University of Windsor Scholarship at UWindsor

Electronic Theses and Dissertations

Theses, Dissertations, and Major Papers

2007

Ligand designs for polynuclear and heterometallic complexes

Hua Han University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Han, Hua, "Ligand designs for polynuclear and heterometallic complexes" (2007). *Electronic Theses and Dissertations*. 8066.

https://scholar.uwindsor.ca/etd/8066

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Ligand Designs for Polynuclear and Heterometallic Complexes

By

Hua Han

A Dissertation

Submitted to the Faculty of Graduate Studies through the Department of Chemistry and Biochemistry in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Windsor

Windsor, Ontario, Canada 2007

©2007 Hua Han

Library and Archives Canada

Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada

Bibliothèque et Archives Canada

Direction du Patrimoine de l'édition

395, rue Wellington Ottawa ON K1A 0N4 Canada

> Your file Votre référence ISBN: 978-0-494-42376-9 Our file Notre référence ISBN: 978-0-494-42376-9

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Canada

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.

Abstract

The tripodal amido ligands $P(CH_2NHAr^R)_3$ can be utilized to produce mononuclear Ti, Zr, and Ta complexes, where $Ar^R = 3,5-(CF_3)_2C_6H_3$, Ph, and $3,5-Me_2C_6H_3$. The mononuclear compound $P(CH_2N-3,5-Me_2C_6H_3)_3$ TiNMe₂ reacts with excess Ni(CO)₄ to afford an early-late heterobimetallic complex $(CO)_3Ni[P(CH_2N-3,5-Me_2C_6H_3)_3]$ TiNMe₂ or a trinuclear complex $(CO)_2Ni[P(CH_2N-3,5-Me_2C_6H_3)_3$ TiNMe₂]₂. The reactions of 4 equiv of the mononuclear early transition metal complexes $P(CH_2NAr^R)_3$ TiNMe₂ or $P(CH_2NAr^R)_3$ Ta=N'Bu with $[Rh(CO)_2(\mu-Cl)]_2$ produce the trinuclear *trans*rhodiumcarbonylchlorobisphosphine complexes. The donor abilities of the phosphine complexes are affected by the direct interactions between the phosphine donors and Ti or Ta metal centers.

The reaction of phosphine ligand $P(CH_2NHPh)_3$ with nickelocene Cp_2Ni produces a Ni(II) dimer $[CpNiP(CH_2NHPh)_2]_2$ with a bridging diamido-phosphido ligand. Ni $[P(CH_2NHPh)_3]_4$ is identified as an intermediate. The Ni(II) dimer can be used as a ligand to give the early-late transition tetranuclear heterometallic complex $[CpNiP(CH_2NPh)_2Ti(NMe_2)_2]_2$.

The reactions of $P[CH_2NAr^R]_3ZrCl(THF)$ with cyclopentadienyllithium (LiC₅H₅) or lithium salt of the fulvalene dianion (Li₂C₁₀H₈) produce P(CH₂NAr^R)₃ZrCp and the bridged binuclear complexes trans-[P(CH₂NAr^R)₃Zr]₂(η^5 : η^5 -C₁₀H₈), respectively, where Ar^R Ph and $3,5-Me_2C_6H_3$. The mononuclear titanium = complexes [P(CH₂NAr^R)₃]TiOC₆H₄'Bu and the binuclear species $[P(CH_2NPh)_3Ti]_2-\mu$ - $4,4' \{O[3,3',5,5'-(C_6H_2Me_2)_2]O\},\$ ${[P(CH_2NPh)_3]Ti}_2(\mu-O),$ [P(CH₂N-3,5and $Me_2C_6H_{3}$]Ti- μ -O-Ti(NMe₂)₃, are prepared from [P(CH₂NAr^R)₃]TiNMe₂ via protonolysis. One equiv of $\{[P(CH_2NPh)_3]Ti\}_2(\mu-O)$ precipitates a polymer of $\{Cl(CO)Rh[P(CH_2NPh)_3Ti]_2O\}_n$. A single CO stretch is observed in the IR spectrum of a KBr pellet at 1972.5 cm⁻¹.

Se=P(CH₂NHAr^R)₃ are prepared by oxidation of [P(CH₂NHAr^R)₃], which can react with AlMe₃ to afford [P(CH₂NAr^R)₂Se](AlMe₂)₃ or Me₃AlP(CH₂NAr^R)₂Se(AlMe₂)₃ with the unanticipated diamidoselenophosphinito ligands, where $Ar^{R} = 3,5-(CF_{3})_{2}C_{6}H_{3}$, Ph, and $3,5-Me_{2}C_{6}H_{3}$. Comparing the reactions with P(CH₂NHAr^R)₃, only P(CH₂NAr^R)₃Al₂Me₃ or Me₃Al·P(CH₂NAr^R)₃Al₂Me₃ are produced without P-C bond cleavage.

Se=P[CH₂NH-3,5-(CF₃)₂C₆H₃]₃ reacts with *n*-butylmagnesium to produce a binuclear magnesium complex bridging with a bisphosphine ligand {P₂[CH₂N-3,5-(CF₃)₂C₆H₃]₄}(MgTHF₂)₂ by the cleavage of the P-C bond and the Se=P bond, with concomitant loss of [^{*n*}BuCH₂N-3,5-(CF₃)₂C₆H₃]₂Mg. Byproducts include elemental selenium and SeMg. Se=P(CH₂NHAr^R)₃ are efficiently reduced by Zr(NEt₂)₄ to produce the mononuclear zirconium complexes [P(CH₂NAr^R)₂SeZrNAr^RCH₂NEt₂], where Ar^R = Ph and 3,5-Me₂C₆H₃.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Samuel A. Johnson for his support and guidance on the research during my graduate term at the University of Windsor.

I am grateful to Mr. Mike Fuerth (NMR), Professor James Green (GC/MS) and Dr. Guangcai Bai for their help and insightful discussions.

Many thanks go to past and present members of the Johnson group. I am especially grateful for the help of Jillian Hatnean and Meghan Doster in editing this thesis.

A special thanks is due to my parents, without whom this effort would have been worth nothing.

This dissertation is dedicated to my family.

STATEMENT OF ORIGINALITY

I certify that this dissertation, and the research to which it refers, are the product of my own work, and that any idea or quotations from the work of other people, published or otherwise, are fully acknowledged in accordance with the standard referencing practices of the discipline.

TABLE OF CONTENTS

ABSTRACT	
ACKNOWLEDGEMENTS	V
STATEMENT OF ORIGINALITY	vi
LIST OF TABLES	x
LIST OF FIGURES	xiii
GLOSSARY OF TERMS	xvi
Chapter 1: Tripodal Amidometal Chemistry and Ligand Designs	1
1.1 Introduction	1
1.2 Tripodal Amido Ligands Containing Carbon or Silicon Backbones	4
1.3 Tripodal Amido Amine Ligands Containing Nitrogen Backbones	12
1.4 Tripodal Amido Phosphine Ligands Containing Phosphorus Backbone	es14
1.5 Scope of this Thesis	15
1.6 References	17
Chapter 2: Diligating Tripodal Amido Phosphine Ligands for Heteromet	allic
Complexes	23
Complexes	23
Complexes	23 23 26
Complexes	23 23 26 29
 Complexes. 2.1 Introduction. 2.2 Syntheses of the Ligand Precursors P(CH₂NHAr^R)₃ 2.3 Syntheses of the Mononuclear Titanium Complexes. 2.4 Syntheses of the Mononuclear Tantalum Complexes. 	
 Complexes. 2.1 Introduction. 2.2 Syntheses of the Ligand Precursors P(CH₂NHAr^R)₃ 2.3 Syntheses of the Mononuclear Titanium Complexes. 2.4 Syntheses of the Mononuclear Tantalum Complexes. 2.5 Mononuclear Titanium and Tantalum Complexes as Building Blocks for the Statement Precursors P(CH₂NHAr^R) 	23 23 26 29 33 for
 Complexes. 2.1 Introduction. 2.2 Syntheses of the Ligand Precursors P(CH₂NHAr^R)₃ 2.3 Syntheses of the Mononuclear Titanium Complexes. 2.4 Syntheses of the Mononuclear Tantalum Complexes. 2.5 Mononuclear Titanium and Tantalum Complexes as Building Blocks for Heterometallic Early-Late Transition Metal Complexes. 	
 Complexes. 2.1 Introduction. 2.2 Syntheses of the Ligand Precursors P(CH₂NHAr^R)₃ 2.3 Syntheses of the Mononuclear Titanium Complexes. 2.4 Syntheses of the Mononuclear Tantalum Complexes. 2.5 Mononuclear Titanium and Tantalum Complexes as Building Blocks for Heterometallic Early-Late Transition Metal Complexes. 2.6 Characterization of the Phosphine Donor. 	
 Complexes. 2.1 Introduction. 2.2 Syntheses of the Ligand Precursors P(CH₂NHAr^R)₃ 2.3 Syntheses of the Mononuclear Titanium Complexes. 2.4 Syntheses of the Mononuclear Tantalum Complexes. 2.5 Mononuclear Titanium and Tantalum Complexes as Building Blocks the Heterometallic Early-Late Transition Metal Complexes. 2.6 Characterization of the Phosphine Donor. 2.7 Synthesis and Structure of a Ni(II) Dimer with a Bridging Diamido-phosphile 	
 Complexes. 2.1 Introduction. 2.2 Syntheses of the Ligand Precursors P(CH₂NHAr^R)₃ 2.3 Syntheses of the Mononuclear Titanium Complexes. 2.4 Syntheses of the Mononuclear Tantalum Complexes. 2.5 Mononuclear Titanium and Tantalum Complexes as Building Blocks the Heterometallic Early-Late Transition Metal Complexes. 2.6 Characterization of the Phosphine Donor. 2.7 Synthesis and Structure of a Ni(II) Dimer with a Bridging Diamido-ph Ligand. 	
 Complexes. 2.1 Introduction. 2.2 Syntheses of the Ligand Precursors P(CH₂NHAr^R)₃ 2.3 Syntheses of the Mononuclear Titanium Complexes. 2.4 Syntheses of the Mononuclear Tantalum Complexes. 2.5 Mononuclear Titanium and Tantalum Complexes as Building Blocks the Heterometallic Early-Late Transition Metal Complexes. 2.6 Characterization of the Phosphine Donor. 2.7 Synthesis and Structure of a Ni(II) Dimer with a Bridging Diamido-ph Ligand. 2.8 Characterization of the Intermediate and the Byproducts in the Reaction 	
 Complexes. 2.1 Introduction. 2.2 Syntheses of the Ligand Precursors P(CH₂NHAr^R)₃ 2.3 Syntheses of the Mononuclear Titanium Complexes. 2.4 Syntheses of the Mononuclear Tantalum Complexes. 2.5 Mononuclear Titanium and Tantalum Complexes as Building Blocks theterometallic Early-Late Transition Metal Complexes. 2.6 Characterization of the Phosphine Donor. 2.7 Synthesis and Structure of a Ni(II) Dimer with a Bridging Diamido-ph Ligand. 2.8 Characterization of the Intermediate and the Byproducts in the Reaction Phosphine Ligand [P(CH₂NHPh)₃] with Cp₂Ni. 	
 Complexes. 2.1 Introduction. 2.2 Syntheses of the Ligand Precursors P(CH₂NHAr^R)₃	
 Complexes. 2.1 Introduction. 2.2 Syntheses of the Ligand Precursors P(CH₂NHAr^R)₃	

	2.11 Experimental
	2.12 References
C	hapter 3: Bridged Dinuclear Tripodal Amido-Phosphine Complexes of Titanium
an	nd Zirconium83
	3.1 Introduction
	3.2 Synthesis of the Mononuclear Zirconium Chloride Complexes
	3.3 Synthesis of the Mononuclear Zirconium Complexes with Unlinked
	Cyclopentadienyl Rings
	3.4 Synthesis of the Binuclear Zirconium Complexes with the Bridging Fulvalenide
	Ligand and Comparison with the Analogous Mononuclear Zirconium Complexes
	with Unlinked Cyclopentadienyl Rings94
	3.5 Synthesis of the Bridged Binuclear Titanium Complexes
	3.6 Polymer Synthesis
	3.7 Summary and Conclusion
	3.8 Experimental112
	3.9 References
Cł	hapter 4: Diamidoselenophosphinito Ligands by P-C bond Cleavage of Phosphine
Se	lenides and a Comparison to Related Tripodal Triamidophosphine
Co	27 mplexes
	4.1 Introduction
	4.2 Oxidation of P(CH ₂ NHAr ^R) ₃ with Selenium
	4.3 Synthesis of the Trinuclear Complexes via Reactions of Se=P(CH ₂ NHAr ^R) ₃ with
	AlMe ₃
	4.4 Synthesis of the Trimethylaluminum Adducts of
	$[P(CH_2NAr^R)_2Se](A1Me_2)_3\dots 140$
	4.5 Synthesis of the Bimetallic Aluminum Amido Complexes with the
	P(CH ₂ NHAr ^R) ₃ ligands144
	4.6 Synthesis of the Adducts of the Bimetallic Aluminum Amido Complexes
	$Me_{3}Al \cdot P(CH_{2}NAr^{R})_{3}Al_{2}Me_{3}146$
	4.7 Ligand Design and Bonding Modes150
	4.8 Summary and Conclusions151

..

4.9 Experimental152
4.10 References165
Chapter 5: A Binuclear Magnesium Complex Bridged by a Bisphosphine
Ligand
5.1 Introduction
5.2 Synthesis and Structure of a Binuclear Magnesium Complex Bridged by a
Bisphosphine Ligand173
5.3 Characterization of the Byproducts and the Mechanism of the Reaction of
Se=P[CH ₂ NH-3,5-(CF ₃) ₂ C ₆ H ₃] ₃ with <i>n</i> -Butylmagnesium176
5.4 Synthesis and Structures of the Zirconium Compounds with the Tripodal
Diamido-selenophosphinito ligands182
5.5 Summary and Conclusions
5.6 Experimental
5.7 References
Chapter 6: Summary and Future Work194
6.1 Summary200
6.2 Future Work
6.3 Experimental
6.4 References
Appendix One: X-ray Crystal Structure Data
Vita Auctoris

List of Tables

Table 2.1	Selected distances (Å) and bond angles for compounds 2a, 2b 3		
	and 2c		
Table 2.2	Metal carbonyl stretching frequencies of compounds 6a-c, 7a-c	49	
	and 8a-c in CH ₂ Cl ₂ , their ${}^{1}J_{RhP}$ coupling constants and ${}^{31}P$ NMR		
	shifts, and the ³¹ P NMR shifts of the phosphine donors 1a-c , 2a c and 3a-c		
Table 2.3	de 2.3 Crystallographic data for compounds 1c, 2a-c, 3b, 5, 8c, 9		
	11		
Table 3.1	.1 Crystal data and structure refinement for 14c, 15c, 16c, 17c, 1		
	and 20		
Table 4.1	Selected bond lengths (Å) and angles (deg) of the phosphine		
	selenides 22a-c		
Table 4.2	The $^{1}J_{PSe}$ coupling constants, ^{31}P NMR shifts of 22a-c and the		
	carbonyl stretching frequencies of Rh(CO)Cl[P(CH ₂ NHAr ^R) ₃] _{2.}		
Table 4.3	Selected bond lengths (Å) and angles (deg) of 23a, 23c 13		
Table 4.4	Selected bond lengths (Å) and angles (deg) of the Lewis acid-		
	base adducts 24b and 26b		
Table 4.5	Crystallographic data for compounds 22a-c, 23a, 23c, 24b, 25b,		
	and 26b		
Table 5.1	Crystallographic data for compounds 27, 35 and 37c		
Table A 1.1	Positional parameters and U(eq) for P[CH ₂ NH-3,5-(CF ₃) ₂ C ₆ H ₃] ₃		
	(1a)		
Table A 1.2	Positional parameters and $U(eq)$ for $P(CH_2N-3,5-$	214	
	$(CF_3)_2C_6H_3)_3TiNMe_2$ (2a)		
Table A 1.3	Positional parameters and U(eq) for $P(CH_2NPh)_3TiNMe_2$ (2b) 210		
Table A 1.4	Positional parameters and U(eq) for $P(CH_2NAr^{Me})_3TiNMe_2$ (2c) 21		
Table A 1.5	5 Positional parameters and U(eq) for $P(CH_2NPh)_3Ta=N^tBu$ (3b) 22		
Table A 1.6	Positional parameters and U(eq) for	221	
	$(CO)_2Ni[P(CH_2NAr^{Me})_3TiNMe_2]_2$ (5)		

Х

- **Table A 1.7**Positional parameters and U(eq) for trans-RhCl(CO)(3c)₂ (8c)224
- **Table A 1.8**Positional parameters and U(eq) for [CpNiP(CH2NHPh)2]2 (9)225
- Table A 1.9Positional
parametersparameters
andU(eq)for228 $[CpNiP(CH_2NPh)_2Ti(NMe_2)_2]_2$ (11)
- Table A 1.10PositionalparametersandU(eq)forP[CH2N-3,5-229 $Me_2C_6H_3$]_3ZrCp (14c)
- Table A 1.11Positional parameters and U(eq) for P[CH2NPh]3Li3(Et2O)1.5232(15d)
- **Table A 1.12** Positional parameters and U(eq) for $[P(CH_2N-3,5-234)]$ $Me_2C_6H_3)_3Zr]_2(\eta^5:\eta^5-C_{10}H_8)$ (16c)
- Table A 1.13Positional parameters and U(eq) for $P[CH_2N-3,5-236]$ $Me_2C_6H_3]_3TiO[4-t-BuC_6H_3]$ (17c)
- **Table A 1.14** Table A 1.12 Positional parameters and U(eq) for 239 $P[CH_2NPh]_3Ti-\mu-O-Ti[PhNCH_2]_3P$ (19)
- **Table A 1.15**Positional parameters and U(eq) for P[CH2N-3,5-Me2C6H3]3Ti- 240 μ -O-Ti(NMe2)3 (20)
- **Table A 1.16** Positional parameters and U(eq) for Se=P[CH₂NH-3,5- 241
 $(CF_3)_2C_6H_3]_3$ (22a)
- **Table A 1.17** Positional parameters and U(eq) for Se=P(CH₂NHPh)₃ (**22b**) 243
- **Table A 1.18** Positional parameters and U(eq) for Se=P(CH₂NH-3,5- 244 $Me_2C_6H_3$)3 (22c)
- Table A 1.19Positional parameters and U(eq) for $P[CH_2N-3,5-245]$ $(CF_3)_2C_6H_3]_2Se(AlMe_2)_3$ (23a)
- **Table A 1.20** Positional parameters and U(eq) for P(CH2N-3,5- 247 $Me_2C_6H_3)_2Se(AlMe_2)_3$ (23c)
- Table A 1.21PositionalparametersandU(eq)for249 $Me_3Al \cdot P(CH_2NPh)_2Se(AlMe_2)_3$ (24b)
- Table A 2.22Positional parameters and U(eq) for P[CH2N-3,5- 250
 $(CF_3)_2C_6H_3]_3Al_2Me_3$ (25a)
- Table A 2.23Positional parameters and U(eq) for Me₃Al·P(CH₂NPh)₃Al₂Me₃252(26b)

- **Table A 2.24** Positional parameters and U(eq) for $\{P[CH_2N-3,5-253]$ $(CF_3)_2C_6H_3]_2MgTHF_2\}_2$ (27)
- **Table A 2.25**Positional parameters and U(eq) for $\{P[CH_2N-3,5-255]$ $(CF_3)_2C_6H_3]_2Se_2\}^{-}[HNEt_3]^{+}$ (35)
- Table A 2.26Positional parameters and U(eq) for $P[CH_2N-3,5-259]$ $Me_2C_6H_3]_2SeZrN(-3,5-Me_2C_6H_3)CH_2NEt_2$ (37c)

List of Figures

Figure 1.1	Tripodal amido ligands containing carbon, silicon, nitrogen or 3	
	phosphorus backbones	
Figure 1.2	Tripodal amido metal complexes with weakly coordinating	9
	donor functions	
Figure 2.1	Potential binding mode of the $P(CH_2NHAr^R)_3$ ligands to an early	25
	transition metal fragment (shown as M) and a second metal	
	complex (shown as M') along with an illustration of the major and	
	minor lobes of the lone pair orbital on phosphorus.	
Figure 2.2	ORTEP depiction of the solid-state structure of 1a as determined	29
	by X-ray crystallography	
Figure 2.3	Solid-state molecular structure of 2b as determined by X-ray	31
	crystallography	
Figure 2.4	Solid-state molecular structure of 3b as determined by X-ray	36
	crystallography	
Figure 2.5	ORTEP depiction of the solid-state molecular structure of	40
	$(CO)_2Ni[P(CH_2N-3,5-Me_2C_6H_3)_3TiNMe_2]_2$ (5)	
Figure 2.6	ORTEP depiction of the solid-state molecular structure of 8c as	43
	determined by X-ray crystallography	
Figure 2.7	.7 Phosphorus-31 NMR chemical shifts vs. carbonyl stretching	
	frequencies for complexes 6a-c, 7a-c and 8a-c	
Figure 2.8	Solid-state molecular structure of 9 as determined by X-ray	53
	crystallography	
Figure 2.9	Solid-state molecular structure of 11 as determined by X-ray	58
	crystallography	
Figure 3.1	Solid-state molecular structure of 14c as determined by X-ray	90
	crystallography	
Figure 3.2	Solid-state molecular structure of 15d as determined by X-ray	93
	crystallography	

Figure 3.3	Solid-state molecular structure of 16c as determined by X-ray	97
	crystallography	
Figure 3.4	Solid-state molecular structure of 17c as determined by X-ray	101
	crystallography	
Figure 3.5	Solid-state molecular structure of 19 as determined by X-ray	105
	crystallography	
Figure 3.6	Solid-state molecular structure of 19 viewed along the	106
	crystallographic 3-fold axis	
Figure 3.7	Solid-state molecular structure of 20 as determined by X-ray	108
	crystallography	
Figure 4.1	Potential bonding modes of the formally trianionic ligands	130
	P[CH ₂ NHAr ^R] ₃ and Se=P[CH ₂ NHAr ^R] ₂ with metal complexes	
	labeled M	
Figure 4.2	Solid-state molecular structure of 22a as determined by X-ray	132
	crystallography	
Figure 4.3	Solid-state molecular structure of 22b as determined by X-ray	133
	crystallography	
Figure 4.4	Solid-state molecular structure of 22c as determined by X-ray	133
	crystallography	
Figure 4.5	Solid-state molecular structure of 23a as determined by X-ray	137
	crystallography	
Figure 4.6	Solid-state molecular structure of 23c as determined by X-ray	138
	crystallography	
Figure 4.7	Solid-state molecular structure of 24b as determined by X-ray	141
	crystallography	
Figure 4.8	Solid-state molecular structure of 25a as determined by X-ray	146
	crystallography	
Figure 4.9	ORTEP depiction of the solid-state molecular structure of 26b as	148
	determined by X-ray crystallography	
Figure 5.1	Solid-state molecular structure of 27 obtained by X-ray	175
	crystallography. Selected bond lengths	

Figure 5.2	Solid-state molecular structure of 35 determined by X-ray	
	crystallography	
Figure 5.3	Solid-state molecular structure of 37 c as determined by X-ray	185

crystallography

GLOSSARY OF TERM

Å	Angström
Anal.	analysis
Ar ^R	3,5-(CF ₃) ₂ C ₆ H ₃ , Ph, and 3,5-Me ₂ C ₆ H ₃
Ar ^{Me}	3,5-Me ₂ C ₆ H ₃
Ar ^{CF3}	3,5-(CF ₃) ₂ C ₆ H ₃
aq	aqueous
"Bu	n-butyl group
'Bu	tertiary butyl group
¹³ C	carbon-13
Calcd.	calculated
cm	centimetres
Ср	cyclopentadienyl
d	doublet
dd	doublet of doublets
DME	1,2-dimethoxyethane
deg	degrees
°C	degrees Celsius
D	deuterium
Et	ethyl group
¹⁹ F	fluorine-19
g	grams
GC/MS	gas chromatography/mass spectrometry

{ ¹ H}	proton decoupled
¹ H	proton
Hz	Hertz, seconds ⁻¹
IR	infrared
K	Kelvin
⁷ Li	lithium-7
mm	millimetres
Me	methyl group
m/e	mass/charge
Mes	mesityl group
mg	milligram
mL	milliliter
mmol	millimole
mol	mole
М	molarity
ORTEP	Oakridge Thermal Ellipsoid Plotting Program
³¹ P	phosphorus-31
Ph	phenyl group
ppm	parts per million
reflns	reflections (X-ray crystallography)
THF	tetrahydrofuran
U (eq)	equivalent isotropic displacement parameter
η^{n}	n-hapto

wavelength

δ

λ

chemical shift in ppm

Chapter One

Tripodal Amidometal Chemistry and Ligand Designs

1.1 Introduction

The amido-metal bond in early transition metal complexes is kinetically inert and thermodynamically stable, which is far less interesting than the corresponding carbon-metal bond.¹ However, amidometal chemistry has recently utilized stable amido-metal bonds for ligand designs in main group and transition metal chemistry, and to produce reactive metal centres.¹⁻⁴

In this thesis, we first investigate and develop the ligands $P(CH_2NHAr^R)_3$, where $Ar^R = 3,5-(CF_3)_2C_6H_3$, Ph, and $3,5-Me_2C_6H_3$. Related tripodal amido ligands containing carbon, silicon or nitrogen backbones have been studied.⁵⁻⁷ These polydentate ligands $P(CH_2NHAr^R)_3$ combine the tripodal amido donors with a phosphine donor and have been very successfully employed in the synthesis of

References begin on page 17

1

polynuclear or heterometallic complexes, which will be described in Chapter 2 through 6.

In this chapter, we introduce the 3-fold-symmetrical tripodal amido ligands with variable backbones, as shown in Figure 1.1. The different reactivities of the complexes will be described. Tripodal amido ligands containing carbon or silicon backbones have been utilized to stabilize polar metal-metal bonds and are employed as building blocks in the synthesis of heterometallic complexes. Tripodal amido amine ligands containing nitrogen backbones have been employed to stabilize "half-naked' trivalent transition metal complexes and ligand-metal triple bonds.

The two substituents of amido ligands [NR₂]⁻ play an important role in amidometal chemistry, because the electronic and steric properties of the substituents influence the metal centers. ⁸⁻¹⁹ By tuning the substituents, polydentate ligands can also kinetically stabilize ligand-metal bonds and sterically protect reactive metal centers. The thermodynamic stability of amidometal fragments and the kinetic stability obtained by steric shielding allow tripodal amidometal complexes to be used as stable molecular building blocks in main group and transition metal compounds. Amido functions may also be combined with other charged or neutral donor functions. This combination offers greater potential to modify reactive sites in early transition metal reagents and catalysts, as well as in ligands and complexes designed for molecular building blocks.²⁰⁻³¹

2

Figure 1.1 Tripodal amido ligands containing carbon, silicon, nitrogen or phosphorus backbones

References begin on page 17

Ň

 $\begin{array}{l} \mathsf{R} = 3,5\text{-}(\mathsf{CF}_3)_2\mathsf{C}_6\mathsf{H}_3; \,\mathsf{Ph};\\ 3,5\text{-}\mathsf{Me}_2\mathsf{C}_6\mathsf{H}_3 \end{array}$

[R₃N₃P]³⁻

R

R

R

R

 $R = SiMe_3$; $SiMe_2^tBu$; C_6F_5

[R₃N₃N]³⁻

1.2 Tripodal Amido Ligands Containing Carbon or Silicon Backbones

Tripodal amido ligands containing carbon or silicon backbones can be utilized to produce ligand-metal cages and have been employed as building blocks for homobinuclear complexes, heterobimetallic complexes and polynuclear complexes. For example, a tripodal amido ligand containing a carbon backbone has been used to produce a trinuclear thallium amido compound, which may be thermally converted to a tetranuclear thallium amido compound with a Tl(II)-Tl(II) bond (as shown in Scheme 1.1).¹⁰

Scheme 1.1

References begin on page 17

Chapter One: Tripodal Amidometal Chemistry and Ligand Designs

Group 14 metal complexes with tripodal amido ligands were found to act as versatile ligands in gold chemistry. The tripodal lithium amide $H_3CC(CH_2N(Li)SiMe_3)_3(THF)_3$ reacted with $SnCl_2$ and $GeCl_2(1,4-dioxane)$ in THF to give triamidometalates $H_3CC(CH_2NSiMe_3)_3MLi(THF)_2$ (M = Sn or Ge), as shown in Scheme 1.2. A Ge-Au-Ge unit was established by the reaction with 2 equiv of $H_3CC(CH_2NSiMe_3)_3MLi(THF)_2$ and $[Q][AuX_2]$ (Q = Ph_3PCH_2Ph, Ph_4P; X = Cl, Br). The reaction of $[MeSi{Me_2SiN(p-tol)}_3SnLi(Et_2O)]$ with a dinuclear gold(II) derivative $[Au_2(CH_2PPh_2CH_2)_2Cl_2]$ 1:2 ratio affords in a [Au₂(CH₂PPh₂CH₂)₂(MeSi{Me₂SiN(*p*-tol)}₃Sn)₂ with a Sn-Au-Au-Sn linear unit.^{10, 11} These results show that this highly robust tripodal amido ligand is suitable for stabilizing Group 14-Au bonds and allows for the synthesis of heterometallic complexes with gold in the oxidation states +I and +III.

The reaction of lithium triamidostannate $MeSi{SiMe_2N(p-Tol)}_3SnLi(OEt_2)$ with 0.25 equiv of $[(Ph_3P)AgCl]_4$ in toluene yields a Sn-Ag complex and provides the first direct structural evidence for an Ag-Sn bond (Scheme1.3).⁹

Triamidostannates can bind to the Group 4 transition metal complexes to give thermally stable heterometallic compounds.^{8, 13,32} These ligands were successfully employed for the stabilization of tin-transition metal bonds and in the synthesis of heterometallic metal complexes (Scheme 1.4). Apart from the electronic properties of the amido ligands stabilizing the stannate units, the effective shielding of the metalmetal bonds by the ligand frameworks and periphery of the tripod play an important role.

Chapter One: Tripodal Amidometal Chemistry and Ligand Designs

Tripodal amido ligands-Group 4 complexes have also been used as starting materials to synthesize early-late heterobimetallic complexes.^{32-39,40} These complexes have been found to insert polar organic substrates, as shown in Scheme 1.5.

Scheme 1.5

In amido complexes, the addition of weakly coordinating donor functions may adjust the size of the reactive site at metal centers.^{1, 2} The coordination of one, two or three F atoms to metals has been studied systematically. The structures of these

Chapter One: Tripodal Amidometal Chemistry and Ligand Designs

complexes demonstrate the relationship between the size of the anionic monodentate ligands and the number of coordinated C-F groups, as shown in Figure 1.2.^{41-44,45-47}

Figure 1.2 Tripodal amido metal complexes with weakly coordinating donor functions

Tilly and Turculet have reported the novel ligands derived from *cis*, *cis*-1,3,3triaminocyclohexane (tach), which have been utilized to support reactive early transition metal complexes.^{48,29} The steric properties of ligands affect metal centers and leave them accessible to smaller molecular reactants by inhibiting intermolecular

9

pathways. The mononuclear zirconium complexes can be alkylated by different Grignard and alkyllithium reagents, as shown in Scheme 1.6.

Scheme 1.6

 $R = Ph, CH_2SiMe_2, CH(SiMe)_2$

The reaction of the Ti silyl complex with H_2 (1atm) affords the clean Ti monohydride complex and HSi(SiMe₃)₃. The reaction of the Zr silyl complex with H_2 (1atm) only results in the mixture, as shown in Scheme 1.7. However, addition of PMe₃ to the mixture product produces the clean hydride complex. Scheme 1.7

Chapter One: Tripodal Amidometal Chemistry and Ligand Designs

1.3 Tripodal Amido Amine Ligands Containing Nitrogen Backbones

The tripodal amido amine ligands may coordinate transition metals in a tetradentate manner.⁴⁹ These ligands have been employed to stabilize trivalent "half-naked" transition metal complexes and ligand-metal triple bonds.

Lithium salts can be used as starting materials to synthesize the trigonalmonopyramidal M(III) complexes (M= V, Ti, Cr and Fe), as shown in Scheme 1.8.⁴⁸

The reactions of the vanadium complexes with trimethylsilyl azide at room temperature afford the silylimido complexes, as shown in Scheme 1.9.50 The reactions of vanadium complexes with propylene oxide, elemental sulfur or selenium, and Te=PMe₃ produce the corresponding chalcogenide.

The reaction of tantalum chloride complex with LiPHR' affords phosphanidene tantalum(V) complex, as shown in Scheme 1.10.^{51,52,53} The tantalum chloride complex reacts with ethyl or vinyl Grignard reagents to produce the corresponding ethylene or acetylene complex, which is accompanied by the elimination of ethane or ethylene.⁵⁴

Scheme 1.10

The tripodal amido amine ligands may stabilize the ligand-metal (Mo or W) triple bonds. The tungsten chloride complex can be alkylated by LiR' (R' = Me, Et) to prepare *n*-alkyl complexes, which may loss H_2 to form a thermodynamically favorable W=C bond, as shown in Scheme 1.11.^{55,45,56}

Scheme 1.11

 $[R_{3}N_{3}N]WCI \xrightarrow{+ \text{ LiMe}} [R_{3}N_{3}N]W-CH_{3} \xrightarrow{- H_{2}} [R_{3}N_{3}N]W \equiv CH$ $R=SiMe_{3}$

These results demonstrate that the tripodal amido amine ligands are suitable to stabilize and sterically protect transition metal centers, especially for ligand-metal triple bonds.

1.4 Tripodal Amido Phosphine Ligands Containing Phosphorus Backbones

Chapter One: Tripodal Amidometal Chemistry and Ligand Designs

Compared with tripodal amido ligands containing carbon, silicon or nitrogen backbones, the tripodal amido phosphine ligands P(CH₂NHAr^R)₃ have significantly different chemical functionalities. ^{42-47, 57-65}.

P(CH₂NHPh)₃ was first synthesized in the 1970's, but never used as a ligand.⁶⁶ In this thesis, we first utilized and developed a series of related ligands P(CH₂NHAr^R)₃, where Ar^R is an aryl substituent (Ar^R = 3,5-(CF₃)₂C₆H₃, Ph, and 3,5-Me₂C₆H₃).⁶⁷ The tripodal amido phosphine ligands P(CH₂NHAr^R)₃ stabilize early transition metals to produce mononuclear early transition metal complexes, which are suitable for the facile synthesis of polynuclear or heterometallic complexes.^{42, 68, 69} These studies show that 3-fold-symmetrical tripodal amido ligands containing variable backbones display different properties and have been utilized to activate and stabilize different species and molecules.

1.5 Scope of this Thesis

The long-term goals of our research of amido ligand designs are to develop the synthetic methodology to prepare polynuclear clusters and polymers with ligandmetal units. In this thesis, we focus on the study of the tripodal amido phosphine ligands $P(CH_2NHAr^R)_3$.

This thesis is divided into five chapters aside from the introduction in Chapter one. The tripodal amido ligands $[P(CH_2NHAr^R)_3]$ studied in Chapter 2 were originally designed for mononuclear early transition metal complexes. These mononuclear early transition metal complexes are used as building blocks to synthesize early-late polynuclear or heterobimetallic complexes. The phosphine ligand cannot bind its lone pair to the early transition metals chelated by the amido donors, but it is well situated

15

to bind to the late transition metal complexes. These ligands have been demonstrated to be well suited for the synthesis of early-late transition metal heterobimetallic complexes. Chapter 2 also describes the preparation of a Ni(II) dimer with a bridging diamido-phosphido ligand by cleavage P-C bond of phosphine ligand P(CH₂NHPh)₃, which is accompanied with the loss of one -CH₂NHPh arm. This type of the Ni(II) dimer with the bridging diamido-phosphido ligand has been used as a ligand to give early-late transition tetranuclear heterometallic complexes.

In Chapter 3, we use mononuclear tripodal amido Ti and Zr complexes to synthesize the bridged binuclear complexes and test the synthetic feasibility of preparing polymers using the diamagnetic early transition metals zirconium and titanium complexes.

In Chapter 4, the ligands $Se=P(CH_2NHAr^R)_3$ are described. These ligands provide a facile synthetic methodology to triangular trinuclear or tetranuclear complexes of the unanticipated diamidoselenophosphinito ligands by cleavage of a P-C bond, where $Ar^R = 3,5-(CF_3)_2C_6H_3$, Ph, and $3,5-Me_2C_6H_3$. Comparing the reactions with free ligand precursors $P(CH_2NHAr^R)_3$, only the dinuclear aluminum complexes $P(CH_2NAr^R)_3Al_2Me_3$ or trinuclear complexes $Me_3Al \cdot P(CH_2NAr^R)_3Al_2Me_3$ are produced without P-C bond cleavage. These polydentate amido ligands combined with phosphine donor and selenium donor functionalities are demonstrated to be suitable to synthesize polynuclear main group metal complexes.

Chapter 5 discusses the coordination chemistry of the corresponding phosphine selenides with magnesium and zirconium metal compounds. When the phosphine selenide $Se=P[CH_2NH-3,5-(CF_3)_2C_6H_3]_3$ reacts with *n*-butylmagnesium, both the P-C bond and the Se=P bond cleave easily to form a P-P bond and produce a binuclear magnesium complex bridged by a biamido bisphosphine ligand. By-products are

16

characterized and believed to include elemental selenium, n-butyl diselenolate salt or n-butyl selenolate salt, depending on the amount of "Bu₂Mg added to the solution of Se=P[CH₂NH-3,5-(CF₃)₂C₆H₃]₃. Se[P(CH₂NHAr^R)₃] can also be reduced to produce mononuclear zirconium complexes [P(CH₂NAr^R)₂SeZrNAr^RCH₂NEt₂] by P-C bond cleavage, where Ar^R = Ph, and 3,5-Me₂C₆H₃.

Chapter 6 presents some possible future research of ligand designs for polymers and assemblies of metals with specific molecular properties.

1.6 References

1. Kempe, R. Angew. Chem. Int. Ed. 2000, 39, 468-493.

Tandura, S. N.; Shumsky, A. N.; Ugrak, B. I.; Negrebetsky, V. V.; Bylikin, S.
 Y.; Kolesnikov, S. P. Organometallics 2005, 24, (22), 5227-5240.

- 3. Cuevas, J. V.; Garcia-Herbosa, G.; Munoz, A.; Garcia-Granda, S.; Miguel, D. Organometallics 1997, 16, (10), 2220-2222.
- 4. Parris, C. L.; Christenson, R. M. J. Organomet. Chem. 1960, 25, 1888-1893.

5. Gade, L. H. J. Organomet. Chem. 2002, 661, 85-94.

6. Gade, L. H. Chem. Commun. 2000, (3), 173-181.

7. Gade, L. H. Acc. Chem. Res. 2002, 35, (7), 575-582.

8. Lutz, M.; Findeis, B.; Haukka, M.; Pakkanen, T. A.; Gade, L. H. Organometallics 2001, 20, (12), 2505-2509.

Findeis, B.; Gade, L. H.; Scowen, I. J.; McPartlin, M. Inorg. Chem. 1997, 36,
 (6), 960-961.

10. Contel, M.; Hellmann, K. W.; Gade, L. H.; Scowen, I. J.; McPartlin, M.; Laguna, M. Inorg. Chem. 1996, 35, (12), 3713-3715.
Findeis, B.; Contel, M.; Gade, L. H.; Laguna, M.; Gimeno, M. C.; Scowen, I.
 J.; McPartlin, M. *Inorg. Chem.* 1997, 36, (11), 2386-2390.

 Konrad W. Hellmann, L. H. G. A. S. D. S. F. M. Angew. Chem. Int. Ed. 1997, 36, 160-163.

 Stefan Friedrich, H. M. L. H. G. W.-S. L. M. M. Angew. Chem. Int. Ed. 1994, 33, 676-678.

14. Korendovych Ivan, V.; Staples Richard, J.; Reiff William, M.; Rybak-Akimova Elena, V. Inorg. Chem. 2004, 43, (13), 3930-3941.

15. Rivas Juan, C. M.; Salvagni, E.; Prabaharan, R.; de Rosales Rafael Torres, M.; Parsons, S. *Dalton Trans.* **2004**, (1), 172-177.

Olsher, U.; Elgavish, G. A.; Jagur-Grodzinski, J. J. Am. Chem. Soc. 1980, 102,
 (10), 3338-3845.

17. Ravindar, V.; Lingaiah, P.; Reddy, K. V. Inorg. Chim. Acta 1984, 87, (1), 3540.

Korendovych, I. V.; Staples, R. J.; Reiff, W. M.; Rybak-Akimova, E. V. Inorg.
 Chem. 2004, 43, (13), 3930-3941.

19. Desmangles, N.; Jenkins, H.; Ruppa, K. B.; Gambarotta, S. Inorg. Chim. Acta 1996, 250, (1-2), 1-4.

 Memmler, H.; Gade, L. H.; Lauher, J. W. Inorg. Chem. 1994, 33, (14), 3064-3071.

21. Hellmann, K. W.; Steinert, P.; Gade, L. H. Inorg. Chem. 1994, 33, (18), 3859-3860.

Hellmann, K. W.; Gade, L. H.; Li, W.-S.; McPartlin, M. Inorg. Chem. 1994,
 33, (25), 5974-5977.

23. Beer, P. D.; Hopkins, P. K.; McKinney, J. D. Chem. Commun. 1999, (13), 1253-1254.

24. Renner, P.; Galka, C.; Memmler, H.; Kauper, U.; Gade, L. H. J. Organomet. Chem. 1999, 591, (1-2), 71-77.

Gade, L. H.; Memmler, H.; Kauper, U.; Schneider, A.; Fabre, S.; Bezougli, I.;
 Lutz, M.; Galka, C.; Scowen, I. J.; McPartlin, M. *Chem. Eur. J.* 2000, 6, (4), 692-708.
 Ballester, P.; Capo, M.; Costa, A.; Deya, P. M.; Gomila, R.; Decken, A.;
 Deslongchamps, G. *Org. Lett.* 2001, 3, (2), 267-270.

27. Gade, L. H.; Renner, P.; Memmler, H.; Fecher, F.; Galka, C. H.; Laubender,
M.; Radojevic, S.; McPartlin, M.; Lauher, J. W. Chem. Eur. J. 2001, 7, (12), 25632580.

28. Ho, J.; Stephan, D. W. Inorg. Chem. 1994, 33, (20), 4595-4597.

29. Turculet, L.; Tilley, T. D. Organometallics 2002, 21, (19), 3961-3972.

30. Porter, R. M.; Danopoulos, A. A. Dalton Trans. 2004, (16), 2556-2562.

31. Zhu, H.; Chen, E. Y. X. Inorg. Chem. 2007, 46, (4), 1481-1487.

32. Memmler, H.; Kauper, U.; Gade, L. H.; Stalke, D.; Lauher, J. W. Organometallics 1996, 15, (17), 3637-3639.

33. Friedrich, S.; Memmler, H.; Gade, L. H.; Li, W. S.; Scowen, I. J.; McPartlin,
M.; Housecroft, C. E. *Inorg. Chem.* 1996, 35, (9), 2433-2441.

34. Hultzsch, K. C.; Spaniol, T. P.; Okuda, J. Organometallics 1997, 16, (22), 4845-4856.

35. Friedrich, S.; Gade, L. H.; Scowen, I. J.; McPartlin, M. Angew. Chem. Int. Ed.
1996, 35, (12), 1338-1341.

36. Friedrich, S.; Memmler, H.; Gade, L. H.; Li, W.-S.; Scowen, I. J.; McPartlin,
M.; Housecroft, C. E. *Inorg. Chem.* 1996, 35, (9), 2433-2441.

19

37. Findeis, B.; Schubart, M.; Platzek, C.; Gade, L. H.; Scowen, I.; McPartlin, M. *Chem. Commun.* **1996**, (2), 219-220.

38. Friedrich, S.; Gade, L. H.; Scowen, I. J.; McPartlin, M. Organometallics 1995,
14, (11), 5344-5349.

Hitchcock, P. B.; Jang, E.; Lappert, M. F. J. Chem. Soc. Dalton Trans. 1995,
 (19), 3179-3187.

40. Schneider, A.; Gade, L. H.; Breuning, M.; Bringmann, G.; Scowen, I. J.; McPartlin, M. Organometallics 1998, 17, (9), 1643-1645.

41. Chen, J.; Woo, L. K. J. Organomet. Chem. 2000, 601, (1), 57-68.

42. Klaui, W.; Hardt, T. J. Organomet. Chem. 1998, 553, (1-2), 241-251.

43. Lutz H. Gade. Chem. A. Eur. J. 2000, 6, (4), 692-708.

44. Stokes, S. L.; Davis, W. M.; Odom, A. L.; Cummins, C. C. Organometallics 1996, 15, (21), 4521-4530.

45. Siedle, A. R.; Newmark, R. A.; Lamanna, W. M.; Huffman, J. C. Organometallics 1993, 12, (5), 1491-1492.

46. Karl, J.; Erker, G.; Frohlich, R. J. Am. Chem. Soc. 1997, 119, (46), 11165-11173.

47. Turculet, L.; Tilley, T. D. Organometallics 2004, 23, (7), 1542-1553.

48. Schrock, R. R. Acc. Chem. Res. 1997, 30, 9-16.

49. Cummins, C. C.; Schrock, R. R.; Davis, W. M. Inorg. Chem. 1994, 33, (7), 1448-1457.

Freundlich, J. S.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc. 1996, 118, (15), 3643-3655.

51. Freundlich, J. S.; Schrock, R. R.; Davis, W. M. Organometallics 1996, 15, (12), 2777-2783.

52. Johnson-Carr, J. A.; Zanetti, N. C.; Schrock, R. R.; Hopkins, M. D. J. Am. Chem. Soc. 1996, 118, (45), 11305-11306.

53. Schrock, R. R.; Cummins, C. C.; Wilhelm, T.; Lin, S.; Reid, S. M.; Kol, M.; Davis, W. M. Organometallics **1996**, 15, (5), 1470-1476.

54. Nomura, K.; Schrock, R. R. Inorg. Chem. 1996, 35, (12), 3695-3701.

55. Neuner, B.; Schrock, R. R. Organometallics 1996, 15, (1), 5-6.

56. Lee, L.; Berg, D. J.; Bushnell, G. W. Organometallics 1995, 14, (11), 5021-5023.

57. Lee, L.; Berg, D. J.; Bushnell, G. W. Organometallics 1995, 14, (1), 8-10.

58. Braunstein, P.; Naud, F. Angew. Chem. Int. Ed. 2001, 40, (4), 680-699.

59. Martinez, A. P.; Garcia, M. P.; Lahoz, F. J.; Oro, L. A. Inorg. Chim. Acta 2003, 347, 86-98.

Romeo, R.; Scolaro, L. M.; Plutino, M. R.; Romeo, A.; Nicolo, F.; Del Zotto,
 A. Eur. J. Inorg. Chem. 2002, (3), 629-638.

61. Kashiwabara, K.; Taguchi, N.; Takagi, H. D.; Nakajima, K.; Suzuki, T. Polyhedron 1998, 17, (11-12), 1817-1829.

62. Hessler, A.; Fischer, J.; Kucken, S.; Stelzer, O. Chem. Ber. 1994, 127, (3), 481-488.

63. Bressan, M.; Bonuzzi, C.; Morandini, F.; Morvillo, A. *Inorg. Chim. Acta.* 1991, 182, (2), 153-156.

64. Grotjahn Douglas, B.; Gong, Y.; Zakharov, L.; Golen James, A.; Rheingold Arnold, L. J. Am. Chem. Soc. 2006, 128, (2), 438-453.

65. Frank, A. W. D. G. L. Jr. J. Org. Chem. 1972, 37, 2752-2755.

66. Kohl, S. W.; Heinemann, F. W.; Hummert, M.; Bauer, W.; Grohmann, A. Chem. Eur. J. 2006, 12, (16), 4313-4320.

Chapter One: Tripodal Amidometal Chemistry and Ligand Designs

- 67. Gade, L. H. Acc. Chem. Res. 2002, 35, (7), 575-582.
- 68. Gade, L. H. J. Organomet. Chem. 2002, 661, (1-2), 85-94.

Chapter Two

Diligating Tripodal Amido-Phosphine Ligands for Heterometallic

Complexes

2.1 Introduction

Due to the ability of adjacent metals to cooperatively activate substrates,^{1,2} the chemistry of polynuclear and heterobimetallic clusters has been of interest to chemists.³⁻⁸ In biological systems, clusters of metals can assist in the transfer of

electrons to activate relatively inert substrates.^{9,10} More recently, rational cluster synthesis has been used for the tuning of physical properties, such as single-molecule magnetism,^{11,12} and early-late heterobimetallics have been used to synthesize unusual molecular architectures via self-assembly.¹³⁻¹⁶

In order to synthesize polynuclear and heterobimetallic complexes, the ligands designs must exhibit coordinative flexibility by being able to chelate both early and late transition metals. Here, we report the ligands of the type $P(CH_2NHAr^R)_3$, where $Ar^R = 3,5-(CF_3)_2C_6H_3$, Ph, and $3,5-Me_2C_6H_3$. These polydentate ligands combine a tripodal arrangement of amido donors with a phosphine donor functionality, extending these tripodal amido ligand systems to the hybrid ligand systems that contain significantly different chemical functionalities, increasing their use in molecular chemistry.^{17,18} It is anticipated that with a high oxidation state early transition metal, the ligand P(CH₂NHAr^R)₃ will adopt the bonding mode as shown in Figure 2.1.¹⁹⁻²¹ In this bonding mode the phosphine ligand cannot bind its lone pair to the early transition metal chelated by the amido donors, but is well situated to bind to a second metal complex.

Figure 2.1. Potential binding mode of the $P(CH_2NHAr^R)_3$ ligands to an early transition metal fragment (shown as M) and a second metal complex (shown as M'), along with an illustration of the major and minor lobes of the lone pair orbital on phosphorus, where $Ar^R = 3,5-(CF_3)_2C_6H_3$, Ph, and 3,5-Me₂C₆H₃.

The nature of early transition metals M could have a significant effect on the chemistry of M' for several reasons. Firstly, the size of M could significantly alter the donor properties of the phosphine donor, because the C-P-C angles presumably increase upon the chelation of a large transition metal. Large and strained C-P-C bond angles greatly affect the donor abilities of phosphines. For example, the remarkably strong σ -donor properties of 'Bu₃P relative to other alkyl phosphines are partly attributed to the large C-P-C angles.³⁰ Secondly, a direct through-space interaction between M and the minor lobe of the lone-pair orbital could allow for communciation between metal centres due to the P-M distances being significantly shorter than the sum of van der Waals radii. Such an interaction could mitigate the transfer of electrons between metals in complexes of this type, or facilitate magnetic coupling between the metals in paramagnetic complexes.

Chapter Two: Diligating Tripodal Amido-Phosphine Ligands for Heterometallic Complexes

The effect of the early transition metal M on the donor ability of the phosphine ligand can be determined by the preparation of the bis-phosphine complexes *trans*-L₂Rh(CO)Cl, prepared by the reactions of the appropriate phosphines with $[Rh(CO)_2(\mu-Cl)]_2$, and by a measurement of the resultant CO stretching frequencies. A more electron-donating ligand produces a more electron-rich metal center that is able to backbond to a bound carbonyl more effectively. It results in greater electron density in the carbonyl π^* orbitals. The decreasing C-O bond order may be reflected by the lowering C-O stretching frequency in the infrared spectrum. For more electron-poor ligands and less electron-rich metal centers, an increase in the C-O stretching frequency can be predicted. Thus, for a series of ligands substituted with electron-donating or electron-withdrawing groups, a trend may be observed that correlates the C-O stretching frequency with the electron-donating ligand.

Herein we report a study that demonstrates the ability of these ligands to cooordinate and stabilize early transition metals as building blocks to prepare early-late heterobimetallic and polynuclear complexes, and an investigation of the effect of the amido donors and early transition metal centres on the properties of the phosphine donors.

2.2 Syntheses of the Ligand Precursors $P(CH_2NHAr^R)_3$ (1a-1c, where $Ar^R = 3,5-(CF_3)_2C_6H_3$, Ph, and $3,5-Me_2C_6H_3$)

The reactions of $P(CH_2OH)_3$ with the appropriate aniline produce the ligand precursors $P[CH_2NH-3,5-(CF_3)_2C_6H_3]_3$ (1a), $P(CH_2NHPh)_3$ (1b) and

 $P(CH_2NH-3,5-Me_2C_6H_3)$ (1c), as shown in Scheme 2.1.¹⁸ As previously reported for 1b,²² this reaction can be performed in toluene and water can be removed by azeotropic distillation using a Dean-Stark apparatus, which requires the use of an excess (5 equiv) of aniline. We found that the reaction can be performed neat, with use the dynamic vacuum to remove the resultant water. The reaction occurred over 30 min and was exothermic. This procedure worked well with a stoichiometric amount of aniline, which simplified the purification procedure. The product is analytically pure when prepared in this manner, though it is easily crystallized from a saturated warm toluene solution by cooling to -40 °C. A solvent free procedure also worked well using 3,5-dimethylaniline to produce 1c, however, using 3,5-bis(trifluoromethyl)aniline resulted in no reaction. It was therefore necessary to use the original procedure with toluene as the solvent and a Dean-Stark apparatus to remove water to obtain **1a**. For simplicity, these ligand precursors will be abbreviated herein as $[P(CH_2NHAr^R)_3]$, where $Ar^R = 3,5-(CF_3)_2C_6H_3$, Ph, and 3.5-Me₂C₆H₃, for \mathbf{a} , \mathbf{b} , and \mathbf{c} , respectively. Ligands **1a**- \mathbf{c} oxidize slowly in air, and are not particularly moisture sensitive, although they were stored under a dry nitrogen atmosphere.

