
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

Algorithms & implementation of advanced video coding Algorithms & implementation of advanced video coding

standards standards

Jianjun Li
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Li, Jianjun, "Algorithms & implementation of advanced video coding standards" (2010). Electronic Theses
and Dissertations. 8125.
https://scholar.uwindsor.ca/etd/8125

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8125?utm_source=scholar.uwindsor.ca%2Fetd%2F8125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Algorithms & Implementation
of Advanced Video Coding Standards

by

Jianjun Li

A Dissertation
Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering
in Partial Fulfilment of the Requirements for

the Degree of Doctor of Philosophy at the
University of Windsor

Windsor, Ontario, Canada

2010

1 * 1
Library and Archives
Canada

Published Heritage
Branch

Biblioth£que et
Archives Canada

Direction du
Patrimoine de l'6dition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-62760-0
Our file Notre r6f6rence
ISBN: 978-0-494-62760-0

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Biblioth&que et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1 * 1

Canada

© 2010, Jianjun Li

All Rights Reserved. No part of this document may be reproduced, stored or otherwise retained

in a retreival system or transmitted in any form, on any medium by any means without prior

written permission of the author.

Abstract

Advanced video coding standards have become widely deployed coding techniques used in nu-

merous products, such as broadcast, video conference, mobile television and blu-ray disc, etc.

New compression techniques are gradually included in video coding standards so that a 50%

compression rate reduction is achievable every five years. However, the trend also has brought

many problems, such as, dramatically increased computational complexity, co-existing multiple

standards and gradually increased development time. To solve the above problems, this thesis

intends to investigate efficient algorithms for the latest video coding standard, H.264/AVC.

Two aspects of H.264/AVC standard are inspected in this thesis: (1) Speeding up intra4x4

prediction with parallel architecture. (2) Applying an efficient rate control algorithm based

on deviation measure to intra frame. Another aim of this thesis is to work on low-complexity

algorithms for MPEG-2 to H.264/AVC transcoder. Three main mapping algorithms and a

computational complexity reduction algorithm are focused by this thesis: motion vector map-

ping, block mapping, field-frame mapping and efficient modes ranking algorithms. Finally,

a new video coding framework methodology to reduce development time is examined. This

thesis explores the implementation of MPEG-4 simple profile with the RVC framework. A

key technique of automatically generating variable length decoder table is solved in this the-

sis. Moreover, another important video coding standard, DV/DVCPRO, is further modeled

by RVC framework. Consequently, besides the available MPEG-4 simple profile and China

audio/video standard, a new member is therefore added into the RVC framework family.

A part of the research work presented in this thesis is targeted algorithms and implementa-

tion of video coding standards. In the wide topic, three main problems are investigated. The

results show that the methodologies presented in this thesis are efficient and encouraged.

Acknowledgements

The research that has gone into this thesis has been thoroughly enjoyable. That enjoyment is

largely a result of the interaction that I have had with my supervisors, committee members

and colleagues.

I feel very privileged to have worked with my supervisor, Dr. Esam Abdel-Raheem. I

would like to thank him for sharing his sorrows and happiness with me. We spent long hours

together in writing papers. It is remarkable that we have worked together for as long as 12

hours a day. I am grateful to him for his moral support during my difficult days of my life.

I am very grateful to my committee members Dr. Mahmoud El-Sakka, Dr. Huapeng Wu,

Dr. Mohmmad Khalid and Dr. Bubaker Boufama. To each of them I owe a great debt of

gratitude for their patience, inspiration and participation in this work. I would also like to

thank our graduate student chair Dr. Xiang Chen for giving me an opportunity to become a

proud student of this university. I would also like to thank Dr. Maher Sid-Ahmed for always

asking me to work hard to graduate as soon as possible. I spent many enjoyable hours with

department members and fellow students chatting about my latest crazy ideas over a cup of

coffee. Without this rich environment I doubt that many of my ideas would have come to be

real.

Thanks also to my brother who has been extremely understanding and supportive of my

studies. I feel very lucky to have a wonderful family. They share my enthusiasm for academic

pursuits.

Windsor, April 2010

Jianjun Li

CONTENTS

Contents

Abstract ii

Acknowledgements iii

List of Figures viii

List of Tables ix

List of Abbreviations ix

1 Introduction 1
1.1 Motivations & Contributions 2
1.2 Thesis Organization 3

2 Background 5
2.1 Video Coding Compression Principle 5

2.1.1 Exploiting Temporal Redundancies 5
2.1.1.1 Block Based Motion Estimation 6
2.1.1.2 Block Based Motion Compensation 7

2.1.2 Exploiting Spatial Redundancies 8
2.1.3 Exploiting Statistical Redundancies 8

2.2 Image/Video Coding Roadmap 9
2.3 Video Coding Standards Overview 9

2.3.1 H.261/H.263 9
2.3.2 MPEG-1 10
2.3.3 MPEG-2 10
2.3.4 MPEG-3 11
2.3.5 MPEG-4 11
2.3.6 H. 264/AVC 11
2.3.7 MPEG-7 13
2.3.8 MPEG-21 13

2.4 Frame Types 14
2.5 Group of Pictures 14
2.6 Variable and Constant Bit Rate 15
2.7 MPEG Standards Comparison 16
2.8 Performance Metric 17
2.9 Conclusions 18

CONTENTS

3 Fast Implementation of H.264 4x4 Intra Prediction 19
3.1 Introduction 19
3.2 H.264/AVC Intra Prediction 20
3.3 Proposed Parallel Architecture & Methodology 22

3.3.1 Parallel Architecture 23
3.3.2 Redundancy Reduction Algorithm 25
3.3.3 Complexity Reduced Mode Decision Algorithm 28

3.4 Experimental Results and Analysis 31
3.5 Conclusions 32

4 H.264/AVC Rate Control Algorithms 34
4.1 Introduction 34
4.2 Existing Problems 36

4.2.1 The Dilemma of Chicken and Egg 37
4.2.2 PSNR & Output Bit Rate Fluctuation 37

4.3 Previous Works 38
4.3.1 Q2 R-D model 38
4.3.2 p-domain model 39

4.4 Proposed Intra Frame Coding Algorithm 39
4.4.1 Initial QP Determination Algorithms Review 39
4.4.2 MB Deviation Measure 40
4.4.3 Proposed QPs Determination Algorithm and RC Schemes 42

4.4.3.1 Intelligent Grouping 43
4.4.3.2 Adaptive Intra R-Q Model 43
4.4.3.3 Rate Control Schemes 46

4.5 Experimental Results and Analysis 49
4.5.1 Rate Control Performance 49
4.5.2 Scene Change 50

4.6 Conclusions 52

5 MPEG-2 to H.264/AVC Transcoding 53
5.1 Introduction 53
5.2 Motion Mapping 57

5.2.1 Field-to-Frame Mapping 58
5.2.2 Reference Picture Mapping 60
5.2.3 Block Size Mapping 61

5.2.3.1 Distance Weighted Average (DWA) 61
5.2.3.2 Error-variance Weighted Average (EWA) 63

5.3 Mode Decision 65
5.3.1 Ranking Based Mode Decision 66
5.3.2 Transform Domain Cost Calculation 68

5.4 Simulation Results 69
5.4.1 Motion Mapping Evaluation 71
5.4.2 Mode Decision Evaluation 72
5.4.3 Impact of B Slice 73
5.4.4 Performance Comparison 75

5.5 Conclusions 75

CONTENTS

6 Efficient Dataflow VLD Implementation for MPEG-4 SP RVC Framework 77
6.1 Introduction 77
6.2 MPEG Reconfigurable Video Coding Overview 78
6.3 Variable Length Decoding for the RVC Framework 79

6.3.1 Solution for Variable Length Decoding 80
6.3.2 Efficient Huffman Decoding Method 80

6.4 Modeling Variable Length Decoding of MPEG-4 SP in CAL 82
6.5 From Bit stream Scheme to Parser 85
6.6 Hardware and Software Implementation 87
6.7 Conclusions 87

7 Reconfigurable Video Coding - D V / D V C P R O 88
7.1 Introduction 88
7.2 Reconfigurable Video Coding 89
7.3 DV/DVCPRO Standard 90
7.4 Implementation & Design 93

7.4.1 RVC Parser FUs 93
7.4.2 RVC VLD & IDCT FUs 94
7.4.3 RVC De-shuffling FUs 95

7.5 Simulation & Analysis 95
7.5.1 Reusability of MPEG-4 FUs 96
7.5.2 Reduction of Design Overhead 96
7.5.3 Efficient Code Transformer -97

7.6 Conclusions 97

8 Concluding Remarks 99
8.1 Conclusions 99

8.2 Future Works 100

Bibliography 102

A List of Publications &: Contributions 111

B Fast Intra4x4 Prediction 113

C Part of RVC-CAL Source Codes 118
C.l Parser header RVC-CAL Source Code 118
C.2 CAL Source Code for VLD Function Unit 124
C.3 Source Code of the Automatically Generated Parser 125

D Vita 126

vi

LIST OF FIGURES

List of Figures

1.1 Multimedia systems 1
1.2 Thesis structure 4

2.1 Image/Video coding standards development roadmap 9
2.2 Picture types 15

3.1 Intra4x4 prediction order 21
3.2 Intra4x4 prediction modes 22
3.3 Intra4x4 prediction process 23
3.4 Intra4x4 prediction architecture 24
3.5 Redundancy reduction algorithm 28
3.6 Comparison of SDS and SATD costs 30
3.7 News & Akiyo performance comparison 32

4.1 Relationship between bit rate and QP 35
4.2 Relationship of RC/QP/RDO 37
4.3 Best initial QPs 41
4.4 Bit rates with different deviation 42
4.5 Intelligent grouping by deviation 44
4.6 QPs determination by deviation 46
4.7 Slice rate control 48
4.8 Comparisons of bitrate and performance of "Fancb" 50
4.9 Visual comparison of scene change 52

5.1 Storage system using MPEG-2 to H.264/AVC transcoding 54
5.2 MPEG-2 to H.264/AVC transcoding architecture 55
5.3 Field to frame motion vector mapping 59
5.4 Reference picture mapping of motion vector: P to P mapping 60
5.5 Reference picture mapping of motion vector: B to P mapping 61
5.6 Deriving motion vectors for inter_16x8 macroblock partitions with DWA 62
5.7 Deriving motion vectors for inter_8xl6 macroblock partitions with DWA 63
5.8 Deriving motion vectors for inter_8x8 macroblock partitions with DWA 64
5.9 EWA weighting masks 64
5.10 Error-variance weighted mapping for inter_8x8 block 65
5.11 Number of test modes vs. accuracy. 68
5.12 Transcoding complexity 70
5.13 Motion mapping performance 72
5.14 RD modes ranking performance 73

LIST OF FIGURES

5.15 Motion mapping with B performance 74

6.1 RVC framework 79
6.2 RVC VLD binary searching tree 82
6.3 RVC CAL model of MPEG-4 simple profile 84
6.4 RVC VLD function unit 84
6.5 XSLT transformation process: BSDL to CAL 86

7.1 DV data type 92
7.2 DV decoder data processing block diagram 92
7.3 DV-FU partition &z implementation 94

B.l Coastguard & Foreman Performance Comparison 116
B.2 Football & Table Tennis Performance Comparison 117

viii

LIST OF TABLES

List of Tables

2.1 H.264/AVC profiles 13

3.1 Reducing intra4x4 prediction redundancy 25

3.2 Execution cycles for each MB 32

4.1 Performance & mismatch comparison 51

5.1 Performances comparison 75

6.1 VLC table of MPEG B-6 83 6.2 Generated VLC table of MPEG B-6 83

7.1 Formats of DV standards 91
7.2 FUs reusability of DV 96
7.3 Comparison between C code and RVC-CAL 97

B.l Definition of intra4x4 prediction modes 113

ix

LIST OF TABLES

List of Abbreviations

3GPP 3rd Generation Partnership Project

A A U X Audio Auxiliary Information

AS AAUX Source

ASC AAUX Source Control

ASO Arbitrary Slice Ordering

AVC Advanced Video Coding

B Bidirectional Frame

BG Binary Group

B P H.264/AVC Baseline Profile

B P P Bit Rate Per Picture

BSDL Bitstream Syntax Description Language

CAL Caltrop Actor Language

CABAC Context-Adaptive Binary Arithmetic Coding

CAVLC Context-Adaptive Variable-Length Coding

CBR Constant Bit Rate

CBP Coded Block Pattern

D C T Digital Cosine Transfer

DDL Decoded Description Language

DIF Digital Interface

D V Digital Video

DVC Distributed Video Coding Standard

LIST OF TABLES

DWA Distance Weighted Average

EI Entropy Information

EWA Error-variance Weighted Average

FCBR Frame based Constant Bit Rate

FMO Flexible Macroblock Ordering

FSM Finite State Machine

FU Function Units

GOP Group of Picture

H.264/AVC Advanced Video Coding standard

HD High Definition

HD-TV High Definition TV

IDCT Inverse Digital Cosine Transfer

I Intra Frame

IM Intral6 DC Mode

IQ Inverse Quantization

IRSL Image and Remote Sensing Laboratory

ITU International Telecommunication Union

JVT Joint Video Team

LOC Lines Of Code

LoG Laplacian of Gaussian

M A D Mean Absolute Different

M B Macro Block

M B A F F MacroBlock Adaptive Frame/Field

MC Motion Compression

ME Motion Estimation

M P H.264/AVC Main Profile

MPEG ISO/IEC Moving Picture Experts Group

MPEG-4 SP MPEG-4 Simple Profile

LIST OF TABLES

MRF Multiple Reference Frames

MSE Mean Square Error

M V Motion Vector

MVC Multiview Video Coding Standard

NAL Network Adaptation

NTSC National Television System Committee

P Predicted Frame

PAL Phase Alternating Line

P D A Personal Digital Assistant

P S N R Peak Signal to Noise Ratio

Q Quantization

QP Quatization Parameter

QSMC Quarter Sub-pixel Mmotion Compensation

R-Q Rate-Quantization

RC Rate Control

RDO Rate-Distortion Optimized

RS Redundant Slices

RTL Register Transfer Level

RVC Reconfigurable Video Coding

SAD Sum of Absolute Different

SD Standard Definition

SI switching intra

SP switching predictive

SSD Sum of Squared Distortion

STAD Sum of Transformation Absolute Distortion

SVC Scalable Video Coding Standard, the scalable extension of H.264/AVC

TC Time Code

UVLC Universal Variable Length Coding

LIST OF TABLES

VAUX Video Auxiliary Information

V B R Variable Bit Rate

VBS Variable Block Size

VCEG Video Coding Experts Group

VCEG ITU-T Video Coding Expert Group

VCL Video Coding Layer

VLC Variable Length Coding

VLD Variable Length Decoding

XML Extensible Markup Language

VS VAUX Source

VSC VAUX Source Control

XP H.264/AVC Extended Profile

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

VTL Video Coding Tools Library

Chapter 1

Introduction

Digital multimedia systems, such as digital television and video streaming over the Internet,

belong to the everyday life of many people as shown in Fig. 1.1. Due to the fact that uncom-

pressed video requires a huge bandwidth, the input video is compressed by the source coder

to a desired bit rate. The encoder performs lossy video signal compression. Then, the data

is transmitted to the receiver side via a transmission channel. The receiver performs inverse

operations to obtain a reconstructed video signal for display.

-r /- /
* f t / 4 fSf

/

& ^ / /

r

Figure 1.1: Multimedia systems.

1.1. MOTIVATIONS & CONTRIBUTIONS

Continuous emergence of video coding standards on one side, and the growth in develop-

ment and implementation technology for them on the other side, have undoubtedly created a

whole new world of multimedia. So far, contributions to video coding technology have mainly

focused on improving coding efficiency. The challenges remain: not only to find efficient cod-

ing algorithms which require both simplification and high performance but also to reduce the

design time and avoid repeating design. This thesis starts with finding efficient algorithms for

the latest video coding standard, H.264/AVC, and then moves on a transition methodology

from the most prevalent video coding standard, MPEG-2, to the most efficient video coding

standard, H.264/AVC. Finally, a reconfigurable video coding framework is presented to reduce

development time.

1.1 Motivations & Contributions

Video coding standard is a large scope and it is impossible for a thesis work to overcome all

the issues. In this thesis, three major problems are emphasized: Low-complexity and efficient

H.264/AVC algorithms, MPEG-2/H.264 transcoding methodology and reconfigurable video

coding framework implementation.

At first, the latest video coding standard, H.264/AVC, is getting more attention due to its

high compression efficiency. However, higher computational complexity has to be paid for the

advantage. Being four times higher computational complexity than its counterpart, MPEG-2,

is considered an obstacle to implement it in real-time. Therefore, many research works focus on

how to reduce the computational complexity of H.264/AVC. The intra4x4 prediction is main

contribution of H.264/AVC. The available research results do not make full use of the features

of the intra4x4 prediction so that processing time is increased and is not suitable for real-time

process. The thesis proposes a new parallel processing structure to reduce the processing time

by carefully analysing the feature of H.264/AVC intra4x4 prediction [1], On the other hand,

rate control is playing a crucial role with limited bandwidth. How to improve video quality

in constant bit rate (CBR) is a great concern. In this thesis, a deviation based rate control

algorithm reasonably solves this problem for intra frame [2]. Two new encoder schemes are

also proposed in this thesis.

Secondly, multiple standards co-exist is also an important issue because the older standard

1.2. THESIS ORGANIZATION

is still used prevalently when the newer standard emerges. Apparently, to deal with this

problem, the transcoding algorithms are required. A universal transcoder, which can transcode

between any video formats, is not realistic. In this thesis, the methodology to transcode the

most prevalent video format, MPEG-2, to the latest video format, H.264/AVC, is presented [3-

5],

Finally, multiple codec standards need to be supported because more and more video stan-

dards are deployed. Although different, all coding standards use the same or very similar

coding tools and hence share similar architectures and implementations. Unfortunately, the

way in which the existing coding standards are specified lacks flexibility to adapt performances

and complexity when new applications emerge. Therefore, repeating design and long develop-

ment time are imperative. A framework methodology using tools library has been proposed

by MPEG organization. The reconfigurable video coding (RVC) standard intends to create a

framework containing existing coding technology for developing, beside current standard de-

coders, new configurations for satisfying specific application constraints. However, some issues

still exist in that it is a brand new standard, such as, how to separate the variable length de-

coding (VLD) from the decoder parser unit? how to implement a new video coding standard

with RVC framework, and how to utilize the available function units (FUs) in design? the

author contributes an efficient data flow based implementation of the variable length decoding

(VLD) process particularly adapted for the instantiation and synthesis of CAL parses in the

MPEG RVC framework in the paper [6]. Three contributions [7-9] have been adopted by

MPEG RVC CAL reference code. The research work also models DV/DVCPRO video coding

standard with the MPEG RVC framework [10].

1.2 Thesis Organization

The research work presented in this thesis is categorized into four parts as shown in Fig. 1.2.

There are eight chapters included in this thesis. Chapter 1 introduces the motivation of this

thesis. The video coding standards are reviewed in Chapter 2, the focus being on those

features that are relevant for the thesis. The second part of this thesis presents how to reduce

the computational complexity and implement efficient rate control process for H.264/AVC.

Chapter 3 and 4 are included in this part. Chapter 3 focuses on a fast intra4x4 prediction

3

1.2. THESIS ORGANIZATION

Thesis Structure

I f } 1
Introduction & H.264/AVC

Background Algorithms
Transcoding Reconfigurable

video coding

I 1
Chapterl Chapter2 Chapter3 Chapter4

Thesis Video coding Intra 4x4 H.264/AVC
introduction background prediction rate control

Chapter5 Chapter6 Chapter7
MPEG-2/H.264 MPEG-4 SP DV/DVCPRO

transcoding RVC RVC

Figure 1.2: Thesis structure.

process methodology. Chapter 4 deals with an efficient rate control algorithm of H.264/AVC.

The rate control algorithm is the most important part in H.264/AVC standard, particularly in

today, when the video is transmitted on net with limited bandwidth. The third part implements

MPEG-2 to H.264/AVC transcoding. The main issues and methodologies of transcoding are

presented in Chapter 5. The fourth part launches a new video coding standard, a framework

video coding process, which is being developed by MPEG organization. In this part, Chapter 6

presents novel methodology to automatically generating variable length decoding table for

RVC. Chapter 7 successfully implements DV/DVCPRO video coding standard with RVC-

CAL. In the end, Chapter 8 provides a summary of this work. Some future research directions

have been proposed in the same chapter.

4

Chapter 2

Background

In this chapter, some background knowledge about video compression is provided. A more

complete discussion on this subject can be found in books [11-15] and specifications [16-21],

such as, video compression methods, video coding standards, profile, level, motion vector,

macroblock, and peak signal-to-noise ratio (PSNR).

2.1 Video Coding Compression Principle

2.1.1 Explo i t ing Temporal Redundanc i e s

Since a video is essentially a sequence of pictures sampled at a discrete frame rate, two suc-

cessive frames in a video sequence look largely similar. The extent of similarity between two

successive frames depends on how closely they are sampled (frame interval) and the motion of

the objects in the scene. Exploiting the temporal redundancies accounts for majority of the

compression gains in video encoding.

Since two successive frames are similar, taking the difference between the two frames results

in a smaller amount of data to be encoded. In general, the video coding technique that uses

the data from a previously coded frame to predict the current frame is called predictive coding

technique. The computation of the prediction is the key to efficient video compression. The

simplest form of predictive coding is frame difference coding, where, the previous frame is

used as a prediction. The difference between the current frame and the predicted frame is

then encoded. The frame difference prediction begins to fail as the object motion in a video

2.1. VIDEO CODING COMPRESSION PRINCIPLE

sequence increases resulting in a loss of correlation between collocated pixels in two successive

frames.

Object motion is common in video and even a small motion of 1 to 2 pixels can lead to

loss of correlation between corresponding pixels in successive frames. Motion compensation

(MC) is used in video compression to reduce the correlation lost due to object motion [11].

The object motion in the real world is complex but for the purpose of video compression, a

simple translational motion is assumed.

2.1.1.1 Block Based Motion Estimation

If we observe two successive frames of a video, the amount of changes within small NxN pixel

regions of an image are small. Assuming a translational motion, the NxN regions can be

better predicted from a previous frame by displacing the NxN region in the previous image

by an amount representing the object motion. The amount of this displacement depends on

relative motion between the two frames. For example, if there is a 5 pixel horizontal motion

between the frames, it is likely that a small NxN region will have a better prediction if the

prediction comes from a NxN block in the previous image displaced by 5 pixels. The process

of finding a predicted block that minimizes the difference between the original and predicted

blocks is called motion estimation (ME) and the resulting relative displacement is called a

motion vector [11]. When motion compensation is applied to the prediction, the motion vector

is also coded along with the pixel differences.

Video frames are typically coded one block at a time to take advantage of the motion

compensation applied to small NxN blocks. As the block size decreases, the amount of changes

within a block also typically decrease and the likelihood of finding a better prediction improves.

Similarly, as the block size increases, the prediction accuracy decreases. The downside to using

a smaller block size is that the total number of blocks in an image increases. Since each of the

blocks also has to include a motion vector to indicate the relative displacement, the amount

of motion vector information increases for smaller block sizes.

The best prediction for a given block can be found if the motion of the block relative to

a reference picture can be determined. Since translational motion is assumed, the estimated

motion is given in terms of the relative displacement of a block in the X and Y planes. The

2.1. VIDEO CODING COMPRESSION PRINCIPLE

process of forming a prediction thus requires estimating the relative motion of a given NxN

block. A simple approach to estimating the motion is to consider all possible displacements

in a reference picture and determine which of these displacements gives the best prediction.

The best prediction will be very similar to the original block and is usually determined using a

metric such the minimum sum of absolute differences (SAD) of pixels or the minimum sum of

squared differences (SSD) of pixels. The SAD has lower computational complexity compared

to the SSD computation and equally good in estimating the best prediction. The number

of possible displacements (motion vectors) of a given block is a function of the maximum

displacement allowed for motion estimation. Fast motion estimation (FME) [22] has been an

active area of research and a number of efficient algorithms have been developed.

2.1.1.2 Block Based Motion Compensation

Motion compensation describes a picture in terms of the transformation of a reference picture

to the current picture. The reference picture may be previous in time or even from the future.

When images can be accurately synthesized from previously transmitted/stored images, the

compression efficiency can be improved. Motion compensation exploits the fact that, often,

for many frames of a movie, the only difference between one frame and another is the result of

either the camera moving or an object in the frame moving. In reference to a video file, this

means much of the information that represents one frame will be the same as the information

used in the next frame. Motion compensation takes advantage of this to provide a way to

create frames of a movie from a reference frame [12].

In block motion compensation (BMC), the frames are partitioned in blocks of pixels (e.g.

macroblocks of 16x16 pixels in MPEG). Each block is predicted from a block of equal size in

the reference frame. The blocks are not transformed in any way apart from being shifted to

the position of the predicted block. This shift is represented by a motion vector.

To exploit the redundancy between neighboring block vectors, (e.g. for a single moving

object covered by multiple blocks) it is common to encode only the difference between the

current and previous motion vector in the bit stream. The result of this differencing process

is mathematically equivalent to a global motion compensation capable of panning. Further

down the encoding pipeline, an entropy coder will take advantage of the resulting statistical

2.1. VIDEO CODING COMPRESSION PRINCIPLE

distribution of the motion vectors around the zero vector to reduce the output size.

2.1.2 Explo i t ing Spatial R e d u n d a n c i e s

In natural images, there exists a significant correlation between neighboring pixels. Small

areas within a picture are usually similar. Redundancies exist even after motion compensation.

Exploiting these redundancies will reduce the amount of information to be coded. Prediction

based on neighboring pixels, called intra prediction [11], is also used to reduce the spatial

redundancies. Transform techniques are used to reduce the spatial redundancies substantially.

The spatial redundancy exploiting transforms such as the discrete cosine transform (DCT),

transform a NxN picture block into NxN block of coefficients in another domain called the

frequency domain [23], The key properties of these transforms that make them suitable for

video compression are energy compaction and de-correlation. When the transform is applied,

the energy of a NxN pixel block is compacted into a few transformed coefficients and the

correlation between the transformed coefficients is also reduced substantially. This implies

that significant amount of information can be recovered by using just a few coefficients. The

transform coefficients in the frequency domain can be roughly classified into low, medium,

and high spatial frequencies [13]. Since the human visual system is not sensitive to the high

spatial frequencies, the transform coefficients corresponding to the high frequencies can be

discarded without affecting the perceptual quality of the reconstructed image. As the number of

discarded coefficients increases, the compression increases, and the video quality decreases. The

coefficient dropping is in fact exploiting the perceptual redundancies. Another way of reducing

the perceptual redundancies is by quantizing the transform coefficients. The quantization

process reduces the number of levels [21] while still retaining the video quality. As with

coefficient dropping, as the quantization step size increases, the compression increases, and the

video quality decreases.

2.1 .3 Explo i t ing Stat ist ical Redundanc ie s

The transform coefficients, motion vectors, and other data have to be encoded using binary

codes in the last stage of video compression. The simplest way to code these values is by using

fixed length codes, e.g. 16 bit words. However, these values do not have a uniform distribution

2.2. IMAGE/VIDEO CODING ROADMAP

and using fixed length codes is wasteful. Average code length can be reduced by assigning

shorter code words to values with higher probability. Variable length coding is used to exploit

these statistical redundancies and increase compression efficiency further.

