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Abstract 

A new method for building bit-parallel polynomial basis finite field multipliers is 

proposed in this thesis. Among the different approaches to build such multipliers, 

Mastrovito multipliers based on a trinomial, an all-one-polynomial, or an equally-spaced-

polynomial have the lowest complexities. The next best in this category is a conventional 

multiplier based on a pentanomial. Any newly presented method should have complexity 

results which are at least better than those of a pentanomial based multiplier. By applying 

our method to certain classes of finite fields we have gained a space complexity as 

n2 + H - 4 and a time complexity as TA + ([ log2(n-l) ]+3)rx which are better than the 

lowest space and time complexities of a pentanomial based multiplier found in literature. 

Therefore this multiplier can serve as an alternative in those finite fields in which no 

trinomial, all-one-polynomial or equally-spaced-polynomial exists. 
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1 Introduction 

1.1 Motivation 

In the current age of information technology, while the internet is growing very fast in 

almost every aspect of life; electronic communication of very private and important data 

is a common task. Consequently, network security has become a primary demand for IT 

service providers and users. No matter what the application is, from sharing family 

pictures in a social network to sending important customer lists through a business email 

or checking your bank account balance online, information transaction should be done 

with a very high level of confidentiality. Secure transactions are even more vital when it 

comes to e-commerce, online money transactions or governmental information 

transactions such as social insurance numbers or tax returns. Almost all required network 

security services can be achieved by Cryptography [35]. 

Encryption is one common cryptography algorithm which means scrambling the data in a 

way that only authorized users with proper authorization (a necessary key) can 

unscramble it. Cryptography algorithms fall into two main categories: symmetric key and 

public key. 

Symmetric key cryptosystems rely on a key distribution center which provides a special 

and unique key to each user in each pair of communication. In this method the number of 
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required keys for a network grows very fast by increasing the number of users. Therefore, 

in large systems symmetric key cryptosystems encounter key management and key 

distribution problems. This problem led to the introduction of the public key cryptography 

by Diffie and Hellman in 1976 [3]. 

In a public key network, each user is assigned two special keys. One key is kept private 

while the other is known to all the other users in the network. Any message addressed to 

the user is scrambled with the user's public key. However, in order to unscramble this 

data, only the user's private key is applicable. Different methods have been introduced 

for public key. In 1978 Rivest, Shamir and Adleman [33] introduced the so-called RSA 

algorithm which is by far the most popular public key algorithm. About a decade later in 

1985 El-Gamal [4] introduced another technique in cryptography named after himself. At 

the same time Koblitz [16] and Miller [24] independently introduced the elliptic curve 

cryptography (ECC) where finite fields came into play. This method is based on the 

group of points on an elliptic curve (EC) over a finite field. 

Despite the fact that the vast majority of the products and standards that use public key 

cryptography for encryption use the RSA method, ECC is more efficient compared to 

RSA. This is because ECC can offer equal security with a far smaller key size, hence 

reducing processing overhead. Since the RSA standard key length has recently greatly 

increased, the issue of the key length has come more into attention, especially that the 

increase in key length has put a burden on e-commerce sites that conduct large number of 

secure transactions. This is leading to a vast replacement of RSA by ECC in many 

different security products in hardware and software. 

Elliptic curve cryptography (ECC) is based on the elliptic curve discrete logarithm 

problem [10]. EC calculation over a finite field is based on finite field addition, 

subtraction, multiplication, squaring and division amongst which multiplication is the 

most important operation to implement. 
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Although implementing cryptography algorithms in the software level is much easier, 

they are considerably slower compared to hardware implementations. This will 

effectively slow down its processing and increase the consumption of the valuable time of 

the main processor of the hosting system. On the other hand, the hardware 

implementation of a cryptosystem will result in faster processors and the opportunity to 

have larger key lengths. The advantages of these characteristics can be clearly seen where 

there is a large volume of secure transactions. Hence hardware implemented crypto-

processors result in a higher level of security with a better performance. 

Efficient hardware implementation of ECC systems highly depends on the efficiency of 

finite field multiplication. This is due to the fact that when calculating the speed of an 

elliptic curve processor, finite field multiplication is considered to be the most time 

consuming operation. Finite field addition (and in some systems squaring) is considered 

to be almost free compared to multiplication [5]. The importance of improving finite field 

multiplication algorithms provides the main motivation of this research. 

In this thesis a new efficient parallel finite field multiplier is proposed which can be used 

as an alternative for present methods of multiplication in hardware implementation of 

elliptic curve cryptosystems. 

Application of finite field multipliers is not restricted to elliptic curve cryptography. 

Before the introduction of ECC, finite fields had come into attention in coding theory and 

error detecting codes especially in Reed-Solomon encoders [30]. Finite field arithmetic is 

also used in combinatorial designs [38], and computer algebra [19]. This shows the 

extensive application of finite field multiplication algorithms. Nevertheless this thesis 

mainly focuses on the application of finite field in public key cryptography. 

1.2 Thesis Outline 

Chapter 2 gives an introduction to finite fields and the arithmetic within these fields. It 

briefly covers the mathematical background of the construction of finite fields and 
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explains different methods of multiplication. Various classes of finite fields are 

introduced and different methods of representing elements in finite fields are reviewed. 

Chapter 3 provides a comprehensive survey on the state-of-art technologies on building 

finite field multipliers. It explains different types of implementations of finite field 

multipliers and compares pros and cons of each method. It also provides different types 

of fields used in finite field multipliers and since this thesis proposes a parallel 

polynomial basis finite field multiplier all the similar existing multipliers are provided 

with their exact space and speed complexities. 

Chapter 4 introduces the new method of finite field multiplication. It provides complete 

hardware architecture for this multiplier. Also some recently introduced types of finite 

fields are reviewed and the new architecture of multiplier is applied to these fields. 

Finally it provides the results of this multiplier for those fields in terms of space and time 

complexity of the hardware. 

In the end, Chapter 5 presents the concluding remarks surrounding our proposed method, 

and suggests future work on this subject. 
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2 Mathematical Background 

2.1 Fundamental Concepts 

Groups, rings and fields are the fundamental elements of a branch of mathematics called 

abstract algebra. In this branch we deal with certain sets and their elements on which we 

can operate algebraically; meaning that by combining two elements of the set in several 

ways a third element of the set can be obtained. There are certain rules which control 

these operations. It is important to note that although the notations of these operations are 

usually similar to addition or multiplication; in abstract algebra we are not limited to 

ordinary arithmetical operations. 

Groups 

Definition 2.1 A group G; here denoted by {g, *}, is a set G together with a binary 

operation * on G such that the following properties hold: 

1. Closure; that is, for all a, b in G, a * b is in G 

2. Associativity; that is, for all a, b, c in G, a * (b * c) = (a * b) * c 

3. Unity element; there is an element e in G such that for all a in G, a * e = e * a = a 

4. Inverse element; for all a in G there exists a' in G such that a* a' = d * a = e 
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It is important to note that "*" is not necessarily "x" although it could be "x" or "+". 

Commutative Group 

If the group also satisfies 

5. For all a, b in G, a * b = b * a 

Then the group is called commutative or abelian. 

Finite Group 

If the group contains finite number of elements then it is called & finite group. The order 

of a group is the number of elements in the group. 

Cyclic Group 

Exponentiation in the group is defined as repeated application of the group operator. Here 

if a fixed element a exists in G in a way that every element in G is a power ak, then the 

group is called cyclic and element a is called the generator of the group. 

If the operation of the group is "+ " then the group is called additive and the unity 

element is represented as "0". If the operation of the group is "x", then the group is called 

multiplicative and the unity element is represented by " 1 " . 

Rings 

Definition 2.2 A ring R; here denoted by {R,+, x}, is a set R and two binary operations 

addition and multiplication in a way that the following properties are satisfied: 

1. R is a commutative group with respect to "+" 
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2. Closure for "x"; that is, for all a, b in R, a x b is also in R 

3. Associativity of "x"; that is, for all a, b, c m R, a x (b x c) = (a x b) xc 

4. Distributive laws for "x" over "+"; that is, for all a, b, c in R, 

ax(b + c) = a x b + a x c and (a + b)xc = axc + bxc 

Commutative Ring 

If the ring also satisfies 

5. For all a, b in R, a x b = b x a 

Then the ring is considered commutative. 

Integral Domain 

If a commutative ring satisfies the following axioms: 

6. Unity element for "x"; there is an element " 1 " in R such that for all a in R, 

a x 1 = lx a = a 

7. No zero divisors; if a, b in R and a x b = 0 then either a = 0 or b = 0 

Then it is called an integral domain. 

Fields 

Definition 2.3 A field F, which we denote by {F,+, x}, is a set of elements with two 

binary operations addition and multiplication such that the following properties are hold: 

1. F is an integral domain 

2. Multiplicative inverse; for all a in F there is an element a'1 in F such that 

a x a' = a'1 x a = 1; except for "0". 
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In other words, a field is a set in which addition, subtraction, multiplication and division 

is possible without leaving the set. Division is defined as a / b = a x (b'1) and subtraction 

is defined as a- b = a + (-b) in which -b is defined as additive inverse of b. 

Finite Field 

If the number of elements of the field is finite then it is called a finite field. 

2.2 Modular Arithmetic 

Dividing any integer a by any positive integer n will result in an integer quotient q and a 

remainder r, which is a positive integer. This relationship is demonstrated as: 

a = qn + r where 0 < r < n and q = [a/nj (2.1) 

In which [x\ is the largest integer less than or equal to x. The remainder r is often referred 

to as residue. 

"mod" Operator 

For an integer a, and a positive integer n; a modn is defined as the residue of a/n. 

Congruent Modulo 

Two integers a, b are congruent modulo n if a mod n = b mod n and it is written as: 

a = b mod n. 

Divisor 

If a mod b = 0 then b is called a divisor of a and it is written as: b\a. 
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Residue Class 

A Residue class is the set of all integers which are congruent modulo n. Each class is 

represented by the smallest non-negative integer in the class. Consider a set Z„ which 

contains all non-negative integers less than n. This set contains all the residue classes 

modulo n. For example Z3 = {0, 1, 2} shows all residue classes of n = 3. These classes 

are: 

[0] = {..., -9, -6, -3, 0, 3, 6, 9, ...} 

[1] = {...,-8,-5,-2, 1,4,7, 10, ...} 

[2] = {...,-7,-4,-1,2, 5, 8, 11,...} 

Reducing modulo n 

For each integer k, finding the smallest non-negative integer to which k is congruent 

modulo n is called reduction modulo n. 

By definition, the "mod n" operator maps all integers into Z„. This suggests the idea of 

performing arithmetic operations within the confines of this set. This type of arithmetic is 

called modular arithmetic and it has the following basic properties: 

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n 

2. [(a mod n) x (b mod n)] mod n = (a x b) mod n 

If we perform this modular arithmetic only on integers in Z„, with the following 

properties, it can be seen that Zn is a commutative ring with an identity element for 

multiplication: 

1. Commutative laws: 

i. (a + b) mod n = (b + a) mod n 

ii. (a x b) mod n = (b x a) mod n 
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2. Associative laws: 

i. [(a + b) + c] mod n = [a + (b + c)] mod n 

ii. [(a x b) x c] mod n = [a x (b x c)] mod n 

3. Distributive laws: 

i. [a x (b + c)] mod n = [(a x b) + (a * c)] mod n 

ii. [a + (b x c)] mod n = [(a + b) x (a + c)] mod n 

4. Unity elements: 

i. (0 + a) mod n = (a + 0) mod n = a mod n 

ii. (1 x a) mod n = (a x ]) mod n = a mod n 

5. Additive inverse: 

i. For each a in Zn there exists b in Zn such that a + b = 0 mod n 

An example would clarify this better. Considering Z<>, the elements of this field are: 

{0, 1, 2, 3, 4, 5}. Figure (2.1) shows the arithmetic operations in Z^: 

0 

0 

1 

1 

2 

2 

2 

3 

4 

3 

3 
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1 

2 
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4 

5 

-a 
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5 
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3 

2 

1 

a-i 

1 

—_ 

5 

Figure 2.1 Arithmetic Operations in Zf, 

It can be seen that multiplicative inverse doesn't exist for all elements of Z„. The reason 

behind that comes from a concept called relatively prime. Two integers are considered to 

be relatively prime {co-prime) if their only common positive integer factor is 1. For all a 

in Z„, a has a multiplicative inverse in Z„ if and only if a and n are relatively prime. In the 
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above example 1 and 5 had a multiplicative inverse in Ze but 2, 3 and 4 didn't because 

they have common factors other than 1 with 6 which are 2, 3 and 2 respectively. 

It can be concluded from the above concept that in order to have a multiplicative inverse 

for all elements of Z„, n should be co-prime to all numbers in the set. This leads to the 

conclusion that n should be a prime number. So for a prime number/?, all elements of Zp 

have a multiplicative inverse within the set. This is the basic concept of finite fields. 

2.3 Finite Fields 

In early 19th century, French mathematician Evariste Galois introduced finite fields, 

however they did not come into attention until 1960's when coding methods were 

developed. But the introduction of elliptic curve cryptography in 1985 made finite fields 

very popular. Finite fields play a crucial role in many cryptographic algorithms especially 

in ECC. 

It can be shown that the order of a finite field must be a power of a prime/*", where p is a 

prime number and n is a positive integer. The finite field of the order p" is usually 

denoted as GF(pn); GF stands for Galois field in honour of the French mathematician. 

There are two different types of finite fields: 

• Ground Fields, GF(p); where n = 1 

• Extension Fields, GF(pn) 

We will talk about the ground fields in this section. Extension fields will be discussed in 

section 2.5. 