Compounds **1b** and **1c** both crystallized as thin plates unsuitable for Crystallographic studies; however, crystals of **1a** suitable for X-ray diffraction were obtained by slow evaporation of a toluene solution. An ORTEP depiction of the solid-state structure obtained at 133 K is shown in Figure 2.2. Unfortunately, this structure suffers slightly from disorder of one of the ligand arms and rotational disorder of a majority of the CF₃ substituents. The C(1)-P(1)-C(2), C(1)-P(1)-C(3), and C(2)-P(1)-C(3) angles for the free ligand precursor **1c** are 99.48(11)°, 99.38(15)°, and 100.59(16)°, respectively, for a sum of 299.5(2)°; this value is fairly typical for phosphine donors, whose C-P-C angles are invariably much less than the tetrahedral angle of 109.5°. This change in sum of C-P-C angles will be used to evaluate the effects of complexation of early transition metals to the amido donors on the phosphine donor (vide infra).³⁰

Figure 2.2 ORTEP depiction of the solid-state structure of 1a as determined by X-ray crystallography. Selected bond angles (deg): C(1)-P(1)-C(2), 99.48(11); C(1)-P(1)-C(3), 99.38(15); C(2)-P(1)-C(3), 100.59(16); P(1)-C(1)-N(1), 107.99(18); P(1)-C(2)-N(2), 107.79(16); C(1)-N(1)-C(4), 123.7(2); C(2)-N(2)-C(12), 120.95(19).

2.3 Syntheses of the Mononuclear Titanium Complexes P(CH₂NAr^R)₃TiNMe₂ (2a-c)

Scheme 2.2

The treatments of **1a-c** with $Ti(NMe_2)_4$ in toluene prepare mononuclear titanium complexes $P(CH_2NAr^R)_3TiNMe_2$, **2a-c**, as shown in Scheme 2.2. These reactions require 12-24 h to go to completion and no intermediates were observed by ¹H or ³¹P{¹H} NMR spectroscopy. The resultant products are all obtained in high yields as the thermally-stable dark-red crystalline solids.

The solid-state structures of **2a-c** were determined by X-ray crystallography. The ORTEP depiction of the solid-state molecular structure of **2b** is shown in Figure 2.3; a comparison of the bond lengths and angles with those of **2a** and **2c** (Table 2.1) revealed little variation, although the quality of the structure of **2c** was hampered by the tendency of this compound to crystallize as nonmerohedral twins. As anticipated, in all three structures the tripodal ligand chelates via three amido donors, and the lone-pair of the phosphine donor is directed away from the metal centre.

Chapter Two: Diligating Tripodal Amido-Phosphine Ligands for Heterometallic Complexes

Figure 2.3. Solid-state molecular structure of 2b as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. Selected distances (Å): Ti(1)...P(1), 2.9895(4); Ti(1)-N(1), 1.9239(11); Ti(1)-N(2), 1.9327(11); Ti(1)-N(3), 1.9424(11); Ti(1)-N(4), 1.8643(12). Selected bond angles (deg): C(1)-P(1)-C(2), 105.85(6); C(1)-P(1)-C(3), 102.64(6); C(2)-P(1)-C(3), 102.89(6); Ti(1)-N(4)-C(22), 130.95(11); Ti(1)-N(4)-C(23), 115.22(10); Ti(1)-N(1)-C(1), 109.48(8); Ti(1)-N(1)-C(4), 132.54(9); Ti(1)-N(2)-C(2), 108.78(8); Ti(1)-N(2)-C(10), 133.75(9); 109.80(8); Ti(1)-N(3)-C(16), 134.33(9); P(1)-C(1)-N(1), Ti(1)-N(3)-C(3),116.64(9); P(1)-C(2)-N(2), 118.59(9); P(1)-C(3)-N(3); 117.06(9); C(1)-N(1)-C(4), 117.13(11); C(2)-N(2)-C(10), 117.47(11); C(3)-N(3)-C(16), 115.74(10).

	2a	2b	2c
Ti(1)P(1)	2.9963(10)	2.9895(4)	3.019(4)
Ti(1)-N(1)	1.944(3)	1.9239(11)	1.963(7)
Ti(1)-N(2)	1.915(3)	1.9327(11)	1.941(6)
Ti(1)-N(3)	1.946(3)	1.9424(11)	1.934(6)
Ti(1)-N(4)	1.862(3)	1.8643(12)	1.879(6)
C(1)-P(1)-C(2)	104.13(17)	105.85(6)	103.3(4)
C(1)-P(1)-C(3)	101.91(17)	102.64(6)	102.6(4)
C(2)-P(1)-C(3)	105.53(16)	102.89(6)	105.6(4)

 Table 2.1. Selected distances (Å) and bond angles (deg) for compounds 2a, 2b and 2c

Some measurements of the hybridization change at the phosphine donor are provided by a comparison of the C-P-C angles before and after the introduction of a transition metal to the triamido chelate provides, which should affect its donor properties. In **2b**, the sum of C-P-C angles is $311.4(1)^{\circ}$ compared to $299.5(2)^{\circ}$ in **1a**, which is a significant change. Although the phosphine donor is hybridized so that the lone-pair is formally directed away from the early transition metal, the binding of the ligand enforces P...Ti distances that are under the sum of the Van der Waals radii of these elements.²³ For **2b**, the P...Ti distance is 2.9895(4) Å, and is only ~6% larger than the longest reported phosphine-titanium bond length of 2.813(1) Å,²⁴ although Ti-P bond distances are more typically 2.6-2.7 Å.

Despite the fact that the phosphine lone-pair is not coordinated to the early transition metal center, the ³¹P{¹H} NMR shifts are strongly affected by the coordination of a transition metal to the amido donors. A small range of chemical shifts are observed for the free ligands, by ³¹P{¹H} NMR spectroscopy: δ -32.6, -31.0, and -29.6 for **1a-c**, respectively. In **2a-c** both the shifts and the range covered are vastly different, with shifts of δ -79.9, -65.6, and -61.6, respectively. The shift upfield for **2a-c** compared to their ligand precursors was unexpected; an increase in C-P-C angle usually leads to a significant shift to downfield. For example, the opposite trend of chemical shifts and C-P-C angle is observed for the alkyl phosphines PMe₃, PEt₃, and P⁴Bu₃, whose ³¹P shifts are δ -62, -20, and +63, respectively.^{25,31} The ³¹P NMR shifts is complex, however, these results indicate that the phosphorus donor may be directly affected by its proximity to the chelated early transition metal.

2.4 Syntheses of the Mononuclear Tantalum Complexes P(CH₂NAr^R)₃Ta=N^tBu (3a-c)

The reactions of la-c with Ta(NEt₂)₃(N'Bu) cleanly produced the tantalum imido complexes P(CH₂NAr^R)₃Ta=N^tBu, **3a-c**, as shown in Scheme 2.3. The products were obtained in high yields as yellow crystalline solids. The solid-state structure of **3b** was determined by X-ray crystallography. The ¹H NMR spectra of **3a-c** are consistent with apparent C_{3y} symmetry. The solid-state structure of **3b** was determined by X-ray crystallography, and an ORTEP depiction of the solid-state molecular structure of 3b is shown in Figure 2.4. As with complexes 2a-c the triamido donors chelate to the early transition metal, and the phosphine lone-pair is directed away from the Ta centre. The C-P-C angles for **3b** are larger than those in the titanium complexes 2a-c, with a sum of C-P-C angles of 315.0(2)°. The chelation of a metal requires an increase in the bond angles at P, with the greater increase for the larger metal, Ta, although this difference is more than expected, considering the relatively small difference between the size of Ti and Ta. Despite the slightly larger size of Ta, the P...Ta distance in **3b** is 2.9548(6) Å, which is shorter than the P...Ti distance in **2b**, and only 3.5 % longer than the longest reported phosphine-tantalum

bond length of 2.855 Å.²⁶

The changes in ³¹P NMR shifts of **1a-c** upon coordination of the amido donors to tantalum are more dramatic than those observed for titanium, though the range of observed shifts is smaller, with shifts of δ -108.5, -100.9, and -100.1 for complexes **3a-c**, respectively. Contrary to what might be expected, the trend of phosphorus shifts for the free ligand, Ti, and Ta complexes seems to indicate that the phosphine donors are becoming poorer donors with increasing C-P-C angle; however, it is difficult to be certain that the changes in chemical shift truly represent a reduced donor ability of the phosphine donor.

Figure 2.4. Solid-state molecular structure of 3b as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. Selected distances (Å): Ta(1)…P(1), 2.9548(6); Ta(1)-N(1), 2.004(2); Ta(1)-N(2), 1.998(2); Ta(1)-N(3), 1.990(2); Ta(1)-N(4), 1.7682(18). Selected bond angles (deg): C(1)-P(1)-C(2), 103.91(13); C(1)-P(1)-C(3), 105.77(12); C(2)-P(1)-C(3), 105.27(12); Ta(1)-N(1)-C(1), 105.77(15); Ta(1)-N(1)-C(4), 137.42(15); C(1)-N(1)-C(4), 116.8(2); Ta(1)-N(2)-C(2), 105.27(15); Ta(1)-N(2)-C(10), 138.42(16); C(2)-N(2)-C(10), 116.3(2); Ta(1)-N(3)-C(16), 135.96(17).

2.5 Mononuclear Titanium and Tantalum Complexes as Building Blocks for Heterometallic Early-Late Transition Metal Complexes

The mononuclear titanium compound $P(CH_2NAr^R)_3TiNMe_2$ 2c (Ar^R = 3,5-Me₂C₆H₃) reacted instantaneously with excess Ni(CO)₄ to afford, a single product, which was determined to be (CO)₃Ni[P(CH₂N-3,5-Me₂C₆H₃)₃TiNMe₂] (4),

as assessed by ¹H, ¹³C{¹H} and ³¹P{¹H} NMR spectroscopy. The coordination of phosphorus to nickel is accompanied by a large ³¹P{¹H} NMR shift from δ -61.6 in **2c** to δ 4.1,²⁷ and the ¹³C{¹H} carbonyl carbon resonance at δ 196.3, which is doublet with a typical ²J_{PC} value of 1.1 Hz,²⁸ confirms the coordination of a single phosphine donor.

Compound 4 is not stable at room temperature, and the solution undergos ligand redistribution over the course of 48 h to form over 50 % $(CO)_2Ni[P(CH_2N-3,5-Me_2C_6H_3)_3TiNMe_2]_2$, 5, presumably with loss of Ni(CO)₄. This reaction sequence is depicted in Scheme 2.4. The ³¹P{¹H} NMR spectrum shows an additional peak at δ 7.0, and the ¹³C{¹H} NMR carbonyl resonance is a triplet at δ 190.0, due to the coupling of two identical phosphorus nuclei. The resonance for the methylene carbon, which is typically a doublet due to a ¹J_{PC} of around 15 Hz, in this case is a virtual triplet due to the AXX spin system. Further ligand redistribution appears to occur as the conversion to 5 increases, and results in the formation of an impurity, which is presumably the trisubstituted complex; this makes the high-yield isolation of pure 5 by this procedure difficult. The addition of an additional equivalent of 2b to a freshly prepared sample of 4 has been proved to be the most effective synthesis of 5.

The molecular structure of 5 was determined by single crystal X-ray crystallography and is shown in Figure 2.5. The bonding of the phosphine donor to nickel appears to have minor effects on the structure of the ligand. The Ti(1)…P(1) and Ti(2)…P(2) short contacts are 3.087(5) Å and 3.097(5) Å, respectively, whereas in 2c a Ti…P distance of 3.015(5) Å was observed. The sums of C-P-C angles for P(1) and P(2) are $307.5(3)^{\circ}$ and $306.4(3)^{\circ}$, respectively, which are a slight decrease from $310.5(5)^{\circ}$ in 2c. This result is quite unusual, because the coordination of phosphine donors to metal centres almost invariably results in an increase of C-P-C angles by 3° or 4° .³⁰⁻³² Although the absence of an increase in C-P-C angles could be explained by the initial strain on the ligand to accommodate the large Ti metal centre, the decrease in C-P-C angle upon coordination to Ni is not easy to

This compression of C-P-C angles has a considerable effect on the geometry at Ti. The sum of the N(1)-Ti(1)-N(2), N(2)-Ti(1)-N(3) and N(1)-Ti(1)-N(3) angles decreases from 316.4(1)° in **2b** to 304.0(3)° in **5**, both of which deviate considerably from the 328.5° expected for a tetrahedral structure. Examination of the geometry at Ni(1) in the structure of **5** reveals a few points worthy of mention. The P(1)-Ni(1) and P(2)-Ni(1) distances are 2.1835(13) Å and 2.1900(14) Å, respectively, which is approximately 0.1 Å shorter than the average phosphine-nickel bond lengths of 2.28 Å. A direct measurement of the cone angles of these ligands yields a value of 106°, a value larger than estimated from the structure of **2b**; however, this increase is due to the shorter than average Ni-P bond length. The diminutive nature of these phosphines is apparent from the P(1)-Ni(1)-P(2) angle of 104.00(5)°, which is significantly smaller than the tetrahedral angle of 109.5°.

Chapter Two: Diligating Tripodal Amido-Phosphine Ligands for Heterometallic Complexes

Figure 2.5. ORTEP depiction of the solid-state molecular structure of $(CO)_2Ni[P(CH_2N-3,5-Me_2C_6H_3)_3TiNMe_2]_2$ (5). Hydrogen atoms are omitted for clarity. Selected distances (Å): P(1)-Ni(1), 2.1835(13); P(2)-Ni(1), 2.1900(14); Ti(1)...P(1), 3.087(5); Ti(2)...P(2), 3.097(5); N(1)-Ti(1), 1.938(4); N(2)-Ti(1), 1.942(4); N(3)-Ti(1), 1.922(4); N(4)-Ti(1), 1.872(4); N(5)-Ti(2), 1.943(4); N(6)-Ti(2), 1.937(4); N(7)-Ti(2), 1.923(4); N(8)-Ti(2), 1.857(4). Selected bond angles (deg): P(1)-Ni(1)-P(2), 104.00(5); C(59)-Ni(1)-C(60), 111.4(2); P(1)-Ni(1)-C(59), 111.22(19); P(1)-N(1)-C(60), 109.96(17); P(2)-Ni(1)-C(59), 108.97(19); 110.98(16); P(2)-Ni(1)-C(60) C(1)-P(1)-C(2),102.4(2); C(2)-P(1)-C(3), 103.7(2); C(3)-P(1)-C(1), 101.4(2); C(30)-P(2)-C(31), 101.3(2); C(1)-P(1)-Ni(1), C(31)-P(2)-C(32), 103.6(2); C(30)-P(2)-C(32), 101.5(2); C(2)-P(1)-Ni(1), 116.34(15); C(3)-P(1)-Ni(1),114.66(15); 116.31(14); C(30)-P(2)-Ni(1), 114.98(14); C(31)-P(2)-Ni(1), 117.10(16); C(32)-P(2)-Ni(1), 116.09(15).

40

The reaction of 4 equiv of most phosphine donors with $[Rh(CO)_2(\mu-Cl)]_2$ allows for the facile preparation of *trans*-rhodiumcarbonylchlorobisphosphine complexes. ¹H and ³¹P{¹H} NMR spectroscopy was used to identify the products as the trans-rhodium carbonyl chlorobisphosphine complexes 6a-c, 7a-c, and 8a-c of the phosphines 1a-c, 2a-c, and 3a-c, respectively, as shown in Scheme 2.5. The products were all formed within 20 min of dissolving the reagents in CH₂Cl₂.

3a-c

mononuclear The adduct of tantalum compound 3c. trans-Cl(CO)Rh[P(CH₂NAr^{Me})₃Ta=N^tBu]₂ (8c) was isolated and characterized by X-ray crystallography. The solid-state molecular structure of 8c is shown in Figure 2.6. The crystallographically symmetry imposed in the structure of 8c is C_{3h} . There is a three-fold disorder of the carbonyl and chloride ligands; only one location is shown in Figure 2.6. In a projection along the P-Rh-P 3-fold axis, the larger Cl ligand is staggered with respect to the P-CH₂ bonds, whereas the small carbonyl ligand is eclipsed. The sum of C-P-C angles is 319.0(3)°, which is approximately 4° larger

41

than the sum of C-P-C angles in **3b**; this increase in C-P-C angle is typical for the coordination of phosphine to metal centres, unlike the decrease of C-P-C angle noted previously for complex **5**. As a result, the tantalum centre moves further into the chelating amides compared to the structure of **3b**, and the P(1)...Ta(1) distance of 2.943(2) is 0.012(2) Å shorter than in **3b**, as might be expected considering the larger C-P-C angles. The P(1)...Ta(1) distance in **8c** is only 3.0 % longer than the longest crystallographically characterized tantalum-phosphine bonding interaction.²⁶

Chapter Two: Diligating Tripodal Amido-Phosphine Ligands for Heterometallic Complexes

Figure 2.6. ORTEP depiction of the solid-state molecular structure of **8c** as determined by X-ray crystallography. Only one pair of the three disordered sites of occupancy of the Cl and CO ligands is shown, and hydrogen atoms are omitted for clarity. Selected distances (Å): P(1)···Ta(1), 2.943(2); N(1)-Ta(1), 1.995(4); N(2)-Ta(1), 1.787(9); P(1)-Rh(1), 2.292(2). Selected bond angles (deg): C(1)-P(1)-C(1), 106.33(19); Rh(1)-P(1)-C(1), 112.46(17).

2.6 Characterization of the Phosphine Donor

The standard measures of a phosphine donor are its electronic parameter, usually obtained from the symmetric CO stretching frequency of a carbonyl complex of the phosphine,^{29,30} and the cone angle, as defined by Tolman with respect to Ni(CO)₃ complexes.³¹ Although numerous other approaches have been described, most still attempt to classify the properties of a phosphine in terms of steric³²⁻³⁵ and electronic effects.³⁶⁻³⁸ From the structure of the titanium complex **2b**, the cone angle

of the phosphine donor can be estimated as 100° if the methylene hydrogens are used to define the cone angle, where the hydrogen atom is given a radius of 0.6 Å, and a metal-P distance of 2.28 Å is assumed, as described by Tolman. For the tantalum complex **3b**, the estimated cone angle is 103° , which is larger due to the increase in C-P-C angles relative to the titanium complexes. For **2a** and **2c**, the trifluoromethyl or methyl meta substituents define the cone angle, rather than the methylene hydrogens, which makes these complexes slightly larger donors, although the aryl groups are likely to rotate so the predicted cone angles from the location of these substituents overestimate the size of these donors. Regardless, these complexes display remarkably small cone angles comparable to those of the smallest phosphine donors. For comparison, the cone angles of PMe₃, PEt₃, PPh₃ and P(OEt)₃ are all larger, at 118°, 132°, 145°, and 109°, respectively.

The electronic properties of many phosphines have been characterized by measurement of the A_1 stretching frequency of complexes prepared by replacement of a CO group in Ni(CO)₄ by a single phosphine donor. Compounds that are less toxic than Ni(CO)₄ are now more commonly used to characterize the electronic properties of phosphines. However, we opted to prepare a complex of Ni(CO)₄ to have a chance to compare the parameters of some of these phosphine complexes directly with a large database of available data for adducts of the Ni(CO)₃ moiety. The symmetric A_1 carbonyl stretching frequency of a 0.05 mol L⁻¹ solution of (CO)₃Ni[P(CH₂N-3,5-Me₂C₆H₃)₃TiNMe₂] **4** in CH₂Cl₂ was 2073.7 cm⁻¹; this can be compared to the extensive data tabulated by Tolman.³¹ Compared to other

phosphine ligands, $P(CH_2NAr^R)_3$]TiNMe₂ is significantly less strongly electron-donating than common alkyl phosphines PMe₃ ($v_{CO}(A_1) = 2064.1 \text{ cm}^{-1}$), and slightly less electron donating than the ubiquitous PPh₃ ($v_{CO}(A_1) = 2068.9 \text{ cm}^{-1}$). The electronic parameter for 4 is almost identical to PHPh₂ ($v_{CO}(A_1) = 2073.3 \text{ cm}^{-1}$). As a phosphine ligand, complex 4 appears to be a π -donor, but not as strong a π -acid as typical phosphites, such as P(OEt)₃ ($v_{CO}(A_1) = 2076.3 \text{ cm}^{-1}$). Another method to assess the steric bulk of a phosphine is the symmetric deformation coordinate, which is defined as the difference between the sum of these C-P-C and Ni-P-C angles.³⁵ In 5, the sum of Ni(1)-P-C angles for P(1) and P(2) are 347.3(3) and $348.2(3)^{\circ}$, respectively, which results in symmetric deformation coordinates of $39.8(4)^{\circ}$ and $41.8(4)^{\circ}$ for P(1) and P(2), respectively. As with the cone angle, these values are indicative of a small donor.

The CO stretching frequency of *trans*-rhodiumcarbonylchlorobisphosphine complexes has been used extensively in the past to determine electronic parameters for phosphine ligands. To avoid the repeated handling of highly toxic Ni(CO)₄, we chose to evaluate the electronic properties of the phosphine donor in **1a-c**, **2a-c** and **3a-c** by this method. The CO stretching frequency of CH₂Cl₂ solutions of **6a-c**, **7a-c** and **8a-c** are presented in Table 2.2, and plotted versus the ³¹P chemical shifts of the precursors **1a-c**, **2a-c**, and **3a-c** in Figure 2.7. It is clear from this chart that the effect of the different aryl substituents is very significant even for the ligand precursor complexes **6a-c**, despite the distance of these substituents from the phosphine donor.

Chapter Two: Diligating Tripodal Amido-Phosphine Ligands for Heterometallic Complexes

important in determining the electronic properties of these donors even in the absence of a transition metal. There is the evidence for a preferential orientation of the nitrogen lone pairs with respect to both the aromatic ring substituents and the phosphine donor in the structure of 1c, shown in Figure 2.2. The two ligand arms associated with N(1) and N(2) are aligned, so that their aromatic substituents, C(1), C(2) and P(1) are nearly coplanar. The effect of the aryl substituents is also apparent in the CO stretching frequencies of the titanium complexes, 7a-c. The effect of the aryl substitutes for these titanium complexes is practically identical to that observed for **6a-c**, although the titanium complexes are nearly uniformly less donating than 6a-c. In contrast, the CO stretches for the tantalum complexes 8a-c are much less affected by the aryl substituents. The range of CO stretching frequencies for 8a-c spans only 3.8 cm⁻¹ for the 3 different aryl substituents, whereas for 6a-c and 7a-c the ranges spanned are 11.7 and 12.7 cm⁻¹, respectively. Complexes **8b** and **8c** have nearly identical CO stretching frequencies. There is a near linear trend of decreasing ³¹P chemical shift with the decreasing donor ability of the phosphine for each set of complexes, 6a-c, 7a-c, and 8a-c. Between sets of the complexes, there is no linear trend between chemical shift and donor ability; however, the highest field ³¹P NMR chemical shifts do correlate with the weaker σ -donating phosphines. The most strongly donating phosphine ligands, 1b-c and 2b-c have similar donor properties to PPh₃, which exhibits a CO stretching frequency of 1978 cm⁻¹ in the complex trans-Rh(CO)Cl(PPh₃)₂.

Figure 2.7. Phosphorus-31 NMR chemical shifts vs. carbonyl stretching frequencies for complexes 6a-c, 7a-c and 8a-c.

Table 2.2 also contains the ³¹P NMR shifts and ¹J_{RhP} values for complexes **6a-c**, **7a-c** and **8a-c**, along with the ³¹P NMR shifts of the phosphine donors **1a-c**, **2a-c** and **3a-c**. For complexes **6a-c** the ¹J_{RhP} values range from 116.9 to 120.1 Hz, with the largest values for **6a**, which bears the most electron-withdrawing substituents. An increase in phosphine lone pair *s*-orbital character is consistent with the poorer donor ability of this phosphine, although many factors can affect Rh-P coupling constants.³¹ The same trend is observed for complexes **7a-c**, and the poorer donor abilities of these phosphines relative to **6a-c** are consistent with their larger ¹J_{RhP} values, which range from 122.5 to 130.3 Hz. For the tantalum complexes, there is a similar trend. For **8a-c**, the ¹J_{RhP} values range from 136.9 to 143.6 Hz, all of which are greater than the ${}^{1}J_{RhP}$ values for **6a-c** and **7a-c**.

It is known that phosphines with larger cone angles have smaller changes in ³¹P NMR shift upon coordination to rhodium.³⁹ The differences in ³¹P chemical shifts between **1a-c** and their rhodium complexes **6a-c** are δ 52.2, 54.7, and 56.1, respectively, are consistent with a cone angle of approximately 110°. This trend of increasing shift with increasing donor ability is reversed for **2a-c** and **7a-c**; these differences in shifts are δ 83.7, 81.3, and 80.1, respectively. The significantly larger coordination shift relative to **1a-c** can be attributed to the smaller cone angle for this phosphine donor. The differences in ³¹P chemical shift for **3a-c** and **8a-c** are δ 74.3, 68.1, and 67.8, respectively, which reflect the fact that phosphines **3a-c** have slightly larger cone angles than their Ti analogues, but still smaller than **1a-c**.

Chapter Two: Diligating Tripodal Amido-Phosphine Ligands for Heterometallic Complexes

Table 2.2 Metal carbonyl stretching frequencies of compounds 6a-c, 7a-c and 8a-c in CH₂Cl₂, their ${}^{1}J_{RhP}$ coupling constants and ${}^{31}P$ NMR shifts, and the ${}^{31}P$ NMR shifts of the phosphine donors 1a-c, 2a-c and 3a-c.

Rh(I)	Phosphine	ν_{CO}	$^{1}J_{ ext{Rh-P}}$	³¹ P	Ligand ³¹ P
Complex	Donors	(cm ⁻¹)		shift	shift
6a	P(CH ₂ NHAr ^{CF3}) ₃	1984.9	120.1	+22.6	-29.6 (1a)
6b	P(CH ₂ NHPh) ₃	1976.3	118.1	+23.7	-31.0 (1b)
6c	P(CH ₂ NHAr ^{Me}) ₃	1973.2	116.9	+23.5	-32.6 (1c)
7a	P(CH ₂ NAr ^{CF3}) ₃ TiNMe ₂	1988.0	130.3	+3.8	-79.9 (2a)
7b	P(CH ₂ NPh) ₃ TiNMe ₂	1979.5	125.8	+15.7	-65.6 (2b)
7c	P(CH ₂ NAr ^{Me}) ₃ TiNMe ₂	1975.3	122.5	+18.5	-61.6 (2c)
8a	P(CH ₂ NAr ^{CF3}) ₃ Ta=NC(CH ₃) ₃	1990.5	143.6	-34.2	·108.5 (3a)
8b	P(CH ₂ NPh) ₃ Ta=NC(CH ₃) ₃	1986.7	138.1	-32.8	·100.9 (3b)
8c	P(CH ₂ NAr ^{Me}) ₃ Ta=NC(CH ₃) ₃	1986.6	136.9	-32.3	-100.1 (3c)

2.7 Synthesis and Structure of a Ni(II) Dimer with a Bridging Diamido-phosphido Ligand

Transition metals are known to activate the P-C bond of tertiary phosphines PR₃. The reactions of transition metals with P-C bonds of tertiary phosphines PR₃ imply damage in the organometallic catalyst and have been studied extensively. These studies are mainly concerned with the cleavage of aryl-phosphine bonds but seldom with an alkyl-phosphine bond, which is the consequence of less favored migration of an alkyl group as compared to that of an aryl group.⁴⁰ The reactions of bis(diphenylphosphino)methane and the derivatives with transition metals to

synthesize the dinuclear and trinuclear complexes are special in that they undergo P-C bond cleavage at the P-CH₂ bond rather than at the P-phenyl bond.^{18,21,41-53} The decomposition reactions of P-C bonds are also enhanced by the presence of electron-withdrawing substituents and inhibited by electron-donating substituents.^{54,55} The studies have shown that the ease of P-C bond cleavage follows the order:

$$P-Csp > P-Csp^2 > P-Csp^3$$

However, the cleavage of P-C bond in phosphine ligands has provided access to phosphido-bridged polymetallic complexes.⁵⁶⁻⁵⁹ Diorganophosphide (PR₂) ligands have been widely used to bridge early-late heterobimetallic complexes, in which the M-P-M' angles and M-M' distances range from 54° to 104° and 2.21 Å to 3.70 Å, respectively.⁵⁶ [Cp₂M(PR₂)₂] complexes have been used as the starting materials in preparing Group 4 and Group 10 phosphido-bridged heterobimetallic complexes by displacing the carbonyl ligand in the Group 10 transition metal complexes.⁶⁰ The ligands PHR₂ were shown to give phosphido-bridged transition metal dimers.^{61,62}

The reaction of phosphine ligand $[P(CH_2NHPh)_3]$ with nickelocene (Cp_2Ni) in toluene produces a Ni(II) dimer with a bridging diamido-phosphido ligand $[CpNiP(CH_2NHPh)_2]_2$ (9), as shown in Scheme 2.6. The reaction is slow at room temperature and requires 2 weeks to go to completion, but it only need 2 days to complete by heating at 80 °C. The resulting product was obtained in 57 % yield as a thermally stable brown solid and has been characterized by ¹H NMR, ³¹P{¹H} NMR, ¹³C{¹H} NMR, elemental analysis, and single-crystal X-ray diffraction. The ³¹P{¹H} NMR spectrum of $[CpNiP(CH_2NHPh)_2]_2$ (9) contains a single resonance for the phosphorus donor at δ -87.5, which is shifted significantly upfield compared with the free ligand precursor P[CH₂NHPh]₃. The ¹H NMR and ¹³C{¹H} NMR spectra of 9 exhibit one set of signals, which are consistent with a symmetric dimer. The cleavage of the P-C bond in the ligand P[CH₂NHPh]₃ and loss of Cp Group in nickelocene (Cp₂Ni) allow for the achievement of the favored 18-electron stabilization when the resulting -P[CH₂NHPh]₂ ligand is considered to act as a three electron donor.

[CpNiP(CH2NHPh)2]2 (9)

The molecular structure of **9** in the solid state was determined by X-ray crystal structure analysis. An ORTEP depiction of the solid-state structure obtained at 173 K is shown in Figure 2.8, which features a symmetric dimer structure. The coordination geometry about the Ni atom is distorted trigonal planar, at the corners of which are the centre of Cp group and two phosphido donors. The geometry about

the P atoms could be described as distorted tetrahedron, where two Ni atoms occupy the corner positions. In contrast to the planar Ni₂P₂ rings in the phosphido complexes (the torsion angle Ni-P···P-Ni = 180°), the Ni₂P₂ ring in [CpNiP(CH₂NHPh)₂]₂ (9) is puckered and the torsion angle Ni-P···P-Ni is 160.6°. The distortion is controlled by the steric interaction of the phosphido group with the Cp ligand and with each other. A vertical C_2 symmetry axis runs through the center of the Ni₂P₂ ring and relates the two halves of the dimer. The P-Ni bond lengths range from 2.1382(8) Å to 2.1513(9) Å and P-Ni-P angles are 74.30(3)° and 74.60(3)°, which are similar to those in [CpNi(μ -PPh₂)]₂ (P-Ni=2.15(0.7) Å, 2.16(0.8) Å, P-Ni-P=77.6(2)°).⁶³ The Ni-Ni distance of 3.367(5) Å indicates the absence of a Ni-Ni bond.

Figure 2.8. Solid-state molecular structure of 9 as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. Selected distances (Å): Ni(2)-P(2), 2.1458(9); Ni(2)-P(3), 2.1513(9); Ni(3)-P(2), 2.1439(9); Ni(3)-P(3), 2.1382(8); Ni(1)...Ni(1), 3.367(5); C(20)-P(2), 1.851(3); C(21)-P(2), 1.872(3); P(2)...P(3), 2.5950(11). Selected bond angles (deg): P(2)-Ni(2)-P(3); 74.30(3); P(2)-Ni(3)-P(3); 74.60(3); Ni(2)-P(2)-Ni(3), 103.42(4); Ni(2)-P(3)-Ni(3), 103.43(4); C(20)-P(2)-C(21), 102.26(15); C(22)-P(3)-C(23), 100.33(15); C(20)-P(2)-Ni(2), 110.58(10); C(21)-P(2)-Ni(2), 109.83(10).

2.8 Characterization of the Intermediates and the Byproducts in the Reaction of the Phosphine Ligand [P(CH₂NHPh)₃] with Cp₂Ni

In the reaction of 4 equiv of phosphine ligand $[P(CH_2NHPh)_3]$ with 5 equiv of Cp_2Ni , a single intermediate is observed by ${}^{31}P{}^{1}H$ NMR spectroscopy after the
mixture is heated to 80 °C for a few minutes. The ³¹P{¹H} NMR spectrum of the intermediate shows a singlet at δ 15.9, which is shifted downfield compared to the corresponding phosphine ligand [P(CH₂NHPh)₃] at δ -32.1. The intermediate was identified to be Ni[P(CH₂NHPh)₃]₄ (10) (vide infra).^{64,65} One equiv of nickelocene reacts with four equiv of phosphine ligand [P(CH₂NHPh)₃] to initially form a mixture of the Ni(0) complex Ni[P(CH₂NHPh)₃]₄ (10) and pentafulvalene.^{66,30} Leadbeater's group has previously reported that phosphines react with Cp₂Ni to produce Ni(0) tetraphosphine adducts; the cyclopentadiene groups displaced dimerise to form pentafulvalene, which did not partake in any further carbon-carbon bond forming reactions.⁶⁴

Ni[P(CH₂NHPh)₃]₄ (10) reacts with 4 equiv of nickelocene to generate 2 equiv of Ni(II) dimer with a bridging diamido-phosphido ligand [CpNiP(CH₂NHPh)₂]₂ (9), as shown in Scheme 2.7. The byproducts are much more soluble in pentane than the scarcely soluble [CpNiP(CH₂NHPh)₂]₂ (9), and are easily rinsed from the product and the filtrate is collected. The solvent of the filtrate is removed by vacuum to produce the dark brown solid. The hydrolysis product of the dark brown solid was identified as CpCH₂N(H)Ph by GC/MS and ¹H NMR spectroscopy. However, the exact mechanism by which Ni[P(CH₂NHPh)₃]₄ (10) is oxidized to the Ni(II) dimer is not clear. The speculative byproduct in the reaction of Ni[P(CH₂NHPh)₃]₄ (10) with 4 equiv of nickelocene could be Ni metal.

The Ni(0) complex Ni[P(CH₂NHPh)₃]₄ (10) also can be prepared by the treatment of Ni(COD)₂ [COD = 1,5-cyclooctadiene] with 4 equiv of phosphine

ligand [P(CH₂NHPh)₃] (Scheme 2.7), which was characterized by 1 H, 13 C{ 1 H}, and 31 P{ 1 H} NMR spectroscopy.

Scheme 2.7

2.9 Synthesis and Structure of an Early-Late Polynuclear Heterometallic Complex Based on the Ni (II) Dimer

Treatment of $[CpNiP(CH_2NHPh)_2]_2$ (9) with 2 equiv of $Ti(NMe_2)_4$ in toluene affords the early-late polynuclear heterometallic complex $[CpNiP(CH_2NPh)_2Ti(NMe_2)_2]_2$ (11) in 89.8 % yield, as shown in Scheme 2.8. The ³¹P{¹H} NMR spectrum of $[CpNiP(CH_2NPh)_2Ti(NMe_2)_2]_2$ (11) shows a singlet at δ -80.5, which is shifted slightly downfield compared to the Ni(II) dimer $[CpNiP(CH_2NHPh)_2]_2$ (9). This indicates that phosphorus is not coordinated to the early transition metal centre.⁶⁷ The ¹H NMR and ¹³C{¹H} NMR spectra of 11 are consistent with an apparent C_2 symmetry. The change in ¹H NMR chemical shift of the Cp group (11: 5.02; 9: 4.91) is small, which also indicates only a slight effect of the Ni(II) metal center from the Ti-Ni heterometallic complex 11 upon the Ni(II) dimer (9).

 $[CpNiP(CH_2NHPh)_2]_2 (9)$

 $[CpNiP(CH_2NPh)_2Ti(NMe_2)_2]_2 (11)$

The solid-state structure of $[CpNiP(CH_2NPh)_2Ti(NMe_2)_2]_2$ (11) was determined by X-ray crystallography and depicted in Figure 2.9. The diamido-phosphido ligand binds the titanium metal center by two amido donors. Both of the Ti centers have approximately tetrahedral geometries, and each contains two -NMe₂ groups. The phosphido ligand and a Ti atom form a six-membered TiN₂C₂P ring, which adopts a chair conformation. Although the distance of Ti…Ni is

4.638(5) Å, binding of the Ti metal center to the amido donors in $[CpNiP(CH_2NPh)_2Ti(NMe_2)_2]_2$ (11) has only a slight effect on the Ni metal center in the Ni(II) dimer $[CpNiP(CH_2NHPh)_2]_2$ (9). The P-Ni bond lengths in 11 range from 2.1447(11) to 2.1427(11) Å, which are similar to those in the Ni(II) dimer 9. The P-Ni-P angle of 75.02(5)° is slightly larger than those in 9 (74.30(3)° and 74.60(3)°). Compared with the puckered Ni₂P₂ ring with the torsion angle Ni-P-P-Ni of 160.6° in $[CpNiP(CH_2NHPh)_2]_2$ (9), the Ni₂P₂ ring in $[CpNiP(CH_2NHPh)_2]_2$ (11) is planar and the torsion angle Ni-P-Ni is 180.0°. The change in ¹H NMR chemical shift of the Cp group (11: 5.02; 9: 4.91) is small, which also indicates a slight effect of the Ni (II) metal center from the Ti-Ni heterometallic complex 11.

Figure 2.9. Solid-state molecular structure of 11 as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. Selected distances (Å): Ni(1)-P(1), 2.1427(11); Ni(1)-P(1), 2.1447(11); Ni(1)-···Ni(1), 3.4009(10); P(1)-··P(1), 2.611(5); Ni(1)-···Ti(1), 4.638(5); Ti(1)-N(1), 1.949(3); Ti(1)-N(2), 1.951(3); Ti(1)-N(3), 1.876(3); Ti(1)-N(4), 1.866(3); C(1)-P(1), 1.863(4); C(2)-P(1), 1.862(4). Selected bond angles (deg): P(1)-Ni(1)-P(1); 75.02(5); Ni(1)-P(1)-Ni(1), 104.98(5); C(1)-P(1)-C(2), 99.44(18); C(2)-P(1)-Ni(1), 115.56(13); C(1)-P(1)-Ni(1), 119.11(13); N(1)-Ti(1)-N(2), 108.66(13); N(1)-Ti(1)-N(3), 106.28(14); N(1)-Ti(1)-N(4), 114.45(14); N(2)-Ti(1)-N(3), 105.39(14); N(2)-Ti(1)-N(4), 110.19(14); N(3)-Ti(1)-N(4), 111.40(15).

2.10 Summary and Conclusions

The ligand precursors $P[CH_2N-3,5-(CF_3)_2C_6H_3]_3H_3$ (1a), $P[CH_2NPh]_3H_3$ (1b), and $P[CH_2N-3,5-Me_2C_6H_3]_3H_3$ (1c), react with the reagents $Ti(NMe_2)_4$ and

[']BuN=Ta(NEt₂)₃ to generate metal complexes of the type P[CH₂NAr^R]₃TiNMe₂ (**2a-c**) and P[CH₂NAr^R]₃Ta=N'Bu (**3a-c**). Due to ring strain, the phosphine lone-pair cannot chelate and is available to bind a second metal, despite quite short P…Ti and P…Ta distance. The reaction of **2c** with Ni(CO)₄ produces at first the early-late heterobimetallic complex (CO)₃Ni[P(CH₂N-3,5-Me₂C₆H₃)₃TiNMe₂] (**4**), which gradually converts to the early-late trimetallic complex (CO)₂Ni[P(CH₂N-3,5-Me₂C₆H₃)₃TiNMe₂]₂ (**5**).

The effect of the complexation of Ti and Ta fragments on the donor ability of the phosphine ligands was determined by the preparation of the bis-phosphine complexes *trans*-L₂Rh(CO)Cl, (where L = 1a-c, 2a-c, and 3a-c) prepared by the reactions of the appropriate phosphines with $[Rh(CO)_2(\mu-Cl)]_2$, and a measurement of the resultant CO stretching frequencies. The early transition metal centres were affecting the property of the phosphine donors in the building blocks for heterometallic complexes, despite the fact that the phosphine lone-pair is not coordinated to the metal centers. Although the lone pair of the phosphine donor is aimed away from the early transition metal centres, the donor abilities of the phosphines are affected by direct interactions between the early transition metals and the phosphine donors.

Nickelocene Cp₂Ni reacts with the phosphine ligand $[P(CH_2NPh)_3H_3]$ to give a Ni(II) dimer with a bridging diamido-phosphido ligand $[CpNiP(CH_2NHPh)_2]_2$ (9). The intermediates of the reaction are Ni $[P(CH_2NHPh)_3]_4$ (10) and pentafulvalene, which react with 4 equiv of nickelocene to generate 2 equiv of Ni(II) dimer

 $[CpNiP(CH_2NHPh)_2]_2$ (9) and 4 equiv of CpCH₂N(H)Ph. The Ni(II) dimer 9 readly binds the titanium metal center using amido donors, which allows for the facile synthesis of the early-late tetranuclear heterometallic complex $[CpNiP(CH_2NPh)_2Ti(NMe_2)_2]_2$ (11). The binding of the Ti metal center to the amido donors in $[CpNiP(CH_2NPh)_2Ti(NMe_2)_2]_2$ (11) has a slight effect on the Ni metal center in the Ni(II) dimer $[CpNiP(CH_2NHPh)_2]_2$ (9).

2.11 Experimental

2.11.1 General Procedures

Unless otherwise stated, all manipulations were performed under an inert atmosphere of nitrogen using either standard Schlenk techniques or an MBraun glove box. Dry, oxygen-free solvents were employed throughout. Anhydrous pentane, toluene, diethyl ether and THF were purchased from Aldrich, sparged with dinitrogen, and passed through activated alumina under a positive pressure of nitrogen gas; toluene and hexanes were further deoxygenated using Ridox catalyst columns.⁶⁸ Deuterated benzene was dried by heating at reflux with sodium/potassium alloy in a sealed vessel under partial pressure, then trap-to-trap distilled, and freeze-pump-thaw degassed three times. Deuterated methylene chloride was heated in a sealed vessel over CaH₂, then trap-to-trap distilled, and freeze-pump-thaw degassed three times. NMR spectra were recorded on Bruker AMX (300 MHz) or Bruker AMX (500 MHz) spectrometer. All chemical shifts are

60

reported in ppm, and all coupling constants are in Hz. For ¹⁹F{¹H} NMR spectra, trifluoroacetic acid was used as the external reference at 0.00 ppm. ¹H NMR spectra were referenced to residual protons (C₆D₅H, δ 7.15; C₇D₇H, δ 2.09; CHDCl₂, δ 5.35) with respect to tetramethylsilane at δ 0.00. ³¹P{¹H} NMR spectra were referenced to external 85 % H₃PO₄ at δ 0.0. ¹³C{¹H} spectra were referenced relative to solvent resonances (C₆D₆, δ 128.0; C₇D₈, δ 20.4; CD₂Cl₂, δ 54.00). Elemental analyses were performed by the Centre for Catalysis and Materials Research (CCMR), Windsor, Ontario, Canada. The compounds tris(hydroxylmethyl)phosphine, aniline, 3,5-dimethylaniline, 3,5-bis(trifluoromethyl)aniline, Ni(CO)₄, TiCl₄, LiNMe₂, Ta(NEt₂)₃(N^rBu), [(CO)₂Rh(μ -Cl)]₂ were purchased from Aldrich, and used as received. The complex Ti(NMe₂)₄ was prepared from the reaction of TiCl₄ and LiNMe₂ and distilled prior to use.⁶⁹ Nickel tetracarbonyl, Ni(CO)₄, is highly toxic and should be handled with care.

2.11.2 Synthesis of Complexes

 $P[CH_2NH-3,5-(CF_3)_2C_6H_3]_3$ (1a). A mixture of $P(CH_2OH)_3$ (5.0 g, 90 %, 0.0362 mol), 3,5-bis(trifluoromethyl)aniline (28 mL, 41.5 g, 5 equiv) and toluene (60 mL) were mixed in a 250 mL 3 neck flask equipped with a Dean Stark trap and a condenser. The solution was heated to reflux for 30 min, and the water was collected and removed from the trap. The solution was allowed to cool, and then the remaining solvent was removed under vacuum. The addition of pentane (80 mL) dissolved the

excess 3,5-bis(trifluoromethyl)aniline, and precipitated the product as a fine white solid which was collected by filtration and dried under vacuum. X-ray quality crystals were obtained from slow evaporation of the toluene solution. Yield 20.2 g, 73 %. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 2.55 (dd, ³J_{HH} = 5.2 Hz, ²J_{PH} = 5.2 Hz, 6H, PC<u>H₂</u>), 3.13 (b, 3H, N<u>H</u>), 6.59 (s, 6H, Ph *o*-<u>H</u>), 7.27 (s, 3H, Ph *p*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 39.4 (d, J_{PC} = 12.2 Hz, P<u>C</u>H₂), 111.2 and 122.1 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 112.5. (s, Ph *p*-<u>C</u>), 132.9 (q, J = 32.9 Hz, Ph <u>C</u>-F₃), 148.9 (d, J = 5.5 Hz, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -32.6 (s). ¹⁹F{¹H} NMR (C₆D₆, 282.1 MHz, 298 K): δ 14.71 (s). Anal. Calc'd for C₂₇H₁₈F₁₈N₃P: F.W.: 757.10. C, 42.82; H, 2.40; N, 5.55. Found: C, 43.00; H, 2.49 N, 5.41.

P(CH₂NHPh)₃ (1b).²² A mixture of P(CH₂OH)₃ (7.5 g, 0.0605 mol) and aniline (16.5 mL, 3 equiv) was stirred under dynamic vacuum. The solution became warm after 1 min and then cooled after 10 min. Shortly thereafter, the mixture solidified and was left under vacuum for two hours. The addition of ether to the mixture and filtering the resulting solid removed any trace remaining aniline. The sample was crystallized by cooling a warm saturated toluene solution sample at -40 °C. The white solid was filtered, rinsed with pentane and dried (15.8 g, 75 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 3.23 (d, ²*J*_{PH} = 4.8 Hz, 6H, PC*H*₂), 3.47 (b, 3H, N*H*), 6.48 (dd, 6H, Ph *o*-*H*), 6.76 (t, 3H, Ph *p*-*H*), 7.16 (m, Ph *m*-*H*). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 40.6 (d, *J*_{PC} = 12.5 Hz, P*C*H₂), 113.2 and 118.2 (s, Ph *o*-*C* and *m*-*C*), 117.0. (s, Ph *p*-*C*), 148.5 (d, *J* = 4.5 Hz, *ipso*-*C*). ³¹P{¹H} NMR (C₆D₆, 121.5

MHz, 298 K): δ -32.1 (s). Anal. Calc'd for C₂₁H₂₄N₃P: F.W.: 349.41. C, 72.19; H, 6.92; N, 12.03. Found: C, 72.55; H, 7.00 N, 11.64.

P(CH₂NH-3,5-Me₂C₆H₃)₃ (1c). The mixture of P(CH₂OH)₃ (17.36 g, 0.126 mol) and 3,5-dimethylaniline (45.8 g, 3 equiv) were stirred under dynamic vacuum. The solution became warm after 1 min and then cooled after 10 min. Shortly thereafter, the mixture solidified. Residual 3,5-dimethylaniline was removed by adding pentane to the mixture and filtering the resulting solid. The sample was crystallized by cooling a warm saturated toluene solution to -40 °C. The white solid was filtered, rinsed with pentane and dried (42.7 g, 78 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 2.18 (s, 18H, Ph C<u>H3</u>), 3.23 (d, ²J_{PH} = 5.2 Hz, 6H, PC<u>H2</u>), 3.49 (b, 3H, N<u>H</u>), 6.23 (s, 6H, Ph *o*-H), 6.42 (s, 3H, Ph *p*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ22.1 (s, Ph <u>C</u>H3), 41.1 (d, J_{PC} = 13.1 Hz, P<u>C</u>H₂), 112.2 and 120.9 (s, Ph *o*-**C** and *m*-<u>C</u>), 139.1 (s, Ph *p*-<u>C</u>), 149.3 (d, J = 4.8 Hz, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -29.6 (s). Anal. Calc'd for C₂₇H₃₆N₃P: F.W.: 433.57; C, 74.80; H, 8.37; N, 9.69. Found: C, 74.50; H, 8.49 N, 9.40.

 $P[(CH_2N-3,5-(CF_3)_2C_6H_3]_3TiNMe_2$ (2a). A solution of Ti(NMe₂)₄ (754.78 mg, 3.37 mmol) in toluene (60 mL) was added to a solution of 1a (2.55 g, 3.37 mmol) in 50mL toluene. The pale yellow solution was stirred 10 h and turned dark red. The solvent was removed under vacuum and the remaining dark red solid was rinsed with a small portion of pentane, and then dried under vacuum (2.45 g, 85 %). X-ray

quality crystals were obtained by slow evaporation of a benzene solution. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 2.85 (s, 6H, NC<u>H3</u>), 3.18 (d, 6H, ²J_{PH} = 7.0 Hz, PC<u>H2</u>), 6.81 (s, 6H, Ph *o*-H), 7.40 (s, 3H, Ph *p*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 41.2 (s, TiN<u>C</u>H3), 44.1 (d, J_{PC} = 24.2 Hz, P<u>C</u>H2), 113.4 and 122.1 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 116.0 (s, Ph *p*-<u>C</u>), 132.6 (q, J = 32.9 Hz, Ph <u>C</u>-F₃), 152.9(d, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -79.9 (s). ¹⁹F{¹H} NMR (C₆D₆, 282.1 MHz, 298 K): δ 14.88 (s). Anal. Calc'd for C₂₉H₂₁F₁₈N₄PTi, F.W.: 846.32. C, 41.16; H, 2.50; N, 6.62. Found: C, 40.72; H, 2.70; N, 6.71.

P(CH₂NPh)₃TiNMe₂ (2b). Prepared in an analogous manner to **2a** from Ti(NMe₂)₄ (2.63 g, 11.73 mmol) and **1b** (4.09 g, 11.73 mmol) using a reaction time of 12 h. Yield 4.10 g (83 %). ¹H NMR (C₆D₆, 500.1 MHz, 298 K): δ 2.98 (s, 6H, TiNMe₂), 3.84 (d, 6H, ²J_{PH} = 6.7 Hz, PC<u>H₂</u>), 6.72 (d, 6H, ³J_{HH} = 8.3 Hz, Ph *o*-H), 6.86 (t, 3H, Ph *p*-<u>H</u>), 7.20 (m, 6H, Ph *m*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 42.4 (s, TiN<u>Me₂</u>), 45.9 (d, J_{PC} = 20.2 Hz, PC₂H₂), 117.7 and 129.7 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 120.9 (s, Ph *p*-<u>C</u>), 154.2 (m, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -65.6 (s). Anal. Calc'd for C₂₃H₂₇N₄PTi: F.W.: 438.33. C, 63.02; H, 6.21; N, 12.78. Found: C, 63.24; H, 6.25 N, 12.44.

 $P(CH_2N-3,5-Me_2C_6H_3)_3TiNMe_2(2c)$. A solution of $Ti(NMe_2)_4$ (2.63 g, 11.73 mmol) in toluene (50 mL) was added to a solution of 1c (5.08 g, 11.73 mmol) in 50 mL toluene. The solution gradually turned dark red over 24 H. The solution was

evaporated to dryness, and 5 mL pentane and 10 mL hexamethyldisiloxane were added. The solution was filtered and the dark red solid dried under vacuum (5.62 g, 92 %). X-ray quality crystals were obtained from slow evaporation of a pentane solution. ¹H NMR (C₆D₆, 500 MHz, 298 K): δ 2.22 (s, 18H, ArC<u>H3</u>), 3.15 (s, 6H, N<u>Me2</u>), 3.95 (d, ²J_{PH} = 7.3 Hz, 6H, PC<u>H2</u>), 6.49 (s, 6H, *o*-H), 6.53 (s, 3H, *p*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 22.2 (s, ArCH3), 42.8 (s, N<u>Me2</u>), 46.3 (d, J_{PC} = 19.9 Hz, PCH2), 115.9, 122.7, and 138.7 (s, PH *o*-<u>C</u>, *m*-<u>C</u> and *p*-<u>C</u>), 154.4 (d, ³J = 1.6 Hz, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -61.6 (s). Anal. Calc'd for C₂₉H3₉N₄PTi, F.W.: 522.49. C, 66.66; H, 7.52; N, 10.72. Found: C, 67.02; H, 7.71; N, 11.01.

P[(CH₂N-3,5-(CF₃)₂C₆H₃]₃Ta=N^tBu (3a). A solution of (Et₂N)₃Ta=N^tBu (234.3 mg, 0.5 mmol) in 10 mL toluene was added to a solution of **1b** (379 mg, 0.5 mmol) in 30 mL toluene. The solution was stirred overnight. The solvent was removed under vacuum and the remaining pale yellow solid was rinsed with a small portion of pentane, and then dried under vacuum (315 mg, 60 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 1.65 (s, 9H, Ta=NC<u>Me₃</u>), 3.10 (d, 6H, ²J_{PH} = 6.7 Hz, PC<u>H₂</u>), 7.15 (s, 3H, Ph *p*-<u>H</u>), 7.54 (s, 6H, Ph *o*-H). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 32.6 (s, 9H, Ta=NC<u>Me₃</u>), 41.8 (d, J_{PC} = 30.1 Hz, P<u>C</u>H₂), 70.4 (s, Ta=NC<u>Me₃</u>), 118.4 and 129.6 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 125.9 (s, Ph *p*-<u>C</u>), 132.8 (q, J = 32.9 Hz, Ph <u>C</u>-F₃), 152.5(s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -108.5 (s). ¹⁹F{¹H} NMR (C₆D₆, 282.1 MHz, 298 K): δ 14.2 (s). Anal. Calc'd for C₃₁H₂₄F₁₈N₄PTa·(0.5

C₇H₈): C, 39.34; H, 2.7; N, 5.32. Found: C, 39.71; H, 3.30; N, 5.29.

