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Abstract 
An ever-increasing amount of information on the web today is available only through 
search interfaces: the users have to type in a set of keywords in a search form in order 
to access the pages from certain web sites. These pages are often referred to as the 
Hidden Web or the Deep Web. According to recent studies, the content provided by 
hidden web sites is often of very high quality and can be extremely valuable to many 
users. This calls for deep web crawlers to excavate the data so that they can be reused, 
indexed, and searched upon in an integrated environment. 

Crawling deep web is the process of collecting data from search interfaces by issuing 
queries. It often requires the selection of an appropriate set of queries so that they can 
cover most of the documents in the data source with low cost. This can be modeled as 
a set covering problem which has been extensively studied in graph theory. The 
conventional set covering algorithms, however, do not work well when applied to 
deep web crawling due to various special features of this application domain. 
Typically, most set covering algorithms do not take into account the distribution of the 
elements being covered. For deep web crawling, the sizes of the documents and the 
document frequency of the queries follow the power law distribution. 

A new GA-based algorithm is introduced in this thesis. It targets at deep web crawling 
of a database with this power law distribution. The experiment shows that it 
outperforms the straightforward greedy algorithm previously introduced to the 
literature. 

Key words: deep web, deep web crawling, set covering, genetic algorithm. 
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1. Introduction 

Today's search engines do not reach most of the data on the Internet- The Web has 

been rapidly "deepened" by massive databases online [1]: While the surface Web has 

linked billions of static HTML pages, it is believed that a far more significant amount 

of information is "hidden". It is behind the search interface of searchable databases. 

Such information may not be accessible through static URL links-They are assembled 

into Web pages as responses to queries submitted through the surface interface of an 

underlying database. In other words, they can only be accessed from surface interface. 

These pages are often referred to as the Deep Web [2] or the Hidden Web [3]. Figure 1 

shows what a search interface looks like. It is a search interface given by a Windsor 

library system. Figure 2 shows the hidden information returned by the system as a 

response to this interface. 

Figure 1 Search interface (query form) of Windsor library data base 
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Figure 2 The "hidden" information returned by Windsor library through the search 
Interface in Figure 1 
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Figure 3 The relationship between surface web and deep web 

Surface Web 

Deep Web databases 

Source of Figure 3: http://www.er.doe.gov/News_Information/News_Roorn/2009/Aug%204.html 

The "hidden" information is contained in Deep Web databases which can only be 

accessed through the search interface. Figure 3 illustrates the relationship between the 

surface web and the deep web. 

According to many studies (e.g. [2]), the size of the deep web increases rapidly as 
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more organizations put their publicly available information online through an 

easy-to-use search interface [1]. In [2], Chang et al. estimated that well over 100,000 

deep web databases currently exist on the Web. Moreover, the content provided by 

many deep web databases is often of very high quality and can be extremely valuable 

to many users [1]. This calls for deep web crawling to excavate the data so that the 

"hidden" information can be reused, indexed, and searched. 

Crawling deep web [4][5][6][7][8] is the process of collecting "hidden" information 

by issuing queries to deep web databases through various search interfaces including 

HTML forms, web services and programmable web APIs (Application Programming 

Interfaces). Here a web service refers to the API that can be accessed over a network, 

such as the Internet, and executed on a remote system hosting the requested services. 

Web API, when used in the context of web development, is typically a defined set of 

Hypertext Transfer Protocol (HTTP) request messages along with a definition of the 

structure of response messages, usually expressed in an Extensible Markup Language 

(XML), or JavaScript Object Notation (JSON) format. XML is a language to define a 

set of rules for encoding documents electronically. JSON is a lightweight computer 

data interchange format. 

Figure 4 below illustrates the process of collecting "hidden" information. Here, a boat 

represents a query and the fish represents a unit of "hidden " information which can 

be any kind of data file e.g. a textual file, an audio file in the database. One boat can 
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only get a limit amount of fish: each query can only bring back a set of units of 

information from databases. Crawling deep web is like the process of sending boats to 

the ocean to do the fishing. Crawling deep web is important for various reasons, such 

as indexing deep web pages. 

Figure 4 The process of collecting hidden data by issuing queries 

l-~^-> ii ^K ilm*, *M$!$JLim^&!&£&r/m 

Source of Figure 4: http://www.mkbergman.com/category/deep-web/ 

There are two kinds of deep web databases: 

• Structured database, such as relational database 

• Un-structured database, such as text documents, video files 

This thesis focuses on the Un-structured databases, especially textual documents 

databases, i.e. those data sources that contain plain text documents only. The textual 

data sources usually provide a simple keyword-based query interface instead of 

multiple attributes as studied in [8]. Here, multiple attributes refers to multiple 

keywords which can be used to search documents. An example of the query interface 

with multiple attributes is illustrated in Figure 5 which shows an advanced search 

interface of the Windsor library system. The search interface in Figure 1 is a basic one 
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of it. 

Figure 5. The advanced search interface with more search attributes 
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No matter what kind of database is used, for deep web crawling there are two research 

challenges. 

• One is learning and understanding the interface and the returning result so that 

query submission [17] and data extraction [18] can be automated. 

• Another is selecting an appropriate set of queries so that they can be used to 

download most of the documents in the data source with low communication cost. 

In order to reduce the network traffic, previous work [7] [8] [18] considered to 

minimize the number of queries issued. Here, the cost is measured by the number of 

redundant documents that are retrieved. This is more applicable to the cases when a 

large number of the documents need to downloaded, especially when the downloaded 

documents have much larger size compared to the size of the queries. Thus, the fewer 



redundant documents are returned by sending queries in deep web crawling, the lower 

cost it is spent. 

This thesis work focuses on the latter challenge. There are two difficulties in selecting 

appropriate queries. 

a. First, the selection of an appropriate set of queries can usually be modeled as a 

set covering problem which is NP-Complete. 

b. Second, the actual corpus is unknown to the crawler beforehand; hence the 

crawler cannot select the most suitable queries with the global knowledge of the 

underlying documents inside the database. 

Since it is not possible to select queries directly from the entire data source, the 

selection are made from a sample of the database. It is shown with the framework in 

[9] that queries selected from a sample data source can perform on the total data 

source as well as on the sample one. Using this sampling method, they solved the 

difficulty mentioned above in Item b. Furthermore, considering the query selection 

problem as a set covering problem, they used greedy method [7] [9] to select a proper 

set of queries based on a sample database. 

In this thesis work, this framework is adopted and the query selection problem is 

viewed as set covering problem. However, a new method is proposed to select a 

proper set of queries. The conventional set covering algorithms, e.g. greedy algorithm 

6 



[9], do not work well when applied to deep web crawling due to various special 

features of this application domain. Typically, most set covering algorithms, do not 

take the database distribution into consideration. For deep web crawling, the sizes of 

the documents and the document frequency of a query, i.e. the number of documents 

in the database that contain this query, follow the power law distribution. In order to 

have a better algorithm for the databases with the power law distribution, a Genetic 

Algorithm (GA) based heuristic is proposed. 

Inspired by evolutionary biology, genetic algorithm is considered as a search 

technique used in computing to find exact or approximate solutions to optimization 

and search problems. It has several basic steps such as selection, crossover and 

mutation. Changes in each step of GA are made and some more steps are added into 

GA in order to increase its effectiveness in the present setting. 

Experiments are conducted on four corpora which are Wiki, Gov, Newsgroup and 

Reuters in order to compare our method with greedy algorithm and the results show 

that the proposed method outperforms the straightforward greedy algorithm: It can 

select a more proper set of queries. 

This thesis is organized in the following way: Section 2 introduces preliminary 

knowledge of the present work. Section 3 introduces some related work. It includes 

one classic GA-based heuristic and three milestone works in deep web crawling. 
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Section 4 introduces the proposed genetic algorithm. In section 5, the experimental 

results are summarized. Section 6 concludes the whole thesis. 



2. Preliminary 

In this section, some concepts which are used in our proposed method are introduced. 

As mentioned in the introduction, for deep web crawling, there are two research 

challenges. One is learning and understanding the interface and the returning result so 

that query submission [17] and data extraction [18] can be automated. The other is 

selecting appropriate queries so that most of the hidden data are harvested at a low 

cost [7] [8] [19]. For selecting appropriate queries, one of the difficulties is that the 

actual corpus is unknown to the crawler beforehand; hence the crawler cannot select 

the most suitable queries with the global knowledge of the underlying documents 

inside the database. 

Lu et al [9] proposed a 4-step framework to face this challenge. The present work is 

based on this framework. 

