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ABSTRACT 

With the continually growing use of portable computing devices and increasingly 

complex software applications, there is a constant push for low power high speed 

circuitry to support this technology. Because of the high usage and large complex 

circuitry required to carry out arithmetic operations used in applications such as digital 

signal processing, there has been a great focus on increasing the efficiency of computer 

arithmetic circuitry. A key player in the realm of computer arithmetic is the digital 

multiplier and because of its size and power consumption, it has moved to the forefront of 

today's research. 

A digital reconfigurable multiplier architecture will be introduced. Regulated by a 2-bit 

control signal, the multiplier is capable of double and single precision multiplication, as 

well as fault tolerant and dual throughput single precision execution. 

The architecture proposed in this thesis is centered on a recursive multiplication 

algorithm, where a large multiplication is carried out using recursions of simpler sub-

multiplier modules. Within each sub-multiplier module, instead of carry save adder 

arrays, 4:2 compressor rows are utilized for partial product reduction, which present 

greater efficiency, thus result in lower delay and power consumption of the whole 

multiplier. 

In addition, a study of various digital logic circuit styles are initially presented, and then 

three different designs of 4:2 compressor in Domino Logic are presented and simulation 

results confirm the property of proposed design in terms of delay, power consumption 

and operation frequency. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Prior to 1935, a computer was known as a person who performed arithmetic calculations 

or "one who computes" Computer was actually a job title during this period of time. The 

modern machine definition is based on von Neumann's concepts [1]: "a device that 

accepts input, process data, stores data, and produces output" While technology has 

come a long way in the many years since von Neumann's work, the basic formula for the 

components of a computing system have remained the same. 

Von Neumann and his associates state that "a general purpose computing machine should 

contain certain main organs relating to arithmetic, memory-storage, control and 

connection with the human operator" [1]. The arithmetic organ is known today as the 

arithmetic logic unit (ALU); it is required to be capable of adding, subtracting, 

multiplying, and dividing. This thesis deals specifically with the multiplication function 

of this arithmetic organ. 

Multiplication is the key arithmetic operation which is widely used in many 

microprocessors and digital signal processing applications. Microprocessors use 

multipliers within their arithmetic logic units, and digital signal processing systems 

require multipliers to implement DSP algorithms such as convolution and filtering. Since 

the multiplier lies directly within the critical path in most systems, the demand for high-
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speed multiplier is continuously increasing [1]. However, with the fast growing of 

portable computing devices, the power consumption of the multiplier has become equally 

important. All this has resulted in the pursuit of high speed low power multiplier design 

techniques. 

1.2 Thesis Highlights 
This thesis will present a general investigation of digital multiplication, and will highlight 

novel reconfigurable multiplier architecture. The proposed design utilizes the 

reconfigurable architecture and an optimized 4:2 compressor rows distribution 

methodology for partial product reduction presented by Mokrian et al [6]. The principle 

advantage of this scheme lies in its multi-mode reconfiguration ability and high efficient 

partial product reduction. 

The proposed scheme combines many desirable design characteristics, such as low power 

dissipation, high throughput capabilities, and fault tolerance. Moreover, a 64-bit 

reconfigurable multiplier, with potential applications in Digital Signal Processor (DSP) 

devices, has been implemented using the TSMC 0.18 um technology. This design has 

been contrasted against a standard high performance architecture of equivalent size, and 

has demonstrated promising results, which will be presented in chapter 3. 

In addition, other investigations into circuit level implementations of 4:2 compressor will 

be addressed. In particular, various designs of 4:2 compressor in Domino Logic are 

presented and simulation results confirm the property of proposed designs in terms of 

delay, power consumption and operation frequency. 
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1.3 Thesis Organization 

The thesis will begin with a general overview of the concept of digital multiplication, and 

various multiplication algorithms in chapter 2. Moreover, this chapter will present the 

fundamentals of partial product reduction. 

Chapter 3 will focus on the introduction of the reconfigurable multiplier architecture, 

beginning with the outline of the recursive multiplication algorithm, followed by 

implementation and simulation results. 

Chapter 4 will initially introduce the 4:2 compressor in terms of basic functionality. This 

will be followed by an in-depth analysis of logic styles used in the construction of 4:2 

compressors. This analysis will include proposed 4:2 compressor designs in Domino 

Logic. This chapter will conclude with the simulation and comparison among these 

designed circuitries in terms of delay, power consumption and operation frequency. This 

thesis will conclude with a summary of contributions and conclusions in chapter 5. 

3 



CHAPTER 2 

DIGITAL MULTIPLICATION 

2.1 Basics of Digital Multiplication 

Prior to exploring the various multiplication algorithms, and the applications of each, it is 

imperative to present the essence of digital multiplication, and the standard nomenclature. 

Just as in the paper and pencil methodology of carrying a multiplication of two values, 

digital multiplication entails a sequence of additions carried out on partial products. The 

means by which this partial product array is summed to yield the final product is the key 

distinguishing factor amongst multiplication schemes. 

In general, the partial product array for a n M x J V bit multiplication is formed by the 

bitwise logical AND of the multiplicand A and multiplier X, where: 

X = [xm> Xm-L Xm-2 ••• x2> xl, X0J 

A = [a„, a„.i, an-2 ... a2, au a0] 

The summation of the partial products will yield an («+m)-bit product, P, where: 

P = [Sn+m, Sn+m-1, Sn+m-2 — Si, S;, SQJ 

The partial product array will have (n x m) bits, arranged in m rows of n-bit values. The 

array is in essence composed of a sequence of rows that are either shifted versions of the 
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multiplicand, A, or zeros, according to the bits of the multiplier, X. The multiplication of 

two 4-bit values is illustrated in Figure 1. 
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Figure 1 4x4 bit multiplication leading to an 8-bit product 

To better visualize the partial product reduction process, the concept of dot diagrams 

shall be introduced [1, 2]. A dot diagram is a visual representation of the bits in an 

algorithm, where in this particular application the dots represent individual partial 

product bits. The nature of the dot diagram is to depict the bits using the relative position 

of individual bits, and the manner in which they are manipulated, irrespective of the 

actual value of each bit. 

Figure 2 shows the partial product array for a 16x16-bit multiplication [1]. The partial 

products are shifted to account for the differing arithmetic weight of the bits in the 

multiplier, where dots of the same arithmetic weight are aligned vertically. The final 

product, represented by the double length row of dots at the bottom, is obtained via the 

summation of the dots in each column. 
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Figure 2 A simple dot diagram of 16-bit partial product array 

2.2 Sequential Multiplication 

2.2.1 Shift-Add Multiplication 

In its most basic form, digital multiplication may be carried out through a sequence of 

shifts and additions of the multiplicand to the partial product register, governed by the 

individual bits of the multiplier (Figure 3). This primitive form of multiplication, known 

as shift-add or iterative multiplication, although very simple in implementation, is very 

slow. The number of iterations, or cycles of addition, that are required grows linearly 

with the size of the multiplier, with each cycle having a delay of the required fast adder. 
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Figure 3 Shift-add multiplier implementation 

2.2.2 High Radix Multipliers 

A variation of this rudimentary form of digital multiplication is the high-radix 

multiplication algorithm. Though fundamentally identical to the shift and add algorithms, 

these multipliers accept more than one bit of the multiplier on each clock cycle. This 

process reduces the number of clock cycles required to carry out a multiplication, at the 

added expense of the requirement for the immediate availability of fixed multiples of the 

multiplicand. 

Figure 4 provides an outline for a radix-4 multiplication scheme, where each clock cycle 

now utilizes two bits of the multiplier, effectively doubling the throughput over a 

conventional radix-2 binary multiplier [3]. Note that in this scheme, a separate register is 

required to store the previously multiplied value of 3 A. The higher the radix of the 

multiplier, the more stored values that will be required. Through the use of higher radix 

multipliers (radix-8, radix-16, etc.), the greater the achievable computation speeds; 
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however, this comes at the expense of increased overhead in terms of shift circuitry, and 

storage registers for all of the required multiples of the multiplicand. 

Partial 

2x 

Multiplier 

Product 

Multiplicand (A)) 

I 

0 A 2A 3A 
J I I L _ 

L - - \ MUX / 

£ 
V 

m-bit adde 7 
Figure 4 Shift-add implementation of a basic radix-4 multiplier 

2.3 Parallel Multipliers 

Serial multipliers, and the concept of shift and add algorithms, are a class of primitive 

multiplication schemes that take advantage of simple implementation techniques. Such 

methods are employed where hardware overhead is an issue, or if there is a lack of a 

dedicated hardware multiplier. Modern high performance machines call for more 

sophisticated algorithms, in order to limit the computation latency. 

Parallel multipliers in general may be classified into two distinct categories: linear 

parallel multipliers, and column compression multipliers. As opposed to the serial 

multiplier, parallel multipliers generate all of the partial products simultaneously. In 



addition, parallel multipliers limit the latency associated with carry propagation to one 

final fast adder. 

2.3.1 Linear parallel Multipliers 

Linear parallel multipliers often referred to as array multipliers; obtain their name from 

the linear relationship between their latency and operand size. The array multiplier may 

be regarded as a one sided CSA tree, where the reduction process occurs in ordered 

stages. 