P(CH₂NPh)₃Ta=N^tBu (**3b**). Prepared in an analogous manner to **3a** using $(Et_2N)_3Ta=N^tBu$ (234.3 mg, 0.5 mmol) and **1b** (173 mg, 0.5 mmol). Yield 389 mg (65 %). ¹H NMR (C₆D₆, 500.1 MHz, 298 K): δ 1.62 (s, 9H, Ta=NC<u>Me₃</u>), 3.67 (d, 6H, ²J_{PH} = 7.3 Hz, PC<u>H₂</u>), 6.90 (t, 6H, ³J_{HH} = 7.3 Hz, Ph *o*-H), 7.27 (t, 3H, ³J_{HH} = 7.8 Hz, Ph *p*-<u>H</u>), 7.40 (m, 6H, Ph *m*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 33.8 (s, Ta=NC<u>Me₃</u>), 42.6 (d, J_{PC} = 26.8 Hz, P<u>C</u>H₂), 69.1 (s, Ta=N<u>C</u>Me₃), 119.1 and 129.1 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 121.5 (s, Ph *p*-<u>C</u>), 152.3 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -100.9 (s). Anal. Calc'd for C₂₅H3₀N₄PTa: F.W.: 598.45. C, 50.17; H, 5.05; N, 9.36. Found: C, 50.65; H, 5.25; N, 9.01.

P(CH₂N-3,5-Me₂C₆H₃)₃Ta=N^tBu (3c). Prepared in an analogous manner to 3a using (Et₂N)₃Ta=N^tBu (234.3 mg, 0.5 mmol) and 1c (215 mg, 0.5 mmol) and a reaction time of 72 h. Yield 204.6 mg (60 %). X-ray quality crystals were obtained from slow evaporation of the benzene solution. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 1.71 (s, 9H, Ta=NC<u>Me₃</u>), 2.32 (s, 18H, ArC<u>H3</u>), 3.73 (d, ²J_{PH} = 6.7 Hz, 6H, PC<u>H</u>₂), 6.61 (s, 6H, *o*-H), 7.11 (s, 3H, *p*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 21.9 (s, Ar<u>C</u>H3), 33.6 (s, 9H, Ta=NC<u>Me₃</u>), 42.7 (d, J_{PC} =26.3Hz, N<u>Me₂</u>), 68.9 (s, Ta=N<u>C</u>Me₃), 116.2 (s, Ph *o*-C), 117.9 (s, Ph *m*-<u>C</u>), 138.7 (s, Ph *p*-<u>C</u>), 152.5(s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -100.1 (s). Anal. Calc'd for C_{311H42}N₄PTa, F.W.: 682.61. C, 54.55; H, 6.20; N, 8.21. Found: C, 54.07; H, 6.11; N,

8.77.

 $(CO)_3Ni(CH_2N-3,5-Me_2C_6H_3)_3TiNMe_2$ (4). Excess Ni(CO)₄ was vacuum transferred onto a solution of 2c (1.25 g, 2.87 mmol) in 50 mL toluene. The dark red solution was stirred 5 min and then evaporated to dryness to provide a dark red product (1.77 g, 93 %). The product was stable for short durations in CH_2Cl_2 , as judged by ³¹P{¹H} NMR spectroscopy, and the IR spectrum of a 0.05 M solution was obtained in this solvent. Solutions kept at room temperature are not stable and gradually undergo ligand redistribution with loss of Ni(CO)₄, and thus should be handled with care. ¹H NMR (C_6D_6 , 500 MHz, 298 K): δ 2.17 (s, 18H, ArCH3), 3.06 (s, 6H, N<u>Me₂</u>), 4.07 (s, 6H, PC<u>H₂</u>), 6.46 (s, 6H, o-H), 6.52 (s, 3H, p-<u>H</u>). ${}^{13}C{}^{1}H{}$ NMR (C₆D₆, 125.8 MHz, 298 K): δ 22.0 (s, Ar<u>C</u>H3), 42.9 (s, N<u>Me</u>₂), 52.5 (d, J_{PC} = 15.5 Hz, P<u>C</u>H₂), 116.1, 123.6, and 139.1 (s, Ph o-<u>C</u>, m-<u>C</u> and p-<u>C</u>), 153.8 (d, ${}^{3}J_{PC} =$ 6.9 Hz, *ipso-C*), 196.3 (d, ${}^{2}J_{PC} = 1.1$ Hz, Ni(CO)₃). ${}^{31}P{}^{1}H{}$ NMR (C₆D₆, 202.5 MHz, 298 K); δ 4.1 (s). Anal. Calc'd for C₃₂H₃₉N₄O₃PTi; F.W.: 665.21; C, 57.78; H, 5.91; N, 8.42. Found: C, 58.01; H, 5.94; N, 8.39. IR: (CH₂Cl₂, 0.05M) 2073.7 cm⁻¹ (s, A_1), 2041.0 cm^{-1} (w), 2000.0 cm^{-1} (br, E).

 $(CO)_2Ni[(CH_2N-3,5-Me_2C_6H_3)_3TiNMe_2]_2$ (5). Solid 1c (482.8 mg, 0.924mmol) was added to a solution of 4 (614.9 mg, 0.924 mmol) in 50 mL toluene. The solution was stirred for 48 h and evaporated to dryness, and 15 mL pentane was added. The solution was filtered and the remaining dark red solid was rinsed with a small portion of pentane, and then dried under vacuum. The complex is slightly soluble in pentane, and X-ray crystals were obtained by cooling a pentane solution to $-40 \,^{\circ}$ C. ¹H NMR (C₆D₆, 500 MHz, 298 K): δ 2.17 (s, 18H, ArC<u>H₃</u>), 3.06 (s, 6H, N<u>Me₂</u>), ¹H NMR (C₆D₆, 500 MHz, 298 K): δ 2.15 (s, 18H, ArC<u>H₃</u>), 3.12 (s, 6H, N<u>Me₂</u>), 4.37 (s, 6H, PC<u>H₂</u>), 6.51 (s, 3H, *p*-<u>H</u>), 6.56 (s, 6H, *o*-H). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 22.0 (s, Ar<u>C</u>H₃), 42.9 (s, N<u>Me₂</u>), 54.0 (vt, J_{PC} = 15.5 Hz, P<u>C</u>H₂), 116.0, 123.4, and 139.0 (s, Ph *o*-<u>C</u>, *m*-<u>C</u> and *p*-<u>C</u>), 153.8 (d, ³J_{PC} = 6.9 Hz, *ipso*-<u>C</u>), 190.0 (t, ²J_{PC} = 1.1 Hz, Ni(<u>CO</u>)₃). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ 7.03 (s). Anal. Calc'd for C₆₀H₇₈N₈NiO₂P₂Ti₂: F.W.: 1159.69; C, 62.14; H, 6.78; N, 9.66. Found: C, 62.33; H, 6.96; N, 9.47.

trans-RhCl(CO)(1a)₂ (6a). A solution of 1a (60.8mg, 0.08 mmol) in 0.4 mL of CD₂Cl₂ was added to [RhCl(CO)₂]₂ (7.8mg, 0.02 mmol) in 0.4 mL CD₂Cl₂. Gas evolution was observed and the solution turned dark orange over the course of 20 min. ¹H NMR (CD₂Cl₂, 300 MHz, 298 K): δ 3.1 (s, 6H, PCH₂), 4.82 (s, 3H, NH), 7.05 (s, 6H, Ph *o*-H), 7.24 (s, 3H, Ph *p*-H). ¹³C{¹H} NMR (CD₂Cl₂, 125.8 MHz, 298 K): δ 39.1 (s, P<u>C</u>H₂), 112.8 (s, <u>C</u>O), 113.2 and 122.1 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 118.5 (s, Ph *p*-<u>C</u>), 132.9 (q, *J* = 33.1 Hz, Ph <u>C</u>-F₃), 148.9 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (CD₂Cl₂, 282.1 MHz, 298 K): δ 14.00 (s). IR: 1984.9 cm⁻¹.

trans-RhCl(CO)(1b)₂ (6b). A solution of 28.0 mg (0.08 mmol) of 1b in 0.4 mL of

CD₂Cl₂ was added to [RhCl(CO)₂]₂ (7.8 mg, 0.02 mmol) in 0.4 mL CD₂Cl₂. ¹H NMR (CD₂Cl₂, 300.1 MHz, 298 K): δ 3.95 (s, 6H, PC<u>H₂</u>), 4.28 (b, 3H, N<u>H</u>), 6.78 (m, 6H, PH *o*-<u>H</u>), 7.20 (t, 3H, Ph *p*-<u>H</u>), 7.35 (s, 6H, Ph *m*-<u>H</u>). ¹³C{¹H} NMR (CD₂Cl₂, 125.8 MHz, 298 K): δ 39.7 (t, *J*_{PC} = 14.5 Hz, PC<u>H₂</u>), 114.2 (s, <u>C</u>O), 119.3 and 129.9 (s, Ph *o*-C and *m*-<u>C</u>), 128.8 (s, Ph *p*-<u>C</u>), 148.2 (m, *ipso*-<u>C</u>). ³¹P{¹H} NMR (CD₂Cl₂, 202.5 MHz, 298 K): δ 23.7 (d, *J*_{PRh} = 118.1 Hz). IR: 1976.3 cm⁻¹.

trans-RhCl(CO)(1c)₂ (6c). A solution of 1c (34.4 mg, 0.08 mmol) in 0.4 mL of CD₂Cl₂ was added to [RhCl(CO)₂]₂ (7.8 mg, 0.02 mmol) in 0.4 mL CD₂Cl₂. ¹H NMR (CD₂Cl₂, 300 MHz, 298 K): δ 2.20 (s, 18H, PH C*H*₃), 3.93 (s, 6H, PC*H*₂), 4.24 (b, 3H, N*H*), 6.32 (s, 6H, Ph *o*-*H*), 6.43 (s, 3H, Ph *p*-*H*). ¹³C{¹H} NMR (CD₂Cl₂, 125.8 MHz, 298 K): δ 21.7 (s, Ph *C*H3), 39.6 (t, *J*_{PC} = 13.4 Hz, P*C*H₂), 116.0 (s, *C*O), 112.0 and 121.2 (s, Ph *o*-*C* and *m*-*C*), 139.6 (s, Ph *p*-*C*), 148.3 (t, *ipso*-*C*). ³¹P{¹H} NMR (CD₂Cl₂, 121.5 MHz, 298 K): δ 23.5 (d, *J*_{PRh} = 116.9 Hz). IR: 1973.2 cm⁻¹.

trans-RhCl(CO)(2a)₂ (7a). A solution of 2a (64.1 mg, 0.08 mmol) in 0.4 mL of CD₂Cl₂ was added to [RhCl(CO)₂]₂ (7.8 mg, 0.02 mmol) in 0.4 mL CD₂Cl₂. ¹H NMR (CD₂Cl₂, 300 MHz, 298 K): δ 3.5 (s, 6H, NC<u>H₃</u>), 4.8 (s, PC<u>H₂</u>), 7.29 (s, 6H, Ph *o*-<u>H</u>), 7.54 (s, 3H, Ph *p*-<u>H</u>). ¹³C{¹H} NMR (CD₂Cl₂, 125.8 MHz, 298 K): δ 42.7 (s, TiN<u>C</u>H3), 49.3 (s, P<u>C</u>H₂), 115.2 (s, <u>C</u>O), 113.4 and 122.1 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 117.3 (s, Ph *p*-<u>C</u>), 133.1 (q, J = 32.8 Hz, Ph <u>C</u>-F₃), 153.2(s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (CD₂Cl₂, 121.5 MHz, 298 K): δ 3.8 (d, J_{PRh} = 130.3 Hz). ¹⁹F{¹H} NMR (CD₂Cl₂, 200) and 200 Hz, 200 Hz

282.1 MHz, 298 K): δ 14.3 (s). IR: 1988.1 cm⁻¹.

trans-RhCl(CO)(2b)₂ (7b). A solution of 2b (35.2 mg, 0.08 mmol) in 0.4 mL of CD₂Cl₂ was added to 7.8 mg (0.02 mmol) of [RhCl(CO)₂]₂ in 0.4 mL CD₂Cl₂. ¹H NMR (CD₂Cl₂, 300 MHz, 298 K): δ 3.3 (s, 6H, TiN<u>Me₂</u>), 4.6 (s, PC<u>H₂</u>), 6.82 (d, 6H, ³J_{HH} = 7.8 Hz, Ph *o*-<u>H</u>), 6.89 (t, 3H, Ph *p*-<u>H</u>), 7.30 (t, 6H, Ph *m*-<u>H</u>). ¹³C{¹H} NMR (CD₂Cl₂, 125.8 MHz, 298 K): δ 43.0 (s, TiN<u>Me₂</u>), 49.7 (s, P<u>C</u>H₂), 117.5 (s, <u>C</u>O), 117.7 and 129.7 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 121.6 (s, Ph *p*-<u>C</u>), 153.5 (m, *ipso*-<u>C</u>). ³¹P{¹H} NMR (CD₂Cl₂, 202.5 MHz, 298 K): δ 15.7 (d, J_{PRh} = 125.8 Hz). IR: 1979.6 cm⁻¹.

trans-RhCl(CO)(2c)₂ (7c). A solution of 2c (42.0 mg, 0.08 mmol) in 0.4 mL of CD₂Cl₂ was added to [RhCl(CO)₂]₂ (7.8 mg, 0.02 mmol) in 0.4 mL CD₂Cl₂. ¹H NMR (CD₂Cl₂, 300 MHz, 298 K): δ 2.28 (s, 18H, ArC<u>H₃</u>), 3.26 (s, 6H, N<u>Me₂</u>), 4.56(s, 6H, PC<u>H₂</u>), 6.46 (s, 6H, Ph *o*-<u>H</u>), 6.47 (s, 3H, Ph *p*-<u>H</u>). ¹³C{¹H} NMR (CD₂Cl₂, 125.8 MHz, 298 K): δ 21.9 (s, Ar<u>C</u>H3), 43.3 (s, N<u>Me₂</u>), 49.6(s, P<u>C</u>H₂), 112.1 (s, <u>C</u>O), 115.6, 123.2, and 139.2 (s, Ph *o*-<u>C</u>, *m*-<u>C</u> and *p*-<u>C</u>), 153.5 (s, Ph *ipso*-<u>C</u>). ³¹P{¹H} NMR (CD₂Cl₂, 202.5 MHz, 298 K): δ 18.51 (d, J_{PRh} = 122.5 Hz). IR: 1974.8 cm⁻¹.

trans-RhCl(CO)(3a)₂ (8a). A solution of 3a (80.5 mg, 0.08 mmol) in 0.4 mL of CD₂Cl₂ was added to 7.8 mg (0.02 mmol) of [RhCl(CO)₂]₂ in 0.4 mL CD₂Cl₂. ¹H NMR (CD₂Cl₂, 300 MHz, 298 K): δ 1.59 (s, 9H, Ta=NC<u>Me₃</u>), 4.90 (s, PC<u>H₂</u>), 7.55 (s,

3H, Ph *p*-<u>*H*</u>), 7.82 (s, 6H, Ph *o*-<u>*H*</u>). ¹³C{¹H} NMR (CD₂Cl₂, 125.8 MHz, 298 K): δ 32.9 (s, 9H, Ta=NC<u>*Me*</u>₃), 53.3 (d, *J*_{PC} = 30.1 Hz, P<u>C</u>H₂), 72.2 (s, Ta=N<u>C</u>Me₃), 116.2 and 129.6 (s, Ph *o*-<u>*C* and *m*-<u>*C*</u>), 125.9 (s, Ph *p*-<u>*C*), 132.8 (q, *J* = 33.2 Hz, Ph <u>*C*-F₃), 152.8(t, *ipso*-<u>*C*). ³¹P{¹H} NMR (CD₂Cl₂, 121.5 MHz, 298 K): δ -34.2 (d, *J*_{PRh} = 143.6 Hz). ¹⁹F{¹H} NMR (CD₂Cl₂, 282.1 MHz, 298 K): δ 14.9 (s). IR: 1990.5 cm⁻¹.</u></u></u></u>

trans-RhCl(CO)(3b)₂ (8b). A solution of 3b (48.0 mg, 0.08 mmol) in 0.4 mL of CD₂Cl₂ was added to [RhCl(CO)₂]₂ (7.8 mg, 0.02 mmol) in 0.4 mL CD₂Cl₂. ¹H NMR (CD₂Cl₂, 300.1 MHz, 298 K): δ 1.59 (s, 9H, Ta=NC<u>Me₃</u>), 4.82 (s, PC<u>H₂</u>), 6.95 (t, 6H, ³J_{HH} = 7.3 Hz, Ph *o*-H), 7.3 (t, 3H, ³J_{HH} = 7.8 Hz, Ph *p*-<u>H</u>), 7.44 (d, 6H, Ph *m*-<u>H</u>). ¹³C{¹H} NMR (CD₂Cl₂, 125.8 MHz, 298 K): δ 32.9 (s, Ta=NC<u>Me₃</u>), 46.7 (s, PC<u>H₂</u>), 69.8 (s, Ta=NCMe₃), 117.7 (s, <u>C</u>O), 118.4 and 128.5(s, Ph *o*-C and *m*-<u>C</u>), 121.3 (s, Ph *p*-<u>C</u>), 151.0 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (CD₂Cl₂, 202.5 MHz, 298 K): δ -32.8 (d, J_{PRh} = 138.11 Hz). IR: 1986.7 cm⁻¹.

trans-RhCl(CO)(3c)₂ (8c). A solution of 3c (54.6 mg, 0.08 mmol) in 0.4 mL of CD_2Cl_2 was added to 7.8 mg (0.02 mmol) of $[RhCl(CO)_2]_2$ in 0.4 mL CD_2Cl_2 . X-ray quality crystals were obtained from slow evaporation of the CD_2Cl_2 solution at -40 °C. ¹H NMR (CD_2Cl_2 , 300 MHz, 298 K): δ 1.63 (s, 9H, Ta=NC<u>Me_3</u>), 2.32 (s, 18H, ArC<u>H_3</u>), 4.77 (s, 6H, PC<u>H_2</u>), 6.61 (s, 6H, *o*-<u>H</u>), 7.08 (s, 3H, *p*-<u>H</u>). ¹³C{¹H} NMR (CD_2Cl_2 , 125.8 MHz, 298 K): δ 21.7 (s, Ar<u>C</u>H3), 33.5 (s, Ta=NC<u>Me_3</u>), 47.4 (s,

References begin on page 78

71

N<u>Me</u>₂), 70.4 (s, Ta=N<u>C</u>Me₃), 116.3 (s, <u>C</u>O), 116.9 (s, Ph *o*-<u>C</u>), 123.9 (s, Ph *m*-<u>C</u>), 138.9 (s, Ph *p*-<u>C</u>), 151.9 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (CD₂Cl₂, 202.5 MHz, 298 K): δ -32.3 (d, J_{PRh} = 136.9 Hz). IR: 1986.6 cm⁻¹. Anal. Calc'd for C₆₃H₈₄N₈OClP₂Ta₂: C, 49.40; H, 5.53; N, 7.32. Found: C, 49.09; H, 5.64; N, 7.27.

[CpNiP(CH₂NHPh)₂]₂ (9). NiCp₂ (2.37 g, 12.5 mmol) was added to a solution of P(CH₂NHPh)₃ (3.46 g, 10 mmol) in 50 mL of toluene. The solution was stirred 2 weeks. The solvent was removed under vacuum and the remaining dark red solid was rinsed with a small portion of pentane, and then dried under vacuum (2.09 g, 57 %). X-ray quality crystals were obtained from slow evaporation of a toluene solution. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 3.15 (d, ²*J*_{PH} = 6.2 Hz, 8H, PC<u>H</u>₂), 4.02 (b, 4H, N<u>H</u>), 4.91 (s, 10H, C₅<u>H</u>₅), 6.65 (d, ³*J*_{HH} = 7.8 Hz, 8H, Ph *o*-<u>H</u>), 6.79 (t, ³*J*_{HH} = 7.3 Hz, 4H, Ph *p*-<u>H</u>), 7.20 (t, ³*J*_{HH} = 8.3 Hz, 8H, Ph *m*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 45.77 (s, P<u>C</u>H₂), 88.7 (s, <u>C</u>₅H₅), 114.0 and 118.8 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 130.2 (s, Ph *p*-<u>C</u>), 148.9 (s, Ph *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -87.5 (s). Anal. Calc'd for C₃₄H₄₂N₄P₂Ni₂, F.W.: 734.10; C, 62.17; H, 5.77; N, 7.63. Found: C, 61.80; H, 5.98, N, 7.44.

Ni[P(CH₂NHPh)₃]₄ (10). [P(CH₂NHPh)₃] (28 mg, 0.08 mmol) was added to a solution of Ni(COD)₄ (5.6 mg, 0.02mmol) in 0.8 mL of C₆D₆. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 3.55 (d, ²J_{PH} = 4.8 Hz, 6H, PC<u>H</u>₂), 4.75 (b, 3H, N<u>H</u>), 6.58 (d, ³J_{HH} = 7.9 Hz, 6H, Ph *o*-<u>H</u>), 6.74 (t, ³J_{HH} = 7.3 Hz, 3H, Ph *p*-<u>H</u>), 7.05 (t, ³J_{HH} = 7.6 Hz, 6H,

Ph *m*-<u>*H*</u>). ¹³ C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 47.3 (p, $J_{PC} = 9.9$ Hz, P<u>C</u>H₂), 114.9 and 130.0 (s, Ph *o*-<u>*C*</u> and *m*-<u>*C*), 119.9 (s, Ph *p*-<u>*C*</u>), 148.2 (s, Ph *ipso*-<u>*C*</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ 15.9 (s).</u>

[CpNiP(CH₂NPh)₂Ti(NMe₂)₂]₂ (11). Ti(NMe₂)₄ (448.34 mg, 2 mmol) was added to a solution of [CpNiP(CH₂NHPh)₂]₂ (734.10 mg, 1 mmol) in 50 mL of toluene. The solution was stirred 2 days. The solvent was removed under vacuum and the remaining dark red solid was rinsed with a small portion of pentane, and then dried under vacuum (901 mg, 89.8 %). X-ray quality crystals were obtained from slow evaporation of a toluene solution. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 3.04(s, 24H, N<u>Me₂</u>), 4.4 (s, 8H, PC<u>H₂</u>), 5.02 (s, 10H, C₅<u>H₅</u>), 6.87 (t, ³J_{HH} = 7.3 Hz, 4H, Ph *p*-<u>H</u>), 7.19 (m, 8H, Ph *o*-<u>H</u>), 7.29 (t, ³J_{HH} = 7.8 Hz, 8H, Ph *m*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 45.77 (s, P<u>C</u>H₂), 88.7 (s, <u>C</u>₅H₅), 114.0 and 118.8 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 130.2 (s, Ph *p*-<u>C</u>), 148.9 (s, Ph *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -80.5 (s). Anal. Calc²d for C₄₆H₆₂N₈P₄Ni₂Ti₂, F.W.: 1002.11; C, 55.13; H, 6.24; N, 11.18. Found: C, 55.42; H, 6.62, N, 11.02.

X-ray Crystallography. The X-ray structures were obtained at low temperature, with each crystal covered in Paratone and placed rapidly into the cold N₂ stream of the Kryo-Flex low-temperature device. The data were collected using the SMART software on a Bruker APEX CCD diffractometer using a graphite monochromator with Mo K α radiation ($\lambda = 0.71073$ Å). A hemisphere of data was collected using a counting time of 10 to 30 s per frame. Details of crystal data, data collection, and structure refinement are listed in Table 2.3. Data reductions were performed using the SAINT software, and the data were corrected for absorption using SADABS. The structures were solved by direct methods using SIR97 and refined by full-matrix least-squares on F^2 with anisotropic displacement parameters for the non-H atoms using SHELXL-97 and the WinGX software package, and thermal ellipsoid plots were produced using ORTEP32.⁷⁰ The thermal parameters for the carbonyl fragment in **8c** were modeled isotropically, due to problems arising from its three-fold disorder.

2.11.3 Crystal Data and Structure Refinement

	1 a	2a	2 b
Empirical	$C_{27}H_{18}F_{18}N_3P$	$C_{34}H_{24}F_{18}N_4PTi$	C ₂₃ H ₂₇ N ₄ PTi
Formula			
Formula Weight	757.41	909.44	439.33
Crystal System	Orthorhombic	Orthorhombic	Monoclinic
а	15.620(2) Å	31.221(4) Å	11.9600(8) Å
b	16.410(2) Å	13.8559(17) Å	14.4825(9) Å
с	22.386(3) Å	17.048(2) Å	12.8136(8) Å
α	90°	90°	90.°
β	90°	9 0°	90.081(1)°
γ	90°	9 0°	90°
V, Å ³	5738.0(13)	7375.0(16)	2219.45(2)
Space Group	Pbca	Pccn	$P2_{1}/n$
Z value	8	8	4
<i>μ</i> (MoKα)	0.239 mm ⁻¹	0.399 mm ⁻¹	0.474 mm ⁻¹
Temperature	133 K	143 K	173 K
No. Variables	505	650	264
No. of Unique	$6569 (\mathbf{R}) = 0.0282$	6500 ($R_{int} = 0.0454$)	3903 (R _{int} = 0.019)
Reflns	$0.007 (R_{int} - 0.0202)$		
Residuals: R; wR2 (all data)	0.077; 0.187	0.0742, 0.1692	0.034; 0.090

Table 2.3. Crystallographic data for compounds 1a, 2a-c, 3b, 5, 8c, 9 and 11

	2c	3b	5
Empirical	C ₁₂₁ H ₁₆₈ N ₁₆ P ₄ Ti ₄	C ₂₅ H ₃₀ N ₄ PTa	$C_{65}H_{90}N_8NiO_2$
Formula			Ti ₂
Formula Weight	2160.45	598.45	1231.90
Crystal System	Triclinic	Monoclinic	Triclinic
а	11.68(2) Å	27.980(3) Å	15.417(3) Å
b	14.93(2) Å	11.7166(12) Å	15.812(3) Å
с	18.19(3) Å	19.371(2) Å	16.336(3) Å
α	92.11(3)°	90°	111.303(2)°
β	99.84(2)°	131.3410(10)°	109.839(2)°
γ	103.46(3)°	90°	95.691(2)°
V , Å ³	3030(8)	4767.9(8)	3375.6(11)
Space Group	P-1	C2/c	<i>P</i> -1
Z value	1	8	2
<i>μ</i> (MoKα)	0.359 mm ⁻¹	4.697 mm ⁻¹	0.601 mm ⁻¹
Temperature	173 K	173 K	173 K
No. Variables	629	283	695
No. of Unique	179(7) = 0.0000	5417 (R _{int} = 0.021)	11867 (R _{int} = 0.069)
Reflns	$1/000 (K_{int} = 0.0000)$		
Residuals: R; w R_2	0.1626, 0.3202	0.022; 0.046	0.109; 0.174

Table 2.3 cont'd.

	8c	9	11
Empirical formula	C ₆₃ H ₈₄ ClN ₈ OP ₂ RhTa ₂	$C_{40.33}H_{43.33}N_4Ni_2P_2$	$C_{46}H_{62}N_8Ni_2P_2Ti_2$
Formula weight	1531.58	763.48	1001.46
Crystal System	Hexagonal	Triclinic	Triclinic
Space group	<i>P</i> 63/m	<i>P</i> -1	<i>P</i> -1
a	14.2228(8) Å	10.0671(13) Å	10.528(2) Å
b	14.2228(8) Å	13.8241(17) Å	10.991(2) Å
с	25.594(3) Å	21.291(3) Å	11.593(2) Å
α	90 °	108.2090(10)°	66.712(2)°
β	90 °	90.0110(10)°	78.470(2)°
γ	120 °	105.3660(10)°	87.357(2)°
Volume Å ³	4483.7(6)	2702.8(6)	1206.5(4)
Z	2	3	· 1
μ(MoKα)	2.714 mm ⁻¹	1.169 mm ⁻¹	1.194 mm ⁻¹
Temperature	173 K	173 K	173 K
No. Variables	129	682	275
Total No. of Reflns	49687	30865	11489
No. of Unique Reflns	3513 ($\mathbf{R}_{int} = 0.0429$)	$12166 (R_{int} = 0.0390)$	4232 (R _{int} = 0.0430)
Residuals: R; wR ₂ (all data)	0.056; 0.1254	0.0687, 0.1215	0.0700, 0.1124

Table 2.3 cont'd.

2.12 References

- (1) Stephan, D. W. Coord. Chem. Rev. 1989, 95, 41-107.
- (2) Wheatley, N.; Kalck, P. Chem. Rev. 1999, 99, 3379-3419.
- (3) Braunstein, P.; Naud, F. Angew. Chem. Int. Ed. 2001, 40, 680-699.

(4) Hernandez-Gruel, M. A. F.; Perez-Torrente, J. J.; Ciriano, M. A.; Rivas, A. B.;

Lahoz, F. J.; Dobrinovitch, I. T.; Oro, L. A. Organometallics 2003, 22, 1237-1249.

(5) Kabashima, S.-i.; Kuwata, S.; Hidai, M. J. Am. Chem. Soc. 1999, 121, 7837-7845.

(6) Graham, T. W.; Llamazares, A.; McDonald, R.; Cowie, M. Organometallics 1999, 18, 3502-3510.

(7) Spannenberg, A.; Oberthur, M.; Noss, H.; Tillack, A.; Arndt, P.; Kempe, R. Angew. Chem. Int. Ed. 1998, 37, 2079-2082.

(8) Renner, P.; Galka, C.; Memmler, H.; Kauper, U.; Gade, L. H. J. Organomet. Chem. 1999, 591, 71-77.

(9) Gray, H. B.; Malmstroem, B. G. Biochemistry 1989, 28, 7499-7505.

(10) Messerschmidt, A.; Huber, R.; Wieghardt, K.; Poulos, T. Handbook of Metalloproteins, Volume 1, 2001.

(11) Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R. MRS Bulletin 2000, 25, 66-71.

(12) Gatteschi, D.; Sessoli, R. Angew. Chem. Int. Ed. 2003, 42, 268-297.

(13) Alvarez-Vergara, M. C.; Casado, M. A.; Martin, M. L.; Lahoz, F. J.; Oro, L. A.; Perez-Torrente, J. J. Organometallics 2005, 24, 5929-5936.

78

(14) Stang, P. J.; Persky, N. E. Chem. Commun. 1997, 77-78.

(15) Mokuolu, Q. F.; Avent, A. G; Hitchcock, P. B.; Love, J. B. J. Chem. Soc. Dalton Trans. 2001, 2551-2553.

(16) Mokuolu, Q. F.; Duckmanton, P. A.; Hitchcock, P. B.; Wilson, C.; Blake, A. J.; Shukla, L.; Love, J. B. Dalton Trans. **2004**, 1960-1970.

(17) Han, H.; Elsmaili, M.; Johnson, S. A. Inorg. Chem. 2006, 45, 7435-7445. Keen,

A. L.; Doster, M.; Han, H.; Johnson, S. A. Chem. Comm. 2006, 1221-1223.

(18) Fryzuk, M. D.; Kozak, C. M.; Bowdridge, M. R.; Jin, W.; Tung, D.; Patrick, B.

O.; Rettig, S. J. Organometallics 2001, 20, 3752-3761.

(19) Gade, L. H. Acc. Chem. Res. 2002, 35, 575-582.

(20) Gade, L. H. J. Organomet. Chem. 2002, 661, 85-94.

(21) Jia, L.; Ding, E.; Rheingold, A. L.; Rhatigan, B. Organometallics 2000, 19, 963-965.

(22) Frank, A. W. D., G. L.Jr. J. Org. Chem. 1972, 37, 2752-2755.

(23) Bondi, A. J. Phy. Chem. 1964, 68, 441-451.

(24) Shao, M.-Y.; Gau, H.-M. Organometallics 1998, 17, 4822-4827.

(25) Feindel, K. W.; Wasylishen, R. E. Can. J. Chem. 2004, 82, 27-44.

(26) van Doorn, J. A.; van der Heijden, H.; Orpen, A. G. Organometallics 1994, 13, 4271-4277.

(27) Mathieu, R.; Lenzi, M.; Poilblanc, R. Inorg. Chem. 1970, 9, 2030-2034.

(28) Bodner, G. M.; May, M. P.; McKinney, L. E. Inorg. Chem. 1980, 19, 1951-1958.

(29) Strohmeier, W.; Mueller, F. J. Chem. Ber. 1967, 100, 2812-2821.

(30) Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2953-2956.

(31) Tolman, C. A. Chem. Rev. 1977, 77, 313-348.

(32)Bunten, K. A.; Chen, L.; Fernandez, A. L.; Poe, A. J. Coord. Chem. Rev. 2002, 233-234, 41-51.

(33) Ferguson, G.; Roberts, P. J.; Alyea, E. C.; Khan, M. Inorg. Chem. 1978, 17, 2965-2967.

(34)Cooney Katharine, D.; Cundari Thomas, R.; Hoffman Norris, W.; Pittard Karl,A.; Temple, M. D.; Zhao, Y. J. Am. Chem. Soc. 2003, 125, 4318-4324.

(35)Dunne, B. J.; Morris, R. B.; Orpen, A. G. J. Chem. Soc. Dalton Trans. 1991, 653-661.

(36) Rahman, M. M.; Liu, H. Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics 1989, 8, 1-7.

(37) Bush, R. C.; Angelici, R. J. Inorg. Chem. 1988, 27, 681-686.

(38) Suresh, C. H.; Koga, N. Inorg. Chem. 2002, 41, 1573-1578.

(39) Shaw, B. L.; Mann, B. E.; Masters, C. J. Chem. Soc. 1971, 1104-1106.

(40)Kashiwabara, K.; Taguchi, N.; Takagi, H. D.; Nakajima, K.; Suzuki, T. Polyhedron 1998, 17, 1817-1829.

(41) Watson, W. H.; Kandala, S.; Richmond, M. G. J. Organomet. Chem. 2007, 692, 968-975.

(42)Ruiz, J.; Garcia-Granda, S.; Diaz, M. R.; Quesada, R. Dalton Trans. 2006, 4371-4376.

(43) Kohl, S. W.; Heinemann, F. W.; Hummert, M.; Bauer, W.; Grohmann, A. Chem.

References begin on page 78

80

Eur. J. 2006, 12, 4313-4320.

(44) Watson, W. H.; Wu, G.; Richmond, M. G. Organometallics 2006, 25, 930-945.

(45) Kabir, S. E.; Miah, M. A.; Sarker, N. C.; Hussain, G. M. G.; Hardcastle, K. I.;

Nordlander, E.; Rosenberg, E. Organometallics 2005, 24, 3315-3320.

(46) Knabel, K.; Klapoetke, T. M.; Noeth, H.; Paine, R. T.; Schwab, I. Eur. J. Inorg. Chem. 2005, 1099-1108.

(47) Shima, T.; Suzuki, H. Organometallics 2005, 24, 1703-1708.

(48) Caballero, A.; Jalon, F. A.; Manzano, B. R.; Espino, G.; Perez-Manrique, M.;

Mucientes, A.; Poblete, F. J.; Maestro, M. Organometallics 2004, 23, 5694-5706.

(49) Geldbach, T. J.; Pregosin, P. S. Eur. J. Inorg. Chem. 2002, 1907-1918.

(50) Heyn, R. H.; Goerbitz, C. H. Organometallics 2002, 21, 2781-2784.

(51)Koch, T.; Blaurock, S.; Somoza, F. B., Jr.; Voigt, A.; Kirmse, R.; Hey-Hawkins,

E. Organometallics 2000, 19, 4186.

(52)Dogan, J.; Schulte, J. B.; Swigers, G. F.; Wild, S. B. J. Org. Chem. 2000, 65, 4782.

(53) Kim, D. Y. Synth. Commun. 2000, 30, 1205-1212.

(54)Dogan, J.; Schulte, J. B.; Swiegers, G. F.; Wild, S. B. J. Org. Chem. 2000, 65, 951-957.

(55) Ho, J.; Stephan, D. W. Inorg. Chem. 1994, 33, 4595-4597.

(56) Macgregor, S. A. Chem. Soc. Rev. 2007, 36, 67-76.

(57) Garrou, P. E. Chem. Rev. 1985, 85, 171-185.

(58) Baker, R. T.; Fultz, W. C.; Marder, T. B.; Williams, I. D. Organometallics 1990,

9, 2357-2367.

(59)Lindenberg, F.; Shribman, T.; Sieler, J.; Hey-Hawkins, E.; Eisen, M. S. J. Organomet. Chem. 1996, 515, 19-25.

(60) Amor, I.; Garcia-Vivo, D.; Garcia, M. E.; Ruiz, M. A.; Saez, D.; Hamidov, H.; Jeffery, J. C. Organometallics 2007, 26, 466-468.

(61)Zheng, P. Y.; Nadasdi, T. T.; Stephan, D. W. Organometallics 1989, 8, 1393-1398.

(62) Stephan, D. W. Coord. Chem. Rev. 1989, 95, 41.

(63) Maslennikov, S. V.; Glueck, D. S.; Yap, G. P. A.; Rheingold, A. L. Organometallics 1996, 15, 2483-2488.

(64) Leadbeater, N. E. J. Org. Chem. 2001, 66, 7539-7541.

(65) Melenkivitz, R.; Mindiola Daniel, J.; Hillhouse Gregory, L. J. Am. Chem. Soc. 2002, 124, 3846-3647.

(66)Diamond, G. M.; Jordan, R. F.; Petersen, J. L. Organometallics 1996, 15, 4030-4037.

(67) Niecke, E.; Kramer, B.; Nieger, M. Organometallics 1991, 10, 10-11.

(68) Kuhn, N.; Heuser, N.; Winter, M. J. Organomet. Chemistry 1984, 267, 221-227.

(69) Chien, P.-S.; Liang, L.-C. Inorg. Chem. 2005, 44, 5147-5151.

(70)Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520.

Chapter Three

Bridged Dinuclear Tripodal Amido-Phosphine Complexes of

Titanium and Zirconium

3.1 Introduction

Ligand designs to incorporate metal complexes into polymers or 2-D and 3-D structures are of current interest due to the additional physical properties, such as magnetism chemistry.¹⁻³ A variety of methods have been used to incorporate metal

centers in polymers or extended supermolecular networks,⁴ which include the use of divergent diligating donors incapable of coordinating to a single metal center. ⁵⁻⁸

In Chapter two, the synthesis and initial study of the tripodal amido phosphine ligands $P(CH_2NHAr^R)_3$ were described.⁹ The ligands $P(CH_2NHAr^R)_3$ have been demonstrated to be well suited for the facile synthesis of early-late transition metal polynuclear or heterobimetallic complexes, where $Ar^R = 3,5-(CF_3)_2C_6H_3$, Ph, and $3,5-Me_2C_6H_3$. The ligand precursors $P(CH_2NH-3,5-(CF_3)_2C_6H_3)_3$, $P(CH_2NHPh)_3$, and $P(CH_2NH-3,5-Me_2C_6H_3)_3$, react with the reagents $Ti(NMe_2)_4$ and $^{t}BuN=Ta(NEt_2)_3$ to generate the metal complexes of the type $P(CH_2NAr^R)_3TiNMe_2$ (**2a-c**) and $P(CH_2NAr^R)_3Ta=N^{t}Bu$ (**3a-c**). The electron density of the metal centre affects the phosphine donor, despite the fact that the phosphine lone-pair is not coordinated to the metal center.^{9, 10}

Due to ring strain, the phosphine lone-pair cannot chelate the early transition metal centres and is available to bind a second metal. With suitable building-blocks, this interaction could be used to create 1-D wires, and 2-D or 3-D networks that could have properties that result from through-space exchange-coupling, or through-space electron-transfer.¹¹⁻¹⁷ The target bis(phosphine) building blocks for such an approach are shown in Scheme 3.1. The addition of suitable late-transition metal fragments capable of bonding to two phosphine moieties, provides a facile route to the polymers containing transition metals. Although there are a plethora of examples of bis(phosphines) used as bridging ligands¹⁸, these complexes could provide rare examples of the linear bis(phosphine) building-blocks,¹⁹⁻²⁴ where through-space

interactions provide the potential for extended interactions. In this chapter, we test the synthetic feasibility of preparing such building blocks using the diamagnetic early transition metals zirconium and titanium, with the goal of introducing redox active and paramagnetic metal-bridge fragments in future endeavours.

Scheme 3.1

Ar^R= Ph; 3,5-Me₂C₆H₃

3.2 Synthesis of the Mononuclear Zirconium Chloride Complexes

The reactions of the phosphine ligands $P[CH_2NAr^R]_3H_3^9$ with 1 equiv of $Zr(NEt_2)_4$ cleanly produced the mononuclear zirconium complexes $[P(CH_2NAr^R)_3]$ ZrNEt₂ (12b, Ar^R = Ph; 12c, Ar^R = 3,5-Me₂C₆H₃), which were accompanied by elimination of 3 equiv of HNEt₂, as shown in Scheme 3.2. The 3,5-(CF₃)₂C₆H₃ substituents bearing ligand precursors did not produce a clean reaction product. These reactions require 24-48 h to go to completion and no intermediates were observed by ¹H or ³¹P{¹H} NMR spectroscopy. The resultant products are all obtained in 69-86 % yields as thermally-stable yellow solids. The ¹H NMR spectra of [P(CH₂NAr^R)₃]ZrNEt₂ (12b-c) exhibit the presence of one Zr-NEt₂ References begin on page 124 85

moiety and one set of aromatic resonances, corresponding to 3-fold symmetric complexes in solution, similar to that of $[P(CH_2NAr^R)_3]TiNMe_2$. The protons of Zr-NEt₂ group are observed as triplet (**12b**: δ 1.0, 3H, J_{HH} = 7.0 Hz; **12c**: δ 1.1, 3H, J_{HH} = 7.1 Hz) and quadruplet (**12b**: δ 3.2, 2H, J_{HH} = 7.0 Hz; **12c**: δ 3.3, 2H, J_{HH} = 7.1 Hz). The Zr-NEt₂ group of complexes **12b-c** was also identified by the ¹³C NMR signals at δ 14.5 and δ 42.8. The ³¹P{¹H} NMR spectra of $[P(CH_2NAr^R)_3]ZrNEt_2$ reveal the singlet resonances for the phosphorus donors at δ -70.8 and -75.2, respectively, where Ar^R = Ph and 3,5-Me₂C₆H₃. Compared with shifts of δ -31.0, and -29.6 for free ligand precursors P[CH₂NAr^R]₃H₃, the changes of the chemical shift to upfield for **12b-c** are significant.²⁵

The zirconium chloride complexes $[P(CH_2NAr^R)_3]ZrCl(THF)$ (13b-c) were readily prepared by reactions of $[P(CH_2NAr^R)_3]ZrNEt_2$ (12b-c) with HNEt_3Cl, and were isolated in 84-89 % yields as yellow solids. The reactions were carried out in toluene at room temperature. After 1 h, THF was added before the solvent was removed. If the solvent was removed without first adding THF, however, the product decomposed. The chloride complex formed in the absence of THF is likely stabilized by HNEt₂, which is removed under vacuum. When the reaction of $[P(CH_2NAr^R)_3]ZrNEt_2$ with HNEt_3Cl was performed using THF as the solvent, it took more than 48 h to go to completion and a plethora of long-lived intermediates were observed by ³¹P{¹H} NMR spectroscopy. This probably indicates that the amido donors of the free ligands are protonated as easily as diethylamido ligand and the THF solvent molecules can then behave as donors that coordinate to the zirconium metal

center and block proton transfer pathways, thus rendering the formation of the thermodynamic products quite slow.

The ³¹P{¹H} NMR spectra of $[P(CH_2NAr^R)_3]ZrCl(THF)$ (13b-c) reveal single resonances for the phosphorus donor at δ -66.0 and -71.5, respectively, which are shifted downfield compared with that of $[P(CH_2NAr^R)_3]ZrNEt_2$ (12b-c). The room temperature ¹H NMR and ¹³C NMR spectra identify the presence of 1 equiv of coordinated THF and disappearance of the -NEt₂ resonances. $[P(CH_2NAr^R)_3]ZrCl(THF)$ (13b-c) exhibit 3-fold symmetry in solution, which are indicated by the presence of one set of aromatic resonances and one PhCH₃ resonance.

Scheme 3.2

3.3 Synthesis of the Mononuclear Zirconium Complexes with Unlinked Cyclopentadienyl Rings

The treatments of zirconium chloride complexes [P(CH₂NAr^R)₃]ZrCl(THF)

(13b-c) with LiCp in toluene at room temperature generated $[P(CH_2NAr^R)_3]ZrCp$ (14b-c) (Scheme 3.3), which were isolated as the yellow microcrystalline solids, following crystallization from toluene. The molecular structure of 14c in the solid state was determined by X-ray crystal structure analysis, however, compound 14b crystallized as thin needles unsuitable for crystallographic studies. An ORTEP depiction of the solid-state structure obtained at 173 K is shown in Figure 3.1, which features a mononuclear zirconium complex. The tripodal ligand chelates the zirconium metal centre via three amido donors, and the lone-pair electrons of the phosphine donor is directed away from the metal centre. The coordination geometry of the zirconium atom is distorted tetrahedron, at the corners of which are the centre of Cp group and three amido donors of the ligand. Two independent molecules of 14c are found in the unit cell, which have same bond lengths and angles. The binding of the ligand enforces the P...Zr distances of 3.0523(6) Å, which is under the sum of Van der Waals radii of these elements, suggesting a weak through-space interaction.⁹ This value can be compared to typical P-Zr bond distance of 2.7-2.9 Å,^{26,27} and is nearly identical to the longest reported Zr-P bond length of 3.033 Å, which was observed in an organometallic PMe₃ adduct.²⁸

The ³¹P{¹H} NMR spectra of [P(CH₂NAr^R)₃]ZrCp (14b-c) contain single resonances for the phosphorus donor at δ -67.5 and -66.9, respectively, both of which are shifted significantly upfield compared with corresponding ligand precursors P[CH₂NAr^R]₃H₃.²⁵ The ¹H NMR spectra of 14c and 14b are consistent with an apparent C_{3v} symmetry. The N-Zr bond distances range from 2.0536(18) to 2.0986(17)

Å, which are in the normal range.⁸ All the nitrogen atoms coordinated to the zirconium metal centre have the trigonal-planar geometries. The N(1)-Zr(1)-N(3) bond angle (99.37(7)°) is smaller than the angles N(1)-Zr(1)-N(2) (104.91(7)°) and N(2)-Zr(1)-N(3) (106.38(7)°) because of the influence of the bulky Cp group coordinated to Zr metal centre and different orientation of $-Ar^{R}$ groups. The C-P-C angles for 14c are 104.93(12)°, 106.40(12)° and 104.66(11)°, respectively, with a sum of C-P-C angles of 315.99(35)°, which are larger than that of free ligands and titanium compounds reported previously.⁹ Compared with titanium compounds, the chelation of a larger metal centre Zr requires an increase in the bond angles at the centre of phosphorus.⁹

Figure 3.1. Solid-state molecular structure of 14c as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. Selected distances (Å): Zr(1)···P(1), 3.0523(6); Zr(1)-N(1), 2.0536(18); Zr(1)-N(2), 2.0624(17); Zr(1)-N(3), 2.0986(17); P(1)-C(1), 1.850(2); P(1)-C(2), 1.846(2); P(1)-C(3), 1.857(2). Selected bond angles (deg): C(1)-P(1)-C(2), 104.93(12); C(1)-P(1)-C(3), 106.40(12); C(2)-P(1)-C(3), 104.66(11); P(1)-C(1)-N(1), 120.31(16); P(1)-C(2)-N(2), 118.48(15); 121.69(16); C(1)-N(1)-C(4), P(1)-C(3)-N(3); 113.62(17); C(2)-N(2)-C(12),C(3)-N(3)-C(20), 113.60(17); N(1)-Zr(1)-N(2), 104.91(7); 112.46(16); N(1)-Zr(1)-N(3), 99.37(7); N(2)-Zr(1)-N(3), 106.38(7).

Alternatively, $[P(CH_2NAr^R)_3]ZrCp (14b-c)$ could be prepared via the reactions of the lithium salts $[P(CH_2NAr^R)_3]Li_3(OEt_2)_{1.5}$ (15b-c) with CpZrCl₃ (Scheme 3.3). The lithium salts of the phenyl substituents bearing ligands were easily obtained by the reaction of a slurry of $P(CH_2NHPh)_3$ in diethyl ether with 3 equiv of "BuLi, as shown in Scheme 3.4. After the addition of 2 equiv of "BuLi, the solids dissolved, and the addition of the third equiv resulted in the precipitation of the analytically pure products, $P(CH_2NPh)_3Li_3(OEt_2)_{1.5}$ (15b). The lithium salt $P(CH_2N-3,5-Me_2C_6H_3)_3Li_3(OEt_2)_{1.5}$ (15c) was prepared in an analogous manner from 15b.

The complexes **15b-c** are insoluble in toluene, diethyl ether and methylene chloride, but soluble in THF. The dissolution of THF results in the displacement of the diethyl ether donors as demonstrated by the crystallization of $P(CH_2NPh)_3Li_3(THF)_5$ (**15d**) by cooling a THF solution of **15b**. This THF adduct is soluble in cold CH_2Cl_2 , but solutions decomposes over the course of 1 h at room temperature in this solvent.

Chapter Three: Bridged Dinuclear Tripodal Amido-Phosphine Complexes of Titanium and Zirconium

Scheme 3.4

$$P(CH_2NH-3,5-Me_2C_6H_3)_3 \xrightarrow{+ 3 \text{ BuLi}} P(CH_2N-3,5-Me_2C_6H_3)_3Li_3(OEt_2)_{1.5}$$
15c

$$P(CH_2NHPh)_3 \xrightarrow{+3 \text{ BuLi}} P(CH_2NPh)_3 \text{Li}_3(OEt_2)_{1.5} \xrightarrow{\text{THF}} P(CH_2NPh)_3 \text{Li}_3(OC_4H_8)_5$$
15b 15d

The solid-state molecular structure of **15d** was determined by X-ray crystallography and is shown in Figure 3.2. The complex has an approximate mirror plane of symmetry, with the central Li ion chelated by all three amido donors and bearing a single THF donor. The two remaining Li ions bridge between amido donors, and adopt four-coordinate geometries by binding to two THF moieties. Lithium salts of tripodal amido donors are known to adopt a plethora of bonding motifs in the solid state,²⁹ and structurally related tripodal amido lithium salts are known.³⁰ Although the lone-pair of the phosphine is directed away from the central Li(3), the Li(3)...P(1) distance of 3.074(6) Å is only ~0.4 Å longer than typical Li-P bond distances; this short contact with phosphorus is common for metals chelated by the amido donors of these tris(amido)phosphine ligands. In the structure of **15d**, the sum of C-P-C angles is $313.7(3)^\circ$, which is intermediate between the values we previously reported for the complexes P(CH₂NPh)₃TiNMe₂ and P(CH₂NPh)₃Ta=N⁴Bu, which were $311.4(1)^\circ$ and $315.0(2)^\circ$, respectively.

Figure 3.2. Solid-state molecular structure of 15d as determined by X-ray crystallography. Hydrogen atoms are omitted and only the oxygen atoms associated with the THF donors are shown for clarity. Selected distances (Å): Li(1)-N(2), 2.069(7); Li(1)-N(1), 2.189(8); Li(2)- N(1), 2.150(9); Li(2)-N(3), 2.053(7); Li(3)-N(3), 2.063(7); Li(3)-N(2), 2.088(7); Li(3)-N(1), 2.149(7); Li(3)...P(1), 3.074(6). Selected bond angles (deg): C(2)-P(1)-C(1), 104.38(18); C(2)-P(1)-C(3) 101.5(2); C(1)-P(1)-C(3), 107.84(19).

The room-temperature ¹H, ⁷Li, and ¹³C{¹H} NMR spectra of both 15c and 15b are consistent with high symmetry species. The ¹H NMR spectrum of 15b in d_8 -THF consists of a single PCH₂ resonance and a set of three aromatic resonances, and the ⁷Li NMR spectrum displays a single lithium environment. The fluxional nature of Li salts of related species is well documented.³⁰ The ³¹P{¹H} NMR spectra of 15b-c and in d_8 -THF display singlets at δ -21.7 and -22.2, respectively, which are only slightly altered from the chemical shift observed in the free ligand precursors. The change of 93 *References begin on page 124* shift is in the opposite direction we have previously observed for early transition metal complexes of these ligands, which exhibit ³¹P chemical shifts as low as δ -108.5.⁹

3.4 Synthesis of the Binuclear Zirconium Complexes with the Bridging Fulvalenide Ligand and Comparison with the Analogous Mononuclear Zirconium Complexes with Unlinked Cyclopentadienyl Rings.

The stabilities of the cyclopentadienyl zirconium complexes 14b-c suggested that the most versatile dinuclear zirconium building-blocks should bear polyhapto ligands. The fulvalene dianion $[(C_5H_4)_2]^{2-}$ exhibits electron delocalization between the rings,^{31,32} and its obvious relation to the Cp ligand suggests that these complexes should be stable and isolable. Fulvalene-metal complexes also offer the opportunity to investigate the cooperative interaction between the two metals across a delocalized bridging ligand by comparing the properties of analogous mono and binuclear complexes. Here, we prepare the binuclear zirconium complexes by nucleophilic substitution reactions of metal substrates with the fulvalene dianion. As the procedure of Vollhardt and Weidman,³³ the lithium salt of the fulvalene dianion $Li_2C_{10}H_8$ was isolated via deprotonation of hydrofulvalene with "BuLi.³³ Reactions of 2 equiv of $P(CH_2NAr^R)_3ZrCl(THF)$ (13b-c) with 1 equiv of $Li_2C_{10}H_8$ result in the binuclear zirconium complexes trans-[P(CH₂NAr^R)₃Zr]₂(μ - η ⁵: η ⁵-C₁₀H₈) (16b-c) at room temperature, as shown in Scheme 3.5, which are soluble in hydrocarbon solvents and can be recrystallized from a mixture of benzene and hexamethyldisiloxane solution to

give thermally-stable yellow crystals.

