

fluctuations in GEM concentrations might relate to the monthly changes in weather conditions 

at the site, wind speed can be another factor that can affect the seasonal concentrations of 

GEM at a receptor site. High wind speed autumn has been found to cause fluctuations in 

GEM concentrations (Han et al., 2004). There were large variations in predicted GOM 

concentrations (Figure 4.13) with large over-prediction from November to February. 
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However, the predicted PBM daily averages were consistent with the observed values and 

thus, can be concluded that PBM was better reproduced by the PMF than GEM and GOM. 

 
Figure 4.12:  Pred/Obs concentration time series for GEM concentrations 

 

 
Figure 4.13: Pred/Obs concentration time series for GOM concentrations 

 

 

Figure 4.14: Pred/Obs concentration time series for PBM concentrations  
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The ratio of the overall predicted to the observed concentrations (Pred/Obs) of Hg can 

be used to verify the results obtained from the predicted/observed concentrations time series. 

The predicted PBM concentrations can be said to track the observed PBM well because the 

range of the Pred/Obs ratio was narrow (Table 4.7, 0.23-3.35). The observed PBM 

concentrations were also reproduced well on an annual basis because the ratio of annual mean 

concentration predicted to annual mean concentration observed (annual Predmean/Obsmean, 

0.97) is closest to 1. The narrower range of the Pred/Obs ratio of GOM and the annual 

Predmean/Obsmean ratio for GOM closer to 1 compared with GEM (0.35-13.25 vs 0.22-1.49, 

0.91 vs 0.87, respectively, Table 4.7) indicated that the GOM concentrations were better 

reproduced than GEM by PMF. The performance derived from pred/obs ratios are consistent 

with the performance derived from Pred/Obs time series. 

Table 4.7: Ratios of PMF predicted to observed Hg concentrations 

Hg form   

GEM 

Min 0.22 

Max 1.49 

Average 0.94 

Median 0.97 

Ratio of annual mean 0.87 

GOM 

Min 0.35 

Max 13.25 

Average 2.06 

Median 1.28 

Ratio of annual mean 0.91 

PBM 

Min 0.23 

Max 3.35 

Average 1.10 

Median 1.03 

Ratio of annual mean 0.97 

 

4.2 PCA Results 

4.2.1 Suitability of dataset 

The two statistical parameters often used to determine if a dataset is suitable for PCA 

include the KMO Measure of Sampling Adequacy and Bartlett’s Test of Sphericity. A KMO 
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value greater than 0.60 and a small value of Bartlett’s test (<0.05) of the significance level 

generally indicate that PCA could be a useful tool to analyze a dataset (Joliffe, 2010).Thus, 

the suitability assessment results of PCA of the dataset in this study, shown in Table 4.8, 

provided satisfactory statistical outcomes. As seen on Table 4.8, since the KMO value of 

0.739 (>0.60) and Bartlett’s Test of Sphericity<0.05 were obtained, the conclusion is that the 

dataset is appropriate for the PCA method. 

Table 4.8: KMO and Bartlett’s Test Results 

KMO Measure of Sampling Adequacy 0.739 

Bartlett's Test of 

Sphericity 

Approx. Chi-Square 3404.035 

df 276 

Sig. 0.000 

 

4.2.2 Selection of components to retain in PCA of dataset 

The full rotated component loadings of the initial five extracted components, when the 

restriction to retain the components with eigenvalue >1 was imposed, is shown in Table G1. 

The component loadings for an additional component added (six components), with 

eigenvalue close to one (0.9) is presented in Table G2. By comparing the five and six rotated 

component loadings, it was found that using six components, with total explained variance of 

93.9%,were reasonable and more physically realistic than the five components(to be explained 

in section 4.2.3), with a total explained variance of 89.5%. An assessment of the 

communalities of the chemical species in the six component analysis showed reasonably high 

values (lowest value, 0.77) compared with that using five components (lowest value, 0.51). 

Generally, the communality is reasonable when it is closer to one than to zero (Joliffe, 2010). 

Based on the assessment of the eigenvalues (total variance explained) and the source and 

process-related interpretability of the components, the varimax rotated six-component solution 

was chosen for the PCA method. 
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4.2.3 PCA results from concentration dataset 

From the PCA of this concentration dataset, PCA’s major loadings as well as the main 

statistical parameters including the communalities, eigenvalues, percent variance explained 

and the cumulative variance of the six components are presented in Table 4.9. The Loadings 

are the extent of the relationship between the factor scores and the original input variables, 

which help in the factor interpretation (Thurston et al., 2012). Loadings with modulus >0.25 

were emphasized as major loadings of the factors. The factors were interpreted by physical 

comparison of the elements with highest loadings in each factor with species emitted in large 

proportion (emission inventory, Tables B1-B4) and in the previous Hg source apportionment 

studies. 

PC1was mainly characterized by strong positive loadings on PBM (0.97), Ca2+ (0.96), 

Cl- (0.97), NO3
- (0.97), Mg2+ (0.98), oxalate (0.94), K+ (0.97) and Na+(0.97),and moderate 

loadings on GEM (0.32) and GOM (0.48). This component was named road salt/biomass 

burning because the air pollutant markers are all contained in this factor. This factor 

accounted for 43.9% of the variance in the dataset. PC1 correlated with all the three Hg forms 

and pollutant markers of road salt and biomass burning (Kamp et al., 2018). Although, Na+, 

Mg2+ and Cl- are air pollutant markers of marine aerosol (Cheng et al., 2013), because Flin 

Flon is not near the ocean, these species suspected as to be of road salt origin. However, it is 

uncertain if road salt is used in Flin Flon due to non-availability of emission data for the 

source markers in the NPRI. Personal communication with atmospheric modeling experts 

revealed that the use of sand likely dominates road snow control in the town. In Cheng et al. 

(2012), road salt particles were identified as potential source of PBM because of its influence 

on PBM, Na+ and Cl-. This factor contains high loading on K+, which is a common marker for 

biomass burning (Zhang et al, 2008).Biomass burning is a primary source of K+, mainly in 

form of KCl, KNO3 and K2SO4 (Li et al., 2003).  



73 

 

Table 4.9: Varimax rotated component loadings for dataset (major variables >0.25 in bold, 

blanks ≤abs 0.25) 

 PC1 PC2 PC3 PC4 PC5 PC6 Comm 

GEM 0.32   0.87   0.88 

GOM 0.48   0.73   0.80 

PBM 0.97      0.98 

PM2.5  0.63 0.47  0.52  0.92 

Al  0.96     0.96 

Br      0.95 0.97 

Fe  0.87   0.26  0.88 

K  0.90     0.93 

Si  0.98     0.98 

Zn   0.27  0.94  0.97 

NH4
+   0.97    0.95 

Ca2+ 0.96      0.97 

Cl- 0.97      0.96 

Mg2+ 0.98      0.99 

NO3
- 0.97      0.99 

Oxalate 0.94      0.96 

K+ 0.97      0.99 

Na+ 0.97      0.98 

SO4
2-   0.95    0.96 

SO2   0.82    0.77 

Eigenvalue 8.8 4.1 2.9 1.1 1.0 0.9  

% Var. Exp 43.9 20.7 14.2 5.6 5.1 4.4  

Commu (%) 43.9 64.6 78.9 84.4 89.5 93.9  

Factor name 

Road salt 

+ biomass 

burning 

Crustal/ 

soil dust 

Coal 

combustion 

+ agriculture 

Long-range 

transport of 

Hg 

Industrial  

 

Bromine 

source 
 

 

KCl occurs predominantly in fresh smoke whereas K2SO4 and KNO3 are present in aged 

smoke, due to the substitution of chloride by sulfate and nitrate. Biomass combustion can emit 

all the three forms of Hg although there are uncertainties in whether PBM is emitted directly 

or formed from GEM oxidation in the plume (Obrist et al., 2007). The presence of GEM 

suggests emission from biomass burning including residential wood burning, forest fires and 

crop residue burning. The confirmation of the type of biomass burning depends on the 

seasonal evaluation of the factor contributions. Active residential wood burning usually 

occurs in winter and spring whereas forest fires and crop residue burning are often associated 

with the summer. The time series of the daily contribution estimates of GEM and GOM 

showed negative values indicating no contributions to GEM and GOM. The temporal 

variations of the ambient concentrations of K+ showed that there were high concentrations 
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during the late winter period to early spring but the time series to be discussed in section 4.2.5 

will be used to check the likely biomass process. The presence of NO3
-and oxalate relate to 

aerosol particle formation and Ca2+ is from particles mobilized from surfaces. 

PC2 has high positive loadings on PM2.5 (0.63), Al (0.96), Fe (0.87), K (0.90) and Si 

(0.98). This was named crustal/soil dust (Zhang et al., 2009). It explained 20.7% of the 

variance in the dataset. All the species including Al, Fe, K, Si and PM2.5, were found in the 

similar factor in PMF were present as major variables in this component. From the correlation 

coefficients, since there is no association between the factor and Hg, this suggests that Hg 

from crustal/soil dust is not significant to affect atmospheric Hg concentrations. 

PC3 has high positive loadings on NH4
+ (0.97), SO4

2- (0.95) and SO2 (0.82) and 

moderate loadings on PM2.5 (0.47) and Zn (0.27). The factor was named coal combustion and 

agriculture. It explained a total variance of 14.2%. SO2 is a marker for coal combustion 

process and SO2is a gaseous precursor for the formation of SO4
2-during transport of aerosol 

particles. The major point sources of SO2, located within 700km radius that are likely 

affecting the site, are listed in Tables A1 and A2 in Manitoba and Tables A3 and A4 in 

Saskatchewan. Regional transport of SO2 is also a possible source. Although agricultural 

emission data was not available, the presence of NH4
+may relate to the transport of 

agricultural emissions and consequent reaction of NH3 and an acidic component of the 

atmosphere yielding (NH4)2SO4 (Pichfor et al., 2009). Zn in this factor is an indication of the 

influence of industrial sources (Duan et al., 2016).There is no association between this factor 

and Hg although it is expected that coal combustion will correlate highly with Hg. The 

absence of Hg in coal combustion source found in PMF is consistent with the this component. 

PC4 has high positive loadings on GEM (0.87) and GOM (0.73). This factor was 

identified as long-range transport of Hg. The factor explained 5.6% of the variance.  Because 

of the atmospheric behaviour of GEM, it can travel several thousands of kilometres from 
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locations that are upwind of site while atmospheric reactions, such as oxidation, are likely to 

convert GEM to GOM. This factor could not be assigned to a specific Hg source because of 

lack of correlations with air pollutant markers and several sources of GEM and GOM exist 

(Paatero et al., 2005). When a component associated with Hg exists in PCA and does not have 

other air pollutants to characterise the sources, it becomes difficult to assign to a specific Hg 

source. Statistical investigation of this factor can be used to assess the relationship with 

meteorological parameters. In the later section of the PCA technique, temperature and time 

series are included in the analysis of the result to assess the relationship between these factors 

and their influence on atmospheric Hg. However, further analysis using wind rose and 

trajectory could be used to locate the regional sources through which the air mass passed 

before reaching the site. 

PC5 accounted for high loadings of Zn (0.94) and moderate loadings of PM2.5 (0.52) 

and Fe (0.26). This factor was identified as industrial and it explained 5.1% of the total 

variance in the dataset. The presence of Zn and Fe is consistent with emission from industrial 

processes. This factor with the same major variables was also resolved by PMF model. 

Historically, Fe and Zn have been associated with open incineration of refuse and automobile 

emission, respectively, but the enforcement of regulations to phase out open burning has 

essentially eliminated the sources of these elements in Canada and the US allowing for a 

general interpretation of this factor to be industrial emissions (Thurston et al., 2012). Zn can 

originate from combustion of lubricating oil in heavy industrial machineries used in moving 

material within industrial premises (Pokorna et al., 2015). This factor does not have any 

correlation with the Hg. 

