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Abstract 

In two-tiered sensor networks, using higher-powered relay nodes as cluster heads has 

been shown to lead to further improvements in network performance. Placement of such 

relay nodes focuses on achieving specified coverage and connectivity requirements with 

as few relay nodes as possible. Existing placement strategies typically are unaware of 

energy dissipation due to routing and are not capable of optimizing the routing scheme 

and placement concurrently. 

We, in this thesis, propose an integrated integer linear program (ILP) formulation 

that determines the minimum number of relay nodes, along with their locations and a 

suitable communication strategy such that the network has a guaranteed lifetime as well 

as ensuring the pre-specified level of coverage (ks) and connectivity (kr). We also present 

an intersection based approach for creating the initial set of potential relay node positions, 

which are used by our ILP, and evaluate its performance under different conditions. 

Experimental results on networks with hundreds of sensor nodes show that our approach 

leads to significant improvement over existing energy-unaware placement schemes. 
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Chapter 1 Introduction 

1.1 Sensor Networks 

A sensor network, as its name suggests, interconnects a number of tiny, low-cost, low-

power, and multifunctional sensing devices (called sensors) and is usually deployed to 

measure/detect intended physical phenomena within a geographical area. Sensor nodes in 

networks combine technological advances in sensing, computation, communication and 

operate, among themselves, in a cooperative manner to achieve the objective of 

deployment. Sensor networks, in recent years, have gained popularity in both military 

and civilian applications due to significant cost efficiency, ease of deployment and 

reliable performance even in hostile environment. Application scenarios of a sensor 

network have been extended to various aspects such as real-time tracking, habitat 

monitoring, parameter measurements, and military surveillance, etc. 

Figure 1.1 General layout of a sensor network 
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In addition to regular sensor nodes, a sensor network typically contains a base 

station (BS) which serves as a central repository to collect sensed data from all sensor 

nodes. Unlike regular sensor nodes, a base station, in a sensor network, is usually located 

at a fixed position and supplied with unlimited power (e.g. plugged to a wall outlet). 

As shown in Figure 1.1, a sensor network is usually deployed within a geographical 

area (called sensing field shown as a rectangle border) containing the physical 

phenomena of interest. Sensor nodes (shown as white dots) are distributed inside the 

sensing field in order to carry out the sensing task effectively and accurately. Once in 

operation, data obtained from sensor nodes by sensing their respective vicinities, is 

continuously reported to the base station (shown as satellite dish) following an 

appropriate routing path (shown as communication links). A base station, on the other 

hand, is responsible for processing, analyzing and extracting meaningful information 

from those collected data to provide an entire view of the sensing field being monitored. 

Factors, such as tiny in dimension, unattended operation and cost concerns, pose 

restrictions in the designated capabilities of sensor nodes. The major limitations that 

constrain the functionality of sensor nodes include [3], [8] and [26]: 

• Limited transmission range: The built-in communication unit of a sensor node 

has limited transmission range. Therefore, if the base station is located too far 

away from a sensor node, that sensor node might not able to directly transmit 

its sensed data to the base station. 

• Prone to failures: Nodes in sensor networks are often prone to failures, 

particularly when deployed in hostile environment, where chances of 
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damage/destructions are significantly high. The physical failure of a sensing 

node can lead to lose of data from area where the failed node is deployed. 

• Limited energy supply: A sensor node is usually powered by a small battery 

which is supplied with a limited amount of energy. In sensor networks, 

recharging or exchanging the batteries of sensor nodes is generally considered 

too costly to carry out. Therefore, once the battery is completely dissipated, a 

sensing device will be out of operation and lose its functionality [3], [26]. 

Presented with such challenges, the major concerns in the design of sensor networks 

are scalability, fault tolerance, and energy conservation [8]. Scalability requires sensor 

networks to be adaptive to frequent changes in operating conditions which include, for 

example, addition/removal of sensor nodes in a network or the scale variation of the 

sensing field. Factors, such as energy depletion, harsh environmental conditions and 

malicious attacks, might lead to node failures in sensor networks. Fault tolerance 

techniques allow a network to survive form failures and continue operation in the 

presence of faults. Battery power, in sensor networks, is considered one of the most 

precious resources as recharging or replacement of battery is infeasible for both 

economical and physical concerns. Given initial energy supply, a sensor node, if 

operating at a high data transmission rate, can only remain functional for a fairly short 

period of time. Therefore, an energy-aware network design is directly related to the 

lifetime of the network. 

1.1.1 Relay Nodes in Hierarchical Sensor Networks 
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To address the above mentioned issues, hierarchical sensor networks (also known as two-

tiered sensor networks) have been proposed in recent years. In hierarchical architecture, 

as shown in Figure 1.2, sensor nodes (shown as white dots) are grouped into clusters 

(enclosed in a dashed circle) and form the lower-tier. Each cluster is assigned a cluster 

head (shown as red dot) and all cluster heads plus base station (BS) compose the upper 

tier. Each sensor node belongs to only one cluster and sends sensed data directly to its 

cluster head instead of the base station. Cluster heads in upper tier are dedicated for 

reporting data collected from their clusters to the base station. Separating sensing and 

routing tasks into different tiers helps to improve network performance with respect to 

lifetime, fault tolerance and scalability. 

E Base Station I 

Figure 1.2 General layout of a hierarchical sensor network 

Cluster heads, while forwarding data to the base station, normally employ the multi-

hop data transmission model (MHDTM) [8], [12], [14], [27] in order to achieve energy 
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conservation in routing. In MHDTM, cluster heads located too far to reach the base 

station with a single hop use other cluster heads as intermediate nodes to relay data to the 

base station. Referring to this scenario, it is possible that some cluster heads are required 

to transmit more data compared with other cluster heads. Thus, these cluster heads may 

dissipate energy at higher rates than those not relaying (or relaying very little) data from 

other cluster heads. Such uneven energy dissipation among cluster heads may lead to the 

faster "death" of some cluster heads due to the complete depletion of batteries. This 

unbalanced energy dissipation also has an undesirable impact on network lifetime as it 

may cause a network to prematurely lose its usefulness while many other cluster heads 

still retain power. 

One method, proposed in [3], [12], to address the uneven energy dissipation among 

cluster heads, is to deploy a special kind of nodes called relay nodes (also called Gateway 

nodes or Aggregation and Forwarding nodes (AFN)) as cluster heads. Relay nodes are 

equipped with high-power batteries and built with additional capabilities in order to 

achieve various objectives [6], [7], [8], [10], [12], such as balanced data gathering, 

reduction of transmission range, connectivity and fault tolerance [3], [4], [5]. 

1.2 Motivation 

In hierarchical sensor networks where relay nodes are used as cluster heads to form the 

upper tier network and communicate in a multi-hop fashion, two important design issues 

need to be considered: 

• The placement strategy of relay nodes 

• The routing strategy among relay nodes 
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The placement strategy is responsible for determining the minimum number of relay 

nodes along with their locations such that each sensor node can communicate with at 

least one relay and the relay node network is connected. It has been proved in [15] that 

finding the optimal placement of relay nodes in sensor networks is NP-hard. Under fault-

free conditions, a network will function as long as each sensor node can communicate 

with at least one relay node and the relay node network is connected, so that each relay 

node is able to find a path to the base station. However, in such a network, the failure of 

even a single relay node results in data loss not only from all sensor nodes belonging to 

its own cluster, but also from other relay nodes, which are using the failed node to 

forward data towards the base station. In order to protect the network against faults, it is 

necessary to introduce redundancy in the network, in the form of additional relay nodes, 

so that each sensor node can communicate with multiple (ks) relay nodes and each relay 

node can forward its data to multiple (kr) relay nodes (or directly to the base station). The 

desired level of redundancy (i.e. the values of ks and kr) will depend on the intended 

application and the goal is to achieve this with as few relay nodes as possible. 

The lifetime of a sensor network is typically determined by the battery power of the 

"critical node(s)" in the network [2], [3]. Therefore, it is extremely important to devise 

strategies that extend the lifetime of the sensor network as a whole. The relay nodes, 

although provisioned with higher power, are also battery operated. As the transmit energy 

dissipation increases rapidly with the distance between the source and the destination 

nodes [2], the actual routing strategy has a significant impact on the network lifetime and 

must be determined with care. 
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1.3 Objective of Study and Contribution 

Existing placement strategies decouple the placement and routing schemes. First, the 

positions of relay nodes are determined and then an appropriate routing schedule is 

developed based on this information. Therefore, the placement algorithms do not take 

into account the energy dissipation of the relay nodes, which requires knowledge of the 

routing scheme. Unlike previous approaches, we focused on jointly optimizing both 

placement and routing of relay nodes in hierarchical sensor networks. The proposed 

approach not only designs a network that meets the coverage and connectivity 

requirements, but also finds a routing schedule that ensures the energy dissipation of each 

relay node does not exceed a specified amount. The main contributions of this thesis are 

as follows: 

1. We present an ILP formulation that jointly optimizes the placement and 

routing of relay nodes in a hierarchical sensor network such that the network 

meets specified coverage, connectivity and energy requirements. 

2. We propose an intersection based approach, for determining the potential 

positions of relay nodes. 

3. We provide experimental results to demonstrate that our joint optimization 

approach can lead to significant improvements in network design. 

