
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2009

Dynamic analysis of synchronous machine using neural network Dynamic analysis of synchronous machine using neural network

based characterization clustering and pattern recognition based characterization clustering and pattern recognition

Rashed Mazhar
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Mazhar, Rashed, "Dynamic analysis of synchronous machine using neural network based characterization
clustering and pattern recognition" (2009). Electronic Theses and Dissertations. 8101.
https://scholar.uwindsor.ca/etd/8101

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8101?utm_source=scholar.uwindsor.ca%2Fetd%2F8101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

DYNAMIC ANALYSIS OF SYNCHRONOUS

MACHINE USING NEURAL NETWORK BASED

CHARACTERIZATION, CLUSTERING &

PATTERN RECOGNITION

By

Rashed Mazhar

A Thesis

Submitted to the Faculty of Graduate Studies

Through the Department of Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for the

Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada

2009

© 2009 Rashed Mazhar

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre inference
ISBN: 978-0-494-82079-7
Our file Notre reference
ISBN: 978-0-494-82079-7

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduce, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

AUTHOR'S DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone's copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

111

ABSTRACT

Synchronous generators form the principal source of electric energy in power

systems. Dynamic analysis for transient condition of a synchronous machine is done

under different fault conditions. Synchronous machine models are simulated numerically

based on mathematical models where saturation on main flux was ignored in one model

and taken into account in another. The developed models were compared and scrutinized

for transient conditions under different kind of faults - loss of field (LOF), disturbance in

torque (DIT) & short circuit (SC). The simulation was done for LOF and DIT for

different levels of fault and time durations, whereas, for SC simulation was done for

different time durations. The model is also scrutinized for stability stipulations.

Based on the synchronous machine model, a neural network model of

synchronous machine is developed using neural network based characterization. The

model is trained to approximate different transient conditions; such as - loss of field,

disturbance in torque and short circuit conditions. In the case of multiple or mixture of

different kinds of faults, neural network based clustering is used to distinguish and

identify specific fault conditions by looking at the behaviour of the load angle. By

observing the weight distribution pattern of the Self Organizing Map (SOM) space,

specific kinds of faults is recognized. Neural network patter identification is used to

identify and specify unknown fault patterns. Once the faults are identified neural network

pattern identification is used to recognize and indicate the level or time duration of the

fault.

IV

DEDICATION

Dr. %ashida JAkhter

Dr Md. MazharuCJ-fuque Xfian

Mushfiq MohammadMazhar

MusaBhir Mohammed Mazhar

SeCina JAkhter

V

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to my advisor Dr. Narayan Kar for his

assistance at every step of the way. His guidance has had an immense influence on my

professional growth and without his technical expertise, reviews, and criticism it would

not have been possible to shape this thesis. It was a rewarding experience working with

him. I would also like to thank my committee members Dr. Lee and Dr. Khalid for their

valuable suggestions and guidance in the completion of this work.

I would like to show my appreciation for my adorable brothers and my dear

friends who made strenuous times seem easy and turned stressful days into fun. Their

love and support will always be invaluable.

In the end I want to thank my fellow graduate students in the Electric Machines

and Drives Research Lab for their support and encouragement. Working in their friendly

company was a memorable experience.

VI

TABLE OF CONTENTS

AUTHOR'S DECLARATION OF ORIGINALITY Ill

ABSTRACT IV

DEDICATION V

ACKNOWLEDGEMENT VI

LIST OF FIGURES XII

LIST OF TABLES XVI

NOMENCLATURE XVII

1 INTRODUCTION 1

1.1 Background 1

1.2 Research Objectives 5

1.3 Thesis Outline 5

1.4 References 6

2 SYNCHRONOUS MACHINE MODELING 8

2.1 Introduction 8

2.2 Theory and Modeling of Synchronous Machine 8

2.2.1 Constructional features 8

2.2.2 Operating principles 9

2.2.3 Reference frame theorem 12

2.2.4 Per unit system 13

2.3 Mathematical Modeling 13

2.3.1 d-axis mathematical modeling 14

2.3.2 q-axis mathematical modeling 15

2.3.3 Steady-state operation 16

2.3.4 Mechanical equations 17

2.3.5 Current flux relationship in matrix form 18
vii

2.3.6 Internal control system 18

2.4 Saturation 19

2.4.1 Unsaturated model 20

2.4.2 Saturated model 20

2.5 Rotor Angle 21

2.6 References 22

3 ARTIFICIAL NEURAL NETWORK (ANN) 24

3.1 Introduction 24

3.2 Overview of ANN 25

3.2.1 Model 25

3.2.2 Learning 27

3.2.3 Learning paradigms 28

3.2.4 Learning algorithms 30

3.3 Real Life Applications 30

3.3.1 Applications of artificial neural networks 31

3.3.2 Application areas of artificial neural networks commonly spotted
31

3.4 Types of Neural Networks 31

3.4.1 Feedforward neural network 31

3.4.2 Radial basis function (RBF) network 36

3.4.3 Kohonen self-organizing network 37

3.4.4 Recurrent network 38

3.4.5 Stochastic neural networks 39

3.4.6 Modular neural networks 39

3.4.7 Other types of networks 40

3.5 Theoretical Properties 42

3.5.1 Computational power 42

3.5.2 Capacity 42

3.5.3 Convergence 42

3.5.4 Generalization and statistics 43
viii

3.5.5 Dynamic properties 44

3.6 Corroboration 44

3.6.1 Approximation 44

3.6.2 Clustering 44

3.6.3 Pattern recognition 45

3.7 References 45

4 SYNCHRONOUS MACHINE SIMULATION 48

4.1 Introduction 48

4.2 Synchronous Machine Commotions 49

4.2.1 Loss of excitation/field (LOF) 49

4.2.2 Disturbance in Torque (DIT) 49

4.2.3 Short circuit (SC) 50

4.3 System Deliberates 50

4.3.1 Machine parameters 50

4.3.2 Operating conditions 51

4.3.3 Process flow 51

4.4 Simulation and Results 56

4.4.1 Loss of excitation/field (LOF) 56

4.4.2 Disturbance in torque (DIT) 62

4.4.3 Short circuit (SC) 67

4.5 References 70

5 NEURAL NETWORK CHARACTERIZATION 73

5.1 Introduction 73

5.2 Overview of Function Approximation 73

5.2.1 Known target function approximation 74

5.2.2 Unknown target function approximation 74

5.3 Implementation of Function Approximation 75

5.3.1 Neural network 75

ix

5.3.2 Neural network specifications 75

5.3.3 Neural network training conditions 77

5.4 Simulation and Results 78

5.4.1 Loss of excitation/field (LOF) 78

5.4.2 Disturbance in torque (DIT) 87

5.4.3 Short circuit (SC) 95

5.5 References 99

6 NEURAL NETWORK CLUSTERING 101

6.1 Introduction 101

6.2 Overview of Clustering 101

6.3 Implementation of Clustering 103

6.3.1 Neural network 103

6.3.2 Neural network specifications 104

6.3.3 Neural network training conditions 105

6.4 Simulation and Results 105

6.5 References 108

7 NEURAL NETWORK PATTERN RECOGNITION 110

7.1 Introduction 110

7.2 Overview of Pattern Recognition 110

7.3 Implementation of Pattern Recognition 112

7.3.1 Pattern recognition between loss of excitation, disturbance in
torque and short circuit 112

7.3.2 Pattern recognition between 20%, 40%, 60%, 80% & 100% loss
of excitation 115

7.3.3 Pattern recognition between 20%, 40%, 60%, 80% & 100% loss
in torque 117

7.3.4 Pattern recognition between 0.05 s, 0.10 s, 0.15 s, 0.20 s & 0.212
sSC 119

7.4 Simulation and Results 121

x

7.4.1 Pattern recognition between loss of excitation, disturbance in
torque and short circuit 121

7.4.2 Pattern recognition between 20%, 40%, 60%, 80% & 100% loss
of excitation 124

7.4.3 Pattern recognition between 20%, 40%, 60%, 80% & 100% loss
in torque 127

7.4.4 Pattern recognition between 0.05 s, 0.10 s, 0.15 s, 0.20 s & 0.212
sSC 130

7.5 References 133

8 CONCLUSIONS AND FUTURE WORK 134

8.1 Conclusions 134

8.2 Future Work 135

LIST OF PUBLICATION 136

VITAAUCTORIS 137

xi

LIST OF FIGURES

Figure 1 1 The first three-phase synchronous machine built by Fnednch August Haselwander m

1887 (Photo Deutsches Museum, Munich) 1

Figure 2 1 Synchronous machine operation (a) Motoring mode (b) Generating mode 9

Figure 2 2 Three-phase AC signal 9

Figure 2 3 Field winding in the rotor 10

Figure 2 4 Rotating magnetic field of a synchronous machine 11

Figure 2 5 Synchronous machine rotation 11

Figure 2 6 Reference frame 12

Figure 2 7 d-axis circuit diagram 14

Figure 2 8 q-axis circuit diagram 15

Figure 2 9 Phasor diagram for calculating initial conditions 16

Figure 2 10 Simplified circuit diagram 17

Figure 2 11 Internal control loop 19

Figure 3 1 Artificial Neural Network (ANN) 25

Figure 3 2 ANN dependency graph 25

Figure 3 3 Recurrent ANN dependency graph 26

Figure 3 4 Feed forward neural network 32

Figure 3 5 A two-layer neural network capable of calculating XOR 35

Figure 4 1 Initial value calculation flowchart for unsaturated model 53

Figure 4 2 Initial value calculation flowchart for saturated model 54

Figure 4 3 Calculation of transient values after LOF fault for unsaturated model 55

Figure 4 4 Calculation of transient values after LOF fault for saturated model 56

Figure 4 5 25% LOF for 0 1 s 58

Figure 4 6 50% LOF for 0 1 s 58

Figure 4 7 75% LOF for 0 1 s 59

Figure 4 8 100% LOF for 0 1 s 59

xii

Figure 4.9. 100% LOF for 0.2 s 60

Figure 4.10. 100% LOF for 0.5 s 61

Figure 4.11. 100% LOF for 1 s 61

Figure 4.12. 50% loss of DIT for 0.1 s 63

Figure 4.13. 100% loss of DIT for 0.1 s 63

Figure 4.14. 50% over-excitation of DIT for 0.1 s 64

Figure 4.15. 100% over-excitation of DIT for 0.1 s 64

Figure 4.16. 100% loss of DIT for 0.2 s 66

Figure 4.17. 100% loss of DIT for 0.5 s 66

Figure 4.18. 100% loss of DIT for 1 s 67

Figure 4.19. SC for 0.075 s 68

Figure 4.20. SC for 0.150 s 68

Figure 4.21. SC for 0.212 s (Marginally Stable) 69

Figure 4.22. SC for 0.213sec (Unstable) 69

Figure 4.23. Comparison of SC for 0.075 s, 0.150 s, 0.212 s (Marginally Stable) & 0.213sec

(Unstable) 70

Figure 5.1. Approximation in blue and actual signal in red (a) log(x) (b) exp(x) 74

Figure 5.2. Approximation for 100% LOF (0.1 s) 79

Figure 5.3. Error curve for 100% LOF (0.1 s) 79

Figure 5.4. Performance graph for 100% LOF (0.1 s) 80

Figure 5.5. Approximation for 25% LOF (0.1 s) 80

Figure 5.6. Error curve for 25% LOF (0.1 s) 81

Figure 5.7. Approximation for 50% LOF (0.1 s) 81

Figure 5.8. Error curve for 50% LOF (0.1 s) 82

Figure 5.9. Approximation for 75% LOF (0.1 s) 82

Figure 5.10. Error curve for 75% LOF (0.1 s) 83

Figure 5.11. Approximation for 100% LOF (0.2 s) 84

Figure 5.12. Error curve for 100% LOF (0.2 s) 84

xiii

Figure 5 13 Approximation for 100% LOF (0 5 s) 85

Figure 5 14 Error curve for 100% LOF (0 5 s) 85

Figure 5 15 Approximation for 100% LOF (Is) 86

Figure 5 16 Error curve for 100% LOF (Is) 86

Figure 5 17 Approximation for 50% loss in DIT (0 1 s) 88

Figure 5 18 Error curve for 50% loss m DIT (0 1 s) 88

Figure 5 19 Approximation for 100% loss in DIT (0 1 s) 89

Figure 5 20 Error curve for 100% loss in DIT (0 1 s) 89

Figure 5 21 Approximation for 50% over-excitation in DIT (0 1 s) 90

Figure 5 22 Error curve for 50% over-excitation in DIT (0 1 s) 90

Figure 5 23 Approximation for 100% over-excitation in DIT (0 1s) 91

Figure 5 24 Error curve for 100% over-excitation in DIT (0 1s) 91

Figure 5 25 Approximation for 100% loss in DIT (0 2 s) 92

Figure 5 26 Error curve for 100% loss in DIT (0 2 s) 93

Figure 5 27 Approximation for 100% loss in DIT (0 5 s) 93

Figure 5 28 Error curve for 100% loss in DIT (0 5 s) 94

Figure 5 29 Approximation for 100% loss in DIT (Is) 94

Figure 5 30 Error curve for 100% loss in DIT (1 s) 95

Figure 5 31 Approximation for SC for 0 075 s 96

Figure 5 32 Error curve for SC for 0 075 s 97

Figure 5 33 Approximation for SC for 0 150 s 97

Figure 5 34 Error curve for SC for 0 150s 98

Figure 5 35 Approximation for SC for 0 212 s (Marginally Stable) 98

Figure 5 36 Error curve for SC for 0 212 s (Marginally Stable) 99

Figure 6 1 SOM weight plane 106

Figure 6 2 SOM neighbor weight distances 107

Figure 6 3 SOM weight positions 107

Figure 6 4 SOM weight hits 108

XIV

Figure 7 1 Confusion matrix 122

Figure 7 2 Error curve 123

Figure 7 3 Performance graph 123

Figure 7 4 Confusion matrix 125

Figure 7 5 Error curve 126

Figure 7 6 Performance graph 126

Figure 7 7 Confusion matrix 128

Figure 7 8 Error curve 129

Figure 7 9 Performance graph 129

Figure 7 10 Confusion matrix 131

Figure 7 11 Error curve 132

Figure 7 12 Performance graph 132

xv

LIST OF TABLES

Table 4.1. Machine parameters 51

Table 4.2. Operating conditions 51

Table 5.1. Neural network 76

Table 5.2. Neural network specification 76

Table 5.3. Neural network training conditions 77

Table 6.1. Neural network 104

Table 6.2. Neural network specification 104

Table 6.3. Neural network specification 105

Table 7.1. Neural network 112

Table 7.2. Neural network specifications 113

Table 7.3. Neural network training conditions 114

Table 7.4. Neural network 115

Table 7.5. Neural network specifications 116

Table 7.6. Neural network training conditions 116

Table 7.7. Neural network 117

Table 7.8. Neural network specifications 118

Table 7.9. Neural network training conditions 118

Table 7.10. Neural network 119

Table 7.11. Neural network specifications 120

Table 7.12. Neural network training conditions 120

XVI

NOMENCLATURE

Generally symbols have been defined locally. The list of principle symbols is

given below.

Ra Stator winding resistance

Rkdi, Rkqi d- and q-axis 1st damper resistances

Rkd2, Rkq2 d- and q-axis 2nd damper resistances

Rfd, Rkqs Field and 3rd q-axis damper resistances

Lj, Lq d- and q-axis synchronous Inductances

Lkdi, Lkqi d- and q-axis 1st damper Inductances

Lkd2, ^2 d- and q-axis 2nd damper Inductances

Lfd, ^3 Field and q-axis 3rd damper Inductances

Li Stator leakage Inductances

xvii

1 INTRODUCTION

1.1 Background

The synchronous machine has long been the most important of the

electromechanical power-conversion devices, playing a key role both in the production of

electricity and in certain special drive applications. The history of the synchronous

machine is now more than 100 years old. Within this span of time its power capacity has

grown enormously, and it has established itself as a major player in the conversion of

energy. Its beginnings are found in the closing decades of the 1800s, when innovatory

engineers in several different countries showed courage, conviction and far-sightedness

as they worked on its early development.

The beginning was in the 1880s. At first, stationary poles were used, with the

poles surrounding a rotating ring armature. This was known as the external-pole type. An

important milestone was the 'three-phase dynamo' derived from the direct-current

machine with the Thomson-Houston armature. In 1887. the first three-phase synchronous

generator shown in Figure 1.1 was built, which produced about 2.8 kW at 960 rev/min.

corresponding to a frequency of 32 Hz.

Figure 1.1. The first three-phase synchronous machine built by Friedrich August
Haselwander in 1887 (Photo: Deutsches Museum, Munich).

1

1891 was the year in which the three-phase synchronous machine passed its first

big test and made its actual breakthrough. The scene was the Frankfurt Exposition, the

event the great experiment whereby 300 hp was transmitted from the hydroelectric power

plant at Lauffenam Neckar, 175km away, via three-phase current transmission. It was an

event that drew worldwide attention and acclaim. The appearances of powerful steam

turbines are at about the beginning of the 20th century. In 1901, the first actual

turbogenerator was built by Charles E. Brown [1].

We have to thank the Americans for building the first hydrogen-cooled machines.

They started in 1928 with a synchronous compensator, and in 1936 they put the first

3,600 rev/min hydrogen-cooled turbogenerator into commercial operation [1]. The first

hydrogen-cooled turbine generator developed by the GE Company went into service in

1937, and hydrogen-cooled machines were able to satisfy the power output needs for

many years. Between 1950 and 1960, manufacturers developed a broad range of direct

cooling methods.

A milestone of the 1970s was the appearance of superconducting (SC)

synchronous generator technology. A prototype of two-pole "utilitytype" generator was

built during the early 1970s using low temperature superconducting (LTS) wires. A 5-

MVA generator was developed and successfully tested in 1972. The purpose of these

activities was to assess the technical feasibility of SC generators for long-term reliable

operation on electric power systems. In 1979 a 20 MVA two-pole 3,600 r/min turbine

generator for utility applications was designed, built, and load tested which was the

largest SC generator to be fully load tested.

This LTS conductor technology was used in the design of an SC rotor for a

synchronous turbo-generator. This rotor was essentially designed as a 250 MW machine

with an active length of 2 m and an overall length of 3 m, but used a larger diameter of a

1200-MW machine (1.06 m) [2].

Great improvements of computers mark the 90's; powerful softwares were

developed to design and analyze the synchronous generators. In 1995, K.W. Cowan

presented advanced computational techniques involving computational fluid dynamics

(CFD) and electromagnetic and thermal finite element analyses to predict the thermal

2

performance of prototype hydrogen cooled generator. During the last years of 1990s, the

SuperGM project, which was launched by the Japan New Energy and Industrial

Technology Development Organization in 1988, resulted in three models of

superconducting rotors and a conventional stator. Between October 1998 and June 1999,

this model machine was connected to a commercial power grid for the first time in the

world to study basic performance in an actual electric power system.

Application of high temperature superconducting (HTS) materials in synchronous

generators was a great milestone in this technology. In the mid-1990s, GE conducted

design studies on HTS generators and built and tested an HTS prototype coil [2]. Last

years of 1990s encountered the appearance of the powerformer technology. The idea of

electrical generation in high voltages was proposed in the beginning of 1998 by Dr Mats

Leijon from the ABB Corporate Research in Sweden. A new type of generator offered a

possibility to build high voltage generators, which could be directly connected to the

power transmission systems without any step-up transformer. In 1998, the first

powerformer was installed in the Porjus power plant in the north of Sweden with the

rating voltage of 45 kV and the rating power of 11 MVA [3].

Synchronous generators form the principal source of electric energy in power

systems. Many large loads are driven by synchronous motors. Synchronous condensers

are sometimes used as a means of providing reactive power compensation and controlling

voltage. These devices operate on the same principle and are collectively referred to as

synchronous machines. The power system stability problem is largely one of keeping

interconnected synchronous machines in synchronism. Therefore, an understanding of

their characteristics and accurate modeling of their dynamic performance are of

fundamental importance to the study of power system stability.