PC6 was predominantly characterised with high loading on Br (0.95). This factor was 

identified as a bromine source and explained 4.4 % of the total variance. The source of 

bromine in Flin Flon is uncertain because NPRI has no information concerning the element. 
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This element has been reported as a significant constituent of automobile fuel additives as 

well as a major constituent in consumer plastics (Khodeir et al., 2012). An examination of the 

concentration time series of Br at the sampling site shows a spike in the late part of winter but 

less variation in the spring. This factor was not associated with Hg. 

4.2.4 PCA factors contributions to ambient Hg 

The statistical analysis results of the APCS applied to the six extracted factors are shown 

in Table 4.7, in which the contributions from the sources were obtained. The contribution 

estimates in Table 4.7 were the overall average source contributions calculated over all daily 

samples. Source contributions could depend on atmospheric conditions and the strength of the 

sources (Paatero et al., 2005). Factor contributions in APCS can be positive or negative 

estimates because imposition of non-negativity is not present in the algorithm (Miller et al., 

2002). However, from engineering point of view, a source cannot have negative contributions 

to Hg concentration at the receptor. Therefore, all negative factor contribution estimates 

presented in Table 4.7, as obtained from APCS calculations, were assumed zero. 

Table 4.10: Contributions of PCA factors with concentration dataset (N =81) 

PC Name of factor 
Average contribution ±SD (%) 

GEM GOM PBM 

PC1 Road salt/biomass burning -35.0 ±0.4 -35.7 ±2.0 146.7 ±18.0 

PC2 Crustal/soil dust 2.9 ±0.0 -12.3 ±0.6 2.7 ±0.3 

PC3 
Coal 

combustion/agriculture 
-9.5 ±0.1 15.6 ±0.7 -7.1 ±0.7 

PC4 Long-range transport of Hg 146.1 ±0.8 119.5 ±3.6 11.1 ±3.6 

PC5 Industrial 9.7 ±0.1 -8.6 ±0.4 -0.1 ±0.0 

PC6 Bromine source -14.2 ±0.2 -21.6 ±0.2 -53.4 ±6.6 

R²  0.88 0.82 0.95 

 

In setting all the negative contribution estimates to zero, the factor contributions to GEM, 

GOM and PBM, scaled to total 100% after removal of negative factor contributions, are 

shown in Table 4.8. As can be seen on Table 4.8, the long-range transport of Hg was the 

major contributor to GEM (average 92.1±0.8 %) and GOM (average 76.3±3.6 %) 
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concentrations at the site.PBM concentration (average 91.4±18.0 %)was dominantly 

contributed by the road salt/biomass burning factor. The R² values represent the fractions of 

the measured concentration variance that is attributable to variance in the predicted 

concentrations. All the three Hg forms had a R² value greater than 0.80, indicating a good fit 

between the predicted and the observed concentrations (Guo et al., 2004). 

Table 4.11: PCA components contribution rescaled after removing negative contribution 

estimates (N =81) 

PC Name of factor 
Average contribution ±SD (%) 

GEM GOM PBM 

PC1 Road salt/biomass burning - - 91.4 ±18.0 

PC2 Crustal/soil dust 1.8 ±0.1 - 1.7 ±0.3 

PC3 
Coal 

combustion/agriculture 
- 9.9 ±0.7 - 

PC4 
Long-range transport of 

Hg 
92.1 ±0.8 76.3 ±3.6 6.9 ±3.6 

PC5 Industrial 6.1 ±0.1 - - 

PC6 Bromine source - 13.8±1.2 - 

R²  0.88 0.82 0.95 

 

4.2.5 Statistical relationship between Hg and meteorological factors 

Figures 4.15, 4.16 and 4.17 show the respective time series of GEM, GOM and PBM 

contributions from the Hg-associated factors present in the PCA of this concentration dataset. 

The time series plots revealed clear variations in the daily factor contributions to the ambient 

Hg in all seasons from the sources. For GEM, three factors including crustal/soil dust, long-

range transport of Hg and industrial were predominant. The crustal/soil dust contributions 

were higher in the spring but lower in summer, autumn and winter (Figure 4.15). Overall 

correlation of GEM contributions from crustal/soil dust with temperature showed a very weak 

correlation and statistically insignificant (ANOVA, r=0.05, p-value >0.05, N=81). For the 

long-range transport of Hg, the contributions to GEM were higher in the summer when 

temperature was constantly above zero degree. Statistically, a strong positive correlation 

coefficient between the factor contributions and temperature was obtained and this was 
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statistically significant (ANOVA, r=0.52, p-value <0.05, N=81). The strong positive 

correlation coefficient suggested that this factor contributed significantly the GEM 

concentration and this can be linked to regional contributions to GEM. The industrial factor’s 

contributions to GEM was observed to be highly variable in the winter but statistically, the 

correlation with temperature was not significant (ANOVA, r=0.06, p-value>0.05). The 

contributions of the PCA factors to GOM and PBM are shown in Figs. 4.16 and 4.17. As can 

be seen in Figure 4.16, GOM contributions from coal combustion and agriculture had highest 

variations in early autumn and later part of the winter. The time series of GOM contributions 

from bromine source showed high variations in summer, winter and spring with many peaks 

in the summer, winter and spring. The peaks of PBM contributions from road salt and 

biomass burning, crustal/soil dust and Hg component occurred in summer and spring (Figure 

4.17). 

 
Figure 4.15: Time series of source contributions to GEM with temperature 

and wind speed 
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Figure 4.16: Time series of source contributions to GOM with temperature 

and wind speed 

 

 
Figure 4.17: Time series of source contributions to PBM with temperature 

and wind speed 
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4.2.6 Performance of PCA of concentration dataset on Hg 

The performance of PCA of the concentration dataset on GEM, GOM and PBM was 

assessed using the predicted/observed time series graphs shown in Figures 4.18, 4.19 and 

4.20, respectively. The time series graphs show how well PCA reproduced the observed daily 

concentrations of speciated Hg. The time series graphs were divided into three data periods 

including July to September 2010, October 2010 to February 2011 and March to May 2011 

due to the missing data gaps. As can be seen from Figures 4.18 and 4.19, PCA under-

predicted the daily concentrations of GEM all through the study period but majorly over-

predicted the daily GOM concentrations except a point when it tracked the GOM in March 

and under-predicted the concentration once in April. However, from the overall statistical 

examination of the daily predictions of speciated Hg, PCA most closely tracked the peak 

values of PBM (R2 = 0.98), indicating a better performance for PBM then GEM (R2 = 0.86) 

and GOM (R2 = 0.81). 

 
Figure 4.18: Pred/Obs GEM concentrations time series for components  

from PCA of dataset 

 
 

 
Figure 4.19: Pred/Obs GOM concentrations time series for components 

from PCA of dataset 



81 

 

 
 

 
Figure 4.20: Pred/obs PBM concentrations time series for components  

from PCA of dataset 

 

4.2.7 Including meteorological parameters 

The PCA of the dataset including meteorological data extracted six factors (Table H3) 

for the first run. After comparing this with the seven-factor solution (Table 4.12),, the seven-

factor solution was preferred because it has more physically reasonable interpretation than the 

six factors. Table 4.12shows the PCA results of seven factors with major variable loadings. 

The statistical parameters including the communalities, eigenvalues, percent of variance 

explained and cumulative percentages were also included in Table 4.8. All the factors 

identified by PCA of concentrations dataset were also present when meteorological data were 

included. All the seven factors except coal combustion/agriculture had one or two loadings on 

meteorological variables and their communalities were all reasonable as well (>0.70). PC1, 

PC2, PC3, PC5 and PC7 were all consistent with road salt/biomass burning, crustal/soil dust, 

coal combustion and agriculture, industrial and bromine source, respectively. The long-range 

transport of Hg, which was previously found from PCA of the concentration dataset, was 

identified as re-emission because it has an additional positive loading on temperature and 

negative loading on relative humidity. The clustering of these variables on this factor in GEM 

re-emission being significantly enhanced by at high temperature conditions (Lin et al., 2012; 

Kamp et al., 2018). 
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Table 4.12:Varimax rotated factor loadings of PCA components including meteorological 

parameters (major variables >0.25 in bold, blanks ≤abs 0.25) 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 Com 

GEM 0.34   0.65  0.50  0.81 

GOM 0.47   0.76    0.86 

PBM 0.97       0.98 

PM2.5  0.62 0.50  0.49   0.90 

Al  0.97      0.96 

Br  0.29   0.30  0.70 0.78 

Fe  0.84      0.82 

K  0.91      0.92 

Si  0.98      0.98 

Zn   0.32  0.88   0.89 

NH4
+   0.95     0.93 

Ca2+ 0.97       0.96 

Cl- 0.96       0.96 

Mg2+ 0.97       0.99 

NO3
- 0.97       0.99 

Oxalate 0.93       0.96 

K+ 0.97       0.99 

Na+ 0.97       0.98 

SO4
2-   0.94     0.95 

SO2   0.83     0.75 

Temp    0.88    0.90 

RH -0.27 -0.55  -0.43 -0.31   0.72 

WS      -0.87  0.86 

Precip     -0.29  0.73 0.71 

Eigenvalue 8.1 4.4 3.1 2.1 1.5 1.2 1.1  

% var. exp 33.8 18.4 12.7 8.9 6.1 5.1 4.8  

Cummu 33.7 52.1 64.9 73.8 79.9 84.9 89.7  

Factor name 

Road salt/ 

biomass 

burning 

Crustal/

soil dust 

Coal 

combustion/ 

agriculture 

Re-

emission 
Industrial Dispersion 

Bromine 

source 
 

 

From laboratory studies carried out under controlled conditions, results showed that GEM re-

emission was greatly enhanced by increased temperature of the soil sample (Omine et al., 

2012). Another study, in which the temperature of soil slurry was monitored, showed that 

increasing the temperature of a soil slurry increases the potential for GEM re-emission (Wu et 

al., 2010).GEM flux from a soil surface depends on the intensity of solar radiation (Gustin et 

al., 2002). GOM in soil is converted to GEM via reactions facilitated by light and re-emitted 

into the atmosphere (Liang et al., 2014). The loadings on relative humidity and precipitation 

in PC5 were low compare to other variables of the factor. Thus, the component, industrial, 

was not affected by the loadings on these variables. PC6 was identified as dispersion because 

it had a positive loading on GEM and a negative loading on wind speed (WS). The dispersion 
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of GEM in the atmosphere often depends on the wind speed (Gworek et al., 2017). Therefore, 

the strong positive correlation between PC6 and GEM, and inverse relationship with wind 

speed indicate a dominance of local sources whose emission data were not available in NPRI. 

Wind speed plays a leading role in how GEM behaves in the atmosphere. Strong winds 

disperse GEM out of the atmosphere, whereas low wind speed allows GEM levels to increase. 

4.2.8 PCA factor contributions in PCA including meteorological data 

The statistical analysis results of the factor contribution when meteorological data were 

added to the input were shown in Table 4.9. As can be seen from Table 4.9, two, three and 

four out of the seven factors had negative contribution estimates for GEM, GOM and PBM, 

respectively. This implies that these factors with negative estimates were not contributing to 

ambient Hg based on the reason stated earlier in factor contributions of PCA of concentration 

dataset. The R² values were all above 0.80, indicating good modelled Hg species. 

Table 4.13: Contributions of PCA components with inclusion of meteorological factors (N 

=81) 

PC Name of factor 
Average contribution ±SD (%) 

GEM GOM PBM 

PC1 Road salt/biomass burning -27.5 ±0.18 -184.7 ±0.91 105.5 ±16.32 

PC2 Crustal/soil dust -17.7 ±0.23 -14.1 ±0.13 -5.8 ±1.72 

PC3 Coal combustion/agriculture 0.6±0 -159.6 ±0.55 7.5 ±0.81 

PC4 Re-emission 38.2±0.47 351.5±3.19 -5.2 ±1.34 

PC5 Industrial 6.5 ±0.09 55.4 ±0.59 -2.0 ±0.68 

PC6 Dispersion 99.3 ±0.31 24.7 ±0.06 -0.3 ±0.02 

PC7 Bromine source 0.7±0.01 26.8 ±0.31 0.2 ±0.08 

R²  0.81 0.86 0.98 
aValues are presented as percentages of mass apportioned to each source followed by the percentage standard deviation. 

