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CHAPTER I. INTRODUCTION

1.1.  Organic Electronics and their Applications

People live in an electronic world, using electronic devices in their every day life such as
laptops, smartphones, digital cameras, cooking stoves and others. Due to the rapid technological
advances, the market of electronic devices is currently growing towards the wearable electronics.
One of the most interesting applications of these devices in a daily life are smart watches, fitness
bands, sensors, however, the limitation of these electronic devices is their softness to fit the human
body and move towards bioelectronics.! Therefore, the solution is the development of new organic
electronic devices, using organic materials which are promising candidates due to their intrinsic
softness, synthetic tunability for specific device applications with desired electronic and
mechanical properties.

The field of organic electronics has attracted much attention in the scientific community
and recent literature due to its large-area of applications. Nowadays, organic electronics see use in
many applications including smart phones, televisions, sensors, batteries, photodetectors, organic
lasers, devices which utilize light-emitting diode (OLED) displays among many others.??
Although they offer a plethora of applications, the most interest is focused on main three types:
OLED:s for displays and lighting, organic field-effect transistors (OFETs) and organic solar cells
(OSC) (Figure 1.1).

In recent years the major focus of research has been done towards potential future
applications of organic electronics. One of the growing and interesting area of research is
development of new generation of organic electronics devices with desired properties such as

flexibility, stretchability and softness that allow them to be bent, folded, twisted and stretched.
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Figure 1. 1. Most common applications in the field of organic electronics

1.2.  Organic Electronics in Comparison to Inorganic Electronics

Currently, most electronics devices are silicon-based. The main limitation of inorganic
electronics is their low tolerance to mechanical stress which makes them potentially unsuitable for
the development of flexible and stretchable electronic devices.* Not only do silicon-based devices
possess low mechanical compliance, they also have high manufacturing costs, complex
processing, small areas of fabrication that is not ideal for printed electronics.

These challenges have led to the increased development of organic electronics which
promise low manufacturing costs, simple processing, and the ability to be made flexible,

stretchable and solution-processed over large areas of fabrication (Figure 1.2.).
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Figure 1. 2. Comparison between characteristics of organic and inorganic electronics

The development of new organic electronic materials with better performance and desired
properties is a growing field of research. One novel feature of this new generation of organic
electronics is flexibility.> Flexible devices must have high strain tolerance and at the same time
high electronic performance which is unaffected by applied strain. It is important to realize that
the term flexible can mean a range of various deformations such as bendable, foldable, rollable,
permanently shaped, or non-breakable.®’

The history of flexible electronics is longer than one may expect. The development of
flexible electronics began in the 1960s. The first flexible solar cell arrays were made by shrinking
silicon wafer cells to around 100um and then assembling them on a plastic substrate to achieve
flexibility.® The first thin-film transistor (TFT) was reported in 1968. Brody and colleagues made
a TFT of tellurium on a strip of paper and subsequently designed TFTs on such flexible substrates

as polyethylene and anodized aluminum foil. Interestingly, the TFTs maintained their performance



while bent to a 1/16’’ radius. Moreover, they could be cut in two halves along the channel
directions and continued to function.>!® One major breakthrough was the discovery and
development of conductive polymers by Alan G. MacDiarmid, Alan J. Heeger and Hideki
Shirakawa who were awarded the 2000 Nobel prize in Chemistry.!

The main three types of materials required for organic electronics are insulators, conductors
and semiconductors.*® One type of materials utilized in organic electronics is insulators (quartz,
rubber) which do not allow the electric current to pass through them. Even though these materials
remain non-conductive, they are no less critical for the operation of several electronic devices. For
example, the dielectric material (glass, oxides of various metals) is a type of an insulator which
becomes polarised in the presence of the electric field and used in OFETSs to insulate the gate from
the rest of the device.'® Metals (silver, gold) are the best-known electronic conductors since it
requires very little energy for the electrons to enter the conduction band. The conductivity of
metallic films is around 10%-10° S/cm.® The key challenge of using conductors for the stretchable
and flexible electronic devices is that metal films are often found to be mechanically
inadequate.'®>'* This leads to the use of polymeric materials which naturally have some degree of
mechanical compliance and represent another type of materials in organic electronics as
semiconductors. One of the most used organic polymers in organic electronics is the polythiophene
derivative poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with the
conductivity greater than 1000 S/cm.*®