2.2 Image/Video Coding Roadmap

The multimedia compression standards have been developing for decades as shown in Fig.2.1.

The Moorse's law [24] of compression shows that the performance has been doubled every five

years, which means the standard is able to obtain roughly 50% gain in about five years. In the

mean time, the computational complexity also increases dramatically.

© JPEG(1988)

G H.261(1990)

© MPEG-1(1991)

© MPEG-2/H.262(1993)

© H.263(1995)

© MPEG-4 Visual(1998)

© JPEG2000(2000)

© H.264/AVC (2003)

© SVC(2007)

© MVC(2008)

© DVC(2009)

RVC FrameWork(2006)

Figure 2.1: Image/Video coding standards development roadmap.

2.3 Video Coding Standards Overview

2.3.1 H . 2 6 1 / H . 2 6 3

The H.261 [17] and H.263 [19] are not international standards but only recommendations of

the ITU. They are both based on the same technique as the MPEG standards and can be seen

as simplified versions of MPEG video compression. They were originally designed for video

conferencing over telephone lines, i.e. low bandwidth. However, it is a bit contradictory that

they lack some of the more advanced MPEG techniques to really provide efficient bandwidth

2.3. VIDEO CODING STANDARDS OVERVIEW

use. The conclusion is therefore that H.261 and H.263 are not suitable for usage in general

digital video coding.

2.3.2 M P E G - 1

The first public standard of the MPEG committee was the MPEG-1, ISO/IEC 11172 [16],

whose first parts were released in 1993. MPEG-1 video compression is based upon the same

technique that is used in JPEG. In addition to that, it also includes techniques for efficient

coding of a video sequence. In Motion JPEG/Motion JPEG 2000, each picture in the sequence

is coded as a separate unique picture resulting in the same sequence as the original one. In

MPEG video, only the new parts of the video sequence is included together with information

of the moving parts. MPEG-1 is focused on bit streams of about 1.5 Mbps and originally

for storage of digital video on CDs. The focus is on compression ratio rather than picture

quality. It can be considered as traditional VCR quality but digital instead. It is important to

note that the MPEG-1 standard, as well as MPEG-2, MPEG-4 and H.264 that are described

below, defines the syntax of an encoded video stream together with the method of decoding

this bit stream. Thus, only the decoder is actually standardized. A MPEG encoder can be

implemented in different way and a vendor may choose to implement only a subset of the

syntax, providing it provides a bit stream that is compliant with the standard. This allows

for optimization of the technology and for reducing complexity in implementations. However,

it also means that there are no guarantees for quality - different vendors implement MPEG

encoders that produce video streams that differ in quality.

2.3.3 M P E G - 2

The MPEG-2 project focused on extending the compression technique of MPEG-1 to cover

larger pictures and higher quality at the expense of a higher bandwidth usage. MPEG-2,

ISO/IEC 13818 [18], also provides more advanced techniques to enhance the video quality at

the same bit rate. The expense is the need for far more complex equipment. As a note, DVD

movies are compressed using the techniques of MPEG-2.

2.3. VIDEO CODING STANDARDS OVERVIEW

2.3.4 M P E G - 3

The next version of the MPEG standard, MPEG-3 was designed to handle HDTV, however,

it was discovered that the MPEG-2 standard could be slightly modified and then achieve the

same results as the planned MPEG-3 standard. Consequently, the work on MPEG-3 was

discontinued.

2.3.5 M P E G - 4

The next generation of MPEG, MPEG-4, is based upon the same technique as MPEG-1 and

MPEG-2. Once again, the new standard focused on new applications. The most important new

features of MPEG-4, ISO/IEC 14496 [20] and concerning video compression are the support

of even lower bandwidth consuming applications, e.g. mobile devices like cell phones, and on

the other hand applications with extremely high quality and almost unlimited bandwidth. In

general the MPEG-4 standard is wider than the previous standards. It also allows for any frame

rate, while MPEG-2 was locked to 25 frames per second in PAL and 30 frames per second in

national television system committee (NTSC). When "MPEG-4" is mentioned in surveillance

applications today it is usually MPEG-4 part 2 that is referred to. This is the "classic" MPEG-

4 video streaming standard, a.k.a. MPEG-4 Visual. Some network video streaming systems

specify support for "MPEG-4 short header", which is a H.263 video stream encapsulated with

MPEG-4 video stream headers. MPEG-4 short header does not take advantage of any of the

additional tools specified in the MPEG-4 standard, which gives a lower quality level than both

MPEG-2 and MPEG-4 at a given bit rate.

2.3.6 H . 2 6 4 / A V C

H.264/AVC is the latest generation standard for video encoding. This initiative has many goals.

It should provide good video quality at substantially lower bit rates than previous standards

and with better error robustness - or better video quality at an unchanged bit rate. The

standard is further designed to give lower latency as well as better quality for higher latency.

In addition, all these improvements compared to previous standards were to come without

increasing the complexity of design. An additional goal was to provide enough flexibility to

2.3. VIDEO CODING STANDARDS OVERVIEW

allow the standard to be applied to a wide variety of applications: for both low and high bit

rates, for low and high resolution video, and with high and low demands on latency. The

following three profiles were defined in the original standard, and remain unchanged in the

latest version:

• Baseline Profile (BP): Primarily for low-cost applications that require additional data

loss robustness, this profile is used in some videoconferencing and mobile applications.

This profile includes all features that are supported in the Constrained Baseline Profile,

plus three additional features that can be used for loss robustness (or for other purposes

such as low-delay multi-point video stream composition).

• Extended Profile (XP): This profile is used for standard-definition digital TV broadcasts

that use the MPEG-4 format as defined in the DVB standard [25]. It is not, however,

used for high-definition television broadcasts, as the importance of this profile faded when

the High Profile was developed in 2004 for that application.

• Main Profile (MP): Intended as the streaming video profile, this profile has relatively

high compression capability and some extra tricks for robustness to data losses and

server stream switching.

Table 2.1 gives a high-level summary of the coding tools included in these profiles. The

baseline profile includes intra (I) and predictive (P)-slices, some enhanced error resilience tools

(flexible macroblock ordering (FMO), arbitrary slice ordering (ASO), and redundant slices

(RS)), and context adaptive variable length coding (CAVLC). It does not contain bidirectional

(B), switching predictive (SP), and switching intra (SI) slices, interlace coding tools or context-

adaptive binary arithmetic coding (CABAC) entropy coding. The extended profile is a super-

set of baseline, adding B, SP and Si-slices and interlace coding tools to the set of baseline

profile coding tools and adding further error resilience support in the form of data partitioning

(DP). It does not include CABAC. The main profile includes I, P and B-slices, interlace coding

tools, CAVLC and CABAC. It does not include enhanced error resilience tools (FMO, ASO,

RS, and DP) or SP and Si-slices.

2.3. VIDEO CODING STANDARDS OVERVIEW

Table 2.1: H.264/AVC profiles.
Coding Tools Baseline Main Extended
I and P Slices / / /
CAVLC / / /
CABAC /
B Slices / /
Interlaced Coding (PicAFF, MBAFF) / /
Enhanced Error Resil. (FMO, ASO, RS) / /
Further Enh. Error Resil (DP) /
SP and SI Slices /

2.3.7 M P E G - 7

MPEG-7 [26] is a different kind of standard as it is a multimedia content description standard,

and does not deal with the actual encoding of moving pictures and audio. With MPEG-

7, the content of the video (or any other multimedia) is described and associated with the

content itself, for example to allow fast and efficient searching in the material. MPEG-7 uses

extensible markup language (XML) to store metadata, and it can be attached to a timecode

in order to tag particular events in a stream. Although MPEG-7 is independent of the actual

encoding technique of the multimedia, the representation that is defined within MPEG-4, i.e.

the representation of audio visual data in terms of objects, is very well suited to the MPEG-7

standard. MPEG-7 is relevant for video surveillance since it could be used for example to tag

the contents and events of video streams for more intelligent processing in video management

software or video analytics applications.

2.3.8 M P E G - 2 1

MPEG-21 [27] is a standard that defines means of sharing digital rights, permissions, and

restrictions for digital content. It aims at defining an open framework for multimedia ap-

plications. MPEG-21 is ratified in the standards ISO/IEC 21000 - Multimedia framework

(MPEG-21). MPEG-21 is a XML-based standard, and is developed to counter illegitimate

distribution of digital content.

MPEG-21 is based on two essential concepts: the definition of a fundamental unit of

distribution and transaction, which is the digital item, and the concept of users interacting

13

2.4. FRAME TYPES

with them. Digital items can be considered the kernel of the multimedia framework and the

users can be considered as who interacts with them inside the multimedia framework. At its

most basic level, MPEG-21 provides a framework in which one user interacts with another one,

and the object of that interaction is a digital item. Due to that, we could say that the main

objective of the MPEG-21 is to define the technology needed to support users to exchange,

access, consume, trade or manipulate digital items in an efficient and transparent way.

2.4 Frame Types

The basic principle for video compression is the image-to-image prediction. The first image

is called an I-frame and is self-contained, having no dependency outside of that image. The

following frames may use part of the first image as a reference. An image that is predicted

from one reference image is called a P-frame and an image that is bidirectionally predicted

from two reference images is called a B-frame.

1. I-frames: Intra predicted, self-contained;

2. P-frames: Predicted from last I or P reference frame;

3. B-frames: Bidirectional; predicted from two references one in the past and one in the

future, and thus out of order decoding is needed;

Figure 2.2 shows how a typical sequence with I-, B-, and P-frames may look. Note that

a P-frame may only reference a preceding I- or P-frame, while a B-frame may reference both

preceding and succeeding I- and P-frames. The video decoder restores the video by decoding

the bit stream frame by frame. Decoding must always start with an I-frame, which can be

decoded independently, while P- and B-frames must be decoded together with current reference

image(s).

2.5 Group of Pictures

One parameter that can be adjusted in MPEG-4 is the Group of Pictures (GOP) length and

structure, also referred to as Group of Video (GOV) in some MPEG standards. It is normally

repeated in a fixed pattern, for example:

14

2.6. VARIABLE AND CONSTANT BIT RATE

Figure 2.2: Picture types.

1. GOV = 4, e.g. IPPP IPPP ... ;

2. GOV = 15, e.g. I P P P P P P P P P P P P P P IPPPPPPPPPPPPPP ... ;

3. GOV = 8, e.g. IBPBPBPB IBPBPBPB ... ;

The appropriate GOP depends on the application. By decreasing the frequency of I-frames,

the bit rate can be reduced. By removing the B-frames, latency can be reduced. The number

of frames between two I-frames, can be adjusted to fit the application.

2.6 Variable and Constant Bit Rate

Another important aspect of MPEG is the bit rate mode that is used. In most MPEG sys-

tems, it is possible to select the mode, constant bit rate (CBR) or variable bit rate (VBR).

The optimal selection depends on the application and available network infrastructure. With

limited bandwidth available, the preferred mode is normally CBR as this mode generates a

constant and predefined bit rate. The disadvantage with CBR is that image quality will vary.

While the quality will remain relatively high when there is no motion in a scene, it will signif-

icantly decrease with increased motion. With VBR,, a predefined level of image quality can be

maintained regardless of motion or the lack of it in a scene. This is often desirable in video

surveillance applications where there is a need for high quality, particularly if there is motion

in a scene. Since the bit rate in VBR may vary even when an average target bit rate is defined

the network infrastructure (i.e. available bandwidth) for such a system needs to have a higher

15

2.7. MPEG STANDARDS COMPARISON

capacity.

2.7 MPEG Standards Comparison

Looking at MPEG-2 and later standards, it is important to bear in mind that they are not

backwards compatible, i.e. strict MPEG-2 decoders/encoders will not work with MPEG-1.

Neither will H.264 encoders/decoders work with MPEG-2 or previous versions of MPEG-4,

unless specifically designed to handle multiple formats. However, there are various solutions

available where streams encoded with newer standards can sometimes be packetized inside

older standardization formats to work with older distribution systems. Since both MPEG-

2 and MPEG-4 cover a wide range of picture sizes, picture rates and bandwidth usage, the

MPEG-2 introduces a concept called Profile@Level [21]. This is created to make it possible to

communicate compatibilities among applications. For example, the studio profile of MPEG-4

is not suitable for a PDA and vice versa. Note that: MPEG-2, MPEG-4 and H.264/AVC are

all subject to licensing fees.

Since the H.261/H.263 recommendations are neither international standards nor offer any

compression enhancements compared to MPEG standards, they are not of any real interest and

are not recommended as suitable techniques for video surveillance. MPEG-1 is considered, in

most cases, more effective than Motion JPEG. However, for just a slightly higher cost, MPEG-2

provides even more advantages and supports better image quality, comprising of frame rate and

resolution. On the other hand, MPEG-2 requires more network bandwidth consumption and

is a technique of greater complexity. MPEG-4 is developed to offer a compression technique

for applications demanding less image quality and bandwidth. It is also able to deliver video

compression similar to MPEG-1 and MPEG-2, i.e. higher image quality at higher bandwidth

consumption.

If the available network bandwidth is limited, or if video is to be recorded at a high frame

rate and there are storage space restraints, MPEG may be the preferred option rather than

motion JPEG. It provides a relatively high image quality at a lower bit rate (bandwidth

usage). Still, the lower bandwidth demands come at the cost of higher complexity in encoding

and decoding, which in turn contributes to a higher latency when compared to motion JPEG.

Looking ahead, it is not a bold prediction that H.264 will be a key technique for compression

2.8. PERFORMANCE METRIC

of motion pictures in many application areas, including video surveillance. As mentioned

above, it has already been implemented in as diverse areas as high-definition DVD (HD-DVD

and Blu-ray), for digital video broadcasting including high-definition TV (HDTV), in the 3rd

generation partnership project (3GPP) standard for the third generation mobile telephony and

in software such as QuickTime and Apple Computer's MacOS X operating system.

H.264 is now a widely adopted standard, and represents the first time that the ITU, ISO

and IEC have come together on a common, international standard for video compression [21],

H.264 entails significant improvements in coding efficiency, latency, complexity and robustness.

It provides new possibilities for creating better video encoders and decoders that provide higher

quality video streams at maintained bit rate (compared to previous standards), or, conversely,

the same quality video at a lower bit rate.

There will always be a market need for better image quality, higher frame rates, and higher

resolutions with minimized bandwidth consumption. H.264 offers this, and as the H.264 format

becomes more broadly available in network cameras, video encoders and video management

software, system designers and integrators will need to make sure that the products and vendors

they choose support this new open standard. And for the time being, network video products

that support several compression formats are ideal for maximum flexibility and integration

possibilities.

2.8 Performance Metric

Distortion measures the difference between the decoded image and the original image. Peak

signal to noise ratio (PSNR) is normally used to evaluated the distortion. PSNR is defined by

the following formula.

m—1n— 1

i=0 j=0

PSNR = 20 x logw(255
VEMSE

17

2.9. CONCLUSIONS

Where, EMSE is the mean square error between an original m x n image I and its decoded

image I.

2.9 Conclusions

In this chapter, the video coding fundamentals have been presented. It starts with video coding

standards. Some basic terminologies and performance metric are also defined in this chapter.

These concepts help to understand the following chapters.

18

Chapter 3

Fast Implementation of H.264 4x4

Intra Prediction

3.1 Introduction

The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-VCEG jointly developed a new video

compression standard H.264/AVC [21]. Compared to previous standards, such as MPEG-2,

H.263 and MPEG-4, aggressive compression techniques are employed in H.264/AVC standard.

As a result, its performance is greatly improved in terms of the compression efficiency, however,

this is achieved at the expense of increasing the computational complexity.

Intra prediction utilizes the spatial correlation in an image to predict the block being en-

coded from its nearby pixels. It is recognized to be one of the main factors contributing the

success of H.264/AVC [21]. To select the best prediction mode, the encoder has to search

all possible prediction modes exhaustively in order to encode blocks. As a result, the com-

putational complexity in H.264/AVC is extremely high. Some previous approaches to reduce

computation complexity of H.264/AVC intra prediction by optimizing and speeding up are

presented in [28-36].

In this chapter, a novel parallel architecture to achieve fast intra prediction is presented.

The remaining sections are organized as follows: In Section 3.2, the H.264/AVC intra prediction

is briefly introduced. Section 3.3 presents the proposed architecture, a redundancy reduction

methodology and a simplified mode decision criteria is presented to low complexity computation

19

3.2. H.264/AVC INTRA PREDICTION

of intra frame prediction. Section 3.4 provides simulation results and conclusions are addressed

in Section 3.5.

3.2 H.264/AVC Intra Prediction

In H.264/AVC baseline intra coding, two intra prediction modes for luminance component

are supported in each profile [21]. One is intra4x4 mode and the other is intral6xl6 mode.

The intra8x8 is a new prediction type defined in H.264/AVC FRExt [37]. For intra4x4 mode,

each MB is divided into sixteen non-overlapping 4x4 blocks. Each block can select one of

nine prediction modes. For intral6xl6 mode, four prediction modes are available for each

MB. Chroma intra prediction is independent to luminance prediction mode. Two chroma

components are simultaneously predicted with the same mode. The intra4x4 is more accurate

than intral6xl6, however it requires more bits to be coded. Hence, intra4x4 is used for highly

textured regions while intral6xl6 is used for plain regions.

From the complexity perspective, H.264/AVC encodes macroblocks (MBs) by iterating all

the luminance intra decisions for each possible chroma intra prediction mode to achieve the

best coding efficiency. Therefore, the number of mode combination for luminance and chroma

components in a MB is C8 x (L4 x 16 + L16), where C8, L4, and L16 represent the number

of modes for chroma prediction, 4x4 luminance prediction, and 16x16 luminance prediction

respectively. This means that, 4 x (9 x 16 + 4) = 592 different rate distortion optimization

(RDO) costs have to be calculated before a best mode can be determined. If the 8x8 luminance

prediction in H.264/AVC FRExt is included, the number of mode combination is C8 x (L4

x 16 + L8 x 4 + L16) = 4 x (9 x l 6 + 9 x 4 + 4) = 736. Even in low complexity

mode [38], 9 x 1 6 + 4 + 4 x 2 = 156 mode decisions are needed. Although low complexity

mode can greatly reduce computational load, encoding time still needs to be reduced for some

applications requiring very low delay. If the target application is high definition TV (HDTV),

each frame needs (1920 x 1080 x 592) / 256 = 4,795,200 calculations, which is not feasible for

real-time implementation. Thus, speeding up intra coding process is essentially required.

In H.264/AVC [21], intra prediction is performed in two modes, intra4x4 and intral6xl6

mode. The luminance samples in a MB is divided into sixteen 4x4 blocks. Then these blocks

are coded sequentially as showed in Fig. 3.1.

3.2. H.264/AVC INTRA PREDICTION

0 4
y 7 5

/ /

< 12 y
- f

1 0 /
/

1 4 /
/
- k 5

Figure 3.1: Intra4x4 prediction order.

There are nine prediction modes for each 4x4 block in intra4x4 prediction mode as shown in

Fig. 3.2. They are one DC mode (mode2) and eight directional modes, e.g. vertical (modeO),

horizontal (model), diagonal down left (mode3), diagonal down right (mode4), vertical right

(mode5), horizontal down (mode6), vertical left (mode7) and horizontal up (mode8). To reflect

the edge trend of the block, the prediction for the current 4x4 block is calculated using the

boundary pixels of the previously decoded blocks above and to the left of it. Since the pixels

along the direction of the local edge have similar values, an accurate prediction can be achieved

if the direction of the prediction mode is the same as the edge direction of the block. In this

figure, neighboring samples used for prediction are labeled with capital letters A M. The 16

grey grids are the predicted samples called predictors. Each predictor is extrapolated from the

neighboring pixels A M. The extrapolation process is specified by H.264/AVC [21]. Definitions

of extrapolation equations for nine prediction modes are listed in Table B.l. Because each 4x4

block use neighboring samples to form predictors, the encoder needs to reconstruct the current

block before moves to the next block. Therefore, in the intra4x4 prediction, the block in the

upper left corner is processed at first and the lower right corner is processed at last. The intra

prediction for each block uses the pixels in its left and top sides as reference pixels. A block

thus can not be predicted until its previous block has been reconstructed. The reconstruction

includes discrete cosine transform (DCT), quantization (Q), inverse quantization (IQ), and

inverse discrete cosine transform (IDCT).

21

3.3. PROPOSED PARALLEL ARCHITECTURE &. METHODOLOGY

M A B

K

WN

E F G H

(a). Vertical

M A B CiD E F G H
t | —

K H

i r '
(b). Horizontal

M A B C D E F G H
I
J
K
L

Mean
(A..M)

(c). DC

(g). Horizontal down (h). Vertical left

(d). Diagonal down-left (e). Diagonal down-right (f). Vertical right

M A B C D E|F |G[H]
I

J<
K,
L r ^ L

(i). Horizontal up

Figure 3.2: Intra4x4 prediction modes.

3.3 Proposed Parallel Architecture & Methodology

The original process handles blocks in serial, which is not efficient as illustrated in Fig. 3.3

(a). Efficient architectures have been reported in [28-31], however, they all have drawbacks

either with the pipelining architecture or in compression gains. Huang's work [28] has bubbles

between Intra4x4 predictions because of the low throughput of reconstruction process so that

the prediction has to wait for the completion of reconstruction. Lee's work [29] perfectly

pipelines the intra prediction and reconstruction process shown as Fig. 3.3 (b), however, it

requires that both intra prediction and reconstruction have exact equal processing cycles.

It also reduces some prediction modes in some blocks in order to enforce pipelining, hence,

the video quality is degraded. Jin's work [30] proposes both partially and fully pipelined

architectures for intra4x4 prediction and has the same drawback as the approach in [29].

Moreover, the architectures add dependency graph process in order to improve gains, however,

22

3.3. PROPOSED PARALLEL ARCHITECTURE &. METHODOLOGY

this increases hardware overhead. It takes 25 cycles to process each block, which is too long

for high throughput reconstruction. Suh's work [31] is similar to Huang's work, which takes

34 cycles to process each block. The thesis proposes an efficient parallel architecture followed

by a redundancy reduction algorithm to speed up the intra4x4 prediction.

Prediction

Reconstruction

Prediction

Reconstruction

16Tp+16Tr=32T

3 | | _ 4

tn 7J
16To+3Tr=19T

(a). Original 4x4 Intra Prediction Processing

Prediction 0 1 2 4 3 5 8 6 9 7 10 12 11 13 14 15

Reconstruction 0 1 2 4 3 5 8 6 9 7 10 12 11 13 14 15

(b). Lee's Intra Prediction Processing

17*(Tp/3+Tr)
block.0 block 1 _ block 2 block 3

0,3,7 1,2,8 0,3,7 1,2,8 0,3,7 1,2,8 0,3,7] 1,2,8

4,5,6 R 0 4,5,6 R_1 4,5,6 R_2 4,5,6

block 15
0,3,7 1,2,8 0,3,7 1,2,8

R_14 4,5,6 R_15 4,5,6
R_n: Reconstruction of block_n;

(c). Proposed Intra Prediction Processing

Figure 3.3: Intra4x4 prediction process.

3.3.1 Parallel Archi tec ture

Although a data dependency truly exists among blocks in intra4x4 prediction, we can state,

after careful observation, that such data dependency does not exist in some intra4x4 prediction

modes. Therefore, they are able to be processed without waiting for their previous blocks to

be reconstructed, i.e., modeO, 3, and 7 of the current block can be simultaneously predicted

when its previous block is being reconstructed. After the reconstruction of its previous block

is complete, the rest of modes, i.e., model, 2, 8 and mode4, 5, 6 of the current block, shown

as Fig. 3.3 (c) can be predicted in parallel. The same procedure follows in the rest of the

blocks. To sum up, we divide nine prediction modes into three groups, and each group has

three prediction modes.

23

3.3. PROPOSED PARALLEL ARCHITECTURE & METHODOLOGY

The proposed architecture has four advantages compared to previous works. The first

advantage is that the proposed process does not ignore any prediction modes. The second

advantage is that the encoder follows that order specified in H.264/AVC standard to guarantee

the consistency between the encoder and the decoder. The third advantage is that it does not

require the processing cycles of intra prediction and reconstruction to be exact the same. The

last advantage is that the proposed architecture can reduce total processing time of each MB

to 17 x (1/3TP + Tr) if high throughput reconstruction is adopted, where Tp is prediction time

and Tr is reconstruction time.

As shown in Fig. 3.4, the Iuma4x4 prediction unit mainly consists of five functional blocks

for Prediction Generator-1, Prediction Generator-2, SAD (sum of absolute difference) Com-

putation, Reconstruction, and Controller. Prediction Generator-1 and Prediction Generator-2

calculate the predicted pixel values for all the intra modes. SAD Computation block calculates

SAD values for each mode in order to make mode decision. Reconstruction block recovers the

prediction pixels of the best mode by the reconstruction process (DCT, Q, IQ, and IDCT). The

Controller block selects the right pixels from Edge Pixels buffer and feeds them into Prediction

Generator blocks.

Figure 3.4: Intra4x4 prediction architecture.

24

3.3. PROPOSED PARALLEL ARCHITECTURE &. METHODOLOGY

In the first step, the Generator-1 is parallel with the reconstruction process and the first

group (modeO, 3 and 7) are predicted in this step. In the second step, the Generator-1 and

Generator-2 are parallel to process the second group (model, 2, and 8) and the third group

(mode4, 5 and 6). The output of Edge Pixels unit are selected by the controller. Each group

has its own best mode by calculating SAD. The final best mode is obtained by comparing the

best mode of each group. Meanwhile, the residuals of this block with the best mode are written

into the register. The reconstruction process implements DCT, Q, IQ and IDCT based on the

residuals. After added to the values of prediction, the reconstructed edges pixels are stored in

the buffer for being used for predicting the next block.

3.3.2 R e d u n d a n c y R e d u c t i o n A l g o r i t h m

Considering the definition of the nine intra4x4 prediction modes of H.264/AVC [21] as shown
in Appendix Table B.l, there are some identical parts in calculating the predicted values. It is
possible to reduce memory access and improve prediction time by eliminating these redundancy
computations. A detailed summary is listed in Table 3.1. In this table, identical prediction
items exist not only in different pixels of the same mode, but also in different pixels of different
modes, for example, the predicted value of both pixels (1, 0) and (0, 1) in diagonal down left
prediction mode is equal to the value in pixel (3, 0) of diagonal down right prediction mode.
Therefore, the redundancy computations are able to be reduced.

Table 3.1: Reducing intra4x4 prediction redundancy.