R² is correlation coefficient  

 

When the factors with negative estimates of Hg contributions were removed and other 

factor contributions scaled to total 100%, the real factors contributing to ambient Hg are 

presented in Table 4.10. In Table 4.10, there was a shift of factor contributing the largest 

GEM. The factor, dispersion dominated the contributions to GEM with an average of 

68.4±0.31%, followed by the re-emission factor with an average of 26.3±0.09.For GOM and 
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PBM, the predominant factors contributing to these Hg forms were respectively consistent 

with the results of PCA of the concentration dataset. 

 

Table 4.14: PCA components contributions to Hg rescaled after removing negative 

contribution estimates (N=81) 

PC Name of factor 
Average contribution ±SD (%) 

GEM GOM PBM 

PC1 Road salt/biomass burning - - 93.2 ±16.32 

PC2 Crustal/soil dust - - - 

PC3 Coal combustion/agriculture 0.4±0 - 6.6 ±0.81 

PC4 Re-emission 26.3±0.47 76.7±3.19 - 

PC5 Industrial 4.4 ±0.09 12.1 ±0.59 - 

PC6 Dispersion 68.4 ±0.31 5.4 ±0.06 - 

PC7 Bromine source 0.4±0.01 5.8 ±0.31 0.2 ±0.08 

R²  0.81 0.86 0.98 
aValues are presented as percentages of mass apportioned to each source followed by the percentage standard deviation. R² is 

correlation coefficient  

 

4.2.9 Factor contribution pattern with inclusion of meteorological parameters 

The time series of factor contributions to GEM, GOM and PBM including 

meteorological data were shown in Figures 4.19, 4.20 and 4.21, respectively. There were clear 

fluctuations in Hg emissions in different seasons. For GEM contributions in Figure 4.19,re-

emission had more fluctuations variations in the summer compared with other factors, 

however contributions to concentrations were rarely above the background levels of 1.2 ng/m³ 

(Eckley et al., 2013). The dispersion factor contributions varied had frequent fluctuations in 

all seasons. In winter, coal combustion and agriculture, industrial and bromine source factor 

contributions increased suddenly and dropped afterwards. For GOM contributions (Figure 

4.20), the re-emission factor was predominant whereas the dispersion factor, among other 

factors, had frequent fluctuations, similar to GEM, throughout the study period. When 

temperature was lower (negative temperature), industrial and bromine source factors 

contributions peaked at two different times. The contributions to GOM from re-emission 

factor in late autumn and all through winter showed no variation. In the case of PBM (Figure 
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4.21), road salt and biomass burning factor contribution attained its highest in summer 

showing that road dust suspected to be rich in particulate Hg were more in summer than in 

other seasons. The bromine source factor also showed frequent fluctuations, which peaked in 

winter when temperature was below zero degrees. 

 

Figure 4.21: Time series GEM contribution patterns of PCA factors with temperature  

and wind speed 
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Figure 4.22: Time series GOM contribution patterns of PCA factors with  

temperature and wind speed 

 

 
Figure 4.23: Time series PBM contribution patterns of PCA factors with  

temperature and wind speed 
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4.2.10 Performance assessment of PCA 

 The performance of PCA was assessed using the time series of the daily 

predicted/observed concentrations of ambient Hg contributed by all components. The time 

series of the predicted/observed GEM, GOM and PBM is represented in Figure 4.24.  

 
Figure 4.24: Time series of predicted/Observed GEM, GOM and PBM 

concentration in PCA 

 

The broken portions of the lines were due to unavailable data during the period of study. 

The model predictions reproduced the observed data well in terms of magnitude although, a 

tendency toward under-prediction of GEM and over-prediction of GOM concentrations 

appeared throughout the modeled period. As can be seen from Figure 4.24, the daily 
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concentrations of GEM were frequently under-predicted throughout the study period. The 

variations in the concentrations were high in summer as expected but constantly less in the 

other seasons. By visual inspection of the GOM concentration time series, the daily 

concentrations were frequently over-predicted, tracked one observed GOM in March and 

under-predicted GOM once in April. Nevertheless, the predicted daily GEM and GOM 

concentrations pattern are all consistent with the observed concentrations. Overall, the 

predicted daily PBM concentrations closely tracked the observed measurements (R² = 0.98) 

indicating that PCA had a better performance in reproducing the observed concentrations of 

PBM, than GOM (R² = 0.86) and GEM (R² = 0.81).  

4.3 Comparison of PMF model and PCA results 

The Hg sources and processes identified using PMF and PCA techniques are listed in 

Table 4.15 for comparison. It is important to note that the outputs from both models can be 

different because their mathematical framework are not the same. For the data analysis in this 

study, the comparisons of the PMF and PCA results mainly focused on the input of 

concentration dataset because PMF model is unique in that it does not allow the inclusion of 

meteorological data in the input. Six factors each, with the factors associated Hg one, two and 

all the three Hg forms were found by both methods (Table 4.15). 

Among the factors identified, four factors including road salt/biomass burning, 

crustal/soil dust, industrial and bromine source were the same because the air pollutant 

markers for these sources were all the same. The road salt/biomass burning factor in PMF had 

only PBM in its profile but the PCA factor had strong positive correlations with GEM, GOM 

and PBM. In the PMF results, the Hg oxidation factor profile contained GEM and GOM, 

among other major variables of the factor including Br. However, the PCA factor that 

contains bromine as the only major variable was not associated with any Hg forms. While the 

source of bromine at the site is uncertain and available as the only variable with major loading 
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on the factor, the factor was named as bromine source. The factors identified separately as 

secondary aerosol and re-emission, and coal combustion in the PMF result were both in one 

factor with all the major variables of the two factors. This led to the naming of the factor as 

named coal combustion and agriculture in PCA. A PCA factor that was identified as long-

range transport of Hg because of its strong positive correlation only GEM and GOM, was 

named re-emission when meteorological data were included in the input and an additional 

component, dispersion was identified. Overall, PMF identified three main sources and 

processes affecting speciated atmospheric Hg whereas PCA was able to identify four sources 

and processes including re-emission of GEM at the site. 

Table 4.15: Factor comparison in PMF model and PCA 

PMF factors PCA factors 

Secondary aerosol and re-emission  

(GEM, GOM) 

Road salt/biomass burning (GEM, 

GOM, PBM) 

Industrial Crustal/soil dust 

Crustal/soil dust Coal combustion/agriculture 

Road salt/biomass burning (PBM) Long-range transport (GEM, GOM) 

Hg oxidation (GEM, GOM) Industrial 

Coal combustion Bromine source 

 Re-emission* (GEM, GOM) 

 Dispersion*(GEM) 

*after including meteorological data in the PCA input 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusions 

Source apportionment of ambient Hg was conducted using the PMF model and PCA. 

Eighty-one (81) daily samples with twenty (20) chemical species as well as meteorological 

parameters were analysed. The input concentration dataset, comprising GEM, GOM, PBM, 

SO2, PM2.5 and its components as well as meteorological parameters, measured from July 

2010 to May 2011 in Flin Flon, Manitoba, was utilised. 

Six factors identified by PMF include secondary aerosol and re-emission, industrial, 

crustal/soil dust, road salt/biomass burning, Hg oxidation and coal combustion. Among these 

six factors, three factors including secondary aerosol and re-emission, road salt/biomass 

burning and Hg oxidation contained one or two Hg forms. The average GEM contributions by 

factors in the summer, winter and spring were dominated by the Hg oxidation factor with 1.2, 

1.0 and 1.1 ng/m³, respectively. Among the six sources and processes resolved by PMF, the 

Hg oxidation factor had the greatest overall percentage contribution to GEM (average 48%) 

and GOM (average (43%). The overall predicted GEM contribution from the secondary 

aerosol and re-emission factor was 42% based on the PMF findings. The road salt/biomass 

burning factor contributed the highest to PBM (48%). For the performance of PMF on 

speciated Hg, the measured peak daily PBM concentrations were closely predicted (R² = 0.98) 

followed by GOM (R² = 0.44) and GEM (R² = 0.28) as revealed by the scatter plots. 

PCA of the same concentration dataset extracted six principal components. These 

components were largely consistent with PMF resolved factors. Four of the six components 

were assigned the same names because they contained the same major variables. A 

component named as long-range transport of Hg, which contains high positive loadings on 

GEM and GOM only, was identified by PCA. This component was split into re-emission and 
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an additional component, named dispersion when meteorological data was included in the 

input. The re-emission component strongly positively correlated with temperature whereas the 

dispersion component was negatively related with wind speed. Therefore, including 

meteorological parameters in the PCA input provided a better reasonable solution in terms of 

source identification than using concentration dataset only. For PCA of concentration dataset, 

the long-range transport of Hg contributed the highest to GEM (average 92.1±0.8%) and 

GOM (76.3±3.6%) whereas the road salt and biomass burning factor contributed the highest 

to PBM (91.4±18.0%). When meteorological data was added, the predominant contributor to 

GEM, among other factors, was the dispersion factor with an average contribution of 

68.4±0.3%. The contribution of the re-emission component to the overall GEM concentration 

was26.3±0.47%.The highest contributors to GOM and PBM concentrations remained the 

same as in the case of PCA of the dataset. The performance assessment of PCA showed that 

the observed daily concentrations of PBM were more closely tracked than GEM and GOM 

regardless of whether meteorological parameters were included or not. Therefore, PCA 

analysis of the data set provided a better atmospheric Hg apportionment result than PMF 

model. 

5.2 Recommendations 

A large proportion (76%) of the speciated Hg data was lost during the process of 

combining the consecutive daily Hg data with every 3- and 6- days PM2.5 data. This resulted 

in the use of small a sample size (N=81) compared with the original ample size 

(N=335).Based on this limitation and the results obtained in this study, the following 

recommendations could help in future studies: 

• Multiple years (2 or 3 years) of ambient Hg and PM2.5 data or a combination of 

ambient data from different sampling locations should be used in order to have a 

robust model comparison. 
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• Comparisons of source apportionment studies using the PMF model and PCA on 

ambient speciated Hg concentrations data set are still very few. Therefore, future 

research should focus on comparison of these modeling techniques for atmospheric 

speciated Hg source apportionment. 

• Although, carbon monoxide (CO) and ozone (O3) concentrations data could not be 

used in this study because they were not available at the site, it is recommended for 

future research to include these chemical species in source apportionment of 

atmospheric Hg. This is because CO is an excellent air pollutant marker for 

combustion process while O3 is an important atmospheric oxidant that can aid the 

identification of photochemical reaction involving conversion of GEM to GOM in the 

atmosphere, especially during the summer season.  

• The input data set contained too many parameters on PM components. The full Hg 

data set can be used for source apportionment analysis using methods that are different 

from PMF and PCA and do not require PM2.5 data. This can be considered in future 

studies. 

