
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2009

A new approach in building parallel finite field multipliers A new approach in building parallel finite field multipliers

Mohammadali Sharifan
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Sharifan, Mohammadali, "A new approach in building parallel finite field multipliers" (2009). Electronic
Theses and Dissertations. 8128.
https://scholar.uwindsor.ca/etd/8128

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8128?utm_source=scholar.uwindsor.ca%2Fetd%2F8128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

NOTE TO USERS

This reproduction is the best copy available.

UMI*

A NEW APPROACH IN BUILDING PARALLEL FINITE

FIELD MULTIPLIERS

by

Mohammadali Sharifan

A Thesis

Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2009

© 2009 Mohammadali Sharifan

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre r$f6rence
ISBN: 978-0-494-57623-6
Our file Notre reference
ISBN: 978-0-494-57623-6

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par ['Internet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extra its substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Author's Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained a written permission from the copyright owner(s) to include such

material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

MI

Abstract

A new method for building bit-parallel polynomial basis finite field multipliers is

proposed in this thesis. Among the different approaches to build such multipliers,

Mastrovito multipliers based on a trinomial, an all-one-polynomial, or an equally-spaced-

polynomial have the lowest complexities. The next best in this category is a conventional

multiplier based on a pentanomial. Any newly presented method should have complexity

results which are at least better than those of a pentanomial based multiplier. By applying

our method to certain classes of finite fields we have gained a space complexity as

n2 + H - 4 and a time complexity as TA + ([log2(n-l)]+3)rx which are better than the

lowest space and time complexities of a pentanomial based multiplier found in literature.

Therefore this multiplier can serve as an alternative in those finite fields in which no

trinomial, all-one-polynomial or equally-spaced-polynomial exists.

IV

To all the things that I lost, while trying to gain.

v

Acknowledgments

T would like to thank Dr. Huapeng Wu for all the help and support that he gave me as my

supervisor, and for always encouraging me through the hard times that I had during this

research project.

I also want to thank Dr. Henry Hu for precisely reviewing my work and Dr. Sazzadur

Chowdhury for his valuable advice and comments.

I cannot be grateful enough to my parents for all the sacrifices they made to give me

whatever I need to gain my goals.

Special thanks to S. for her endless love, support, and patience.

VI

Table of Contents

Abstract iv

Dedication.. v

Acknowledgments vi

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivation 1

1.2 Thesis Outline 3

2 Mathematical Background 5

2.1 Fundamental Concepts 5

2.2 Modular Arithmetic 8

2.3 Finite Fields 11

2.4 Polynomials and Finite Fields 12

2.5 Extension Finite Fields 16

2.6 Basis in Finite Fields 19

2.7 Finite Field Multiplication in Polynomial Basis 20

2.8 Multiplier Architecture and Complexity 24

3 An Overview of Finite Field Multipliers 26

3.1 Parallel Finite Field Multipliers 27

3.2 Serial Finite Field Multipliers 50

3.3 Summary 54

vii

4 New Finite Field Multiplier 57

4.1 Introduction 57

4.2 Multiplier Architecture 59

4.3 Applying the New Method to Classes of Finite Fields 68

4.3.1 Review of Three Classes of Finite Fields 69

4.3.2 Results Related to Type I Polynomials 75

4.3.3 Results Related to Type II Polynomials 78

4.3.4 Results Related to Type III Polynomials 80

4.4 Comparisons 81

5 Conclusion 82

5.1 Summary of contributions 82

5.2 Future Work 83

References 84

VITAAUCTORIS 89

V I I I

List of Tables

Table 2.1 Addition in GF(23) 18

Table 2.2 Multiplication in GF(23) 18

Table 2.3 Multiplicative Inverse Elements in GF(2) 19

Table 3.1 Finite Field Multipliers Based on Hardware Architecture 54

Table 3.2 Finite Field Multipliers Based on Element Representation 55

Table 3.3 Best Complexities of Different Finite Field Multipliers 56

Table 4.1 Complexity Results of a Type I Multiplier 78

Table 4.2 Complexity Results of a Type II Multiplier 79

Table 4.3 Complexity Results of a Type III Multiplier 81

Table 4.4 The Results of the New Multiplier vs the Best Pentanomial Multiplier 81

IX

List of Figures

Figure 2.1 Arithmetic Operations in Z6 10

Figure 2.2 Arithmetic Operations in GF(5) 12

Figure 3.1 Reduction Array for a General Trinomial 36

Figure 3.2 Reduction Array for x" + xm+1 + xm +x + 1 43

Figure 3.3 A 5 * 5 Toeplitz Matrix 49

Figure 3.4 Berlekamp Multiplier 51

Figure 3.5 Massey-Omura Serial Multiplier 54

Figure 4.1 V Matrices of GF(25) with f(x) = x5 + x2 +1 65

Figure 4.2 Proposed Multiplier Architecture 67

Figure 4.3 Transfer Matrix of a Type I Polynomial 71

Figure 4.4 T Matrix of a Type II Polynomial 72

Figure 4.5 T Matrix of a Type III Polynomial 75

Figure 4.6 Longest Signal Pass of a Type I Multiplier 78

x

1 Introduction

1.1 Motivation

In the current age of information technology, while the internet is growing very fast in

almost every aspect of life; electronic communication of very private and important data

is a common task. Consequently, network security has become a primary demand for IT

service providers and users. No matter what the application is, from sharing family

pictures in a social network to sending important customer lists through a business email

or checking your bank account balance online, information transaction should be done

with a very high level of confidentiality. Secure transactions are even more vital when it

comes to e-commerce, online money transactions or governmental information

transactions such as social insurance numbers or tax returns. Almost all required network

security services can be achieved by Cryptography [35].

Encryption is one common cryptography algorithm which means scrambling the data in a

way that only authorized users with proper authorization (a necessary key) can

unscramble it. Cryptography algorithms fall into two main categories: symmetric key and

public key.

Symmetric key cryptosystems rely on a key distribution center which provides a special

and unique key to each user in each pair of communication. In this method the number of

1

required keys for a network grows very fast by increasing the number of users. Therefore,

in large systems symmetric key cryptosystems encounter key management and key

distribution problems. This problem led to the introduction of the public key cryptography

by Diffie and Hellman in 1976 [3].

In a public key network, each user is assigned two special keys. One key is kept private

while the other is known to all the other users in the network. Any message addressed to

the user is scrambled with the user's public key. However, in order to unscramble this

data, only the user's private key is applicable. Different methods have been introduced

for public key. In 1978 Rivest, Shamir and Adleman [33] introduced the so-called RSA

algorithm which is by far the most popular public key algorithm. About a decade later in

1985 El-Gamal [4] introduced another technique in cryptography named after himself. At

the same time Koblitz [16] and Miller [24] independently introduced the elliptic curve

cryptography (ECC) where finite fields came into play. This method is based on the

group of points on an elliptic curve (EC) over a finite field.

Despite the fact that the vast majority of the products and standards that use public key

cryptography for encryption use the RSA method, ECC is more efficient compared to

RSA. This is because ECC can offer equal security with a far smaller key size, hence

reducing processing overhead. Since the RSA standard key length has recently greatly

increased, the issue of the key length has come more into attention, especially that the

increase in key length has put a burden on e-commerce sites that conduct large number of

secure transactions. This is leading to a vast replacement of RSA by ECC in many

different security products in hardware and software.

Elliptic curve cryptography (ECC) is based on the elliptic curve discrete logarithm

problem [10]. EC calculation over a finite field is based on finite field addition,

subtraction, multiplication, squaring and division amongst which multiplication is the

most important operation to implement.

2

Although implementing cryptography algorithms in the software level is much easier,

they are considerably slower compared to hardware implementations. This will

effectively slow down its processing and increase the consumption of the valuable time of

the main processor of the hosting system. On the other hand, the hardware

implementation of a cryptosystem will result in faster processors and the opportunity to

have larger key lengths. The advantages of these characteristics can be clearly seen where

there is a large volume of secure transactions. Hence hardware implemented crypto-

processors result in a higher level of security with a better performance.

Efficient hardware implementation of ECC systems highly depends on the efficiency of

finite field multiplication. This is due to the fact that when calculating the speed of an

elliptic curve processor, finite field multiplication is considered to be the most time

consuming operation. Finite field addition (and in some systems squaring) is considered

to be almost free compared to multiplication [5]. The importance of improving finite field

multiplication algorithms provides the main motivation of this research.

In this thesis a new efficient parallel finite field multiplier is proposed which can be used

as an alternative for present methods of multiplication in hardware implementation of

elliptic curve cryptosystems.

Application of finite field multipliers is not restricted to elliptic curve cryptography.

Before the introduction of ECC, finite fields had come into attention in coding theory and

error detecting codes especially in Reed-Solomon encoders [30]. Finite field arithmetic is

also used in combinatorial designs [38], and computer algebra [19]. This shows the

extensive application of finite field multiplication algorithms. Nevertheless this thesis

mainly focuses on the application of finite field in public key cryptography.

1.2 Thesis Outline

Chapter 2 gives an introduction to finite fields and the arithmetic within these fields. It

briefly covers the mathematical background of the construction of finite fields and

3

explains different methods of multiplication. Various classes of finite fields are

introduced and different methods of representing elements in finite fields are reviewed.

Chapter 3 provides a comprehensive survey on the state-of-art technologies on building

finite field multipliers. It explains different types of implementations of finite field

multipliers and compares pros and cons of each method. It also provides different types

of fields used in finite field multipliers and since this thesis proposes a parallel

polynomial basis finite field multiplier all the similar existing multipliers are provided

with their exact space and speed complexities.

Chapter 4 introduces the new method of finite field multiplication. It provides complete

hardware architecture for this multiplier. Also some recently introduced types of finite

fields are reviewed and the new architecture of multiplier is applied to these fields.

Finally it provides the results of this multiplier for those fields in terms of space and time

complexity of the hardware.

In the end, Chapter 5 presents the concluding remarks surrounding our proposed method,

and suggests future work on this subject.

4

2 Mathematical Background

2.1 Fundamental Concepts

Groups, rings and fields are the fundamental elements of a branch of mathematics called

abstract algebra. In this branch we deal with certain sets and their elements on which we

can operate algebraically; meaning that by combining two elements of the set in several

ways a third element of the set can be obtained. There are certain rules which control

these operations. It is important to note that although the notations of these operations are

usually similar to addition or multiplication; in abstract algebra we are not limited to

ordinary arithmetical operations.

Groups

Definition 2.1 A group G; here denoted by {g, *}, is a set G together with a binary

operation * on G such that the following properties hold:

1. Closure; that is, for all a, b in G, a * b is in G

2. Associativity; that is, for all a, b, c in G, a * (b * c) = (a * b) * c

3. Unity element; there is an element e in G such that for all a in G, a * e = e * a = a

4. Inverse element; for all a in G there exists a' in G such that a* a' = d * a = e

5

It is important to note that "*" is not necessarily "x" although it could be "x" or "+".

Commutative Group

If the group also satisfies

5. For all a, b in G, a * b = b * a

Then the group is called commutative or abelian.

Finite Group

If the group contains finite number of elements then it is called & finite group. The order

of a group is the number of elements in the group.

Cyclic Group

Exponentiation in the group is defined as repeated application of the group operator. Here

if a fixed element a exists in G in a way that every element in G is a power ak, then the

group is called cyclic and element a is called the generator of the group.

If the operation of the group is "+ " then the group is called additive and the unity

element is represented as "0". If the operation of the group is "x", then the group is called

multiplicative and the unity element is represented by " 1 " .

Rings

Definition 2.2 A ring R; here denoted by {R,+, x}, is a set R and two binary operations

addition and multiplication in a way that the following properties are satisfied:

1. R is a commutative group with respect to "+"

6

2. Closure for "x"; that is, for all a, b in R, a x b is also in R

3. Associativity of "x"; that is, for all a, b, c m R, a x (b x c) = (a x b) xc

4. Distributive laws for "x" over "+"; that is, for all a, b, c in R,

ax(b + c) = a x b + a x c and (a + b)xc = axc + bxc

Commutative Ring

If the ring also satisfies

5. For all a, b in R, a x b = b x a

Then the ring is considered commutative.

Integral Domain

If a commutative ring satisfies the following axioms:

6. Unity element for "x"; there is an element " 1 " in R such that for all a in R,

a x 1 = lx a = a

7. No zero divisors; if a, b in R and a x b = 0 then either a = 0 or b = 0

Then it is called an integral domain.

Fields

Definition 2.3 A field F, which we denote by {F,+, x}, is a set of elements with two

binary operations addition and multiplication such that the following properties are hold:

1. F is an integral domain

2. Multiplicative inverse; for all a in F there is an element a'1 in F such that

a x a' = a'1 x a = 1; except for "0".

7

In other words, a field is a set in which addition, subtraction, multiplication and division

is possible without leaving the set. Division is defined as a / b = a x (b'1) and subtraction

is defined as a- b = a + (-b) in which -b is defined as additive inverse of b.

Finite Field

If the number of elements of the field is finite then it is called a finite field.

2.2 Modular Arithmetic

Dividing any integer a by any positive integer n will result in an integer quotient q and a

remainder r, which is a positive integer. This relationship is demonstrated as:

a = qn + r where 0 < r < n and q = [a/nj (2.1)

In which [x\ is the largest integer less than or equal to x. The remainder r is often referred

to as residue.

"mod" Operator

For an integer a, and a positive integer n; a modn is defined as the residue of a/n.

Congruent Modulo

Two integers a, b are congruent modulo n if a mod n = b mod n and it is written as:

a = b mod n.

Divisor

If a mod b = 0 then b is called a divisor of a and it is written as: b\a.

8

Residue Class

A Residue class is the set of all integers which are congruent modulo n. Each class is

represented by the smallest non-negative integer in the class. Consider a set Z„ which

contains all non-negative integers less than n. This set contains all the residue classes

modulo n. For example Z3 = {0, 1, 2} shows all residue classes of n = 3. These classes

are:

[0] = {..., -9, -6, -3, 0, 3, 6, 9, ...}

[1] = {...,-8,-5,-2, 1,4,7, 10, ...}

[2] = {...,-7,-4,-1,2, 5, 8, 11,...}

Reducing modulo n

For each integer k, finding the smallest non-negative integer to which k is congruent

modulo n is called reduction modulo n.