2.1 4-Step framework 

In 4-step framework [9], a sample set of documents is first downloaded from the total 

database. From this sample, a set of queries is acquired from a query pool of this 

sample database, i.e. a set of terms in this sample database. This set of queries is 

selected in such a way that it can be used to cover most of the documents in the 

original data source with a low cost. The algorithm is as follows: 

9 



Algorithm 1: Outline of the DeepWeb Crawling algorithm [9] 

Input: the original data source TotalDB; sample size s, query pool size p . 

Output: A set of terms kept in Queries 

1. Create a sample data base SampleDB by randomly selecting s number of 

documents from the corpus TotalDB; 

2. Create a query pool Query Pool of size p from the terms that occur in 

SampleDB; 

3. Select a set of queries Queries from QueryPool that can cover at least 99% of 

the SampleDB by running a set covering algorithm; 

4. Mapping the selected queries into TotalDB 

The structure of this algorithm illustrated in Figure 6 

Figure 6 The outline of DeepWeb Crawling algorithm 
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As it can be seen the third step of the 4-step framework [9] is to select a proper set of 

queries from query pool. The solution of the 4-step framework [9] for this point is to 

consider the query selection problem as a set covering problem. 

2.2 Set covering problem 

Let Aij be a zero-one matrix with m rows and n columns where Ejj denotes the 

element in row i and column j . Let Cj =^-1 denote the cost of column j . The set 



covering problem (SCP) is the problem of covering all the rows of Aij by a subset of 

the columns at minimal (total) cost. Let Xj = 1 if column j is in the solution and Xj =0 

otherwise. The SCP can be expressed as 

Minimize >=1 (1) 

YaCd}Xj>\, 
Subject to J=l i = 1... m (2) 

^ g M j = l...n (3) 

Subjection (2) ensures that each row is covered by at least one column. If all the costs 

Cj are equal, the problem is called the uni-cost SCP. 

Example 1. In Figure 7, each circle covers a set of nodes. A set of circles {Ci,...Cm} 

covers all nodes N ={l,...,n}. What is the smallest number of circles T which can 

cover all the nodes in this figure? An answer is illustrated in Figure 8. In this example, 

the cost of each circle is equal. Each circle can be represented as a column; each node 

can be represented as a row. So the problem can be induced into finding smallest 

number of columns to cover all the rows. 

Figure 7 A set of subsets that cover all the nodes 

Source of the picture: http://www.cs.sunysb.edu/~algorith/files/set-cover.shtml 
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Figure 8 A smallest subset of all subsets of the initial set 

Source of the picture: http://www.cs.sunysb.edu/~algorith/files/set-cover.shtml 

There are plenty of heuristics to solve set covering problem. The present work 

proposes a GA-based heuristic within the context of deep web crawling. In the next 

sub section, the original genetic algorithm is introduced. 

2.3 Genetic algorithms 

A genetic algorithm (GA) can be considered as a search technique having been 

applied to a variety of combinatorial optimization problems [12]. The theoretical 

foundations of GAs were originally developed by Holland [13]. The idea of GAs is 

based on the evolutionary process of biological organisms in nature. During the 

course of the evolution, natural populations evolve according to the principles of the 

theory of biological evolution, especially that formulated by Charles Darwin, natural 

selection and "survival of the fittest". Individuals more successful in adapting to their 

living environment will have a good chance of surviving and reproducing; while ones 

less fit will not survive. This means that the genes from individuals with better fit will 

spread to an increasing number of individuals in each successive generation. The 

combination of good genes from highly adapted individuals may produce even more 

fit offspring. In this way, species evolve to become better adapted to their 

environment. 
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A genetic algorithm simulates these biological evolutionary processes by taking an 

initial population of individuals and applying genetic operators, such as crossover and 

mutation, in each reproduction. Each individual in the population can be represented 

by a string or chromosome which represents a possible solution to a given problem. 

The fitness of an individual is evaluated with respect to a given objective function. 

Highly fit solutions are given more opportunities to reproduce by exchanging pieces 

of their genetic information, in a crossover procedure, with other highly fit solutions. 

This produces new child solutions, which share some genes taken from both parents. 

Mutation is often applied after crossover by altering some gene(s) in the strings. The 

offspring can either replace the whole population (generational approach) or replace 

less fit individuals (steady-state approach). This evaluation-selection-reproduction 

cycle is repeated until a satisfactory solution is found. 

Table 1 The GA is based on certain concepts of biological evolution 

Genetic Term 
Chromosomes 

Genes 

Crossover 

Mutation 

Fitness 

Offspring 

Microbiological Definition 
a series of genes carrying genetic 
information, DNA 

Section of chromosome carrying trait info. 

recombine two organisms where genetic 
information is exchanged 

the elements of DNA are a bit changed 

measured by success of the organism in its 
life 

New generation after crossover 

Model definition 
Solutions 

bits of a solution 

two solutions be exchanged 
to produce new Offspring 

Bit(s) within solutions are 
changed 

Fitness function f(x) 

New population of solutions 
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The basic steps of a simple GA are shown below. A more comprehensive overview of 

GAs can be found in Refs. [12] [14] [15] [16]. 

Generate an initial population; 
Evaluate fitness of individuals in the population; 
Repeat 

Select parents from the population; 
Recombine (mate) parents to produce children; 
Evaluate fitness of the children; 
Replace some or all of the population by the children; 

Until a satisfactory solution has been found; 

Algorithm flow is illustrated in Fig. 9 

Figure 9 Algorithm flow of basic genetic algorithm 
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As it can be seen, the original GA is a generic algorithm. It can be modified to be 

applied to some specific problem domain, such as deep web crawling. In order to 

apply GAs to a particular problem domain, more details such as chromosome 

representation and fitness function are needed. Such details for the present setting are 
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introduced in the later sections. 

2.4 Evaluation criteria 

The proposed algorithm is partly evaluated in terms of hit rate (HR) and overlapping 

rate (OR). 

Definition 5 (Hit Rate, HR) [9]: Given a set of queries Q = {ql, q2„.., qk} and a 

database DB. The hit rate of Q on DB, denoted by HR (Q, DB), is defined as the ratio 

between the number of unique data items collected by sending the queries in Q to DB 

and the size of the database DB. 

\(jS(qp,DB)\ 
HR(Q,DB)= p-x " (4) 

Here S(q,DB) denotes the set of documents obtained by sending query q to database 

DB. The numerator of the right hand side of this equation denotes the number of 

accumulated unique results obtained. |DB| is the size of the target dataset. In reality, 

this number is usually provided by the data source. In summary, the HR is used to 

evaluate the quantity of discovery, i.e. how many unique results, out of all the 

expected results have been collected. 

Definition 6 (Overlapping Rate, OR) [9]: Given a set of queries Q={ql,q2„...qk}, the 
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overlapping rate of Q on DB, denoted by OR(Q, DB), is defined as the ratio between 

the total number of collected data items and the number of unique data items retrieved 

by sending queries in Q to DB. 

ZlSiq^DB)] 
OR(Q,DB) = ^ (5) 

\\JS{q DB)\ 
P=\ 

The denominator of the right hand side of the equation represents the number of 

accumulated unique results obtained, and the numerator represents the accumulated 

number of total results, including duplicates. This value measures the quality of the 

extraction. Lower OR value indicates higher quality of the extraction. Together with 

the number of queries issued (denoted as Q), they are considered the cost of the 

discovery. 
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3. Related work 

As mentioned before, two research challenges are in deep web crawling. One is 

learning and understanding the query interface of database and the returning result. 

The other one is selecting a proper set [7] [8] [18]. Several pieces of research work 

[6][21] [22][23] have been conducted on learning and understanding the query 

interfaces by discovering the correspondences among the attributes of the query 

interfaces in order to obtain a general definition which is a common pattern that 

accurately describes queries interfaces of deep web database. With the general 

definition, a scalable solution for a deep web crawling task can automatically find the 

deep web databases: it is impossible to locate deep web databases manually for deep 

web crawling. In the mean while, understanding the interfaces is needed for inputting 

queries into the search interface automatically. 

With the popularity of publicly available web services that provide programmable API 

[20], where input and output data formats are explicitly specified, automated 

extraction of deep web data becomes more practical, and the problem of query 

selection is becoming more prominent. Following the framework of [9], a proper set 

of queries is selected based on a sample database and the query pool so that the cost 

of mapping the selected queries into total database can be minimized. 