• Although wind direction is an essential meteorological parameter in receptor 

modeling, wind direction could not be used in the PMF model and PCA. Other 

receptor models utilizing wind direction including back trajectory and wind rose are 

highly recommended for future research in source apportionment of mercury to verify 

the factors identified by the PMF model and PCA.  
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Appendix B: Point sources of Hg and other air pollutants 

Table B1: Point sources of Hg and other pollutants in Manitoba in 2010 

Facility 
Location 

(aLat, Long) 

bDistance between 

coordinates (km) 
Direction Hg PM2.5 SO2 NO2 NH3 Zn 

Hudson Bay Mining and 

Smelting Co., Limited – HBMS 

Metallurgical Complex 

Flin Flon 

(54.7710, -101.8840) 
111 - 283 1.2 58,234   62 

Gerdau AmeriSteel - Gerdau 

AmeriSteel Manitoba  

Selkirk 

(50.1302, -96.9013) 
615 Southeast 20 11 69 117  1.5 

Vale Canada Limited - 

Thompson Operations  

Thompson 

(55.7138, -97.8561) 
276 Northeast 0.006 183 134,617    

Crowflight Minerals Incorporated - 

Bucko Lake Mine 

Wabowden 

(54.8779, -98.6562) 
209 Northeast  3.9    0.001 

1126774 Ontario - New Britannia 

Mine 

Snow Lake 

(54.8864, -100.0228) 
119 Northeast  0.480     

Manitoba Hydro - Brandon 

Generating Station 

Brandon 

(49.8449, -99.8896) 
562 Southeast  4.9 105 138   

Manitoba Hydro - Grand Rapids 

Generating Station 

Grand Rapids 

(53.1605, -99.2859) 
245 Southeast  1.0     

Manitoba Hydro - Lac Brochet Lac Brochet 

(58.3900, -97.2200) 
429 North  0.900  60   

Manitoba Hydro - Brochet Brochet 

(57.5300, -101.4100) 
347 North  0.690  46   

Manitoba Hydro - Tadoule Lake Tadoule Lake 

(58.7157, -98.4898) 
485 Northeast  0.590  39   

Manitoba Hydro - Kelsey 

Generating Station 
Kelsey 

(56.0382, -96.5435) 
366 Northeast  0.570     

Manitoba Hydro- Jenpeg 

generating Station 

Jenpeg 

(54.5444, -98.0261) 
248 East  0.320     

Graymont Western Canada Inc. - 

Faulkner Plant  

Faulkner 

(51.4135, -98.7650) 
426 Southeast 1.9 47  293   

Husky Oil Operations Limited - 

Minnedosa Ethanol Plant 

Minnedosa 

(50.2543, -99.8498) 
520 Southeast 

 

 
3.4  69   
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Koch Fertilizer Canada, Ulc - Koch 

Fertilizer Canada, Ulc 

Brandon 

(49.8309, -99.9078) 
565 Southeast  5.3  556 1,519  

Canexus Chemicals Canada 

Limited Partnership - Brandon 

Brandon 

(49.8265, -99.8293) 
562 Southeast  2.7 0.011 43   

Erco Worldwide, A Division Of 

Superior Plus Lp - Hargrave Plant 

Virden 

(49.8537, -100.9258) 
544 Southeast  0.611  0.969   

Viterra Inc. - Brandon Brandon 

(49.9786, -101.1241) 
564 Southeast  1.4   6.5  

Richardson Pioneer Ltd. - Shoal 

Lake 

Shoal Lake 

(50.4369, -100.5906) 
488 Southeast  0.968   0.165  

Richardson Pioneer Ltd. - Brandon Brandon 

(49.8472, -100.1191) 
562 Southeast  0.783     

Richardson Pioneer Ltd. - Dauphin Dauphin 

(51.1501, -100.0494) 
420 Southeast  0.474     

Viterra Inc. - BinscarthHtp Binscarth 

(50.6261,-101.2878) 
461 South  0.172     

Agrium Inc. - Bloom Terminal Portage La Prairie 

(49.9733, -98.3302) 
586 Southeast  0.300   0.020  

Cargill Limited - Cargill 

Aghorizons, Dauphin, Mb 

Dauphin 

(51.1416,-100.0361) 
420 Southeast  0.349     

Cargill Limited - Cargill 

Aghorizons, Nesbitt, Mb 

Nesbitt 

(49.5931, -99.9284) 
590 Southeast  0.446     

Cargill Limited - Cargill 

Aghorizons, Oakner, Mb 

Hamiota 

(50.0884, -100.5879) 
517 Southeast  0.672     

Cargill Limited - Cargill 

Aghorizons, Swan River, Mb 

Swan River 

(52.0696, -101.2722) 
299 Southeast  as     

Maple Leaf Agri-Farms Inc. - 

Souris Feedmill 

Souris 

(49.6212, -100.2582) 
583 Southeast  0.506     

Mccain Foods Canada Ltd. - 

Mccain Foods (Canada) - Portage 

La Prairie 

Portage La Prairie 

(49.9885, -98.2698) 
585 Southeast  0.533  28   

Mccain Foods Canada Ltd. - 

Carberry Factory 

Carberry 

(49.8694, -99.3686) 
571 Southeast  0.435  23   
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Simplot Canada (Ii) Ltd. - Portage 

La Prairie 
Portage La Prairie 

(49.9721, -98.3943) 
577 Southeast  1.6 80    

Enerplus Corporation - Kirkella Oil 

Battery 07-10 

CNA 

(49.9785,-101.3577) 
550 Southeast  0.603 32    

Viterra Inc. - Souris East (Au) Souris 

(49.6211, -100.2575) 
582 

 

Southeast 
 1.3     

Richardson Pioneer Ltd. - 

Dundonald 

Westbourne 

(50.1297, -98.5811) 
562 Southeast  0.310   0.081  

Maple Leaf Consumer Foods Inc. - 

Maple Leaf Foods – Brandon 

Brandon 

(49.8321, -99.8549) 
566 Southeast  3.2   6.0  

Maple Leaf Consumer Foods Inc. - 

Consumer Foods - Winnipeg 

Winnipeg 

(49.8806, -97.0741) 
583 Southeast  0.345   1.9  

Tolko Industries Ltd. - Manitoba 

Kraft Papers Division 

The Pas 

(53.8610, -101.2133) 
112 Southeast  691 272 258 127  

Eog Resources Canada Inc. - 

Waskada Oil Battery 15-09 

CNA 

(49.1128, -100.7658) 
112 Southeast  11 30    

Louisiana-Pacific Canada Ltd. - Lp 

Swan Valley Osb 

Minitonas 

(52.0858, -101.0380) 
304 Southeast  10  58   

Viterra Inc. - Portage La Prairie 

Division (Can-Oat) 

Portage La Prairie 

(49.9664, -98.3530) 
586 Southeast  1.8     

Diageo Canada Inc. - Gimli Plant Gimli 

(50.6550, -97.0026) 
563 Southeast  1.5  59   

Lehigh Hanson Materials Ltd. - 

Glacier Quarry 

RM of Rockwood 

(50N, 96W) 
591 Southeast  1.1     

Note: 

• aThe geographic coordinates (latitude and longitude) of each facility was obtained from the facility information on NPRI 

• bThe distances of each point source facility to the monitoring station were calculated using distance calculator with coordinate https://gps-coordinates.org/distance-between-

coordinates.php

https://gps-coordinates.org/distance-between-coordinates.php
https://gps-coordinates.org/distance-between-coordinates.php
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Table B2: Point sources of Hg and other pollutants in Manitoba in 2011 

Facility 
Location 

(aLat, Long) 

bDistance between 

coordinates (km) Direction 
Hg 

(kg) 

PM2.5 

(tonnes) 

SO2 

(tonnes) 

NO2 

(tonnes) 

NH3 

(tonnes) 

Zn 

(tonnes) 

Hudson Bay Mining and Smelting Co., 

Limited – HBMS Metallurgical Complex 

Flin Flon 

(54.7683, -101.8774) 
111 - 0 0.989 72    

Gerdau AmeriSteel - Gerdau AmeriSteel 

Manitoba  

Selkirk 

(50.1302, -96.9013) 
615 Southeast 21 12 73 122  1.5 

Vale Canada Limited - Thompson 

Operations  

Thompson 

(55.7138, -97.8561) 
276 Northeast 0.007 413 125,397    

Graymont Western Canada Inc. - 

Faulkner Plant  

Faulkner 

(51.4135, -98.7650) 
426 Southeast  60  287   

Sangold Corporation - Mill & Mine Site Bissett 

(51.0218,-95.6795) 
587 Southeast  0.412     

Manitoba Hydro - Brandon Generating 

Station 

Brandon 

(49.8449, -99.8896) 
562 Southeast  5.4 109 170   

Richardson Pioneer Ltd. - Grand Plains Grandview 

(51.1546,-100.4920) 
407 Southeast     0.125  

Manitoba Hydro - Lac Brochet Lac Brochet 

(58.3900, -97.2200) 
429 North  0.750  50   

Manitoba Hydro - Brochet Brochet 

(57.5300, -101.4100) 
347 North  0.680  46   

Manitoba Hydro - Tadoule Lake Tadoule Lake 

(58.7157, -98.4898) 
485 Northeast  0.700  47   

Manitoba Hydro - Kelsey Generating 

Station 

Kelsey 

(56.0382,-96.5435) 
366 Northeast  0.600     

Manitoba Hydro- Jenpeg generating Station Jenpeg 

(54.5444, -98.0261) 
248 East  0.500     

Viterra Inc. - Southlakes Elevator 

(Stonewall - Au) 

Stonewall 

(49.8953, -97.1389) 
600 Southeast  7.6     

Richardson Pioneer Ltd. - Shoal Lake Shoal Lake 

(50.4369, -100.5906) 
488 Southeast  0.752   0.124  

Viterra Inc. - BinscarthHtp Binscarth 

(50.6261,-101.2878) 
461 South  0.152   0.358  

Louis Dreyfus Canada Ltd - Louis Dreyfus Virden 544 South  0.522     
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Canada Ltd.- Virden (49.8961,-101.0239) 

Snow Lake Mine - New Britannia Mine Snow Lake 

(54.8864,-100.0228) 
119 Northeast  0.480     

Richardson Pioneer Ltd. - Minnedosa Minnedosa 

(50.2469,-99.8399) 
520 Southeast  0.392     

Richardson Pioneer Ltd. – Swan River 

Valley 

Swan River 

(52.1170,-101.2670) 
299 Southeast  0.384   0.161  

Richardson Pioneer Ltd. - Brandon Brandon 

(49.8472, -100.1191) 
562 Southeast  0.524     

 Husky Oil Operations Limited - Minnedosa 

Ethanol Plant 

Minnedosa 

(50.2543, -99.8498) 
520 Southeast  4.1  66   

Canexus Chemicals Canada Limited 

Partnership - Canexus Chemicals Lp 

Brandon 

(49.8265, -99.8293) 
562 Southeast  2.6 0.011 62   

Graymont Western Canada Inc. - 

Faulkner Plant  

Faulkner 

(51.4135, -98.7650) 
426 Southeast  60  287   

Tolko Industries Ltd. - Manitoba Kraft 

Papers Division 

The Pas 

(53.8610, -101.2133) 
112 Southeast  653 264 250 120  

Bunge Canada Holdings I Ulc - Bunge 

Canada - Harrowby Plant 

Harrowby 

(50.7555, -101.4522) 
446 South  14 0.167 19   

Adm Agri-Industries - Adm Agri-Industries 

- Adm Milling Co. - Winnipeg 

Winnipeg 

(49.9033,-97.1156) 
574 Southeast  4.0     

Viterra Inc. - Portage La Prairie Division 

(Can-Oat) 

Portage La Prairie 

(49.9664, -98.3530) 
586 Southeast  1.7     

Cargill Limited - Cargill Aghorizons, 

Oakner, Mb 

Hamiota 

(50.0884, -100.5879) 
517 Southeast  0.790     

Cargill Limited - Cargill Aghorizons, Swan 

River, Mb 

Swan River 

(52.0696, -101.2722) 
299 Southeast  0.741     

Cargill Limited - Cargill Aghorizons, 

Dauphin, Mb 

Dauphin 

(51.1416,-100.0361) 
420 Southeast  0.330     

Viterra Inc. –Brandon facility (WESTCO) 

Viterra 

Brandon 

(49.8276,-99.8941) 
564 Southeast     6.7  

Simplot Canada (Ii) Ltd. - Portage La 

Prairie 

Portage La Prairie 

(49.9721, -98.3943) 
577 Southeast  1.7 83    

Maple Leaf Agri-Farms Inc. - Souris 

Feedmill 

Souris 

(49.6212, -100.2582) 
583 Southeast  0.556     
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Mccain Foods Canada Ltd. - Carberry 