As mentioned before a set Z„ together with modular operations is a commutative ring. We 

also saw that if n is a prime number then all the non-zero elements in the set Z„ have a 

multiplicative inverse within the set. So according to the definitions in section 2.1, set Zp 
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together with modular arithmetic operations makes a field. Since the number of elements 

in this field is finite, Zp is a finite filed: 

GFfp) = Zp (2.2) 

As an example, arithmetic operations GF(5) are depicted in figure (2.2): 
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Figure 2.2 Arithmetic Operations in GF(5) 

The simplest finite field is GF(2). This field has particular importance since it is used to 

built extension fields GF(2"), with n as a positive integer. Extension fields of form 

GF(2n) are very important in implementing cryptographic algorithms in computer 

hardware. Arithmetic operations in field GF(2) are summarized as follows: 

+ 

0 

1 

0 

0 

1 

1 

1 

0 

X 

0 

1 

0 

0 

0 

1 

0 

1 

a 

0 

1 

-a 

0 

1 

It can be seen that addition in this field is equivalent to the XOR operation, and 

multiplication is equivalent to the AND operation. Another important property is that 

since the additive inverse of each element in this field is the element itself, subtraction is 

equivalent to addition. In other words for all a, b in GF(2), a-b = a + (-b) = a + b. 

2.4 Polynomials and Finite Fields 

In elementary algebra a polynomial is regarded as an expression of the form: 

12 



fix) = y atx
l = anx

n + an_1x
n~1 + —h a-^x1 + a0 

1=0 

Here, n is the degree of the polynomial, ais are coefficients, and x is viewed as a variable. 

Since we are usually not interested in evaluating a polynomial for a particular value of x 

in abstract algebra, we refer to it as the Indeterminate. 

Constant Polynomial 

When n = 0, the polynomial is called a constant polynomial which is actually only a 

coefficient ao. 

Monic Polynomial 

For a polynomial of degree n, when a„ = 1, the polynomial is called a monic polynomial. 

In general, coefficients of a polynomial belong to a specific set. If this set is a ring, then it 

can be shown that the polynomials over this ring form a polynomial ring. Basic 

polynomial arithmetic includes the operations of addition, subtraction and multiplication. 

Addition in this polynomial ring is defined as: 

A(x) = y atx
l and B{x) = y biX1 

i=Q i=o 
n n 

CO) = A(x) + B(x) = V q x ' = J'fai+bdx1 
(2.3) 

i=0 i=0 

Note that even if A(x) and B(x) are not of the same degree, this formulation is correct 

considering that the polynomial with the smaller degree would be filled with 0 

coefficients. 

Likewise, multiplication in this ring is defined as: 
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IL III 

A(x) = y atx
l and B(x) = y btx

l 

i=o i=o 
n+m 

C(x) = A(x) x B(x) = V ckx
k 

(2.4) 

fe = 0 

where 

2^ aibJ ck = 
i+j=k (2.5) 

0<i<n;0<;'<77i 

Subtraction in this ring is defined like addition using the additive inverse of the 

coefficients. Division can also be defined in this polynomial ring if the set of coefficients 

is a field instead of a ring. Note that this division will result in both quotient and 

remainder, and since there isn't a multiplicative inverse for any polynomial in this ring, 

these polynomials do not form a field: 

it in 

A(x) = y atx
l and B(x) = y btx

l 

i=0 i=0 

A(x) r(x) (2.6) 

Considering n>m, the degree of q(x) is m - n, and the degree of r(x) is less than or equal 

to m — 1. 

Polynomials over Zp 

As mentioned in the previous section set Zp forms a finite field, so division can be defined 

for polynomials over Zp or generally speaking over prime finite fields. This is the basis of 

forming extension finite fields GF(p"). For cryptographic applications, polynomials over 

GF(2) are of most interest. As we will show later these polynomials can be easily stored 

as binary numbers in computer memory. Also addition and multiplication on these 
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polynomials is easily implemented by logical XOR, and AND gates. Here is an example 

of these polynomials. Note that the coefficients here are either 0 or 1: 

A{x) = xs + x3 + x2 + 1 

B{x) = x4 + x2 + 1 

Addition: 

A(x) + B(x) = xs + x4 + x3 + x2 + x2 + 1 + 1 = x5 + x4 + x3 

Subtraction: 

A(x) - B{x) = xs - x4 + x3 + x2 - x2 + 1 - 1 = xs + x4 + x3 

Multiplication: 

A(x) x B{x) = x9 + x7 + x6 + x4 + x7 + xs + x4 + x2 + x5 + x3 + x2 + 1 

= x9 + x6 + x5 + x3 + 1 

Division: 

A(x) _ xs + x3 + x2 + 1 _ x2 + x + 1 

B{x) ~ x4 + x2 + 1 ~X x4 + x2 + 1 

Irreducible Polynomial 

A polynomial P(x) over a field is considered irreducible if P(x) = A(x) x B(x) implies that 

either A(x) or B(x) is a constant polynomial. In other words P(x) is irreducible if it cannot 

be expressed as a product of two other polynomials over the same field and only allows 

trivial factorizations. Irreducible polynomials are also called prime polynomials as an 

analogy to prime numbers. 

7 7 

Example: P(x) = x - 2 over the field of rational numbers is irreducible but P(x) = x - 2 = 

(x + <2) (x - <2) over the field of real numbers is indeed reducible. 
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2.5 Extension Finite Fields 

Let F be a field. A subset K of F which is a field under the operations of F is called a 

subfield of F. In this context, F is called an extension field of K. For example the set of 

complex numbers is an extension field for the set of real numbers. With the help of 

polynomial arithmetic and irreducible polynomials, extension fields exist for finite fields 

as well. 

Earlier in this chapter, we mentioned that the order of a finite field must be of the form 

p", in which p is a prime and n is a positive integer. We found that when n = 1 we have a 

prime finite field which is the set Zp and with all the operations performed modulo p, all 

the axioms for a field is satisfied. But as we know, set Zpn with operations modulo p" 

does not make a field because, as we mentioned before, since p" is not a prime number 

we cannot find a multiplicative inverse for all elements of the field. 

Modular Polynomial Arithmetic 

As mentioned before, the set of all polynomials over a field develops a ring which allows 

division within the set. Considering the set S of all polynomials of degree n-1 or less over 

the finite field GF(p), each polynomial has the form 

71 

f(x) — y a.iXl = anx
n + an_xx

n~x + —h arx
x + a0 

i=o 

Where 

at £ { 0 , l , - , p - l } 

The total number of distinct polynomials within this set is p". Based on the following 

definition of arithmetic operations, set 5" becomes a finite field: 
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1. Arithmetic on coefficients is performed modulo p. 

2. Arithmetic on polynomials is performed modulo some irreducible polynomial 

P(x) of degree n. 

It is important to note that this polynomial modular operation only happens when 

multiplying. When performing addition, the degree of the result will never exceed n -1 so 

there is no need for reducing modulo P(x). However in the case of multiplying, the result 

can have a degree of at most 2n - 2. Hence, for the results that have a degree more than 

n- 1, reduction is necessary. 

It can be shown that the set of residues modulo P(x) of degree n consists of p" elements 

which are all polynomials of degree n - 1 or less. So with analogy to integers we can 

write S = Zp(Xj. This set satisfies all the axioms of a finite field so as an extension finite 

field we have: 

GF(pn) = S = ZpW (2.7) 

When implementing encryption algorithms in computer hardware, we usually deal with 

finite fields of form GF(2"). The reason is that any polynomial in this field can uniquely 

be represented with a binary number, because the coefficients of the polynomials in this 

field are either 0 or 1. Also each polynomial here represents an integer number within the 

range 0 to 2" - 1. From now on we only refer to finite fields of form GF(2n) because of 

their application in cryptographic hardware. 

Consider GF(23) with Irreducible polynomial P(x) = x3 + x2 + 1. This field has 8 

elements which are: 
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0 

1 

X 

x + 1 

x2 

x 2 + l 

x2 + x 

x2 + x + 1 

000 

001 

010 

Oil 

100 

101 

110 

111 

0 

1 

2 

3 

4 

5 

6 

7 

Addition and multiplication in this field is illustrated in the following tables: 

0 

1 

X 

x+ 1 

X2 

X2 + l 

x2 + x 

X2 + X + 1 

000 

001 

010 

O i l 

100 

101 

110 

111 

0 

000 

0 

1 

001 

1 

010 

2 

x+ 1 

O i l 

3 

xz 

100 

4 

x2 + l 

101 

5 

X2 + X X2 + X + 1 

110 111 

6 7 

0 1 

0 

2 

3 

0 

3 

2 

1 

0 

4 

5 

6 

7 

0 

5 

4 

7 

6 

1 

0 

6 

7 

4 

5 

2 

3 

0 

7 

6 

5 

4 

3 

2 

1 

0 

Table 2.1 Addition in GF(23) 

x 2 + 1 

X2 + X 

X2 + X + 1 

X 

000 0 

001 

010 

O i l 

100 

101 

110 

111 

0 

000 

0 

1 

001 

1 

010 

2 

x + 1 

O i l 

3 

x2 

100 

4 

Table 2.2 Multiplication in GF(23) 
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x 2 + 1 

1 0 1 

5 

X2 + X Xz + X + 1 

110 111 

6 7 

0 0 

1 

0 

2 

4 

0 

3 

6 

5 

0 

4 

5 

1 

7 

0 

5 

7 

2 

3 

6 

0 

6 

1 

7 

2 

4 

3 

0 

7 

3 

4 

6 

1 

5 

2 



A 

0 

1 

X 

x + 1 

X2 

x2 + l 

X2 + X 

X2 + X + 1 

000 

001 

010 

Oil 

100 

101 

110 

111 

0 

1 

2 

3 

4 

5 

6 

7 

a-1 

— 

1 

6 

4 

3 

7 

2 

5 

— 

001 

010 

Oil 

100 

101 

110 

111 

— 

1 

X 

X + 1 

X2 

x2 + l 

x2 + x 

X2 + X + 1 

Table 2.3 Multiplicative Inverse Elements in GF(23) 

2.6 Basis in Finite Fields 

In the previous example we represented field elements as a polynomial of degree less 

than or equal to 2. But there are other ways to represent the field elements. In general, 

any element a of a finite field GF(2") can be represented as: 

a = a0/?0 + a1/?1 + - + an_1/?n_1 (2.8) 

where at 6 GF(1) and fa E GF(2") for 0 < i < n - 1 

The set {/?», Pi, ..., /?„./} which contains n linear independent elements is the basis of the 

field [23]. There are different types of basis for finite fields. Some of the most important 

types are: 

• Polynomial Basis 

• Normal Basis [31] 

• Dual Basis [25] 

• Triangular Basis [11] 

• Weakly Dual Basis [39] 

• Redundant Representation [40] 

• Shifted Polynomial Basis [29] 
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In the previous example, elements of the finite field were represented in polynomial 

basis. Here we give a brief review to polynomial basis. Some of the other bases are 

discussed in the next chapter. 

Polynomial Basis 

Consider a finite field GF(2") with an irreducible polynomial f(x). If a be a root of this 

irreducible polynomial, then the set {1, a, a2, ..., an"'} forms a polynomial basis. In 

polynomial basis representation, any element a of the field is represented as: 

n - l 

a = an_1a
11~1 + a n _ 2 a n _ 2 H 1- ata + a0 — J ata

l 

(2.9) 
1 = 0 

It should be noted that since we are not interested in evaluating a for a specific value of a, 

other variable symbols can be used instead of a too. As you have mentioned in the 

previous example we represented the elements of GF(23) as aix2 + ajx + ao, but by x we 

mean the root of the irreducible polynomial. 

2.7 Finite Field Multiplication in Polynomial Basis 

Consider a Finite field GF(2") with the irreducible polynomial/*) as: 

n - l 

f(x) = xn + Yjfix
i + l 

where/; E GF{2) 

(2.10) 
i = i 

Consider a and b as two elements of this field. By employing polynomial basis we have: 

n - l n - l 

A(x) = y atx
l and B(x) y btx

l 

i=0 i=o 
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The multiplication operation is then defined as: 

n - 1 

C(x) = A(x)B(x)modf(x) = V q x ' 

i=0 
(2.12) 

This operation is performed in two steps: 

1. Polynomial multiplication 

2. Reduction modulo irreducible polynomial 

Step 1: 

In this step A(x) is multiplied by B(x) resulting in D(x), considering the polynomial 

multiplication rules mentioned in section (2.4): 

2n-2 

D(x) = A(x)B(x) = V dtx1 

1 = 0 
(2.13) 

The coefficients ofD(x) are calculated as follows: 

( _L 

dt = { 

y cijbi-j for 0 < i < n - 1 
;'=0 
n - l 

2 ^ ajbi_j fc for n < i < 2n — 2 
yj=i-n+l 

This polynomial operation can be represented in a matrix form as: 

(2.14) 

D(2n-I)xl - M ( 2 n - l ) x n B (2.15) 
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Where D is the coefficient column vector of D(x), B is the coefficient column vector of 

B(x), and M is the Multiplication Matrix which contains coefficients of A(x) with the 

following form: 

% - 2 

n-l 

d„ 

l*1„_-> 

a. 

a n-l 

0 

0 

0 

0 0 

an 

a„ "*n-l 

0 0 

0 

an 

0 

0 

0 

0 

0 

o0 

a. 
a. 

2. 

a? 

a„-i 

0 

0 " 

0 

0 

0 

a0 

a. 
1 

a2 

a„-2 

an-\_ 

X 

h 
\ 

b2 

K2 
h . 

