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ABSTRACT 

Synchronous generators form the principal source of electric energy in power 

systems. Dynamic analysis for transient condition of a synchronous machine is done 

under different fault conditions. Synchronous machine models are simulated numerically 

based on mathematical models where saturation on main flux was ignored in one model 

and taken into account in another. The developed models were compared and scrutinized 

for transient conditions under different kind of faults - loss of field (LOF), disturbance in 

torque (DIT) & short circuit (SC). The simulation was done for LOF and DIT for 

different levels of fault and time durations, whereas, for SC simulation was done for 

different time durations. The model is also scrutinized for stability stipulations. 

Based on the synchronous machine model, a neural network model of 

synchronous machine is developed using neural network based characterization. The 

model is trained to approximate different transient conditions; such as - loss of field, 

disturbance in torque and short circuit conditions. In the case of multiple or mixture of 

different kinds of faults, neural network based clustering is used to distinguish and 

identify specific fault conditions by looking at the behaviour of the load angle. By 

observing the weight distribution pattern of the Self Organizing Map (SOM) space, 

specific kinds of faults is recognized. Neural network patter identification is used to 

identify and specify unknown fault patterns. Once the faults are identified neural network 

pattern identification is used to recognize and indicate the level or time duration of the 

fault. 
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NOMENCLATURE 

Generally symbols have been defined locally. The list of principle symbols is 

given below. 

Ra Stator winding resistance 

Rkdi, Rkqi d- and q-axis 1st damper resistances 

Rkd2, Rkq2 d- and q-axis 2nd damper resistances 

Rfd, Rkqs Field and 3rd q-axis damper resistances 

Lj, Lq d- and q-axis synchronous Inductances 

Lkdi, Lkqi d- and q-axis 1st damper Inductances 

Lkd2, ^2 d- and q-axis 2nd damper Inductances 

Lfd, ^3 Field and q-axis 3rd damper Inductances 

Li Stator leakage Inductances 
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1 INTRODUCTION 

1.1 Background 

The synchronous machine has long been the most important of the 

electromechanical power-conversion devices, playing a key role both in the production of 

electricity and in certain special drive applications. The history of the synchronous 

machine is now more than 100 years old. Within this span of time its power capacity has 

grown enormously, and it has established itself as a major player in the conversion of 

energy. Its beginnings are found in the closing decades of the 1800s, when innovatory 

engineers in several different countries showed courage, conviction and far-sightedness 

as they worked on its early development. 

The beginning was in the 1880s. At first, stationary poles were used, with the 

poles surrounding a rotating ring armature. This was known as the external-pole type. An 

important milestone was the 'three-phase dynamo' derived from the direct-current 

machine with the Thomson-Houston armature. In 1887. the first three-phase synchronous 

generator shown in Figure 1.1 was built, which produced about 2.8 kW at 960 rev/min. 

corresponding to a frequency of 32 Hz. 

Figure 1.1. The first three-phase synchronous machine built by Friedrich August 
Haselwander in 1887 (Photo: Deutsches Museum, Munich). 

1 



1891 was the year in which the three-phase synchronous machine passed its first 

big test and made its actual breakthrough. The scene was the Frankfurt Exposition, the 

event the great experiment whereby 300 hp was transmitted from the hydroelectric power 

plant at Lauffenam Neckar, 175km away, via three-phase current transmission. It was an 

event that drew worldwide attention and acclaim. The appearances of powerful steam 

turbines are at about the beginning of the 20th century. In 1901, the first actual 

turbogenerator was built by Charles E. Brown [1]. 

We have to thank the Americans for building the first hydrogen-cooled machines. 

They started in 1928 with a synchronous compensator, and in 1936 they put the first 

3,600 rev/min hydrogen-cooled turbogenerator into commercial operation [1]. The first 

hydrogen-cooled turbine generator developed by the GE Company went into service in 

1937, and hydrogen-cooled machines were able to satisfy the power output needs for 

many years. Between 1950 and 1960, manufacturers developed a broad range of direct 

cooling methods. 

A milestone of the 1970s was the appearance of superconducting (SC) 

synchronous generator technology. A prototype of two-pole "utilitytype" generator was 

built during the early 1970s using low temperature superconducting (LTS) wires. A 5-

MVA generator was developed and successfully tested in 1972. The purpose of these 

activities was to assess the technical feasibility of SC generators for long-term reliable 

operation on electric power systems. In 1979 a 20 MVA two-pole 3,600 r/min turbine 

generator for utility applications was designed, built, and load tested which was the 

largest SC generator to be fully load tested. 

This LTS conductor technology was used in the design of an SC rotor for a 

synchronous turbo-generator. This rotor was essentially designed as a 250 MW machine 

with an active length of 2 m and an overall length of 3 m, but used a larger diameter of a 

1200-MW machine (1.06 m) [2]. 

Great improvements of computers mark the 90's; powerful softwares were 

developed to design and analyze the synchronous generators. In 1995, K.W. Cowan 

presented advanced computational techniques involving computational fluid dynamics 

(CFD) and electromagnetic and thermal finite element analyses to predict the thermal 
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performance of prototype hydrogen cooled generator. During the last years of 1990s, the 

SuperGM project, which was launched by the Japan New Energy and Industrial 

Technology Development Organization in 1988, resulted in three models of 

superconducting rotors and a conventional stator. Between October 1998 and June 1999, 

this model machine was connected to a commercial power grid for the first time in the 

world to study basic performance in an actual electric power system. 

Application of high temperature superconducting (HTS) materials in synchronous 

generators was a great milestone in this technology. In the mid-1990s, GE conducted 

design studies on HTS generators and built and tested an HTS prototype coil [2]. Last 

years of 1990s encountered the appearance of the powerformer technology. The idea of 

electrical generation in high voltages was proposed in the beginning of 1998 by Dr Mats 

Leijon from the ABB Corporate Research in Sweden. A new type of generator offered a 

possibility to build high voltage generators, which could be directly connected to the 

power transmission systems without any step-up transformer. In 1998, the first 

powerformer was installed in the Porjus power plant in the north of Sweden with the 

rating voltage of 45 kV and the rating power of 11 MVA [3]. 

Synchronous generators form the principal source of electric energy in power 

systems. Many large loads are driven by synchronous motors. Synchronous condensers 

are sometimes used as a means of providing reactive power compensation and controlling 

voltage. These devices operate on the same principle and are collectively referred to as 

synchronous machines. The power system stability problem is largely one of keeping 

interconnected synchronous machines in synchronism. Therefore, an understanding of 

their characteristics and accurate modeling of their dynamic performance are of 

fundamental importance to the study of power system stability. 

The modeling and analysis of the synchronous machine has always been a 

challenge. The problem was worked on intensely in 1920s and 1930s [4]. [5] and has 

been the subject of several more recent investigations [5]. [7]. The theory and 

performance of synchronous machines have also been covered in a number of books [8], 

[9]. 
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Synchronous machines while generating power are usually connected to a grid. 

As one of the prime requirements of synchronous machines is to run them in synchronous 

speed, as any distortion from synchronism can lead to instability of the grid i.e. the 

system. Synchronous machines while operating in generation mode are subjected to 

different kinds of faults or disturbances which can lead to potential speed distortion and 

ultimately instability of the system. To prevent this there are different kinds of precaution 

that have been taken. A lot of these precautions invohe implementation of protection 

relays which depends on fault detection and analysis. 

Nowadays, to connect a synchronous machine to a system for testing purposes are 

not so practical. Same goes for analyzing and investigating it for fault detection for the 

enormity and complexity of the machines as well as the complexity of the power system 

and the importance of its stability. With the rapid and vast development of computer 

based analysis tools the solution has to come as a package where the system is already 

analyzed the outcome is expected. In the field of fault detection there are different kinds 

of common occurrences in faults under which the machine behaviors should be analyzed 

and possible solution should be in effect. Of the faults very common occurrences are loss 

of field or excitation, disturbances in input torque, short circuit faults etc. For the sake of 

power system stability is absolutely nonnegotiable to have a proper understanding of how 

a machine going to behave under any of the faults and as well to identify what kind of 

fault is in incidence. 

For the purpose synchronous machine computer aided analysis is done by 

simulating synchronous machine models and observing its dynamic behavior if different 

kinds of fault is initiated. It is also of utmost importance to detect what kind of fault is in 

occurrence by just looking at the machine activities. Under certain situation if there are 

multiple fault occurrences it is also essential to filter different kinds of faults to 

distinguish and identify them. 

Up to the point different type of synchronous machine models are in effect, which 

are good approximations of the actual system. They are at most of the cases being 

simulated where the simulation is also a good approximation of the actual mathematical 
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machine model solution. Fault detection and distinguishing can be tricky under certain 

situations where fault specific behaviors are not very well known. 

1.2 Research Objectives 

The objective of this research is to understand and realize synchronous machine 

dynamic performances and to propose and design a better modeling of synchronous 

machine for the purpose; to understand behavior of synchronous machine performance 

under different kinds of fault and study system stability under these conditions; to 

identify and to be able to distinguish between different kinds of faults. 

In this research work, artificial neural network has been used as a tool for the 

purpose: 

> For approximation and characterization of synchronous machine dynamic 

behavior under different fault conditions 

> For fault distinguishing and filtering under mixed or multiple fault occurrence 

> For fault detection and identification to various details by looking at machine 

behavior 

To achieve these purposes neural network based characterization, clustering and pattern 

recognition has been used. 

1.3 Thesis Outline 

This thesis is organized as follows: 

Chapter 2: In this chapter, synchronous machine and its model details is being 

defined. Here synchronous machine is described from its operational point 

of view, constructional point of view and other theories related to it. 

Synchronous machine mathematical model is being depicted which is later 

used in chapter 4 for simulation purposes. 

Chapter 3: Artificial neural network with its understanding and different aspects is 

focus of the chapter. Special types of artificial neural networks and there 
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attributes being scrutinized to comprehend there implicational and 

contextual properties. 

Chapter 4: Synchronous machine model described in chapter 2 is simulated and 

dynamic analysis is performed. Simulation and result from the simulation 

is presented with detailed description and explanation. 

Chapter 5: In this chapter, neural network characterization is used to approximate 

synchronous machine model using neural networks. The simulation of the 

approximation is presented under various dynamic conditions. 

Chapter 6: In this chapter, neural network clustering is used to filter and distinguish 

between different kinds of faults in the case of multiple fault situations. 

The simulation results are presented. 

Chapter 7: In this chapter, neural network pattern recognition technique is used to 

detect faults by looking at machine behaviors. Fault detection is done 

between different kinds and levels of faults. The simulations and findings 

are presented in end of the chapter. 

Chapter 8: Findings of this research work is summarized in this chapter. 
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2 SYNCHRONOUS MACHINE MODELING 

2.1 Introduction 

Synchronous machine is the most used machine in the purpose of electric power 

generation in the world. That is most of the energy com ersion where mechanical power 

is converted into electrical power, large scale s\nchronous machine are in use. It's an AC 

machine where the rotor of the machine is in synchronism with the rotating stator 

magnetic field which refers its being in synchronism to the electrical frequency. 

To understand the modeling of machine one has to understand a machine's 

construction, the fundamentals it operates on, mathematical model etc. To be able to 

analyze a machine one have to realize their underlying relationships. In the next section 

the key aspects of synchronous machine is portrayed and an effort was made to interrelate 

them. Also a synchronous machine mathematical model is described which is developed 

based on a standard IEEE model [1]. 

2.2 Theory and Modeling of Synchronous Machine 

2.2.1 Constructional features 

From mechanical point of view a synchronous machine has basically two parts: 

stator and rotor. The stator is the stationary part which has a three phase winding which is 

spatially distributed and either Y-connected or A-connected. Stator in a synchronous 

machine is the armature as the larger current flows through it. The rotor is the rotating 

part of the machine which has a DC winding. That is a DC power supply powers the rotor 

to make it act as an electromagnet. Hence, the rotor in a synchronous machine is the field 

[2]-
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2.2.2 Operating principles 

Synchronous machine is an electromechanical energy conversion unit, which can 

convert mechanical energy to electrical and electrical energy to mechanical. When it 

converts electrical energy to mechanical energy it is said to be operating in motoring 

mode shown in Figure 2.1(a) and when it is converting mechanical energy to electrical it 

is called to be operating in generating mode shown in Figure 2.1(b). In most of the cases 

they are used as generators because of their high efficiency. 

To understand the operating principles of synchronous machine it is assumed that 

the machine is operating in motoring mode. Once understood the motoring mode the 

generating mode works in the same way. except the direction of the operation is 

completely opposite. In motoring mode, a three phase AC power is supplied as in Figure 

2.2. The three phase power supply creates a rotating magnetic field. The speed of the 

rotating magnetic field is synchronous to the frequency of the AC power supply and the 

speed depends on the number of poles in the rotor. As the electrical frequency and the 

number of poles in a synchronous machine are constant, the speed is as well [2]. The 

speed of the magnetic field can be calculated as, 

• .1 r' ^ 

(a) (b) 

Figure 2.1. Synchronous machine operation, (a) Motoring mode (b) Generating mode. 

Figure 2.2. Three-phase AC signal. 
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St 
Figure 2.3. Field winding in the rotor. 

(2.1) 

Where, 

is the electrical frequency in per second (Hz) 

P is the number of poles 

N is the synchronous speed in revolution per minute (rpm) 

The DC power supply in the rotor winding as in Figure 2.3 makes the rotor act as 

an electromagnet; hence the magnetic field is created. The rotating magnetic field in the 

stator circuit cuts the magnetic field from that field winding of the stator; as a result they 

try to align with each other. As the rotating magnetic field continuous to rotate the rotor 

magnetic field follows, as a result the rotor starts rotating; hence the mechanical rotation. 
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(g) (h) (i) 0) (k) (1) 

Figure 2.4. Rotating magnetic field of a synchronous machine. 

(g) (h) (i) ()) (k) (1) 

Figure 2.5. Synchronous machine rotation. 

Rotation of the magnetic field in the stator circuit is shown in Figure 2.4(a)-(l). 

The rotation of the rotor because of the electromagnetic induction is shown in Figure 

2.5(a)-(l). It is evident from the Figures 4 and 5 that the rotation of synchronous machine 

rotor is synchronous to the rotating magnetic field. 
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2.2.3 Reference frame theorem 

The understanding of synchronous machine mathematical model one needs to 

have a proper understanding of reference frame theorem. Before getting in to the details 

of the reference frame theorem of a synchronous machine let us look at the machine 

equations from organizational point of view. From one point of view the mathematical 

model has two basic sets of equation describing the whole model - the electrical 

equations and the mechanical equations. 

Now looking at the electrical part of the machine, the model as per machine 

structural construction has two distinct parts - the rotor and stator, thus, a set of equations 

that describes the stator part and another set of equations that describes the rotor part. 

Since, the rotor and stator of the machine are linked through magnetic flux while 

operating, the equations describing both stator and rotor are interconnected. 