In our model, we have used a centralized approach for computing the optimal relay 

node positions and routing schedule. This is applicable for networks where the relay 

nodes can be positioned accurately and nodes are mostly stationary after deployment. A 

centralized approach has been adopted in a number of recent papers [12], [13] and can be 
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used in different application areas, such as habitat monitoring, environment monitoring, 

building monitoring, or surveillance [22], [23]. 

1.4 Thesis Organization 

The remainder of this thesis is organized as follows. In Chapter 2, a brief review of the 

background knowledge will be provided and chapter 3 presents our LIP formulation for 

optimal relay node placement and routing in hierarchical sensor networks. We will 

discuss and analyze various experimental results in Chapter 4. Finally, in Chapter 5, we 

conclude with a critical summary and provide some future work directions. 
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Chapter 2 Background Information 

2.1 Sensor Nodes and Sensor Networks 

Sensor networks combine research advancements from various areas such as sensing, 

communication and computing (including both hardware and software). Similar to the 

development of many other technologies, research and development of sensor networks 

were initially driven by the requirement of military applications. The Distributed Sensor 

Network (DSN) program, initiated by the Defense Advanced Research Project Agency 

(DARPA) in the late 70's, symbolizes the modern research on sensor networks. 

The recent Technological advances in the field of micro-electro-mechanical system 

(MEMS) have made the development of tiny, low-powered and multifunctional sensing 

devices technically and economically feasible [1], [28]. Given such type of sensing 

devices, modern sensor networks can be constructed by establishing the communication 

links among the deployed sensor nodes. Although the capability of an individual sensor 

node is limited, sensor networks are able to perform complex sensing tasks through the 

collaborative effort of a large number of deployed sensor nodes. Departing from its initial 

motivation, sensor networks nowadays are employed in a wide range of both civilian and 

military applications. For example, sensor networks, in civilian domain, can be used to 

measure the temperature/humidity of a certain region or to monitor the traffic along a 

highway segment. Scenarios of using sensor networks in military domain include target 

detection, battle field surveillance and equipment/ammunition monitoring. 

2.1.1 Sensor Nodes and Deployment 
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Sensor nodes are underlying building bricks of sensor networks. A typical sensor node, as 

shown in Figure 2.1 (Simplified from [1]), is usually equipped with a sensing unit for 

measuring the intentional target (e.g. temperature, humidity, pressure and object-

presence/absence etc.). After sensing its vicinity, the raw data generated by a sensing unit 

is generally in an analogous format which is not computer-readable; therefore, an analog-

to-digital convertor (ADC) is normally required to transform the analog data into digital 

format which, in turn, is further processed by a processing unit. The resultant data from a 

processing unit is cached into the local memory and when it comes the turn for a sensor 

node to transmit, the cached data is sent out by the radio communication unit following a 

pre-established routing path to base station. 

Sensing Unit 

Sensor ADC 

^x 

K 

V 

Processing Unit 

Processor 

ir J . 
Storage 

Z > 

RF Communication Unit 

* V 

: *J 

Transmitter 

Reciever 

Z\ 

Power Supply 

Figure 2.1 Components of a sensor node 

Sensor nodes in the network are normally deployed inside or very close to the 

phenomenon, so that the sensing task can be carried out effectively. Positioning sensor 

nodes within a sensing field can be executed either in a pre-determined fashion or a 

random scenario. The pre-determined placement of sensor nodes applies to the situation 

where it is possible to know the actual location of sensor nodes prior to the deployment of 

the network (e.g. deployment of sensor network in factories or in the bodies of human/ 



animals). However, in certain cases, especially when working in hostile environment 

such as battle field or poisoned region, randomly deploying sensor nodes is more 

practical (e.g. deployment of sensor nodes by dropping them from helicopter/airplane or 

delivering them in artillery shell or missiles) [1], [28]. The capability of random 

deployment requires self-organized routing schemes and distributed-network algorithms 

to be incorporated in sensor networks, which are relatively complex. However, it is the 

power of random deployment, which makes sensor networks suitable for applying in 

hostile territories as well as in disaster-relief operations. 

2.1.2 Architecture Model of Sensor Networks 

Sensor networks, according to their internal architecture, can be broadly classified into 

two categories known as flat sensor networks and hierarchical sensor networks 

respectively. In flat sensor networks (e.g. networks as shown in Fig. 1.1), all sensor nodes 

are assigned the same roles. They are responsible for not only sensing the environment, 

but also forwarding the sensed the data to the base station. 

Unlike flat sensor networks, hierarchical sensor networks (also known as two-tiered 

sensor networks) separate sensing and routing tasks into two different tiers. As shown in 

Figure 1.2, sensor nodes which are dedicated to the sensing task lie in the lower tier and 

are grouped into various clusters identified by an assigned cluster head. Each sensor node 

usually belongs to only one cluster and communicates directly to its cluster head, instead 

of the base station. All cluster heads, lying in the upper tier, collect sensed data from their 

respective clusters and form a network among themselves in order to send the collected 

data to the base station. Compared to flat architecture, hierarchical model achieves 
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advantages in various design objectives: energy conservation, data aggregation, load 

balancing and connectivity. For example, in hierarchical architecture, sensor nodes in the 

lower tier are relived from the burden of routing and forwarding, which reduces the 

energy consumption of these nodes. Because of these mentioned advantages, hierarchical 

architecture has gained increased popularity in the research and development of sensor 

networks. 

2.1.3 Energy Consumption Model of Sensor Nodes 

Transmitter 
Circuitry Receiver Circuitry 

k bits packet 

• w 

Transmitter 

1' * £-,J<toe h 

Amplifier 

/ S t .* , /™ 

k bits packet 

over distance d ***** < 

Transmission Energy: Receiver Energy! 

Figure 2.2 First order radio model 

Energy is considered as one of the most precious resources since it is generally infeasible 

to recharge/replace batteries within sensor nodes. To manage the energy consumption, it 

first requires an approach so that the energy dissipated at each sensor node becomes 

measurable. In the literature, the most commonly employed approach is known as first-

order radio model (depicted in Figure 2.2 (simplified from [2])), which was proposed by 

Heinzelman et al. in [2]. 

According to this model, energy consumed at a sensor node communicating a k-b\t 

packet is decomposed into two parts for receiver and transmitter circuitry respectively. 

The receiver circuitry spends Ee\ec amount of energy in receiving per unit bit of data. 

12 



Therefore, for receiving a k-bit packet, the total amount of energy dissipated at receiver 

circuitry is measured as (Eeiec * k) joule. On the other hand, energy dissipated at the 

transmitter circuitry can be expressed in two terms. The first term considers the amount 

of energy dissipated by the transmitter circuitry and is calculated by using the same 

expression, (Eeiec * k) joule, as the receiver circuitry for &-bit data. The second term, 

however, calculates the amount of energy consumed by the amplifier circuitry in order to 

compensate the signal depression along the transmission channel. The amplifier, in order 

to transmit 1 bit of data over unit distance, consumes eamp joule of energy. The energy loss 

over distance d is taken care by the term d™, where m is the path loss exponent, 2 < m < 4, 

for free space and for short to medium-range radio communication [3]. Therefore, to 

transmit k bit data over distance d, the total amount of data dissipated at the amplifier is 

calculated as {eamp * k * rf") joule. As shown in Fig. 2.2, by using first-radio model, the 

total energy dissipation at a sensor node for communicating a k bit packet over distance d 

can be expressed as the following equation: 

Etotai = ET(k, d) + ER(k) =2* Eetec * k + eamp * k * d2 

where Eeiec = 50nJ/bit and samp = 1OOpJ/bit/m [2] 

2.1.4 Communication Model of Sensor Networks 

All sensed data, in sensor networks, flow from sensor nodes to the base station through 

inter-communication among deployed sensor/relay nodes. Communication model of 

sensor networks defines how data packets are transmitted from a source sensor node to 

the base station. The communication models employed in sensor networks can be broadly 
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classified into the following two groups: 

1. Single-hop transmission model (DTEM) 

2. Multi-hop data transmission model (MHDTM) 

In the single-hop data transmission model (also called the direct transmission energy 

model (DTEM)) [2], [26], sensed data is directly transmitted to the base station provided 

that the base station lies within the transmission range of all sensor/relay nodes. However, 

in large scale networks, ensuring a base station to be reachable by every node is usually 

infeasible due to the limited transmission range of sensor/relay nodes. In this case, the 

multi-hop data transmission model (MHDTM [8], [12], [14], [27]) can be applied. 

According to multi-hop data transmission model, nodes that cannot reach the base station 

with a single hop use other nodes as intermediate nodes to relay their data to the base 

station. Multi-hop data transmission model helps to reduce the transmission distance of 

the sender and therefore saves the energy dissipation at the sender, which results in an 

extended lifetime of the network. 

Referring to how a source node finds a communication path to the destination (the 

base station), communication model in sensor networks can also be characterized as 

proactive, reactive and hybrid. Proactive communication requires all communication 

paths to be calculated before the actual transmitting action happens. Reactive 

communication, on the other hand, computes transmission path on demand. In this 

context, proactive communication can be viewed as a static paradigm which prepares all 

paths beforehand, while reactive communication operates in a dynamic fashion which 

generates routing paths upon request of each transmission round. Hybrid communication, 

as its name suggests, uses a combination of both proactive and reactive communication 
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paradigms [29], [30]. 