Mode Equation Round Shift Positions (x, y)

A 0 0 (0,0) (1,0) (2,0) (3,0)

Vertical
B 0 0 (0,1) (1,1) (2,1) (3,1)

Vertical
C 0 0 (0,2) (1,2) (2,2) (3,2)

D 0 0 (0,3) (1,3) (2,3) (3,3)

I 0 0 (0,0) (0,1) (0,2) (0,3)

Horizontal
J 0 0 (1,0) (1,1) (1,2) (1,3)

Horizontal
K 0 0 (2,0) (2,1) (2,2) (2,3)

L 0 0 (3,0) (3,1) (3,2) (3,3)

DC (I + J + K + L + A + B + C + D + 4) » 3 4 3 ALL

(A + 2 B + C + 2) » 2 2 2 (0.0)

n m 1 (B + 2 C + D + 2) » 2 2 2 (0,1) (1,0)

25

3.3. PROPOSED PARALLEL ARCHITECTURE &. METHODOLOGY

(C + 2 D + E + 2) » 2 2 2 (0,2) (1,1) (2,0)

(D + 2 E + F + 2) » 2 2 2 (0,3) (1,2) (2,1) (3,0)

(E + 2 F + G + 2) » 2 2 2 (1,3) (2,2) (3,1)

(F - (-2G+H+2)»2 2 2 (2,3) (3,2)

(G + 3 H + 2) » 2 2 2 (3,3)

(L + 2 K + J + 2) » 2 2 2 (3,0)

DDR2
(K + 2 J + I + 2) » 2 2 2 (2,0) (3,1)

DDR2

(J+2I+M+2)>>2 2 2 (1,0) (2,1) (3,2)

(I + 2 M + A + 2) » 2 2 2 (0,0) (1,1) (2,2) (3,3)

(M + 2 A + B + 2) » 2 2 2 (0,1) (1,2) (2,3)

(A + 2 B + C + 2) » 2 2 2 (1.3)

(B + 2 C + D + 2) » 2 2 2 (0,3)

(M + A + l) » l 1 1 (0,0) (2,1)

VR3 (A + B + l) » l 1 1 (0,1) (2,2)
VR3

(B + C + l) » l 1 1 (0,2) (2,3)

(C + D + l) » l 1 1 (0,3)

(K + 2 J + I + 2) » 2 2 2 (3,0)

(J + 2 I + M + 2) » 2 2 2 (2,0)

(I + 2 M + A + 2) » 2 2 2 (1,0) (3,1)

(M + 2 A + B + 2) » 2 2 2 (1.1) (3,2)

(A + 2 B + C + 2) » 2 2 2 (1,2) (3,3)

(B + 2 C + D + 2) » 2 2 2 (1.3)

(L + K + l) » l 1 1 (3,0)

HD4
(K + J + l) » l 1 1 (2,0) (3,2)

HD4

(J + I + l) » l 1 1 (1,0) (2,2)

(I + M + l) » l 1 1 (0,0) (1,2)

(L + 2 K + J + 2) » 2 2 2 (3,1)

(K + 2 J + I + 2) » 2 2 2 (2,1) (3,3)

(J + 2 I + M + 2) » 2 2 2 (1.1) (2,3)

(I + 2 M + A + 2) » 2 2 2 (0,1) (1,3)

(M + 2 A + B + 2) » 2 2 2 (0,2)

(A + 2 B + C + 2) » 2 2 2 (0,3)

(A + B + l) » l 1 1 (0,0)

VL5
(B + C + l) » l 1 1 (0,1) (2,0)

VL5

(C + D + l) » l 1 1 (0,2) (2,1)

(D + E + l) » l 1 1 (0,3) (2,2)

26

3.3. PROPOSED PARALLEL ARCHITECTURE &. METHODOLOGY

(E + F + l) » l 1 1 (2,3)

(A+2B+C+2)>>2 2 2 (1,0)

(B + 2 C + D + 2) » 2 2 2 (1,1) (3,0)

(C+2D+E+2)>>2 2 2 (1.2) (3,1)

(E + 2 F + G + 2) » 2 2 2 (1,3) (3,2)

(F + 2 G + H + 2) » 2 2 2 (3,3)

L 0 0 (2,2) (2,3) (3,0) (3,1) (3,2) (3,3)

HU6
(L + K + l) » l 1 1 (1,2) (2,0)

HU6

(K + J + l) » l 1 1 (0,2) (1,0)

(J + I + l) » l 1 1 (0,0)

(3 L + K + 2) » 2 2 2 (1.3) (2,1)

(L + 2 K + J + 2) » 2 2 2 (0,3) (1,1)

(K + 2 J + I + 2) » 2 2 2 (0,1)

Figure 3.5 illustrates how to calculate 6 prediction modes (except DC, vertical and hor-

izontal prediction modes) with the common parts. The 14 common parts are listed on the

left side of Fig. 3.5. The terms ("A" to "M") of the common parts indicate the neighbouring

pixels as shown in Fig. 3.2. The numbers Nxy on the right side in Fig. 3.5 refer to mode N

in position (x, y). For example, the predicted value in pixel (1, 1) of diagonal down left mode,

(A+2B+C+2)>>2, can be calculated by adding "(A+B)" and "(B+C)". By analysis, only

14 common parts and 23 equations of their combination are required for intra4x4 prediction

calculations, which can be implemented by 27 adders and 23 shifts. Moreover, the DC pre-

diction mode is very straightforward, which only requires 3 adders and 1 shift. For vertical,

horizontal and part of horizontal up prediction modes, the predicted values can be obtained

only by propagating the values of edge pixels. Therefore, for total intra4x4 mode prediction,

the proposed algorithm requires 30 adders and 24 shifts. It can be completed within one cycle.

To achieve fast intra4x4 prediction, a high throughput reconstruction process is also re-

quired. The reconstruction process (DCT, Q, IQ, and IDCT) is implemented in parallel with

1 Diagonal down-left
2 Diagonal down-right
3Vertical right
4 Horizontal down
5 Vertical left
6 Horizontal up

27

3.3. PROPOSED PARALLEL ARCHITECTURE &. METHODOLOGY

» 2 » 2
L+K+1 » 2 L+K+1 » 2

»2 »2
K+J+1 »2 K+J+1 »2

»2 »2
J+l+1 »2 J+l+1 »2

»2 »2
l+M+1 »2 l+M+1 »2

»2 »2
M+A+1 »2 M+A+1 »2

»2 »2
A+B+1 A+B+1

» 2 » 2
B+C+1 » 2 B+C+1 » 2

»2 »2
C+D+1 » 2 C+D+1 » 2

» 2 » 2
D+E+1 » 2 D+E+1 » 2

» 2 » 2
E+F+1 » 2 E+F+1 » 2

» 2 » 2
F+G+1

»2 »2
G+H+1

^s^ / \
»2 »2

8 24,8-,2;

64./ 8,3, 83,
64,; 44P' 8I4,8,2,-
631.64,,- 813,821.'

632-644.' V 4 4 • 31' 42'
621.633.' 8„.'

622.634.' 531-' 4 4 4 -^21' 32' 43'
6u. 6,3
6 u , 6 2 4 ; 521, 542; 4 4 4 4 11'22'33'44
5||, 5,2.'

6,3; 522 > ^43, 4|2.42 3 ,43 4;

7 „ ; 5 l 2 ,
V 3 „ ; 6,4.'
71 2 .72 | ; 1̂3' 3̂4
732,741; 3 3 • 12' 21' 5 24 y

7,3,7»; 5,4
7 33 ' 742.' 3,3. 322> 3̂1,
714' 7̂ 3
7,4.743; 3 3 3 14' 23' 32' 41 '
724-'
744,' 3 3 3 • 24'J24' 42'

3̂4 ' ̂ 43 >'

3 • 44'

523, S ^ ;

414;

4,3.4,

Note:
»: Shift

Figure 3.5: Redundancy reduction algorithm

three intra4x4 prediction modes (modeO, 3, and 7). Our previous work [39] of a high through-

put realization of DCT and IDCT is adopted in this implementation. It takes only one cycle to

process DCT and IDCT, separately. Fast quantization and its inverse have been implemented

using the approach in [40], in which a look-up table is utilized to complete quantization in one

cycle. In the proposed design, both fast DCT/IDCT and IQ are required in order to achieve

fast implementation. The total reconstruction time to process a MB is 6 cycles (2 cycles for

control).

3.3.3 C o m p l e x i t y R e d u c e d M o d e Dec i s ion A lgor i thm

In H.264/AVC intra prediction, both SAD and sum absolute transform difference (SATD) [41]

are widely accepted for mode decision. However, they have high computational complexity

28

3.3. PROPOSED PARALLEL ARCHITECTURE &. METHODOLOGY

and are not adoptable for fast computation, particularly not for hardware implementation. To

speed up the intra4x4 prediction process, a low complexity mode decision criteria is required.

After carefully observation, we find that their quantized residual values are often centered at

zero when the blocks have lower distortion. Based on the observation, a new cost function,

sum of difference and symmetry (SDS), can be given by (3.l), where Rmax ~ R-min represents

the difference of each mode of this block while Rmax + Rmin represents the symmetry of the

mode. They are given different weights depends on the importance.

Cost S D S = l-R max Rmin I « l + \Rm ax Rmin\ ©

where, Rmax and Rmm are the maximum and minimum residuals, respectively. An experiment

is implemented to compare the costs between "SDS" and "SATD" as shown in Fig. 3.6. The

result shows that mode 0 has the minimal SATD value and the minimal "SDS" value at the

same time. This can be explained by observing that the residues of model are distributed quite

close to "0" with the symmetrical property. Some experiments have been done to compared

the best mode decided by computing SATD with computing SDS. The experimental results

show that the probability of SDS is slightly lower than SATD on average, which means that

the behavior of SDS is more like that of SATD, and it is able to be a new criteria to decide

the best mode.

29

3.3. PROPOSED PARALLEL ARCHITECTURE &. METHODOLOGY

(c). Mode2. SATD=1102, SDS=268. (d)- Mode3. SATD=1436, SDS=314.

(e). Mode4. SATD=1268, SDS=329. (f)- Mode5. SATD=1130, SDS=286.

(g)-

2 3

Mode6. SATD=1134, SDS=306.

0 1 2 3

(h). Mode7. SATD=1173, SDS=306.

0 1 2 3

(i). Mode8. SATD=1206, SDS=307.

Figure 3.6: Comparison of SDS and SATD costs

30

3.4. EXPERIMENTAL RESULTS AND ANALYSIS

3.4 Experimental Results and Analysis

The simulation results reported in this subsection are aimed at evaluating the performance

of the SDS algorithm.We use JM10.2 [38] reference software to evaluate the compression ef-

ficiency and execution speed of our proposed parallel algorithm. The experiments conditions

are: baseline profile, QCIF frame size, 30 frames/second, intra frame only, RDO off, frame

number equal to 100. Several sequences have been verified including "Foreman", "Akiyo",

"Coastguard", "News and Calendar", "Football", and "Table tennis". The experimental re-

sults of sequences "News" and "Akiyo" are shown in Fig. 3.7, and no significant performance

degradation has been found with our proposed criteria. These experimental results of the rest

of sequences are attached in Appendix Fig. B.l and Appendix Fig. B.2. It is clear from these

plots that the proposed SDS algorithm achieves comparable rate-distortion performance to

the reference with SAD algorithm. The performance loss relative to the reference in terms of

PSNR is less than 0.5 dB for "Football" and "Table tennis", about 0.3 dB for "Coastguard"

and "Foreman", and about 0.15 dB for "Akiyo" and "News and Calendar". Compared to

the reference code with SAD, the complexity saving to compute SDS is more than 85%. The

complexity is measured using consumed CPU time, and the computational saving is similar

for all sequences. Moreover, the proposed "SDS" criteria algorithm is able to be implemented

by hardware easily since it only requires addition and shift operations.

50

45

m 4 0
3
Pi
g 3 5
cn
IX,

^ 30

25

31

(a). News QCIF Performance Comparison

Bit rate (kbit/sec)

3.5. CONCLUSIONS

(b). Akiyo QCIF Performance Comparison

50

« 40

cn ^
Jh 30

20
0 200 400 600

Bit rate (kbit/sec)

Figure 3.7: News & Akiyo performance comparison

Table 3.2 shows the experimental results compared to the previous works. The proposed

architecture reduces complexity up to 79% compared to [28], 63% compared to [31] and 57%

compared to [30]. By comparing average peak signal-to-noise ratio (PSNR) of the proposed

approach with H.264/AVC reference module at various bit rates of sequences, we find no

significant quality degradation. The proposed parallel architecture has been implemented in

a Xilinx Virtex-4 FPGA using Xilinx ISE Series 9. li. The implementation is verified with

register transfer level (RTL) simulations using Mentor Graphics ModelSim SE 6.1.

Table 3.2: Execution cycles for each MB
Methods Cycles/Block Cycles/MB Full Modes Savings
Huang. [28] 60 960 Yes 79%
Suh. [31] 34 544 Yes 63%
Jin. [30] 25 475 No 57%
Proposed 12 204 Yes

3.5 Conclusions

A fast parallel architecture, redundancy reduction algorithm and a new criteria for mode

decision of H.264/AVC intra4x4 prediction have been proposed in this chapter. This parallel

execution cuts down part of data dependency. It has adopted high-throughput DCT/IDCT and

32

3.5. CONCLUSIONS

Q/IQ to approach a fast implementation resulting in reducing the intra prediction execution

time up to 79% compared with the previous works. Meanwhile, no any prediction modes are

ignored. Software simulation shows no significant performance degradation. In order to verify

the proposed design, it has been implemented in Xilinx Virtex-4 FPGA.

33

Chapter 4

H.264/AVC Rate Control

Algorithms

4.1 Introduction

Block-based hybrid video encoding schemes such as the MPEG [16, 18, 20] and H.26* [21, 42]

families are inherently lossy compression processes. They achieve compression not only by

removing truly redundant information from the bitstream, but also by making small quality

compromises in ways that are intended to be minimally perceptible. In particular, the quan-

tization parameter (QP) regulates how much spatial detail is saved. When QP is very small,

almost all that detail is retained. As QP is increased, some of that detail is aggregated so that

the bit rate drops - but at the price of some increase in distortion and some loss of quality.

Figure 4.1 (a) suggests that the relationship for a particular input picture - if you want to

lower bit rate, you can do so by increasing QP at a cost of increased distortion. Figure 4.1 (b)

suggests that as source complexity varies during a sequence, you move from one curve to the

another.

In H.264/AVC standard [21], the output bit rate and video quality of a video encoder

depend on several coding parameters such as QP value and coding mode [43]. The QP value

scaling transform coefficients is used to regulate the bit rate to meet the requirements of limited

bandwidth channel while maximizing the video quality. This process is well-known as RC.

Unlike other normative techniques in H.264/AVC, such as multiple reference frames, variable

34

4.1. INTRODUCTION

QP
(a). Increasing distortion &

deceasing quality.

QP
(b). Increasing complexity &

deceasing QP values.

Figure 4.1: Relationship between bit rate and QP

block size, quarter sub-pixel motion compensation and deblock filtering, RC is a no-normative

tool and unspecified in H.264/AVC standard because the following dilemma [44]: The QP

value should be available before selecting the best mode for each macroblock (MB), which is

the one that can minimize the overall Lagrangian cost function J = D + X x R [21], where

A is the Lagrangian multiplier, D and R are the mean square error and bit rate of each MB.

However, the QP value can not be accurately obtained before the MB has been encoded. To

break or circumvent the dilemma, estimated QP has to be used in H.264/AVC RC schemes.

To estimate QP accurately, a rate-quantization (R-Q) model [45] is normally employed in

H.264/AVC RC. Temporal correlation is mostly exploited in the R-Q model. Thus, there are

existing issues: First, the initial QP (QP of the first frame) is simply determined by bits per

pixel (BPP) as there is no temporal information available at this moment. However, the initial

QP has a great impact on the following frames. The worse selection of the initial QP may

highly exceed buffer budgets so that the encoder attempts to salvage the bits of the following

frames, which leads to an abrupt degradation in video quality of the latter frames or even

frame skips. Second, the QP value of intra frame is obtained by taking the average of QP

values of its previous global of pictures (GOPs). The average assumes that the intra frame

has high correlation with its previous frames and ignores its own complexity of the current

frame. Therefore, the determination should be inaccurate. Finally, the output fluctuation

occurs during scene changes so that video quality is degraded.

To resolve the above issues, the following QP determination algorithms [45-49] have been

35

4.2. EXISTING PROBLEMS

proposed for initial frame, but not for intra frame. Strictly speaking, initial frame is also intra

frame and its QP determination algorithm should be similar to intra frame. However, it is

separated from the intra frame because it is the start frame with no available temporal infor-

mation. The JVT-G012 RC algorithm [45] adopted in H.264/AVC reference model determines

the initial QP value only based on bits per pixel (BPP). Wang [46] proposes an initial QP

determination scheme by based on BPP, entropy information (EI), and intral6 DC mode (IM)

as complexity measures of the current intra frame. Jing [47] proposes a QP determination

algorithm based on the gradient complexity measure of the current frame. The optimal binary

search algorithm [48] reduces the search processing times from fifty-two initial QP values to

six values. In [49], the QP value of intra frame is obtained by efficient bit allocation scheme

between I-frame and P-frames. The algorithms in [45, 48, 49] neglect the content of the cur-

rent frame and thus obtain inaccurate QP values while the algorithms in [46, 47] have higher

complexity in estimating QP values of intra frame. With respect to all the above drawbacks,

this thesis proposes a novel deviation-based QP determination approach to achieve relatively

stable constant bit rate (CBR) output and improved performance compared to H.264/AVC

reference model JM12.0 [50],

In this chapter, the problems existing in current H.264/AVC rate control schemes are

presented at first. Then some relative previous works are reviewed in Section 4.3. The proposed

algorithms and methodologies are provided in Section 4.4.3. Conclusions and analysis are

presented in the end.

4.2 Existing Problems

To estimate QP accurately, a rate-quantization (R-Q) model is normally employed in H.264/AVC

RC. Temporal correlation is mostly exploited in these R-Q models. Thus, there are issues ex-

isting: Firstly, the initial QP (QP of the first frame) is simply determined by the bits per pixel

(BPP) because no temporal information available. However, the initial QP has a great impact

on the following frames. The bad selection of initial QP may highly exceed buffer budgets

so that the encoder attempts to salvage the bits of the following frames, which leads to an

abrupt degradation in video quality of the latter frames or even frame skips. Secondly, the QP

value of intra frame is obtained by the average of QP values of P frames in its previous global

36

4.2. EXISTING PROBLEMS

of pictures (GOP). The average assumes that the intra frame has high correlation with its

previous frames and ignores its own complexity of the current frame. Thus, the determination

should be inaccurate enough. Finally, the issue is even existing in the following inter frames,

in which the rate control can not accurately estimate the QP values of the following frames if

the complexity of the picture context is ignored, particularly in frames with higher motion or

when scene change happens.

4.2 .1 T h e D i l e m m a of Chicken and Egg

Unlike its previous standards, the QP of H.264/AVC involves both rate control and rate dis-

tortion optimization (RDO). There exists a "chicken and egg" dilemma shown in Fig. 4.2 when

the rate control is implemented. To perform RDO for a macroblock (MB), a QP should first

be determined for the MB by using Mean absolute different (MAD) of the MB and the number

of head bits. However, the MAD and head bits are only available after performing RDO. To

solve this issue, many previous works have been done to give a more accuracy MAD. There-

fore, to perform better rate control in H.264/AVC, MAD, initial QP and head bits have to

be estimated accuracy as much as possible. The following section briefly presents the linear

adaptive RC method employed in H.264/AVC reference module.

4.2 .2 P S N R & O u t p u t Bi t R a t e F luc tuat ion

Rate control mechanism is to map the varying encoder bit rate into the constant bit rate

(CBR) channel. Better RC scheme generates video quality and output bit rate with less

fluctuation while worse one generates big fluctuation in both video quality and output bit

rate. Therefore, accurate QP values are required for a frame to be encoded. However, the

• _ •
Figure 4.2: Relationship of RC/QP/RDO

37

4.3. PREVIOUS WORKS

available RC scheme does not take the frame complexity into consideration, which is certainly

not accurate enough and must cause average PSNR degradation, output bit rate fluctuation,

and even frame skipping, especially for complicated sequences or scene changes and low target

bit rates.

4.3 Previous Works

Based on the issues mentioned above, many rate control schemes have been proposed in recent

years. Most of these rate control algorithms are focused on inter frames and can be classified

into two categories. The first one uses the traditional quadratic rate-distortion (Q2 R-D)

model to optimize the allocated bit rates. The second one uses /3-domain source model to

make optimization.

4.3 .1 Q2 R - D m o d e l

1. At first, we have to mention the most popular scheme, which is employed in JVT-

G012 [45]. The one-pass scheme is proposed by Li et al.. It utilizes the spatial-temporal

correlation to circumvent the "chicken and egg" dilemma, where a linear MAD model

is exploited to predict the complexity of the current frame. The target bit rate is thus

calculated by the Q2 R-D function 4.2.

Where, the free coefficients C\ and C2 may be estimated empirically.

2. JVT-D030 [51] is a two-pass scheme proposed by Ma et al.. In this scheme, a TM-5 [52]

alike method is employed in each pass. The first pass is followed by an extra pass process

only if the first pass fails to obtain an appropriate QP value.

3. Jiang et al., propose a low delay rate control scheme for H.264/AVC [53]. The scheme

ResidualBits = Ci * MAD C2 * MAD
QP + QP

38

4.4. PROPOSED INTRA FRAME CODING ALGORITHM

improves the accuracy of MAD by employing PSNR-based complexity estimation. Also,

the QP value of each MB is adjusted by the encoded bits. Therefore, the scheme achieves

an average 0.66 dB improvement in video quality. The drawback of this scheme is that

it is more complicated and not suitable for real-time process.

4.3 .2 p-domain m o d e l

1. Lim's work [54] proposes an p-domain (the percentage of zeros among the transformed

coefficients) rate control algorithm to estimate the video characteristic and achieve bet-

ter performance. The algorithm utilizes two kinds of linear regression to estimate the

optimum QP value. The more accurate QP value is obtained by R— > p— > EP— >

EQP— > QP linear regressive model.

2. Tu at al. [55] propose other p-domain rate control algorithm for H.264/AVC. In the

algorithm, the MAD can be approximated by the variance of the (u, v)th transform

coefficient <jy(u,v) and the a'y (u, v) can be expressed by p.

4.4 Proposed Intra Frame Coding Algorithm

The intra frame QP determination algorithm contains two parts in this thesis: initial QP

determination and intra frame QP determination. Strictly speaking, initial frame is also intra

frame and its QP determination should be the same as intra frame. However, it is separated

from the intra frame because it is the start frame and no temporal information available. In

addition, they are processed in different ways in H.264/AVC reference model.

4.4 .1 Initial Q P D e t e r m i n a t i o n Algor i thms R e v i e w

To resolve the above issues, many algorithms of QP determination [45-49] have been proposed

for initial frame, but not for intra frame. Strictly speaking, initial frame is also intra frame

and its QP determination algorithm should be similar to intra frame. However, it is separated

from the intra frame because it is the start frame and no temporal information available.

1. H.264/AVC standard intra frame QP determination:

In H.264/AVC reference model, the initial QP is determined only based on bit rates per

39

4.4. PROPOSED INTRA FRAME CODING ALGORITHM

picture (BPP) as JVT-G012 [45].

2. Entropy information intra frame QP determination:

Wang [46] proposes an initial QP determination scheme by utilizing bit rate per picture

(BPP), entropy information (EI) and intral6 DC mode (IM) as complexity measures of

the current intra frame.

3. Gradient-based frame complexity QP determination:

Jing [47] proposes a QP determination algorithm based the gradient complexity measure

of the current frame.

4. Binary search of intra frame QP determination:

The optimal binary search algorithm [48] reduces the search processing times of the

initial QP from 52 indexes to 6 indexes.

5. Intra frame bit allocation QP determination:

In [49], the QP value of intra frame is obtained by efficient bit allocation scheme between

I-frame and P-frames.

The above algorithms either neglect the context of the current frame and thus obtain

inaccuracy QP values [45, 48, 49] or have higher complexity [46, 47] in estimating QP values

of intra frame. With respect to all the above drawbacks, we propose a novel deviation-based

QP determination algorithm in this thesis. Meanwhile, two adaptive RC schemes are also

presented in order to obtain CBR output. Furthermore, the fluctuation of output bit due to

scene change is able to be detected and thus avoided with our algorithm.

4.4 .2 M B D e v i a t i o n Measure

To achieve the best initial QP for each video sequence, all the frames are set to intra frames.

We try all the possible initial QP values for the following video sequences under the same BPP

(192kb) and find the best QP value for each frame shown in Fig. 4.3. Obviously, the first

video frame in different video sequences with the equal BPP value have different best initial

40

4.4. PROPOSED INTRA FRAME CODING ALGORITHM

QP values, which means the best initial QP value not only depends on the BPP parameter

but also the content of each video sequence.

PSNR vs. Initial QPs

30

29

• • • i
••• Akiyo
- • - N e w s
V Foreman

•X-Costguard

22 24 26 28 30 32 34 36 38
Initial QPs

Figure 4.3: Best initial QPs

40

Our proposed algorithm is based on the observation that the output bit rate of each frame

is highly correlated with the deviation-based frame complexity measure. Assuming Lu(x,y)

is the value of luminance component of pixel at (x, y), the deviation of a MB (16x16 pixels),

which includes four 8x8 blocks, is calculated as:

1 3

Dev-MB = - y^ Dev-Blockn 4 n=0
7 7 1 ' '

Dev-Blocko =]C I Lu{x, y) - ^ ^ ^ ^ Lu(x, y)\
y=0x=0 y=0x=0

7 15 7 15
Dev.Blocki = lLu(x' V) ~ Lu(x>y

7 7

y=o x=8 y=0
15 7 ^ 15 7

Dev.Block2 = X X \Lu(x' V) ~ Y1 Lu(x>y)l
y=8i=0 y—8 -T=0
15 15

Dev.Block3 = ^ X \Lu(x> V) ~ X Lu(x>
15 15

!/=8I=8 8 x 8

©
©
©
©
©

where Dev-MB and Dev-Blockn are the deviation values of MB and blockn, respectively,

where n = 0, 1,2, and 3. To further illustrate the relationship between the deviation and the

41

4.4. PROPOSED INTRA FRAME CODING ALGORITHM

output bit rate, we show a set of scatter plots of bit rate versus average deviation value of each

MB in Fig. 4.4. Obviously, there exists a linear relationship between these two factors. For the

same QP, the larger the deviation value, the more bits are allocated for this frame. Moreover,

the slope of each line decreases with increasing the QP value. From this linear correlation

between the number of bits and the deviation, we can assume that for a fixed QP, the output

bit rate of one intra-coded frame is proportional to its average MB deviation.

(a). Bit Rate vs. Deviation (QP=26) (b). Bit Rate vs. Deviation (QP=28)
2.5 ; . 2.5

2 j 4 . v 1 ' ' 2
w 1 » v S*
^•1.5 . ' £ 1 . 5 . ••

. ^t4 4 '4

<" »v4 a 1 i ' . i

0.5 ffl
l V . .11'! »

ll 'l ' '

0i"* 0 "
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Deviation/MB Deviation/MB

(c). Bit Rate vs. Deviation (QP=30) (d). Bit Rate vs. Deviation (QP=32)
2-5 : 2.5

21 I 2!
4 a

. . ^ ' i i . 5
! ' .. / a

A Jo 1.5 : •* " *

1 V-
a 1 ' 4 4* a ii ^ A4 CU ^ \ »4ii 4 U . ^1.' "
"0.5 O.t 4 '4 .a 05: ' . 4 1

« 1
 ' v Y ^ '

o 4 1 o4 4"1" 1

0 100 200 300 400 500 600 o 100 200 300 400 500 600

Deviation/MB Deviation/MB

Figure 4.4: Bit rates with different deviation.