Selecting an optimal set of queries can be viewed as a set-covering problem, which is 

NP-hard. Some pieces of works [7][9][10] reduced the query selection problem into 
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set covering problem. For the set covering problem (SCP) in the context of deep web 

crawling, each query can be represented by a column; each document can be 

represented by a row. In the matrix of SCP, the 0-1 values in a column can show 

which rows can be covered by this column; the 0-1 values in a row can show which 

columns can cover this row. In the same way, the matrix of SCP can also represent the 

relationship between queries and documents. Example 2 shows how the query 

selection problem is reduced into set covering problem. 

Example 2 Table 2 gives a matrix A, where each column represents a query in 

QueryPool = {ql, q2,..., q5}, and each row represents a document of SampleDB={dl, 

d2,..., d9}. Cj = *-* is the document frequency (df) of q;. Document frequency of 

a term qi, as illustrated in Table 2, is the number of documents in the database that 

contain qi. One selection of the queries is S= {q3, q4, q5}, which can be obtained by 

the greedy algorithm [9], 

Table 2 Matrix A: an input matrix for set covering algorithm 

Query 1 Query 2 Query 3 Query 4 Query 5 

Document 1 

Document 2 

Document 3 

'•• Document 4 

Document5 

i Document 6 

Document 7 

Document 8 

Document 9 

0 
0 
1 
0 
1 
1 
0 
1 
0 

Several pieces of work viewed the query selection problem of deep web crawling as 

0 
0 
0 
0 
0 
1 
0 
1 
0 

1 
1 
1 
1 
0 
0 
0 
0 
1 

0 
1 
0 
0 
0 
1 
1 
0 
1 

0 
0 
1 
1 
1 
0 
0 
1 
1 
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set covering problem, but they proposed different heuristics to solve the set covering 

problem in the context of deep web crawling. 

In [7], the deep web extraction process is considered as a set covering problem and 

the adaptive data extraction method has been proposed. The adaptive data extraction 

method is a greedy approach that attempts to maximize the potential gain of the next 

query issued to the data set. In the each iteration of the method, a new query is chosen 

based on its "Estimate Efficiency" among all query candidates. The estimate 

efficiency for each candidate keyword q\ is calculated using equation — , in 

Cost(qi) 

which the numerator stands for the amounts of new document that can be returned by 

sending qi, and the denominator is the cost of issuing qi, i.e. redundant documents 

returned by sending- q;. 

One of the main shortcomings in [7] is that when a same query selected by the greedy 

approach can harvest a large chunk of new returns, it may also bring back many 

duplicates. In terms of network traffic, duplicated data far overweight the number of 

queries. 

To overcome this shortcoming, the work of [9] and [10] focused on reducing the 

duplicates. 

In [9], J.Lu et al considered the query selection problem as well-known set covering 
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problem which has been extensively studied. They adopted the greedy algorithm in [7] 

to select queries. 

The greedy algorithm used in [7] [9] selects the most cost-effective query in each step. 

Let Q be a set of queries already selected. According to these simple greedy 

algorithms, the next query q is selected to cover as many as possible new documents 

(i.e. documents not covered by any query in Q) per unit cost. The cost is in terms of 

the document frequency df. In other words, q is selected to maximize the value of 

new/df where new is the number of documents covered by q but not by any query in 

Q-

As an improvement of these simple greedy algorithms [7] [9], Wang et al [10] 

introduced a new approach to select queries. They introduced the concepts of weights 

into the straightforward greedy algorithm [7] [9] and proposed weighted greedy 

algorithm. If a document can only be matched by one query, apparently that query 

must be included into Q. In general, when selecting a query, more attention should be 

paid to cover small documents i.e. those containing fewer terms, since usually they 

can be matched by only very few queries. A weight is assigned to each document, 

where small documents have larger weights. With this intuition, the weight of a 

document is introduced: 

Definition 1 (Document Weight, dw) [10]: Let sample database D = {dl, d2, ... ,dm} 
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and query pool QP = {ql,q2,..., qn}. Each document is considered as a set of terms. 

Notation n e rf. is used to indicate that a term n occurs in document (~f.. The 

OP 

weight of a document with respect to QP and ^.(\<i<m), denoted by ^/vy, 

(or dw for short), is the inverse of the number of terms in QP that occurs in 

document^/., i.e. 

dw" = \d7^\ (6) 

Definition 2 (Query Weight, qw) [10]: The weight of a query a (1 < j < n ) in QP 

QP 

with respect to D, denoted by qw (or qw for short), is the sum of the document 

weights of all documents containing term {7 , i. e. , 

qwQP = I dwQj (7) 

As for weighted greedy strategy, queries qj with larger number of qw are preferred. 

However, a larger number of qw should be obtained by fewer number of dw. Fewer 

number of dw means fewer df. The relationship between qw and dw is shown in 

Equation (7). In order to harvest more documents with less cost, fewer df is used to 

obtain larger qw. Therefore queries with smaller df/qw are preferred because, 

compared with queries having large df/qw, they usually lead to lower overlap. The 

example of the relationships among dw, qw and df is explained in Example 3 below. 

Example 3 Based on the matrix in Table 2, the weight of the documents are shown in 
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the top part of Table 3. The document frequency, the weights of the queries, and their 

quotient are listed at the bottom of the table. For example, the document weight of dl 

is one, the document weight of d2 is V2, and the query weight of q2 is the sum of the 

weight of the documents that is covered by q2, i.e., 0.66. The query weight of ql is 

1.49 which is the sum of the document weight of d3, d5, d6 and d8. The value of df of 

ql is the number of non-zero weights of the documents which are covered by ql . 

Table 3 Matrix B: the initial weight table of the example corresponding to Matrix A 

Query 1 Query 2 Query 3 Query 4 Query 5 Doc weight 

Document 1 

Document 2 

Document 3 

Document 4 

Document 5 

Document 6 

Document 7 

Document 8 

Document 9 

df 

qw 

df/qw 

0 

0 

0.33 

0 

0.5 

0.33 

0 

0.33 

0 

4 

1.49 

2.66 

0 

0 

0 

0 

0 

0.33 

0 

0.33 

0 

2 

0.66 

3.00 

1 

0.5 

0.33 

0.5 

0 

0 

0 

0 

0.33 

5 

2.66 

1.87 

0 

0.5 

0 

0 

0 

0.33 

1 

0 

0.33 

4 

2.16 

1.84 

0 

0 

0.33 

0.5 

0.5 

0 

0 

0.33 

0.33 

5 

1.99 

2.50 

, 1 

0.5 

0.33 

0.5 

0.5 

0.33 

1 

0.33 

0.33 

The study of [10] used four corpora which are Gov, Wiki, Newsgroup and Reuters 

under 4-step framework introduced in Section 2. It showed that 

• The relationship between the df and the number of terms follows the power 

law distribution in the sample databases. 

• The relationship between the document size and the number of documents in 

the sample database follows the power law distribution. 

These two relationships follow the power law distribution, which means 
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• most of the terms are contained by very few documents; while some small df 

terms are in most of the documents. 

• most of the documents only contain few terms. 

In order to take into account the database distribution, a new GA-based method is 

proposed under the framework [9], which means a different method is used to select 

the queries in order to get fewer duplicates at the third step of the four step 

framework. 

The present GA-based method makes sure that terms with smaller value of df/qw are 

selected to the solution earlier. In addition, the nature of genetic algorithm can make 

sure that more possibilities of the combination of genes of solutions can be provided. 

Therefore in every generation, the present proposed GA may improve the solutions a 

little bit, which lead to an overall better result. 

Since GA is used to solve the query selection problem which is viewed as set covering 

problem, [24] is also related to the present work. In [24], it has been presented a 

genetic algorithm-based heuristic for set covering problems, although it is not for a 

particular application domain such as deep web crawling. The authors in [24] 

proposed several modifications to the basic genetic procedures including a new 

fitness-based crossover operator (fusion), a variable mutation rate and a heuristic 

feasibility operator tailored specifically for set covering problem. The performance of 
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their algorithm was evaluated on a large set of randomly generated problems. 

Computational results showed that the genetic algorithm-based heuristic is capable of 

producing better-quality solutions than a number of other heuristics [25] [26] [27]. 
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4. Genetic algorithm (GA) -based algorithm 

The basic genetic algorithm described in the previous section is refined in a way such 

that problem-specific knowledge is considered. 

4.1 Overview of proposed GA-based algorithm 

The framework of our proposed GA-based algorithm for the deep web crawling SCP, 

in line with the one introduced in Section 2.3, is given below. 