The modeling and analysis of the synchronous machine has always been a

challenge. The problem was worked on intensely in 1920s and 1930s [4]. [5] and has

been the subject of several more recent investigations [5]. [7]. The theory and

performance of synchronous machines have also been covered in a number of books [8],

[9].

3

Synchronous machines while generating power are usually connected to a grid.

As one of the prime requirements of synchronous machines is to run them in synchronous

speed, as any distortion from synchronism can lead to instability of the grid i.e. the

system. Synchronous machines while operating in generation mode are subjected to

different kinds of faults or disturbances which can lead to potential speed distortion and

ultimately instability of the system. To prevent this there are different kinds of precaution

that have been taken. A lot of these precautions invohe implementation of protection

relays which depends on fault detection and analysis.

Nowadays, to connect a synchronous machine to a system for testing purposes are

not so practical. Same goes for analyzing and investigating it for fault detection for the

enormity and complexity of the machines as well as the complexity of the power system

and the importance of its stability. With the rapid and vast development of computer

based analysis tools the solution has to come as a package where the system is already

analyzed the outcome is expected. In the field of fault detection there are different kinds

of common occurrences in faults under which the machine behaviors should be analyzed

and possible solution should be in effect. Of the faults very common occurrences are loss

of field or excitation, disturbances in input torque, short circuit faults etc. For the sake of

power system stability is absolutely nonnegotiable to have a proper understanding of how

a machine going to behave under any of the faults and as well to identify what kind of

fault is in incidence.

For the purpose synchronous machine computer aided analysis is done by

simulating synchronous machine models and observing its dynamic behavior if different

kinds of fault is initiated. It is also of utmost importance to detect what kind of fault is in

occurrence by just looking at the machine activities. Under certain situation if there are

multiple fault occurrences it is also essential to filter different kinds of faults to

distinguish and identify them.

Up to the point different type of synchronous machine models are in effect, which

are good approximations of the actual system. They are at most of the cases being

simulated where the simulation is also a good approximation of the actual mathematical

4

machine model solution. Fault detection and distinguishing can be tricky under certain

situations where fault specific behaviors are not very well known.

1.2 Research Objectives

The objective of this research is to understand and realize synchronous machine

dynamic performances and to propose and design a better modeling of synchronous

machine for the purpose; to understand behavior of synchronous machine performance

under different kinds of fault and study system stability under these conditions; to

identify and to be able to distinguish between different kinds of faults.

In this research work, artificial neural network has been used as a tool for the

purpose:

> For approximation and characterization of synchronous machine dynamic

behavior under different fault conditions

> For fault distinguishing and filtering under mixed or multiple fault occurrence

> For fault detection and identification to various details by looking at machine

behavior

To achieve these purposes neural network based characterization, clustering and pattern

recognition has been used.

1.3 Thesis Outline

This thesis is organized as follows:

Chapter 2: In this chapter, synchronous machine and its model details is being

defined. Here synchronous machine is described from its operational point

of view, constructional point of view and other theories related to it.

Synchronous machine mathematical model is being depicted which is later

used in chapter 4 for simulation purposes.

Chapter 3: Artificial neural network with its understanding and different aspects is

focus of the chapter. Special types of artificial neural networks and there

5

attributes being scrutinized to comprehend there implicational and

contextual properties.

Chapter 4: Synchronous machine model described in chapter 2 is simulated and

dynamic analysis is performed. Simulation and result from the simulation

is presented with detailed description and explanation.

Chapter 5: In this chapter, neural network characterization is used to approximate

synchronous machine model using neural networks. The simulation of the

approximation is presented under various dynamic conditions.

Chapter 6: In this chapter, neural network clustering is used to filter and distinguish

between different kinds of faults in the case of multiple fault situations.

The simulation results are presented.

Chapter 7: In this chapter, neural network pattern recognition technique is used to

detect faults by looking at machine behaviors. Fault detection is done

between different kinds and levels of faults. The simulations and findings

are presented in end of the chapter.

Chapter 8: Findings of this research work is summarized in this chapter.

1.4 References

[1] G. Neidhofer, "The evolution of the synchronous machine," Engineering

Science and Education Journal, pp. 239-248, October 1992.

[2] S. Kalsi, K. Weeber, H. Takesue, C. Lewis, "Development status of rotating

machines employing superconducting field windings," Proceeding of the IEEE.

vol. 92, no. 10, pp. 1688-1704, October 2004.

[3] M. Leijon, M. Dahlgren, L. Walfridsson, L. Ming and A. Jaksts, "A recent

development in the electrical insulation systems of generators and transformers,"

IEEE Electrical Insulation Magazine, vol. 17. no. 3, pp. 10-15, May/June 2001.

[4] R.H. Park, "Two-Reaction Theory of Synchronous Machines - Generalized

Method of Analysis - Part I," AIEE Trans., vol. 48, pp. 716-727, 1929.

[5] R.H. Park, "Two-Reaction Theory of Synchronous Machines - Part II," AIEE

Trans., vol. 52, pp. 352-355, 1933.

[6] G. Shackshaft and P.B. Henser. "Model of Generator Saturation for Use in

Power System Studies," Proc. IEE (London), vol. 126, no. 8, pp. 759-763. 1979.

[7] EPRI Report EL-3359, "Improvement in Accuracy of Prediction of Electrical

Machine Constants, and Generator Model for Subsynchronous Resonance

Conditions," Final Report of EPRI Projects RP 1288-1 and RP. vols. 1, 2 and 3.

(Prepared by General Electric Company), 1984.

[8] E.W Kimbark, Power System Stability, Vol. Ill: Synchronous Machines. John

Wiley & Sons, 1956.

[9] A.E. Fitzgerald and C. Kingsley, Electric Machinery, Second Edition, McGraw-

Hill, 1961.

7

2 SYNCHRONOUS MACHINE MODELING

2.1 Introduction

Synchronous machine is the most used machine in the purpose of electric power

generation in the world. That is most of the energy com ersion where mechanical power

is converted into electrical power, large scale s\nchronous machine are in use. It's an AC

machine where the rotor of the machine is in synchronism with the rotating stator

magnetic field which refers its being in synchronism to the electrical frequency.

To understand the modeling of machine one has to understand a machine's

construction, the fundamentals it operates on, mathematical model etc. To be able to

analyze a machine one have to realize their underlying relationships. In the next section

the key aspects of synchronous machine is portrayed and an effort was made to interrelate

them. Also a synchronous machine mathematical model is described which is developed

based on a standard IEEE model [1].

2.2 Theory and Modeling of Synchronous Machine

2.2.1 Constructional features

From mechanical point of view a synchronous machine has basically two parts:

stator and rotor. The stator is the stationary part which has a three phase winding which is

spatially distributed and either Y-connected or A-connected. Stator in a synchronous

machine is the armature as the larger current flows through it. The rotor is the rotating

part of the machine which has a DC winding. That is a DC power supply powers the rotor

to make it act as an electromagnet. Hence, the rotor in a synchronous machine is the field

[2]-

8

2.2.2 Operating principles

Synchronous machine is an electromechanical energy conversion unit, which can

convert mechanical energy to electrical and electrical energy to mechanical. When it

converts electrical energy to mechanical energy it is said to be operating in motoring

mode shown in Figure 2.1(a) and when it is converting mechanical energy to electrical it

is called to be operating in generating mode shown in Figure 2.1(b). In most of the cases

they are used as generators because of their high efficiency.

To understand the operating principles of synchronous machine it is assumed that

the machine is operating in motoring mode. Once understood the motoring mode the

generating mode works in the same way. except the direction of the operation is

completely opposite. In motoring mode, a three phase AC power is supplied as in Figure

2.2. The three phase power supply creates a rotating magnetic field. The speed of the

rotating magnetic field is synchronous to the frequency of the AC power supply and the

speed depends on the number of poles in the rotor. As the electrical frequency and the

number of poles in a synchronous machine are constant, the speed is as well [2]. The

speed of the magnetic field can be calculated as,

• .1 r' ^

(a) (b)

Figure 2.1. Synchronous machine operation, (a) Motoring mode (b) Generating mode.

Figure 2.2. Three-phase AC signal.
9

St
Figure 2.3. Field winding in the rotor.

(2.1)

Where,

is the electrical frequency in per second (Hz)

P is the number of poles

N is the synchronous speed in revolution per minute (rpm)

The DC power supply in the rotor winding as in Figure 2.3 makes the rotor act as

an electromagnet; hence the magnetic field is created. The rotating magnetic field in the

stator circuit cuts the magnetic field from that field winding of the stator; as a result they

try to align with each other. As the rotating magnetic field continuous to rotate the rotor

magnetic field follows, as a result the rotor starts rotating; hence the mechanical rotation.

10

(g) (h) (i) 0) (k) (1)

Figure 2.4. Rotating magnetic field of a synchronous machine.

(g) (h) (i) ()) (k) (1)

Figure 2.5. Synchronous machine rotation.

Rotation of the magnetic field in the stator circuit is shown in Figure 2.4(a)-(l).

The rotation of the rotor because of the electromagnetic induction is shown in Figure

2.5(a)-(l). It is evident from the Figures 4 and 5 that the rotation of synchronous machine

rotor is synchronous to the rotating magnetic field.

11

2.2.3 Reference frame theorem

The understanding of synchronous machine mathematical model one needs to

have a proper understanding of reference frame theorem. Before getting in to the details

of the reference frame theorem of a synchronous machine let us look at the machine

equations from organizational point of view. From one point of view the mathematical

model has two basic sets of equation describing the whole model - the electrical

equations and the mechanical equations.

Now looking at the electrical part of the machine, the model as per machine

structural construction has two distinct parts - the rotor and stator, thus, a set of equations

that describes the stator part and another set of equations that describes the rotor part.

Since, the rotor and stator of the machine are linked through magnetic flux while

operating, the equations describing both stator and rotor are interconnected.

In describing the mathematical model problem arises as the stator is stationary

and the rotor is rotating, and one has to inter-link the equation to make sense out of them;

which calls for taking either stator or rotor as reference. In describing these equations

whether the rotor or the stator or any other variable is taken as a reference is realized is

expressed through reference frame theory.

^ d-axis

Figure 2.6. Reference frame.

12

Like many other coordinate system the reference frame theory is primarily defined

by two axes as shown in Figure 2.6: direct and quadrature axes. All the vectors in the

mathematical model of a synchronous machine are dissolved to these two axes. So, as in

Figure 2.6, if an arbitrary vector X is assumed with an angle 9 with respect to direct axis,

it will have to be dissolved in two components - the d-axis component: Xd = X cosG and

the q-axis component: Xq = X sin9. All the vectors in the space which describe the

machine operation are thus resolved into d and q axis components.

2.2.4 Per unit system

A per-unit system is the expression of system quantities as fractions of a defined

base unit quantity. Calculations are simplified because quantities expressed as per-unit

are the same regardless of the voltage level. Similar types of apparatus will have

impedances, voltage drops and losses that are the same when expressed as a per-unit

fraction of the equipment rating, even if the unit size varies widely. Conversion of per-

unit quantities to volts, ohms, or amperes requires knowledge of the base that the per-unit

quantities were referenced to.

A per-unit system provides units for power, voltage, current, impedance, and

admittance. Only two of these are independent, usually power and voltage. All quantities

are specified as multiples of selected base values. Per unit system is a way of normalizing

machine parameters so that one can make a comparison between machines with different

specification. In this research work all the values are calculated in per unit system [3].

Actual value
Per unit value = — ;

Base value

2.3 Mathematical Modeling

Mathematical model of a machine is realizing the machine in terms of a set of

differential equation and polynomials. To understand a machine model and to relate and

realize the relationship between the machine constructions, their broken down parts,

operating principles and how the electrical and the mechanical vectors and variables in

machine equations interact, different approaches are used; different way of telling the

13

same story using different point of views. This includes the circuit diagram, machine

equations, phasor diagram etc. In this model synchronous reference frame is used to

depict the machine equations.

2.3.1 d-axis mathematical modeling

The d-axis circuit diagram of the synchronous machine model is shown in Figure

2.7 which describes the d-axis electrical model [1], [2]. In this model, one field winding

and two damper windings are considered in d-axis rotor circuit. The machine is assumed

to be in a generation mode. All the currents in the machine should be assumed in an

outward direction that is anti clockwise in the loops.

Looking at the circuit diagram to describe the relationship two sets of equations is

being used. The first set are the voltage equations, which are differential equations

relating voltage and flux. The second set of equations is flux equations which relates

current and flux. The first equation in each set represents to the stator electrical model

and the later three the rotor electrical model. The second equation in each set is

representing the field circuit and the later two the damper circuit.

+A

Ra U>r¥q Ll Lfld-Lad

Jc

+

PVd

v _

\L ad T +

'Id \L 2d

P¥ld%Rld P¥2d^R2d

Figure 2.7. d-axis circuit diagram.

14

+A twv^O^w-

_ *

PWa

v _

k.
•lq

7TT

I , .

PVl^Rlq PW2^RZq

'-*?

/J, ^ *

Voltage equations:

Flux equations:

Figure 2.8. q-axis circuit diagram.

efd=Rfdifd+PVfd

o = Ruhd + pvld

0 = Rldha + PVld

Vd = (Lad + Ll h "" Ladtfd - Ladhd

Wfd = Lra\fd + LJ irf'lj - Ladld

^\d ~ L/\d'fd +L\)dhd ~^ad'd

V2a ~ ^fld'fd + Lzidhd ~ ^ad'd

(2.2)

(2.3)

23.2 q-axis mathematical modeling

The q-axis circuit diagram of the s)rnchronous machine model is shown in Figure

2.8 which describes the q-axis electrical model [1]. [2]. In this model, three damper

windings are considered in q-axis rotor circuit. The machine is assumed to be in a

generation mode. Looking at the circuit diagram to describe the relationship t\\ o sets of

equations is being used. The first set are the voltage equations, which are differential

equations relating voltage and flux. The second set of equations is flux equations which

relates current and flux. The first equation in each set represents to the stator electrical

model and the later three the rotor electrical model.

15

Voltage equations:

Flux equations:

Q = R\qi\q+PV\q

^ = R2qi2q+P^>2q

0 = R3qhq + PViq

Vq = {La„ + L,)i„ + Laqhq + Laqhq

¥xq = Lnqhq + Laq(hq + »3, J" Laq'q

W2q = LaA, + i,,)+ LnL - Li

Viq=L<l+i2Q) + L2 - LJ

(2.4)

(2.5)

2.3.3 Steady-state operation

The phasor diagram of a synchronous machine shows the relationship of

synchronous machine voltage and current with the phase differences. It is necessarily

useful for realizing the steady state condition of a synchronous machine, which is used as

an initial condition of the machine simulation. From the voltage diagram in Figure 2.9, d-

and q-axis terminal voltages can be found which later are being used to calculate the load

angle [4], [5]. The load angle is used to calculate the initial conditions for machine

operation.

..•• q-axrs

•>J d-axis

Figure 2.9. Phasor diagram for calculating initial conditions.

16

-W- •o£,ZOc

0E*ZS>

Figure 2.10. Simplified circuit diagram.

Calculation of load angle:

Vd=Vtsmb,Vq=Vtcosh

5 = tan
/, .Lq. cos 9 - /, .Ra. sin 0

Vt +IrLrsmQ + IrRa.cos6
(2.6)

Where, ©0 = 2nf, f = 60 Hz, p
dt

2.3.4 Mechanical equations

The mechanical part of the mathematical model describes the mechanical

phenomenon of the machine as well as relates the mechanical effect with speed and load

angle. As the electrical model of the machine depends on load angle and speed to

calculate different parameters, the load angle and the speed are the relating factor

between mechanical and electrical model.

d8
— = COnAO),
dt

W

^ = -L(r -T)
dt 2HKm e).

(2.7)

17

2.3.5 Current flux relationship in matrix form

Another way of looking at machine equations is a matrix form. Matrix form is just

manipulation of the existing equations and representing in terms of matrix multiplication

[6]. This is especially useful when programs are written in the purpose of numerical

simulation. In matrix form the whole model is portrayed in three distinct matrixes; the

current, flux and inductance matrix:

Where:

1 = L 1y

I ~ Vd *kd\ ikdl ifd *q %\ ikql *kq3 \

H> = [Vd Vkd\ Vkdl Vfd Vkq\ Vkql M>fc,3 f

(2.8)

Lmd umd

~Lmd hnd+Lkd Lmd

Lmd

Lmd 0

-L, 'md

Lmd

0

0

0

0

Lmd

Lmd

0

0

0

0

Lmd+LkdL Lmd °

Lmd
Lmd+Lfd ° °

" ~Lq hnq

0 -Lmq Lmq+Lk4

0

0

0

0

^mq

X,
mq

0

0

0

0

hnq

*-Tnq

hnq hnq hnq+^kql hnq

~hnq hnq hnq hnq+hkqi

2.3.6 Internal control system

Synchronous generators are usually connected to the grid. This means that they

have constant terminal voltage with a specific loading condition. While synchronous

machine is operating under a grid it is usually generating power while running in

synchronous speed. It is important to understand that synchronism in speed of a

synchronous machine is a requirement, as any distortion in synchronism can lead to

system instability. If a machine goes to a super synchronous speed for any type of
18

disturbance it usually gives away its extra kinetic energy as electrical energy to the grid

and tends to comes back to synchronous speed. On the other hand, if it goes to a sub-

synchronous speed, it absorbs some of the electrical energy and tends to speed up to go to

the synchronous speed [2]. This tendency of synchronous machine to operate in

synchronous speed is can be views as the internal control system which is shown in

Figure 2.11. The control equations are:

COnA, A . J0- ,N

T =^ofnt
C0„

(2.9)

(2.10)

2.4 Saturation

Saturation is one of the most common occurrences in the nature; it is also true for

electric machines with no exception in synchronous machines. It has been seen that

taking saturation into account gives more accurate and realistic results [7], [8]. Two

models of synchronous machine are developed in this research work. In the first model

saturation is ignored and in the second model it's taken into account.

Machine
Mode l

Figure 2.11. Internal control loop.

19

2.4.1 Unsaturated model

In the unsaturated mode the d-axis saturation and the q-axis saturation ignored,

that is the d- and q-axis magnetizing reactances, Xm(j and Xmq. are assumed to be equal to

their unsaturated values.

2.4.2 Saturated model

In electric machines, saturation is of basic two kinds: leakage flux saturation and

main flux saturation.

2.4.2.1 Leakage flux saturation

Leakage flux saturation is defined by the saturation in the leakage flux of a

machine. In this research work the leakage flux saturation is ignored. This is because it

has negligible effect on the machine performance in comparison to the machine main flux

saturation.

2.4.2.2 Main flux saturation

In this case, both d- and q-axis saturation are considered. The unsaturated d- and

q-axis magnetizing reactances are replaced by their corresponding saturated values.

These d- and q-axis saturated magnetizing reactances, X^ and Xmqs, are obtained by

modifying the corresponding unsaturated values, Xmdu and XmgU, with two saturation

factors calculated from the polynomials fitting the saturation curves. The d- and q-axis

magnetizing ampere-turns {ATa, ATq) are used to locate the operating points on the d- and

q-axis saturation characteristics respectively [9]-[ll].

By applying the procedure described above, the transient performance of

synchronous machines considering the saturation along the direct and quadrature axes

can be calculated. However, in this case, an iterative technique has to be applied to

determine the transient performance as the saturated d- and q-axis magnetizing reactances

are a function of magnetizing current [12].

20

d-axis saturation

\yds = f(ATd) = -0.1501 AT] +0.03S3 AT] +1.0283 ATd -0.0007

X = v*
mds irp

A1d (2.11)

q-axis saturation

V = j\AT) = -0.0155AT 3-0.2246AT 2 +1.066AT -0.0012 qs

Vqs
X —

i (2.12)

2.5 Rotor Angle

The electrical angular displacement of the rotor relative to its terminal is defined

as the rotor angle. The rotor angle is the displacement of the rotor generally referenced to

the maximum positive value of the fundamental component of the terminal voltage.