2.1.5 Lifetime of Sensor Networks 

Lifetime of a sensor network measures the time period during which a sensor network 

guarantees to fully possess its designated usefulness. In [31], the lifetime time of a sensor 

network is formally defined as time interval from the inception of the network's operation 

to the time when the power supplies of a number of critical nodes are depleted to such an 

extent that it results in a routing hole [31] within the network, a disconnected network or 

a network with insufficient coverage. In sensor networks based on flat architecture, 

network lifetime, varying from application to application, can be taken as the time when 

the first node, last node or more generally a certain percentage of nodes completely runs 

out of energy. 

However, in hierarchical sensor networks, energy depletion of a sensor node and a 

cluster head has different impacts on the lifetime of the network and needs to be 

considered differently. Hierarchical sensor networks usually contain a large number of 

sensor nodes which are densely deployed in the sensing field in order to carry out the 

designated sensing tasks accurately. In such context, the lack of sensing by a "dead" 

sensor node will be compensated by one or more adjacent alive sensor nodes. On the 

other hand, if a cluster head runs of energy and becomes dead, all sensor nodes 

communicating to this cluster head are inaccessible from other part of the network. If a 

cluster head also appears in multi-hop routing paths of other cluster heads, complete 

energy depletion of this node has even more severe impact on the lifetime of the network. 

In this case, the set of inaccessible sensor nodes includes not only its own cluster but also 
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other clusters whose cluster heads use this node as intermediate node in their multi-hop 

communication paths. Therefore, energy depletion of cluster heads plays a more 

important role in the lifetime of hierarchical sensor networks. In [3], Pan et al. have 

measured the lifetime of hierarchical sensor networks in three different ways which are 

summarized as follows: 

1. N-of-N lifetime, the network lifetime expires as soon as the first cluster head 

dies. 

2. K-of-N lifetime, the network survives as long as K cluster heads are still alive. 

3. M-in-K-of-N lifetime, the network survives if a minimum of m pre-specified 

cluster heads and overall a minimum of K cluster heads are still alive. 

2.2 Relay Nodes in Sensor Networks 

In the past few years, a number of researches have focused on deploying relay nodes in 

sensor networks. The main objectives of applying relay nodes to sensor networks can be 

summarized as follows: 

• Extending the network lifetime 

• Reduction of transmission range 

• Energy-efficient data gathering 

• Balanced data gathering 

• Improved connectivity and fault tolerance 
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As regular sensor nodes, relay nodes in sensor networks are also battery-operated 

devices with wireless communication capabilities and hence are energy restricted. 

However, relay nodes in sensor networks only take care of relaying sensed data generated 

by other nodes, without sensing the environment. For example, a typical relay node may 

receive incoming data packets from multiple sensor nodes, generate outgoing packets and 

transmit them to the next relay node or the base station. Relay nodes with different 

characteristics can be used in both flat and hierarchical sensor networks. 

2.2.1 Relay Nodes in Flat Sensor Networks 

QSensor Node LJBase Station y^RelayNode 

Figure 2.3 Using relay nodes in flat sensor networks 

Figure 2.3 (Re-depicted from [35]) shows a basic example of employing relay nodes in a 

flat sensor network. Fig. 2.3 (a) presents a general flat sensor network without using any 

relay nodes. The same network, with some relay nodes added to it is shown in Fig. 2.3 (b). 
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The topology shown in the Fig. 2.3 (b) has reduced the transmission range of nodes such 

as x, y p, w, giving a network with an increased lifetime. 

In literature, deploying relay node in flat sensor networks was first proposed by 

Cheng et al. [4] in 2001 when they studied the problem of "maintaining connectivity with 

minimum-per-node transmission power in wireless sensor networks" [4]. They have 

formulated this problem based on a network optimization problem called Steiner 

Minimum Tree with Minimum Number of Steiner Points [32] and proposed two 

optimization algorithms to solve the connectivity problem in flat sensor networks. 

Through performance study by simulation, they have claimed that introducing a small 

number of relay nodes helps to reduce the total number of power consumption while still 

maintains the global network connectivity. Dasgupta et al. in [33] considered flat sensor 

networks consisting of sensor nodes and relay nodes, where all nodes are of equal 

capabilities but can be assigned the role of either a relay node or a sensor node. They 

focused on the placement of nodes within the network and assigning their roles in a way 

that the lifetime of sensor networks is maximized while the coverage of the entire region 

is ensured. The algorithm proposed by them is named as Sensor Placement and Role 

Assignment for Energy-efficient Information Gathering (SPRING). Given the placement 

of the base station and the deployed nodes as well as their initial role assignment, 

SPRING is able to find the location along with their assigned roles so that the network 

lifetime is maximized while ensuring the coverage of entire sensing field. 

Falck et al. in [5] introduced relay nodes in flat sensor networks with multi-hop 

communication in order to achieve balanced data gathering against sufficient coverage of 

the monitored area. They have studied the effect of deploying a small number of relay 
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nodes within the network and proposed an approximation algorithm for their placement. 

The presented simulation results demonstrated that employing a small number of relay 

nodes in flat sensor networks can lead to a significant improvement in the balanced data-

gathering, while retaining sufficient coverage of the sensing field. The proposed linear 

programming (LP) solution also improves the work done in [34], [36] in which non-linear 

solutions are used. 

2.2.2 Relay Nodes in Hierarchical Sensor Networks 

Figure 2.4 Using relay nodes in hierarchical sensor networks 

Relay nodes, in hierarchical sensor networks, usually serve as cluster heads (Figure 2.4) 

to achieve energy-efficient data gathering, extended network lifetime and balanced data 

loading. Fig. 2.4 presents a typical usage of relay nodes in hierarchical sensor networks. 

19 



As sensor networks are usually deployed to measure a target parameter, it is highly 

possible that sensed data within a cluster (shown as a dash circle in Fig. 2.4) involves 

certain degree of data redundancy. Employing relay nodes as cluster head introduces a 

data-gathering pattern such that data redundancy within a cluster can be pre-removed 

before sending to the base station, which contributes to energy conservation as it saves 

the energy spent in transmitting the redundant data volume and therefore results in an 

extended network lifetime. Using relay nodes as cluster heads could also lead to an 

increased network bandwidth usage due to data volume reduction. 

In literature, the employment of relay nodes in hierarchical sensor networks was first 

proposed in 2003, in two different publications [6] and [3]. Gupta et al. in [6] focused on 

the load balancing problem of sensor networks where the energy constrained sensor 

nodes are not uniformly distributed. They solved this problem by introducing the notion 

of deploying relatively-less energy-constrained relay nodes (e.g. gateway nodes named 

by them in [6]). In their proposed model, the deployed relay nodes group sensor nodes 

into distinct clusters and each relay node acts as cluster head of its corresponding cluster. 

Each sensor node, on the other hand, belongs to only one cluster and communicates 

directly to the cluster head. Relay nodes serving as cluster heads collect data from cluster 

members, perform data aggregation and relay the resultant data packets directly/through 

other relay nodes to the base station. With respect to such a model, they proposed an 

optimization heuristic algorithm that clusters the sensor nodes based on the deployed 

relay nodes and balances the data flow among the introduced relay nodes. 

Considering the similar network model as in [6], Pan et al. in [3], introducing relay 

nodes (named as Application Nodes (AN) by them in [3]), have attempted to maximize 
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the topological lifetime of the network by strategically placing the base station (BS) and 

optimizing inter-application node (AN) relaying. Under the assumption that the locations 

of BSs are relatively flexible, authors in [3] have proposed computational-geometry-

based algorithms which find the optimal locations of BSs so that the topological lifetime 

of the network is maximized. Hou et al. in [12] spent their research effort in prolonging 

the lifetime of hierarchical, cluster-based sensor networks in which the upper tier contains 

Aggregation and Forwarding Nodes (AFNs) as well as relay nodes. They formulated this 

problem as Energy Provisioning Relay Node Placement (EP-RNP) and proposed a 

polynomial-time heuristic algorithm known as "SPINDS" which attempts to provision 

additional energy to the existing nodes and deploy AFNs and RNs to mitigate the 

geometric deficiency of the network so that the network's lifetime if extended. 

Most researches discussed so far concentrated on applying relay nodes to achieve 

performance improvement in hierarchical sensor networks with the assumption that relay 

nodes have been deployed within the sensing field. Researches on the placement and 

coverage of relay nodes, on the other hand, have focused on how to effectively deploy 

relay nodes within hierarchical sensor networks. As mentioned earlier, relay nodes in 

hierarchical sensor networks usually lie in the upper tier and serve as cluster heads while 

equal capability sensor nodes are randomly deployed, the placement of relay nodes has to 

ensure that every sensor node is covered by at least one relay node. A sensor node, in real 

application, is considered as covered by a relay node if there is a relay node positioned 

with the transmission range of that sensor node. Relay nodes acting as cluster heads, on 

the other hand, are responsible for delivering/relaying data packets to the base station 

through either a single or multi-hop routing path. Therefore, placement of relay nodes 
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also needs to ensure that the upper tier network (including relay nodes and the base 

station) is connected so that for each placed relay node, there is a routing path along 

which a relay node is able to convey data packets to the base station. 