1. Generate an initial population of solutions; 

2. Repeat 
• Repeat 

i. Select parents from the population using rank selection; 
ii. Recombine parents to form children using our proposed crossover 

operator, 
iii. Make children feasible by applying our proposed feasibility 

operator to these that are not feasible; 
Until all the solutions in parent generation are selected to do crossover; 

• Replace some or all of the children population with the same amount of 
parent population; 

• Mutate each solution in children generation based on mutation rate; 
3. Until the satisfaction criteria is met; 

Satisfaction criteria can be defined so that, for example, after 500 generations the 

algorithm terminates, or if the best solution is not changed within 50 generations. 

When the algorithm terminates, the best solution is given as the final result of the 

algorithm. The algorithm is introduced in details in the following sub-sections. 

4.2 Representation and fitness function 

In order to apply GAs to a particular problem domain, the first step in designing a 
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genetic algorithm for a particular problem is to devise a suitable representation 

scheme for solution space. In the context of deep web crawling, a solution 

(chromosome) is a set of queries that cover all the documents. Recall that the query 

selection problem can be reduced into SCP where a column of SCP represents a query 

and a row of SCP represents a row. Hence, a solution (chromosome) is a set of 

columns that cover all the rows. Let n be the total number of columns in the SCP. S = 

fan, q,2,-- -, qim} is a solution if ik ̂  ij for any k, j e [l,m], k ^ j ; and ik e [l,n] for any 

k e [l,m]. 

Furthermore, in this thesis work, a list of query ids is used to represent a solution 

(chromosome), i.e. a set of queries. The list is ordered increasingly by the values of 

the df/qw of the corresponding queries. This is to simplify the GA operations on the 

solutions: the value of each bit (gene) corresponds to a column id. For example, S = 

[7, 8, 1, 9, 11, 14, 20, 2] is a solution for a SCP with 20 columns and 10 rows. It is 

illustrated in Figure 10 as an 8-bit string. Here the value of the 1st bit of solution S is 7, 

which means the 7th column in deep web crawling SCP is in the solution. 

A df/qw value of a query is considered as small if it is less than the average df/qw 

among all queries in the query pool. The queries can then be divided into two groups 

according to their df/qw values. 

1. queries with small df/qw 

2. queries with large df/qw 
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Clearly, queries in group 1 are better than queries in group 2. In the following, when 

constructing a solution, queries in group 1 will be considered before those in group 2. 

Figure 10 Ordered representation of a solution (chromosome) 

colunm(gene) 

bit string 

The fitness of a solution is directly related to its objective function. It is the sum of the 

cost of each bit of the solution. It is calculated by 

7=1 

where Cj is the value of the cost of bit j in terms of document frequency. 

4.3 Symbol notations used in our proposed algorithm 

In this sub-section, some notations are used. 

• TO denotes the initial weight table which contains all the initial df/qw for 

each column (c.f. Table 3). 

• OC denotes a list containing all the column ids of T. These column ids are 

placed in increasing order based on their df/qw. 

o OQ denotes the ith element of OC. 

o OC-S denotes the sub-list of OC containing all the column ids in OC 

such that the values of df/qw of the corresponding columns are smaller 

than the average. 

• S denotes a solution i.e. a list of column ids whose corresponding columns 

cover all the rows. 
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• SI denotes a solution candidate: it is a list of column ids whose 

corresponding columns cannot cover all the rows in the SCR 

• WeightMap denotes a map containing the df/qw of some of the columns 

keyed by their column ids. A key-value pair <k,v> represents column k with 

its df/qw value v. 

In Table 3 (Section 2.3), OC is [4,3,5,1,2]. OC-S of OC is [4,3,5]. S = [4,3,1] is a 

solution. SI = [4,3] is an infeasible solution. A WeightMap keeps a set of 5 key-value 

pairs which are {(4,1.8), (3,1.87), (5,2.5), (1,2.66), (2,3.00)}. 

4.4 Initial population construction 

The GA-based algorithm needs an initial set of solutions to do the crossover and 

mutation. An initial population construction strategy is needed to generate a set of 

solutions such that 

• it has a moderate size 

• its solutions contain more of the better queries 

The initial set of solutions should have a moderate size ~ not too small and not too 

big. A too small set will cause the GA-algorithm to terminate too early before 

reaching a good solution; while a too big set will consume too much computation time 

with adequate crossover and mutation operations. 

The most popular way to generate the initial set of solutions is the random method 

which means to obtain a set of solutions by repeatedly running an algorithm that 

randomly generates a solution. The merit of random method is easy to reach a 
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moderate size of the solutions. The drawback is that it is hard to control the number of 

better queries in the initial set of solutions, as the random method simply randomly 

selects queries to construct a solution. 

In order to put more of the better queries into the initial set of solutions, weighted 

greedy method can be used, which means to obtain a set of solutions by repeatedly 

running the weighted greedy algorithm [10]. Better queries are considered with higher 

priority because in each step of the weighted greedy algorithm, a query with the 

smallest df/qw is selected into the solution. However, the size of the solutions 

generated by applying this method is too small due to the occurrences of identical 

solutions. Identical solutions are often generated because greedy algorithms always 

choose the locally optimal way to proceed, and thus, the queries selected as locally 

optimal ones very often turn out to be the same. Experiment [10] has been conducted 

to execute the weighted greedy algorithm on the four corpora Wiki, Gov, Reuters and 

Newsgroup. It was shown there that, by running this weighted greedy algorithm 100 

times on each of the corpora, the standard deviation of the results are 0, 0, 0, 2, 

respectively. Note that the standard deviation of the result is 0 means that there is only 

one solution generated; the standard deviation of the result is 2 implies there are only 

several solutions generated. Apparently the size of the solutions of running the 

weighted greedy method is too small. 

Since the above two methods are not suitable in the present setting, a new algorithm is 
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developed to construct the initial set of solutions Sp. As mentioned before, queries 

with their df/qw less than the average (Section 3, group 1) are better ones. When 

constructing the initial set of solutions, in order to increase the chance to get a better 

solution from the execution of the genetic algorithm, queries in group 1 are used as 

most as possible. In addition to selecting more of the better queries, this method also 

generates a moderate size of solutions. For example, by using present method, a set of 

18 solutions for a sample database of Wiki corpora with 500 documents is obtained. 

Running the weighted greedy method on the same data set, on the other hand, gives 

only one solution. 

In the following, the proposed method is introduced in details. Recall that in deep web 

crawling SCP, a column represents a query. In the following, query and column are 

used interchangeably. 

Suppose that there are totally n queries, while m of them is in OC-S, with their df/qw 

values less than average. To increase the occurrences of the columns whose df/qw is 

less than the average, together with each of the queries in OC-S, a set of solutions is 

constructed. For the query indexed by j in OC, solutions are derived from each suffix 

of OC not containing that of j . A solution is obtained from query j and the shortest 

prefix of such a suffix. In this way the occurrences of those queries with smaller 

df/qw are increased. In the algorithm, 

• Sp is the current set of solutions 
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• N is a required number of solutions given as an input 

• St is a stack used to keep the record of the indexes of those column ids in OC 

currently selected into a solution. column(St) denotes the list of all column ids 

whose indexes in OC are in St 

• index is a pointer to a column id in OC, which is the head of a suffix of OC 

currently considered 

Algorithm 2 (initial population construction): 
Input: T, N 
Output: Sp 
Begin: 
1. Sp :=empty; St:=empty; j=l ; 
2. push / into St; index=2; 
3. while |Sp|<N&j<|OC-S| 

a. while column(St) cannot cover all the rows in T & index<|T| 
i. push index into St; 

ii. index++; 
b. if columns(St) cannot cover all the rows in T & index=|T| 

i. St:= empty; 

ii- j++; 
iii. index =j+l; 
iv. push j into St; 

c. if columns(St) can cover all the rows 
i. add column(St) into Sp; 

ii. if|St|>l&index<|T| 
1. index =index+l; 
2. pop last element in St; 

iii. ifindex=|T| 
1. pop all elements in St except the first; 
2. index= value of the first element of St plus one; 

iv. if|St|=l 
1. break; 

4. Return SP; 
End 

Suppose that |OC|=n and |OC-S|=h. For each fixed value of j , the index will take each 
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index number of OC starting from j (maximum n of them) and keep increasing from 

this number to n, without decreasing. So it takes 0(n ) time for each j . Since j has m 

values, the time complexity of Algorithm 2 is 0(h* n ). 

4.5 Parent selection method 

Parent selection is the task of assigning reproductive opportunities to each solution in 

the population. There are a number of widely used methods for this. Typically, there 

are proportionate selection and tournament selection. 