Therefore, the rotor angle expressed in radian is,

6 = 9 r - 9 e (2.13)

Where,

9r is the rotor angle

6eis the angle of electrical magnetic field

Speed (GO) of a synchronous machine can be found by differentiating 9; hence any

disturbance in the speed of the machine can be interpreted as change in 8. In steady state

condition the speed of a synchronous machine is a constant. As a result 8 is constant. Any

change in speed in the machine thus can be interpreted from change in 8.

In this research work, in disturbance introduced in the machine is realized by

looking at 8 as an output. Regardless of what the disturbance is, how much the machine is

affected and how much the stability of the machine is disturbed is analyzed and

interpreted by looking at how 8 behaves.

21

2.6 References

[I] IEEE Guide for Synchronous Generator Modeling Practices in Stability

Analyses, Std. 1110-1991.

[2] P Kundur, Power System Stability and Control, McGraw Hill, 2004.

[3] A.E.Fitzgerald, C. Kingsley, and S.D. Umans, Electric Machinery. McGraw-

Hill, 1991.

[4] L. Wang; J. Jatskevich, and H.W. Dommel, "Re-examination of synchronous

machine modeling techniques for electromagnetic transient simulations," IEEE

Transactions on Power Systems, vol. 22. no. 3, pp. 1221 - 1230, Aug. 2007.

[5] M. Kakiuchi, S. Nagano, D. Hiramatsu, K. Koyanagi. K. Hirayama, Y. Uemura,

T. Satoh, and K. Nagasaka, "A study of synchronous machine modeling about

synchronizing phenomena," IEEE International Conference on Electric

Machines and Drives, pp. 890 - 895. 15-15 May 2005.

[6] C. Ellis, H. Nouri, R. Ciric, and B. Miedzinsky, "Overview of the development,

simplification and numerical analysis of synchronous machine models for

stability studies," 42" International Universities Power Engineering

Conference, pp. 1019 - 1023, 4-6 Sept. 2007

[7] N.C. Kar and A.M. El-Serafi, "Effect of the main flux saturation on the transient

short-circuit performance of synchronous machines,"' IEEE Canadian

Conference on Electrical and Computer Engineering, pp.629 - 632, May 1-4,

2005.

[8] A.M. El-Serafi and A.S. Abdallah. "Saturated synchronous reactances of

synchronous machines," IEEE Transactions on Energy Conversion, vol.7, no. 3.

pp.570 - 579, Sept. 1992.

[9] F.P. Mello, "Representation of saturation in synchronous machines," IEEE

Trans, on Power Engineering Society, vol. PWRS-1, no. 4, p.8, 1986.

[10] E. Levi, "Modeling of magnetic saturation in smooth air-gap synchronous

machine," IEEE Trans, on Energy conversion, Vol. 12, no. 2. pp. 151-156, June

1997.

[II] S.D. Pekarek, E.A. Walters, and B.T. Kuhn, "An efficient method of

22

representing saturation in physical variable models of synchronous machines",

IEEE Trans, on energy conversion, vol.14, no. 1, pp. 72-79, March 1999.

[12] D. Hiramatsu, K. Hirayama, T. Tokumasu, Y. Uemura, M. Takabatake, Y

Ishikawa, and A. Iwai, "Analysis of damper saturation characteristic on

synchronous machine transient condition," IEEE Power Engineering Society

General Meeting, pp. 1501-07, 2003.

23

3 ARTIFICIAL NEURAL NETWORK (ANN)

3.1 Introduction

An artificial neural network (ANN) as shown in Figure 3.1, often just called a

"neural network" (NN), is a mathematical model or computational model based on

biological neural networks. It attempts to simulate the structure, interconnections and

interactions of the nerve cells of a biological brain, while have the capability to update its

knowledge from experience. It consists of an interconnected group of artificial neurons

and processes information using a connectionist approach to computation. In most cases

an ANN is an adaptive system that changes its structure based on external or internal

information that flows through the network during the learning phase.

In more practical terms neural networks are non-linear statistical data modeling

tools. They can be used to model complex relationships between inputs and outputs or to

find patterns in data.

Neural network as an idea comes from observing central nervous system and its

construction. The neurons in central nervous system along with their axons, dendrites and

synapses constitutes for the most sophisticated information processing entity. In a neural

network model, replicating the central nervous system, simple nodes called "neurons",

"neurodes", "PEs" ("processing elements") or "units" are connected together to form a

network of nodes. Hence it is called "neural network" These neural networks of simple

processing elements (neurons), can exhibit complex global behavior, whereas its

complexity and capability is determined by the number of connections, connections

paradigm between the processing elements, and element parameters. The practical use of

a neural network comes with algorithms designed to alter the strength (weights) of the

connections in the network to produce a desired signal flow [l]-[4].

Even though, in the crams of theoretical neuroscience neural networks models are

designed with an intention to emulate that of a central nervous system (CNS), artificial

neural network as a term in concurrency is a subject to utilization to design models in

statistics, cognitive psychology and artificial intelligence.

24

Input Layer

'V-*/

•i Hidden Layer

±^^^r^ "^H^g^ ^ ^ ^ ^ ^

-L "i-

Output Layer

>o— V;

#:

Figure 3.1. Artificial Neural Network (ANN).

Devoid of any qualm, biology has inspirited the invention of artificial neural

network. In modern numerical implementation the approach is more or less discarded to

fit the practical implicational needs based on signal processing and statistics. Both

adaptive and non-adaptive elements are considered as used to realize large systems;

though adaptive approach is more contextual in practical implementation which has a

basis of non-linearity, distribution, parallelism, and local processing and adaptation.

3.2 Overview of ANN

3.2.1 Model

Artificial neural networks (ANNs) are in essence simple mathematical models

defining a function, f:X^>Y Any ANN model corresponds to a class of such functions.

Figure 3.2. ANN dependency graph.

25

Figure 3.3. Recurrent ANN dependency graph.

Figure 3.2 illustrates essentials of a fundamental network structure with arrows

depicting dependencies between variables, whereas_/[*) is defined as,

(3.1)

In this case f[x) is a composite of a function g,{x) which can be represented as a

simple vector,

It is a widely used type of composition known as the nonlinear weighted sum.

In similar fashion g,(x) can be shown as composite of other function depending on

the network structure.

Interpretation of dependencies of the variables indicated by the arrows can be

scrutinized in two ways, as in Figure 3.3 in case of function/

Functional view: Input x is transformed into a 3-dimensional vector h, which is

then transformed into a 2-dimensional vector g, which is finally transformed into/ This

view is most commonly encountered in the context of optimization.

Probabilistic view: Random variable F = fiG) depends upon the random variable

G = g(H), which depends upon H = h(X), which depends upon the random variable X.

This view is most commonly encountered in the context of graphical models.

Either of the views while implementation accord, has a naturally inhabited

capability of enabling parallelism in some extent, which refers to the fact of them being

independent of their inherited variables, hence, more or less equivalent quite to an extent;

yet, there is some implied temporal dependencies.

26

The network with acyclic configuration in Figure 3.2 is usually known as

feedforward neural network and the one with cyclic organization in Figure 3.3 is known

as recurrent neural network [4]-[7].

3.2.2 Learning

No matter how interesting a neural network is with functions defining its

structural paradigm, the most intriguing and captivating possibility lies in its

competencies in learning ability [8]. Learning implementing a neural network optimally

by observation means, given a specific task to solve a class of functions F, in order to

find fe F.

This entails defining a cost function which is defined by C: F -> M such that, for

the optimal solution/*,

C(/*) < C(f)Vf E F (3.2)

That is, no solution has a cost less than the cost of the optimal solution.

Cost function C is an evaluation process through which it can determined to what

extent a network is successful to learn a problem, in other words, how far the network is

from the optimal solution of the problem dataset it is suppose to learn. The learning

algorithm searches through the solution space with the intention of finding that of a

smallest possible cost as appropriate.

For applications where the solution is dependent on some data, the cost must

necessarily be a function of the observations; otherwise we would not be modeling

anything related to the data. It is frequently defined as a statistic to which only

approximations can be made. As a simple example considering the problem of finding the

model/which minimizes C as, C = E[(f(x) — y)2] for data pairs (xj/) drawn from some

distribution!).

In practical situations, TV samples from T) will be available and thus, for the above

example, we would only minimize, C = -££Li(/(*f) - y*)2 Thus, the cost is

minimized over a sample of the data rather than the true data distribution.

27

For online learning parameter N -» oo; as the learning progresses through time,

the cost function is partially minimized with ingression of new data. Online learning is

often used when T) is fixed. In the case of finite dataset various customized versions of

online learning are often being used [9], [10].

The use of problem specific cost functions is a frequent practice, although

assigning ad hoc cost function in an arbitrary fashion can do the job. Obviously choosing

problem specific cost function has its advantages in terms if addressing problem specific

approximation; i.e. convexity in a model or probabilistic formulation the posterior

probability of the model used as an inverse cost. In the end, choice of cost function is

coherent to the task.

3.2.3 Learning paradigms

There are three major learning paradigms, for any given type of network

architecture, each corresponding to a particular abstract learning task:

• Supervised learning

• Unsupervised learning

• Reinforcement learning.

3.2.3.1 Supervised learning

In supervised learning, a given set of example pair is (x,y), where x E X,y 6 Y

and the aim is to find a function f:X -> Y in the allowed class of functions that matches

the examples. In other words, it is inferred that the mapping is implied by the data; the

cost function is related to the mismatch between the mapping and the data and it

implicitly contains prior knowledge about the problem domain.

A commonly used cost is the mean-squared error which tries to minimize the

average squared error between the network's output, fix), and the target value y over all

the example pairs. When one tries to minimize this cost using gradient descent for the

class of neural networks called Multi-Layer Perceptrons, one obtains the common and

well-known back propagation algorithm for training neural networks[12], [13].

28

Pattern recognition (also known as classification) and regression (also known as

function approximation) are the tasks which fall under the paradigm of supervised

learning. The supervised learning paradigm is also applicable to sequential data (e.g., for

speech and gesture recognition). This occurs in the form of a function that provides

continuous feedback on the quality of solutions obtained up to that point [11].

3.2.3.2 Unsupervised learning

In unsupervised learning, some data x is given, and the cost function to be

minimized can be any function of the data x and the network's output,/ The cost function

is dependent on the task and as a priori assumption. For example, considering a model

fix) = a, where a is a constant and the cost C = E[(x -fix))2]. Minimizing this cost will

give a value of that is equal to the mean of the data. The cost function can be in a form

dependent on the application: In compression it could be related to the mutual

information between JC and y. In statistical modeling, it could be related to the posterior

probability of the model given the data [12], [13].

Tasks that fall within the paradigm of unsupervised learning are in general

estimation problems; the applications include clustering, the estimation of statistical

distributions, compression and filtering [14].

3.2.3.3 Reinforcement learning

In reinforcement learning, data x is usually not given, but generated by an agent's

interactions with the environment. At each point in time t, the agent performs an action yt

and the environment generates an observation x, and an instantaneous cost C,, according

to some dynamics. The aim is to discover a policy for selecting actions that minimizes

some measure of a long-term cost, i.e. the expected cumulative cost. The environment's

dynamics and the long-term cost for each policy are usually unknown, but can be

estimated.

More formally, the environment is modeled as a Markov decision process (MDP)

with states s1,...,snEs and actions a1; . . . , a m Ea with the following probability

distributions: the instantaneous cost distribution P(ct\s,), the observation distribution

P(x,\st) and the transition P(s,+\ \ sh a,), while a policy is defined as conditional

29

distribution over actions gi\en the observations. Taken together, the two define a Marko\

chain (MC). The aim is to discover the polic> that minimizes the cost. i.e. the MC for

which the cost is minimal.

ANNs are frequenth used in reinforcement learning as part of the o\erall

algorithm. Tasks that fall within the paradigm of reinforcement learning are control

problems, games and other sequential decision making tasks.

3.2.4 Learning algorithms

Most of the training algorithms can be scrutinized as a fundamental use of

optimization theory statistical estimation. Presently there are numerous optimization

algorithms are available for training a neural network, whereas choosing a model implies

to selection of one from a set of allowed one, criteria being minimization of the cost

function.

Gradient descent algorithm is a widespread tactics used when it comes to train an

artificial neural network. In this method the derivath e of the cost function with respect to

the network parameters are considered and the change is done to those parameters in

accordance with gradient-related direction. Among the other frequently used method

evolutionary methods, simulated annealing and expectation-maximization and non-

parametric methods are common!} used methods for training neural networks. Temporal

perceptual learning relies on finding temporal relationships in sensory signal streams In

an environment, statistically, salient temporal correlations can be found by monitoring the

arrival times of sensory signals. This is done by the perceptual networks [6]. [9].

3.3 Real Life Applications

The utility of artificial neural network models lies in the fact that they can be used

to infer a function from observations. This is particularly useful in applications where

complexity of data or task makes design of such a function b\ hand impractical.

30

3.3.1 Applications of artificial neural networks

One of the most powerful applications of neural networks is function

approximation, or regression analysis. Time series prediction and system modeling are

typical examples of approximations or regressions. Classification is another popular

neural network application paradigm. Pattern recognition, sequence recognition, novelty

detection and sequential decision making are common type of classification example.

In the field of data processing neural networks are also used for various

application processes. Typical data processing application are filtering, clustering, blind

source separation and compression.

3.3.2 Application areas of artificial neural networks commonly spotted

Neural networks are applied in various fields to address different problems.

Commonly spotted application areas of artificial neural networks are observed in system

identification and control i.e. vehicle control, process control etc.; game-playing and

decision making i.e. backgammon, chess, racing etc; pattern recognition i.e. radar

systems, face identification, object recognition etc.; sequence recognition i.e. gesture,

speech, handwritten text recognition etc.; medical diagnosis; financial applications i.e.

automated trading systems; data mining i.e. knowledge discovery in databases ("KDD");

visualization; e-mail spam filtering; and many others.

3.4 Types of Neural Networks

3.4.1 Feedforward neural network

A feedforward neural network is an artificial neural network where connections

between the units do not form a directed cycle. In this network, the information moves in

only one direction, forward, from the input nodes, through the hidden nodes (if any) and

to the output nodes. There are no cycles or loops in the network. In a feedforward

network information always moves one direction; it never goes backwards.

31

Inputs Output

Figure 3.4. Feedforward neural network.

3.4.1.1 Single-layer perceptron

The earliest kind of neural network is a single-layer perceptron network, which

consists of a single layer of output nodes; the inputs are fed directly to the outputs via a

series of weights. In this way it can be considered the simplest kind of feedforward

network. The sum of the products of the weights and the inputs is calculated in each

node, and if the value is above some threshold (typically 0) the neuron fires and takes the

activated value (typically 1); otherwise it takes the deactivated value (typically -1).

Neurons with this kind of activation function are also called artificial neurons or linear

threshold units. In the literature, the term perceptron often refers to networks consisting

of just one of these units. A similar neuron was described by Warren McCuIloch and

Walter Pitts in the 1940s.

32

A perceptron can be created using any values for the activated and deactivated

states as long as the threshold value lies between the two. Most perceptrons have outputs

of 1 or -1 with a threshold of 0 and there is some evidence that such networks can be

trained more quickly than networks created from nodes with different activation and

deactivation values. Perceptrons can be trained by a simple learning algorithm that is

usually called the delta rule. It calculates the errors between calculated output and sample

output data, and uses this to create an adjustment to the weights, thus implementing a

form of gradient descent.

Single-unit perceptrons are only capable of learning linearly separable patterns; in

1969 in a famous monograph entitled Perceptrons Marvin Minsky and Seymour Papert

showed that it was impossible for a single-layer perceptron network to learn an XOR

function. They conjectured (incorrectly) that a similar result would hold for a multi-layer

perceptron network. Although a single threshold unit is quite limited in its computational

power, it has been shown that networks of parallel threshold units can approximate any

continuous function from a compact interval of the real numbers into the interval [-1,1].

A single-layer neural network can compute a continuous output instead of a step

function. A common choice is the so-called logistic function:

y = —^r (3-3)

With this choice, the single-layer network is identical to the logistic regression

model, widely used in statistical modeling. The logistic function is also known as the

sigmoid function. It has a continuous derivative, which allows it to be used in

backpropagation. This function is also preferred because its derivative is easily

calculated: y' = y{\ ~y) (times dfldX, in general form, according to the Chain Rule)

3.4.1.2 Multi-layer perceptron

This class of networks consists of multiple layers of computational units, usually

interconnected in a feedforward way. Each neuron in one layer has directed connections

to the neurons of the subsequent layer. In many applications the units of these networks

apply a sigmoid function as an activation function.

33

The universal approximation theorem for neural networks states that every

continuous function that maps intervals of real numbers to some output interval of real

numbers can be approximated arbitrarily closely by a multi-layer perceptron with just one

hidden layer. This result holds only for restricted classes of activation functions, e.g. for

the sigmoidal functions.

Multi-layer networks use a variety of learning techniques, the most popular being

backpropagation. Here, the output values are compared with the correct answer to

compute the value of some predefined error-function. By various techniques, the error is

then fed back through the network. Using this information, the algorithm adjusts the

weights of each connection in order to reduce the value of the error function by some

small amount. After repeating this process for a sufficiently large number of training

cycles, the network will usually converge to some state where the error of the

calculations is small. In this case, one would say that the network has learned a certain

target function. To adjust weights properly, one applies a general method for non-linear

optimization that is called gradient descent. For this, the derivative of the error function

with respect to the network weights is calculated, and the weights are then changed such

that the error decreases (thus going downhill on the surface of the error function). For this

reason, backpropagation can only be applied on networks with differentiable activation

functions.

In general, the problem of teaching a network to perform well, even on samples

that were not used as training samples, is a quite subtle issue that requires additional

techniques. This is especially important for cases where only very limited numbers of

training samples are available. The danger is that the network over fits the training data

and fails to capture the true statistical process generating the data. Computational

learning theory is concerned with training classifiers on a limited amount of data. In the

context of neural networks a simple heuristic, called early stopping, often ensures that the

network will generalize well to examples not in the training set.

Other typical problems of the backpropagation algorithm are the speed of

convergence and the possibility of ending up in a local minimum of the error function.

34

Today there are practical solutions that make backpropagation in multi-layer perceptrons

the solution of choice for many machine learning tasks.

The numbers within the neurons represent each neuron's explicit threshold (which

can be factored out so that all neurons have the same threshold, usually 1). The numbers

that annotate arrows represent the weight of the inputs. This net assumes that if the

threshold is not reached, zero (not -1) is output. The bottom layer of inputs is not always

considered a real neural network layer.

3.4.1.3 ADALINE

ADALINE stands for Adaptive Linear Neuron or later called Adaptive Linear

Element. It was developed by Professor Bernard Widrow and his graduate student Ted

Hoff at Stanford University in 1960. It's based on the McCulloch-Pitts model. It consists

of a weight, a bias and a summation function.

(3-4)

Its adaptation is defined through a cost function (error metric) of the residual,

(3.5)

z = XOR(x, y)
v

Perceptron

Figure 3.5. A two-layer neural network capable of calculating XOR.

35

Where, d, is the desired input. With the MSE error metric,

E=—I,?ef (3.6)

The adapted weight and bias becomes,

_ Y.i(xi-xKdl-3) ,. _.

& _ *Z,Cx.-*>* (3-8)

The ADALINE has practical applications in the controls area. Like the single-

layer perceptron, ADALINE has a counterpart in statistical modelling, in this case least

squares regression. There is an extension of the ADALINE. called the Multiple

ADALINE (MADALINE) that consists of two or more ADALINEs serially connected.

3.4.2 Radial basis function (RBF) network

Radial Basis Functions are powerful techniques for interpolation in

multidimensional space. A RBF is a function which has built into a distance criterion

with respect to a centre. Radial basis functions have been applied in the area of neural

networks where they may be used as a replacement for the sigmoidal hidden layer

transfer characteristic in Multi-Layer Perceptrons.