Scheme 3.5

The structure of the compound 16c was confirmed by X-ray diffraction and an ORTEP depiction of the solid-state molecular structure is shown in Figure 3.3, together with selected bond distances and bond angles. The molecule crystallizes with a center of symmetry. Thus, the two metal centers are crystallographically equivalent and are coordinated to the bridging fulvalenide ligand in a *trans* manner, which is probably primarily due to steric reasons.³⁴ Both ¹H and ³¹P{¹H} NMR spectroscopy support the presence of only the *trans* isomer; the ³¹P{¹H} NMR spectra of complexes 16c and 16b exhibit one signal each at δ -56.3 and δ -57.1, respectively. The central fulvalene C-C bond length of 1.471(6) Å is within the normal range found in fulvalene metal complexes with a degree of multiple bonding between the rings.³⁵ The bond distances and angles of the binuclear compound 16c are similar to those of the analogous mononuclear compound 14c. The P···Zr distance of 3.0698(9) Å for 16c is 95 References begin on page 124

slightly larger than that of 3.0523(6) Å for 14c.

The ¹H NMR spectrum provides the convenient tool to characterize the binuclear fulvalene complexes and their corresponding monomers. In the ¹H NMR spectra of *trans*-[P(CH₂NAr^R)₃Zr]₂($\eta^{5}:\eta^{5}-C_{10}H_{8}$) (**16b-c**), the fulvalene protons appear as a pair of triplets, indicating that molecule possesses a mirror plane bisecting the central C-C bond linking the fulvalene rings.³³ However, the ¹H NMR spectra of P(CH₂NAr^R)₃ZrCp only show singlets at δ 6.18 and 5.95, respectively, due to the unlinked Cp ligand. The change of the ³¹P NMR shift downfield is observed for complexes **16b** and **16c** (**16b**: -57.1; **16c**: δ -56.2), comparing to their corresponding mononuclear zirconium complexes **14b** and **14c** (**14b**: -67.5; **14c**: δ -66.9).

Figure 3.3. Solid-state molecular structure of 16c as determined by X-ray crystallography. Hydrogen atoms and 3,5-methyl substituents are omitted for clarity. Selected distances (Å): $Zr(1)\cdots P(1)$, 3.0698(9); Zr(1)-N(1), 2.052(2); Zr(1)-N(2), 2.093(3); Zr(1)-N(3), 2.073(3); P(1)-C(1), 1.853(3); P(1)-C(2), 1.848(3); P(1)-C(3), 1.852(3). Selected bond angles (deg): C(1)-P(1)-C(2), 104.50(15); C(1)-P(1)-C(3), 105.38(15); C(2)-P(1)-C(3), 103.13(16); P(1)-C(1)-N(1), 118.8(2); P(1)-C(2)-N(2), 118.5(2); P(1)-C(3)-N(3); 118.3(2); C(1)-N(1)-C(4), 111.9(2); C(2)-N(2)-C(12), 112.8(2); C(3)-N(3)-C(20), 113.1(2); N(1)-Zr(1)-N(2), 103.15(10); N(1)-Zr(1)-N(3), 102.71(10); N(2)-Zr(1)-N(3), 102.19(10).

3.5 Synthesis of the Bridged Binuclear Titanium Complexes

A variety of synthetic approaches to $P(CH_2NAr^R)_3TiCl$ were attempted, due to the fact that it could serve as a potential precursor to a variety of bridged dinuclear complexes via salt metathesis. Unfortunately, the direct reactions of the lithium salts

15b-c with TiCl₄ produced a mixture of products. The reaction of the ligand precursors $P(CH_2NHAr^R)_3$ with stoichiometric quantities of $(Me_2N)_3$ TiCl also failed to produce the desired products, and the previously characterized $P(CH_2NAr^R)_3$ TiNMe₂ and unreacted $P(CH_2NHAr^R)_3$ were identified as two of the major components of the reaction mixture in each case, where $Ar^R = Ph$ and 3,5-Me₂C₆H₃. Similarly, the reactions of $P(CH_2NAr^R)_3$ TiNMe₂ with the ammonium salt HNEt₃Cl and Me₃SiCl failed to yield the desired chloride complexes.

Due to the difficultly in accessing the chloride complex, we attempted to demonstrate that the amido complexes, $P(CH_2NAr^R)_3TiNMe_2$, could act as precursors to the bridged binuclear complexes via protonolysis reactions. To test this hypothesis, we prepared the mononuclear complexes $[P(CH_2NAr^R)_3]TiOC_6H_4'Bu$ (17b,c) via the reaction of 1,4-HOC₆H₄'Bu with $P(CH_2NAr^R)_3TiNMe_2$ (Ar^R = 3,5-Me₂C₆H₃ and Ph) in toluene, as shown in Scheme 3.6. The reactions are slow at room temperature, and required 48 h to go to completion. The resultant products are thermally-stable dark-red solids. The reaction where $Ar^R = 3,5-(CF_3)_2C_6H_3$ produces only a mixture of products.

Crystalline 17c was obtained by slow evaporation of a pentane solution and the solid-state molecular structure was determined by X-ray crystallography. The unit cells contain two crystallographically distinct molecules of 17c in the asymmetric unit, and an ORTEP depiction of one of these is shown in Figure 3.4. The structure could be described as distorted trigonal bipyramid with the phosphine lone pair formally directing away from the titanium center, in which P atom and O atom occupy the apical positions. The angle between the two axial positions O(1)-Ti(1)-P(1) is 178.20(12)° and close to the idealized value of 180° in the trigonal bipyramid. The Ti(1)-O(1)-C(28) bond angle $(160.20(3)^\circ)$ and Ti-O distance (1.784(3) Å) are in the normal ranges.³⁶ The Ti-N_{amido} bonds of 17c (1.918(4) Å, 1.918(4) Å, 1.926(4) Å) are shorter than those of $[P(CH_2NAr^R)]$ TiNMe₂ (1.963(7) Å, 1.941(6) Å, 1.934(6) Å),

reflecting stronger σ -bonding together with additional p-d π donation in the compound 17c.³⁷ In the ${}^{13}C{}^{1}H$ NMR spectra of 17b-c, the chemical shifts of the *ipso* carbons bonded directly to the oxygen atoms are at δ 153.3 and 164.2, respectively, which indicate the difference of electronic density around the titanium metal centre.³⁶ For compound 17c, the signal is shifted upfield relative to 17b, as the result of electron-donating property of the methyl groups in the ligand of the compound 11. Comparing the structure of 17c with the parent titanium compound [P(CH₂NAr^R)₃]TiNMe₂, the sum of C-P-C bond angles and the P...Ti distances are similar, indicating that the coordinated ($-OC_6H_4'Bu$) ligand does not alter the geometry of the remaining parts. However, the chemical shifts observed by ${}^{31}P{}^{1}H{}$ NMR spectroscopy of $[P(CH_2NAr^R)_3]$ Ti-OC₆H₄^tBu (17b-c) (17c, δ -77.9; 17b, -81.07) compared with that of $[P(CH_2NAr^R)_3]$ TiNMe₂ (δ -61.6, -65.6) and free ligand precursors $P(CH_2NAr^R)_3H_3$ (δ -29.6, -31.0), which corroborate our previous observations that the electron density at the chelated metal center affects the properties of the phosphine donor, despite the fact that the phosphine lone-pair is not coordinated to the metal center.9

Figure 3.4. Solid-state molecular structure of 17c as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. Selected distances (Å): Ti(1)···P(1), 3.0150(16); Ti(1)-N(1), 1.918(4); Ti(1)-N(2), 1.926(4); Ti(1)-N(3), 1.918(4); Ti(1)-O(1), 1.784(3); O(1)-C(28), 1.369(5); P(1)-C(1), 1.854(5); P(1)-C(2), 1.861(5); P(1)-C(3), 1.863(5). Selected bond angles (deg): O(1)-Ti(1)-P(1), 178.20(12); Ti(1)-O(1)-C(28), 160.20(3); C(1)-P(1)-C(2), 102.8(2); C(1)-P(1)-C(3), 102.8(2); N(1)-Ti(1)-O(1), 112.66(16); N(2)-Ti(1)-O(1), 115.74(16); N(3)-Ti(1)-O(1), 113.82(16); N(1)-Ti(1)-N(3), 105.73(17); N(2)-Ti(1)-N(3), 104.02(16); N(2)-Ti(1)-N(1), 103.77(16).

Aryloxy ligands have been utilized in the past as bridging ligands to generate the binuclear or larger complexes with cyclopentadienyl substituted titanium and zirconium complexes.³⁸⁻⁴⁰ The reaction of $\{4,4'-HO[3,3',5,5'-(C_6H_2Me_2)_2]OH\}$ with 2 equiv of $[P(CH_2NPh)_3]TiNMe_2$ gave the red solid of binuclear compound 101 References begin on page 124 [P(CH₂NPh)₃Ti]₂ {μ-O-3,3',5,5'-(Me₂C₆H₂)₂]O-} (18) in 85 % yield, as shown in Scheme 3.7. Compound 18 is soluble in aromatic hydrocarbons such as toluene and benzene. The NMR data and elemental analysis for the compound 18 are consistent with the structure depicted in Scheme 3.7. The ¹H NMR and ¹³C{¹H} NMR spectra of the compound 18 show the disappearance of -NMe₂ ligand and equivalence of the two Ti metal fragments, as well as one set of aromatic resonances. In the ¹H NMR spectrum, the aromatic protons of the {μ-O[3,3',5,5'-(C₆H₂Me₂)₂]O-}²⁻ ligand are equivalent and appear as a singlet at δ 7.2. The ³¹P{¹H} NMR spectrum displays a singlet at δ -78.6, which is comparable to that of P(CH₂NPh)₃TiOC₆H₄'Bu (17b) at δ -81.1. Unfortunately, the analogous complexes could not be prepared from [P(CH₂N-3,5-(CF₃)₂C₆H₃)₃]TiNMe₂ and [P(CH₂NH-3,5-Me₂C₆H₃)₃]TiNMe₂ by this method, and attempts to prepare crystals of 18 suitable for study by X-ray diffraction only generated the solid of 18.

Scheme 3.7

Carrying out the reaction of $[P(CH_2NPh)_3]$ TiNMe₂ with 1 equiv of H₂O results in a colorless to pale red precipitate that likely consists of TiO₂. However, the slow addition of a stoichiometric amount of water by using the hydrated salt Na₂SO₄.10H₂O resulted in the formation of the *oxo*-bridged binuclear compound $[P(CH_2NPh)_3Ti]_2(\mu$ -O) (19), as shown in Scheme 3.8. Chapter Three: Bridged Dinuclear Tripodal Amido-Phosphine Complexes of Titanium and Zirconium

The bridging oxo formulation was confirmed by X-ray crystallography, and an ORTEP depiction of the solid-state molecular structure is shown in Figure 3.5 & 3.6. Complex 19 crystallized from toluene in a trigonal space group and possesses crystallographically imposed S_6 symmetry. A second monoclinic pseudopolymorph containing cocrystallized toluene was also characterized, however, no significant structural differences were observed. The molecule has a strictly linear P-Ti-O-Ti-P unit, which defines the S_6 axis. As expected, the ¹H NMR spectrum of 19 contains one PCH_2 and three aromatic resonances associated with the ancillary ligand. The ${}^{31}P{}^{1}H$ NMR shift of -39.4 is unusual, compared the chemical shift of 17b and 18b, which are more negative by almost 40 ppm. A reasonable rationale for this shift might be that the steric interaction between the two ancillary ligand moieties in 19 results in a strained ligand conformation with larger N-Ti-O angles and P-Ti distances. The bond angles and lengths corroborate this hypothesis. For example, the Ti(1). P(1)separation of 3.051(2) Å is the longest we have observed in the Ti complexes of these ancillary ligands.

Figure 3.5. Solid-state molecular structure of 19 as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. Selected distances (Å): $Ti(1)\cdots P(1)$, 3.051(2); Ti(1)-N(1), 1.907(2); Ti(1)-O(1), 1.802(8); C(1)-P(1), 1.855(3); C(1)-N(1), 1.467(4); C(2)-N(1), 1.397(3); Selected bond angles (deg): P(1)-Ti(1)-O(1)-Ti(2), 180.00(0); N(1)-Ti(1)-O(1), 115.46(7); N(1)-C(1)-P(2), 115.53(2); C(1)-N(1)-C(2), 118.29(2); C(2)-N(1)-Ti(1), 129.96(18); C(1)-N(1)-Ti(1), 110.61(18); C(1)-P(1)-C(1), 102.05(11).

Figure 3.6. Solid-state molecular structure of 19 viewed along the crystallographic 3-fold axis. Hydrogen atoms are omitted for clarity.

Attempts make analogous bridging oxo-complex with to an $P(CH_2N-3,5-Me_2C_6H_3)_3TiNMe_2$ and $P[CH_2N-3,5-(CF_3)_2C_6H_3]_3TiNMe_2$ have so far failed, possibly due to the steric bulk afforded by these ligands, however, it may be that kinetic factors prevent their facile preparation. In an attempt to find an alternate route to these complexes, $P(CH_2N-3,5-Me_2C_6H_3)_3$ TiNMe₂ was reacted with 1 equiv of H_2O and excess $Ti(NMe_2)_4$ at room temperature to yield the binuclear titanium complex $[P(CH_2N-3,5-Me_2C_6H_3)_3]Ti-\mu-O-Ti(NMe_2)_3$ (20), as shown in Scheme 3.9. Crystals suitable for an X-ray structure analysis were grown by slow evaporation of toluene solution at -30 °C. Unfortunately, attempts to react 20 with failed to produce the desired product, $P(CH_2NH-3, 5-Me_2C_6H_3)_3$ $[P(CH_2N-3,5-Me_2C_6H_3)_3Ti]_2(\mu-O).$

Figure 3.7 shows the solid-state molecular structure of 20, as well as the selected bond lengths and bond angles. The binuclear compound of 20 crystallizes in the rhombohedral space group *R*-3 and the molecular structure has crystallographically imposed C_3 symmetry. Both titanium atoms are connected by a linear μ -oxo bridge, and the Ti(1)-O(1) bond length of 1.757(3) Å is shorter than the Ti(2)-O(1) bond length of 1.886(3) Å. This is likely due to significantly greater π -donation via the oxygen donor to Ti(1).⁴¹ The aromatic substituents render the ancillary ligand amido donors less potent than the -NMe₂ groups, but also the hindered rotation of the chelating amido donors prevents optimal overlap of these orbitals with the available d-orbitals on Ti(1). The Ti(1) \cdot P(1) distance of 2.968(14) Å is just slightly shorter than observed for $[P(CH_2N-3,5-Me_2C_6H_3)_3]$ TiNMe₂ and $[P(CH_2NAr^R)_3]$ Ti-OC₆H₄⁴Bu (17c), 3.015(5) and 3.015(16) Å, respectively. Also noteworthy is the ³¹P{¹H} NMR shift of δ -62.9, which is significantly different than

the shift of -39.4 observed for 19.

Figure 3.7. Solid-state molecular structure of 20 as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. Selected distances (Å): Ti(1) P(1), 2.968(14); Ti(1)-N(1), 1.935(2); Ti(1)-O(1), 1.757(3); Ti(2) P(1), 6.612; Ti(2)-N(2), 1.881(2); Ti(2)-O(1), 1.886(3); C(1)-P(1), 1.850(3); C(1)-N(1), 1.461(3); Selected bond angles (deg): Ti(1)-O(1)-Ti(2), 180.0; N(1)-Ti(1)-N(1), 106.15(7); N(1)-Ti(1)-O(1), 112.62(6); N(2)-Ti(2)-N(2), 105.13(8); N(2)-Ti(2)-O(1), 113.52(7); C(1)-P(1)-C(1), 103.65(10); C(1)-N(1)-C(2), 115.74(2); C(1)-N(1)-Ti(1), 108.01(16); C(2)-N(1)-Ti(1), 135.87(16); C(10)-N(2)-C(11), 112.45(2); C(10)-N(2)-Ti(2), 129.37(2); C(11)-N(2)-Ti(2), 117.99(18).

108

3.6 Polymer Synthesis

The bridging binuclear complexes we have prepared should provide a facile route to polymeric materials that contain transition metals along the main polymer chain, and we chose to demonstrate the synthetic viability of this approach using the complex 19. We have previously shown that two equivalents of the mononuclear complexes P(CH₂NAr^R)TiNMe₂ react cleanly with [Rh(CO)₂(μ -Cl)]₂ to generate the heterobimetallic complexes trans-Cl(CO)Rh[P(CH₂NAr^R)₃TiNMe₂]₂, as shown in Scheme 3.10. An analogous reaction with one equivalent of the dinuclear oxo-bridged titanium complex 19 precipitated insoluble polymer а red Cl(CO)Rh[P(CH₂NPh)₃Ti]₂O (21). A single CO stretch is observed in the IR spectrum of a KBr pellet of 21 at 1972.5 cm^{-1} .

Scheme 3.10

+ 1/2 [Rh(CO)₂(m-Cl)]₂

21

3.7 Summary and Conclusion

The reactions of the phosphine ligands $P[CH_2NAr^R]_3H_3^9$ with 1 equiv of $Zr(NEt_2)_4$ afforded the mononuclear zirconium complexes $[P(CH_2NAr^R)_3]ZrNEt_2$ (12b, $Ar^R = Ph$; 12c, $Ar^R = 3,5-Me_2C_6H_3$). The chloride complexes $P[CH_2NAr^R]_3ZrCl(THF)$ (13b-c) were prepared by the treatments of HNEt_3Cl with

12b-c. The complexes **13b-c** reacted with cyclopentadienyllithium (C_5H_5Li) to produce P[CH₂NAr^R]₃ZrCp (**14b-c**). Alternatively, **14b-c** could be prepared from the reactions of the lithium salts **15b-c** with CpZrCl₃. The reactions of the lithium salts of the fulvalene dianion ($Li_2C_{10}H_8$) with **13b-c** produce the dinuclear complexes *trans*-[P(CH₂NAr^R)₃Zr]₂(η^5 : η^5 -C₁₀H₈) (**16b-c**). Attempts to make the chloride complexes [P(CH₂NAr^R)₃]TiCl have failed; however, the mononuclear titanium complexes [P(CH₂NAr^R)₃]TiOC₆H₄'Bu (**17b-c**) and the dinuclear species [P(CH₂NPh)₃TiNMe₂]₂- μ -1,1' {O[3,3',5,5'-(C₆H₂Me₂)₂]O} (**18**), {[P(CH₂NPh)₃]Ti}₂(μ -O) (**19**) and [P(CH₂N-3,5-Me₂C₆H₃)₃]Ti- μ -O-Ti(NMe₂)₃ (**20**), can be prepared from [P(CH₂NAr^R)₃]TiNMe₂ via protonolysis.

The ligands P(CH₂NHAr^R)₃ have been demonstrated to stabilize mononuclear early transition metal complexes, which were well suited for bridged early transition homobimetallic complexes. The design of divergent metal-containing building blocks provides a facile route to linear rigid metal-containing polymers. With the smaller metal Ti, it is proved possible to generate bridges with η^1 bound ligands, whereas with the larger metal Zr, attempts to generate bridged complexes only succeeded by utilizing polyhapto ligands. Our future goals include the inclusion of redox active or paramagnetic metal-ligand fragments in lieu of Ti and Zr in the bisphosphine moieties, as well as an in-depth investigation into the properties and characteristics of these polymers and the use of these building blocks in the assembly of higher-dimensional networks with functional physical properties.

3.8 Experimental

3.8.1 General Procedures

Unless otherwise stated, general procedures were performed according to Section 2.11.1.

3.8.2 Synthesis of Complexes

[CH₂NPh]₃ZrNEt₂ (12b). Liquid Zr(NEt₂)₄ (3.246 g, 8.55 mmol) was added to a solution of P[CH₂NPh]₃H₃ (2.987 g, 8.55 mmol) in 30 mL of toluene. The pale yellow solution was stirred 24 h. The solvent was removed under vacuum and the remaining yellow solid was rinsed with a small portion of pentane, and then dried under vacuum (3.76 g, 86 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 1.01 (t, ³J = 7.0 Hz, 6H, NCH₂CH₃), 3.20 (q, 4H, ³J = 7.0 Hz, NCH₂CH₃), 3.83 (d, 6H, ²J_{PH} = 6.4 Hz, PCH₂), 6.80 (d, 6H, Ph *o*-H), 6.85 (t, 3H, Ph *p*-H), 7.23 (m, 6H, Ph *m*-H). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 14.5 (s, NCH₂CH₃), 42.8 (s, ZrNCH₂CH₃), 44.5 (d, *J*_{PC} = 23 Hz, PCH₂), 117.8 and 129.7 (s, Ph *o*-C and *m*-C), 120.2 (s, Ph *p*-C), 153.6 (d, *ipso*-C). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -75.2 (s). Anal. Calc'd for C₂₅H₃₁N₄PZr: C, 58.91; H, 6.13; N, 10.99. Found: C, 58.55; H, 6.17 N, 10.77.

 $P[CH_2N-3,5-Me_2C_6H_3]_3ZrNEt_2$ (12c). Liquid $Zr(NEt_2)_4$ (3.79 g, 10.0 mmol) was added to a solution of $P[CH_2N-3,5-Me_2C_6H_3]_3H_3$ (4.30 g, 10.0 mmol) in 50 mL of toluene. The pale yellow solution was stirred 48 h. The solvent was removed under

vacuum and the remaining yellow solid was rinsed with a small portion of pentane, and then dried under vacuum (4.12 g, 69.4 %). The product has only moderate solubility in benzene at room temperature, but is quite soluble in hot benzene. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 1.12 (t, ³*J* = 7.1 Hz, 6H, NCH₂C*H*₃), 2.23 (s, 18H, PhC*H*₃), 3.37 (q, 4H, ³*J* = 7.1 Hz, NC*H*₂CH₃), 3.95 (d, 6H, ²*J*_{PH} = 6.8 Hz, PC*H*₂), 6.52 (s, 6H, Ph *o*-*H*), 6.55 (s, 3H, Ph *p*-*H*). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 14.6 (s, NCH₂CH₃), 22.1 (s, PhCH₃), 42.8 (s, ZrNCH₂CH₃), 44.9 (d, *J*_{PC} = 22.0 Hz, PCH₂), 115.9 and 122.2 (s, Ph *o*-*C* and *m*-*C*), 138.9 (s, Ph *p*-*C*), 153.8 (d, *J*_{CC} = 2.7 Hz, *ipso*-*C*). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -70.8 (s). Anal. Calc'd for C₃₁H₄₃N₄PZr: F.W.: 593.9; C, 62.69; H, 7.30; N, 9.43. Found: C, 62.50; H, 6.99; N, 9.12.

P[CH₂NPh]₃ZrCl(THF) (13b). P[CH₂NPh]₃ZrNEt₂ (1.17 g, 2.0 mmol) was added to a solution of HNEt₃Cl (0.275 g, 2.0 mmol) in 50 mL of toluene. The pale yellow solution was stirred 1 h, then was added 5mL THF. The solvent was removed under vacuum and the remaining yellow solid was rinsed with a small portion of pentane, and then dried under vacuum (910 mg, 84.1 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 0.74 (m, 4H, THF), 3.47 (m, 4H, THF), 3.81 (d, 6H, ²J_{PH} = 7.0 Hz, PC<u>H</u>₂), 6.77 (t, 3H, Ph *p*-<u>H</u>), 6.98 (d, 6H, Ph *o*-<u>H</u>), 7.16 (m, 6H, Ph *m*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 25.4 (s, THF), 44.1 (d, J_{PC} = 21 Hz, P<u>C</u>H₂), 72.8 (s, THF) 117.8 and 129.5 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 120.4 (s, Ph *p*-<u>C</u>), 153.4 (d, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -71.5 (s). Anal. Calc'd for C₂₅H₂₉ClN₃OPZr: F.W.

References begin on page 124

113

545.17; C, 55.08; H, 5.36; N, 7.71. Found: C, 54.83; H, 5.48; N, 8.02.

P[CH₂N-3,5-Me₂C₆H₃]₃ZrCl(THF) (13c). P[CH₂N-3,5-Me₂C₆H₃]₃ZrNEt₂ (2.93 g, 5.0 mmol) was added to a solution of HNEt₃Cl (0.688 g, 5.0 mmol) in 120 mL of toluene. The pale yellow solution was stirred 1 h, then was added 12 mL THF. The solvent was removed under vacuum and the remaining yellow solid was rinsed with a small portion of pentane, and then dried under vacuum (2.80 g, 90 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 0.79 (2H,THF), 2.20 (s, 18H, PhC*H₃*), 3.55 (2H,THF), 3.92 (d, ²J_{PH} = 6.4 Hz, 6H, PC*H₂*), 6.45 (s, 6H, Ph *o*-*H*), 6.72 (s, 3H, Ph *p*-*H*). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 21.7 (s, Ph*C*H₃), 25.1 (s, THF), 44.1 (d, J_{PC} = 19.8 Hz, P*C*H₂), 72.5 (s, THF), 115.5 and 122.1 (s, Ph *o*-*C* and *m*-*C*), 138.2 (s, Ph *p*-*C*), 153.1 (d, J_{CC} = 2.7 Hz, *ipso*-*C*). ³¹ P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -66.0 (s). Anal. Calc'd for C₃₁H₄₁ClN₃OPZr: F.W.: 629.33; C, 59.16; H, 6.57; N, 6.68. Found: C, 59.12; H, 6.29; N, 6.79.

P[CH₂NPh]₃ZrCp (14b). P[CH₂NPh]₃ZrCl(THF) (4) (545.17 mg, 1.0 mmol) was added to a solution of CpLi (72.03 mg, 1.0 mmol) in 50 mL of toluene. The yellow solution was stirred 20 h. The solvent was removed under vacuum and the remaining yellow solid was rinsed with a small portion of pentane, and then dried under vacuum (420 mg, 80 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 3.90 (d, 6H, ²J_{PH} = 7.3 Hz, PC<u>H₂</u>), 5.95 (s, 5H, <u>Cp</u>), 6.85 (d, 6H, Ph o-<u>H</u>), 6.92 (t, 3H, Ph *p*-<u>H</u>), 7.20 (m, 6H, Ph *m*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 46.8 (d, J_{PC} = 23.1 Hz, P<u>C</u>H₂),

114

72.8 (s, THF), 114.6, 121.9, 122.8, 129.3(s, Ph *o*-<u>*C*</u>, *m*-<u>*C*</u>, *p*-<u>*C*</u>, <u>*Cp*</u>), 153.4 (s, *ipso*-<u>*C*</u>).
³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -67.5 (s). Anal. Calc'd for C₂₆H₂₆N₃PZr:
F.W. 502.7; C, 62.12; H, 5.21; N, 8.36. Found: C, 62.37; H, 5.48; N, 8.02.

P[CH₂N-3,5-Me₂C₆H₃]₃ZrCp (14c). P[CH₂N-3,5-Me₂C₆H₃]₃ZrCl(THF) (3) (629.33 mg, 1.0 mmol) was added to a solution of CpLi (72.03 mg, 1.0 mmol) in 50 mL of toluene. The yellow solution was stirred 20 h. The solvent was removed under vacuum and the remaining yellow solid was rinsed with a small portion of pentane, and then dried under vacuum (530 mg, 90 %). X-ray quality crystals were obtained from slow evaporation of a toluene solution. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 2.23 (s, 18H, PhC*H₃*), 4.00 (d, ²*J*_{PH} = 6.7 Hz, 6H, PC*H₂*), 6.18 (s, 5H, *Cp*), 6.60 (s, 3H, Ph *p*-*H*), 6.68 (s, 6H, Ph *o*-*H*). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 21.8 (s, Ph*C*H₃), 47.0 (d, *J*_{PC} = 23.1 Hz, P*C*H₂), 114.6, 120.8, 123.8, 138.4 (s, Ph *o*-*G*, *m*-*G*, *p*-*C*, *Cp*), 159.9 (s, *ipso*-*C*). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -66.9 (s). Anal. Calc'd for C₃₂H₃₈N₃PZr: F.W. 586.86; C, 65.49; H, 6.53; N, 7.16. Found: C, 65.68; H, 6.64; N, 6.69.

 $P[CH_2NPh]_3Li_3(Et_2O)_{1.5}$ (15b). A 1.6 M solution of "BuLi (28.0 mL, 17.5 mmol, 3 equiv) in hexanes was added dropwise to a stirred slurry of $P(CH_2NPh)_3H_3$ (2.04 g, 5.84 mmol) in ether (80 mL) at 0 °C. After the addition of 2 equiv of "BuLi the solution was clear. The addition of the third equivalent precipitated a white solid. The solid was filtered and dried under vacuum (yield 80 %). The product is insoluble

in toluene, ether, or CH₂Cl₂. The addition of THF generates the more soluble THF adduct. This adduct is soluble in THF and CH₂Cl₂ but decomposes within an hour at room temperature in the latter. Crystals of the THF adduct suitable for characterization by X-ray diffraction were obtained from THF by slow evaporation. ¹H NMR (d_8 -THF, 500.1 MHz, 298 K): δ 1.12 (t, 9H, ³J = 7.0 Hz, OCH₂CH₃) 3.39 (q, 6H, ³J = 7.0 Hz, OCH₂CH₃), 3.47 (d, 6H, ²J_{PC} = 7.0 Hz, PCH₂), 6.09 (t, 3H, Ph *p*-H), 6.42 (d, 6H, ³J_{HH} = 8.3 Hz, Ph *o*-H), 6.85 (m, 6H, Ph *m*-H). ³¹P{¹H} NMR (d_8 -THF, 202.5 MHz, 298 K): δ -22.15 (s). ¹³C{¹H} NMR (d^8 -THF, 125.8 MHz, 298 K): δ 15.9 (s, OCH₂CH₃), 50.3 (d, J_{PC} = 12 Hz, PCH₂), 110.9, 114.2, 129.3 (s, o, *m*, *p*-C), 164.2 (m, *ipso*-C). ⁷Li NMR (d_8 -THF, 116.7 MHz, 298 K): δ 1.34 (s). Anal. Calc'd for C₂₇H₃₆Li₃N₃O_{1.5}P : C, 67.79; H, 7.58; N, 8.78. Found: C, 68.08 ; H 7.49, N, 8.74.

P[CH₂N-3,5-Me₂C₆H₃]₃Li₃(Et₂O)_{1.5} (15c). A 1.6 M solution of "BuLi (9.4 mL, 15 hexanes added dropwise stirred slurry of mmol) in was to а $P[CH_2N-3,5-Me_2C_6H_3]_3H_3$ (2.15 g, 5 mmol) in ether (50 mL) at 0 °C and stirred at r.t. for 1 hour. The solid was filtered and dried under vacuum (2.12 g, 75 %). ¹H NMR $(d_8$ -THF, 500.1 MHz, 298 K): δ 1.11 (t, 9H, ${}^3J = 6.9$ Hz, OCH₂CH₃), 2.08 (s, 18H, ArCH₃), 3.38 (m, 6H, ${}^{3}J$ = 7.0 Hz, OCH₂CH₃ & PCH₂), 5.80 (s, 3H, p-H), 6.10 (s, 6H. o-H). ${}^{31}P{}^{1}H{}$ NMR (d₈-THF, 202.5 MHz, 298 K): δ -21.7 (s). ${}^{13}C{}^{1}H{}$ NMR (d_8 -THF, 125.8 MHz, 298 K): δ 15.6 (s, OCH₂CH₃), 22.1 (s, Ph<u>C</u>H₃), 50.1 (d, J_{PC} = 11 Hz, PCH₂), 66.3 (s, OCH₂CH₃), 112.0, 112.8, 137.3 (s, o, m, p-<u>C</u>), 164.2 (m, ipso-C). ⁷Li NMR (d₈-THF, 116.7 MHz, 298 K): δ 1.06 (s). Anal. Calc'd for

C₃₃H₄₈Li₃N₃O_{1.5}P : C, 73.58; H, 7.92; N, 6.60. Found: C, 73.05; H, 7.55; N, 6.99.

[P(CH₂NPh)₃Zr]₂($\eta^{5}:\eta^{5}$ -C₁₀H₈) (16b). P[CH₂NPh]₃ZrCl(THF) (4) (545.17 mg, 1.0 mmol) was added to a solution of Cp₂Li₂ (72 mg, 0.5 mmol) in 50 mL of toluene. The solution was stirred 12 h and filtered to remove the solid. The solvent was removed under vacuum and the remaining yellow solid was rinsed with a small portion of pentane, and then dried under vacuum (205 mg, 40 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 3.89 (d, ²J_{PH} = 7.3 Hz, 12H, PC<u>H₂</u>), 5.49 (s, 4H, <u>Cp</u>), 5.93 (s, 4H, <u>Cp</u>), 6.70 (d, 6H, Ph o-<u>H</u>), 6.90 (t, 3H, Ph *p*-<u>H</u>), 7.20 (m, 6H, Ph *m*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ 46.9 (d, J_{PC} = 23.0 Hz, P<u>C</u>H₂), 113.9 and 118.8, 123.1, 129.2, 129.8, 138.9 (s, Ph *o*-<u>C</u>, *m*-<u>C</u>, *p*-<u>C</u>, <u>Cp</u>), 158.8 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -57.1 (s). Anal. Calc'd for (C₂₆H₂₆N₃PZr)₂: F.W. 1005.4; C, 62.12; H, 5.21; N, 8.36. Found: C, 61.79; H, 5.64; N, 8.47.

 $[P(CH_2N-3,5-Me_2C_6H_3)_3Zr]_2(\eta^5:\eta^5-C_{10}H_8)$ (16c). $P[CH_2N-3,5-Me_2C_6H_3]_3ZrCl(THF) (3) (629.33 mg, 1.0 mmol) was added to a solution of Cp_2Li_2 (72 mg, 0.5 mmol) in 50 mL of toluene. The solution was stirred 12 h and filtered to remove the solid. The solvent was removed under vacuum and the remaining yellow solid was rinsed with a small portion of pentane, and then dried under vacuum (280 mg, 48 %). X-ray quality crystals were obtained from slow evaporation of a mixture of benzene and hexamethyldisiloxane solution. ¹H NMR (C₆D₆, 300 MHz, 298 K): <math>\delta$ 2.18 (s, 36H, PhCH₃), 3.86 (d, ²J_{PH} = 7.2 Hz, 12H, PCH₂),

117

5.70 (s, 4H, <u>*Cp*</u>), 6.17 (s, 4H, <u>*Cp*</u>), 6.50 (s, 6H, Ph *o*-<u>*H*</u>), 6.55 (s, 3H, Ph *p*-<u>*H*</u>). ¹³ C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 21.8 (s, Ph<u>*C*</u>H₃), 48.1 (d, J_{PC} = 22.2 Hz, P<u>*C*</u>H₂), 110.1 and 112.6, 121.8, 124.0, 128.8, 138.2 (s, Ph *o*-<u>*C*</u>, *m*-<u>*C*</u>, *p*-<u>*C*</u>, <u>*Cp*</u>), 158.9 (s, *ipso*-<u>*C*). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -56.3 (s). Anal. Calc'd for (C₃₂H₃₈N₃PZr)₂: F.W. 1173.72; C, 65.49; H, 6.53; N, 7.16. Found: C, 65.76; H, 6.83; N, 7.53.</u>

P[CH₂NPh]₃TiO[4-*t***-BuC₆H₃] (17b). HO-(4-***t***-BuC₆H₃) (150 mg, 1.0mmol) were added to a solution of P[CH₂NPh]₃TiNMe₂ (438.3 mg, 1 mmol) in 50 mL toluene. The solution was stirred for 48 h. The solvent was removed under vacuum and the remaining red solid was rinsed with a small portion of cold pentane, and then dried under vacuum (277 mg, 51 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 1.19 (s, 9H, C(CH_3)_3), 3.85 (d, ²J_{PH} = 7.0 Hz, 6H, PC<u>H</u>₂), 6.81 (m, 3H, Ph** *p***-<u>H</u>), 7.04 (m, 2H, C_6H_4), 7.06 (m, 6H, Ph** *m***-<u>H</u>), 7.13 (m, 2H, C_6H_4), 7.18(m, 6H, Ph** *o***-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ1.35 (s, C(<u>C</u>H₃)₃), 31.7 (s, <u>C</u>(CH₃)₃), 44.1 (d, J_{PC} = 20.0 Hz, P<u>C</u>H₂), 116.4, 119.8, 121.1, 127.0, 129.8, 146.5, and 153.3 (s, <u>C</u>₆H₅, <u>C</u>₆H₄), 164.2 (s,** *ipso***-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -81.07 (s). Anal. Calc'd for C₃₁H₃₄N₃OPTi: F.W.: 543.5; C, 68.51; H, 6.31; N, 7.73. Found: C, 68.92; H, 6.85; N, 7.27.**

 $P[CH_2N-3,5-Me_2C_6H_3]_3TiO[4-t-BuC_6H_3]$ (17c). HO-(4-t-BuC_6H_3) (150 mg, 1.0 mmol) were added to a solution of $P[CH_2N-3,5-Me_2C_6H_3]_3TiNMe_2$ (522.3 mg, 1

118

mmol) in 50 mL toluene. The solution was stirred for 48 h. The solvent was removed under vacuum and the remaining red solid was rinsed with a small portion of cold pentane, and then dried under vacuum (378 mg, 60 %). X-ray quality crystals were obtained from toluene by slow evaporation. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 0.29 (s, 9H, C(C<u>H</u>₃)₃), 1.90 (s, 18H, ArC<u>H</u>₃), 3.97 (d, ²*J*_{PH} = 6.8 Hz, 6H, PC<u>H</u>₂), 6.23 (m, 2H, C₆<u>H</u>₄), 6.25 (s, 3H, Ph *p*-<u>H</u>), 6.45 (m, 2H, C₆<u>H</u>₄), 6.59 (s, 6H, Ph *o*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ1.7 (s, C(<u>C</u>H₃)₃), 21.3 (s, ArCH₃), 21.9 (s, <u>C</u>(CH₃)₃), 45.3 (d, *J*_{PC} = 18.4 Hz, P<u>C</u>H₂), 112.0, 114.2, 116.0, 116.5, 120.8, 123.5, and 138.6 (s, <u>C</u>₆H₅, <u>C</u>₆H₄), 153.3 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -77.9 (s). Anal. Calc'd for C₃₇H₄₆N₃OPTi: F.W.: 627.6; C, 70.81; H, 7.39; N, 6.70. Found: C, 69.59; H, 7.61; N, 6.99.

$\{ [P(CH_2NPh)_3] TiNMe_2 \}_2 \{ \mu - 4, 4' - O[3, 3', 5, 5 - (C_6H_2Me_2)_2] O - \}$ (18).

{1,1-HO[2,2,6,6-(C₆H₂Me₂)₂]OH} (121 mg, 0.5 mmol) were added to a solution of P[CH₂NPh]₃TiNMe₂(438.3 mg, 1 mmol) in 50 mL toluene. The solution was stirred for 48 h. The solvent was removed under vacuum and the remaining red solid was rinsed with a small portion of cold pentane, and then dried under vacuum (277 mg, 51 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 2.24 (s, 12H, C₆H₂(C<u>H</u>₃)₂), 3.93 (d, ²J_{PH} = 7.0 Hz, 12H, PC<u>H</u>₂), 6.73 (t, 6H, J = 8.3 Hz, Ph *p*-<u>H</u>), 6.95 (d, J = 8.3 Hz , 12H, Ph *o*-<u>H</u>), 7.10 (m, 12H, Ph *m*-<u>H</u>), 7.17(s, 4H, C₆H₂). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 18.4 (s, C₆H₂(<u>C</u>H₃)₂), 45.6 (d, J_{PC} = 20.7 Hz, P<u>C</u>H₂), 113.8, 117.0, 121.5, 127.7, 129.5, and 135.7 (s, <u>C₆H₅, <u>C₆H₂</u>), 153.9 (s, *ipso*-<u>C₆H₅), 164.2 (s, *ipso*-O-<u>C₆H₂).</u></u></u>

³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -78.6 (s). Anal. Calc'd for C₅₈H₅₈N₆O₂P₂Ti₂: F.W.: 543.5; C, 67.71; H, 5.68; N, 8.17. Found: C, 67.37; H, 5.58; N, 7.89.

P[CH₂NPh]₃Ti-μ-O-Ti[PhNCH₂]₃P (19). Na₂SO₄.10H₂O (161.1 mg, 0.5 mmol) were added to a solution of P[CH₂NPh]₃TiNMe₂ (438.3 mg, 1 mmol) in mixture of 50 mL toluene and 10 mL THF. The solution was stirred for two weeks. The solvent was removed under vacuum and the remaining red solid was rinsed with a small portion of cold pentane, and then dried under vacuum (200 mg, 49 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 3.68 (d, ²*J*_{PH} = 7.8 Hz, 12H, PC<u>H</u>₂), 6.68 (t, 6H, *J* = 7.3 Hz, Ph *p*-<u>H</u>), 6.80 (d, *J* = 8.2 Hz , 6H, Ph *o*-<u>H</u>), , 6.92 (t, 6H, *J* = 7.8 Hz, Ph *m*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 45.4 (d, *J*_{PC} = 19.8 Hz, P<u>C</u>H₂), 117.2, 121.6 and 129.4 (s, <u>C</u>₆H₅), 153.8 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -39.3 (s). Anal. Calc'd for C₄₂H₄₂N₆OP₂Ti₂: F.W.: 804.5; C, 62.7; H, 5.26; N, 10.45. Found: C, 62.40; H, 5.14; N, 10.52.

P[CH₂N-3,5-Me₂C₆H₃]₃Ti-\mu-O-Ti(NMe₂)₃ (20). Ti(NMe₂)₄ (224.2 mg, 1.0 mmol) and 1mL H₂O/Ether (1M) were added to a solution of P[CH₂N-3,5-Me₂C₆H₃]₃TiNMe₂ (522.3 mg, 1 mmol) in 50 mL toluene. The solution was stirred for 24 h and evaporated to dryness, and 5 mL pentane and 10 mL hexamethyldisiloxane were added. The solution was filtered and the remaining orange red solid was rinsed with a small portion of pentane, and then dried under vacuum (370 mg, 55 %). ¹H NMR

(C₆D₆, 500 MHz, 298 K): δ 2.27 (s, 18H, ArC<u>H</u>₃), 3.03 (s, 18H, N<u>M</u>e₂), 3.84 (d, ²J_{PH} = 7.0 Hz, 6H, PC<u>H</u>₂), 6.60 (s, 6H, Ph *o*-<u>H</u>), 6.87 (s, 3H, Ph *p*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ22.1 (s, ArCH₃), 44.3 (s, N<u>Me₂</u>), 44.8 (d, J_{PC} = 19.7 Hz, P<u>C</u>H₂), 114.5, 122.2, and 138.3 (s, Ph *o*-<u>C</u>, *m*-<u>C</u> and *p*-<u>C</u>), 153.8 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -62.9 (s). Anal. Calc'd for C₃₃H₅₁N₆OPTi₂: F.W.: 674.57; C, 58.76; H, 7.62; N, 12.46. Found: C, 58.59; H, 7.41; N, 11.99.

[*trans*-RhCl(CO)(19)]_n (21). A solution of 16 (80.0 mg, 0.1 mmol) in 20 mL of CD_2Cl_2 was added to 18.9 mg (0.1 mmol) of $[RhCl(CO)_2]_2$ in 10 mL CD_2Cl_2 . Red solids were obtained by evaporation of the CD_2Cl_2 solution. IR: 1972.5 cm⁻¹. Anal. Calc'd for $C_{43}H_{42}ClN_6O_2ClRhP_2Ti_2$: C, 53.20; H, 4.36; N, 8.66. Found: C, 52.78; H, 4.41; N, 8.41.

3.8.3 Crystal Data and Structure Refinement

Chapter Three: Bridged Dinuclear Tripodal Amido-Phosphine Complexes of Titanium and Zirconium

	14c	15d	16c
		$C_{20.5}H_{30.5}Li_{1.5}$	C ₇₆ H ₈₆ N ₆ P ₂ Zr ₂
Empirical formula	$C_{32}H_{38}N_3PZr$	$N_{1.5}O_{2.5}P_{0.5}$	
Formula weight	586.84	363.86	1327.89
Temperature	173(2) K	173(2) K	173(2) K
Crystal system	Triclinic	Orthorhombic	Monoclinic
a	11.4611(9) Å	25.863(14) Å	15.120(2) Å
b	15.4190(12) Å	14.907(8) Å	13.8406(19) Å
c	18.5870(14) Å	10.978(6) Å	18.128(3) Å
α	101.28(10)°	90.00°	90.00°
β	107.86(10)°	90.00°	113.68(10)
γ	102.39(10)°	90.00°	90.00°
Volume Å ³	2930.1(4)	4232(4)	3474.2(8)
Z	4	8	2
Density (calculated)	1.330 mg/m ³	1.142 mg/m ³	1.269 mg/m ³
μ (MoK α)	0.455 mm ⁻¹	0.108 mm ⁻¹	0.392 mm ⁻¹
No. Variables	679	471	394
Total No. of Refins	33013	17451	37628
Residuals: R; wR ₂ (all data)	0.0397, 0.0902	0.0786, 0.1438	0.0661, 0.1192
Residual Density, e ⁻ /Å ³	0.556, -0.305	0.423, -0.198	0.786, -0.66

Table 3.1.Crystal data and structure refinement for 14c, 15d, 16c, 17c, 19 and 20.

	17c	19	20
Empirical formula	C _{39.5} H ₅₂ N ₃₀ PTi	$C_{33}H_{51}N_{60}PTi_2$	$C_{42}H_{42}N_{60}P_2Ti_2$
Formula weight	663.71	674.57	804.56
Temperature	173(2) K	173(2) K	173(2) K
Crystal system	Monoclinic	Rhombohedral	Trigonal
a	14.225(3) Å	12.2710(19) Å	13.0770(14) Å
b	14.471(3) Å	12.2710(19) Å	13.0770(14) Å
с	20.351(5) Å	12.2710(19) Å	20.452(4) Å
α	77.687(3)°	80.53°	90.00°
β	77.687(3)°	80.53°	90.00°
γ	68.183(3)°	80.53°	120.00°
Volume Å ³	3661.6(14)	1779.6(5)	3028.8(8)
Z	4	2	3
Density (calculated)	1.204 mg/m ³	1.259 mg/m ³	1.323 mg/m ³
μ(ΜοΚα)	0.311 mm ⁻¹	0.527 mm ⁻¹	0.515 mm ⁻¹
Total No. of Refins	41175	17140	11068
No. Variables	786	134	81
No. of Unique	$16230 (R_{int} =$	2755 (R _{int} =	1548 (R _{int} =
Reflns	0.0587)	0.0413)	0.0496)
Residuals: R; wR ₂ (all data)	0.1357, 0.2529	0.0803, 0.1233	0.0708, 0.1328
Residual Density, e ⁻ /Å ³	1.4, - 0.651	0.482, -0.439	0.564, -0.438

123

Table 3.2 cont'd.

3.9 References

- (1) Kempe, R. Angew. Chem. Int. Ed. 2000, 39, 468-493.
- (2) Cotton, F. A.; Lin, C.; Murillo, C. A. Acc. Chem. Res. 2001, 34, 759-771.
- (3) Swiegers, G. F.; Malefetse, T. J. Coord. Chem. Rev. 2002, 225, 91-121.
- (4) Barnett, S. A.; Champness, N. R. Coord. Chem. Rev. 2003, 246, 145-168.

(5) Axenov, K. V.; Kilpelainen, I.; Klinga, M.; Leskelae, M.; Repo, T. Organometallics 2006, 25, 463-471.

(6) Porter, R. M.; Danopoulos, A. A. Dalton Trans. 2004, 2556-2562.

(7) Ramos, C.; Royo, P.; Lanfranchi, M.; Pellinghelli, M. A.; Tiripicchio, A. Eur. J. Inorg. Chem. 2005, 3962-3970.

(8) Jeon, Y.-M.; Heo, J.; Lee, W. M.; Chang, T.; Kim, K. Organometallics 1999, 18, 4107-4113.

(9) Fryzuk, M. D.; Kozak, C. M.; Bowdridge, M. R.; Jin, W.; Tung, D.; Patrick, B. O.; Rettig, S. J. Organometallics 2001, 20, 3752-3761.

(10) Han, H.; Elsmaili, M.; Johnson, S. A. Inorg. Chem. 2006, 45, 7435-7445. Keen,

A. L.; Doster, M.; Han, H.; Johnson, S. A. Chem. Commun. 2006, 1221-1223.

(11)Lutz, M.; Haukka, M.; Pakkanen, T. A.; Gade, L. H. Inorg. Chem. 2003, 42, 2798-2804.

(12) Findeis, R. A.; Gade, L. H. Dalton Trans. 2003, 249-254.

(13) Findeis, R. A.; Gade, L. H. Eur. J. Inorg. Chem. 2003, 99-110.

(14) Gade, L. H. J. Organomet. Chem. 2002, 661, 85-94.

(15)Lutz, M.; Haukka, M.; Pakkanen, T. A.; Gade, L. H. Organometallics 2002, 21,

124

3477-3480.

(16) Gade, L. H. Eur. J. Inorg. Chem. 2002, 1257-1268.

(17) Gade, L. H. Acc. Chem. Res. 2002, 35, 575-582.

(18) Harvey, P. D. Frontiers in Transition Metal-Containing Polymers 2007, 321-368.

(19) Alder, R. W.; Butts, C. P.; Orpen, A. G.; Read, D.; Oliva, J. M. J. Chem. Soc. Perkin Trans. 2001, 282-287.

(20)Alder, R. W.; Ellis, D. D.; Gleiter, R.; Harris, C. J.; Lange, H.; Orpen, A. G.; Read,D.; Taylor, P. N. J. Chem. Soc. Perkin Trans. 1998, 1657-1668.

(21)Alder, R. W.; Ellis, D. D.; Orpen, A. G; Taylor, P. N. Chem. Commun. 1996, 539-540.

(22)Diel, B. N.; Norman, A. D. Phosphorus and Sulfur and the Related Elements 1982, 12, 227-235.

(23) Kisanga, P.; Verkade, J. Heteroatom Chem. 2001, 12, 114-117.

(24) Keller, H.; Regitz, M. Tetrahedron Lett. 1988, 29, 925-928.

(25) Chien, P.-S.; Liang, L.-C. Inorg. Chem. 2005, 44, 5147-5151.

(26)Urnezius, E.; Klippenstein, S. J.; Protasiewicz, J. D. Inorg. Chim. Acta 2000, 297, 181-190.

(27) Fan, M.; Zhang, H.; Lattman, M. Inorg. Chem. 2006, 45, 6490-6496.

(28) Baumann, R.; Stumpf, R.; Davis, W. M.; Liang, L.-C.; Schrock, R. R. J. Am. Chem. Soc. 1999, 121, 7822-7836.

(29) Gade, L. H.; Mahr, N. J. Chem. Soc. Dalton Trans. 1986, 489-494.

(30) Hellmann, K. W.; Gade, L. H.; Li, W.-S.; McPartlin, M. Inorg. Chem. 1994, 33,

125
Chapter Three: Bridged Dinuclear Tripodal Amido-Phosphine Complexes of Titanium and Zirconium

5974-5977.

(31) Davis, J. H.; Sinn, E.; Grimes, R. N. J. Am. Chem. Soc. 1989, 111, 4784-4790.

(32)Kang, Y. K.; Shin, K. S.; Lee, S.-G.; Lee, I. S.; Chung, Y. K. Organometallics 1999, 18, 180-186.

(33) Curtis, C. J.; Haltiwanger, R. C. Organometallics 1991, 10, 3220-3226.

(34) Moreno, C.; Macazaga, M.-J.; Medina, R.-M.; Farrar, D. H.; Delgado, S. Organometallics 1998, 17, 3733-3738.

(35) Drage, J. S.; Vollhardt, K. P. C. Organometallics 1986, 5, 280-297.

(36) Arvalo, S.; Bonillo, M. R.; de Jess, E.; de la Mata, F. J.; Flores, J. C.; Gmez, R.; Gmez-Sal, P.; Ortega, P. J. Organomet. Chemistry 2003, 681, 228 - 236.

(37)Bieller, S.; Bolte, M.; Lerner, H.-W.; Wagner, M. Inorg. Chem. 2005, 44, 9489-9496.

(38) Arevalo, S.; Bonillo, M. R.; De Jesus, E.; De la Mata, F. J.; Flores, J. C.; Gomez, R.; Gomez-Sal, P.; Ortega, P. J. Organomet. Chem. 2003, 681, 228-236.

(39)Arevalo, S.; Benito, J. M.; De Jesus, E.; De la Mata, F. J.; Flores, J. C.; Gomez, R.

J. Organomet. Chem. 1999, 592, 265-270.

(40)Kuenzel, A.; Sokolow, M.; Liu, F.-Q.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G.; Uson, I. J. Chem. Soc. Dalton Trans. 1996, 913-919.

(41) Hagadorn, J. R.; Arnold, J. J. Am. Chem. Soc. 1996, 118, 893-894.

Chapter Four

Diamidoselenophosphinito Ligands by P-C bond Cleavage of Phosphine Selenides and a Comparison to Related Tripodal

Triamidophosphine Complexes

4.1 Introduction

The design of multidentate ligands has been of great interest, especially ligands with a combination of hard (N) and soft E (P, S, Se, or Te) donor sites,¹⁻⁵ which exhibit remarkable coordinative flexibility by being able to chelate main

group metals and transition metals with N, N or N, E bonding modes.⁶⁻⁹ The availability of these combined multidentate ligands has contributed much to the synthesis of metal chalcogenates mono- and polynuclear complexes^{10,11} with desirable structures and functions, as well as the synthesis of extended inorganic solids with novel magnetic, electronic and optical properties¹²⁻¹⁹.