• The proportionate selection method calculates the probabilities of individuals 

being selected as proportional to their fitness. Based on such probabilities, 

individuals are selected for mating. 

• The tournament selection method works by forming two pools of individuals, 

HI and H2, each consisting of approximately half of the total individuals 

randomly drawn from the population. Two parents with the smallest fitness 

values in HI and H2 respectively are repeatedly taken for mating until at least 

one of the two pools is empty. 

According to our crossover strategy to be explained later on (Section 4.6), if two 

parent solutions with fitness values a and b (where a>b) are used for crossover, child 

solutions will have fitness values no greater than a. Thus, if two parent solutions with 

low fitness values are paired, the child solutions are guaranteed to have low fitness 

value. With this property, in the present thesis work, a rank selection method is 
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proposed. It can be considered as a combination of the above two methods. 

In the present method, all the solutions in the population are ranked in increasing 

order based on their fitness values. Solutions with smaller fitness values are ranked 

higher in the list. According to the algorithm, the top two solutions in the ranked list 

are repeatedly taken to do the crossover, and then put the new solutions generated into 

new generation pool. 

The proportionate selection method also used the fitness value to rank all the 

solutions. However, since it selects the solutions according to the probabilities of 

individuals being selected as proportional to their fitness, it cannot guarantee to 

always pair two solutions with low fitness values to do the crossover. Different from 

this method, ours always pairs two solutions with low fitness values. 

The tournament selection method also tries to select two solutions with low fitness 

values to pair. However, the two parents are selected from two separate pools which 

are grouped randomly. The lowest fitness value in one of the pools may be a large 

number considering all the fitness values in the two pools. Thus, it cannot guarantee 

to pair two parents with overall low fitness values. 

Figure 11 shows how our method works in one generation. If the total number N of 

solutions in ranked list is even, there are N/2 pairs of parents; otherwise (if N is odd) 
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there will be (N-l)/2 pairs of parents and the Nth solution will be moved directly into 

the new generation. After the new generation is obtained, all the solutions are ranked 

based on their fitness value. The new ranked generation will be considered as parent 

generation in the next generation. 

Figure 11 Parent selection method (N is an odd number) 

Ranked solutions 
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In Figure 11, there are N solutions to be selected to do the crossover. They are ranked 

based on their fitness value. After the new generation is obtained, all the solutions are 

ranked based on their fitness value. 

4.6 Crossover operator 

In traditional GA, simple crossover operators such as cut-and-splice[29], 

one-point[24], two-point [24] crossover are often used. The current method is similar 

to the cut-and-splice crossover. 
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With the cut-and-splice approach, each parent string is split into two segments by a 

crossover point which is randomly generated. Two parent strings will have separate 

choices of crossover point. The two child strings are obtained by swapping the second 

segments of the two parent strings. Figure 12 shows how cut-and-splice crossover 

works. Clearly, the application of the cut-and-splice very often results in a change in 

the lengths of the children strings. 

Figure 12 How cut-and-splice crossover works 
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No matter which crossover technique is used, the results may not be feasible. A good 

crossover point should decrease the probability of generating solution candidates after 

crossover. Adopting a good crossover point will, thus, avoid handling solution 

candidates, which increases the running efficiency of the algorithm. 

For cut-and-splice crossover, the crossover point for each parent string is chosen 

randomly, without any restriction. This may lead to some extreme situations. For 
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example, suppose that the crossover point for parent strings P=[Pi,P2,...,Pm] and 

P'=[P'i,P'2,...,P'n] are 2 and n-1 respectively. The child strings C and C are 

C:=[Pi,P2,P'n], C':=[P'i, ...,P'n-i,P3,---,Pm]. As it can be seen, C is very short, and 

usually it cannot be a (feasible) solution. Similarly, C is very long usually with a 

fitness worse than those of the parents. Hence, in these situations, the use of 

cut-and-splice crossover operator leads to low probability of generating (feasible) 

solutions. 

The following way is proposed to define a good crossover point. The present method 

is similar to the cut-and-splice crossover except that the crossover point for each of 

the parents is not randomly chosen: It is chosen to make the two segments of the 

chromosome having approximately the same sums of the document frequency of the 

queries in each segment. Let Suml be the document frequency of segment [Pi.. .PJ of 

P and Sum2 the sum of the document frequency of the other segment [Pk+i-.-Pm] of P. 

If k can make Suml and Sum2 almost equal, then k can be considered as a crossover 

point. In other words, k is considered a crossover point if equation 9 holds for P, 

k m 

,=i j=k+\ 

where m is the length of the solution, and Cj is the cost of bit j in terms of document 

frequency. 

According to the crossover strategy, if two parent solutions with fitness values a and b 

(where a>b) are used for crossover, since both two parents are divided into two 
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segments which have almost of the same sum of df, the fitness values of two children 

are all about a/2+b/2. As b^a/2+b/2^a , the child solutions will have fitness values 

no greater than a. This property is used in the parent selection strategy (c.f. Section 

4.5). 

As mentioned, when combining the two parent chromosomes (solutions), the goal to 

achieve is that the resulting children have more chance to be feasible. The intuition 

behind this crossover operator towards this goal can be understood in the following 

way. 

A solution is a list of columns which can cover all the rows. The overall fitness of a 

solution is determined by the sum of df of each column of the solution. Our crossover 

point splits each parent into two segments of columns with almost the same sum of 

dfs, which means each segment can cover at least half of the rows. Therefore, after 

swapping the segments between two parents, the two new children have good chance 

to cover all the rows. In this way the probability of generating infeasible solutions is 

reduced after crossover. 

An experiment have been conducted to compare between the cut-and-splice method 

and the present crossover, the ability of generating (feasible) solutions on four data 

corpora which are Wild, Gov, Newsgroup and Reuters. Starting with the same pool of 

solutions, the next generation is generated using each of the methods; the ratio of the 
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number of (feasible) solutions over all resulting children is calculated and then all the 

infeasible children are made feasible in each generation. The results from running the 

four corpora for 50 generations are given in Figure 13. 

Figure 13 Experiment results of comparison of cut-and-splice and our method 
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In Figure 13, the X-axis is the number of generation(s) the GA has run; Y-axis is the 

ratio of (feasible) solutions over all resulting children in one generation. According to 

Figure 13 the crossover operator introduced in this thesis can keep all the children 

feasible within 50 generations, while the cut-and-splice operator can only have about 

50% of children feasible on average for the four corpora. Therefore our method 

outperforms the cut-and-splice crossover operator in terms of keeping children 

feasible. 

In the above experiment, the OR of each solution in the starting pool of the solutions 

is very high (~ 4.5), which means the number of documents brought back by sending 

all the queries in a solution to SampleDB is 4.5 times more than the size of SampleDB. 
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By using our crossover operator, each of the two parents are split into two segments, 

each having its OR close to 2.25. Therefore the OR of a child will have much chance 

to be greater than 1 after recombining two segments from different parents. In 

addition, the crossover operator does not change a lot the OR of a solution in a 

generation. This explains why the percentage of the feasible solutions over all the 

child results for the proposed crossover is high. 

Note that although the proposed method can reduce the probability of generating 

infeasible solutions, there may still be some infeasible solutions generated. There are 

two ways of dealing with infeasible solutions: 

• remove them from the set of children; 

• transform them into (feasible) solutions. 

In order to obtain more solutions during the crossover operation, the latter approach is 

chosen. The proposed feasibility operator is described in later sections. This feasibility 

operator, as well as the mutation algorithm to be introduced later, makes use of the 

dynamic calculation of df/qw. In the following, the dynamic calculation of df/qw is 

introduced. 

4.7 Dynamic calculation of df/qw 

During the procedure of the GA calculation, very often sorting the columns is needed 

according to their df/qw so that those with lower df/qw values can be selected first. In 

Section 3, the definition of df/qw is given. The value of df/qw is calculated from a 
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given weight table T for each of its columns. Note that in the case that some columns 

have already been selected, and the rest of the columns would like to be sorted in 

order to be selected according to their df/qw values, the weight table used for the 

calculation of df/qw should consist of only those columns to be selected — it should 

not include those already selected into the solution. When some columns are selected 

and removed from the set of columns to be considered, those documents covered by 

these columns may also be taken away from being considered. Note that the document 

weights for the rest of the documents do not change, but the query weight of each 

remaining column may be changed due to the removal of some of the documents from 

being considered. Finally, while document frequency (df) does not change, df/qw may 

be changed. In general, during the GA execution, the set of columns to be selected 

keeps changing, and thus, the calculation of df/qw becomes dynamic. 