RBF networks have two layers of processing: In the first, input is mapped onto

each RBF in the 'hidden' layer. The RBF chosen is usually a Gaussian. In regression

problems the output layer is then a linear combination of hidden layer values representing

mean predicted output. The interpretation of this output layer value is the same as a

regression model in statistics. In classification problems the output layer is typically a

sigmoid function of a linear combination of hidden layer values, representing a posterior

probability. Performance in both cases is often improved by shrinkage techniques, known

as ridge regression in classical statistics and known to correspond to a prior belief in

small parameter values (and therefore smooth output functions) in a Bayesian framework.

RBF networks have the advantage of not suffering from local minima in the same

way as Multi-Layer Perceptrons. This is because the only parameters that are adjusted in

36

the learning process are the linear mapping from hidden layer to output layer. Linearity

ensures that the error surface is quadratic and therefore has a single easily found

minimum. In regression problems this can be found in one matrix operation. In

classification problems the fixed non-linearity introduced by the sigmoid output function

is most efficiently dealt with using iteratively re-weighted least squares.

RBF networks have the disadvantage of requiring good coverage of the input

space by radial basis functions. RBF centers are determined with reference to the

distribution of the input data, but without reference to the prediction task. As a result,

representational resources may be wasted on areas of the input space that are irrelevant to

the learning task. A common solution is to associate each data point with its own centre,

although this can make the linear system to be solved in the final layer rather large, and

requires shrinkage techniques to avoid overfitting.

Associating each input datum with an RBF leads naturally to kernel methods such

as Support Vector Machines and Gaussian Processes (the RBF is the kernel function). All

three approaches use a non-linear kernel function to project the input data into a space

where the learning problem can be solved using a linear model. Like Gaussian Processes,

and unlike SVMs, RBF networks are typically trained in a Maximum Likelihood

framework by maximizing the probability (minimizing the error) of the data under the

model. SVMs take a different approach to avoiding overfitting by maximizing instead a

margin. RBF networks are outperformed in most classification applications by SVMs. In

regression applications they can be competitive when the dimensionality of the input

space is relatively small.

3.4.3 Kohonen self-organizing network

The self-organizing map (SOM) invented by Teuvo Kohonen performs a form of

unsupervised learning. A set of artificial neurons learn to map points in an input space to

coordinates in an output space. The input space can have different dimensions and

topology from the output space and the SOM will attempt to preserve these.

37

3.4.4 Recurrent network

Recurrent neural networks (RNs) are models with bi-directional data flow. Unlike

feedforward networks propagating data linearly from input to output, recurrent neural

networks (RNs) propagates data from input to output as well as from later processing

stages to earlier stages.

A simple recurrent network (SRN) is a variation on the Multi-La) er Perceptron.

sometimes called an "Elman network" due to its invention b\ Jeff Elman. A three-lav er

network is used, with the addition of a set of "context units" in the input layer. There are

connections from the middle (hidden) la\ er to these context units fixed with a weight of

one. At each time step, the input is propagated in a standard feedforward fashion, and

then a learning rule (usualh backpropagation) is applied. The fixed back connections

result in the context units alwa\ s maintaining a copy of the pre\ ious T. alues of the hidden

units (since they propagate over the connections before the learning rule is applied). Thus

the network can maintain a sort of state, allowing it to perform such tasks as sequence-

prediction that is beyond the power of a standard Multi-La> er Perceptron.

The Hopfield network is a recurrent neural network in which all connections are

symmetric. Invented by John Hopfield in 1982. this network guarantees that its d\namics

will converge. If the connections are trained using Hebbian learning then the Hopfield

network can perform as robust content-addressable (or associative) memon. resistant to

connection alteration.

The echo state network (ESN) is a recurrent neural network with a sparsely

connected random hidden layer. The weights of output neurons are the onh part of the

network that can change and be learned. ESN are good to (re)produce temporal patterns.

The Long short term memory is an artificial neural net structure that unlike

traditional RNNs doesn't have the problem of vanishing gradients. It can therefore use

long delays and can handle signals that have a mix of low and high frequenc}

components.

38

3.4.5 Stochastic neural networks

A stochastic neural network differs from a typical neural network because it

introduces random variations into the network. In a probabilistic view of neural networks,

such random variations can be viewed as a form of statistical sampling, such as Monte

Carlo sampling.

The Boltzmann machine can be thought of as a noisy Hopfield network. Invented

by Geoff Hinton and Terry Sejnowski in 1985. the Boltzmann machine is important

because it is one of the first neural networks to demonstrate learning of latent variables

(hidden units). Boltzmann machine learning was at first slow to simulate, but the

contrastive divergence algorithm of Geoff Hinton (circa 2000) allows models such as

Boltzmann machines and products of experts to be trained much faster.

3.4.6 Modular neural networks

Biological studies have shown that the human brain functions not as a single

massive network, but as a collection of small networks. This realization gave birth to the

concept of modular neural networks, in which several small networks cooperate or

compete to solve problems.

A committee of machines (CoM) is a collection of different neural networks that

together "vote" on a given example. This generally gives a much better result compared

to other neural network models. Because neural networks suffer from local minima,

starting with the same architecture and training but using different initial random weights

often gives vastly different networks. A CoM tends to stabilize the result. The CoM is

similar to the general machine learning bagging method, except that the necessary variety

of machines in the committee is obtained by training from different random starting

weights rather than training on different randomly selected subsets of the training data.

The Associative neural network (ASNN) is an extension of the committee of

machines that goes beyond a simple/weighted average of different models. ASNN

represents a combination of an ensemble of feedforward neural networks and the k-

nearest neighbor technique (kNN). It uses the correlation between ensemble responses as

39

a measure of distance amid the analyzed cases for the kNN. This corrects the bias of the

neural network ensemble. An associative neural network has a memory that can coincide

with the training set. If new data becomes available, the network instantly improves its

predictive ability and provides data approximation (self-learn the data) without a need to

retrain the ensemble. Another important feature of ASNN is the possibility to interpret

NN results by analysis of correlations between data cases in the space of models.

3.4.7 Other types of networks

Holographic associative memory represents a family of analog, correlation-based,

associative, stimulus-response memories, where information is mapped onto the phase

orientation of complex numbers operating.

Instantaneously trained neural networks (ITNNs) were inspired by the

phenomenon of short-term learning that seems to occur instantaneously. In these

networks the weights of the hidden and the output layers are mapped directly from the

training vector data. Ordinarily, they work on binary data, but versions for continuous

data that require small additional processing are also available.

Spiking neural networks (SNNs) are models which explicitly take into account the

timing of inputs. The network input and output are usually represented as series of spikes

(delta function or more complex shapes). SNNs have an advantage of being able to

process information in the time domain (signals that vary over time). They are often

implemented as recurrent networks. SNNs are also a form of pulse computer.

Networks of spiking neurons — and the temporal correlations of neural

assemblies in such networks — have been used to model figure/ground separation and

region linking in the visual system.

Spiking neural networks with axonal conduction delays exhibit polychronization,

and hence could have a potentially unlimited memory capacity. Dynamic neural networks

not only deal with nonlinear multivariate behavior, but also include (learning of) time-

dependent behavior such as various transient phenomena and delay effects.

40

Cascade-Correlation is architecture and supervised learning algorithm developed

by Scott Fahlman and Christian Lebiere. Instead of just adjusting the weights in a

network of fixed topology, Cascade-Correlation begins with a minimal network, then

automatically trains and adds new hidden units one by one, creating a multi-layer

structure. Once a new hidden unit has been added to the network, its input-side weights

are frozen. This unit then becomes a permanent feature-detector in the network, available

for producing outputs or for creating other, more complex feature detectors. The

Cascade-Correlation architecture has several advantages over existing algorithms: it

learns very quickly, the network determines its own size and topology, it retains the

structures it has built even if the training set changes, and it requires no backpropagation

of error signals through the connections of the network.

A neuro-fuzzy network is a fuzzy inference system in the body of an artificial

neural network. Depending on the FIS type, there are several layers that simulate the

processes involved in a fuzzy inference like fuzzification, inference, aggregation and

defuzzification. Embedding an FIS in a general structure of an ANN has the benefit of

using available ANN training methods to find the parameters of a fuzzy system.

Compositional pattern-producing networks (CPPNs) are a variation of ANNs

which differ in their set of activation functions and how they are applied. While typical

ANNs often contain only sigmoid functions and sometimes Gaussian functions, CPPNs

can include both types of functions and many others. Furthermore, unlike typical ANNs,

CPPNs are applied across the entire space of possible inputs so that they can represent a

complete image. Since they are compositions of functions, CPPNs in effect encode

images at infinite resolution and can be sampled for a particular display at whatever

resolution is optimal.

This type of network can add new patterns without the need for re-training. It is

done by creating a specific memory structure, which assigns each new pattern to an

orthogonal plane using adjacently connected hierarchical arrays. The network offers real­

time pattern recognition and high scalability; it however requires parallel processing and

is thus best suited for platforms such as Wireless sensor networks (WSN), Grid

computing, and GPGPUs.

41

3.5 Theoretical Properties

3.5.1 Computational power

The multi-layer perceptron (MLP) is a universal function approximator, as proven

by the Cybenko theorem. However, the proof is not constructive regarding the number of

neurons required or the settings of the weights.

Work by Hava Siegelmann and Eduardo D. Sontag has provided a proof that a

specific recurrent architecture with rational valued weights (as opposed to the commonly

used floating point approximations) has the full power of a Universal Turing Machine

using a finite number of neurons and standard linear connections. They have further

shown that the use of irrational values for weights results in a machine with trans-Turing

power.

3.5.2 Capacity

Artificial neural network models have a property called 'capacity', which roughly

corresponds to their ability to model any given function. It is related to the amount of

information that can be stored in the network and to the notion of complexity.

3.5.3 Convergence

Nothing can be said in general about convergence since it depends on a number of

factors. Firstly, there may exist many local minima. This depends on the cost function

and the model. Secondly, the optimization method used might not be guaranteed to

converge when far away from a local minimum. Thirdly, for a very large amount of data

or parameters, some methods become impractical. In general, it has been found that

theoretical guarantees regarding convergence are an unreliable guide to practical

application.

42

3.5.4 Generalization and statistics

In applications where the goal is to create a system that generalizes well in unseen

examples, the problem of overtraining has emerged. This arises in over complex or over

specified systems when the capacity of the network significantly exceeds the needed free

parameters. There are two schools of thought for avoiding this problem: The first is to use

cross-validation and similar techniques to check for the presence of overtraining and

optimally select hyper parameters such as to minimize the generalization error. The

second is to use some form of regularization. This is a concept that emerges naturally in a

probabilistic (Bayesian) framework, where the regularization can be performed by

selecting a larger prior probability over simpler models; but also in statistical learning

theory, where the goal is to minimize over two quantities: the 'empirical risk' and the

'structural risk', which roughly correspond to the error o^er the training set and the

predicted error in unseen data due to overfitting.

Supervised neural networks that use an MSE cost function can use formal

statistical methods to determine the confidence of the trained model. The MSE on a

validation set can be used as an estimate for variance. This value can then be used to

calculate the confidence interval of the output of the network, assuming a normal

distribution. A confidence analysis made this way is statistically valid as long as the

output probability distribution stays the same and the network is not modified.

By assigning a softmax activation function on the output layer of the neural

network (or a softmax component in a component-based neural network) for categorical

target variables, the outputs can be interpreted as posterior probabilities. This is very

useful in classification as it gives a certainty measure on classifications.

The softmax activation function:

43

3.5.5 Dynamic properties

Various techniques originally developed for studying disordered magnetic

systems (i.e. the spin glass) have been successfully applied to simple neural network

architectures, such as the Hopfield network. Influential work by E. Gardner and B.

Derrida has revealed many interesting properties about perceptrons with real-valued

synaptic weights, while later work by W. Krauth and M. Mezard has extended these

principles to binary-valued synapses.

3.6 Corroboration

Variety and use of neural network for optimization of different types of problem

set undoubtedly is fairly diverse; depending on the problem requirements, specifications,

formulation and the trade-offs that has to be met the network as well as the algorithm that

are used to approach any problem set can be delicate process. In this research work the

problems asked to cover three very different but interrelated application targets.

• Approximation

• Clustering

• Pattern Recognition

3.6.1 Approximation

Neural network has its intrinsic ability to realize and map nonlinearity given that

it is trained with a set of input-output datasets which represents the system [17]. In this

case, considering different aspects, such as degree of non-linearity, complexity, accuracy,

size of dataset etc., a backpropagation neural network is used for system approximation

where Lavenberg-Marquardt algorithm is used as an optimization algorithm [18].

3.6.2 Clustering

Given a distributed data set where some kind of intrinsic formation exists, neural

network is capable of grouping data with similar attributes; which is very effective in

44

filtering or perhaps distinguishing datasets blend or intermingle together. Thus neural

network clustering is used to cluster similar type signals where more than one signal is

mixed together [19], [20]. A self organizing map is used for the purpose where batch

unsupervised weight with bias training is used.

3.6.3 Pattern recognition

Pattern recognition is a one of the very intriguing capabilities of neural network.

This is different from pattern identification as, if the neural network is trained with a

number of patterns with adequate number of dataset [21], [22]; it becomes capable of

^identifying similar patterns even with significant noise associated with it. A

backpropagation neural network is used for this where scaled conjugate gradient

algorithm is used.

3.7 References

[1] Y. Bar-Yam, Dynamics of Complex Systems, Westview Press. 2003.

[2] Y. Bar-Yam, Making Things Work, Westview Press, 2005.

[3] G.V. Cybenko, "Approximation by superpositions of a sigmoidal function,"

Mathematics of Control, Signals and Systems, Vol. 2, pp. 303-314, 1989.

[4] M. Egmont-Petersen, D. de Ridder, H. Handels, "Image processing with neural

networks - a review," Pattern Recognition, vol. 35 (10), pp 2279-2301, 2002.

[5] K. Gurney, An Introduction to Neural Networks, London: Routledge. 1997.

[6] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.

[7] J. Hertz, R.G. Palmer, A.S Krogh, Introduction to the Theory of Neural

Computation, Perseus Books, 1990.

[8] J. Lawrence, Introduction to Neural Networks, California Scientific Software,

1994.

[9] T. Masters, Signal and Image Processing with Neural Networks, John Wiley &

Sons, 1994.

[10] H.T. Siegelmann, and E.D. Sontag, "Analog computation via neural networks,"

Theoretical Computer Science, v. 131, no. 2, pp. 331-360, 1994.

45

[11] S.A. Danziger, S.J. Swamidass, J. Zeng, L.R. Dearth, Q. Lu, J.H. Chen, J.

Cheng, V.P. Hoang, H. Saigo, R. Luo, P. Baldi, R.K. Brachmann, and R.H.

Lathrop, "Functional census of mutation sequence spaces: the example of p53

cancer rescue mutants", IEEE/ACM transactions on computational biology and

bioinformatics, vol. 3, pp. 114-125, 2006.

[12] S.A. Danziger, J. Zeng, Y. Wang, R.K. Brachmann, and R.H. Lathrop,

"Choosing where to look next in a mutation sequence space: Active learning of

informative p53 cancer rescue mutants," Bioinformatics. 23(13), pp. 104-114,

2007.

[13] S. Kotsiantis, "Supervised machine learning: A review of classification

techniques," Informatica Journal, vol. 31, pp. 249-268, 2007.

[14] G. Hinton and J.T. Sejnowski, Unsupervised Learning: Foundations of Neural

Computation, MIT Press, 1999.

[15] S. Kotsiantis and P. Pintelas, "Recent advances in clustering: A brief survey,"

WSEAS Transactions on Information Science and Applications, vol. 1, no. 1, pp.

73-81,2004.

[16] R.O. Duda, P.E. Hart, and D.G. Stork, Unsupervised Learning and Clustering,

Ch. 10 in Pattern classification (2nd edition), pp. 571, Wiley. New York, 2001.

[17] R.D. Jones, Y.C. Lee, C.W. Barnes, G.W. Flake, K. Lee, P.S. Lewis, and S.

Qian, "Function approximation and time series prediction with neural

networks," Proceedings of the International Joint Conference on Neural

Networks, June 17-21, p. 1-649, 1990.

[18] J. R. Davies, S. V. Coggeshall, R. D. Jones, and D. Schutzer. Intelligent Security

Systems, in Freedman, Artificial Intelligence in the Capital Markets, Chicago,

1995.

[19] L.B. Bourque, C.A. Virginia, Processing Data: The Survey Example

(Quantitative Applications in the Social Sciences), Sage Publications Inc.,

December 14, 2006.

[20] CM. Walt, Data Measures that Characterise Classification Problems, Master's

dissertation, Department of Electrical, Electronic and Computer Engineering,

University of Pretoria, South Africa, February 2008.

46

[21] B.B. Nasution and A.I. Khan, "A hierarchical graph neuron scheme for real-time

pattern recognition", IEEE Transactions on Neural Networks, vol 19(2), 212-

229, Feb. 2008.

[22] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification (2nd edition),

Wiley, 2001.

47

4 SYNCHRONOUS MACHINE SIMULATION

4.1 Introduction

To investigate the transient performance of synchronous machine the synchronous

machine model described in chapter 2 is used for simulation. The main objective of the

simulation primarily is to realize how the machine behaves under different conditions.

Two models the saturated and the unsaturated models are developed. To perform the

numerical simulation of the machine model Matlab is used.

In a synchronous machine field excitation voltage and input torque are the usual

inputs. Under steady state condition all of these input values are constant. In order to

simulate a transient condition usually some kind of fault is introduced. The faults can be

of various sources, but in most common cases they are either loss of excitation in the

field, disturbance in torque or at times short circuit occurrence in the terminal circuit. In

this research work, the machine model was simulated under all of these conditions. A

brief description of these three commonly occurred faults or commotions in a

synchronous machine is described in the following section.

Response of synchronous machine to any of the disturbances is realized by

looking at the output of the machine. As output of the machine it is the load angle 8,

which is usually looking into.

In a synchronous machine load angle 8 is the usual output. Once a disturbance is

introduced in any certain point in time, it is cleared after a certain amount of time.

Initially a machine is running in steady state; once the machine is exposed to a fault and it

is cleared 8 gets distorted at first. If the machine doesn't become unstable, 8 will settle

down to its original steady state with the passage of time. If the machine goes to

instability, 8 goes out of control. The behavior of 8 from the time of distortion to its

stalling down time and its behavior during this time gives us the transient behavior of the

machine under the fault or commotion.

A tenth order model is used to run the simulation. The saturation is taken into

account to in the second model. The behavior of the model is compared with that of the

unsaturated model [1]. Runge-Kutta method was used to solve the differential equations.

48

The fault occurred at 0.1 s and was cleared after different time periods to analyze the

stability. The level of fault was varied as well. Machine parameters, operating conditions,

simulation process flow, etc. follow in the next coming sections.

4.2 Synchronous Machine Commotions

4.2.1 Loss of excitation/field (LOF)

Loss of excitation or field in a synchronous machine is one of most common

occurrences of faults in synchronous machine. The loss of excitation is defined by partial

or full short circuit in the field circuit of a synchronous machine [l]-[3]. Another \\a\ of

looking at it is the field or excitation voltage of a synchronous machine rotor winding is

subjected to a partial loss or goes to complete zero in case of total loss in field [3]-[6].

In this research work, the loss of excitation condition is scrutinized under two

conditions. In the first case, the duration of the fault is kept constant. That is the fault is

kept persistent for 0.1 s. It is initiated at 0.1 s and cleared at 0.2 s. For 0.1 s the fault is

introduced for 25%, 50%, 75% & 100% loss in field. In this case, the fault level is kept

constant to 100%) loss of field. The duration of the fault is varied, that is, the fault

continues for 0.1 s, 0.2 s, 0.5 s or 1.0 s.

4.2.2 Disturbance in Torque (DIT)

Disturbance in torque is defined by disturbance in mechanical torque [7] input to

the machine. The source of input torque can be hydro, steam, coal, gas. etc. The torque

provided by the prime mover is desired to be constant to provide the machine with a

constant torque. But at times there can be disruption in the input torque as a result the

prime mover can speed up or slow down as a result synchronous machine can go into

sub-synchronous or super-synchronous speed [8].