Our studies have utilized the trianionic triamidophosphine donors $P(CH_2NHAr^R)_3$ as an ancillary ligand for polynuclear complex assembly, where $Ar^R = 3,5-(CF_3)_2C_6H_3$, Ph, and $3,5-Me_2C_6H_3$. The mononuclear early transition metal complexes with tripodal amido-phosphine ligands were used as building block to synthesize early-late polynuclear or heterobimetallic complexes, as well as bridged binuclear early transition metal complexes.^{20,21}

The factors which led us to investigate the donor functions in polydentate ligand designs that favor polynuclear complex formation were both the increased polarizability of the heavier chalcogenides, which should encourage electronic communication between metal centres, as well as their propensity to bridge metal centers. In this chapter we report the synthesis of diamidoselenophosphinito ancillary ligands, and the biamido-selenophosphine(III) (N, N, Se) complexes with three aluminum metal centres by the treatment of the ligands SeP[CH₂NAr^R]₃H₃ with 4 equiv AlMe₃, which are accompanied by the P-C bond cleavage (as shown in Figure 4.1, bonding mode A). Anionic Se donors are much less common than their oxygen and sulfur analogs,²² and selenophosphinito donors (R₂PSe⁻) have not

previously been incorporated into multidentate donor ligands, to the best of our knowledge, although related ligands are known.^{8,16,18,23-25} These ligands are anticipated to be an improvement to the $P(CH_2NHAr^R)_3$ ligands for the formation of polynuclear clusters of paramagnetic metals, where strong magnetic coupling between metal centers is desired, due to the increased polarizability of the selenophosphinito donor relative to amido donors.

In addition, we also present the dinuclear aluminum compounds from the ligand precursors $[P(CH_2NHAr^R)_3]$ (bonding mode **B**). For both types of aluminum complexes, there is no chelation between P and Al centre, and the lone pair electrons on the P centre can coordinate to AlMe₃ to yield corresponding Lewis acid-base adducts.

The similar ionic radius of Al(III) to the radii of the trivalent first row transition metals and its diamagnetic nature make it a convenient starting point for the study of this new ancillary ligand. Numerous amidophosphines,²⁶⁻²⁸ as well as monodentate,²⁹⁻³⁴ bidentate,³⁵⁻³⁹ tridentate⁴⁰ and tripodal⁴¹ amido complexes of aluminum are known. These complexes have been studied largely as potential precursors for materials and catalysts.^{42,43}

Figure 4.1. Potential bonding modes of $P[CH_2NHAr^R]_3$ and $Se=P[CH_2NHAr^R]_3$ with metal complexes labeled M and second metal complexes labeled M'.

4.2 Oxidation of P(CH₂NHAr^R)₃ with Selenium

The treatments of the triamidophosphines $P(CH_2NHAr^R)_3$ 1a-c,²¹ (where $Ar^R = 3,5-(CF_3)_2C_6H_3$, Ph, and 3,5-Me_2C_6H_3 for **a**, **b**, and **c**, respectively) with excess elemental selenium in toluene afforded the phosphine selenides SeP(CH₂NHAr^R)₃, as shown in Scheme 4.1. These white solids were isolated in yields ranging from 80-87 % and are neither air nor moisture sensitive.

Scheme 4.1

Colorless crystals of 22a-c suitable for X-ray diffraction were grown by slow evaporation of solutions of equal amounts of ethanol and acetone. The solid-state molecular structures of 22a-c are shown in Figure 4.2-4. The C(1)-P(1)-C(2), C(1)-P(1)-C(3), and C(2)-P(1)-C(3) angles for the free ligand precursor 22c are 105.84(13)°, 105.56(11)° and 108.39(11)°, respectively, which are comparable to the tetrahedral angle of 109.5°. Comparison of the structure of phosphine selenide 22a with that of the parent phosphine ligand 1a,²¹ reveals that the average P-C bond length of 22a is shorter by 0.017 Å, and the sum of C-P-C bond angles is wider by about 13.3° (312.85(23)° for 22a, 299.51(20)° for $1a^{21}$). These differences correlate with the larger covalent radii of P(III) compared to P(V), as well as the larger repulsion of the lone pair of P(III) vs the P=Se bond. In 22a-22c, the P-Se bond lengths are 2.0973(12), 2.1026(12) and 2.0960(7) Å, respectively, which are similar to those observed in the selenides of substituted arylphosphines.^{44,45} The ${}^{31}P{}^{1}H$ NMR spectra display singlets at δ 42.6, 46.3 and 44.5 and selenium satellites (⁷⁷Se, I = 1/2, 7.6 %) with ${}^{1}J_{\text{SeP}}$ values of 743.7, 719.7 and 716.1 Hz for **22a-c**, respectively. These values

are within the range expected for R₃P=Se functional groups.^{46,47} The magnitude of ${}^{1}J_{SeP}$ has been used to characterize the lone-pair *s*-orbital character of phosphine donors, and thus their σ -donor ability.⁴⁸ A larger value of ${}^{1}J_{SeP}$ corresponds to greater *s*-orbital character of the phosphorus lone pair and a weaker electron-donor ability of the phosphine ligand.⁴⁹ The donor abilities of the phosphines in precursors **1a-c** are affected by the nature of the aryl substituents, with the most electron-withdrawing aryl group providing the phosphine selenide with the largest ${}^{1}J_{SeP}$ value, 743.7 Hz. In comparison, Se=PPh₃ has a ${}^{1}J_{SeP}$ value of 733 Hz,^{48,50} which predicts that **1a-c** should have similar donor properties to triphenylphosphine. A similar conclusion regarding the donor abilities of **1a-c** was reached via a study of the CO stretching frequencies⁵¹ of the complexes *trans*-Rh(CO)Cl[P(CH₂NHAr^R)₃]₂, as previously reported.²¹

Figure 4.2. Solid-state molecular structure of 22a as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. The CF₃ substituents are disorder.

Figure 4.3. Solid-state molecular structure of **22b** as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity.

Figure 4.4. Solid-state molecular structure of **22c** as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity.

	22a	22b	22c	1a ^{Ref 19}
Se(1)=P(1)	2.0973(12)	2.1026(12)	2.0960(7)	-
C(1)-P(1)	1.844(4)	1.844(4)	1.829(3)	1.844(4)
C(2)-P(1)	1.826(4)	1.820(4)	1.822(3)	1.844(4)
C(3)-P(1)	1.817(4)	1.815(4)	1.821(2)	1.850(6)
C(1)-P(1)-Se(1)	113.44(14)	109.83(13)	112.12(10)	-
C(2)-P(1)-Se(1)	115.47(14)	112.28(13)	111.37(8)	
C(3)-P(1)-Se(1)	113.85(14)	112.86(13)	113.14(8)	-
C(1)-P(1)-C(2)	107.2(2)	110.06(19)	105.84(13)	99.51(16)
C(1)-P(1)-C(3)	103.6(2)	108.37(19)	105.56(11)	99.5(2)
C(2)-P(1)-C(3)	102.05(19)	103.22(18)	108.39(11)	100.5(2)

Table 4.1. Selected bond lengths (Å) and angles (deg) of the phosphine selenides

22a-c

Table 4.2. The $^{1}J_{PSe}$ coupling constants, ^{31}P NMR shifts of 22a-c and the carbonyl

stretching frequencies of Rh(CO)Cl[P(CH ₂ NHAr ^R) ₃] _{2.}

Phosphine	$^{1}J_{\rm PSe}({\rm Hz})$	³¹ P shift (ppm)	v _{co}	(cm^{-1})	of
Selenides			Rh(CO)	CI[P(CH₂NHA	r ^R) ₃] ₂
22a	743.7	42.6	1a : 198	4.9	
22b	719.7	46.3	1b : 197	6.3	
22c	716.1	44.3	1c : 197	3.2	

4.3 Synthesis of the Trinuclear Complexes via Reactions of Se=P(CH₂NHAr^R)₃ with AlMe₃

134

Se insertion reactions into polar M-R bonds and the use of the oxidized selenols as starting materials are normal methods to synthesize organic selenolates.¹²⁻¹⁹ We are investigating phosphine selenides SeP(CH₂NHAr^R)₃ as chelating ligands to afford metal selenides with the N, N', Se bonding mode by P-C bond cleavage and loss of one arm -CH₂NHAr^R under mild conditions. The phosphine selenides Se=P(CH₂NHAr^R)₃ (22a-22c) react with 4 equiv of AlMe₃ in toluene at room temperature to give [P(CH₂NAr^R)₂Se](AlMe₂)₃ (23a-23c), as shown in Scheme 4.1. The reactions proceed over the course of 24 h, with the putative and unisolable amine-trimethylaluminum adducts as the only intermediates observable by ¹H NMR spectroscopy; the observation of such adducts is not uncommon.^{36,52} The use of 4 equiv of AlMe₃ was necessary because the overall reaction involves the loss of 1 ligand --CH₂NHAr^R arm. This is a new synthetic route to selenophosphinito ligands, which are poorly studied, and more commonly prepared by the insertion of 1 equiv of Se into a metal-phosphido bond.^{15,53} The byproducts are much more soluble in pentane than the scarcely soluble 23a-23c, and were easily rinsed from the crude product mixtures without significant loss of yield. The ¹H NMR spectra of these byproducts are complicated and exhibit a variety of triplet and quartet resonances, as would be expected for ethyl substituents bound to nitrogen. The byproducts are believed to be dimers of the type [CH₃CH₂N(Ar^R)AlMe₂]₂, and their complex ¹H NMR spectra are likely due to the presence of cis and trans isomers, and perhaps also larger oligomers.^{31,52,54-56} Definitive proof regarding the nature of the byproduct was

References begin on page 165

obtained by the hydrolysis of the pentane fraction used to rinse the crude product mixture in the synthesis of **23a**. The hydrolysis product was identified as $CH_3CH_2N(H)$ -3,5-(CF_3)₂C₆H₃ by ¹H and ¹³C NMR spectroscopy. The exact mechanism by which the ligand arm loss occurs is not clear, and a mechanism with an imine intermediate (CH_2 =NAr^R) cannot be distinguished from the direct reaction of the ligand precursors with AlMe₃ to liberate $CH_3CH_2N(Ar^R)AlMe_2$. The resultant products are obtained in 50-60 % yields as white crystalline solids. The phosphorus (V) centres are reduced to phosphorus (III) and the P=Se double bond is changed into P-Se single bond as Se coordinated to the Al metal centres together with the amido-donors.

Scheme 4.2

The solid-state molecular structures of 23a and 23c were determined by X-ray crystallography. The complex 23b crystallized as thin needles that were unsuitable for crystallographic studies. An ORTEP depiction of the structure of 23c is shown in Figure 4.5-6. Although there is no crystallographically imposed symmetry, these complexes have approximate C_s symmetry. The ¹H and ¹³C{¹H} spectra of these complexes dissolved in C₆D₆ are consistent with an identical solution structure.

Figure 4.5. Solid-state molecular structure of 23a as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. The CF₃ substituents are disorder.

Figure 4.6. ORTEP depiction of the solid-state molecular structure of 23c as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity.

	23a	23b	
Se(1)=P(1)	2.2799(6)	2.2793(7)	-
C(1)-P(1)	1.844(2)	1.852(3)	
C(2)-P(1)	1.849(2)	1.846(3)	
Se(1)-Al(2)	2.4866(8)	2.4909(9)	
Se(1)-Al(3)(1)	2.4760(8)	2.4979(9)	
C(1)-P(1)-Se(1)	100.70(7)	101.23(8)	
C(2)-P(1)-Se(1)	100.55(7)	100.65(8)	
C(1)-P(1)-C(2)	99.81(10)	99.06(11)	
Al(2)-Se(1)-P(1)	91.71(3)	91.85(3)	
Al(3)(1)-Se(1)-P(1),	92.22(2)	90.37(3)	

Table 4.3. Selected bond lengths (Å) and angles (deg) of 23a, 23c

The tripodal ligand in 23c binds three aluminum centers via one selenide and two amide donors, all of which act as bridging ligands. The three aluminum centers all have approximately tetrahedral geometries and each retains two methyl groups. The lone pair of the phosphine donor is directed away from the aluminum centers. The donors and aluminum atoms form a six-membered Al₃N₂Se ring, which adopts a boat conformation. The Al-N bond lengths in 23a and 23c vary from 1.977(2) to 2.0137(18) Å and the Al-Se bond lengths range from 2.4760(8) to 2.4979(9) Å. These lengths, as well as the N-Al-N angles (23a, 102.85(8)°; 23c, 102.65(7)°) are in the expected range.^{27,29,30,35,40,57,58} Both the P-Se bond lengths (23a: 2.2799(6) Å; 23c, 2.2793(7) Å) and the ¹J_{SeP} values (23a, 176.6Hz; 23b, 179.9; 23c, 181.3 Hz) are within the range expected for P-Se single bonds,⁵⁹ and thus the selenophosphinito donor in this case is best described by a resonance structure where the selenium atom bears a formal negative charge, rather than one where the phosphorus donor is formally anionic.¹⁶

Chalcogenophosphinites (R₂PE⁻, where E = O, S, Se, or Te) can be protonated at either the P or E sites to provide the tautomers R₂P(H)=E and R₂P-EH.^{16,60} The ratio of these products depends on the nature of R. Likewise, transition metals can bind to R₂PE⁻ ligands by a variety of bonding modes involving either the E or P centers, or both.¹⁶ Only a handful of examples of complexes containing R₂PSe⁻ donors have been reported,^{15,16,53,61-63} and few have been structurally characterized. The η^2 -binding mode has been observed in complexes of Mo⁶¹ and Ru⁶² but for the

more electropositive metals the only crystallographically characterized structure is that of the lithium salt, $[(TMEDA)Li-\mu-\eta^1:-SePPh_2]_2$;¹⁵ however, it is reasonable to assume that the selenophosphinito complexes of the electropositive metals will be comparable to those of the thiophosphinito ligands, which prefer to coordinate metals via the chalcogenide,⁶⁴ as is observed in complexes **23a-c**.

4.4 Synthesis of the Trimethylaluminum Adducts of [P(CH₂NAr^R)₂Se](AlMe₂)₃

The reactions of SeP(CH₂NHAr^R)₃ 22b and 22c with excess AlMe₃ lead to the formation of the Lewis acid-base adducts Me₃AlP(CH₂NAr^R)₂Se(AlMe₂)₃ (24b-24c) at room temperature. The fourth AlMe₃ is coordinated to P by Lewis acid-base interactions in 24b-24c. Me₃AlP(CH₂NAr^R)₂Se(AlMe₂)₃ (24b-24c) can also be obtained by the addition AlMe₃ to 23b-c, as shown in Scheme 4.2. The trimethylaluminum adduct of 23a is too thermally unstable to be isolated in the solid state. Both 24b and 24c were obtained as white crystalline solids at room temperature, and in this state are stable with respect to decomposition for several days. Single crystals of 24b suitable for X-ray diffraction were obtained from toluene at -30 °C. The solid-state molecular structure is shown in Figure 4.7, along with selected bond lengths and bond angles.

Figure 4.7. Solid-state molecular structure of 24b as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. Selected distances (Å): Al(3)-P(1), 2.553(2); Al(3)-C(13), 1.958(5); Al(3)-C(12), 1.951(7); Se(1)-P(1), 2.2388(16); Se(1)-Al(1), 2.5104(13); P(1)-C(1), 1.822(4); N(1)-Al(1), 1.990(3); N(1)-Al(2), 2.011(3). Selected bond angles (deg): C(1)-P(1)-C(1), 101.4(3); C(1)-P(1)-Se(1), 103.61(13); C(1)-P(1)-Al(3), 118.84(13); Al(1)-Se(1)-Al(1), 104.07(6); P(1)-Se(1)-Al(1), 89.86(4); N(1)-Al(1)-Se(1), 93.83(11); Al(1)-N(1)-Al(2), 122.26(17); C(1)-N(1)-Al(1), 104.1(2); C(1)-N(1)-Al(2), 108.2(2); C(12)-Al(3)-C(13), 119.12(18); C(13)-Al(3)-C(13), 115.0(3); C(13)-Al(3)-P(1), 97.45(16); C(12)-Al(3)-P(1), 101.1(3).

The solid-state molecular structure of **24b** has crystallographically imposed C_s symmetry. The connectivity is the same as that observed for **23b**, but with an additional AlMe₃ moiety bound to the phosphine lone pair. The Al-P distance of 2.553(2) Å is significantly elongated in comparison to the sum of the covalent radii (2.350Å) of Al and P, but within the range observed for aluminum-phosphine adducts.^{65,66} In the solid-state structure of **24b** the sum of C-Al(3)-C angles is 353.24(39)°, which is close to that for a trigonal planar system. The C(12-13)-Al(3) bond lengths range from 1.951(7) to 1.958(5) Å, which are almost identical to that of free AlMe₃.⁶⁷ The changes in ¹³C{¹H} NMR chemical shifts of the Al-Me₃ groups (**24b**, δ -8.0; **24c**, δ -7.8; free AlMe₃, δ -8.1) are small, which also indicate only a slight distortion from planarity upon adduct formation.⁴⁶ All these factors are consistent with the poor σ -donor ability of the phosphine towards AlMe₃ in **24b** and **24c**.

The binding of trimethylaluminum to the phosphine donor in **24b** has an effect on the ancillary ligand bond lengths. In particular, the P-Se bond length of 2.2388(16) Å in **24b** is approximately 0.04 Å shorter than in either **23a** or **23c**. Additionally, the Se(1)-Al(1) bond length of 2.5104(13) Å in **24b** is slightly longer than the Se-Al bond lengths in **23a**, which are 2.4760(8) and 2.4866(8) Å, or in **23c**, where the bond lengths are 2.4909(9) and 2.4979(9) Å. These bond lengths can be interpreted in terms of a slight contribution from resonance structures where the phosphine moiety formally bears the negative charge of the selenophosphinito moiety,¹⁶ as shown in

References begin on page 165

Scheme 4.3, though the structure is still best described as containing a P-Se single bond.

The ¹H NMR spectra of **24b-c** are consistent with the C_s symmetry observed in the solid-state structure of **24b**. The ³¹P{¹H} NMR spectra of **24b** and **24c** consist of singlets at δ -8.4 and -9.4, and display selenium satellites with ¹J_{SeP} values of 349.7 and 312.9Hz, respectively. The change in the ³¹P chemical shifts upon forming the adducts **24b-c** from **23b-c** to slightly higher field is fairly typical for phosphine donors with moderately large cone angles ($\Delta \delta = -4.3$ for b; -6.0 for c).⁶⁶ The ¹J_{SeP} values are within the range expected for the P-Se single bonds,⁵⁹ but much greater than the values observed for **23b-c**. Moreover, the difference in these ¹J_{SeP} values of 36.8 Hz is much larger than in complexes **23b-c**, where the difference in ¹J_{SeP} is only 1.4 Hz. The vastly different ¹J_{SeP} values in **24b-c** indicate a large influence of the aryl substituents on the bonding in these complexes, and their importance in determining the relative contributions of the resonance structures shown in Scheme 4.3.

Scheme 4.3

4.5 Synthesis of the Bimetallic Aluminum Amido Complexes with the P(CH₂NHAr^R)₃ ligands

The room temperature reactions of **1a-c** with 2 equiv AlMe₃ over 24 h cleanly provide the bimetallic aluminum amido complexes [P(CH₂NAr^R)₃]Al₂Me₃ (**25a-c**) as white crystalline solids, as shown in Scheme 4.4. These products were obtained as white crystalline solids at room temperature over 24h. The ¹H and ¹³C{¹H} NMR spectra of these complexes in C₆D₆ are consistent with complexes of C_s symmetry with the connectivity shown. For example, there are 3 Al-Me environments of equal intensities observed in the ¹H NMR of each of these complexes, and three PCH₂ environments are observed, in a 2:2:2 ratio, a pair of which are due to diastereotopic environments.

Scheme 4.4

The solid-state structure of 25a was determined by X-ray crystallography, and is depicted in Figure 4.8. The triamidophosphine ligand binds to a central AlMe fragment with three nitrogen atoms, and two of these amido donors bridge to an AlMe₂ moiety. The phosphine donor is directed away from the central aluminum atom. Both geometries around the two aluminum centers are distorted tetrahedral. For example, the N(2)-Al(2)-N(3) angle of $81.40(9)^\circ$, is more acute than the C(29)-Al(2)-C(30) angle of 117.77(17). The bond length of 1.964(2) Å for Al(1)-N(2) is about 0.032 Å shorter than that of 1.996(3) Å for Al(2)-N(2), but both distances are considerably longer than the terminal amido Al(1)-N(1) bond length of 1.829(3) Å, which is possibly caused by the different orientation of the nitrogen the lower coordination number for N(1)²⁵ The aromatic substituents and substituent on the terminal amido donor is aligned such that its π -system has considerable overlap with the lone pair on the nitrogen, whereas the aromatic substitutents associated with the bridging amido donors are aligned so that aromatic π -system is nearly orthogonal to the lone-pair *p*-orbital.

Figure 4.8. Solid-state molecular structure of 25a as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. Selected distances (Å): P(1)-C(1), 1.844(3); P(1)-C(2), 1.844(3); P(1)-C(3), 1.856(3); N(1)-Al(1), 1.829(3); N(2)-Al(1), 1.964(2); N(3)-Al(1), 1.958(2); N(2)-Al(2), 1.996(3); N(3)-Al(2), 1.997(2); C(28)-Al(1), 1.930(3); C(29)-Al(2), 1.948(4); C(30)-Al(2), 1.947(4). Selected bond angles (deg): C(1)-P(1)-C(2), 99.06(15); C(1)-P(1)-C(3), 101.71(14); C(2)-P(1)-C(3), 103.39(14); N(1)-Al(1)-C(28), 119.30(14); N(1)-Al(1)-N(2), 111.15(11); N(1)-Al(1)-N(3), 107.67(11); N(2)-Al(1)-N(3), 83.18(10); C(29)-Al(2)-C(30), 117.77(17); N(2)-Al(2)-C(29), 110.60(14); N(3)-Al(2)-C(29), 114.06(13); N(2)-Al(2)-N(3), 81.40(10).

4.6 Synthesis of the Adducts of Bimetallic Aluminum Amido Complexes Me₃Al·P(CH₂NAr^R)₃Al₂Me₃

References begin on page 165

The reactions of the triaminophosphines (1b-1c) with excess AlMe₃ at room temperature provide the Lewis acid-base adducts of 5b-c, $Me_3Al\cdotP(CH_2NAr^R)_3Al_2Me_3$ (26b-c). These complexes could also be generated by the addition of AlMe₃ to 25b-c, as shown in Scheme 4.4. Similar to 23a, adducts of 25a could not be isolated. Single crystals of 26b suitable for X-ray diffraction were obtained from toluene at -30 °C. An ORTEP depiction is shown in Figure 4.9, along with selected bond lengths and bond angles.

Figure 4.9. ORTEP depiction of the solid-state molecular structure of 26b as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. Selected distances (Å): P(1)-Al(3), 2.5151(7); P(1)-C(1), 1.8222(18); P(1)-C(2), 1.8328(19); P(1)-C(3), 1.8426(18); N(1)-Al(1), 1.8253(16); N(2)-Al(1), 1.9903(16); N(3)-Al(1), 1.9645(15); N(2)-Al(2), 1.9970(15); N(3)-Al(2), 1.9833(16); C(22)-Al(1), 1.9474(19); Al(3)-C(25), 1.960(2); Al(3)-C(26), 1.966(3); Al(3)-C(27), 1.946(3). Selected bond angles (deg): C(1)-P(1)-C(2), 101.96(9); C(1)-P(1)-C(3), 104.48(8); C(2)-P(1)-C(3), 105.72(8); C(2)-P(1)-Al(3), 114.35(6); C(3)-P(1)-Al(3), 112.73(6); N(1)-Al(1)-C(22), 118.28(8); N(1)-Al(1)-N(2), 110.19(7); N(1)-Al(1)-N(3), 107.88(7); N(2)-Al(1)-N(3), 82.66(6); C(23)-Al(2)-C(24), 117.82(9); N(2)-Al(2)-C(24), 115.08(8); 113.97(8); N(3)-Al(2)-C(24),N(2)-Al(2)-N(3), 82.02(6); C(26)-Al(3)-C(27), 116.59(16); C(25)-Al(3)-C(27), 117.27(15); C(27)-Al(3)-P(1), 101.32(9); C(26)-A1(3)-P(1), 99.28(8); C(25)-A1(3)-P(1), 99.23(7).

The connectivity in **26b** is essentially the same as that observed for complexes **25a-c**, but with an additional AlMe₃ moiety bound to the phosphine lone pair. The sum of C-Al(3)-C angles is $351.25(43)^{\circ}$ and C-Al(3) bond lengths range from 1.946(3) Å to 1.966(3) Å. The small change in ¹³C chemical shifts of Al-Me₃ groups also indicates the slight distortion from planarity of aluminum.⁶⁶ The ³¹P{¹H} NMR spectra of **26b** and **26c** contain resonances at δ -45.5 and -44.5, respectively, which are shifted downfield by approximately +6 ppm compared to that of the compounds **25b-c**. Adduct **26b** has slightly longer Al-C bond distances and the smaller C-Al-C angles for the AlMe₃ moeity than in **24b**, which indicates that slightly stronger Lewis acid-base interactions occur in **26b**.³⁶ This is consistent with the shorter Al-P distance of 2.5151(7) Å in **26b** than that of 2.553(2) Å in **24b**.⁶⁶ For the compounds **23b-c** and **25b-c**, adduct formation doesn't lead to a drastic increase of the Al-C bond lengths, but a decrease of the C-Al-C angles compared to those of the uncomplexed AlMe₃.

	24b	26b	
Al-P	2.553(2)	2.5151(7)	
Al-C	1.958(5)	1.960(2)	
Al-C	1.958(5)	1.966(3)	
Al-C	1.951(7)	1.946(3)	
C-Al-C	119.12(18)	116.59(16)	
C-Al-C	115.0(3)	117.39(12)	
C-Al-C	115.0(3)	117.27(15)	
C-Al-P	97.45(16)	101.32(9)	
C-Al-P	97.45(16)	99.28(8)	
C-Al-P	101.1(3)	99.23(7)	
P-C (Se)	2.2388(16)	1.8222(18);	
P-C	1.822(4)	1.8328(19)	
P-C	1.822(4)	1.8426(18)	
C-P-C (Se)	103.61(13)	101.96(9)	
C-P-C	101.4(3)	104.48(8)	
C-P-C	101.4(3)	105.72(8)	

Table 4.4. Selected bond lengths (Å) and angles (deg) of the Lewis acid-base

4.7 Ligand Design and Bonding Modes

adducts 24b and 26b

Both the amido and selenophosphinito donors show a propensity to bridge, and so this cannot be the only factor that leads to the formation of triangular complexes for 23a-c, but not for 24a-c. To improve these ligand designs to assemble triangular complexes with a variety of metal precursors requires a better understanding of what factors promote polynuclear complex formation. The 150 References begin on page 165

geometry of the ligand plays a role in the assembly of the trinuclear complexes in the case of **23a-c**. For the supporting diamidoselenophosphinito donor to chelate all its anionic donors to a central aluminum atom would require the formation of a [2.2.1] bicyclic. The resultant two five-membered rings and one six-membered ring seem ideal in terms of chelate ring sizes, but the fused nature of these rings leads to considerable strain and results in less than tetrahedral bond angles. For example, the analogous hydrocarbon norbornane possesses 71.8 kJ/mol of ring strain.⁶⁸

4.8 Summary and Conclusions

The reactions of the triaminophosphines $P(CH_2NHAr^R)_3$ (1a-c, where $Ar^R =$ 3.5-(CF₃)₂C₆H₃ for **a**; Ar^R = Ph for **b**, Ar^R = 3.5-Me₂C₆H₃ for **c**) with selenium afford the triaminophosphine selenides $Se=P(CH_2NHAr^R)_3$. The treatment of the ligand precursors Se=P(CH₂NHAr^R)₃ (22a-c) with 4 equiv of AlMe₃ provide the facile synthetic routes to the triangular trinuclear complexes (23a-c) of the unanticipated diamidoselenophosphinito ligands, with concomitant loss of one equiv of $[Et(Ar^{R})NAlMe_{2}]_{n}$. hydrolyzed provided The byproduct was and CH₃CH₂N(H)-3,5-(CF₃)₂C₆H₃. Tetranuclear complexes can be obtained by the formation of adducts with AlMe₃ at the phosphine donor. The large influence of adduct formation on the ${}^{1}J_{SeP}$ values as well the sensitivity of these values to the nature of Ar^R indicates that considerable delocalization of bonding occurs.

References begin on page 165

The reactions of $P(CH_2NHAr^R)_3$ (1a-c) with 2 equiv of AlMe₃ produce the dinuclear aluminum complexes $P(CH_2NAr^R)_3Al_2Me_3$ (25a-c). When 1b-c react with excess AlMe₃, the Lewis acid-base adducts Me₃Al·P(CH₂NAr^R)₃Al₂Me₃ (26b-c) are isolated.

The polydentate ligands combine the tripodal amido donors with the phosphine donor and selenium donor functionalities, which are demonstrated to be well suited for the facile synthesis of the polynuclear main group metal complexes. The preference of the diamidoselenophosphinito ligands in **22a-c** to form trinuclear structures, as opposed to adopting a κ Se,N,N bonding mode similar to the κ N,N,N bonding observed in complexes **23a-c**, can be ascribed to the ring strain associated with [2.2.1] bicyclic systems.⁶⁹

4.9 Experimental

4.9.1 General Procedures

Unless otherwise stated, general procedures were performed according to Section 2.11.1.

4.9.2 Synthesis of Complexes

Se=P[CH₂NH-3,5-(CF₃)₂C₆H₃]₃ (22a). Selenium (789 mg, 10 mmol) was added

152

to a solution of P(CH₂NH-3,5-(CF₃)₂C₆H₃)₃ (**1a**) (3.78 g, 5 mmol) in 50 mL of toluene. The solution was stirred 24 h and then filtered to remove the excess selenium. The solvent was removed under vacuum and the remaining white solid was rinsed with a small portion of pentane, and then dried under vacuum (3.55 g, 85 %). Single crystals were grown from a mixture of ethanol (50 %) and acetone (50 %) at -30 °C. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 2.77 (dd, ³J_{HH} = 5.8 Hz, ²J_{PH} = 5.2 Hz, 6H, PC<u>H</u>₂), 3.94 (q, 3H, N<u>H</u>), 6.56 (s, 6H, Ph *o*-<u>H</u>), 7.28 (s, 3H, Ph *p*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 40.3 (d, J_{PC} = 49.4 Hz, P<u>C</u>H₂), 113.3 and 122.4 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 113.6. (s, Ph *p*-<u>C</u>), 133.4 (q, J = 33.5 Hz, Ph<u>C</u>-F₃), 147.8 (d, J = 8.8 Hz, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ 42.6 (s with satellites, J_{SeP} = 743.7 Hz.). ¹⁷Se{¹H} NMR (C₆D₆, 282.1 MHz, 298 K): δ 14.68 (s). Anal. Calc'd for C₂₇H₁₈F₁₈N₃SeP: C, 38.75; H, 2.17; N, 5.02. Found: C, 39.1; H, 2.46; N, 5.06.

Se=P(CH₂NHPh)₃ (22b). Prepared in an analogous manner to 22a using P(CH₂NHPh)₃ (1b) (1.75 g, 5 mmol) in lieu of 1a with a yield of 1.92 g, 80 %. Single crystals were grown from a mixture of ethanol (50 %) and acetone (50 %) at -30 °C. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 3.30 (dd, ³J_{HH} = 5.6 Hz, ²J_{PH} = 5.6 Hz, 6H, PC<u>H₂</u>), 5.1 (b, 3H, N<u>H</u>), 6.36 (d, ³J_{HH} = 8.5 Hz, 6H, Ph *o*-<u>H</u>), 6.71 (t, ³J_{HH} = 7.5 Hz, 3H, Ph *p*-<u>H</u>), 7.03 (m, 6H, Ph *m*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K):

δ 42.1 (d, $J_{PC} = 47.8$ Hz, $P\underline{C}H_2$), 114.5 and 119.9 (s, Ph *o*- \underline{C} and *m*- \underline{C}), 130.1 (s, Ph *p*- \underline{C}), 147.6 (d, J = 7.1 Hz, *ipso*- \underline{C}). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ 46.3 (s with satellites, $J_{SeP} = 719.7$ Hz.). ⁷⁷Se{¹H} NMR (C₆D₆, 57.2 MHz, 298 K) : δ -455.2 (d, $J_{SeP} = 719.7$ Hz.). Anal. Calc'd for C₂₁H₂₄N₃PSe: C, 58.88; H, 5.65; N, 9.81. Found: C, 58.95; H, 5.47, N, 9.44.

Se=P(CH₂NH-3,5-Me₂C₆H₃)₃ (22c). Prepared in an analogous manner to 22a using P(CH₂NH-3,5-Me₂C₆H₃)₃ (1c) (1.75 g, 5 mmol) in lieu of 1a with a yield of 2.22 g, 87 %. Single crystals were grown from a mixture of ethanol (50%) and acetone (50%) at -30 °C. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 2.18 (s, 18H, PhC<u>H</u>₃), 3.51 (dd, ³J_{HH} = 5.7 Hz, ²J_{PH} = 5.7 Hz, 6H, PC<u>H</u>₂), 4.05 (b, 3H, N<u>H</u>), 6.16 (s, 6H, Ph *o*-<u>H</u>), 6.40 (s, 3H, Ph *p*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ21.8 (s, Ph<u>C</u>H₃), 42.1 (d, J_{PC} = 47.2 Hz, P<u>C</u>H₂), 112.5 and 121.9 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 139.4 (s, Ph *p*-<u>C</u>), 147.6 (d, J = 7.1 Hz, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ 44.46 (s with satellites, J_{SeP} = 716.1 Hz.). ⁷⁷Se{¹H} NMR (C₆D₆, 57.2 MHz, 298 K): δ -453.2 (d, J_{SeP} = 716.1 Hz). Anal. Calc'd for C₂₇H₃₆N₃PSe: C, 63.27; H, 7.08; N, 8.20. Found: C, 63.51; H, 6.9; N, 7.93.

 $P[CH_2N-3,5-(CF_3)_2C_6H_3]_2Se(AlMe_2)_3$ (23a). A 2.0 M solution of AlMe₃ in toluene (2.0 mL, 4.0 mmol) was added to a solution of 22a (836.1 mg, 1 mmol) in 25 mL toluene. The solution was stirred at room temperature for 24 h. The solution was

evaporated to dryness, and the remaining solid was rinsed by pentane. The white solid was collected by filtration and dried (382 mg, 50 %). X-ray quality crystals were obtained from slow evaporation of a benzene solution. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ -1.71 and -0.28 (s, 3H each, N,N'-Al<u>Me₂</u>), -0.98 and 0.05 (s, 6H each, Se, N-Al<u>Me₂</u>), 2.93 (s, 2H, PC<u>H₂</u>), 2.95 (d, 2H, PC<u>H₂</u>), 7.44 (s, 2H, Ph *o*-H), 7.69 (s, 4H, Ph *p*-H). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ -9.4, -7.9, -3.9 and -2.8 (s, Al<u>Me₂</u>), δ 46.4 (d, J_{PC} = 41.2 Hz, P<u>C</u>H₂), 118.3 and 123.5 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 121.5 (s, Ph *p*-<u>C</u>), 133.6 (q, *J* = 33.4 Hz, Ph<u>C</u>-F₃), 148.0 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -4.7 (s with satellites, J_{SeP} = 176.6 Hz). ¹⁹F NMR (C₆D₆, 282.1 MHz, 298 K): δ 14.81 (s). ⁷⁷Se{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -430.0 (d, J_{SeP} = 176.6 Hz). C₂₄H₂₈Al₃F₁₂N₂PSe: C, 37.76; H, 3.70; N, 3.67. Found: C, 38.20; H, 3.58 N, 3.76.

The pentane rinse was hydrolyzed with water, with the evolution of gas. The sample was extracted into C₆D₆ and passed through a short plug of alumina. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 0.62 (t, 3H, ³J_{HH} = 7.3 Hz, CH₂C<u>H</u>₃), 2.26 (qd, 2H, ³J_{HH} = 7.3 Hz, ³J_{HH} = 5.2 Hz, NHC<u>H</u>₂CH₃), 5.2 (br, 1H, N<u>H</u>), 6.42 (s, 2H, Ph *o*-<u>H</u>), 7.21 (s, 1H, Ph *p*-<u>H</u>), consistent with EtN(H)-3,5-(CF₃)₂C₆H₃.

P(CH₂NPh)₂Se(AlMe₂)₃ (23b). Prepared in an analogous manner to 23a using (2b) (428.4 mg, 1.0 mmol) in lieu of 19a with an isolated yield of 245.6 mg, 50 %. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ -1.36 and -0.04 (s, 3H each, N,N'-Al<u>Me₂</u>), -0.81,

155

0.23, (s, 6H each, Se, N-Al<u>Me₂</u>), 3.24 and 3.24 (m, 4H total, PC<u>H₂</u>), 6.81 (t, 2H, J =7.3 Hz, Ph *p*-H), 7.0 (dd, 4H, Ph *m*-H), 7.17 (d, 4H, Ph *o*-H). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ -15.1, -8.6, -5.8 and -2.7 (s, Al<u>Me₂</u>), δ 46.7 (d, $J_{PC} =$ 36.5 Hz, P<u>C</u>H₂), 122.05 and 125.5 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 130.0 (s, Ph *p*-<u>C</u>), 145.9 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -4.1 (s with satellites, $J_{SeP} =$ 179.9 Hz). ⁷⁷Se{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -433.0 (d, $J_{SeP} =$ 179.9 Hz.). C₂₀H₃₂Al₃N₂PSe: C, 48.89; H, 6.56; N, 5.70. Found: C, 48.48; H, 6.23; N, 5.89.

P(CH₂N-3,5-Me₂C₆H₃)₂Se(AIMe₂)₃ (23c). Prepared in an analogous manner to 23a using 2c (512.5 mg, 1.0 mmol) in lieu of 19a with an isolated yield of 328.5 mg, 60 %. X-ray quality crystals were obtained from slow evaporation of a benzene solution. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ -1.24 and 0.03 (s, 3H each, N,N'-AI<u>Me₂</u>), -0.74 and 0.30 (s, 6H each, Se, N-AI<u>Me₂</u>), 2.05 (s, 12H, PhC<u>H₃</u>), 3.30 (s, 2H, PC<u>H₂</u>), 3.32 (d, 2H, PC<u>H₂</u>), 6.51 (s, 2H, Ph *o*-H), 6.96 (s, 4H, Ph *p*-H). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ -14.8, -8.4, -5.6 and -2.3 (s, AI<u>Me₂</u>), 21.8 (s, Ph<u>C</u>H₃), 46.7 (d, J_{PC} = 37.3 Hz, P<u>C</u>H₂), 120.1 and 127.4 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 137.8 (s, Ph *p*-<u>C</u>), 146.1 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -3.4 (s with satellites, J_{SeP} = 181.3 Hz). ⁷⁷Se{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -434.9 (d, J_{SeP} = 181.3 Hz.). C₂₄H₄₀Al₃N₂PSe: C, 52.65; H, 7.36; N, 5.12. Found: C, 52.29; H, 6.99; N, 4.75.

References begin on page 165

Me₃Al·P(CH₂NPh)₂Se(AlMe₂)₃ (24b). A solution of AlMe₃ in toluene (3.0 mL, 2.0 M, 6.0 mmol) was added to a solution of **23b** (428.4 mg, 1.0 mmol) in 25 mL toluene. The solution was stirred at room temperature for 24 h. The solution was evaporated to dryness, and the remaining solid was rinsed by pentane. The white solid was collected by filtration and dried (310 mg, 55 %). X-ray quality crystals were obtained from toluene solution at -30 °C. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ -1.04 and -0.69 (s, 3H each, N,N'-Al<u>Me₂</u>), -0.80, 0.13, (s, 6H, Se, N-Al<u>Me₂</u>), -0.46 (s, 9H, P-Al<u>Me₃</u>), 3.54 (m, 4H, PC<u>H₂</u>), 2.83 (m, 2H, PC<u>H₂</u>), 6.81 (m, 4H, Ph *o*-H), 7.07 (m, 6H, Ph *p*-H & Ph *m*-H). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ -14.7, -8.5, -5.4 and -2.1(s, Al<u>Me₂</u>), -8.0 (s, P-Al<u>Me₃</u>), 46.3 (d, *J*_{PC} = 36.7 Hz, P<u>C</u>H₂), 121.05 and 126.0 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 130.0 (s, Ph *p*-<u>C</u>), 145.6 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -8.4 (s with satellites, *J*_{SeP} = 349.7 Hz). ⁷⁷Se{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -435.0 (d, *J*_{SeP} = 349.7 Hz). Anal. Calc'd for C₂₃H₄₁Al₄N₂PSe: C, 49.03; H, 7.33; N, 4.91. Found: C, 49.43; H, 6.99; N, 4.87.

Me₃Al·P(CH₂N-3,5-Me₂C₆H₃)₂Se(AlMe₂)₃ (24c). A solution of AlMe₃ in toluene (3 mL, 2.0 M, 6 mmol) was added to a solution of 19c (512.5 mg, 1 mmol) in 25 mL toluene. The solution was stirred at room temperature for 24 h. The solution was evaporated to dryness, and the remaining solid was rinsed by pentane. The white solid was collected by filtration and dried (403 mg, 65 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ -0.837 and -0.63 (s, 3H each, N,N'-Al<u>Me₂</u>), -0.171 and 0.291 (s, 6H

each, Se, N-Al<u>Me</u>₂), -0.447 (s, 9H, P-Al<u>Me</u>₃), 1.866, 1.994 (s, 6H each, PhC<u>H</u>₃), 2.56 (dd, 1H, PC<u>H</u>₂), 3.50 (m, 1H, PC<u>H</u>₂), 3.67 (m, 1H, PC<u>H</u>₂), 3.86 (dd, 1H, PC<u>H</u>₂), 6.5 (s, 2H, Ph *o*-H), 6.6 (s, 4H, Ph *p*-H). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ -14.1, -8.1 -2.25 and -1.63 (s, Al<u>Me</u>₂), -7.8 (s, P-Al<u>Me</u>₃), 21.8 (s, Ph<u>C</u>H₃), δ 47.3 (m, P<u>C</u>H₂), 120.0 and 127.5 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 142.7 (s, Ph *p*-<u>C</u>), 146.1 (d, J =19.5 Hz, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -9.4 (s with satellites, $J_{SeP} = 312.9$ Hz). ⁷⁷Se{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -436.1 (d, $J_{SeP} =$ 312.9 Hz.). C₂₇H₄₉Al₄N₂PSe: C, 52.3; H, 7.97; N, 4.52. Found: C, 52.79; H, 7.68; N, 4.26.

P[CH₂N-3,5-(CF₃)₂C₆H₃]₃Al₂Me₃ (25a). A solution of AlMe₃ in toluene (3.09 mL, 2.0 M, 6.18 mmol) was added to a solution of 1a (2.34 g, 3.09 mmol) in 15 mL toluene. The solution was left for 12 h. The solution was evaporated to dryness, and the remaining solid was crystallized from by cooling a saturated warm benzene solution to room temperature. The tan solid was collected by filtration and dried (1.5 g, 57 %). A second crop was obtained by slow evaporation of the mother liquor. X-ray quality crystals were obtained by slow evaporation of a benzene solution. ¹H NMR (C₆D₆, 500 MHz, 298 K): δ -0.84 and -0.56 (s, 3H each, Al<u>Me₂), -0.26 (s, 3H, Al<u>Me</u>), 2.70 (dd, 2H, ²J_{PH} = 1.3 Hz, ²J_{HH} = 14.5 Hz, PC<u>H₂), 2.83 (d, 2H, ²J_{PH} = 6.8 Hz, PC<u>H₂), 3.56 (dd, 2H, ²J_{PH} = 16.9 Hz, ²J_{HH} = 14.4 Hz, PC<u>H₂), 7.30 (s, 2H, *p*-H), 7.38 (s, 1H, *p*-H), 7.45 (s, 4H, *o*-H), 7.50 (s, 2H, *o*-H). ¹³C{¹H} NMR (C₆D₆, 125.8</u></u></u></u>

158

MHz, 298 K): δ -14.5, -5.6, -1.4 (s, Al<u>Me</u>), -5.16 (s, Al<u>Me</u>), 44.8 (d, $J_{PC} = 23.1$ Hz, P<u>C</u>H₂), 50.7 (d, $J_{PC} = 15.1$ Hz, P<u>C</u>H₂), 121.1 and 123.4 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 124.6 (s, Ph *p*-<u>C</u>), 129.9 (m, Ph<u>C</u>-F₃), 149.4 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -54.2 (s). ¹⁹F NMR (C₆D₆, 282.1 MHz, 298 K): δ 14.67 (s). Anal. Calc'd for C₃₀H₂₄Al₂F₁₈N₃P: C, 42.22; H, 2.84; N, 4.92. Found: C, 41.77; H, 3.30; N, 4.89.

P(**CH**₂**NPh**)₃**Al**₂**Me**₃ (25b). A solution of AlMe₃ in toluene (1 mL, 2.0 M, 2 mmol) was added to a solution of 1b (349.4 mg, 1 mmol) in 25 mL toluene. The solution was stirred at room temperature for 24 h. The solution was evaporated to dryness, and the remaining solid was rinsed by pentane prior to crystallization from benzene. The white solid was collected by filtration and dried (328.5 mg, 60 %). ¹H NMR (C₆D₆, 500 MHz, 298 K): δ -0.6, 0.22 and -0.16 (s, 3H each, Al<u>Me</u>), 3.14 (d, 2H, *J* = 14.2 Hz, PC<u>H</u>), 3.53 (d, 2H, *J* = 6.8 Hz, PC<u>H</u>₂), 4.00 (dd, 2H, ²*J*_{HH} =14.2 Hz, ²*J*_{PH} =16.6 Hz PC<u>H</u>), 6.86 and 6.88 (m, 3H total, *p*-<u>H</u>), 6.96 (dd, 4H, *J* = 7.7 Hz, *m*-<u>H</u>), 7.09 (d, 4H, *J* = 7.7 Hz, *o*-<u>H</u>), 7.22 (d, 2H, *J* = 8.1 Hz, *o*-<u>H</u>), 7.33 (dd, 2H, *m*-<u>H</u>). ¹³C {¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ -11.1, -9.2 and -7.9 (s, Al<u>Me</u>₂), 49.7 (d, *J*_{PC} = 12.9 Hz, P<u>C</u>H₂), 55.5 (d, *J*_{PC} = 27.0 Hz P<u>C</u>H₂), 116.8, 118.3, 125.8, 125.9, 129.5, 130.1 (s, Ph *o*-<u>C</u>, *m*-<u>C</u> and *p*-<u>C</u>), 150.6 and 154.6 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -51.3 (s). C₂₄H₃₀Al₂N₃P: C, 64.71; H, 6.79; N, 9.43. Found: C, 64.51; H, 6.93; N, 9.74.

P(CH₂N-3,5-Me₂C₆H₃)₃Al₂Me₃ (25c). A solution of AlMe₃ in toluene (1 mL, 2.0 M,

159

2 mmol) was added to a solution of 1c (433.6 mg, 1 mmol) in 25 mL toluene. The solution was stirred at room temperature for 24 h. The solution was evaporated to dryness, and the remaining solid was rinsed by pentane prior to crystallization from benzene. The white solid was collected by filtration and dried (413.5 mg, 78 %). ¹H NMR (C₆D₆, 500 MHz, 298 K): δ -0.45, -0.1, -0.02 (s, 3H each, Al<u>Me</u>), 2.0 (s, 12H, PhC<u>H</u>₃), 2.33 (s, 6H, PhC<u>H</u>₃), 3.30 (dd, 2H, ²J_{PH} = 1.2 Hz, ²J_{HH} = 14.3Hz, PC<u>H</u>₂), 3.64 (d, 2H, ²J_{PH} = 6.5 Hz, PC<u>H</u>), 4.16 (dd, 2H, ²J_{HH} = 14.3 Hz, PC<u>H</u>₂), 6.56 (s, 1H, Ph *o*-<u>H</u>), 6.58(s, 1H, Ph *o*-<u>H</u>), 6.95 (s, 6H, Ph *p*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ -19.8, -7.3, -5.8 (s, Al<u>Me</u>), 21.4 (s, Ph<u>C</u>H₃), 22.3 (s, Ph<u>C</u>H₃), 50.5 (d, P<u>C</u>H₂), 56.0 (d, P<u>C</u>H₂), 115.5, 120.5, 124.0, 140.1 (s, Ph *o*-<u>C</u> and *p*-<u>C</u>), 151.1, 155.1 (s, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -50.5 (s). C₃₀H₄₂Al₂N₃P: C, 68.03; H, 7.99; N, 7.93. Found: C, 67.79; H, 7.95; N, 7.63.

Me₃Al-P(CH₂NPh)₃Al₂Me₃ (26b). A solution of AlMe₃ in toluene (5.0 mL, 2.0 M, 10.0 mmol) was added to a solution of **1b** (699 mg, 2.0 mmol) in 50 mL toluene. The solution was left for 48 h. The colorless solution was evaporated to dryness, and the remaining solid was rinsed by pentane. The white solid was collected by filtration and dried (558 mg, 54 %). X-ray quality crystals were obtained from slow evaporation of a pentane solution at -30 °C. ¹H NMR (C₆D₆, 500 MHz, 298 K): δ -0.68 and -0.30 and -0.13 (s, 3H each, Al<u>Me</u>), -0.37 (s, 9H, P-Al<u>Me₃</u>), 3.22 (dd, 2H, ²J_{PH} = 4.8 Hz, ²J_{HH} = 4.8 Hz, PC<u>H₂</u>), 3.70 (s, 2H, PC<u>H₂</u>), 4.10 (dd, 2H, ²J_{PH} = 8.6 Hz,

²*J*_{HH} = 5.6 Hz, PC*<u>H</u>₂), 6.9, 7.1, 7.28 (m, Ph). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ -10.8, -9.0 and -8.5 (s, Al<u><i>Me*</u>₂), -8.0 (s, P-Al<u>*Me*</u>₃), 47.3 (d, *J*_{PC} = 10.3 Hz, P<u>C</u>H₂), 52.7 (s, P<u>C</u>H₂), 117.7, 119.7, 126.0, 126.8, 130.0, 130.6 (s, Ph *o*-<u>*C*, *m*-<u>*C*</u> and *p*-<u>*C*), 149.8 (d, *J* = 3.7 Hz, *ipso*-<u>*C*), 153.8 (d, *J* = 6.2 Hz, *ipso*-<u>*C*). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -45.5 (s). Anal. Calc'd for C₂₇H₃₉Al₃N₃P: C, 62.66; H, 7.60; N, 8.12. Found: C, 62.17; H, 6.95; N, 7.72.</u></u></u></u>

Me₃Al-P(CH₂N-3,5-Me₂C₆H₃)₃Al₂Me₃ (26c). A solution of AlMe₃ in toluene (2.0 mL, 2.0 M, 4.0 mmol) was added to a solution of 1c (433.6 mg, 1 mmol) in 25 mL toluene. The solution was stirred at room temperature for 24 h. The solution was evaporated to dryness, and the remaining solid was rinsed by pentane. The white solid was collected by filtration and dried (367 mg, 60 %). ¹H NMR (C₆D₆, 500 MHz, 298 K): δ -0.57 and -0.25 and 0.01 (s, 3H each, Al<u>Me</u>), -0.38 (s, 9H, P-Al<u>Me₃</u>), 2.00 (s, 12H, PhC<u>H₃</u>), 2.27 (s, 6H, PhC<u>H₃</u>), 3.45 (dd, 2H, ²J_{PH} = 9.5 Hz, ²J_{HH} = 5.1 Hz, PC<u>H₂</u>), 3.87 (s, 2H, PC<u>H₂</u>), 4.29 (dd, 2H, ²J_{PH} = 8.6 Hz, ²J_{HH} = 6.7 Hz, PC<u>H₂</u>), 6.87 (s, 3H, Ph *o*-<u>H</u>), 7.00 (s, 6H, Ph *p*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ -14.2, -10.4 (s, Al<u>Me₂</u>), -8.8 (s, P-Al<u>Me₃</u>), -7.4 (s, Al<u>Me</u>), 21.5 (s, Ph<u>C</u>H₃), 22.2 (s, Ph<u>C</u>H₃), 47.7 (d, J_{PC} = 12.7 Hz, P<u>C</u>H₂), 52.8 (s, P<u>C</u>H₂), 116.3, 124.0, 139.0 (s, Ph *o*-<u>C</u>, *m*-<u>C</u> and *p*-<u>C</u>), 150.2 (d, *J*=6.3 Hz, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 202.5 MHz, 298 K): δ -44.5 (s). C₃₃H₅₁Al₃N₃P: C, 65.87; H, 8.54; N, 6.98. Found: C, 65.52; H, 8.21; N, 7.34.
4.9.3 Crystal Data and Structure Refinement

	22a	22b	22c
Empirical Formula	$C_{27}H_{18}F_{18}N_3PSe$	$C_{21}H_{24}N_3PSe$	$C_{27}H_{36}N_3PSe$
Formula Weight	836.4	428.37	512.53
Crystal System	Triclinic	Triclinic	Monoclinic
а	14.832(2) Å	10.025(3) Å	8.1088(7) Å
b	15.494(2) Å	10.598(3) Å	11.4874(10) Å
с	16.371(3) Å	10.605(3) Å	28.225(3) Å
α	73.943(2)°	65.584(3)°	90°
β	65.716(2)°	86.104(3)°	94.317(2) °
γ	81.208(2)°	75.794(3)°	90°
V (Å ³)	3292.3(9)	993.9(5)	2621.6(4)
Space Group	<i>P</i> -1	<i>P</i> -1	<i>P</i> 2(1)/n
Z	4	1	4
Density (calculated)	1.766 mg/m ³	1.431 mg/m ³	1.299 mg/m ³
μ (MoK α) (mm ⁻¹)	1.320	1.979	1.512
Temperature (K)	173	173	173
No. Variables	988	247	307
Total No. of Refins	37705	11128	20415
Residuals: R; wR ₂ (all data)	0.121, 0.151	0.077; 0.126	0.049; 0.112
Residual Density (e ⁻ /Å ³)	0.721, -0.503	0.952, -0.492	0.570, -0.327

Table 4.5. Crystallographic data for compounds 22a-c, 23a, 23c, 24b, 25a, and 26b.