Example 4. Table 4 (a) shows an initial table T and the df/qw of each column. Based 

on the df/qw, the columns are sorted in increasing order as [q4, q3, q5, ql , q2]. Now 

suppose that q4 and q3 have been selected into a solution. As a consequence, 

documents dl , d2, d3, d4, d6, d7, d9 are covered. The rest will be chosen among 

columns ql , q2, q5 in order to cover documents d5, d8. The rest of columns {ql, q2, 

q5} should be sorted in order to select the next column into the solution. Table 4 (b) 

shows a new table after removing from the initial weight table T columns 3 and 4, and 

documents dl , d2, d3, d4, d6, d7, d9. Note that in this example, the document weights 

of d5, d8 do not change; document frequencies of ql, q2, q5 do not change. However, 
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due to the removal of documents d3, d6, the query weight of ql is changed from 1.49 

to 0.83. As a consequence, while df of ql is still 4, the df/qw of ql changes from 2.66 

to 4.82. Based on the new table, columns ql , q2, q5 are sorted as [ql, q5, q2]. 

Table 4 Dynamic calculation of df/qw. 

Table 4 (a) 

Document 1 

Document 2 

Document 3 

Document 4 

Document 5 

Document 6 

Document 7 

Document 8 

Document 9 

df 

qw 

df/qw 

Query 1 
0 

0 

0.33 

0 

0.5 

0.33 

0 

0.33 

0 

4 

1.49 

2.66 

Query 2 
0 

0 

0 

0 

0 

0.33 

0 

0.33 

0 

2 

0.66 

3.00 

Query 3 
1 

0.5 

0.33 

0.5 

0 

0 

0 

0 

0.33 

5 

2.66 

1.87 

Query 4 
0 

0.5 

0 

0 

0 

0.33 

1 

0 

0.33 

4 

2.16 

1.84 

Query 5 
0 

0 

0.33 

0.5 

0.5 

0 

0 

0.33 

0.33 

5 

1.99 

2.50 

Doc we 
1 

0.5 

0.33 

0.5 

0.5 

0.33 

1 

0.33 

', 0.33 

'. 
Document 5 

Document 8 

df 

qw 

df/qw 

Query 

0.5 

0.33 

4 

0.83 

4.82 

Table 4 (b) 

1 Query 2 Query 5 

0 0.5 | 

0.33 0.33 j 

2 5 

0.33 0.83 

6.06 6.02 

doc weight : 

0.5 i 

0.33 

• 

j 
i 

Given a table T and a set Q of columns that appear in T but are selected, the following 

algorithm calculated the df/qw for all the columns not in Q and returns a sorted list 

CQPofthem. 

Algorithm 3 (sorting with dynamic calculation of df/qw): 
Input: TO, Q 
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Output: CQP 
Begin: 

1. WeightMap = empty; 
2. Make a copy of TO as TC; 
3. For each column in Q 

a. Remove all the rows covered by current column from TC; 
b. remove current column itself from TC; 

4. For each column in TC 
a. Recalculate df/qw for current column; 
b. Put current column's id into WeightMap as a key and its df/qw as its 

value; 
5. Sort WeightMap based on values in increasing order; 
6. Iterate each entry of WeighMap and put entry's key into CQP; 
7. Return CQP; 

End. 

Let m, n be the number of columns and number of documents in T, and k the number 

of columns in Q. The first for-loop will take 0(m*n*k) time, and the second for-loop 

will take 0(m*n) time. The total time complexity of this algorithm is 0(m*n*k). 

This algorithm will be used in two cases: 

• feasibility operator which makes a solution candidate feasible by adding 

more columns. In this case, the inputs of the algorithm 4 are TO and a 

solution candidate. The output of algorithm 3 is used by the feasibility 

operator to select columns. 

• mutation operator which modifies a solution by randomly removing some 

column(s) and adding new one(s) to make it feasible again. In this case, 

Algorithm 3 is used for the second step where its inputs are TO and a solution 

candidate. The output of the algorithm is used by mutation operator to select 

columns to be added into the solution candidate. 
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4.8 Feasibility operator 

Here a heuristic operator is proposed to make the solution candidates feasible. It tries 

to keep the overlapping rate low when adding more columns. In algorithm 4, the 

inputs are the initial weight table TO and a solution candidate SI. The output is a 

solution S. 

Algorithm 4 (feasibility operator algorithm): 
Input: TO, SI 
Output: S 
Begin: 

1. S=SI; 
2. a list of columns CQP= Algorithm 3 (Input: TO, SI); 
3. For each column in CQP 

a. If S cannot cover all the rows in deep web crawling SCP 
i. add current column into S; 

b. If S can cover all the rows 
i. Break; 

4. ReturnS; 
End. 

As mentioned before, step 2 will take O (m*n*k) time. Step 3.a takes O (m*n) time so 

the for-loop of step 3 will take O (m*n2) time. Overall, since k ^ n , the time 

complexity of this algorithm is O (m*n2). 

4.9 Population replacement model 

Usually there are two population replacement models: incremental replacement [24] 

and generational replacement [24] model. 

Incremental replacement: whenever a new child has been generated, it will be used to 
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replace a randomly chosen member in the population ~ usually one with an 

above-average fitness value. Note that above-average fitness means less fit. This type 

of replacement method is called incremental replacement or steady-state replacement. 

Generational replacement: a new population of children is generated and the whole 

parent population is replaced by the new population of children. In the experiment, 

the generational method is used. Note that the time spent on this step is ignorable 

compared to other steps. 

4.10 Mutation operator and mutation rules 

Mutation is applied to each child after crossover. There are many ways to do the 

mutation based on different chromosome representations. 

• With binary representation, the bit inversion can be used- select some bits to be 

inverted. For example, suppose that there is a chromosome whose 0-1 sequence is 

11001001. After mutation: 11001001 => 10001001, the second bit was inverted. 

• With our non-binary representation, the mutation is realized by changing some 

column id(s) into others that are not present in the current solution (chromosome). 

In the present mutation algorithm, first some column(s) are randomly selected to be 

removed from a solution S, and new column(s) are selected into S to make it a new 

solution S'. If the fitness value of S' is less than that of S, S is replaced with S' in the 

population; otherwise S is kept in the population. In the present work, mutation rate is 
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the ratio of the number of columns mutated over the number of all columns in a 

solution. The mutation rate is used to calculate the number of columns to be mutated. 

The mutation algorithm is described below. The inputs of the algorithm are the initial 

weight table TO, a solution S and a mutation rate. The output is a solution. 

Algorithm 5 (Mutation algorithm): 
Input: TO, S and mutation rate 
Output: S' 
Begin: 

1. make a copy of S as TS; 
2. let n=(mutation rate) * | S |; 
3. randomly generate n column ids from TS; 
4. remove those n column ids from TS; 
5. a list of column ids CQP=Algorithm 3 (Input: TO, S); 
6. For each column id in CQP 

a. If TS cannot cover all the rows in SCP 
i. Put current column id into TS; 

b. Else Break; 
7. If the fitness of TS is better than that of S 

a. S'=TS; Returns'; 
8. Else ReturnS; 

End. 

As mentioned before, step 5 will take O (m*n*k) time. Step 6.a takes O (m*n) time so 

the for-loop of step 8 will take O (m*n2) time. Overall, k ^ n , the time complexity of 

this algorithm is O (m*n2). 

4.11 The time complexity of our proposed GA 

Recall that n is the number of columns in TO, m is the number of rows in TO. 

Furthermore, let 

• N be the number of solutions in one generation 
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• ST be the satisfaction criteria which is a number of generations our GA will run 

The time complexity of our GA is determined by two parts: 

1. generating an initial set of solutions 

2. repeatedly do crossover, replacement, mutation 

The time complexity of generating an initial set of solutions is 0(n3). The time 

complexity of item 2 is 0(ST*y) where y is the time spent for the following 

operations on one generation. 

i. selecting parents, 

ii. performing crossover 

iii. applying feasibility operator. 

The time complexity of selecting parents can be ignored compared with the other two 

steps. The time complexity of performing a crossover for a pair of parents is O(n). 

After crossover, it is needed to check whether a child is feasible or not. The time spent 

for this check is 0(m*n). The time spent on applying feasibility operator to make a 

solution candidate feasible is 0(m*n2). Thus, the time spent on item 2 is 0(ST*N* 

m*n2). 

Since the time spent on generating an initial set of solutions and for the calculation of 

the generations are 0 ( n ) and 0(ST*N* m*n ) respectively, the overall time 

complexity is O (ST*N*m*n2 + n3). 