Factory 

Carberry 

(49.8694, -99.3686) 
571 Southeast  0.430  23   

Louisiana-Pacific Canada Ltd. - Lp Swan 

Valley Osb 

Minitonas 

(52.0858, -101.0380) 
304 Southeast  9.3  72   

Enbridge Pipelines Inc. - Cromer Terminal Cromer 

(49.7333, -101.0810) 
559 South  5.7     

Koch Fertilizer Canada, Ulc - Koch 

Fertilizer Canada, Ulc 

Brandon 

(49.8309, -99.9078) 
565 Southeast  6.2 51 764 1,730  

Lafarge North America - Lafarge Canada 

Inc., Greater Winnipeg, Stonewall Quarry 

Stonewall 

(50.1546, -97.2709) 
600 Southeast  6.2     

Maple Leaf Consumer Foods Inc. - Maple 

Leaf Foods – Brandon 

Brandon 

(49.8321, -99.8549) 
566 Southeast  3.3  20 6.0  

Diageo Canada Inc. - Gimli Plant Gimli 

(50.6550, -97.0026) 
563 Southeast  1.5  49   

Viterra Inc. - Brandon Brandon 

(49.9786, -101.1241) 
564 Southeast  0.297   0.752  

Viterra Inc. - Souris East (Au) Souris 

(49.6211, -100.2575) 
582 Southeast  0.731     

Richardson Pioneer Ltd. - Dundonald Westbourne 

(50.1297, -98.5811) 
562 Southeast     0.028  

Richardson Pioneer Ltd. - Grand Plains Grandview 

(51.1546,-100.4920) 
407 Southeast     0.125  

Lehigh Hanson Materials Ltd. - Glacier 

Quarry 

RM of Rockwood 

(50N, 96W) 
591 Southeast  0.655     

Erco Worldwide, A Division Of Superior 

Plus Lp - Hargrave 

Virden 

(49.8537, -100.9258) 
544 Southeast  0.588  1.0   

Enerplus Corporation - Kirkella Oil Battery 

07-10 

CNA 

(49.9785,-101.3577) 
550 Southeast  0.489 26    

Transcanada Pipelines Ltd. - Station 30 – 

Rapid city 

Rapid city 

(50.0755,-99.9988) 
531 Southeast    23   

Total    21 1,386 126,075 2,094 1866 1.5 
Note:  

• aThe geographic coordinates (latitude and longitude) of each facility was obtained from the facility information on NPRI 

• bThe distances of each point source facility to the monitoring station were calculated using distance calculator with coordinate https://gps-coordinates.org/distance-

between-coordinates.php 

https://gps-coordinates.org/distance-between-coordinates.php
https://gps-coordinates.org/distance-between-coordinates.php
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Table B3: Point sources of Hg and other pollutants reported in Saskatchewan in 2010 

Facility 
Location 

(aLat, Long) 

bDistance 

between 

coordinates (km) 

Direction 
Hg 

(kg) 

PM2.5 

(tonne

s) 

SO2 

(tonnes) 

NO2 

(tonnes) 

NH3 

(tonnes) 

Zn 

(tonnes) 

Saskatchewan Power Corporation - 

Boundary Dam Power Station 

Estevan 

(49.0961,-103.0305 
635 Southwest 255 97 43,585 17,873   

Saskatchewan Power Corporation - 

Poplar River Power Station 

Coronach 

(49.0472,-105.4883) 
681 Southwest 240 147 43,141 15,962   

Saskatchewan Power Corporation - 

Shand Power Station 

Estevan 

(49.0879,-102.8640) 
632 Southwest 105 18 9,819 4,339   

Transalta Generation Partnership - 

Meridian Cogeneration Plant 

Lloydminster 

(53.2593,-109.9512) 
543 Southwest    736   

Nal Resources Management - 

Nottingham Gas Plant 07-17-005-32-

W1 

Nottingham 

(49.3837,-102.2809) 
559 Southwest   4,064 189   

Arc Resources - Lougheed Sour Gas 

Plant 11-12 

n/a 

(49.4601,-103.9032) 
526 Southwest   2,317    

Husky Oil Operations Limited - 

Lloydminster Upgrader 

Lloydminster 

(53.2630,-109.9489) 
548 Southwest   1,926 622   

Cenovus Energy Inc. - Weyburn Oil 

Battery 

N/A 

(49.4711,-103.7061) 
542 Southwest   1,493 33   

Canadian Natural Resources Limited - 

North Tangleflags In-Situ Oilsands 

Facility 

N/A 

(53.5051,-109.5716) 
532 Southwest   672 107   

BP Canada Energy Company - Glen 

Ewen Gas Plant 

Estevan 

(49.2055,-102.0425) 
532 Southwest   597    

Canadian Natural Resources Limited - 

Senlac 

N/A 

(52.4037,-109.7189) 
521 Southwest   415    

Nal Resources Management - Weyburn 

Unit 04-11-007-13-W2 

Weyburn 

(49.5401,-103.6734) 
532 Southwest   382    

Enerplus Corporation - Colgate Oil 

Battery 04-24 

n/a 

(49.3936,-103.9093) 
534 Southwest   298    

Petrobank Energy And Resources Ltd. - 

Kerrobert Project 

Kerrobert 

(51.8261,-109.2780) 
523 Southwest   149 112   

Rife Resources Ltd. - Lashburn 1-24 Lashburn 563 Southwest    539   
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(53.1469,-109.6715) 

Nexen Inc. - Hatton 01-16 Medicine Hat 

(50.0786, -109.9043) 
543 Southwest  0.470  301   

Canadian Natural Resources Limited - 

Horsham Medicine Hat Syst 

n/a 

(50.3108, -109.9244) 
547 Southwest 

 1.1  270   

Transgas Limited - Hatton Maple Creek 

(49.8994,-109.4758) 
532 Southwest    1,000   

Transcanada Pipelines Ltd. - Station 2 - 

Burstall 

Na 

(50.6784, -109.9780) 
530 Southwest  3.5  302   

Foothills Pipe Lines Ltd. - Monchy Na 

(49.0036, -107.5467) 
572 Southwest  1.7  288   

Transgas Limited - Success Swift Current 

(50.1461, -108.0266) 
529 Southwest    440   

Cameco - Key Lake Operation Saskatoon 

(57.2122,-105.6788) 
564 Southwest   145 114  0.003 

Cameco - Mcarthur River Saskatoon 

(57.7622, -105.0500) 
534 Southwest  79  276 41  

Doepker Industries Ltd. - Head Office / 

Main Plant 

Annaheim 

(52.3209,-104.8186) 
549 Southwest 0.093  0.005 22  15 

Doepker Industries Ltd. - Moose Jaw 

Branch - Caribou St. 

Moose Jaw 

(50.3968,-105.5909) 
540 Southwest 0.063  0.003 117  8.8 

Consumers' Co-Operative Refineries 

Limited - Co-Op Refinery Complex 

Regina 

(50.4843,-104.5794) 
510 Southwest 25  1,511 1,199 14  

Moose Jaw Refinery Partnership - 

Moose Jaw Refinery 

Moose Jaw 

(50.3884,-105.5196) 
536 Southwest   417    

Prairie Mines &Royality Ltd - Beinfait 

Mine - Char Plant 

Estevan 

(49.1418,-103.0019) 
523 Southwest   671 221   

Meadow Lake Mechanical Pulp - 

Meadow Lake Mechanical Pulp 

Meadow Lake 

(54.1569,-108.2857) 
557 Southwest   6.3 169   

Yara Belle Plaine Inc. - Yara Belle 

Plaine Inc. 

Belle Plaine 

(50.4333, -105.1833) 
514 Southwest    496 677  

City Of Saskatoon - Wastewater 

Treatment Plant 

Saskatoon 

(52.1827,-106.6060) 
534 Southwest    521 69  

Mosaic Canada Ulc - Mosaic Potash 

Belle Plaine 

Belle Plaine 

(50.4287,-105.1984) 
542 Southwest    1,200   
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BP Canada Energy Company - 

Steelman Gas Plant 

Estevan 

(49.3164,-102.6244) 
532 Southwest   4,421    

EvrazInc Na Canada - EvrazInc Na 

Canada - Regina Facilities 

Regina 

(50.5176,-104.6301) 
515 Southwest 121  197 314  4.7 

Total    746 251 47,477 47,788 801 29 
Note: aThe geographic coordinates (latitude and longitude) of each facility was obtained from the facility information page on NPRI 

bThe straight line distance and direction between each facility and the monitoring location (Flin Flon) were calculated by typing the location of the facility into an 

online distance calculator available on https://distancecalculator.globefeed.com/Canada_Distance_Calculator.asp?state=03 

https://distancecalculator.globefeed.com/Canada_Distance_Calculator.asp?state=03
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Table B4: Point sources of Hg and other pollutants in Saskatchewan in 2011 

Facility 
Location 

(aLat, Long) 

bDistance between 

coordinates 
Direction 

Hg 

(kg) 

PM2.5 

(tonnes) 

SO2 

(tonnes) 

NO2 

(tonnes) 

NH3 

(tonnes) 

Zn 

(tonnes) 

Saskatchewan Power Corporation - 

Boundary Dam Power Station 

Estevan 

(49.0961,-103.0305 
635 Southwest 245 66 42,662 16,354   

Saskatchewan Power Corporation - 

Poplar River Power Station 

Coronach 

(49.0472,-105.4883) 
681 Southwest 208 151 39,006 14,369   

Saskatchewan Power Corporation - 

Queen Elizabeth Power Station 

Saskatoon 

(52.0944, -106.7050) 
437 

Southwest 
   381   

Atco Power Canada Ltd. - Cory 

Cogeneration Station 

Saskatoon 

(52.0919, -106.8475) 
444 

Southwest 
   329   

Transalta Generation Partnership - 

Meridian Cogeneration Plant 

Lloydminster 

(53.2593,-109.9512) 
554 

Southwest 
   736   

BP Canada Energy Company - 

Steelman Gas Plant 

Estevan 

(49.3164,-102.6244) 
608 

Southwest 
  4,421    

Nal Resources Management - 

Nottingham Gas Plant 07-17-005-32-

W1 

Nottingham 

(49.3837,-102.2809) 
599 

Southwest 
  4,064 189   

Arc Resources - Lougheed Sour Gas 

Plant 11-12 

n/a 

(49.4601,-103.9032) 
606 

Southwest 
  2,317    

Husky Oil Operations Limited - 

Lloydminster Upgrader 

Lloydminster 

(53.2630,-109.9489) 
554 

Southwest 
  1,926 622   

Cenovus Energy Inc. - Weyburn Oil 

Battery 

N/A 

(49.4711,-103.7061) 
602 

Southwest 
  1,493 33   

Canadian Natural Resources Limited 

- North Tangleflags In-Situ Oilsands 

Facility 

N/A 

(53.5051,-109.5716) 
521 

Southwest 
  672 107   

BP Canada Energy Company - Glen 

Ewen Gas Plant 

Estevan 

(49.2055,-102.0425) 
619 

Southwest 
  597    

Atco Midstream Ltd. - Kisbey Kisbey 

(49.6446,-102.7034) 
572 

Southwest 
  522 26   

Canadian Natural Resources Limited 

- Senlac 

N/A 

(52.4037,-109.7189) 
581 

Southwest 
  415    

Nal Resources Management - 

Weyburn Unit 04-11-007-13-W2 

Weyburn 

(49.5401,-103.6734) 
594 

Southwest 
  382    

Enerplus Corporation - Colgate Oil 

Battery 04-24 

n/a 

(49.3936,-103.9093) 
613 

Southwest 
  298    

Petrobank Energy And Resources Kerrobert 591 Southwest   149 112   
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Ltd. - Kerrobert Project (51.8261,-109.2780) 

Enerplus Corporation - Heward Oil 

Battery 13-14 

n/a 

(49.7392,-103.1326) 
566 

Southwest 
  130    

Enerplus Corporation - Weyburn Oil 

Battery 01-22 

n/a 

(49.4819,-103.8020) 
602 

Southwest 
  128    

Husky Oil Operations Limited - 

Bolney Thermal 

Lloydminster 

(53.5270, -109.3568) 
507 

Southwest 
   254   

Pengrowth Energy Corporation - 

Cactus Lake - North (16-19-36-28 

W3) 

Na 

(52.1121, -109.9903) 
614 

Southwest 
   216   

Rife Resources Ltd. - Lashburn 1-24 Lashburn 

(53.1469,-109.6715) 
542 

Southwest 
   539   

EvrazInc Na Canada - EvrazInc Na 

Canada - Regina Facilities 

Regina 

(50.5176,-104.6301) 
508 Southwest 108 53 176 964  4.7 

Cameco - Mcarthur River Saskatoon 

(57.7622, -105.0500) 
386 

Southwest 
 79  276 41  

Transgas Limited - Coleville Coleville 

(51.7114, -109.2455) 
597 

Southwest 
   230   

Transgas Limited - Beacon Hill Pierceland 

(54.3415, -109.7805) 
513 

Southwest 
   210   

Consumers' Co-Operative Refineries 

Limited - Co-Op Refinery Complex 

Regina 

(50.4843,-104.5794) 
510 Southwest 24 82 1,511 1,199 14  

Prairie Mines &Royality Ltd - 

Beinfait Mine - Char Plant 

Estevan 

(49.1418,-103.0019) 
630 

Southwest 
  671 221   

Cameco - Key Lake Operation Saskatoon 

(57.2122,-105.6788) 
360 

Southwest 
  145 114  0.003 

Meadow Lake Mechanical Pulp - 

Meadow Lake Mechanical Pulp 

Meadow Lake 

(54.1569,-108.2857) 
420 

Southwest 
  6.3 169   

Mosaic Canada Ulc - Mosaic Potash 

Belle Plaine 

Belle Plaine 

(50.4287,-105.1984) 
532 

Southwest 
   1,200   

City Of Saskatoon - Wastewater 

Treatment Plant 

Saskatoon 

(52.1827,-106.6060) 
425 

Southwest 
   521 69  

Yara Belle Plaine Inc. - Yara Belle 

Plaine Inc. 