In this research work, the disturbance in torque condition is scrutinized under two

conditions. In the first case, the duration of the fault is kept constant. That is the fault is

kept persistent for 0.1 s. It is initiated at 0.1 s and cleared at 0.2 s. For 0.1 s the fault is

49

introduced for 50% loss, 100% loss, 50% gain and 100% gain in input torque. In the

second case, the fault level is kept constant to 100% loss in input torque. In this case, the

duration of the fault is varied, that is, the fault is kept persistent for 0.1 s, 0.2 s, 0.5 s or

1.0 s.

4.2.3 Short circuit (SC)

The terminal of a synchronous machine is subjected to constant voltage as it is

connected to the grid. At times under certain conditions, the terminals of the machine

might get shorted which is known as the short circuit fault [9], [10].

In this research work, the short circuit condition is scrutinized. In this case, the

duration of the fault is varied, that is, the fault is kept persistent for 0.075 s, 0.15 s, 0.212

s and 0.213 s. It will be demonstrated later that at 0.212 s the machine becomes

marginally stable. The machine becomes unstable if the fault persists more than 0.212 s.

4.3 System Deliberates

4.3.1 Machine parameters

The machine simulated here is a 3-phase Y-connected 900 MVA synchronous

generator. The machine parameters are presented in Table 4.1. All the parameters are in

per unit. The model is simulated in per unit system [11]. For unsaturated model Z^and Lq

are kept constant as in Table 4.1. For the saturated model they are calculated using the

saturation characteristics.

50

Parameters

Table 4.1. Machine parameters.

Values (per unit) Parameters Values (per unit)

Ro

Run

R-U2

Rfj

U

Lkdi

Lkd2

L/d

0.0018

0.1142

0.00592

0.00094

2.152

2.732

0.00753

0.0155

L,

Rkql

Rkq2

Rkq3

Lq

Lkql

Lkq2

LkqS

0.172

0.00538

0.1081

0.0188

2.057

1.657

0.1193

0.4513

Table 4.2. Operating conditions.

Parameter

Terminal voltage

Terminal apparent power

Power Factor

Speed control Gain Kp

Speed control Integral Time Tl

Value

1.0 pu

1.0 pu

0.9

20

2s

4.3.2 Operating conditions

As the simulation is done in per unit system, all values including the loading

conditions are taken as per unit system. Table 4.2 illustrates the operating characteristics

used in the machine model simulation.

4.3.3 Process flow

The process flow diagram is basically the flow chart describing the simulation

procedure. It gives us the basic understanding of the simulation steps under different

conditions. In this section, the basic procedures used to perform the initial value

51

calculation and transient simulations by the developed models are explained. For each of

the conditions both the saturated and the unsaturated models are shown.

4.3.3.1 Steady-state condition

Figure 4.1 shows flowchart to calculate the initial values, where, terminal voltage,

apparent power and power factor are given as input. Then, the load angle (5) of the

machine can be calculated. The d- and q-axis components of the stator voltage and

current, field voltage and current are determined.

An additional loop has been considered for taking saturation into account. By

calculating the d- and q-axis magnetizing currents and then using the saturation

characteristics in Figure 4.2. the saturated d- and q-axis magnetizing reactances {Xm± and

Xmgs) can be obtained [12], [13]. These new values of the magnetizing reactance result

new values of stator and rotor currents and load angle. And if all this current values are

less than e =10 , the saturation condition is met for initial conditions. Then fluxes and

developed electromagnetic torque can be calculated.

4.3.3.2 Transient condition

To obtain transient performance of the synchronous generator under LOF fault,

we have to solve the system differential equations. In general, there are two methods for

the integration of differential equations in power system simulation: one is an explicit

method, such as the 4th-order Runge-Kutta method, and the other is an implicit one, such

as the trapezoidal rule. In this research work explicit method has been used. 4*-order

Runge-Kutta method was used. Figure 4.3 shows the flowchart to calculate transient

condition for unsaturated model and Figure 4.4 shows the flowchart for saturated model.

The flowchart also illustrates an iteration process within each time step to

determine saturated magnetizing reactance in both direct and quadrature axes. Basically

within each time step after numerically solving differential equations and obtaining

currents, saturated Xd and Xq are needed to be determined [14]. [15]. This involves an

iteration loop and after the currents converge then the process can proceed to the next

time step.

S">

Read 5 l a n d PF

V

I=S/V, 6=Cos'iPFi

P=S*PF,O=S*Sin'/0)

Aj=.V - Mmdu,XJ=.\ - A^..

, /,_Y, cos 9 - 7 , J? .sine
8 = tan -

r -/_v_..she-/,./?_..cose

F, =F,sin5.K, = T.cosS

/. = / sin(6 -5).ig = I, cos(0 -81

]ja =
lmds

> :1 = ' ^ ~ '•_-! = '^;- = '^^ ~ ®

Calculate Fluxes and 7",

<T Transient ^)

Figure 4.1. Initial value calculation flowchart for unsaturated model.

Read S, Vand PF

I=S/V, 6=Cos'(PF)

P=S*PF,Q=S*Sinl(0)

Xd=Xi + Mmdu , Xq =X/ + Xmqu

'

8 = tan'
I, Xg .cos 9 - I,.Ra. sin 9

V, + I,Xq.smQ + I,.Ra.cosQ

'

F ^ ^ s i l l S ^ ^ C O s S
id = I,sin(0 + 5),iq = I, cos(6 + 5)

Efd^Vq+Raiq + Xdid

X, mds

Z/W1 - ZW2 - ikql ~ hql - ^ 3 - 0

ATd =\>fd-'d\

AT«=U

Vds=f{ATd),Xmds=^r

Vqs = f(ATq),Xmdq-^
qs AT„

5 = sin -/
id-Ra+iq-X,

q-^qs

vt

id =1, sin (0+8)

iq = / , cos (0 + 6)

Efd = Vq + Raiq+Xdid

Jfd =
-ft

X mds

Calculate Fluxes and Te

i

^ ^ Transient ^)

Figure 4.2. Initial value calculation flowchart for saturated model.

54

VdVq'VkdX'Vw

ld'lq'lM\'lkq\'X pm

1
t,,+i = t„ + A/; At: time step

No

E /d - & /jo

°fd = Rfd 0

Yes

E/d = 0

RJd =R

I
Calculate fluxes for the next time step by

solving the differential equations 1 to 3

Calculate currents equation 7-9

n=n+l No

Yes

Figure 4.3. Calculation of transient values after LOF fault for unsaturated model.

i

ld<lq'lkd\<lkq\>1pm

1 '

tlni=tn+tst; At: time step

No

'
^ ft ~ E/</o

R fd = "fdO

<r^> \ . Yes
1 faults'

E/d = 0

RP=R

J
Calculate fluxes for the next time step by

solving the differential equations 1 to 3

' '

Calculate currents equation 7-9

• '

'f V

^ ^ = 'Afl + hql +lkq3 ~ 'q

vds = f(ATd),xmds = ^y
ATd

Vv = f{ATq),X „>,=?£-
Alg

\

I = X~l y/

< T / - / j<6

/ < - /
,

- ^ No

Yes

Figure 4.4. Calculation of transient values after LOF fault for saturated model.

4.4 Simulation and Results

4.4.1 Loss of excitation/field (LOF)

In this section, the machine model is simulated under loss of excitation or field.

The operating condition under which the machine is run is specified in Table 4.2. The

machine is simulated for both the saturated and unsaturated models and the results are

shown in the same graph for comparison. Observation tells us that taking saturation into

account makes a big difference in the results, hence, a more accurate one.

56

In Figure 4.5, the fault is persistent for 0.1 s. It is introduced at 0.1 s and cleared

at 0.2 s. The level of fault is 25% LOF, which means that the excitation has been reduced

to 25% of the rated value. It is seen that the maximum overshoot is 44.35 degrees for

unsaturated model and 44.7 degrees for saturated model. The settling time in both cases is

roughly 9 to 10 s. Figure 4.6 shows the fault persistence for 0.1 s. It is introduced at 0.1 s

and cleared at 0.2 s. The level of fault this time is kept at 50% LOF. which means that the

excitation has been reduced to 50% of the rated \alue. It is seen that the maximum

overshoot is 45.35 degrees for unsaturated model and 45.9 degrees for saturated model.

The settling time in both cases is about 8 s to 9 s.

Again, in Figure 4.7. the fault is invariable for 0.1 s. It is introduced at 0.1 s and

cleared at 0.2 s. In this case, the excitation has been reduced to 75% of the rated value. It

is seen that the maximum swing is 46.2 degrees for unsaturated model and 47.2 degrees

for saturated model. The settling time in both models is roughh 7 to 8 s. In Figure 4.8,

the fault is also persistent for 0.1 s. It is introduced at 0.1 s and cleared at 0.2 s. The

excitation in this case has been reduced to 0% of the rated value. It is seen that the

maximum swing is 47 degrees for unsaturated model and 48.5 degrees for saturated

model. The settling time in both models is around 6 to 7 s.

57

file:///alue

4 4 8 , -

Saturated

Unsaturated
446

4 3 6 f

3 4 5

Time

8 9 10

Figure 4.5. 25% LOF for 0.1 s.

46

45 5 r
Saturated
Unsaturated

451-

445^
00

c
<
-3 44- kvr

'An
^

435-

43 _l L_

4 5 6

Time (sec)
10

Figure 4.6. 50% LOF for 0.1 s.

47.5 r

47^

Saturated
Unsaturated

46.5 —

46

45.5'

I 45

J 44.5

43.5;

43
4 5 6

Time (sec)
10

Figure 4.7. 75% LOF for 0.1 s.

4 9 -

48

47-

46-

45-

Saturated
Unsaturated

43-
4 5 6

Time (sec)
9 10

Figure 4.8.100% LOF for 0.1 s.

59

In Figure 4.9, the fault is taking place for 0.2 s while the fault is kept at the same

level where the excitation has been reduced to 0% of the rated value. The fault is

introduced at 0.1 s and cleared at 0.3 s. It is seen that the maximum overshoot is 48.5

degrees for unsaturated model and 50.2 degrees for saturated model. The settling time in

both cases is around 8 to 9 s. In Figure 4.10, the fault persists for 0.5 s again for full loss

of excitation. It is introduced at 0.1 s and cleared at 0.6 s. It is seen that the maximum

overshoot is 55 degrees for unsaturated model and 59 degrees for saturated model. The

settling time in both cases is approximately 9 to 10 s.

In Figure 4.11, the fault is introduced at 0.1 s and cleared at 1.1 s for 100% LOF.

It is seen that the maximum overshoot is 47 degrees for unsaturated model and 48.5

degrees for saturated model. The settling time in both cases is almost same as the

previous case that is around 9 to 10 s.

From these observations, one can see that as the level of faults goes up or as the

time duration of the fault persistence goes up, the change in the load angle increases.

Another observation is that as level of fault went up the settling time decreased but as the

duration of fault went up the settling time increased.
49 - — - -

Saturated
Unsaturated

48-

4 7 -

Time (sec)

Figure 4.9.100% LOF for 0.2 s.

60

51

50

Saturated
Unsaturated

49

48-

00
1)

o 47
"Sa
c
<
•2 46

45-

43-
4 5 6

Time (sec)
10

56

54-

50

48-

Figure 4.10.100% LOF for 0.5 s.

60-

58

- 1 r—

Saturated
Unsaturated

46-

44-

42 L

4 5 6 7

Time (sec)
10

Figure 4.11.100% LOF for 1 s.

61

4.4.2 Disturbance in torque (DIT)

In this section, the machine model is simulated under disturbance in torque. The

operating conditions under which the machine is run are presented in 4.2. The machine is

simulated for both the saturated and unsaturated models and the results are shown in the

same graph for assessment purposes. Observation tells us that taking saturation into

account makes a difference in the results even though not very significant one.

In Figure 4.12, the fault is continual for 0.1 s. It is introduced at 0.1 s and cleared

at 0.2 s. The level of fault is 50% loss in DIT. which means that the torque has lost 50%

of its rated value. It is seen that the maximum disruption is 14 degrees for both

unsaturated and saturated models. The settling time in both cases is around 6 to 7 s. In

Figure 4.13, the fault is persistent for 0.1 s. It is introduced at 0.1 s and cleared at 0.2 s.

The level of fault is 100% loss in DIT. which means that the torque 0% of its rated value.

It is seen that the maximum disruption is 30 degrees for both unsaturated and saturated

models. The settling time in both cases is around 6 to 7 s.

In Figure 4.14, the fault occurrs for 0.1 s. It is introduced at 0.1 s and cleared at

0.2 s. The torque input is increased to 150% of its rated value. It is seen that the

maximum disruption is 12 degrees for both unsaturated and saturated models. The

settling time in both cases is around 6 to 7 s. In Figure 4.15, the torque input is increased

to 200% of its rated value. It is seen that the maximum disruption is 21 degrees for both

unsaturated and saturated models. The settling time in both cases is around 7 to 8 s.

62

55-

50-

i!i^\/WA

Saturated
Unsaturated

25L

4 5 6

Time (sec)
10

Figure 4.12. 50% loss of DIT for 0.1 s.

10-

Saturated
" Unsaturated

1 2 3 4 5 6 7 8 9 10

Time (sec)

Figure 4.13.100% loss of DIT for 0.1 s.

63

6 0 r

55

Saturated
Unsaturated

; ;^M/wwv

30
4 5 6

Time (sec)
10

70 r-

65 r

60^

55 y

S 5 0 -

Figure 4.14. 50% over-excitation of DIT for 0.1 s.

4 5 -

40

35

30 V

25 t

l, v '

Saturated
Unsaturated

20 L

4 5 6

Time (sec)
10

Figure 4.15.100% over-excitation of DIT for 0.1 s.

64

Here, Figure 4.16 shows fault continues for 0.2 s. It is introduced at 0.1 s and

cleared at 0.3 s. The level of fault is 100% loss in torque input. It is seen that the

maximum disruption is 34 degrees for both unsaturated and saturated models. The

settling time in both cases is around 8 to 9 s. In Figure 4.17 the fault is introduced at 0.1 s

and cleared at 0.6 s. It is seen that the maximum disruption is 34 degrees for both

unsaturated and saturated model with extra overshooting element. The settling time in

both cases is approximately in the range of 9 to 10 s. In Figure 4.18, the fault is persistent

for 1 s. It is seen that the maximum disruption is 37 degrees for both unsaturated and

saturated models with extra overshooting element. The settling time in both cases is about

9 to 10 s.

From observation one can see that as the level of faults goes up or as the time

duration of the fault persistence goes up the degree to which 8's maximum distortion

occurrence increases. In the case of loss in torque, the overshoot is in one direction and,

in the case of torque increase over its rated value, the overshoot is in the opposite

direction. Another observation is as level of fault went up the settling time remained

fairly constant but as the duration of fault went up the settling time increased.

55

4 5 6

Time (sec)
10

65

Figure 4.16.100% loss of DIT for 0.2 s.

50

45

W i' i s , ' •
40 F

35

30-

' , M '

m

I 2 5

"2
-J 20 i-| H J

15

10 JL

Saturated
Unsaturated

L_
5 6

Time (sec)

Figure 4.17.100% loss of DIT for 0.5 s.

10

45

40

35

30 t-

25

15 -

10-

4-

Saturated
Unsaturated

4 5

Time (sec)
10

66

Figure 4.18.100% loss of DIT for 1 s.

4.4.3 Short circuit (SC)

In this section, the machine model is simulated under short circuit condition at the

machine terminals. The operating condition under which the machine is run is specified

in Table 4.2. The machine is simulated for both the saturated and unsaturated models and

the results are shown in the same graph for comparison. In Figure 4.23, all the graphs for

different time periods are put together for stability analysis. Observation tells us that

taking saturation into account makes a difference in the results even though not very

significant one.

Figure 4.19 is for SC persistence for 0.075 s. It is introduced at 0.1 s and cleared

at 0.175 s. It is seen that the maximum disruption is 39 degrees for both unsaturated and

saturated model. The settling time in both cases is around 5 to 6 s. In Figure 4.20, SC is

introduced at 0.1 s and cleared at 0.25 s. It is seen that the maximum disruption is 58

degrees for both unsaturated and saturated models. The settling time in both cases is

around 6 to 7 s.

Figure 4.21 shows the results for the case where the SC is introduced at 0.1 s and

cleared at 0.312 s. It is seen that the maximum disruption is 126 degrees for both

unsaturated and saturated models. The settling time in both cases is around 6 to 7 s. At

0.212 s the machine becomes marginally stable. In Figure 4.22, the SC is introduced at

0.1 s and cleared at 0.313 s. The machine becomes unstable for both unsaturated and

saturated models.

In Figure 4.23 all the graphs for different fault durations for saturated cases are

compared. It can be seen that at time 0.212 s the system is marginally unstable and at

time 0.213 s the system becomes unstable.

67

60-

50 - \\,\i

40

30-

l',\'\/W'-^ v ~ ~ ^ -—•

Saturated
Unsaturated

_ 20 L

10- -

5 6

Time (sec)
10

Figure 4.19. SC for 0.075 s.

100-

80

60— —

o 4 0 -

<

-J 20 -

-14 i, - J !

Saturated
Unsaturated

A

-20
5 6

Time (sec)
10

Figure 4.20. SC for 0.150 s.

68

200 -

150- *

100-

c

<

-100-
4 5 6

Time (sec)

— Saturated
Unsaturated

10

Figure 4.21. SC for 0.212 s (MarginaUy Stable).

1000-

900 —

'd 600- j

so ;

u 500- — j —

1
_, 400 h- 1

^ 1 -J
300- j

1
200 h 7— _

Saturated
Unsaturated

100^

4 5 6

Time (sec)
10

Figure 4.22. SC for 0.213sec (Unstable).

69

300-

250-

200 f

-100 L

0.5

0.075 sec
0.150 sec
0.212 sec (Marginally Stable)
0 213 sec (Unstable)

- I

15 2 25

Time (sec)
35

Figure 4.23. Comparison of SC for 0.075 s, 0.150 s, 0.212 s (marginally stable) & 0.213sec (unstable).

4.5 References

[1] A Murdoch, G.E. Boukarim, B.E. Gott, M.J. D'Antonio, R.A. Lawson,

"Generator over excitation capability and excitation system limiters", IEEE

Power Engineering Society Winter Meeting, vol. 1, 28 Jan.-l Feb., pp.215 - 220,

2001.

[2] L. Lin; C. Sun and D. Mou; "Study on the excitation protection and control of

synchronous generator based on the 5 and s". IEEE on Transmission and

Distribution Conference and Exhibition, Asia and Pacific, vol. 15-18, pp. 1-4 ,

Aug. 2005.

[3] O. Rodriguez and A. Medina, "Stability analysis of the synchronous machine

under unbalance and loss of excitation conditions" IEEE Conf. on Power

Engineering Society General Meeting, vol. 3. pp. 1508-1511, July 13-17, 2003.

[4] L. Tao, Z. Qian, W. Xiangheng, S. Pengsheng, and W. Weijian, "Dynamic

performance for turbo generator under low excitation and loss of field,"

70

Proceedings of the Fifth International Conference on Electrical Machines and

Systems, vol. 1, pp. 436-439, 2001.

[5] H. Tashakori, Synchronous Generator Transient Behavior and Protection under

Loss of Excitation fault, M.A.Sc. Thesis, Department of Electrical and Computer

Engineering, University of Windsor, 2007.

[6] D. Hiramatsu, K. Hirayama, T. Tokumasu. Y. Uemura, M. Takabatake, Y.

Ishikawa, and A. Iwai, "Analysis of damper saturation characteristic on

synchronous machine transient condition," IEEE Power Engineering Society

General Meeting, pp. 1501-07,2003.

[7] C. Sihler and A.M. Miri, "A stabilizer for oscillating torques in synchronous

machines," IEEE Transactions on Industry Applications, vol. 41, Issue 3. pp.