In describing the mathematical model problem arises as the stator is stationary 

and the rotor is rotating, and one has to inter-link the equation to make sense out of them; 

which calls for taking either stator or rotor as reference. In describing these equations 

whether the rotor or the stator or any other variable is taken as a reference is realized is 

expressed through reference frame theory. 

^ d-axis 

Figure 2.6. Reference frame. 
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Like many other coordinate system the reference frame theory is primarily defined 

by two axes as shown in Figure 2.6: direct and quadrature axes. All the vectors in the 

mathematical model of a synchronous machine are dissolved to these two axes. So, as in 

Figure 2.6, if an arbitrary vector X is assumed with an angle 9 with respect to direct axis, 

it will have to be dissolved in two components - the d-axis component: Xd = X cosG and 

the q-axis component: Xq = X sin9. All the vectors in the space which describe the 

machine operation are thus resolved into d and q axis components. 

2.2.4 Per unit system 

A per-unit system is the expression of system quantities as fractions of a defined 

base unit quantity. Calculations are simplified because quantities expressed as per-unit 

are the same regardless of the voltage level. Similar types of apparatus will have 

impedances, voltage drops and losses that are the same when expressed as a per-unit 

fraction of the equipment rating, even if the unit size varies widely. Conversion of per-

unit quantities to volts, ohms, or amperes requires knowledge of the base that the per-unit 

quantities were referenced to. 

A per-unit system provides units for power, voltage, current, impedance, and 

admittance. Only two of these are independent, usually power and voltage. All quantities 

are specified as multiples of selected base values. Per unit system is a way of normalizing 

machine parameters so that one can make a comparison between machines with different 

specification. In this research work all the values are calculated in per unit system [3]. 

Actual value 
Per unit value = — ; 

Base value 

2.3 Mathematical Modeling 

Mathematical model of a machine is realizing the machine in terms of a set of 

differential equation and polynomials. To understand a machine model and to relate and 

realize the relationship between the machine constructions, their broken down parts, 

operating principles and how the electrical and the mechanical vectors and variables in 

machine equations interact, different approaches are used; different way of telling the 
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same story using different point of views. This includes the circuit diagram, machine 

equations, phasor diagram etc. In this model synchronous reference frame is used to 

depict the machine equations. 

2.3.1 d-axis mathematical modeling 

The d-axis circuit diagram of the synchronous machine model is shown in Figure 

2.7 which describes the d-axis electrical model [1], [2]. In this model, one field winding 

and two damper windings are considered in d-axis rotor circuit. The machine is assumed 

to be in a generation mode. All the currents in the machine should be assumed in an 

outward direction that is anti clockwise in the loops. 

Looking at the circuit diagram to describe the relationship two sets of equations is 

being used. The first set are the voltage equations, which are differential equations 

relating voltage and flux. The second set of equations is flux equations which relates 

current and flux. The first equation in each set represents to the stator electrical model 

and the later three the rotor electrical model. The second equation in each set is 

representing the field circuit and the later two the damper circuit. 

+A 

Ra U>r¥q Ll Lfld-Lad 

Jc 

+ 

PVd 

v _ 

\L ad T + 

'Id \L 2d 

P¥ld%Rld P¥2d^R2d 

Figure 2.7. d-axis circuit diagram. 
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Voltage equations: 

Flux equations: 

Figure 2.8. q-axis circuit diagram. 

efd=Rfdifd+PVfd 

o = Ruhd + pvld 

0 = Rldha + PVld 

Vd = (Lad + Ll h "" Ladtfd - Ladhd 

Wfd = Lra\fd + LJ irf'lj - Ladld 

^\d ~ L/\d'fd +L\)dhd ~^ad'd 

V2a ~ ^fld'fd + Lzidhd ~ ^ad'd 

(2.2) 

(2.3) 

23.2 q-axis mathematical modeling 

The q-axis circuit diagram of the s)rnchronous machine model is shown in Figure 

2.8 which describes the q-axis electrical model [1]. [2]. In this model, three damper 

windings are considered in q-axis rotor circuit. The machine is assumed to be in a 

generation mode. Looking at the circuit diagram to describe the relationship t\\ o sets of 

equations is being used. The first set are the voltage equations, which are differential 

equations relating voltage and flux. The second set of equations is flux equations which 

relates current and flux. The first equation in each set represents to the stator electrical 

model and the later three the rotor electrical model. 
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Voltage equations: 

Flux equations: 

Q = R\qi\q+PV\q 

^ = R2qi2q+P^>2q 

0 = R3qhq + PViq 

Vq = {La„ + L,)i„ + Laqhq + Laqhq 

¥xq = Lnqhq + Laq(hq + »3, J" Laq'q 

W2q = LaA, + i,,)+ LnL - Li 

Viq=L<l+i2Q) + L2 - LJ 

(2.4) 

(2.5) 

2.3.3 Steady-state operation 

The phasor diagram of a synchronous machine shows the relationship of 

synchronous machine voltage and current with the phase differences. It is necessarily 

useful for realizing the steady state condition of a synchronous machine, which is used as 

an initial condition of the machine simulation. From the voltage diagram in Figure 2.9, d-

and q-axis terminal voltages can be found which later are being used to calculate the load 

angle [4], [5]. The load angle is used to calculate the initial conditions for machine 

operation. 

..•• q-axrs 

•>J d-axis 

Figure 2.9. Phasor diagram for calculating initial conditions. 
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Figure 2.10. Simplified circuit diagram. 

Calculation of load angle: 

Vd=Vtsmb,Vq=Vtcosh 

5 = tan 
/, .Lq. cos 9 - /, .Ra. sin 0 

Vt +IrLrsmQ + IrRa.cos6 
(2.6) 

Where, ©0 = 2nf, f = 60 Hz, p 
dt 

2.3.4 Mechanical equations 

The mechanical part of the mathematical model describes the mechanical 

phenomenon of the machine as well as relates the mechanical effect with speed and load 

angle. As the electrical model of the machine depends on load angle and speed to 

calculate different parameters, the load angle and the speed are the relating factor 

between mechanical and electrical model. 

d8 
— = COnAO), 
dt 

W 

^ = -L(r -T) 
dt 2HKm e). 

(2.7) 
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2.3.5 Current flux relationship in matrix form 

Another way of looking at machine equations is a matrix form. Matrix form is just 

manipulation of the existing equations and representing in terms of matrix multiplication 

[6]. This is especially useful when programs are written in the purpose of numerical 

simulation. In matrix form the whole model is portrayed in three distinct matrixes; the 

current, flux and inductance matrix: 

Where: 

1 = L 1y 

I ~ Vd *kd\ ikdl ifd *q %\ ikql *kq3 \ 

H> = [Vd Vkd\ Vkdl Vfd Vkq\ Vkql M>fc,3 f 

(2.8) 

Lmd umd 

~Lmd hnd+Lkd Lmd 

Lmd 

Lmd 0 

-L, 'md 

Lmd 

0 

0 

0 

0 

Lmd 

Lmd 

0 

0 

0 

0 

Lmd+LkdL Lmd ° 

Lmd 
Lmd+Lfd ° ° 

" ~Lq hnq 

0 -Lmq Lmq+Lk4 

0 

0 

0 

0 

^mq 

X, 
mq 

0 

0 

0 

0 

hnq 

*-Tnq 

hnq hnq hnq+^kql hnq 

~hnq hnq hnq hnq+hkqi 

2.3.6 Internal control system 

Synchronous generators are usually connected to the grid. This means that they 

have constant terminal voltage with a specific loading condition. While synchronous 

machine is operating under a grid it is usually generating power while running in 

synchronous speed. It is important to understand that synchronism in speed of a 

synchronous machine is a requirement, as any distortion in synchronism can lead to 

system instability. If a machine goes to a super synchronous speed for any type of 
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disturbance it usually gives away its extra kinetic energy as electrical energy to the grid 

and tends to comes back to synchronous speed. On the other hand, if it goes to a sub-

synchronous speed, it absorbs some of the electrical energy and tends to speed up to go to 

the synchronous speed [2]. This tendency of synchronous machine to operate in 

synchronous speed is can be views as the internal control system which is shown in 

Figure 2.11. The control equations are: 

COnA, A . J0- ,N 

T =^ofnt 
C0„ 

(2.9) 

(2.10) 

2.4 Saturation 

Saturation is one of the most common occurrences in the nature; it is also true for 

electric machines with no exception in synchronous machines. It has been seen that 

taking saturation into account gives more accurate and realistic results [7], [8]. Two 

models of synchronous machine are developed in this research work. In the first model 

saturation is ignored and in the second model it's taken into account. 

Machine 
Mode l 

Figure 2.11. Internal control loop. 
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2.4.1 Unsaturated model 

In the unsaturated mode the d-axis saturation and the q-axis saturation ignored, 

that is the d- and q-axis magnetizing reactances, Xm(j and Xmq. are assumed to be equal to 

their unsaturated values. 

2.4.2 Saturated model 

In electric machines, saturation is of basic two kinds: leakage flux saturation and 

main flux saturation. 

2.4.2.1 Leakage flux saturation 

Leakage flux saturation is defined by the saturation in the leakage flux of a 

machine. In this research work the leakage flux saturation is ignored. This is because it 

has negligible effect on the machine performance in comparison to the machine main flux 

saturation. 

2.4.2.2 Main flux saturation 

In this case, both d- and q-axis saturation are considered. The unsaturated d- and 

q-axis magnetizing reactances are replaced by their corresponding saturated values. 

These d- and q-axis saturated magnetizing reactances, X^ and Xmqs, are obtained by 

modifying the corresponding unsaturated values, Xmdu and XmgU, with two saturation 

factors calculated from the polynomials fitting the saturation curves. The d- and q-axis 

magnetizing ampere-turns {ATa, ATq) are used to locate the operating points on the d- and 

q-axis saturation characteristics respectively [9]-[ll]. 

By applying the procedure described above, the transient performance of 

synchronous machines considering the saturation along the direct and quadrature axes 

can be calculated. However, in this case, an iterative technique has to be applied to 

determine the transient performance as the saturated d- and q-axis magnetizing reactances 

are a function of magnetizing current [12]. 
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d-axis saturation 

\yds = f(ATd) = -0.1501 AT] +0.03S3 AT] +1.0283 ATd -0.0007 

X = v* 
mds irp 

A1d (2.11) 

q-axis saturation 

V = j\AT) = -0.0155AT 3-0.2246AT 2 +1.066AT -0.0012 qs 

Vqs 
X — 

i (2.12) 

2.5 Rotor Angle 

The electrical angular displacement of the rotor relative to its terminal is defined 

as the rotor angle. The rotor angle is the displacement of the rotor generally referenced to 

the maximum positive value of the fundamental component of the terminal voltage. 

Therefore, the rotor angle expressed in radian is, 

6 = 9 r - 9 e (2.13) 

Where, 

9r is the rotor angle 

6eis the angle of electrical magnetic field 

Speed (GO) of a synchronous machine can be found by differentiating 9; hence any 

disturbance in the speed of the machine can be interpreted as change in 8. In steady state 

condition the speed of a synchronous machine is a constant. As a result 8 is constant. Any 

change in speed in the machine thus can be interpreted from change in 8. 

In this research work, in disturbance introduced in the machine is realized by 

looking at 8 as an output. Regardless of what the disturbance is, how much the machine is 

affected and how much the stability of the machine is disturbed is analyzed and 

interpreted by looking at how 8 behaves. 
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3 ARTIFICIAL NEURAL NETWORK (ANN) 

3.1 Introduction 

An artificial neural network (ANN) as shown in Figure 3.1, often just called a 

"neural network" (NN), is a mathematical model or computational model based on 

biological neural networks. It attempts to simulate the structure, interconnections and 

interactions of the nerve cells of a biological brain, while have the capability to update its 

knowledge from experience. It consists of an interconnected group of artificial neurons 

and processes information using a connectionist approach to computation. In most cases 

an ANN is an adaptive system that changes its structure based on external or internal 

information that flows through the network during the learning phase. 

In more practical terms neural networks are non-linear statistical data modeling 

tools. They can be used to model complex relationships between inputs and outputs or to 

find patterns in data. 

Neural network as an idea comes from observing central nervous system and its 

construction. The neurons in central nervous system along with their axons, dendrites and 

synapses constitutes for the most sophisticated information processing entity. In a neural 

network model, replicating the central nervous system, simple nodes called "neurons", 

"neurodes", "PEs" ("processing elements") or "units" are connected together to form a 

network of nodes. Hence it is called "neural network" These neural networks of simple 

processing elements (neurons), can exhibit complex global behavior, whereas its 

complexity and capability is determined by the number of connections, connections 

paradigm between the processing elements, and element parameters. The practical use of 

a neural network comes with algorithms designed to alter the strength (weights) of the 

connections in the network to produce a desired signal flow [l]-[4]. 

Even though, in the crams of theoretical neuroscience neural networks models are 

designed with an intention to emulate that of a central nervous system (CNS), artificial 

neural network as a term in concurrency is a subject to utilization to design models in 

statistics, cognitive psychology and artificial intelligence. 
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Figure 3.1. Artificial Neural Network (ANN). 

Devoid of any qualm, biology has inspirited the invention of artificial neural 

network. In modern numerical implementation the approach is more or less discarded to 

fit the practical implicational needs based on signal processing and statistics. Both 

adaptive and non-adaptive elements are considered as used to realize large systems; 

though adaptive approach is more contextual in practical implementation which has a 

basis of non-linearity, distribution, parallelism, and local processing and adaptation. 

3.2 Overview of ANN 

3.2.1 Model 

Artificial neural networks (ANNs) are in essence simple mathematical models 

defining a function, f:X^>Y Any ANN model corresponds to a class of such functions. 

Figure 3.2. ANN dependency graph. 
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Figure 3.3. Recurrent ANN dependency graph. 

Figure 3.2 illustrates essentials of a fundamental network structure with arrows 

depicting dependencies between variables, whereas_/[*) is defined as, 

(3.1) 

In this case f[x) is a composite of a function g,{x) which can be represented as a 

simple vector, 

It is a widely used type of composition known as the nonlinear weighted sum. 

In similar fashion g,(x) can be shown as composite of other function depending on 

the network structure. 

Interpretation of dependencies of the variables indicated by the arrows can be 

scrutinized in two ways, as in Figure 3.3 in case of function/ 

Functional view: Input x is transformed into a 3-dimensional vector h, which is 

then transformed into a 2-dimensional vector g, which is finally transformed into/ This 

view is most commonly encountered in the context of optimization. 

Probabilistic view: Random variable F = fiG) depends upon the random variable 

G = g(H), which depends upon H = h(X), which depends upon the random variable X. 

This view is most commonly encountered in the context of graphical models. 

Either of the views while implementation accord, has a naturally inhabited 

capability of enabling parallelism in some extent, which refers to the fact of them being 

independent of their inherited variables, hence, more or less equivalent quite to an extent; 

yet, there is some implied temporal dependencies. 
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The network with acyclic configuration in Figure 3.2 is usually known as 

feedforward neural network and the one with cyclic organization in Figure 3.3 is known 

as recurrent neural network [4]-[7]. 