Placing relay nodes in hierarchical sensor networks has been addressed in [15] and 

[35] while the complexity of relay nodes placement problem has been investigated in [8] 

and [20]. Suomela in [15] and [35] has examined the complexity of relay node placement 

problem with respect to various optimization problems in hierarchical sensor networks, 

and shown that all these problems are NP-hard, in some cases even the approximations 

are NP-hard. 

Tang et al. in [8] have concentrated on the problem of placing minimum number of 

relay nodes such that each sensor node is able to communicate with at least one relay 

node and relay nodes themselves are connected. They formulated this problem as 

Connected Relay Node Single Cover (CRNSC) problem. Introducing the concept of P-

Position (Potential Position), they have proposed approximation algorithms of 

polynomial time complexity to solve the CRNSC problem. To incorporate the fault-

tolerant capability, Tang et al. extended the CRNSC problem to a 2-Connected Relay 

Node Double Cover (2CRNDC) problem which is referred as finding minimum number 

of relay nodes in a way that each sensor node can communicated with at least two relay 

nodes and the network of placed relay nodes are 2-connected. The proposed polynomial 

time approximation algorithm to 2CRNDC problem is derived from solution of CRNSC 

by adding some redundant relay nodes to the solution set of CRNSC problem. 

Bari et al. in [20] focused on a more general scenario with the objective to find 

minimum number of relay nodes along with their locations, such that each sensor node 
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can communicate with at least k number of relay nodes and the relay nodes network is r 

connected. They proposed an Integer Liner Programming (ILP) formulation which takes 

a set of candidate relay node locations as well as a set of deployed sensor nodes locations 

and produces the set of selected relay node locations. Facing the infinite number of 

possible relay node locations in the sensing field, they presented a grid-based approach 

for preparing the potential set of relay nodes positions. In the grid-based approach, the 

entire sensing field is divided into a set of cells by the latitude and longitude lines. The 

centers of each cell are picked to initialize the set of input relay nodes. Given this initial 

set of relay nodes and the set of sensor locations, their ILP formulation selects, from the 

input set of relay nodes, the minimum number of relay nodes such that each sensor node 

can communicate with at least k number of relay nodes and the selected relay nodes are r 

connected. 

2.3 Routing in Hierarchical Sensor Networks 

Compared to flat sensor networks, hierarchical sensor networks have gained popularity in 

recent years, due to their ability to facilitate energy conservation, load-balanced data 

gathering, fault-tolerance as well as increased network coverage and connectivity. 

Routing in hierarchical sensor networks is considered as a challenging task [30] because 

of the inherent characteristics which distinguish hierarchical sensor networks for other 

kinds of wireless networks, e.g. mobile ad hoc networks or cellular networks. The major 

characteristics that pose difficulties to routing in hierarchical sensor networks are 

summarized as following [30]: 

• The number of sensor nodes deployed in sensor network may be very large. 
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Considering high overhead for maintaining IDs of such a large number of 

nodes, traditional IP-based protocols may not be directly applicable in sensor 

networks. 

• Sensor nodes are constrained by resources, e.g. energy, processing, and 

storage capacities, therefore, resource management is very important in sensor 

networks. 

• Once deployed, most of sensor nodes are usually stationary, but some nodes 

may be allowed to move around, depending on the requirements of the 

application. 

• The requirements for the design of sensor networks may change with 

application. 

• Data collection in sensor networks is usually location-based, so that position 

awareness of sensor nodes is important. 

• As sensor networks consist of large number of sensor nodes deployed to 

measure a common target parameter, it is highly possible to have data 

redundancy, which should be taken into consideration by the routing 

mechanism to ensure energy efficiency and bandwidth utilization. 

On the other hand, as the dominant amount of energy is consumed in data 

transmission, routing strategy plays a significant role in conserving energy and needs to 

be taken into careful consideration. Presented with the above challenges, lots of research 

efforts, in the past few years, have been spent in designing routing mechanisms that are 

suitable for hierarchical sensor networks. In the literature, various hierarchical-sensor-
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network-oriented routing tactics have been proposed in [2], [37] and [38] to exploit the 

architectural advantages and perform energy-efficient routing in hierarchical sensor 

networks. 

Heinzelman et al. in [2] proposed a self-organizing, adaptive routing protocol called 

Low-Energy Adaptive Clustering Hierarchy (LEACH) with the objective to minimize the 

total energy consumption of cluster-based hierarchical sensor networks. In LEACH, the 

distributed sensor nodes are grouped into a set of local clusters and one node is assigned 

the role as cluster head which is responsible for collecting, aggregating sensed data 

within its own cluster as well as transmitting the resultant data packets to the base station. 

Therefore, cluster heads in LEACH consume energy at a much higher rate than regular 

sensor nodes. However, the proposed LEACH protocol attempts to randomly rotate the 

role of cluster head within a cluster to ensure the energy dissipation is evenly distributed 

among all nodes within the sensor networks. 

Manjeshwar et al. in [37] presented a Threshold Sensitive Energy Efficient Sensor 

Network (TEEN) protocol targeting to maximize the lifetime of the cluster-based, 

hierarchical sensor networks. Unlike LEACH in which data collection and transmission 

are performed at predetermined time intervals, the underlying idea of TEEN relies on the 

fact that cluster heads are required to transmit only when there are significant changes in 

the monitored environment. TEEN employs two threshold values, hard threshold and soft 

threshold respectively, to determine whether or not to execute data collection and 

transmission at cluster heads. Hard threshold is the absolute value of the sensed attribute 

that triggers a cluster head to transmit while a soft threshold is a small change in the 

attribute value that triggers a cluster head to transmit. 
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Ossama et al. in [38], attempting to maximize the life of cluster-based, hierarchical 

sensor networks, have improved LEACH [2] and proposed a routing protocol named as 

Hybrid Energy-Efficient Distributed Clustering (HEED). In HEED, cluster heads are 

periodically and probabilistically selected based on the residual energy of each node. 

They also included a secondary clustering parameter (e.g. node proximity to its neighbors, 

the node degree) in order to reduce the intra-cluster communication cost therefore 

increased the energy efficiency and further prolongs the lifetime of networks. When 

selecting the cluster head, a sensor node may refer to this secondary parameter so that the 

communication cost is minimized. 

2.4 Fault-tolerance in Hierarchical Sensor Networks 

Nodes in sensor networks are prone to failure because of running out of batteries, 

physical damages, and malicious attacks. In certain circumstance, there exists infrequent 

link failure in wireless communication due to the environmental interference. Fault-

tolerance, in sensor networks, refers to the ability of surviving from such kinds of node or 

link failure. In other words, a fault-tolerant sensor network, even in the presence of node 

or link failure, should still sustain its designated functionality without interruption. 

A traditional approach to enable fault-tolerance in sensor networks is to construct 

node or link disjoint paths between source and destination. Keeping multiple routing 

paths among all pairs of source and destination ensures the connectivity of the network. 

For instance, if some links or nodes fail, the alternative path can take part in the data 

routing and the network still remains connected. In general, a sensor network should be at 

lease 2-connected (i.e. for each pair of source and destination, at least two node disjoint 
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paths are prepared). However, base on the criticality of the fault in an application, a 

sensor network may require to be k connected where k > 2. 

As mentioned in the previous section, different architectural models (flat and 

hierarchical sensor networks respectively) have been proposed for sensor networks. 

Therefore, fault-tolerance needs to be treated differently according to the characteristics 

of each model. In flat architecture, fault-tolerance focuses on establishing nodes/links 

disjoint paths between all sensor nodes and the base station so that even in case of 

nodes/links failure, the alternative paths are available and can be used to deliver data 

packets. 

Under hierarchical model, it is highly possible that the lacking of sensing due to a 

single sensor node failure will be compensated by the other sensor nodes within the same 

cluster. However, failure of a cluster head has much more severe effect than the failure of 

a sensor node in that it makes not only all underlying sensor nodes covered by the failed 

cluster head become inaccessible, but also leads to data loss from other cluster heads 

which use the failed cluster head as intermediate node to relay data to the base station, if 

a multi-hop communication model is employed. Therefore, fault-tolerance in hierarchical 

sensor networks needs to pay more attention to deal with the failure of cluster heads. 

In recent years, the issue of fault-tolerance in hierarchical sensor networks has been 

studied in various papers including [7], [16] and [17]. Gupta et al. in [7] proposed a 

solution to deal with the failure of relay nodes (cluster heads) in hierarchical sensor 

networks. Their solution focused on recovering the cluster members (sensor nodes) from 

a failed relay node. In their approach, the system periodically queries the status of relay 

nodes so that the system is able to detect the failure of any relay node. In the presence of 
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relay node failure, their scheme will re-assign all affected cluster members to a backup 

relay node which is created during the clustering phase. Therefore, it eliminates the 

necessity of a full-scale re-clustering of the entire network. 