۰.

Table 4.5 Cont u.	Table	4.5	cont'd.
-------------------	-------	-----	---------

	23a	23c	24b
Empirical Formula	$C_{24}H_{28}Al_3F_{12}N_2PSe$	$C_{24}H_{40}Al_3N_2PSe$	$C_{23}H_{41}Al_4N_2PSe$
Formula Weight	763.35	547.47	563.44
Crystal System	Triclinic	Monoclinic	Orthorhombic
а	9.0018(16) Å	13.118(2) Å	15.679(3) Å
b	13. 892(3) Å	8.3825(14) Å	10.954(2) Å
С	13.947(3) Å	28.507(5) Å	8.5522(16) Å
α	68.850(2)°	90°	90°
β	85.035(2)°	90.187(2)°	90°
γ	88.038(2)°	90°	90°
V (Å ³)	1620.5(5)	3134.7(9)°	1468.8(5)
Space Group	<i>P</i> -1	<i>P</i> 2(1)/n	<i>P</i> m n 21
Z	2	4	2
Density (calculated)	1.564 mg/m^3	1.256 mg/m ³	1.274 mg/m ³
Temperature (K)	173	173	173
$2\theta_{max}$ (degrees)	50.0	55.0	55.0
No. Variables	412	311	151
Total No. of Reflns	18272	34149	10182
Residuals: R; wR ₂ (all data)	0.042; 0.101	0.049; 0.115	0.064; 0.096
Residual Density (e ⁻ /Å ³)	0.915, -0.507	0.852, -0.596	1.002, -0.398

..

Table 4.5 cont'd.

·	25a	26b	
Empirical Formula	$C_{30}H_{24}Al_2F_{18}N_3P$	C ₂₇ H ₃₉ Al ₃ N ₃ P	
Formula Weight	853.44	517.54	
Crystal System	Triclinic	Orthorhombic	
а	11.2709(15) Å	11.8225(13) Å	
b	11.6947(15) Å	14.7615(16) Å	
с	15.652(2) Å	33.447(4) Å	
α	68.4510(10)°	90°	
β	86.0640(10)°	90°	
γ	78.9210(10)°	90°	
V (Å ³)	1883.1(4)	5837.1(11)	
Space Group	<i>P</i> -1	<i>P</i> b c a	
Z value	2	8	
Density (calculated)	1.574 mg/m ³	1.178 mg/m ³	
μ (MoK α) (mm ⁻¹)	0.239	0.204	
Temperature (K)	173	173	
No. Variables	527	313	
Total No. of Refins	18227	62133	
Residuals: R; wR2	0.070.0.175	0.055; 0.119	
(all data)	0.068; 0.173		
Residual Density	0.750 0.500	0.280 0.241	
(e-/Å3)	0.730, -0.320	0.389, -0.241	

4.10 References

 Haagenson, D. C.; Moser, D. F.; Stahl, L.; Staples, R. J. Inorg. Chem. 2002, 41, 1245-1253.

(2) Witt, M.; Roesky, H. W.; Stalke, D.; Pauer, F.; Henkel, T.; Sheldrick, G. M. J. Chem. Soc. Dalton Trans. 1989, 2173-2177.

(3) Straub, B. F.; Eisentrager, F.; Hofmann, P. Chem. Comm. 1999, 2507-2508.

(4) Roesky, H. W.; Voelker, H.; Witt, M.; Noltemeyer, M. Angew. Chem. 1990, 102, 712-713.

(5) Niecke, E.; Frost, M.; Nieger, M.; von der Goenna, V.; Ruban, A.; Schoeller, W.
W. Angew. Chem. 1994, 106, 2170-2172.

(6) Vollmerhaus, R.; Shao, P.; Taylor, N. J.; Collins, S. Organometallics 1999, 18, 2731-2733.

(7) Steiner, A.; Stalke, D. Inorg. Chem. 1993, 32, 1977-1981.

(8) Chivers, T.; Parvez, M.; Seay, M. A. Inorg. Chem. 1994, 33, 2147-2150.

(9) Briand, G G; Chivers, T.; Parvez, M.; Schatte, G Inorg. Chem. 2003, 42, 525-531.

(10) Singh, H. B.; Sudha, N. Polyhedron 1996, 15, 745-763.

(11) Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis, 1986.
(12) Stefan Friedrich. Angew. Chem. Int. Ed. 1994, 33, 676-678.

(13)Gysling, H. J.; Luss, H. R.; Gardner, S. A. J. Organomet. Chem. 1980, 184, 417-431.

165

(14) Steigerwald, M. L. Polyhedron 1994, 13, 1245-1252.

(15) Davies, R. P.; Martinelli, M. G. Inorg. Chem. 2002, 41, 348-352.

(16) Walther, B. Coord. Chem. Rev. 1984, 60, 67-105.

(17) Pilkington, M. J.; Slawin, A. M. Z.; Williams, D. J.; Woollins, J. D. Polyhedron

1991, *10*, 2641-2645.

(18) Haiduc, I. J. Organomet. Chem. 2001, 623, 29-42.

(19) Kuchen, W.; Hertel, H. Angew. Chem. Int. Ed. 1969, 8, 89-97.

(20)Keen, A. L.; Doster, M.; Han, H.; Johnson, S. A. Chem. Commun. 2006, 1221-1223.

(21) Han, H.; Elsmaili, M.; Johnson, S. A. Inorg. Chem. 2006, 45, 7435-7445.

(22) Arnold, J. Inorg. Chem. 1995, 43, 353-417.

(23) Chivers, T.; Krahn, M.; Schatte, G; Parvez, M. Inorg. Chem. 2003, 42, 3994-4005.

(24)Bochmann, M.; Bwembya, G. C.; Whilton, N.; Song, X.; Hursthouse, M. B.; Coles, S. J.; Karaulov, A. J. Chem. Soc. Dalton Trans. 1995, 1887-1892.

(25)Lief, G. R.; Carrow, C. J.; Stahl, L.; Staples, R. J. Organometallics 2001, 20, 1629-1635.

(26) Lee, W.-Y.; Liang, L.-C. Dalton Trans. 2005, 1952-1956.

(27) Liang, L.-C.; Huang, M.-H.; Hung, C.-H. Inorg. Chem. 2004, 43, 2166-2174.

(28) Fryzuk, M. D.; Giesbrecht, G R.; Olovsson, G; Rettig, S. J. Organometallics 1996, 15, 4832-4841.

(29) Passarelli, V.; Carta, G.; Rossetto, G.; Zanella, P. Dalton Trans. 2003, 1284-1291.

(30) Jancik, V.; Pineda, L. W.; Pinkas, J.; Roesky, H. W.; Neculai, D.; Neculai, A. M.;

Herbst-Irmer, R. Angew. Chem. Int. Ed. 2004, 43, 2142-2145.

(31) Dillingham, M. D. B.; Hill, J. B.; Lee, B.; Schauer, S. J.; Pennington, W. T.;

Robinson, G. H.; Hrncir, D. C. J. Coord. Chem. 1993, 28, 337-346.

(32) Waggoner, K. M.; Power, P. P. J. Am. Chem. Soc. 1991, 113, 3385-3393.

(33) Eisler, D. J.; Chivers, T. Can. J. Chem. 2006, 84, 443-452.

(34) Brask, J. K.; Chivers, T.; Yap, G. P. A. Chem. Commun. 1998, 2543-2544.

(35) Hlavinka, M. L.; Hagadorn, J. R. Chem. Commun. 2003, 2686-2687.

(36)Bezombes, J.-P.; Gehrhus, B.; Hitchcock, P. B.; Lappert, M. F.; Merle, P. G. Dalton Trans. 2003, 1821-1829.

(37) Gardinier, J. R.; Gabbai, F. P. New J. Chem. 2001, 25, 1567-1571.

(38) Jiang, Z.; Interrante, L. V.; Kwon, D.; Tham, F. S.; Kullnig, R. Inorg. Chem. 1991, 30, 995-1000.

(39) Hitchcock, P. B.; Lappert, M. F.; Merle, P. G. Phosphorus, Sulfur and Silicon and the Related Elements 2001, 168-169, 363-366.

(40)Gibson, V. C.; Nienhuis, D.; Redshaw, C.; White, A. J. P.; Williams, D. J. Dalton Trans. 2004, 1761-1765.

(41)Pinkas, J.; Wang, T.; Jacobson, R. A.; Verkade, J. G. Inorg. Chem. 1994, 33, 5244-5253.

167

(42) Sauls, F. C.; Interrante, L. V. Coord. Chem. Rev. 1993, 128, 193-207.

(43) Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1997, 119, 8125-8126.

(44) Howell, J. A. S.; Fey, N.; Lovatt, J. D.; Yates, P. C.; McArdle, P.; Cunningham,

D.; Sadeh, E.; Gottlieb, H. E.; Goldschmidt, Z.; Hursthouse, M. B.; Light, M. E. J.

Chem. Soc. Dalton Trans. 1999, 3015-3028.

(45) Steinberger, H. U.; Ziemer, B.; Meisel, M. Acta Cryst. 2001, C57, 323-324.

(46) Barron, A. R. J. Chem. Soc. Dalton Trans. 1988, 3047-3050.

(47) Slawin, A. M. Z.; Wheatley, J.; Wheatley, M. V.; Woollins, J. D. Polyhedron **2003**, *22*, 1397-1405.

(48) Allen, D. W.; Taylor, B. F. J. Chem. Soc. Dalton Trans. 1982, 51-54.

(49) Andersen, N. G.; Keay, B. A. Chem. Rev. 2001, 101, 997-1030.

(50) Allen, D. W.; Nowell, I. W.; Taylor, B. F. J. Chem. Soc. Dalton Trans. 1985, 2505-2508.

(51) Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2953-2956.

(52) Beachley, O. T. Jr.; Tessier-Youngs, C. Inorg. Chem. 1979, 18, 3188-3191.

(53) Planas, J. G.; Hampel, F.; Gladysz, J. A. Chem. A Euro. J. 2005, 11, 1402-1416.

(54)Beachley, O. T., Jr.; Bueno, C.; Churchill, M. R.; Hallock, R. B.; Simmons, R. G. Inorg. Chem. 1981, 20, 2423-2428.

(55)Beachley, O. T., Jr.; Royster, T. L., Jr.; Arhar, J. R.; Rheingold, A. L. Organometallics 1993, 12, 1976-1980.

(56) Sauls, F. C.; Czekaj, C. L.; Interrante, L. V. Inorg. Chem. 1990, 29, 4688-4692.

(57) Himmel, H.-J.; Vollet, J. Organometallics 2002, 21, 5972-5977.

(58) Zhu, H.; Yang, Z.; Magull, J.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M.

Organometallics 2005, 24, 6420-6425.

(59) Duddeck, H. NMR Spect. 1995, 27, 1-323.

(60) Leszczynski, J.; Kwiatkowski, J. S. J. Phy. Chem. 1993, 97, 1364-1367.

(61)Lindner, E.; Bosch, E.; Fawzi, R.; Steimann, M.; Mayer, H. A.; Gierling, K. Chem. Ber. 1996, 129, 945-951.

(62)Zhang, Q.-F.; Cheung, F. K. M.; Wong, W.-Y.; Williams, I. D.; Leung, W.-H. Organometallics 2001, 20, 3777-3781.

(63) Walther, B.; Messbauer, B.; Meyer, H. Inorg. Chim. Acta 1979, 37, L525-L527.

(64) Gelmini, L.; Stephan, D. W. Organometallics 1987, 6, 1515-22.

(65) Wells, R. L.; Foos, E. E.; Rheingold, A. L.; Yap, G. P. A.; Liable-Sands, L. M.;

White, P. S. Organometallics 1998, 17, 2869-2875.

(66)Kuczkowski, A.; Schulz, S.; Nieger, M.; Schreiner, P. R. Organometallics 2002, 21, 1408-1419.

(67) Almenningen, A.; Halvorsen, S.; Haaland, A. Acta Chem. 1971, 25, 1937-1945.

(68) Verevkin, S. P.; Emel'yanenko, V. N. J. Phy. Chem. 2004, 108, 6575-6580.

(69) Han, H.; Johnson, S. A. Organometallics 2006, 25, 5594-5602.

Chapter Five

A Binuclear Magnesium Complex Bridged by a Bisphosphine Ligand

5.1 Introduction

There is great interest in binuclear complexes containing bridging ligands, which has been brought about by significant progress in synthetic methodology. Phosphido groups (Scheme 5.1, R_2P , A), biphosphine groups, (Scheme 5.1, B), and 170 References begin on page 192 bisphosphine groups with P-P bonds (Scheme 5.1, R_2P-PR_2 , C), have been widely used as bridging ligands because of their ability to form the stable phosphorus-metal bonds with a variety of metal fragments.¹ In these complexes, metal-metal bonds may exist, with the potential to facilitate the activation and transfer of substrate molecules.^{2,3}

Scheme 5.1

Recently, Hatnean and Johnson reported how trinuclear Mg(II) and Mn(II) complexes could be assembled using the triamidophosphines $P(CH_2NHAr^R)_3$ (1a-c, where $Ar^R = 3,5-(CF_3)_2C_6H_3$, Ph, and $3,5-Me_2C_6H_3$), as shown in Scheme 5.2 (bonding mode A).⁴ These clusters are assembled by two ancillary ligand moieties, with one of the phosphorus donors facing directly towards the centre of the triangle of metal centres.⁴

Selenium transfers by the reactions of tertiary phosphine selenides with (carbonyl)metal species provide a simple synthetic route to selenido clusters by taking advantage of the frail P=Se bond.^{5,6} The Tiripicchio group found that tertiary phosphine selenides with heterocyclic groups can not only undergo P=Se cleavage but also P-C bond cleavage to afford new clusters. The coordinating ability of the heteroatoms (N atoms in the phosphines) and the short interactions of M···P facilitate P-C bond cleavage.^{5,6,7} In Chapter Four, we also report that phosphine selenides Se[P(CH₂NHAr^R)₃] were efficiently reduced to P(III) centres that bind three aluminum metals using the amido and selenium donors by the reactions with AlMe₃, which were accompanied with P-C bond cleavage under mild conditions.²³ Herein, we report the synthesis, structure and spectroscopy of a *trans*-binuclear magnesium complex bridged by a bisphosphine ligand, as shown in Scheme 5.2 (bonding mode B). The binuclear magnesium complex adopts a κ^3 (N, N, P) bonding mode, which is $\frac{172}{References begin on page 192}$

prepared by the reaction of the phosphine selenide $Se=P(CH_2NHAr^R)_3$ (where $Ar^R = 3,5-(CF_3)_2C_6H_3$) with *n*-butylmagnesium, as well as the coordination chemistry of the phosphine selenides with the zirconium metal compounds.

5.2 Synthesis and Structure of a Binuclear Magnesium Complex Bridged by a Bisphosphine Ligand

 $Se=P[CH_2NH-3,5-(CF_3)_2C_6H_3]_3^7$ The of treatment (22a)with in THF provided the trans-binuclear magnesium complex *n*-butylmagnesium bridged by a bisphosphine ligand $\{P[CH_2N-3,5-(CF_3)_2C_6H_3]_2MgTHF_2\}_2$ (27). Both the P-C and the Se=P bond cleave easily to form P-P bond thereby producing a binuclear magnesium complex, as shown in Scheme 5.3. Upon dropwise addition of the 1.0 M heptane solution of "Bu₂Mg to a solution of Se=P[CH₂NH-3,5-(CF₃)₂C₆H₃]₃ (22a) in THF at -30 °C, the color gradually turned from colorless to yellow at room temperature. After 4 h the solvent was removed to give a brown oil that was triturated with toluene and pentane. The white solid was collected and recrystallized from a 1:1 mixture of toluene and THF. The complex is not soluble in toluene, benzene and pentane, but is soluble in THF. The ${}^{31}P{}^{1}H{}$ NMR and ${}^{19}F{}^{1}H{}$ NMR spectra of {P[CH₂N-3,5-(CF₃)₂C₆H₃]₂MgTHF₂}₂(27) reveal single resonances at δ -63.6 and δ 14.19, respectively.

173

Chapter Five: A Binuclear Magnesium Complex Bridged by a Bisphosphine Ligand

Scheme 5.3

The solid-state structure of $\{P[CH_2N-3,5-(CF_3)_2C_6H_3]_2MgTHF_2\}_2$ 27 was determined by X-ray crystallography. An ORTEP depiction of the solid-state molecular structure of 27 is shown in Figure 5.1 and the pertinent crystallographic data is summarized in Table 5.1. The ¹H and ¹³C{¹H} spectra of 27 in d_8 -THF are consistent with an identical solution The complex structure. { $PCH_2N-3,5-(CF_3)_2C_6H_3$ }MgTHF_227 crystallizes in the triclinic space group P -1 with an inversion center in the middle of the bridging P-P bond. The binuclear complex consists of two distorted trigonal bipyramidal Mg units, where a THF donor resides in the axial sites trans to the phosphine. The two magnesium centers bind the bisphosphine ligand via one phosphine and two amido donors, all of which act as bridging ligands. The donors along with the magnesium atom form a five-membered P_2MgNC ring and a six-membered PC_2N_2Mg ring. The average Mg-N bond length of 2.023(4) Å is typical of previously structurally characterized Mg amido compounds.⁸⁻¹⁰ The sum of N(1)-Mg(1)-N(2), N(1)-Mg(1)-O(2) and N(2)-Mg(1)-O(2)bond angles is 356.63(26)°, which is close to 360° expected for a planar arrangement of these atoms. However, the N(1)-Mg(1)-N(2) angle of 108.18(15)° is smaller than References begin on page 192 174

that of N(1)-Mg(1)-O(2) (123.49(15)°) and N(2)-Mg(1)-O(2) (124.96(15)°) angles. The nearly linear O(1)-Mg(1)-P(1) angle of 176.47(11)° is further evidence that the geometry around the Mg(1) atom is best described as trigonal bipyramidal. ^{11,12,13}

Figure 5.1. Solid-state molecular structure of 27 obtained by X-ray crystallography. Selected bond lengths, in Å: P(1)-Mg(1), 2.8492(18); Mg(1)-N(1), 2.023(4); Mg(1)-N(2), 2.030(4); Mg(1)-O(1), 2.063(3); Mg(1)-O(2), 2.036(3); P(1)-P(1), 2.192(2). Selected bond angles (deg): P(1)-P(1)-Mg(1), 79.00(7); N(1)-Mg(1)-N(2), 108.18(15); N(1)-Mg(1)-O(2), 123.49(15); N(2)-Mg(1)-O(2),124.96(15); 98.85(15); N(2)-Mg(1)-O(1), 99.40(15); O(2)-Mg(1)-O(1), N(1)-Mg(1)-O(1),90.77(14); N(1)-Mg(1)-P(1),78.76(11); N(2)-Mg(1)-P(1),79.02(11); O(2)-Mg(1)-P(1), 92.72(10); O(1)-Mg(1)-P(1), 176.47(11).

A significant criticism against the existence of the P-Mg bonds in the complex 27 is that the lone pairs are not directed towards the Mg metal centers. The P-Mg distance of 2.8492(18) Å is slightly larger in comparison with the P-Mg bond lengths of 2.65-2.77 Å of the few crystallographically characterized magnesium phosphine complexes.^{14,15} The geometry at the metal centers in the complex 27 is approximately distorted trigonal bipyramidal, where a THF donor resides in the axial sites *trans* to the phosphine. In comparison to the trinuclear Mg(II) complexes⁴ assembled using the triamidophosphines P(CH₂NHAr^R)₃ (where $Ar^{R} = 3.5 \cdot (CF_{3})_{2}C_{6}H_{3}$, Ph. and 3,5-Me₂C₆H₃) (as shown in Scheme 5.2, bonding mode A), one of the phosphorus donors faces directly towards the centre of the triangle of metal centres in these clusters. The geometries at the metal centers in these clusters also are approximately distorted trigonal bipyramidal. However, even the shortest Mg-P distances in these complexes are significantly longer than typical bonding distances.¹⁴ Although phosphines are known to be capable of bridging two or three late transition metal complexes, similar bonding in main group metal complexes, where the bonding is undoubtedly significantly more ionic than covalent, lacks precedent.

5.3 Characterization of the Byproducts and the Mechanism of the Reaction of Se=P[CH₂NH-3,5-(CF₃)₂C₆H₃]₃ with *n*-ButyImagnesium .

5.3.1 Characterization of the Byproducts

The byproducts are much more soluble in toluene than the scarcely soluble 27,

References begin on page 192

176

and were easily rinsed from the crude product mixtures. The overall reaction involves the loss of 2 ligand $-CH_2NHAr^R$ arms $(Ar^R = 3,5-(CF_3)_2C_6H_3)$, which makes the use of 4 equiv of "Bu₂Mg be necessary for every 2 equiv of ligand. As shown in Scheme 5.3, the byproducts are believed to be 1 equiv of ["BuCH₂N(Ar^R)]₂Mg, 1 equiv of elemental selenium and SeMg. Definitive proof regarding the nature of ["BuCH₂N(Ar^R)]₂Mg was obtained by the hydrolysis of the toluene fraction used to rinse the crude product mixture in the synthesis of **27**. The hydrolysis product was identified as "BuCH₂N(H)-3,5-(CF₃)₂C₆H₃ (**28**) by ¹H NMR and GC/MS.

The elemental selenium insertion reactions along with the reactions of selenium with organic selenolates are poorly described. Recently, Krief's group investigated these reactions systematically through the use of *n*-butyllithium and treated it stepwise with elemental selenium. They not only found that selenium can react with *n*-butyllithium rapidly to produce *n*-butyl diselenolate or *n*-butyl selenolate, but also proved the existence of these species. The study implies the selective insertion of two Se atoms into carbon-metal bonds or one Se atom into selenolates,¹⁶ affording the most valuable method to characterize the byproducts in the reaction of phosphine selenide Se=P[CH₂NH-3,5-(CF₃)₂C₆H₃]₃ with *n*-butylmagnesium.

When 1 equiv of Se=P[CH₂NH-3,5-(CF₃)₂C₆H₃]₃ (**22a**) reacts with 4.25 equiv of "Bu₂Mg in THF, a dark-red clear solution is produced.¹⁶ This is because 2 equiv of elemental selenium reacts with 0.5 equiv of "Bu₂Mg rapidly producing the dark-red clear solution of *n*-butyl diselenolate salt **29**, as shown in Scheme 5.4. The byproducts were easily rinsed by toluene from the crude product mixtures and filtrate was

collected. The solvent of the filtrate was removed by vacuum to produce dark red mixture of oil. The addition of hydrochloric acid (1 M aq solution) affords the *n*-butyldiselenol, **30** (*ⁿ*BuSeSeH), which is easily oxidized to di-*n*-butyldiselenide **31** (*ⁿ*BuSeSe^{*n*}Bu) in air. GC-MS analysis of the remaining solution clearly shows the presence of *ⁿ*BuCH₂N(H)-3,5-(CF₃)₂C₆H₃, *n*-butyl-diselenol (**30**) and di-*n*-butyl diselenide (**31**).¹⁶⁻²⁰

Scheme 5.4

If excess "Bu₂Mg was added, the byproduct *n*-butyl diselenolate salt (29) reacts with excess "Bu₂Mg to afford two equivalents of magnesium *n*-butyl selenolate salt (32). The byproducts are collected by rinsing the crude product mixtures. Treatment of the by-products with excess MeI produces the *n*-butyl methyl selenide (33a), as shown in Scheme 5.5. The ⁷⁷Se NMR analysis shows the presence of *n*-butyl methyl selenide (33a) ($\delta = 86.0$) and dimethyl selenide (33b) ($\delta = 0.0$). The byproduct SeMg may react with MeI to afford dimethyl selenide (33b).

Although the exact mechanism by which P=Se and P-C bond cleavages occur is not clear, and the mixtures of byproducts are too complicated to be isolated, we have presented some evidence that byproducts include elemental selenium and SeMg.

5.3.2 The Study of the Mechanism of the Reaction of Phosphine Selenide Se=P[CH₂NH-3,5-(CF₃)₂C₆H₃]₃ with *n*-Butylmagnesium

We propose that the cleavage of the P-C bond occurs before the Se=P bond and the intermediate maybe similar to the biamido-selenophosphine(III) (N, N, Se) aluminum complexes. In agreement with proposal, the binuclear magnesium complex $\{P[CH_2N-3,5-(CF_3)_2C_6H_3]_2MgTHF_2\}_2$ 27 is not observed in the reaction of $P[CH_2NH-3,5-(CF_3)_2C_6H_3]_3$ with "Bu₂Mg. In an attempt to prove that the magnesium salt with the biamido-selenophosphine(III) (N, N, Se) ligand is a viable intermediate, we treated the biamido-selenophosphine(III) aluminum complex 23a with excess 179 References begin on page 192 HNEt₃Cl, in the hope of isolating HSe[CH₂NH-3,5-(CF₃)₂C₆H₃]₂, which could then be converted to **27** by treatment with "Bu₂Mg. Unfortunately, in the ³¹P{¹H} NMR spectrum of the mixture, two phosphorus signals were observed at δ 30.1 (satellite, *J* = 615.9 Hz) and δ -73.9 (singlet). Although we did not separate the mixture, crystals of a new complex **35** was collected from the oily mixture, as shown in Scheme 5.6. The solid-state structure of **35** has been determined by X-ray diffraction study, ¹H NMR, ³¹P{¹H} NMR [δ 30.1 (satellite, *J*= 615.9 Hz)] and ¹³C{¹H} NMR spectra. The singlet at δ -73.9 in the ³¹P{¹H} NMR spectrum of the mixture may be speculatively attributed to **34**, which could be responsible to the formation of the binuclear magnesium complex {P[CH₂N-3,5-(CF₃)₂C₆H₃]₂MgTHF₂}₂**27**. However, the addition of "Bu₂Mg into the mixture did not afford the binuclear magnesium complex {P[CH₂N-3,5-(CF₃)₂C₆H₃]₂MgTHF₂}₂**27** by ³¹P{¹H} NMR spectroscopy. Thus, this study fails to explain the mechanism of the reaction of phosphine selenide Se=P[CH₂NH-3,5-(CF₃)₂C₆H₃]₃ with *n*-butyl-magnesium.

We also considered the possibility that the byproduct 34 in the reaction of 23a with HNEt₃Cl could be the precursor to complex 27, shown as species 36 in Scheme 5.6. However, the hydrolysis of 27 with HNEt₃Cl to produce 36 shows that the ³¹P{¹H} NMR shifts are distinct. The ³¹P{¹H} NMR spectrum of 36 obtained from the reaction of 27 with HNEt₃Cl displays a singlet at δ -46.9.

An ORTEP depiction of the solid-state molecular structure of **35** is shown in Figure 5.2 and the pertinent crystallographic data is summarized in Table 5.1. The complex {P[CH₂NH-3,5-(CF₃)₂C₆H₃]₂Se₂} [HNEt₃]⁺ **35** crystallizes in the monoclinic space group *P* 1 21/n 1. The P-Se bond lengths of 2.133(4) Å and 2.137(4) Å are intermediate between those of P-Se single bonds (2.26 Å) and double bonds (2.09 Å).²¹ The ³¹P{¹H} NMR spectrum of **35** consists of singlet at δ 30.1, with selenium satellites *J*_{PSe} = 615.9 Hz, which also indicates a P-Se bond order of 1.5.²¹

Figure 5.2. Solid-state molecular structure of the anionic fragment of 35 determined by X-ray crystallography. Hydrogen atoms and $[HNEt_3]^+$ are omitted for clarity. Selected distances (Å): P(1)-C(25), 1.848(15); P(1)-C(55), 1.812(14); P(1)-Se(3), 2.133(4); P(1)-Se(4), 2.137(4); N(1)-C(55), 1.463(18); N(2)-C(25), 1.466(17). Selected bond angles (deg): C(25)-P(1)-C(55), 105.3(7); C(25)-P(1)-Se(3), 105.5(5); C(55)-P(1)-Se(3), 109.3(5); C(25)-P(1)-Se(4), 111.9(5); C(55)-P(1)-Se(3), 105.2(5); Se(3)-P(1)-Se(4), 118.8(2).

5.4 Synthesis and Structures of Zirconium Compounds with Tripodal Diamido-selenophosphinito ligands

The treatment of SeP[CH₂NAr^R]₃H₃ (where **22b**, Ar^R = Ph, and **22c**, 3,5-Me₂C₆H₃) with 1 equiv of Zr(NEt₂)₄ in toluene at room temperature produced the mononuclear amido-seleno-phosphinito κ^3 (N, N, Se) zirconium compounds **37b-c** accompanied with P-C bond cleavage, as shown in Scheme 5.6. The phosphorus (V) centre was formally reduced to phosphorus (III), and P=Se double bond was changed into P-Se single bond. The coordinating ability of the amido donors and the short interaction of Zr…P facilitate P-C bond cleavage. Dissociation of -CH₂NAr^R from phosphorus generates the new Et₂NCH₂NAr^R moiety. The reaction requires 2 h to go to completion. No intermediates were observed by ¹H or ³¹P{¹H} NMR spectroscopy and the resultant products were all obtained in high yields as orange crystalline solids. The ³¹P{¹H} NMR spectra of the zirconium compounds **37b** and **37c** consisted of singlets at δ -90.8 and -92.9, with selenium satellites $J_{PSe} = 256.2$ Hz and $J_{PSe} = 253.9$ Hz, respectively, which are well within the range expected for the P-Se single bond.²¹

The solid-state structure of 37c was determined by X-ray crystallography, and an ORTEP depiction of the solid-state molecular structure of 37c is shown in Figure 5.3. The pertinent crystallographic data is summarized in Table 5.1. The geometry of the Zr centre is best described as a distorted trigonal bipyramidal, in which the seleno donor and N(3) occupy the axial positions with a N(3)-Zr(1)-Se(1) angle of 145.39(8)°. The -NEt₂ ligand and the two amido donors of the ligand are in three equatorial sites. The Zr(1)-Se(1)-P(1) bond angle (73.11(4)°) is quite narrow. The chelate amido-seleno-phosphinito ligand bite angles of N(1)-Zr(1)-Se(1), N(2)-Zr(1)-Se(1) and N(2)-Zr(1)-N(1) are $93.52(8)^{\circ}$, $96.00(9)^{\circ}$ and $104.50(12)^{\circ}$ respectively, which are more compressed than those of tripodal-amido zirconium compounds. The Zr-N_{amido} bond lengths (from 2.062(3) to 2.092(3) Å) are within the normal range,²² and are much shorter than the Zr-N(4) bond length (2.397(3) Å). The Zr-Se bond length of 2.6534(8) Å is a typical single bond length.^{23,24} The P...Zr distances of 2.9390(15) Å is under the sum of Van der Waals radii of these elements. Both the P-Se bond lengths (2.2513(15) Å) and the ${}^{1}J_{PSe}$ values (253.9 Hz) are within the ranges expected for P-Se single bonds.²¹

Chapter Five: A Binuclear Magnesium Complex Bridged by a Bisphosphine Ligand

Figure 5.3 Solid-state molecular structure of 37c as determined by X-ray crystallography. Hydrogen atoms are omitted for clarity. Selected distances (Å): Zr(1)^{···}P(1), 2.9390(15); Zr(1)-N(1), 2.075(3); Zr(1)-N(2), 2.062(3); Zr(1)-N(3), 2.092(3); Zr(1)-N(4), 2.397(3); Zr(1)-Se(1), 2.6534(8); P(1)-C(1), 1.874(4); P(1)-C(2), 1.860(5); P(1)-Se(1), 2.2513(15). Selected bond angles (deg): C(1)-P(1)-C(2), 104.5(2); C(1)-P(1)-Se(1), 102.68(14); C(2)-P(1)-Se(1), 104.17(15); Zr(1)-N(1)-C(1), 105.5(2); Zr(1)-N(1)-C(4), 139.5(2); Zr(1)-N(2)-C(2), 105.5(3); Zr(1)-N(2)-C(12), 138.1(3); Zr(1)-Se(1)-P(1), 73.11(4); Zr(1)-N(3)-C(3), 104.7(2); N(1)-Zr(1)-N(2), 105.49(13); N(1)-Zr(1)-N(3), 107.11(11); N(1)-Zr(1)-N(4), 132.52(12); N(1)-Zr(1)-Se(1), 93.52(8); N(2)-Zr(1)-N(3), 104.50(12); N(2)-Zr(1)-Se(1), 96.00(9); N(3)-Zr(1)-Se(1), 145.39(8); N(4)-Zr(1)-Se(1),84.30(8); N(3)-Zr(1)-N(4), 61.22(10);N(3)-C(3)-N(4), 102.8(3).

5.5 Summary and Conclusions

The reaction of the ligand precursors $Se=P[CH_2NH-3,5-(CF_3)_2C_6H_3]_3$ (22a) with *n*-butylmagnesium affords the binuclear magnesium complex bridged by a biamido bisphosphine ligand {P[CH₂N-3,5-(CF₃)₂C₆H₃]₂MgTHF₂}₂ (27), with concomitant loss of one equiv of ["BuCH₂N(Ar^R)]₂Mg. A P-P bond is formed through P=Se and P-C bond cleavages. Although the mixtures of byproducts are too complicated to be isolated, the by-products are identified to include elemental selenium, *n*-butyl diselenolate salt (29), or *n*-butyl selenolate salt (32) depending on the number of equivalent of "Bu₂Mg added.

Ligands Se[P(CH₂NHAr^R)₃] are efficiently reduced by $Zr(NEt_2)_4$ to produce mononuclear zirconium complexes P(CH₂NAr^R)₂SeZrNAr^RCH₂NEt₂ (**37 b-c**), which are accompanied with P-C bond cleavage.

5.6 Experimental

5.6.1 General procedures

Unless otherwise stated, general procedures were performed according to Section 2.11.1.

The compounds and 1.0 M dibutylmagnesium in heptane were purchased from Aldrich, and used as received. The ligands were prepared as previously reported in

Chapter 2 & 4.

5.6.2 Synthesis and Characterization of Complexes

 $\{P[CH_2N-3,5-(CF_3)_2C_6H_3]_2MgTHF_2\}_2$ (27). A 1.0 M heptane solution of "Bu₂Mg (3.25 mL, 3.25 mmol, 3.25 equiv) was added to a solution of $Sep[CH_2N-3,5-(CF_3)_2C_6H_3]_3H_3$ (1.672 g, 2.0 mmol) in 50 mL THF at -78 °C. The solution was stirred for 4.5 h and the solvent was removed under vacuum. The addition of toluene and pentane (1:1) to the remaining oil and triturating removed brown solution. Single crystals were grown from a mixture of ethanol (50 %) and acetone (50 %) at -30 °C. (0.410 g, 30 %) and rinsed by toluene. ¹H NMR (THF- d_8 , 300 MHz, 298 K): δ 1.78 (m, 16H, MgOCH₂CH₂), 3.33 (d, 4H, J= 15.2 Hz, PCH₂), 3.62 (m, 16H, MgOC H_2 CH₂), 3.67 (dd, 4H, J = 7.0 Hz, PC H_2), 6.63 (s, 8H, Ph *o*-H), 6.65 (s, 4H, Ph p-H). ${}^{13}C{}^{1}H$ NMR (THF-d₈, 300 MHz, 298 K): δ 26.4 (s, MgOCH₂<u>C</u>H₂), 41.6 (d, $J_{PC} = 20.8$ Hz, P<u>C</u>H₂), 43.0 (d, $J_{PC} = 18.5$ Hz, P<u>C</u>H₂), 103.0 (m, MgO<u>C</u>H₂CH₂),120.1 and 123.7 (s, Ph o-<u>C</u> and m-<u>C</u>), 127.1 (s, Ph p-<u>C</u>), 132.3 (m, Ph C-F₃), 160.6 (s, Ph *ipso-C*). ${}^{31}P{}^{1}H{}$ NMR (THF-d₈, 300 MHz, 298 K): δ -63.6 (s). ¹⁹F{¹H} NMR (THF-d₈, 300 MHz, 298 K): δ 14.19 (s). Anal. Calc'd for C₅₂H₅₂F₂₄Mg₂N₄O₄P₂: F.W. 1363.52; C, 45.80; H, 3.84; N, 4.11. Found: C, 45.85; H, 3.78; N, 3.93.

ⁿBuCH₂N(H)-3,5-(CF₃)₂C₆H₃ (28). The toluene rinse was hydrolyzed with water.

The sample was extracted into C_6D_6 and passed through a short plug of alumina. Mass spectrum m/z: ("BuCH₂NH-3,5-(CF₃)₂C₆H₃): 299.1 (100.0%), 300.1 (14.4%). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 0.8 (t, 3H, CH2(CH₂)₃C<u>H₃</u>), 1.4 (m, 6H, CH2(C<u>H₂</u>)₃CH₃), 3.07 (m, 2H, NHC<u>H₂CH₃</u>), 4.8 (br, 1H, N<u>H</u>), 6.5 (s, 2H, Ph *o*-<u>H</u>), 6.7 (s, 1H, Ph *p*-<u>H</u>), consistent with "BuCH₂NH-3,5-(CF₃)₂C₆H₃.

***BuSeSeH (30).** Mass spectrum m/z: (*BuSe₂H): 217.9(100.0%), 215.9(87.7%),
213.9(52.0%), 219.9(30.1%), 214.9(26.3%), 211.91(15.5%), 212.9(13.5%),
211.92(5.3%), 210.9(5.2%), 216.91(4.6%), 209.9(4.5%), 216.92(3.9%), 218.91(3.7%),
221.91(2.6%).

***BuSeSe*Bu (31).** Mass spectrum m/z: (*Bu₂Se₂): 273.9(100.0%), 271.9(82.0%),
269.98(53.7%), 270.98(31.0%), 275.97(30.1%), 267.98(21.0%), 268.98(14.4%),
272.98(12.5%), 274.98(8.9%), 271.98(8.2%), 266.98(5.4%), 265.98(4.5%),
276.98(2.7%), 277.97(2.6%).

{P[CH₂NH-3,5-(CF₃)₂C₆H₃]₂Se₂} {HNEt₃}⁺ (35). Excess HNEt₃Cl (635.4 mg, 3.6 mmol, 12 equiv) was added to a solution of P[CH₂N-3,5-(CF₃)₂C₆H₃]₂Se(AlMe₂)₃ (232.5 mg, 0.3 mmol) in 50 mL toluene. The solid was filtered and the remaining pale yellow solution was collected, and then dried under vacuum. The white oily products were obtained. Single crystals were grown from a 1:1 mixture of toluene and pantene at -30 °L. ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 0.80 (t, 9H, -CH₂C<u>H₃</u>), 2.38 (dd, 6H,

188

-C<u>H</u>₂CH₃), 3.65 (t, 4H, J = 5.2 Hz, PC<u>H</u>₂), 5.1 (b, 2H, N<u>H</u>), 6.81 (s, 4H, Ph *o*-<u>H</u>), 7.17 (s, 2H, Ph *p*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 300 MHz, 298 K): δ 8.71 (s, -CH₂<u>C</u>H₃), 46.7 (s, -<u>C</u>H₂CH₃), 50.8 (d, $J_{PC} = 37.8$ Hz, P<u>C</u>H₂), 111.1, 123.7 and 127.1 (s, Ph *o*-<u>C</u> *m*-<u>C</u> and *p*-<u>C</u>) 133.1 (m, Ph <u>C</u>-F₃), 148.9 (d, Ph *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 300 MHz, 298 K): δ 30.12 (s, $J_{PSe} = 615.9$ Hz). ¹⁹F{¹H} NMR (C₆D₆, 300 MHz, 298 K): δ 14.5 (s).

{**P[CH₂NH-3,5-(CF₃)₂C₆H₃]₂**}₂ (36). Excess HNEt₃Cl (16.5 mg, 0.12 mmol, 6 equiv) was added to a solution of {P[CH₂N-3,5-(CF₃)₂C₆H₃]₂MgTHF₂}₂ (27.5 mg, 0.02 mmol) in 0.7 mL THF- d_8 . The brown solution was obtained. ¹H NMR (THF- d_8 , 300 MHz, 298 K): δ 2.90 (m, 4H, J= 5.7 Hz, PC<u>H</u>₂), 3.9 (m, 2H, -N<u>H</u>), 7.12 (s, 4H, Ph *o*-<u>H</u>), 7.16 (s, 4H, Ph *p*-<u>H</u>). ³¹P{¹H} NMR (THF- d_8 , 300 MHz, 298 K): δ -46.9 (s).

P[CH₂N-3,5-Me₂C₆H₃]₂SeZrN(-3,5-Me₂C₆H₃)CH₂NEt₂ (37b). Zr(NEt₂)₄ (380 mg, 1 mmol) was added to a solution of SeP[CH₂N-3,5-Me₂C₆H₃]₃H₃ (509 mg, 1 mmol) in 50 mL of toluene. The solution was stirred for 2 h and stored at -40 °C for several days. The compound precipitated as an orange crystalline solid (0.54g, 80%). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 0.96(t, *J***= 7.2 Hz, 6H), 2.06 (s, 6H), 2.08 (s, 12H), 2.40 (m, 2H), 2.60 (m, 2H), 3.78 (t,** *J***= 11.3 Hz, 2H), 4.01 (t,** *J***= 12.7 Hz, 2H), 4.58 (s, 2H), 6.23 (s, 3H), 6.51 (s, 2H), 6.65 (s, 4H). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 11.0 (s, NCH₂CH₃), δ 22.0 (s, Ph<u>C</u>H₃), 44.4 (d,** *J***_{PC} = 36.2 Hz, P<u>C</u>H₂), 52.9 (s, N<u>C</u>H₂CH₃), 69.9 (s), 113.8 (s), 114.6 (s), 122.3 (s), 122.6 (s), 138.6 (d,** *J* **=**

24.7 Hz), 149.0 (s), 152.2 (s). ${}^{31}P{}^{1}H$ NMR (C₆D₆, 121.5 MHz, 298 K): δ -92.9 (s with satellites, $J_{PSe} = 253.9$ Hz.). ${}^{77}Se{}^{1}H$ NMR (C₆D₆, 57.2 MHz, 298 K) : δ 88.6 (d, $J_{PSe} = 254.3$ Hz). Anal. Calc'd for C₃₁H₄₃N₄PSeZr: F.W.: 672.86; C, 55.34; H, 6.44; N, 8.33. Found: C, 55.80; H, 6.52 N, 7.93.

P[CH₂NPh]₂SeZrNPhCH₂NEt₂ (37c). Zr(NEt₂)₄ (0.380g, 1mmol) was added to a solution of Se[CH₂NPh]₃H₃ (0.43 g, 1 mmol) in 50 mL of toluene. The solution was stirred for 2 h and the solvent was removed under vacuum. The remaining yellow solid was rinsed with a small portion of pentane, and then dried under vacuum (0.53 g, 89%).¹H NMR (C₆D₆, 300 MHz, 298 K): δ 0.844 (t, *J*= 7.2 Hz, 6H), 2.36 (m, 2H), 2.51 (m, 2H), 3.71 (t, *J*= 11.2 Hz, 2H), 4.00 (t, *J*= 12.8 Hz, 2H), 4.51 (s, 2H), 6.70 (m, 5H), 6.88 (d, *J*= 8.0 Hz, 4H), 7.0 (m, 6H). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 10.7 (s, NCH₂CH₃), 44.2 (d, *J*_{PC} = 36.2 Hz, PCH₂), 52.2 (s, NCH₂CH₃), 69.4 (s), 115.5 (s), 116.2 (s), 120.4 (s), 120.9 (s), 129.5 (s), 129.7 (s), 148.6 (s), 152.1 (s). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -93.6 (s with satellites, *J*_{PSe} = 256.2 Hz.). ⁷⁷ Se {¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -90.8 (d, *J*_{PSe} = 256.7 Hz). Anal. Calc'd for C₂₅H₃₁N₄P: F.W.: 588.70; C, 51.01; H, 5.31; N, 9.52. Found: C, 51.14; H, 5.63; N, 9.38.

μ

Chapter Five: A Binuclear Magnesium Complex Bridged by a Bisphosphine Ligand

5.6.3 Crystal Data and Structure Refinement

	27	35	37c
Empirical formula	$C_{52}H_{52}F_{24}Mg_2N_4O_4P_2$	$C_{33}H_{42}F_{12}N_3PSe_2$	C _{34.5} H ₄₇ N4PSeZr
Formula weight	1363.54	845.61	718.91
Temperature	253(2) K	173(2) K	173(2) K
Crystal system	Triclinic	Monoclinic	Orthorhombic
a	11.025(2) Å	13.875(3) Å	11.816(5) Å
b	12.542(2) Å	28.958(7) Å	15.950(6) Å
c	12.674(2) Å	18.386(5) Å	37.747(15) Å
α	62.374(2)°	90°	90°
β	82.161(2)°	96.046(3)°	90°
γ	77.708(2)°	90°	90°
Volume Å ³	1515.6(5)	7346(3)	7114(5)
Z	1	8	8
Density (calculated)	1.494 mg/m ³	1.529 mg/m ³	1.342 mg/m ³
Absorption coefficient	0.213 mm ⁻¹	1.180 mm ⁻¹	0.455 mm ⁻¹
No. Variables	397	365	551
Crystal size mm ³	0.40 x 0.40 x 0.38	0.20 x 0.20 x 0.20	0.40 x 0.40 x 0.20
Total No. of Refins	14155	30565	65696
No. of Unique Refins	5314 ($R_{int} = 0.0429$)	6822 (R _{int} = 0.1587)	8151 ($R_{int} = 0.066$)

Table 5.1. Crystallographic data for compounds 27, 35 and 37c

191

5.7 References

(1) Tsutomu, M.; Satoru, K.; Katsuhiko, M. J. Organomet. Chem. 2004, 689, 2624-2632.

(2) Puddephatt, R. J. Chem. Soc. Rev. 1983, 12, 99 - 127.

(3) Wheatley, N.; Kalck, P. Chem. Rev. 1999, 99, 3379-3420.

(4) Hatnean, J. A.; Raturi, R.; Lefebvre, J.; Leznoff, D. B.; Lawes, G.; Johnson, S. A.J. Am. Chem. Soc. 2006, 128

(5) Graiff, C.; Predieri, G.; Tiripicchio, A. Eur. J. Inorg. Chem. 2003, 1659-1668.

(6) Belletti, D.; Graiff, C.; Massera, C.; Predieri, G.; Tiripicchio, A. Inorg. Chim. Acta 2003, 350, 421-427.

(7) Fryzuk, M. D.; Kozak, C. M.; Bowdridge, M. R.; Jin, W.; Tung, D.; Patrick, B. O.; Rettig, S. J. Organometallics **2001**, *20*, 3752-3761.

(8) Tang, Y.; Zakharov, L. N.; Rheingold, A. L.; Kemp, R. A. Organometallics 2005,
24. 836-841.

(9) Sebestl, J. L.; Nadasdi, T. T.; Heeg, M. J.; Winter, C. H. Inorg. Chem. 1998, 37, 1289-1294.

(10) Vargas, W.; Englich, U.; Ruhlandt-Senge, K. Inorg. Chem. 2002, 41, 5602-5608.

(11) Heyn, R. H.; Goerbitz, C. H. Organometallics 2002, 21, 2781-2784.

(12) Magistrato, A.; Merlin, M.; Pregosin, P. S.; Rothlisberger, U.; Albinati, A. Organometallics 2000, 19, 3591-3596.

(13) Magistrato, A.; Pregosin, P. S.; Albinati, A.; Rothlisberger, U. Organometallics 2001, 20, 4178-4184.

192

(14) Gindelberger, D. E.; Arnold, J. Inorg. Chem. 1994, 33, 6293-6299.

(15)Becker, G.; Golla, W.; Grobe, J.; Klinkhammer, K. W.; Le Van, D.; Maulitz, A. H.;

Mundt, O.; Oberhammer, H.; Sachs, M. Inorg. Chem. 1999, 38, 1099-1107.

(16)Krief, A.; Van Wemmel, T.; Redon, M.; Dumont, W.; Delmotte, C. Angew. Chem. Int. Ed. 1999, 38, 2245-2247.

(17) Krief, A.; Dumont, W.; Delmotte, C. Angew. Chem. Int. Ed. 2000, 39, 1669-1672.

(18) Krief, A.; Delmotte, C.; Dumont, W. Tetrahedron 1997, 53, 12147-12158.

(19) Anderson, J. A.; Odom, J. D.; Zozulin, A. J. Organometallics 1984, 3, 1458-65.

(20) Anderson, J. A.; Odom, J. D. Organometallics 1988, 7, 267-71.

(21) Davies, R. P.; Martinelli, M. G. Inorg. Chem. 2002, 41, 348-352.

(22) Jeon, Y.-M.; Heo, J.; Lee, W. M.; Chang, T.; Kim, K. Organometallics 1999, 18, 4107-4113.

(23) Howard, W. A.; Trnka, T. M.; Parkin, G. Inorg. Chem. 1995, 34, 5900-9.

(24) Howard, W. A.; Parkin, G. J. Am. Chem. Soc. 1994, 116, 606-15.

(25)Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-20.

Chapter 6

Summary and Future Work

6.1 Summary

This thesis begin with the tripodal amido ligands $[P(CH_2NHAr^R)_3]$ for mononuclear early transition metal complexes, where $Ar^R = 3,5-(CF_3)_2C_6H_3$, Ph, and $3,5-Me_2C_6H_3$. These ligands are used to synthesize early-late polynuclear or heterobimetallic complexes, as well as the bridged binuclear complexes. Based on these tripodal amido ligands $[P(CH_2NHAr^R)_3]$, the ligands $Se=P(CH_2NHAr^R)_3$ are designed to prepare polynuclear complexes, which provide the unanticipated diamidoselenophosphinito ligands by the cleavage of P-C bonds, as shown in Scheme 6.1. By the cleavage of the P-C bond and the P=Se bond, a diamido bisphosphine ligand with a stable P-P bond is synthesized.^{1,2} A Ni(II) dimer with a bridging diamido-phosphido ligand is prepared by the cleavage of the P-C bond in the phosphine ligand $[P(CH_2NHPh)_3]$, which was used as a ligand to give early-late transition tetranuclear heterometallic complexes.

195

Scheme 6.1

Chapter 6: Summary and Future Work

The reactions of the ligand precursors $P(CH_2NHAr^R)_3$ with ML_4 (M= Ti; Zr; Ta) produce the mononuclear early transition metal complexes $P(CH_2NAr^R)ML$.² The ligands $P(CH_2NHAr^R)_3$ chelate metal centres via three amido donors, and the lone-pair of the phosphine donor is directed away from the metal centres.¹

Scheme 6.2

These mononuclear early transition metal complexes $P(CH_2NAr^R)ML$ can be used to prepare the early-late heterobimetallic and polynuclear complexes. The mononuclear titanium compound $P(CH_2NAr^R)_3TiNMe_2$ ($Ar^R = 3,5-Me_2C_6H_3$) reacts instantaneously with excess $Ni(CO)_4$ to afford an early-late heterobimetallic complex ($CO)_3Ni[P(CH_2NAr^R)_3]TiNMe_2$, which is not stable at room temperature, and solutions undergo ligand redistribution over the course of 48 h to form a stable trinuclear early-late transition metal complex ($CO)_2Ni[P(CH_2NAr^R)_3TiNMe_2]_2$, as shown in Scheme 6.3.²

Scheme 6.3

The reactions of 4 equiv of mononuclear early transition metal complexes $P(CH_2NAr^R)ML$ with $[Rh(CO)_2(\mu-Cl)]_2$ allow for the facile preparation of trinuclear

trans-rhodiumcarbonylchlorobisphosphine complexes, where $Ar^{R} = 3,5-(CF_{3})_{2}C_{6}H_{3}$, Ph, and $3,5-Me_{2}C_{6}H_{3}$, as shown in Scheme 6.4.² The early transition metal centre affects the property of the phosphine donor in the heterometallic complexes, despite the fact that the phosphine lone-pair is not coordinated to the metal center. Although the lone pair of the phosphine donor is aimed away from early transition metal centres, the donor abilities of phosphines are affected by the direct interactions between the early transition metals and the phosphine donor.

Scheme 6.4

2 P(CH₂NAr^R)₃TiNMe₂ + $\frac{1}{2}$ [Rh(CO)₂(μ -Cl)]₂ \longrightarrow trans-Cl(CO)Rh[P(CH₂NAr^R)₃TiNMe₂]₂

 $2 P(CH_2NAr^R)_3Ta=N^tBu_3 + \frac{1}{2}[Rh(CO)_2(\mu-Cl)]_2 \longrightarrow trans-Cl(CO)Rh[P(CH_2NAr^R)_3Ta=N^tBu_3]_2$

 $Ar^{R} = 3,5^{-}(CF_{3})_{2}C_{6}H_{3}$, Ph, and $3,5-Me_{2}C_{6}H_{3}$

In this thesis, the ligands $P(CH_2NHAr^R)_3$ have been demonstrated to stabilize the mononuclear early transition metal complexes to be suited for the bridged early transition homobimetallic complexes, which provide a facile route to linear rigid metal-containing polymers. Due to ring strain, the phosphine lone-pair cannot chelate to early transition metal centers, but there are through-space interactions between them. With suitable building-blocks, the interactions could be used to create 1-D wires, or 2-D or 3-D networks with properties that result from through-space exchange-coupling, or through-space electron-transfer. The reactions of the lithium salts of the fulvalene dianion
(Li₂C₁₀H₈) with the zirconium chloride complexes P[CH₂NAr^R]₃ZrCl(THF) produce the binuclear complexes *trans*-[P(CH₂NAr^R)₃Zr]₂($\eta^5:\eta^5-C_{10}H_8$), as shown in Scheme 6.5, where Ar^R = Ph and 3,5-Me₂C₆H₃. The binuclear titanium complex {[P(CH₂NPh)₃]Ti}₂(μ -O) can be prepared from [P(CH₂NAr^R)₃]TiNMe₂.