3.2.2 Learning 

No matter how interesting a neural network is with functions defining its 

structural paradigm, the most intriguing and captivating possibility lies in its 

competencies in learning ability [8]. Learning implementing a neural network optimally 

by observation means, given a specific task to solve a class of functions F, in order to 

find fe F. 

This entails defining a cost function which is defined by C: F -> M such that, for 

the optimal solution/*, 

C(/*) < C(f)Vf E F (3.2) 

That is, no solution has a cost less than the cost of the optimal solution. 

Cost function C is an evaluation process through which it can determined to what 

extent a network is successful to learn a problem, in other words, how far the network is 

from the optimal solution of the problem dataset it is suppose to learn. The learning 

algorithm searches through the solution space with the intention of finding that of a 

smallest possible cost as appropriate. 

For applications where the solution is dependent on some data, the cost must 

necessarily be a function of the observations; otherwise we would not be modeling 

anything related to the data. It is frequently defined as a statistic to which only 

approximations can be made. As a simple example considering the problem of finding the 

model/which minimizes C as, C = E[(f(x) — y)2] for data pairs (xj/) drawn from some 

distribution!). 

In practical situations, TV samples from T) will be available and thus, for the above 

example, we would only minimize, C = -££Li(/(*f) - y*)2 Thus, the cost is 

minimized over a sample of the data rather than the true data distribution. 
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For online learning parameter N -» oo; as the learning progresses through time, 

the cost function is partially minimized with ingression of new data. Online learning is 

often used when T) is fixed. In the case of finite dataset various customized versions of 

online learning are often being used [9], [10]. 

The use of problem specific cost functions is a frequent practice, although 

assigning ad hoc cost function in an arbitrary fashion can do the job. Obviously choosing 

problem specific cost function has its advantages in terms if addressing problem specific 

approximation; i.e. convexity in a model or probabilistic formulation the posterior 

probability of the model used as an inverse cost. In the end, choice of cost function is 

coherent to the task. 

3.2.3 Learning paradigms 

There are three major learning paradigms, for any given type of network 

architecture, each corresponding to a particular abstract learning task: 

• Supervised learning 

• Unsupervised learning 

• Reinforcement learning. 

3.2.3.1 Supervised learning 

In supervised learning, a given set of example pair is (x,y), where x E X,y 6 Y 

and the aim is to find a function f:X -> Y in the allowed class of functions that matches 

the examples. In other words, it is inferred that the mapping is implied by the data; the 

cost function is related to the mismatch between the mapping and the data and it 

implicitly contains prior knowledge about the problem domain. 

A commonly used cost is the mean-squared error which tries to minimize the 

average squared error between the network's output, fix), and the target value y over all 

the example pairs. When one tries to minimize this cost using gradient descent for the 

class of neural networks called Multi-Layer Perceptrons, one obtains the common and 

well-known back propagation algorithm for training neural networks[12], [13]. 
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Pattern recognition (also known as classification) and regression (also known as 

function approximation) are the tasks which fall under the paradigm of supervised 

learning. The supervised learning paradigm is also applicable to sequential data (e.g., for 

speech and gesture recognition). This occurs in the form of a function that provides 

continuous feedback on the quality of solutions obtained up to that point [11]. 

3.2.3.2 Unsupervised learning 

In unsupervised learning, some data x is given, and the cost function to be 

minimized can be any function of the data x and the network's output,/ The cost function 

is dependent on the task and as a priori assumption. For example, considering a model 

fix) = a, where a is a constant and the cost C = E[(x -fix))2]. Minimizing this cost will 

give a value of that is equal to the mean of the data. The cost function can be in a form 

dependent on the application: In compression it could be related to the mutual 

information between JC and y. In statistical modeling, it could be related to the posterior 

probability of the model given the data [12], [13]. 

Tasks that fall within the paradigm of unsupervised learning are in general 

estimation problems; the applications include clustering, the estimation of statistical 

distributions, compression and filtering [14]. 

3.2.3.3 Reinforcement learning 

In reinforcement learning, data x is usually not given, but generated by an agent's 

interactions with the environment. At each point in time t, the agent performs an action yt 

and the environment generates an observation x, and an instantaneous cost C,, according 

to some dynamics. The aim is to discover a policy for selecting actions that minimizes 

some measure of a long-term cost, i.e. the expected cumulative cost. The environment's 

dynamics and the long-term cost for each policy are usually unknown, but can be 

estimated. 

More formally, the environment is modeled as a Markov decision process (MDP) 

with states s1,...,snEs and actions a1; . . . , a m Ea with the following probability 

distributions: the instantaneous cost distribution P(ct\s,), the observation distribution 

P(x,\st) and the transition P(s,+\ \ sh a,), while a policy is defined as conditional 
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distribution over actions gi\en the observations. Taken together, the two define a Marko\ 

chain (MC). The aim is to discover the polic> that minimizes the cost. i.e. the MC for 

which the cost is minimal. 

ANNs are frequenth used in reinforcement learning as part of the o\erall 

algorithm. Tasks that fall within the paradigm of reinforcement learning are control 

problems, games and other sequential decision making tasks. 

3.2.4 Learning algorithms 

Most of the training algorithms can be scrutinized as a fundamental use of 

optimization theory statistical estimation. Presently there are numerous optimization 

algorithms are available for training a neural network, whereas choosing a model implies 

to selection of one from a set of allowed one, criteria being minimization of the cost 

function. 

Gradient descent algorithm is a widespread tactics used when it comes to train an 

artificial neural network. In this method the derivath e of the cost function with respect to 

the network parameters are considered and the change is done to those parameters in 

accordance with gradient-related direction. Among the other frequently used method 

evolutionary methods, simulated annealing and expectation-maximization and non-

parametric methods are common!} used methods for training neural networks. Temporal 

perceptual learning relies on finding temporal relationships in sensory signal streams In 

an environment, statistically, salient temporal correlations can be found by monitoring the 

arrival times of sensory signals. This is done by the perceptual networks [6]. [9]. 

3.3 Real Life Applications 

The utility of artificial neural network models lies in the fact that they can be used 

to infer a function from observations. This is particularly useful in applications where 

complexity of data or task makes design of such a function b\ hand impractical. 
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3.3.1 Applications of artificial neural networks 

One of the most powerful applications of neural networks is function 

approximation, or regression analysis. Time series prediction and system modeling are 

typical examples of approximations or regressions. Classification is another popular 

neural network application paradigm. Pattern recognition, sequence recognition, novelty 

detection and sequential decision making are common type of classification example. 

In the field of data processing neural networks are also used for various 

application processes. Typical data processing application are filtering, clustering, blind 

source separation and compression. 

3.3.2 Application areas of artificial neural networks commonly spotted 

Neural networks are applied in various fields to address different problems. 

Commonly spotted application areas of artificial neural networks are observed in system 

identification and control i.e. vehicle control, process control etc.; game-playing and 

decision making i.e. backgammon, chess, racing etc; pattern recognition i.e. radar 

systems, face identification, object recognition etc.; sequence recognition i.e. gesture, 

speech, handwritten text recognition etc.; medical diagnosis; financial applications i.e. 

automated trading systems; data mining i.e. knowledge discovery in databases ("KDD"); 

visualization; e-mail spam filtering; and many others. 

3.4 Types of Neural Networks 

3.4.1 Feedforward neural network 

A feedforward neural network is an artificial neural network where connections 

between the units do not form a directed cycle. In this network, the information moves in 

only one direction, forward, from the input nodes, through the hidden nodes (if any) and 

to the output nodes. There are no cycles or loops in the network. In a feedforward 

network information always moves one direction; it never goes backwards. 
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Inputs Output 

Figure 3.4. Feedforward neural network. 

3.4.1.1 Single-layer perceptron 

The earliest kind of neural network is a single-layer perceptron network, which 

consists of a single layer of output nodes; the inputs are fed directly to the outputs via a 

series of weights. In this way it can be considered the simplest kind of feedforward 

network. The sum of the products of the weights and the inputs is calculated in each 

node, and if the value is above some threshold (typically 0) the neuron fires and takes the 

activated value (typically 1); otherwise it takes the deactivated value (typically -1). 

Neurons with this kind of activation function are also called artificial neurons or linear 

threshold units. In the literature, the term perceptron often refers to networks consisting 

of just one of these units. A similar neuron was described by Warren McCuIloch and 

Walter Pitts in the 1940s. 
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A perceptron can be created using any values for the activated and deactivated 

states as long as the threshold value lies between the two. Most perceptrons have outputs 

of 1 or -1 with a threshold of 0 and there is some evidence that such networks can be 

trained more quickly than networks created from nodes with different activation and 

deactivation values. Perceptrons can be trained by a simple learning algorithm that is 

usually called the delta rule. It calculates the errors between calculated output and sample 

output data, and uses this to create an adjustment to the weights, thus implementing a 

form of gradient descent. 

Single-unit perceptrons are only capable of learning linearly separable patterns; in 

1969 in a famous monograph entitled Perceptrons Marvin Minsky and Seymour Papert 

showed that it was impossible for a single-layer perceptron network to learn an XOR 

function. They conjectured (incorrectly) that a similar result would hold for a multi-layer 

perceptron network. Although a single threshold unit is quite limited in its computational 

power, it has been shown that networks of parallel threshold units can approximate any 

continuous function from a compact interval of the real numbers into the interval [-1,1]. 

A single-layer neural network can compute a continuous output instead of a step 

function. A common choice is the so-called logistic function: 

y = —^r (3-3) 

With this choice, the single-layer network is identical to the logistic regression 

model, widely used in statistical modeling. The logistic function is also known as the 

sigmoid function. It has a continuous derivative, which allows it to be used in 

backpropagation. This function is also preferred because its derivative is easily 

calculated: y' = y{\ ~y) (times dfldX, in general form, according to the Chain Rule) 

3.4.1.2 Multi-layer perceptron 

This class of networks consists of multiple layers of computational units, usually 

interconnected in a feedforward way. Each neuron in one layer has directed connections 

to the neurons of the subsequent layer. In many applications the units of these networks 

apply a sigmoid function as an activation function. 
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The universal approximation theorem for neural networks states that every 

continuous function that maps intervals of real numbers to some output interval of real 

numbers can be approximated arbitrarily closely by a multi-layer perceptron with just one 

hidden layer. This result holds only for restricted classes of activation functions, e.g. for 

the sigmoidal functions. 

Multi-layer networks use a variety of learning techniques, the most popular being 

backpropagation. Here, the output values are compared with the correct answer to 

compute the value of some predefined error-function. By various techniques, the error is 

then fed back through the network. Using this information, the algorithm adjusts the 

weights of each connection in order to reduce the value of the error function by some 

small amount. After repeating this process for a sufficiently large number of training 

cycles, the network will usually converge to some state where the error of the 

calculations is small. In this case, one would say that the network has learned a certain 

target function. To adjust weights properly, one applies a general method for non-linear 

optimization that is called gradient descent. For this, the derivative of the error function 

with respect to the network weights is calculated, and the weights are then changed such 

that the error decreases (thus going downhill on the surface of the error function). For this 

reason, backpropagation can only be applied on networks with differentiable activation 

functions. 

In general, the problem of teaching a network to perform well, even on samples 

that were not used as training samples, is a quite subtle issue that requires additional 

techniques. This is especially important for cases where only very limited numbers of 

training samples are available. The danger is that the network over fits the training data 

and fails to capture the true statistical process generating the data. Computational 

learning theory is concerned with training classifiers on a limited amount of data. In the 

context of neural networks a simple heuristic, called early stopping, often ensures that the 

network will generalize well to examples not in the training set. 

Other typical problems of the backpropagation algorithm are the speed of 

convergence and the possibility of ending up in a local minimum of the error function. 
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Today there are practical solutions that make backpropagation in multi-layer perceptrons 

the solution of choice for many machine learning tasks. 

The numbers within the neurons represent each neuron's explicit threshold (which 

can be factored out so that all neurons have the same threshold, usually 1). The numbers 

that annotate arrows represent the weight of the inputs. This net assumes that if the 

threshold is not reached, zero (not -1) is output. The bottom layer of inputs is not always 

considered a real neural network layer. 

3.4.1.3 ADALINE 

ADALINE stands for Adaptive Linear Neuron or later called Adaptive Linear 

Element. It was developed by Professor Bernard Widrow and his graduate student Ted 

Hoff at Stanford University in 1960. It's based on the McCulloch-Pitts model. It consists 

of a weight, a bias and a summation function. 

(3-4) 

Its adaptation is defined through a cost function (error metric) of the residual, 

(3.5) 

z = XOR(x, y) 
v 

Perceptron 

Figure 3.5. A two-layer neural network capable of calculating XOR. 
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Where, d, is the desired input. With the MSE error metric, 

E=—I,?ef (3.6) 

The adapted weight and bias becomes, 

_ Y.i(xi-xKdl-3) ,. _. 

& _ *Z,Cx.-*>* ( 3-8 ) 

The ADALINE has practical applications in the controls area. Like the single-

layer perceptron, ADALINE has a counterpart in statistical modelling, in this case least 

squares regression. There is an extension of the ADALINE. called the Multiple 

ADALINE (MADALINE) that consists of two or more ADALINEs serially connected. 

3.4.2 Radial basis function (RBF) network 

Radial Basis Functions are powerful techniques for interpolation in 

multidimensional space. A RBF is a function which has built into a distance criterion 

with respect to a centre. Radial basis functions have been applied in the area of neural 

networks where they may be used as a replacement for the sigmoidal hidden layer 

transfer characteristic in Multi-Layer Perceptrons. 

RBF networks have two layers of processing: In the first, input is mapped onto 

each RBF in the 'hidden' layer. The RBF chosen is usually a Gaussian. In regression 

problems the output layer is then a linear combination of hidden layer values representing 

mean predicted output. The interpretation of this output layer value is the same as a 

regression model in statistics. In classification problems the output layer is typically a 

sigmoid function of a linear combination of hidden layer values, representing a posterior 

probability. Performance in both cases is often improved by shrinkage techniques, known 

as ridge regression in classical statistics and known to correspond to a prior belief in 

small parameter values (and therefore smooth output functions) in a Bayesian framework. 

RBF networks have the advantage of not suffering from local minima in the same 

way as Multi-Layer Perceptrons. This is because the only parameters that are adjusted in 
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the learning process are the linear mapping from hidden layer to output layer. Linearity 

ensures that the error surface is quadratic and therefore has a single easily found 

minimum. In regression problems this can be found in one matrix operation. In 

classification problems the fixed non-linearity introduced by the sigmoid output function 

is most efficiently dealt with using iteratively re-weighted least squares. 

RBF networks have the disadvantage of requiring good coverage of the input 

space by radial basis functions. RBF centers are determined with reference to the 

distribution of the input data, but without reference to the prediction task. As a result, 

representational resources may be wasted on areas of the input space that are irrelevant to 

the learning task. A common solution is to associate each data point with its own centre, 

although this can make the linear system to be solved in the final layer rather large, and 

requires shrinkage techniques to avoid overfitting. 