Hao et al. in [16] have focused on enhancing the fault-tolerance capability of 

hierarchical sensor networks through the placement of relay nodes. They formulated their 

fault-tolerant scheme as placing the minimum number of relay nodes such that each 

sensor node is connected to at least 2 relay nodes and the upper tier relay nodes network 

is 2 connected. Therefore, even in case of a relay node failure, the affected sensor nodes 

can connect to at least one backup relay node and the remaining relay nodes network is at 

least one connected. They solved this relay nodes placement problem by proposing a 

polynomial-time approximation algorithm. 

Liu et al. in [17] also focused on placing optimal number of relay nodes so that the 

hierarchical sensor network becomes fault-tolerant. Unlike the solution proposed in [16], 

they solved this problem through a two-phase approach. The goal of the first step is to 

ensure that the network becomes connected and the second stop focused on double 

connecting the relay nodes network by adding redundant relay nodes to the solution 

generated in the first step. They have presented an approximation algorithm to solve the 

problem addressed in the first step and two approximation algorithms which solves the 

problem addressed in the second step. 
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Chapter 3 Network Design with Performance 
Guarantees 

3.1 Problem Statement 

Due to the ability to facilitate optimization of network lifetime, load-balanced data 

gathering, fault-tolerance as well as increased network coverage and connectivity, 

hierarchical sensor networks have gained popularity in recent years. Using higher-

powered relay nodes as cluster heads can lead to further improvements in network 

performance and has been addressed in various researches. There are two important 

problems need to be taken into careful consideration when attempting to employ higher-

powered relay nodes as cluster heads in hierarchical sensor networks: 

i. Relay node placement strategies 

ii. Routing strategies among the deployed relay nodes 

Although significant amount of research effort has been spent in relay node 

placement and routing problems, current researches in this field separate the placement 

and routing of relay nodes into two steps. Positioning relay nodes is executed in the first 

step and then a particular routing scheme is employed based on locations of relay nodes. 

While focusing on the relay nodes placement, the typical consideration is coverage and 

connectivity, and does not take into account of the energy dissipation of relay nodes 

which requires knowledge of the routing schemes. 

Unlike previous approaches, we, in this thesis, focus on the joint optimization of 

both placement and routing of relay nodes and define our problem as: 

Find minimum number of relay nodes, along with their locations, and a suitable 
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communication strategy such that: 

i. All sensor nodes are covered by at least ks relay nodes. 

ii. The upper tier relay node network is at least kr connected: 

Hi. The network has a guaranteed lifetime. 

To solve the above defined problem, we have proposed an approach by using an ILP 

formulation, which is presented in section 3.4. Our proposed ILP formulation approach 

not only designs a network that meets the requirements of coverage and connectivity, but 

also finds a routing schedule which provides guarantees of network's lifetime. In addition 

to the ILP formulation, we also present an intersection based approach for determining 

the potential positions of relay nodes which are used as input for our ILP formulation. 

3.2 Network Model 

For our model, we consider a hierarchical (or two-tiered) wireless sensor network, where 

the lower tier consists of n sensor nodes, randomly distributed within the sensing area. 

Our objective is to determine the minimum number and positions of relay nodes (cluster 

heads) to form the upper tier network, with a specified degree of redundancy. We also 

determine a suitable routing strategy such that the energy dissipation of the relay nodes is 

reduced as much as possible. A sensor node i is said to be covered by a relay node ry at 

location j , if /' can transmit its data directly to r,-. Our proposed formulation designs the 

upper tier relay node network, such that each sensor node is covered by at least ks relay 

node(s), where ks= 1, 2, 3, ..., and each relay node can forward its data to kr, kr= 1,2, 

3, ..., other relay node(s) (or directly to the base station). This means that each sensor 
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node can still transmit its data to at least one rely node, even if up to ks - 1 relay nodes 

fail. Similarly, it guarantees that each relay node has a viable path to the base station, 

even if up to kr - 1 relay nodes fail. For proper functioning of network it is required that, 

at a minimum, ks=\, i.e. each sensor node is capable of communicating with at least one 

relay node and kr=\, i.e. the upper tier relay node network is connected. 

We assume that the positions of the sensor nodes are known beforehand, or can be 

determined (e.g. using GPS), and that the relay nodes can be placed at the locations 

determined by our placement strategy. The ILP formulation proposed here assumes that a 

set R of potential locations for the relay nodes is given as input. In section 3.6, we 

describe an intersection based approach for generating the R potential locations. However, 

our formulation does not depend on how R is generated, and other approaches such as a 

grid based approach [20] or that given in [8] can easily be used. 

The dominant factor in power consumption in sensor networks is the power needed 

for communication. In the first order radio model [2], receiver (transmitter) circuitry 

consumes ai nJ/bit (a.2 nJ/bit) of energy. The total energy to receive b bits is given by, 

ERx(b) = aib while the total energy needed to transmit b bits over a distance d is given by 

Erx(b) = 012b + fibcP, where q is the path lose exponent, 2 < q < 4 [3] and p is the amplifier 

energy to transmit unit bit of data over unit distance. In our experiments, we have used aj 

~a2 = 50nJ/bit, ft = WOpJ/bit/m and the path-loss exponent, q = 2. 

We assume that data gathering is proactive, i.e., data are collected and forwarded to 

the base station periodically, following a schedule. We have called one period of 

proactive data gathering (starting from sensing until all data reach the base station) as one 

"round" [14]. We define the lifetime of a hierarchical sensor network as the number of 
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rounds that the network can sustain, from the deployment of the network, to the time the 

data from any cluster head fails to reach the base station. The sleep/wake scheduling and 

the underlying synchronization protocols are handled separately by a state-of-the-art 

method in the MAC layer, such as those proposed in [21], [25]. 

3.3 Notation Used 

In our formulation, we are given the following data as input: 

• n: The total number of sensor nodes, with each sensor node having a unique 

index /, 1 < / < n. 

• m: The total number of possible positions of relay nodes, each position having a 

unique index j,n+l < j < n + m. 

• r/. The relay node at location j,n + 1 < j <n + m. 

• n + m + 1: The index of the base station. 

• rmax: The transmission range of each sensor node. 

• dmax: The transmission range of each relay node. 

• dij: The Euclidean distance from node i to nodey'. 

• ks: The minimum number of relay nodes covering each sensor node. 

• kr: Desired connectivity of the relay nodes network. 

• a2 (ai): Energy coefficient for transmission (reception). 



•/?: Energy coefficient for amplifier. 

• £>: A large constant, D > V bi, 1 <i<n 
/ = 1 

• bj-. Number of bits generated by sensor node /'. 

•emax: Maximum allowable energy dissipation (per round) of a relay node. 

We also define the following variables: 

• Zjj: Binary variable defined as follows 

Z„ = 

1 if the sensor node /' can transmit to the relay nodej 

0 otherwise 

• Xij\ Binary variable defined as follows: 

Xu = 

1 if the sensor node / selects relay node/ as its cluster head 

0 otherwise 

Yf. Binary variable defined as follows: 

Yj = 

1 if the relay node at location/ is included in the upper tier 

0 otherwise 



• Cf. Continuous variable indicating the number of other relay node(s) that may be 

used by relay node r, to forward data towards the base station. 

• T/. Continuous variable indicating the number of bits transmitted by relay node /. 

• G/. Continuous variable indicating the amount of energy dissipated by the 

amplifier in relay node/ to send its data to the next node in its path to the base 

station. 

• Rf. Continuous variable indicating the number of bits received by relay node / 

from other relay nodes. 

• Ef. Continuous variable indicating the total energy spent per round by the relay 

node/. 

• w/. Continuous variable indicating the total number of bits generated by all sensor 

nodes in cluster/. 

• fJt k'- Continuous variable indicating the amount of flow from a relay node/ to node 

k (may be another relay node or the BS) 

3.4 ILP Formulation for Integrated Placement and Routing 

In this section, we propose a formulation that guarantees the coverage of each sensor 

node by at least ks, ks = 1, 2, ..., relay node(s) and relay nodes network that is kr-

connected (kr=\,2, ...). The objective function is to minimize the number of relay nodes 

while maintaining a desired lifetime of the network. By setting the appropriate values for 
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ks and kr, this formulation can also ensure fault tolerance. We note that this formulation 

may select relay nodes which are not acting as cluster heads for any sensor nodes. Such 

nodes are used to maintain the required degree of connectivity and/or to achieve the 

desired network lifetime, and are included in the topology only if necessary. 

n + til 

Minimize ]T Yj (1) 
j = n +1 

Subject to: 

a) A sensor node / can transmit to a relay node/, only if the distance between i and 

j is less than the transmission range rmax of the sensor node /'. 

V7, 1 < / < n, 

Zjj • dij < rmax w , (2) 
V/, n + l<j<n + m 

b) A relay node^ can transmit to a relay node k, only if the distance between/ and 

k is less than the transmission range dmax of the relay nodey: 

fj,k=0 Vj,k: dJ!k>dmax (3) 

c) The relay node at location j is included in the upper tier network, if it is 

selected as a potential cluster head by at least one sensor nodes i. 

\/i, \<i<n, 

Yj > Zid (4) 
V/, n +1 < j < n + m 

d) A sensor node must be covered by at least ks relay nodes. 

Y,Zij >ks \/i, \<i<n (5) 



e) A sensor node i transmits to a relay node j , only if the relay node j is selected 

by sensor node /' as its cluster head. 