L" n~i _ 

(2.16) 

Step 2 

The result of the previous step was the polynomial Dfx) which obviously has a degree 

bigger than n — 1. Therefore it needs reduction. By reduction, we want to reduce the 

degree ofD(x) from 2n - 2 to n - 1. This reduction process is defined as follows: 

C(x) = D(x)mod f(x) 

n-l 

= y dtx
l mod f{x) 

i=0 

n-l n-2 

(2.17) 

y dtx
l+y dk+nx

k+n mod f(x) 
! = 0 fe=0 

It is clear from the above equation that the reduction step is only performed on the 

elements of D(x) which have a power greater than n. 

Here a Transfer Matrix, T(n.1)Xn, is defined in a way that: 

22 



" x" ' 

x"+l 

x2-3 

_x2-2_ 

= Tx 

V~ 
n-2 

X 

X 

1 

(2.18) 

k+n Clearly the role of this matrix is to find the residue of each x ", for 0 < k < n-2, modulo 

f(x).The entries of this matrix are either " 1 " or "0", and the form of this matrix directly 

depends on the irreducible polynomial. As an example, consider finite field GF(25) with 

the irreducible polynomial/^ = x5 + x2 + 1. Consider a as a root off(x). We have: 

ab + a1 + 1 = 0 => a5 = a1 + 1 (2.19) 

Note that since we are in finite field GF(2n), -a5 = a . Multiplying both sides of (2.19) by 

a consequently, will result in: 

(ab — as + a 
la7 = a4 + a2 

(a8 = a5 + a3 = a2 + 1 + a3 (2.20) 

And matrix T is built as: 

0 0 1 0 1 

0 1 0 1 0 

1 0 1 0 0 

0 1 1 0 1 

So by using (2.18) we can write: 

x*+"mod/(x) = 5 X X " y -
7=0 

(2.21) 
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And by substituting (2.21) in (2.17) we have: 

n - l n - 2 n - 1 

C(x) = ^ diX1 + ^ dn+k ]T t^-J-1 

i=0 fe=0 ;'=0 

n - l n - l n - 2 (2.22) 

"•n+ktk,n-j-lx 

i=0 ;'=0 k=0 

Hence, the final result is calculated. 

2.8 Multiplier Architecture and Complexity 

Hardware realization of (2.16) and (2.22) leads us to an actual circuit which is capable of 

performing finite filed multiplication. This circuit will receive coefficients of two 

elements of the finite field, a and b, at the input and gives the coefficients of c at the 

output. Since our finite field is of the form GF(2"), the operations on the coefficients are 

performed in GF(2). Therefore the multiplication operation is realized as a 2-input AND 

gate, while the addition operation is realized with a 2-input XOR gate. 

In different hardware architectures for finite field multipliers, the important factor is to 

minimize the complexities. By complexity we mean two things: 

• Space Complexity 

• Time Complexity 

Space complexity is the total number of gates used in the hardware realization of the 

multiplier. Since we just use two types of gates; i.e. 2-input AND gates, and 2-input XOR 

gates, space complexity is expressed in terms of the total number of these two gates. 

Time complexity is the actual delay of the circuit. In other words, if the two inputs a, b be 

present at time t0, the output will be ready at time t0 + tdeiay The source of the delay in the 
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circuit is the delay of the gates used in circuit. Again, since we just have two types of 

gates in the circuit, time complexity is expressed in terms of the delay of a 2-input AND 

gate, TA, and the delay of a 2-input XOR gate, Tx. 

When realizing the circuit for (2.16), due to the shape of matrix M we need n AND gates 

and (n - 1)' XOR gates. All of the AND operations can be done in parallel so the total 

delay of the AND gates would be one TA. The biggest XOR chain happens when 

realizing (ao a; ... a„.i) (bob/ ... b„.i) . This operation needs n - 1 XOR gates. By using a 

binary tree structure, the total delay of this operation would be \ log 2 «- l |. Space and 

time complexity of realization of (2.22) directly depends on the form of the irreducible 

polynomial of the field and we will discuss it in the next chapter. 
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3 An Overview of Finite Field Multipliers 

In this chapter we give a brief overview of the state of the art research in the field of finite 

field multiplication. 

Finite field multipliers can be categorized based on their hardware architecture into three 

types: 

• Parallel Multipliers 

• Serial Multipliers 

• Hybrid Multipliers 

Bit parallel (or full parallel) finite field multipliers are the main subject of this thesis. In 

these multipliers, inputs and outputs are presented at the input ports in parallel at once. 

The output of the multiplier is ready at the output port after some delay. But no clock 

cycle is needed for performing multiplication operation. 

On the other hand, bit serial multipliers receive the input bits in serial, and also perform 

the multiplication operation serially. So the output will be ready after some clock cycles, 

bit by bit. Hybrid multipliers can receive the inputs serially, but they may perform the 

multiplication operation in parallel for a word size of inputs. 
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In this chapter we first thoroughly review the best bit parallel finite field multipliers. 

Then we will briefly review some serial multiplier architectures. 

3.1 Parallel Finite Field Multipliers 

One of the most important contributions to this field of research is the work of Mastrovito 

in [21]. In the previous chapter we showed the actual multiplication of two elements in a 

finite field of form GF(2n) regarding the polynomial basis. That method is called 

conventional multiplication and has two steps: the first step is multiplying two 

polynomials and the second step is reducing the result of the polynomial multiplication 

by the irreducible polynomial. On the other hand, Mastrovito has introduced another 

method in [21] which has been called mastrovito multiplier in literature. Mastrovito 

multiplier combines those two steps in just one matrix multiplication. The whole concept 

of mastrovito multiplier is to find a matrix M (later called matrix Z) which satisfies the 

following equation: 

C = MB (3.1) 

where 

M = 
J0,0 ' " J0,n-1 

/ n - 1 , 0 ••" V n - l , n - l 
(3.2) 

The entries of matrix M depend on the coefficients ofA(x) and on the coefficients of the 

T matrix as follows: 

rat for v' = 0 and 0 < i < n — 1 

l,J ' u(i — j)at^j + y tj_1_kian^1_k for 1 < j < n — 1 and 1 < i < n — 1 
fe = 0 

(3.3) 

27 



In the above formula u is a step function defined as: 

u ( t ) = to t < o (3-4) 

It is important to note that although mastrovito multiplier is referred to as a one step 

multiplication method considering the conventional two step method, but it also has two 

steps itself. The first step is to build up the M matrix, and the second step is to perform 

the matrix multiplication. Mastrovito multiplier has been used as the base of many 

efficient finite field multiplication methods since it was presented. 

Another important contribution in this field was the work of Paar in [27]. Paar combined 

the conventional multiplier with Karatsuba-Ofman algorithm (KOA) in order to gain 

more reductions in space complexity. KOA was first introduced in [14] as a method for 

multiplying large integers. KOA is a divide and conquer form algorithm that divides the 

operands into two parts with less number of digits (half number of digits) and forms the 

final result with the help of the product of these parts. A good explanation of KOA 

algorithm can be found in [15]. This idea can directly be applied on polynomial basis 

representation of finite fields since each element can be represented by the coefficients 

which are in the field of GF(2); i.e. {0,1}. Therefore the representation of the field's 

elements would be a string of bits. 

Regarding the conventional method of multiplication, KOA is a method for improving 

the first step. Applying KOA to polynomial multiplication would be recursive if the 

degree of the polynomials is n - 1 and n is a power of 2. Let's consider two elements a 

and b in a finite field GF(2n): 

A(x) = an^xx
n~1 + —I- atx + a0 

B(x) = bn^x71'1 + --- + b1x + b0 

Immediately we can rephrase A(x) and B(x) as below: 
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- / - - 1 \ / - - 1 \ -
A(x) = x2 I an_1x2 H h am\ I + I a<n_\x2 +—\-atx + a0\ — x2AH + AL 

— I —-1 \ / —-1 \ 21 
B(x) = X2 \bn_xX2 + ••• + brn\ J + \btn_ NX2 + ••• + fc1X + fe0J = X 2 S H + S L 

(3.5) 

Therefore with this new notation, we can change the method of multiplying those two 

polynomials, from the conventional multiplication method, which involves multiplying 

each element in A(x) to all the elements in B(x), to a new method as below: 

A(x)B(x) = (xn2AH + AL) (xn2BH + BL) 

(3-6) 
= xnAHBH + X2{(AH + AL)(BH + BL) - (AHBH + ALBL)} + ALBL 

It is obvious that subtraction in the second term is the same as addition since we are using 

the fields of characteristic 2. The gate complexities for conventional method as 

mentioned in chapter 2 are: 

(#AND=n2 

\#XOR= (n-1)2 ( ' 

But the corresponding complexities for the new method are: 

#AND = -n2 

3 ( 3 - 8 ) 
l#XOR = - n 2 + n - l 

4 

Further reductions can be gained by applying the same method on the polynomial 

multiplications: AHBH, Ajfiu a nd (AH + AL)(BH + BL). It is obvious that this procedure of 

splitting polynomials can be applied recursively in i steps, where /' = log2 n. It has been 

mentioned in [27] that the total space complexity would be: 

WXOR = 6nl°^3 - 8n + 2 { ' } 

29 
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The method of Parr in [27] was widely used later for building sub-quadratic space 

complexity multipliers. 

Fenn et al presented a parallel dual basis finite field multiplier in [8]. First we have to 

define dual basis: A set of n elements {/?«, Pi, ..., /?„_/} forms a basis for GF(2") if the PJS 

are linearly independent over the field GF(2). Letf(x) be an irreducible polynomial of 

degree n, then as we mentioned in chapter 2, the polynomial basis of the field would be 

{], a, a2, ..., a"'1}, considering a as a root offfx). The trace of /? G GF(2n) relative to the 

subfield GF(2) is defined as: 

n - l 

7Y(/?)= ^ / ? 2 i 

(3.10) 
1=0 

This trace function is a linear mapping from the finite field GF(2") onto the finite field 

GF(2). Let {a0, a/, ..., an-i} and {/?& Pi, .... /?«./} be any two bases for GF(2n) and also let 

Y 6 GF(2n) with y ̂  0. Then these two bases are said to be dual with respect to y if: 

Tf y is a fixed non-zero element of the field, and if {p0, Pi, ..., pn-i) is a dual basis of the 

polynomial basis, {1, a, a2, ..., a"'1}, then 

polynomial basis or dual basis as follows: 

polynomial basis, {1, a, a2, ..., a"'1}, then any element a of the field can be expressed as 

n-X n - l 

j=o i=o 
(3.12) 

In order to find aj*s we use (3.11): 

n - l \ n - l 

Tr(YaU) = Tr Yaj ]T a*ft = £ a\Tr{ya^i) = a* 
i=o / i=o 

(3.13) 
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Now consider two elements a, b in the field. We want to find c = a x b mod/fx). Here a 

is represented over dual basis and b is represented over polynomial basis as: 

n - l 

i=o 
n - l 

V bi a1 
b 

(3.14) 

Then c can be obtained as follows: 

<x, a, 

a. a., 

tf„ i a„ 

a n-l 

* 
<2„ (3.15) 

In the above formula a\s for n<i< 2n-2 are recursively calculated as follows: 

n - l 

*n+fc / a fjaj+k 
;=0 

/ o r 0 < fc < n - 2 
(3.16) 

In which, j^s are the coefficients of the irreducible polynomial of the field. From (3.15) 

we have: 

c0 = a*0b0 + a{bx + ••• + c d ^ . i 
c1 = alb0 + a*2bx + —h a*nbn_t 

<cn-l = an-1^0 + a n ^ l + l~ a2n-2^n-l 

(3.17) 

From the above equations it can be seen that the n product bits are generated by n 

identical functions of the form: 

h(a, b) = a*kb0 + a*^^ + ••• + a ^ ^ ^ 
for 0 < k < n - 1 

(3.18) 
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Therefore a bit-parallel dual basis multiplier for GF(2") can be constructed out of n GF(2) 

inner product modules that implement (3.18), and one other module that generates the 
an+k for 0 <k< n-2 from (3.16). 

Koc and Sunar presented two new finite field multipliers for all one polynomials (AOP) 

in [17]. The first multiplier was a polynomial basis multiplier based on the mastrovito 

multiplier with a slight change, and the second one was a normal basis multiplier. 

An AOP over the finite field of GF(2") is a degree-n polynomial with all the coefficients 

as 1; \.Q.f(x) = x" + x n-l + x + 1. According to (3.2) and (3.3) the mastrovito matrix 

of an AOP of degree n would be as follows: 

an-i 

an + a„ 

an-t+a„_2 an_2+an_3 

*n-2 «„-l+«„-3 

an_2 a^ + a^ an_4 + an_2 an_5+a,^ 

«„_! «„-2+"„-l a„-3+«„-2 a„ 

a2 +a{ 

o, +a. 

an + a. 

(3.19) 

This matrix can be decomposed into matrices Z\ and Z2 as Z = Zi + Z2: 

a0 

« i 

°n-2 

-Qn-\ 

0 

a0 

a „ - 3 

an-2 

an-\ 

0 

a„-4 

an-3 

an-2 • 

a„-\ • 

an-5 • 

«„-4 ' 

•• a2 

•• a. 

•• 0 

• v 

Z2 = 

"0 

0 

0 

0 

«„-! 

°n-\ 

an-\ 

an-> 

a„-2 

a„-2 

an-2 

a„-2 

a„-3 • 

an-3 • 

a»-3 • 

an-3 • 

•• a . 

•• a. 