By definition, the "mod n" operator maps all integers into Z„. This suggests the idea of

performing arithmetic operations within the confines of this set. This type of arithmetic is

called modular arithmetic and it has the following basic properties:

1. [(a mod n) + (b mod n)] mod n = (a + b) mod n

2. [(a mod n) x (b mod n)] mod n = (a x b) mod n

If we perform this modular arithmetic only on integers in Z„, with the following

properties, it can be seen that Zn is a commutative ring with an identity element for

multiplication:

1. Commutative laws:

i. (a + b) mod n = (b + a) mod n

ii. (a x b) mod n = (b x a) mod n

9

2. Associative laws:

i. [(a + b) + c] mod n = [a + (b + c)] mod n

ii. [(a x b) x c] mod n = [a x (b x c)] mod n

3. Distributive laws:

i. [a x (b + c)] mod n = [(a x b) + (a * c)] mod n

ii. [a + (b x c)] mod n = [(a + b) x (a + c)] mod n

4. Unity elements:

i. (0 + a) mod n = (a + 0) mod n = a mod n

ii. (1 x a) mod n = (a x]) mod n = a mod n

5. Additive inverse:

i. For each a in Zn there exists b in Zn such that a + b = 0 mod n

An example would clarify this better. Considering Z<>, the elements of this field are:

{0, 1, 2, 3, 4, 5}. Figure (2.1) shows the arithmetic operations in Z^:

0

0

1

1

2

2

2

3

4

3

3

4

5

0

4

4

5

0

1

2

5

5

0

1

2

3

4

X

0

1

2

3

4

5

0

0

1

0

1

2

0

2

4

3

0

3

0

3

4

0

4

2

0

4

5

0

5

4

3

2

1

a

0

1

2

3

4

5

-a

0

5

4

3

2

1

a-i

1

—_

5

Figure 2.1 Arithmetic Operations in Zf,

It can be seen that multiplicative inverse doesn't exist for all elements of Z„. The reason

behind that comes from a concept called relatively prime. Two integers are considered to

be relatively prime {co-prime) if their only common positive integer factor is 1. For all a

in Z„, a has a multiplicative inverse in Z„ if and only if a and n are relatively prime. In the

10

above example 1 and 5 had a multiplicative inverse in Ze but 2, 3 and 4 didn't because

they have common factors other than 1 with 6 which are 2, 3 and 2 respectively.

It can be concluded from the above concept that in order to have a multiplicative inverse

for all elements of Z„, n should be co-prime to all numbers in the set. This leads to the

conclusion that n should be a prime number. So for a prime number/?, all elements of Zp

have a multiplicative inverse within the set. This is the basic concept of finite fields.

2.3 Finite Fields

In early 19th century, French mathematician Evariste Galois introduced finite fields,

however they did not come into attention until 1960's when coding methods were

developed. But the introduction of elliptic curve cryptography in 1985 made finite fields

very popular. Finite fields play a crucial role in many cryptographic algorithms especially

in ECC.

It can be shown that the order of a finite field must be a power of a prime/*", where p is a

prime number and n is a positive integer. The finite field of the order p" is usually

denoted as GF(pn); GF stands for Galois field in honour of the French mathematician.

There are two different types of finite fields:

• Ground Fields, GF(p); where n = 1

• Extension Fields, GF(pn)

We will talk about the ground fields in this section. Extension fields will be discussed in

section 2.5.

As mentioned before a set Z„ together with modular operations is a commutative ring. We

also saw that if n is a prime number then all the non-zero elements in the set Z„ have a

multiplicative inverse within the set. So according to the definitions in section 2.1, set Zp

11

together with modular arithmetic operations makes a field. Since the number of elements

in this field is finite, Zp is a finite filed:

GFfp) = Zp (2.2)

As an example, arithmetic operations GF(5) are depicted in figure (2.2):

+

0

1

2

3

4

0

0

1

1

2

2

2

3

4

3

3

4

0

1

4

4

0

1

2

3

X

0

1

2

3

4

0

0

1

0

1

2

0

2

4

3

0

3

1

4

4

0

4

3

2

1

a

0

1

2

3

4

-a

0

4

3

2

1

a-i

—

1

3

2

4

Figure 2.2 Arithmetic Operations in GF(5)

The simplest finite field is GF(2). This field has particular importance since it is used to

built extension fields GF(2"), with n as a positive integer. Extension fields of form

GF(2n) are very important in implementing cryptographic algorithms in computer

hardware. Arithmetic operations in field GF(2) are summarized as follows:

+

0

1

0

0

1

1

1

0

X

0

1

0

0

0

1

0

1

a

0

1

-a

0

1

It can be seen that addition in this field is equivalent to the XOR operation, and

multiplication is equivalent to the AND operation. Another important property is that

since the additive inverse of each element in this field is the element itself, subtraction is

equivalent to addition. In other words for all a, b in GF(2), a-b = a + (-b) = a + b.

2.4 Polynomials and Finite Fields

In elementary algebra a polynomial is regarded as an expression of the form:

12

fix) = y atx
l = anx

n + an_1x
n~1 + —h a-^x1 + a0

1=0

Here, n is the degree of the polynomial, ais are coefficients, and x is viewed as a variable.

Since we are usually not interested in evaluating a polynomial for a particular value of x

in abstract algebra, we refer to it as the Indeterminate.

Constant Polynomial

When n = 0, the polynomial is called a constant polynomial which is actually only a

coefficient ao.

Monic Polynomial

For a polynomial of degree n, when a„ = 1, the polynomial is called a monic polynomial.

In general, coefficients of a polynomial belong to a specific set. If this set is a ring, then it

can be shown that the polynomials over this ring form a polynomial ring. Basic

polynomial arithmetic includes the operations of addition, subtraction and multiplication.

Addition in this polynomial ring is defined as:

A(x) = y atx
l and B{x) = y biX1

i=Q i=o
n n

CO) = A(x) + B(x) = V q x ' = J'fai+bdx1
(2.3)

i=0 i=0

Note that even if A(x) and B(x) are not of the same degree, this formulation is correct

considering that the polynomial with the smaller degree would be filled with 0

coefficients.

Likewise, multiplication in this ring is defined as:

13

IL III

A(x) = y atx
l and B(x) = y btx

l

i=o i=o
n+m

C(x) = A(x) x B(x) = V ckx
k

(2.4)

fe = 0

where

2^ aibJ ck =
i+j=k (2.5)

0<i<n;0<;'<77i

Subtraction in this ring is defined like addition using the additive inverse of the

coefficients. Division can also be defined in this polynomial ring if the set of coefficients

is a field instead of a ring. Note that this division will result in both quotient and

remainder, and since there isn't a multiplicative inverse for any polynomial in this ring,

these polynomials do not form a field:

it in

A(x) = y atx
l and B(x) = y btx

l

i=0 i=0

A(x) r(x) (2.6)

Considering n>m, the degree of q(x) is m - n, and the degree of r(x) is less than or equal

to m — 1.

Polynomials over Zp

As mentioned in the previous section set Zp forms a finite field, so division can be defined

for polynomials over Zp or generally speaking over prime finite fields. This is the basis of

forming extension finite fields GF(p"). For cryptographic applications, polynomials over

GF(2) are of most interest. As we will show later these polynomials can be easily stored

as binary numbers in computer memory. Also addition and multiplication on these

14

polynomials is easily implemented by logical XOR, and AND gates. Here is an example

of these polynomials. Note that the coefficients here are either 0 or 1:

A{x) = xs + x3 + x2 + 1

B{x) = x4 + x2 + 1

Addition:

A(x) + B(x) = xs + x4 + x3 + x2 + x2 + 1 + 1 = x5 + x4 + x3

Subtraction:

A(x) - B{x) = xs - x4 + x3 + x2 - x2 + 1 - 1 = xs + x4 + x3

Multiplication:

A(x) x B{x) = x9 + x7 + x6 + x4 + x7 + xs + x4 + x2 + x5 + x3 + x2 + 1

= x9 + x6 + x5 + x3 + 1

Division:

A(x) _ xs + x3 + x2 + 1 _ x2 + x + 1

B{x) ~ x4 + x2 + 1 ~X x4 + x2 + 1

Irreducible Polynomial

A polynomial P(x) over a field is considered irreducible if P(x) = A(x) x B(x) implies that

either A(x) or B(x) is a constant polynomial. In other words P(x) is irreducible if it cannot

be expressed as a product of two other polynomials over the same field and only allows

trivial factorizations. Irreducible polynomials are also called prime polynomials as an

analogy to prime numbers.

7 7

Example: P(x) = x - 2 over the field of rational numbers is irreducible but P(x) = x - 2 =

(x + <2) (x - <2) over the field of real numbers is indeed reducible.

15

2.5 Extension Finite Fields

Let F be a field. A subset K of F which is a field under the operations of F is called a

subfield of F. In this context, F is called an extension field of K. For example the set of

complex numbers is an extension field for the set of real numbers. With the help of

polynomial arithmetic and irreducible polynomials, extension fields exist for finite fields

as well.

Earlier in this chapter, we mentioned that the order of a finite field must be of the form

p", in which p is a prime and n is a positive integer. We found that when n = 1 we have a

prime finite field which is the set Zp and with all the operations performed modulo p, all

the axioms for a field is satisfied. But as we know, set Zpn with operations modulo p"

does not make a field because, as we mentioned before, since p" is not a prime number

we cannot find a multiplicative inverse for all elements of the field.

Modular Polynomial Arithmetic

As mentioned before, the set of all polynomials over a field develops a ring which allows

division within the set. Considering the set S of all polynomials of degree n-1 or less over

the finite field GF(p), each polynomial has the form

71

f(x) — y a.iXl = anx
n + an_xx

n~x + —h arx
x + a0

i=o

Where

at £ { 0 , l , - , p - l }

The total number of distinct polynomials within this set is p". Based on the following

definition of arithmetic operations, set 5" becomes a finite field:

16

1. Arithmetic on coefficients is performed modulo p.

2. Arithmetic on polynomials is performed modulo some irreducible polynomial

P(x) of degree n.

It is important to note that this polynomial modular operation only happens when

multiplying. When performing addition, the degree of the result will never exceed n -1 so

there is no need for reducing modulo P(x). However in the case of multiplying, the result

can have a degree of at most 2n - 2. Hence, for the results that have a degree more than

n- 1, reduction is necessary.

It can be shown that the set of residues modulo P(x) of degree n consists of p" elements

which are all polynomials of degree n - 1 or less. So with analogy to integers we can

write S = Zp(Xj. This set satisfies all the axioms of a finite field so as an extension finite

field we have:

GF(pn) = S = ZpW (2.7)

When implementing encryption algorithms in computer hardware, we usually deal with

finite fields of form GF(2"). The reason is that any polynomial in this field can uniquely

be represented with a binary number, because the coefficients of the polynomials in this

field are either 0 or 1. Also each polynomial here represents an integer number within the

range 0 to 2" - 1. From now on we only refer to finite fields of form GF(2n) because of

their application in cryptographic hardware.

Consider GF(23) with Irreducible polynomial P(x) = x3 + x2 + 1. This field has 8

elements which are:

17

0

1

X

x + 1

x2

x 2 + l

x2 + x

x2 + x + 1

000

001

010

Oil

100

101

110

111

0

1

2

3

4

5

6

7

Addition and multiplication in this field is illustrated in the following tables:

0

1

X

x+ 1

X2

X2 + l

x2 + x

X2 + X + 1

000

001

010

O i l

100

101

110

111

0

000

0

1

001

1

010

2

x+ 1

O i l

3

xz

100

4

x2 + l

101

5

X2 + X X2 + X + 1

110 111

6 7

0 1

0

2

3

0

3

2

1

0

4

5

6

7

0

5

4

7

6

1

0

6

7

4

5

2

3

0

7

6

5

4

3

2

1

0

Table 2.1 Addition in GF(23)

x 2 + 1

X2 + X

X2 + X + 1

X

000 0

001

010

O i l

100

101

110

111

0

000

0

1

001

1

010

2

x + 1

O i l

3

x2

100

4

Table 2.2 Multiplication in GF(23)

18

x 2 + 1

1 0 1

5

X2 + X Xz + X + 1

110 111

6 7

0 0

1

0

2

4

0

3

6

5

0

4

5

1

7

0

5

7

2

3

6

0

6

1

7

2

4

3

0

7

3

4

6

1

5

2

A

0

1

X

x + 1

X2

x2 + l

X2 + X

X2 + X + 1

000

001

010

Oil

100

101

110

111

0

1

2

3

4

5

6

7

a-1

—

1

6

4

3

7

2

5

—

001

010

Oil

100

101

110

111

—

1

X

X + 1

X2

x2 + l

x2 + x

X2 + X + 1

Table 2.3 Multiplicative Inverse Elements in GF(23)

2.6 Basis in Finite Fields

In the previous example we represented field elements as a polynomial of degree less

than or equal to 2. But there are other ways to represent the field elements. In general,

any element a of a finite field GF(2") can be represented as:

a = a0/?0 + a1/?1 + - + an_1/?n_1 (2.8)

where at 6 GF(1) and fa E GF(2") for 0 < i < n - 1

The set {/?», Pi, ..., /?„./} which contains n linear independent elements is the basis of the

field [23]. There are different types of basis for finite fields. Some of the most important

types are:

• Polynomial Basis

• Normal Basis [31]

• Dual Basis [25]

• Triangular Basis [11]

• Weakly Dual Basis [39]

• Redundant Representation [40]

• Shifted Polynomial Basis [29]

19

In the previous example, elements of the finite field were represented in polynomial

basis. Here we give a brief review to polynomial basis. Some of the other bases are

discussed in the next chapter.

Polynomial Basis

Consider a finite field GF(2") with an irreducible polynomial f(x). If a be a root of this

irreducible polynomial, then the set {1, a, a2, ..., an"'} forms a polynomial basis. In

polynomial basis representation, any element a of the field is represented as:

n - l

a = an_1a
11~1 + a n _ 2 a n _ 2 H 1- ata + a0 — J ata

l

(2.9)
1 = 0

It should be noted that since we are not interested in evaluating a for a specific value of a,

other variable symbols can be used instead of a too. As you have mentioned in the

previous example we represented the elements of GF(23) as aix2 + ajx + ao, but by x we

mean the root of the irreducible polynomial.