Vz, 1 <i<n, 

XIJ < Zu (6) 
V/, n + \< j <n + m 

f) A sensor node transmits sensed data to exactly one relay node. 

n+m 

£ X,j =1 V/, / < 1 < n (7) 

g) Calculate the number of the relay node that the relay node j can use to route 

data towards the base station. 

Cj ~ LJ™ (8) 
w(djw < dmaK) AND (dw „+m+1 < djn+m+l) 

Constraint (8) has to be applied for ally, n< j <n + m . 

h) If the base station lies outside of the transmission range of relay node r,-, there 

must be kr other relay nodes where r, can forward its data. 

CJ>kr»YJ V/: dun+m+,>dmm (9) 

Constraints (8) and (9) together determine the connectivity of the relay node 

network, 

i) Calculate the total number of bits generated in the clustery. 

V/, 1 < / < n, 

Wj=Yb'*X^ v , . ! < • < ^ (10) 
^ V/, n + l< j <n + m 



j) Flow constraint. 

k k 

k) Calculate the total number of bits transmitted by the relay nodey. 

Tj = X fj* Vj,k*n + m + l (12) 
j 

1) Calculate the amplifier energy dissipated by relay node/ to transmit to the next 

node. 

Gj = / ? £ fj* • (djj,y Vj,k*n + m + \ (13) 
k 

m) Calculate the number of bits received by node/ from other relay node(s). 

Rj=Y*f"J Vj, n<j<n + m + l (14) 
k 

n) Base station does not transmit. 

/»+»+i,*=0 Vk, \<k<n + m + l (15) 

o) A link, from relay node j to a relay node at location k, can have non-zero data 

flow only if the relay node k is selected to be in the upper tier. 

fj,k<D»Yk VkJ, j^n + m + l (16) 

p) Calculate the energy dissipated at relay node/. 

ax(Rj+Wj) + a2Tj+Gj =Ej V/: j*n + m + l (17) 

q) Constraint for maximum energy dissipation. 
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Ej<em!a V/: j*n + m + \ (18) 

3.5 Justification of the ILP Equations 

Equation (1) is the objective function of the ILP formulation that minimizes the total 

number of selected relay nodes which form the upper tier relay nodes network. The 

minimization of the number of relay nodes is obtained after ensuring the required 

coverage of sensor nodes and the connectivity requirement of elected relay nodes, as well 

as ensuring the desired network lifetime. 

a. Constraint (2) enforces the restriction that a sensor node can only transmit to a 

relay node, if the relay node is within the transmission range of that sensor node. 

b. Constraint (3) specifies that if the distance between two different relay nodes 

exceeds the transmission of the relay node, the amount of flow between them is 0. 

In other words, constraint (3) enforces the restriction that a relay node can only 

transmit to another relay node (or to the base station) if the destination node is 

within the transmission range of the relay node transmitting data. 

c. Constraint (4) ensure that if the relay node r,- at location j is chosen as a potential 

cluster head by one or more sensor nodes, then r, must be included in the set of 

relay nodes selected to form the upper tier network. If a relay node r, is not chosen 

as a potential cluster head for any sensor node, normally it should not be selected 

(unless it is needed to maintain required connectivity). This is not specially 

enforced by any constraint, but is taken care by the objective function, which will 

set Yj = 0, if this does not violate any the other constraints. 
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d. Constraint (5) requires that each sensor node to be covered by at least ks relay 

nodes other than one. The actual value of ks, can be chosen based on the intended 

application. For most applications ks = 2 or 3 should be suffice. Under fault-free 

conditions, each sensor node will select one relay node (from the ks relay nodes it 

is associated with) to send its data. If that node fails, it can switch to another 

backup cluster head from the remaining (ks - 1) nodes. 

e. Following constraint (5), constraint (6) and (7) jointly enforce that a sensor node 

transmits its sensed data to only one particular cluster head, even though a sensor 

node should maintain a certain level of redundant cluster heads (e.g. specified by 

the value of ksin constraint (5)) for fault tolerance purpose. 

f. Constraint (8) and (9) ensure the connectivity of the upper tier relay nodes 

network, according to the pre-specified connectivity requirement (£,). More 

specifically, constraint (8) specifies the approach to calculate the total number of 

other relay nodes that can be used by a relay node/ to forward data towards the 

base station (Q). Given a relay node j , the value of C, is obtained by summing 

over all other selected relay nodes which are within the transmission range of 

relay nodey and closer to the base station than the given relay node j . Constraints 

(9) further states that for a selected relay node j which cannot reach the base 

station with a single hop (djf „+m+i > dmax), there should be at least kr other relay 

nodes available for relay node j to forward its data towards the base station. 

Therefore, constraint (8) and (9) jointly guarantee that there is at least one via 

path for each relay node to the base station even up to kr - 1 relay nodes failed. 

Similar to ks, the actual value of kr is set up depending on the intended application. 
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g. Constraint (10) calculates the total number of bits (wj) generated in cluster/, by 

summing the data transmitted to it from all the sensor nodes belonging to the 

clustery. 

h. Constraint (11) corresponds to the standard constraints [41], and states that the 

total amount of outgoing data from relay node/ ( ^ / j , * ) is equal to the total 
k 

incoming data from other relay nodes C^fkj ) plus the data generated within 
k 

cluster/ (wj). 

i. Constraint (12) calculates the total number of bits (3)) transmitted by the relay 

node/, by summing the data transmitted over all outgoing links from node/. 

j . Constraint (13) calculates the amplifier energy (G7) dissipated at relay node/ by 

summing the amplifier energy required along each link. 

k. Constraint (14) specifies the total number of bits received at relay node/ form 

other relay node(s), by summing the data flowing along all incoming links. 

1. Constraint (15) specifies that the base station indexed as n+m+1 does not transmit 

to any other node because base station serves as data repository which only 

receives data. 

m. Constraint (16) specifies that data can be sent from relay node/ to relay node k 

through link (/', k), only if relay node k is also selected to be in the upper tier relay 

nodes network. For example, if Yk = 0, constraint (16) will forced * = 0. The 

constant D is needed since the value of fit * may be greater than 1. The value of D 

should be large enough to allow the maximum possible data flow on link (j, k). 
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We have s e t D > V bi,l <i<n. 

n. Constraint (17) computes the total energy Ej dissipated by a relay node ry, in one 

round of data gathering. The energy dissipated by the relay node j has three 

components: 

i. the receiver energy ai(Rj + wj), 

ii. the transmitter electronics energy a{Tj, and 

iii. the transmitter amplifier energy Gj 

o. Constraint (18) ensures that the total energy dissipated by a relay node cannot 

exceed emax, which specifies the maximal per-round-energy-dissipation of a 

selected relay node and is supplied as input data to the formulation. 

Theorem 1: Constraint (8) and (9) guarantee that the relay nodes network can survive 

kr-l faults. 

Proof: For each relay node r, in the upper tier network, constraint (8) computes the 

number of relay nodes that are: 

i. within the transmission range of r7, and 

ii. closer to the base station than r,-. 

These are the nodes that may be used by r, to forward its data to the base station, if the 

base station is not within its transmission range. Constraint (9) ensures that there are at 

least kr such nodes, for any selected relay node which cannot transmit to the base station 

directly. This means that even if up to kr - 1 relay nodes failure, there will still be at least 



one surviving node within the transmission range of ry, which is closer to the base station 

than rj. Since this is true for all relay nodes, constraint (9) ensures that there will be a 

viable path from each relay node to the base station, even in the presence of kr - 1 relay 

node failures. This guarantees that the relay nodes network has the desired connectivity. 

3.6 Finding Potential Locations of Relay Nodes 

Figure 3.1 Grid based placement of relay nodes 

In the previous section, we have presented an ILP formulation that optimally selected the 

positions of the relay nodes (from a set of potential positions) and determines a routing 

schedule that meets certain criteria such as coverage, connectivity and energy 

requirements. Experimental results (in Chapter 4) demonstrate that addition of a few 

properly placed relay nodes can significantly extend the network lifetime. In this context 
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it is extremely important that a set of "potential" relay node positions R, given to the ILP 

as input, should be chosen appropriately. If the elements of if are not selected properly, it 

is possible that the required connectivity and coverage cannot be achieved, even if all 

elements of R are included in the solution. 

The number of potential position in a real plan can be infinite. Therefore, we need 

some heuristic to limit this number to a level where the ILP becomes computationally 

tractable. One such heuristic is the grid based approach [20], where the entire networking 

area is viewed as an imaginary grid and the center positions (shown as small red 

rectangles in Fig. 3.1 (redraw from [20])) of each cell boundary are selected as potential 

relay node positions. The spacing between grid lines must be small enough (e.g. at most 

2r where r is the transmission range of a sensor node) that all sensor nodes have at least 

one potential relay node position within it transmission range. A grid based approach can 

provide good solutions when the network area is small and sensor nodes are densely 

deployed within the network. For large area, the grid based approach results in too many 

potential positions, since grid line spacing cannot be increased beyond a certain point (e.g. 

2r), and the ILP becomes intractable. The grid based approach is also not suitable when 

the sensor nodes are sparsely distributed in the sensing area. 