Belle Plaine 

(50.4333, -105.1833) 
531 

Southwest 
   496 677  

Total    585 270 102,146 40,191 801 29 

Note:  
aThe geographic coordinates (latitude and longitude) of each facility was obtained from the facility information page on NPRI 
bThe straight line distance and directions of the facilities with no reported located were calculated by supplying the name of the facility on the online distance calculator 

available on https://distancecalculator.globefeed.com/Canada_Distance_Calculator.asp?state=03 

https://distancecalculator.globefeed.com/Canada_Distance_Calculator.asp?state=03
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Appendix C: List of outputs from Principal Component Analysis (PCA) 

Table C: List of PCA outputs categorized as ‘used’ and ‘unused’ 

Output Definition Used/Not used 

Correlation matrix Matrix of correlation coefficients 

between variables 

Not used 

KMO and Bartlett’s test Test of suitability of the dataset for 

analysis in PCA 

Used 

Communalities Proportion of variance in variable 

measurements accounted for 

Used 

Total variance explained The cumulative percentage of 

variance explained by all 

components 

Used 

Scree plot The line used to select the number of 

components to retain 

Not used 

Eigenvalue Determines the magnitude of 

directions of new feature space 

Used 

Factor loadings Correlation coefficient between 

variable and component 

Used 

Component matrix Estimates of correlation between each 

variable and the estimated component 

before rotation 

Not used 

Rotated component matrix Estimates of correlations between 

each of the variables and the 

estimated components after rotation 

Used 

Principal component scores The transformed variable values 

corresponding to a particular data 

point 

Not used 
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Appendix D: Correlations between air pollutants 

 

Table D1: Correlations between variables before imputation (Absolute value significant in bold) 
 GEM GOM PBM PM2.5 Al Si K Fe Zn SO4

2- NO3
- Ca2+ Cl- Na+ NH4

+ Mg2+ K+ Oxalate SO2 Temp RH Preci WS 

GEM  0.58 0.47 0.49 0.03 0.01 0.13 0.12 0.05 0.36 0.17 0.01 0.21 0.04 0.33 0.16 0.02 0.20 0.13 0.52 0.37 0.20 0.27 

GOM   0.61 0.62 0.32 0.29 0.45 0.20 0.11 0.03 0.43 0.23 0.27 0.42 0.01 0.64 0.69 0.69 0.06 0.48 0.48 0.03 0.12 

PBM    0.26 0.26 0.26 0.38 0.15 0.03 0.11 0.83 0.63 0.62 0.85 0.10 0.79 0.80 0.49 0.09 0.16 0.36 0.02 0.09 

PM2.5     0.26 0.21 0.49 0.35 0.26 0.74 0.32 0.45 0.40 0.36 0.72 0.50 0.38 0.68 0.19 0.11 0.27 0.19 0.04 

Al      0.87 0.81 0.67 0.07 0.08 0.40 0.35 0.27 0.46 0.12 0.63 0.44 0.60 0.09 0.29 0.07 0.16 0.15 

Si       0.84 0.82 0.05 0.05 0.23 0.39 0.17 0.22 0.05 0.46 0.23 0.41 0.01 0.12 0.02 0.15 0.35 

K        0.62 0.08 0.04 0.62 0.36 0.25 0.53 0.01 0.68 0.65 0.53 0.09 0.10 0.10 0.19 0.27 

Fe         0.26 0.18 0.04 0.38 0.13 0.01 0.16 0.21 0.05 0.35 0.20 0.00 0.10 0.18 0.23 

Zn          0.40 0.05 0.57 0.50 0.03 0.31 0.03 0.14 0.01 0.23 0.22 0.11 0.11 0.32 

SO4
2-           0.05 0.01 0.16 0.11 0.99 0.18 0.17 0.61 0.70 0.08 0.15 0.14 0.36 

NO3
-            0.31 0.53 0.03 0.03 0.80 0.83 0.42 0.25 0.54 0.21 0.22 0.12 

Ca2+             0.42 0.21 0.03 0.29 0.15 0.19 0.03 0.18 0.03 0.20 0.26 

Cl-              0.72 0.11 0.68 0.19 0.31 0.06 0.37 0.10 0.18 0.08 

Na+               0.13 0.91 0.65 0.49 0.14 0.50 0.14 0.19 0.22 

NH4
+                0.20 0.23 0.66 0.64 0.07 0.15 0.15 0.31 

Mg2+                 0.65 0.65 0.01 0.39 0.22 0.23 0.13 

K+                  0.61 0.10 0.38 0.27 0.20 0.04 

Oxalate                   0.20 0.07 0.30 0.28 0.04 

SO2                    0.08 0.06 0.28 0.16 

Temp                     0.43 0.25 0.01 

RH                      0.14 0.10 

Precip                       0.01 

WS                        
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Table D2: Correlation between variables in the input data set after imputation (N = 81) 
 

GEM GOM PBM PM2.5 Al Br Fe K Si Zn NH4
+ Ca2+ Cl- Mg2+ NO3

- Oxal K+ Na+ SO4
2- SO2 Temp RH WS 

GOM 0.62                       

PBM 0.46 0.58                      

PM2.5 0.02 0.17 0.05                     

Al 0.04 0.22 0.12 0.57                    

Br 0.03 0.17 0.22 0.25 * 0.33 *                   

Fe 0.05 0.11 0.06 0.71 0.76 0.08                  

K 0.18 0.14 0.30* 0.56 0.91 0.40 0.68                 

Si 0.04 0.19 0.11 0.57 0.97 0.30 0.82 0.92                

Zn -0.03 -0.09 -0.07 0.60 -0.06 0.06 0.27 -0.04 -0.04               

NH4
+ -0.10 -0.04 -0.17 0.48 -0.00 -0.08 0.19 -0.10 -0.02 0.35              

Ca2+ 0.42 0.54 0.97 0.09 0.09 0.26 * 0.07 0.27 * 0.10 0.04 -0.20             

Cl- 0.40 0.53 0.94 0.15 0.12 0.24 * 0.10 0.29 * 0.11 0.10 -0.11 0.96            

Mg2+ 0.43 0.58 0.98 0.12 0.20 0.22 0.13 0.37 0.20 -0.08 -0.14 0.95 0.95           

NO3
- 0.44 0.56 0.98 0.06 0.14 0.24 * 0.08 0.33 0.15 -0.06 -0.26 * 0.97 0.95 0.98          

Oxal 0.41 0.59 0.93 0.19 0.20 0.19 0.18 0.34 0.20 -0.06 0.09 0.89 0.91 0.95 0.90         

K+ 0.44 0.59 0.98 0.08 0.18 0.22 * 0.11 0.37 0.19 -0.13 -0.17 0.95 0.94 0.99 0.98 0.95        

Na+ 0.43 0.56 0.97 0.08 0.16 0.24 * 0.08 0.35 0.16 -0.08 -0.21 0.96 0.96 0.99 0.99 0.91 0.98       

SO4
2- -0.14 -0.10 -0.26 0.49 -0.02 -0.09 0.18 -0.13 -0.03 0.41 0.99 -0.28 * -0.17 -0.22 -0.34 -0.01 -0.27 b -0.28 *      

SO2 -0.20 -0.06 -0.08 0.50 0.02 -0.16 0.21 -0.06 0.03 0.34 0.69 -0.05 0.03 -0.03 -0.11 0.08 -0.07 -0.07 0.70     

Temp 0.51 0.67 0.29 * 0.01 0.06 -0.25 * 0.11 0.09 0.08 -0.16 0.16 0.23* 0.23 * 0.29 * 0.23 * 0.37 0.29 * 0.24 * 0.11 0.07    

RH -0.16 -0.54 -0.33 * -0.43 -0.48 -0.22 -0.50 -0.50 -0.50 -0.20 -0.12 -0.31 * -0.37 -0.38 -0.32 -0.41 -0.36 -0.35 -0.09 -0.15 -0.33 *   

WS -0.34 -0.20 -0.12 -0.12 -0.30 * -0.15 -0.19 -0.30 * -0.28 * 0.12 0.24 * -0.13 -0.09 -0.10 -0.14 -0.05 -0.15 -0.15 0.26 * 0.23 * 0.10 0.06  

Precip -0.09 -0.15 -0.13 -0.23 * -0.17 0.80 -0.25 * -0.17 -0.19 -0.14 0.02 -0.15 -0.18 -0.15 -0.15 -0.16 -0.16 -0.14 0.03 -0.07 0.01 0.14 0.11 

Numbers in bold are significant at p<0.01 

Number asterisked are significant at p-value <0.05 
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Appendix E: Calculated values of Q and IM&IS from scaled residuals 

 

Table E1: Table of Q values 

Number of 

factors 

Qrobust Qtrue 

3 7037.09 11351.3 

4 5337.95 7835.88 

5 3098.69 3634.36 

6 2185.2 2390.44 

7 1577.53 1708.03 

8 1190.19 1294.45 

9 951.81 1010.5 

 

 

Table E2: Table of IM and IS values 

Number of 

factors 

IM IS 

3 4.180 4.980 

4 4.139 4.866 

5 0.644 2.346 

6 0.436 1.819 

7 0.207 1.608 

8 0.147 1.373 

9 0.107 1.318 
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Appendix F: Time series graphs of air pollutants 

 

 
Figure F1: Time series plot of GEM with date from July 2010 – May 2011 

 

 

 
Figure F2: Time series plot of GOM with date from July 2010 – May 2011 

 

 

 
Figure F3: Time series plot of PBM with date from July 2010 – May 2011 
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Figure F4: Time series plot of PM2.5 mass with date from July 2010 – May 2011 

 

 

 
Figure F5: Time series plot of Al with date from July 2010 – May 2011 

 

 

 
Figure F6: Time series plot of Si with date from July 2010 – May 2011 
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Figure F7: Time series plot of K with date from July 2010 – May 2011 

 

 
Figure F8: Time series plot of Fe with date from July 2010 – May 2011 

 

 

 
Figure F9: Time series plot of Zn with date from July 2010 – May 2011 
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Figure F10: Time series plot of SO2 with date from July 2010 – May 2011 

 

 

 
Figure F11: Time series plot of SO4

2- with date from July 2010 – May 2011 

 

 

 
Figure F12: Time series plot of NO3

- with date from July 2010 – May 2011 
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Figure F13: Time series plot of Ca2+ with date from July 2010 – May 2011 

 

 
Figure F14: Time series plot of Cl- with date from July 2010 – May 2011 

 

 