• • a \ 

• a , 

(3.20) 

Now in order to compute C = ZB = (Z] +Z2)B, first we compute D = ZiB and E = Z2B in 

parallel, and then we compute the result C = D + E. By using this method, time delay of 

the circuit would be less than a regular mastrovito multiplier for AOP. 
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Before reviewing the second multiplier presented in [17] we have to explain normal 

basis. A set N of the form N = {^yS2,/?22,---,/?2""1} in a finite field GF(2") forms a 

normal basis, where /? is the root of the irreducible polynomial. Since the irreducible 

polynomial of the field is an AOP we have: 

Pn+X = 1 (3.21) 

Further more if 2 is primitive in Zn+i then we have: 

N = {fi,p2,p3,-,pn} (3.22) 

Set N in (3.22) is also a basis. It is actually a shifted version of the polynomial basis. Any 

element a of GF(2") represented with normal basis can easily be converted to this shifted 

polynomial basis (SPB) representation as follows: 

n - l n-1 

i=0 i=0 
(3.23) 

The coefficients of the shifted polynomial basis can be obtained as: 

S w ( n + i ) = ^ f°r 0<i<n-l (3.24) 

In this multiplier, the two inputs a and b are first converted from normal basis to shifted 

polynomial basis, then a regular polynomial basis multiplication is performed. At the end 

of this computation the result is obtained as g = ab/p~: 

g= gn-iP
n~1+ -+ giP + g0 

= (dn_i + e)/?""1 + - + (dj + e)P + (d0 + e) (3.25) 

Note that dk = Z,(k, :)B for 0 < k < n - 1 and e = Z2(0, :)B = Z2(l, :)B = ... = Z2(n-1, :)B, 

and X(j, :) is the j ' th row of matrix X. 
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Then we have to multiply g by /? : 

h = (dn_i + e)/?n + 1 + (dn_2 + e)(ln + •••+ (d± + e)/?3 + (d0 + e) /?2 (3.26) 

Since /? n + 1 = /? + /?2 + ••• + /?n, the coefficient (</„./ + e) is added to all the other 

coefficients. Therefore we can write h in shifted polynomial basis as: 

h = (dn_2 + dn^Wn + - + (dj + dn.t)p
3 + (d0 + dn_0 /?2 + (dn_! + e)/? (3.27) 

In order to convert h in SPB to the final result, c, in normal basis we just apply the 

reverse of (3.23). 

When mastrovito multiplier was introduced in [21], it was only analyzed for trinomials of 

type x" + x + 1. The space complexity of this multiplier was: n2 AND gates, and n2 - 1 

XOR gates. Sunar and Koc presented a new formulation of the multiplication matrix in 

[37]. With the help of this formulation, new multiplier architecture was presented for 

mastrovito multiplier, in which the XOR complexity was n2 - 1 for all trinomials of type 

x" + x' + 1 for 0 < t < n and rf ^ 2t. Furthermore it was proved that if n = 2t, then the 

XOR complexity would be n - n/2. 

As we explained in chapter 2, in a finite field GF(2") with f(x) as the irreducible 

polynomial in polynomial basis, in order to find c = ab mod f(x) we first find d = ab; 

D(x) is a polynomial of degree 2n - 2. Tn the next step Dfx) is reduced by thef(x) to C(x) 

which is a polynomial of degree n - 1. Matrix representation of the first step as described 

in (2.16) would be: 
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d. 

" n - 2 

d„-l 

d„ 

d. n+\ 

*2n-2. 

0 

0 

0 

0 

0 0 

0 

0 

"*H-4 

0 

0 

0 

0 

0 

a0 

at 

a2 

a. 

a, 

0 

0 

0 

0 

a0 

a, 

a. 

n-\ an-2 

K-2 

It is important to note that, not all the elements of d need reduction in the second step, but 

only the elements of d that have a power of x bigger than n - 1. The number of reductions 

for a specific element depends on the degree of the element and on the value of the 

middle term of the irreducible trinomial; i.e. /. The maximum number of reductions is 

performed on the highest order element d2„-2- Let k be the number of reductions required 

for this element. This integer k has the property 2n - 2 - k(n - t) < n, which implies 

k > . Therefore, we have: 
n-t ' 

n-2 
n-t 

+ 1 (3.28) 

The objective of [37] is to obtain the matrix Zn x n by systematically reducing the last 

n - 1 rows of the matrix M(2n-i) x n using a general trinomial. In order to accomplish this 

task, a reduction array was defined as below: 
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x" = 1 

x"+l = x + x" 

2n-t-\ n-l-i 
X = X 

+ x 

x3"-2' = x2"-2' +X-1 
+ 1 +x' 

*n-(*-l)< _ x(k-\)n-(k-\)l (A-2)n-(*-2)< + , , _ + 1 

+ X 

K - 2 .1-2 _| + <*-l)n-(*-2)'-2 + *»-(*-2)(-2 
X +X' 

Figure 3.1 Reduction Array for a General Trinomial 

The columns of the reduction array have the following properties: 

The first column on the right-hand side is the sequence 1, x, x2, ..., x"'1; 

n-l The second column contains two sequences: The sequence x, x'+l, ..., x 

followed by the sequence 1, ..., x"'''1, x"~', ..., x"'2; 

For 3 <i < n-l, the i'th column is obtained by shifting down the (i - l)'th column 

m-t positions; 

It is also seen that the reduction array can be divided into k partitions, and each partition 

has n-t terms except for the last partition which may have less terms. Tf the partitions are 

enumerated in increasing order, beginning from the topmost as the Oth partition, the i'th 

partition will consist of the rows starting with the term x"^"'^ and ending with the term 
n+(i+l)(m-t)-l 

In the reduction process the rows defined by the reduction array are added to the rows of 

matrix M in order to eliminate the last n-l rows of M. The exponent on the left-hand 

side provides the index to the source row, and the exponents on the right-hand side 

provide the destination. For example row n is added to row 0 and row t. 
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In order to construct the Z matrix the following formulation is used: 

Z = X + Y (3.29) 

Where matrix X is the upper n rows of matrix M (destination rows) and matrix Y is the 

contribution of the n- 1 lower rows of matrix M (source rows): 

X = 

ao 
ai 

a2 

an-2 

_an-X 

0 

a0 

« i 

a„-3 

an-2 

0 • 

0 • 

a0 • 

a„-A • 

an-3 • 

•• 0 

•• 0 

•• 0 

•• a0 

• a . 

0 

0 

0 

0 

a0 

(3.30) 

Since we have two types of sequences on the right hand side columns: those of form 

1, x, x, ...,x"~~ or 1,..., x"''~J, x"~', ..., x'2, and those of form x', x'+l, ...,xn~', we can write: 

Y = T + U (3.31) 

Where T is the contribution of the first type of sequences, and U is the contribution of the 

second type of sequences. The first column is the sequence 1, x, x2, ...,x"~2. So we have to 

add the rows M(n, :), M(n+1, :), ..., M(2n-2, :) to Z(0, :), Z(l, :), ..., Z(n-2, :). This 

contribution of the first column is shown in the matrix below: 

T = 

"0 

0 

0 

0 

0 

«m-, 

0 

0 

0 

0 

am-i • 

<*m-\ • 

0 • 

0 • 

0 

a2 

•• a3 

•• am_x 

• 0 

•• 0 

a. 

a2 

a«-2 

<Vi 

0 

(3.32) 
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The second sequence in the second column is 1, ..., x"~'~, x"'1, ..., x1'2. So we add the rows 

M(2n-t, :), M(2n-t+l, :), ..., M(2n-2, :) to Z(0, :), Z(l, :), ..., Z(t-2, :). This can be shown 

by shifting up matrix To n -1 rows: Ti = To[|(n-t)]. By similarity we have: 

Tl = Ti_1[Hn-t)]=T0[U(n-t)] 
fc-1 

T = T0 + T1 + - + Tk_± = ] T T0 [T i(n - t)] 
(3.33) 

i =0 

The first sequence in the second column is the sequence x, x'+l, ...,xn']. So we have to add 

the rows M(n, :), M(n+1, :), ..., M(2n-2, :) to the rows Z(t, :), Z(t+1, :), ..., Z(n-1, :). 

This is done with the help of matrix UQ: 

U0 = 

0 0 0 

0 0 0 

0 0 a., 

0 0 0 

0 

0 0 

0 0 

a, a. 
CY^ C » T 

t-\ 

t 

t + \ 

n-\ 

(3.34) 

The first sequence in the third column is x', xt+l, ...,xn~''. So we add the rows M(2n-t, :), 

M(2n-t+l, :), ..., M(2n-2, :) to the rows Z(t, :), Z(t+1, :), ..., Z(n-1, :). This can be shown 

by shifting right matrix Uo n -1 columns: Ui = Uo[—*(n-t)]. By similarity we have: 

Ui = U i - i h in - t)] - f / 0 h Kn - t)] 
fc-i 

U = U0 + U1 + - + l/k_! = ^ U0 [-> i(n - t)] 
(3.35) 

1 = 0 

So with the help of these matrices, the mastrovito matrix is built as: 
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Z = X + Y 

=X+T+U (3.36) 

fc-1 fc-1 

= X + £ 7 0 [T i(n - t)] + ^ "o [-» i(n - 0 ] 
i=o i=o 

Mastrovito multiplier did not show promising results for finite fields defined by high 

hamming weight (the number of nonzero coefficients) irreducible polynomials. As a 

solution, Song and Parhi presented a modified mastrovito multiplier in [36]. With this 

architecture, it is possible to build finite field multipliers for GF(2") with XOR 

complexity proportional to n — 1 - pwt, in which pwt is the hamming weight of the 

irreducible polynomial. 

Tn order to compute c = ab in finite field GF(2n) with modified mastrovito multiplier, first 

a modified mastrovito matrix U is built and D = UB is computed as follows: 

TT R — 

,0 
n-\ 

0 

• • « " " , ' " n-\ 

•• Un-2 

- <~X 

•• u"_;1 

' K" 0 

K\ n—\ J 

X," n— l 

dn-7 

d0 

. < _ 

= D (3.37) 

The coefficients of matrix U are calculated as follows: 

ru° — a 

o u \ 

U - i = i ^ - i 

for 0 < i < n - 1 

/ o r 0 < i , k<n — 1 (3.38) 

/ o r 0 < ik < n - 1 

whereas are the coefficients of the irreducible polynomial. Then c = ab can be obtained 

as follows: 
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dn_x+dc 

dn_2 + dc 

d0 + dc 

(3.39) 

Detailed proof of (3.39) can be found in [36]. 

Following the work of Sunar and Koc in [37], Halbutogullari and Koc tried to find a 

general formulation for mastrovito multiplier with any type of irreducible polynomial in 

[9]. Although this formulation covers all the polynomials of the form: 

fix) = xnk + x"*-1 + ••• + xni + xn° 

where n = nk > tin > ... > ni > no = 0, but it does not offer a practical way of hardware 

implementation of the multiplier. However it analyzes the mastrovito multiplier for an 

equally spaced polynomial (ESP) and shows very promising complexities for this type of 

irreducible polynomials. In a finite field GF(2n) an irreducible ESP has the following 

form: 

/ ( * ) = *** + x(*-i)A + -..+ 1 (3.40) 

where kA = n. the space complexity of the mastrovito multiplier for such polynomial 

would be: 

(#AND = n2 

UXOR = n2 - A 
(3.41) 

A special case of ESP is the trinomial of the form xn + x~z + 1. The complexity of XOR 

gates for a multiplier with this polynomial would be #XOR = n" — n/2. To the best of our 

knowledge, so far this is the lowest complexity of a finite field multiplier in literature. It 

has been proved in [9] that a mastrovito multiplier cannot have space complexity better 

that this: 

40 



(#AND = n2 

{#XOR=n*-\ (3'42) 

Although [9] provided a general formulation for mastrovito multiplier, a systematic 

method of designing this multiplier was not available until Zhang and Parhi presented an 

explicit algorithm for efficiently designing that in [41]. 

Considering finite field GF(2n) with a general irreducible polynomial f(x) we have: 

7(x) = xn + A*""1 + - + A* + /„ 
J ft G {0,1} for 0 < i < n - 1 (3.43) 
J o = l 

(3.43) can also be written as: 

(f(x) = xn + xks + x^-1 + ••• + xkl + 1 
[ n> ks> fcs_j > ••• > kt > 1 

(3.44) 

Now a set N can be built with the following algorithm from [41 ]: 

Input: The parameters of irreducible polynomial: n, k/, ..., ks 

Output: set N c {0,1, ••• ,«- 2} 

Procedure: 

Step 1: Generate a weighted tree D according to the following properties: 

• Each node dj in D has at most s child nodes and each edge has the weight 

WG{(n-k,)\\<i<s} 

• Let dj denote the root andh(dj, dj denote the weight of path from d/ to dj, 

where h(dj, d/) = 0; for all djS, if 3r e {{n — kl. | 1 < / < s} and 

(h(d], dj) + r) < n — 1, then dj has a child node d/ with an edge of weight r 

• For all djS, h(dj, dj) < n- 1 
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Step 2: Construct a multi-set H = {h(dx,d ,), V<i. e D} and set N = 0 

Step 3: For0<j<n-2, do 

a. create multi-set Sj = 0 

b. V/z e H, ifh =j, then insert h into Sj 

c. If {\Sj mod 2) = 1, then insert j into N 

In the above algorithm, a multi-set is like a set, except that repeated elements are allowed, 

and ISA represents the order of Sj. From the above algorithm, we know that the least two 

elements in N are always 0 and (n - ks) and we have \N\ < ks. 