748 - 755, May-June, 2005.

[8] J.H. Dymond, B. Mistry, and R. Ong, "Acceleration tests to determine salient

pole synchronous motor inrush currents and torques," IEEE Industry

Applications Magazine, vol. 8, Issue 4, pp. 44 50. July-Aug, 2002.

[9] H.H. Hwang, "Transient Analysis of Simultaneous Unbalanced Short Circuits of

Synchronous Machines," IEEE Transactions on Power Apparatus and Systems,

PAS-90, Issue 4, pp. 1815 1821, July 1971.

[10] H. H. Hwang, "Mathematical analysis of double-line-to-ground short circuit of

an alternator," IEEE Trans. Power Apparatus and Systems, PAS-86, pp. 1254,

October 1967.

[11] N.C. Kar and A.M. El-Serafi, "Effect of the main flux saturation on the transient

short-circuit performance of synchronous machines," IEEE Canadian

Conference on Electrical and Computer Engineering, pp.629 - 632, May 1-4,

2005.

[12] IEEE Guide for synchronous generator modeling practices in stability analyses,

Std. 1110-1991.

[13] A.M. El-Serafi and A.S. Abdallah, "Saturated synchronous reactances of

synchronous machines," IEEE Transactions on Energy Conversion, vol.7, Issue

3, pp.570 - 579, Sept. 1992.

[14] S.D. Pekarek, E.A. Walters, and B.T. Kuhn, "An efficient method of

71

representing saturation in physical variable models of synchronous machines,"

IEEE Trans, on Energy Conversion, vol.14. No. 1, pp. 72-79. March 1999.

[15] J. Tamura and I. Takeda, "A new model of saturated synchronous machines for

power system transient stability simulations," IEEE Trans, on Energy

Conversion, vol. 10, Issue 2, pp.218 224, June 1995.

[16] J.R. Marti and K.W Louie, "A phase-domain synchronous generator model

including saturation effects," IEEE Transactions on Power Systems, vol. 12,

Issue 1. pp.222 - 229, Feb. 1997

72

5 NEURAL NETWORK CHARACTERIZATION

5.1 Introduction

A function approximation problem asks to select a function among a well-defined

class that closely matches ("approximates") a target function in a task-specific way. In

mathematics, approximation theory is concerned with how functions can best be

approximated with simpler functions, and with quantitatively characterizing the errors

introduced thereby. What is meant by best and simpler will depend on the application.

5.2 Overview of Function Approximation

A closely related topic is the approximation of functions by generalized Fourier

series, that is, approximations based upon summation of a series of terms based upon

orthogonal polynomials.

One problem of particular interest is that of approximating a function in a

computer mathematical library, using operations that can be performed on the computer

or calculator (e.g. addition and multiplication), such that the result is as close to the actual

function as possible. This is typically done with polynomial or rational (ratio of

polynomials) approximations [1], [2].

The objective is to make the approximation as close as possible to the actual

function, typically with accuracy close to that of the underlying computer's floating point

arithmetic. This is accomplished by using a polynomial of high degree, and/or narrowing

the domain over which the polynomial has to approximate the function. Narrowing the

domain can often be done though the use of various addition or scaling formulas for the

function is being approximated. Modern mathematical libraries often reduce the domain

into many tiny segments and use a low-degree polynomial for each segment [2]-[5].

Once the domain and degree of the polynomial are chosen, the polynomial itself is

chosen in such a way as to minimize the worst-case error. That is, the goal is to minimize

the maximum value of |P(x) — f(x)\, where P(x) is the approximating polynomial and

J[x) is the actual function. For well-behaved functions, the optimum Mh degree

polynomial will lead to an error curve that oscillates back and forth between + e and s a
73

total of N+2 times, giving a worst-case error of s. (It is possible to make contrived

functions f(x) for which this property does not hold, but in practice it is generally true.)

Example graphs, for N=4, showing the error in approximating log(x) and exp(x), are

shown below [3], [6]. Of different kinds of function approximation problems two major

classes worth mentioning: known target function approximation and unknown target

function approximation.

5.2.1 Known target function approximation

Known target functions approximation theory is the branch of numerical analysis

that investigates how certain known functions (for example, special functions) can be

approximated by a specific class of functions (for example, polynomials or rational

functions) that often have desirable properties (inexpensive computation, continuity,

integral and limit values, etc.).

5.2.2 Unknown target function approximation

Second, the target function, call it g, may be unknown; instead of an explicit

formula, only a set of points of the form (x, g(x)) is provided. Depending on the structure

of the domain and co-domain of g, several techniques for approximating g may be

applicable. For example, if g is an operation on the real numbers, techniques of

interpolation, extrapolation, regression analysis, and curve fitting can be used [6]-[8].

(a) (b)
Figure 5.1. Approximation in blue and actual signal in red (a) log(x) (b) exp(x).

74

In this research work, function approximation used falls in the class of known

target function approximation paradigm. Synchronous machine model can be realized by

its input output relationship. For the mathematical model developed in chapter 2,

simulation results were produced chapter 4. From the simulation results produced in

chapter 4 synchronous machine can be realized by its input output relationship. This input

output relationship is used in this research work to approximate the synchronous machine

model using neural network. The implementation details are described in the next section.

5.3 Implementation of Function Approximation

5.3.1 Neural network

A feedforward neural network is used to approximate the input output relationship

of the synchronous machine transient conditions. A Lavenberg-Marquardt

backpropagation algorithm is used which is a special type of backprobagation algorithm.

The Levenberg-Marquardt algorithm was designed to approach second-order training

speed without having to compute the Hessian matrix. The performance function has the

form of a sum of squares as is typical in training feedforward networks. It is a gradient

descent algorithm. The network basics are described in Table 5.1.

5.3.2 Neural network specifications

Choosing an appropriate network with appropriate size, algorithm for training a

dataset can sometimes be tricky. It depends on complexity of data pattern, size of data

set, accuracy and speed one want to train a network, at times experience of the trainer or

even intuition. Depending on size of dataset and complexity of the problem a neural

network with a single input, single output and single hidden layer is used.

The number of neuron in the input and output layer is 1, and the number of neuron

in the hidden layer is 50. The size of the data points is 5000. Of this dataset 70% of the

dataset that is 3500 points were used as training data. Of the rest 15% of the data that is

750 were used as validation data, which were used to validate how the network is

performing while training the network using training dataset. Once the training was done

75

the rest 15% that is 750 data points were used to test the performance of the network. The

network specifications are shown in Table 5.2.

Table 5.1. Neural network.

Algorithm

Training

Type

Performance

Data Division

Backpropagation

Lavenberg-Marquardt

Gradient Descent

Mean Squared Error (MSE)

Random

Table 5.2. Neural network specification.

Number of Neuron (Input Layer)

Number of Neuron (Output Layer)

Number of Neuron (Hidden Layer)

Number of Hidden Layers

Sample Size

Training Sample

Validation Sample

Testing Sample

1

1

50

1

5000(100%)

3500(70'?)

750(15%)

750(15%)

5.3.3 Neural network training conditions

An epoch in neural network is defined by one round of training using all the

dataset once. After training the network for one epoch, the error function is used to

calculate the error value once. Until the error value reaches a certain minimum threshold,

the epochs are continued; that is the training process is carried on again and again. The

error curve as the number of epochs increases are also known as performance curve or

simply performance. The neural network training conditions are shown in Table 5.3.

Table 5.3. Neural network training conditions.

Epoch

Time

Initial Performance

Final Performance

Best Validation Performance

Be t̂ Validation Performance Epoch

Initial Gradient

Final Gradient

Best Gradient

Best Gradient Epoch
*

Training MSE

Validation MSE

Testine MSE

828

0:19:41

95.5

1.31e-0~

1.4246e-00~

822

1.0

1.0076e-05

1,0076e-05

a2^

1.30986e-7

1 42455e-7

l.ll()54c-7

77

5.4 Simulation and Results

5.4.1 Loss of excitation/field (LOF)

In this section, the model approximated for machine model under loss of

excitation or field. The machine is simulated for saturated model and the results are used

to approximate the neural network to emulate the machine model.

In Figure 5.2, the approximation is done for 100% LOF condition for fault being

constant for 0.1 s. It can be seen from this figure that the approximation is quite accurate

since the training dataset, the validation dataset and the testing dataset fits into the curve

almost perfectly. Figure 5.3 shows the performance curve as it decreases with the number

of epochs. The number of epoch needed for training is 828 and the best validation

performance is at 1.4246xl0~7 at 822 epochs. Figure 5.4 shows the gradient, change in

gradient and validation check performance throughout the training process. Figure 5.5,

the approximation is done for 25% LOF condition (field excitation reduced to 25% of the

rated value) for fault being persistent for 0.1 s. The Figure shows successful learning.

Figure 5.6 shows the performance curve as it decreases with the number of epochs. The

number of epoch needed for training is 772 and the best validation performance is at

7.782xl0"9at 766 epochs.

In Figure 5.7, the approximation is done for 50% LOF condition (field excitation

reduced to 50% of the rated value) for fault being persistent for 0.1 s. Approximation is

quite precise as can be seen from the Figure. Figure 5.8 shows the performance curve as

it decreases with the number of epochs. The number of epoch needed for training is 198

and the best validation performance is at 1.4246xl0"8 at 192 epochs. In Figure 5.9, the

approximation is done for 75% LOF condition for fault being persistent for 0.1 s. It can

be seen from this figure that the accuracy of the approximation is fairly perfect. Figure

5.10 shows the performance curve as it decreases with the number of epochs. The number

of epoch needed for training is 235 and the best validation performance is at 1.5725xl0~7

at 229 epochs.

78

Figure 5.2. Approximation for 100% LOF (0.1 s).

Best Validation Performance is 1.4246e-007 at epoch 822

300 400 500 BOO
828 Epochs

Figure 5.3. Error curve for 100% LOF (0.1 s).

79

Gradient = 1.0076e-005, at epoch 828

10

- 5h

CHI

Mu = le-007, at epoch 828

Validation Checks = 6, at epoch 828

US 200
828 Epochs

Figure 5.4. Performance graph for 100% LOF (0.1 s).

Function Ft
'* 4K*

0

+
0

+
0

+

Training Targets

Training Outputs

VaMation Targets

Validation Outputs

Test Targets

TestOitputs

"Errors

-Fit

**£•!»•»

Figure 5.5. Approximation for 25% LOF (0.1 s).

80

Best Validation Pwformance is 7.782e-009 at epoch 766

10"

F
O

HI
• o
CD

re 3
<T

cn
c
re
2

10"2

m

.a 10

1tf

Figure 5.6. Error curve for 25% LOF (0.1 s).

Figure 5.7. Approximation for 50% LOF (0.1 s).

81

Best Validation Performance is 5 5282*406 at epoch 192

475

Figure 5.8. Error curve for 50% LOF (0.1 si

* » • ?
Function Rt

0

+
0

+
0

+

Training Targets

Training Outputs

Validation Targets

Vaidamn Outputs

Test Targets

Test Outputs

~ ElTOfS

-fit

^ _ _

IS 25
Input

35 4.5

Figure 5.9. Approximation for 75% LOF (0.1 s).

82

Best Validation Performance is 1 .5725e-007 at epoch 229

L 100 150
235 Epochs

200

Figure 5.10. Error curve for 75% LOF (0.1 s).

In Figure 5.11, the approximation is done for 100% LOF condition (zero excitation)

for fault being persistent for 0.2 s. It can be seen from this figure that the approximation

is quite accurate since the training dataset, the validation dataset and the testing dataset

fits into the curve almost perfectly. Figure 5.12 shows the performance curve as it

decreases with the number of epochs. The number of epoch needed for training is 1000

and the best validation performance is at 3.1754xl0"7 at 1000 epochs. In Figure 5.13, the

fault stays for 0.5 s. Figure 5.14 shows the performance curve as it decreases with the

number of epochs. The number of epoch needed for training is 366 and the best

validation performance is at 1.8487xl0~5 at 360 epochs. In Figure 5.15, the fault is

persistent for 1 s. It is shown in the figure that, here as well the curve fitting is almost

perfect Figure 5.16 shows the performance curve as it decreases with the number of

epochs. The number of epoch needed for training is 1000 and the best validation

performance is at 3.6538xl0"6 at 1000 epochs.

83

r U K f M f l r i

0

+
0

+
0

+

Training Tarirts

Tramng Outputs

Validation Targets

Validation Outputs

Test Targets

Test Outputs

-Enors

-F»

A
10

Figure 5.11. Approximation for 100% LOF (0.2 s).

Best Validation Performance is 3.17548-007 at apod* 1000

10*

10° \-

10

\
10'

$ •

Figure 5.12. Error curve for 100% LOF (0.2 s).

Figure 5.13. Approximation for 100% LOF (0.5 s).

Best Validation Performance is 1.8487e-005 at epoch 360

150 200
366 Epochs

Figure 5.14. Error curve for 100% LOF (0.5 s).

85

FundJenFI

TO­

GS

0

+ 0
•
0

+

TnmngTapIc
Training Outputs
Vafitalion Tmjels

VaHabonOutptft
(Mt ingots

TestOtfputs
~Enws

-F»

1.5 Z5 15

, » •***•.

Figure 5.15. Approximation for 100% LOF (1 s).

Best Validation Performance is 3.6538e-006 at epoch 1000

O ^ I O O 2 0 0 3 0 0 4 0 0 9 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1000
1000 Epochs A

Figure 5.16. Error curve for 100% LOF (1 s).

5.4.2 Disturbance in torque (DIT)

In this section, the machine model approximated for machine model under

disturbance in torque. The machine is simulated for saturated model and the results are

used to approximate the neural network to emulate the machine model.

In Figure 5.17, the approximation is done for 50% loss in torque input for fault

being persistent for 0.1 s. It can be seen from this figure that the approximation is quite

accurate since the training dataset, the validation dataset and the testing dataset fits into

the curve almost perfectly. Figure 5.18 shows the performance curve as it decreases with

the number of epochs. The number of epoch needed for training is 1000 and the best

validation performance is at 1.0897X10"4 at 1000 epochs. In Figure 5.19, the fault is

persistent for 0.1 s. It can be seen from the Figure that the approximation is quite accurate

in this case as well. Figure 5.20 shows the performance curve as it decreases with the

number of epochs. The number of epoch needed for training is 1000 and the best

validation performance is at 1.9652xl0"3 at 1000 epochs.

In Figure 5.21, the approximation is done for 150% of rated torque condition for

fault being persistent for 0.1 s. Figure 5.22 shows the performance curve as it decreases

with the number of epochs. The number of epoch needed for training is 1000 and the best

validation performance is at 9.7553x10 5 at 1000 epochs. In Figure 5.23, the torque is

doubled for 0.1 s. Figure 5.24 shows the performance curve as it decreases with the

number of epochs. The number of epoch needed for training is 928 and the best

validation performance is at 3.0472xl0~6 at 928 epochs.

87

Function Fit

0

+
0

+
0

+

Tramng Targets

Tramng Outputs

Validation Targets

Validation Outputs

Test Targets

Test Outputs

-Errors

-F i t

Figure 5.17. Approximation for 50% loss in DIT (0.1 s).

Best Validation Performance is 0.00010897 at epoch 1000

«

100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1000
1000 Epochs

Figure 5.18. Error curve for 50% loss in DIT (0.1 s).

88

Function Fit

*i/\AAAAAA»

0 Training Targets

+ Training Outputs

O Validation Targets

+• Validation Outputs

O Test Targets

+ Test Outputs

Errors

-Fit

* P

25 35 4.5

Figure 5.19. Approximation for 100% loss in DIT (0.1 s).

Best Validation Perfbrmance is 0.0019652 at epoch 1000

0 100 200 300 400 500 600 700 800 900 1000
1000 Epochs

Figure 5.20. Error curve for 100% loss in DIT (0.1 s).

Function Fit
60r

0

+
0

+
0

+

Training Tanjots

Training Outputs

Validation Targets

Validation Outputs

Test Targets

Test Outputs

-Errors

-Fit

Figure 5.21. Approximation for 50% over-excitation in DIT (0.1 s).

Best Validation Performance is 9.7553e-005 at epoch 1000
10'

tit

E

° n
£ 10° •a
£

CO

5 10
09

10% 4)

0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1000
1000 Epochs

Figure 5.22. Error curve for 50% over-excitation in DIT (0.1 s).

90

66 •

60

55

3*

20.
05

Function Fit
, ^ i M

15 2 5
Input

35

0

+
0

+
0

+

Training Targets

Training Outputs

Validation Targets

Validation Outputs

Test Targets

Test Outputs

-Errors

-Fit

,1

45

Figure 5.23. Approximation for 100% over-evcitation in DIT (0.1 s).

Best Validation Performance is 3 0472e-005 at epoch 926

100 200 300 400 500 600 700
928 Epochs

800 900

Figure 5.24. Error curve for 100% over-excitation in DIT (0.1 s).

In Figure 5.25, the approximation is done for 100% loss in input torque and it

stays for 0.2 s. It can be seen from the Figure that the approximation is quite accurate

since the training dataset, the validation dataset and the testing dataset fits into the curve

almost perfectly. Figure 5.26 shows the performance curve as it decreases with the

number of epochs. The number of epoch needed for training is 611 and the best

validation performance is at 1.3398xl0"5 at 605 epochs. In Figure 5.27, the approximation

is done for 100% loss in input torque condition for fault being persistent for 0.5 s. Figure

5.28 shows the performance curve as it decreases with the number of epochs. The number

of epoch needed for training is 270 and the best validation performance is at 1.7829xl0"3

at 264 epochs. In Figure 5.29. the approximation is done for 100% loss in torque for 1 s.

Figure 5.30 shows the performance curve as it decreases with the number of epochs. The

number of epoch needed for training is 1000 and the best validation performance is at

1.8159xl0"3 at 1000 epochs.

55r
Function Fit

0

+
0

+
0

+

Training Targets

Training Outputs

Validation Targets

Validation Outputs

Test Targets

Test Outputs

-Errors

-Fit

3.5 45

Figure 5.25. Approximation for 100% loss in torque (0.2 s).

92

Best Validation Performance is 0.0013348 at epoch 605

611 Epochs

Figure 5.26. Error curve for 100% loss in torque (0.2 s).

Figure 5.27. Approximation for 100% loss in torque (0.5 s).

93

Best Validation Pedbimance is 0.0017839 at epoch 264

Figure 5.28. Error curve for 100% loss in torque (0.5 s).

Figure 5.29. Approximation for 100% loss in torque (1 s).

10'

-S- 10 •-
E

LU
•a

I 10°

5

io-J

Best Validation Performance is 0 0018159 at epoch 1000

=o
100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1000

1000 Epochs

Figure 5.30. Error curve for 100% loss in torque (1 s).

5.4.3 Short circuit (SC)

In this section, the machine model approximated for machine model under short

circuit. The machine is simulated for saturated model and the results are used to

approximate the neural network to emulate the machine model.

In Figure 5.31, the approximation is done for short circuit condition for fault being

persistent for 0.075 s. It can be seen from the Figure that the approximation is quite

accurate. Figure 5.32 shows the performance curve as it decreases with the number of

epochs. The number of epoch needed for training is 503 and the best validation

performance is at 9.5679x10 3 at 497 epochs. In Figure 5.33, the approximation is done

for short circuit condition for fault being persistent for 0.15 s. Figure 5.34 shows the

performance curve as it decreases with the number of epochs. The number of epoch

needed for training is 1000 and the best validation performance is at 3.138xlO"3 at 1000

epochs.

95

In Figure 5.35, the approximation is done for short circuit condition for fault

being persistent for 0.212 s. It can be seen from this figure that the approximation is very

precise. Figure 5.36 shows the performance curve as it decreases with the number of

epochs. The number of epoch needed for training is 678 and the best validation

performance is at 1.3769xl0"2at 678 epochs.

Function Fit

i^VVVVSA^-n

0

+
0

+
0

+

Training Targets

Training Outputs

Validation Targets

Validation Outputs

Test Targets

Test Outputs

-Errors

-Fit

2.5
Input

3.5 45

Figure 5.31. Approximation for SC for 0.075 s.