Associating each input datum with an RBF leads naturally to kernel methods such 

as Support Vector Machines and Gaussian Processes (the RBF is the kernel function). All 

three approaches use a non-linear kernel function to project the input data into a space 

where the learning problem can be solved using a linear model. Like Gaussian Processes, 

and unlike SVMs, RBF networks are typically trained in a Maximum Likelihood 

framework by maximizing the probability (minimizing the error) of the data under the 

model. SVMs take a different approach to avoiding overfitting by maximizing instead a 

margin. RBF networks are outperformed in most classification applications by SVMs. In 

regression applications they can be competitive when the dimensionality of the input 

space is relatively small. 

3.4.3 Kohonen self-organizing network 

The self-organizing map (SOM) invented by Teuvo Kohonen performs a form of 

unsupervised learning. A set of artificial neurons learn to map points in an input space to 

coordinates in an output space. The input space can have different dimensions and 

topology from the output space and the SOM will attempt to preserve these. 
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3.4.4 Recurrent network 

Recurrent neural networks (RNs) are models with bi-directional data flow. Unlike 

feedforward networks propagating data linearly from input to output, recurrent neural 

networks (RNs) propagates data from input to output as well as from later processing 

stages to earlier stages. 

A simple recurrent network (SRN) is a variation on the Multi-La) er Perceptron. 

sometimes called an "Elman network" due to its invention b\ Jeff Elman. A three-lav er 

network is used, with the addition of a set of "context units" in the input layer. There are 

connections from the middle (hidden) la\ er to these context units fixed with a weight of 

one. At each time step, the input is propagated in a standard feedforward fashion, and 

then a learning rule (usualh backpropagation) is applied. The fixed back connections 

result in the context units alwa\ s maintaining a copy of the pre\ ious T. alues of the hidden 

units (since they propagate over the connections before the learning rule is applied). Thus 

the network can maintain a sort of state, allowing it to perform such tasks as sequence-

prediction that is beyond the power of a standard Multi-La> er Perceptron. 

The Hopfield network is a recurrent neural network in which all connections are 

symmetric. Invented by John Hopfield in 1982. this network guarantees that its d\namics 

will converge. If the connections are trained using Hebbian learning then the Hopfield 

network can perform as robust content-addressable (or associative) memon. resistant to 

connection alteration. 

The echo state network (ESN) is a recurrent neural network with a sparsely 

connected random hidden layer. The weights of output neurons are the onh part of the 

network that can change and be learned. ESN are good to (re)produce temporal patterns. 

The Long short term memory is an artificial neural net structure that unlike 

traditional RNNs doesn't have the problem of vanishing gradients. It can therefore use 

long delays and can handle signals that have a mix of low and high frequenc} 

components. 
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3.4.5 Stochastic neural networks 

A stochastic neural network differs from a typical neural network because it 

introduces random variations into the network. In a probabilistic view of neural networks, 

such random variations can be viewed as a form of statistical sampling, such as Monte 

Carlo sampling. 

The Boltzmann machine can be thought of as a noisy Hopfield network. Invented 

by Geoff Hinton and Terry Sejnowski in 1985. the Boltzmann machine is important 

because it is one of the first neural networks to demonstrate learning of latent variables 

(hidden units). Boltzmann machine learning was at first slow to simulate, but the 

contrastive divergence algorithm of Geoff Hinton (circa 2000) allows models such as 

Boltzmann machines and products of experts to be trained much faster. 

3.4.6 Modular neural networks 

Biological studies have shown that the human brain functions not as a single 

massive network, but as a collection of small networks. This realization gave birth to the 

concept of modular neural networks, in which several small networks cooperate or 

compete to solve problems. 

A committee of machines (CoM) is a collection of different neural networks that 

together "vote" on a given example. This generally gives a much better result compared 

to other neural network models. Because neural networks suffer from local minima, 

starting with the same architecture and training but using different initial random weights 

often gives vastly different networks. A CoM tends to stabilize the result. The CoM is 

similar to the general machine learning bagging method, except that the necessary variety 

of machines in the committee is obtained by training from different random starting 

weights rather than training on different randomly selected subsets of the training data. 

The Associative neural network (ASNN) is an extension of the committee of 

machines that goes beyond a simple/weighted average of different models. ASNN 

represents a combination of an ensemble of feedforward neural networks and the k-

nearest neighbor technique (kNN). It uses the correlation between ensemble responses as 
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a measure of distance amid the analyzed cases for the kNN. This corrects the bias of the 

neural network ensemble. An associative neural network has a memory that can coincide 

with the training set. If new data becomes available, the network instantly improves its 

predictive ability and provides data approximation (self-learn the data) without a need to 

retrain the ensemble. Another important feature of ASNN is the possibility to interpret 

NN results by analysis of correlations between data cases in the space of models. 

3.4.7 Other types of networks 

Holographic associative memory represents a family of analog, correlation-based, 

associative, stimulus-response memories, where information is mapped onto the phase 

orientation of complex numbers operating. 

Instantaneously trained neural networks (ITNNs) were inspired by the 

phenomenon of short-term learning that seems to occur instantaneously. In these 

networks the weights of the hidden and the output layers are mapped directly from the 

training vector data. Ordinarily, they work on binary data, but versions for continuous 

data that require small additional processing are also available. 

Spiking neural networks (SNNs) are models which explicitly take into account the 

timing of inputs. The network input and output are usually represented as series of spikes 

(delta function or more complex shapes). SNNs have an advantage of being able to 

process information in the time domain (signals that vary over time). They are often 

implemented as recurrent networks. SNNs are also a form of pulse computer. 

Networks of spiking neurons — and the temporal correlations of neural 

assemblies in such networks — have been used to model figure/ground separation and 

region linking in the visual system. 

Spiking neural networks with axonal conduction delays exhibit polychronization, 

and hence could have a potentially unlimited memory capacity. Dynamic neural networks 

not only deal with nonlinear multivariate behavior, but also include (learning of) time-

dependent behavior such as various transient phenomena and delay effects. 
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Cascade-Correlation is architecture and supervised learning algorithm developed 

by Scott Fahlman and Christian Lebiere. Instead of just adjusting the weights in a 

network of fixed topology, Cascade-Correlation begins with a minimal network, then 

automatically trains and adds new hidden units one by one, creating a multi-layer 

structure. Once a new hidden unit has been added to the network, its input-side weights 

are frozen. This unit then becomes a permanent feature-detector in the network, available 

for producing outputs or for creating other, more complex feature detectors. The 

Cascade-Correlation architecture has several advantages over existing algorithms: it 

learns very quickly, the network determines its own size and topology, it retains the 

structures it has built even if the training set changes, and it requires no backpropagation 

of error signals through the connections of the network. 

A neuro-fuzzy network is a fuzzy inference system in the body of an artificial 

neural network. Depending on the FIS type, there are several layers that simulate the 

processes involved in a fuzzy inference like fuzzification, inference, aggregation and 

defuzzification. Embedding an FIS in a general structure of an ANN has the benefit of 

using available ANN training methods to find the parameters of a fuzzy system. 

Compositional pattern-producing networks (CPPNs) are a variation of ANNs 

which differ in their set of activation functions and how they are applied. While typical 

ANNs often contain only sigmoid functions and sometimes Gaussian functions, CPPNs 

can include both types of functions and many others. Furthermore, unlike typical ANNs, 

CPPNs are applied across the entire space of possible inputs so that they can represent a 

complete image. Since they are compositions of functions, CPPNs in effect encode 

images at infinite resolution and can be sampled for a particular display at whatever 

resolution is optimal. 

This type of network can add new patterns without the need for re-training. It is 

done by creating a specific memory structure, which assigns each new pattern to an 

orthogonal plane using adjacently connected hierarchical arrays. The network offers real­

time pattern recognition and high scalability; it however requires parallel processing and 

is thus best suited for platforms such as Wireless sensor networks (WSN), Grid 

computing, and GPGPUs. 
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3.5 Theoretical Properties 

3.5.1 Computational power 

The multi-layer perceptron (MLP) is a universal function approximator, as proven 

by the Cybenko theorem. However, the proof is not constructive regarding the number of 

neurons required or the settings of the weights. 

Work by Hava Siegelmann and Eduardo D. Sontag has provided a proof that a 

specific recurrent architecture with rational valued weights (as opposed to the commonly 

used floating point approximations) has the full power of a Universal Turing Machine 

using a finite number of neurons and standard linear connections. They have further 

shown that the use of irrational values for weights results in a machine with trans-Turing 

power. 

3.5.2 Capacity 

Artificial neural network models have a property called 'capacity', which roughly 

corresponds to their ability to model any given function. It is related to the amount of 

information that can be stored in the network and to the notion of complexity. 

3.5.3 Convergence 

Nothing can be said in general about convergence since it depends on a number of 

factors. Firstly, there may exist many local minima. This depends on the cost function 

and the model. Secondly, the optimization method used might not be guaranteed to 

converge when far away from a local minimum. Thirdly, for a very large amount of data 

or parameters, some methods become impractical. In general, it has been found that 

theoretical guarantees regarding convergence are an unreliable guide to practical 

application. 
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3.5.4 Generalization and statistics 

In applications where the goal is to create a system that generalizes well in unseen 

examples, the problem of overtraining has emerged. This arises in over complex or over 

specified systems when the capacity of the network significantly exceeds the needed free 

parameters. There are two schools of thought for avoiding this problem: The first is to use 

cross-validation and similar techniques to check for the presence of overtraining and 

optimally select hyper parameters such as to minimize the generalization error. The 

second is to use some form of regularization. This is a concept that emerges naturally in a 

probabilistic (Bayesian) framework, where the regularization can be performed by 

selecting a larger prior probability over simpler models; but also in statistical learning 

theory, where the goal is to minimize over two quantities: the 'empirical risk' and the 

'structural risk', which roughly correspond to the error o^er the training set and the 

predicted error in unseen data due to overfitting. 

Supervised neural networks that use an MSE cost function can use formal 

statistical methods to determine the confidence of the trained model. The MSE on a 

validation set can be used as an estimate for variance. This value can then be used to 

calculate the confidence interval of the output of the network, assuming a normal 

distribution. A confidence analysis made this way is statistically valid as long as the 

output probability distribution stays the same and the network is not modified. 

By assigning a softmax activation function on the output layer of the neural 

network (or a softmax component in a component-based neural network) for categorical 

target variables, the outputs can be interpreted as posterior probabilities. This is very 

useful in classification as it gives a certainty measure on classifications. 

The softmax activation function: 
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3.5.5 Dynamic properties 

Various techniques originally developed for studying disordered magnetic 

systems (i.e. the spin glass) have been successfully applied to simple neural network 

architectures, such as the Hopfield network. Influential work by E. Gardner and B. 

Derrida has revealed many interesting properties about perceptrons with real-valued 

synaptic weights, while later work by W. Krauth and M. Mezard has extended these 

principles to binary-valued synapses. 

3.6 Corroboration 

Variety and use of neural network for optimization of different types of problem 

set undoubtedly is fairly diverse; depending on the problem requirements, specifications, 

formulation and the trade-offs that has to be met the network as well as the algorithm that 

are used to approach any problem set can be delicate process. In this research work the 

problems asked to cover three very different but interrelated application targets. 

• Approximation 

• Clustering 

• Pattern Recognition 

3.6.1 Approximation 

Neural network has its intrinsic ability to realize and map nonlinearity given that 

it is trained with a set of input-output datasets which represents the system [17]. In this 

case, considering different aspects, such as degree of non-linearity, complexity, accuracy, 

size of dataset etc., a backpropagation neural network is used for system approximation 

where Lavenberg-Marquardt algorithm is used as an optimization algorithm [18]. 

3.6.2 Clustering 

Given a distributed data set where some kind of intrinsic formation exists, neural 

network is capable of grouping data with similar attributes; which is very effective in 
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filtering or perhaps distinguishing datasets blend or intermingle together. Thus neural 

network clustering is used to cluster similar type signals where more than one signal is 

mixed together [19], [20]. A self organizing map is used for the purpose where batch 

unsupervised weight with bias training is used. 

3.6.3 Pattern recognition 

Pattern recognition is a one of the very intriguing capabilities of neural network. 

This is different from pattern identification as, if the neural network is trained with a 

number of patterns with adequate number of dataset [21], [22]; it becomes capable of 

^identifying similar patterns even with significant noise associated with it. A 

backpropagation neural network is used for this where scaled conjugate gradient 

algorithm is used. 
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4 SYNCHRONOUS MACHINE SIMULATION 

4.1 Introduction 

To investigate the transient performance of synchronous machine the synchronous 

machine model described in chapter 2 is used for simulation. The main objective of the 

simulation primarily is to realize how the machine behaves under different conditions. 

Two models the saturated and the unsaturated models are developed. To perform the 

numerical simulation of the machine model Matlab is used. 

In a synchronous machine field excitation voltage and input torque are the usual 

inputs. Under steady state condition all of these input values are constant. In order to 

simulate a transient condition usually some kind of fault is introduced. The faults can be 

of various sources, but in most common cases they are either loss of excitation in the 

field, disturbance in torque or at times short circuit occurrence in the terminal circuit. In 

this research work, the machine model was simulated under all of these conditions. A 

brief description of these three commonly occurred faults or commotions in a 

synchronous machine is described in the following section. 

Response of synchronous machine to any of the disturbances is realized by 

looking at the output of the machine. As output of the machine it is the load angle 8, 

which is usually looking into. 

In a synchronous machine load angle 8 is the usual output. Once a disturbance is 

introduced in any certain point in time, it is cleared after a certain amount of time. 

Initially a machine is running in steady state; once the machine is exposed to a fault and it 

is cleared 8 gets distorted at first. If the machine doesn't become unstable, 8 will settle 

down to its original steady state with the passage of time. If the machine goes to 

instability, 8 goes out of control. The behavior of 8 from the time of distortion to its 

stalling down time and its behavior during this time gives us the transient behavior of the 

machine under the fault or commotion. 

A tenth order model is used to run the simulation. The saturation is taken into 

account to in the second model. The behavior of the model is compared with that of the 

unsaturated model [1]. Runge-Kutta method was used to solve the differential equations. 
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The fault occurred at 0.1 s and was cleared after different time periods to analyze the 

stability. The level of fault was varied as well. Machine parameters, operating conditions, 

simulation process flow, etc. follow in the next coming sections. 

4.2 Synchronous Machine Commotions 

4.2.1 Loss of excitation/field (LOF) 

Loss of excitation or field in a synchronous machine is one of most common 

occurrences of faults in synchronous machine. The loss of excitation is defined by partial 

or full short circuit in the field circuit of a synchronous machine [l]-[3]. Another \\a\ of 

looking at it is the field or excitation voltage of a synchronous machine rotor winding is 

subjected to a partial loss or goes to complete zero in case of total loss in field [3]-[6]. 