4.4 .3 P r o p o s e d Q P s D e t e r m i n a t i o n Algor i thm and R C Schemes

There are many activity measures or complexity measures for still image coding. Kim [56] pro-

poses four types of measures: discrete cosine transform (DCT)-based, variance-based, gradient-

based and edge-based. Hsiz et al. [57] proposes a Laplacian of Gaussian (LoG) measure based

42

4.4. PROPOSED INTRA FRAME CODING ALGORITHM

on spatial homogeneity to determine the initial QP value. However, the measure only estimates

a unique QP for each frame, and thus is not accurate. In our proposed algorithm, four QPs

are estimated for each frame based on its spatial features in order to improve the accuracy and

video quality.

4.4.3.1 Intelligent Grouping

With the availability of the deviation of each MB, the current intra frame is divided into four

groups by the histogram measure as:

E 3 Heiqht x Width r—^
> nMBm = (4.8)
^ 16 x 16 ^ '

i=0 m=Devi

where 2 = 0 , 1, 2, and 3, represents the index of the group in the current intra frame. The value

Devi refers to the start deviation value of the ith group, nMBm refers to the number of MB,

whose deviation value is equal to m, and Height and Width represent the picture's height and

width in pixels, respectively. Figure 4.5 illustrates the MB deviation distribution of one frame

of "Mobile and Calendar". In this figure, these MBs with equal deviation are gathered into

the same bar. The y-axis in this figure indicates the number of MBs while the x-axis indicates

the average deviation value of each MB. In the figure, we find that the number of MBs with

smaller deviation values is more than that with larger deviation values. As shown in Fig. 4.5,

the deviation intervals are equal to 0, 57, 186, and 503, respectively. The MBs with smaller

deviation values are assigned into the first group, and MBs with larger deviation values are

assigned into the higher groups, accordingly, which means that MBs with smaller deviation

values are assigned to smooth regions and thus less bits are allocated while those MBs with

larger deviation values are assigned to higher textured regions with more bits allocated.

4.4.3.2 Adaptive Intra R-Q Model

In previous video coding standards such as MPEG-2 [18] and H.263 [19], the QP value is

directly used as a scaling factor to control the coding bit rate and the picture quality. This

linear relation no longer exists in H.264/AVC standard. Instead, a nonlinear scaling factor

43

4.4. PROPOSED INTRA FRAME CODING ALGORITHM

25

20

! 15 j
I

10 |
5

5 j
\

0 -

Histogram of MB deviation

'! F-J

<s> ,-y £

:i 1 I
n ' l h
Hi
1 1 ! I •;

i n n
i-!nil -
i; N ii •; 1 . !.

! ! i l l ' i
'! i n i l 111

J-LLLLLLLLI
/A

Deviation of MB

11111 • l l l . l . i . l l .

Figure 4.5: Intelligent grouping by deviation.

Qstep is used as [47]:

Qstep = * Q P ~ 4) / 6 @

Generally speaking, there are 52 values of Qstep, which are indexed by 52 QPs ranging from

0 to 51 and the value of Qstep doubles for every increment of 6 in QP [21]. Theoretically, bit

rate is more directly related to Qstep- Although QP monotonically increases as Qstep increases,

we model the output bit rate as a function of Qstep in our proposed scheme. Experimental

observations have shown that the bit rate of intra frame can be formulated by the relations:

where,

... . bit-rate r , W\i] x IntraNli] , „^
ItargetBitsh = (- Icorr) x — ^ 1 J [4.10J y 1 J v frame-rate ' IntraGOB K ;

IpretictBitsW = S°Dcu^] (411]

Icorr = Header-bits + Iprevious [4.12]
3

IntraGOB = ^ (W[i] x IntraN[i}) [413]
i=0

„ L-i _ J i f (s c e n e changed or initial frame) f—
a c u r W - S (<w[il+apre[»D e l s e ^ l i f J

44

4.4. PROPOSED INTRA FRAME CODING ALGORITHM

where i represents the group number of each frame as in Section 4.4.3.1, bit-rate and frame-rate

are given by the sequence format. The value Qstep[i] is obtained by Step 4 of the following

proposed R-D model. ItargetBits[i] and IpredictBits[i] indicate the target bit rate and its

corresponding prediction bit rate of the ith group, respectively. Icorr is a correction value,

which contains header bits of the current frame, Header-bits, and correction bits of its previ-

ous frame, Iprevious. By experimental observations, we find that the weights of groups, W[i],

are better to be assigned to 0.125, 0.225, 0.3 and 0.35 depending on the different importance

of each group, respectively. IntraN[i] is the number of MBs of the ith group and IntraGOB

represents the sum of the weighted number of MBs of the current frame. The values ac u r \ i]

and Gpre [?'] are the adaptive weights of luminance for the ith group of the current and previous

frames, respectively. Note that acur[i] has to be re-calculated by using the bit rate value of

its previous frame, BR[rrf\i\. as shown in [4.14] when scene change (to be presented in Sec-

tion 4.5.2) or initial frame occurs because of many content changes in this frame, otherwise,

it is obtained by averaging values of acur[i] and apre[i\. The four initial values for o.cur[i] of

the intra frame are given by experimental observations. The range of acur\i\ is from 0 to 120.

Normally, they are assigned between 35 and 60 initially. Since the values of acur[i] will be

adaptively updated in the following frames so that the selection of the initial values of a c u r ['/']

are not so important. It only affects the updating time. The value SODcur[i] represents the

sum of MB deviations of the ith group in the current frame. The step by step procedure of

the proposed R-D model is described as follows:

1. Initialize Maxlndex(= 51), Minlndex(= 0) and Curlndex = Maxlndex, where Maxlndex,

Minlndex and Curlndex present maximum, minimum and current QP index, respectively;

2. Calculate the target bit rate for each group using (4.10);

3. Obtain the prediction bit rate for each group using (4.1l);

4. QP [i] = mi [(Maxlndex + Minlndex) / 2], where int indicates integer value; Find the

QsteP[i] value using (ilT);

5. If (Maxlndex - Minlndex) < 3, QP[i]=CurIndex and terminated, else, go to Step 6;

45

4.4. PROPOSED INTRA FRAME CODING ALGORITHM

6. If IpredictBits[i] > ItargetBits[i], Maxlndex = Curlndex, else, Minlndex = Curlndex;

Go to Step 4 ;

Figure 4.6 (a) shows an original intra frame of "Mobile and Calendar" and Fig. 4.6 (b)

illustrates the QPs distribution of the frame by the proposed R-Q model. In this figure, the

four different QP values, 18, 22, 26, and 28, are obtained by the proposed model where they

represent four QP values of the four groups of the current intra frame. The smaller blocks

in Fig. 4.6 (b) refer to MBs of 16x16 pixels. In the figure, the more white MBs have higher

deviation values and thus are assigned to higher QP values while the darker ones have lower

deviation values and are assigned to lower QP values.

(a). Original frame. (b). Frame QPs.

Figure 4.6: QPs determination by deviation.

4.4.3.3 Rate Control Schemes

To achieve better performance, we propose two types of encoding schemes to implement the

intra frame RC: (1). Even-slice RC, and (2). Priority-slice RC. Both of them follow the

same procedure except using different slice partition method. As stated in Section 4.4.3.2, we

calculate the deviation of each MB and divide the intra frame into four groups according to

the deviation distribution and thus the four QPs are obtained by the proposed R-Q model.

Then, we divide the current frame into four super slices. Each super slice includes a quarter

46

4.4. PROPOSED INTRA FRAME CODING ALGORITHM

of MB rows of each intra frame. Finally, we implement the encoding process for each super

slice. If the encoded bit rate of the current super slice is out of the desired bit rate, a small

tuning will be applied to it until the desired bit rate is achieved. The surplus bits of the

current super slice are then added to the target bits of the next super slice. By experimental

observation, the range of desired bit rate of the first super slice is widely set while that of the

last super slice has to be tightly set as much as possible in order to achieve a better RC result.

Figure 4.7 illustrates the flowchart of the proposed RC scheme. At the beginning, the RC has

to be initialized, some parameters are given by their initial values, such as a[i] = 48, where i

= 0, 1, 2, and 3, and Iprevious = 0. Then, the average deviation of each MB is calculated

by (4.3) - (4.7). If the current frame is initial or scene changed frame, the MBs of the frame

have to be re-grouped by histogram measure in (4.8), QP values have to be re-calculated by

the proposed R-Q model stated in Section 4.4.3.2 and slicing process has to be re-implemented

for this frame, otherwise, the parameters of groups, QPs and slices are kept exactly the same

as in the previous frame. The different processes of the two types of RC schemes are presented

as follows.

Even-slice Rate Control In this approach, the four super slices, j = 0, 1, 2, and 3 as shown

in Fig. 4.7, are consecutively generated from the first MB row to the last MB row, and each

super slice has equal MB rows. The parameter <5 is a minimum change based on its original

QP[j] values. The main idea is: First, each super slice is encoded with the determined QP[j]

value; Second, the encoded bit rate is compared with the target bit rate; Finally, re-encode

this super slice with "QPfjJ+d" value if the bit rate consumed are greater than the desired bit

rate while re-encoding this super slice with "QP[j]-(5" value if the encoded bit rate is less than

the desired one until the encoded bit rate is inside the target bits range.

Priority-slice Rate Control In this approach, the sum of deviation of each MB row is

calculated and MB rows are sorted from ones with the larger deviations to ones with the

smaller deviations. Each super slice, when j — 0, 1, 2, and 3 as shown in Fig. 4.7, contains a

quarter of MB rows of an intra frame. The super slices are thus encoded one by one according

to their priorities. Super slices with larger deviation values are assigned to higher bit rate

47

4.4. PROPOSED INTRA FRAME CODING ALGORITHM

Figure 4.7: Slice rate control.

ranges because they usually have higher output bits fluctuation than the ones with smaller

deviations.

4.5. EXPERIMENTAL RESULTS AND ANALYSIS

4.5 Experimental Results and Analysis

4.5.1 R a t e Control Per formance

The H.264/AVC reference software JM12.0 [50] is performed to evaluate the proposed algo-

rithms. The baseline profile is selected. In order to evaluate the initial QP determination

result, only intra frame is enabled in this experiment. The R-D optimization (RDO) and con-

text adaptive binary arithmetic coding (CABAC) [21] are enabled as well. There are eight

benchmark video sequences used in our experiment, which are "Foreman", "Akyio", "News",

"Coastguard", "Mobile and Calendar", "Football", "Table tennis", and "Mother and Daugh-

ter". Furthermore, to accurately evaluate the proposed RC scheme under scene change, a

new sequence with CIF format called "Fancb" is generated since the combined new sequences

contain not only eight continuous frames but also eight frames of scene change, which locate in

the first frame of each combined sequence. The "Fancb" sequence is formed by combining the

first 10 frames of each sequence of "Foreman", "Akyio", "News", "Coastguard" and "Bus".

The result of the proposed approaches, aiming target bit rates equal to 192 kbps of "Fancb",

are compared to the original RC scheme [45] adopted in H.264/AVC reference model JM12.0

as shown in Fig. 4.8 (a). Obviously, the proposed approaches provide better result, which

are more stabler and closer to the target bit rate. On the contrast, the result from JM12.0

with fixed initial QP values is much worse and has higher fluctuations in output bit stream.

Figure 4.8 (b) also compares the performance of "Mobile and Calendar" between the proposed

approaches and JM12.0 model. With the proposed multiple QPs, a roughly 0.53 dB and 0.74

dB improvements are achieved by the two proposed RC schemes, respectively.

On the other hand, the experiments are also conducted using the first 100 frames of eight

sequences to measure the frame bit rate mismatch ratio defined as:

M% = | f l t o r g g ~ Ractual1 x 100% (4153
target

where Rtarget and Ractual are the target bit rate and accurate bit rate, respectively. Table 4.1

tabulates the average value for different sequences. From this table, we can see that the rate

estimation accuracy has been greatly improved by the proposed approaches, especially for the

49

4.5. EXPERIMENTAL RESULTS AND ANALYSIS

Number of frame
(a). Output bit rate comparison.

41

39

37

^ 35
m •o
« 33
Z
w 31 a.

29

27

25

0 100 200 300 400 500
Bit rate (kbps)

(b). Performance (proposed schemes vs. JM12.0).

Figure 4.8: Comparisons of bitrate and performance of "Fancb".

combined sequence. On average, the mismatches of our encoding schemes are about 13.57%

and 7.18% compared with 25.15% of JM12.0 model, and we have achieved up to 46% and

71.5% improvements over JM12.0 model.

7

4.5 .2 Scene Change

An abrupt scene transition frame is one that is hardly correlated with the previous frames.

In this case because an intra frame has less distortion than an inter frame, almost all MBs

50

4.5. EXPERIMENTAL RESULTS AND ANALYSIS

Table 4.1: Performance & mismatch comparison.
Sequences JM12.0 Even-slice RC Priority-slice RC
Sequences

PSNR M% A PSNR M% A PSNR M%
Calendar 34.51 19.34 0.55 11.22 0.76 4.31
Coastguard 26.78 32.14 0.46 15.23 0.66 6.78
Foreman 33.62 26.34 0.41 13.32 0.57 8.82
News 34.25 23.11 0.54 15.23 0.67 7.81
Akiyo 29.87 21.43 0.36 11.34 0.55 4.6
Mother 30.89 19.56 0.44 10.12 0.58 5.51
Foot5ball 29.11 31.18 0.76 16.21 1.21 8.98
Table Tennis 33.24 25.13 0.59 14.22 0.82 7.89
Fancb 32.36 55.13 0.66 15.22 0.82 9.89
Average 31.63 25.15 0.53 13.57 0.74 7.18

are encoded in intra mode.However, the RC scheme employed in H.264/AVC adopts quadratic

R-D model [45], which is suitable for inter frame, but not for intra frame. It results in more

fluctuations of output bit rate and video quality, especially in lower bit rate applications.

Therefore, a new RC scheme to improve video quality at scene change is very important. This

thesis employs deviation operator to detect scene change and re-calculate QP values for each

frame. To detect the scene change frame, the sum of deviation of the frame is used again,

which is described by the formula:

SceneChange% = ^ 'SODcur[i\ ~ SOD^M x ^
Zi=0SODcur[i]

where SODpre[i] refers to sum of MB deviations of the ith group in the previous frame. The

selection of threshold value of scene change is a trade-off. If the threshold value is set up too

higher, normal scene changes are not able to be detected, and thus the fluctuation of output bit

rate happens while lower threshold value of scene change brings with abnormal scene change,

and therefore takes long time to update QP values. By experimental observation, a frame

with the sum of deviation 25% greater than that of its previous frame can be regarded as

scene change, which is suitable for most of scene change cases. To verify the performance

of the proposed algorithm in scene change, the mixed sequence "Fancb" is used. Figure 4.9

illustrates the result of the scene change, which would be observed in the transition frame

from the sequence "Coast and guard" to the sequence "Bus". Figure 4.9(a) shows the result

of H.264/AVC JM12.0 RC and Fig. 4.9 (b) shows the result of the proposed algorithm with

priority slicing RC scheme. Obviously, the proposed approach achieves better visual and PSNR

performances than the H.264/AVC reference model when scene change occurs.

4.6. CONCLUSIONS

(a). JM12.0 PSNR=26.3dB. (b). Proposed PSNR=31.7dB.

Figure 4.9: Visual comparison of scene change.

4.6 Conclusions

In this chapter, a novel intra frame QP determination algorithm has been presented. The

algorithm adaptively enhances the QP prediction accuracy of the conventional R-Q model by

taking the deviation-based frame complexity into consideration. Two types of RC schemes are

proposed to reduce output bit rate fluctuations. Also, a scene change detection method is used

to reduce degradation of video quality and fluctuations of output bit underflow or overflow.

Experimental results have demonstrated that the proposed RC algorithms outperform the

reference algorithm employed in H.264/AVC in terms of both performance and fluctuation.

52

Chapter 5

MPEG-2 to H.264/AVC

Transcoding

5.1 Introduction

MPEG-2 [18] has become the primary format for broadcast video after being developed in

early 1990's. The new video coding standard, referred to as H.264AVC [21], promises the same

quality as MPEG-2 with about half the data rate. Since the H.264/AVC format has been

adopted into storage format standards, such as blu-ray disc, we expect H.264/AVC decoders

to appear in consumer video recording systems soon. Certainly, as more high-definition content

becomes available and the desire to store more content or record more channels simultaneously

increases, long recording mode become a key feature for future consumer video recorders. To

satisfy this need, we have developed novel techniques that convert MPEG-2 broadcast video to

the more compact H.264/AVC format with low complexity. Complexity is kept low by reusing

information contained within the MPEG-2 video stream. At the same time, high quality is

maintained. The diagram of the proposed system is shown in Fig. 5.1. Since a MPEG-2

decoder is present in existing systems, the challenge is to integrate the simplified H.264/AVC

encoding part of the MPEG-2 to H.264/AVC transcoder into the overall system.

Straightforward cascading of a MPEG-2 decoder and a stand-alone H.264/AVC encoder

would form a transcoder; This will be referred to as the "reference transcoder" later on in the

thesis. The reference transcoder is very computationally complex due to the need to perform

53

5.1. INTRODUCTION
MPEG-2 Display

Broadcast Output

Figure 5.1: Storage system using MPEG-2 to H.264/AVC transcoding.

motion estimation and mode decision in the H.264/AVC encoder. It is well understood that

one could reduce the complexity of the reference transcoder by reusing the motion and mode

information from the input MPEG-2 video bitstream [58, 59]. However, how such information

may be reused in the most cost-effective manner is an open problem. Some existing meth-

ods [60-62] analyze the MPEG-2 8x8 DCT DC & AC coefficients of the neighbouring blocks to

decide the Intra prediction direction or produce better results using pixel domain transcoding.

However these methods could still be computational. Other existing research such as in [63]

is on performing the transcoding in the DCT domain for Intra coding, i.e. fast conversion

algorithm of the DCT coefficients to integer transform algorithm of the DCT coefficients to

integer transform coefficients. Some other fast method using previously coded information is

also proposed [64], depending on the activity of the various block size. The existing work [65]

introduces a low complexity macroblock partition mode decision algorithm for inter-frame pre-

diction in MPEG-2 to H. 264 transcoder. Some other fast algorithms in [66-69] utilize spatial

resolution reduction.

The transcoder architecture we use is shown in Fig. 5.2. It essentially consists of a MPEG-

2 decoder and a simplified H.264/AVC encoder. There is a post-processing unit following

54

5.1. INTRODUCTION

the MPEG-2 decoder that may perform artifact removal or resolution scaling if desired. The

encoder is "simplified" relative to the reference transcoder, since the motion and mode in-

formation is derived based on input MPEG-2 video. In this thesis, we focus on the motion

and mode mapping algorithms, the main obstacles in low-complexity transcoder design. We

assume the input MPEG-2 video is coded using frame pictures, which is the more popular

MPEG-2 coding method. The output will be coded using H.264/AVC frame pictures with

macroblock adaptive frame/field (MBAFF) turned off. However, the proposed method could

easily be generalized for field picture input and frame picture output with MBAFF or field

picture output. In addition, we disable inter prediction for block sizes 8x4, 4x8 and 4x4, al-

though the proposed algorithms can be applied to them too. We think this is a reasonable

design for practical applications since block sizes larger than 8x8 are believed to achieve most

of the gains promised by variable block size motion compensation.

Figure 5.2: MPEG-2 to H.264/AVC transcoding architecture.

55

5.1. INTRODUCTION

In reported works [64, 70] for motion mapping in transcoding, a complete motion estimation

algorithm is actually still performed. For inter 16x16 prediction, the motion vectors from

incoming MPEG-2 video are used as additional motion vector predictors. For smaller block

sizes, e.g. 16x8, 8x16 and 8x8 etc, motion vectors are estimated not directly from incoming

motion vectors since MPEG-2 does not have such motion vectors. Instead, these motion vectors

are estimated using pure encoding algorithms without considering incoming MPEG-2 motion

vectors. Therefore, such an approach still needs very complicated motion search algorithms.

In this chapter, we propose a very efficient motion mapping algorithm that directly maps

incoming MPEG-2 motion vectors to outgoing H.264/AVC motion vectors, regardless of their

supporting block sizes. With the proposed algorithm, the need for complex motion search

algorithm is completely eliminated. In addition, we propose an algorithm to support the

mapping to H.264/AVC motion vectors with different reference picture, which may be useful

in case of picture type conversion or picture skipping, as well as an algorithm to support field

to frame motion vector mapping.

For rate-distortion optimized mode decision, the main complexity lies in the Lagrange cost

evaluation for all possible coding modes. Existing algorithms typically try to reduce the number

of candidate modes actually considered in Lagrange cost evaluation, either based on analysis

of pictures for intra mode decision or other heuristics for inter mode decision. In [71], edge

direction mapping is used to reduce the number of candidate intra prediction modes. While

in [72], edge vector amplitude is used to reduce the number of candidate inter prediction modes.

However, these algorithms may be unreliable at times since the pre-analysis may not correlate

well with the rate-distortion based decisions. In [73], it is demonstrated that a low complexity

cost function can be used to eliminate unlikely inter_4x4 coding modes. The basic idea is

to first rank candidate modes in ascending order based on the low complexity cost function.

Then the more complex Lagrange cost function is evaluated only for few best modes, i.e. with

the lowest costs. In this thesis, we would like to extend the idea so that it would work with

inter modes as well. We will show that the low complexity cost function correlates well with

the Lagrange cost function. It also provides a level of complexity scalability: we have a low

complexity mode decision algorithm if we do not perform the Lagrange cost calculation, and

the performance loss is moderate compared to the full algorithm.

56

5.2. MOTION MAPPING

The contributions of this work, i.e. the proposed motion and mode mapping algorithms,

includes the following:

• A novel motion mapping algorithm directly maps the incoming MPEG-2 motion vec-

tors to outgoing H.264/AVC motion vectors, regardless of their supporting block size,

reference picture and frame structure.

• An efficient ranking-based, rate-distortion optimized mode decision algorithm.

• Evaluating effectiveness of various coding tools in the context of transcoding.

5.2 Motion Mapping

The motion mapping algorithm has to solve the following three mismatch problems between

MPEG-2 motion vectors and H.264/AVC motion vectors: field/frame mismatch, reference

picture mismatch and block size mismatch.

The first type of mismatch is frame/field mismatch. In MPEG-2 frame picture coding, each

macroblock can be coded with either frame prediction or field prediction. In frame prediction,

a macroblock is predicted from a 16x16 block in the reference frame positioned by a motion

vector. In field prediction, a macroblock is divided into two 16x8 blocks, one block belonging

to the top field, and the other block belonging to the bottom field. Each 16x8 block has a

field selection bit that specifies whether the top or the bottom field of the reference frame is

used, and a motion vector that points to the 16x8 pixel block in the appropriate reference field.

While in H.264/AVC frame picture coding without MBAFF, only frame prediction is allowed.

Therefore, we have to convert incoming MPEG-2 field motion vectors to frame motion vectors.

The second type of mismatch is reference picture mismatch. In case of picture type change

or multiple reference picture in H.264/AVC, it is possible that the target motion vector refer-

ences a different reference picture from the motion vectors available from the input MPEG-2

video.

The third type of mismatch is block size mismatch. H.264/AVC allows use of various

block sizes in inter prediction, while there are only motion vectors based on 16x16 blocks from

MPEG-2.

57

5.2. MOTION MAPPING

Based on the above discussions, we propose a three-step motion mapping approach that

apply to each target H.264/AVC block motion vector. We first convert the incoming MPEG-2

field motion vectors (if any) to frame motion vectors, and then map them to reference the same

reference picture as the target motion vector. Finally we map the resulted motion vectors to

target H.264/AVC motion vectors with the desired supporting block sizes.

After the above motion mapping process is finished, we perform motion refinement centered

at the mapped motion vector. First we perform a integer refinement window of ±1, then

we perform half-pel refinement around the best integer motion vector and then quarter-pel

refinement around the best half-pel motion vector.

5.2.1 Fie ld- to-Frame M a p p i n g

The following algorithms deal with the case where the incoming MPEG-2 motion vectors for

a macroblock are field motion vectors. If a field motion vector refers to the field of the same

parity in the reference frame, then it can be directly used as frame motion vector. If a field

motion vector refers to the field of the opposite parity in the reference frame, then this motion

vector has to be modified.

Without loss of generality, we assume in the video sequence, top field comes first in time.

Let us examine the case where the input forward field motion vector is for top field referencing

bottom reference field. Based on the assumption that motion is linear over time, we can

modify the field motion vector to reference top reference field by linearly scaling the input

motion vector. Also notice there is a half pel vertical displacement between top field and

bottom field, as illustrated in Fig. 5.3, where the temporal distance between the current frame

the reference frame is one frame. In the figure, the input vertical field motion is 0.5, and the

output field motion is 2 in field pixel units, and therefore the frame motion is 4 in frame pixel

units. For the case of forward motion vector for top field referencing bottom field, the general

formula for field to frame mapping is:

58

5.2. MOTION MAPPING

Existing vector

Derived vector

- IX X
-0.5# - IX • X
0 X -0.5O o

o x y X
I X X o

1 / " i X • X
1.50 X o

2.5 • 2 X • X
3 X 2.50 X o

3.5* 3 X • X
4 X 3.50 X o

4.5 # 4X • X
4.5 O o

Top Bottom Top Bottom

Reference picture Current picture

Figure 5.3: Field to frame motion vector mapping.

frame,y - * « (W , ^ , + M) X (2 •< ^ ^

where tp is the temporal distance bewteen current frame and the reference frame. Following

the same process, it is straightforward to derive the formula for field to frame mapping for the

case of forward motion vector for bottom field referencing top field:

_ 2 X (MVfieid,y - 0 . 5) X (2 x tp) vframe,y ~ (2 X tp + 1)

MVt - 2 x (M V f i e i t e) X (2 x t p) „

M V f r a m e > x - (2 x t p + 1) ^

59

5.2. MOTION MAPPING

Similarly, the formula for field to frame mapping for backward motion vectors can be derived.

When a macroblock is coded as a field macroblock, it has two field motion vectors, one for top

field, and the other one for bottom field. Both of them need to go through the above process.

And then the two resulting motion vectors are averaged to form the final mapped frame motion

vector.

5.2 .2 Reference P i c ture M a p p i n g

In what follows, we present techniques used to map motion vectors to reference different

reference pictures. As an example, we use the case where all non-I pictures are converted

to P slices. First, we consider the mapping of P-frame motion vectors as shown in Fig. 5.4.

Input

O u t p i t I

Figure 5.4: Reference picture mapping of motion vector: P to P mapping.