The highly regular layout of the array structure is depicted in 5-bit multiplier in Figure 5. 

The systematic arrangement of the cells makes this design ideal for automated layout 

techniques, where the bits of the two operands are broadcast across the arrangement of 

full adder cells. In this scheme, the outputs of the adders trickle horizontally and 

vertically accordingly until the perimeter of the structure where the product bits are 

attained. The drawback of this scheme is that the partial products are introduced and 

reduced one row at a time, not in parallel as in column compression multipliers. This 

leads to higher gate count, and slower performance. 
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Figure 5 One sided CSA tree forming an Array Multiplier 

2.3.2 Column Compression Multipliers 

The foundation for the modern column compression multiplier was set forth in the 1960's 

by the works of C.S. Wallace, Luigi Dadda, and the Russian mathematician Yu Ofinan [4, 

5, 6]. The tree multiplier offers the potential for a logarithmic increase in delay relative to 

operand size. Once formed, the bits in the partial product array are passed onto a 

reduction network, which performs a column-wise compression of the bits, forming two 

final partial products. A final stage fast adder is used to sum the two resulting partial 

products. A schematic representation of this process is depicted in Figure 6 [1]. 

10 
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Figure 6 Schematic representation of the column compression multiplier process 

The methodology initially proposed by Wallace [4], makes use of Carry-Save Adder 

(CSA) arrays in order to carry out the column-wise compression of the partial product 

bits. The CSA is the most commonly used form of multi-operand adder, and it is simply 

composed of a series of non-interlinked Full-Adder blocks, as shown in Figure 7 

Through the use of such compression techniques, the carry propagation is postponed until 

the final stage, where the resulting partial products are summed. 
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Figure 7 Carry Save Adder (CSA) Array 

Luigi Dadda proposed a systematic methodology for laying out the CSA reduction tree 

such that the minimum number of counters is used [5]. In his investigation, Dadda 

deduced that by determining the minimum number of required stages required for the 

partial product reduction process, 3:2 or even higher order counters may be placed in 

such a manner as to minimize the hardware requirement. Since its inception, Dadda's 

minimum circuitry paradigm has been critically analyzed and confirmed [2, 7], and 

further explored for high order and heterogeneous counter arrays [8]. 

2.4 Partial Product Reduction Techniques 

The predominant distinguishing factor amongst column compression multiplier schemes 

lies in the manner in which the column wise compression of the partial products occurs. 

A desired aspect of system behavior, such as speed, area, layout or power, may be 

optimized by the proper selection of a particular approach. In the subsequent sections, 

methodologies that concentrate on these major design criterions will be presented. 
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2.4.1 CSA Reduction Scheme 

Parallel tree multiplier architecture using carry save adder (CSA) arrays has formed the 

fundamental framework for the design of high-speed parallel multipliers over the past 

four decades. In this section, the dissimilarities between the Wallace and Dadda 

techniques will be presented. 

In 1964, Wallace [4] introduced a new column compression architecture for fast 

multiplication as an alternative to array multiplication. His scheme involves three basic 

steps: 

1. Generate all partial products at the same time using AND gate array. 

2. Reduce all partial products to two numbers using (3, 2) and (2, 2) counters. 

3. Sum the two final numbers using some form of fast addition such as a carry-look-

ahead adder (CLA). 

Wallace's method involves grouping all rows in each stage of partial product reduction 

into groups of three during each reduction stage. All columns in each group containing 3 

bits are reduced using (3, 2) counters, also known as full-adders, and all columns 

containing 2 bits are reduced using (2, 2) counters, also known as half-adders. All rows 

that are not part of a three row set are then transferred to the next stage without 

modification. It is apparent that the Wallace method for column compression reduces the 

most digits at the earliest possible time. Figure 8 shows the reduction process for a 12x12 

-bit multiplication. 

In contrast to the linear growth of delay as word length increases in array multipliers, 

when using this column compression architecture, delays proportional to the logarithm of 

the operand word size may be achieved. Therefore, column compression parallel 

multipliers are faster than array multipliers. 

13 
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Shortly after Wallace presented his method for partial product reduction using CSA 

column compression, Dadda [5] was able to improve on his method by utilizing a unique 

placement strategy for the reduction stage counters. Like Wallace's method, Dadda uses 

the same three step process described earlier but unlike Wallace's method of reducing as 

many bits as possible at the earliest possible time, Dadda's method involves strategically 

reducing only some columns of each stage. This is done in order to reduce the overall 

number of (3, 2) counters required for the entire process. The process for reduction in a 

Dadda multiplier is developed using the following method, and the reduction process for 

a 12x12 -bit multiplication is shown in Figure 9. 

1. Find the smallest j such that at least one column of the original partial product 

matrix has more than a) bits where dj is the height of the/* stage from the end 

d ;- i = l l . 5 -d ; ] 
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di = 2 

2. In the/* stage from the end, employ (3, 2) and (2, 2) counters to obtain a reduced 

matrix with no more than dj bits in any column. 

3. Lety =j-l and repeat step 2 until a matrix with only two rows is generated. 

a CM : : : i J im H r i e n * i ' ; u toy tt * 'i s * » 3 I n 

» 4 • 

' . yyyyyy. 
::.: yyyy. • 

xx 
V j j l I 
i ^ * 

::: yyyyyyyyyyyy.: • 

• • • yyyyyyyyyy. 
yyyyyyyy. . 

'. yyyyyyyyyyyyyyyy.:. 
. yyyyyyyyyyyyyy.:. • 

V tfci •< 

1 i 1 1 yyyyyyyyyyyyyyyyyy.: • 

•ff;!' yyyyyyyyyyyyyyyyyyyy. 

Figure 9 12x12 Dadda Tree 

These two schemes were more recently analyzed by Bickerstaff et al. [2] further 

confirming that the Dadda tree does in fact utilize fewer adders during the reduction 

process, while the Wallace tree tends to insert adders at the earliest opportunity. Although 

slightly more irregular, the Dadda scheme presents a more efficient design. 
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2.4.2 4:2 Compressor Reduction Scheme 

Since their inception by Weinberger [9], 4:2 compressor have become the topic of 

considerable research in the arithmetic community. The 4:2 compressor has transformed 

the standard frame of mind of counter based partial product reduction schemes by 

introducing the notion of horizontal data paths within stages of reduction. 

The 4:2 compressor row is formed by a series of 4:2 compressors cascaded together, It is 

used to perform 4:2 column-wise compression of the partial product. The following tables 

display the relationship between column height and the number of required stages. In 

Table 2, the 4:2 compressor arrays, which perform 4:2 column-wise compression, are 

displayed, and the carry save adder arrays are also presented in Table 1. 

Table 1 Max column height per stage of a 3:2 scheme (carry save adder array) 

h 

n(h) 

0 

2 

1 

3 

2 

4 

3 

6 

4 

9 

5 

13 

6 

19 

7 

28 

8 

42 

9 

63 

10 

94 

Table 2 Max column height per stage of a 4:2 scheme (4:2 compressor array) 

h 

n(h) 

0 

3 

1 

4 

2 

8 

3 

16 

4 

32 

5 

64 

6 

128 

7 

256 

As shown in tables, the 4:2 compressor based partial product reduction scheme is more 

efficient. For example, to reduce a column height which is 64, by using carry save adder, 9 
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reduction stages are required, however, by using 4:2 compressor rows, only 5 stages are 

needed to finish the partial product reduction. 

An arbitrary distribution of 4:2 compressor rows, though effective, may not be entirely 

efficient. Until recently, Mokrian et al. [10] proposed a reduction scheme for using 4:2 

compressors in partial product reduction. He introduced a layout scheme to minimize the 

number of compressor cells required in a complete reduction procedure, which follows the 

same idea as Dadda 3:2 counter scheme [5]. This layout scheme defines a compressor row 

as depicted in Figure 10. These rows begin with a half-adder or in the rightmost least 

significant position followed by a chain of 4:2 compressors and ending with a full-adder in 

the leftmost or most significant position. 

<r^ 

>!/ \ l / Nl/ \ y 

4:2 
Compressor k 

^k sk ^ ^ 

4:2 
Compressor k 

•V M^ 

Half 
Adder 

I 
Figure 10 Definition of a 4:2 Compressor Row 

An iterative procedure defined for implementation of this scheme is as follows [11]: 

Step (1) Determine the number of compressor rows (NR) required for the given stage 

according to the equation: 

N„ (n(;,)-2r"*3''^'1) 

(1) 

where the expression, 2riog2"</') '' , refers to the maximum column height for the next 
stage. 
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Step (2) Arrows of 4:2 compressors, as outlined in Figure 10, are placed in the partial 

product reduction tree. The first row will begin at column JIF and end at column J\L 

JXF = 2riog2"(AW (2) 

J 1 L=2A:-l-2 r i o g 2" ( ' , M 1 (3) 

Every subsequent row will begin at column: 

jiF=2^"{h^+2i (4) 
J

lF=J(,-\)F+2i (5) 

and end at column: 

JiL=(2k-l-2llosMhU^)-2i (6) 

• ^ = ^ - 2 / (7) 

where i is the row number within each stage up to NR. 