2.7 Finite Field Multiplication in Polynomial Basis

Consider a Finite field GF(2") with the irreducible polynomial/*) as:

n - l

f(x) = xn + Yjfix
i + l

where/; E GF{2)

(2.10)
i = i

Consider a and b as two elements of this field. By employing polynomial basis we have:

n - l n - l

A(x) = y atx
l and B(x) y btx

l

i=0 i=o

20

The multiplication operation is then defined as:

n - 1

C(x) = A(x)B(x)modf(x) = V q x '

i=0
(2.12)

This operation is performed in two steps:

1. Polynomial multiplication

2. Reduction modulo irreducible polynomial

Step 1:

In this step A(x) is multiplied by B(x) resulting in D(x), considering the polynomial

multiplication rules mentioned in section (2.4):

2n-2

D(x) = A(x)B(x) = V dtx1

1 = 0
(2.13)

The coefficients ofD(x) are calculated as follows:

(_L

dt = {

y cijbi-j for 0 < i < n - 1
;'=0
n - l

2 ^ ajbi_j fc for n < i < 2n — 2
yj=i-n+l

This polynomial operation can be represented in a matrix form as:

(2.14)

D(2n-I)xl - M (2 n - l) x n B (2.15)

2 1

Where D is the coefficient column vector of D(x), B is the coefficient column vector of

B(x), and M is the Multiplication Matrix which contains coefficients of A(x) with the

following form:

% - 2

n-l

d„

l*1„_->

a.

a n-l

0

0

0

0 0

an

a„ "*n-l

0 0

0

an

0

0

0

0

0

o0

a.
a.

2.

a?

a„-i

0

0 "

0

0

0

a0

a.
1

a2

a„-2

an-_

X

h
\

b2

K2
h .

L" n~i _

(2.16)

Step 2

The result of the previous step was the polynomial Dfx) which obviously has a degree

bigger than n — 1. Therefore it needs reduction. By reduction, we want to reduce the

degree ofD(x) from 2n - 2 to n - 1. This reduction process is defined as follows:

C(x) = D(x)mod f(x)

n-l

= y dtx
l mod f{x)

i=0

n-l n-2

(2.17)

y dtx
l+y dk+nx

k+n mod f(x)
! = 0 fe=0

It is clear from the above equation that the reduction step is only performed on the

elements of D(x) which have a power greater than n.

Here a Transfer Matrix, T(n.1)Xn, is defined in a way that:

22

" x" '

x"+l

x2-3

x2-2

= Tx

V~
n-2

X

X

1

(2.18)

k+n Clearly the role of this matrix is to find the residue of each x ", for 0 < k < n-2, modulo

f(x).The entries of this matrix are either " 1 " or "0", and the form of this matrix directly

depends on the irreducible polynomial. As an example, consider finite field GF(25) with

the irreducible polynomial/^ = x5 + x2 + 1. Consider a as a root off(x). We have:

ab + a1 + 1 = 0 => a5 = a1 + 1 (2.19)

Note that since we are in finite field GF(2n), -a5 = a . Multiplying both sides of (2.19) by

a consequently, will result in:

(ab — as + a
la7 = a4 + a2

(a8 = a5 + a3 = a2 + 1 + a3 (2.20)

And matrix T is built as:

0 0 1 0 1

0 1 0 1 0

1 0 1 0 0

0 1 1 0 1

So by using (2.18) we can write:

x*+"mod/(x) = 5 X X " y -
7=0

(2.21)

23

And by substituting (2.21) in (2.17) we have:

n - l n - 2 n - 1

C(x) = ^ diX1 + ^ dn+k]T t^-J-1

i=0 fe=0 ;'=0

n - l n - l n - 2 (2.22)

"•n+ktk,n-j-lx

i=0 ;'=0 k=0

Hence, the final result is calculated.

2.8 Multiplier Architecture and Complexity

Hardware realization of (2.16) and (2.22) leads us to an actual circuit which is capable of

performing finite filed multiplication. This circuit will receive coefficients of two

elements of the finite field, a and b, at the input and gives the coefficients of c at the

output. Since our finite field is of the form GF(2"), the operations on the coefficients are

performed in GF(2). Therefore the multiplication operation is realized as a 2-input AND

gate, while the addition operation is realized with a 2-input XOR gate.

In different hardware architectures for finite field multipliers, the important factor is to

minimize the complexities. By complexity we mean two things:

• Space Complexity

• Time Complexity

Space complexity is the total number of gates used in the hardware realization of the

multiplier. Since we just use two types of gates; i.e. 2-input AND gates, and 2-input XOR

gates, space complexity is expressed in terms of the total number of these two gates.

Time complexity is the actual delay of the circuit. In other words, if the two inputs a, b be

present at time t0, the output will be ready at time t0 + tdeiay The source of the delay in the

24

circuit is the delay of the gates used in circuit. Again, since we just have two types of

gates in the circuit, time complexity is expressed in terms of the delay of a 2-input AND

gate, TA, and the delay of a 2-input XOR gate, Tx.

When realizing the circuit for (2.16), due to the shape of matrix M we need n AND gates

and (n - 1)' XOR gates. All of the AND operations can be done in parallel so the total

delay of the AND gates would be one TA. The biggest XOR chain happens when

realizing (ao a; ... a„.i) (bob/ ... b„.i) . This operation needs n - 1 XOR gates. By using a

binary tree structure, the total delay of this operation would be \ log 2 «- l |. Space and

time complexity of realization of (2.22) directly depends on the form of the irreducible

polynomial of the field and we will discuss it in the next chapter.

25

3 An Overview of Finite Field Multipliers

In this chapter we give a brief overview of the state of the art research in the field of finite

field multiplication.

Finite field multipliers can be categorized based on their hardware architecture into three

types:

• Parallel Multipliers

• Serial Multipliers

• Hybrid Multipliers

Bit parallel (or full parallel) finite field multipliers are the main subject of this thesis. In

these multipliers, inputs and outputs are presented at the input ports in parallel at once.

The output of the multiplier is ready at the output port after some delay. But no clock

cycle is needed for performing multiplication operation.

On the other hand, bit serial multipliers receive the input bits in serial, and also perform

the multiplication operation serially. So the output will be ready after some clock cycles,

bit by bit. Hybrid multipliers can receive the inputs serially, but they may perform the

multiplication operation in parallel for a word size of inputs.

26

In this chapter we first thoroughly review the best bit parallel finite field multipliers.

Then we will briefly review some serial multiplier architectures.

3.1 Parallel Finite Field Multipliers

One of the most important contributions to this field of research is the work of Mastrovito

in [21]. In the previous chapter we showed the actual multiplication of two elements in a

finite field of form GF(2n) regarding the polynomial basis. That method is called

conventional multiplication and has two steps: the first step is multiplying two

polynomials and the second step is reducing the result of the polynomial multiplication

by the irreducible polynomial. On the other hand, Mastrovito has introduced another

method in [21] which has been called mastrovito multiplier in literature. Mastrovito

multiplier combines those two steps in just one matrix multiplication. The whole concept

of mastrovito multiplier is to find a matrix M (later called matrix Z) which satisfies the

following equation:

C = MB (3.1)

where

M =
J0,0 ' " J0,n-1

/ n - 1 , 0 ••" V n - l , n - l
(3.2)

The entries of matrix M depend on the coefficients ofA(x) and on the coefficients of the

T matrix as follows:

rat for v' = 0 and 0 < i < n — 1

l,J ' u(i — j)at^j + y tj_1_kian^1_k for 1 < j < n — 1 and 1 < i < n — 1
fe = 0

(3.3)

27

In the above formula u is a step function defined as:

u (t) = to t < o (3-4)

It is important to note that although mastrovito multiplier is referred to as a one step

multiplication method considering the conventional two step method, but it also has two

steps itself. The first step is to build up the M matrix, and the second step is to perform

the matrix multiplication. Mastrovito multiplier has been used as the base of many

efficient finite field multiplication methods since it was presented.

Another important contribution in this field was the work of Paar in [27]. Paar combined

the conventional multiplier with Karatsuba-Ofman algorithm (KOA) in order to gain

more reductions in space complexity. KOA was first introduced in [14] as a method for

multiplying large integers. KOA is a divide and conquer form algorithm that divides the

operands into two parts with less number of digits (half number of digits) and forms the

final result with the help of the product of these parts. A good explanation of KOA

algorithm can be found in [15]. This idea can directly be applied on polynomial basis

representation of finite fields since each element can be represented by the coefficients

which are in the field of GF(2); i.e. {0,1}. Therefore the representation of the field's

elements would be a string of bits.

Regarding the conventional method of multiplication, KOA is a method for improving

the first step. Applying KOA to polynomial multiplication would be recursive if the

degree of the polynomials is n - 1 and n is a power of 2. Let's consider two elements a

and b in a finite field GF(2n):

A(x) = an^xx
n~1 + —I- atx + a0

B(x) = bn^x71'1 + --- + b1x + b0

Immediately we can rephrase A(x) and B(x) as below:

28

- / - - 1 \ / - - 1 \ -
A(x) = x2 I an_1x2 H h am\ I + I a<n_\x2 +—\-atx + a0\ — x2AH + AL

— I —-1 \ / —-1 \ 21
B(x) = X2 \bn_xX2 + ••• + brn\ J + \btn_ NX2 + ••• + fc1X + fe0J = X 2 S H + S L

(3.5)

Therefore with this new notation, we can change the method of multiplying those two

polynomials, from the conventional multiplication method, which involves multiplying

each element in A(x) to all the elements in B(x), to a new method as below:

A(x)B(x) = (xn2AH + AL) (xn2BH + BL)

(3-6)
= xnAHBH + X2{(AH + AL)(BH + BL) - (AHBH + ALBL)} + ALBL

It is obvious that subtraction in the second term is the same as addition since we are using

the fields of characteristic 2. The gate complexities for conventional method as

mentioned in chapter 2 are:

(#AND=n2

\#XOR= (n-1)2 ('

But the corresponding complexities for the new method are:

#AND = -n2

3 (3 - 8)
l#XOR = - n 2 + n - l

4

Further reductions can be gained by applying the same method on the polynomial

multiplications: AHBH, Ajfiu a nd (AH + AL)(BH + BL). It is obvious that this procedure of

splitting polynomials can be applied recursively in i steps, where /' = log2 n. It has been

mentioned in [27] that the total space complexity would be:

WXOR = 6nl°^3 - 8n + 2 { ' }

29

file:///btn_

The method of Parr in [27] was widely used later for building sub-quadratic space

complexity multipliers.

Fenn et al presented a parallel dual basis finite field multiplier in [8]. First we have to

define dual basis: A set of n elements {/?«, Pi, ..., /?„_/} forms a basis for GF(2") if the PJS

are linearly independent over the field GF(2). Letf(x) be an irreducible polynomial of

degree n, then as we mentioned in chapter 2, the polynomial basis of the field would be

{], a, a2, ..., a"'1}, considering a as a root offfx). The trace of /? G GF(2n) relative to the

subfield GF(2) is defined as:

n - l

7Y(/?)= ^ / ? 2 i

(3.10)
1=0

This trace function is a linear mapping from the finite field GF(2") onto the finite field

GF(2). Let {a0, a/, ..., an-i} and {/?& Pi, /?«./} be any two bases for GF(2n) and also let

Y 6 GF(2n) with y ̂ 0. Then these two bases are said to be dual with respect to y if:

Tf y is a fixed non-zero element of the field, and if {p0, Pi, ..., pn-i) is a dual basis of the

polynomial basis, {1, a, a2, ..., a"'1}, then

polynomial basis or dual basis as follows:

polynomial basis, {1, a, a2, ..., a"'1}, then any element a of the field can be expressed as

n-X n - l

j=o i=o
(3.12)

In order to find aj*s we use (3.11):

n - l \ n - l

Tr(YaU) = Tr Yaj]T a*ft = £ a\Tr{ya^i) = a*
i=o / i=o

(3.13)

30

Now consider two elements a, b in the field. We want to find c = a x b mod/fx). Here a

is represented over dual basis and b is represented over polynomial basis as:

n - l

i=o
n - l

V bi a1
b

(3.14)

Then c can be obtained as follows:

<x, a,

a. a.,

tf„ i a„

a n-l

*
<2„ (3.15)

In the above formula a\s for n<i< 2n-2 are recursively calculated as follows:

n - l

*n+fc / a fjaj+k
;=0

/ o r 0 < fc < n - 2
(3.16)

In which, j^s are the coefficients of the irreducible polynomial of the field. From (3.15)

we have:

c0 = a*0b0 + a{bx + ••• + c d ^ . i
c1 = alb0 + a*2bx + —h a*nbn_t

<cn-l = an-1^0 + a n ^ l + l~ a2n-2^n-l

(3.17)

From the above equations it can be seen that the n product bits are generated by n

identical functions of the form:

h(a, b) = a*kb0 + a*^^ + ••• + a ^ ^ ^
for 0 < k < n - 1

(3.18)

31

Therefore a bit-parallel dual basis multiplier for GF(2") can be constructed out of n GF(2)

inner product modules that implement (3.18), and one other module that generates the
an+k for 0 <k< n-2 from (3.16).

Koc and Sunar presented two new finite field multipliers for all one polynomials (AOP)

in [17]. The first multiplier was a polynomial basis multiplier based on the mastrovito

multiplier with a slight change, and the second one was a normal basis multiplier.

An AOP over the finite field of GF(2") is a degree-n polynomial with all the coefficients

as 1; \.Q.f(x) = x" + x n-l + x + 1. According to (3.2) and (3.3) the mastrovito matrix

of an AOP of degree n would be as follows:

an-i

an + a„

an-t+a„_2 an_2+an_3

*n-2 «„-l+«„-3

an_2 a^ + a^ an_4 + an_2 an_5+a,^

«„_! «„-2+"„-l a„-3+«„-2 a„

a2 +a{

o, +a.

an + a.

(3.19)

This matrix can be decomposed into matrices Z\ and Z2 as Z = Zi + Z2:

a0

« i

°n-2

-Qn-\

0

a0

a „ - 3

an-2

an-\

0

a„-4

an-3

an-2 •

a„-\ •

an-5 •

«„-4 '

•• a2

•• a.

•• 0

• v

Z2 =

"0

0

0

0

«„-!

°n-\

an-\

an->

a„-2

a„-2

an-2

a„-2

a„-3 •

an-3 •

a»-3 •

an-3 •

•• a .

•• a.

• • a \

• a ,

(3.20)

Now in order to compute C = ZB = (Z] +Z2)B, first we compute D = ZiB and E = Z2B in

parallel, and then we compute the result C = D + E. By using this method, time delay of

the circuit would be less than a regular mastrovito multiplier for AOP.