In this research work, the loss of excitation condition is scrutinized under two 

conditions. In the first case, the duration of the fault is kept constant. That is the fault is 

kept persistent for 0.1 s. It is initiated at 0.1 s and cleared at 0.2 s. For 0.1 s the fault is 

introduced for 25%, 50%, 75% & 100% loss in field. In this case, the fault level is kept 

constant to 100%) loss of field. The duration of the fault is varied, that is, the fault 

continues for 0.1 s, 0.2 s, 0.5 s or 1.0 s. 

4.2.2 Disturbance in Torque (DIT) 

Disturbance in torque is defined by disturbance in mechanical torque [7] input to 

the machine. The source of input torque can be hydro, steam, coal, gas. etc. The torque 

provided by the prime mover is desired to be constant to provide the machine with a 

constant torque. But at times there can be disruption in the input torque as a result the 

prime mover can speed up or slow down as a result synchronous machine can go into 

sub-synchronous or super-synchronous speed [8]. 

In this research work, the disturbance in torque condition is scrutinized under two 

conditions. In the first case, the duration of the fault is kept constant. That is the fault is 

kept persistent for 0.1 s. It is initiated at 0.1 s and cleared at 0.2 s. For 0.1 s the fault is 
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introduced for 50% loss, 100% loss, 50% gain and 100% gain in input torque. In the 

second case, the fault level is kept constant to 100% loss in input torque. In this case, the 

duration of the fault is varied, that is, the fault is kept persistent for 0.1 s, 0.2 s, 0.5 s or 

1.0 s. 

4.2.3 Short circuit (SC) 

The terminal of a synchronous machine is subjected to constant voltage as it is 

connected to the grid. At times under certain conditions, the terminals of the machine 

might get shorted which is known as the short circuit fault [9], [10]. 

In this research work, the short circuit condition is scrutinized. In this case, the 

duration of the fault is varied, that is, the fault is kept persistent for 0.075 s, 0.15 s, 0.212 

s and 0.213 s. It will be demonstrated later that at 0.212 s the machine becomes 

marginally stable. The machine becomes unstable if the fault persists more than 0.212 s. 

4.3 System Deliberates 

4.3.1 Machine parameters 

The machine simulated here is a 3-phase Y-connected 900 MVA synchronous 

generator. The machine parameters are presented in Table 4.1. All the parameters are in 

per unit. The model is simulated in per unit system [11]. For unsaturated model Z^and Lq 

are kept constant as in Table 4.1. For the saturated model they are calculated using the 

saturation characteristics. 
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Parameters 

Table 4.1. Machine parameters. 

Values (per unit) Parameters Values (per unit) 

Ro 

Run 

R-U2 

Rfj 

U 

Lkdi 

Lkd2 

L/d 

0.0018 

0.1142 

0.00592 

0.00094 

2.152 

2.732 

0.00753 

0.0155 

L, 

Rkql 

Rkq2 

Rkq3 

Lq 

Lkql 

Lkq2 

LkqS 

0.172 

0.00538 

0.1081 

0.0188 

2.057 

1.657 

0.1193 

0.4513 

Table 4.2. Operating conditions. 

Parameter 

Terminal voltage 

Terminal apparent power 

Power Factor 

Speed control Gain Kp 

Speed control Integral Time Tl 

Value 

1.0 pu 

1.0 pu 

0.9 

20 

2s 

4.3.2 Operating conditions 

As the simulation is done in per unit system, all values including the loading 

conditions are taken as per unit system. Table 4.2 illustrates the operating characteristics 

used in the machine model simulation. 

4.3.3 Process flow 

The process flow diagram is basically the flow chart describing the simulation 

procedure. It gives us the basic understanding of the simulation steps under different 

conditions. In this section, the basic procedures used to perform the initial value 
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calculation and transient simulations by the developed models are explained. For each of 

the conditions both the saturated and the unsaturated models are shown. 

4.3.3.1 Steady-state condition 

Figure 4.1 shows flowchart to calculate the initial values, where, terminal voltage, 

apparent power and power factor are given as input. Then, the load angle (5) of the 

machine can be calculated. The d- and q-axis components of the stator voltage and 

current, field voltage and current are determined. 

An additional loop has been considered for taking saturation into account. By 

calculating the d- and q-axis magnetizing currents and then using the saturation 

characteristics in Figure 4.2. the saturated d- and q-axis magnetizing reactances {Xm± and 

Xmgs) can be obtained [12], [13]. These new values of the magnetizing reactance result 

new values of stator and rotor currents and load angle. And if all this current values are 

less than e =10 , the saturation condition is met for initial conditions. Then fluxes and 

developed electromagnetic torque can be calculated. 

4.3.3.2 Transient condition 

To obtain transient performance of the synchronous generator under LOF fault, 

we have to solve the system differential equations. In general, there are two methods for 

the integration of differential equations in power system simulation: one is an explicit 

method, such as the 4th-order Runge-Kutta method, and the other is an implicit one, such 

as the trapezoidal rule. In this research work explicit method has been used. 4*-order 

Runge-Kutta method was used. Figure 4.3 shows the flowchart to calculate transient 

condition for unsaturated model and Figure 4.4 shows the flowchart for saturated model. 

The flowchart also illustrates an iteration process within each time step to 

determine saturated magnetizing reactance in both direct and quadrature axes. Basically 

within each time step after numerically solving differential equations and obtaining 

currents, saturated Xd and Xq are needed to be determined [14]. [15]. This involves an 

iteration loop and after the currents converge then the process can proceed to the next 

time step. 
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Figure 4.1. Initial value calculation flowchart for unsaturated model. 
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Figure 4.2. Initial value calculation flowchart for saturated model. 
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Figure 4.3. Calculation of transient values after LOF fault for unsaturated model. 
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Figure 4.4. Calculation of transient values after LOF fault for saturated model. 

4.4 Simulation and Results 

4.4.1 Loss of excitation/field (LOF) 

In this section, the machine model is simulated under loss of excitation or field. 

The operating condition under which the machine is run is specified in Table 4.2. The 

machine is simulated for both the saturated and unsaturated models and the results are 

shown in the same graph for comparison. Observation tells us that taking saturation into 

account makes a big difference in the results, hence, a more accurate one. 
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In Figure 4.5, the fault is persistent for 0.1 s. It is introduced at 0.1 s and cleared 

at 0.2 s. The level of fault is 25% LOF, which means that the excitation has been reduced 

to 25% of the rated value. It is seen that the maximum overshoot is 44.35 degrees for 

unsaturated model and 44.7 degrees for saturated model. The settling time in both cases is 

roughly 9 to 10 s. Figure 4.6 shows the fault persistence for 0.1 s. It is introduced at 0.1 s 

and cleared at 0.2 s. The level of fault this time is kept at 50% LOF. which means that the 

excitation has been reduced to 50% of the rated \alue. It is seen that the maximum 

overshoot is 45.35 degrees for unsaturated model and 45.9 degrees for saturated model. 

The settling time in both cases is about 8 s to 9 s. 

Again, in Figure 4.7. the fault is invariable for 0.1 s. It is introduced at 0.1 s and 

cleared at 0.2 s. In this case, the excitation has been reduced to 75% of the rated value. It 

is seen that the maximum swing is 46.2 degrees for unsaturated model and 47.2 degrees 

for saturated model. The settling time in both models is roughh 7 to 8 s. In Figure 4.8, 

the fault is also persistent for 0.1 s. It is introduced at 0.1 s and cleared at 0.2 s. The 

excitation in this case has been reduced to 0% of the rated value. It is seen that the 

maximum swing is 47 degrees for unsaturated model and 48.5 degrees for saturated 

model. The settling time in both models is around 6 to 7 s. 
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In Figure 4.9, the fault is taking place for 0.2 s while the fault is kept at the same 

level where the excitation has been reduced to 0% of the rated value. The fault is 

introduced at 0.1 s and cleared at 0.3 s. It is seen that the maximum overshoot is 48.5 

degrees for unsaturated model and 50.2 degrees for saturated model. The settling time in 

both cases is around 8 to 9 s. In Figure 4.10, the fault persists for 0.5 s again for full loss 

of excitation. It is introduced at 0.1 s and cleared at 0.6 s. It is seen that the maximum 

overshoot is 55 degrees for unsaturated model and 59 degrees for saturated model. The 

settling time in both cases is approximately 9 to 10 s. 

In Figure 4.11, the fault is introduced at 0.1 s and cleared at 1.1 s for 100% LOF. 

It is seen that the maximum overshoot is 47 degrees for unsaturated model and 48.5 

degrees for saturated model. The settling time in both cases is almost same as the 

previous case that is around 9 to 10 s. 

From these observations, one can see that as the level of faults goes up or as the 

time duration of the fault persistence goes up, the change in the load angle increases. 

Another observation is that as level of fault went up the settling time decreased but as the 

duration of fault went up the settling time increased. 
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Figure 4.9.100% LOF for 0.2 s. 
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Figure 4.11.100% LOF for 1 s. 
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4.4.2 Disturbance in torque (DIT) 

In this section, the machine model is simulated under disturbance in torque. The 

operating conditions under which the machine is run are presented in 4.2. The machine is 

simulated for both the saturated and unsaturated models and the results are shown in the 

same graph for assessment purposes. Observation tells us that taking saturation into 

account makes a difference in the results even though not very significant one. 

In Figure 4.12, the fault is continual for 0.1 s. It is introduced at 0.1 s and cleared 

at 0.2 s. The level of fault is 50% loss in DIT. which means that the torque has lost 50% 

of its rated value. It is seen that the maximum disruption is 14 degrees for both 

unsaturated and saturated models. The settling time in both cases is around 6 to 7 s. In 

Figure 4.13, the fault is persistent for 0.1 s. It is introduced at 0.1 s and cleared at 0.2 s. 

The level of fault is 100% loss in DIT. which means that the torque 0% of its rated value. 

It is seen that the maximum disruption is 30 degrees for both unsaturated and saturated 

models. The settling time in both cases is around 6 to 7 s. 

In Figure 4.14, the fault occurrs for 0.1 s. It is introduced at 0.1 s and cleared at 

0.2 s. The torque input is increased to 150% of its rated value. It is seen that the 

maximum disruption is 12 degrees for both unsaturated and saturated models. The 

settling time in both cases is around 6 to 7 s. In Figure 4.15, the torque input is increased 

to 200% of its rated value. It is seen that the maximum disruption is 21 degrees for both 

unsaturated and saturated models. The settling time in both cases is around 7 to 8 s. 
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Figure 4.15.100% over-excitation of DIT for 0.1 s. 
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Here, Figure 4.16 shows fault continues for 0.2 s. It is introduced at 0.1 s and 

cleared at 0.3 s. The level of fault is 100% loss in torque input. It is seen that the 

maximum disruption is 34 degrees for both unsaturated and saturated models. The 

settling time in both cases is around 8 to 9 s. In Figure 4.17 the fault is introduced at 0.1 s 

and cleared at 0.6 s. It is seen that the maximum disruption is 34 degrees for both 

unsaturated and saturated model with extra overshooting element. The settling time in 

both cases is approximately in the range of 9 to 10 s. In Figure 4.18, the fault is persistent 

for 1 s. It is seen that the maximum disruption is 37 degrees for both unsaturated and 

saturated models with extra overshooting element. The settling time in both cases is about 

9 to 10 s. 

From observation one can see that as the level of faults goes up or as the time 

duration of the fault persistence goes up the degree to which 8's maximum distortion 

occurrence increases. In the case of loss in torque, the overshoot is in one direction and, 

in the case of torque increase over its rated value, the overshoot is in the opposite 

direction. Another observation is as level of fault went up the settling time remained 

fairly constant but as the duration of fault went up the settling time increased. 
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Figure 4.16.100% loss of DIT for 0.2 s. 
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Figure 4.17.100% loss of DIT for 0.5 s. 
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Figure 4.18.100% loss of DIT for 1 s. 

4.4.3 Short circuit (SC) 

In this section, the machine model is simulated under short circuit condition at the 

machine terminals. The operating condition under which the machine is run is specified 

in Table 4.2. The machine is simulated for both the saturated and unsaturated models and 

the results are shown in the same graph for comparison. In Figure 4.23, all the graphs for 

different time periods are put together for stability analysis. Observation tells us that 

taking saturation into account makes a difference in the results even though not very 

significant one. 

Figure 4.19 is for SC persistence for 0.075 s. It is introduced at 0.1 s and cleared 

at 0.175 s. It is seen that the maximum disruption is 39 degrees for both unsaturated and 

saturated model. The settling time in both cases is around 5 to 6 s. In Figure 4.20, SC is 

introduced at 0.1 s and cleared at 0.25 s. It is seen that the maximum disruption is 58 

degrees for both unsaturated and saturated models. The settling time in both cases is 

around 6 to 7 s. 

Figure 4.21 shows the results for the case where the SC is introduced at 0.1 s and 

cleared at 0.312 s. It is seen that the maximum disruption is 126 degrees for both 

unsaturated and saturated models. The settling time in both cases is around 6 to 7 s. At 

0.212 s the machine becomes marginally stable. In Figure 4.22, the SC is introduced at 

0.1 s and cleared at 0.313 s. The machine becomes unstable for both unsaturated and 

saturated models. 

In Figure 4.23 all the graphs for different fault durations for saturated cases are 

compared. It can be seen that at time 0.212 s the system is marginally unstable and at 

time 0.213 s the system becomes unstable. 
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Figure 4.19. SC for 0.075 s. 
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Figure 4.22. SC for 0.213sec (Unstable). 
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5 NEURAL NETWORK CHARACTERIZATION 

5.1 Introduction 

A function approximation problem asks to select a function among a well-defined 

class that closely matches ("approximates") a target function in a task-specific way. In 

mathematics, approximation theory is concerned with how functions can best be 

approximated with simpler functions, and with quantitatively characterizing the errors 

introduced thereby. What is meant by best and simpler will depend on the application. 

5.2 Overview of Function Approximation 

A closely related topic is the approximation of functions by generalized Fourier 

series, that is, approximations based upon summation of a series of terms based upon 

orthogonal polynomials. 

One problem of particular interest is that of approximating a function in a 

computer mathematical library, using operations that can be performed on the computer 

or calculator (e.g. addition and multiplication), such that the result is as close to the actual 

function as possible. This is typically done with polynomial or rational (ratio of 

polynomials) approximations [1], [2]. 

The objective is to make the approximation as close as possible to the actual 

function, typically with accuracy close to that of the underlying computer's floating point 

arithmetic. This is accomplished by using a polynomial of high degree, and/or narrowing 

the domain over which the polynomial has to approximate the function. Narrowing the 

domain can often be done though the use of various addition or scaling formulas for the 

function is being approximated. Modern mathematical libraries often reduce the domain 

into many tiny segments and use a low-degree polynomial for each segment [2]-[5]. 