5. Experiment 

5.1 Experiment setting 

5.1.1 Data setting 

The experiments have been run on the same data as that of [9] from four corpora: 

Reuters, Gov, Wikipedia and Newsgroup. These are the test data used by many 

researchers e.g. [9][10] in information retrieval. All SampleDBs and Query Pools are 

generated from our search engine [9]. The size of sampleDBs is 500. The sizes of the 

Query Pools for the sampleDB of Retuers, the sampleDB of Gov, the sampleDB of 

Wikipedia and the sampleDB of Newsgroup are 1063, 857,1179,837 respectively. 

5.1.2 Parameter setting 

There are several parameters that will affect the performance of the proposed 

GA-based method. How they are determined will be explained below. 

• Initial population size: with the given SampleDBs and query pools of Newsgroup, 

Wikipedia and Gov, the initial population construction algorithm generates at 

most 168, 17, 18 initial solutions respectively. With the given SampleDBs and 

query pools of Reuters, the initial population construction algorithm generates a 

lot of solutions and the first 300 solutions generated are taken. 

• Population size: the population size in the present setting remains the same as the 

initial population size through out the execution of the algorithm. 

• Mutation rate: Based on plenty of experiments, it is found that when mutation 

rate is 0.03, the result is the best for the four corpora. 
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• Satisfaction criteria: the proposed GA-based method will terminate after having 

calculated 500 generations. 

Furthermore, hit rate (HR) is set to 1, which means all the documents from SampleDB 

are collected, then compare the results with greedy algorithm [7] [9] in terms of OR. 

The parameter setting above is used to conduct an experiment based on four corpora 

(Wiki, Newsgroup, Gov and Reuters) to compare the performance of our GA method 

with that of greedy algorithm [7][9]. The following sub-section shows the results. 

5.2 Experiment result 

Table 5 shows the values of OR (Overlapping Rate) and their statistics including 

minimum (min), maximum (max), average (avg) and SD (standard deviation) 

collected from running the proposed method (GA) and greedy method (G) 12 times 

on each SampleDB of the four data corpora. Although all the tests are run with a fixed 

set of parameters, each time the result will be different because the algorithm involves 

randomly selections in several steps. Each time the greedy algorithm can produce a 

different result because the initial query is randomly selected and the locally optimal 

choices may not be unique. 

Table 5 The OR achieved by the proposed method and greedy method for four copora. 

The mutation rate is 0.03 and the generations are 500 

Reuters 

G GA 
Wiki 

G GA 
Gov 

G GA 
Newsgroup 

G GA 
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Max OR 
MinOR 
AvgOR 
SD 

2.24 
2.18 
2.21 
0.015 

1.83 
1.69 
1.75 
0.04 

2.65 
2.59 
2.60 
0.017 

2.18 
1.95 
2.02 
0.065 

3.24 
3.12 
3.20 
0.031 

2.3 
2.19 
2.26 
0.037 

2.53 
2.36 
2.47 
0.045 

1.94 
1.73 
1.84 
0.08 

As explained before, the weighted greedy algorithm [10] outperforms greedy 

algorithm [7] [9] consistently. A similar approach as weighted greedy algorithm was 

used to construct the initial population. This, together with improvement via crossover 

and mutation of our GA, greatly increased the chance to achieve a better result than 

that of greedy algorithm. 

Table 5 shows that in general the proposed GA based method outperforms the normal 

greedy method. In particular, 

• Even the maximum OR of the proposed GA based method is less than the 

minimal OR of the greedy method when HR is 1 on any data corpora. 

• On the average the proposed method outperforms the normal greedy 

method by approximately 20%-30%. 

In order to achieve this improvement, our method consumes more time than that of 

greedy algorithm. Using a PC with CPU 2.0 GHz, RAM 3.5 GB, the time consumed 

for running greedy algorithm is usually several minutes, while the time consumed for 

running the proposed GA-based method takes about an hour. Such extra time spent 

can be ignored when a large amount of documents need to be downloaded. For 

example, even to download 100,000 amazon links it usually may take 1.5 days. Let 
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alone to download the documents associated by the links. 

5.3 Parameter consideration 

Several parameters may affect the performance of the genetic algorithm. The 

experiments are carried out to investigate the effects of the satisfaction criterion 

(number of generations computed) and the mutation rate on the performance of the 

algorithm. 

In order to see how the satisfaction criterion of the proposed GA-based method 

affects its performance, all parameters of the proposed GA-based method are fixed 

except the satisfaction criterion which is set to those values as listed in Section 5.1.2. 

The number of generations has been set to be 50, 100, 200, 300, 400, 500, 600, 700, 

800 and have run 10 times of each case on all four corpora, Gov, Wiki, Reuters and 

Newsgroup. The results of overlapping rates of each of the 10 experiments of each 

case on Gov, Wikipedia, Reuters and newsgroup, as well as the average of the 

overlapping rate, are listed in Table 6, Table 7, Table 8 and Table 9. In these tables, 

Avg stands for average overlapping rate. 

Table 6 The overlapping rate after certain umber of generations in 10 test cases for Gov corpus 
Number of generations 

50 

100 

200 

300 

1 

2.99 

2.68 

2.39 

2.32 

2 

2.97 

2.71 

2.41 

2.32 

3 

3.17 

2.67 

2.36 

2.31 

4 

3.09 

2.61 

2.38 

2.32 

5 

3.1 

2.62 

2.38 

2.28 

6 

3.1 

2.64 

2.38 

2.31 

7 

3.15 

2.66 

2.37 

2.29 

8 

3.03 

2.63 

2.39 

2.28 

9 

3.15 

2.64 

2.34 

2.29 

10 

3.06 

2.54 

2.35 

2.32 

Avg 

3.08 

2.64 

2.3 

2.3 
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400 

500 

600 

700 

800 

2.28 

2.26 

2.26 

2.25 

2.26 

2.29 

2.3 

2.24 

2.25 

2.23 

2.28 

2.26 

2.22 

2.25 

2.26 

2.27 

2.27 

2.27 

2.24 

2.22 

2.3 

2.27 

2.26 

2.27 

2.24 

2.3 

2.29 

2.27 

2.23 

2.24 

2.3 

2.28 

2.24 

2.22 

2.22 

2.31 

2.26 

2.25 

2.23 

2.25 

2.3 

2.27 

2.27 

2.21 

2.22 

2.27 

2.28 

2.25 

2.23 

2.26 

2.29 

2.27 

2.25 

2.24 

2.24 

Table 7 The overlapping rate after certain umber of generations in 10 test cases for Wikipedia corpus 
Number of generations 

50 

100 

200 

300 

400 

500 

600 

700 

800 

1 

2.91 

2.53 

2.15 

2.16 

2.1 

1.96 

2.04 

1.99 

2.06 

2 

3.16 

2.69 

2.18 

2.17 

2.1 

21.99 

2.02 

2.02 

2.02 

3 

3.00 

2.62 

2.26 

2.23 

2.12 

2.0 

2.03 

2 

2 

4 

3.15 

2.54 

2.31 

2.19 

2.15 

2.1 

2.0 

2 

2 

5 

3.03 

2.63 

2.27 

2.14 

2.06 

1.95 

2.0 

2.01 

2 

6 

3.07 

2.71 

2.29 

2.16 

2.07 

2.02 

2.01 

2 

2.02 

7 

3.14 

2.62 

2.25 

2.08 

2.13 

2.02 

2.02 

2.02 

1.99 

8 

2.86 

2.69 

2.31 

2.17 

2.07 

1.97 

2.03 

2 

2.25 

9 

3.25 

2.4 

2.32 

2.08 

2.13 

2.18 

2.0 

2 

2 

10 

2.93 

2.55 

2.26 

2.16 

2.12 

2.05 

2.05 

1.98 

1.98 

Avg 

3.05 

2.6 

2.26 

2.15 

2.11 

2.02 

2.02 

2.01 

2.0 

Table 8 The overlapping rate after certain umber of generations in 10 test cases for Reuters corpus 
Number of generations 