Scheme 6.5

The reactions of $P(CH_2NHAr^R)_3$ with 2 equiv of AlMe₃ produce the dinuclear aluminum complexes $P(CH_2NAr^R)_3Al_2Me_3$, where $Ar^R = 3,5-(CF_3)_2C_6H_3$, Ph, and 3,5-Me₂C₆H₃, which react with excess AlMe₃ to produce the Lewis acid-base adducts Me₃Al·P(CH₂NAr^R)₃Al₂Me₃.

Scheme 6.6

The reaction of of phosphine ligand $[P(CH_2NHPh)_3]$ and 2 equiv of nickelocene, Cp₂Ni, occurs with cleavage of the P-C bond under mild conditions, which provides access to the phosphido-bridged Ni(II) dimer complex and allows the achievement of the favored 18-electron complex when the resulting -P[CH₂NHPh]₂ ligand is considered to act as a three electron donor. The Ni dimer readly binds titanium metal centers using amido donors, which leads to the facile synthesis of an early-late tetranuclear heterometallic complex [CpNiP(CH₂NPh)₂Ti(NMe₂)₂]₂, as shown in Scheme 6.7. The binding of Ti metal center to the amido donors has a slight effect on the Ni metal center in the Ni(II) dimer [CpNiP(CH₂NHPh)₂]₂.

References begin on page 208

Chapter 6: Summary and Future Work

Scheme 6.7

Phosphine selenides $SeP(CH_2NHAr^R)_3$ can be prepared by the treatments of the ligands $P(CH_2NHAr^R)_3$ with excess elemental selenium, as shown in Scheme 7.8.² Ligands $Se[P(CH_2NHAr^R)_3]$ are efficiently reduced to P(III) centres that stabilize main group and early transition metal centers to produce polynuclear, binuclear or mononuclear metal complexes.

Scheme 6.8

6.2 Future work

6.2.1 Further Study of the Mononuclear Early Transition Metal Complexes as Building Blocks for Clusters or Polymer Synthesis

This chapter describes some reactions that may yield new chemistry based on the tripodal amido ligands, and provides clues to fulfill the long-term goals of our research, which are to develop the synthetic methodology to prepare polynuclear clusters and assemblies of metals with specific molecular properties including magnetic interactions and novel catalytic reactivities.³⁻¹⁴

Chapter 6: Summary and Future Work

The mononuclear early transition metal complexes with ligands $P(CH_2NHAr^R)_3$ have been demonstrated to be ideal starting materials to synthesize clusters.¹⁵⁻¹⁸ For example, the reactions of $P[CH_2NAr^R]_3TiNMe_2$ with $Ni(COD)_2$ [COD = 1,5cyclooctadiene] provide the cluster of $Ni\{P[CH_2NAr^R]_3TiNMe_2\}_4$, as shown in Scheme 6.9. Some initial experimental results are reported here without elemental analysis.

Scheme 6.9

The ligand precursors $P(CH_2NHAr^R)_3$ are expected to react with group-5 transition metal centers to form the mononuclear complexes type $P(CH_2NAr^R)_3MCl_2$, which may be reduced into paramagnetic d¹ transition metal complexes, as shown in Scheme 6.10. The phosphine lone-pair will not be coordinated to the metal centers, but affected by throughspace interaction between phosphine donor and metal centers. With suitable bridges, the mononuclear paramagnetic d¹ transition metal complexes may be used to make bridged binuclear complexes. The bridges could be fulvalene or anthracene ligands. These paramagnetic bridged binuclear complexes could be utilized to create paramagnetic 1-D wires, or 2-D or 3-D networks that could have the properties resulting from through-space exchange-coupling, or through-space electron-transfer.

Scheme 6.10

Both the paramagnetic and diamagnetic bridging binuclear complexes should provide a facile route to the polymeric materials that contain early transition metals along the main polymer chains, as shown in Scheme 6.11.¹⁹⁻²⁴

References begin on page 208

Scheme 6.11

References begin on page 208

6.2.2 Further Study of Se=P(CH₂NHAr^R)₃ and the Ni(II) Dimer as the Ligands

The ligands Se=P(CH₂NHAr^R)₃ are demonstrated to be well suited for the facile synthesis of polynuclear or binuclear main group metal complexes.²⁵⁻³² The ligands Se=P(CH₂NHAr^R)₃ may react with other metal complexes to afford the polynuclear complexes with magnetic interactions. For example, the reaction of {P[CH₂N-3,5-(CF₃)₂C₆H₃]₂MgTHF₂}₂ (27) with MnCl₂ may provide the binuclear magnesium complex bridged by a bisphosphine ligand.

The Ni(II) dimer $[CpNiP(CH_2NHPh)_2]_2$ can bind the titanium metal center using amido donors to allow for the synthesis of the early-late tetranuclear heterometallic complex $[CpNiP(CH_2NPh)_2Ti(NMe_2)_2]_2$.³³⁻³⁶ However, many aspects of the study of the Ni(II) dimer $[CpNiP(CH_2NHPh)_2]_2$ as a ligand and the communication between different metal centers remain unstudied.^{37,38} In particular, only the Ti-Ni tetranuclear heterometallic complex was performed. It is necessary to study the reactions of the Ni(II) dimer $[CpNiP(CH_2NHPh)_2]_2$ with other transition metal complexes and the communication between metal centers, including the lanthanides with unique chemical and magnetic properties.

Scheme 6.13

[CpNiP(CH₂NHPh)₂]₂

M = V, Zr, Nb, TaL = NEt₂, N(SiMe₃)₂

6.3 Experimental

6.3.1 General procedures

Unless otherwise stated, general procedures were performed according to Section **2.11.1**.

6.3.2 Synthesis and Characterization of Complexes

Ni[P(CH₂N-3,5-CF₃C₆H₃)₃TiNMe₂]₄. P(CH₂N-3,5-CF₃C₆H₃)₃TiNMe₂ (170 mg, 0.2 mmol) was added to a solution of Ni(COD)₂ (13.8 mg, 0.05mmol) in 30 mL of toluene.

Chapter 6: Summary and Future Work

The dark red solution was stirred 5 h. The solvent was removed under vacuum and the remaining yellow solid was rinsed with a small portion of pentane, and then dried under vacuum (136 mg, 80 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 2.77 (s, 3H, NC<u>H₃</u>), 4.56 (s, 6H, PC<u>H₂</u>), 7.03 (s, 6H, Ph *o*-<u>H</u>), 7.27 (s, 3H, Ph *p*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 42.6 (s, TiN<u>C</u>H₃), 56.4 (p, J_{PC} = 8.8 Hz, P<u>C</u>H₂), 116.2 and 125.6 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 122.0 (s, Ph *p*-<u>C</u>), 134.0 (q, J = 33.2 Hz, Ph<u>C</u>-F₃), 152.9(d, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ 5.2 (s). ¹⁹F{¹H} NMR (C₆D₆, 282.1 MHz, 298 K): δ 14.07 (s).

Ni[P(CH₂N-3,5-Me₂C₆H₃)₃TiNMe₂]₄. P(CH₂N-3,5-Me₂C₆H₃)₃TiNMe₂ (105 mg, 0.2 mmol) was added to a solution of Ni(COD)₂ (13.8 mg, 0.05mmol) in 30 mL of toluene. The dark red solution was stirred 5 h. The solvent was removed under vacuum and the remaining yellow solid was rinsed with a small portion of pentane, and then dried under vacuum (95 mg, 90 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 2.10 (s, 18H, PhC<u>H₃)</u>, 3.11 (s, 6H, NC<u>H₃), 4.77 (s, 6H, PCH₂), 6.49 (s, 6H, Ph *o*-<u>H</u>), 6.54 (s, 3H, Ph *p*-<u>H</u>). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 22.0 (s, Ph<u>C</u>H₃), 43.1 (s, ZrN<u>C</u>H₃), 57.2 (p, $J_{PC} = 8.2$ Hz, P<u>C</u>H₂), 116.0 and 123.1 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 138.9 (s, Ph *p*-<u>C</u>), 154.1 (d, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ 9.20 (s).</u>

 $Ni[P(CH_2N-3,5-Me_2C_6H_3)_3ZrNEt_2]_4$. $P[CH_2N-3,5-Me_2C_6H_3]_3ZrNEt_2$ (1.19 g, 2.0 mmol) was added to a solution of $Ni(COD)_2$ (138 mg, 0.5 mmol) in 30 mL of toluene. The pale yellow solution was stirred 5 h. The solvent was removed under vacuum and the remaining yellow solid was rinsed with a small portion of pentane, and then dried under

vacuum (1.00 g, 83 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 1.04 (t, ³*J* = 7.0 Hz, 6H, NCH₂C*H*₃), 2.05 (s, 18H, PhC*H*₃), 3.34 (q, 4H, ³*J* = 7.0 Hz, NC*H*₂CH₃), 4.91 (s, 6H, PC*H*₂), 6.44 (s, 6H, Ph *o*-*H*), 6.60 (s, 3H, Ph *p*-*H*). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 14.7 (s, NCH₂*C*H₃), 21.9 (s, Ph<u>C</u>H₃), 42.3 (s, ZrN<u>C</u>H₂CH₃), 55.3 (d, *J*_{PC} = 8.8 Hz, P<u>C</u>H₂), 115.7 and 122.6 (s, Ph *o*-<u>C</u> and *m*-<u>C</u>), 138.9 (s, Ph *p*-<u>C</u>), 153.4 (d, *ipso*-<u>C</u>). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -7.57 (s).

Ni[P(CH₂NPh)₃ZrNEt₂]₄ . P(CH₂NPh)₃ZrNEt₂ (1.17 g, 2.0 mmol) was added to a solution of Ni(COD)₂ (138 mg, 0.5mmol) in 30 mL of toluene. The pale yellow solution was stirred 5 h. The solvent was removed under vacuum and the remaining yellow solid was rinsed with a small portion of pentane, and then dried under vacuum (0.90 g, 80 %). ¹H NMR (C₆D₆, 300 MHz, 298 K): δ 1.07 (t, ³J = 7.0 Hz, 6H, NCH₂CH₃), 3.32 (q, 4H, ³J = 7.0 Hz, NCH₂CH₃), 4.43 (s, 6H, PCH₂), 6.96 (m, 6H, Ph *o*-H, 3H, Ph *p*-H), 7.38 (m, 6H, Ph *m*-H). ¹³C{¹H} NMR (C₆D₆, 125.8 MHz, 298 K): δ 14.8 (s, NCH₂CH₃), 42.4 (s, ZrNCH₂CH₃), 54.8 (p, J_{PC} = 8.8 Hz, PCH₂), 117.9 and 129.9 (s, Ph *o*-C and *m*-C), 120.4 (s, Ph *p*-C), 153.6 (d, *ipso*-C). ³¹P{¹H} NMR (C₆D₆, 121.5 MHz, 298 K): δ -11.0 (s).

6.4 References

Keen, A. L.; Doster, M.; Han, H.; Johnson, S. A. Chem. Commun. 2006, 1221 1223.

(2) Fryzuk, M. D.; Kozak, C. M.; Bowdridge, M. R.; Jin, W.; Tung, D.; Patrick, B.
O.; Rettig, S. J. Organometallics 2001, 20, 3752-3761.

- (3) Memmler, H.; Gade, L. H.; Lauher, J. W. Inorg. Chem. 1994, 33, 3064-71.
- (4) Hellmann, K. W.; Steinert, P.; Gade, L. H. Inorg. Chem. 1994, 33, 3859-60.
- (5) Hellmann, K. W.; Gade, L. H.; Li, W.-S.; McPartlin, M. Inorg. Chem. 1994, 33, 5974-7.
- (6) Beer, P. D.; Hopkins, P. K.; McKinney, J. D. Chem. Commun. 1999, 1253-1254.
- (7) Renner, P.; Galka, C.; Memmler, H.; Kauper, U.; Gade, L. H. J. Organomet. Chem. 1999, 591, 71-77.
- (8) Gade, L. H.; Memmler, H.; Kauper, U.; Schneider, A.; Fabre, S.; Bezougli, I.; Lutz, M.; Galka, C.; Scowen, I. J.; McPartlin, M. Chem. Eur. J. 2000, 6, 692-708.
- (9) Ballester, P.; Capo, M.; Costa, A.; Deya, P. M.; Gomila, R.; Decken, A.; Deslongchamps, G. Org. Lett. 2001, 3, 267-270.
- (10) Gade, L. H.; Renner, P.; Memmler, H.; Fecher, F.; Galka, C. H.; Laubender, M.;
 Radojevic, S.; McPartlin, M.; Lauher, J. W. Chem. Eur. J. 2001, 7, 2563-2580.
- (11) Jia, L.; Zhao, J.; Ding, E.; Brennessel, W. W. J. Chem. Soc. Dalton Trans. 2002, 2608-2615.
- (12) Turculet, L.; Tilley, T. D. Organometallics 2002, 21, 3961-3972.
- (13) Porter, R. M.; Danopoulos, A. A. J. Chem. Soc. Dalton Trans. 2004, 2556-2562.
- (14) Zhu, H.; Chen, E. Y. X. Inorg. Chem. 2007, 46, 1481-1487.
- (15) Alvarez-Vergara, M. C.; Casado, M. A.; Martin, M. L.; Lahoz, F. J.; Oro, L. A.;
 Perez-Torrente, J. J. Organometallics 2005, 24, 5929-5936.
- (16) Stang, P. J.; Persky, N. E. Chem. Commun. 1997, 77-78.
- (17) Mokuolu, Q. F.; Avent, A. G.; Hitchcock, P. B.; Love, J. B. Journal of the Chemical Society, Dalton Trans. 2001, 2551-2553.

Chapter 6: Summary and Future Work

(18) Mokuolu, Q. F.; Duckmanton, P. A.; Hitchcock, P. B.; Wilson, C.; Blake, A. J.; Shukla, L.; Love, J. B. J. Chem. Soc. Dalton Trans. 2004, 1960-1970.

(19) Alder, R. W.; Butts, C. P.; Orpen, A. G.; Read, D.; Oliva, J. M. J. Chem. Soc. Perkin Trans. 2001, 282-287.

(20) Alder, R. W.; Ellis, D. D.; Gleiter, R.; Harris, C. J.; Lange, H.; Orpen, A. G.;
Read, D.; Taylor, P. N. J. Chem. Soc. Perkin Trans. 1998, 1657-1668.

(21) Alder, R. W.; Ellis, D. D.; Orpen, A. G.; Taylor, P. N. Chem. Commun. 1996, 539-40.

(22) Diel, B. N.; Norman, A. D. Phosphorus and Sulfur and the Related Elements 1982, 12, 227-35.

(23) Kisanga, P.; Verkade, J. Heteroatom Chem. 2001, 12, 114-117.

(24) Keller, H.; Regitz, M. Tetrahedron Lett. 1988, 29, 925-8.

(25) Konrad W. Hellmann. Angew. Chem. Int. Ed. 1997, 36, 160-163.

- (26) Gysling, H. J.; Luss, H. R.; Gardner, S. A. J. Organomet. Chem. 1980, 184, 41731.
- (27) Steigerwald, M. L. Polyhedron 1994, 13, 1245-52.
- (28) Davies, R. P.; Martinelli, M. G. Inorg. Chem. 2002, 41, 348-352.
- (29) Walther, B. Coord. Chem. Rev. 1984, 60, 67-105.

(30) Pilkington, M. J.; Slawin, A. M. Z.; Williams, D. J.; Woollins, J. D. Polyhedron
1991, 10, 2641-5.

- (31) Haiduc, I. J. Organomet. Chem. 2001, 623, 29-42.
- (32) Kuchen, W.; Hertel, H. Angew. Chem. Int. Ed. 1969, 8, 89-97.

(33) Baker, R. T.; Fultz, W. C.; Marder, T. B.; Williams, I. D. Organometallics 1990, 9, 2357-67.

(34) Lindenberg, F.; Shribman, T.; Sieler, J.; Hey-Hawkins, E.; Eisen, M. S. J. Organomet. Chem. 1996, 515, 19-25.

(35) Amor, I.; Garcia-Vivo, D.; Garcia, M. E.; Ruiz, M. A.; Saez, D.; Hamidov, H.; Jeffery, J. C. Organometallics 2007, 26, 466-468.

- (36) Zheng, P. Y.; Nadasdi, T. T.; Stephan, D. W. Organometallics 1989, 8, 1393-8.
- (37) Han, H.; Elsmaili, M.; Johnson, S. A. Inorg. Chem. 2006, 45, 7435-7445.
- (38) Han, H.; Johnson, S. A. Organometallics 2006, 25, 5594-5602.

Appendix One: X-ray Crystal Structure Data

			[2 ,- (-	- 572 - 0535 (
	X	У	Z	U(eq)
C(1)	9287(2)	-276(2)	5757(1)	36(1)
C(2)	10710(1)	728(1)	5995(1)	28(1)
C(3)	9171(2)	915(2)	6659(2)	59(1)
C(4)	7964(2)	-1033(2)	5490(1)	34(1)
C(5)	7081(2)	-991(2)	5372(1)	33(1)
C(6)	6603(1)	-1692(2)	5341(1)	28(1)
C(7)	6976(2)	-2453(2)	5421(1)	28(1)
C(8)	7845(2)	-2489(1)	5530(1)	27(1)
C(9)	8344(2)	-1794(2)	5566(1)	29(1)
C(10)	5652(2)	-1642(2)	5245(1)	34(1)
C(11)	8271(2)	-3303(2)	5583(1)	34(1)
C(12)	11918(2)	1681(1)	6135(1)	26(1)
C(13)	12477(2)	1050(1)	6274(1)	28(1)
C(14)	13335(2)	1218(2)	6385(1)	31(1)
C(15)	13656(2)	2003(2)	6360(1)	30(1)
C(16)	13091(2)	2623(1)	6214(1)	28(1)
C(17)	12237(2)	2475(1)	6101(1)	27(1)
C(18)	13918(2)	516(2)	6525(2)	44(1)
C(19)	13414(2)	3482(2)	6160(1)	37(1)
C(20)	8615(2)	2289(3)	6966(2)	29(1)
C(21)	8832(2)	3117(3)	6991(1)	29(1)
C(22)	8214(3)	3696(3)	7119(2)	31(1)
C(23)	7371(3)	3481(4)	7218(3)	33(1)
C(24)	7162(3)	2659(3)	7208(2)	28(1)
C(25)	7769(3)	2065(2)	7081(2)	28(1)
C(26)	8483(3)	4575(3)	7116(2)	43(1)
C(27)	6252(2)	2444(2)	7330(2)	33(1)
C(20B)	8218(8)	1990(6)	7023(4)	28(2)
C(21B)	8727(6)	2687(9)	6974(4)	28(2)
C(22B)	8383(9)	3465(8)	7059(6)	27(3)
C(23B)	7499(11)	3548(11)	7201(8)	33(1)

Table A 1.1. Positional parameters and U(eq) for P[CH₂NH-3,5-(CF₃)₂C₆H₃]₃ (1a)

C(24B)	7026(8)	2859(8)	7227(5)	29(3)
C(25B)	7348(8)	2095(7)	7151(4)	32(2)
C(26B)	8906(9)	4195(9)	7006(6)	52(3)
C(27B)	6053(7)	2960(7)	7372(5)	39(2)
N(1)	8425(2)	-325(2)	5520(2)	53(1)
N(2)	11050(1)	1548(1)	6041(1)	30(1)
N(3)	9252(2)	1733(2)	6841(2)	50(1)
N(3B)	8509(5)	1195(5)	6948(5)	41(2)
F(1)	5217(1)	-1740(2)	5748(1)	63(1)
F(2)	5369(1)	-2242(1)	4892(1)	57(1)
F(3)	5413(1)	-958(1)	4994(1)	66(1)
F(4)	8522(1)	-3593(1)	5056(1)	57(1)
F(5)	7747(1)	-3864(1)	5820(1)	54(1)
F(6)	8962(1)	-3295(1)	5924(1)	45(1)
F(7)	13917(2)	-35(2)	6098(1)	83(1)
F(8)	13664(2)	112(1)	7008(1)	70(1)
F(9)	14705(1)	743(2)	6626(2)	106(1)
F(10)	13486(2)	3729(1)	5611(1)	101(1)
F(11)	14160(2)	3592(1)	6429(2)	89(1)
F(12)	12911(2)	4012(1)	6429(1)	70(1)
F(13)	8609(7)	4848(6)	6602(4)	119(3)
F(14)	9211(3)	4684(2)	7429(2)	71(1)
F(15)	7931(3)	5049(2)	7396(3)	131(2)
F(13B)	8836(17)	4664(18)	6555(11)	117(11)
F(14B)	9721(7)	4039(7)	7024(9)	132(6)
F(15B)	8715(8)	4750(6)	7447(5)	63(3)
F(16)	6121(2)	1650(1)	7370(1)	55(1)
F(17)	5721(2)	2736(2)	6913(1)	50(1)
F(18)	5974(2)	2773(2)	7847(2)	41(1)
F(16B)	5598(5)	2286(7)	7261(6)	85(4)
F(17B)	5693(6)	3539(8)	7052(5)	86(4)
F(18B)	5928(7)	3160(9)	7934(5)	66(3)
P(1)	9542(1)	809(1)	5879(1)	34(1)

..

Table A 1.2. Positional parameters and U(eq) for P(CH₂NAr^{CF3})₃TiNMe₂ (2a)

	x	У	Z	U(eq)
F(1)	3207(4)	490(19)	621(6)	128(7)
F(1B)	2542(6)	1070(20)	288(4)	158(7)
F(2)	2563(4)	219(12)	371(5)	86(3)
F(2B)	3180(5)	1161(13)	562(7)	107(5)
F(3)	2783(6)	1594(6)	389(4)	94(4)
F(3B)	2883(8)	-142(6)	563(6)	121(4)
F(4)	3134(4)	1987(10)	4060(8)	103(5)
F(4B)	3588(7)	800(20)	3549(16)	98(9)
F(5)	3603(3)	1813(16)	3200(7)	125(7)
F(5B)	3153(6)	1440(40)	4230(10)	136(15)
F(6)	3390(6)	640(8)	3844(9)	116(5)
F(6B)	3461(11)	2225(15)	3354(18)	119(12)
F(10)	540(8)	-4216(10)	2431(10)	129(7)
F(10B)	871(7)	-4908(11)	1350(12)	125(9)
F(11)	938(5)	-4934(11)	1695(15)	127(9)
F(11B)	343(3)	-4169(8)	1772(17)	133(9)
F(12)	403(6)	-4284(13)	1262(13)	161(8)
F(12B)	853(8)	-4539(11)	2502(10)	145(6)
C(1)	1707(1)	395(3)	3707(2)	39(1)
C(2)	1058(1)	-1046(3)	3313(2)	42(1)
C(3)	819(1)	942(3)	3743(2)	36(1)
C(4)	2187(1)	817(3)	2646(2)	35(1)
C(5)	2300(1)	730(3)	1851(2)	37(1)
C(6)	2715(1)	876(3)	1608(2)	39(1)
C(7)	3037(1)	1103(3)	2136(2)	43(1)
C(8)	2928(1)	1197(3)	2915(2)	42(1)
C(9)	2511(1)	1059(3)	3174(2)	39(1)
C(10)	2820(1)	759(4)	752(2)	54(1)
C(11)	3270(1)	1420(4)	3501(2)	57(1)
C(12)	1135(1)	-1646(3)	1976(2)	40(1)
C(13)	1367(1)	-1564(3)	1282(2)	49(1)
C(14)	1385(2)	-2314(3)	752(3)	60(1)
C(15)	1182(2)	-3180(3)	905(3)	64(1)

C(16)	961(1)	-3275(3)	1602(3)	55(1)
C(17)	936(1)	-2517(3)	2132(2)	47(1)
C(18)	1625(2)	-2181(4)	4(3)	89(2)
C(19)	738(2)	-4199(4)	1785(4)	75(2)
C(20)	548(1)	2011(2)	2733(2)	29(1)
C(21)	439(1)	2197(2)	1949(2)	33(1)
C(22)	214(1)	3005(3)	1737(2)	36(1)
C(23)	78(1)	3673(3)	2291(2)	37(1)
C(24)	173(1)	3481(3)	3068(2)	36(1)
C(25)	397(1)	2667(2)	3291(2)	33(1)
C(26)	109(1)	3151(3)	887(2)	51(1)
C(27)	35(1)	4164(3)	3697(2)	52(1)
C(28)	1061(1)	580(3)	554(2)	52(1)
C(29)	1435(1)	1874(3)	1216(2)	50(1)
N(1)	1770(1)	635(2)	2870(2)	36(1)
N(2)	1115(1)	-852(2)	2475(2)	36(1)
N(3)	799(1)	1215(2)	2912(1)	30(1)
N(4)	1242(1)	922(2)	1289(2)	37(1)
F(7)	1908(2)	-1501(3)	23(2)	138(2)
F(8)	1352(2)	-1930(3)	-590(2)	134(2)
F(9)	1 796(1)	-2972(3)	-267(2)	108(1)
F(13)	427(1)	2973(3)	424(2)	122(2)
F(14)	-45(1)	4013(2)	721(1)	72(1)
F(15)	-209(1)	2560(3)	661(2)	99(1)
F(16)	-228(1)	3744(2)	4213(2)	97(1)
F(17)	-179(1)	4918(2)	3430(1)	66(1)
F(18)	358(1)	4500(3)	4101(2)	110(1)
P(2)	1176(1)	-65(1)	4019(1)	34(1)
Ti(1)	1227(1)	495(1)	2324(1)	30(1)
C(30)	2500	7500	8301(11)	450(20)
C(31)	2772(4)	6818(10)	7939(7)	251(7)
C(32)	2754(5)	6802(10)	7120(7)	264(8)
C(33)	2500	7500	6748(10)	361(17)

	x	У	Ζ	U(eq)
C(1)	9199(1)	3674(1)	6443(1)	33(1)
C(2)	7786(1)	2068(1)	7038(1)	31(1)
C(3)	9973(1)	1798(1)	6099(1)	33(1)
C(4)	8074(1)	4630(1)	5272(1)	33(1)
C(5)	7017(1)	4703(1)	4818(1)	46(1)
C(6)	6561(2)	5561(2)	4591(2)	66(1)
C(7)	7145(2)	6358(1)	4825(2)	68(1)
C(8)	8190(2)	6297(1)	5276(1)	56(1)
C(9)	8659(1)	5446(1)	5495(1)	41(1)
C(10)	6148(1)	1621(1)	5997(1)	29(1)
C(11)	5436(1)	1797(1)	5148(1)	33(1)
C(12)	4415(1)	1357(1)	5057(1)	37(1)
C(13)	4056(1)	748(1)	5813(1)	41(1)
C(14)	4726(1)	592(1)	6673(1)	43(1)
C(15)	5757(1)	1025(1)	6774(1)	36(1)
C(16)	10250(1)	1422(1)	4274(1)	29(1)
C(17)	10134(1)	1649(1)	3213(1)	34(1)
C(18)	10760(1)	1203(1)	2457(1)	38(1)
C(19)	11536(1)	536(1)	2732(1)	40(1)
C(20)	11687(1)	328(1)	3776(1)	42(1)
C(21)	11056(1)	760(1)	4539(1)	36(1)
C(22)	7474(2)	3183(1)	2830(1)	59(1)
C(23)	7298(2)	1562(1)	3268(1)	49(1)
N(1)	8505(1)	3755(1)	5507(1)	32(1)
N(2)	7213(1)	2026(1)	6024(1)	30(1)
N(3)	9591(1)	1875(1)	5019(1)	30(1)
N(4)	7602(1)	2481(1)	3621(1)	34(1)
P(1)	9244(1)	2517(1)	7084(1)	31(1)

Table A 1.4. P	ositional parameters	and U(eq) for P((CH2NAr ^{Me}) ₂ Ti	NMe ₂ (2c)

	x	У	Z	U(eq)
Ti(2)	8808(1)	2422(1)	3758(1)	23(1)
P(2)	9693(2)	2635(2)	2296(1)	34(1)
N(24)	8503(5)	2317(4)	4732(3)	28(1)
N(25)	10439(5)	2305(4)	3794(3)	29(2)
N(26)	8687(5)	3585(4)	3331(3)	24(1)
N(27)	7877(5)	1498(4)	2968(3)	29(2)
C(35)	8169(10)	6758(6)	2914(6)	63(3)
C(41)	12511(7)	2325(7)	4387(5)	46(2)
C(42)	13295(9)	2056(8)	4971(6)	62(3)
C(43)	12837(10)	1529(8)	5496(6)	63(3)
C(44)	11621(9)	1243(6)	5487(5)	47(3)
C(46)	14634(9)	2412(10)	5001(7)	97(5)
C(47)	11129(11)	661(7)	6067(6)	74(4)
C(50)	6894(7)	747(5)	2955(4)	35(2)
C(51)	6067(7)	779(5)	3404(4)	29(2)
C(52)	5103(9)	43(6)	3425(6)	52(3)
C(53)	4971(11)	-744(7)	2950(7)	73(4)
C(54)	5762(12)	-803(7)	2493(7)	68(4)
C(55)	6724(9)	-62(6)	2481(5)	51(3)
C(56)	4232(9)	89(7)	3929(6)	67(3)
C(57)	5612(14)	-1683(8)	1994(8)	11 7(6)
C(90)	8298(6)	4352(5)	3545(4)	23(2)
C(91)	8411(7)	5146(5)	3137(4)	34(2)
C(92)	8010(7)	5909(5)	3369(5)	38(2)
C(93)	7492(7)	5885(5)	3984(5)	38(2)
C(94)	7348(8)	5104(6)	4407(6)	49(2)
C(95)	7739(7)	4355(5)	4160(5)	35(2)
C(97)	6800(12)	5085(8)	5093(7)	90(4)
C(100)	9127(7)	3610(5)	2630(4)	32(2)
C(102)	10870(7)	2566(6)	3107(5)	40(2)
C(109)	8507(7)	1561(6)	2343(4)	38(2)
C(124)	7824(8)	1623(6)	5140(4)	41(2)
C(125)	9320(7)	3077(6)	5217(5)	42(2)

C(130)	11265(7)	2049(6)	4361(4)	35(2)
C(131)	10855(8)	1498(6)	4915(5)	42(2)
Ti(1)	3344(1)	3013(1)	1400(1)	21(1)
P(1)	5083(2)	2932(1)	2815(1)	30(1)
N(1)	5004(5)	3155(4)	1262(3)	25(1)
N(2)	3427(5)	3952(4)	2187(3)	26(1)
N(3)	2876(5)	1885(4)	1883(3)	23(1)
N(4)	2414(5)	3033(4)	453(3)	27(1)
C(1)	5753(7)	3017(6)	1963(4)	35(2)
C(2)	4407(7)	3944(5)	2812(4)	30(2)
C(3)	3799(6)	1904(5)	2559(4)	27(2)
C(4)	5540(6)	3303(5)	624(4)	24(2)
C(5)	5009(7)	3715(5)	21(4)	30(2)
C(6)	5468(7)	3830(5)	-624(4)	30(2)
C(7)	6497(8)	3551(5)	-675(5)	37(2)
C(8)	7073(8)	3152(5)	-82(5)	40(2)
C(9)	6591(7)	3029(5)	557(5)	33(2)
C(10)	4813(8)	4245(6)	-1279(5)	46(2)
C(11)	8177(9)	2815(7)	-160(6)	64(3)
C(12)	2773(7)	4618(5)	2235(4)	25(2)
C(13)	3151(7)	5396(5)	2750(4)	32(2)
C(14)	2472(8)	6046(5)	2752(4)	35(2)
C(15)	1441(8)	5948(5)	2236(4)	37(2)
C(16)	1022(7)	5177(5)	1720(4)	33(2)
C(17)	1692(6)	4527(5)	1735(4)	28(2)
C(18)	2907(10)	6871(6)	3319(5)	56(3)
C(19)	-122(8)	5053(6)	1162(5)	47(2)
C(20)	1922(6)	1101(5)	1758(4)	24(2)
C(21)	872(7)	1122(5)	1255(4)	27(2)
C(22)	-110(7)	371(5)	1099(4)	34(2)
C(23)	-60(8)	-421(6)	1470(5)	42(2)
C(24)	957(9)	-470(6)	1964(5)	46(2)
C(25)	1929(8)	286(5)	2109(5)	39(2)
C(26)	-1214(7)	424(6)	547(5)	43(2)
C(27)	1023(11)	-1351(7)	2352(7)	93(5)
C(120)	2351(8)	2187(6)	-2(4)	40(2)

C(121)	1897(8)	3686(7)	15(5)	46(2)
C(151)	5716(19)	9651(15)	9034(12)	152(7)
C(153)	4940(30)	10570(20)	9860(20)	111(10)

Table A 1.5. Positional	parameters and U	(eq) for P	(CH ₂ NPh) ₃ Ta=N ¹	Bu (3b)
-------------------------	------------------	------------	--	----------------

..

	х	У	Z	U(eq)
C(1)	12303(1)	11080(2)	13079(2)	37(1)
C(2)	12988(1)	11371(2)	12424(2)	36(1)
C(3)	12048(1)	9505(2)	11669(2)	39(1)
C(4)	11627(1)	12683(2)	12782(2)	28(1)
C(5)	11226(1)	13597(2)	12243(2)	30(1)
C(6)	10992(1)	14298(2)	12530(2)	36(1)
C(7)	11159(1)	14135(3)	13373(2)	45(1)
C(8)	11563(2)	13248(3)	13917(2)	48(1)
C(9)	11796(1)	12520(3)	13634(2)	40(1)
C(10)	12777(1)	12874(2)	11372(2)	31(1)
C(11)	12357(1)	13461(2)	10542(2)	34(1)
C(12)	12580(2)	14167(2)	10240(2)	43(1)
C(13)	13229(2)	14326(3)	10764(2)	48(1)
C(14)	13648(2)	13758(3)	11588(2)	51(1)
C(15)	13427(1)	13035(2)	11895(2)	41(1)
C(16)	10975(1)	9559(2)	10147(2)	36(1)
C(17)	10379(2)	10052(3)	9574(2)	62(1)
C(18)	9865(2)	9513(3)	8765(3)	77(1)
C(19)	9949(2)	8469(3)	8531(3)	65(1)
C(20)	10517(2)	7959(4)	9115(3)	77(1)
C(21)	11036(2)	8489(3)	9924(3)	62(1)
C(22)	10544(1)	13377(2)	9634(2)	28(1)
C(23)	10745(1)	14628(2)	9830(2)	37(1)
C(24)	9962(1)	13211(2)	9542(2)	39(1)
C(25)	10388(1)	13004(2)	8745(2)	39(1)
N(1)	11843(1)	11981(2)	12454(1)	29(1)
N(2)	12528(1)	12138(2)	11644(1)	29(1)
N(3)	11486(1)	10171(2)	10931(1)	31(1)
N(4)	11067(1)	12681(2)	10391(1)	25(1)
P(1)	12698(1)	10253(1)	12757(1)	37(1)
Ta(1)	11692(1)	11805(1)	11293(1)	25(1)

Table A 1.6. Positional parameters and U(eq) for (CO)₂Ni[P(CH₂NAr^{Me})₃TiNMe₂]₂(5)

	x	. у	Z	U(eq)
C(1)	4221(3)	5848(3)	14841(3)	38(1)
C(2)	3988(3)	6940(3)	13738(3)	35(1)
C(3)	4471(3)	5156(3)	13081(3)	34(1)
C(4)	5236(4)	7202(3)	16363(4)	41(1)
C(5)	4475(4)	7537(3)	16528(4)	56(2)
C(6)	4601(7)	8194(4)	17404(6)	80(2)
C(7)	5469(7)	8525(4)	18120(6)	82(2)
C(8)	6266(6)	8228(4)	18012(4)	74(2)
C(9)	6125(4)	7525(3)	17108(4)	51(1)
C(10)	3772(6)	8553(5)	17577(6)	120(3)
C(11)	7250(6)	8570(5)	18781(5)	117(3)
C(12)	5224(3)	8133(3)	13871(3)	35(1)
C(13)	4610(4)	8725(3)	13784(3)	44(1)
C(14)	4876(4)	9539(3)	13691(4)	49(1)
C(15)	5745(4)	9756(4)	13671(4)	53(2)
C(16)	6362(4)	9177(4)	13727(4)	48(1)
C(17)	6089(3)	8365(3)	13813(3)	42(1)
C(18)	4219(4)	10191(4)	13645(4)	62(2)
C(19)	7307(4)	9395(4)	13661(5)	71(2)
C(20)	6069(3)	4918(3)	13432(3)	30(1)
C(21)	5816(3)	4265(3)	12503(3)	36(1)
C(22)	6433(3)	3753(3)	12235(4)	40(1)
C(23)	7319(4)	3898(4)	12927(4)	47(1)
C(24)	7599(3)	4533(3)	13870(4)	39(1)
C(25)	6971(3)	5028(3)	14116(3)	34(1)
C(26)	6133(4)	3081(4)	11207(4)	67(2)
C(27)	8581(4)	4698(4)	14611(4)	65(2)
C(28)	7379(4)	8349(4)	16111(4)	57(2)
C(29)	7802(4)	7294(4)	14924(4)	63(2)
C(30)	644(3)	4239(3)	10453(3)	35(1)
C(31)	2276(3)	5698(3)	11061(3)	37(1)
C(32)	2438(3)	3790(3)	10703(3)	36(1)
C(33)	-177(3)	2859(3)	8884(4)	40(1)

C(34)	-232(4)	2213/AN	0786/51	56(7)
C(35)	-825(6)	1323(4)	8720(7)	۔ 81(2
C(36)	-1355(5)	1074(4)	7769(7)	5)06
C(37)	-1319(4)	1695(5)	7351(5)	74(2
C(38)	-717(3)	2595(4)	7933(4)	49(1
C(39)	-854(7)	623(5)	9159(7)	132(4
C(40)	-1871(5)	1419(5)	6296(5)	112(3
C(41)	1899(3)	6348(3)	9871(3)	32(1
C(42)	2566(3)	7208(3)	10518(4)	38(1
C(43)	2605(4)	7961(3)	10277(4)	47(1
C(44)	1979(4)	7867(4)	9393(4)	50(1
C(45)	1301(4)	7025(4)	8733(4)	45(1
C(46)	1270(3)	6283(3)	8990(3)	37(1
C(47)	3350(4)	8884(4)	10977(5)	74(2
C(48)	605(4)	6928(4)	7778(5)	70(2
C(49)	3138(3)	3376(3)	9504(3)	33(1
C(50)	3261(3)	2521(3)	9509(3)	43(1
C(51)	3852(4)	2079(3)	9122(4)	45(1
C(52)	4352(3)	2530(4)	8760(3)	44(1
C(53)	4257(3)	3383(3)	8765(3)	39(1
C(54)	3649(3)	3807(3)	9145(3)	37(1
C(55)	3969(5)	1138(4)	9109(5)	71(2
C(56)	4810(4)	3868(4)	8398(4)	54(1
C(57)	1172(4)	2829(4)	7367(4)	63(2
C(58)	1732(4)	4361(4)	7468(4)	60(2
C(59)	1436(4)	5675(4)	13185(4)	50(1
C(60)	1967(3)	3902(4)	12876(4)	52(1
N(1)	5131(3)	6548(3)	15450(3)	34(1
N(2)	5001(3)	7327(2)	14011(3)	35(1
N(3)	5489(2)	5476(2)	13723(3)	32(1
N(4)	7073(3)	7455(3)	15291(3)	39(1
N(5)	448(3)	3761(3)	9430(3)	35(1
N(6)	1843(3)	5563(2)	10064(3)	34(1
N(7)	2490(3)	3814(3)	9841(3)	36(1
N(8)	1407(3)	3828(3)	7924(3)	40(1
O(1)	951(3)	6094(4)	13454(3)	92(2

O(2)	1808(3)	3213(3)	12939(4)	90(2)
P(1)	3670(1)	5720(1)	13591(1)	31(1)
P(2)	1902(1)	4692(1)	11297(1)	32(1)
Ti(1)	5812(1)	6731(1)	14700(1)	31(1)
Ti(2)	1483(1)	4253(1)	9173(1)	32(1)
Ni(1)	2163(1)	4977(1)	12788(1)	32(1)
C(61)	740(14)	-2270(14)	5574(15)	136(7)
C(62)	460(20)	-1400(20)	5890(20)	195(10)
C(63)	955(16)	-1077(15)	6879(18)	148(8)
C(64)	690(20)	-530(30)	7640(30)	243(14)
C(65)	890(20)	330(20)	7650(20)	210(40)
C(66)	1158	111	8502	110(5)
C(67)	829	229	7615	310(70)
C(68)	473	-543	6716	185(10)
C(69)	18	-147	5957	258(16)

Table A 1.7. Positional	parameters and U(eq) for <i>trans</i> -RhCl(CO)	$(3c)_2$ (8c)
-------------------------	---------------------	------------------------------	---------------

	х	y	Z	U(eq)
C(10)	6667	3333	4184(5)	38(3)
C(11)	6904(7)	2453(8)	3996(4)	53(2)
Cl(1)	6401(10)	1687(7)	7500	57(3)
O(1)	8670(40)	2900(40)	7500	105(13)
C(12)	7860(40)	3020(40)	7500	62(11)
Ta(1)	6667	3333	5454(1)	24(1)
Rh(1)	6667	3333	7500	37(1)
P(1)	6667	3333	6605(1)	29(1)
N(1)	6757(4)	4662(4)	5763(2)	27(1)
C(1)	6875(6)	4620(6)	6326(3)	32(1)
N(2)	6667	3333	4758(4)	33(2)
C(7)	7238(6)	6584(6)	5853(3)	36(2)
C(3)	6452(5)	5599(5)	5058(3)	30(1)
C(5)	7005(6)	7494(6)	5115(3)	42(2)
C(4)	6563(6)	6536(6)	4827(3)	37(2)
C(8)	6181(7)	6490(7)	4274(3)	44(2)
C(2)	6817(5)	5624(6)	5561(2)	29(1)
C(9)	7819(10)	8559(8)	5942(4)	73(3)

Table A 1.8 Positional parameters an	1 U(eq) 1	for [CpNiP	(CH ₂ NHPh) ₂] ₂ (9)
--------------------------------------	------------------	------------	--

	x	У	Z	U(eq)
C(57)	2517(3)	4345(3)	612(2)	34(1)
C(56)	3896(3)	4976(3)	806(2)	34(1)
C(55)	4741(3)	4321(3)	550(2)	38(1)
C(48)	1738(4)	1279(3)	2593(2)	45(1)
C(53)	2525(4)	3328(3)	197(2)	41(1)
C(51)	4011(4)	1439(3)	2740(2)	49(1)
C(54)	3898(4)	3307(3)	168(2)	43(1)
C(52)	2773(4)	816(3)	2343(2)	45(1)
C(49)	2336(4)	2188(3)	3152(2)	47(1)
C(50)	3726(4)	2253(3)	3251(2)	49(1)
C(59)	101(9)	134(5)	-586(4)	93(2)
C(58)	-1178(7)	-293(5)	-414(5)	113(3)
C(60)	1304(8)	437(5)	-163(5)	116(3)
C(61)	273(16)	401(11)	-1055(7)	111(5)
Ni(2)	3256(1)	2390(1)	2301(1)	27(1)
Ni(3)	3452(1)	3635(1)	1160(1)	24(1)
Ni(1)	-836(1)	699(1)	4716(1)	26(1)
P(2)	2331(1)	3410(1)	1983(1)	25(1)
P(1)	872(1)	31(1)	4536(1)	25(1)
P(3)	4668(1)	3012(1)	1672(1)	27(1)
N(3)	2331(3)	5501(2)	2390(1)	32(1)
N(2)	2704(3)	1913(2)	5156(1)	33(1)
N(1)	-680(3)	-1606(2)	3538(1)	34(1)
C(24)	2958(3)	6579(3)	2705(2)	31(1)
N(6)	6779(3)	3654(2)	2638(1)	35(1)
C(2)	2533(3)	1016(2)	4559(2)	30(1)
C(21)	402(3)	2878(3)	1898(2)	35(1)
C(9)	3789(3)	2825(2)	5266(2)	28(1)
C(3)	-1268(3)	-2137(2)	2890(2)	29(1)
N(4)	-371(3)	3530(3)	1747(2)	38(1)
C(10)	4992(3)	2831(3)	4945(2)	28(1)
C(13)	4781(4)	4672(3)	5876(2)	40(1)
C(4)	-2691(3)	-2626(3)	2781(2)	34(1)

.

C(20)	2622(3)	4706(2)	2644(1)	31(1)
C(18)	-948(4)	1401(3)	3999(2)	51(1)
C(1)	682(3)	-863(2)	3674(2)	32(1)
C(30)	-719(3)	3509(3)	1113(2)	30(1)
C(42)	7920(3)	4275(2)	3080(2)	28(1)
C(43)	8374(3)	3879(3)	3544(2)	36(1)
C(47)	8674(3)	5268(2)	3065(2)	31(1)
C(14)	3700(3)	3762(3)	5736(2)	35(1)
C(11)	6064(3)	3755(3)	5090(2)	35(1)
C(23)	6146(3)	4056(2)	2196(2)	30(1)
N(5)	6477(3)	1727(2)	1381(2)	47(1)
C(36)	6139(4)	701(3)	1399(2)	37(1)
C(7)	-1125(4)	-2774(3)	1708(2)	47(1)
C(22)	5601(3)	2162(3)	1081(2)	35(1)
C(31)	-988(3)	4406(3)	1032(2)	35(1)
C(37)	5089(4)	-116(3)	988(2)	46(1)
C(5)	-3298(4)	-3179(3)	2144(2)	42(1)
C(44)	9534(4)	4455(3)	3973(2)	46(1)
C(46)	9853(3)	5840(3)	3497(2)	35(1)
C(27)	4170(4)	8759(3)	3295(2)	43(1)
C(8)	-485(4)	-2217(3)	2349(2)	38(1)
C(15)	-2792(3)	888(3)	4533(2)	42(1)
C(25)	3585(3)	6989(3)	3356(2)	34(1)
C(26)	4180(3)	8065(3)	3636(2)	39(1)
C(28)	3548(4)	8359(3)	2653(2)	44(1)
C(12)	5965(4)	4679(3)	5557(2)	40(1)
C(41)	6934(4)	463(3)	1835(2)	53(1)
C(29)	2947(4)	7286(3)	2360(2)	38(1)
C(34)	-1323(4)	2620(3)	-55(2)	47(1)
C(6)	-2514(4)	-3254(3)	1604(2)	46(1)
C(35)	-888(3)	2614(3)	560(2)	37(1)
C(32)	-1415(3)	4403(3)	419(2)	42(1)
C(38)	4860(4)	-1130(3)	1004(2)	58(1)
C(19)	-2220(4)	623(3)	3930(2)	48 (1)
C(45)	10283(4)	5436(3)	3950(2)	43(1)
C(39)	5644(5)	-1369(3)	1415(2)	58(1)

C(40)	6682(5)	-578(4)	1841(2)	62(1)
C(33)	-1595(4)	3514(3)	-126(2)	49(1)
C(17)	-796(4)	2182(3)	4626(2)	48(1)
C(16)	-1918(4)	1851(3)	4959(2)	41(1)

Table A 1.9 Position	al parameters and	i U(eq) i	for [CpNiP	(CH ₂ NPh)	$_{2}Ti(NMe_{2})_{2}]_{2}$ (11)
----------------------	-------------------	------------------	------------	-----------------------	---------------------------------

	x	У	Z	U(eq)
Ni(1)	4338(1)	4198(1)	1581(1)	27(1)
Ti(1)	8021(1)	1726(1)	1503(1)	27(1)
P(1)	5948(1)	4178(1)	130(1)	26(1)
N(1)	6495(3)	1451(3)	909(3)	27(1)
N(2)	7963(3)	3478(3)	1561(3)	30(1)
N(3)	9454(3)	1813(3)	214(3)	37(1)
N(4)	8210(3)	436(3)	3087(3)	34(1)
C(1)	6248(4)	2639(4)	-177(4)	30(1)
C(2)	7577(4)	4457(4)	398(4)	31(1)
C(3)	5520(4)	443(4)	1496(4)	28(1)
C(4)	4230(4)	639(4)	1418(4)	40(1)
C(5)	3306(5)	-387(5)	2101(5)	53(1)
C(6)	3647(5)	-1615(5)	2869(5)	55(1)
C(7)	4931(5)	-1832(5)	2921(5)	54(1)
C(8)	5855(5)	-826(4)	2250(4)	42(1)
C(9)	8133(4)	3912(4)	2510(3)	29(1)
C(10)	7511(4)	5003(4)	2680(4)	34(1)
C(11)	7741(4)	5386(4)	3621(4)	41(1)
C(12)	8576(4)	4714(5)	4420(4)	42(1)
C(13)	9173(4)	3635(5)	4278(4)	39(1)
C(14)	8964(4)	3241(4)	3337(4)	34(1)
C(15)	9535(5)	1600(5)	-968(4)	55(1)
C(16)	10689(5)	2358(6)	230(5)	74(2)
C(17)	7076(5)	425(5)	4054(4)	49(1)
C(18)	9131(5)	-555(5)	3618(5)	58(1)
C(37)	2697(5)	4166(5)	2941(4)	47(1)
C(38)	3802(5)	4409(4)	3362(4)	43(1)
C(39)	4584(4)	3325(4)	3525(3)	35(1)
C(40)	3969(4)	2403(4)	3219(3)	35(1)
C(41)	2785(4)	2899(5)	2902(4)	40(1)

Table A 1.10 Positiona	I parameters and	U(eq) for	: P[CH ₂ N-3	,5-Me ₂ C ₆ H ₃] ₃ ZrCp (1	4c)
------------------------	------------------	-----------	-------------------------	---	------------

	x	У	Z	U(eq)
zr(1)	4407(1)	3074(1)	1418(1)	22(1)
zr(2)	-1746(1)	289(1)	-2836(1)	21(1)
p(2)	-4218(1)	487(1)	-3905(1)	26(1)
p(1)	6962(1)	4499(1)	1776(1)	29(1)
n(1)	4625(2)	3466(1)	462(1)	29(1)
n(4)	-1522(2)	924(1)	-3684(1)	26(1)
n(2)	6025(2)	2692(1)	1907(1)	27(1)
n(3)	4659(2)	4373(1)	2154(1)	29(1)
n(5)	-2640(2)	1077(1)	-2268(1)	27(1)
c(37)	-455(2)	2377(2)	-3868(1)	30(1)
n(6)	-3142(2)	-961(1)	-3511(1)	26(1)
c(28)	3222(2)	1670(1)	1695(1)	30(1)
c(31)	2010(2)	2384(2)	933(1)	31(1)
c(35)	-4323(2)	-708(2)	-3835(1)	33(1)
c(12)	6328(2)	1917(1)	2142(1)	27(1)
c(39)	1336(2)	2494(2)	-4286(1)	32(1)
c(63)	642(2)	788(2)	-2239(1)	33(1)
c(9)	2690(2)	3436(1)	-563(1)	30(1)
c(36)	-548(2)	1459(1)	-3880(1)	26(1)
c(30)	2423(2)	1800(2)	450(1)	32(1)
c(44)	-2365(2)	1664(2)	-1508(1)	28(1)
c(3)	5961(2)	4931(2)	2296(2)	38(1)
c(15)	6847(2)	383(2)	2591(2)	37(1)
c(41)	330(2)	1072(2)	-4093(1)	28(1)
c(52)	-3318(2)	-1920(1)	-3686(1)	28(1)
c(4)	3906(2)	3313(1)	-343(1)	27(1)
c(29)	3167(2)	1354(1)	918(1)	31(1)
c(53)	-4479(2)	-2552(2)	-3802(1)	32(1)
c(6)	3651(2)	2879 (1)	-1720(1)	30(1)
c(32)	2516(2)	2312(2)	1708(1)	31(1)
c (17)	6037(2)	1083(2)	1581(1)	33(1)
c(64)	276(2)	-173(2)	-2588(1)	31(1)
c(7)	2450(2)	3014(1)	-1922(1)	31(1)

.

c(61)	-411(2)	67(2)	-1559(1)	33(1)
c(40)	1280(2)	1585(2)	-4298(1)	30(1)
c(33)	-2822(2)	857(2)	-4197(1)	33(1)
c(5)	4378(2)	3036(1)	-930(1)	29(1)
c(25)	2633(2)	4540(2)	2212(1)	32(1)
c(24)	1910(2)	4975(2)	2545(2)	35(1)
c(47)	-1722(2)	2808(2)	-4(1)	39(1)
c(21)	4562(2)	5677(1)	3122(1)	31(1)
c(60)	-379(2)	-618(2)	-2171(1)	31(1)
c(45)	-2303(2)	2596(2)	-1389(1)	31(1)
c(57)	-2324(2)	-2271(2)	-3762(1)	31(1)
c(54)	-4639(2)	-3501(2)	-3976(1)	37(1)
c(22)	3845(2)	6130(2)	3458(1)	33(1)
c(8)	1950(2)	3286(2)	-1353(1)	31(1)
c(38)	481(2)	2902(2)	-4067(1)	32(1)
c(2)	7169(2)	3455(2)	2081(2)	34(1)
c(48)	-1799(2)	1879(2)	-104(1)	39(1)
c(26)	4527(3)	7003(2)	4133(2)	44(1)
c(56)	-2457(3)	-3214(2)	-3917(1)	38(1)
c(13)	6931(2)	1979(2)	2931(1)	32(1)
c(20)	3974(2)	4863(1)	2499(1)	28(1)
c(49)	-2133(2)	1313(2)	-859(1)	34(1)
c(14)	7198(2)	1217(2)	3160(1)	36(1)
c(34)	-3694(2)	1206(2)	-2883(1)	42(1)
c(10)	4159(3)	2537(2)	-2346(2)	43(1)
c(46)	-1979(2)	3175(2)	-637(1)	36(1)
c(11)	639(2)	3423(2)	-1586(2)	44(1)
c(62)	218(2)	938(2)	-1603(1)	35(1)
c(1)	5944(2)	4063(2)	717(1)	41(1)
c(16)	6277(2)	306(2)	1799(2)	38(1)
c (55)	-3624(3)	-3822(2)	-4022(1)	41(1)
c(43)	2210(2)	1148(2)	-4537(2)	39(1)
c(23)	2525(2)	5775(2)	3171(1)	36(1)
c(50)	-1894(3)	4187(2)	-529(2)	52(1)
c(18)	7865(3)	1305(2)	4018(2)	58(1)
c(58)	-5927(3)	-4156(2)	-4120(2)	51(1)

c(42)	566(3)	3899(2)	-4044(2)	48(1)
c(59)	-1353(3)	-3565(2)	-3976(2)	54(1)
c(27)	469(2)	4579(2)	2213(2)	49(1)
c(19)	5932(3)	-597(2)	1177(2)	61(1)
c(51)	-1525(3)	1485(2)	593(2)	56(1)

Table A 1.11 Positional parameters and	nd U(eq) for I	P[CH2NPh]3Li	3(Et ₂ O) _{1.5} (1	1 5d)
--	----------------	--------------	--	--------------

	х	У	Z	U(eq)
Li(1)	1861(3)	535(5)	393(10)	57(2)
Li(2)	1074(3)	2996(5)	452(11)	66(2)
Li(3)	1004(2)	1326(5)	-334(10)	53(2)
P(1)	1857(1)	2197(1)	-1884(9)	62(1)
N(2)	1490(1)	445(2)	-1271(9)	55(1)
N(3)	798(1)	2511(2)	-1174(9)	56(1)
O(1)	2642(1)	368(2)	163(9)	73(1)
O(2)	1813(1)	-377(2)	1743(9)	76(1)
O(3)	1418(1)	4215(2)	267(9)	72(1)
O(4)	574(1)	3475(2)	1798(10)	81(1)
O(5)	360(1)	725(2)	369(9)	66(1)
C(1)	1997(2)	2306(3)	-234(9)	53(1)
C(4)	1787(1)	2018(2)	1854(10)	44(1)
C(5)	2262(2)	2387(3)	2255(10)	58(1)
C(6)	2387(2)	2402(3)	3488(10)	71(1)
C(7)	2071(2)	2091(3)	4359(10)	73(1)
C(8)	1589(2)	1744(3)	4002(10)	71(1)
C(9)	1454(2)	1702(3)	2789(9)	64(1)
C(2)	1785(2)	977(3)	-2129(10)	64(1)
C(10)	1390(2)	-419(3)	-1666(9)	52(1)
C(11)	1093(2)	-1000(3)	-908(10)	65(1)
C(12)	971(2)	-1841(3)	-1246(10)	81(1)
C(13)	1122(2)	-2199(3)	-2356(10)	85(2)
C(14)	1418(2)	-1667(4)	-3083(10)	78(1)
C(15)	1539(2)	-800(3)	-2757(10)	67(1)
C(3)	1182(2)	2598(3)	-2150(10)	66(1)
C(16)	308(2)	2743(3)	-1523(10)	60(1)
C(17)	159(2)	3007(3)	-2716(10)	77(1)
C(18)	-368(3)	3234(4)	-2937(10)	96(2)
C(19)	-736(2)	3224(4)	-2062(11)	104(2)
C(20)	-591(2)	2959(4)	-914(11)	93(2)
C(21)	-92(2)	2737(3)	-643(10)	71(1)
C(22)	2775(3)	-410(6)	-453(12)	173(4)

C(23)	3334(3)	-634(6)	-175(12)	151(3)
C(24)	3514(2)	86(5)	516(14)	170(4)
C(25)	3103(2)	780(5)	638(12)	149(3)
C(30)	1703(3)	4645(4)	1202(11)	103(2)
C(31)	1877(3)	5531(5)	747(11)	114(2)
C(32)	1565(3)	5691(5)	-314(11)	126(2)
C(33)	1384(2)	4808(4)	-748(10)	103(2)
C(34)	401(2)	3168(5)	2946(11)	111(2)
C(35)	124(3)	3878(7)	3575(12)	160(3)
C(36)	-82(3)	4402(5)	2506(14)	181(4)
C(37)	320(3)	4312(4)	1527(12)	127(2)
C(38)	42(2)	421(4)	-625(10)	91(2)
C(39)	-330(3)	-245(6)	-97(11)	144(3)
C(40)	-220(2)	-311(4)	1192(10)	108(2)
C(41)	121(2)	455(4)	1476(10)	97(2)
C(27)	1700(4)	-1487(6)	3234(12)	173(4)
C(28)	1996(3)	-776(6)	3800(11)	147(3)
C(29)	2210(3)	-304(5)	2696(11)	130(2)
C(26A)	1513	-1138	2060	199(4)
C(26B)	1438	-963	2194	199(4)
N(1)	1629(1)	1933(2)	659(9)	50(1)
	x	У	z	U(eq)
-------	----------	---------	---------	--------
C(33)	5897(7)	5672(6)	1459(9)	129(3)
C(36)	7625(6)	6502(6)	1825(8)	129(3)
C(34)	6106(8)	6029(7)	880(6)	145(4)
C(35)	6991(10)	6452(8)	1046(7)	155(4)
C(38)	6546(15)	5695(9)	2206(9)	189(7)
C(37)	7406(12)	6120(9)	2394(7)	176(5)
C(1)	2569(2)	3370(2)	2085(2)	33(1)
C(2)	2530(2)	4519(2)	3427(2)	32(1)
C(3)	3504(2)	5281(2)	2463(2)	35(1)
C(4)	1011(2)	2878(2)	1128(2)	26(1)
C(5)	1308(2)	2442(2)	577(2)	33(1)
C(6)	771(3)	1698(2)	75(2)	36(1)
C(7)	-50(3)	1382(2)	159(2)	40(1)
C(8)	-362(2)	1787(2)	707(2)	36(1)
C(9)	176(2)	2543(2)	1190(2)	30(1)
C(10)	1079(3)	1294(3)	-554(2)	53(1)
C(11)	-1264(3)	1433(3)	790(3)	55(1)
C(12)	1412(2)	5691(2)	3536(2)	29(1)
C(13)	1528(2)	5305(3)	4282(2)	37(1)
C(14)	1203(3)	5786(3)	4799(2)	44(1)
C(15)	741(3)	6663(3)	4564(2)	47(1)
C(16)	607(3)	7072(3)	3828(2)	41(1)
C(17)	948(2)	6585(2)	3325(2)	33(1)
C(18)	1377(4)	5338(4)	5606(3)	66(1)
C(19)	123(4)	8044(3)	3576(3)	62(1)
C(20)	3020(2)	6212(2)	1242(2)	30(1)
C(21)	3700(2)	6939(2)	1580(2)	36(1)
C(22)	4041(3)	7491(3)	1111(2)	42(1)
C(23)	3674(3)	7325(3)	291(3)	47(1)
C(24)	3004(3)	6604(3)	-66(2)	45(1)
C(25)	2690(2)	6046(3)	417(2)	36(1)
C(26)	4817(3)	8242(3)	1514(3)	61(1)

Table A 1.12 Positional parameters and U(eq) for $[P(CH_2N-3,5-Me_2C_6H_3)_3Zr]_2(\eta^5:\eta^5-C_{10}H_8)$ (16c)

..