 
Figure F15: Time series plot of Na+ with date from July 2010 – May 2011 
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Figure F16: Time series plot of NH4

+ with date from July 2010 – May 2011 

 

 
Figure F17: Time series plot of Mg2+ with date from July 2010 – May 2011 

 

 

 
Figure F18: Time series plot of K+ with date from July 2010 – May 2011 
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Figure F19: Time series plot of Oxalate with date from July 2010 – May 2011 

 

 

 
Figure F20: Time series plot of Br with date from July 2010 – May 2011 
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Appendix G: PMF Outputs 

Table G1: Base run summary table for 5-factors 

Run # Q(Robust) Q(True) Converged # Steps Q(true)/Qexp 

1 3099.09 3634.46 Yes 666 3.259605408 

2 3098.82 3634.35 Yes 1071 3.259506702 

3 3098.96 3634.22 Yes 972 3.259390116 

4 3098.69 3634.36 Yes 1370 3.259515762 

5 3098.95 3634.41 Yes 1121 3.259560585 

6 3098.75 3634.23 Yes 968 3.259399176 

7 3098.81 3634.37 Yes 1228 3.259524584 

8 3098.97 3634.36 Yes 1189 3.259515762 

9 3098.95 3634.3 Yes 1160 3.25946188 

10 3098.85 3634.24 Yes 995 3.259407997 

11 3098.86 3634.35 Yes 973 3.259506702 

12 3098.95 3634.39 Yes 1144 3.259542704 

13 3098.86 3634.26 Yes 723 3.259426117 

14 3098.98 3634.28 Yes 982 3.259443998 

15 3098.96 3634.3 Yes 1153 3.25946188 

16 3099 3634.36 Yes 809 3.259515762 

17 3098.96 3634.37 Yes 1013 3.259524584 

18 3098.93 3634.34 Yes 836 3.259497643 

19 3098.83 3634.21 Yes 1045 3.259381056 

20 3098.96 3634.3 Yes 887 3.25946188 

 

Table G2: Factor Profiles for 5-factor solution (% of species sum)   
F1 F2 F3 F4 F5 

GEM 5 3 75 1 15 

GOM 9 0 58 1 31 

PBM 4 6 9 1 81 

SO2 9 2 1 87 0 

PM 28 23 37 7 6 

Al 77 2 16 2 3 

Br 11 0 67 0 22 

Fe 54 36 6 0 5 

K 71 0 24 0 5 

Si 90 6 0 1 3 

Zn 0 86 11 3 0 

NH4
+ 0 0 85 12 3 

Ca2+ 6 7 0 2 85 

Cl- 4 12 14 2 69 

Mg2+ 8 4 13 4 71 

NO3
- 8 6 10 0 76 

Oxalate 8 1 38 6 47 

K+ 10 0 35 3 52 

Na+ 5 4 16 2 73 

SO4
2- 0 1 86 13 0 

Factor 

name 

Crustal/soil dust Industrial  secondary aerosol and re-

emission+bromine source 

Coal 

combustion 

Road salt + 

biomass burning 



132 

 

Table G3:Regression diagnostics for 5-factors 
     

KS Test 

Species Intercept Slope SE r^2 Stat P Value 

GEM 0.001 0.398 0.001 0.146 0.163 0.027 

GOM 0.000 0.336 0.000 0.379 0.139 0.088 

PBM 0.000 0.915 0.000 0.981 0.191 0.005 

SO2 -0.116 1.112 0.463 0.987 0.333 0.000 

PM 0.054 0.942 0.994 0.803 0.178 0.012 

Al 0.002 0.940 0.012 0.970 0.211 0.001 

Br 0.001 0.178 0.000 0.147 0.282 0.000 

Fe 0.015 0.746 0.032 0.788 0.217 0.001 

K 0.000 0.914 0.012 0.886 0.163 0.027 

Si 0.002 0.951 0.017 0.985 0.149 0.055 

Zn 0.044 0.492 0.068 0.658 0.346 0.000 

NH4
+ 0.062 0.797 0.033 0.954 0.123 0.171 

Ca2+ 0.002 0.901 0.019 0.957 0.255 0.000 

Cl- -0.002 0.992 0.014 0.932 0.161 0.030 

Mg2+ 0.000 0.914 0.002 0.980 0.202 0.003 

NO3
- -0.005 1.016 0.022 0.978 0.283 0.000 

Oxalate 0.003 0.861 0.005 0.943 0.175 0.014 

K+ -0.001 1.003 0.003 0.960 0.193 0.005 

Na+ -0.002 0.999 0.013 0.965 0.257 0.000 

SO4
2- 0.202 0.763 0.113 0.950 0.135 0.106 

 

Table G4: Base run summary for 6-factor solution 

Run # Q(Robust) Q(True) Converged # Steps Q(true)/Qexp 

1 2185.34 2390.34 Yes 2235 2.357337236 

2 2185.32 2390.37 Yes 1760 2.3573668 

3 2185.45 2390.41 Yes 1103 2.357406378 

4 2185.34 2390.27 Yes 1170 2.357268333 

5 2185.28 2390.21 Yes 950 2.357208967 

6 2185.3 2390.33 Yes 1768 2.357327461 

7 2185.33 2390.35 Yes 1577 2.35734725 

8 2185.36 2390.36 Yes 2235 2.357357025 

9 2185.34 2390.36 Yes 1972 2.357357025 

10 2185.32 2390.35 Yes 1367 2.35734725 

11 2185.35 2390.35 Yes 1676 2.35734725 

12 2185.32 2390.36 Yes 1791 2.357357025 

13 2185.34 2390.34 Yes 1409 2.357337236 

14 2185.33 2390.29 Yes 980 2.357287884 

15 2185.31 2390.27 Yes 1140 2.357268333 

16 2185.36 2390.36 Yes 1768 2.357357025 

17 2185.2 2390.44 Yes 1983 2.357435942 

18 2185.28 2390.23 Yes 1010 2.357228756 

19 2185.34 2390.31 Yes 1288 2.357307673 

20 2185.3 2390.36 Yes 2281 2.357357025 
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Table G5: Factor Profiles for 6-factor solution (% of species sum)   
F1 F2 F3 F4 F5 F6 

GEM 41 5 0 5 49 0 

GOM 36 0 3 20 41 0 

PBM 10 3 0 75 13 0 

SO2 5 1 0 0 5 88 

PM 18 22 21 2 29 8 

Al 13 4 66 1 16 0 

Br 13 0 0 0 87 0 

Fe 6 31 52 5 4 2 

K 6 0 49 0 44 0 

Si 6 7 79 1 7 0 

Zn 0 79 4 2 4 11 

NH4
+ 78 11 0 3 0 7 

Ca2+ 8 4 3 84 0 1 

Cl- 5 7 0 57 28 3 

Mg2+ 13 3 3 67 11 2 

NO3
- 0 1 2 63 32 1 

Oxalate 39 5 6 47 0 2 

K+ 21 0 5 41 31 1 

Na+ 7 0 0 59 31 2 

SO4
2- 79 12 0 0 0 9 

Factor 

name 
Secondary 

aerosol and 

re-emission 

Industrial Crustal/soil 

dust 

Road salt+ 

biomass burning 

Bromine 

source 

Coal 

combustion 

 

Table G6:Regression diagnostics for 6-factors 
     

KS Test 

Species Intercept Slope SE r^2 Stat P Value 

GEM 0.001 0.521 0.000 0.285 0.130 0.132 

GOM 0.000 0.349 0.000 0.440 0.134 0.109 

PBM 0.000 0.942 0.000 0.981 0.177 0.013 

SO2 -0.027 1.029 0.211 0.997 0.340 0.000 

PM 0.176 0.927 0.868 0.838 0.161 0.030 

Al 0.002 0.941 0.012 0.971 0.203 0.002 

Br 0.001 0.276 0.000 0.270 0.283 0.000 

Fe 0.011 0.814 0.032 0.823 0.206 0.002 

K 0.004 0.846 0.007 0.945 0.137 0.097 

Si -0.001 0.995 0.013 0.992 0.142 0.076 

Zn 0.039 0.552 0.067 0.715 0.306 0.000 

NH4
+ 0.013 0.960 0.017 0.992 0.107 0.313 

Ca2+ -0.001 0.981 0.023 0.946 0.220 0.001 

Cl- 0.000 0.960 0.013 0.938 0.157 0.038 

Mg2+ 0.000 0.960 0.002 0.980 0.223 0.001 

NO3
- -0.001 0.998 0.016 0.988 0.211 0.001 

Oxalate 0.001 0.942 0.004 0.958 0.174 0.014 

K+ 0.000 0.972 0.003 0.971 0.121 0.187 

Na+ 0.001 0.950 0.010 0.978 0.162 0.029 

SO4
2- 0.092 0.895 0.077 0.982 0.130 0.130 
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Table G7: Base run summary for 7-factor solution 
Run # Q(Robust) Q(True) Converged # Steps Q(true)/Qexp 

1 1577.53 1708.04 Yes 2288 1.870799541 

2 1577.57 1708.03 Yes 2537 1.870788574 

3 1577.61 1708.03 Yes 2065 1.870788574 

4 1775.22 1916.98 Yes 1669 2.099649429 

5 1577.58 1708 Yes 3168 1.870755792 

6 1775.08 1916.94 Yes 1616 2.099605799 

7 1775.12 1916.95 Yes 2025 2.099616766 

8 1577.53 1708.03 Yes 2592 1.870788574 

9 1577.58 1708.01 Yes 1614 1.870766759 

10 1577.54 1708.07 Yes 3013 1.870832443 

11 1774.27 1918.12 Yes 1090 2.100898027 

12 1577.57 1708.03 Yes 2155 1.870788574 

13 1775.15 1916.93 Yes 1737 2.099594831 

14 1775.09 1916.92 Yes 1794 2.099583864 

15 1577.55 1708.03 Yes 2431 1.870788574 

16 1577.61 1708.05 Yes 1347 1.870810509 

17 1577.57 1708.01 Yes 2846 1.870766759 

18 1577.61 1708.01 Yes 1804 1.870766759 

19 1577.55 1708.04 Yes 1705 1.870799541 

20 1775.05 1916.88 Yes 1663 2.099539995 

 

 

Table G8: Factor Profiles for 7-factor solution (% of species sum)   
F1 F2 F3 F4 F5 F6 F7 

GEM 2 0 1 0 51 2 43 

GOM 0 4 17 0 42 0 37 

PBM 4 1 75 0 8 3 9 

SO2 1 0 0 88 4 0 6 

PM 13 21 1 8 22 11 25 

Al 2 66 0 1 7 12 11 

Br 11 14 7 0 45 0 23 

Fe 4 35 0 3 1 52 5 

K 3 58 0 0 25 3 12 

Si 1 74 0 1 0 24 0 

Zn 68 1 2 8 2 13 6 

NH4
+ 5 0 3 8 0 1 83 

Ca2+ 0 0 81 2 0 14 3 

Cl- 11 3 57 2 18 0 8 

Mg2+ 2 5 68 3 6 4 12 

NO3
- 4 3 60 1 28 4 0 

Oxalate 0 4 46 3 1 7 38 

K+ 0 5 39 2 29 3 22 

Na+ 4 4 61 2 19 0 10 

SO4
2- 6 0 0 9 0 0 84 

Factor 

name 

Zn  

source 

Crustal/soil 

dust 

Road salt+ biomass 

burning 

Coal 

combustion 

Bromine 

source 

Iron 

source 

secondary 

aerosol and 

re-emission 
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Table G9:Regression diagnostics for 7-factors 
 