We take the first incoming P-frame as an example. In the input video, the P-frame is

predicted from its preceding I-frame. Let ti be the temporal distance between the P-frame and

its reference I-frame. In this example, ^=3. Assuming only one temporal reference frame is

used in the output video, the set of input motion vectors must be modified to reference the

preceding P-frame in the output H.264/AVC video. Denote the temporal distance between

the output P-picture and its reference P-picture as t0. In this example, ta=1. Assuming the

motion is small and linear during the period of ti frames, which is typically 100ms or less,

we can represent the mapping from the motion vector of the incoming MB to the output MB

60

5.2. MOTION MAPPING

with:

MV0 = (MVi + ti) x t0 (T5)

A more complicated case is shown as the second incoming B frame in Fig. 5.5, where the

output is P frame. If a macroblock in the B-frame has a forward motion vector, we use (5.5) to

calculate the motion vector for the outgoing P-picture by scaling the incoming forward motion

vector. If a macroblock in the B-frame has only a backward motion vector (MVi^ack), w e first

add the backward motion vector to the forward motion vector of the collocated future P-frame,

i.e., MVifrack + MVi^coi, and then scale the resulting motion vector according to (5.5).

(>yi .p i i s 1 p p p

Figure 5.5: Reference picture mapping of motion vector: B to P mapping.

With all incoming motion vectors converted to frame motion vectors and referencing the

target reference picture, we can derive the target motion vector using the technique described

in Section 5.2.3.

5.2 .3 Block Size M a p p i n g

We present two approaches to map motion vectors with 16x16 block size support to motion

vectors with smaller supporting block size that will be used in H.264/AVC coding. For target

motion vector with 16x16 block support, the input motion vectors can be directly used. The

algorithms proposed in this section only apply to target motion vector with supporting block

61

5.2. MOTION MAPPING

size smaller than 16x16, i.e. 16x8, 8x16 and 8x8.

5.2.3.1 Distance Weighted Average (DWA)

The assumption of the algorithm is that the motion vector of a rectangular block is same as

the motion vector of its geometry center. Then the input to the block size mapping becomes

the motion vector of incoming macroblocks' geometry center. And the output becomes the

motion vector of the target block's geometry center.

In this algorithm, the output is derived as a weighted average of candidate macroblocks'

motion vectors. The candidate macroblocks include current macroblock and those adjacent to

the current target block. The weight of an input motion vector is inversely proportional to the

distance between its associated macroblock's geometry center to the target block's geometry

center.

In Fig. 5.6, for target macroblock partitions A and B for inter_16x8 mode, the candidate

macroblocks are labelled with a,\ through ae, and with b\ through be respectively. Note that

a macroblock has duplicate labels if it is candidate macroblock for deriving both A and B.

The geometry centers of each candidate macroblock and target macroblock partitions are also

indicated in the figure.

Based on the notations given in the figures, here are how the target motion vectors for A

62

5.2. MOTION MAPPING

are computed:

M V { A) = Z U ^ M V j a ,) ^
E i = 1 w i

where the weight Wi is proportional to the distance between the geometry center of the candi-

date macroblock â and that of target macroblock partition A. In this case, the values of w-, is

given as follows:

Wi = {0.0902,0.1503,0.0902,0.1093,0.4508,0.1093}

The motion vector for macroblock partition B can be calculated in a similar fashion using

motion vectors of Similarly, candidate macroblocks are illustrated in Fig. 5.7 and Fig. 5.8

for inter_8xl6 and inter_8x8 modes respectively, and the motion vector mapping is performed

as distance weighted average of candidate motion vectors.

Figure 5.7: Deriving motion vectors for inter_8xl6 macroblock partitions with DWA.

Note that the assumption of this approach is more general than translational block motion

model typically assumed in related works. Even when there are motions like zoom-in , zoom-

out, the motion vector of a rectangular block can be considered to be approximately same as

the motion vector of its geometry centre.

63

5.2. MOTION MAPPING

Figure 5.8: Deriving motion vectors for inter _8x8 macroblock partitions with DWA.

5.2.3.2 Error-variance Weighted Average (EWA)

In this algorithm, the output is also derived as a weighted average of candidate macroblocks'

motion vectors. The difference from DWA lies in how the candidate motion vectors are formed

as well as how the weights are determined. First a mask is applied to each target H.264/AVC

motion vector, i.e. each target H.264/AVC macroblock partition for which a motion vector has

to be determined. The weighting masks for 16x16, 16x8, 8x16 and 8x8 macroblock partitions

are shown as areas enclosed by dashed lines in Fig. 5.9. In these figures, each small square is a

8x8 block. The motion vector of each 8x8 block is assumed to be the vector of the macroblock

it belongs to. Actual motion vector mapping is performed per weighting mask.

As shown in Fig. 5.10, each 8x8 block and its motion vector are represented by Bk and

d^, respectively. Xij denotes the location of a pixel in a 8x8 block, and the prediction error

is computed using the following equation from the prediction error for each pixel location

ek= le(®(ij)'*)l ©
(i , j) € B k

And, the variance of th motion vectors within a mask is derived as follows:

a — Var(di),i e R Q f j f)

64

5.2. MOTION MAPPING

" 1 i !
•

1 r i J i i

1 i i
-1 i _

\
L

(a). Inter 16 x 8 partition. (b). Inter 8 x 16 partition.

i r
> i

<

!
(c). Inter 8 x 8 partition.

Figure 5.9: EWA weighting masks.

where, R is the weighting mask. Finally, H.264/AVC Inter_8x8 motion vector is obtained

through:

d = ZR fkdk
HRVk

<fk = {
h(o)ek

fc/4
k=4

In (5.9), A is a constant value and h(a) specifies a monotonically-decreased discrete function

of a (various of motion vectors in a mask). As a result of this process, we have the mapped

motion vector for each H.264/AVC target macroblock partition.

AVC domain MPEG-2 domain
\ [s

= d / (B 4 ,
\ I \ ^

l i \ [s

= d / (B 4 ,
\ I \ ^

t > J . - - j - -

j]
1 \ 1 ! j

d k = d f { B k y t) , 0 < k < 9

Figure 5.10: Error-variance weighted mapping for inter_8x8 block.

65

5.3. MODE DECISION

5.3 Mode Decision

In H.264/AVC, a macroblock can be coded in one of many possible modes. It is therefore very

important to have a cost-effective mode decision algorithm, otherwise some of coding efficiency

benefits of H.264/AVC coding may not be realized. We briefly review the rate-distortion

optimized (RDO) mode decision algorithm used in JM reference software below. The goal of

RDO mode decision is to help select the best block partitioning as well as inter/intra decision

for a macroblock. First, the coding rate and the resulting distortion are computed for all

possible macroblock coding modes. Then the Lagrange cost function is evaluated for each

mode m:

Ji(m) = SSD(m) + Xmode x R(m,Q); fslo)

where, SSD(m) is the distortion, i.e. the sum of squared distance bewteen the original block,

s, and the reconstructed block using mode m, s(m) is expressed as:

CUD

where, • is Lp-norm. In (5l0], R(m, Q) is the total number of bits used to code the mac-

roblock, including overhead such as mode and motion vectors, as well as transform coefficients.

Amode is the Lagrange multiplier that controls the rate-distortion trade off. Q is the quan-

tizer used for quantization of transform coefficients. As used in the JM software, Amode is set

according to H.264/AVC quantization parameter as follows:

A mode = 0.85 x 2Qp/3 (5A2)

The optimum mode is the one that minimizes the Lagrange cost function:

m* = argminmeM{Ji{'rn)) [5.13J

where, M is the set of candidate modes. As an example, for P-slices in H.264/AVC, the set

of candidate macroblock modes are {skip, interl6xl6, interl6x8, inter8xl6, inter8x8, intra4x4,

intral6xl6}.

66

SSD{m) = ||s - s(m)||

5.3. MODE DECISION

5.3.1 Rank ing B a s e d M o d e Dec i s ion

The process for calculating the Lagrange cost needs be performed many times since there are

a large number of available modes for coding a macroblock. Therefore, the computation of the

rate-distortion optimized coding mode decision is very intensive. This motivates us to develop

a more efficient mode decision algorithm. The basic idea is to rank all candidate modes using

a simpler cost function, and then evaluate the more complex Lagrange rate-distortion costs

only for the few best modes determined by the ranking. The simpler cost function we choose

to use is the low-complexity cost function used in JM software based on the sum of absolute

distance of the Hadamard-transformed prediction residual error signal:

SATD(m) = ||T(s - s f m)) ^ Q y J)

where s(m) is the prediction signal using the mode m, and T() is the Hadamard-transform

operator. The cost function would then be given by

J2(m) = SATD(m) (5T5)

So first we compute the SATD cost J'lijn) for all possible modes. Then we sort the modes

according to their SATD costs in ascending order, and put the first k modes in the a test set,

denoted as T. For the modes in T. compute the Lagrange cost J\ using (5.10j, which is much

complexer than computing the cost J2 with SATD using (5.15), and then we finally select the

best mode according to the Lagrange cost. The parameter k controls the complexity-quality

trade-off. To verify the correlations between rankings using SATD cost and Lagrange cost, a

simple experiment is performed. We collect the two costs for all luma 4x4 blocks in the first

frame of 5 CIF test sequences coded with QP=28, and then count the percentage of times

when the best mode according to Lagrange cost is in the test set T. This is called the mode

prediction accuracy. The results are plotted in Fig. 5.11 as k vs. mode prediction accuracy.

The strong correlation between the two costs is evident in the high accuracies shown. In this

work, k is set to be "3".

Note that the above algorithm applies first to decisions of Intra4x4 prediction modes, and

67

5.3. MODE DECISION

1

§ 0.95
3 O O <
| 0.9
o
T3 <D
£ 0.85

o
0.8

° '7 51 2 3 4 5 6 7 8
Number Of Modes

Figure 5.11: Number of test modes vs. accuracy.

then again to the decisions of various inter and intra prediction modes. And when applied to

Intra4x4 prediction modes, the SATD cost for for has an additional term compared to 5.15.

J2(m) = SATD(M) + \MODE x 4 x (1 - 8{m = m +)) (5.16)

where m + is the most probable mode for the block. The additional term is to add a simple

rate constrain.

Fast Mode Decision Algorithm Verification
_ -—

j

5.3.2 Transform D o m a i n Cost Calculat ion

Transform domain cost calculation is based on our previous work [74], where we found out

that the coding distortion, Sum of Squared Distance (SSD) can be more efficiently calculated

in transform domain without reconstruction of pixels as follows.

SSD(M) = \\{E-E{M) <g> W1)®W2F2 1517]

where E and E are the transformed residual signal and reconstructed transform residual

signal through inverse scaling and inverse transform. <g> is the operator for scalar multiplication

or element-wise multiplication. W1 and W2 are weighting matrices to compensate for the

68

5.4. SIMULATION RESULTS

different norms of H.264/AVC transform and quantization design, and are given as:

^10 20 16 20^

1 20 25 20 25
64 10 20 16 20

^20 25 20 25 j

/ i l l l \
4 \/40 4 V2o
1 1 1 l

v/40 10 V40 10
1 1 1 l
4 \/40 4 \/40
1 1 1 1

Vv'io 10 V40 TO

When we can compute the distortion in transform domain, there is not need to perform the

inverse transformation and reconstruction of pixels. Therefore complexity for mode decision

is reduced. This technique is used in calculation the Lagrange rate-distortion costs in the

intra4x4 mode decision process. For more details about the technique, please refer to [74]

5.4 Simulation Results

We use two interlaced sequences in the simulations: HarborScene and StreetCar. Both of

them have resolution 1920x1080 with frame rate 30 frames/s, and are 15 seconds long (450

frames). They are encoded using the MPEG-2 reference software [75] at 30 Mbps and are used

as input to the transcoder. The group of picture (GOP) size for MPEG-2 encoding is N=30

and two B-frames are coded between every consecutive pair of anchor frames, i.e. M=3. The

search ranges are set to be 85, 170, 255 for temporal prediction distance of 1, 2 and 3 frames,

respectively.

As a benchmark, we compare the performance of the proposed transcoding algorithms to

the reference transcoder, which is actually a cascaded MPEG-2 decoder and a H.264/AVC

encoder, where the H.264/AVC encoder encodes the pictures reconstructed by the MPEG-

2 decoder. The H.264/AVC encoder we use is the JM10.2 reference software [38]. Inter

predictions using block sizes 4x8, 8x4 and 4x4 are disabled to make fair comparisons. In all

simulations, I-frames are always transcoded to I-pictures. The QP values are chosen for the

69

5.4. SIMULATION RESULTS

H.264/AVC quantization such that the output bit rate is around 10 Mbps, which is the target

bit rate of interest for consumer storage applications. UVLC is the H.264/AVC entropy coding

method. The rate-distortion plots that evaluate various aspects of the proposed transcoder are

shown from Fig. 5.12 to Fig. 5.15.

The relative complexities for proposed transcoder algorithms are shown in Figure 5.12. The

complexity numbers are measured as the average CPU time consumed by the transcoder for

all QP values for the StreetCar sequence. Only StreetCar results are shown since the results

are similar for other sequences. Complexity analysis will be provided in further discussions

below.

Computational complexity of StreetCar

Transcoding algorithms

Figure 5.12: Transcoding complexity.

We use four interlaced sequences in the simulations: HarborScene, StreetCar, SoccerAction,

and HorseRace. All of them have resolution 1920x1080, frame rate 30 frames, and length 15

seconds (450 frames). They are encoded using the MPEG-2 reference software [75] at 30 Mbps

and are used as input to the transcoder. The group of picture size for MPEG-2 encoding is

30, and two B frames are coded between every consecutive pair of anchor frames, i.e. I and

P frames. (We pick 30 Mbps since it is not an optimized encoder and the quality at 30 Mbps

was found to be comparable visually to broadcasting content.)

As a benchmark, we compare the performance of the proposed transcoding algorithms to

70

5.4. SIMULATION RESULTS

the reference transcoder, which is actually a cascaded MPEG-2 decoder and a H.264/AVC

encoder, where the H.264/AVC encoder encodes the pictures reconstructed by the MPEG-

2 decoder. The H.264/AVC encoder we use is the JM10.2 reference software [38] with the

following parameters: Universal Variable Length Coding (UVLC), and UseFME=l. Inter

predictions using block sizes 4x8, 8x4 and 4x4 are disabled to make the comparison fair.

In all simulations, I frames are always transcoded to I pictures. The QP values are chosen

for the H.264/AVC quantization such that the output bit rate is around 10 Mbps, which is the

target bit rate we are interested to achieve.

5.4.1 M o t i o n M a p p i n g Evaluat ion

The simulation results reported in this subsection are aimed at evaluating the performance of

the DWA and EWA motion mapping algorithms. We simulate two transcoders, one using the

motion mapping process described in Section. 5.2 with DWA, and the other one with EWA.

We compare the performance of the two transcoders to that of the reference transcoder. To

demonstrate the performance of the complete mapping algorithm, we convert incoming P- and

B-frames to P-pictures of H.264/AVC output. This effectively simulates the case in which

compliance to the H.264/AVC Baseline Profile is desired.

The results are shown in Fig. 5.13. It is clear from these plots that the proposed map-

ping algorithms (both DWA and EWA) achieve comparable rate-distortion performance to

the reference transcoder. At 10 Mbps rate point, the performance loss relative to the refer-

ence transcoder in terms of PSNR is less than 0.4 dB for HarborScene and about 0.15 dB

for StreetCar. Compared to the reference transcoder using exhaustive search, the complexity

saving is more than 95%. The complexity is measured using consumed CPU time, and the

computational saving is similar for both sequences and methods. Both DWA and EWA have

almost the same PSNR performance (hard to tell the difference from the rate-distortion plot),

therefore in all remaining simulations we will use DWA as the mapping algorithm. In terms

of computational complexity, DWA is slightly simpler than EWA. However, the difference is

fairly small considering the overall transcoder complexity. For this reason, in the complexity

plot Fig. 5.12, only DWA complexity is shown.

5.4. SIMULATION RESULTS

32

31.5 i

^ 31 : to
> 30.5
a.

I 30 I

29.5 !

29 '

(a). HarborScene

10 11 12

Bit rate (Mbps)

• Reference
-̂ DWA
-*-EWA

13 14 15 16

35.7

35.5 ;

,-.35.3 : ffl j S I
>r 35.1

i
^34.9

34.7

34.5

(b). StreetCar

6 7 8 9
Bit rate (Mbps)

• Reference
-"•-DWA
-*-EWA i

i
10 11 12 13

Figure 5.13: Motion mapping performance.

5.4.2 Mode Decision Evaluation

The simulation results reported in this section evaluate the performance of the proposed

ranking-based mode decision algorithm. We simulate two transcoders with RDO turned on.

One uses the proposed ranking-based RDO algorithm, while the other one uses an exhaustive

RDO algorithm. Both use the DWA mapping algorithm. As additional points of comparison,

we also plot the performance of the DWA mapping with RDO off (DWA) and the reference

transcoder with RDO on (REF+RDO).

As shown in Fig. 5.14, the performance of the simplified ranking-based mode decision

(DWA+ranking) is very close to the RDO mode decision (DWA+RDO), with negligible PSNR

72

5.4. SIMULATION RESULTS

loss of less than O.ldB. The simplified mode decision saves close to 50% of the computation

compared to the exhaustive RDO mode decision. We also observe that the simplified RDO

mode decision adds about 50% complexity relative to DWA without RDO, while achieves a

small PSNR improvement. Consistent to the previous set of simulations, small performance

gaps can be observed relative to the reference transcoder with RDO.

(a). HarborScene
32.5 ;

12 14 16
Bit rate (Mbps)

•-REF+RDO
•-DWA+RDO
'-DWA+ranking
k-DWA

22

35.7 ;

35.5 j

-s35.3 ; ca
2- '
> 35.1 ;
C£ j

I 34.9 !

34.7 i

34.5

(b). Streetcar

10

•-REF+RDO
*-DWA+RDO
••DWA+ranking
»-DWA

11 12 13
Bit rate (Mbps)

Figure 5.14: RD modes ranking performance.

5.4.3 Impact of B Slice

In the last set of simulations, we examine the performance changes when B-slices are introduced

as part of the output. In Fig. 5.15, performance of proposed transcoder using DWA and B

73

5.4. SIMULATION RESULTS

slices with RDO both on (DWAJPB+RDO) and off (DWA.IPB) are shown. The performance

of DWA without RDO or B slices are shown as reference. We also plot the performance of ref-

erence transcoder using B slices and RDO (REF JPB+RDO) for comparison. The interesting

point worth noting is that introducing B-slices actually improves the compression efficiency

fairly significantly while not significantly increasing the complexity. The reason seems to be

that when B-slices are introduced, the number of frames for which sub-pel interpolation is

needed is reduced by 2/3. Although transcoding B-slices would need more complexity for

motion compensation and motion mapping, the complexity saving from sub-pel interpolation

offsets much of the increase. This suggests B-slices could be a more cost-effective tool for

the transcoder design than the RDO tool. We can also see from the plots that the proposed

transcoder achieves comparable quality to the reference transcoder.

(a). HarborScene

Bit rate (Mbps)

(b). StreetCar
35.9

Bit rate (Mbps)

Figure 5.15: Motion mapping with B performance.

74

4.6. CONCLUSIONS

5.4 .4 Per formance Compar i son

Table 5.1 shows a comparison of the actual running time on a Pentium-IV 2.66 GHz between

the cascade transcoder and proposed transcoder using an arbitrary QP value. The proposed

methods are 3-4.3 times faster than the cascade transcoding method in the case of the HD1080

sequences, respectively. This table aslo shows the H.264 bitrates, PSNR, and actual running

time of the transcoders for various sequences for the given QP values.

Table 5.1: Performances comparison.
Sequence QP Experiment P S N R

(dB)
Bit Rate

(Mbits)
Time
(Sees)

WhaleShow

27 Cascading
Transcoder

29.12
28.12

121.3
111.2

3.13
1.14

WhaleShow 30
Cascading
Transcoder

31.12
28.12

135.1
127.4

3.53
1.47 WhaleShow

33
Cascading
Transcoder

34.12
28.12

142.3
137.5

3.91
1.84

EuropeanMarket

27
Cascading
Transcoder

28.42
27.14

101.22
89.34

2.21
0.83

EuropeanMarket 30
Cascading
Transcoder

30.72
29.92

113.45
100.34

2.81
0.89

EuropeanMarket

33 Cascading
Transcoder

34.12
33.12

121.45
109.1

3.13
1.07

StreetBus

27
Cascading
Transcoder

30.62
29.24

141.12
113.21

3.73
0.91

StreetBus 30 Cascading
Transcoder

33.02
32.52

151.45
131

3.93
1.19 StreetBus

33
Cascading
Transcoder

35.32
34.42

167.23
141.98

4.11
1.43

5.5 Conclusions

We presented motion mapping algorithms that can efficiently map incoming MPEG-2 motion

vectors to outgoing H.264/AVC motion vectors, even when they have different block size sup-

port and different reference pictures. We then presented an efficient rate-distortion optimized

macroblock coding mode decision algorithm, where we first evaluate candidate modes based

on a simple cost function so that a reduced set of candidate modes is formed, then we evaluate

the more complex Lagrangian cost calculation only for the reduced set of modes. Extensive

simulation results show that our proposed transcoder incorporating the proposed algorithms

75

4.6. CONCLUSIONS

could achieve good rate-distortion performance with low complexity. Compared with cascaded

decoder-encoder solution, the RD performance is maintained while the complexity is signifi-

cantly reduced. We also compared the transcoding performance with and without frame type

conversion.

With the above transcoding algorithms, the current transcoder's complexity is dominated

by sub-pel interpolation and motion refinement. And mode decision still has considerable

complexity. Therefore, it will be interesting to further explore along these directions to have

more efficient transcoder design without affecting the compression efficiency.

76

Chapter 6

Efficient Dataflow VLD

Implementation for MPEG-4 SP

RVC Framework

6.1 Introduction

Nowadays, video decoders need to support multiple codec standards because more and more

video standards are deployed. Although different, all coding standards use the same or very

similar coding tools and results to share similar architectures and implementations. Unfortu-

nately, the way in which the existing coding standards are specified lacks of flexibility to adapt

performances and complexity when new applications emerge. MPEG reconfigurable video cod-

ing (RVC) standard intends to create a framework containing existing coding technology for

developing, beside current standard decoders, new configurations for satisfying specific appli-

cation constraints. RVC introduces a novelty since it promotes standardization solutions from

different implementers. One challenge posed by the possibility of reconfiguring decoders is

the need of appropriate procedures for the instantiation and synthesis of bit stream parsers in

which efficient variable length decoding processes are important tasks. This thesis presents a

method for generating efficient components for the MPEG RVC library capable of decoding

variable length codes. The components of the library like all other coding tools are CAL actors

generated automatically given the input VLD table. By using the described procedure, VLD

77

6.2. MPEG RECONFIGURABLE VIDEO CODING OVERVIEW

tables can be automatically and efficiently generated as FUs of RVC toolbox. By efficiently

it is also meant that the data flow CAL FUs are suitable for efficient synthesis into software

(SW) and hardware (HW) implementations.

6.2 MPEG Reconfigurable Video Coding Overview

MPEG has always worked to propose innovations in the video coding field that are capable of

satisfying the changing landscape and needs of video coding applications. With this objective,

MPEG intends to standardize the reconfigurable video coding framework allowing a dynamic

development, implementation and adoption of standardized video coding solutions based on

a unified library of components with features of higher flexibility and reusability. RVC is a

flexible framework for MPEG that tries to provide a systematic way of constructing video

codecs from a collection of coding tools, it has been firstly presented in [76]. The goal of the

introduction of such new interoperable model at coding tool level is twofold: to speed up the

adoption and standardization of new technologies by adding new tools in toolbox and to enable

the dynamic definition of new profiles. The modular data flow based specification formalism

also provides a starting point for design that is adapted to yield direct synthesis of SW and

HW by using appropriate tools, for direct mapping on SW and HW platforms.

A decoder specification under RVC is defined with the standard MPEG toolbox (instantia-

tion and connections of the different coding tools) and the specification of the video bit stream

syntax expressed in a MPEG-21 bit stream syntax description language (BSDL) schema [77].

The toolbox consists of various coding tools which are also named functional units (FU).

Each FU is a modular coding tool (such as inverse discrete cosine transform (IDCT), motion

compression (MC)).

The concept of RVC framework can be illustrated by Fig. 6.1. The key difference between

RVC and traditional codec standards is their conformance point. The traditional codec stan-

dards define their conformance point at decoder level whereas RVC defines it in tools level

so that RVC enables much more flexibility and several configurations of components taken by

previous monolithic specifications are possible.

Another fundamental difference between RVC specification and the traditional standard

codec specification is the data flow based formalism. In the traditional codec specifications,

6.3. VARIABLE LENGTH DECODING FOR THE RVC FRAMEWORK

a a a u U & a a
RVC FU Toolbox

8x8DCT 4x4Inter ME VA MC VI MC

Figure 6.1: RVC framework.

C / C + + is the language of the reference SW, which is usually composed by several thousands of

lines and is getting more and more difficult to understand and to transform into efficient imple-

mentations. In the RVC framework, data flow actor-oriental language CAL which is simpler,

compact in terms of number of code lines, and does not include non necessary implementations

details such as a fixed scheduling for C / C + + reference SW, for instance, is used to describe

FUs behavior.

6.3 Variable Length Decoding for the RVC Framework

One problem that needs to be solved when applying RVC is how to specify the parser that is in

charge of decoding the bit stream of compressed video. In fact, whereas all FUs of the standard

MPEG toolbox are available under the form of CAL actors or as a proprietary implementation

for specific platforms, the parser of a new decoder configuration need to be synthesized and

instantiated automatically because it is a too burdensome task to let the designer write the

parser actor in CAL. The parser is not considered as a coding tool because it does not contains

any algorithm described by the standard. The unique task of the parser is to feed the coding

tools with the right coded data contained in the bit stream. Therefore, a systematic procedure

79

6.3. VARIABLE LENGTH DECODING FOR THE RVC FRAMEWORK

for synthesizing efficient parsers using appropriate FUs available in the standard toolbox is

required.

6.3 .1 So lut ion for Variable Length D e c o d i n g

Variable length coding is the most popular entropy coding module which is used in many video

and picture coding standards, such as JPEG, MPEG-x, and H.26x. One of the difficulties for

RVC to describe variable length decoding is the large amount of tables. For example, in

MPEG-4 SP [78] there are 8 tables and in MPEG-4 ASP [78], there are 19 tables. Including

those tables directly in the syntax description (BSDL schema transmitted as header in the

bit stream) would imply inefficiency in the compactness of the description of a new codec

configuration, but would also requires large memory and bandwidth. Another difficulty is

the parsing process of the undefined bit length of syntax. In order to avoid carrying VLD

tables in bit stream description, VLD tables could be separated and implemented in CAL

as FUs of RVC toolbox. The proposed Huffman decoding method is applied to VLD tables,

which further improves efficiency. The bit stream syntax parser is generated automatically

as an independent FU in CAL language from an extensible markup language (XML) schema

describing the structure of the bit stream. The transformation process is implemented using

extensible style sheet language transformations (XSLT). The bit stream schema is specified in

BSDL [77], a MPEG-21 standard. Negotiation between the syntax parser and VLD tables are

also established in XSLT for variable decoding process. The systematic solution for syntax

parser is highly efficient and flexible to decode a reconfigured bit stream.

6.3 .2 Efficient H u f f m a n D e c o d i n g M e t h o d

In this section, a CAL model for efficient Huffman decoding is proposed for VLD tables of

MPEG-2 and MPEG-4. The proposed implementation is optimized aiming at searching time

and memory requirement reduction. Huffman coding has been adopted by MPEG-2 and

MPEG-4 entropy coding. Sets of codewords are defined based on the probability distribu-

tions of "generic" video material. The direct way to decode variable length syntax is using a

full search method:

80

6.3. VARIABLE LENGTH DECODING FOR THE RVC FRAMEWORK

1. The variable length decoder receives one bit from bit stream.

2. Look through the corresponding table from the beginning to check whether it is coincide

with certain code.