96

Best Validation Performance is 0.0095679 at epoch 497
- i r-

lsS*>

I I I I I |_

0 50 100 150 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
503 Epochs

Figure 5.32. Error curve for SC for 0.075 s.

1C0r
Function fit

0

+
0

+
0

+

Tnmmo, TargMt

Training Outputs

Validation Taiggts

Vafctobon Outputs

Test Targets

Tist Outputs

-&IOTS

-Ft

Figure 5.33. Approximation for SC for 0.150 s.

97

* 1 0 »

UJ
• a

i
co 10-

Bwt Vafidation Performance is 0003138 at epoch 1000
— i 1 i 1 — i i i i

100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1000
1000 Epochs

Figure 5.34. Error curve for SC for 0.150 s.

Figure 5.35. Approximation for SC for 0.212 s (Marginally Stable).

98

Best Validation Performance is 0.013769 at epoch 678

100 200 300 400 500 600
678 Epochs

Figure 5.36. Error curve for SC for 0.212 s (Marginally Stable).

5.5 References

[1] A J. Moody and C. J. Darken, "Fast learning in networks of locally tuned

processing units," Neural Computation, 1989.

[2] T. Poggio and F Girosi, "Networks for approximation and learning," Proc.

IEEE, vol. 78(9), pp. 1484-1487, 1990.

[3] R.D. Jones, Y.C. Lee, C.W. Barnes, G.W. Flake, K. Lee, P.S. Lewis, and S.

Qian, "Function approximation and time series prediction with neural

networks," Proceedings of the International Joint Conference on Neural

Networks, June 17-21, p. 1-649, 1990.

[4] M.D. Buhmann and M.J. Ablowitz, Radial Basis Functions : Theory and

Implementations, Cambridge University, 2003.

[5] P.V. Yee, and S. Haykin, Regularized Radial Basis Function Networks: Theory

and Applications, John Wiley, 2001.

[6] J.R. Davies, S.V Coggeshall, R.D. Jones, and D. Schutzer, Intelligent Security

99

Systems. Artificial Intelligence in the Capital Markets. Chicago, 1995.

[7] S. Haykin, Neural Networks: A Comprehensive Foundation (2nd edition), Upper

Saddle River. NJ: Prentice Hall, 1999.

[8] S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning

algorithm for radial basis function networks". IEEE Transactions on Neural

Networks, vol 2, no. 2 March 1991.

100

6 NEURAL NETWORK CLUSTERING

6.1 Introduction

Clustering in general terms means grouping of the same or similar elements

gathered or occurring closely together. It can be considered as a subtopic of

computational data processing.

In data processing, data are defined as numbers or characters that represent

measurements from observable phenomena. A single datum is a single measurement from

observable phenomena. Measured information is then algorithmically derived and/or

logically deduced and/or statistically calculated from multiple data. Information is

defined as either a meaningful answer to a query or a meaningful stimulus that can

cascade into further queries [1].

A neural network based clustering can be considered as an algorithm exploring

the similarity between patterns and places where similar patterns are put in clusters. Best

known applications include data compression and data mining.

6.2 Overview of Clustering

Data clustering deals with the problem of classifying a set of N objects into

groups so that objects within the same group are more similar than objects belonging to

different groups. Each object is identified by a number m of measurable features,

consequently, Ith object can be represented as a point ix.IRm ,i=l, 2,..., N. Data clustering

aims at identifying clusters as more densely populated regions in the space Rm [2]-[4].

This is a traditional problem of unsupervised pattern recognition. A lot of

approaches to solve this problem were suggested. The general strategy is as follows: first,

somehow or other one finds the optimal partition of the points into K classes, and then

changes the value of the parameter K from N to \. Here, the main interest is the way how

small classes (relating to big values of K) are combined into bigger classes (relating to

small values of K). These transformations allow us to get some idea about the structure of

empirical data. They indicate mutual location of compact groups of points in many-

101

dimensional space. They also indicate which of these groups are close and which are far

from each other. Interpretation of the obtained classes in substantial terms, and the details

of their mutual location allow the researcher to construct meaningful models of the

phenomenon under consideration [2]-[4].

Different methods of data clustering differ from each other by the way of finding

of the optimal partition of the points into K classes. It is literally to say that almost all of

them own the same feature: the result of partition into K classes depends on arbitrary

chosen initial conditions, which have to be specified to start the partition procedure.

Consequently, to obtain the optimal partition, it is necessary to repeat the

procedure many times, each time starting from new initial conditions. Here the situation

is close to the one, which we face when founding the global minimum of multiextremal

functional. The problems of such a kind exhibit a tendency to become AfP-complete. This

means that for large N a local optimal partition can be found.

Thus, almost all clustering methods based on the local partitioning of objects can

be distributed into K classes. Among them there is the well-known and most simple K-

means approach, mathematically advanced Super-Paramagnetic Clustering and

Maximum Likelihood Clustering, popular in Russia the FOREL-type algorithms and

prevailing in the West different variants of Hierarchical Clustering [5].

The general scheme of the FOREL-algorithm is as follows:

1. Specify a value T that is the radius of ra-dimensional sphere, which in

what follows is used as a threshold for interaction radius between points;

2. Place the center of the sphere with the radius T at an arbitrary input point:

3. Find coordinates of the center of gravity of points that find themselves

inside the sphere;

4. Transfer the center of the sphere in the center of gravity and go back to

item 3:

5. Far as when going from one to the next iterating the sphere remains in the

same place, we suppose that the points inside it constitute a class; we

move them away from the set and go back to the item 2.

102

It is clear that after finite number of steps we obtain a partition of the points into

some classes. In each class the distances between points are less than 2T. However, the

result of partition depends on the starting point, where the center of the sphere is situated.

Since the step 2 is repeated again and again.

The Hierarchical Clustering is based on a very simple idea too. Given some

partition into K classes, it merges the two closest classes into a single one. So, starting

from the partition into K = N classes, the algorithm generates a sequence of partitions as

K varies from N to 1. The sequence of partitions and their hierarchy can be represented

by a dendrogram [4].

In this research work, neural network clustering is used to distinguish or filter

different kinds of fault in the case of multiple or mixture in faults. In a synchronous

machine there are different kinds of faults. In certain cases more than one fault can occur

at the same time. In that case synchronous machines behavior is in response of multiple

faults. The output of the machine load angle 5 is in response to multiple faults; hence, the

behavior of 8 can become apparently gibberish as a mixture of more than one response

signal. Using numerical simulation or by human observation it is almost impossible to

make any sense out of it.

Neural network cluster in this case comes handy in clustering similar kinds of data

patterns together to distinguish between different kinds of faults. Once clustered, the

pattern can tell us how many signals has been mixed, that is the number of faults

overlapping each other and by looking at the clustering weight density pattern map one

can even identify the type of faults.

6.3 Implementation of Clustering

6.3.1 Neural network

In this research work a self-organizing network is implemented for clustering the

mixed dataset. Self-organizing in networks can learn to detect regularities and

correlations in their input and adapt their future responses to that input accordingly. A

self-organizing feature maps (SOFMs) algorithm is used. SOFMs learn to classify input

vectors according to how they are grouped in the input space. They differ from

103

competitive layers in that neighboring neurons in the self-organizing map learn to

recognize neighboring sections of the input space. Thus, self-organizing maps learn both

the distribution (as do competitive layers) and topology of the input vectors they are

trained on. Batch training is used. The batch training algorithm is generally much faster

than the incremental algorithm, and it is the default algorithm for SOFM training.

6.3.2 Neural network specifications

Choosing an appropriate network with appropriate size, algorithm for training a

data set can sometimes be tricky. It depends on complexity of data pattern, size of data

set, accuracy and speed one want to train a network, at times experience of the trainer or

even intuition. The SOM network in the clustering process has 9 inputs with 20 hidden

layers with 20 neurons in each layer. So the weight is mapped in a 20 by 20 weight space.

It has to learn 3 patterns with 3 samples in each pattern with 10001 elements in each

sample to learn.

Table 6.1. Neural network

Algorithm Self-organizing network

Training Self-organizing feature maps (SOFM)

Type Batch training algorithm

Table 6.2. Neural network specification

Number of Neuron (Input Layer)

Number of Neuron (Hidden Layer)

Number of Hidden Layers

Number of pattern

Number of samples in each pattern

Number of sample 5

Sample Size

9

20

20

3

3

9

10001

104

Table 6.3. Neural network specification

Epoch 200

_ _ _ oT2(h37~

6.3.3 Neural network training conditions

An epoch in neural network is defined by one round of training using all the data

set once. In the case of clustering the training process is carried on again and again until

the predefined number of epochs is completed. In this case unlike other feed foreward

neural network there is no performance curve for this specific algorithm. The neural

network training conditions for the first simulation are shown in Table 6.3.

6.4 Simulation and Results

In this section, clustering of mixed signals is presented. The weight map consists

of a space of 20 by 20 neurons; that is 400 neurons in total. In the 2D space of 20 by 20

the 9 mixed signals of three distinct patterns are mapped. In Figure 6.1, the mapping for 9

samples are shown in SOFM space. 3 samples from each LOF, DIT and SC are chosen.

As it can be seen from the SOFM map in Figure 1 that inputs 2, 3 & 7 has similar weight

patterns. On the other hand inputs 1, 5 & 6 has similar weight patterns, and inputs 4, 8 &

9 has similar weight patterns. The first one corresponds to LOF, the second one to DIT

and the third one to SC.

SOM neighboring weight distance graph in Figure 6.2 shows three distinct areas -

one in the top right, one diagonally in the middle and another in bottom-left each

corresponding to each of the patterns. SOM weight positions in Figure 6.3 shows all the

weights in their density positioning. This shows visualization of the weight in multiple

dimensions. Figure 6.4 shows the total number of hits in the weight by the samples. This

shows us the weight density in the weight space.

105

Weights from Input 1

15

10

5

0

Weights from Input 2

flhritaBWI
^^B|
j^^^^H
J H H H B ^

Weights from Input 3

10 20

Weights from Input 4 Weights from Input 5 Weights from Input 6

15

10

5

0

Weights from Input 7

MritatfPf
^^Kl
j ^ ^ ^ ^ B
iHHHHP

Weights from Input 8

10 20

15

10

5

0

Weights from Input 9

jMH|
^^19 4̂ HB' ^^«HOT'

10 20

Figure 6.1. SOM weight plane.

106

Fr SOM Neighbor Weight Distances

16 • ' % V x

• - • - «**f'

14

12 K

• - • •

• - • -
/ \

• - % r \ r - # * - * - • - • i -a/*i/*|/W/ w w w '
- % - • - ¥ - - % - • - • - • -

' / W 1 W * / f c ' / W W W W
* - • - • - • - > - • - • - • - •
w w w w w w w w

- • - • - • - • - • - • •

/ w w w w w w w v
\ / \ / w \ / w w \ / w w \ / \ / w \

W W W W W W W W N
• • - • - • - • - • - • - • - • •

/ w w w w w w w w
W W W W W W W W W W W W W W V / W

• - • - • - • - • - • - • - • - • - • - • - • - • - • - » -
/ w w w w w w w w w w w w w w
W W W W W W W W W W N

1 / w w w w w w w w \ /
• - • - • - • - • - • - • - • - •
W W W W W W W W W V

wwwwwwwwww
• • - • - • - • - • - • -

\ / w \ ^ \ / \ / w w \ / w w

/ \ / \ / \ / \ / \ ^•^•^ft /

— I 1 —

/ w w w \
W W W W

W W W to/

./MA

10 12 14 16 18 20

Figure 6.2. SOM neighbor weight distances.

Figure 6.3. SOM weight positions.

107

Figure 6.4. SOM weight hits.

6.5 References

[1] B.B. Linda and C.A. Virginia, 'Processing data: The survey example

(Quantitative applications in the social sciences)"' Sage Publications Inc.,

December 14, 2006.

[2] CM. van der Walt and E. Barnard, "Data characteristics that determine classifier

performance," SAIEE Africa Research Journal, vol 98 (3), pp 87-93, September

2007.

[3] CM. van der Walt, Data Measures that Characterise Classification Problems.

Master's dissertation, Department of Electrical, Electronic and Computer

Engineering, University of Pretoria, South Africa, February 2008.

108

[4] Z. Zhang, H. Cheng, and S. Zhang, "Approach to SOM based correlation

clustering," CCDC 2008, pp. 2485 - 2489, 2-4 July, 2008.

[5] M.H. Wang and H.C. Chang, "Novel clustering method for coherency

identification using an artificial neural network," IEEE Transactions on Power

Systems, vol. 9, Issue 4, pp. 2056 2062, Nov. 1994.

109

7 NEURAL NETWORK PATTERN RECOGNITION

7.1 Introduction

Pattern recognition means classification of data (patterns) based either on a priori

knowledge or on statistical information extracted from the patterns. The patterns to be

classified are usually groups of measurements or observations, defining points in an

appropriate multidimensional space. In the case of pattern recognition the pattern is not

rigidly specific distinguishing it from pattern matching [1], [2].

Pattern recognition is a sub-topic of machine learning. The idea can be described

as taking in raw data and taking an action based on the category of the data. Most

research in pattern recognition is associated with methods for supervised learning and

unsupervised learning.

7.2 Overview of Pattern Recognition

One of the prime concerns of a pattern recognition system is to identify the data

pattern which is to be learned. This is where observations to be classified or described, a

feature extraction mechanism that computes numeric or symbolic information from the

observations, and a classification or description scheme that does the actual job of

classifying or describing observations, relying on the extracted features.

The classification or description scheme is usually based on the availability of a

set of patterns that have already been classified or described. This set of patterns is

termed the training set, and the resulting learning strategy is characterized as supervised

learning. Learning can also be unsupervised, in the sense that the system is not given an a

priori labeling of patterns, instead it itself establishes the classes based on the statistical

regularities of the patterns.

The classification or description scheme usually uses one of the following

approaches: statistical (or decision theoretic) or syntactic (or structural). Statistical

pattern recognition is based on statistical characterizations of patterns, assuming that the

patterns are generated by a probabilistic system. Syntactical or structural pattern

110

recognition is based on the structural interrelationships of features. A wide range of

algorithms can be applied for pattern recognition, from very simple Bayesian classifiers

to much more powerful neural networks [3], [4].

An intriguing problem in pattern recognition is the relationship between the

problem to be solved implied by the data to be classified and the performance of various

pattern recognition algorithms also known as classifiers. Van der Walt and Barnard

investigated very specific artificial data sets to determine conditions under which certain

classifiers perform better and worse than others.

Holographic associative memory is another type of pattern matching scheme

where a target small patterns can be searched from a large set of learned patterns based

on cognitive meta-weight [5]. Pattern recognition is studied in many fields, including

psychology, ethnology, cognitive science and computer science. Within medical science,

pattern recognition is the basis for computer-aided diagnosis (CAD) systems. CAD

describes a procedure that supports the doctor's interpretations and findings. Typical

applications are automatic speech recognition, classification of text into several

categories e.g. spam/non-spam email messages, the automatic recognition of handwritten

postal codes on postal envelopes, or the automatic recognition of images of human faces.

In this research work, pattern recognition has been used to distinguish between

different kinds of faults. A synchronous machine operating under a grid can be subjected

to different kinds of faults. In this research work three different kinds of faults being

discussed. They are loss of field, disturbance in torque and short circuit condition. These

are the most common types of faults for synchronous machines. Any of these faults can

be of different levels and different time durations.

When a fault occurs in synchronous machine it can be realized by looking at the

way the load angle 8 is behaving. Under different kinds of faults, 5 shows different

patterns of behavior. Neural network pattern recognition is used in this research work to

distinguish between different kinds of faults. As any of these faults can be of different

levels or time duration, once the type of fault is detected synchronous machine pattern

recognition is used to identify the level and time duration of the fault.

I l l

7.3 Implementation of Pattern Recognition

7.3.1 Pattern recognition between loss of excitation, disturbance in torque and

short circuit

In this section, a network was designed to distinguish between loss of field,

disturbance in torque and short circuit. This is done by just looking at the pattern of the

load angle 8. Details of the implementation are depicted in the next sections.

7.3.1.1 Neural network

A feedforward neural network is used to approximate the input output relationship

of the synchronous machine transient conditions. A Scaled Conjugate Gradient

backpropagation algorithm is used which is an especial type of backprobagation

algorithm. Conjugate gradient algorithms require a line search at each iteration. This line

search is computationally expensive, because it requires that the network response to all

training inputs be computed several times for each search.

The scaled conjugate gradient algorithm (SCG), developed by Moller, and was

designed to avoid the time-consuming line search. This algorithm combines the model-

trust region approach (used in the Levenberg-Marquardt algorithm. The routine can

require more iteration to converge than the other conjugate gradient algorithms, but the

number of computations in each iteration is significantly reduced because no line search

is performed. The network basics are described in Table 7.1.

Table 7.1. Neural network.

Algorithm

Training

Type

Performance

Data Division

Backpropagation

Scaled Conjugate Gradient

Gradient Descent

Mean Squared Error <MSE)

Random

112

Table 7.2. Neural network specifications.

Number of Neuron (Input Layer)

Number of Neuron (Output Layer)

Number of Neuron

Number of Hidden

Sample Size

Training Sample

Validation Sample

Testing Sample

(Hidden Layer)

Layers

5001

3

200

1

300(100%)

270(90%)

15(5%)

15(5%)

7.3.1.2 Neural network specifications

Choosing an appropriate network with appropriate size, algorithm for training a

dataset can sometimes be tricky. It depends on complexity of data pattern, size of dataset;

accuracy and speed one want to train a network, at times experience of the trainer or even

intuition. Depending on size of dataset and complexity of the problem a neural network

with a single input, single output and single hidden layer is used.

The number of neuron in the input is 5001, output layer is 3 and the number of

neuron in the hidden layer is 200. The size of the data points is 300. Of this dataset 90%

of the dataset that is 270 points were used as training data. Of the rest 5% of the data that

is 15 were used as validation data, which were used to validate how the network is

performing while training the network using training dataset. Once the training was done

the rest 5% that is 15 data points were used to test the performance of the network. The

network specifications are shown in Table 7.2.

7.3.1.3 Neural network training conditions

An epoch in neural network is defined by one round of training using all the

dataset once. After training the network for one epoch, the error function is used to

calculate the error value once. Until the error value reaches a certain minimum threshold,

113

the epochs are continued; that is the training process is carried on again and again. The

error curves as the number of epoch's increases are also known as performance curve or

simply performance. The neural network training conditions for the first simulation are

shown in Table 7.3.

Table 7.3. Neural network training conditions.

Epoch

Time

Initial Performance

Final Performance

Best Validation Performance

Best Validation Performance Epoch

Initial Gradient

Final Gradient

Best Gradient

Best Gradient Epoch

Training MSE

Validation MSE

Testing MSE

71

0:08:34

0.464

1 2155e-08

1.2155e-08

71

1.0

9.7096e-7

9.7096e-7

71

1.21546e-7

5.66630e-9

1.11054e-7

114

7.3.2 Pattern recognition between 20%, 40%, 60%. 80% & 100% loss of excitation

In this section, a network was designed to distinguish between different levels of

loss of field. Five different patterns are defined. First pattern is between 0% and 20%

LOF. second pattern is between 20% and 40% LOF. third pattern is between 40% and

60% LOF. fourth pattern is between 60% and 80% LOF and the fifth pattern is between

80% and 100% LOF This is done by just looking at the pattern of the load angle. Details

of the implementation are depicted in the next sections.

7.3.2.1 Neural network

A feedforward neural network is used to approximate the input output

relationship. A Scaled Conjugate Gradient backpropagation algorithm is used The

network basics are described in Table 7.4.