    KS Test 

Species Intercept Slope SE r^2 Stat P Value 

GEM 0.001 0.650 0.000 0.532 0.133 0.113 

GOM 0.000 0.353 0.000 0.479 0.138 0.090 

PBM 0.000 0.952 0.000 0.983 0.191 0.005 

SO2 -0.037 1.036 0.145 0.998 0.330 0.000 

PM 0.268 0.909 0.854 0.837 0.143 0.074 

Al 0.001 0.965 0.012 0.970 0.180 0.010 

Br 0.001 0.221 0.000 0.216 0.258 0.000 

Fe 0.003 0.955 0.007 0.992 0.171 0.017 

K 0.001 0.942 0.009 0.927 0.194 0.005 

Si 0.000 0.984 0.011 0.994 0.168 0.021 

Zn 0.003 0.961 0.031 0.973 0.235 0.000 

NH4
+ 0.002 0.994 0.013 0.995 0.131 0.123 

Ca2+ 0.000 0.964 0.023 0.944 0.200 0.003 

Cl- 0.000 0.988 0.011 0.957 0.169 0.019 

Mg2+ 0.000 0.978 0.002 0.983 0.239 0.000 

NO3
- 0.002 0.976 0.014 0.990 0.156 0.038 

Oxalate 0.001 0.950 0.004 0.960 0.222 0.001 

K+ 0.001 0.951 0.002 0.977 0.137 0.094 

Na+ 0.000 0.977 0.009 0.979 0.212 0.001 

SO4
2- 0.048 0.946 0.052 0.993 0.162 0.029 
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Appendix H: PCA Outputs 

Table H1: Varimax rotated factor loadings with data set (5 factors) 

 PC1 PC2 PC3 PC4 PC5 Commu 

GEM 0.31 0.00 -0.10 0.88 0.01 0.88 

GOM 0.48 0.17 -0.02 0.71 -0.04 0.77 

PBM 0.97 0.04 -0.09 0.16 0.02 0.98 

PM2.5 0.05 0.62 0.53 0.07 0.49 0.91 

Al 0.07 0.97 -0.04 0.01 -0.01 0.96 

Br 0.19 0.28 -0.27 -0.06 0.56 0.51 

Fe 0.02 0.84 0.24 0.04 0.12 0.78 

K 0.24 0.92 -0.13 0.10 0.07 0.93 

Si 0.07 0.99 -0.03 0.00 -0.01 0.98 

Zn -0.06 -0.04 0.42 0.02 0.81 0.84 

NH4
+ -0.11 0.01 0.93 0.04 0.03 0.89 

Ca2+ 0.96 0.02 -0.10 0.12 0.13 0.97 

Cl- 0.96 0.04 0.00 0.11 0.15 0.96 

Mg2+ 0.98 0.13 -0.05 0.13 -0.02 0.99 

NO3
- 0.97 0.07 -0.16 0.12 0.05 0.99 

Oxalate 0.94 0.13 0.14 0.16 -0.07 0.95 

K+ 0.97 0.12 -0.10 0.14 -0.04 0.99 

Na+ 0.97 0.09 -0.12 0.12 0.02 0.98 

SO4
2- -0.20 0.00 0.93 0.01 0.08 0.91 

SO2 0.04 0.05 0.85 -0.18 0.02 0.77 

Eigenvalue 7.9 4.0 3.2 1.5 1.3  

% Var. Exp 39.7 20.1 15.9 7.4 6.5  

Commu (%) 39.7 60.0 75.7 83.1 89.5  

Factor name Road salt + 

Biomass burning 

Crustal/ 

soil dust 

Coal combustion 

+ agriculture 

Long-range 

transport of 

Hg 

Industrial   

Extraction Method: Principal Component Analysis.  

 Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 5 iterations. 
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Table H2: Varimax rotated factor loadings with data set (6 factors) 
 PC1 PC2 PC3 PC4 PC5 PC6 Commu 

GEM 0.32 0.01 -0.12 0.87 0.06 -0.07 0.88 

GOM 0.48 0.15 0.03 0.73 -0.11 0.09 0.80 

PBM 0.97 0.04 -0.08 0.16 -0.02 0.05 0.98 

PM2.5 0.06 0.63 0.47 0.05 0.52 0.12 0.92 

Al 0.06 0.96 -0.01 0.02 -0.10 0.14 0.96 

Br 0.17 0.21 -0.09 0.00 0.06 0.95 0.97 

Fe 0.04 0.87 0.15 0.01 0.26 -0.17 0.88 

K 0.23 0.90 -0.09 0.11 -0.05 0.20 0.93 

Si 0.07 0.98 -0.02 0.00 -0.06 0.07 0.98 

Zn -0.03 0.01 0.27 -0.02 0.94 0.04 0.97 

NH4
+ -0.12 0.00 0.97 0.05 0.06 0.02 0.95 

Ca2+ 0.96 0.02 -0.12 0.11 0.10 0.07 0.97 

Cl- 0.97 0.04 -0.02 0.10 0.13 0.06 0.96 

Mg2+ 0.98 0.13 -0.04 0.13 -0.05 0.03 0.99 

NO3
- 0.97 0.07 -0.16 0.12 0.01 0.05 0.99 

Oxalate 0.94 0.13 0.17 0.17 -0.10 0.02 0.96 

K+ 0.97 0.11 -0.08 0.14 -0.09 0.04 0.99 

Na+ 0.97 0.09 -0.11 0.12 -0.03 0.06 0.98 

SO4
2- -0.20 -0.01 0.95 0.01 0.13 0.01 0.96 

SO2 0.05 0.07 0.82 -0.19 0.16 -0.16 0.77 

Eigenvalue 8.8 4.1 2.9 1.1 1.0 0.9  

% Var. Exp 43.9 20.7 14.2 5.6 5.1 4.4  

Commu 

(%) 

43.9 64.6 78.9 84.4 89.5 93.9 
 

Factor 

name 

Road salt + 

biomass 

burning 

Crustal/ 

soil dust 

Coal 

combustion + 

agriculture 

Long-range 

transport of 

Hg 

Industrial  

 

Bromine 

source 

 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Varimax with Kaiser Normalization. 

 

a. Rotation converged in 6 iterations.  
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Table H3: Varimax rotated factor loadings with meteorological factors (6 factors) 
 PC1 PC2 PC3 PC4 PC5 PC6 Commu 

GEM 0.32 -0.02 -0.17 0.76 0.29 -0.03 0.80 

GOM 0.48 0.19 -0.03 0.75 0.05 0.06 0.83 

PBM 0.97 0.05 -0.09 0.16 0.01 0.01 0.98 

PM2.5 0.07 0.63 0.56 -0.02 0.43 -0.06 0.90 

Al 0.05 0.97 -0.06 0.02 -0.01 0.05 0.95 

Br 0.23 0.30 -0.11 -0.17 0.38 0.67 0.77 

Fe 0.01 0.84 0.21 0.02 0.11 -0.23 0.82 

K 0.23 0.91 -0.13 0.06 0.05 0.09 0.91 

Si 0.05 0.98 -0.06 0.01 -0.02 -0.01 0.97 

Zn 0.00 0.00 0.53 -0.15 0.65 -0.13 0.75 

NH4
+ -0.14 0.02 0.92 0.10 -0.01 0.06 0.87 

Ca2+ 0.97 0.03 -0.08 0.10 0.10 -0.01 0.96 

Cl- 0.97 0.05 0.02 0.08 0.11 -0.03 0.96 

Mg2+ 0.97 0.14 -0.05 0.14 -0.04 -0.01 0.99 

NO3
- 0.97 0.08 -0.16 0.10 0.04 -0.01 0.99 

Oxalate 0.93 0.15 0.13 0.20 -0.09 -0.01 0.95 

K+ 0.96 0.12 -0.11 0.15 -0.04 0.00 0.98 

Na+ 0.97 0.10 -0.11 0.12 0.02 0.01 0.98 

SO4
2- -0.21 0.01 0.92 0.06 0.03 0.05 0.91 

SO2 0.02 0.07 0.83 -0.09 -0.04 -0.13 0.71 

Temp 0.18 0.06 0.16 0.82 -0.36 -0.11 0.88 

RH -0.31 -0.55 -0.22 -0.29 -0.05 -0.06 0.54 

WS 0.00 -0.26 0.43 -0.25 -0.52 0.02 0.58 

Precip -0.15 -0.21 0.02 0.03 -0.25 0.76 0.71 

Eigenvalue 8.1 4.5 3.4 2.2 1.4 1.1  

% var. exp 33.7 18.6 14.2 9.1 5.6 4.8  

Cummu 33.7 52.3 66.6 75.7 81.3 86.1  
Factor name Road salt + 

biomass 

burning 

Crustal/s

oil dust 

Coal 

combustion + 

agriculture 

Re-emission Industrial 

source+ 

dispersion 

Bromine 

source 
 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 7 iterations. 
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Table H4: Varimax rotated factor loadings with meteorological factors (7 factors) 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 Comm 

GEM 0.34 -0.05 -0.10 0.65 0.07 0.50 -0.02 0.81 

GOM 0.47 0.17 -0.07 0.76 0.07 0.11 0.06 0.86 

PBM 0.97 0.04 -0.08 0.15 -0.01 0.04 0.02 0.98 

PM2.5 0.06 0.62 0.50 -0.01 0.49 0.11 -0.02 0.90 

Al 0.06 0.97 -0.01 0.01 -0.08 0.10 0.05 0.96 

Br 0.22 0.29 -0.16 -0.17 0.30 0.13 0.70 0.78 

Fe 0.02 0.84 0.19 0.05 0.16 0.03 -0.21 0.82 

K 0.24 0.91 -0.10 0.06 -0.01 0.11 0.11 0.92 

Si 0.06 0.98 -0.02 0.01 -0.06 0.06 0.00 0.98 

Zn -0.04 0.00 0.32 -0.08 0.88 -0.04 -0.07 0.89 

NH4
+ -0.12 0.01 0.95 0.09 0.08 -0.05 0.05 0.93 

Ca2+ 0.97 0.03 -0.10 0.09 0.10 0.05 0.01 0.96 

Cl- 0.96 0.05 -0.01 0.09 0.14 0.01 -0.01 0.96 

Mg2+ 0.97 0.13 -0.05 0.14 -0.04 0.01 0.00 0.99 

NO3
- 0.97 0.08 -0.16 0.10 0.01 0.05 0.00 0.99 

Oxalate 0.93 0.14 0.15 0.20 -0.07 -0.02 -0.01 0.96 

K+ 0.97 0.12 -0.08 0.14 -0.07 0.05 0.00 0.99 

Na+ 0.97 0.09 -0.10 0.10 -0.01 0.05 0.02 0.98 

SO4
2- -0.20 0.00 0.94 0.05 0.13 -0.06 0.04 0.95 

SO2 0.03 0.07 0.83 -0.08 0.10 -0.14 -0.14 0.75 

Temp 0.17 0.04 0.14 0.88 -0.22 -0.14 -0.13 0.90 

RH -0.27 -0.55 -0.05 -0.43 -0.31 0.24 -0.08 0.72 

WS -0.05 -0.23 0.19 -0.01 0.03 -0.87 0.01 0.86 

Precip -0.15 -0.21 0.06 0.04 -0.29 -0.11 0.73 0.71 

Eigenvalue 8.1 4.4 3.1 2.1 1.5 1.2 1.1  
% var. exp 33.8 18.4 12.7 8.9 6.1 5.1 4.8  

Cummu 33.7 52.1 64.9 73.8 79.9 84.9 89.7  

Factor name Road salt+ 

biomass 

burning 

Crustal/soil 

dust 

Coal 

combustion  

+ agriculture 

Re-

emission 

Industrial 

source 

Dispersion Bromine 

source 

 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 6 iterations. 

 

  



140 

 

VITA AUCTORIS 

NAME:   Morounfolu Adeyeye 

PLACE OF BIRTH: Ile-Ife, Nigeria 

YEAR OF BIRTH: 1984 

EDUCATION:  Moremi High School, Ile-Ife, Nigeria 

1996 - 2002 

 

Obafemi Awolowo University, Ile-Ife, Nigeria 

2003-2009 B.Sc. (Chemical Engineering) 

 

Obafemi Awolowo University, Ile-Ife, Nigeria 

2012-2014, M.Sc. (Chemical Engineering) 

 

University of Windsor, Ontario, Canada 

2017-2019 M.A.Sc. (Environmental Engineering) 


	Source Apportionment of Ambient Mercury at Flin Flon, Manitoba
	Recommended Citation

	tmp.1570745266.pdf.yM241