3. If it is found, output the value from the table.

4. Or else receive another bit and combine it with the former bits, go back to Step 1.

Such full search method is simple but not efficient enough because of duplicate lookup once

one bit is received. In addition, it requires a 2-D memory for each table which is not a good

choice for hardware implementation. The proposed method rearranges the code in the Huffman

tree. The binary Huffman tree search can find the optimal route in short time and requires

less medium data. As shown in Fig. 6.2, the variable length coding codeword starts with the

first incoming bit. The current bit goes to the left leaf if the coming bit is "0". Otherwise, it

goes to the right leaf while "1". Weight of each leaf is marked with the same value of lookup

index for corresponding VLD tables. That is to say, every time one bit is consumed at input,

one index is generated and one lookup result is generated as output. If the result is a true

decoded value, it is provided to the output of the CAL FUs and the search of the variable

length coding is completed. On the other hand, if the result is a false decoded value, a further

searching is continued until a completed codeword is found.

Different video coding standards have different VLD tables. Even in a single standard,

different profiles and levels have different VLD tables' scope. The most efficient solution for

the RVC framework would be to build separate FUs available in the standard toolbox for each

VLD table decoding and then generate dynamically a parser as composition of a synthesized

CAL parser and VLD decoding FUs.. Each VLD table is considered as an independent FU

of the RVC toolbox. For example, in MPEG-4 specification Annex B, there are 8 VLD tables

that are used by a simple profile decoder. They are B-6, B-7, B-8, B-12, B-13, B14, B-16 and

B-17. In the MPEG-4 advanced simple profile, to these tables other VLD tables are needed. It

is unnecessary to generate them once again, just access to toolbox and get related FUs. Take

MPEG-4 SP for example, we generate the VLD FUs and name them with the table name,

such as B-6, B-7 and so on.

81

MPEG-4 specification Table B.6 of Annex B [78] is listed in Table 6.1, which is the VLD

table for mcbpc for I-VOPs and S-VOPs. In this table, the eight values refer to different

chroma coded block pattern (cbp) of block 4 and 5. Table 6.2 is the generated VLD table

by the proposed method. All the data with underscore in this table are media data, which

means that this is not true decode value and the VLD table engine will keep search the next

value when the underscore data is found. The VLD table engine will stop and report searching

failure if "1" is found, which means an error code is detected. Otherwise, true decoded value

from VLD table is returned and the decoding process for the syntax is completed.

6.4 Modeling Variable Length Decoding of MPEG-4 SP in CAL

CAL [79] is a dataflow and actor-oriented language, specified as a part of the Ptolemy II

project at the UC Berkeley [80]. CAL language has concise syntax structure and is suitable

82

6.4. MODELING VARIABLE LENGTH DECODING OF MPEG-4 SP IN CAL

Table 6.1: VLC table of MPEG B-6
code mytpye cbpc(56)
1 3 00
001 3 01
010 3 10
Oil 3 11
0001 3 00
0000 01 4 01
0000 10 4 10
0000 11 4 11
0000 0000 1 Stuffing -

Table 6.2: Generated VLC table of MPEG B-6.
Filel File2
1 3
001 19
010 35
011 51
0001 4
0000 01 20
0000 10 36
0000 11 52

Output-File

Start index: 0
10, 12, 18,58,26
76 34, 16, 42,50,1
8, 144, 208, 140,
204;

for specifying complex signal processing systems as MPEG decoders.

Figure 6.3 shows that the graphical representation of the CAL model of the MPEG-4

SP decoder [78]. The Open Dataflow environment [81] is used to design and simulate CAL

models. The decoder includes several networks of actors. The incoming bit stream is at first

converted into sequential bits by the "serialize" FU, and then is decoded by the "Parser",

the part of RVC-CAL source code is listed in Appendix C.l. The "TextureDecoding" and

"MotionCompensation" networks of actors contain all the coding tools necessary for decoding

the video. Figure 6.4 illustrates the inside of the "parser" FU present in Fig. 6.3. It shows

how VLD FUs are connected to the parser for decoding Variable Length codes. For the sake

of clarity, Fig. 6.4 represents only the connection of one VLD FU to the parser. This VLD FU

serves at decoding the DCT coefficients (Table B-16 of Annex B of the MPEG-4 standard [78]).

The FU "parser" is generated automatically by the XSLT process (refer to Section. 6.5). The

VLD FU is generated using the process described in Section. 6.3. The "BlockExpand" FU is

part of the MPEG toolbox. It outputs the AC coefficients.

When the parser meets a Variable Length code, it consumes only one bit from the bit

83

6.4. MODELING VARIABLE LENGTH DECODING OF MPEG-4 SP IN CAL

mpeg - j
! • — k i — | > i Parser

to

DF

to

to

to

mv Y

BYTE Y
-frl

-Dl

-Dl

Decoding_16xl6 -frl

H)IMC(Y)^

mv U

to
BYTE U

-Dl
Dh

Decoding_8x8(U)

H>

-W

PixelMerger_420
-4

I MC (U) t>I Dl

mv V

BYTE V
-Dl

-Dl

-U

H>

-Dl

I MC (V) t

-Dl

j VID

Notes:
MC: mention compensation.
VID: video display.

Figure 6.3: RVC CAL model of MPEG-4 simple profile.

Figure 6.4: RVC VLD function unit.

stream port. It sends it to the VLD FU. If there is no entry in the table which corresponds

to the input bit, the VLD FU sends back to the parser a token noticing that no matching has

been found. Thus, the parser consumes an additional bit and sends it to the VLD FU. This

latter will check if the first bit and the newly received bit match an entry in the table. If no,

it continues sending token to the parser, saying that there is no matching and the parser must

send an additional bit. If yes, the VLD FU sends a token to the parser saying that a matching

has been found and the parser can parse the next element of the bit stream. The result of the

parsing is then outputted by the VLD FU to the "BlockExpand" FU.

The source code of the VLD FU for decoding the "mcbpc" variable code is shown in

84

6.5. FROM BIT STREAM SCHEME TO PARSER

Appendix C.2. The only part of the FU which is automatically generated is a list of numbers,

representing the VLD table. The rest of the code is always the same for all the VLD FUs. The

extra code is needed to handle the optimized list of number representing the VLD table. This

section showed how the Variable Length Decoding process has been modelled in CAL. The

next section shows how the parser handles the communications with the VLD FUs to decode

these variable length codes.

6.5 From Bit stream Scheme to Parser

Video coding is used under the various multimedia applications such as video conferencing,

digital storage media, television broadcasting, and internet streaming. Due to the heterogeneity

of modern networks and terminals, current multimedia technology has to deal with different

user's requirements. As such, the use of scalable video coding, which derives useful video from

subsets of a bit stream, is a must. RVC is compatible with SVC very well and it can implement

SVC in function unit level. At this moment, the solution is that the MPEG-21 multimedia

framework enables transparent and augmented use of multimedia resources across a wide range

of networks and devices used by different communities [82].

The BSDL parser is a primordial functional unit in the RVC framework because it feeds the

coding tool chain with the information contained in the bit stream to be decoded. As RVC is a

framework for rapid development of decoding solution, the structure of the bit stream can be

modified in order to explore the design space. To avoid the designer to write it by hand (which

would be very time-consuming and error prone), a method has been developed to generate

directly a parser from the bit stream syntax [76]. Figure 6.5 shows that the components of

this transformation process. Each component is implemented in a separate XSLT style sheet.

Pre-processing is the first operation conducted by the top level style sheet. The pre-

processing collects the individual schemata into a single intermediate tree, taking care to cor-

rectly manage the namespace of each component schema and also performs a number of other

tasks, including assigning names to anonymous types and structures. Finite state machine

(FSM) design is the major component of the parser actor. The FSM schedules the reading of

bits from the input bit stream into the fields in the various output structures, along with all

other components of the actor. The FSM is specified as a set of transitions, where each transi-

6.5. FROM BIT STREAM SCHEME TO PARSER

<schcma> BS

>

CALML
Parser

Figure 6.5: XSLT transformation process: BSDL to CAL.

tion has an initial state, a final state, and an action. BSDL specifies that the order of options

within a choice establishes their priority: the first option has priority over the second, and so

on. These priorities are recorded in the actor as priorities between the test actions. Guard

expressions are built from the control flow constructs in the BSDL schema. The behaviour

of each action is to complete such tasks as storing data in the appropriate location in the

output structure. Finally, the CAL component declares templates for each of the constructs

in the language, such as a FSM schedule, a function call, or an assignment. These templates

are called by other components of the style sheet when building the actor. Collecting all of

the CAL syntax into a single style sheet also means that an alternative style sheet could be

provided in place of the CAL sheet. The source code shown in Appendix C.3 illustrates a part

of the parser automatically generated from the bit stream schema. It shows the actions and

the finite state machine generated for handling the communication between itself and external

VLD FUs. When the parser meets a variable length code, the actions shown in Appendix C.3

are generated. First, the parser reads one bit from the bit stream input port (DCT_Coeff.read

action). The next step consists in sending the bit to the corresponding VLD table; it is done

in action DCT_Coeff.output. Then, the parser waits for a token coming from the VLD FU.

This token (finish) indicates if a matching has been found in the table or not. If yes, the value

of finish is true and the action DCT_Coeff.finish is fired and the number of bits to read for

86

6.6. HARDWARE AND SOFTWARE IMPLEMENTATION

the next element is set. If not, the value of finish is false and the DCT_Coeff.notFinished is

fired and one more bit must be read (M4VJVLCJLENGTH = 1). The finite state machine

summarizes the transitions. This section shows how the variable length decoding process is

handled by the generated parser to decode variable length codes.

6.6 Hardware and Software Implementation

The important reason for which CAL has been adopted as language specifying the reference

software of the RVC toolbox is that CAL is suitable for direct synthesis of "efficient" software

and hardware by means of CAL2SW and CAL2HW tools [83, 84]. Furthermore, the very

interesting aspect of this framework is that CAL models are used as inputs both for the

hardware and software code generators. Thus software and hardware implementations can be

derived from a unique CAL model. The designer develops a unique model and can generate

seamlessly hardware and software implementation of CAL actors.

As the code of the VLD actors and parser are very simple, the generation of efficient code is

straightforward. In [84], it has been shown that the hardware implementation of the MPEG-

4 SP decoder modeled in CAL is more efficient than the one designed by hand in VHDL.

Furthermore, in terms of coding effort, it took twice less time for a designer to write the CAL

model than the VHDL model.

6.7 Conclusions

Reconfigurable video coding framework is introduced in this chapter. An efficient VLD toolbox

can be automatically generated by the proposed design. It is successfully implemented in CAL

and validated by simulations. This chapter shows that it is possible to dynamically generate

a RVC parser using a BSDL description of the bit stream and assembling RVC decoding FUs

from the standard RVC toolbox.

87

Chapter 7

Reconfigurable Video Coding —

D V / D V C P R O

7.1 Introduction

Video coding solutions based on a pre-defined video coding standard have certain limitations

when new standards are being added. How to utilize their commonalities and reduce design

time is of great concern. Writing reference code for a new standard starts with scratch, which

is time consuming and labor intensive. On the other hand, sequential C / C + + code aiming

at functional validation hides intrinsic concurrency and parallelism. Consequently, converting

the sequential code into pipeline and multicore process requires architecture re-building and

re-writing code. In other words, the complex C / C + + specifications no longer constitute a good

starting point for implementing the standards. It is preferred to develop a framework to operate

at a higher level of abstraction and simplify top-down system development and design. To deal

with this issue, MPEG organization launched a new standard called reconfigurable video coding

(RVC) in 2006 [85]. Some video coding standards have been successfully implemented with

RVC framework [76, 86, 87], In 2007, the work in [76] initiatively implemented the MPEG-4

simple profile with the RVC framework. The work in [86] reported implementation of AVS intra

decoder with RVC framework. The work in [87] recently reported that an efficient H.264/AVC

baseline encoder had been built by the RVC-CAL dataflow components.

In this chapter, we implement the other video coding standard, DV/DVCPRO, using the

88

7.2. RECONFIGURABLE VIDEO CODING

RVC framework. The remaining of the chapter is organized as follows: the MPEG RVC

framework and DV/DVCPRO standard are introduced in Section 7.2 and Section 7.3. The

proposed design with RVC framework is presented in Section 7.4. Section 7.5 provides the

experimental results and analysis. Section 7.6 concludes this chapter.

7.2 Reconfigurable Video Coding

The objective of RVC framework is to describe current and future codecs in a way that makes

commonality explicit and reduces the implementation burden for device vendors [76]. The

key difference between RVC and conventional codec standards is their conformity point. The

conventional codec standards define their conformity point at decoder level whereas MPEG

RVC defines it at tool level so that MPEG RVC exhibits much more flexibility. Hence several

configurations of components, taken by previous monolithic specifications, are possible [6].

MPEG RVC framework is initiatively motivated by the following observations:

1. Supporting multiple standards: Video coding standards have been changed for decades.

New multimedia devices or development platforms need to support multiple codecs, such

as MPEG-1, MPEG-2, MPEG-4, H.264/AVC and DV/DVCPRO.

2. Interoperability: Commonality and similarity between the standards have not been uti-

lized efficiently. It is urgent to develop a new standard to incorporate the commonality

and similarity in order to reduce design time.

3. Obstacles of current specification:

• The normative specifications (written in generic C / C + +) do not expose the poten-

tial parallelism which is intrinsic to the algorithms constituted in the codecs. They

are excessively large and hard to read.

• The reference code written in complex sequential C / C + + is labor intensive to trans-

form to Verilog or the new generation codes of multicore platform stream processor.

Thus, the goal of the MPEG RVC standard is to offer a high-level algorithm model to inno-

vate MPEG standards in a way that is competitive in current dynamic environment, thereby

89

7.3. DV/DVCPRO STANDARD

enabling MPEG to continue serving the needs of the industry in terms of video coding stan-

dards. An additional challenge taken by MPEG RVC is to provide a easy-going implementation

model for efficient hardware and software synthesis. The following three components are mainly

included in RVC framework.

• Video coding tools library (VTL): The normative library is specified by textual speci-

fication and corresponding reference software, written with RVC-CAL language [79] to

specify each library component.

• FU network language (FNL): The normative language is XML dialect. It specifies de-

coder configuration, and interconnected network and parameterization of standard library

components.

• RVC bit stream description language (RVC-BSDL): The normative language describes

the syntax of a new configuration of a MPEG RVC decoder.

Unlike other video coding standards, MPEG RVC decodes the configuration information

before the video bit stream. To decode a video bit stream, the decoder needs to know: (a). How

to parse the bit stream; (b). How to decode these elements. The MPEG RVC decoding engine

receives RVC-BSDL and FNL specifications in compressed form. The decoder composition

module generates a decoding solution (an actual video decoder) based on the RVC-BSDL and

FNL specifications. It makes use of selected function units (FUs) from VTL and connects

them according to FNL specification. Once the decoding solution has been generated, it can

then decode the bit stream. This approach has a number of potential benefits. A decoder can

be modified to decode a different format by sending new RVC-BSDL/FNL descriptions and

enabling efficient support for multiple coding formats. Moreover, non-standard coding format

can be supported provided it uses FUs available to the decoder (i.e. FUs in the decoder's

VTL).

7.3 DV/DVCPRO Standard

Digital video (DV) is a digital video format created by a group of companies 1, and launched

in 1995 [88, 89]. DV refers to the compression format employed to capture, edit and store
1Led by Sony, JVC, Panasonic and other producers

90

7.3. DV/DVCPRO STANDARD

video footage. Moreover, DV is also applied to cameras that record using mini-DV tape.

Two standards [88, 89] define the data structure for the interface of DV-based digital

audio, subcode data, and compressed video at different bit rates: the DV standard includes

both 525/60 and 625/50 systems, in which the numeric values "525" and "625" refer to the

number of the horizontal sync lines while the numeric values "60" and "50" indicate the field

rate; The DVCPRO standard now includes 1080/601, 1080/50i, 720/60p, and 720/50p systems,

in which the numeric values "1080" and "720" refer to "1920 x 1080" and "1280 x 720" image

sampling structure, respectively, while the values "50" and "60" refer to the field/frame rate

and the letters "i" and "p" indicate the field/frame type. There are three types of compressed

bit rates defined in DV/DVCPRO standard: 25Mbps, 50Mbps, and 100Mbps, as shown in

Table 7.1. This expansion allows the DVCPRO format to support not only a high quality

program production system but also the next generation of broadcast system. A broadcast

system based on DVCPRO's 25Mbps, 50Mbps and 100Mbps compression is the most efficient,

practical, and widely supported method of providing today's requirements.

Table 7.1: Formats of DV standards.
D V - S t a n d a r d s Size F o r m a t C h a n n e l s S e q u e n c e s D I F - S i z e S y s t e m D a t a R a t e S p e c i f i c a t i o n
(T y p e s) (b y t e s) (M b / s)
D V - N T S C 720x480 4:1:1 1 10 120000 60Hz 25 I E C 6 1 8 3 4
D V - P A L 720x576 4:2:0 1 12 144000 50Hz 25 I E C 6 1 8 3 4
D V 2 5 - N T S C 720x480 4:1:1 1 10 120000 60Hz 25 S M P T E 3 1 4
D V 2 5 - P A L 720x576 4:1:1 1 12 144000 50Hz 25 S M P T E 3 1 4
D V C P R 0 5 0 - N T S C 720x480 4:2:2 2 10 240000 60Hz 50 S M P T E 3 1 4
D V C P R 0 5 0 - P A L 720x576 4:2:2 2 12 288000 50Hz 50 S M P T E 3 1 4
D V C P R O 1 0 0 P 7 2 0 P - N T S C 960x720 4:2:2 2 10 240000 60Hz 100 S M P T E 3 7 0
D V C P R O 1 0 0 P 7 2 0 P - P A L 960x720 4:2:2 2 12 288000 50Hz 100 S M P T E 3 7 0
D V C P R O 1 0 0 H D - N T S C 1280x1080 4:2:2 4 10 480000 60Hz 100 S M P T E 3 7 0
D V C P R O 1 0 0 H D - P A L 1280x1080 4:2:2 4 12 576000 50Hz 100 S M P T E 3 7 0

The number of channels of the compressed DV stream is assigned to 1, 2 and 4 correspond-

ing to DV/DV25, DVCPR050, and DVCPROlOO formats, respectively [88, 89]. Each channel

is further divided into 10 sequences for 525/60 system and 12 sequences for 625/50 system.

Each sequence consists of header, subcode, Video Auxiliary information (VAUX), audio, and

video sections as shown in Fig. 7.1. Each section is comprised of numbers of digital interface

(DIF) blocks. The DIF block is the basic element of DV data structure and each DIF block

consists of a 3-byte ID and 77 bytes of data. DIF data bytes are numbered 0 to 79. The type

of DIF block is assigned by its ID and the DIF data part (play load) presents the parameters

of the DV decoder.

The DV/DVCPRO standard only has intra (I) frame and its process is straightforward.

91

7.3. DV/DVCPRO STANDARD

Noles:

2 5 M b p s : 1 channel
5 0 M b p s : 2 channels
100Mbps-720 : 2 channels
100Mbps-1080: 4 channels

N=12: DV-NSTC system
N=10: DV-PAL system

Figure 7.1: DV data type.

Figure 7.2 illustrates the procedure of the complete process. The decoder generates the video

output by the following processes: variable length decoder (VLD), inverse quantization (IQ),

weighting, inverse discrete cosine transform (IDCT), block de-shuffling and upsampling while

the audio output is generated by data mapping and data de-shuffling units. One of the most

important differences between DV/DVCPRO and MPEG compression is that the audio and

video data of DV are mixed into DIF blocks. In the 1080-line system, video data, audio data,

and subcode data in one video frame are processed in each frame. In the 720-line system, these

data are spread into two video frames. To process the 720-line system in the same way as the

1080-line system. They are processed within one frame duration of the 1080-line system. The

audio data, corresponding to one video frame in the 1080-line system and two video frames in

the 720-line system, is defined as an audio processing unit [89].

Figure 7.2: DV decoder data processing block diagram.

92

7.4. IMPLEMENTATION & DESIGN

7.4 Implementation & Design

As stated above, DV/DVCPRO is intra frame only video standard without bidirectional (B)

and progressive (P) frames so that its operation is not as complex compared to other standards,

such as MPEG-4 and H.264. However, there are challenges when implementing DV/DVCPRO

with RVC-CAL for the following reasons: How to efficiently partitioning the FUs while con-

sidering the following features of DV data: 1). Video and audio data are shuffled in DV

compressed data; 2). There are more than nine types of video formats in DV/DVCPRO stan-

dard; 3). There are various processing modules, such as 8-8 inverse discrete cosine transform

(IDCT), 2-4-8 IDCT, scanning, weighting, de-shuffling, etc. At first, the partition of DV FUs

are important for RVC-CAL implementation. Efficient FU partition, utilizing available FUs,

is able to save design time and improve performance. Based on the features of DV/DVCPRO

processing, our proposed RVC implementation mainly contains three parts as shown in Fig. 7.3:

Parser FUs, VLD & IDCT FUs, and De-shuffling FUs. This partition divides DV/DVCPRO

into reasonable function blocks in order to minimize the number of tokens between FUs and

actors while considering the reuse of available MPEG-RVC FUs. For example, 8-8 IDCT and

2-4-8 IDCT are separated in order to use the available MPEG-4 8x8 IDCT FU. The audio

process is separated from other FUs since no reference FUs are available.

7.4.1 R V C Parser F U s

The parser FUs unit tries to decode DV parameters for the following using. Unlike other video

data, DV data has strict DIF with a size of 80 bits and data location, which makes the design

simpler than others. The RVC-CAL parser unit consists of ten interacting actors. At first, the

"Serial" actor reads the input DV data and makes them in the form of tokens. The following

actors consume the incoming tokens according to different ID type: Header (ID=000), Subcode

(ID=001), VAUX (ID=010), and AAUX (ID=011). When these actors consume the incoming

tokens, the parsing process is considered complete. "Header" actor produces the DIF sequence

number, DIF block number, and channel identification tokens while "Subcode" actor generates

time code (TC) and binary group (BG) package tokens. The actors "VAUX" and "AAUX" are

further separated into "VS, VSC, AS" and "ASC" actors according to the different incoming

7.4. IMPLEMENTATION & DESIGN

10=010

ID =000

zzrnr
0101001
0100011
0001001
1101000
1110111
10100...

Serial

VAUX

Header

A/V
Data

ID =001
Subcode

ID =011
AAUX

Parser FUs

vs I"
vsc |-

AS |-

ASC H

Video-VLD-Table

K i L
Passing Passing Passing
DC/AC f AC_2 f AC_3

Copy J Copy j
Remaining Remaining VLD

run 4 a m p l l e n | .

class

dc'-md

420

num ch,

l-Quantization

Zigzag Scanning

Weighting

IDCT IDCT
(248)

DCT

625/50
^ d i o de-shufflei

525/60
Hudio de-shuffle

AB_Mapper 625/50
^ d i o de-shufflei

525/60
Hudio de-shuffle

AB_Mapper

Audio-VLD-Table

VLD & IDCT FUs

Video Mapper

MB_Mapper

Upsampling

V ideo O-Buf fer

Audio Mapper

Audio O-Buf fer

De-shuffling FUs

DIP - Digital Video Digital Interface Format MB - macroblock AB - audio block unit A/V - audio/video
VAUX - video auxiliary VS - VAUX source VSC - VAUX source control
AAUX - audio auxiliary AS - AAUX source ASC - M U X source control
QNO - quantization number step dct-md - DCT mode ch - channel seq - sequence

Figure 7.3: DV-FU partition & implementation.

tokens. The frame type, display type and decoded type are parsed by "VSC" and "VS" actors

while audio compressed mode and sampling frequency are parsed by "ASC" and "AS" actors.

The actual compressed video and audio data tokens are produced by the "A/V data" actor.

7.4.2 R V C V L D & I D C T F U s

The variable length decoder (VLD) actor of DV standard is different from MPEG standard. As

shown in Fig. 7.3, three passes have been adopted for the DV VLD. The procedure of VLD is:

First, passing the bit stream data into the first pass; Second, passing the remaining data into

the second pass if there are surplus data remained in the current DIF block; Third, passing the

remaining data into the third pass if there are surplus data remained in current MB; Finally,

the VLD process is terminated whether there are data remained or not. The VLD table is

automatically generated using similar procedure in [7].

94

7.5. SIMULATION & ANALYSIS

The IDCTs of DV standard have two modes: 8-8-IDCT and 2-4-8-IDCT. They are se-

lectively used to optimize the data-reduction process, depending upon the degree of content

variations between the two fields of a video frame. Based on 8-8 DCT and 2-4-8 DCT modes,

there are two modes of scanning and weighting, accordingly. The 8-8 scanning IDCT mode

is kind of zigzag scanning, which is similar to MPEG-4, hence, this allows one to make little

modification and reuse the FU from MPEG-4. The 2-4-8 mode needs further modifications

from MPEG-4. In this mode, one 8x8 macroblock (MB) is divided into two vertical 8x4 sub

blocks so that the scanning order has to be modified accordingly. Therefore, the left top pixel

of the upper sub block is scanned at first and followed by the left top pixel of the lower sub

block. The DCT coefficients are weighted by a quantizer matrix. The different quantizer ma-

trices are set for different luminance and color signals [88, 89]. Also, different DV formats have

different quantizer matrices and therefore different weighting values. DV DCT coefficients are

quantized to within 9-bit words in order to limit the amount of data in one video segment to

five compressed MBs.

7.4.3 R V C De-shuff l ing F U s

The RVC De-shuffling FUs contain video and audio data re-arrangement actors. "MB_Mapper"

actor designates the correspondence between video DIF blocks and compressed macro blocks.

"Video-De-shuffling" actor defines the correspondence between compressed macro blocks and

the video segment. The video segment consists of five MBs which are assembled from various

areas within the video frame. Note that the NSTC system follows different MB mapping and

video shuffling rules.

The "ABJVIapper" actor outputs the decoded audio data according to the DV audio block

mapping rule which is defined in DV/DVCPRO standard [89], Note that NSTC and PAL

system have different audio mapping rules to be followed.

7.5 Simulation & Analysis

The DV/DVCPRO decoder is successfully implemented in RVC-CAL simulation environment.

CAL is not only a description formalism but is supported by a simulation environment portable

on all platform supporting JAVA vitual machine (VM). This interpreter is currently integrated

95

7.5. SIMULATION & ANALYSIS

into two modelling and simulation environments: Ptolemy II [80] and Moses [90].

Numbers of DV formatted sequences are tested by the proposed design, such as Foreman,

Mobile and Calendar, and Driver and Flower. To verify the DV audio decoding, the tested

video sequences are combined with raw audio data. The encoded DV format sequences can be

generated by FFMPEG [91] reference code. We compare the results from the proposed design

with RVC-CAL and ones from FFMPEG reference decoder both in video and in audio output.