Step (3) Repeat steps (1) and (2) until only two rows remain within the partial product 

matrix, at which point a final fast adder will be used. In this thesis, the above scheme will 

be used to implement 4:2 compressors in a reconfigurable multiplier architecture. 

This process is better explained through the aid of a graphic example. Figure 11 provides 

an example of the minimized 4:2 compressor cell distribution for 16><16-bit 

multiplication [10]. The symmetric layout of the compressor rows, in addition to the 

general configuration of each row (beginning with a half-adder and ending with a full-

adder) is now evident. 
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Figure 11 Compressor layout for a 16* 16-bit multiplication 



CHAPTER 3 

A RECONFIGURABLE MULTIPLIER 
ARCHITECTURE 

3.1 Recursive Multiplication Algorithms 

The notion of carrying out multiplication by breaking up the operands into smaller 

sections has been in existence for several decades. Such schemes offer several advantages 

over performing standard multiplication. By breaking a large multiplication into 

recursions of smaller multiplications, the regularity of the design is increased, since 

smaller multipliers are inherently less complex. In addition, fewer, shorter interconnects 

are required to carry out the multiplication, with a limited number of global lines used to 

collect the final outputs of each recursion [10]. 

The name "Recursive Multiplier" may at first appear misleading, since in the 

implementation of this algorithm, there are no recursions, or repeated iterations of the 

same procedure. The process is simply broken down into smaller sub-processes which are 

carried out in parallel. However, for the sake of consistency with the authors [12] the 

same nomenclature is adopted. 
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3.1.1 Background Information 

One of the pioneering schemes for "divide and conquer", or recursive, multiplication was 

proposed by Karatsuba and Ofman in 1962, and translated from Russian into English in 

1963 [6]. The Karatsuba-Ofman Algorithm (KOA) gets the multiplication of two long 

integers by executing multiplications and additions on their divided parts. The KOA as 

described by Christof Paar [13] allows for a low complexity multiplier in Galois Fields. 

A field is an algebraic structure in which the operations of addition, subtraction, 

multiplication, and division (except by zero) can be performed while satisfying the 

standard rules. A Galois field is a finite field with p" elements generated as the set of 

polynomials with coefficients in a modulo of an irreducible polynomial of degree n, and 

p is a prime integer [14]. 

The discussion of fields and the Karatsuba-Ofman Algorithm are beyond the scope of this 

thesis; however the fundamental principles of the KOA are used in the recursive 

algorithm presented by Danysh and Swartzlander [12]. Mathematically, the recursive 

algorithm may be proven by first considering two unsigned n-bit operands, the multiplier 

A and multiplicand B: 

,4 = |X2* (1) B = J^Bk.2
k (2) 

By dividing each of the two operands into two m-bit values, where m = n/2, we obtain: 

m-\ 2m-\ 

^ = IX-2* + IX2* (3) 
/t=0 i=m 

m-\ lm-\ 

B = ZB^2k + TB^k (4) 
*=0 k=m 

A and B may now be redefined as: 

A = A„+AL 

B = BH+BL 
(5) 
(6) 
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The overall multiplication of A and B is given by: 

P = A B 
= {AL+AH)-(BL+BH) 

= AH BH + AH BL + AL BH+AL BL 

= P0+P,+P2+Pi (7) 

Therefore, the one multiplication could be reduced to four smaller sub-multiplications, and 

this process may be further repeated using even smaller sub-multipliers. In order to 

minimize the delay caused by this recursive algorithm, the result of the sub-multipliers 

will be kept in carry save form, and one final fast adder will be required to yield the final 

product. 

Each of the 4 n-bit intermediary products in carry save format will occupy a given series 

of bit positions. By examining the results of the expanded multiplication outlined above, 

the following relationship for the positions may be deduced: 

P0=>[0 « - l ] 

^ [ H ' y - 1 ] 

A dot diagram representation of the multiplication is outlined in Figure 12, and a 

schematic representation is provided in Figure 13. It becomes apparent that there will be 

3 intermediary products that will overlap from bit (n/2 -I) to (3n/2 -1). Consequently, that 

leads to 6 bits that must be reduced to 2 to provide one final product in carry save form. 

A 6:2 reduction scheme has been proposed for the recursive multiplier [12, 15], which 

introduces at most an equivalent delay of three full adders. The reduction circuit is 

formed by an interconnection of variations of the reduction sub-block depicted in Figure 

14. 
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N-bit multiplier 
input operands 

4 intermediary 
n-bit products in 
carry save form 

6:2 Reduction 
Scheme 

T T 
2n-1 3n/2-1 

T T 
n/2 

Figure 12 Dot diagram of a single level recursive n-bit multiplication 

n/2 multiplier 

AH*H 

AH AL 

±n _1_ 

FINAL FAST ADDER 

Figure 13 A schematic of a single level recursive multiplier 
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3.1.2 6:2 Reduction Circuitry 

The main function of the reduction circuit is to reduce the four results generated by the 

intermediary multipliers down to one value, in carry save format. The 6:2 reduction block 

is composed of a chain of full adders generating a two bit output value, along with inter­

block carry signals that propagate laterally along the reduction sub-block array. Each 

reduction sub-blocks will take anywhere from two to six input bits, and generate a two bit 

output value. In addition, there are various inter-block carry signals that propagate 

laterally along the reduction sub-block array. Figure 14 outlines a typical 6:2 reduction 

sub-block as proposed in [12]. Similar to the 4:2 compressors, the offset nature of the 

carry signals negates carry propagation across the reduction microcells, ensuring a 

maximum delay of 3 full adders for the complete process. 

C2 C1 CO S2 SI SO 

CL1ci+1 

Full Adder 

=3 
CL1ci+1 

CL2i+1 

Full Adder 

J n 
Full Adder 

Full Adder 

CLfci 

rz 
CL1st 

CL2i 

Cpi Spi 

Figure 14 A standard 6:2 reduction microcell composed of 3 stages of full adders 

Kim and Swartzlander [15] introduced a set of enhanced reduction sub-blocks to be used 

where the reduction process takes in 2, 3, 4 or 5 bit inputs. The circuits as defined in the 

manuscript are presented in Figure 15. It should be noted that although the circuits are not 

entirely efficient in their objective, they provide regularity in the reduction chain, and are 

capable of receiving and transmitting the carry signals without disrupting the chain. 
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In the architecture, two n-bit operands are bisected, resulting in 4 n/2-bit sub-

multiplications. The overall input to the reduction circuit arrives in a set of four n-bit 

values in carry save format as the output of the four intermediary multipliers. This may 

be more clearly defined if the dot diagram representing the overall process in Figure 12 is 

re-analyzed. It may be intuitively observed that the first n/2 bits of the reduction circuit 

output may be obtained directly from the output of the multipliers. So the reduction 

circuitry will be required to accommodate 3n/2 bits of the product. 

C1 CO S2 S I SO 

CLIci+1 

FJII Adder 

CLtci+1 

CL2I+1 

Ful Adder 

r 
:ull Adce' 

_r 
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00 
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CLtsi CLtc i+ l rL 

Ful Adder 

3n 
Full Adder 

CL2) CL2i*1 

Full Adder 

Cpi Spi 

(b) 

CL1ci 

CL1SI 

CL2l 

CLtci+1 

CLIci+1 ^n 

S2 S1 SO 

Full Adder 

Half Adder 

CUi+l 

Ful Adder 

Cpi Spi 

(c) 

CLIei CL1ci+1 

CL1si CLIci+t 

S1 SO 

^ 1 - ^ 

HalfAcde 

Half Adder 

CL2i CL2.+1 

FulAdder 

Cpi Spi 

(d) 

CLtci 

CL1si 

CL2i 

Figure 15 6:2 Microcells capable of receiving a variety of input bits 

(a) 5 input (b) 4 input (c) 3 input (d) 2 input 
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The reduction pattern leads to the simple expression for the allocation of the reduction 

sub-blocks for mnxn bit multiplier as: 

• Bits 0 through n/2-1 are obtained directly as a result of the inputs 

• Bits n/2 through 3n/2-l are obtained via 6-input reduction blocks 

• Bits 3n/2 through 2n-l are obtained using 2-input reduction blocks 

A modified version of the presented reduction scheme is proposed by Mokrian et al. [10], 

and shown in Figure 16. The reduction sub-blocks having 6 inputs exist from bit position 

(n/2 - 1) to (3n/2 -1). The transition to the 2-input sub-blocks is composed of a two input 

reduction cell, a full adder, and a series of half adders for the remaining bits. 