The total space complexity of the mastrovito multiplier proposed in [41] would be: 

(#AND = n2 

#XOR = (n + s - l ) ( n - l ) + y ( n - y - 1 ) (3.45) 

It was known by the previous works that the best complexities for finite field multipliers 

will be obtained when the irreducible polynomial of the field is either trinomial, AOP, or 

ESP. However it is not possible to find such irreducible polynomial for any value of n. So 

the next best choice was a pentanomial. Rodriguez and Koc presented a mastrovito 

multiplier for a special type of pentanomials in [34]. This special type of pentanomial has 

the following form: 

fix) = xn + xm+1 + xm + x + 1 (3.46) 

where 2 < m < - — 1. In order to build the multiplier, the work presented in [37] is 

used. So first a reduction array should be generated: 
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x" =\ + x + xm+x" 

xn+[=x + x2+xm+l+xm+2 

x"+2=x2+x3+xm+2+xm+3 

x2n-m-7 = %n-m-l + ^ m - 1 + %n-2 + %n-K 

xln-m-\ = x » - m - l + xn-m + ^ , - X + , + ^ + ^ m + ^ 1 

x 2 „ - m = x „ - m + x „ - m + l + j + xn, + x2 + x„,+2 

x 2 „ - m + l = x „ - m + l + x „ - m + 2 + x + ^ m + l + x 3 + x,n+3 

x
2"-3 = x"~3 + x"-2 + xm-3 + x2m'3 + x"'~l + x2m-x 

x
2"-2 = x"-2 + x"~] + x"-2 + x2m-2 + xm + x2m 

Figure 3.2 Reduction Array for xn + xm+1 + xm +x + 1 

We can summarize the above equations based on the number of operand as: 

r xi + xi + l + xm+i + xm+i+l j Q r Q < i < n - m - 2 

xn+i = \xl + xi+1 + xm+i + 1 + x + xm + xm+1 for i = n-m-l 
[x1 + Xi+1 + x 1 - ^ - ^ + xl~n+2m + x i - ( n - m ) + 2 + xi-n+2m+2 fQr n - m < i < n - 2 

(3.47) 

Now if we consider Dfx) = A(x)B(x), and C(x) = Dfx) mod ffx) then in order to obtain 

coefficients of C(x) we just need to add the nonzero elements of each one of the n 

columns. For example, in order to obtain the first coordinate co, we just need to add the 

nonzero coefficients of the first column to the first coordinate of the product polynomial 

do'-

c0 = d0 + dn + d2n-m-\ + d2n-m (3.48) 

The entire process will have total complexity as: 

l#XOR = n2 + n ( ' 
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Chang et al presented a new way of representing finite field elements in [2] called 

redundant representation. Combining this representation with KOA helps achieving 

lower complexity multipliers for all one polynomials. Redundant representation of the 

elements of finite field GF(2n) was first used for building finite field multipliers in [13]. 

Considering an AOP in finite field GF(2") as: 

it 

i=0 

If a be a root off(x), then a""*"7 = 1 and a" + a"'1 + ... + a + 1 = 0. A polynomial basis 

would be {1, a, ..., a"' }. Now a redundant representation is obtained by expanding the 

polynomial basis as {J, a, ..., a"'1, a"}. Any element a in GF(2n) is represented as: 

a = y ata
l 

(=0 
(3.50) 

Note that the redundant representation is not unique. For example ao + aja + ... + a„a" 

and bo + bia + ... + bna" denote the same element if b, = a, + am. Considering the 

modular reduction in redundant representation, since a"+l = 1, for any element a of 

GF(2n) we have: 

ala - a0a
l + a-^a^1 H 1- an_ian + an_i+1 + an^i+2a + ••• + ana

l 1 (3.51) 

This means that a.a can be computed by an /-fold right cyclic shift of a. Now consider 

n = 2m, any two elements a, b in GF(T) can be partitioned in two parts as: 

2m m - 1 m 

a = y ata
l = y ata

l + am y O-i+m01-1 

(3-52) 
1=0 1 = 0 [ = 0 

= A + amB 

and 
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2m m m - 1 

b = V ^a* = V fe^' + am+1 Y 6 i + m a ' 
i=0 i=0 i=0 

= C + am+1D (3.53) 

Then in order to obtain c = abwe have: 

c = ab = (A + amB)(C + am+xD) 

= AC + (BC + aAD)an + BDa2m+1 (3.54) 

= AC + BDa2m+1 + ((A + B)(C 4- aD) + AC + aBD)am 

= AC + BDam+1 + (AC + BDam+1)am + (A + B)(C + aD)am 

Computation of (3.54) needs the following number of gates: 

#AND = 3m2 + Am + 1 = -n2 + 2n + 1 
4 

#X0R = 3m2 + 6m + 1 = -n2 + 3n + 1 
4 

(3.55) 

So it can be seen that the number of all gates is reduced by 25%. 

We have seen that finite field multipliers based on trinomials result in the best space 

complexity among different multipliers, and it was proved in [9] that no other multiplier 

can be built with better space complexity. But about the speed of the multiplier and time 

complexity, still some works have been done. Fan and Dai presented a new representation 

for finite field elements in [6], called shifted polynomial basis (SPB) which helps 

building faster finite field multipliers for trinomials. We have previously seen SPB in [8] 

when building finite field multiplier for fields based on AOP. But that was just a special 

case of shifted polynomial basis. 

Let v be an integer and the set M={x'| 0 <I < n-l}be a polynomial basis of GF(2n). Then 

the ordered setx~vM={x'~v\ 0 <I<n-l) is called the shifted polynomial basis (SPB) with 

respect to M. let/fx) = x" + x + J be the general trinomial defining this field. It is proved 
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in [6] that the best value for v is k. an element a of the field is represented in SPB as 

follows: 

n—1 n-l—v 

A(x) = x-v^diX1 = 2^ ai+vXl
 ( 3 5 6 ) 

i=0 i=—v 

Let's review the basis conversion between PB and SPB first. Consider d and a be two 

elements of the field represented by PB and SPB respectively: 

n - l n-l—v n-l 

D(x)= Ydix
i= V dtx

l+ Y di(xv+l-n + x1-") 
i=0 i=0 i=n—v 

/n-l-v - 1 \ v-1 

= I 2^ dixl + ^ dn+iX( J + 2_, dn+i-vX1 

(3.57) 

i=o i=-v / i=o 

and 

n-l—v n-l—v 

A(x) = ^ o ^ x * = ^T av+ix
l + ^ ap + i(x7 , + i + xv+i) 

i=—v i=0 i=-t> 

/Ti—1—v n - l \ r—1 

— I / av+ix "• / ftf-n+i'*- I "r" / OjX 

(3.58) 

It is easy to see that the conversion from one representation to the other needs v XOR 

gates and one Tx time delay due to the parallelism. Now consider two elements a, b 

represented in shifted polynomial basis. In order to calculate c = ab mo&f(x), first we 

have to perform a polynomial multiplication: 

2n-2 2n-2-2v 

S(x) = A(x)B(x) = x~2v ^ stx* = ^ st+2vx
t = r_+r + r+ 

t=0 t=-2v 

where 
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2_, aibj = 

i+j=t 
0<i,j<n-l 

^T atbt-i for 0 < t < n - 1 

n-l 

2_, aibt-i fc 
(3.60) 

for n < t < 2n — 2 
H=t+l-n 

and 

n-l-v -1-v 2(n-l-v) 

-z r — ? st+2vx and r. -I St4-7i?% (XTtU. 7J - Z St+2vX 

t=-v t=-2v t=n-v 

The next step is to reduce r+ and r. using the following reduction formulae: 

(3.61) 

xl = xK+l n + xl n for n — v<i<2n — 2 — 2v 
xi _ %n+i + xk+i fQr _ 2V < i < -v - 1 

(3.62) 

The reduction results would be: 

and 

-1-v -1-v 

= £ St+2vX
n+t+ £ 

t=-2u 

n-l—v 

= } st+2v-nx + / 

s£+2i; x 

t=-2v 

k-l-v 

k+t 

st+2v-kx 

t=n-2v t=k-2v 

2n-2-2v 2n-2-2v 

t=n-v t=n—v 

k+n-2-2v n-2-2v 

t = n -

fe+n-2 

- I 
z 

t=n-

-2 -2 :'+ Z •st+2i7+n-k'": "+" 7 st+n+2vx" 
t=k-v t=-v 

And the final result would be: 

(3.63) 

(3.64) 
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n-l-v 

C(x) = y cv+tx
l = r + r + r+ 

t=-v 

I- -St+2vX 

t=-v 

/n-l—v k—l—v 

t 

(3.65) 

+ 1 2_, St+2v-nX{ + 2_j 
\t=n-2v t=k~: 

/k+n-2-2v 

+ I y st+2v+n-kx + / 

st+2v-kx 

t=n-2v t=k-2v / 

k+n-2-2v n-2-2v \ 
t st+n+2vx 

t=k-v t=-v 

It is proved in [6] that the total complexity of this procedure is: 

f#AND = n2 

UXOR = n2-i (3.66) 
[Delay = TA + (1 + \log2n\)Tx 

Following the work presented in [6], Fan and Hasan presented a new multiplier 

architecture for trinomials in [7]. This architecture was based on Toeplitz matrix concept 

combined bit KOA method which would result in sub-quadratic space complexities. First, 

we review toeplitz matrices. 

A n x n matrix is of type toeplitz if for 1 < ij < n-\ we have: mki = %_,_,_,. By this 

definition it is obvious that any n x n toeplitz matrix is determined just by 2n - 1 

elements of the first column and first row. Thus, for adding two toeplitz matrices, just 

2n - 1 additions are needed. An example of a 5 x 5 toeplitz matrix is shown in figure 

(3.3). Although the total number of entries in this matrix is 25, but we only have 9 

distinct entries: 
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L-€(i (A I C/-1 C t - i *™A 

a-, ah a, a. o a\ 

'o 

Figure 3.3 A 5 x 5 Toeplitz Matrix 

Now assume that we have a «x « toeplitz matrix T and a nx] column vector V and 

n = 2'. Here we can split these matrixes as following: 

T = 
^T T ' 
T T 

•\J 

(3.67) 

n n n 
In the above expressions T0, T] and T2 are — x— matrices and Vo and Vi are — x 

2 2 2 
column vectors. Now for calculating the multiplication TV we can do as following: 

TV = 
T T 

T T \J 

fv\ 

Su 

P0+P2 
(3.68) 

in which 

P0=(T0+T,)1/ 

P,=(T1 +T2)F0 

P2=T,(K0 + F,) 

(3.69) 

Now using KOA we can recursively apply this algorithm in /' steps and prepare the final 

result. The space complexity of this method would be: 
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(#AND = nl°a^ (3.70) 
UXOR = s.Sn10^3 -en- 0.5 

Now for a finite field GF(2") W\thf(x) = x" + xk + 1 as the irreducible polynomial, if we 

choose SPB with v = k then the mastrovito matrix Z can be changed into a toeplitz matrix 

by the following equation: 

Z' = UZ (3.71) 

with 

U 
0 hn-v)(n-v) 

'vxv U 
(3.72) 

Where IVxV is the v x v identity matrix. It is important to note that this conversion is 

implemented by re-wiring only; therefore it doesn't add any gates to the space complexity 

of the multiplier. 

3.2 Serial Finite Field Multipliers 

One of the best serial finite field multipliers was presented in [1] by Berlekamp. In this 

multiplier, in order to find the product GZ in finite field GF(2"), G will be represented in 

polynomial basis whereas Zwill be represented in its dual basis. Furthermore we assume 

that G is a constant and Z is a variable stored in a n-bit register. In the dual basis, the 

coefficients of GZ are the bits Tr(GZx'), for 0 < i < n-1, which may be viewed as the 

following sequence: 

Tr{GZ) 

Tr(G(Zx)) 

Tr{G(Zx"-x)) 

(3.73) 
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It should be noted that, Tr(GZ) is obtained by a single parity check on some subset of the 

bits of the Z register. Also, Tr(G(Zx)) can be obtained by the same parity check on the 

same register only by changing its contents from Z to xZ. The hardware architecture of 

such multiplier is shown in the next figure: 

Input 
®* 

Tr(Zxn) 

Linear 
Binary 
Matrix 

Staging Register 
Register Z 

Tn-1 

T„-: 

Ti 

$ • 

Figure 3.4 Berlekamp Multiplier 

In the multiplier depicted in figure (3.4) the register feeding the linear binary matrix 

contains the value Z. So the outputs are: 

T0=Tr(g0Z) 

T,=Tr{gxZ) 

Tn.2=Tr{g„_2Z) 

T^=Tr(g^Z) 

(3.74) 

The output of the binary matrix which feeds back into Z is tr(Zxn). Since Z is in dual basis 

mode, next clock cycle multiplies Z by x. Now the outputs would be: 
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To = Tr{gQxZ) 

T{ = Tr(g{xZ) 

i (3.75) 
T„-2 = Tr{g„-2xZ) 
Tn-\ = Tr(g„_,xZ) 

And after n clock cycles we will have the final results which are: 

T0=Tr(g0x-]Z) 

Tx=Tr{g,x"-'Z) 

\ (3.76) 

Tn^=Tr{gn_,xn-xZ) 

Tn^Tr{gn_xx"-"Z) 

Now the multiplication is completed. This algorithm is very efficient in the sense that it 

requires minimum circuitry. However, the algorithm to multiply two elements of GF(2") 

requires to represent one factor by a canonical basis and the other factor by the 

corresponding dual basis and the product is obtained in the dual basis, so proper base 

conversion is also needed. 

Another good architecture for serial finite field multipliers was introduced by Massey and 

Omura in [20]. This multiplier uses normal basis for representing field elements. 