32

Before reviewing the second multiplier presented in [17] we have to explain normal

basis. A set N of the form N = {^yS2,/?22,---,/?2""1} in a finite field GF(2") forms a

normal basis, where /? is the root of the irreducible polynomial. Since the irreducible

polynomial of the field is an AOP we have:

Pn+X = 1 (3.21)

Further more if 2 is primitive in Zn+i then we have:

N = {fi,p2,p3,-,pn} (3.22)

Set N in (3.22) is also a basis. It is actually a shifted version of the polynomial basis. Any

element a of GF(2") represented with normal basis can easily be converted to this shifted

polynomial basis (SPB) representation as follows:

n - l n-1

i=0 i=0
(3.23)

The coefficients of the shifted polynomial basis can be obtained as:

S w (n + i) = ^ f°r 0<i<n-l (3.24)

In this multiplier, the two inputs a and b are first converted from normal basis to shifted

polynomial basis, then a regular polynomial basis multiplication is performed. At the end

of this computation the result is obtained as g = ab/p~:

g= gn-iP
n~1+ -+ giP + g0

= (dn_i + e)/?""1 + - + (dj + e)P + (d0 + e) (3.25)

Note that dk = Z,(k, :)B for 0 < k < n - 1 and e = Z2(0, :)B = Z2(l, :)B = ... = Z2(n-1, :)B,

and X(j, :) is the j ' th row of matrix X.

33

Then we have to multiply g by /? :

h = (dn_i + e)/?n + 1 + (dn_2 + e)(ln + •••+ (d± + e)/?3 + (d0 + e) /?2 (3.26)

Since /? n + 1 = /? + /?2 + ••• + /?n, the coefficient (</„./ + e) is added to all the other

coefficients. Therefore we can write h in shifted polynomial basis as:

h = (dn_2 + dn^Wn + - + (dj + dn.t)p
3 + (d0 + dn_0 /?2 + (dn_! + e)/? (3.27)

In order to convert h in SPB to the final result, c, in normal basis we just apply the

reverse of (3.23).

When mastrovito multiplier was introduced in [21], it was only analyzed for trinomials of

type x" + x + 1. The space complexity of this multiplier was: n2 AND gates, and n2 - 1

XOR gates. Sunar and Koc presented a new formulation of the multiplication matrix in

[37]. With the help of this formulation, new multiplier architecture was presented for

mastrovito multiplier, in which the XOR complexity was n2 - 1 for all trinomials of type

x" + x' + 1 for 0 < t < n and rf ^ 2t. Furthermore it was proved that if n = 2t, then the

XOR complexity would be n - n/2.

As we explained in chapter 2, in a finite field GF(2") with f(x) as the irreducible

polynomial in polynomial basis, in order to find c = ab mod f(x) we first find d = ab;

D(x) is a polynomial of degree 2n - 2. Tn the next step Dfx) is reduced by thef(x) to C(x)

which is a polynomial of degree n - 1. Matrix representation of the first step as described

in (2.16) would be:

34

d.

" n - 2

d„-l

d„

d. n+\

*2n-2.

0

0

0

0

0 0

0

0

"*H-4

0

0

0

0

0

a0

at

a2

a.

a,

0

0

0

0

a0

a,

a.

n-\ an-2

K-2

It is important to note that, not all the elements of d need reduction in the second step, but

only the elements of d that have a power of x bigger than n - 1. The number of reductions

for a specific element depends on the degree of the element and on the value of the

middle term of the irreducible trinomial; i.e. /. The maximum number of reductions is

performed on the highest order element d2„-2- Let k be the number of reductions required

for this element. This integer k has the property 2n - 2 - k(n - t) < n, which implies

k > . Therefore, we have:
n-t '

n-2
n-t

+ 1 (3.28)

The objective of [37] is to obtain the matrix Zn x n by systematically reducing the last

n - 1 rows of the matrix M(2n-i) x n using a general trinomial. In order to accomplish this

task, a reduction array was defined as below:

35

x" = 1

x"+l = x + x"

2n-t-\ n-l-i
X = X

+ x

x3"-2' = x2"-2' +X-1
+ 1 +x'

n-(-l)< _ x(k-\)n-(k-\)l (A-2)n-(*-2)< + , , _ + 1

+ X

K - 2 .1-2 _| + <*-l)n-(*-2)'-2 + *»-(*-2)(-2
X +X'

Figure 3.1 Reduction Array for a General Trinomial

The columns of the reduction array have the following properties:

The first column on the right-hand side is the sequence 1, x, x2, ..., x"'1;

n-l The second column contains two sequences: The sequence x, x'+l, ..., x

followed by the sequence 1, ..., x"'''1, x"~', ..., x"'2;

For 3 <i < n-l, the i'th column is obtained by shifting down the (i - l)'th column

m-t positions;

It is also seen that the reduction array can be divided into k partitions, and each partition

has n-t terms except for the last partition which may have less terms. Tf the partitions are

enumerated in increasing order, beginning from the topmost as the Oth partition, the i'th

partition will consist of the rows starting with the term x"^"'^ and ending with the term
n+(i+l)(m-t)-l

In the reduction process the rows defined by the reduction array are added to the rows of

matrix M in order to eliminate the last n-l rows of M. The exponent on the left-hand

side provides the index to the source row, and the exponents on the right-hand side

provide the destination. For example row n is added to row 0 and row t.

36

In order to construct the Z matrix the following formulation is used:

Z = X + Y (3.29)

Where matrix X is the upper n rows of matrix M (destination rows) and matrix Y is the

contribution of the n- 1 lower rows of matrix M (source rows):

X =

ao
ai

a2

an-2

_an-X

0

a0

« i

a„-3

an-2

0 •

0 •

a0 •

a„-A •

an-3 •

•• 0

•• 0

•• 0

•• a0

• a .

0

0

0

0

a0

(3.30)

Since we have two types of sequences on the right hand side columns: those of form

1, x, x, ...,x"~~ or 1,..., x"''~J, x"~', ..., x'2, and those of form x', x'+l, ...,xn~', we can write:

Y = T + U (3.31)

Where T is the contribution of the first type of sequences, and U is the contribution of the

second type of sequences. The first column is the sequence 1, x, x2, ...,x"~2. So we have to

add the rows M(n, :), M(n+1, :), ..., M(2n-2, :) to Z(0, :), Z(l, :), ..., Z(n-2, :). This

contribution of the first column is shown in the matrix below:

T =

"0

0

0

0

0

«m-,

0

0

0

0

am-i •

<*m-\ •

0 •

0 •

0

a2

•• a3

•• am_x

• 0

•• 0

a.

a2

a«-2

<Vi

0

(3.32)

37

The second sequence in the second column is 1, ..., x"~'~, x"'1, ..., x1'2. So we add the rows

M(2n-t, :), M(2n-t+l, :), ..., M(2n-2, :) to Z(0, :), Z(l, :), ..., Z(t-2, :). This can be shown

by shifting up matrix To n -1 rows: Ti = To[|(n-t)]. By similarity we have:

Tl = Ti_1[Hn-t)]=T0[U(n-t)]
fc-1

T = T0 + T1 + - + Tk_± =] T T0 [T i(n - t)]
(3.33)

i =0

The first sequence in the second column is the sequence x, x'+l, ...,xn']. So we have to add

the rows M(n, :), M(n+1, :), ..., M(2n-2, :) to the rows Z(t, :), Z(t+1, :), ..., Z(n-1, :).

This is done with the help of matrix UQ:

U0 =

0 0 0

0 0 0

0 0 a.,

0 0 0

0

0 0

0 0

a, a.
CY^ C » T

t-\

t

t + \

n-\

(3.34)

The first sequence in the third column is x', xt+l, ...,xn~''. So we add the rows M(2n-t, :),

M(2n-t+l, :), ..., M(2n-2, :) to the rows Z(t, :), Z(t+1, :), ..., Z(n-1, :). This can be shown

by shifting right matrix Uo n -1 columns: Ui = Uo[—*(n-t)]. By similarity we have:

Ui = U i - i h in - t)] - f / 0 h Kn - t)]
fc-i

U = U0 + U1 + - + l/k_! = ^ U0 [-> i(n - t)]
(3.35)

1 = 0

So with the help of these matrices, the mastrovito matrix is built as:

38

Z = X + Y

=X+T+U (3.36)

fc-1 fc-1

= X + £ 7 0 [T i(n - t)] + ^ "o [-» i(n - 0]
i=o i=o

Mastrovito multiplier did not show promising results for finite fields defined by high

hamming weight (the number of nonzero coefficients) irreducible polynomials. As a

solution, Song and Parhi presented a modified mastrovito multiplier in [36]. With this

architecture, it is possible to build finite field multipliers for GF(2") with XOR

complexity proportional to n — 1 - pwt, in which pwt is the hamming weight of the

irreducible polynomial.

Tn order to compute c = ab in finite field GF(2n) with modified mastrovito multiplier, first

a modified mastrovito matrix U is built and D = UB is computed as follows:

TT R —

,0
n-\

0

• • « " " , ' " n-\

•• Un-2

- <~X

•• u"_;1

' K" 0

K\ n—\ J

X," n— l

dn-7

d0

. < _

= D (3.37)

The coefficients of matrix U are calculated as follows:

ru° — a

o u \

U - i = i ^ - i

for 0 < i < n - 1

/ o r 0 < i , k<n — 1 (3.38)

/ o r 0 < ik < n - 1

whereas are the coefficients of the irreducible polynomial. Then c = ab can be obtained

as follows:

39

dn_x+dc

dn_2 + dc

d0 + dc

(3.39)

Detailed proof of (3.39) can be found in [36].

Following the work of Sunar and Koc in [37], Halbutogullari and Koc tried to find a

general formulation for mastrovito multiplier with any type of irreducible polynomial in

[9]. Although this formulation covers all the polynomials of the form:

fix) = xnk + x"*-1 + ••• + xni + xn°

where n = nk > tin > ... > ni > no = 0, but it does not offer a practical way of hardware

implementation of the multiplier. However it analyzes the mastrovito multiplier for an

equally spaced polynomial (ESP) and shows very promising complexities for this type of

irreducible polynomials. In a finite field GF(2n) an irreducible ESP has the following

form:

/ (*) = *** + x(*-i)A + -..+ 1 (3.40)

where kA = n. the space complexity of the mastrovito multiplier for such polynomial

would be:

(#AND = n2

UXOR = n2 - A
(3.41)

A special case of ESP is the trinomial of the form xn + x~z + 1. The complexity of XOR

gates for a multiplier with this polynomial would be #XOR = n" — n/2. To the best of our

knowledge, so far this is the lowest complexity of a finite field multiplier in literature. It

has been proved in [9] that a mastrovito multiplier cannot have space complexity better

that this:

40

(#AND = n2

{#XOR=n*-\ (3'42)

Although [9] provided a general formulation for mastrovito multiplier, a systematic

method of designing this multiplier was not available until Zhang and Parhi presented an

explicit algorithm for efficiently designing that in [41].

Considering finite field GF(2n) with a general irreducible polynomial f(x) we have:

7(x) = xn + A*""1 + - + A* + /„
J ft G {0,1} for 0 < i < n - 1 (3.43)
J o = l

(3.43) can also be written as:

(f(x) = xn + xks + x^-1 + ••• + xkl + 1
[n> ks> fcs_j > ••• > kt > 1

(3.44)

Now a set N can be built with the following algorithm from [41]:

Input: The parameters of irreducible polynomial: n, k/, ..., ks

Output: set N c {0,1, ••• ,«- 2}

Procedure:

Step 1: Generate a weighted tree D according to the following properties:

• Each node dj in D has at most s child nodes and each edge has the weight

WG{(n-k,)\\<i<s}

• Let dj denote the root andh(dj, dj denote the weight of path from d/ to dj,

where h(dj, d/) = 0; for all djS, if 3r e {{n — kl. | 1 < / < s} and

(h(d], dj) + r) < n — 1, then dj has a child node d/ with an edge of weight r

• For all djS, h(dj, dj) < n- 1

41

Step 2: Construct a multi-set H = {h(dx,d ,), V<i. e D} and set N = 0

Step 3: For0<j<n-2, do

a. create multi-set Sj = 0

b. V/z e H, ifh =j, then insert h into Sj

c. If {\Sj mod 2) = 1, then insert j into N

In the above algorithm, a multi-set is like a set, except that repeated elements are allowed,

and ISA represents the order of Sj. From the above algorithm, we know that the least two

elements in N are always 0 and (n - ks) and we have \N\ < ks.

The total space complexity of the mastrovito multiplier proposed in [41] would be:

(#AND = n2

#XOR = (n + s - l) (n - l) + y (n - y - 1) (3.45)

It was known by the previous works that the best complexities for finite field multipliers

will be obtained when the irreducible polynomial of the field is either trinomial, AOP, or

ESP. However it is not possible to find such irreducible polynomial for any value of n. So

the next best choice was a pentanomial. Rodriguez and Koc presented a mastrovito

multiplier for a special type of pentanomials in [34]. This special type of pentanomial has

the following form:

fix) = xn + xm+1 + xm + x + 1 (3.46)

where 2 < m < - — 1. In order to build the multiplier, the work presented in [37] is

used. So first a reduction array should be generated:

42

x" =\ + x + xm+x"

xn+[=x + x2+xm+l+xm+2

x"+2=x2+x3+xm+2+xm+3

x2n-m-7 = %n-m-l + ^ m - 1 + %n-2 + %n-K

xln-m-\ = x » - m - l + xn-m + ^ , - X + , + ^ + ^ m + ^ 1

x 2 „ - m = x „ - m + x „ - m + l + j + xn, + x2 + x„,+2

x 2 „ - m + l = x „ - m + l + x „ - m + 2 + x + ^ m + l + x 3 + x,n+3

x
2"-3 = x"~3 + x"-2 + xm-3 + x2m'3 + x"'~l + x2m-x

x
2"-2 = x"-2 + x"~] + x"-2 + x2m-2 + xm + x2m

Figure 3.2 Reduction Array for xn + xm+1 + xm +x + 1

We can summarize the above equations based on the number of operand as:

r xi + xi + l + xm+i + xm+i+l j Q r Q < i < n - m - 2

xn+i = \xl + xi+1 + xm+i + 1 + x + xm + xm+1 for i = n-m-l
[x1 + Xi+1 + x 1 - ^ - ^ + xl~n+2m + x i - (n - m) + 2 + xi-n+2m+2 fQr n - m < i < n - 2

(3.47)

Now if we consider Dfx) = A(x)B(x), and C(x) = Dfx) mod ffx) then in order to obtain

coefficients of C(x) we just need to add the nonzero elements of each one of the n

columns. For example, in order to obtain the first coordinate co, we just need to add the

nonzero coefficients of the first column to the first coordinate of the product polynomial

do'-

c0 = d0 + dn + d2n-m-\ + d2n-m (3.48)

The entire process will have total complexity as:

l#XOR = n2 + n ('

43

Chang et al presented a new way of representing finite field elements in [2] called

redundant representation. Combining this representation with KOA helps achieving

lower complexity multipliers for all one polynomials. Redundant representation of the

elements of finite field GF(2n) was first used for building finite field multipliers in [13].