The need for the Half-Adder blocks, may not be obvious at first glance, however if the 

Carry-out of the Full-adder immediately preceding the cells is taken into consideration, 

then there will be three bits in position 3n/2+l. Consequently, the use of the Half Adder 

cells will shift a carry bit laterally down the chain, allowing for the final result to have at 

most two bits in each position. Furthermore, it should be noted that the final carry out 

signal of the last Half Adder is omitted since it would be mathematically impossible to 

obtain a bit in the 129th position of a 64-bit multiplication. This 6:2 reduction 

configuration will be used for any further modification of the recursive multiplication 

algorithm. 
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Figure 16 A modified version of 6:2 reduction block 

3.2 A Reconfigurable Multiplier Architecture 

The successful design of high-speed computational systems is often predicated on the 

realization of advanced arithmetic circuits in digital hardware. The notions of 

reconfigurable architectures have been regarded as a means of adapting the hardware to 

achieve optimal performance under various conditions. This implies a level of 

intelligence built into the device for physical modification in order to meet operating 

requirements. The principle advantage of such systems rests in the fact that hardware 

realizations of computing algorithms outperform their software alternatives. 

The intent of a reconfigurable architecture is to provide a means by which the 

performance of arithmetic hardware may be enhanced according to the desired function. 

For example, many modern DSP chips offer variable precision [16, 17], or fault tolerant 

arithmetic implemented using software [18]. The operation of these devices may be 

ameliorated if such functions were executed directly on hardware. Since multiplication is 
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considered to be the dominant computation in most digital signal processing (DSP) 

algorithms [19], reconfigurable multiplier architecture may prove to be a desirable 

augmentation to existing ALUs in the quest for maximizing performance. 

Mokrian et al. [10] developed a reconfigurable multiplication architecture which 

envelopes the concepts of fault tolerant computing, low power design, and high 

throughput arithmetic into one design. The scheme utilizes a 2-bit control signal to select 

one of four modes of operation: double precision multiplication, single precision 

multiplication, dual single precision multiplication and single precision fault tolerant 

multiplication. 

Based on Mokrian's architecture, a reconfigurable multiplier architecture is developed 

and shown in Fig 17, in which the 4 sub-multipliers, the reduction circuitry, the voter and 

the final fast adder are clearly defined. The recursive multiplier architecture with one 

level of recursion is used as the foundation for the reconfigurable architecture. The 

advantage offered by the recursive multiplication scheme is the use of smaller multipliers 

to implement a larger operation. 

In each sub-multiplier, instead of using carry save adder array, 4:2 compressor arrays are 

utilized for partial product reduction, which could achieve higher partial product 

reduction speed. 

In addition to the sub-multipliers, a series of 2:1 multiplexers are used to guide the signal 

flow through the device. Since all of the necessary components for each mode of 

operation are present in the design, there will be no reconfiguration time required. The 

device will be capable of switching between modes of operation in real time without the 

necessity to completely reconfigure the internal layout of a programmable device, as is 

the case with FPGA devices. 
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Figure 17 Outline of Reconfigurable Multiplier 

This architecture lends itself to four modes of operation, and thus requires a 2-bit control 

signal for selection. The signal and the corresponding modes of operation are 

summarized in Table 3. 

Table 3 Modes of Operation of the Reconfigurable Multiplier 

Control Signal 

00 

01 

10 

11 

Mode of Operation 

Default - Double Precision 

Single Precision 

Single Precision with Fault Tolerance 

Dual Single Precision 
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3.2.1 Double Precision Mode 

The default double precision mode is simply a recursive multiplier with one level of 

recursion. This mode of operation reaps the benefits of the recursive multiplier 

architecture, while bearing no delay penalties, and minimal hardware overhead. The 

majority voter circuitry is disengaged through the multiplexor array (Fig 18). The 

reconfigurable architecture may be of any size, with the restriction that the single 

precision mode must be exactly one half of the double precision mode. To satisfy the 

IEEE floating point guidelines, a double precision multiplier having 54-bit operands is 

suggested, with each of the base multipliers being 27-bits wide. 

AH 
l 

4 : 2 
REDUCTION 

AL 

\ 

1 
BH 

/ 

BL 

4 : 2 
REDUCTION 

^ 
\ 

4 : 2 
REDUCTION 

/ 

4 : 2 
REDUCTION 

1 

6 : 2 REDUCTION 

1 

1 
Majority Voter 

1 

FINAL FAST ADDER (HIGH) FINAL FAST ADDER (LOW) 

Figure 18 Double precision mode 
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3.2.2 Single Precision Mode 

Single precision mode uses gating techniques to shut down three of the base multipliers, 

effectively cancelling over 75% of the circuit, in addition to the reduction circuitry and 

the majority voter (Fig 19). The final fast adder is also partitioned in the reconfigurable 

architecture, such that the upper portion of the adder may be shut down in order to avoid 

spurious transitions, which consume unnecessary power. Moreover, the overall latency 

now becomes that of the base multiplier, allowing faster operation in single precision 

mode than would be possible if the entire circuit was active. 

The advantage of this scheme is that the single precision multiplication is carried out 

using a full single precision multiplier as opposed to shutting portions of a larger partial 

product reduction tree, as is proposed in other variable precision schemes [16]. In this 

manner, both single and double precision operations are carried out at maximum 

efficiency in terms of area, performance and power. 
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Figure 19 Single precision mode 
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3.2.3 Dural Single Precision Mode 

In this operation mode, two of the base multipliers may operate in parallel on two 

different sets of operands, while the remaining two multipliers are inactive (Figure 20). 

This effectively doubles the system throughput, with a latency of a single precision 

multiplier. Once again, with the fast adder partitioned into two identical halves, linked via 

a multiplexed carry signal, two single precision fast additions may be carried out in 

parallel. This configuration comes at little to no delay overhead in most carry-look-ahead 

(CLA) and carry skip addition schemes. The gating of signals into the idle multipliers, in 

addition to the 6:2 reduction and majority voter circuitries allows for power savings. The 

idle circuits are not entirely disconnected from the power supply in order to allow for 

rapid and accurate engagement into any other mode of operation. 
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Figure 20 Dual single precision mode 
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3.2.4 Single Precision Fault-tolerant Mode 

Although there are numerous methods of implementing fault tolerance in digital systems, 

one of the most basic methods is through majority voting between three duplicate values, 

which is also referred to as RETWV Since this scheme is composed of four identical 

sub-multipliers, three of those may be used in conjunction with an array of 64 XOR gates 

and 2:1 MUX cells, to form a simple single precision fault tolerant multiplier (Figure 21). 
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Figure 21 Single precision - fault tolerant mode 

With the theoretical framework for the reconfigurable multiplier architecture in place, the 

next section will focus on the implementation and simulation details. 
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3.3 Modeling and Simulation 
For the proper assessment of the performance characteristics of the proposed 

reconfigurable architecture, a valid model must be created, and compared against a 

benchmark model representing the state-of-the-art. For this reason, a 64-bit 

reconfigurable multiplier has been designed using TSMC 0.18um technology. 

Additionally, a standard 64-bit Booth-recoded Wallace tree multiplier, similar to that 

employed in many of today's high performance processors, such as the Pentium IV [20], 

has been developed as a benchmark for comparison purposes. 

3.3.1 HDL Model 

Verilog describes a digital design as a set of modules, which are the basic building blocks 

forming the complete system. This hierarchical design methodology is a fundamental 

concept in Verilog digital designs. The reconfigurable multiplier design features four 32-

bit sub-multipliers which are based on 4:2 compressor reduction scheme, a 48-bit 6:2 

reduction block and two 64-bit carry-look-ahead adders. The overhead from the 

additional features are four arrays of 32 2:1 MUX cells, two arrays of 64 2:1 MUX cells, 

and a series of 64 XOR gates and 2:1 MUX cells for the majority voter. All of these 

individual modules are enveloped by the top level module which acts as a general 

input/output (I/O) interface for the multiplier. The top level module contains the clocked 

latching circuitry required for design synthesis, and does not affect the internal 

configuration of the multiplier itself. 

The multiplier itself is partitioned into the major sections as outlined previously in Fig 17 

Built in Synopsys module definitions for carry-look-ahead adders have been used to 

model and synthesize portions of the code, ensuring that the most efficient synthesized 

netlist is obtained. 
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The Verilog code defines the various modules and their interaction. The code in itself is 

over 1500 lines long, and consists of 17 different modules. A complete breakdown of the 

hierarchical expansion of the overall reconfigurable architecture, compiled by the 

Synopsys Design Vision, confirms the proper framework of the design. The standard cell 

components and the gate level configuration of each element may also be referenced 

from this file. 

3.3.2 Implementation and Layout 

The multiplier has been implemented using the TSMC 0.18 um CMOS process using 

standard cell libraries provided by the Canadian Microelectronics Corporation. 

Semicustom design makes use of standard cell libraries for the fabrication of custom 

integrated circuits. The Cadence Design Suite, including Encounter tool, have been used 

for the layout placement and routing of the cells, and the layout view of designed 

reconfigurable multiplier is shown in Fig 22. 
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Figure 22 Layout view of designed 64-bit reconfigurable multiplier 

3.3.3 Simulation Results 

As shown in the Table 4, both designed reconfigurable multiplier and benchmark 

multiplier are simulated in terms of functionality, power, delay and area. The simulation 

result verifies the proper functions of four operation modes, and highlights 25% and 19% 

decreases in cell internal power and total dynamic power consumption respectively. 