In general, the control of the band gap of the semiconducting polymers has attracted much
attention in the research of organic electronics and their use is growing towards the development
of flexible, stretchable and highly conductive electronic devices.!” Among other materials,

semiconducting conjugated polymers possess the advantages of low cost, light weight, solution



processability and having naturally some degree of mechanical compliance, thus providing the
opportunity to make the next generation of electronics devices.®

Despite all the progress, researchers continue to improve the synthesis of conjugated
polymers towards the use in organic electronics that will lead to better performing solar cells,
transistors, electronic displays and lights. The future researches aim to make flexible, stretchable

electronic devices with long lifetimes that are recyclable or even biodegradable.

1.3.  Semiconducting Conjugated Polymers

One of the main building blocks for organic electronics are semiconductors.” Polymers are
promising candidates for flexible organic electronics due to their low mechanical stiffness, large
area fabrication, low temperature processing (lower cost), and most importantly the ability to be
tuned for specific device applications.'®?°

Organic semiconducting materials are classified as small molecules or conjugated
polymers that have their backbone built through sp? hybridization. In such configuration n-bonds
are responsible for electronic properties of conjugated polymers since the
n-electron clouds are delocalized throughout the polymer chain over the entire structure which in
turn allows for fast charge-carrier movement along the polymer backbone.® The n-conjugation is
illustrated on the polyacetylene polymer in Figure 1.3.2:22 The most common conjugated polymers
in organic electronics are illustrated in Figure 1.4.23

The great breakthrough in the field of organic electronics was the ability to decrease the
band gap of conjugated polymers via alternating electron-rich (donor) and electron-deficient
substituents (acceptor) along the conjugated backbone of semiconducting polymer. Interaction of
the donor-acceptor building blocks enhances the nature of the double bond between the repeating

units which leads to the stabilization of a low band gap within the polymer backbone.?*%
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Figure 1. 3. Formation of the m-conjugation in polyacetylene polymer by the delocalization of n-
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Figure 1. 4. The chemical structures of most common conjugated polymers in organic electronics:
a) Polyacetylene (PA); b) Polythiophene (PT); c) Polypyrrole (PP); d) Polyisothianaphthene (PPy);
e)  Polyethelene-dioxythiophene  (PEDOT); f)  Poly(3-hexyl)thiophene(P3HT); q)
Polyparaphenylene vinylene (PPV); h) Poly(2,5-dialkyloxy)-paraphenylenevinylene; i)
Polyparaphenylene (PPP); j) Polyheptadiyne.

It is important to note that there are two kinds of extrinsic semiconductor: p-type (positively

charged carries -holes); n-type (negatively charged carriers -electrons). N-type semiconductors



exhibit lower carrier mobility and are found to be more sensitive to surrounding conditions,
especially to oxygen and humidity. As a result, the majority of semiconductors are p-type, but
n-type are also available.?® Pentacene is one of the most extensively studied p-type semiconductors
for OFETs and displays one of the highest mobilities of 1.5 cm?V-!s™ reported in the literature.?’
Among others, polythiophene?®, poly(3-hexylthiophene)?® and tetracene®® are widely used organic
semiconductors for OFETs applications. Various n-type semiconductors are based on
oligothiophenes. Facchetti et al reported the perfluorohexylsubstituted thiophene oligomers with
mobility as high as 0.24 cm?V-1s1.3

One of the main characteristics of semiconducting polymers is charge carrier mobility
which determines how fast the charge carriers move through a semiconducting material. In
conjugated polymers, the charge carries (electrons or holes) can move in two ways:
intramolecularly or intermolecularly. In the intermolecular charge transport manner
(Figure 1.5., way 1) the charge carriers are moving by n-electron delocalization along the polymer
backbone. In the intermolecular charge transport (Figure 1.5., way 2) the charge carriers are
moving across the n-n-stacking of the polymer backbones. It is found to provide the most sufficient
charge transport in semiconducting polymers, however, it is dependent on the effective
conjugation length of the polymer which is limited by the disorder along the polymer backbone
and the presence of chemical defects.®?