To address the limitations of grid based approach, we propose an intersection based 

approach (e.g. depicted in Fig.3.2) in this thesis. The steps for this approach are given 

below: 

1) Taking each sensor node / (shown as yellow dot in Fig. 3.2) as center, draw an 

imaginary circle (shown as a dash circle in Fig. 3.2) around each sensor node, 

where the radius of the circle is the maximum transmission range of sensor 
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nodes. 
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Figure 3.2 Intersection based placement of relay nodes 

2) Pick all intersection points between pairs of circles generated in step 1 as 

potential relay node positions (shown as red squares in Fig. 3.2). The idea is 

that each intersection point is guaranteed to cover at least (possibly more) two 

sensor nodes and is therefore a good candidate for a potential relay node 

position. 

3) If a sensor node has less than ks intersection points on its circumference (e.g. 

an isolated node having no other nodes within its transmission range), add 

extra potential relay node positions at random locations on its circumference. 

4) If a potential relay node position, j , is not within the transmission range of at 

least kr other potential relay positions, randomly insert some additional relay 

positions on the circle circumference centered at j with radius of rely node 

transmission range. 



If the problem size is small enough that all intersection points may be included in 

the set of potential relay positions. However, for a dense distribution of sensor nodes, this 

number may be too high and make the ILP intractable. Therefore, if necessary, a simple 

heuristic (e.g. reduction heuristic presented in Appendix I) is used to remove some of the 

potential intersection points such that, even after removal, the remaining positions can 

still satisfy the coverage and connectivity requirements. This final set R of potential relay 

node positions is then provided as input to the ILP formulation. 
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Chapter 4 Analysis of Simulation Results 

4.1 Experimental Environment 

In this chapter, we present the simulation results for our placement strategy and routing 

scheme. Our objective is to minimize the number of relay nodes required to form the 

upper tier relay node network, with respect to specified connectivity (kr), coverage (ks) 

and maximum per round energy dissipation (emax). We compare our results to the existing 

placement strategies that attempt to minimize the number of relay nodes, without 

considering the routing scheme and corresponding energy dissipation of selected relay 

nodes. 

We have used an experimental setup similar to [8], where the sensor nodes are 

randomly distributed over a 200 x 280 m area. The communication range of each sensor 

node is assumed to be rmax = 40 m and the communication range of each relay node is 

dmax = 200 m. All relay nodes are assumed to have the same initial energy supply of the 

amount of 5J. For measuring the energy dissipated by relay nodes, we adopt the First-

order Radio Model described in section 2.1.3 and as in [20], we set up the same values 

for ai, a.2, ft and q as ay = 02 = 50nJ/bit, ft = 100pJ/bit/m2 and q = 2 [20]. We further 

assume the average amount of data generated by each sensor node i is bj= 10 bits/round. 

Simulation results are obtained by CPLEX 9.1 solver. 

4.2 Simulation Results 

Table I compares the results of our intersection based approach with the grid based 

approach [20] that minimize the number of upper-tier relay nodes, ensuring desired 
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connectivity (e.g. kr = 1, 2) and coverage (ks= 1, 2), without any energy constraints. We 

achieve this by setting emax = co for the ILP formulation. The intersection based approach 

considers all intersecting points as potential relay node locations, as discussed in section 

3.6. For grid based approach, we varied the number of potential relay node locations from 

48 (for coarse grid) to 165 (fine grid), which are indicated as 48-Grid, 88-Grid and 165-

Grid. We only consider up to 50 sensor nodes in this experiment so that all relay nodes in 

intersection based approach can be included without applying any reduction heuristic. 

#of 
Sensors 

20 

30 

40 

50 

ks 

1 
2 
1 
2 
1 
2 
1 
2 

kr 

1 
2 
1 
2 
1 
2 
1 
2 

Placement Strategy 

48 Grid 

11 
22 
11 
22 
13 
27 
14 
29 

88 Grid 

10 
20 
11 
20 
12 
23 
12 
24 

165 Grid 

9 
18 
9 
18 
10 
21 
12 
24 

Intersection 

8 
15 
8 
15 
9 
17 
10 
20 

Table I No. of Relay nodes required by various placement schemes 

As shown in Table I, the quality of the solutions improves with higher number of 

potential relay locations in grid based approach, but the intersection based approach 

consistently outperforms the grid based approach in all cases. The underlying reason 

relies on the fact that grid based approach covers the sensing field with the same 

imaginary grid (could be either coarse or fine) while ignoring the distribution information 

of sensor nodes. However, the potential relay locations in our intersection based approach 

are generated with respect to the distribution of sensor nodes, which is more accurate. 
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Unlike many existing solutions for relay nodes placement ([8], [16], [17]), our 

formulation does not require the same value for both kr and ks. These two values can be 

adjusted independently. For example, it is quite possible to have kr= 1, ks = 2 or kr = 3, ks 

= 1 depending on user preference or application requirements. 

'3PC-1 — 
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Relay placement scheme 

Figure 4.1 Grid vs intersection based placement approach 
with different ks and Rvalues 

The results for different values of kr and ks, on 40 nodes sensor networks, is given in 

Figure 4.1 (the legend follows the convention of Table 1). For the intersection based 

approach, we have considered all potential relay positions without reduction. In Fig. 4.1, 

with respect to all pairs of ks and kr values (e.g. ks = 2 and kr =3), the quality of the 

solution, in grid based approach, is enhanced as the grid is more and more finely formed 

(e.g. varying form 48-grid to 165 grid). But our proposed intersection based approach 

outperforms all cases of grid based scenarios. As also shown in this figure, with respect to 
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all cases (e.g. Grid 48, Grid 88 , Grid 165 etc.), the required number of relay nodes 

significantly increases with the higher value of desired coverage (ks) while fixing the 

value of connectivity (kr). This relies on the fact that more relay nodes have to be 

included in the upper tier relay nodes network in order to ensure that each sensor node 

can communicate with at least ks number of relay nodes. However, while fixing the 

values of ks for those cases, increasing the value of connectivity (kr) does not require 

more relay nodes to be included. This is because the connectivity value (kr) is used to 

ensure each selected relay node is able to communicate with at least kr other relay nodes. 

In real application, the transmission range of a relay node is much longer than a regular 

sensor node. Therefore, the connectivity constraint (kr) among upper tier relay nodes 

network can be easily satisfied without the necessity to include more relay node. 

In the previous experiments, we only considered relatively small-size sensor 

networks which only contain up to 50 sensor nodes. Given sensor networks with 

relatively small number of sensor nodes deployed (e.g. 40 sensor nodes in the previous 

experiment), the number of potential relay locations generated by our intersection based 

approach is fairly small and can be directly supplied to the proposed ILP formulation. 

However, unlike grid based approach where the number of candidate relay positions is 

fixed no matter how many sensor nodes are deployed, potential relay node positions in 

our intersection based approach increase dramatically with the number of deployed 

sensor nodes. Therefore, given sensor networks with hundreds of sensor nodes, 

intersection based approach generates too many relay positions to make the ILP 

formulation tractable. To deal with this limitation, a reduction heuristic of relay nodes 

(e.g. the one presented in Appendix I) can be applied to ensure that the remaining 

49 



positions, even after removal, can still satisfy the pre-specified coverage and connectivity 

requirements. After reducing the relay positions generated in intersection based approach, 

we conduct the same experiment, as shown in Fig. 4.1, on networks with hundreds of 

sensor nodes for different coverage and connectivity requirements. The experimental 

results are presented in Table II (the legend follows the convention of Table I). 

# of Sensors 

200 

300 

400 

ks 

1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 

kr 

1 
2 
2 
3 
1 
2 
2 
3 
1 
2 
2 
3 

P 
48 

Grid 
22 
22 
42 
42 
26 
26 

NA 
NA 
25 
25 

NA 
NA 

88 
Grid 

19 
19 
35 
35 
20 
20 
39 
39 
21 
21 
39 
39 

acement Strategy 
165 
Grid 
17 
17 
31 
31 
17 
17 
33 
33 
18 
18 
34 
34 

Intersection 
Result 

14 
14 
28 
28 
15 
15 
29 
29 
15 
15 
31 
31 

# of potential 
57 
57 
57 
57 
61 
61 
61 
61 
66 
66 
66 
66 

Table II Grid vs intersection based placement approach 
with different ks and Rvalues 

We, in this experiment, focused on sensor networks containing 200, 300 and 400 

sensor nodes respectively. According to the results in Table II, intersection base approach 

still consistently outperforms grid based approach with respect to all cases of coverage 

and connectivity requirements even though not all relay positions generated in 

intersection based approach are included. Results in Table II, on the other hand, also 

demonstrate the limitation of the grid based approach. Given large number of deployed 

sensor nodes, a coarsely-formed grid, for example 48-Grid, cannot satisfy a high level of 
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coverage and connectivity requirement even if all 48 potential relay nodes are included. 