Moreover, the designed multiplier has a slightly shorter delay time, which benefits from 

the regularity of recursive structure. Since the designed multiplier has higher number of 

cells compared to benchmark multiplier, its total area and cell leakage power consumption 

increases 11% and 17% respectively. 
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Table 4 Simulation Results for Reconfigurable Multipliers 
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CHAPTER 4 

CIRCUIT LEVEL DESIGNS OF 4:2 COMPRESSORS 

4.1 High Order Counters and Compressors 

4.1.1 Counters 

Although the work of Dadda has been directly linked to CSA reduction schemes, his 

manuscript [5] had a much broader focus, encompassing the applications of parallel 

counters for partial product reduction. The full adder, or carry save adder, is a particular 

subset of the class of parallel counters. A parallel (N, M) counter is defined as a 

combinational network having M outputs and inputs of equal weight, as shown in Fig 23. 

The M outputs are based on the number of logic 'ones' that appear at the N inputs. Any 

size counter may be constructed, so long as the M output bits are sufficient to represent 

all possible sums of the TV inputs. Examples of typical counters include (3, 2), (7, 3), (15, 

4). 

High order counters for partial product reduction have been explored and implemented in 

numerous proposals [3, 7, 8, 21, 22]. The schemes demonstrating the most promise for 

general multiplier architectures having arbitrary operand sizes include low order counter 

classes based on full adders and 4:2 compressors. 
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Figure 23 General Counter Representation 

4.1.2 Compressors 

Similar to counter structures, digital compressors are used to reduce a given set of inputs 

to a vector output. The primary distinction between counter and compressor circuits is 

that compressors do not necessarily follow the standard pattern of M outputs drawn from 

2M inputs. An [N: M\ compressor in essence is a variation of a counter that employs a 

separate path between compressor units in order to generate M final outputs using N>2M 

input bits, as shown in Fig 24. Compressor configurations are generally formed using 

arrays of horizontally interconnected compressor units. In this manner, a horizontal carry 

signal may propagate laterally across the row of compressor units in order to account for 

the excess bits formed in the reduction process. 
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Figure 24 General Compressor Representation 

Higher order classes of compressors may also be used using variations of large counters 

with horizontal interconnections; however, these circuits suffer high capacitance, large 

circuitry, and problematic matrix positioning as large counters. Song and DeMichelli [22] 

have examined the implementation of higher order compressors. Labeled as the 9:2 

family of compressors, these structures are formed using 4:2 compressor and (3, 2) 

counters. An analysis of counters against compressors has been carried out by Mehta et al. 

[23]. In their research, the use of (7, 3) counters against 7:3 compressors, amongst many 

others, has been evaluated. Their findings illustrated no major delay advantage in the use 

of large compressors over large counters, except for greater interconnect complexity 

introduced by the inter-cell wiring of the compressors. 

The most widely used style of digital compressor, which displays several promising 

characteristics for multiplication applications, is the 4:2 compressor. This special class of 

compressors requires a section of discussion on their own. 
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4.2 4:2 Compressors 
Since its inception by Weinberger in 1981 [9], the concept of the 4:2 compressor has 

soared in popularity in many digital multiplication and multi-operand addition schemes. 

The application of 4:2 compressors has also been the focus of several studies promoting 

its use over Booth recoding schemes [24][25][26]. This section provides an in depth look 

at the various logical level decompositions of 4:2 compressors. 

4.2.1 Structure of 4:2 Compressors 

In general, compressors reduce N-input bits to a single sum bit of equal weight to that of 

the inputs but unlike counters, the remaining output bits are all of equal weight: one bit 

position greater than that of the inputs. Although the 4:2 compressor is not defined as a 

counter, since it is impossible to use 2 output bits to represent 4 binary input bits, the 

primitive configuration of 4:2 compressor is based on a 5:3 counter structure, which has 5 

inputs and 3 outputs as shown in Figure 25. The four inputs Xo, Xi, X2 and X3, and the 

output Sum have the same weight. The output Carry is weighted one binary bit order 

higher. The 4:2 compressor receives an input CEM from the preceding module of one binary 

bit order lower in significance, and produce an output Cout to the next compressor module 

of higher significance. Different structures of 4:2 compressors exist and they all have to 

abide by the fundamental equation given as follows [27]: 

X0 +XX +X2 +X3 +CIN =Sum+ 2- (Carry+Cout) (]. 

Besides, to accelerate the carry save summation of the partial products, it is imperative 

that the output Cout be independent of the input CIM. 

41 



'OUT 

Xi X2 X3 X4 

_& ^ — i k _ 

4 :2 
Compressor 

U' 

'IN 

Carry Sum 

Figure 25 Symbol of 4:2 compressor 

4.2.2 Logical Level Decompositions of 4:2 Compressors 

The most primitive implementation of 4:2 compressor is that of two cascaded full adders, 

as shown in Figure 26 [28]. By increasing regularity, this configuration lends itself to 

gains at the architecture level of the multiplier. At gate level, 4:2 compressors are 

anatomized into XOR gates and carry generators, as shown in Figure 27. Therefore, 

different designs can be classified based on the critical path delay in terms of the number 

of primitive gates. Let AXOR denote the delay of an XOR gate and ACGEN denote the 

delay of a carry generator. A compressor is said to have a delay of (m AXOR + n ACGEN) 

if its critical path consist of m XOR gates and n carry generators. Since the difference 

between the delays of widely used XOR gate and carry generator is trivial in an 

optimized design, the delay of the compressor is commonly specified as (m + n) A [27]. 

Therefore, the straightforward implementation of a 4:2 compressor of Figure 27 has a 

long critical path delay of 4A. 
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Figure 27 Primitive decomposition of 4:2 compressor at gate level (Com and) 

Furthermore, alternative implementations of 4:2 compressor can be derived from its 

modified Boolean equations. The three outputs of the 4:2 compressor are described as 

follows: 
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cout=(x0®x,)-x2+x0 xx=(x0®x,yx2 

+(z0ex1)-x0 

S = X. X,® x2 

Sum=S®XA ®CM =X0 ®X1 ®X2 ®X3 ®Cm 

Carry = (S ® X,) C m + S X 3 

= (X0 ® X {® X 2® Jfj) c „ 

+ (X0 + Xi + X2 ® X 3) X 3 

(2) 

(3) 

(4) 

(5) 

Figure 28 shows two logical decompositions of 4:2 compressor based on the modified 

Boolean equation. In Figure 28 (a), the compressor is mainly composed of six modules, 

four of which are XOR gates and the other two are 2:1 MUX gates. Instead of the AND 

gate in Figure 27, 2:1 MUX gate is used to generate two carry signals Carry and Cout. In 

Figure 28 (b), all three outputs Sum, Carry and Cout are generated by using 2:1 MUXs, 

the compressor is mainly composed of six modules, which are all XOR gates. Both 

implementations in Figure 28 have a critical path delay of 3 A, which is 1 A delay shorter 

than the primitive implementation in Figure 27. However, since a large number of 

inverters are required to generate complementary inputs for MUX gates, the overall 

circuits in Figure 28 increase their transistor count, and hence the power consumption and 

critical path delay, to a greater number than that of the circuit in Figure 27. 
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Figure 28 Two alternative decompositions of 4:2 compressor at gate level 

(a) Commux, (b) Com_pur_mux 

4.3 Circuit Level Designs of 4:2 Compressors 

Digital design encompasses a wide variety of logic implementations, which arise, for all 

intents and purposes, as a result of the transistor configurations composing the individual 

logic elements. The synthesis of the particular digital system (or sub-system) will dictate 

the nature of the particular logic family chosen. In a survey of logic styles, Zimmermann 

and Fichtner [29], outline the various characteristics of the final digital system that are 

dictated by the initial selection of the logic style chosen for implementation. The factors 

include: 
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• Circuit delay: a function of the number of inversion levels, the number 

of transistors in series, transistor sizes (i.e., channel widths), and intra- and 

inter-cell wiring capacitances. 

• Circuit size: depends on the number of transistors and their sizes and 

on the wiring complexity. 

• Power dissipation: determined by the switching activity and the node 

capacitances (made up of gate, diffusion, and wire capacitances), the latter 

of which in turn is a function of the same parameters that also control 

circuit size. 

• Wiring complexity: the number of connections and their lengths in 

addition to the choice of single-rail or dual-rail logic. 

• Generality: ease-of-use of logic gates in standard cell design 

techniques and logic synthesis. 

• Robustness: determined by the resilience to voltage and transistor 

scaling as well as varying process and working conditions. 

• Compatibility: ability to seamlessly integrate with the surrounding 

circuitries. 

All of these characteristics may vary considerably from one logic style to another and 

thus make the proper choice of logic style crucial for circuit performance. Several logic 

styles and logic families will be presented in the following section, along with their 

potential vantage points and applications in arithmetic circuitry. 