Considering an AOP in finite field GF(2") as:

it

i=0

If a be a root off(x), then a""*"7 = 1 and a" + a"'1 + ... + a + 1 = 0. A polynomial basis

would be {1, a, ..., a"' }. Now a redundant representation is obtained by expanding the

polynomial basis as {J, a, ..., a"'1, a"}. Any element a in GF(2n) is represented as:

a = y ata
l

(=0
(3.50)

Note that the redundant representation is not unique. For example ao + aja + ... + a„a"

and bo + bia + ... + bna" denote the same element if b, = a, + am. Considering the

modular reduction in redundant representation, since a"+l = 1, for any element a of

GF(2n) we have:

ala - a0a
l + a-^a^1 H 1- an_ian + an_i+1 + an^i+2a + ••• + ana

l 1 (3.51)

This means that a.a can be computed by an /-fold right cyclic shift of a. Now consider

n = 2m, any two elements a, b in GF(T) can be partitioned in two parts as:

2m m - 1 m

a = y ata
l = y ata

l + am y O-i+m01-1

(3-52)
1=0 1 = 0 [= 0

= A + amB

and

44

2m m m - 1

b = V ^a* = V fe^' + am+1 Y 6 i + m a '
i=0 i=0 i=0

= C + am+1D (3.53)

Then in order to obtain c = abwe have:

c = ab = (A + amB)(C + am+xD)

= AC + (BC + aAD)an + BDa2m+1 (3.54)

= AC + BDa2m+1 + ((A + B)(C 4- aD) + AC + aBD)am

= AC + BDam+1 + (AC + BDam+1)am + (A + B)(C + aD)am

Computation of (3.54) needs the following number of gates:

#AND = 3m2 + Am + 1 = -n2 + 2n + 1
4

#X0R = 3m2 + 6m + 1 = -n2 + 3n + 1
4

(3.55)

So it can be seen that the number of all gates is reduced by 25%.

We have seen that finite field multipliers based on trinomials result in the best space

complexity among different multipliers, and it was proved in [9] that no other multiplier

can be built with better space complexity. But about the speed of the multiplier and time

complexity, still some works have been done. Fan and Dai presented a new representation

for finite field elements in [6], called shifted polynomial basis (SPB) which helps

building faster finite field multipliers for trinomials. We have previously seen SPB in [8]

when building finite field multiplier for fields based on AOP. But that was just a special

case of shifted polynomial basis.

Let v be an integer and the set M={x'| 0 <I < n-l}be a polynomial basis of GF(2n). Then

the ordered setx~vM={x'~v\ 0 <I<n-l) is called the shifted polynomial basis (SPB) with

respect to M. let/fx) = x" + x + J be the general trinomial defining this field. It is proved

45

in [6] that the best value for v is k. an element a of the field is represented in SPB as

follows:

n—1 n-l—v

A(x) = x-v^diX1 = 2^ ai+vXl
 (3 5 6)

i=0 i=—v

Let's review the basis conversion between PB and SPB first. Consider d and a be two

elements of the field represented by PB and SPB respectively:

n - l n-l—v n-l

D(x)= Ydix
i= V dtx

l+ Y di(xv+l-n + x1-")
i=0 i=0 i=n—v

/n-l-v - 1 \ v-1

= I 2^ dixl + ^ dn+iX(J + 2_, dn+i-vX1

(3.57)

i=o i=-v / i=o

and

n-l—v n-l—v

A(x) = ^ o ^ x * = ^T av+ix
l + ^ ap + i(x7 , + i + xv+i)

i=—v i=0 i=-t>

/Ti—1—v n - l \ r—1

— I / av+ix "• / ftf-n+i'*- I "r" / OjX

(3.58)

It is easy to see that the conversion from one representation to the other needs v XOR

gates and one Tx time delay due to the parallelism. Now consider two elements a, b

represented in shifted polynomial basis. In order to calculate c = ab mo&f(x), first we

have to perform a polynomial multiplication:

2n-2 2n-2-2v

S(x) = A(x)B(x) = x~2v ^ stx* = ^ st+2vx
t = r_+r + r+

t=0 t=-2v

where

46

2_, aibj =

i+j=t
0<i,j<n-l

^T atbt-i for 0 < t < n - 1

n-l

2_, aibt-i fc
(3.60)

for n < t < 2n — 2
H=t+l-n

and

n-l-v -1-v 2(n-l-v)

-z r — ? st+2vx and r. -I St4-7i?% (XTtU. 7J - Z St+2vX

t=-v t=-2v t=n-v

The next step is to reduce r+ and r. using the following reduction formulae:

(3.61)

xl = xK+l n + xl n for n — v<i<2n — 2 — 2v
xi _ %n+i + xk+i fQr _ 2V < i < -v - 1

(3.62)

The reduction results would be:

and

-1-v -1-v

= £ St+2vX
n+t+ £

t=-2u

n-l—v

= } st+2v-nx + /

s£+2i; x

t=-2v

k-l-v

k+t

st+2v-kx

t=n-2v t=k-2v

2n-2-2v 2n-2-2v

t=n-v t=n—v

k+n-2-2v n-2-2v

t = n -

fe+n-2

- I
z

t=n-

-2 -2 :'+ Z •st+2i7+n-k'": "+" 7 st+n+2vx"
t=k-v t=-v

And the final result would be:

(3.63)

(3.64)

47

n-l-v

C(x) = y cv+tx
l = r + r + r+

t=-v

I- -St+2vX

t=-v

/n-l—v k—l—v

t

(3.65)

+ 1 2_, St+2v-nX{ + 2_j
\t=n-2v t=k~:

/k+n-2-2v

+ I y st+2v+n-kx + /

st+2v-kx

t=n-2v t=k-2v /

k+n-2-2v n-2-2v \
t st+n+2vx

t=k-v t=-v

It is proved in [6] that the total complexity of this procedure is:

f#AND = n2

UXOR = n2-i (3.66)
[Delay = TA + (1 + \log2n\)Tx

Following the work presented in [6], Fan and Hasan presented a new multiplier

architecture for trinomials in [7]. This architecture was based on Toeplitz matrix concept

combined bit KOA method which would result in sub-quadratic space complexities. First,

we review toeplitz matrices.

A n x n matrix is of type toeplitz if for 1 < ij < n-\ we have: mki = %_,_,_,. By this

definition it is obvious that any n x n toeplitz matrix is determined just by 2n - 1

elements of the first column and first row. Thus, for adding two toeplitz matrices, just

2n - 1 additions are needed. An example of a 5 x 5 toeplitz matrix is shown in figure

(3.3). Although the total number of entries in this matrix is 25, but we only have 9

distinct entries:

48

L-€(i (A I C/-1 C t - i *™A

a-, ah a, a. o a\

'o

Figure 3.3 A 5 x 5 Toeplitz Matrix

Now assume that we have a «x « toeplitz matrix T and a nx] column vector V and

n = 2'. Here we can split these matrixes as following:

T =
^T T '
T T

•\J

(3.67)

n n n
In the above expressions T0, T] and T2 are — x— matrices and Vo and Vi are — x

2 2 2
column vectors. Now for calculating the multiplication TV we can do as following:

TV =
T T

T T \J

fv\

Su

P0+P2
(3.68)

in which

P0=(T0+T,)1/

P,=(T1 +T2)F0

P2=T,(K0 + F,)

(3.69)

Now using KOA we can recursively apply this algorithm in /' steps and prepare the final

result. The space complexity of this method would be:

49

(#AND = nl°a^ (3.70)
UXOR = s.Sn10^3 -en- 0.5

Now for a finite field GF(2") W\thf(x) = x" + xk + 1 as the irreducible polynomial, if we

choose SPB with v = k then the mastrovito matrix Z can be changed into a toeplitz matrix

by the following equation:

Z' = UZ (3.71)

with

U
0 hn-v)(n-v)

'vxv U
(3.72)

Where IVxV is the v x v identity matrix. It is important to note that this conversion is

implemented by re-wiring only; therefore it doesn't add any gates to the space complexity

of the multiplier.

3.2 Serial Finite Field Multipliers

One of the best serial finite field multipliers was presented in [1] by Berlekamp. In this

multiplier, in order to find the product GZ in finite field GF(2"), G will be represented in

polynomial basis whereas Zwill be represented in its dual basis. Furthermore we assume

that G is a constant and Z is a variable stored in a n-bit register. In the dual basis, the

coefficients of GZ are the bits Tr(GZx'), for 0 < i < n-1, which may be viewed as the

following sequence:

Tr{GZ)

Tr(G(Zx))

Tr{G(Zx"-x))

(3.73)

50

It should be noted that, Tr(GZ) is obtained by a single parity check on some subset of the

bits of the Z register. Also, Tr(G(Zx)) can be obtained by the same parity check on the

same register only by changing its contents from Z to xZ. The hardware architecture of

such multiplier is shown in the next figure:

Input
®*

Tr(Zxn)

Linear
Binary
Matrix

Staging Register
Register Z

Tn-1

T„-:

Ti

$ •

Figure 3.4 Berlekamp Multiplier

In the multiplier depicted in figure (3.4) the register feeding the linear binary matrix

contains the value Z. So the outputs are:

T0=Tr(g0Z)

T,=Tr{gxZ)

Tn.2=Tr{g„_2Z)

T^=Tr(g^Z)

(3.74)

The output of the binary matrix which feeds back into Z is tr(Zxn). Since Z is in dual basis

mode, next clock cycle multiplies Z by x. Now the outputs would be:

51

To = Tr{gQxZ)

T{ = Tr(g{xZ)

i (3.75)
T„-2 = Tr{g„-2xZ)
Tn-\ = Tr(g„_,xZ)

And after n clock cycles we will have the final results which are:

T0=Tr(g0x-]Z)

Tx=Tr{g,x"-'Z)

\ (3.76)

Tn^=Tr{gn_,xn-xZ)

Tn^Tr{gn_xx"-"Z)

Now the multiplication is completed. This algorithm is very efficient in the sense that it

requires minimum circuitry. However, the algorithm to multiply two elements of GF(2")

requires to represent one factor by a canonical basis and the other factor by the

corresponding dual basis and the product is obtained in the dual basis, so proper base

conversion is also needed.

Another good architecture for serial finite field multipliers was introduced by Massey and

Omura in [20]. This multiplier uses normal basis for representing field elements.

Consider finite field GF(2n) with normal basis N = {a,a2,a:'',-••,a1' }, with a be a root

of the irreducible polynomial of the field. Any element a of the field is represented as:

a — a0a + a^2 + —h an_1a
2 . Since in GF(2") with normal basis we have a2 = a,

squaring an element is equal to a cyclic shift operation:

a2 = a0a
2 + ata

2 +—h an_1cr2™

= an_1a + a0a
2 H 1- an^2^2n ± \i-'')

52

Now consider two elements of the field as a, b. The product of these two elements would

be:

c = ab = [aQ,ax,-".On-iMbQ.b-L, ••• ,bn_t] = [CQ.C^ —,cn-i] (3.78)

The last term of the product; i.e. c„.j, is some binary function of a, b:

Cn-1 = f(.a0>al> — ,On-l> ^0» * 1 . — ^ n - l) (3 - 7 9)

Now by squaring both sides of (3.78) we have:

c = a b = [cLn-i,CL0,ax,••• ,an_2\\bn-\,b0,b1,••• ,bn_2\
 = Lcn-i,c0,cx,••• ,cn_2J

(3.80)

Hence, the last component c„._? of the product is obtained by the same function/operating

on the components of a and Zr:

cn-2 ~ J (an-l< a0> a\> '"'an-2> bn-i,b0,b1,---,bn_2J (3-81)

By similarity we have:

(cn-l ~ f(a0>al>'" > an-l> VQ.b-L, ••• ,bn_1)
cn-2 — t \an-l> a0> al> '">an-2> "n-l> "0> "l>'" > "n-ZJ

i (3.82)
c l = / \a2>"" > an-l> a0> al> ®2> •" > "n-\> ®0> "l)

v c0 = f (a1(•••, otn_i, CL0 ; bi, •••, bn_1, o0)

The above equations define this multiplier. Figure (3.5) shows the block diagram of the

multiplier:

53

Logic
Function

f

Figure 3.5 Massey-Omura Serial Multiplier

3.3 Summary

There are different types of finite field multipliers, with different advantages and

disadvantages. In general we can categorize different finite field multipliers based on the

hardware architecture of the multiplier into 3 types. Table (3.1) shows these types.

Hardware Architecture

Bit Parallel

Bit Serial

Hybrid

Reference

[21], [27], [8], [28], [17], [37], [36], [9], [18], [41], [39], [40], [34], [2], [6],

[7], [32]

[1], [20], [12], [11]

[22], [26]

Table 3.1 Finite Field Multipliers Based on Hardware Architecture

One important factor in the architecture of finite field multipliers is the way of

representing field elements in that multiplier. Some multipliers use the same

representation in both inputs and output, while there are other multipliers which may

have different representations for inputs and output. It is also important to consider the

base conversion over head in such multipliers. Table (3.2) shows some of these different

types of multiplication methods:

54

Element Representation

Polynomial Basis

Normal Basis

Dual Basis

Shifted Polynomial Basis

Redundant Representation

Weekly Dual Basis

Triangular Basis

Reference

[21], [27], [28], [17], [37], [36], [9], [18], [41], [7], [32]

[17], [20]

[1], [8], [34]

[6], [29]

[40], [2]

[39]

[11]

Table 3.2 Finite Field Multipliers Based on Element Representation

In the context of this research, we are interested in bit parallel polynomial basis finite

field multipliers. Parallel PB multipliers have three main types which are:

• Conventional

• Mastrovito

• Modified Mastrovito

There are also some other variations on these types, like the work presented in [17]. In

these multipliers, the lowest complexities are gained when the polynomial of the field is

an equally spaced trinomial. Any other trinomial is the next best choice along with all-

one polynomials and other equally spaced trinomials.