Consider finite field GF(2n) with normal basis N = {a,a2,a:'',-••,a1' }, with a be a root 

of the irreducible polynomial of the field. Any element a of the field is represented as: 

a — a0a + a^2 + —h an_1a
2 . Since in GF(2") with normal basis we have a2 = a, 

squaring an element is equal to a cyclic shift operation: 

a2 = a0a
2 + ata

2 +—h an_1cr2™ 

= an_1a + a0a
2 H 1- an^2^2n ± \i-'') 
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Now consider two elements of the field as a, b. The product of these two elements would 

be: 

c = ab = [aQ,ax,-".On-iMbQ.b-L, ••• ,bn_t] = [CQ.C^ —,cn-i] (3.78) 

The last term of the product; i.e. c„.j, is some binary function of a, b: 

Cn-1 = f(.a0>al> — ,On-l> ^0» * 1 . — ^ n - l ) ( 3 - 7 9 ) 

Now by squaring both sides of (3.78) we have: 

c = a b = [cLn-i,CL0,ax,••• ,an_2\\bn-\,b0,b1,••• ,bn_2\
 = Lcn-i,c0,cx,••• ,cn_2J 

(3.80) 

Hence, the last component c„._? of the product is obtained by the same function/operating 

on the components of a and Zr: 

cn-2 ~ J (an-l< a0> a\> '"'an-2> bn-i,b0,b1,---,bn_2J (3-81) 

By similarity we have: 

( cn-l ~ f(a0>al>'" > an-l> VQ.b-L, ••• ,bn_1) 
cn-2 — t \an-l> a0> al> '">an-2> "n-l> "0> "l>'" > "n-ZJ 

i (3.82) 
c l = / \a2>"" > an-l> a0> al> ®2> •" > "n-\> ®0> "l) 

v c0 = f (a1( •••, otn_i, CL0 ; bi, •••, bn_1, o0) 

The above equations define this multiplier. Figure (3.5) shows the block diagram of the 

multiplier: 
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Logic 
Function 

f 

Figure 3.5 Massey-Omura Serial Multiplier 

3.3 Summary 

There are different types of finite field multipliers, with different advantages and 

disadvantages. In general we can categorize different finite field multipliers based on the 

hardware architecture of the multiplier into 3 types. Table (3.1) shows these types. 

Hardware Architecture 

Bit Parallel 

Bit Serial 

Hybrid 

Reference 

[21], [27], [8], [28], [17], [37], [36], [9], [18], [41], [39], [40], [34], [2], [6], 

[7], [32] 

[1], [20], [12], [11] 

[22], [26] 

Table 3.1 Finite Field Multipliers Based on Hardware Architecture 

One important factor in the architecture of finite field multipliers is the way of 

representing field elements in that multiplier. Some multipliers use the same 

representation in both inputs and output, while there are other multipliers which may 

have different representations for inputs and output. It is also important to consider the 

base conversion over head in such multipliers. Table (3.2) shows some of these different 

types of multiplication methods: 
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Element Representation 

Polynomial Basis 

Normal Basis 

Dual Basis 

Shifted Polynomial Basis 

Redundant Representation 

Weekly Dual Basis 

Triangular Basis 

Reference 

[21], [27], [28], [17], [37], [36], [9], [18], [41], [7], [32] 

[17], [20] 

[1], [8], [34] 

[6], [29] 

[40], [2] 

[39] 

[11] 

Table 3.2 Finite Field Multipliers Based on Element Representation 

In the context of this research, we are interested in bit parallel polynomial basis finite 

field multipliers. Parallel PB multipliers have three main types which are: 

• Conventional 

• Mastrovito 

• Modified Mastrovito 

There are also some other variations on these types, like the work presented in [17]. In 

these multipliers, the lowest complexities are gained when the polynomial of the field is 

an equally spaced trinomial. Any other trinomial is the next best choice along with all-

one polynomials and other equally spaced trinomials. 

Since we are interested in finite fields of form GF(2"), it is important to note that these 

efficient irreducible polynomials do not exist for many values of n. In such cases, the next 

best choice would be a pentanomial. Although the existence of an irreducible 

pentanomial for any value of n has not been proved yet, practically speaking, we can find 

at least one irreducible pentanomial for different values of n. The complexity of a 

multiplier based on an irreducible pentanomial highly depends on the form of the 

pentanomial, and we reviewed some of them in the previous sections. 
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Any other multiplier architecture for any type of irreducible polynomial should have 

better complexities than pentanomials. Table (3.3) shows the best results of different 

polynomial basis finite field multipliers in GF(2")\ 

Multiplier 

Type 

Mastrovito 

Mastrovito 

Mastrovito 

Mastrovito 

Like 

Conventional 

Irreducible 

Polynomial 

Equally 

Spaced 

Trinomial 

General ESP 

General 

Trinomial 

AOP 

Pentanomial 

#AND 

n2 

n2 

n2 

n2 

n1 

#XOR 

2 " 

n 
2 

n2-A 

n2-\ 

n2-\ 

n2 +2n-3 

Time Delay 

TA+{\ + \\og2n\)Tx 

TA+(l + \\og2n\)Tx 

r,+(i+[iog24rx 

r.+a+riofeC/i-O'to 

TA+(4 + llog2(n-l)])Tx 

Reference 

[41] 

[41] 

[41] 

[17] 

[32] 

Table 3.3 Best Complexities of Different Finite Field Multipliers 

It is obvious that any new proposed multiplier should have a complexity equal to or better 

than the complexity of pentanomial based multipliers presented in table (3.3). 
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4 New Finite Field Multiplier 

4.1 Introduction 

Finite field multipliers have application in many different areas such as cryptography, 

error correction codes, computer algebra, combinatorial designs and VLSI testing. Finite 

field multiplication has recently gained much attention due to its extensive use in public 

key cryptography and especially elliptic curve cryptosystems. In chapter 1, we pointed 

out the importance of research on finite field multipliers in cryptography systems. 

Research on different architectures of finite field multipliers mainly aim on reducing the 

space and time complexities. The goal of this thesis is to present a better finite field 

multiplier with smaller space and time complexities with regard to cryptographic 

applications. 

As we mentioned before, finite field multipliers can be categorized into three major types 

based on their hardware architecture: bit serial, bit parallel, and hybrid multipliers. 

For hardware implementation, serial multipliers are too slow because with the increasing 

key size of cryptographic applications, these multipliers need a considerable amount of 

clock pulses for encryption or decryption tasks. 
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On the other hand parallel multipliers are very fast since the input blocks enter the crypto-

processor at the same time and in the next clock cycle the result is ready at the output 

ports. However these multipliers tend to occupy a large amount of silicon space on the 

micro-chip on which the hardware is fabricated. 

Hybrid multipliers offer a balance between the above two types. By increasing the word 

size in these multipliers, the speed of multiplication increases. Decreasing the word size 

may result in less space on the chip. For each specific crypto-processor with a specific 

application and specific hardware limitations, a trade off between speed and space may 

be reached. But still bit parallel or, as called in some texts, full parallel multipliers are the 

fastest possible finite field multipliers. 

Although hybrid multipliers seem to be the most suitable hardware architecture for 

physical implementation, full parallel multipliers are still in the center of attention and a 

huge amount of research is conducted on this subject. The reason for that is: 

• In cryptographic applications speed is far more important than size 

• Research on full parallel multipliers can also help in the parallel part of hybrid 

architectures 

• With new VLSI technologies the amount of space needed for implementing 

certain circuits is reducing gradually 

This is the main motivation behind our research. 

Finite field multipliers can also be categorized based on the way they represent the 

elements of the field, or so called the basis of the field. Different basis multipliers were 

reviewed in chapter 3 and the pros and cons of each type was studied thoroughly. In this 

chapter, we are proposing a new polynomial basis full parallel finite field multiplier. 

Parallel polynomial basis multipliers have two main types: conventional multiplier and 

mastrovito multiplier. There are also some variations on these two types. In this thesis a 
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new approach for multiplication is proposed. In this multiplier, we are using mastrovito 

multiplier concepts combined with the conventional method of multiplication. The result 

is not a mastrovito or conventional multiplier, but something in between. Depending on 

the type of the irreducible polynomial of the field, this approach may result in a finite 

field multiplier with better speed and space complexities. 

We will present a full analysis of this proposed method along with a hardware 

architecture. Afterwards, we will apply the new multiplier to three newly proposed types 

of finite fields. By thoroughly examining the multiplier for these irreducible polynomials 

the exact amount of space and time complexities will be given. A comparison between 

our results and the best results of other finite field multipliers found in literature will 

show the advantage of our method. 

4.2 Multiplier Architecture 

We are proposing a new method for finite field multiplication. In this method we use both 

mastrovito multiplier and the conventional multiplier concepts. The first step in this 

method is to find a new way to build up the mastrovito matrix. We will do this by starting 

with the fundamental way of multiplying. 

A finite field GF(2") is defined as the set of residues modulo an irreducible polynomial 

f(x) in which f(x) is of degree n with the following form: 

r n-X 

./(*)=*" +£/**' + 1 (41) 

Ji e GF(2) 

Consider two elements of this field as: a, b. By employing polynomial basis we have: 
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n - l 

A(x) = y atx
l 

1 = 0 
n - l 

B(x) = Y fy*' 
(4.2) 

Polynomial multiplication ofA(x) and B(x) would result in: 

2n-2 

D(x) = A(x) x B(x) = V diX1 

i=o 

We rewrite (2.14) formula as: 

(4.3) 

dt= { 

y a-i-jbj for 0 < i < n — 1 
=o 
m - l 

2 ai-JbJ fC 

j=0 
m-l 

cor n < i < 2n — 2 
\ / = i - m + l 

From the above formula we have: 

n - l 

ln+k — y an+k-jbj f> or 0 < k < n — 2 

j=k+l 

By substituting this formula in (2.22) we will have: 

n - l n - l n - 2 

C(X) = ^ dtX1 + 2_,2_, dn+kh,n-i-lXi 

i=0 

n - l / i 

i=o k=o 

n - l n - 2 / n - l 

= Au \ Z^ ai-]bj r ^ Z j l 2 J an+k-Jbi ^.n-i-lX1 

i=o \j=o j=0 fc=0 \;'=fc+l 

(4.4) 

(4.5) 

(4.6) 

60 



It should be reminded that tatt is the entry on the o'th row and Z>'th column of the transfer 

matrix T. Transfer matrix is the matrix which converts powers ofx"+* for 0<Jfc< n - 2 to 

the sum of powers of x for 0 < i < n - / : 

By rewriting (4.6) we will have: 

n - l 'n-2 / n-l 

C(x) = ^ Q j ^ - ^ J I + I ̂  I 2 J an+k-jbj Wn-i-1 I X1 = ^ cixl 

i=0 \ i'=0 / \k=0 \j=k+l I / i=0 

n - l 

(4.7) 

So it is obvious that the coefficients of C(x), the product ofA(x) and B(x), are: 

n-2 / n-l 

= /_i ai-)hi + /_,[ Z-, an+k-ibi I ^.n-i-t 
J=o k=0 \j=k+l 

(4.8) 

Now let's take a look at the matrix form of multiplication. As before we assume that an 

element a of a finite field of form GF(2") in polynomial basis is represented as: 

a = A(x) = y atx
l 

i=0 

The above formulation can be written as: 

a = (a0 at ••• an_2 «n - i ) ( x x "• x?l *n ) = A X (4.9) 

Here A is the coordinate column vector of the element, and X is the vector of the basis. 

As we saw before in chapter 2, we can write the matrix form of multiplication as follows: 

D=MB 
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Here D is the coordinate column vector of d, the product of a, b, B is the coordinate 

column vector of b, and M is the multiplication matrix which contains the elements of A 

with the following form: 

M (2n-\)(n) 

a0 

o, 

a2 

an-2 

tf„-l 

0 

0 

0 

0 

0 

« 0 

ax 

a«-3 

<V2 

an-\ 

0 

0 

0 

0 • 

0 • 

a0 • 

a„-A • 

a„-i • 

an-2 • 

an-X • 

0 • 

0 • 

• 0 

• 0 

• 0 

• «o 

o, 

a2 

• a3 

• an-\ 

• 0 

0 

0 

0 

0 

a0 

a. 

a2 

an-2 

«„_, 

(4.10) 

Matrix M can be divided into two matrices: The upper part, U, and the lower part, L, as 

follows: 

M = (4.11) 

where 

U_ 

a0 

a, 

an-l 

0 

a0 

« « - 2 

0 • 

0 • 

«»-3 • 

•• 0 

•• 0 

•• <*0 

(4.12) 

and 

62 



""'(«—l)xn 

0 an-\ an-2 

0 0 a , 

0 0 0 

(4.13) 

It should be noted that in thesis we use Matlab matrix notations to show column vectors 

and row vectors of a certain matrix, e.g., Z(i, :), Z(:, j) represent the /'th row vector, and 

y'th column vector in matrix Z, respectively. 

Considering U and L matrices we have: 

U(i,:) = I at a£_! ••• at a0 0 0 •••0 0 
V n-i-l 

L(i, 0 = I 0 0 —0 0 an_! an_2 ••• ai+2 ai+1 

V i+i 

(4.14) 

So if we multiply these vectors by the coordinate column vector of b we will have: 

U(i, )B = ^ di-jbj 

n - l (4.15) 

y=i+i 

We will use these matrices in our multiplier. 