46 



4.3.1 Static CMOS 

Static CMOS logic, otherwise known as standard CMOS logic, is the logic style of choice 

for most implementations, and is most often used in the development of standard cell 

libraries for automated digital synthesis. The principle behind a static logic cell is that it 

exhibits a well-defined output once the inputs are stabilized and the switching transients 

have decayed away. The cell is composed of complementary NFET and PFET networks, 

where the input voltages control the conductance of the networks. The switching network 

is designed such that only one network is a closed switch for any input combination, thus 

determining whether VDD or GND is connected to the output. Figure 29 outlines a typical 

static CMOS cell configuration. 
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Figure 29 Static CMOS logic cell depicting the NFET and PFET networks 

The advantage of such logic families is in the simplicity of developing a circuit that will 

perform a given function, however complex, while providing robust performance 

measures. Static logic, for the most part, demonstrates excellent noise immunity, and is 

less susceptible to process variation since the sizing of individual transistors does not 

vastly alter the circuit's functionality. One disadvantage of this type of logic is the use of 
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a large number of PFET devices, being both slow and large in comparison to NFETs, 

which increases power consumption of the circuit. Furthermore, the longest length chain 

within each network will determine the worst-case scenario for charge/discharge delay, 

forcing more complex systems to carry out potentially sluggish execution. 

4.3.2 Transmission Gate Logic 

The CMOS transmission gate (TG) is designed to act as a very efficient voltage-

controlled switch, and was one of the fundamental building blocks in SSI and MSI 

technologies. It is formed by a parallel combination of one NFET and one PFET device, 

as depicted in Figure 30, set-up in such a manner as to allow a full-voltage swing output 

based on the control signal. The use transmission gates to form logic cells simplifies the 

design of many involved circuits, by allowing signals to determine the conduction path of 

other signals. The formation of multiplexor cells using TG logic is one straightforward 

application of this type of logic. 

VN 

TO~. 
Figure 30 Transmission Gate 

The downfall of TG logic lies in its requirement of a control signal and its complement, 

thus increasing interconnect and signal requirements. In addition, the output node does 

not receive voltage support since there is no pure path to either the supply voltage or to 

ground. For this reason the input signal must be able to drive the output capacitance 

leading to potential difficulties in high fan-out applications. 
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4.3.3 Pass Transistor Logic 

As an alternative to complementary CMOS, pass transistor logic attempts to reduce the 

number of transistors required to implement logic by allowing the primary inputs to drive 

source-drain terminals as well as gate terminals. Specifically, a pass transistor is a 

MOSFET with the input signal fed to the source and the output taken from the drain, with 

a control signal connected to the gate governing the output. 

The promise of this approach is that fewer transistors are required to implement a given 

function. For example, the implementation of the AND gate in Figure 31 requires 4 

transistors (including the inverter required to invert B), while a complementary CMOS 

implementation would require 6 transistors. The reduced number of device has the 

additional advantage of lower capacitance. 

B 

1 
A — n . 

Figure 31 Pass-transistor implementation of an AND gate 

Unfortunately, an NMOS device is effective at passing a 0, but it is poor at pulling a node 

to VDD. When the pass transistor pulls a node high, the output only charges up to VDD-

Vr« (threshold voltage). In fact, the situation is worsen by the fact that the device 

experience body effect, because a significant source-to-body voltage is present when 

pulling high. 
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4.3.4 Dynamic Logic 

Standard static CMOS logic maintains a valid output voltage, so long as the inputs are 

well defined and continuous. Dynamic CMOS logic on the other hand makes use of 

capacitive nodes to store electrical charge, and so is capable of sustaining a valid output 

only for a short period of time. The advantages of such logic families are in their ability 

to quickly transfer charge, and in turn have a tremendous performance advantage over 

static CMOS, and are common in high speed applications. Dynamic circuits differ from 

static circuits in that instead of fighting the constant limits due to parasitic RC elements, 

capacitances are used as integral components of the circuits. 

Though there are several distinct logic families that fall under the dynamic CMOS 

classification, there is a common underlying principle behind their operation. In general, 

there are two state logic styles where a clock signal controls a pair of complementary 

FETS managing the operation of the logic gate (Figure 32). The two stages of operation 

are known as the precharge and evaluate stages. During precharge, the output node is 

charged via the precharge PFET, this is known as "pre-conditioning" the node, while the 

evaluate NFET is cut off. During this phase of the clock, the output and all of the inputs 

are invalid. During the evaluate stage, the evaluation NFET conducts, while the 

precharge PFET is cut off. The inputs to the logic array are now valid, and if the logic 

array produces a value of '0' , there will be a conduction path for the output charge to 

ground, else the charge will be maintained at the output and a result of logic T The 

charge on the output node may only be held for a limited duration before being corrupted 

by charge leakage, and so timing is critical. 
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Figure 32 Primitive representation of dynamic Logic block 

Compared to static CMOS logic, dynamic logic leads to up to 30% performance gain [30]. 

Therefore, speed critical paths often deploy dynamic logic to meet speed requirements. 

Performance gain over static logic becomes even larger as the number of inputs to the 

logic grows. Wide fan-in dynamic logic such as domino are often used in performance 

critical paths, e.g. fast look ahead adders and RAM decoders, to achieve high speeds 

where static CMOS fails to meet performance objectives. The following sections will be 

focused on domino logic and its applications in 4:2 compressors. 

4.4 Domino Logic 

A dynamic system may be formed through the simple cascading of the individual cells. 

This leads to the formation of a variation of the precharge-evaluate logic known as 

Domino Logic. The cascading of NFET logic array for the standard precharge-evaluate 

logic poses a potential glitch problem, which is overcome in domino logic through the 

inversion of the output signal between cascaded cells. 
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A domino logic module consists of an n-type PDN (pull-down network) followed by a 

static inverter, as shown in Figure 33. During precharge, the output of the PDN is charged 

up to YDD, and the output of the inverter is set to "0" During evaluation, the PDN 

conditionally discharges, and the output of the inverter makes a conditional transition 

from "0" -"•"!" If one assumes that all the inputs of a domino gate are outputs of other 

domino gates, then it is ensured that all inputs are set to "0" at the end of the precharge 

phase, and that the only transitions during evaluation are "0" -+"V transitions. The 

introduction of the static inverter has the additional advantage that the fan-out of the gate 

is driven by a static inverter with a low-impedance output, which increases noise 

immunity. Also, the buffer reduces the capacitance of the dynamic output node by 

separating internal and load capacitances. Finally, the inverter can be used to drive a 

keeper device to combat charge leakage and charge redistribution. 
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Figure 33 Domino Logic 
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Consider now the operation of a chain of domino gates. During precharge, all inputs are 

set to "0" During evaluation, the output of the first domino block either stays at "0" or 

make a "0" -"•"!" transition, affecting the second gate. This effect might ripple through 

the whole chain, one after the other, similar to a line of falling dominoes—hence the 

name. Domino logic circuit has the following properties: 

1. Since each dynamic gate has a static inverter, only non-inverting logic 

can be implemented. 

2. Very high speeds can be achieved: only a rising edge delay exists, 

while TpHL (high to low transition time) equals zero. The inverter can 

be sized to match the fan-out, which is already much smaller than in 

the complimentary static CMOS case, as only a single gate capacitance 

has to be accounted for per fan-out gate. 

Domino logic clearly can result in high-performance solutions compared to static circuits. 

However, there are several important considerations that must be taken into account if 

one wants dynamic circuits to function properly. These include charge leakage and 

charge sharing. 

The operation of a dynamic gate relies on the dynamic storage of the output value on a 

capacitor. If the pull-down network is off, ideally, the output should remain at the 

precharged state of Voo during the evaluation phase. However, this charge gradually 

leaks away due to leakage currents, eventually resulting in a malfunctioning of the gate. 

Figure 34 shows the sources of leakage for the basic dynamic inverter circuit. 
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Figure 34 Leakage issues in dynamic circuits 

Source 1 and 2 are the reverse-biased diode and subtheshold leakage of the NMOS pull­

down device Ml, respectively. The charge stored on Cz. will slowly leak away through 

these leakage channels, causing degradation in the high level. Dynamic circuits therefore 

require a minimal clock rate, which is typically on the order of a few KHz. Note that the 

PMOS precharge device also contributes some leakage current due to the reverse bias 

diode (source 3) and the subthreshold conduction (source 4). To some extent, the leakage 

current of the PMOS counteracts the leakage of the pull-down path. As a result, the 

output voltage is going to be set by the resistive divider composed of the pull-down and 

pull-up paths. 

Leakage is caused by the high-impedance state of the output node during the evaluate 

mode, when the pull-down path is turned off. The leakage problem may be counteracted 

by reducing the output impedance on the output node during evaluation. This often is 

done by adding a keeper transistor. The only function of the keeper- a PMOS style pull-

up device- is to compensate for the charge lost due to the pull-down leakage paths. To 

avoid ratio problems associated with this style of circuit and the associated static power 
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consumption, the keeper resistance is made high (in other words, the device is kept small). 

This allows the (strong) pull-down devices to lower the Out node substantially below the 

switching threshold of the next stage. Often, the keeper is implemented in a feedback 

configuration to eliminate the static power dissipation altogether, as shown in Figure 35. 

DD 

CLK —c 

J 

H 

LK—\ 

M„ 

Mb 

Me 

4_ 

M„ A/; bl 

• f 

Kh 

I 
Out 

Figure 35 Static keeper compensate for the charge leakage 

Another important concern in dynamic logic is the impact of charge sharing. Consider the 

circuit in Figure 36. During the precharge phase, the output node is precharged to YDD. 