Since we are interested in finite fields of form GF(2"), it is important to note that these

efficient irreducible polynomials do not exist for many values of n. In such cases, the next

best choice would be a pentanomial. Although the existence of an irreducible

pentanomial for any value of n has not been proved yet, practically speaking, we can find

at least one irreducible pentanomial for different values of n. The complexity of a

multiplier based on an irreducible pentanomial highly depends on the form of the

pentanomial, and we reviewed some of them in the previous sections.

55

Any other multiplier architecture for any type of irreducible polynomial should have

better complexities than pentanomials. Table (3.3) shows the best results of different

polynomial basis finite field multipliers in GF(2")\

Multiplier

Type

Mastrovito

Mastrovito

Mastrovito

Mastrovito

Like

Conventional

Irreducible

Polynomial

Equally

Spaced

Trinomial

General ESP

General

Trinomial

AOP

Pentanomial

#AND

n2

n2

n2

n2

n1

#XOR

2 "

n
2

n2-A

n2-\

n2-\

n2 +2n-3

Time Delay

TA+{\ + \\og2n\)Tx

TA+(l + \\og2n\)Tx

r,+(i+[iog24rx

r.+a+riofeC/i-O'to

TA+(4 + llog2(n-l)])Tx

Reference

[41]

[41]

[41]

[17]

[32]

Table 3.3 Best Complexities of Different Finite Field Multipliers

It is obvious that any new proposed multiplier should have a complexity equal to or better

than the complexity of pentanomial based multipliers presented in table (3.3).

56

4 New Finite Field Multiplier

4.1 Introduction

Finite field multipliers have application in many different areas such as cryptography,

error correction codes, computer algebra, combinatorial designs and VLSI testing. Finite

field multiplication has recently gained much attention due to its extensive use in public

key cryptography and especially elliptic curve cryptosystems. In chapter 1, we pointed

out the importance of research on finite field multipliers in cryptography systems.

Research on different architectures of finite field multipliers mainly aim on reducing the

space and time complexities. The goal of this thesis is to present a better finite field

multiplier with smaller space and time complexities with regard to cryptographic

applications.

As we mentioned before, finite field multipliers can be categorized into three major types

based on their hardware architecture: bit serial, bit parallel, and hybrid multipliers.

For hardware implementation, serial multipliers are too slow because with the increasing

key size of cryptographic applications, these multipliers need a considerable amount of

clock pulses for encryption or decryption tasks.

57

On the other hand parallel multipliers are very fast since the input blocks enter the crypto-

processor at the same time and in the next clock cycle the result is ready at the output

ports. However these multipliers tend to occupy a large amount of silicon space on the

micro-chip on which the hardware is fabricated.

Hybrid multipliers offer a balance between the above two types. By increasing the word

size in these multipliers, the speed of multiplication increases. Decreasing the word size

may result in less space on the chip. For each specific crypto-processor with a specific

application and specific hardware limitations, a trade off between speed and space may

be reached. But still bit parallel or, as called in some texts, full parallel multipliers are the

fastest possible finite field multipliers.

Although hybrid multipliers seem to be the most suitable hardware architecture for

physical implementation, full parallel multipliers are still in the center of attention and a

huge amount of research is conducted on this subject. The reason for that is:

• In cryptographic applications speed is far more important than size

• Research on full parallel multipliers can also help in the parallel part of hybrid

architectures

• With new VLSI technologies the amount of space needed for implementing

certain circuits is reducing gradually

This is the main motivation behind our research.

Finite field multipliers can also be categorized based on the way they represent the

elements of the field, or so called the basis of the field. Different basis multipliers were

reviewed in chapter 3 and the pros and cons of each type was studied thoroughly. In this

chapter, we are proposing a new polynomial basis full parallel finite field multiplier.

Parallel polynomial basis multipliers have two main types: conventional multiplier and

mastrovito multiplier. There are also some variations on these two types. In this thesis a

58

new approach for multiplication is proposed. In this multiplier, we are using mastrovito

multiplier concepts combined with the conventional method of multiplication. The result

is not a mastrovito or conventional multiplier, but something in between. Depending on

the type of the irreducible polynomial of the field, this approach may result in a finite

field multiplier with better speed and space complexities.

We will present a full analysis of this proposed method along with a hardware

architecture. Afterwards, we will apply the new multiplier to three newly proposed types

of finite fields. By thoroughly examining the multiplier for these irreducible polynomials

the exact amount of space and time complexities will be given. A comparison between

our results and the best results of other finite field multipliers found in literature will

show the advantage of our method.

4.2 Multiplier Architecture

We are proposing a new method for finite field multiplication. In this method we use both

mastrovito multiplier and the conventional multiplier concepts. The first step in this

method is to find a new way to build up the mastrovito matrix. We will do this by starting

with the fundamental way of multiplying.

A finite field GF(2") is defined as the set of residues modulo an irreducible polynomial

f(x) in which f(x) is of degree n with the following form:

r n-X

./(*)=*" +£/**' + 1 (41)

Ji e GF(2)

Consider two elements of this field as: a, b. By employing polynomial basis we have:

59

n - l

A(x) = y atx
l

1 = 0
n - l

B(x) = Y fy*'
(4.2)

Polynomial multiplication ofA(x) and B(x) would result in:

2n-2

D(x) = A(x) x B(x) = V diX1

i=o

We rewrite (2.14) formula as:

(4.3)

dt= {

y a-i-jbj for 0 < i < n — 1
=o
m - l

2 ai-JbJ fC

j=0
m-l

cor n < i < 2n — 2
\ / = i - m + l

From the above formula we have:

n - l

ln+k — y an+k-jbj f> or 0 < k < n — 2

j=k+l

By substituting this formula in (2.22) we will have:

n - l n - l n - 2

C(X) = ^ dtX1 + 2_,2_, dn+kh,n-i-lXi

i=0

n - l / i

i=o k=o

n - l n - 2 / n - l

= Au \ Z^ ai-]bj r ^ Z j l 2 J an+k-Jbi ^.n-i-lX1

i=o \j=o j=0 fc=0 \;'=fc+l

(4.4)

(4.5)

(4.6)

60

It should be reminded that tatt is the entry on the o'th row and Z>'th column of the transfer

matrix T. Transfer matrix is the matrix which converts powers ofx"+* for 0<Jfc< n - 2 to

the sum of powers of x for 0 < i < n - / :

By rewriting (4.6) we will have:

n - l 'n-2 / n-l

C(x) = ^ Q j ^ - ^ J I + I ̂ I 2 J an+k-jbj Wn-i-1 I X1 = ^ cixl

i=0 \ i'=0 / \k=0 \j=k+l I / i=0

n - l

(4.7)

So it is obvious that the coefficients of C(x), the product ofA(x) and B(x), are:

n-2 / n-l

= /_i ai-)hi + /_,[Z-, an+k-ibi I ^.n-i-t
J=o k=0 \j=k+l

(4.8)

Now let's take a look at the matrix form of multiplication. As before we assume that an

element a of a finite field of form GF(2") in polynomial basis is represented as:

a = A(x) = y atx
l

i=0

The above formulation can be written as:

a = (a0 at ••• an_2 «n - i) (x x "• x?l *n) = A X (4.9)

Here A is the coordinate column vector of the element, and X is the vector of the basis.

As we saw before in chapter 2, we can write the matrix form of multiplication as follows:

D=MB

61

Here D is the coordinate column vector of d, the product of a, b, B is the coordinate

column vector of b, and M is the multiplication matrix which contains the elements of A

with the following form:

M (2n-\)(n)

a0

o,

a2

an-2

tf„-l

0

0

0

0

0

« 0

ax

a«-3

<V2

an-\

0

0

0

0 •

0 •

a0 •

a„-A •

a„-i •

an-2 •

an-X •

0 •

0 •

• 0

• 0

• 0

• «o

o,

a2

• a3

• an-\

• 0

0

0

0

0

a0

a.

a2

an-2

«„_,

(4.10)

Matrix M can be divided into two matrices: The upper part, U, and the lower part, L, as

follows:

M = (4.11)

where

U_

a0

a,

an-l

0

a0

« « - 2

0 •

0 •

«»-3 •

•• 0

•• 0

•• <*0

(4.12)

and

62

""'(«—l)xn

0 an-\ an-2

0 0 a ,

0 0 0

(4.13)

It should be noted that in thesis we use Matlab matrix notations to show column vectors

and row vectors of a certain matrix, e.g., Z(i, :), Z(:, j) represent the /'th row vector, and

y'th column vector in matrix Z, respectively.

Considering U and L matrices we have:

U(i,:) = I at a£_! ••• at a0 0 0 •••0 0
V n-i-l

L(i, 0 = I 0 0 —0 0 an_! an_2 ••• ai+2 ai+1

V i+i

(4.14)

So if we multiply these vectors by the coordinate column vector of b we will have:

U(i,)B = ^ di-jbj

n - l (4.15)

y=i+i

We will use these matrices in our multiplier.

Now let's take a closer look at (4.8):

63

n - 2 / n - l

Ci

7=0 fe=0 \j=k+l

i n - l n - l

-i = ^ " i - A 4 " 2 J I /_, an+k-jbj Uk,n-l-i

— yai-jbjJ<~ fo ,n - l - i / ^ an-jbj + ^ l , n - l - i / ^ a n - ; + l " / + ' "
;'=0 ;=1 ;=2

n - l n - l

+ t n - 3 , n - l - i > a2n-j-^Dj + tn_2,n-l-i y aln-j-1"j

j=n-2 j=n—l

= U(i,0B+ t c n - i - j l C O , :) B + - + t n - ^ . ^ l C n - 2, :) B

(4.16)

In the above formulation we have a vector with a special form of:

t^n+ilik, ••) for 0<k<n-2 (4.17)

Here we define a new set of matrices, called V matrices, from Vo to V„_2. These nxn

matrices are the key element of our new method. For each Vu matrix, the i'th row would

be as follows:

Vk(i,0= t fe,n-i-^(fc,0 (4.18)

In other words, row i of matrix Vu is row / of matrix L if tk,n-i-i = U otherwise it is a zero

vector:

Vk{l'-} 1 (o o - o) i/ ^ - ^ = 0 (4 1 9)

An example would clarify this better:

Consider finite field GF(25) with f(x) = x5 + x2 + 1 as the field's irreducible polynomial.

Matrices L and T are shown below:

64

0 a4 a, a2

0 0

0 0
a. a.
0 a.

0 0 0 0

a,

a.

0 0 1 0 1

0 1 0 1 0

1 0 1 0 0

0 1 1 0 1

Here we will have Vo, Vi, V2, and V3. In order to construct these matrices we look at L

and we refer to T as our reference. Figure (4.1) shows these V matrices:

T =

D 0 TT~dz>
a-\ ai J£$

0 0 o j : »

cfl^D 0 0~I5:>

v,=

0

0

0

0

0

0

0

0

0

0

0

a4

0

«4

0

0

a3

0

a3

0

0

a2

0

<h
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

«4

0

a>

0

0

a.

0

a.

v3 =

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
a.

Figure 4.1 V Matrices of GF(25) with f(x) = x5 + x2 +1

Using these V matrices in (4.16) we have:

Ci = U(i, 0B + V0(i, :)B + V^i, :)B + - + Vn.2(i, :)B (4.20)

This is the formulation for the z'th coefficient of c, which is the /'th entry in the

coordinate column vector C = (co ci ... c, ... cn-i). Following the matrix multiplication

rules we will have:

65

C = UB + V0B + VrB + + Vn_2B

= (U + V0 + Vl + - + Vn_2)B (4.21)

Mastrovito multiplier was thoroughly reviewed in chapter 3. In the above formulation if

we can consider Z = U + Vo + V / + ... + V„-2, then we have a form of mastrovito

multiplier: C = ZB. So our goal of building mastrovito matrix is reached.

The first step in the new approach for building a finite field multiplier was to construct

the mastrovito matrix, Z, with matrices U, and Vo to Vn_2. The second step is to actually

perform the above multiplication of ZB and find the result. But in this method instead of

performing just one matrix multiplication, ZB, The elements of Z, i.e. U and VjS, are

multiplied by B individually and then the final result is gained by adding up these partial

results. Figure (4.2) shows the hardware architecture of this multiplier.

In this hardware architecture, first the V matrices are built with rewiring the input signal,

a. In the next level, there is an AND page which performs the first part of matrix

multiplication by performing AND operation between a, b. These AND gates are placed

in parallel so all the AND operations are performed at once. The next level contains an

XOR page in order to complete the matrix multiplication operation. These XOR gates are

placed in a binary tree structure. Finally the last level contains some XOR gates as well.

These XOR gates are to sum up the partial results and make the final output, c.

Space Complexity

As mentioned before in chapter 2, space complexity is expressed in terms of number of 2-

input AND gates and 2-input XOR gates. AND gates are used in the first level and

according to the structure of AND page in the hardware diagram, the total number of

AND gates is calculated as following:

66

HAND = 1 + 2 + — + n - l + n + n - l + — + 2 + 1

n(n + 1) (n — l)n (4.22)

bo«—H

b i » _

bn-2»—

bn-1 • M

,'1

_*
Vn-2

>HAND

= n

la

'n-3

>HAND

r
XOR

a„-i an-2 ai a0

I I - I I
Re-wiring

iti-2 >h-i

Vi

• n / ^ A N D

/
n-2

n / ^AND

r
XOR

r r̂

>HAND

n-1

r
XOR

^ ^

XOR

XOR

I 1 - i I
Cn-1 Cn-2 Cl Co

Figure 4.2 Proposed Multiplier Architecture

u

1
/>UND

r

>^AND

r
XOR

XOR gates are used in the two last levels of the hardware structure. The number of XOR

gates in the last level of the hardware directly depends on the type of the irreducible

polynomial of the field. The reason is that the number of summations in this level is

determined by the shape of the V matrices which are based on the T matrix. So in this

step we only calculate the number of XOR gates in the second level of hardware. Based

on the hardware diagram we have:

67

#XOR = 0 + 1+ ••• + n - 2 + n - l + n - 2 + ••• + 1 + 0

_ (n - l) n (n - 2) (n - l) (4.23)

~ 2 + 2

= n2 — 2n + 1

If we represent the number of XOR gates in the last level by Xs the space complexity

would be:

• Total number of AND gates : n

• Total number of XOR gates : n -2n + 1 + Xs

Time Complexity

Time complexity is always expressed in terms of the delay of 2-input AND gates, TA, and

the delay of 2-input XOR gates, Tx. In the first level, all the AND gates are placed in

parallel so the delay of this level is TA. In the second level by using a binary tree

structure, the maximum delay would be \log2 (n — 1)1 Tx. In the second level the

accurate delay depends on the type of the irreducible polynomial of the field as well. If

we denote this delay with xTx the total time complexity would be:

• Time complexity : TA + (\log2(n — 1)1 + x)Tx

4.3 Applying the New Method to Classes of Finite Fields

As we mentioned before, space and time complexity of our new method of finite field

multiplication highly depends on the type of the irreducible polynomial of the field. In

this section the results of applying the proposed method of multiplication on some classes

of finite fields is examined thoroughly and the exact amount of space and time

complexities are calculated.