C(27)	2640(3)	6404(4)	-963(3)	65(1)
C(28)	39(2)	5280(2)	356(2)	25(1)
C(29)	496(2)	6186(2)	597(2)	27(1)
C(30)	345(2)	6503(2)	1275(2)	29 (1)
C(31)	-179(2)	5785(2)	1480(2)	30(1)
C(32)	-351(2)	5027(2)	923(2)	27(1)
N(1)	1548(2)	3639(2)	1631(2)	26(1)
N(2)	1755(2)	5225(2)	3011(2)	27(1)
N(3)	2706(2)	5620(2)	1723(2)	27(1)
P(1)	3334(1)	4148(1)	2934(1)	28(1)
Zr(1)	1451(1)	5098(1)	1782(1)	20(1)

Table A 1.13 Positional	parameters and U(eq) for P[CH ₂ N-3,5	$5-\text{Me}_2\text{C}_6\text{H}_3]_3\text{TiO}[4-t-$
BuC ₆ H ₃] (17c)		

	X	У	Ζ	U(eq)
C(75)	3173(7)	7305(7)	2645(5)	87(3)
C(76)	3480(13)	7397(13)	1902(8)	170(6)
C(77)	3672(9)	8326(9)	1449(6)	113(4)
C(78)	4035(14)	8279(14)	651(9)	189(7)
C(79)	4319(12)	9076(12)	423(8)	155(5)
C(1)	3668(4)	7094(4)	5583(3)	31(1)
C(2)	4729(4)	6804(3)	4239(3)	28(1)
C(3)	2605(4)	6908(4)	4586(3)	30(1)
C(4)	3605(3)	8733(4)	5725(2)	24(1)
C(5)	3477(4)	8378(4)	6453(3)	31(1)
C(6)	3470(4)	8971(4)	6872(3)	37(1)
C(7)	3606(4)	9926(4)	6555(3)	34(1)
C(8)	3740(3)	10294(4)	5841(3)	30(1)
C(9)	3756(3)	9689(4)	5435(3)	25(1)
C(10)	3289(6)	8594(6)	7659(3)	63(2)
C (11)	3855(4)	11345(4)	5497(3)	36(1)
C(12)	4959(3)	8235(4)	3238(2)	24(1)
C(13)	5990(4)	7697(4)	3100(3)	27(1)
C(14)	6569(4)	8103(4)	2521(3)	32(1)
C(15)	6110(4)	9034(4)	2066(3)	35(1)
C(16)	5082(4)	9587(4)	2184(3)	31(1)
C(17)	4520(4)	9171(4)	2768(3)	27(1)
C(18)	7695(4)	7538(5)	2406(3)	46(2)
C(19)	4596(5)	10606(5)	1684(3)	47(2)
C(20)	1161(3)	8458(4)	4226(2)	23(1)
C(21)	660(4)	7892(4)	4076(3)	30(1)
C(22)	-330(4)	8348(4)	3900(3)	35(1)
C(23)	-842(4)	9378(4)	3881(3)	33(1)
C(24)	-371(3)	9965(4)	4029(2)	26(1)
C(25)	622(3)	9496(3)	4203(2)	21(1)
C(26)	-847(5)	7724(6)	3731(4)	57(2)
C(27)	-934(4)	11083(4)	4008(3)	33(1)

.

C(28)	2643(4)	11017(3)	3947(2)	25(1)
C(29)	1792(4)	11598(4)	4282(3)	35(1)
C(30)	1697(5)	12602(4)	4246(4)	46(2)
C(31)	2441(5)	13032(4)	3892(3)	45(2)
C(32)	3283(6)	12436(5)	3554(3)	53(2)
C(33)	3383(5)	11440(5)	3575(3)	46(2)
C(34)	2355(6)	14123(5)	3896(4)	58(2)
C(35)	1841(9)	14896(6)	3294(5)	102(3)
C(36)	3327(11)	14176(11)	3928(8)	153(5)
C(37)	1598(11)	14466(11)	4508(7)	151(5)
C(38)	10676(4)	2091(4)	2504(3)	26(1)
C(39)	11848(3)	1595(4)	1243(2)	26(1)
C(40)	10894(4)	157(4)	2203(3)	28(1)
C(41)	8930(4)	3264(3)	2553(2)	25(1)
C(42)	7915(4)	3584(4)	2417(2)	25(1)
C(43)	7151(4)	4321(4)	2701(3)	30(1)
C(44)	7399(4)	4739(4)	3140(3)	34(1)
C(45)	8386(4)	4431(4)	3294(3)	31(1)
C(46)	9152(4)	3703(4)	2999(2)	28(1)
C(47)	6062(4)	4638(5)	2542(3)	42(1)
C(48)	8658(5)	4887(5)	3771(3)	47(2)
C(49)	11141(4)	2871(3)	193(2)	23(1)
C(50)	10322(4)	3679(4)	-128(2)	26(1)
C(51)	10447(4)	4272(3)	-802(2)	26(1)
C(52)	11416(4)	4076(4)	-1167(2)	28(1)
C(53)	12240(4)	3303(4)	-861(3)	29(1)
C(54)	12102(4)	2691(4)	-181(3)	27(1)
C(55)	9548(4)	5130(4)	-1135(3)	33(1)
C(56)	13302(4)	3110(5)	-1247(3)	40(1)
C(57)	9847(4)	-131(4)	1529(2)	24(1)
C(58)	10228(4)	-1195(4)	1828(3)	28(1)
C(59)	10051(4)	-1889(4)	1562(3)	32(1)
C(60)	9472(4)	-1511(4)	1004(3)	34(1)
C(61)	9055(4)	-454(4)	721(3)	39(1)
C(62)	9249(4)	217(4)	985(3)	33(1)
C(63)	10485(5)	-3030(4)	1884(4)	49(2)

C(64)	8396(6)	-55(5)	132(4)	57(2)
C(65)	7976(4)	3427(4)	519(2)	26(1)
C(66)	7771(5)	3180(4)	-16(3)	43(1)
C(67)	7141(5)	3934(5)	-503(3)	47(2)
C(68)	6723(4)	4953(4)	-474(3)	33(1)
C(69)	6953(4)	5178(4)	70(3)	40(1)
C(70)	7562(4)	4431(4)	565(3)	36(1)
C(71)	6083(5)	5806(5)	-1033(3)	44(1)
C(72)	5664(8)	5386(6)	-1447(5)	108(4)
C(73)	6761(6)	6398(6)	-1525(4)	67(2)
C(74)	5201(6)	6552(7)	-712(4)	98(3)
N(1)	3571(3)	8181(3)	5282(2)	24(1)
N(2)	4352(3)	7876(3)	3838(2)	23(1)
N(3)	2164(3)	8036(3)	4402(2)	22(1)
N(4)	9675(3)	2516(3)	2252(2)	24(1)
N(5)	10957(3)	2273(3)	876(2)	24(1)
N(6)	10085(3)	582(3)	1739(2)	24(1)
O(1)	2781(3)	10003(2)	4019(2)	28(1)
O(2)	8639(3)	2717(3)	978(2)	30(1)
P(1)	3842(1)	6323(1)	4968(1)	28(1)
P(2)	11623(1)	995(1)	2189(1)	25(1)
Ti(1)	3184(1)	8632(1)	4355(1)	21(1)
Ti(2)	9746(1)	2059(1)	1440(1)	23(1)

Table A 1.14 Positional parameters and U(eq) for $P[CH_2NPh]_3Ti-\mu$ -O-Ti[PhNCH₂]₃P (19)

	x	У	Z	U(eq)
C(1)	2578(3)	5197(3)	-306(1)	43(1)
C(2)	2587(2)	4099(2)	668(1)	31(1)
C(3)	3264(3)	4080(3)	1191(1)	37(1)
C(4)	2976(3)	3027(3)	1496(2)	46(1)
C(5)	2036(3)	1981(3)	1285(2)	48(1)
C(6)	1376(3)	1999(3)	766(2)	48(1)
C(7)	1642(3)	3036(3)	457(2)	39(1)
N(1)	2872(2)	5182(2)	386(1)	33(1)
O(1)	3333	6667	1667	28(1)
P(2)	3333	6667	-706(1)	42(1)
Ti(1)	3333	6667	786(1)	25(1)

	x	У	Z	U(eq)
C(1)	2218(2)	108(2)	1005(2)	32(1)
O(1)	2722(1)	2722(1)	2722(1)	25(1)
Ti(2)	3492(1)	3492(1)	3492(1)	25(1)
N(2)	4896(2)	3778(2)	2721(2)	35(1)
C(10)	5932(2)	3777(3)	3159(3)	52(1)
C(11)	4987(3)	4139(3)	1526(3)	50(1)
Ti(1)	2005(1)	2005(1)	2005(1)	22(1)
P(1)	794(1)	794(1)	794(1)	36(1)
N(1)	2925(2)	709(2)	1470(2)	27(1)
C(2)	4024(2)	184(2)	1525(2)	25(1)
C(3)	4801(2)	744(2)	1841(2)	29(1)
C(6)	5475(2)	-1412(2)	1350(2)	32(1)
C(7)	4392(2)	-900(2)	1275(2)	30(1)
C(5)	6209(2)	-837(2)	1685(2)	34(1)
C(4)	5880(2)	248(2)	1923(2)	32(1)
C(9)	5829(3)	-2579(2)	1057(3)	44(1)
C(8)	6701(2)	878(3)	2264(3)	48(1)

Table A 1.15 Positional parameters and U(eq) for P[CH₂N-3,5-Me₂C₆H₃]₃Ti- μ -O-Ti(NMe₂)₃ (20)

Table A 1.16 Positional parameters and U((eq)	for Se=P[CH ₂	2NH-3,5-(CF)	3)2C6H3]3 (22a)
---	---------------	--------------------------	--------------	--------------------------

..

	x	У	Z	U(eq)
N(1)	2447(2)	8176(1)	3357(1)	22(1)
N(2)	1128(2)	6926(1)	2148(1)	24(1)
Se(1)	1791(1)	5698(1)	4563(1)	25(1)
P(1)	-103(1)	6868(1)	4124(1)	24(1)
C(1)	904(2)	8079(2)	3876(2)	24(1)
C(2)	-282(2)	6961(2)	2783(2)	25(1)
C(3)	3142(2)	9131(2)	3288(2)	24(1)
C(4)	2402(2)	9881(2)	3595(2)	28(1)
C(5)	3170(3)	10747(2)	3557(2)	32(1)
C(6)	4655(3)	10895(2)	3211(2)	32(1)
C(7)	5379(3)	10151(2)	2897(2)	31(1)
C(8)	4645(2)	9280(2)	2934(2)	27(1)
C(9)	2340(3)	11511(2)	3943(2)	48(1)
C(10)	6985(3)	10284(2)	2491(2)	41(1)
C(11)	819(3)	6925(2)	1135(2)	26(1)
C(12)	-582(3)	7110(2)	759(2)	32(1)
C(13)	-802(3)	7036(2)	-185(2)	36(1)
C(14)	353(3)	6787(2)	-773(2)	37(1)
C(15)	1751(3)	6609(2)	-402(2)	33(1)
C(16)	1992(3)	6686(2)	537(2)	30(1)
C(17)	-2339(3)	7222(3)	-560(2)	51(1)
C(18)	3014(3)	6300(3)	-1004(2)	45(1)
C(19)	4053(3)	5226(2)	2504(2)	44(1)
C(20)	468(3)	4538(2)	2838(2)	39(1)
C(21)	5587(3)	6717(2)	3900(2)	44(1)
C(22)	3394(3)	7355(2)	5643(2)	44(1)
C(23)	4258(3)	8206(2)	1188(2)	38(1)
C(24)	1023(3)	9381(2)	1242(2)	40(1)
Al(1)	1975(1)	5509(1)	2850(1)	27(1)
Al(2)	3605(1)	7069(1)	4366(1)	27(1)
Al(3)	2303(1)	8207(1)	1913(1)	24(1)
F(1)	968(2)	11680(2)	3655(3)	99(1)
F(2)	2969(2)	12428(1)	3593(2)	66(1)

F(3)	2234(5)	11199(2)	4941(2)	134(1)
F(4)	7155(2)	10758(2)	1489(2)	81(1)
F(5)	7694(2)	9377(1)	2711(2)	67(1)
F(6)	7743(2)	10815(2)	2905(2)	84(1)
F(7)	-3408(2)	6820(2)	200(2)	72(1)
F(8)	-2544(2)	6794(3)	-1229(2)	107(1)
F(9)	-2680(3)	8200(2)	-943(3)	139(2)
F(10)	2635(5)	5808(9)	-1580(7)	109(4)
F(11)	3974(6)	5636(5)	-401(3)	63(2)
F(12)	3908(7)	7050(3)	-1562(6)	101(3)
F(10A)	4183(7)	6590(20)	-879(14)	176(10)
F(11A)	2829(10)	6776(10)	-1998(4)	84(3)
F(12A)	2940(20)	5386(6)	-863(15)	157(9)

	x	У	Z	U(eq)
C(1)	7458(4)	1203(4)	3647(4)	28(1)
C(2)	8368(4)	3318(4)	4385(4)	26(1)
C(3)	7675(4)	4056(4)	1564(4)	28(1)
C(4)	5117(4)	1888(4)	4495(4)	26(1)
C(5)	3700(4)	2121(4)	4298(4)	31(1)
C(6)	2815(4)	2362(4)	5249(5)	34(1)
C(7)	3270(4)	2398(5)	6419(5)	38(1)
C(8)	4664(5)	2150(5)	6643(5)	40(1)
C(9)	5600(4)	1885(4)	5694(4)	32(1)
C(10)	9267(4)	2638(4)	6736(4)	25(1)
C(11)	8826(4)	4020(4)	6643(4)	29(1)
C(12)	9169(4)	4350(5)	7693(4)	32(1)
C(13)	9913(4)	3329(5)	8860(4)	33(1)
C(14)	10349(4)	1943(5)	8967(4)	32(1)
C(15)	10033(4)	1588(4)	7925(4)	29(1)
C(16)	5601(4)	6074(4)	919(4)	27(1)
C(17)	6271(4)	7087(4)	15(4)	31(1)
C(18)	5538(5)	8474(5)	-702(5)	37(1)
C(19)	4131(5)	8872(5)	-573(5)	38(1)
C(20)	3460(4)	7866(5)	287(5)	38(1)
C(21)	4185(4)	6480(5)	1022(5)	34(1)
N(1)	5977(3)	1749(4)	3453(4)	30(1)
N(2)	8948(4)	2263(4)	5715(4)	29 (1)
N(3)	6281(3)	4688(4)	1775(4)	31(1)
P(1)	8487(1)	2550(1)	3118(1)	23(1)
Se(1)	10533(1)	1631(1)	2837(1)	28(1)

Table A	1.18 Pos	itional parame	ters and U(eq)) for Se=P(CH ₂ NH-	3,5-Me ₂	C ₆ H ₃) ₃ (22	2c)
---------	----------	----------------	----------------	-------------	---------------------	---------------------	--	-----

	X	У	Z	U(eq)
Se(1)	2940(1)	7771(1)	2422(1)	78(1)
P(1)	530(1)	7701(1)	2098(1)	47(1)
N(3)	1698(3)	7805(2)	1245(1)	54(1)
C(3)	448(3)	7192(2)	1486(1)	48(1)
C(20)	2131(3)	7394(2)	803(1)	45(1)
C(21)	945(3)	7032(2)	455(1)	51(1)
N(2)	-2234(3)	9088(2)	1983(1)	60(1)
C(9)	-1685(3)	4518(2)	1867(1)	49(1)
C(4)	-2759(3)	5445(2)	1905(1)	50(1)
C(23)	3050(3)	6624(2)	-63(1)	63(1)
C(8)	-2211(3)	3519(2)	1624(1)	51(1)
C(14)	-5332(3)	10336(2)	1110(1)	56(1)
C(25)	3783(3)	7377(2)	707(1)	52(1)
N(1)	-2354(3)	6441(2)	2166(1)	70(1)
C(13)	-4584(3)	9877(2)	1522(1)	54(1)
C(6)	-4887(3)	4380(2)	1450(1)	58(1)
C(15)	-4418(3)	10420(2)	717(1)	60(1)
C(12)	-2940(3)	9528(2)	1552(1)	48(1)
C(7)	-3800(3)	3462(2)	1419(1)	57(1)
C(5)	-4357(3)	5362(2)	1692(1)	57(1)
C(22)	1397(3)	6657(2)	20(1)	57(1)
C(17)	-2061(3)	9602(2)	1150(1)	51(1)
C(24)	4248(3)	6980(2)	280(1)	60(1)
C(16)	-2794(3)	10055(2)	735(1)	55(1)
C(1)	-789(4)	6705(2)	2405(1)	64(1)
C(2)	-479(3)	9117(2)	2107(1)	57(1)
C(19)	-1803(4)	10165(3)	307(1)	75(1)
C(18)	-7101(3)	10743(3)	1090(1)	79(1)
C(27)	6053(4)	6921(4)	189(2)	94(1)
C(11)	-1058(4)	2504(2)	1587(1)	70(1)
C(26)	96(4)	6313(4)	-365(1)	87(1)
C(10)	-6632(4)	4310(3)	1229(1)	92(1)

Table A 1.19 Positional parameters and U(eq) for $P[CH_2N-3,5-(CF_3)_2C_6H_3]_2Se(AlMe_2)_3$ (23a)

	x	У	Z	U(eq)
N(1)	2447(2)	8176(1)	3357(1)	22(1)
N(2)	1128(2)	6926(1)	2148(1)	24(1)
Se(1)	1791(1)	5698(1)	4563(1)	25(1)
P(1)	-103(1)	6868(1)	4124(1)	24(1)
C(1)	904(2)	8079(2)	3876(2)	24(1)
C(2)	-282(2)	6961(2)	2783(2)	25(1)
C(3)	3142(2)	9131(2)	3288(2)	24(1)
C(4)	2402(2)	9881(2)	3595(2)	28(1)
C(5)	3170(3)	10747(2)	3557(2)	32(1)
C(6)	4655(3)	10895(2)	3211(2)	32(1)
C(7)	5379(3)	10151(2)	2897(2)	31(1)
C(8)	4645(2)	9280(2)	2934(2)	27(1)
C(9)	2340(3)	11511(2)	3943(2)	48 (1)
C(10)	6985(3)	10284(2)	2491(2)	41(1)
C(11)	819(3)	6925(2)	1135(2)	26(1)
C(12)	-582(3)	7110(2)	759(2)	32(1)
C(13)	-802(3)	7036(2)	-185(2)	36(1)
C(14)	353(3)	6787(2)	-773(2)	37(1)
C(15)	1751(3)	6609(2)	-402(2)	33(1)
C(16)	1992(3)	6686(2)	537(2)	30(1)
C(17)	-2339(3)	7222(3)	-560(2)	51(1)
C(18)	3014(3)	6300(3)	-1004(2)	45(1)
C(19)	4053(3)	5226(2)	2504(2)	44(1)
C(20)	468(3)	4538(2)	2838(2)	39(1)
C(21)	5587(3)	6717(2)	3900(2)	44(1)
C(22)	3394(3)	7355(2)	5643(2)	44(1)
C(23)	4258(3)	8206(2)	1188(2)	38(1)
C(24)	1023(3)	9381(2)	1242(2)	40(1)
Al(1)	1975(1)	5509(1)	2850(1)	27(1)
Al(2)	3605(1)	7069(1)	4366(1)	27(1)
Al(3)	2303(1)	8207(1)	1913(1)	24(1)
F(1)	968(2)	11680(2)	3655(3)	99(1)

F(2)	2969(2)	12428(1)	3593(2)	66 (1)
F(3)	2234(5)	11199(2)	4941(2)	134(1)
F(4)	7155(2)	10758(2)	1489(2)	81(1)
F(5)	7694(2)	9377(1)	2711(2)	67(1)
F(6)	7743(2)	10815(2)	2905(2)	84(1)
F(7)	-3408(2)	6820(2)	200(2)	72(1)
F(8)	-2544(2)	6794(3)	-1229(2)	107(1)
F(9)	-2680(3)	8200(2)	-943(3)	139(2)
F(10)	2635(5)	5808(9)	-1580(7)	109(4)
F(11)	3974(6)	5636(5)	-401(3)	63(2)
F(12)	3908(7)	7050(3)	-1562(6)	101(3)
F(10A)	4183(7)	6590(20)	-879(14)	176(10)
F(11A)	2829(10)	6776(10)	-1998(4)	84(3)
F(12A)	2940(20)	5386(6)	-863(15)	157(9)

Table A 1.20 Positional parameters and U(eq) for $P(CH_2N-3,5-Me_2C_6H_3)_2Se(AlMe_2)_3$ (23c)

.

	х	У	Z	U(eq)
N(1)	7978(1)	5681(2)	1002(1)	20(1)
N(2)	9654(1)	4617(2)	1719(1)	21(1)
Al (1)	9478(1)	5315(1)	1051(1)	23(1)
Al(2)	9377(1)	6132(1)	2241(1)	24(1)
Al(3)	7236(1)	7369(1)	1344(1)	24(1)
P(1)	7567(1)	3632(1)	1776(1)	23(1)
Se(1)	7494(1)	6076(1)	2125(1)	25(1)
C(1)	7456(2)	4183(3)	1149(1)	23(1)
C(2)	8949(2)	3239(3)	1803(1)	24(1)
C(3)	10726(2)	4129(3)	1762(1)	23(1)
C(4)	11036(2)	2546(3)	1731(1)	26(1)
C(5)	12060(2)	2141(3)	1767(1)	28(1)
C(6)	12778(2)	3341(3)	1839(1)	28(1)
C(7)	12481(2)	4928(3)	1874(1)	26(1)
C(8)	11461(2)	5307(3)	1830(1)	25(1)
C(9)	12385(2)	420(3)	1736(1)	39(1)
C(10)	13262(2)	6229(3)	1954(1)	33(1)
C(11)	7793(2)	6048(3)	503(1)	24(1)
C(12)	7351(2)	4978(3)	192(1)	31(1)
C(13)	7202(2)	5394(4)	-275(1)	39(1)
C(14)	7494(2)	6895(4)	-427(1)	40(1)
C(15)	7936(2)	7990(3)	-122(1)	35(1)
C(16)	8086(2)	7546(3)	342(1)	28(1)
C(17)	6726(3)	4223(5)	-611(1)	59(1)
C(18)	8267(3)	9617(4)	-287(1)	48(1)
C(19)	10287(2)	7222(3)	917(1)	34(1)
C(20)	9741(2)	3448(3)	654(1)	37(1)
C(21)	9665(2)	5000(4)	2825(1)	40(1)
C(22)	9818(2)	8349(3)	2193(1)	34(1)
C(23)	5794(2)	7098(4)	1187(1)	39(1)
C(24)	7819(2)	9511(3)	1370(1)	36(1)
C(26)	4751(3)	8227(3)	9629(1)	216(9)

C(27)	5039(3)	8239(3)	9090(1)	99(3)
C(30)	5285(3)	9695(3)	9700(1)	75(2)
C(29)	5000(3)	10000(3)	10000(1)	153(4)
C(28)	4492(3)	8838(3)	9546(1)	100(3)
C(31)	4774(3)	8445(3)	9308(1)	102(3)

Table A 1.21 Positional paramete	s and U(eq) for Me₃Al·P	2(CH ₂ NPh) ₂ Se(AlMe ₂) ₃ (24b)
----------------------------------	-------------------------	---

	x	У	Ζ	U(eq)
Se(1)	0	9969(1)	68(1)	26(1)
P(1)	0	10235(1)	2664(2)	22(1)
Al(2)	0	13387(1)	2018(2)	20(1)
Al(1)	1262(1)	11368(1)	-160(1)	26(1)
Al(3)	0	8142(2)	3976(2)	31(1)
N(1)	1000(2)	12248(3)	1818(4)	18(1)
C(10)	0	13983(5)	4173(7)	29(1)
C(1)	899(3)	11256(3)	2998(4)	21(1)
C(12)	0	8604(7)	6179(8)	55(2)
C(9)	1191(3)	12188(4)	-2175(5)	38(1)
C(2)	1790(3)	12950(3)	2086(5)	22(1)
C(8)	2248(3)	10319(4)	224(7)	40(1)
C(6)	2815(3)	14370(4)	1066(5)	35(1)
C(7)	2047(3)	13762(4)	938(5)	29(1)
C(5)	3329(3)	14178(4)	2340(6)	38(1)
C(3)	2305(3)	12790(4)	3396(5)	30(1)
C(4)	3068(3)	13405(4)	3503(6)	35(1)
C(11)	0	14620(5)	375(6)	25(1)
C(13)	1053(3)	7525(4)	3035(6)	47(1)

Table A 1.22	Positional	parameters and	U(eq) for	P[CH ₂ N-3,5-	$(CF_3)_2C_6H_3]_3Al_2$	$_2$ Me $_3$
(25a)						

	х	У	Z	U(eq)
Al(1)	7985(1)	1039(1)	2503(1)	34(1)
Al(2)	10123(1)	-728(1)	2862(1)	38(1)
P(1)	8677(1)	644(1)	639(1)	41(1)
N(1)	7027(2)	2002(2)	1506(2)	39 (1)
N(2)	8421(2)	-698(2)	2565(2)	37(1)
N(3)	9670(2)	1092(2)	2118(2)	35(1)
C(28)	7580(4)	1209(3)	3674(2)	57(1)
C(29)	10300(4)	-1097(3)	4171(2)	58(1)
C(30)	11361(3)	-1588(3)	2269(3)	57(1)
C(31)	4330(8)	1126(6)	9514(6)	112(2)
C(32)	4003(7)	467(9)	10382(8)	125(3)
C(33)	5309(10)	658(8)	9138(5)	119(2)
C(1)	7239(3)	1686(3)	679(2)	45(1)
C(2)	8428(3)	-766(3)	1616(2)	42(1)
C(3)	9756(3)	1283(3)	1105(2)	42(1)
C(4)	6001(3)	2892(3)	1485(2)	39(1)
C(5)	5927(3)	3611(3)	2039(2)	45(1)
C(6)	4913(3)	4492(3)	2031(2)	49(1)
C(7)	3942(3)	4712(3)	1467(2)	51(1)
C(8)	4008(3)	4017(3)	915(2)	48(1)
C(9)	5016(3)	3128(3)	909(2)	45(1)
C(10)	4901(3)	5250(3)	2625(3)	67(1)
C(11)	2948(3)	4159(4)	338(3)	57(1)
C(12)	7773(3)	-1648(3)	3175(2)	40(1)
C(13)	6558(3)	-1344(3)	3331(2)	50(1)
C(14)	5927(3)	-2263(4)	3883(3)	56(1)
C(15)	6505(4)	-3481(3)	4272(2)	59(1)
C(16)	7719(3)	-3791(3)	4106(3)	55(1)
C(17)	8357(3)	-2875(3)	3568(2)	50(1)
C(18)	4623(4)	-1925(5)	4062(4)	85(1)
C(19)	8326(5)	-5138(4)	4503(4)	84(2)
C(20)	10211(3)	2010(3)	2298(2)	37(1)

C(21)	11231(3)	1659(3)	2840(2)	45(1)
C(22)	11706(3)	2547(3)	3035(2)	49(1)
C(23)	11192(3)	3792(3)	2673(2)	50(1)
C(24)	10194(3)	4144(3)	2109(2)	48(1)
C(25)	9697(3)	3265(3)	1925(2)	44(1)
C(26)	12804(4)	2133(4)	3635(3)	72(1)
C(27)	9640(4)	5496(4)	1678(4)	71(1)
F(1)	4968(9)	4556(7)	3516(4)	75(2)
F(2)	5913(6)	5814(7)	2475(5)	64(2)
F(3)	3980(7)	6179(7)	2481(6)	83(2)
F(3B)	5407(9)	6220(7)	2245(5)	82(2)
F(1B)	3718(5)	5616(8)	2854(6)	66(2)
F(2B)	5428(8)	4566(7)	3456(4)	67(2)
F(1C)	4065(17)	5094(17)	3266(12)	91(4)
F(3C)	4569(14)	6476(8)	2089(8)	71(3)
F(2C)	5902(15)	5102(19)	3034(14)	98(4)
F(4)	2185(2)	5228(3)	182(2)	100(1)
F(5)	2302(2)	3260(3)	731(2)	78(1)
F(6)	3265(2)	4089(3)	-476(2)	85(1)
F(7)	4058(4)	-2843(4)	4311(6)	226(3)
F(8)	4027(3)	-1080(5)	3345(3)	139(2)
F(9)	4435(4)	-1399(6)	4658(3)	182(2)
F(10)	7783(4)	-5865(3)	4277(4)	183(3)
F(11)	8355(4)	-5548(4)	5396(3)	148(2)
F(12)	9453(3)	-5346(2)	4253(3)	112(1)
F(13)	8521(3)	5743(3)	1963(3)	117(1)
F(14)	9509(3)	5858(2)	774(2)	105(1)
F(15)	10243(4)	6236(2)	1829(4)	169(2)
F(16)	13130(4)	3029(3)	3805(3)	135(2)
F(17)	13792(3)	1759(4)	3201(3)	123(1)
F(18)	12734(3)	1177(3)	4364(2)	130(2)

Fable A 1.23 Positional parameters	nd U(eq) for Me ₃ Al·P	$(CH_2NPh)_3Al_2Me_3$ (26b)
---	-----------------------------------	-----------------------------

	x	У	Z	U(eq)
P(1)	8182(1)	2349(1)	4204(1)	23(1)
Al(1)	7951(1)	3509(1)	3445(1)	20(1)
A1(3)	8395(1)	1346(1)	4807(1)	29 (1)
Al(2)	10192(1)	2902(1)	3451(1)	22(1)
N(3)	8690(1)	2326(1)	3382(1)	21(1)
C(2)	9168(2)	3307(1)	4189(1)	25(1)
N(2)	9294(1)	3760(1)	3786(1)	22(1)
N(1)	6697(1)	3350(1)	3755(1)	24(1)
C(16)	8589(2)	1818(1)	3011(1)	23(1)
C(1)	6820(2)	2911(1)	4145(1)	26(1)
C(10)	9799(2)	4653(1)	3834(1)	26(1)
C(4)	5614(2)	3715(1)	3680(1)	24(1)
C(3)	8392(2)	1734(1)	3730(1)	24(1)
C(23)	10692(2)	3457(1)	2953(1)	34(1)
C(21)	9461(2)	1253(1)	2894(1)	36(1)
C(22)	7804(2)	4217(1)	2956(1)	32(1)
C(17)	7649(2)	1893(1)	2771(1)	34(1)
C(13)	10766(2)	6369(1)	3911(1)	45(1)
C(11)	9430(2)	5369(1)	3604(1)	36(1)
C(20)	9421(2)	822(2)	2528(1)	45(1)
C(24)	11286(2)	2190(2)	3751(1)	35(1)
C(5)	5179(2)	3729(2)	3292(1)	36(1)
C(7)	3464(2)	4433(2)	3516(1)	44(1)
C(25)	10042(2)	1196(2)	4803(1)	48(1)
C(18)	7614(2)	1459(2)	2403(1)	43(1)
C(15)	10667(2)	4807(2)	4102(1)	47(1)
C(9)	4931(2)	4063(2)	3982(1)	37(1)
C(6)	4120(2)	4084(2)	3213(1)	45(1)
C(19)	8509(2)	938(1)	2278(1)	40(1)
C(8)	3878(2)	4417(2)	3899(1)	46(1)
C(14)	11141(2)	5663(2)	4138(1)	56(1)
C(12)	9917(2)	6221(2)	3642(1)	45(1)
C(26)	7474(2)	311(2)	4631(1)	5 6(1)

Table A 1.24 Positional parameters and U(eq) for $\{P[CH_2N-3,5-(CF_3)_2C_6H_3]_2MgTHF_2\}_2$ (27)

	x	У	z	U(eq)
C(1)	3929(4)	6283(4)	8310(4)	33(1)
C(10)	5230(4)	6857(4)	9805(4)	33(1)
P(1)	4269(1)	5788(1)	9871(1)	28(1)
Mg(1)	3323(1)	3926(1)	11964(1)	29(1)
O(2)	1783(3)	5098(3)	12089(3)	41(1)
N(1)	4986(3)	6160(3)	7522(3)	32(1)
N(2)	3565(3)	3164(3)	10828(3)	33(1)
O(1)	2741(3)	2508(3)	13483(3)	46(1)
C(11)	2838(4)	2434(4)	10795(4)	33(1)
C(15)	843(4)	1708(4)	11364(4)	41(1)
C(12)	3178(4)	1624(4)	10284(4)	38(1)
F(7)	3807(4)	210(4)	9097(4)	87(1)
C(2)	4688(4)	6483(4)	6395(4)	32(1)
C(7)	5624(4)	6298(4)	5596(4)	39(1)
F(5)	6138(4)	6242(5)	2789(4)	111(2)
C(13)	2386(5)	890(4)	10319(5)	43(1)
C(6)	5411(5)	6627(5)	4442(4)	44(1)
F(6)	7353(4)	5515(4)	4194(3)	93(1)
F(4)	7043(4)	7394(4)	3085(4)	107(2)
C(16)	1627(4)	2442(5)	11335(4)	41(1)
C(14)	1199(5)	918(4)	10865(5)	45(1)
C(4)	3302(5)	7343(5)	4757(4)	45(1)
C(5)	4243(5)	7172(5)	3986(4)	53(1)
C(3)	3500(4)	7011(4)	5931(4)	38(1)
F(3)	1907(4)	8221(6)	3215(4)	130(2)
C(9)	6470(6)	6446(6)	3633(5)	58(2)
F(9)	1991(5)	91(8)	9099(8)	192(4)
F(12)	-1185(4)	1369(8)	11731(7)	200(4)
F(10)	-369(5)	1229(7)	13128(5)	158(3)
F(11)	-884(4)	2851(5)	11872(7)	155(3)
C(18)	-396(6)	1777(6)	11949(6)	65(2)
F(2)	1239(4)	7117(6)	4835(5)	146(2)

F(1)	1498(5)	8761(6)	4574(6)	169(3)
C(8)	2026(6)	7883(7)	4332(6)	67(2)
C(20)	1882(8)	1195(7)	15303(7)	101(3)
C(19)	1698(5)	2451(6)	14326(5)	67(2)
C(23)	1821(7)	6095(7)	12339(8)	90(2)
C(21)	3171(9)	690(7)	15181(7)	103(3)
F(8)	3055(9)	-1090(4)	10598(6)	201(4)
C(17)	2788(6)	31(6)	9789(7)	73(2)
C(26)	612(6)	5337(7)	11594(9)	96(3)
C(24)	613(10)	6895(11)	12017(13)	177(7)
C(22)	3519(6)	1322(5)	13872(6)	72(2)
C(25)	-216(6)	6234(7)	11890(8)	94(3)

Table A 1.25 Positional	parameters and U(eq) for	$\{P[CH_2NH-3,5-(CF_3)_2C_6H_3]_2Se_2\}^{-1}$
$[HNEt_3]^+$ (35)	· •	

..

	x	У	Z	U(eq)
C(88)	2652(11)	2985(5)	1476(8)	31(4)
C(110)	616(15)	1806(7)	2421(11)	81(7)
C(111)	529(12)	1510(6)	1755(9)	44(5)
C(113)	1320(12)	1061(6)	882(9)	46(5)
C(114)	2239(13)	876(6)	641(10)	62(6)
C(221)	1864(13)	982(6)	2216(10)	53(5)
C(222)	1239(15)	566(7)	2310(11)	81(7)
C(223)	2772(12)	1039(6)	6320(9)	45(5)
C(224)	3275(15)	583(7)	6174(11)	78(7)
C(300)	2927(17)	738(8)	4136(12)	82(7)
C(301)	3341(15)	1159(8)	4124(11)	71(6)
C(302)	2863(17)	1538(8)	4207(11)	78(7)
C(303)	1886(18)	1527(8)	4348(12)	82(7)
C(304)	1468(16)	1117(8)	4378(12)	84(7)
C(305)	1973(17)	712(8)	4280(11)	80(7)
C(700)	1180(30)	1918(13)	4600(20)	59(11)
C(701)	3520(40)	1952(17)	3990(30)	102(16)
C(800)	1095(17)	2612(8)	4737(14)	59(11)
C(801)	712(14)	2859(9)	4125(14)	73(13)
C(802)	1260(20)	3199(9)	3832(12)	60(12)
C(803)	2195(19)	3293(8)	4151(15)	76(14)
C(804)	2578(14)	3046(9)	4763(14)	54(11)
C(805)	2028(17)	2706(8)	5055(11)	47(10)
C(900)	3600(20)	2589(8)	3793(17)	194(16)
C(901)	2690(20)	2719(9)	3478(10)	144(11)
C(902)	2159(14)	3047(10)	3819(16)	162(13)
C(903)	2540(20)	3245(8)	4475(16)	220(19)
C(904)	3460(20)	3115(10)	4789(11)	153(13)
C(905)	3989(15)	2787(11)	4448(18)	290(30)
N(40)	1440(9)	1290(4)	1616(7)	35(4)
F(70)	4070(13)	4612(6)	1227(9)	178(10)
F(71)	5403(14)	4604(6)	851(6)	159(8)

F(72)	5040(9)	4106(4)	1528(6)	86(4)
C(806)	3690(60)	3220(30)	5300(40)	180(30)
C(906)	1100(30)	3135(14)	3390(20)	70(13)
C(1)	3718(11)	3361(5)	-218(8)	30(4)
C(2)	3525(11)	3598(5)	-884(9)	35(4)
C(3)	3701(11)	4065(5)	-919(9)	35(5)
C(4)	4048(11)	4311(6)	-325(9)	38(5)
C(5)	4258(11)	4073(5)	326(9)	30(4)
C(6)	4084(11)	3613(5)	387(8)	30(4)
C(8)	4654(15)	4347(7)	970(11)	50(5)
C(9)	3458(12)	3516(5)	2399(9)	34(4)
C(10)	2658(11)	3812(5)	2343(8)	31(4)
C(11)	2670(12)	4194(5)	2801(9)	38(5)
C(12)	3413(12)	4288(6)	3318(9)	43(5)
C(13)	4213(12)	3989(6)	3361(9)	39(5)
C(14)	4243(12)	3608(6)	2915(9)	40(5)
C(15)	1788(13)	4503(6)	2710(10)	42(5)
C(16)	5043(17)	4095(8)	3921(12)	64(6)
C(17)	6342(11)	1431(5)	1133(8)	27(4)
C(18)	5533(11)	1321(5)	626(8)	32(4)
C(19)	5573(12)	952(5)	179(9)	34(4)
C(20)	6343(11)	654(5)	249(9)	35(5)
C(21)	7116(12)	753(5)	728(9)	33(4)
C(22)	7136(11)	1131(5)	1184(8)	30(4)
C(23)	4687(16)	836(7)	-334(11)	57(6)
C(24)	7973(14)	439(7)	822(11)	50(5)
C(25)	5980(11)	2358(5)	3125(8)	31(4)
C(26)	6072(11)	1599(5)	3777(8)	30(4)
C(27)	5765(11)	1340(5)	3182(9)	31(4)
C(28)	5558(12)	878(5)	3264(9)	36(5)
C(29)	5701(11)	657(6)	3939(9)	39(5)
C(30)	6015(11)	931(5)	4529(8)	31(4)
C(31)	5216(16)	597(7)	2613(11)	55(6)
C(32)	6155(14)	714(6)	5247(10)	43(5)
C(50)	3 800(11)	2597(5)	391(8)	34(4)
C(51)	6224(10)	1383(5)	4463(8)	25(4)

C(55)	7141(11)	1968(5)	2046(8)	26(4)
C(71)	3563(17)	4294(8)	-1638(12)	61(6)
N(1)	6287(9)	1822(4)	1568(7)	32(3)
N(2)	6315(9)	2065(4)	3751(6)	30(3)
N(3)	3511(9)	2900(4)	-210(7)	33(3)
N(4)	3521(8)	3127(4)	1956(6)	27(3)
F(1)	4102(8)	1188(4)	-485(6)	78(4)
F(2)	4941(8)	686(6)	-978(6)	124(6)
F(3)	4151(8)	512(4)	-111(8)	103(5)
F(4)	8089(9)	189(4)	254(8)	117(6)
F(5)	7916(10)	147(5)	1341(9)	135(6)
F(6)	8792(8)	647(4)	969(7)	90(4)
F(7)	1836(8)	4767(4)	2102(6)	81(4)
F(8)	1744(8)	4791(4)	3252(6)	78(4)
F(9)	981(7)	4284(3)	2596(7)	75(4)
F(10)	5551(9)	4444(5)	3703(8)	110(5)
F(11)	4796(9)	4221(5)	4542(7)	118(6)
F(20)	5666(8)	3757(4)	4023(6)	77(4)
F(21)	5565(11)	378(5)	5371(6)	123(6)
F(22)	6040(13)	991(4)	5805(6)	126(6)
F(23)	7003(10)	560(8)	5439(8)	186(10)
F(24)	4438(13)	728(5)	2290(10)	200(11)
F(25)	5094(11)	155(4)	2734(6)	103(5)
F(26)	5812(14)	581(6)	2109(7)	160(8)
F(31)	4205(11)	4555(5)	-1819(7)	124(6)
F(32)	2867(14)	4579(10)	-1683(10)	230(14)
F(33)	3330(20)	4050(5)	-2184(8)	240(15)
P(1)	6914(3)	2502(1)	2514(2)	28(1)
P(5)	2853(3)	2458(2)	990(2)	30(1)
Se(1)	3505(1)	1964(1)	1763(1)	38(1)
Se(2)	1517(1)	2301(1)	374(1)	42(1)
Se(3)	6246(1)	2986(1)	1745(1)	36(1)
Se(4)	8266(1)	2679(1)	3115(1)	39(1)
C(100)	2498(14)	899(7)	7889(11)	74(7)
C(101)	3404(12)	1075(6)	7644(9)	45(5)
C(103)	4234(13)	1524(6)	6766(9)	52(5)

C(104)	4155(16)	1836(7)	6120(11)	84(7)
N(41)	3285(10)	1314(5)	6942(7)	45(4)

•	x	У	z	U(eq)
Zr(1)	9212(1)	4908(1)	1012(1)	43(1)
Se(1)	7931(1)	6094(1)	725(1)	82(1)
P(1)	9128(1)	6738(1)	1101(1)	67(1)
N(3)	9534(2)	3620(2)	1038(1)	42(1)
N(1)	10713(2)	5487(2)	865(1)	47(1)
C(20)	10315(3)	3084(2)	1210(1)	40(1)
C(5)	11964(3)	4455(2)	603(1)	53(1)
C(4)	11755(3)	5285(2)	703(1)	46(1)
C(25)	11314(3)	3421(2)	1343(1)	46(1)
C(9)	12591(3)	5874(3)	634(1)	55(1)
C(21)	10125(3)	2231(2)	1250(1)	48(1)
C(23)	11903(4)	2077(3)	1544(1)	61(1)
C(8)	13613(3)	5645(3)	473(1)	58(1)
C(6)	12967(4)	4217(3)	447(1)	65(1)
C(22)	10917(4)	1723(2)	1418(1)	59(1)
C(24)	12119(3)	2930(3)	1505(1)	54(1)
C(7)	13785(4)	4821(3)	383(1)	64(1)
C(26)	10701(5)	791(3)	1450(2)	90(2)
C(10)	13155(5)	3307(3)	349(2)	104(2)
C(27)	13221(4)	3309(3)	1636(1)	84(2)
C(11)	14489(4)	6312(3)	393(1)	89(2)
N(4)	7965(3)	3966(2)	708(1)	57(1)
N(2)	8940(3)	5260(2)	1531(1)	56(1)
C(3)	8566(3)	3234(2)	868(1)	50(1)
C(1)	10548(3)	6380(2)	940(1)	58(1)
C(12)	8757(3)	4867(3)	1863(1)	60(1)
C(2)	8925(4)	6175(3)	1528(1)	70(1)
C(16)	8641(4)	3572(3)	2203(1)	74(1)
C(17)	8774(4)	3994(3)	1882(1)	65(1)
C(13)	8595(4)	5307(3)	2180(1)	74(1)
C(28)	6745(4)	3974(3)	798(2)	81(2)

Table A 1.26 Positional parameters and U(eq) for $P[CH_2N-3,5-Me_2C_6H_3]_2SeZrN(-3,5-Me_2C_6H_3)CH_2NEt_2$ (37c)

C(19)	8676(6)	2622(3)	2210(2)	113(2)
C(30)	8089(5)	3969(3)	313(1)	83(2)
C(29)	6508(4)	4097(3)	1188(2)	106(2)
C(31)	9288(5)	4021(4)	185(1)	97(2)
C(14)	8464(4)	4894(4)	2501(1)	79 (1)
C(15)	8496(4)	4032(4)	2511(1)	84(1)
C(18)	8289(5)	5394(4)	2840(2)	108(2)
C(34)	5609(7)	4069(5)	2263(2)	144(3)
C(33)	5000	4530(10)	2500	184(5)
C(32)	5000	5385(8)	2500	168(5)
C(36)	5000	2708(10)	2500	180(5)
C(35)	5581(9)	3208(7)	2281(3)	196(4)

Vita Auctoris

Name: Hua Han

Education: Tianjin University, Tianjin, China, 1991-1995 B.S.

Nankai University, Tianjin, China, 1999-2002 M.S.

University of Windsor, Windsor, On. Canada,

2003-2007 Ph.D

Publication:

- 1. **Hua Han** and Samuel. A. Johnson. "Ligand Design for the Assembly of Polynuclear Complexes: Syntheses and Structures of Trinuclear and Tetranuclear Aluminum Alkyl Complexes Bearing Tripodal Diamidoselenophosphinito Ligands and a Comparison to Related Tripodal Triamidophosphine Complexes". Organometallics 2006, 25(23); 5594-5602.
- 2. Hua Han, Mona Elsmaili, and Samuel A. Johnson. "A Diligating Tripodal Amido-Phosphine Ligand Building Block for Heterobimetallic Polynuclear Complexes and The Effect of a Proximal Early Transition Metal on the Donor Ability of a Phosphine". *Inorg. Chem.* 2006, 45(18), 7435-7445.
- 3. Keen, A. L.; Doster, M.; **Han, Hua**.; Johnson, S. A. "Facile assembly of a Cu₉ amido complex: a new tripodal ligand design that promotes transition metal cluster formation". *Chem. Comm.* **2006**, 1221-1223.
- 4. Han, Hua; Johnson, S. A.* "Bridged Dinuclear Tripodal Tris(amido)phosphine Complexes of Titanium and Zirconium as Diligating Building Blocks for Organometallic Polymers" Eur. J. Inorg. Chem., 2007, in press.
- 5. **Hua Han,** Jillian A. Hatnean and Samuel. A. Johnson*. "Magnisium Bimetallic Complexes with P-P Bond: a New Method to Synthesize Diamido- Phosphine Complexes From Phosphine Selenides by P-C Bond Cleavage". 2007, in preparation.