7.3.2.2 Neural network specifications

Depending on size of dataset and complexity of the problem a neural network

with a single input, single output and single hidden layer is used. The number of neuron

in the input 5001. the output layer is 5 and the number of neuron in the hidden layer is

200. The size of the data points is 100. Of this dataset 90% of the dataset that is 90 points

were used as training data. Of the rest 5% of the data that is 5 were used as validation

data, which were used to validate how the network is performing while training the

network using training dataset. Once the training was done the rest 5% that is 5 data

points were used to test the performance of the network. The network specifications are

shown in Table 7.5 and the training conditions for the simulation are shown in Table 7.6.

Table 7.4. Neural network.

Algorithm

Training

Type

Performance

Data Division

Backpropagation

Scaled Conjugate Gradient

Gradient Descent

Mean Squared Error (MSE)

Random

115

Table 7.5. Neural network specifications.

Number of Neuron (Input Layer) 5001

Number of Neuron (Output Layer)

Number of Neuron (Hidden Layer)

Number of Hidden Layers

Sample Size

Training Sample

Validation Sample

Testing Sample

5

200

1

100(100%)

90(90%)

5(5%)

5 (5%)

Table 7.6. Neural network training conditions.

Epoch

Time

Initial Performance

Final Performance

Best Validation Performance

Best Validation Performance Epoch

Initial Gradient

Final Gradient

Best Gradient

Best Gradient Epoch

Training MSE

Validation MSE

Testing MSE

151

0:11:04

0.410

0.00898

0.0012871

145

1.0

0.0129

0.012934

151

8.97618e-3

1.28705e-3

1.02214e-2

7.3.3 Pattern recognition between 20 %, 40 %, 60 %, 80 % & 100 % loss in torque

In this section, a network was designed to distinguish between different levels of

disturbance in torque. Five different patterns are defined. First pattern is between 0% and

20% DIT, second pattern is between 20% and 40% DIT, third pattern is between 40%

and 60% DIT, fourth pattern is between 60% and 80% DIT and the fifth pattern is

between 80% and 100% DIT. This is done by just looking at the pattern of the load angle.

Details of the implementation are depicted in the next sections.

7.3.3.1 Neural network

A feedforward neural network is used to approximate the input output

relationship. A Scaled Conjugate Gradient backpropagation algorithm is used. The

network basics are described in Table 7.7

7.3.3.2 Neural network specifications

Depending on size of dataset and complexity of the problem a neural network

with a single input, single output and single hidden layer is used. The number of neuron

in the input 5001, the output layer is 5 and the number of neuron in the hidden layer is

300. The size of the data points is 100. Of this dataset 90% of the dataset that is 90 points

were used as training data. Of the rest 5% of the data that is 5 were used as validation

data, which were used to validate how the network is performing while training the

network using training dataset. Once the training was done the rest 5% that is 5 data

points were used to test the performance of the network. The network specifications are

shown in Table 7.8 and the training conditions for the simulation are shown in Table 7.9.

Table 7.7. Neural network.

Algorithm

Training

Type

Performance

Data Dhision

Backpropagation

Scaled Conjugate Gradient

Gradient Descent

Mean Squared Error (MSE)

Random

117

Table 7.8. Neural network specifications.

Number of Neuron (Input Layer)

Number of Neuron (Output Layer)

Number of Neuron (Hidden Layer)

Number of Hidden Layers

Sample Size

Training Sample

Validation Sample

Testing Sample

5001

5

300

1

100(100%)

90 (90%)

5 (5%)

S(5%)

Table 7.9. Neural network training conditions.

Epoch

Time

Initial Performance

Final Performance

Best Validation Performance

Best Validation Performance Epoch

Initial Gradient

Final Gradient

Best Gradient

Best Gradient Epoch

Training MSE

Validation MSE

Testing MSE

93

0:06:49

0.253

1.724 le-9

1.7241e-9

93

1.0

9.1239e-7

9.1239e-7

93

3.01629e-8

1.7407e-9

3.02911 e-2

7.3.4 Pattern recognition between 0.05 s, 0.10 s, 0.15 s, 0.20 s & 0.212 s SC

In this section, a network was designed to distinguish between different durations

of short circuit. Five different patterns are defined. First pattern is between 0.05 s and

0.05 s of SC, second pattern is between 0.05 s and 0.05 s of SC, third pattern is between

0.05 s and 0.05 s of SC, fourth pattern is between 0.05 s and 0.05 s of SC, and the fifth

pattern is between 0.05 s and 0.05 s of SC. This is done by just looking at the pattern of

the load angle. Details of the implementation are depicted in the next sections.

7.3.4.1 Neural network

A feedforward neural network is used to approximate the input output

relationship. A Scaled Conjugate Gradient backpropagation algorithm is used. The

network basics are described in Table 7.10.

7.3.4.2 Neural network specifications

Depending on size of dataset and complexity of the problem a neural network

with a single input, single output and single hidden layer is used. The number of neuron

in the input 5001, the output layer is 5 and the number of neuron in the hidden layer is

300. The size of the data points is 100. Of this dataset 90% of the dataset that is 90 points

were used as training data. Of the rest 5% of the data that is 5 were used as validation

data, which were used to validate how the network is performing while training the

network using training dataset. Once the training was done the rest 5% that is 5 data

points were used to test the performance of the network. The network specifications are

shown in Table 7.11 and training conditions for the simulation are shown in Table 7.12

Table 7.10. Neural network.

Algorithm Backpropagation

Training Scaled Conjugate Gradient

Type Gradient Descent

Performance Mean Squared Error (MSE i

Data Division Random

119

Table 7.11. Neural network specifications.

Number of Neuron (Input Layer)

Number of Neuron (Output Layer)

Number of Neuron (Hidden Layer)

Number of Hidden Layers

Sample Size

Training Sample

Validation Sample

Testing Sample

5001

5

300

1

100(100%)

90 (90%)

5 (5%)

5 (5%)

Table 7.12. Neural network training conditions.

Epoch

Time

Initial Performance

Final Performance

Best Validation Performance

Best Validation Performance Epoch

Initial Gradient

Final Gradient

Best Gradient

Best Gradient Epoch

Training MSE

Validation MSE

Testing MSE

30

0:03:11

0.443

0.0116

0.0012871

24

1.0

0.0751

0.075124

30

0.0125

0.0159

0.0211

7.4 Simulation and Results

7.4.1 Pattern recognition between loss of excitation, disturbance in torque and

short circuit

In Figure 7.1, there are four matrixes representing the confusion of the neural

network training process. In the matrixes red represents failure, green represents success,

grey represents total samples in each pattern and the blue the cumulative total. The first

one on the top-left is the training matrix, top-right is the validation, bottom-left is the test

matrix and the bottom-right is the cumulative matrix. As there are three distinct patterns,

diagonally there are three element; one for each pattern.

From Figure 7.1 we can see that in all of the cases the network learned the

patterns and identified them with 100% success rate. Figure 7.2 is the performance matrix

where the best validation performance was recorded at epoch 71 with minimum error
•7

1.2155 xlO" Figure 7.3 shows the gradient and the validation check throughout the

training process. The total number of epochs needed to train the network is 71.

121

Training Confusion Matrix

I 87
r32.2%

L o
ra.o%

L o
• 1 0 %

100%
0.0%

0
0.0%

91
33.7%

0
0.0%

100%
0.0%

0
0.0%

0
0 0%

92
34.1%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100S

2 3
Target Class

Validation Confusion Matrix

J 5
33.3%

•mp --mtf *

s ^ f 0.0%
o

0 0%

100%
0.0%

0
0.0%

< 5
*33.3%-'

0
0.8%

.Ll »4'u-i$ »- t—-
100%
0.0%

0
0.0%

0
OJ0%

100%*
0.0%

i 5? j i 100%
L33P%-3| 0.0%

100% poo*
0.0% 0.0\

2 3
Target Class

Test Confusion Matrix

l l 8

f 53.3%

r
2 l °

RWitr'

3 ^ K

0 1
0.0% 1

i 4 *

26.7%

0
0.0%

<JML

Mil
0

0.0% ,

3 1
~2p»%]

ffloli
0.0% 1

100%
1.0%.

All Confusion Matrix

100
33.3%

0.0%
o
?
a.
5

0 0%

100%
0.0%

0
0 0%

100
33.3%

0
0.0%

100%
0.0%

0
0.0%

100%
h0.0%

0
00%

100
33.3%

100%
0.0%

1 2 3
Target Class

100%
0.0%

100%
0.0%

100
0J0S

^3&

Figure 7.1. Confusion matrix.

Figure 7.2. Error curve.

Gradient =i&7D96e-007. at epoch 71

Figure 7.3. Performance graph.

123

7.4.2 Pattern recognition between 20 %, 40 %. 60 %, 80 % & 100 % loss of excitation

In Figure 7.4, there are four matrixes representing the confutation of the neural

network training process. In the matrixes red represents failure, green represents success,

grey represents total samples in each pattern and the blue the cumulative total. The first

one on the top-left is the training matrix, top-right is the validation, bottom-left is the test

matrix and the bottom-right is the cumulative matrix. As there are five distinct patterns,

diagonally there are five element; one for each pattern.

From Figure 7.4, we can see that in all of the cases the network learned the

patterns and identified them with 100% success rate. Figure 7.5 is the performance matrix

where the best validation performance was recorded at epoch 145 with minimum error

1.2871 xlO"7 Figure 7.6 shows the gradient and the validation check throughout the

training process. The total number of epochs needed to train the network is 151.

124

Training Confusion Matrix

J2 3
o
•s
s 4

o

19
h.1%

o
0.0%

0
0.0%

k°*
p.o%
100%
0.0%

0.0%

19
21.1%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0.0%

0
0.0%

18
20.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

16
17.8%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

18
20 0%

100%
0J%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100*7
0.0S

3 4
Target Class

1

2

(0

I 3

r
5

0
0.0%

0
00%

b.o%
1°
|.o%

0
0.0%

«m%
4aN%

Validation Confusion Matrix

0 0
0.0% 0.0%

1
20 0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

1
20 0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0 0%

0
0 0%

2
40.0%

0
0.0%

100%
0.0%

0 MsN%
0.0% MaN%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

1 100%
20.0% 0.0%

100%
0.0%

soo*.
0.0%

3 4
Target Class

Test Confusion Matrix All Confusion Matrix

1

2
0>

« 3 o
3
f 4
o

5

1
20.0%

0
0.0%

0
0.0%

I °
0.0%

0
0.0%

1UU%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

vlaN%
MaN%

0
0.0%

0
0.0%

1
20.0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

2
100%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

1
20.0%

100%
0.0%

100%
0.0%

MaN%
MaN%

100%
0.0%

100%
0.0%

100%
0.0%

100%

km
1 2 3 4 5

Target Class

1

2

0)

« 3
o

f 4
o

5

20
20.0%

, 0
?.e%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

p20'i
20.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

20
20.0%

0
0.0%

0
0.0%

iuu n
o.o%j

0
0.0%

0
0.0%

0
0.0%

20
20.0%

0
0.0%

100%
[0 0%

0
00%

0
0.0%

0 ;
0.0%

•
00%

20
20.0%

100%J
0.0%

1 2 3 4 5
Target Class

400%.
00%,

p%
6M|

B0%8
E£%]

Figure 7.4. Confusion matrix.

Best VI erformance is 0.0012871 at epoch 1 S#

Figure 7.5. Error curve.

Gradient = 0.012934, at epoch 151

- 10°^

Figure 7.6. Performance graph.

126

7.4.3 Pattern recognition between 20%, 40%, 60%, 80% & 100% loss in torque

In Figure 7.7, there are four matrixes representing the confutation of the neural

network training process. In the matrixes red represents failure, green represents success,

grey represents total samples in each pattern and the blue the cumulative total. The first

one on the top-left is the training matrix, top-right is the validation, bottom-left is the test

matrix and the bottom-right is the cumulative matrix. As there are five distinct patterns,

diagonally there are five element; one for each pattern.

From Figure 7.7 we can see that in all of the cases the network learned the

patterns and identified them with 100% success rate. Figure 7.8 is the performance matrix

where the best validation performance was recorded at epoch 24 with minimum error

4.895 xlO"7 Figure 7.9 shows the gradient and the validation check throughout the

training process. The total number of epochs needed to train the network is 30.

127

Training Confusion Matrix

3 4
Target Class

,

2

CD

2. 3
O

4
o

5

Validation Confusion Matrix

L i 0 0
!o.o% o.o% o.o%
i 0
0.0%

! 0
0.0%

0
0.0%

• 0
0.0%

100%
0.0%

0
0.0%

0
0 0%

0
0.0%

0
0 0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

MaN% MaN%
MaN% MaN%

0
0.0%

0
0.0%

0
0.0%

1
20.0%

0
0.0%

100%
0.0%1

0 MaN%
0 0 % NaN%

0 »JaN%
0.0% MaN%

0
0.0%

0 3
0.0% 30.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

2 3
Target

4
Class

Test Confusion Matnx

0
0.0%

0
0.0%

\ o
0.0%

0.0%

I 0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

2
*0.0%

0
00%

0
0.0%

100%
D"O%

0
0.0%

0
0.0%

0
0.0%

1
20.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
00%

2
10.0%

100%
0.0%

<<aN%
v|aN%

MaN%
<4aN%

100%
0.0%

100%
0.0%

100%
0.0%

100'"
0J)e«

3 4
Target Class

1

2

« 3
o
3

f 4
o

5

I 2°
» 0 %

i 0

• 0%

1 0

po%
i 0
po%
I o
0.0%

100%
0.0%

All Confusion Matrix

0
0.0%

20
20 0%

0
0 0%

0
0 0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

20
20 0%

0
0.0%

0
0.0%

100%
0 0%

0
0.0%

0
0.0%

0
0.0%

20
20.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

20
20.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

fioo*
».0%

3 4
Target Class

Figure 7.7. Confusion matrix.

Best VatratanPerfofflnance is 0 0048996 at epoch 24

10

Figure

Ofadiaiit:

15 20
30 Epochs

7.8. Error curve.

= 0.075124. at epoch 30
T f '

30 Epochs

Figure 7.9. Performance graph.

129

7.4.4 Pattern recognition between 0.05 s, 0.10 s, 0.15 s, 0.20 s & 0.212 s SC

In Figure 7.10, there are four matrixes representing the confutation of the neural

network training process. In the matrixes red represents failure, green represents success,

grey represents total samples in each pattern and the blue the cumulative total. The first

one on the top-left is the training matrix, top-right is the validation, bottom-left is the test

matrix and the bottom-right is the cumulative matrix. As there are five distinct patterns,

diagonally there are five element; one for each pattern.

From Figure 7.11 we can see that in all of the cases the network learned the

patterns and identified them with 100% success rate. Figure 7.12 is the performance

matrix where the best validation performance was recorded at epoch 93 with minimum

error 1.7241 xlO"7 Figure 7.13 shows the gradient and the validation check throughout

the training process. The total number of epochs needed to train the network is 93.

130

Training Confusion Matrix

18.9%

, 0
0.0%

0
0.0%

< 0
0.0%

! 0
00%

100%

0 *
0.0%

18
20.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%]

r ~ 1
0

0 0%
0

0.0%

20
22.2%

0
0.0%

0
0.0%

100%
0.0%

0 "
0.0%

0
0.0%

0
0.0%

19
21.1%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0 0%

0
0.0%

16
17.8%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100'.

1 2 3 4 5
Target Class

Test Confusion Matrix

1 1
20.0%

0
0.0%

i 0
0.0%

0
0.0%

i 0
0.0%

100%
0.0%

o "
0.0%

1
20.0%

0
0.0%

0
0.0%

0
00%

100%
0.0%

o "
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

4aN%
MaN%

0
0.0%

0
0.0%

0
0.0%

1
20.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

2
10 0%

100%
0.0%

100%
0.0%

100%
0.0%

MaN%
MaN%

100%
0.0%

100%
0.0%

ioo4.Ti

puos
1 2 3 4 5

Target Class

Validation Confusion Matrix

l 2 0 0
p o % o o % 0.0%

1.0%

0
0.0%

fj.0%

100%
0.0%

1
20 0%

0
0 0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

_
0

0.0%
0

0.0%

0
0.0%

0
0.0%

0
0.0%

100% YaN% MaN%
0.0% M|tj% NaN%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

100%
0.0%

NaN%
MaN%

0 NaN%
0.0% NaN%

2
10.0%

100%
0.0%

100%
0.0%

100S
0J»%

1 2 3 4 5
Target Class

All Confusion Matrix

20
20 0%

f o
0.0%

0.0%

0
0.0%

, 0
0.0%

100%
0.0%

0
0 0%

20
20.0%

0
0.0%

0
0.0%

0
0.0%

100%
0.0%

0 "
0.0%

0
0.0%

20
20 0%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

20
20.0%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

20
20.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100'-
OSS'.

1 2 3 4 5
Target Class

Figure 7.10. Confusion matrix.

Best Validation Performance is 1.7241 e-009 at epoch 93

10'

L 100 ^

- 1 0 s

,-io

Figure 7.11. Error curve.

Gradient = 9.1239e-007, at epoch 93

J L

Validation Checks = 0. at epoch 93

mmmmmmmm
93 Epochs

Figure 7.12. Performance graph.

132

7.5 References

[1] B.B. Nasution and A.I. Khan, "A Hhierarchical graph neuron scheme for real­

time pattern recognition," IEEE Transactions on Neural Networks, vol. 19(2),

212-229, Feb. 2008.

[2] P.M. Bhagat, Pattern Recognition in Industry, Elsevier, 2005.

[3] C M . Bishop, Neural Networks for Pattern Recognition, Oxford: Oxford

University Press, 1995.

[4] R.O. Duda, P.E. Hart, D.G. Stork, Pattern classification (2nd edition), Wiley,

2001.

[5] B.D. Ripley, Pattern Recognition and Neural Networks, Cambridge, 1996.

133

8 CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this research work, dynamic analysis of synchronous machine was done using

neural network based characterization, clustering and pattern recognition. A synchronous

machine model was simulated numerically based on a mathematical model. The

developed model was scrutinized for transient conditions under different kind of faults -

LOF, DIT & SC. The model was also scrutinized for stability stipulations. Based on the

model a neural network model of synchronous machine was developed using neural

network based characterization. In the case of multiple or mixture of different kinds of

faults, neural network based clustering was used to distinguish and identify specific fault

conditions. In the case of unknown fault responses, neural network based pattern

recognition was used to identify different kinds of faults and their fault level. In the end,

the finding shows that:

> Neural network based characterization can be used to simulate a synchronous

machine model given its input output relationships.

r The model can be trained to approximate different transient conditions; such

as - loss of field, disturbance in torque and short circuit conditions.

r Neural network clustering can be used to filter and distinguish between

different kinds of faults by looking at the behaviour of the load angle.

r By observing the weight distribution pattern of the SOM space similar kinds

of faults can be identified.

> Neural network pattern identification can be used to identify and specify

unknown fault patterns.

r- Once the faults are identified, neural network pattern identification can be

used to recognize and indicate the level or time duration of the fault.

134

8.2 Future Work

Neural network is a very powerful tool with immense potential and diverse

strengths. Use of neural network in synchronous machine dynamic analysis can go a long

way. Some of the potential research areas with possibilities are:

r- Characterization, clustering and pattern recognition of synchronous machine

using different network topologies and algorithm; their performance

comparisons.

> Neural network based future fault prediction of synchronous machine under

different disturbances.

r Neural network based protection system for synchronous machine stability

control.

> Online fault filtering of synchronous machine using neural network.

r Neural fuzzy controller based protection system for synchronous machine

stability control.

135

LIST OF PUBLICATION

[1] R. Mazhar, H. Tashakori, and N. Kar, "Investigation of performance analysis of

a synchronous generator under loss of excitation," IREE Journal, April, 2008.

136

VITA AUCTORIS

Name Rashed Mohammed Mazhar

Place of Birth Dhaka, Bangladesh

Year of Birth 1985

Education University of Windsor, Windsor, Ontario

2007 -2009

M-A.Sc.

University of Windsor, Windsor, Ontario

2003 2006

B.A.Sc.

137

http://M-A.Sc

	Dynamic analysis of synchronous machine using neural network based characterization clustering and pattern recognition
	Recommended Citation

	ProQuest Dissertations