Assume that all inputs are set to "0" during precharge, and that the capacitance Ca is 

discharged. Assume further that input B remains at "0" during evaluation, while input A 

makes a "0" - • " 1 " transition, turning transistor Ma on. The charge stored originally on 

capacitor Cz. is redistributed over CL and Ca. This causes a drop in the output voltage, 

which cannot be recovered due to the dynamic nature of the circuit. 
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Figure 36 Charge sharing in dynamic circuits 

The most common and effective approach to deal with the charge redistribution is to also 

precharge critical nodes. Since the internal nodes are charged to YDD during precharge, 

charge sharing does not occur. 

The 4:2 compressor is designed in domino logic circuit and shown in Figure 37. It consists 

of two blocks, each block performs the function of full adder, and these two blocks are 

cascaded together to realize the function of 4:2 compressor. The first block takes inputs A, 

B and C, and generates carry output Cout and intermediary output S, the output S is then 

passed to the second block with inputs D and Cin, generating the output Sum and Carry. 

Within each block, every M-type PDN is followed by a static inverter and the keeper 

device (PMOS) is used, as shown in the Figure 37, to compensate for the charge lost due 

to the pull-down leakage paths. 
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Figure 37 4:2 compressor in Domino Logic (Com D) 

57 



4.5 Circuit Level Optimizations of Domino Logic Gates 
Several optimizations can be performed on domino logic gates. The most obvious 

performance optimization involves the sizing of the transistors in the static inverter. With 

the inclusion of the evaluation devices in domino circuits, all gates precharge in parallel, 

and the precharge operation takes only two gate delays—charging the output of the 

dynamic gate to YDD, and driving the inverter output low. The critical path during 

evaluation goes through the pull-down path of the dynamic gate and through the PMOS 

pull-up transistor of the static inverter. Therefore, to speed up the circuit during 

evaluation, the beta ratio of the static inverter should be made high so that its switching 

threshold is close to YDD. This can be accomplished by using a small (minimum-sized) 

NMOS and a large PMOS device. The minimum-sized NMOS only affects the precharge 

time, which is generally limited due to the parallel precharging of all gates. The only 

disadvantage of using a large beta ratio is a reduction in noise margin. Hence, we should 

consider reduced noise margin and performance impact simultaneously during the 

transistor sizing. 

4.5.1 Multiple-output Domino Logic 

Numerous variations of domino logic have been proposed. One optimization that reduces 

area is multiple-output domino logic. The basic concept is illustrated in Figure 38. 
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Figure 38 Multiple-output domino logic 

It exploits the fact that certain outputs are subsets of other outputs to generate a number 

of logical functions in a single gate. In this example, 03=C+D is used in all three outputs, 

and thus it is implemented at the bottom of the pull-down network. Since 02 equals B 0 3 , 

it can reuse the logic for 03 . Notice that the internal nodes have to be precharged to YDD 

to produce the correct results. Given that the internal nodes precharge to YDD, the number 

of devices driving precharge devices is not reduced. However, the number of evaluation 

transistors is drastically reduced because they are amortized over multiple outputs. 

Additionally, this approach results in a reduction of the fan-out factor, again due to the 

reuse of transistors over multiple functions [28]. 

Considering a full adder which takes three equally weighted bits (A, B, Q and produces a 

sum-bit (Sum) as well as a carry-bit (Carry), outputs of the full adder can be described as 

follows: 

Sum= A®B®C = ABC+ABC+ABC+ABC 

Cam' = AB + BC + AC 

(1) 

(2) 
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By taking the NOT of Carry signal, we obtain: 

Carry = AB + BC + AC (3) 

Comparing equation (1) with (3), outputs Sum and Carry have some parts in common, 

which are ~AB , BC and^C Therefore, we could use part of the circuit, which is used to 

generate Sum signal, to generate Carry signal as well, as shown in Figure 39. Compared 

with the full adder designed in domino logic (Figure 40), it simplifies the circuit by using 

one domino gate, instead of two, to realize the functions of full adder. 

Furthermore, since 4:2 compressor is formed by two full adders cascaded together, the 4:2 

compressor can be realized by using Multiple-output domino logic as shown in Figure 41. 

The designed circuit consists of two blocks, each block performs the function of full 

adder, these two blocks are cascaded together to realize the function of a 4:2 compressor. 

In each full adder block, the output Carry is the subset of output Sum. 
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Figure 39 Full adder in multiple-output domino logic (FAnewD) 
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4.5.2 Split Domino Logic 

The split domino OR gate shown in Figure 42 achieves higher performance of operation 

through Splitting the pull-down network into two sub-networks. A logical 2-input NAND 

operation is then utilized to generate the output. The output inverter is no longer required 

for the SD circuit. Also, the keeper device is split equally between the two networks. 
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Figure 42 n-input split domino (SD) OR gate 

Based on the circuit in Figure 39, by splitting the pull-down network into two sub­

networks, a full adder is realized in split domino logic, as shown in Figure 43. Moreover, 

a 4:2 compressor is also designed in split domino logic and shown in Figure 44. It also 

consists of two blocks, each block performs the function of full adder, these two blocks 

are cascaded together to realize the function of a 4:2 compressor. The operation of this 

split domino circuit is described as follows. During precharge, CLK is LOW, the keeper 

devices are OFF and the output is LOW At the onset of evaluation, contention is 

eliminated since keeper devices remain OFF. There are two different cases that need to 

be considered during the evaluation phase. When all inputs remain LOW and leakage 

current is at its maximum, the keeper devices controlled by the 3-input NAND gate are 

quickly activated to prevent the dynamic node from drooping and to keep output noise 
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within the required limit. The 3-input NAND gate is skewed in such a way to allow for a 

very fast discharge of the keeper control signal in case all inputs remain LOW. The other 

case is when the gate evaluates, where at least one path of PDN turns HIGH. In this case, 

the dynamic node discharges very quickly due to decreased capacitance and nearly keeps 

the keeper devices in the OFF state and contention is therefore minimized. The main 

advantage of splitting the pull-down network into two sections is to reduce the dynamic 

node capacitance and consequently faster evaluation. Also, the large keeper transistor in 

the conventional case is replaced by another transistor which is nearly half the original 

keeper size leading to less contention. 

Figure 43 Full adder in split domino logic (FAnewSD) 
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Figure 44 4:2 compressor in split domino logic (ComnewSD) 

4.6 Simulation Result 

The simulations are performed by using HSPICE in Cadence design tool. All the circuits 

are targeted for TSMC 0.18 urn technologies. Therefore, the circuits are designed and 

optimized based on this process model. All the transistors are sized to achieve the fastest 
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possible operation frequency as well as the proper functionality. In the test bench, each 

input is driven by buffered signals and each output is loaded with buffers, which offer a 

realistic simulation environment reflecting the compressor operation in actual applications. 

The delay is measured from the time at which the input signals reaching 50% of its full 

value to the time when the output signal reaching 50% of its full potential. The average 

delay is the average of delays of all input data. The worst case delay is the largest delay 

among all input data. Circuits are thoroughly tested by all the possible input vector 

combinations at 1.8 v voltage source. 

4.6.1 Simulation Result for Logical Level Decompositions of 4:2 

Compressors 

Three proposed logical level decompositions of 4:2 compressor are simulated. The 

"Comand" in the first row is corresponding to the primitive decomposition of 4:2 

compressor in Figure 27. The "Commux" and "Com_pur_mux" refer to the two 

alternative decompositions of 4:2 compressor in Figure 28 (a) and (b) separately. The 

simulation results and comparison of different implementations are shown in the Table 5 

and 6. 
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Table 5 Simulation Results for logical decompositions of 4:2 Compressors 

Cell Name 

C o m a n d 

[Figure 27] 

C o m m u x 

[Figure 28 (a)] 

Com_pur_mux 

[Figure 28 (b)] 

Power 
Dissipation 

(ns) 

2.48E-04 

3.12E-04 

2.81E-04 

Average 

Delay 
(ns) 

0.47 

0.57 

0.51 

Worst 
Case 
Delay 

(ns) 

0.59 

0.89 

0.80 

Average 
PDP 

1.17E-13 

1.78E-13 

1.43E-13 

Worst 
Case 
PDP 

1.46E-13 

2.78E-13 

2.25E-13 

Operation 

Frequency 

(GHz) 

1 

0.41 

0.63 

Table 6 Comparison of different logical decompositions of 4:2 Compressors 

Cell Name 

Com_and 

[Figure 27] 

C o m m u x 

[Figure 28 (a)] 

Com_pur_mux 

[Figure 28 (b)] 

Power 
Dissipation 

(ns) 

100% 

126% 

113% 

Average 
Delay 
(ns) 

100% 

121% 

109% 

Worst 
Case 
Delay 
(ns) 

100% 

151% 

136% 

Average 
PDP 

100% 

154% 

122% 

Worst 
Case 
PDP 

100% 

190% 

154% 

Operation 
Frequency 

(GHz) 

100% 

41% 

63% 

* All values of "Comand" are taken as " 1 " 
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As shown in tables, all three decompositions are simulated in terms of delay and power 

consumption. Power delay product (PDP) is also considered since it is a good metric for 

gauging performance of the circuitry [8]. The operation frequency is maximum working 

frequency for each circuit, beyond which the circuit fails to function correctly. 