68

4.3.1 Review of Three Classes of Finite Fields

Three classes of irreducible polynomials have been recently presented in [38]. These

classes are called Type I, Type II, and Type III. These new types of finite fields are

interesting because of their special form of T matrices. We will use these features when

applying our new method of multiplication on these fields and we will show that the

result are so efficient that can be used as an alternative for currently used finite field

multipliers.

Type I Polynomials

Consider the finite field GF(2"), where n = 2 mod 3 or in other words, n = 3h + 2 for

some integer h> 1, and an irreducible polynomial f(x) that defines GF(2") be given in the

following form:

n - l

zoo = Y(X3J+I+X3J+2)+1 = y ftx
i

j=0 1=0
(4.24)

_ fO if i =£ 0 and i = 0 mod 3
where f = I

<-l otherwise

A good example would be for h = 2 and n=8. Here the polynomial would be:

fix) = x8 + x7 + x5 + x4 + x2 + x + 1

In order to obtain the transfer matrix for an irreducible polynomial of type I, we have to

solve xn+ for 0 < k < n-2. From (4.24) we have:

7 i - l

xn = x3h+l + V (x3; + l + x3j + 2) + ±

(4.25)
j = 0

69

By multiplying x to both sides of the above equation we have:

h-l

h-l h-l

xn+l = xn + V (x3;+2 + ^ + %

h-l

= x 3 h + 1 + V (x3J+1 + x3J+2) + 1 + V 0 3 y + 2 + x3J+3) + x (4.26)
; = 0 ; = 0

It should be noted that in the above formulation, the operations on the coefficients are

performed in GF(2), i.e. addition is equal to subtraction. By continuing on multiplication

of x to the both sides, the rest of the powers of x would be gained:

h

xn+2=Yi(x
3J+1+x3J+2) + x

h-l

= xn + x3h+1 + V (x3j+1 + x3J+2) + x (4.27)

7 = 1

h-l h-l

= x3h+i+y (x 3 ^ 1 + X 3 J + 2) + 1 + x 3 h + i + y (x3j+i+x3>+2)+x
;=0 j=l

= X2 + 1

And generally

xn+k _ xk + xk-2 for 2<k<n-2 (4.28)

According to the above equations, the transfer matrix of an irreducible polynomial of

type I can be formed with the following properties:

70

1. Row T(0, :) has 2h + 2 = - (n + 1) '1 's which are located at x3i+l for 0<i<h,

3i+2 x for 0 <i<h-1, and x . It should be noted that T(0 j) has a weight of x P-l-j

2. Row T(l, :) has 2h + 1

1 <i<h.

' l ' s which are located atx3' for 0<i<h, xil+l for

3. Rows T(k, :) for 2 < k < n - 2 have just two ' 1 's which are located at x and x ~2.

The transfer matrix for the previous example is shown in figure (4.3).

"1 1 1 1 1 1

1 1 1 1 1

1 1

1 1

1 1

1 1

1 1

Figure 4.3 Transfer Matrix of a Type I Polynomial

Type II Polynomials

In this type of finite fields n = 3h while h is an integer. The irreducible polynomial of this

type of field,/fxj, has the following form:

ft-i n - l

zoo = x3h+y (x3;+2+X3J) = Yfix1

; '=0 i=0
(4.29)

where '• = (!
0 if i = 1 mod 3

otherwise

An example of this type of polynomials is for h = 3 and « = 9, resulting inf(x) being:

fix) = x9 + x8 + x6 + x5 + x3 + x2 + 1

71

In order to build the transfer matrix for this type of field, following the same procedure as
n+k before, xn+K for 0< k < n — 2 can be solved as follows:

ft-i

xn = y(x3J+2+x3])
] = 0

h-1

xn+1 = Y(x3J+2+x3J+1) + l

(4.30)

; = 0

Kxn+k _ xk-i + xk-2 for 2<k<n-2

According to the above equations, the transfer matrix of an irreducible polynomial of

type II can be formed with the following properties:

1. Row T(0, :) has 2/i = -n ' l ' s which are located atx3iandx3,+2 for 0 <i<h- 1.

2. Row T(l, :) has2h + 1 = ~ - ' l ' s which are located at x3'+l and x3,+2 for

0< i < h, and x .

3. Rows T(k, :) for 2 < k < n-2 have just two ' 1 's which are located at x '' and xk~2.

The transfer matrix for the previous example is shown in figure (4.4):

T =

I 1 1 1 1 1

I I 1 1 1 1 1

1 1

1 1

1 1

1 1

1 1

1 1

Figure 4.4 T Matrix of a Type II Polynomial

72

Type III Polynomials

Consider the finite field GF(2n), where n = 3h and h is a positive integer. Let the

irreducible polynomial f(x) that defines this field be given in the following form:

h-l n-X

i fix) = x3n+y (x3j+2+x3j)+x+1=y &
(4.31)

y=i i=o

. c (0 for i — 2 or i = 3i+ 1 with; > 1
where f = i _ ,

L l otherwise

A good example for this type of polynomials would be for h = 3 and n = 9, and

consequently/^) would be:

/ (x) = x9 + x8 + x6 + xs + x3 + x + 1

Again x"+ for 0 < k < n - 2 can be solved as follows:

h-l

xn = Y(x3>+2 + x3J) + x + l

;'=i

By multiplying x we have:

h-l

(4.33)

X

7=1

h-l

1 = ^ (x 3 ; + 3 + x 3 ; + l) + x2 + x

7=1

h - l

= xn + 2\(x3j + x3j+1) + x3 + x2 + x

7 = 1

h-l h-l

= V (x3j+2 + X3j) +X + 1 + Y {x3> + X3J + 1) + X3 + X2 + X

7=1 7=1

h-l

- Y^(x3j+1 + x3>+2) + x3 + x2 + 1

(4.34)

7=1

73

and
h-l

xn+2 V (x3j + 2 + x3j + 3j + x 4 + x3 + x

7 = 1

h-l

= xn + V (x 3 ' + 2 + x3') + x4 + x (4.35)

7 = 1

h-l h-l

= Y(x3j+2 + x3') + x + l + y (x3j+2 + x3J) + x4 + x

7 = 1 7 = 1

= X4 + 1

And generally:

xn+k = xk+2 + xk-2 ^ o r 2 < fc < n - 3 (4.36)

And finally the last one:

%2n-2 =xn + xn-4

h-l
,3h-\ =y (x2j+2+x3j)+x+i+

7 = 1

h-3

= x 3 h _ 1 + x3h~3 + x3h~4 + x3h~6 + y (x3j+2 + x3j) + x + l + x

7 = 1

h-3

= X3 h _ 1 + X3h~3 + X3h~6 + V (x3j+2 + X3J) +X+1

(4.37)

7 = 1

According to these equations, we can build up the transfer matrix of an irreducible

polynomial of type III with the following properties:

1. Row T(0, :) has 2h = -n '1 's which are located at x3i for 0 <i<h- 1, x3i+2 for

1 < i < h - 1, and x'.

74

2. Row T(1, :) has 2h + 1 = — p T s which are located at xl ' for 1 < i < h - 1,

x3i+2 for 0<i<h-l, x3, andx°.

3. Rows T(k, :) for 2 < k < n - 3 have just two ' 1 's which are located at xk+2 and xk~2.

4. Row T(n-2, :) has 2h-l= ^ l l i ' l ' s which are located at x3' for 0 < i < h - 1,

x3,+2 for 1 < i < h-3, x""', and x1.

The transfer matrix of the previous example is shown in figure (4.5).

"1 1 1 1 1 f

1 1 1 1 1 1 1

1 1

1 1
T =

1 1

1 1

I 1

I I 1 1 1
Figure 4.5 T Matrix of a Type III Polynomial

4.3.2 Results Related to Type I Polynomials

Before computing the results and finding the complexities, it is very important to build

the V matrices. As mentioned before, the T matrix of a polynomial of type I has a special

form. The first row of the transfer matrix, T(0, :), has 2h + 2 T s so Vo will have 2h + 2

non-zero rows and all of these rows are the first row of Matrix L, L(0, :); therefore they

have n - 1 non-zero items. The locations of these rows are Vo(0, :), Vo(3i+l, :) and

V0(3i+2, :) for 0 < i < h - 1, and finally V0(n-1, :).

The second row of T matrix, T(l, :), has 2h + 1 ' 1 's so V] will have the second row of L,

L(l, :) in 2h + 1 rows and the rest of rows are all zero. Locations of the non-zero rows

are V,(0, :), V](3i, :) and V,(3i+1, :) for 1 < i < h. The rest of V matrices, i.e. Vk for

2 < k < n - 2 only contain two non-zero rows which are L(k, :). These rows contain

n — 1 - k non-zero items.

75

Calculation of Space Complexity means to count the number of all 2-input AND gate and

2-input XOR gates needed to perform the multiplication. In the previous sections we

found that the space complexity of this multiplier is:

— ^,2 $#AND = n
UXOR = n2-2n + i + xs

 (4 3 8)

At this point only Xs needs to be calculated. Xs corresponds to the XOR gates used to

add up the partial results of matrix multiplications:

C = UBfF)V0B©V,BfF> • ffiV-

Since Vo has 2h + 2 nonzero rows the first addition needs 2h + 2 XOR gates. Similarly,

the second addition needs 2h + 1 XOR gates and the rest of additions, each need two

XOR gates each. So Xs is calculated as follows:

Xs = (2h + 2) + (2/i + 1) + 2 + 2 + ---+2
n-3

= 2n - 6 + Ah + 3

4 8
= 2n — 3 +—n

2 3

And the total number of XOR gates would be:

(4.39)

4 8
#XOR = n2 - 2n + 1 + 2n - 3 - -n - -

2 3
4 14

3 n ~ ¥

(4.40)

= n2 +—n ——

It is important to note that the XOR complexity can be reduced by eliminating the

redundant terms. Looking at the Vo and Vi matrices, it can be seen that both of them have

76

a value on row 0, row 3i + 1 for 1 < i < h-1, and row n - 1. So in performing VoB + VjB

the term L(0, :)B + L(1,:)B is repeated h + 1 times and only one of these summations is

necessary, therefore h XOR gates will be eliminated:

_ 4 14
#XOR = n2 + - 7 1 - —

3 3

_ 4 14
= n H—n

3 3
— n2 + n — A

In the previous sections we found that the time complexity of this multiplier is:

TA + (llog2(n-l)]+x)Tx (4.42)

in which xTx is the amount of delay caused by the last level of XOR gates which perform

the summation of partial multiplication results. In order to calculate the maximum value

of x, the longest signal path should be determined. According to the T matrix of type I,

the maximum number of '1's in one column is 4, so when performing the summation

UB + VoB + ... + Vn_2B the longest signal path would have four XOR gates and

according to the T matrix it would be at U(3i+1, :)B + L(0, :)B + L(l, :)B + L(3i+1, :)B

+ L(3i+3)Bfor7</</2-7 .

It is important to note that these are the exact locations of the redundant term L(0, :)B +

L(l, :)B. The biggest time delay will happen when i — 1. So the time delay of U(4, :)B +

L(0, :)B + L(l, :)B + L(4, :)B + L(6, :)B is the longest delay of the circuit. First let's see

how much time is needed for the elements of the above summation to become ready.

Here L(0, :)B needs \log2(n — 1)]TX time delay where Tx is the delay of a 2-input XOR

gate. Time delays of the other terms are:

U(4,:)B : \log25]Tx

L(1,:)B : \log2(n-2)]Tx

L(4,:)B : \log2(n - 5)]TX

L(6,:)B : \log2(n-7)]Tx

-h

n 2

2 + 3
(4.41)

77

Since \log2(ji — 1)1 = \log2(n — 2)1 = \log2(n — 5)1 = \log2(n — 7)1 for n > 23, we

can assume that all of these five elements become ready at the same time. Therefore by

implementing a binary tree structure the total delay would be 3Tx:

L(0, :)B L(1,:)B U(4, :)B L(6, :)B L(4, :)B

Figure 4.6 Longest Signal Pass of a Type I Multiplier

It is important to note that for n < 23, since \log2(n — 7)1 < \log2(n — 1)1, we can

perform the addition U(4, :)B + L(6, :)B before the other terms become ready and

eliminate one Tx delay. Table (4.1) shows the final complexities of our multiplier for type

I polynomials:

#AND

n2

#XOR

n2 + n — 4

DELAY

TA + (\log2(n-l)] + 3)Tx

Table 4.1 Complexity Results of a Type I Multiplier

4.3.3 Results Related to Type II Polynomials

The same technique would be used in calculating the results for Type II polynomials.