No differences are found. Both the decoded video and audio output are able to be played back

successfully. Therefore, the feasibility of DV implementation with RVC-CAL is verified. The

experimental analysis is made in the following aspects:

7.5.1 Reusabi l i ty of M P E G - 4 F U s

One of the major advantages of RVC framework is to re-use available FUs and reduce design

time. As stated above, MPEG-4 simple profile has been successfully developed by MPEG or-

ganization. Some FUs are available to be used or can be modified for reuse. Unlike H.264/AVC

or AVS standard, the DV/DVCPRO standard has less similarity with MPEG. Therefore, Some

new FUs have to be re-designed, however, some MPEG-4 FUs can still be modified to be used

in order to save design time. As shown in Fig. 7.3, modified IDCTs from MPEG-4 simple pro-

file have been used in the proposed design while the inverse quantization FU is much similar

as MPEG-4. We just reuse it as normal. The statistic reusability table is listed on Table 7.2.

Table 7.2: FUs reusability of DV.
No. F u n c t i o n Block F U R e u s e d New Modi f i ed C o m m e n t s

1 P a r s e r P a r s e r H e a d e r S H e a d e r , S u b c o d e , VAUX, A A U X
2 P a s s i n g S 3 P a s s i n g for D C & A C , R e m a i n s
3 I - Q u a n t • R e u s e M P E G - 4
4 D e c o d e - V i d e o S c a n i n g • Zagz ig s c a n n i n g for 8 x 8 a n d 2 -4-8
5 W e i g h t i n g • W e i g h t i n g for 8 x 8 a n d 2-4-8 m o d e
6 I D C T / I D C T for 8x8 a n d 2 -4-8 m o d e
7 V ideo_De- shu f f l i ng V i d e o - M a p p i n g M a p p i n g D I F s w i t h M B s
8 U p S a m p l i n g • U p s a m p l c 4 2 0 t o 422, or 411 t o 422
9 Aud io_PAL_Dc- shu f f l i ng Dc- shu f f l i ng P A L A u d i o D I F s

10 D e c o d e . A u d i o A u d i o _ N T S C _ D e - s h u f f l i n g • Do-shuf f l i ng N T S C A u d i o D I F s
11 A B . M a p p i n g M a p p i n g A u d i o Blocks for O u t p u t

7.5.2 R e d u c t i o n of Des ign Overhead

Another advantage of RVC framework is that it has high abstract and concise code represen-

tation. Table 7.3 shows the lines of code (LOC) compared with reference code reported in [91].

96

4.6. CONCLUSIONS

The numbers show that the RVC-CAL implementation has an average 25.8% less LOCs than

the reference C code from FFMPEG. We can not compare the development time in detail be-

cause it is hard to know how long writing the reference code has been taken. However, writing

the RVC-CAL code only takes 3 months for a middle-level CAL programmer, which is more

efficient than writing C code.

Table 7.3: Comparison between C code and RVC-CAL.
Name C code RVC-CAL Reduction (%)
Video Process 3718 2927 21.3
parser - 978 -

VLD - 365 -

IQ - 202 -

Scanning - 166 -

Weighting - 178 -

IDCT-8x8 - 229 -

IDCT-248 - 281 -

Video de-shuffler - 144 -

Upsampling - 256 -

Video mapper - 128 -

Audio Process 835 451 46
Audio de-shuffler - 238 -

Audio block mapper - 213 -

Total 4553 3378 25.8

7.5.3 Efficient C o d e Transformer

The last advantage of RVC framework is that it automatically targets both software and

hardware with supporting tools. An automatic CAL-to-C code generator has been developed

in [83] while CAL-to-VHDL code generator is successfully developed in [92]. It is reported that

the automatically generated VHDL is not only four times faster in development time, but it is

also more efficient in execution time. The main reason is attributed to RVC-CAL being using

dataflow methodology instead of direct VHDL register transfer level (RTL) design.

7.6 Conclusions

In this chapter, a RVC-CAL implementation of DV/DVCPRO video coding standard has been

featured and hence the validation of RVC implementation has been proved. Based on the fea-

97

4.6. CONCLUSIONS

tures of DV/DVCPRO standard and RVC framework, RVC FUs partition has been described.

The functions of important actors and tokens are also explained in detail. The experimen-

tal result illustrates the advantages of using MPEG RVC as a new video coding standard.

Writing RVC-CAL takes less time than writing reference C code or VHDL code, which allows

developers to concentrate on function optimization rather than coding skills. Moreover, RVC

framework enhances the interoperation between standards. Not only can available function

units be reused, but new function units and algorithms, or even rebuilt standards, can also be

incorporated into the RVC framework. Finally, RVC-CAL adopts the parallelism and dataflow

programming methodology, which is closer to hardware implementation than sequential pro-

cess.

98

Chapter 8

Concluding Remarks

8.1 Conclusions

Algorithms and implementation are the major aspects of video coding standards, particularly

when new technologies and standards are gradually emerging. This thesis started with low-

complexity and efficient H.264/AVC algorithms, MPEG-2/H.264 transcoding algorithms and

ended with a reconfigurable video coding framework implementation. The aim of the thesis is to

provide solutions for three major problems the modern video coding standards are facing: Fast

and efficient algorithms of H.264/AVC; Transition from one standard to the other one; Utilizing

commonalities between standards and reducing repeating design. The major contributions are

listed as follows:

1. Low-complexity H.264/AVC algorithms:

(a) Intra 4x4 prediction: Three techniques have been contributed in this thesis: a fast

parallel architecture, redundancy reduction algorithm and complexity-reduced mode

decision algorithm. A significant reduction in execution time is achieved without

significant loss of video quality. Only 204 cycles are required to process a macroblock

(MB). Compared to the dedicated intra prediction [28], processing speed is enhanced

by 79%.

(b) Deviation based rate control algorithm: Three contributions have been made in this

thesis: (1) The multiple quantization parameters (QPs) determination algorithm

is based on the statics of the deviation measure. Thus, relatively accurate QP

99

8.2. FUTURE WORKS

estimation can be achieved because it takes the features of the current frame into

consideration. (2) Slice-based rate control scheme stabilizes the output bit rates.

(3) The scene change is detected with the complexity of adjacent frames based on

deviation measure. The proposed algorithm not only generates stable output bit

rate but also improves the video quality. Compared to the JM12.0 under various

sequences, the proposed algorithm improves the average PSNR by 0.76dB while

keep the mismatch of the bit rate output less than 8%.

2. MPEG-2/H.264 transcoder:

(a) This research work contributes three efficient mapping algorithms: motion vector

(MV) mapping; block size mapping and frame/field mapping;

(b) This research work also contributes an efficient ranking-based, rate-distortion opti-

mized mode decision algorithm;

(c) These algorithms achieve good rate-distortion performance with low complexity.

Compared to cascaded decoder-encoder solution, the R-D performance is maintained

while the complexity is significantly reduced.

3. RVC framework:

(a) This research work contributes an efficient data flow based implementation of the

variable length decoding (VLD) process, particularly adapted for the instantiation

and synthesis of CAL parsers in the MPEG RVC framework.

(b) DV/DVCPRO has been examined and modelled with MPEG RVC framework. The

flexibility and ease of RVC-CAL is demonstrated as well as the validation of RVC

implementation.

8.2 Future Works

Even though the thesis provided methods to solve the three major issues mentioned above,

there are some algorithms and implementations to be further developed:

1. H.264/AVC efficient algorithm: Applying the available deviation algorithm to "P" and

"B" frames;

100

8.2. FUTURE WORKS

2. Transcoding: With the transcoding algorithms presented in this thesis, the current

transcoder's complexity is dominated by sub-pel interpolation and motion refinement.

And mode decision still has considerable complexity. Therefore, it will be interesting to

further explore along these directions to have more efficient transcoder design without

affecting the compression efficiency.

3. Reconfigurable video coding: Implementing H.264/AVC decoder with reconfigurable

video coding framework.

101

BIBLIOGRAPHY

Bibliography

[1] J. Li and E. Abdel-Raheem, "Fast Implementation of H.264 4x4 Intra Prediction," IEICE

Electronics Express, vol. 7, no. 5, pp. 332-338, Mar. 2010.

[2] , "Efficient Rate Control for H.264/AVC Intra Frame," Submitted to IEEE Transac-

tions on Consumer Electronics, Apr. 2010.

[3] J. Xin, J. Li, A. Vetro, and S. ichi Sekiguchi, "Motion Mapping and Mode Decision for

MPEG-2 to H.264/AVC Transcoding," Multimedia Tools Application, vol. 35, no. 2, pp.

203-223, May 2007.

[4] J. Xin, J. Li, A. Vetro, H. Sun, and S. ichi Sekiguchi, "Motion Mapping for MPEG-2 to

H.264/AVC Transcoding," IEEE International Symposium on Circuits and Systems, pp.

1991-1994, May 2007.

[5] J. Xin, J. Li, A. Vetro, and H. Sun, "Motion Mapping for MPEG-2 to H.264/AVC

Transcoding," Mitsubishi Electric Research Laboratories TR2007-085, Apr. 2008.

[6] J. Li, D. Ding, C. Lucarz, S. Keller, and M. Mattavelli, "Efficient data flow variable length

decoding implementation for the MPEG reconfigurable video coding framework," IEEE

Workshop on Signal Processing Systems, pp. 188-193, Oct. 2008.

[7] C. Lucarz, J. Li, D. Ding and M. Mattavelli, "Automatic-generation of RVC Parser from

BSDL Syntax Description: Variable Length Decoding," ISO/IEC JTC1/SC29/WG11

MPEG/Ml 5163, Antalya, Turkey, Jan. 2008.

[8] C. Lucarz, D. Ding, J. Li and M. Mattavelli, "BSDL Description of MPEG-4 SP

102

BIBLIOGRAPHY

and AVC BP Bitstream Syntax for RVC Framework," ISO/IEC JTC1/SC29/WG11

MPEG/Ml5159 Jan.2008, Antalya, Turkey, Jan. 2008.

[9] C. Lucarz, J. Li, D. Ding and M. Mattavelli, "Function Units for RVC Toolbox: Vari-

able Length Decoding," ISO/IEC JTC1/SC29/WG11 MPEG/M15164 Jan.2008, An-

talya, Turkey, Jan. 2008.

[10] J. Li and E. Abdel-Raheem, "Modeling DV/DVCPRO Standards on Reconfigurable Video

Coding Framework," Accepted by Journal of Electrical and Computer Engineering, Hin-

dawi Publishing Corporation, Apr. 2010.

[11] Iain E. G. Richardson, H.264 and MPEG-4 Video Compression Video Coding for Next-

generation Multimedia. Wiley, 2003.

[12] Y. Wang, J. Ostermann, and Y.Q. Zhang, Video Processing and Communications. Pren-

tice Hall, 2002.

[13] L. Hanzo, P.J. Cherriman and J. Streit, Video Compression and Communications: H.261,

H.263, H.264, MPEG4 and HSDPA-Style Adaptive Turbo-Transceivers. Wiley, 2007.

[14] K. R. Rao, Z. S. Bojkovic and D. A. Milovanovic, Multimedia Communication Systems:

Techniques, Standards and Networks. Pearson Education, 2002.

[15] K. R. Rao and J. J. Hwang, Techniques and Standards for Images, Video and Audio

Coding. Prentice Hall, 1996.

[16] ISO/IEC 11172-2, "Information Technology - Coding of Moving Pictures and Associated

Audio for Digital Storage Media at Up to About 1.5M/bits - Part 2: Video," 2003.

[17] CCITT SG XV, Draft Revision of Recommendation CCITT H.261, "Video Codec for

Audiovisual Services at P x 64 kbits/s," Mar. 1990.

[18] ISO/IEC 13818-2, "Information Technology - Generic Coding of Moving Pictures and

Associated Audio Information - Part 2: Video," 2000.

[19] ITU-T Rec. H.263, "Video Coding for Low Bit Rate Communication," vol. 3, Nov. 1995.

103

BIBLIOGRAPHY

[20] ISO/IEC 14496-2, "Information Technology - Coding of Audio-Visual Objects - Part 2:

Visual," 2004.

[21] T. Wiegand, G. Sullivan, G. Bjntegaard, and A. Luthra, "Overview of the H.264/AVC

Video Coding Standard," IEEE Transactions on Circuits and Systems for Video Technol-

ogy, vol. 13, no. 7, pp. 560-576, Mar. 2003.

[22] Z. Zhou, J. Xin and M.T. Sun, "Fast Motion Estimation and Inter-mode Decision for

H.264/MPEG-4 AVC Encoding," Journal of Visual Communication and Image Represen-

tation, vol. 17, no. 2, pp. 243-263, Apr. 2006.

[23] C. Kim, H. Shih, and C. Kuo, "Fast H.264 Intra-prediction Mode Selection Using Joint

Spatial and Transform Domain Features," Journal of Visual Communication and Image

Representation, vol. 17, no. 2, pp. 290-310, Apr. 2006.

[24] F. C. Pereira and T. Ebrahimi, The MPEG-4 Book. Prentice Hall, 2002.

[25] ETSI TS 101 154 Vl.9.1, "Digital Video Broadcasting (DVB): Specification for the Use of

Video and Audio Coding in Broadcasting Applications Based on the MPEG-2 Transport

Stream," Sep. 2009.

[26] ISO/IEC 15938-4, "MPEG-7 Final Draft International Standard (FDIS)- Part 4," 2001.

[27] ISO/IEC JTC1/SC29/WG11 N4041, MPEG Requirements Group, "MPEG-21

Overview," Singapore MPEG Meeting, Mar. 2001.

[28] Y.-W. Huang, B.-Y. Hsieh, T.-C. Chen, and L. Chen, "Analysis, Fast Algorithm, and

VLSI Architecture Design for H.264/AVC Intra Frame Coder," IEEE Trans. Circuit and

Systems for Video Technology, vol. 15, no. 3, pp. 378-401, Mar. 2005.

[29] W. Lee, S. Lee, and J. Kim, "Pipelined Intra Prediction Using Shuffled Encoding Order

for H.264/AVC," TENCON 2006, pp. 14-17, Nov. 2006.

[30] G. Jin and H.-J. Lee, "A Parallel and Pipelined Execution of H.264/AVC Intra Predic-

tion," IEEE International Conference on Computer and Information Technology, CIT'06„

pp. 246-250, Sep. 2006.

104

BIBLIOGRAPHY

[31] K. Suh, S. Park and H. Cho, "An Efficient Hardware Architecture of Intra Prediction and

TQ/IQIT Module for H.264 Encoder," ETRI Journal, vol. 27, no. 5, pp. 511-524, Oct.

2005.

[32] G. Sullivan, P. Topiwala, , and A. Luthra, "Fast 4x4 Intra-prediction Based on The Most

Probable Mode in H.264/AVC," IEICE Electronics Express, vol. 5, no. 19, pp. 782-788,

Oct. 2008.

[33] G. Tian, T. Zhang, X. Wei, T. Ikenaga, and S. Goto, "An Efficient Fast Mode Deci-

sion Algorithm for H.264/AVC Intra Prediction," Image and Signal Processing of CISP

Congress, Sanya, Hainan, vol. 1, pp. 411-415, May 2008.

[34] F. Pan, X. Lin, S. Rahardja, K. P. Lim, Z. G. Li, D. Wu, and S. Wu, "A Novel Hardware

Architecture of Intra-Predictor Generator for H.264/AVC Codec," IEEE Transactions on

Circuits and Systems for Video Technology, vol. 15, no. 7, pp. 813-822, Jul. 2005.

[35] S. Kwak, J. Kim, and D. Har, "Fast Mode Decision Algorithm for Intraprediction in

H.264/AVC Video Coding," IEICE TRANS. INF. & SYST., vol. E91-D, no. 7, pp. 2083-

2086, Jul. 2008.

[36] C. sung Kim, Q. Li, and C.-C. J. Kuo, "Fast Intra-Prediction Model Selection for H.264

Codec," SPIE International Symposium ITCOM 2003, vol. 5241, pp. 99-110, Nov. 2003.

[37] G. Sullivan, P. Topiwala, , and A. Luthra, "The H.264/AVC Advanced Video Coding Stan-

dard: Overview and Introduction to the Fidelity Range Extensions," SPIE Conference on

Applications of Digital Image Processing, Aug. 2004.

[38] Joint Model Reference Software Version 10.2. [Online]. Available:

http://iphome.hhi.de/suehring/tml/

[39] J. Li and M. Ahmadi, "Realizing High Throughput Transforms of H.264/AVC," IEEE

International Symposium on Circuits and Systems, pp. 840-843, May 2008.

[40] R. Kordasiewicz and S. Shirani, "On Hardware Implementations Of DCT and Quantiza-

tion Blocks for H.264/AVC," The Journal of VLSI Signal Processing on Springer, vol. 47,

no. 2, pp. 93-102, May 2007.

105

http://iphome.hhi.de/suehring/tml/

BIBLIOGRAPHY

[41] J. Xin, A. Vetro, and H. Sun, "Converting dct coefficients to h.264/avc transform coeffi-

cients," pp. 939-946, Jun. 2004.

[42] ISO/IEC 14496-10, "Information Technology - Coding of Audio-Visual Objects - Part

10: Advanced Video Coding," 2004.

[43] N. Kamaci, Y. Altunbasak, and R. M. Mersereau, "Frame Bit Allocation for H.264/AVC

Video Coder Via Cauchy-Density-Based Rate and Distortion Models," IEEE Transactions

on Circuits and Systems for Video Technology, vol. 15, no. 8, pp. 994-1006, Aug. 2005.

[44] S. W. Ma, W. Gao, F. Wu, and Y. Lu, "Rate Control for JVT Video Coding Scheme

with HRD Considerations," Proceedings of the IEEE International Conference on Image

Processing, Barcelona, Spain, pp. 793-796, Sep. 2003.

[45] Z. G. Li, F. Pan, K. P. Lim, G. N. Feng, X. Lin, and S. Rahardaj, "Adaptive Basic

Unit Layer Rate Control for JVT, Joint Video Team," ISO/IEC JTC1/SC29/WG11 and

ITU-T, May 2003.

[46] H. Wang and S. Kwong, "Rate-Distortion Optimization of Rate Control for H.264 With

Adaptive Initial Quantization Parameter Determination," IEEE Transactions on Circuits

and Systems for Video Technology, vol. 18, no. 1, pp. 140-144, Jan. 2008.

[47] X. Jing, L. Chau, and W.-C. Siu, "Frame Complexity Based Rate-Quantization Model

for H.264/AVC Intraframe Rate Control," IEEE Signal Processing Letters, vol. 15, no. 1,

pp. 373-376, Sep. 2008.

[48] A. Armstrong, S. Beesley, and C. Grecos, "Selection of Initial Quantization Parameter for

Rate Controlled H.264 Video Coding," Research in Microelectronics and Electronics, pp.

249-252, Jun. 2006.

[49] S. Zhou, J. Li, J. Fei, and Y. Zhang, "Improvement on Rate-distortion Performance of

H.264 Rate Control in Low Bit Rate," IEEE Transactions on Circuits and Systems for

Video Technology, vol. 17, no. 8, pp. 996-1006, Mar. 2007.

[50] "Joint Model Reference Software Version 12.0." [Online], Available:

http: / / iphome .hhi. de/suehr ing/tml/

106

BIBLIOGRAPHY

[51] S. W. Ma, W. Gao, Y. Lu, and H. Q. Lu, "Proposed Draft Description of Rate Control on

JVT Standard Joint Video Team," ISO/IEC JTC1/SC29/WG11 and ITU-T SG16/Q.6

Doc, Dec. 2002.

[52] "ISO/MPEG-2 Test Model 5," Apr. 1993. [Online]. Available:

http://www.mpeg.org/MPEG/video/mssg-free-mpeg-software.html/

[53] M. Jiang and N. Ling, "Low-delay Rate Control for Real-time H.264/AVC Video Coding,"

IEEE Transactions on Multimedia, vol. 8, no. 3, pp. 467-477, 2006.

[54] S.-C. Lim, H.-R. Na, and Y.-L. Lee, "Rate Control Based on Linear Regression for

H.264/MPEG-4 AVC," Signal Processing: Image Communication, vol. 22, no. 1, pp. 39 -

58, 2007.

[55] Y. K. Tu, J.F. Yang and M.T. Sun, "Rate-Distortion Modeling for Efficient H.264/AVC

Encoding," IEEE Transactions on Circuits and Systems for Video Technology, vol. 17,

no. 5, pp. 530-543, 2007.

[56] W. J. Kim, J. W. Yi, and S.-D. Kim, "A Bit Allocation Method Based on Picture Activity

for Still Image Coding," IEEE Transactions on Image Processing, vol. 8, no. 7, pp. 974-

977, Feb. 1999.

[57] S.-C. Hsia and S.-H. Wang, "Adaptive Video Coding Control for Real-time H.264/AVC

Encoder," Journal of Visual Communication and Image Representation, vol. 20, no. 7,

pp. 463-477, Jun. 2009.

[58] A. Vetro, C. Christopoulos and H. Sun, "Video Transcoding Architectures and Techniques:

An Overview," IEEE Signal Processing Magazine, vol. 20, no. 2, pp. 18-29, Mar. 2003.

[59] J. Xin, C.W. Lin and M.T. Sun, "Digital Video Transcoding," Proceedings of the IEEE,

vol. 93, no. 1, pp. 84-97, Jan. 2005.

[60] H. Kalva and B. Petljanski, "Exploiting The Directional Features in MPEG-2 for H.264

Intra Transcoding," IEEE Transactions on Consumer Electronics, vol. 52, no. 2, pp. 706-

711, May 2006.

107

http://www.mpeg.org/MPEG/video/mssg-free-mpeg-software.html/

BIBLIOGRAPHY

[61] L. Wang, Q. Wang, Y. Liu, and W. Lu, "A Fast Intra Mode Decision Algorithm for

MPEG-2 to H.264 Video Transcoding," IEEE 10th International Symposium on Consumer

Electronics (ISCE), vol. 28, no. 1, pp. 1-5, Jun. 2006.

[62] B. Petljanski and H. Kalva, "DCT Domain Intra MB Mode Decision for MPEG-2 to H.264

Transcoding," Proceedings of the ICCE, pp. 419-420, Jan. 2006.

[63] G. Chen, S. Lin, and Y. Zhang, "A fast Coefficients Conversion Method for the Transform

Domain MPEG-2 to H.264 Transcoding," International Conference on Digital Telecom-

munications, vol. 29, no. 30, pp. 17-20, Aug. 2006.

[64] X. Lu, A.M. Tourapis, P. Yin and J. Boyce, "Fast Mode Decision and Motion Estima-

tion for H.264 With A Focus on MPEG-2 to H.264 Transcoding," IEEE International

Symposium on Circuits and Systems, pp. 1246-1249, May 2005.

[65] G. Fernandez, P. Cuenca, L. O. Barbosa, and H. Kalva, "Very low complexity mpeg-2 to

h.264 transcoding using machine learning," pp. 931-940, Oct. 2006.

[66] B. Hu, P. Zhang, Q. Huang and W. Gao, "Reducing Spatial Resolution for MPEG-2

to H.264/AVC Transcoding," IEEE Pacific-rim Conference on Multimedia, pp. 830-840,

Oct. 2005.

[67] T.D.Nguyen, G.S.Lee, J.Y.Chang and H.J.Cho, "Efficient MPEG-4 to H.264/AVC

Transcoding with Spatial Downscaling," ETRI Journal, vol. 29, no. 6, pp. 826-828, Dec.

2007.

[68] Y.-P.Tan and H. Sun, "Fast Motion Re-estimation for Arbitrary Downsizing Video

Transcoding Using H.264/AVC Standard," IEEE Transactions on Consumer Electron-

ics, vol. 50, no. 3, pp. 887-889, Aug. 2004.

[69] Haiyan Shu, "An Efficient Arbitrary Downsizing Algorithm for Video Transcoding," IEEE

Trans. Circuits Syst. Video Technol, vol. 14, no. 6, pp. 887-889, Jun. 2004.

[70] Z. Zhou, S. Sun, S. Lei and M.T. Sun, "Motion Information and Coding Mode Reuse for

MPEG-2 to H.264 Transcoding," IEEE International Symposium on Circuits and Systems,

pp. 1230-1233, May 2005.

108

BIBLIOGRAPHY

[71] F. Pan, X. Lin, R. Susanto, K.P. Lim, Z.G. Li, G.N. Feng, D.J. Wu and S. Wu, "JVT-

G013: Fast Mode Decision for Intra Prediction," ISO/IEC MPEG and ITU-T VCEG

Joint Video Team, Mar. 2003.

[72] K.P. Lim, S. Wu, D.J. Wu, S. Rahardja, X. Lin, F. Pan and Z.G. Li, "JVT-I020: Fast Inter

Mode Selection," ISO/IEC MPEG and ITU-T VCEG Joint Video Team, (San Diego),

Sep. 2003.

[73] Y. Su, J. Xin, A. Vetro and H. Sun, "Efficient MPEG-2 to H.264/AVC Intra Transcoding in

Transform-domain," IEEE International Symposium on Circuits and Systems, pp. 1234-

1237, May 2005.

[74] J. Xin, A. Vetro and H. Sun, "Efficient Macroblock Coding Mode Decision for H.264/AVC

Video Coding," in Proceedings of the 24th Picture Coding Symposium (PCS '04), San

Francisco, Calif, USA,, pp. 53-58, Dec. 2004.

[75] "MPEG-2 Encoder/Decoder V1.2," 1996. [Online], Available:

http://www.mpeg.org/MPEG/MSSG

[76] C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. Janneck, "Reconfigurable Media Cod-

ing: A New Specification Model for Multimedia Coders," IEEE Workshop on Signal

Processing Systems, pp. 481-486, Oct. 2007.

[77] ISO/IEC 23001-5, "Bitstream Syntax Description Language," Oct. 2007.

[78] ISO/IEC14496, "Coding of Audio-visual Objects (MPEG-4)," 2004.

[79] J. Eker and J. Janneck, "CAL Language Report," Technical Memo UCB/ERL M03/48,

University of California at Berkeley, Dec. 2003.

[80] [Online]. Available: http://ptolemy.eecs.berkeley.edu

[81] "The Open DataFlow Environment on Sourceforge." [Online]. Available:

http://opendf.sourceforge.net/

[82] W. De Neve, F. De Keukelaere, K. De Wolf and R. Van de Walle, "Applying MPEG-21

BSDL to the JVT H.264/AVC specification in MPEG-21 Session Mobility scenarios," 5th

109

http://www.mpeg.org/MPEG/MSSG
http://ptolemy.eecs.berkeley.edu
http://opendf.sourceforge.net/

BIBLIOGRAPHY

International Workshop on Image Analysis for Multimedia, Published on CD-ROM, Apr.

2004.

[83] G. Roquier, M. Wipliez, M. Raulet, J. Janneck, I. Miller, and D. Parlour, "Automatic

software synthesis of dataflow program: An MPEG-4 simple profile decoder case study,"

IEEE Workshop on Signal Processing Systems, pp. 281-286, Jul. 2008.

[84] J. Janneck, I. Miller, D.B. Parlour, M. Mattavelli, C. Lucarz, M. Wipliez, M. Raulet and

G. Roquier, "Translating Dataflow Programs to Efficient Hardware: an MPEG-4 Simple

Profile Decoder Case Study," Design, Automation and Test in Europe (DATE08), 2008.