Once the domain and degree of the polynomial are chosen, the polynomial itself is 

chosen in such a way as to minimize the worst-case error. That is, the goal is to minimize 

the maximum value of |P(x) — f(x)\, where P(x) is the approximating polynomial and 

J[x) is the actual function. For well-behaved functions, the optimum Mh degree 

polynomial will lead to an error curve that oscillates back and forth between + e and s a 
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total of N+2 times, giving a worst-case error of s. (It is possible to make contrived 

functions f(x) for which this property does not hold, but in practice it is generally true.) 

Example graphs, for N=4, showing the error in approximating log(x) and exp(x), are 

shown below [3], [6]. Of different kinds of function approximation problems two major 

classes worth mentioning: known target function approximation and unknown target 

function approximation. 

5.2.1 Known target function approximation 

Known target functions approximation theory is the branch of numerical analysis 

that investigates how certain known functions (for example, special functions) can be 

approximated by a specific class of functions (for example, polynomials or rational 

functions) that often have desirable properties (inexpensive computation, continuity, 

integral and limit values, etc.). 

5.2.2 Unknown target function approximation 

Second, the target function, call it g, may be unknown; instead of an explicit 

formula, only a set of points of the form (x, g(x)) is provided. Depending on the structure 

of the domain and co-domain of g, several techniques for approximating g may be 

applicable. For example, if g is an operation on the real numbers, techniques of 

interpolation, extrapolation, regression analysis, and curve fitting can be used [6]-[8]. 

(a) (b) 
Figure 5.1. Approximation in blue and actual signal in red (a) log(x) (b) exp(x). 
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In this research work, function approximation used falls in the class of known 

target function approximation paradigm. Synchronous machine model can be realized by 

its input output relationship. For the mathematical model developed in chapter 2, 

simulation results were produced chapter 4. From the simulation results produced in 

chapter 4 synchronous machine can be realized by its input output relationship. This input 

output relationship is used in this research work to approximate the synchronous machine 

model using neural network. The implementation details are described in the next section. 

5.3 Implementation of Function Approximation 

5.3.1 Neural network 

A feedforward neural network is used to approximate the input output relationship 

of the synchronous machine transient conditions. A Lavenberg-Marquardt 

backpropagation algorithm is used which is a special type of backprobagation algorithm. 

The Levenberg-Marquardt algorithm was designed to approach second-order training 

speed without having to compute the Hessian matrix. The performance function has the 

form of a sum of squares as is typical in training feedforward networks. It is a gradient 

descent algorithm. The network basics are described in Table 5.1. 

5.3.2 Neural network specifications 

Choosing an appropriate network with appropriate size, algorithm for training a 

dataset can sometimes be tricky. It depends on complexity of data pattern, size of data 

set, accuracy and speed one want to train a network, at times experience of the trainer or 

even intuition. Depending on size of dataset and complexity of the problem a neural 

network with a single input, single output and single hidden layer is used. 

The number of neuron in the input and output layer is 1, and the number of neuron 

in the hidden layer is 50. The size of the data points is 5000. Of this dataset 70% of the 

dataset that is 3500 points were used as training data. Of the rest 15% of the data that is 

750 were used as validation data, which were used to validate how the network is 

performing while training the network using training dataset. Once the training was done 
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the rest 15% that is 750 data points were used to test the performance of the network. The 

network specifications are shown in Table 5.2. 

Table 5.1. Neural network. 

Algorithm 

Training 

Type 

Performance 

Data Division 

Backpropagation 

Lavenberg-Marquardt 

Gradient Descent 

Mean Squared Error (MSE) 

Random 

Table 5.2. Neural network specification. 

Number of Neuron (Input Layer) 

Number of Neuron (Output Layer) 

Number of Neuron (Hidden Layer) 

Number of Hidden Layers 

Sample Size 

Training Sample 

Validation Sample 

Testing Sample 

1 

1 

50 

1 

5000(100%) 

3500(70'?) 

750(15%) 

750(15%) 



5.3.3 Neural network training conditions 

An epoch in neural network is defined by one round of training using all the 

dataset once. After training the network for one epoch, the error function is used to 

calculate the error value once. Until the error value reaches a certain minimum threshold, 

the epochs are continued; that is the training process is carried on again and again. The 

error curve as the number of epochs increases are also known as performance curve or 

simply performance. The neural network training conditions are shown in Table 5.3. 

Table 5.3. Neural network training conditions. 

Epoch 

Time 

Initial Performance 

Final Performance 

Best Validation Performance 

Be t̂ Validation Performance Epoch 

Initial Gradient 

Final Gradient 

Best Gradient 

Best Gradient Epoch 
* 

Training MSE 

Validation MSE 

Testine MSE 

828 

0:19:41 

95.5 

1.31e-0~ 

1.4246e-00~ 

822 

1.0 

1.0076e-05 

1,0076e-05 

a2^ 

1.30986e-7 

1 42455e-7 

l.ll()54c-7 
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5.4 Simulation and Results 

5.4.1 Loss of excitation/field (LOF) 

In this section, the model approximated for machine model under loss of 

excitation or field. The machine is simulated for saturated model and the results are used 

to approximate the neural network to emulate the machine model. 

In Figure 5.2, the approximation is done for 100% LOF condition for fault being 

constant for 0.1 s. It can be seen from this figure that the approximation is quite accurate 

since the training dataset, the validation dataset and the testing dataset fits into the curve 

almost perfectly. Figure 5.3 shows the performance curve as it decreases with the number 

of epochs. The number of epoch needed for training is 828 and the best validation 

performance is at 1.4246xl0~7 at 822 epochs. Figure 5.4 shows the gradient, change in 

gradient and validation check performance throughout the training process. Figure 5.5, 

the approximation is done for 25% LOF condition (field excitation reduced to 25% of the 

rated value) for fault being persistent for 0.1 s. The Figure shows successful learning. 

Figure 5.6 shows the performance curve as it decreases with the number of epochs. The 

number of epoch needed for training is 772 and the best validation performance is at 

7.782xl0"9at 766 epochs. 

In Figure 5.7, the approximation is done for 50% LOF condition (field excitation 

reduced to 50% of the rated value) for fault being persistent for 0.1 s. Approximation is 

quite precise as can be seen from the Figure. Figure 5.8 shows the performance curve as 

it decreases with the number of epochs. The number of epoch needed for training is 198 

and the best validation performance is at 1.4246xl0"8 at 192 epochs. In Figure 5.9, the 

approximation is done for 75% LOF condition for fault being persistent for 0.1 s. It can 

be seen from this figure that the accuracy of the approximation is fairly perfect. Figure 

5.10 shows the performance curve as it decreases with the number of epochs. The number 

of epoch needed for training is 235 and the best validation performance is at 1.5725xl0~7 

at 229 epochs. 
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Figure 5.2. Approximation for 100% LOF (0.1 s). 

Best Validation Performance is 1.4246e-007 at epoch 822 

300 400 500 BOO 
828 Epochs 

Figure 5.3. Error curve for 100% LOF (0.1 s). 
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Gradient = 1.0076e-005, at epoch 828 

10 

- 5h 

CHI 

Mu = le-007, at epoch 828 

Validation Checks = 6, at epoch 828 

US 200 
828 Epochs 

Figure 5.4. Performance graph for 100% LOF (0.1 s). 
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Figure 5.5. Approximation for 25% LOF (0.1 s). 
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Best Validation Pwformance is 7.782e-009 at epoch 766 
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Figure 5.6. Error curve for 25% LOF (0.1 s). 

Figure 5.7. Approximation for 50% LOF (0.1 s). 
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Best Validation Performance is 5 5282*406 at epoch 192 

475 

Figure 5.8. Error curve for 50% LOF (0.1 si 
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Figure 5.9. Approximation for 75% LOF (0.1 s). 
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Best Validation Performance is 1 .5725e-007 at epoch 229 

L 100 150 
235 Epochs 

200 

Figure 5.10. Error curve for 75% LOF (0.1 s). 

In Figure 5.11, the approximation is done for 100% LOF condition (zero excitation) 

for fault being persistent for 0.2 s. It can be seen from this figure that the approximation 

is quite accurate since the training dataset, the validation dataset and the testing dataset 

fits into the curve almost perfectly. Figure 5.12 shows the performance curve as it 

decreases with the number of epochs. The number of epoch needed for training is 1000 

and the best validation performance is at 3.1754xl0"7 at 1000 epochs. In Figure 5.13, the 

fault stays for 0.5 s. Figure 5.14 shows the performance curve as it decreases with the 

number of epochs. The number of epoch needed for training is 366 and the best 

validation performance is at 1.8487xl0~5 at 360 epochs. In Figure 5.15, the fault is 

persistent for 1 s. It is shown in the figure that, here as well the curve fitting is almost 

perfect Figure 5.16 shows the performance curve as it decreases with the number of 

epochs. The number of epoch needed for training is 1000 and the best validation 

performance is at 3.6538xl0"6 at 1000 epochs. 

83 



r U K f M f l r i 

0 

+ 
0 

+ 
0 

+ 

Training Tarirts 

Tramng Outputs 

Validation Targets 

Validation Outputs 

Test Targets 

Test Outputs 

-Enors 

-F» 

A 
10 

Figure 5.11. Approximation for 100% LOF (0.2 s). 

Best Validation Performance is 3.17548-007 at apod* 1000 
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Figure 5.12. Error curve for 100% LOF (0.2 s). 



Figure 5.13. Approximation for 100% LOF (0.5 s). 

Best Validation Performance is 1.8487e-005 at epoch 360 

150 200 
366 Epochs 

Figure 5.14. Error curve for 100% LOF (0.5 s). 
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Figure 5.15. Approximation for 100% LOF (1 s). 

Best Validation Performance is 3.6538e-006 at epoch 1000 
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Figure 5.16. Error curve for 100% LOF (1 s). 



5.4.2 Disturbance in torque (DIT) 

In this section, the machine model approximated for machine model under 

disturbance in torque. The machine is simulated for saturated model and the results are 

used to approximate the neural network to emulate the machine model. 

In Figure 5.17, the approximation is done for 50% loss in torque input for fault 

being persistent for 0.1 s. It can be seen from this figure that the approximation is quite 

accurate since the training dataset, the validation dataset and the testing dataset fits into 

the curve almost perfectly. Figure 5.18 shows the performance curve as it decreases with 

the number of epochs. The number of epoch needed for training is 1000 and the best 

validation performance is at 1.0897X10"4 at 1000 epochs. In Figure 5.19, the fault is 

persistent for 0.1 s. It can be seen from the Figure that the approximation is quite accurate 

in this case as well. Figure 5.20 shows the performance curve as it decreases with the 

number of epochs. The number of epoch needed for training is 1000 and the best 

validation performance is at 1.9652xl0"3 at 1000 epochs. 

In Figure 5.21, the approximation is done for 150% of rated torque condition for 

fault being persistent for 0.1 s. Figure 5.22 shows the performance curve as it decreases 

with the number of epochs. The number of epoch needed for training is 1000 and the best 

validation performance is at 9.7553x10 5 at 1000 epochs. In Figure 5.23, the torque is 

doubled for 0.1 s. Figure 5.24 shows the performance curve as it decreases with the 

number of epochs. The number of epoch needed for training is 928 and the best 

validation performance is at 3.0472xl0~6 at 928 epochs. 
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Figure 5.17. Approximation for 50% loss in DIT (0.1 s). 

Best Validation Performance is 0.00010897 at epoch 1000 

« 
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Figure 5.18. Error curve for 50% loss in DIT (0.1 s). 
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Figure 5.19. Approximation for 100% loss in DIT (0.1 s). 

Best Validation Perfbrmance is 0.0019652 at epoch 1000 
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Figure 5.20. Error curve for 100% loss in DIT (0.1 s). 
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Figure 5.21. Approximation for 50% over-excitation in DIT (0.1 s). 
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Figure 5.22. Error curve for 50% over-excitation in DIT (0.1 s). 

90 



66 • 

60 

55 

3* 

20. 
05 

Function Fit 
, ^ i M 

15 2 5 
Input 

35 

0 

+ 
0 

+ 
0 

+ 

Training Targets 

Training Outputs 

Validation Targets 

Validation Outputs 

Test Targets 

Test Outputs 

-Errors 

-Fit 

,1 

45 

Figure 5.23. Approximation for 100% over-evcitation in DIT (0.1 s). 

Best Validation Performance is 3 0472e-005 at epoch 926 
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Figure 5.24. Error curve for 100% over-excitation in DIT (0.1 s). 



In Figure 5.25, the approximation is done for 100% loss in input torque and it 

stays for 0.2 s. It can be seen from the Figure that the approximation is quite accurate 

since the training dataset, the validation dataset and the testing dataset fits into the curve 

almost perfectly. Figure 5.26 shows the performance curve as it decreases with the 

number of epochs. The number of epoch needed for training is 611 and the best 

validation performance is at 1.3398xl0"5 at 605 epochs. In Figure 5.27, the approximation 

is done for 100% loss in input torque condition for fault being persistent for 0.5 s. Figure 

5.28 shows the performance curve as it decreases with the number of epochs. The number 

of epoch needed for training is 270 and the best validation performance is at 1.7829xl0"3 

at 264 epochs. In Figure 5.29. the approximation is done for 100% loss in torque for 1 s. 

Figure 5.30 shows the performance curve as it decreases with the number of epochs. The 

number of epoch needed for training is 1000 and the best validation performance is at 

1.8159xl0"3 at 1000 epochs. 
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Figure 5.25. Approximation for 100% loss in torque (0.2 s). 
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Best Validation Performance is 0.0013348 at epoch 605 

611 Epochs 

Figure 5.26. Error curve for 100% loss in torque (0.2 s). 

Figure 5.27. Approximation for 100% loss in torque (0.5 s). 
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Best Validation Pedbimance is 0.0017839 at epoch 264 

Figure 5.28. Error curve for 100% loss in torque (0.5 s). 

Figure 5.29. Approximation for 100% loss in torque (1 s). 
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Figure 5.30. Error curve for 100% loss in torque (1 s). 

5.4.3 Short circuit (SC) 

In this section, the machine model approximated for machine model under short 

circuit. The machine is simulated for saturated model and the results are used to 

approximate the neural network to emulate the machine model. 

In Figure 5.31, the approximation is done for short circuit condition for fault being 

persistent for 0.075 s. It can be seen from the Figure that the approximation is quite 

accurate. Figure 5.32 shows the performance curve as it decreases with the number of 

epochs. The number of epoch needed for training is 503 and the best validation 

performance is at 9.5679x10 3 at 497 epochs. In Figure 5.33, the approximation is done 

for short circuit condition for fault being persistent for 0.15 s. Figure 5.34 shows the 

performance curve as it decreases with the number of epochs. The number of epoch 

needed for training is 1000 and the best validation performance is at 3.138xlO"3 at 1000 

epochs. 
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In Figure 5.35, the approximation is done for short circuit condition for fault 

being persistent for 0.212 s. It can be seen from this figure that the approximation is very 

precise. Figure 5.36 shows the performance curve as it decreases with the number of 

epochs. The number of epoch needed for training is 678 and the best validation 

performance is at 1.3769xl0"2at 678 epochs. 
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Figure 5.31. Approximation for SC for 0.075 s. 
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Best Validation Performance is 0.0095679 at epoch 497 
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Figure 5.32. Error curve for SC for 0.075 s. 
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Figure 5.33. Approximation for SC for 0.150 s. 
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Figure 5.34. Error curve for SC for 0.150 s. 