According to the form of T matrix for this type, the only difference would be in the form

of Vo and \\. Here Vo has 2h non-zero rows and they are row Vn(3i, :) and row

Vo(3i+2, :) for 0 < i < h - 1. Also V] will have 2h + 1 nonzero rows which are row

78

V,(0, :), row Vi(3i+1, :), and row V,(3i+2, :) for 0 < i < h - 1. So Xs would be calculated

as follows:

Xs = (2/i) + (2h + 1) + 2 + 2 + - + 2
n-3

= 2n - 6 + 4/i + 1
(4.43)

4
= 2n — 5 + — n

Here again the redundant terms would be found when calculating VoB + ViB and the

term LoB + LjB is repeated h + 1 times. So the XOR complexity would be:

4

#XOR = n2-2n + l + 2n-5 + -n-h

,, 4 n
= n 2 + - n - 4 - - (4.44)

3 3

— n2 + n — 4

The same thing will happen when calculating the time delay. For this polynomial the

longest signal pass contains four XOR gates and according to the transfer matrix of this

type, it happens when calculating U(3i-1, :)B + L(0, :)B + L(l, :)B + L(3i, :)B +

L(3i+1, :)B for 1 < i < h - 1, and the biggest delay is when / = 1 and U(2, :)B + L(0, :)B +

L(l, :)B + L(3, :)B + L(4, :)B is being calculated. Again the result would be

(pog2(n-1)l + 3)7; for n>15 and (flog2(»-l)] + 2)7; for n < 15. Table (4.2) shows the

final complexities of our multiplier for type II polynomials:

#AND

n2

#XOR

n2 + n — 4

DELAY

TA + (\log2(n-l)] + 3)Tx

Table 4.2 Complexity Results of a Type II Multiplier

79

4.3.4 Results Related to Type III Polynomials

According to the special form of the T matrix in this type, Vo has 2h non-zero rows

which are: row Vo(l, :), row Vo(3i, :) for 0 < i < h - 1 and row V0(3i+2, :) for

1 <i <h - 1. Likewise V] has 2h + 1 nonzero rows which are: row Vi(0, :), row Vi(3, :),

row Vi(3i+1, :) for 1 < i < h - 1, and row V,(3i+2, :) for 0 < i < h - 1. All the other V

matrices have just two non-zero rows except for the last one Vn_2 which has 2h- 1 non­

zero rows and they are: row Vn.2(0, :), row V„-2(3i, :) for 0 < i < h - 1, row Vn_2(3i+2, :)

for 1 < i < h - 3, and row Vn.2(h-1, :). Calculating Xs would be as follows:

Xs = (2/i) + (2/i + 1) + (2h - 1) + 2 + 2 + - + 2
n-4

= 2n - 8 + 6h
(4.45)

= 4 n - 8

Again many redundancies can be found in performing matrix multiplication. First

considering Vo and Vn-2 you find that the term L(0, :)B + L(n-1, :)B is repeated 2h - 1

times so 2/2 - 2 XOR gates can be eliminated. Next, considering Vo, Vi and Vn_2 it can be

seen that the term L(0, :)B + L(l, :)B + L(n-1, :) is repeated h times, so again h - 1 XOR

gates will be eliminated and the final complexity would be:

#XOR = n2 - In + 1 + An - 8 - (2h - 2) - (/i - 1)

= n2 -I- 2n - 4 - 3h

= n2 + n - 4 (4.46)

Considering the form of T matrix is important in calculating time delay. Since each

column in T matrix has maximum five T s (for n < 15 it has maximum four 'l;s) it can

be assumed that the longest signal path has five XOR gates. The longest delay will

happen when calculating U(5, :)B + L(0, :)B + L(l, :)B + L(3, :)B + L(7, :)B +

L(n-2, :)B for n > 15. Using the same technique, the time complexity would be

80

(|"log2(«-l)] + 3)r i. Table (4.3) shows the final complexities of our multiplier for type

III polynomials:

#AND

n2

#XOR

n2 + n — 4

DELAY

TA + (\log2(n-l)] + 3)Tx

Table 4.3 Complexity Results of a Type III Multiplier

4.4 Comparisons

In this section we introduced a new method for building parallel finite field multipliers in

polynomial basis. Then we applied our method to some types of fields presented in [38]

and showed the complexity results. As mentioned in chapter 3, it is not possible to beat

the results of a finite field multiplier built for a trinomial, ESP, or AOP. But since these

types of polynomials do not exist for all finite fields that we deal with, it is important to

find new multipliers that have better complexity results than pentanomials. Table (4.4)

compares the results of our multiplier with the best results of a pentanomial based

multiplier:

Type of

Multiplier

Conventional

Proposed

Proposed

Proposed

Polynomial of

the Field

Pentanomial

Type I

Type II

Type II

#AND

n2

2

n

n2

2

n

#XOR

n2+2n-3

n2 + n-4

n2 +n-4

n~ + n — 4

Delay

TA+(\\og2(n-\)] + 4)Tx

TA+{\\og2{n-\)\+?>)Tx

TA+(llog2(n-l)]+3)Tx

TA+([\og2(n-l)]+3)Tx

Table 4.4 The Results of the New Multiplier vs the Best Pentanomial Multiplier

It is clearly seen that the results of our multiplier is better than a pentanomial based

multiplier. Therefore this new multiplier can be used as an alternative for finite field

multipliers based on pentanomials for finite fields of the form GF(2n) where an

irreducible trinomial or ESP or AOP doesn't exist.

81

5 Conclusion

5.1 Summary of contributions

This work presents a new bit parallel polynomial basis finite field multiplier. Polynomial

basis multipliers have two major types: conventional and Mastrovito. This new approach

combines the aspects of the both types to achieve a more efficient architecture. By

efficiency we mean both space and speed.

Among the different finite field multipliers in literature, those built for irreducible

trinomials or equally spaced polynomials or all-one polynomials have the best space and

time complexities. But for a finite field GF(2"), the problem is that there is no guarantee

to find such an irreducible polynomial for any value of n. Currently when those optimized

irreducible polynomials do not exist in a certain field, the multiplier is built based on a

pentanomial.

The proposed multiplier has been applied to some classes of finite fields and resulted in

very good complexities. It has smaller space complexity compared to the smallest finite

field multiplier based on a pentanomial. At the same time it had smaller time complexity

as well. So the efficiency of multiplication was improved for both space and speed.

Therefore it can be a good alternative for polynomial based multipliers in the finite fields

that an optimized irreducible polynomial does not exist.

82

5.2 Future Work

In this work only an architecture level of the multiplier was presented and the

complexities were expressed in terms of some nominal values. The next step could be

implementation of the multiplier as a real circuit for example in an FPGA in order to

analyze the actual performance of it. It should also be considered that the full parallel

multiplier architectures are impractical for circuit implementation when the value of n is

big, therefore in the FPGA implementation a small value of n should be chosen.

However, big values of n can also be used for simulation purposes.

Considering the architecture level, this method has been applied to only a few classes of

finite field. Based on the good results of these fields, we can assume that some other

classes of fields may exist with promising results as well. So the next step would be

applying this method to these classes of finite fields. Furthermore, the matrix

multiplication operations in this method can be combined with some efficient algorithms

such as KOA to gain more reductions in complexities. The result of applying this new

method on previously investigated polynomials such as trinomials, ESPs, or AOPs should

also be considered in order to find any possible common structures.

83

References

[1] E.R. Berlekamp, "Bit-Serial Reed-Solomon Encoders", IEEE Trans. Information

Theory, Vol. 28, pp. 869-874, Nov. 1982.

[2] K. Chang, D. Hong, H. Cho, "Low Complexity Bit-Parallel Multiplier for GF(2'"j

Defined by All-One Polynomials Using Redundant Representation", IEEE

Trans. Computers, Vol.54, No. 12, pp. 1628-1630, Dec. 2005.

[3] W. Diffie and M.E. Hellman, "New Directions in Cryptography", IEEE Trans.

Information Theory, Vol. 22, No. 6, pp. 644-654, Nov. 1976.

[4] Taher El-Gamal, "A Public-Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithms", IEEE Trans. Information Theory, Vol. IT-31, No. 4,

pp469-472, 1985.

[5] M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blumel, "A Reconfigurable

System on Chip Implementation for Elliptic Curve Cryptography over GF(2"/',

Proc. Cryptographic Hardware and Embedded Systems (CHES '02), pp. 381-399,

2003.

[6] H. Fan, Y. Dai, "Fast Bit-Parallel GF(2") Multiplier for All Trinomials", IEEE

Trans. Computers, Vol. 54, No. 4, pp. 485-490, Apr. 2005.

[7] H. Fan, M. Hasan, "A New Approach to Subquadratic Space Complexity Parallel

Multipliers for Extended Binary Fields", IEEE Trans. Computers, Vol. 56, No. 2,

pp. 224-233, Feb. 2007.

84

[8] S.T.J. Fenn, M. Benaissa, and D. Taylor, "GV(2m) Multiplication and Division

over the Dual Basis", IEEE Trans. Computers, Vol. 45, No. 3, pp. 319-327, Mar

1996.

[9] A. Halbutogullari, C. Koc, "Mastrovito Multiplier for General Irreducible

Polynomials", IEEE Trans. Computers, Vol. 49, No. 5, pp. 503-518, May 2000.

[10] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve

Cryptography, Springer, Dec. 2003.

[11] M.A. Hasan and V.K. Bhargava, "Architecture for Low Complexity Rate-

Adaptive Reed-Solomon Encoder", IEEE Trans. Computers, Vol. 44, No. 7, pp.

938-942, Jul. 1995.

[12] M.A. Hasan and V.K. Bhargava, "Division and Bit-Serial Multiplication over

GF(2T , IEEProc.-E, Vol. 139, No. 3, pp. 230-236, May 1992.

[13] T. Itoh and S. Tsujii, "Structure of Parallel Multipliers for a Class of Fields

GF(2"'/', Information and Computation, Vol. 83, pp. 21-40, 1989.

[14] A. Karatsuba and Y. Ofman, "Multiplication of Multidigit Numbers on

Automata", Soviet Physics-Doklady (English translation), Vol. 7, No. 7, pp. 595-

596, 1963.

[15] D.E. Knuth, The Art of Computer Programming, Vol. 2, Addison-Wesley, 1998.

[16] N. Koblitz, "Elliptic Curve Cryptosystems", Mathematics of Computation, Vol.

48, pp. 203-209, 1987.

85

[17] C.K. Koc and B. Sunar, "Low-Complexity Bit-Parallel Canonical and Normal

Basis Multipliers for a Class of Finite Fields", IEEE Trans. Computers, Vol. 47,

No. 3, pp. 353-356, Mar. 1998.

[18] M. Leone, "A New Low Complexity Parallel Multiplier for a Class of Finite

Fields", Proc. Cryptographic Hardware and Embedded Systems (CHES 2001),

pp. 160-170,2001.

[19] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Application,

Cambridge University Press, 1986.

[20] J.L. Massey and J.K. Omura, "Computational Method and Apparatus for Finite

Field Arithmetic," US patent 4,587,627, 1986.

[21] E.D. Mastrovito, "VLSI Architectures for Multiplication Over Finite Field

GF(2")", Proc. Sixth Int'l Conf, AAECC-6, T. Mora, ed, pp. 297-309, Rome, Jul.

1988.

[22] P.K. Meher, Y. Ha, C.Y. Lee, "An Optimized Design for Serial-Parallel Finite

Field Multiplication over GF(2m) Based on All-One Polynomials", Proc. 2009

Conf. on Asia and South Pacific Design Automation, Yokohama, Japan, pp. 210-

215,2009.

[23] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied

Cryptography, CRC Press, 1996.

[24] V.S. Miller, "Use of Elliptic Curves in Cryptography", Advances in Cryptography

Proc. Crypto'85, pp. 417-426, 1985.

86

[25] M. Morii, M. Kasahara, and D.L. Whiting, "Efficient Bit-Serial Multiplication

and Discrete-Time Wiener-Hoph Equation Over Finite Fields," IEEE Trans.

Information Theory, Vol. 35, pp. 1177-1184, 1989.

[26] A.H. Namin, H. Wu, M. Ahmadi, "Comb Architectures for Finite Field

Multiplication in F2
m", IEEE Trans. Computers, Vol. 56, No. 7, pp. 909-916, Jul.

2007.

[27] C. Paar, "A New Architecture for a Parallel Finite Field Multiplier with Low

Complexity Based on Composite Fields", IEEE Trans. Computers, Vol. 45, No. 7,

pp. 856-861, Jul. 1996.

[28] C. Paar, P. Fleischmann, and P. Roelse, "Efficient Multiplier Schemes for Galois

Fields G¥(l4nr, IEEE Trans. Computers, Vol. 47, No. 2, pp. 162-170, Feb. 1998.

[29] S. Park, K. Chang, D. Hong, "Efficient Bit-Parallel Multiplier for Irreducible

Pentanomials Using a Shifted Polynomial Basis", IEEE Trans. Computers, Vol.

55, No. 9, pp. 1211-1215, Sep. 2006.

[30] O. Pretzel, Error-Correcting Codes and Finite Fields, Oxford University Press,

1996.

[31] A. Reyhani-Masoleh, M. Hasan, "A New Construction of Massey-Omura Parallel

Multiplier over GF(2m)", IEEE Trans. Computers, Vol. 51, No. 5, pp. 511-520,

May. 2002.

[32] A. Reyhani-Masoleh, M. Hasan, "Low Complexity Bit Parallel Architectures for

Polynomial Basis Multiplication over GF(2m/', IEEE Trans. Computers, Vol. 53,

No. 8, pp. 945-959, Aug. 2004.

87

[33] R.L. Rivest, A. Shamir, and L.A. Adleman, "A Method for Obtaining Digital

Signatures and Public Key Cryptosystems," Comm. ACM, Vol. 21, pp. 120-126,

1978.

[34] F. Rodnguez-Hennquez, C. Koc, "Parallel Multipliers Based on Special

Irreducible Pentanomials", IEEE Trans. Computers, Vol. 52, No. 12, pp 1535-

1542, Dec. 2003.

[35] W. Stallings, Cryptography and Network Security, Prentice Hall, 2003.

[36] L. Song, K. Parhi, "Low-Complexity Modified Mastrovito Multipliers Over Finite

Fields GF(2m/', Proc. IEEE Int'l Symp.Circuits and Systems, Vol. 1, pp. 508-512,

May 1999.

[37] B. Sunar, C. Koc, "Mastrovito Multiplier for All Trinomials", IEEE Trans.

Computers, Vol. 48, No. 5, pp. 522-527, May 1999

[38] H. Wu, "Bit-Parallel Polynomial Basis Multiplier for New Classes of Finite

Fields", IEEE Trans. Computers, Vol. 57, No. 8, pp. 1023-1031, Aug 2008

[39] H.Wu, M.A. Hasan, I.F. Blake, "New low-complexity bit-parallel finite field

multipliers using weakly dual bases", IEEE Trans. Computers, Vol.51, No. 11,

pp. 1223-1234, Nov. 2002.

[40] H. Wu, M.A. Hasan, I.F. Blake, and S. Gao, "Finite Field Multiplier Using

Redundant Representation," IEEE Trans. Computers, Vol. 51, No. 11, pp. 1306-

1316, Nov. 2002.

[41] T. Zhang, K. Parhi, "Systematic Design of Original and Modified Mastrovito

Multipliers for General Irreducible Polynomials", IEEE Trans. Computers, Vol.

50, No. 7, pp. 734-749, Jul. 2001.

88

VITA AUCTORIS

NAME: Mohammadali Sharifan

PLACE OF BIRTH: Tehran, Iran

YEAR OF BIRTH: 1982

EDUCATION: Allameh Helli High School, Tehran, Iran

1997-2001

Shahid Beheshti University, Tehran, Iran

2001-2005 B.Sc.

University of Windsor, Windsor, Ontario

2007-2009 M.A.Sc.

89

	A new approach in building parallel finite field multipliers
	Recommended Citation

	ProQuest Dissertations