[85] E. S. Jang, J. Ohm, and M. Mattavelli, "Whitepaper on Reconfigurable Video Coding

(RVC)," ISO/IEC JTC1/SC29/WG11, Jan. 2008.

[86] D. Ding, H. Qi, L. Yu, T. Huang, and W. Gao, "Reconfigurable Video Coding Framework

and Decoder Reconfiguration Instantiation of AVS," Signal Processing: Image Communi-

cation, vol. 24, no. 4, pp. 287-299, Jul. 2009.

[87] H. Aman-Allah, K. Maarouf, E. Hanna, I. Amer, and M. Mattavelli, "CAL Dataflow

Components for an MPEG RVC AVC Baseline Encoder," Journal of Signal Processing

Systems for Signal, Image and Video Technology, published online on 25th Jul. 2009.

DOLIO. 1007/811265-009-0396-6.

[88] SMPTE 314M-1999 Data Structure for 25 and 50 MB/s, SMPTE, 1999.

[89] SMPTE 370M-2006 Data Structure for 100 MB/s, SMPTE, 2006.

[90] [Online]. Available: http://www.tik.ee.ethz.ch/~moses/

[91] [Online]. Available: http://ffmpeg.org/

[92] J. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez, and M. Raulet, "Synthe-

sizing Hardware from Dataflow Programs," Journal of Signal Processing Systems for

Signal, Image and Video Technology, pp. 287-292, published online on 11th Jul. 2008.

DOLIO.1007/sll265-009-0397-5.

110

http://www.tik.ee.ethz.ch/~moses/
http://ffmpeg.org/

Appendix A

List of Publications & Contributions

I Journals:

1. Jianjun Li and Esam Abdel-Raheem, "Fast Implementation of H.264 4x4 Intra

Prediction", IEICE Electronics Express, vol. 7, no. 5, pp. 332-338, Mar. 2010.

2. Jianjun Li and Esam Abdel-Raheem, "Modeling DV/DVCPRO Standards on Re-

configurable Video Coding Framework", Accepted by Journal of Electrical and Com-

puter Engineering, Hindawi Publishing Corporation, Apr. 2010.

3. Jianjun Li and Esam Abdel-Raheem, "Efficient Rate Control for H.264/AVC Intra

Frame", Submitted to IEEE Transactions on Consumer Electronics, Apr. 2010.

4. Jun Xin, Jianjun Li, Anthony Vetro, Huifang Sun and Shun-ichi Sekiguchi, "Motion

mapping and mode decision for MPEG-2 to H.264/AVC transcoding", Multimedia

Tools Appl.35(2): 203-223 (2007).

I Conferences:

1. Jianjun Li, Dandan Ding, Christophe Lucarz, Samuel Keller and Marco Mattavelli,

"Efficient data flow variable length decoding implementation for the MPEG recon-

figurable video coding framework", IEEE Workshop on Signal Processing Systems

(SIPS), Oct. 2008.

2. Jianjun Li, Ahmadi, "Realizing high throughput transforms of H.264/AVC", The

IEEE International Symposium on Circuits and Systems (ISCAS), May 2008.

I l l

3. Jun Xin, Jianjun Li, Anthony Vetro, Huifang Sun and Shun-ichi Sekiguchi, "Mo-

tion Mapping for MPEG-2 to H.264/AVC Transcoding", The IEEE International

Symposium on Circuits and Systems (ISCAS), May 2007.

I Contributions to MPEG RVC Standard:

1. ISO/IEC JTC1/SC29/WG11 MPEG2008/M15163, Jan.2008, Antalya, Turkey

"Auto-generation of RVC Parser from BSDL Syntax Description: Variable Length

Decoding"

Lucarz, Christophe, Li, Jianjun, Mattavelli, Marco and Ding, Dandan

2. ISO/IEC JTC1/SC29/WG11 MPEG2008/M15164, Jan.2008, Antalya, Turkey

"Functional Units for RVC Toolbox: Variable Length Decoding"

Lucarz, Christophe, Li, Jianjun, Mattavelli, Marco and Ding, Dandan

3. ISO/IEC JTC1/SC29/WG11 MPEG2008/M15159, Jan. 2008, Antalya, Turkey

"BSDL Description of MPEG-4 SP and AVC BP Bit Stream Syntax for RVC Frame-

work"

Lucarz, Christophe, Ding, Dandan, Li, Jianjun and Mattavelli, Marco

112

Appendix B

Fast Intra4x4 Prediction

Table B.l: Definition of intra4x4 prediction modes.

Mode L K J I M A B C D E F G H Equation

Vertical

1 A

Vertical
1 B

Vertical
1 C

Vertical

1 D

Horizontal

1 L

Horizontal
1 K

Horizontal
1 J

Horizontal

1 I

DC
1 1 1 1 1 1 1 1 (I + J + K + L +

A + B + C + D + 4) » 3

DDL1

1 2 1 (A + 2 B + C + 2) » 2

DDL1
1 2 1 (B + 2 C + D + 2) » 2

DDL1

1 2 1 (C + 2 D + E + 2) » 2
DDL1

1 2 1 (D + 2 E + F + 2) » 2

DDL1

1 2 1 (E + 2 F + G + 2) » 2

DDL1

1 2 1 (F + 2 G + H + 2) » 2

DDL1

1 3 (G + 3 H + 2) » 2

DDR2

1 2 1 (L + 2 K + J + 2) » 2

DDR2
1 2 1 (K + 2 J + I + 2) » 2

DDR2

1 2 1 (J + 2 I + M + 2) » 2
DDR2

1 2 1 (I+2M+A+2)>>2

113

1 2 1 (M + 2 A + B + 2) » 2

1 2 1 (A + 2 B + C + 2) » 2

1 2 1 (B + 2 C + D + 2) » 2

VR3

1 1 (M + A + l) » l

VR3
1 1 (A + B + l) » l

VR3

1 1 (B + C + l) » l
VR3

1 1 (C + D + l) » l

VR3

1 2 1 (K + 2 J + I + 2) » 2

VR3

1 2 1 (J + 2 I + M + 2) » 2

VR3

1 2 1 (I + 2 M + A + 2) » 2

VR3

1 2 1 (M + 2 A + B + 2) » 2

VR3

1 2 1 (A + 2 B + C + 2) » 2

VR3

1 2 1 (B + 2 C + D + 2) » 2

HD4

1 1 (L+K+1)>>1

HD4
1 1 1 1 (K+J+1)>>1

HD4

1 1 (J + I + l) » l
HD4

1 1 (I + M + l) » l

HD4

1 2 1 (L + 2 K + J + 2) » 2

HD4

1 2 1 (K + 2 J + I + 2) » 2

HD4

1 2 1 (J + 2 I + M + 2) » 2

HD4

1 2 1 (I + 2 M + A + 2) » 2

HD4

1 2 1 (M + 2 A + B + 2) » 2

HD4

1 2 1 (A + 2 B + C + 2) » 2

VL5

1 1 (A+B+1)>>1

VL5
1 1 (B + C + l) » l

VL5

1 1 (C + D + l) » l
VL5

1 1 (D + E + l) » l

VL5

1 1 (E+F+1)>>1

VL5

1 2 1 (A + 2 B + C + 2) » 2

VL5

1 2 1 (B + 2 C + D + 2) » 2

VL5

1 2 1 (C + 2 D + E + 2) » 2

VL5

1 2 1 (E + 2 F + G + 2) » 2

VL5

1 2 1 (F+2G+H+2)>>2

HU6

1 L

HU6
1 1 (L + K + l) » l

HU6

1 1 (K + J + l) » l

114

1 1 (J + I + l) » l

3 1 (3 L + K + 2) » 2

1 2 1 (L + 2 K + J + 2) » 2

1 2 1 (K + 2 J + I + 2) » 2

1 Diagonal down-left
2 Diagonal down-right
3Vertical right
4 Horizontal down
5Vertical left
6Horizontal up

ffl
3 -

£
cn
Ph i

(a). Coastguard QCIF Performance Comparison

50

45

40

35

30

25

- 1 1 1 ;

- • - JM10.2

1 1 1 —a— Proposed

0 200 400 600 800
Bit rate (kbit/sec)

(b). Foreman QCIF Performance Comparison

50

I 40
£
CO
Ph

^ 30

0 200 400 600
Bit rate (kbit/sec)

Figure B.l: Coastguard & Foreman Performance Comparison..

116

(a). Football CIF performance comparison

_ 40
PQ

§ 35
CLh I
>H

30

(b). Table tennis CIF performance comparison

45

Jz;
tri 35
OH i

30

200 400 600 800 1,0001,2001,4001,600
Bit rate (kbit/sec)

Figure B.2: Football & Table Tennis Performance Comparison.

117

Bit rate (kbit/sec)

Appendix C

Part of RVC-CAL Source Codes

C . l Parser header RVC-CAL Source Code

actor ParseHeaders (
// Maximum image width (in units of macroblocks) that the decoder can handle.
// It is used to allocate line buffer space at compile time,
int MAXW_IN_MB,

int MB_C00RD_SZ,
int BTYPE_SZ,
int MV_SZ,
int NEWVOP,
int INTRA,
int INTER,
int QUANT.MASK,
int ROUND_TYPE,
int FCODE_MASK,
int FCODE_SHIFT,
int ACPRED,
int ACCODED,
int FOURMV,
int MOTION,
int SAMPLE_COUNT_SZ,
int SAMPLE_SZ
) bool bits, int(size=12) vld_data ==> string entab,int(size=20) vld_add, int(size=BTYPE_SZ) BTYPE, int(size=MV_SZ) M

// Constants for various field lengths (bits) and special values.

int VO.HEADER.LENGTH = 27;
int V0_N0_SH0RT_HEADER = 8;
int VO_ID_LENGTH = 5;

int VOL_START_CODE_LENGTH =28;
int VOL_START_CODE = 18;
int VOL_ID_LENGTH = 5;
int VIDE0_DBJECT_TYPE_INDICATI0N_LENGTH = 8;
int VISUAL_OBJECT_LAYER_VERID_LENGTH = 4;
int VISUAL.OBJECT_LAYER_PRIORITY_LENGTH = 3;
int ASPECT_RATI0_INF0_LENGTH = 4;
int ASPECT_RATIO_INFO_IS_DETAILED = 15;
int PAR.WIDTH.LENGTH = 8;
int PAR.HEIGHT.LENGTH = 8;
int CHROMA_FORMAT_LENGTH = 2;

118

C.l. PARSER HEADER RVC-CAL SOURCE CODE

int LOW_DELAY_LENGTH
int FIRST_HALF_BIT_RATE_LENGTH
int LAST_HALF_BIT_RATE_LENGTH
int FIRST_HALF_VBV_BUF_SZ_LENGTH
int LAST_HALF_VBV_BUF_SZ_LENGTH
int FIRST_HALF_VBV_OCC_LENGTH
int LAST_HALF_VBV_OCC_LENGTH
int VOL_SHAPE_LENGTH
int MARKER.LEMGTH
int TIME_INC_RES_LENGTH
int VOL_WIDTH_LENGTH
int VOL_HEIGHT_LENGTH
int RUN_LENGTH
int RUN_MASK
int LEVEL_LENGTH
int LEVEL.MASK
int MISC_BIT_LENGTH = 9;
int VOP_START_CODE_LENGTH
int VOP_S TART_C0DE
int VOP_PREDICTION_LENGTH
int B_V0P
int P.VOP
int I_V0P
int INTRA_DC_VLC_THR_LENGTH
int VOP_FCODE_FDR_LENGTH
int VOP_FCODE_FOR_MASK
int BITS_qUANT
int BITS_QUAWT_MASK
int MCBPC.LENGTH
int ESCAPE_CODE

function mask_bitsC v, n) — > int :
bitand(v, lshift(l,n)-l)

end

// Utility action to read a specified number of bits.
// This is an unnamed action, ie it is always enabled and has highest priority.
// Use the procedures set_bits_to_read() to start reading, test for
// completion with the boolean done_reading_bits() and get the value
// with read_resultO • Use the done function in a guard to wait for the
// reading to be complete.
int(size=7) bits_to_read_count := -1;
int(size=33) read_result_in_progress;
procedure set_bits_to_read(int count)
begin

bits_to_read_count count - 1;
read_result_in_progress := 0;

end
function done_reading_bits() — > bool : bits_to_read_count < 0 end
function read_result() — > int : read_result_in_progress end
action bits:[b] ==>
guard
not done_reading_bits()

do
read_result_in_progress := bitorC IshiftC read_result_in_progress, 1), if b then 1 else 0 end);
bits_to_read_count := bits_to_read_count - 1;
bit_count := bit_count + 1;

end

int(size=4) bit_count 0;

******** start VOL ********
*

* /

look_for_vo: action ==>

119

= i;
= 15;
= 15;
= 15;
= 3;
- ii;
= 15;
= 2 ;

= 1;
= 16;
= 13;
= 13;
= 6 ;

= IshiftC 1, RUN_LENGTH) - 1;
- 12;
= IshiftC 1, LEVEL.LENGTH) - 1;

32;
438;
2;
2;
1;
0;
3;
3;
IshiftC 1, V0P_FC0DE_F0R_LENGTH)
5;
IshiftC 1, BITS.QUANT)
9;
7167;

C.l. PARSER HEADER RVC-CAL SOURCE CODE

do
set_bits_to_read(VO.HEADER.LEMGTH);

end

// We can only handle VOL without short header
vo_header.good: action ==>
guard
done_reading_bits(),
mask_bits(read_result(), VO_HEADER_LENGTH) = V0_N0_SH0RT_HEADER

do
set_bits_to_read(VO_ID_LEKGTH);

end

vo_skip_id_field: action ==>
guard
done_reading_bits()

do
set_bits_to_read(VOL_START_CODE_LENGTH);

end

vol_startcode.good: action ==>
guard
done_reading_bits(),
mask_bits(read.resultO, VOL_START_CODE_LENGTH) = V0L_START_C0DE

do
// Ignore the next two fields
set_bits_to_read(VOL_ID_LENGTH + VIDEO_OBJECT_TYPE_INDICATION_LENGTH);

end

vol_object_layer_identification: action bits:[b] ==>
guard
done_reading_bit s()

do
set_bits_to_read(

if b then
// is_object_layer_identifier asserted
VISUAL_OBJECT_LAYER_VERID_LENGTH + VISUAL_OBJECT_LAYER_PRIORITY_LENGTH + ASPECT_RATIO_INFO_LENGTH

else
ASPECT_RATIO_INFO_LENGTH

end);
bit_count := bit_count + 1;

end

vol_aspect.detailed: action ==>
guard
done_reading_bitsO ,
mask_bits(read_result(), ASPECT_RATIO_INFO_LENGTH) = ASPECT_RATIO_INFO_IS_DETAILED

do
II Skip over aspect ratio details
set_bits_to_read(PAR_WIDTH_LENGTH + PAR_HEIGHT_LENGTH);

end

vol_control.detailed: action bits:[b] ==>
guard
done_reading_bits(),
b

do
set_bits_to_read(CHROMA_FORMAT_LENGTH + LOW_DELAY_LENGTH);
bit_count := bit_count + 1;

end

vol_vbv.detailed: action bits:[b] ==>
guard
done_reading_bits(),
b

do
set_bits_to_read(FIRST_HALF_BIT_RATE_LENGTH + MARKER.LENGTH +

LAST_HALF_BIT_RATE_LENGTH + MARKER.LENGTH +

120

C.l. PARSER HEADER RVC-CAL SOURCE CODE

FIRST.HALF.VBV.BUF.SZ.LENGTH + MARKER.LENGTH +
LAST.HALF.VBV.BUF.SZ.LENGTH +
FIRST.HALF.VBV.OCC.LENGTH + MARKER.LENGTH +
LAST.HALF.VBV.OCC.LENGTH + MARKER.LENGTH);

bit.count := bit.count + 1;
end

vol_shape: action ==>
guard
done.reading.bitsO

do
set_bits_to_readC VOL.SHAPE.LENGTH + MARKER.LENGTH + TIME_INC_RES_LENGTH + MARKER.LENGTH + 1);

end

int(size=7) mylog;

vol_time_inc_res: action ==>
guard
done_reading_bits()

var
int(size=TIME.INC_RES_LENGTH+l) time.inc.res := mask.bitsC rshiftC read.result 0 , 2), TIME.INC.RES .LENGTH), //
int(size=7) count := 0,
int(size=7) ones := 0

do
while (count = 0 or time_inc_res != 0) do

if bitandC time_inc_res, 1) = 1 then
ones := ones + 1;

end
count : = count + 1;
time_inc_res := rshiftC time_inc_res, 1);

end
mylog := if ones > 1 then count else count - 1 end;
mylog := if mylog < 1 then 1 else mylog end;
set_bits_to_read(if bitandC read_result(), 1) = 1 then
// fixed vop rate
//mylog + MARKER.LENGTH
mylog

else
// variable vop rate
//MARKER.LENGTH
0

end + MARKER.LENGTH + VQL.WIDTH.LENGTH + MARKER.LENGTH) ;
end

// The vol width and height in units of macroblocks, ie. the pixel w/h divided by 16.
// Note: there is no provision in the model for pixel sizes that are no multiples of 16.
int(size=MB_CDQRD_SZ) vol.width;
int(size=MB_C00RD_SZ) vol.height;

vol.width: action ==>
guard
done.reading.bit s ()

do
vol.width := mask_bits(rshiftC read.resultO, MARKER.LENGTH + 4), V0L.WIDTH.LENGTH-4); // strip marker and div
set_bits_to_read(VOL.HEIGHT.LENGTH + MARKER.LENGTH);

end

121

C.l. PARSER HEADER RVC-CAL SOURCE CODE

schedule fsm look_for_vo :

// Process a new VOL
look_for_vo
vo_header
vo.header
vo_skip_id_f ield

(look_for_vo
(generic_done
(vo_header.good
(vo_skip_id_field

// Process a new VOL
look_for_vol (generic_done
look_for_vol (vol_startcode.good
vol_object (vol_object_layer_identification
vol_aspect (vol_aspect.detailed
vol_aspect (generic_done
vol_control (vol_control.detailed
vol_control (generic_done_with_bitread
vol_vbv (vol_vbv.detailed
vol_vbv (generic_done_with_bitread
vol_shape (vol_shape
vol_time_inc_res (vol_time_inc_res
vol_width (vol_width
vol_height (vol_height
// vol_misc (vol_misc.unsupported
vol_misc (generic_done

// Process a new
look_for_vop
get_vop_code
vop_code
vop_code
vop_code
vop_predict
// vop_predict
vop_timebase
vop_timebase
vop_coding

vop_coding (
send_new_vop_info (
send_new_vop_width (
send_new_vop_height(

VOP
(byte.align
(get_vop_code
(vop_code.done
(vop_code.start
(generic_done
(vop_predict /* .supported */

(generic_done
(vop_timebase.one
(vop_timebase.zero
(vop_coding.uncoded

vop_coding.coded
send_new_vop_cmd
send_new_vop_width
send_new_vop_height

— > vo.header;
— > stuck;
— > vo_skip_id_field;
— > look_for_vol;

— > stuck;
— > vol_object;
— > vol.aspect;
— > vol.control;
— > vol_control;
— > vol_vbv;
— > vol.shape;
— > vol_shape;
— > vol_shape;
— > vol_time_inc_res;
— > vol_width;
— > vol.height;
— > vol_misc;
) — > stuck;
— > look_for_vop;

— > get_vop_code;
— > vop_code;
— > look_for_vol;
— > vop_predict;
— > stuck;
— > vop_timebase;
) -> stuck;
--> vop_timebase;
--> vop_coding;
--> look_for_vop;

) — > send_new_vop_info;
) — > send_new_vop_width;
) — > send_new_vop_height;
) — > mb;

// Start MB
mb

mb (
pvop_uncodedl (
pvop_uncoded2 (
pvop_uncoded3 (
pvop_uncoded4 (
pvop_uncoded5 (

mb
get_mbtype
get_mbtype
final_cbpy
final_cbpy
final_cbpy

(mb_done
mcbpc_pvop_uncoded
mcbpc_pvop_uncodedl
mcbpc_pvop_uncodedl
mcbpc_pvop_uncodedl
mcbpc_pvop_uncodedl
mcbpc_pvop_uncodedl
(get_mcbpc
(vld_failure
(get_mbtype
(vld_failure
C final_cbpy_intra
(final_cbpy_inter

) --> look_for_vop;
pvop_uncodedl;
pvop_uncoded2;
pvop_uncoded3;
pvop_uncoded4;
pvop_uncoded5;
mb;
-> get_mbtype;
-> stuck;
-> final_cbpy;
-> stuck;
-> block;
-> mv;

// process all blocks in an MB
block (mb_dispatch_done
block (mb_dispatch_intra
block
block

) — > mb;
) — > texture;

(mb_dispatch_inter_ac_coded) — > texture;
(mb_dispatch_inter_no_ac) — > block;

// Start texture
texture (vld_start_intra
texture (vld_start_inter
get_dc_bits (get_dc_bits.none
get_dc_bits (get_dc_bits.some
get_dc_bits (vld_failure

) — > get_dc_bits
) — > texac;
) — > texac;
) — > get_dc;
) — > stuck;

122

C.l. PARSER HEADER RVC-CAL SOURCE CODE

(dc_bits_shift
(get_dc
(block_done
(dct_coeff
(vld_code
(vld_level
(vld_run_or_direct
(vld_run
(vld_direct_read
(vld_failure
(vld_direct

get_dc
get_dc_a
texac
texac
vldl
vldl
vldl
vld7
vld7
vldl
vld_direct
vld4 (do__level_l ookup
vld4 (vld.failure
vld4a (vld_level_lookup
vld6 (do_run_lookup
vld6 (vld.failure
vld6a (vld_run_lookup

) -
)

) -
) -

— >

— >

— >

— >

— >

— >

— >

— >

— >

Ld4a;
-> stuck;
--> texac
-> vld6a;
-> stuck;
--> texac

— > get_dc_a;
— > texac;

block;
vldl;
texac;
vld4;
vld7;
vld6;
vld_direct;
stuck;
texac;

// mv()
mv C mvcode_done
mv (mvcode
mag_x (vld_failure
mag_x (mag_x
get_residual_x (get_residual_x
mv_y (mvcode
mag_y (vld_failure
mag_y (mag.y
get_residual_y (get_residual_y)

// stuckC stuck) — > stuck_for_good;
end

•> block;
•> mag_x;
•> stuck;
"> get_residual_x;
•> mv_y;
•> mag_y;
•> stuck;
> get_residual_y;
•> mv;

priority

vo .header, good >
vol_start_code.good >
vol_aspect.detailed >
vol_control.detailed >
vol_vbv.detailed >
// vol_misc.unsupported

vop_code.done >
vop_code.start >
// vop_predict.supported
vop_timebase.one >
vop_coding.uncoded >

generic_done;
generic_done;
generic_done;
generic_done_with_bitread;
generic_done_vith_bitread;
> generic_done;

generic_done;
generic_done;
> generic_done;
vop_timebase.zero;
vop_coding.coded;

mb_done > get_mcbpc;
mb_done > mcbpc_pvop_uncoded;
get_mcbpc.pvop > mcbpc_pvop_uncoded;

get_mbtype.noac > get_mbtype.ac;
final_cbpy_inter > final_cbpy_intra;
mb_dispatch_done > mb_dispatch_intra >
mb_dispatch_inter_no_ac > mb_dispatch_inter_ac_coded;

vld_start_intra > vld_start_inter;
get_dc_bits.none > get_dc_bits.some;
block_done > dct_coeff;
vld_code > vld_level > vld_run_or_direct;
vld.run > vld_direct_read;

vld_start_inter.ac_coded > vld_start_inter.not_ac_coded;

mvcode_done > mvcode;
end

123

C.2. CAL SOURCE CODE FOR VLD FUNCTION UNIT

C.2 CAL Source Code for VLD Function Unit

import all caltrop.lib.BitOps;
actor VLD_mcbpc_intra(int VLD_DATA_SZ, int VLD_ADDR_SZ)

string bits ==> int(size=2) finish, int(size=VLD_DATA_SIZE) data:
int START.INDEX = 0;
int(size=VLD_ADDR_SZ) vld.index;
int(size=VLD_DATA_SZ) vld.codeword := 1;

// ********** automatically generated part ********
list(type:int(size=VLD_DATA_SZ), size=16)
vld.table = [10, 12, 18, 58, 26, 76, 34, 16, 42, 50, 1, 80, 144, 208, 140, 204]; // **
procedure start_vld_engine(int index)
begin
vld_index := index;
vld_codeword := 2;

end
function vld_success() — > bool: bitand(vld_codeword,3) = 0 end
function vld_continue() — > bool: bitand(vld_codeword,3) = 2 end
function vld_failure() — > bool: bitand(vld_codeword,1) = 1 end
function vld.resultQ — > int(size=VLD_DATA_SZ):
rshift(vld_codeword,2) end

start_VLD: action ==>
do

start_vld_engine(START.INDEX);
end

read_in_bits: action bits:[b] ==>
do
vld_codeword : = vld_table[vld_index + if b="l" then 1 else 0 end];
vld_index := rshift(vld_codeword,2);
end
continue_VLD: action ==> finish:[f]
guard

vld_continue()
v a r

int(size=2) f := 0
end

fail_VLD: action ==>
guard

vld_failure()
do

printlnC'VLD FAILURE");
end

finish.VLD: action ==> finish:[f], data:[d]
guard

vld_successO
var

int(size=2) f := 2,
int(size=VLD_DATA_SZ) d := vld_result()

end

schedule fsm start_VLD:
start.VLD
read_in_bits
process
process
process

endschedule
endactor

(start_VLD) — > read_in_bits;
(read_in_bits
(continue.VLD)
(fail.VLD)
(f inish_VLD)

) —> process;
— > read_in_bits;
— > start_VLD;
— > start_VLD;

124

C.3. SOURCE CODE OF THE AUTOMATICALLY GENERATED PARSER

C.3 Source Code of the Automatically Generated Parser

DCT_Coeff.read: action ==>

guard
readDoneO

end

DCT_Coeff.output: action =-> B16: [current]

do
current := read_result_in_progress ;

end

DCT_Coeff .finish: action B16_f: [finish] ==>

guard
finish

do
setRead(M4V_NEXT_ELEMENT_LENGTH);
end

DCT_Coeff.notFinished: action B16_f: [finish] ==>
guard

not finish

do
setRead(M4V_VLC_LENGTH);
end

[. . .]

// Finite State Machine

Previous_state (previous_action) — > DCT_Coeff.exists;

DCT_Coeff.exists (DCT_Coeff.read) — > DCT_Coeff.output;

DCT_Coeff.output (DCT.Coeff. output) — > DCT_Coeff.result;

DCT_Coeff.result (DCT.Coeff.notFinished) — > DCT.Coeff.exists;

DCT_Coeff.result (DCT.Coeff.finish) — > Next_state;

Appendix D

Vita

Li, jianjun received his bachelor degree from Information Engineering in Xi'an University of

Electrical Science and Technology, China in 1990. He received his Master of Engineering

(MaSc) degree in Electrical and Computer Engineering from University of Western Ontario

(UWO), London, Canada in 2005. His research interests are video/image signal processing,

standards, algorithm and implementation.

126

	Algorithms & implementation of advanced video coding standards
	Recommended Citation

	ProQuest Dissertations