Figure 5.35. Approximation for SC for 0.212 s (Marginally Stable). 
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Best Validation Performance is 0.013769 at epoch 678 

100 200 300 400 500 600 
678 Epochs 

Figure 5.36. Error curve for SC for 0.212 s (Marginally Stable). 

5.5 References 

[1] A J. Moody and C. J. Darken, "Fast learning in networks of locally tuned 

processing units," Neural Computation, 1989. 

[2] T. Poggio and F Girosi, "Networks for approximation and learning," Proc. 

IEEE, vol. 78(9), pp. 1484-1487, 1990. 

[3] R.D. Jones, Y.C. Lee, C.W. Barnes, G.W. Flake, K. Lee, P.S. Lewis, and S. 

Qian, "Function approximation and time series prediction with neural 

networks," Proceedings of the International Joint Conference on Neural 

Networks, June 17-21, p. 1-649, 1990. 

[4] M.D. Buhmann and M.J. Ablowitz, Radial Basis Functions : Theory and 

Implementations, Cambridge University, 2003. 

[5] P.V. Yee, and S. Haykin, Regularized Radial Basis Function Networks: Theory 

and Applications, John Wiley, 2001. 

[6] J.R. Davies, S.V Coggeshall, R.D. Jones, and D. Schutzer, Intelligent Security 

99 



Systems. Artificial Intelligence in the Capital Markets. Chicago, 1995. 

[7] S. Haykin, Neural Networks: A Comprehensive Foundation (2nd edition), Upper 

Saddle River. NJ: Prentice Hall, 1999. 

[8] S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning 

algorithm for radial basis function networks". IEEE Transactions on Neural 

Networks, vol 2, no. 2 March 1991. 

100 



6 NEURAL NETWORK CLUSTERING 

6.1 Introduction 

Clustering in general terms means grouping of the same or similar elements 

gathered or occurring closely together. It can be considered as a subtopic of 

computational data processing. 

In data processing, data are defined as numbers or characters that represent 

measurements from observable phenomena. A single datum is a single measurement from 

observable phenomena. Measured information is then algorithmically derived and/or 

logically deduced and/or statistically calculated from multiple data. Information is 

defined as either a meaningful answer to a query or a meaningful stimulus that can 

cascade into further queries [1]. 

A neural network based clustering can be considered as an algorithm exploring 

the similarity between patterns and places where similar patterns are put in clusters. Best 

known applications include data compression and data mining. 

6.2 Overview of Clustering 

Data clustering deals with the problem of classifying a set of N objects into 

groups so that objects within the same group are more similar than objects belonging to 

different groups. Each object is identified by a number m of measurable features, 

consequently, Ith object can be represented as a point ix.IRm ,i=l, 2,..., N. Data clustering 

aims at identifying clusters as more densely populated regions in the space Rm [2]-[4]. 

This is a traditional problem of unsupervised pattern recognition. A lot of 

approaches to solve this problem were suggested. The general strategy is as follows: first, 

somehow or other one finds the optimal partition of the points into K classes, and then 

changes the value of the parameter K from N to \. Here, the main interest is the way how 

small classes (relating to big values of K) are combined into bigger classes (relating to 

small values of K). These transformations allow us to get some idea about the structure of 

empirical data. They indicate mutual location of compact groups of points in many-
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dimensional space. They also indicate which of these groups are close and which are far 

from each other. Interpretation of the obtained classes in substantial terms, and the details 

of their mutual location allow the researcher to construct meaningful models of the 

phenomenon under consideration [2]-[4]. 

Different methods of data clustering differ from each other by the way of finding 

of the optimal partition of the points into K classes. It is literally to say that almost all of 

them own the same feature: the result of partition into K classes depends on arbitrary 

chosen initial conditions, which have to be specified to start the partition procedure. 

Consequently, to obtain the optimal partition, it is necessary to repeat the 

procedure many times, each time starting from new initial conditions. Here the situation 

is close to the one, which we face when founding the global minimum of multiextremal 

functional. The problems of such a kind exhibit a tendency to become AfP-complete. This 

means that for large N a local optimal partition can be found. 

Thus, almost all clustering methods based on the local partitioning of objects can 

be distributed into K classes. Among them there is the well-known and most simple K-

means approach, mathematically advanced Super-Paramagnetic Clustering and 

Maximum Likelihood Clustering, popular in Russia the FOREL-type algorithms and 

prevailing in the West different variants of Hierarchical Clustering [5]. 

The general scheme of the FOREL-algorithm is as follows: 

1. Specify a value T that is the radius of ra-dimensional sphere, which in 

what follows is used as a threshold for interaction radius between points; 

2. Place the center of the sphere with the radius T at an arbitrary input point: 

3. Find coordinates of the center of gravity of points that find themselves 

inside the sphere; 

4. Transfer the center of the sphere in the center of gravity and go back to 

item 3: 

5. Far as when going from one to the next iterating the sphere remains in the 

same place, we suppose that the points inside it constitute a class; we 

move them away from the set and go back to the item 2. 
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It is clear that after finite number of steps we obtain a partition of the points into 

some classes. In each class the distances between points are less than 2T. However, the 

result of partition depends on the starting point, where the center of the sphere is situated. 

Since the step 2 is repeated again and again. 

The Hierarchical Clustering is based on a very simple idea too. Given some 

partition into K classes, it merges the two closest classes into a single one. So, starting 

from the partition into K = N classes, the algorithm generates a sequence of partitions as 

K varies from N to 1. The sequence of partitions and their hierarchy can be represented 

by a dendrogram [4]. 

In this research work, neural network clustering is used to distinguish or filter 

different kinds of fault in the case of multiple or mixture in faults. In a synchronous 

machine there are different kinds of faults. In certain cases more than one fault can occur 

at the same time. In that case synchronous machines behavior is in response of multiple 

faults. The output of the machine load angle 5 is in response to multiple faults; hence, the 

behavior of 8 can become apparently gibberish as a mixture of more than one response 

signal. Using numerical simulation or by human observation it is almost impossible to 

make any sense out of it. 

Neural network cluster in this case comes handy in clustering similar kinds of data 

patterns together to distinguish between different kinds of faults. Once clustered, the 

pattern can tell us how many signals has been mixed, that is the number of faults 

overlapping each other and by looking at the clustering weight density pattern map one 

can even identify the type of faults. 

6.3 Implementation of Clustering 

6.3.1 Neural network 

In this research work a self-organizing network is implemented for clustering the 

mixed dataset. Self-organizing in networks can learn to detect regularities and 

correlations in their input and adapt their future responses to that input accordingly. A 

self-organizing feature maps (SOFMs) algorithm is used. SOFMs learn to classify input 

vectors according to how they are grouped in the input space. They differ from 
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competitive layers in that neighboring neurons in the self-organizing map learn to 

recognize neighboring sections of the input space. Thus, self-organizing maps learn both 

the distribution (as do competitive layers) and topology of the input vectors they are 

trained on. Batch training is used. The batch training algorithm is generally much faster 

than the incremental algorithm, and it is the default algorithm for SOFM training. 

6.3.2 Neural network specifications 

Choosing an appropriate network with appropriate size, algorithm for training a 

data set can sometimes be tricky. It depends on complexity of data pattern, size of data 

set, accuracy and speed one want to train a network, at times experience of the trainer or 

even intuition. The SOM network in the clustering process has 9 inputs with 20 hidden 

layers with 20 neurons in each layer. So the weight is mapped in a 20 by 20 weight space. 

It has to learn 3 patterns with 3 samples in each pattern with 10001 elements in each 

sample to learn. 

Table 6.1. Neural network 

Algorithm Self-organizing network 

Training Self-organizing feature maps (SOFM) 

Type Batch training algorithm 

Table 6.2. Neural network specification 

Number of Neuron (Input Layer) 

Number of Neuron (Hidden Layer) 

Number of Hidden Layers 

Number of pattern 

Number of samples in each pattern 

Number of sample 5 

Sample Size 

9 

20 

20 

3 

3 

9 

10001 
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Table 6.3. Neural network specification 

Epoch 200 

_ _ _ oT2(h37~ 

6.3.3 Neural network training conditions 

An epoch in neural network is defined by one round of training using all the data 

set once. In the case of clustering the training process is carried on again and again until 

the predefined number of epochs is completed. In this case unlike other feed foreward 

neural network there is no performance curve for this specific algorithm. The neural 

network training conditions for the first simulation are shown in Table 6.3. 

6.4 Simulation and Results 

In this section, clustering of mixed signals is presented. The weight map consists 

of a space of 20 by 20 neurons; that is 400 neurons in total. In the 2D space of 20 by 20 

the 9 mixed signals of three distinct patterns are mapped. In Figure 6.1, the mapping for 9 

samples are shown in SOFM space. 3 samples from each LOF, DIT and SC are chosen. 

As it can be seen from the SOFM map in Figure 1 that inputs 2, 3 & 7 has similar weight 

patterns. On the other hand inputs 1, 5 & 6 has similar weight patterns, and inputs 4, 8 & 

9 has similar weight patterns. The first one corresponds to LOF, the second one to DIT 

and the third one to SC. 

SOM neighboring weight distance graph in Figure 6.2 shows three distinct areas -

one in the top right, one diagonally in the middle and another in bottom-left each 

corresponding to each of the patterns. SOM weight positions in Figure 6.3 shows all the 

weights in their density positioning. This shows visualization of the weight in multiple 

dimensions. Figure 6.4 shows the total number of hits in the weight by the samples. This 

shows us the weight density in the weight space. 
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Figure 6.1. SOM weight plane. 
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Figure 6.2. SOM neighbor weight distances. 

Figure 6.3. SOM weight positions. 
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Figure 6.4. SOM weight hits. 
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7 NEURAL NETWORK PATTERN RECOGNITION 

7.1 Introduction 

Pattern recognition means classification of data (patterns) based either on a priori 

knowledge or on statistical information extracted from the patterns. The patterns to be 

classified are usually groups of measurements or observations, defining points in an 

appropriate multidimensional space. In the case of pattern recognition the pattern is not 

rigidly specific distinguishing it from pattern matching [1], [2]. 

Pattern recognition is a sub-topic of machine learning. The idea can be described 

as taking in raw data and taking an action based on the category of the data. Most 

research in pattern recognition is associated with methods for supervised learning and 

unsupervised learning. 

7.2 Overview of Pattern Recognition 

One of the prime concerns of a pattern recognition system is to identify the data 

pattern which is to be learned. This is where observations to be classified or described, a 

feature extraction mechanism that computes numeric or symbolic information from the 

observations, and a classification or description scheme that does the actual job of 

classifying or describing observations, relying on the extracted features. 

The classification or description scheme is usually based on the availability of a 

set of patterns that have already been classified or described. This set of patterns is 

termed the training set, and the resulting learning strategy is characterized as supervised 

learning. Learning can also be unsupervised, in the sense that the system is not given an a 

priori labeling of patterns, instead it itself establishes the classes based on the statistical 

regularities of the patterns. 

The classification or description scheme usually uses one of the following 

approaches: statistical (or decision theoretic) or syntactic (or structural). Statistical 

pattern recognition is based on statistical characterizations of patterns, assuming that the 

patterns are generated by a probabilistic system. Syntactical or structural pattern 
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recognition is based on the structural interrelationships of features. A wide range of 

algorithms can be applied for pattern recognition, from very simple Bayesian classifiers 

to much more powerful neural networks [3], [4]. 

An intriguing problem in pattern recognition is the relationship between the 

problem to be solved implied by the data to be classified and the performance of various 

pattern recognition algorithms also known as classifiers. Van der Walt and Barnard 

investigated very specific artificial data sets to determine conditions under which certain 

classifiers perform better and worse than others. 

Holographic associative memory is another type of pattern matching scheme 

where a target small patterns can be searched from a large set of learned patterns based 

on cognitive meta-weight [5]. Pattern recognition is studied in many fields, including 

psychology, ethnology, cognitive science and computer science. Within medical science, 

pattern recognition is the basis for computer-aided diagnosis (CAD) systems. CAD 

describes a procedure that supports the doctor's interpretations and findings. Typical 

applications are automatic speech recognition, classification of text into several 

categories e.g. spam/non-spam email messages, the automatic recognition of handwritten 

postal codes on postal envelopes, or the automatic recognition of images of human faces. 

In this research work, pattern recognition has been used to distinguish between 

different kinds of faults. A synchronous machine operating under a grid can be subjected 

to different kinds of faults. In this research work three different kinds of faults being 

discussed. They are loss of field, disturbance in torque and short circuit condition. These 

are the most common types of faults for synchronous machines. Any of these faults can 

be of different levels and different time durations. 

When a fault occurs in synchronous machine it can be realized by looking at the 

way the load angle 8 is behaving. Under different kinds of faults, 5 shows different 

patterns of behavior. Neural network pattern recognition is used in this research work to 

distinguish between different kinds of faults. As any of these faults can be of different 

levels or time duration, once the type of fault is detected synchronous machine pattern 

recognition is used to identify the level and time duration of the fault. 
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7.3 Implementation of Pattern Recognition 

7.3.1 Pattern recognition between loss of excitation, disturbance in torque and 

short circuit 

In this section, a network was designed to distinguish between loss of field, 

disturbance in torque and short circuit. This is done by just looking at the pattern of the 

load angle 8. Details of the implementation are depicted in the next sections. 

7.3.1.1 Neural network 

A feedforward neural network is used to approximate the input output relationship 

of the synchronous machine transient conditions. A Scaled Conjugate Gradient 

backpropagation algorithm is used which is an especial type of backprobagation 

algorithm. Conjugate gradient algorithms require a line search at each iteration. This line 

search is computationally expensive, because it requires that the network response to all 

training inputs be computed several times for each search. 

The scaled conjugate gradient algorithm (SCG), developed by Moller, and was 

designed to avoid the time-consuming line search. This algorithm combines the model-

trust region approach (used in the Levenberg-Marquardt algorithm. The routine can 

require more iteration to converge than the other conjugate gradient algorithms, but the 

number of computations in each iteration is significantly reduced because no line search 

is performed. The network basics are described in Table 7.1. 

Table 7.1. Neural network. 

Algorithm 

Training 

Type 

Performance 

Data Division 

Backpropagation 

Scaled Conjugate Gradient 

Gradient Descent 

Mean Squared Error <MSE) 

Random 

112 



Table 7.2. Neural network specifications. 