The researchers were mostly studying semiconducting conjugated polymers such as
polyacetylene,® polypyrrole or polythiophenes as the main components in OFETs.?*34 The charge-
carrier mobilities for OFETs have increased dramatically from less than 0.01 cm?/Vs in 2000 to
more than 1-3 cm?V-stin 2012 which is as high as amorphous silica.®® Later on, the performance

of conjugated polymer-based OFET reached even 21.3 cm?V1s236
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Figure 1. 5. Charge transport in a conjugated polymer: a) intramolecular; b) intermolecular.3?

Although polymeric semiconductors are naturally flexible, they are typically not highly
stretchable. A major challenge in developing flexible and stretchable semiconducting polymers is
enhancing their mechanical properties without affecting their charge transport mobility. The
competition between electronic and mechanical properties is dependent on the solid-state
morphology.®~% Salleo et al. describe the multiple morphologies that co-exist in a solid-state
conjugated polymer network.*® Charge carriers typically move faster in crystalline regions than in
amorphous regions in conjugated polymers because polymer chains adopt favourable n—= stacking
amongst the polymer chains in crystalline regions that result in high transport charge mobility,
however, this morphology is inadequate with respect to mechanical compliance (Figure 1.6a).

In contrast, the random polymer chain orientation in amorphous regions hinders
connectivity between conjugated backbones and leads to structural disorder which in turn limits
charge transport in high-mobility conjugated polymers (Figure 1.6c). Since highly-crystalline

conjugated polymers have proven to be inadequate for soft electronics applications and amorphous



morphology limits charge transport, the ideal morphology for stretchable semiconducting
polymers is somewhere in between amorphous and crystalline with balanced electronic and

mechanical properties. (Figure 1.6b).>°
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Figure 1. 6. Microstructure of conjugated polymer thin films. a) Semi-crystalline ordered domains
are favourable for good charge transport; b) semi-crystalline disordered aggregates, ideal
morphology for balanced electronic and mechanical properties; ¢) completely amorphous film
favorable for mechanical properties. Adapted with permission from Ref. 40. Copyright 2013

Springer Nature.



1.4.  Determination of the Electronic and Mechanical Properties of Conjugated

Polymers

1.4.1. Evaluation of the Electronic Properties

The charge carrier mobility of organic semiconducting polymers has been improving
tremendously over the past few years. A field-effect mobility as high as 21.3 cm?V-s has recently
been measured by Luo and co-workers.* It has been found that polymers with a conjugation, an
uninterrupted sequence of single and double bonds running through the whole molecule, are the
most successful candidates for conducting polymers. 142

Organic field-effect transistor is the main tool to probe the electronic properties of
semiconducting polymers.** Nowadays, reports with mobility higher than 1 cm?V-!s are common
for OFET device’s performance.**An OFET device consists of three terminals such as source,
drain and gate. It is also composed of a semiconducting layer which is deposited on top of the
dielectric layer.*® The active semiconducting material is connected to two terminals (source and
drain) and controlled at the third terminal (the gate) which is insulated from the rest of the device
by the dielectric layer. When the voltage is applied to the gate, charge carries are induced in the
dielectric-semiconductor interface, creating a conductive channel. If a negative potential is applied
to the gate, positive charges are formed at the interface between the semiconducting polymer and
the dielectric layer. Then, due to the potential between the source electrode and the drain electrode,
these positive charge carriers travel through the semiconducting layer, forming a p-type OFET