50 

100 

200 

300 

400 

500 

600 

700 

800 

1 

2.79 

2.49 

2.01 

1.89 

1.8 

1.7 

1.7 

1.68 

1.78 

2 

2.94 

2.4 

1.9 

1.82 

1.7 

1.74 

1.66 

1.68 

1.76 

3 

2.95 

2.55 

2.03 

1.87 

1.72 

1.72 

1.7 

1.67 

1.67 

4 

2.94 

2.54 

2.01 

1.82 

1.76 

1.73 

1.71 

1.75 

1.74 

5 

2.99 

2.32 

1.96 

1.84 

1.74 

1.76 

1.69 

1.75 

1.77 

6 

2.75 

2.46 

2.06 

1.88 

1.73 

1.72 

1.76 

1.68 

1.68 

7 

2.84 

2.36 

1.94 

1.86 

1.76 

1.73 

1.74 

1.68 

1.67 

8 

2.7 

2.56 

1.92 

1.84 

1.77 

1.71 

1.75 

1.78 

1.7 

9 

2.91 

2.38 

1.99 

1.9 

1.81 

1.72 

1.72 

1.75 

1.7 

10 

2.96 

2.43 

2.02 

1.82 

1.77 

1.7 

1.7 

1.72 

1.67 

Avg 

2.88 

2.45 

1.99 

1.85 

1.76 

1.72 

1.71 

1.72 

1.71 

Table 9 The overlapping rate after certain umber of generations in 10 test cases for Newsgroup corpus 
Number of generations 

50 

100 

200 

300 

400 

500 

600 

700 

800 

1 

2.73 

1.98 

1.8 

1.97 

1.79 

1.94 

1.79 

1.72 

1.91 

2 

2.45 

1.96 

1.84 

1.82 

1.76 

1.78 

1.84 

1.79 

1.76 

3 

2.6 

2 

1.78 

1.96 

1.87 

1.86 

1.82 

1.72 

1.79 

4 

2.54 

1.86 

1.87 

1.89 

1.83 

1.79 

1.79 

1.9 

1.75 

5 

2.86 

1.99 

1.86 

1.81 

1.9 

1.74 

1.86 

1.76 

1.75 

6 

2.75 

1.89 

1.88 

1.84 

1.84 

1.94 

1.84 

1.73 

1.79 

7 

2.89 

2.01 

1.86 

1.82 

1.82 

1.73 

1.8 

1.85 

1.86 

8 

2.67 

2.05 

1.92 

1.86 

1.86 

1.73 

1.84 

1.75 

1.71 

9 

2.58 

1.99 

1.9 

1.86 

1.86 

1.88 

1.78 

1.82 

1.74 

10 

2.89 

1.86 

1.9 

1.87 

1.87 

1.86 

1.83 

1.82 

1.73 

Avg 

2.7 

1.96 

1.86 

1.84 

1.84 

1.84 

1.82 

1.79 

1.78 

Figure 14 The relationship between generations and average overlapping rate of each 
corpus. Data is obtained from the mean of each 10 tests of each case on four Corpora 
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Corresponding to Table 6, Table 7, Table 8 and Table 9, Figure 14 shows the 

relationship between the number of generations and the average overlapping rate. 

From this figure it can be seen that 

• For Gov corpora, the average overlapping rate decreases dramatically with the 

first 200 generations and decreases slowly after 200 generations. 

• For Wikipedia corpora, the average overlapping rate decreases dramatically with 

the first 500 generations and decreases slowly after 500 generations. 

• For Reuters corpora, the average overlapping rate decreases dramatically with the 

first 500 generations and decreases slowly after 500 generations. 

• For Newsgroup corpora, the average overlapping rate decreases dramatically with 

the first 200 generations and decreases slowly after 200 generations. 
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Overall, the result is greatly improved at the beginning by increasing the number of 

generations but beyond a certain point there will be little improvement of the 

performance. 

In order to see how the mutation rate of the proposed GA-based method affects its 

performance, all parameters of the proposed GA-based method are fixed except the 

mutation rate to which is set to those values as listed in Section 5.1.2. The mutation 

rate has been set to be 0.01, 0.02, 0.03, 0.04, 0.05, 0.1 and have run 10 times of each 

case on four corpora, Gov, Wikipedia, Reuters and Newsgroup corpora. The resulting 

overlapping rate of each of the 10 experiments of each case on each corpus, as well as 

the average of the overlapping rate, is listed in Table 10, Table 11, Table 12 and Table 

13. 

In the tables below, Max OR refers to the maximum overlapping rate among the 10 

results; Min OR refers to the minimum overlapping rate among the 10 results; and^vg 

OR refers to the average overlapping rate among the 10 results. (G:greedy method; 

GA: GA-based heuristic; K: mutation rate) 

Table 10 The experiment results of each case of mutation rate on a SampleDB of Gov Corpus. 

Gov 

Max OR 
Min OR 
AvgOR 

G 
K=0.01 

GA 
K=0.02 

GA 
3.2367 2.5429 2.2796 
3.1224 2.4612 2.26 
3.2025 2.4998 2.2702 

K=0.03 

GA 
2.3286 
2.1878 
2.2588 

K=0.04 

GA 
2.2939 
2.2429 
2.2712 

K=0.05 

GA 
2.3224 
2.2653 
2.2925 

K=0.1 

GA 
2.4204 
2.3612 
2.388 

Table 11 The experiment results of each case of mutation rate on a SampleDB of Wiki Corpus. 
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Wiki 

Max OR 
MinOR 
AvgOR 

G 
2.6479 
2.5855 
2.603 

K=0.01 

GA 
2.5151 
2.1549 
2.3447 

K=0.02 

GA 
2.0765 
1.99 
2.0408 

K=0.03 

GA 
2.1771 
1.9537 
2.0236 

K=0.04 

GA 
2.1268 
2.0463 
2.0888 

K=0.05 

GA 
2.1469 
2.085 
2.1083 

K=0.1 

GA 
2.3058 
2.1972 
2.2682 

Table 12 The experiment results of each case of mutation rate on a SampleDB of Reuters Corpus. 

Reuters 

Max OR 
MinOR 
AvgOR 

G 
2.243 
2.176 
2.207 

K=0.01 

GA 
2.3988 
1.8497 
2.1867 

K=0.02 

GA 
1.8457 
1.6954 
1.7686 

K=0.03 

GA 
1.8297 
1.6874 
1.7505 

K=0.04 

GA 
1.8176 
1.6834 
1.775 

K=0.05 

GA 
1.8277 
1.7154 
1.7867 

K=0.1 

GA 
2.016 
1.8297 
1.9293 

Table 13 The experiment results of each case of mutation rate on a SampleDB of Newsgroup Corpus. 

Newsgroup 

Max OR 
MinOR 
AvgOR 

G 
2.526 
2.358 
2.474 

K=0.01 

GA 
4.364 
2.448 
3.1082 

K=0.02 

GA 
1.992 
1.752 
1.804 

K=0.03 

GA 
1.942 
1.726 
1.836 

K=0.04 

GA 
1.99 
1.758 
1.845 

K=0.05 

GA 
1.882 
1.794 
1.83 

K=0.1 

GA 
2.924 
1.892 
2.032 

From Table 10, 11, 12 it can be seen that when K =0.03, the Avg OR of GA is much 

smaller than that of Q while when K =0.01 and K=0.1, the Avg OR of GA is very 

close to that of G. From Table 13, it can be seen that when K=0.02, the Avg OR of GA 

is much smaller than that of G while when K =0.01 and K=0.1, the Avg OR of GA is 

either greater than or close to that of G. Thus, the mutation rate should not be too high 

or too low. Either one may affect the performance of the proposed GA-based 

algorithm. In summary, the performance of the proposed GA-based algorithm depends 

on the mutation rate, and good result may be obtained with a small mutation rate. 
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6. Conclusion 

An essential part of the task of deep web crawling is to select a suitable set of queries 

so that they can be sent to retrieve most of the documents with low cost. In this thesis, 

the hitting rate is set to 1, and the low cost is determined by the overlapping rate. To 

reach low overlapping rate, the selection of a set of suitable queries is reduced to set 

covering problem. This thesis work presents a GA-based set covering algorithm to 

select queries. 

There are several steps in the GA algorithm where suitable methods and algorithms 

need to be found. In this thesis, algorithms are introduced for constructing initial 

population, for selecting parents, for performing crossover, and for conducting 

mutations. They are all well developed so that overall, it gives results better than those 

from using the greedy method. 

We have carried out experiments using data from four corpuses wikipedia, Gov, 

Reuters and Newsgroup. We have showed with experimental results on how the 

parameters, such as mutation rate and the number of generations computed, affect the 

performance of the proposed GA algorithm. It is shown 

• the result is greatly improved at the beginning by increasing the number of 

generations but beyond a certain point there will be little improvement of the 

performance. 

• the performance of the proposed GA-based algorithm depends on the mutation rate, and 
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good result may be obtained with a small mutation rate. 

With well set values of the parameters, the GA-based algorithm outperforms the 

greedy algorithm by approximately 20-30%. 
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