Therefore, there is no solution, marked as "NA" in table II, can be produced (e.g. 400 

sensor nodes with ks = 2 and kr =3). This limitation is resolved in the intersection based 

approach because potential relay nodes, in this approach, are generated with respect to 

the sensor locations. The significance of intersection based approach is also demonstrated 

in the last column of Table II, which represents the number of potential relay nodes after 

applying relay reduction heuristic on the initial set of relay node positions generated by 

our intersection based approach. By comparing with Grid 165 which use 165 potential 

relay positions to yield solutions of highest quality, our intersection based approach 

utilizes less than half of 165 potential relay positions but produces better results than Grid 

165. This scenario applies to all cases in Table II. 

•g 25 

0200 Sensors 
• 300 sensors 
O400'Sensors 

RE-Levell RE-LsveE RE-LeveB RE-LeveW :RE*Level5 
Energy s c h e m e 

Figure 4.2 Relative lifetime improvements 
using different energy constraint levels 

In the previous experiments, we have demonstrated that our ILP formulation can 
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handle relay placement of various coverage and connectivity requirements. Compared to 

different scenarios of grid based approach, our intersection based approach consistently 

outperforms grid based approach while using much less number of potential relay 

positions. However, in addition to optimizing the placement of relay nodes, our proposed 

ILP formulation also considers the energy dissipation during the relay placement phase. 

Our ILP formulation is able to determine not only the optimal placement of relay nodes, 

satisfying the pre-specified level of coverage and connectivity, but also a routing scheme 

which guarantees the network lifetime. We achieved this by setting up the maximum per 

round energy dissipation constraint (emax) in our proposed ILP formulation. In our next 

experiment, we varied the number of sensor nodes from 200 to 400 and computed 

potential relay node, positions using the intersection based strategy combined with the 

relay reduction heuristic. We used 5 predefined levels for emax, varying from RE-Level 1 

(Restricted Energy - Level 1) with emax = 400000rcJ, RE-Level 2 with emax = 300000«J, 

RE-Level 3 with emax = 250000«J, RE-Level 4 with emax = 200000nJ and RE-Level 5 

with emax = 150000«J. The lifetimes corresponding to each RE-Level were calculated 

based on the maximum allowed energy dissipation per round for each relay node. The 

lifetime Lmj„, obtained by setting emax = °o, corresponds to existing placement schemes 

that simply minimize the number of relay nodes without considering the per round energy 

dissipation. 

Fig. 4.2 shows the relative improvement of lifetime compared to Lmin using different 

levels of energy constraints (RE-Level 1 - RE-Level 5), for 200, 300 and 400 sensors 

respectively. In this experiment, the relative lifetime is calculated as a ratio ofLRE-Leveit to 

Lmin. From Figure 4.2, we can see that: for each level of energy constraint RE-Level i, the 
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more sensor nodes were deployed, the more relative improvement of lifetime is obtained. 

As we mentioned previously, the relative lifetime improvement is calculated with respect 

to Lmin which refers to the case of finding the minimum number of relay nodes without 

considering the per round energy dissipation. In such a case, it is highly possible that the 

resultant data gathering scheme may not be energy-efficient, which means the data 

forwarding pattern is not optimized and unbalanced. The unbalanced distribution of data 

flow will result in a situation where some relay nodes are responsible for transmitting 

much more data volume than the others, and hence dissipate energy at a much higher rate. 

As more sensor nodes are deployed, the unbalanced load of data will introduce more 

severe negative effect on the network lifetime simply because more data packets need to 

be forwarded to the base station. 

50 
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Figure 4.3 No. of required relay nodes with different energy constraint levels 



On the other hand, by setting the maximum per round energy dissipation constraint 

(emax) to a specific level, our ILP formulation will enforce some sort of balanced data 

loading among selected relay nodes to ensure the energy dissipation of each selected 

relay node is within the constraint (emax). However, these improvements come at the cost 

of introducing some additional relay nodes in the network. Figure 4.3 shows the number 

of relay nodes required for each scenario investigated in the experiments shown in Fig. 

4.2. The Min-Relay indicates the minimum number of relay nodes required, without 

restriction on energy dissipation, to obtain a lifetime of Lmi„. As expected, the required 

number of relay nodes increases as the value oiemax is more and more strictly constrained, 

but it can be seen from Fig 4.2 and Fig. 4.3 that, by using our approach, the network 

lifetimes can be significantly improved while allowing only very few of extra relay nodes. 

For example, for 400 nodes sensor networks by adding at most 30 extra relay nodes, the 

network lifetime can be increased as much as 38 times. 

Figure 4.4 Example of routing scheme of 200 sensors with e, 
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As we claimed previously, our ILP formulation is capable of finding a suitable 

routing scheme which provides a guaranteed network lifetime while jointly optimizing 

the relay node placement problem. This routing scheme is not directly generated by our 

ILP formulation. However, it can be reconstructed from the solution of the ILP 

formulation. In other words, for a given problem, the data gathering pattern is implied in 

the solution of the ILP formulation. 

Figure 4.5 Example of routing scheme of 200 sensors with &max = 200k nJ 

Figure 4.4 presents an example of data gathering pattern for a 200 sensor nodes 

network, which only focuses on minimizing the number of placed relay nodes without 

considering the energy dissipation. Figure 4.5, on the other hand, depicts the data gather 

scheme for the same 200 sensor nodes network where the maximum per-round energy 

dissipation is constrained at a level of 200k nJ. Fig. 4.4 employs 13 relay nodes serving 

as cluster heads to relay data from 200 sensor nodes to the base station. However, all data 
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flows are collected at relay node 1 before sending to the base station. This kind of 

centralized data gathering will lead to relay node 1 dissipating energy at a much higher 

rate than the rest of other relay nodes and quickly becomes "dead"(e.g. running out of 

power). Fig. 4.5, on the other hand, utilizes 17 relay nodes but the data flows are 

distributed at relay node 1,2, 16, 17 before transmitting to the base station. Moreover, 

unlike Fig. 4.4 in which there is only single outgoing data flow from each relay node, 

routing scheme in Fig. 4.5 applies some flow splitting on some relay nodes (e.g. relay 

node 6, 7, 10 etc.) to reduce the energy dissipation at those nodes. This kind of balanced 

data gathering contributes to the significant network lifetime improvement through 

evenly distribute data flow among selected relay nodes. 

Applying per-round energy constraint also results in an optimized data routing 

scheme. As we can see from Fig. 4.4, the data from relay node 4 to the base station 

follows the path " 4 - > 6 ^ 1 0 ^ 9 ^ 2 ^ 8 ^ 1 - > Base". With respect to ibe first 

order radio model [2], energy dissipation is directly related to the distance between the 

source and destination. An alternative better routing path, such as "4 -> 2 -> 1 ->Base", 

would save large amount of energy for those excluded relay nodes. A more energy-

efficient routing scheme is presented in Fig. 4.5, where energy dissipated at each relay 

node is meant to convey the data closer to the base station, for example, relay node 5 

sending data through "5 -> 2 -> 1 -> Base". 
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Chapter 5 Conclusions and Future Work 

5.1 Conclusions 

In two-tiered, cluster based sensor networks using relay nodes as cluster heads, 

conventional approaches solve the relay nodes placement problem that ensures 

connectivity and coverage, and the routing separately. In this thesis, we have solved these 

problems jointly, using an ILP formulation. 

Our formulation determines the number and positions of the relay nodes such that 

each sensor nodes is covered by at least ks relay nodes, and the relay node network is kr-

connected, while ensuring that a specified network lifetime is achieved by constraining 

the energy dissipation of all relay nodes to be below a given value. Our approach also 

determines an appropriate routing scheme that reduces the energy dissipation of the 

critical relay node(s). Moreover, we have proposed an intersection based approach for 

preparing the initial set of potential relay positions. The simulation results demonstrate 

that our intersection based approach consistently outperforms grid based approach [20]. 

We, through simulation results, also demonstrated that our ILP approach can significantly 

increase the network lifetime, as well as can provide desired level of fault tolerance at the 

cost of a few additional relay nodes. We show that our ILP formulation is able to generate 

optimal solutions for networks with hundreds of sensor nodes. 

5.2 Future Work 

As a direction of future work, we are currently working on developing a distributed 

approach that can be used for even large sensor networks. 
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Appendix I Relay Reduction Heuristic 

RelayReduction_Heuristic(Input: Ssemor, ks, kr, Pbase ; Output: Sreiay) 
begin 

Sintersecs= Obtain circle intersection for every pair of point in Sse„SOr; 
Tabreiay_se„sor = Construct relay covering sensor table from Sintersecs, and Ssens0r', 
Foreach( Point/? in Ssens0r) 
do 

if ( CheckCovering(p, Tabreiay_sensor )<ks) 
then 

i(Xurelay sensor 

= AddMorePostions(7aZ?rc/ay_sens0r, p, ks); 
endif 

end 
Tab relay sensor = R o w W i s e A s s e n d i n g S o r t ( 7 a 6 r e / ^ s e n s o r , Pbase)', 

1 aOrelay sensor 

= RemovoDup\icate(Tabrelay sensor, ks); 
^relay = ^Pj 

While (not all points in Ssemor is covered) 
do 

Find a relay R in Tabreiay sensor covering the maximum number of sensors; 
Add R tO Sreiay', 
Update relay-covering-sensor table Tabreiay sensor', 

end 
Foreach( Point p in Sreiay) 
do 

if ( CheckConnectivity(p, Sreiay) <kr) 
then 

Sreiay = AddMorePostions(5/„tersecte, kr); 
endif 

end 
Srelay= C o n n e C t i n g T o B a S e ( S r e l a y , Pbase)', 

R e t u r n Sreiay; 
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