device (Figure 1.7).4647
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Figure 1. 7. Schematic illustration of an organic field-effect transistor device
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Figure 1.8. Schematic representation of four configurations of organic field-effect transistors: (a)
bottom-gate top-contact (BG/TC); (b) bottom-gate bottom-contact (BG/BC), (c) top-gate top-
contact (TG/TC), (d) top-gate bottom-contact (TG/BC) structures.
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The possible configurations of OFET devices are shown in Figure 1.8.% In terms of gate
configuration, (a) and (b) have bottom gate (BG) configurations, while (c) and (d) exhibit top-gate
(TG) configurations. In terms of contact electrodes, there are top-contact (TC) (Figure 1.8a and c)
and bottom-contact (BC) configurations (Figure 1.8b and d). The two most frequent structures are
bottom-gate top-contact (BG/TC) and bottom-gate bottom-contact (BG-BC) because of their
relatively simple fabrication. The advantages of bottom-gate configurations are commercially
available doped silicon wafer with top layer of silicon oxide which act as electrode and dielectric,
respectively. Moreover, the bottom-gate configurations is easier to fabricate comparing to the top-
gate configurations.*84°

Charge carrier mobility is the main characteristic of the electronic properties of
semiconducting polymers. It is the measure of the speed of charge carriers in a semiconductor
material when electric field is applied and generally refers to both electrons and holes charge
carriers called electron and hole mobility, respectively. Therefore, a great mobility value is
essential for the generation of highly conductive electronic devices. The charge carriers in a
semiconducting material are characterized by a velocity, v, hence, the mobility, p, is defined as a
coefficient of proportionality between the drift velocity, v, of a charge carrier and the applied
external electric field it experiences, E, where u = vE 1. Consequently, the units of charge carrier
mobility are cm? V151505 Another important parameter of OFET devices defines the turn-on of
the device which means the conducting channel only forms after the gate voltage is beyond, so
called threshold voltage. In other words, it is @ minimum gate-to-source voltage (Vesnn) that is

required to create a conducting path between source and drain terminals.>2°3
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1.4.2. Key Methods for the Evaluation of Mechanical Properties

One of the important parameters for the development of flexible and stretchable devices is
the mechanical compliance of semiconducting materials. Even though n-conjugated polymers are
already flexible, they are typically not stretchable which is why the research is focused on the
development of stretchable semiconducting materials with enhanced mechanical properties for the
next generation of electronics.>*

The main characteristics of the mechanical properties of semiconducting polymers are
glass transition temperature (Tg), degree of crystallinity, Young’s modulus or also called elastic
modulus, and crack onset strain. The Tgqis described as a phase transition at which polymer chains
have enough free volume to move relative to one another. It is very important characteristic since
above this temperature polymer chains behave like soft and rubbery materials that is essential for
their good mechanical properties. Tg is highly influenced by the effects of molar mass of
semiconducting polymers as well as their structure.®® As mentioned above the semiconducting
polymers exist in such morphologies in a solid state as crystalline, semi crystalline or amorphous
which affect their mechanical properties.*® The degree of crystallinity is a fraction of the ordered
domains in the polymer thin films. The most common method to measure the crystallinity of the
semiconducting polymers is X-ray diffraction.®®®” Another characteristic is Young’s modulus
which describes the resistance of semiconducting polymers to elastic deformation. The higher the
Young’s modulus is, the more rigid the polymer is. Organic semiconducting polymers have typical
modulus in a GPa range.®® Another parameter that describes the mechanical properties of
semiconducting polymers is crack onset strain (COS). It provides an important perspective of film

ductility and is a direct probe of stretchability.>®
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There are various methods to study the mechanical properties of semiconducting polymers.
Every technique has its own advantages and limitations and can lead to important inconsistencies
in terms of values and ranges. Therefore, it is crucial to get an overview of the different methods
and techniques used to measure the mechanical properties of materials in order to get accurate
values.

One way to examine the mechanical properties of t-conjugated polymers is measuring the

elastic modulus or so-called Young’s modulus by film-on-water tensile test (FOW).%

Camera
Linear stage Load cell

Figure 1. 9. Schematic illustration of pseudo free-standing thin-film tensile tester for measuring
mechanical property of floated ultrathin conjugated polymer films. Adapted with permission from
Ref. 60. Copyright 2018 John Wiley and Sons.