Now let's take a closer look at (4.8): 
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n - 2 / n - l 

Ci 

7=0 fe=0 \j=k+l 

i n - l n - l 

-i = ^ " i - A 4 " 2 J I /_, an+k-jbj Uk,n-l-i 

— yai-jbjJ<~ fo ,n - l - i / ^ an-jbj + ^ l , n - l - i / ^ a n - ; + l " / + ' " 
;'=0 ;=1 ;=2 

n - l n - l 

+ t n - 3 , n - l - i > a2n-j-^Dj + tn_2,n-l-i y aln-j-1"j 

j=n-2 j=n—l 

= U(i,0B+ t c n - i - j l C O , : ) B + - + t n - ^ . ^ l C n - 2, : ) B 

(4.16) 

In the above formulation we have a vector with a special form of: 

t^n+ilik, ••) for 0<k<n-2 (4.17) 

Here we define a new set of matrices, called V matrices, from Vo to V„_2. These nxn 

matrices are the key element of our new method. For each Vu matrix, the i'th row would 

be as follows: 

Vk(i,0= t fe,n-i-^(fc,0 (4.18) 

In other words, row i of matrix Vu is row / of matrix L if tk,n-i-i = U otherwise it is a zero 

vector: 

Vk{l'-} 1 ( o o - o ) i/ ^ - ^ = 0 ( 4 1 9 ) 

An example would clarify this better: 

Consider finite field GF(25) with f(x) = x5 + x2 + 1 as the field's irreducible polynomial. 

Matrices L and T are shown below: 

64 



0 a4 a, a2 

0 0 

0 0 
a. a. 
0 a. 

0 0 0 0 

a, 

a. 

0 0 1 0 1 

0 1 0 1 0 

1 0 1 0 0 

0 1 1 0 1 

Here we will have Vo, Vi, V2, and V3. In order to construct these matrices we look at L 

and we refer to T as our reference. Figure (4.1) shows these V matrices: 

T = 

D 0 TT~dz> 
a-\ ai J£$ 

0 0 o j : » 

cfl^D 0 0~I5:> 

v,= 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

a4 

0 

«4 

0 

0 

a3 

0 

a3 

0 

0 

a2 

0 

<h 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

«4 

0 

a> 

0 

0 

a. 

0 

a. 

v3 = 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
a. 

Figure 4.1 V Matrices of GF(25) with f(x) = x5 + x2 +1 

Using these V matrices in (4.16) we have: 

Ci = U(i, 0B + V0(i, :)B + V^i, :)B + - + Vn.2(i, :)B (4.20) 

This is the formulation for the z'th coefficient of c, which is the /'th entry in the 

coordinate column vector C = (co ci ... c, ... cn-i). Following the matrix multiplication 

rules we will have: 
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C = UB + V0B + VrB + + Vn_2B 

= (U + V0 + Vl + - + Vn_2)B (4.21) 

Mastrovito multiplier was thoroughly reviewed in chapter 3. In the above formulation if 

we can consider Z = U + Vo + V / + ... + V„-2, then we have a form of mastrovito 

multiplier: C = ZB. So our goal of building mastrovito matrix is reached. 

The first step in the new approach for building a finite field multiplier was to construct 

the mastrovito matrix, Z, with matrices U, and Vo to Vn_2. The second step is to actually 

perform the above multiplication of ZB and find the result. But in this method instead of 

performing just one matrix multiplication, ZB, The elements of Z, i.e. U and VjS, are 

multiplied by B individually and then the final result is gained by adding up these partial 

results. Figure (4.2) shows the hardware architecture of this multiplier. 

In this hardware architecture, first the V matrices are built with rewiring the input signal, 

a. In the next level, there is an AND page which performs the first part of matrix 

multiplication by performing AND operation between a, b. These AND gates are placed 

in parallel so all the AND operations are performed at once. The next level contains an 

XOR page in order to complete the matrix multiplication operation. These XOR gates are 

placed in a binary tree structure. Finally the last level contains some XOR gates as well. 

These XOR gates are to sum up the partial results and make the final output, c. 

Space Complexity 

As mentioned before in chapter 2, space complexity is expressed in terms of number of 2-

input AND gates and 2-input XOR gates. AND gates are used in the first level and 

according to the structure of AND page in the hardware diagram, the total number of 

AND gates is calculated as following: 
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HAND = 1 + 2 + — + n - l + n + n - l + — + 2 + 1 

n(n + 1 ) (n — l )n (4.22) 

bo«—H 

b i » _ 

bn-2»— 

bn-1 • M 

,'1 

_* 
Vn-2 

>HAND 

= n 

la 

'n-3 

>HAND 

r 
XOR 

a„-i an-2 ai a0 

I I - I I 
Re-wiring 

iti-2 >h-i 

Vi 

• n / ^ A N D 

/ 
n-2 

n / ^AND 

r 
XOR 

r r̂  

>HAND 

n-1 

r 
XOR 

^ ^ 

XOR 

XOR 

I 1 - i I 
Cn-1 Cn-2 Cl Co 

Figure 4.2 Proposed Multiplier Architecture 

u 

1 
/>UND 

r 

>^AND 

r 
XOR 

XOR gates are used in the two last levels of the hardware structure. The number of XOR 

gates in the last level of the hardware directly depends on the type of the irreducible 

polynomial of the field. The reason is that the number of summations in this level is 

determined by the shape of the V matrices which are based on the T matrix. So in this 

step we only calculate the number of XOR gates in the second level of hardware. Based 

on the hardware diagram we have: 

67 



#XOR = 0 + 1+ ••• + n - 2 + n - l + n - 2 + ••• + 1 + 0 

_ ( n - l ) n ( n - 2 ) ( n - l ) (4.23) 

~ 2 + 2 

= n2 — 2n + 1 

If we represent the number of XOR gates in the last level by Xs the space complexity 

would be: 

• Total number of AND gates : n 

• Total number of XOR gates : n -2n + 1 + Xs 

Time Complexity 

Time complexity is always expressed in terms of the delay of 2-input AND gates, TA, and 

the delay of 2-input XOR gates, Tx. In the first level, all the AND gates are placed in 

parallel so the delay of this level is TA. In the second level by using a binary tree 

structure, the maximum delay would be \log2 (n — 1)1 Tx. In the second level the 

accurate delay depends on the type of the irreducible polynomial of the field as well. If 

we denote this delay with xTx the total time complexity would be: 

• Time complexity : TA + (\log2(n — 1)1 + x)Tx 

4.3 Applying the New Method to Classes of Finite Fields 

As we mentioned before, space and time complexity of our new method of finite field 

multiplication highly depends on the type of the irreducible polynomial of the field. In 

this section the results of applying the proposed method of multiplication on some classes 

of finite fields is examined thoroughly and the exact amount of space and time 

complexities are calculated. 
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4.3.1 Review of Three Classes of Finite Fields 

Three classes of irreducible polynomials have been recently presented in [38]. These 

classes are called Type I, Type II, and Type III. These new types of finite fields are 

interesting because of their special form of T matrices. We will use these features when 

applying our new method of multiplication on these fields and we will show that the 

result are so efficient that can be used as an alternative for currently used finite field 

multipliers. 

Type I Polynomials 

Consider the finite field GF(2"), where n = 2 mod 3 or in other words, n = 3h + 2 for 

some integer h> 1, and an irreducible polynomial f(x) that defines GF(2") be given in the 

following form: 

n - l 

zoo = Y(X3J+I+X3J+2)+1 = y ftx
i 

j=0 1=0 
(4.24) 

_ fO if i =£ 0 and i = 0 mod 3 
where f = I 

<-l otherwise 

A good example would be for h = 2 and n=8. Here the polynomial would be: 

fix) = x8 + x7 + x5 + x4 + x2 + x + 1 

In order to obtain the transfer matrix for an irreducible polynomial of type I, we have to 

solve xn+ for 0 < k < n-2. From (4.24) we have: 

7 i - l 

xn = x3h+l + V (x3; + l + x3j + 2) + ± 

(4.25) 
j = 0 
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By multiplying x to both sides of the above equation we have: 

h-l 

h-l h-l 

xn+l = xn + V (x3;+2 + ^ + % 

h-l 

= x 3 h + 1 + V (x3J+1 + x3J+2) + 1 + V 0 3 y + 2 + x3J+3) + x (4.26) 
; = 0 ; = 0 

It should be noted that in the above formulation, the operations on the coefficients are 

performed in GF(2), i.e. addition is equal to subtraction. By continuing on multiplication 

of x to the both sides, the rest of the powers of x would be gained: 

h 

xn+2=Yi(x
3J+1+x3J+2) + x 

h-l 

= xn + x3h+1 + V (x3j+1 + x3J+2) + x (4.27) 

7 = 1 

h-l h-l 

= x3h+i+y ( x 3 ^ 1 + X 3 J + 2 ) + 1 + x 3 h + i + y (x3j+i+x3>+2)+x 
;=0 j=l 

= X2 + 1 

And generally 

xn+k _ xk + xk-2 for 2<k<n-2 (4.28) 

According to the above equations, the transfer matrix of an irreducible polynomial of 

type I can be formed with the following properties: 
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1. Row T(0, :) has 2h + 2 = - (n + 1) '1 's which are located at x3i+l for 0<i<h, 

3i+2 x for 0 <i<h-1, and x . It should be noted that T(0 j ) has a weight of x P-l-j 

2. Row T(l, :) has 2h + 1 

1 <i<h. 

' l ' s which are located atx3' for 0<i<h, xil+l for 

3. Rows T(k, :) for 2 < k < n - 2 have just two ' 1 's which are located at x and x ~2. 

The transfer matrix for the previous example is shown in figure (4.3). 

"1 1 1 1 1 1 

1 1 1 1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

Figure 4.3 Transfer Matrix of a Type I Polynomial 

Type II Polynomials 

In this type of finite fields n = 3h while h is an integer. The irreducible polynomial of this 

type of field,/fxj, has the following form: 

ft-i n - l 

zoo = x3h+y (x3;+2+X3J) = Yfix1 

; '=0 i=0 
(4.29) 

where '• = (! 
0 if i = 1 mod 3 

otherwise 

An example of this type of polynomials is for h = 3 and « = 9, resulting inf(x) being: 

fix) = x9 + x8 + x6 + x5 + x3 + x2 + 1 
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In order to build the transfer matrix for this type of field, following the same procedure as 
n+k before, xn+K for 0< k < n — 2 can be solved as follows: 

ft-i 

xn = y(x3J+2+x3]) 
] = 0 

h-1 

xn+1 = Y(x3J+2+x3J+1) + l 

(4.30) 

; = 0 

Kxn+k _ xk-i + xk-2 for 2<k<n-2 

According to the above equations, the transfer matrix of an irreducible polynomial of 

type II can be formed with the following properties: 

1. Row T(0, :) has 2/i = -n ' l ' s which are located atx3iandx3,+2 for 0 <i<h- 1. 

2. Row T(l, :) has2h + 1 = ~ - ' l ' s which are located at x3'+l and x3,+2 for 

0< i < h, and x . 

3. Rows T(k, :) for 2 < k < n-2 have just two ' 1 's which are located at x '' and xk~2. 

The transfer matrix for the previous example is shown in figure (4.4): 

T = 

I 1 1 1 1 1 

I I 1 1 1 1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

Figure 4.4 T Matrix of a Type II Polynomial 
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Type III Polynomials 

Consider the finite field GF(2n), where n = 3h and h is a positive integer. Let the 

irreducible polynomial f(x) that defines this field be given in the following form: 

h-l n-X 

i fix) = x3n+y (x3j+2+x3j)+x+1=y & 
(4.31) 

y=i i=o 

. c (0 for i — 2 or i = 3i+ 1 with; > 1 
where f = i _ , 

L l otherwise 

A good example for this type of polynomials would be for h = 3 and n = 9, and 

consequently/^) would be: 

/ ( x ) = x9 + x8 + x6 + xs + x3 + x + 1 

Again x"+ for 0 < k < n - 2 can be solved as follows: 

h-l 

xn = Y(x3>+2 + x3J) + x + l 

;'=i 

By multiplying x we have: 

h-l 

(4.33) 

X 

7=1 

h-l 

1 = ^ ( x 3 ; + 3 + x 3 ; + l ) + x2 + x 

7=1 

h - l 

= xn + 2\(x3j + x3j+1) + x3 + x2 + x 

7 = 1 

h-l h-l 

= V (x3j+2 + X3j) +X + 1 + Y {x3> + X3J + 1) + X3 + X2 + X 

7=1 7=1 

h-l 

- Y^(x3j+1 + x3>+2) + x3 + x2 + 1 

(4.34) 

7=1 
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and 
h-l 

xn+2 V (x3j + 2 + x3j + 3j + x 4 + x3 + x 

7 = 1 

h-l 

= xn + V (x 3 ' + 2 + x3') + x4 + x (4.35) 

7 = 1 

h-l h-l 

= Y(x3j+2 + x3') + x + l + y (x3j+2 + x3J) + x4 + x 

7 = 1 7 = 1 

= X4 + 1 

And generally: 

xn+k = xk+2 + xk-2 ^ o r 2 < fc < n - 3 (4.36) 

And finally the last one: 

%2n-2 =xn + xn-4 

h-l 
,3h-\ =y (x2j+2+x3j)+x+i+ 

7 = 1 

h-3 

= x 3 h _ 1 + x3h~3 + x3h~4 + x3h~6 + y (x3j+2 + x3j) + x + l + x 

7 = 1 

h-3 

= X3 h _ 1 + X3h~3 + X3h~6 + V (x3j+2 + X3J) +X+1 

(4.37) 

7 = 1 

According to these equations, we can build up the transfer matrix of an irreducible 

polynomial of type III with the following properties: 

1. Row T(0, :) has 2h = -n '1 's which are located at x3i for 0 <i<h- 1, x3i+2 for 

1 < i < h - 1, and x'. 
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2. Row T(1, :) has 2h + 1 = — p T s which are located at xl ' for 1 < i < h - 1, 

x3i+2 for 0<i<h-l, x3, andx°. 