Number of Neuron (Input Layer) 

Number of Neuron (Output Layer) 

Number of Neuron 

Number of Hidden 

Sample Size 

Training Sample 

Validation Sample 

Testing Sample 

(Hidden Layer) 

Layers 

5001 

3 

200 

1 

300(100%) 

270(90%) 

15(5%) 

15(5%) 

7.3.1.2 Neural network specifications 

Choosing an appropriate network with appropriate size, algorithm for training a 

dataset can sometimes be tricky. It depends on complexity of data pattern, size of dataset; 

accuracy and speed one want to train a network, at times experience of the trainer or even 

intuition. Depending on size of dataset and complexity of the problem a neural network 

with a single input, single output and single hidden layer is used. 

The number of neuron in the input is 5001, output layer is 3 and the number of 

neuron in the hidden layer is 200. The size of the data points is 300. Of this dataset 90% 

of the dataset that is 270 points were used as training data. Of the rest 5% of the data that 

is 15 were used as validation data, which were used to validate how the network is 

performing while training the network using training dataset. Once the training was done 

the rest 5% that is 15 data points were used to test the performance of the network. The 

network specifications are shown in Table 7.2. 

7.3.1.3 Neural network training conditions 

An epoch in neural network is defined by one round of training using all the 

dataset once. After training the network for one epoch, the error function is used to 

calculate the error value once. Until the error value reaches a certain minimum threshold, 
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the epochs are continued; that is the training process is carried on again and again. The 

error curves as the number of epoch's increases are also known as performance curve or 

simply performance. The neural network training conditions for the first simulation are 

shown in Table 7.3. 

Table 7.3. Neural network training conditions. 

Epoch 

Time 

Initial Performance 

Final Performance 

Best Validation Performance 

Best Validation Performance Epoch 

Initial Gradient 

Final Gradient 

Best Gradient 

Best Gradient Epoch 

Training MSE 

Validation MSE 

Testing MSE 

71 

0:08:34 

0.464 

1 2155e-08 

1.2155e-08 

71 

1.0 

9.7096e-7 

9.7096e-7 

71 

1.21546e-7 

5.66630e-9 

1.11054e-7 
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7.3.2 Pattern recognition between 20%, 40%, 60%. 80% & 100% loss of excitation 

In this section, a network was designed to distinguish between different levels of 

loss of field. Five different patterns are defined. First pattern is between 0% and 20% 

LOF. second pattern is between 20% and 40% LOF. third pattern is between 40% and 

60% LOF. fourth pattern is between 60% and 80% LOF and the fifth pattern is between 

80% and 100% LOF This is done by just looking at the pattern of the load angle. Details 

of the implementation are depicted in the next sections. 

7.3.2.1 Neural network 

A feedforward neural network is used to approximate the input output 

relationship. A Scaled Conjugate Gradient backpropagation algorithm is used The 

network basics are described in Table 7.4. 

7.3.2.2 Neural network specifications 

Depending on size of dataset and complexity of the problem a neural network 

with a single input, single output and single hidden layer is used. The number of neuron 

in the input 5001. the output layer is 5 and the number of neuron in the hidden layer is 

200. The size of the data points is 100. Of this dataset 90% of the dataset that is 90 points 

were used as training data. Of the rest 5% of the data that is 5 were used as validation 

data, which were used to validate how the network is performing while training the 

network using training dataset. Once the training was done the rest 5% that is 5 data 

points were used to test the performance of the network. The network specifications are 

shown in Table 7.5 and the training conditions for the simulation are shown in Table 7.6. 

Table 7.4. Neural network. 

Algorithm 

Training 

Type 

Performance 

Data Division 

Backpropagation 

Scaled Conjugate Gradient 

Gradient Descent 

Mean Squared Error (MSE) 

Random 
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Table 7.5. Neural network specifications. 

Number of Neuron (Input Layer) 5001 

Number of Neuron (Output Layer) 

Number of Neuron (Hidden Layer) 

Number of Hidden Layers 

Sample Size 

Training Sample 

Validation Sample 

Testing Sample 

5 

200 

1 

100(100%) 

90(90%) 

5(5%) 

5 (5%) 

Table 7.6. Neural network training conditions. 

Epoch 

Time 

Initial Performance 

Final Performance 

Best Validation Performance 

Best Validation Performance Epoch 

Initial Gradient 

Final Gradient 

Best Gradient 

Best Gradient Epoch 

Training MSE 

Validation MSE 

Testing MSE 

151 

0:11:04 

0.410 

0.00898 

0.0012871 

145 

1.0 

0.0129 

0.012934 

151 

8.97618e-3 

1.28705e-3 

1.02214e-2 



7.3.3 Pattern recognition between 20 %, 40 %, 60 %, 80 % & 100 % loss in torque 

In this section, a network was designed to distinguish between different levels of 

disturbance in torque. Five different patterns are defined. First pattern is between 0% and 

20% DIT, second pattern is between 20% and 40% DIT, third pattern is between 40% 

and 60% DIT, fourth pattern is between 60% and 80% DIT and the fifth pattern is 

between 80% and 100% DIT. This is done by just looking at the pattern of the load angle. 

Details of the implementation are depicted in the next sections. 

7.3.3.1 Neural network 

A feedforward neural network is used to approximate the input output 

relationship. A Scaled Conjugate Gradient backpropagation algorithm is used. The 

network basics are described in Table 7.7 

7.3.3.2 Neural network specifications 

Depending on size of dataset and complexity of the problem a neural network 

with a single input, single output and single hidden layer is used. The number of neuron 

in the input 5001, the output layer is 5 and the number of neuron in the hidden layer is 

300. The size of the data points is 100. Of this dataset 90% of the dataset that is 90 points 

were used as training data. Of the rest 5% of the data that is 5 were used as validation 

data, which were used to validate how the network is performing while training the 

network using training dataset. Once the training was done the rest 5% that is 5 data 

points were used to test the performance of the network. The network specifications are 

shown in Table 7.8 and the training conditions for the simulation are shown in Table 7.9. 

Table 7.7. Neural network. 

Algorithm 

Training 

Type 

Performance 

Data Dhision 

Backpropagation 

Scaled Conjugate Gradient 

Gradient Descent 

Mean Squared Error (MSE) 

Random 

117 



Table 7.8. Neural network specifications. 

Number of Neuron (Input Layer) 

Number of Neuron (Output Layer) 

Number of Neuron (Hidden Layer) 

Number of Hidden Layers 

Sample Size 

Training Sample 

Validation Sample 

Testing Sample 

5001 

5 

300 

1 

100(100%) 

90 (90%) 

5 (5%) 

S(5%) 

Table 7.9. Neural network training conditions. 

Epoch 

Time 

Initial Performance 

Final Performance 

Best Validation Performance 

Best Validation Performance Epoch 

Initial Gradient 

Final Gradient 

Best Gradient 

Best Gradient Epoch 

Training MSE 

Validation MSE 

Testing MSE 

93 

0:06:49 

0.253 

1.724 le-9 

1.7241e-9 

93 

1.0 

9.1239e-7 

9.1239e-7 

93 

3.01629e-8 

1.7407e-9 

3.02911 e-2 



7.3.4 Pattern recognition between 0.05 s, 0.10 s, 0.15 s, 0.20 s & 0.212 s SC 

In this section, a network was designed to distinguish between different durations 

of short circuit. Five different patterns are defined. First pattern is between 0.05 s and 

0.05 s of SC, second pattern is between 0.05 s and 0.05 s of SC, third pattern is between 

0.05 s and 0.05 s of SC, fourth pattern is between 0.05 s and 0.05 s of SC, and the fifth 

pattern is between 0.05 s and 0.05 s of SC. This is done by just looking at the pattern of 

the load angle. Details of the implementation are depicted in the next sections. 

7.3.4.1 Neural network 

A feedforward neural network is used to approximate the input output 

relationship. A Scaled Conjugate Gradient backpropagation algorithm is used. The 

network basics are described in Table 7.10. 

7.3.4.2 Neural network specifications 

Depending on size of dataset and complexity of the problem a neural network 

with a single input, single output and single hidden layer is used. The number of neuron 

in the input 5001, the output layer is 5 and the number of neuron in the hidden layer is 

300. The size of the data points is 100. Of this dataset 90% of the dataset that is 90 points 

were used as training data. Of the rest 5% of the data that is 5 were used as validation 

data, which were used to validate how the network is performing while training the 

network using training dataset. Once the training was done the rest 5% that is 5 data 

points were used to test the performance of the network. The network specifications are 

shown in Table 7.11 and training conditions for the simulation are shown in Table 7.12 

Table 7.10. Neural network. 

Algorithm Backpropagation 

Training Scaled Conjugate Gradient 

Type Gradient Descent 

Performance Mean Squared Error (MSE i 

Data Division Random 
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Table 7.11. Neural network specifications. 

Number of Neuron (Input Layer) 

Number of Neuron (Output Layer) 

Number of Neuron (Hidden Layer) 

Number of Hidden Layers 

Sample Size 

Training Sample 

Validation Sample 

Testing Sample 

5001 

5 

300 

1 

100(100%) 

90 (90%) 

5 (5%) 

5 (5%) 

Table 7.12. Neural network training conditions. 

Epoch 

Time 

Initial Performance 

Final Performance 

Best Validation Performance 

Best Validation Performance Epoch 

Initial Gradient 

Final Gradient 

Best Gradient 

Best Gradient Epoch 

Training MSE 

Validation MSE 

Testing MSE 

30 

0:03:11 

0.443 

0.0116 

0.0012871 

24 

1.0 

0.0751 

0.075124 

30 

0.0125 

0.0159 

0.0211 



7.4 Simulation and Results 

7.4.1 Pattern recognition between loss of excitation, disturbance in torque and 

short circuit 

In Figure 7.1, there are four matrixes representing the confusion of the neural 

network training process. In the matrixes red represents failure, green represents success, 

grey represents total samples in each pattern and the blue the cumulative total. The first 

one on the top-left is the training matrix, top-right is the validation, bottom-left is the test 

matrix and the bottom-right is the cumulative matrix. As there are three distinct patterns, 

diagonally there are three element; one for each pattern. 

From Figure 7.1 we can see that in all of the cases the network learned the 

patterns and identified them with 100% success rate. Figure 7.2 is the performance matrix 

where the best validation performance was recorded at epoch 71 with minimum error 
•7 

1.2155 xlO" Figure 7.3 shows the gradient and the validation check throughout the 

training process. The total number of epochs needed to train the network is 71. 
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Figure 7.1. Confusion matrix. 



Figure 7.2. Error curve. 

Gradient =i&7D96e-007. at epoch 71 

Figure 7.3. Performance graph. 
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7.4.2 Pattern recognition between 20 %, 40 %. 60 %, 80 % & 100 % loss of excitation 

In Figure 7.4, there are four matrixes representing the confutation of the neural 

network training process. In the matrixes red represents failure, green represents success, 

grey represents total samples in each pattern and the blue the cumulative total. The first 

one on the top-left is the training matrix, top-right is the validation, bottom-left is the test 

matrix and the bottom-right is the cumulative matrix. As there are five distinct patterns, 

diagonally there are five element; one for each pattern. 

From Figure 7.4, we can see that in all of the cases the network learned the 

patterns and identified them with 100% success rate. Figure 7.5 is the performance matrix 

where the best validation performance was recorded at epoch 145 with minimum error 

1.2871 xlO"7 Figure 7.6 shows the gradient and the validation check throughout the 

training process. The total number of epochs needed to train the network is 151. 
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Figure 7.4. Confusion matrix. 
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Figure 7.6. Performance graph. 
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7.4.3 Pattern recognition between 20%, 40%, 60%, 80% & 100% loss in torque 

In Figure 7.7, there are four matrixes representing the confutation of the neural 

network training process. In the matrixes red represents failure, green represents success, 

grey represents total samples in each pattern and the blue the cumulative total. The first 

one on the top-left is the training matrix, top-right is the validation, bottom-left is the test 

matrix and the bottom-right is the cumulative matrix. As there are five distinct patterns, 

diagonally there are five element; one for each pattern. 

From Figure 7.7 we can see that in all of the cases the network learned the 

patterns and identified them with 100% success rate. Figure 7.8 is the performance matrix 

where the best validation performance was recorded at epoch 24 with minimum error 

4.895 xlO"7 Figure 7.9 shows the gradient and the validation check throughout the 

training process. The total number of epochs needed to train the network is 30. 
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Figure 7.7. Confusion matrix. 
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7.4.4 Pattern recognition between 0.05 s, 0.10 s, 0.15 s, 0.20 s & 0.212 s SC 

In Figure 7.10, there are four matrixes representing the confutation of the neural 

network training process. In the matrixes red represents failure, green represents success, 

grey represents total samples in each pattern and the blue the cumulative total. The first 

one on the top-left is the training matrix, top-right is the validation, bottom-left is the test 

matrix and the bottom-right is the cumulative matrix. As there are five distinct patterns, 

diagonally there are five element; one for each pattern. 

From Figure 7.11 we can see that in all of the cases the network learned the 

patterns and identified them with 100% success rate. Figure 7.12 is the performance 

matrix where the best validation performance was recorded at epoch 93 with minimum 

error 1.7241 xlO"7 Figure 7.13 shows the gradient and the validation check throughout 

the training process. The total number of epochs needed to train the network is 93. 
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Figure 7.10. Confusion matrix. 
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Figure 7.12. Performance graph. 
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8 CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

In this research work, dynamic analysis of synchronous machine was done using 

neural network based characterization, clustering and pattern recognition. A synchronous 

machine model was simulated numerically based on a mathematical model. The 

developed model was scrutinized for transient conditions under different kind of faults -

LOF, DIT & SC. The model was also scrutinized for stability stipulations. Based on the 

model a neural network model of synchronous machine was developed using neural 

network based characterization. In the case of multiple or mixture of different kinds of 

faults, neural network based clustering was used to distinguish and identify specific fault 

conditions. In the case of unknown fault responses, neural network based pattern 

recognition was used to identify different kinds of faults and their fault level. In the end, 

the finding shows that: 

> Neural network based characterization can be used to simulate a synchronous 

machine model given its input output relationships. 

r The model can be trained to approximate different transient conditions; such 

as - loss of field, disturbance in torque and short circuit conditions. 

r Neural network clustering can be used to filter and distinguish between 

different kinds of faults by looking at the behaviour of the load angle. 

r By observing the weight distribution pattern of the SOM space similar kinds 

of faults can be identified. 

> Neural network pattern identification can be used to identify and specify 

unknown fault patterns. 

r- Once the faults are identified, neural network pattern identification can be 

used to recognize and indicate the level or time duration of the fault. 
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8.2 Future Work 

Neural network is a very powerful tool with immense potential and diverse 

strengths. Use of neural network in synchronous machine dynamic analysis can go a long 

way. Some of the potential research areas with possibilities are: 

r- Characterization, clustering and pattern recognition of synchronous machine 

using different network topologies and algorithm; their performance 

comparisons. 

> Neural network based future fault prediction of synchronous machine under 

different disturbances. 

r Neural network based protection system for synchronous machine stability 

control. 

> Online fault filtering of synchronous machine using neural network. 

r Neural fuzzy controller based protection system for synchronous machine 

stability control. 
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