Simulation result indicates that the primitive decomposition of 4:2 compressor (Comand) 

has the best performance. Compared with alternative decompositions of 4:2 compressor 

(Commux and Com_pur_mux), it reduces the average delay and worst case delay by 

21%, 9% and 51%, 36% separately, and it saves the power consumption by 26% and 13% 

respectively. Moreover, its operation frequency is about 2.44 and 1.59 times of that of two 

alternative decompositions separately. The main reason of compressor Commux and 

Com_pur_mux have higher power consumption and longer delay time compared with 

compressor Comand is that, a large number of static inverters are used to generate 

complementary input signals for multiplexors. 

4.6.2 Simulation Result for Circuit Level Implementations of Full 

adders and 4:2 Compressors 

Three circuit level design of full adder are simulated. The first full adder is designed in 

domino logic in Figure 40, which is denoted as "FAD" The second full adder is 

designed in multiple-output domino logic in Figure 39, which is denoted as "FAnewD" 

The last circuit implements is the full adder in split domino logic in Figure 43, it is 

denoted as "FAnewSD" The simulation result and comparison of different 

implementations are shown in Table 7 and 8. All the full adder circuits are simulated in 

terms of delay and power consumption. The operation frequency is maximum working 

frequency for each circuit, beyond which the circuit fails to function correctly. 
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Table 7 Simulation Result for full adders 

Cell Name 

F A D 

[Figure 40] 

FAnewJD 

[Figure 39] 

FA_new_SD 

[Figure 43] 

Power 
Dissipation 

(ns) 

1.78E-04 

1.20E-04 

1.32E-04 

Average 
Delay 
(ns) 

0.28 

0.29 

0.22 

Worst 
Case 
Delay 
(ns) 

0.41 

0.51 

0.39 

Average 
PDP 

4.98E-14 

3.48E-14 

2.90E-14 

Worst 
Case 
PDP 

7.29E-14 

6.12E-14 

5.15E-14 

Operation 
Frequency 

(GHz) 

1.92 

1.67 

2.17 

Table 8 Comparison of Simulation Result 

Cell Name 

FA_D 

[Figure 40] 

FA_new 

[Figure 39] 

FA new_SD 

[Figure 43] 

Power 
Dissipation 

(ns) 

100% 

67% 

74% 

Average 
Delay 
(ns) 

100% 

104% 

79% 

Worst 
Case 
Delay 
(ns) 

100% 

124% 

95% 

Average 
PDP 

100% 

70% 

58% 

Worst 
Case 
PDP 

100% 

84% 

71% 

Operation 
Frequency 

(GHz) 

100% 

87% 

113% 

* All values of "FAD" are taken as " 1 " 
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According to the simulation result, in terms of power consumption, full adder in multiple-

output domino logic has the best performance, since it has the lowest transistor count, it 

reduces the power consumption by 33% compared to the full adder in domino logic. 

Because of low dynamic node capacitance, the full adder in split domino logic reduces 

delay by 21% and increase operation frequency by 13% compared to the full adder in 

domino logic. 

Three circuit level design of 4:2 compressor are simulated. The first circuit is the design 

of 4:2 compressor in domino logic in Figure 37, which is denoted as "ComD" The 

second one is the design of 4:2 compressor in multiple-output domino logic in Figure 41, 

which is denoted as "ComnewD" The last circuit implements the 4:2 compressor in 

split domino logic in Figure 44, it is denoted as "ComnewSD" The simulation result 

and comparison of different implementations are shown in Table 9 and 10. All the 

compressor circuits are simulated in terms of delay and power consumption. The operation 

frequency is maximum working frequency for each circuit, beyond which the circuit fails 

to function correctly. 

Table 9 Simulation Result for 4:2 compressors 

Cell Name 

Com_D 

[Figure 37] 

C o m n e w D 

[Figure 41] 

C o m n e w S D 

[Figure 44] 

Power 
Dissipation 

(ns) 

2.48E-04 

2.29E-04 

2.27E-04 

Average 
Delay 
(ns) 

0.47 

0.42 

0.32 

Worst 
Case 
Delay 
(ns) 

0.60 

0.53 

0.48 

Average 
PDP 

1.17E-13 

0.96E-13 

0.73E-13 

Worst 
Case 
PDP 

1.49E-13 

1.21E-13 

1.09E-13 

Operation 
Frequency 

(GHz) 

1 

1.25 

1.67 
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Table 10 Comparison of Simulation Result 

Cell Name 

C o m D 

[Figure 37] 

Comnew 

[Figure 41] 

C o m n e w S D 

[Figure 44] 

Power 
Dissipation 

(ns) 

100% 

92% 

91% 

Average 
Delay 
(ns) 

100% 

89% 

68% 

Worst 
Case 
Delay 
(ns) 

100% 

88% 

80% 

Average 
PDP 

100% 

82% 

62% 

Worst 
Case 
PDP 

100% 

81% 

73% 

Operation 
Frequency 

(GHz) 

100% 

125% 

167% 

* All values of "Com D" are taken as " 1 " 

Simulation result indicates that 4:2 compressor designed in split domino logic 

(ComnewSD) has the best performance. Compared with the first circuit (ComD), it 

reduces the average delay and worst case delay by 32% and 20%. Since it has lower 

transistor count, it saves the power consumption by 9%. Consequently, it achieves 38% 

and 27% savings in terms of average PDP and worst case PDP Moreover, due to its 

reduced dynamic node capacitance, the operation frequency of " C o m n e w S D " is about 

1.67 times of that of "ComD" 

According to Table 10, the 4:2 compressor circuit in multiple-output domino logic 

(ComnewD) outperform the first circuit (ComD) in terms of delay and operation 

frequency. However, in Table 8, the full adder circuit in multiple-output domino logic 

(FAnewD) , which is the building block of 4:2 compressor in multiple-output domino 

logic, has longer delay and lower operation frequency than that of the first circuit (FA D), 
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which is the building block of circuit (ComD). The reason is that: when we design the 

full adder in multiple-output domino logic, the total dynamic node capacitance is 

increased, thus increase the delay and reduce the operation frequency. However, when we 

cascade the full adder in multiple-output domino logic to realize the 4:2 compressor, in 

order to make the circuit work properly, we have to increase the fan-out of full adder 

block, thus transistor sizing is applied to each pull-down network. This reduces the total 

dynamic node capacitance of the circuit, and consequently reduces the delay and increase 

the operation frequency of the circuit. 
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CHAPTER 5 

CONCLUSIONS 

5.1 Summary of Contributions 

The purpose of this study has been to explore digital multiplication at both architectural 

level and transistor level. This leads to several contributions in the digital multiplication 

architecture and high speed low power digital circuit design. 

5.1.1 Architectural Contributions 

The recursive multiplier architecture has been further explored with the utilization of an 

optimized 4:2 compressor reduction scheme which is smaller and more logically efficient 

than those proposed in the past. The single level recursive multiplier has then been 

enhanced with some gating multiplexors and a majority voter forming a novel 

reconfigurable multiplier architecture. This proposal has been implemented and simulated 

on the 0.18 urn CMOS process. Its performance and overall characteristics have been 

compared against a standard Booth-recoded Wallace multiplier of the same size. 
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5.1.2 Transistor Level Contributions 

Based on the primitive logical decomposition of 4:2 compressor, three different 

circuitries of 4:2 compressor in Domino logic are proposed, simulation results have 

provided validation for these designs. 

5.2 Conclusions 

By targeting many of the contemporary requirements for digital systems such as power 

consumption, critical path delay, regularity, and fault tolerance, a reconfigurable 

multiplier architecture that embodies these characteristics has been developed. This 

architecture utilizes the recursive multiplication algorithm and an optimized 4:2 

compressor layout scheme for partial product reduction. 

The developed reconfigurable multiplier architecture has been implemented using the 

TSMC 0.18 um CMOS standard cell libraries and its performance has been compared 

against a typical multiplier architecture, namely a Booth-recoded Wallace Tree multiplier. 

The simulation results have demonstrated that, on average, the reconfigurable multiplier 

is efficient in terms of power consumption. The new scheme offers over a 25% savings in 

cell internal power and a 19% decrease in dynamic power consumption respectively. In 

addition, this scheme has a slightly shorter delay time, which benefits from the regularity 

of recursive structure. 

To further enhance the performance of proposed reconfigurable multiplier, three circuit 

level implementations of 4:2 compressor, which is widely used in highly efficient partial 

product reduction, have been proposed and simulated by using HSPICE. The simulation 

result confirms that the 4:2 compressor designed in split domino logic has the best 

performance among all three designs. Due to its reduced dynamic node capacitance, it 

increases its operation frequency by 67% and reduces the average delay by 32%, as 

compared to the bench mark 4:2 compressor which is designed in domino logic. 
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