3. Rows T(k, :) for 2 < k < n - 3 have just two ' 1 's which are located at xk+2 and xk~2. 

4. Row T(n-2, :) has 2h-l= ^ l l i ' l ' s which are located at x3' for 0 < i < h - 1, 

x3,+2 for 1 < i < h-3, x""', and x1. 

The transfer matrix of the previous example is shown in figure (4.5). 

"1 1 1 1 1 f 

1 1 1 1 1 1 1 

1 1 

1 1 
T = 

1 1 

1 1 

I 1 

I I 1 1 1 
Figure 4.5 T Matrix of a Type III Polynomial 

4.3.2 Results Related to Type I Polynomials 

Before computing the results and finding the complexities, it is very important to build 

the V matrices. As mentioned before, the T matrix of a polynomial of type I has a special 

form. The first row of the transfer matrix, T(0, :), has 2h + 2 T s so Vo will have 2h + 2 

non-zero rows and all of these rows are the first row of Matrix L, L(0, :); therefore they 

have n - 1 non-zero items. The locations of these rows are Vo(0, :), Vo(3i+l, :) and 

V0(3i+2, :) for 0 < i < h - 1, and finally V0(n-1, :). 

The second row of T matrix, T(l, :), has 2h + 1 ' 1 's so V] will have the second row of L, 

L(l, :) in 2h + 1 rows and the rest of rows are all zero. Locations of the non-zero rows 

are V,(0, :), V](3i, :) and V,(3i+1, :) for 1 < i < h. The rest of V matrices, i.e. Vk for 

2 < k < n - 2 only contain two non-zero rows which are L(k, :). These rows contain 

n — 1 - k non-zero items. 
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Calculation of Space Complexity means to count the number of all 2-input AND gate and 

2-input XOR gates needed to perform the multiplication. In the previous sections we 

found that the space complexity of this multiplier is: 

— ^,2 $#AND = n 
UXOR = n2-2n + i + xs

 ( 4 3 8 ) 

At this point only Xs needs to be calculated. Xs corresponds to the XOR gates used to 

add up the partial results of matrix multiplications: 

C = UBfF)V0B©V,BfF> • ffiV-

Since Vo has 2h + 2 nonzero rows the first addition needs 2h + 2 XOR gates. Similarly, 

the second addition needs 2h + 1 XOR gates and the rest of additions, each need two 

XOR gates each. So Xs is calculated as follows: 

Xs = (2h + 2) + (2/i + 1) + 2 + 2 + ---+2 
n-3 

= 2n - 6 + Ah + 3 

4 8 
= 2n — 3 +—n 

2 3 

And the total number of XOR gates would be: 

(4.39) 

4 8 
#XOR = n2 - 2n + 1 + 2n - 3 - -n - -

2 3 
4 14 

3 n ~ ¥ 

(4.40) 

= n2 +—n —— 

It is important to note that the XOR complexity can be reduced by eliminating the 

redundant terms. Looking at the Vo and Vi matrices, it can be seen that both of them have 
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a value on row 0, row 3i + 1 for 1 < i < h-1, and row n - 1. So in performing VoB + VjB 

the term L(0, :)B + L(1,:)B is repeated h + 1 times and only one of these summations is 

necessary, therefore h XOR gates will be eliminated: 

_ 4 14 
#XOR = n2 + - 7 1 - — 

3 3 

_ 4 14 
= n H—n 

3 3 
— n2 + n — A 

In the previous sections we found that the time complexity of this multiplier is: 

TA + (llog2(n-l)]+x)Tx (4.42) 

in which xTx is the amount of delay caused by the last level of XOR gates which perform 

the summation of partial multiplication results. In order to calculate the maximum value 

of x, the longest signal path should be determined. According to the T matrix of type I, 

the maximum number of '1's in one column is 4, so when performing the summation 

UB + VoB + ... + Vn_2B the longest signal path would have four XOR gates and 

according to the T matrix it would be at U(3i+1, :)B + L(0, :)B + L(l, :)B + L(3i+1, :)B 

+ L(3i+3)Bfor7</</2-7 . 

It is important to note that these are the exact locations of the redundant term L(0, :)B + 

L(l, :)B. The biggest time delay will happen when i — 1. So the time delay of U(4, :)B + 

L(0, :)B + L(l, :)B + L(4, :)B + L(6, :)B is the longest delay of the circuit. First let's see 

how much time is needed for the elements of the above summation to become ready. 

Here L(0, :)B needs \log2(n — 1)]TX time delay where Tx is the delay of a 2-input XOR 

gate. Time delays of the other terms are: 

U(4,:)B : \log25]Tx 

L(1,:)B : \log2(n-2)]Tx 

L(4,:)B : \log2(n - 5)]TX 

L(6,:)B : \log2(n-7)]Tx 

-h 

n 2 

2 + 3 
(4.41) 

77 



Since \log2(ji — 1)1 = \log2(n — 2)1 = \log2(n — 5)1 = \log2(n — 7)1 for n > 23, we 

can assume that all of these five elements become ready at the same time. Therefore by 

implementing a binary tree structure the total delay would be 3Tx: 

L(0, :)B L(1,:)B U(4, :)B L(6, :)B L(4, :)B 

Figure 4.6 Longest Signal Pass of a Type I Multiplier 

It is important to note that for n < 23, since \log2(n — 7)1 < \log2(n — 1)1, we can 

perform the addition U(4, :)B + L(6, :)B before the other terms become ready and 

eliminate one Tx delay. Table (4.1) shows the final complexities of our multiplier for type 

I polynomials: 

#AND 

n2 

#XOR 

n2 + n — 4 

DELAY 

TA + (\log2(n-l)] + 3)Tx 

Table 4.1 Complexity Results of a Type I Multiplier 

4.3.3 Results Related to Type II Polynomials 

The same technique would be used in calculating the results for Type II polynomials. 

According to the form of T matrix for this type, the only difference would be in the form 

of Vo and \\. Here Vo has 2h non-zero rows and they are row Vn(3i, :) and row 

Vo(3i+2, :) for 0 < i < h - 1. Also V] will have 2h + 1 nonzero rows which are row 
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V,(0, :), row Vi(3i+1, :), and row V,(3i+2, :) for 0 < i < h - 1. So Xs would be calculated 

as follows: 

Xs = (2/i) + (2h + 1) + 2 + 2 + - + 2 
n-3 

= 2n - 6 + 4/i + 1 
(4.43) 

4 
= 2n — 5 + — n 

Here again the redundant terms would be found when calculating VoB + ViB and the 

term LoB + LjB is repeated h + 1 times. So the XOR complexity would be: 

4 

#XOR = n2-2n + l + 2n-5 + -n-h 

,, 4 n 
= n 2 + - n - 4 - - (4.44) 

3 3 

— n2 + n — 4 

The same thing will happen when calculating the time delay. For this polynomial the 

longest signal pass contains four XOR gates and according to the transfer matrix of this 

type, it happens when calculating U(3i-1, :)B + L(0, :)B + L(l, :)B + L(3i, :)B + 

L(3i+1, :)B for 1 < i < h - 1, and the biggest delay is when / = 1 and U(2, :)B + L(0, :)B + 

L(l, :)B + L(3, :)B + L(4, :)B is being calculated. Again the result would be 

(pog2(n-1)l + 3)7; for n>15 and (flog2(»-l)] + 2)7; for n < 15. Table (4.2) shows the 

final complexities of our multiplier for type II polynomials: 

#AND 

n2 

#XOR 

n2 + n — 4 

DELAY 

TA + (\log2(n-l)] + 3)Tx 

Table 4.2 Complexity Results of a Type II Multiplier 
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4.3.4 Results Related to Type III Polynomials 

According to the special form of the T matrix in this type, Vo has 2h non-zero rows 

which are: row Vo(l, :), row Vo(3i, :) for 0 < i < h - 1 and row V0(3i+2, :) for 

1 <i <h - 1. Likewise V] has 2h + 1 nonzero rows which are: row Vi(0, :), row Vi(3, :), 

row Vi(3i+1, :) for 1 < i < h - 1, and row V,(3i+2, :) for 0 < i < h - 1. All the other V 

matrices have just two non-zero rows except for the last one Vn_2 which has 2h- 1 non

zero rows and they are: row Vn.2(0, :), row V„-2(3i, :) for 0 < i < h - 1, row Vn_2(3i+2, :) 

for 1 < i < h - 3, and row Vn.2(h-1, :). Calculating Xs would be as follows: 

Xs = (2/i) + (2/i + 1) + (2h - 1) + 2 + 2 + - + 2 
n-4 

= 2n - 8 + 6h 
(4.45) 

= 4 n - 8 

Again many redundancies can be found in performing matrix multiplication. First 

considering Vo and Vn-2 you find that the term L(0, :)B + L(n-1, :)B is repeated 2h - 1 

times so 2/2 - 2 XOR gates can be eliminated. Next, considering Vo, Vi and Vn_2 it can be 

seen that the term L(0, :)B + L(l, :)B + L(n-1, :) is repeated h times, so again h - 1 XOR 

gates will be eliminated and the final complexity would be: 

#XOR = n2 - In + 1 + An - 8 - (2h - 2) - (/i - 1) 

= n2 -I- 2n - 4 - 3h 

= n2 + n - 4 (4.46) 

Considering the form of T matrix is important in calculating time delay. Since each 

column in T matrix has maximum five T s (for n < 15 it has maximum four 'l;s) it can 

be assumed that the longest signal path has five XOR gates. The longest delay will 

happen when calculating U(5, :)B + L(0, :)B + L(l, :)B + L(3, :)B + L(7, :)B + 

L(n-2, :)B for n > 15. Using the same technique, the time complexity would be 
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(|"log2(«-l)] + 3)r i. Table (4.3) shows the final complexities of our multiplier for type 

III polynomials: 

#AND 

n2 

#XOR 

n2 + n — 4 

DELAY 

TA + (\log2(n-l)] + 3)Tx 

Table 4.3 Complexity Results of a Type III Multiplier 

4.4 Comparisons 

In this section we introduced a new method for building parallel finite field multipliers in 

polynomial basis. Then we applied our method to some types of fields presented in [38] 

and showed the complexity results. As mentioned in chapter 3, it is not possible to beat 

the results of a finite field multiplier built for a trinomial, ESP, or AOP. But since these 

types of polynomials do not exist for all finite fields that we deal with, it is important to 

find new multipliers that have better complexity results than pentanomials. Table (4.4) 

compares the results of our multiplier with the best results of a pentanomial based 

multiplier: 

Type of 

Multiplier 

Conventional 

Proposed 

Proposed 

Proposed 

Polynomial of 

the Field 

Pentanomial 

Type I 

Type II 

Type II 

#AND 

n2 

2 

n 

n2 

2 

n 

#XOR 

n2+2n-3 

n2 + n-4 

n2 +n-4 

n~ + n — 4 

Delay 

TA+(\\og2(n-\)] + 4)Tx 

TA+{\\og2{n-\)\+?>)Tx 

TA+(llog2(n-l)]+3)Tx 

TA+([\og2(n-l)]+3)Tx 

Table 4.4 The Results of the New Multiplier vs the Best Pentanomial Multiplier 

It is clearly seen that the results of our multiplier is better than a pentanomial based 

multiplier. Therefore this new multiplier can be used as an alternative for finite field 

multipliers based on pentanomials for finite fields of the form GF(2n) where an 

irreducible trinomial or ESP or AOP doesn't exist. 
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5 Conclusion 

5.1 Summary of contributions 

This work presents a new bit parallel polynomial basis finite field multiplier. Polynomial 

basis multipliers have two major types: conventional and Mastrovito. This new approach 

combines the aspects of the both types to achieve a more efficient architecture. By 

efficiency we mean both space and speed. 

Among the different finite field multipliers in literature, those built for irreducible 

trinomials or equally spaced polynomials or all-one polynomials have the best space and 

time complexities. But for a finite field GF(2"), the problem is that there is no guarantee 

to find such an irreducible polynomial for any value of n. Currently when those optimized 

irreducible polynomials do not exist in a certain field, the multiplier is built based on a 

pentanomial. 

The proposed multiplier has been applied to some classes of finite fields and resulted in 

very good complexities. It has smaller space complexity compared to the smallest finite 

field multiplier based on a pentanomial. At the same time it had smaller time complexity 

as well. So the efficiency of multiplication was improved for both space and speed. 

Therefore it can be a good alternative for polynomial based multipliers in the finite fields 

that an optimized irreducible polynomial does not exist. 
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5.2 Future Work 

In this work only an architecture level of the multiplier was presented and the 

complexities were expressed in terms of some nominal values. The next step could be 

implementation of the multiplier as a real circuit for example in an FPGA in order to 

analyze the actual performance of it. It should also be considered that the full parallel 

multiplier architectures are impractical for circuit implementation when the value of n is 

big, therefore in the FPGA implementation a small value of n should be chosen. 

However, big values of n can also be used for simulation purposes. 

Considering the architecture level, this method has been applied to only a few classes of 

finite field. Based on the good results of these fields, we can assume that some other 

classes of fields may exist with promising results as well. So the next step would be 

applying this method to these classes of finite fields. Furthermore, the matrix 

multiplication operations in this method can be combined with some efficient algorithms 

such as KOA to gain more reductions in complexities. The result of applying this new 

method on previously investigated polynomials such as trinomials, ESPs, or AOPs should 

also be considered in order to find any possible common structures. 
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