The FOW technique utilizes water as a surface with high surface tension of 73 mN m™ to
float thin films of semiconducting polymers. Once the dog-bone-shaped film is floated on the water
surface, it is attached to the load grips using small PDMS slabs that make van der Waals adhesion
with the load cell and the thin film. The tensile test was performed using motorized linear stage

equipped with a digital encoder to obtain stress-strain curves (Figure 1.9).%°%! This method
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possesses the advantage of free-standing thin film tests comparing to the substrate-supported
tests.5162

The obtained stress-strain curve is an extremely important measure of a material’s
mechanical properties, providing such critical features as elastic and plastic zones, the elastic
modulus, elastic limit or yield point, ultimate tensile strain, breaking stress or fracture point, and
toughness.>>® The elastic modulus of a film (E) is a slope of the stress-strain curve in the linear,
elastic zone.>

Another technique to measure the elastic modulus of conjugated polymer thin films is
tensile strain film-on-elastomer.%4®° Briefly, the spincoated thin film is transferred onto the
prestrained soft elastic substrate such as PDMS. Upon releasing the strain, the thin film on the
elastomeric substrate buckles to form of a wavy and wrinkled surface due to the energetic
competition and modulus mismatch between the film and substrate.%¢¢” The schematic illustration

of buckling of the thin film (red) upon releasing the strain of the substrate is shown in Figure 1.10.
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Figure 1. 10. The schematic illustration of tensile strain on film-on-elastomer of the thin film (red)
upon releasing the strain of the substrate, where d is the wavelength of the wrinkling instability,
hf is thickness of the thin film, Ef and Es are the modulus of the film and substrate, respectively.

Adapted with permission from Ref. 136. Copyright 2015 Springer Nature.
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Table B2. Parameters used for AFM-IR imaging of the polymer blends

Sample Scan IR Setpoint Integral Drive Wavenumber
Rate  Power Gain Strength (cm™?)
25% BPE 05Hz 65% 2.6V 0.1 0.28% 1660
50% BPE 0.5Hz 65% 2.8V 0.1 6% 1660
75% BPE 05Hz 65% 3.0V 0.10 10% 1660
90% BPE 0.5Hz 80% 11V 0.75 15% 1660

Figure B3. Atomic force microscopy images (height) of BPE/P(DPPTVT) blends containing 0 to
90 wt.% BPE at 10% strain before thermal annealing.
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Figure B8. Atomic force microscopy images (height) of BPE/P(DPPTVT) blends containing 0 to
90 wt.% BPE at 50% strain after thermal annealing.

a)

b)

s s

\' ﬁ'

[ — [ —

Abs. // Polarizer Abs. L Polarizer

[ [

I—_f"‘ Incident beam - Incident beam
v v

Stretching Stretching

Figure B9. Schematic diagram of polarized UV-vis characterization on stretched polymer blend
films with the polarization direction of light a) parallel and b) perpendicular to the stretching

direction.
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Figure B13. Polarized UV-vis spectra of BPE/P(DPPTVT) blended system with 75 wt.% BPE

stretched at different percent strains, with the polarization direction of light parallel (0°, red curve)

and perpendicular (90°, black curve) to the stretching direction.
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Figure B14. Polarized UV-vis spectra of BPE/P(DPPTVT) blended system with 90 wt.% BPE

stretched at different percent strains, with the polarization direction of light parallel (0°, red curve)

and perpendicular (90°, black curve) to the stretching direction.
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fragile freestanding thin film

Figure B16. Observations of a brittle freestanding thin film above 25 wt.% BPE obtained by Film-

On-Water tensile test.
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Figure B17. Wide-angle grazing incident X-Ray diffractogram (GIXRD) of a) P(DPPTVT),
b) P(DPPTVT) + 50 wt.% BPE, and c) P(DPPTVT) + 90 wt.% BPE.
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