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Abstract 

Clustering gene expression data given in terms of time-series is a challenging 

problem that imposes its own particular constraints, namely, exchanging two or 

more time points is not possible as it would deliver quite different results and 

would lead to erroneous biological conclusions. 

In this thesis, clustering methods introducing the concept of multiple alignment 

of natural cubic spline representations of gene expression profiles are presented. 

The multiple alignment is achieved by minimizing the sum of integrated squared 

errors over a time-interval, defined on a set of profiles. The proposed approach 

with flat clustering algorithms like A;-means and EM are shown to cluster microar-

ray time-series profiles efficiently and reduce the computational time significantly. 

The effectiveness of the approaches is experimented on six data sets. Experiments 

have also been carried out in order to determine the number of clusters and to 

determine the accuracies of the proposed approaches. 
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Chapter 1 

Introduction 

1.1 Microarray Technology 

Micorrarrys are widely used tools in molecular biology providing a fast and 

cost-effective method for monitoring the expression of thousands of genes si-

multaneously [30]. Microarrays enable monitoring of whole-genome expression 

in a single experiment. The biological interpretation of large datasets is the 

biggest challenge for scientists confronted with gene expression data. 

A cDNA microarray is an arrayed series of thousands of microscopic spots 

of DNAs each containing a specific DNA sequence, known as probe. A probe 

can be a short section of a gene or other DNA element that is used to hybridize 

a cDNA or cRNA sample, known as target. In oligonucleotide microarrays, the 

probes are short sequences designed to match parts of the sequence of known 

or predicted open reading frames. Oligonucleotide arrays are produced by 

printing short oligonucleotide sequences designed to represent a single gene or 

family of gene splice-variants by synthesizing this sequence directly onto the 

1 



CHAPTER 1. INTRODUCTION 2 

array surface instead of depositing intact sequences. Sequences may be longer 

(60-mer probes) or shorter (25-mer probes) depending on the desired pur-

pose; longer probes are more specific to individual target genes, while shorter 

probes can be spotted in higher density across the array and are cheaper to be 

produced. In spotted microarrays, the probes are oligonucleotides, cDNA or 

small fragments of PCR products that correspond to mRNAs. The probes are 

synthesized prior to deposition on the array surface and are then "spotted" 

onto the glass. 

Microarrays are solid substrates hosting hundreds of single stranded DNAs 

with a specific sequence. DNA Microarrays are solid supports onto which the 

sequences from thousands of different genes are attached at fixed locations. 

The supports themselves are usually glass microscope slides, but can be silicon 

chips or nylon membranes on which the DNA is printed, spotted or synthe-

sized. The whole microarray technology is based on hybridization probing, 

a technique that uses fluorescence labeled nucleic acid molecules as mobile 

probes to identify complementary molecules. A typical DNA microarray ex-

periment involves the following steps: 

1. Preparing the DNA chip using the chosen targets. 

2. Generating hybridization mixture of fluorescence labeled cDNAs. 

3. Incubating hybridization mixture with the DNA chip. 

4. Detecting bound cDNA using laser technology 

5. Analyzing data using advanced computational methods. 
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Figure 1.1* illustrates the typical process of a DNA microarray experiment. 

:' •s""3
 tmi dm ' 

•» IT" -i ftM»,"IM«M ilKA ' »->1dSBB1 
MtONA 

Purification RT Coupling Hybridization Scanning 
and washes and analysis 

Figure 1.1: The steps required in a microarray experiment. 

The amount of fluorescence emitted by each cDNA array will be propor-

tional to the amount of mRNA produced from the gene having the corre-

sponding DNA sequence. The above description is for DNA microarrays only 

but the microarray experiments vary according to the specific type of microar-

ray. In [23], four main technology platforms of microarrays are described: 1) 

Nylon membrane arrays or radioactive filters; 2) cDNA arrays or red/green 

arrays; 3) Polynucleotide arrays; 4) Oligonucleotide arrays (also called DNA 

chips). cDNA technology is the most commonly used one, and allows spotting 

of almost any PCR product. Gene expression levels are detected over a period 

of time from microarrays. Then the expression ratio of genes are measured 

by using different logarithmic and normalization techniques. These kinds of 

gene expressions over a period of time are called time-series gene expression. 

Time-series gene expression data can be produced by any of the above mi-

croarrays and even other technologies. We are considering any form of the 

technology that produces time-series gene expression data. 

*http: / /en .wikipedia .org/wiki /Fi le :Microarray_exp_horizonta l . svg , Image 
used under public domain license. 

http://en.wikipedia.org/wiki/File:Microarray_exp_horizontal.svg
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Figure 1.2: A sample DNA microarray. 

1.2 Microarray Analysis 

Microarray technology has the following important advantages: 

1. it can measure the expression levels of thousands of genes in parallel, 

2. it provides semi-quantitative data, and 

3. it is sensitive enough to detect low-abundance transcripts that are rep-

resented on a given array. 

DNA microarrays are used for measuring the concentration of mRNA in living 

cells. The concentration of a particular mRNA transcript is measured as the 

expression level of its corresponding gene. The expression profile, a snapshot 

of the total mRNA pool of living cell or tissue, can be obtained when different 

probes matching all mRNAs in a cell are used. It reflects the expression of 

every single measured gene at that particular moment. The expression can 

also be used to quantify the expression of a single gene over a number of 

conditions. 
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Microarrays have been successfully used in a wide range of applications 

including sequencing, SNP detection and cluster analysis. However, the main 

application still remains the investigation of the genetic mechanisms in living 

cells. The microarray technology has a very high throughput interrogating 

thousands of genes at the same time. It has been proved that microarrays can 

be used to generate reliable and accurate gene expression data [7, 37]. It can 

also be used for purely computational purposes such as in the field of DNA 

computing [5]. 

1.3 Microarray Time-Series Gene Expression 

An increasingly popular method for studying a wide range of biological sys-

tems is through time-series expression experiments. In time-series expression 

experiments, a snapshot of the expression of genes in a temporal process is 

measured rather than in different samples. Another main characteristic of 

the time-series data is to exhibit a strong autocorrelation between succes-

sive points rather than from a sample population (which are assumed to be 

independent and identically distributed). 

Gene expression is a measurement of expressed gene over a certain pe-

riod of times under different conditions. Different proteins are required and 

synthesized for different functions, under different conditions and at different 

times. One of the most important ways of new protein generation in which 

the cell regulates gene expression is by using a feedback loop. In many cases, 

the expression program starts by activating a few transcription factors (TF), 

which in turn activate many other genes that act in response to the new con-
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dition. It is necessary to measure a time course of expression experiments in 

order to determine the complete set of genes that are expressed under new 

conditions. 

Much of the early work on analyzing time-series expression experiments 

used methods developed for static data [19]. Recently, several new approaches 

were presented specially targeting time-series expression data [3, 21, 31, 11, 

36]. We are also presenting few new clustering approaches specifically for 

time-series gene expression profile analysis in Chapter 3 and 4. 

1.4 Motivation and Objective 

An important process in functional genomic studies is clustering microarray 

time-series data, where genes with similar expression profiles are expected to 

be functionally related. A common problem in biology is to partition a set of 

experimental data into clusters in such a way that the data points within the 

same cluster are highly similar while data points in different clusters are as dis-

similar as possible. Profile alignment clustering is based on deciding upon the 

similarity often involves pairwise distance measures of co-expressions. Clus-

tering algorithms that apply a conventional distance (e.g. the Euclidian dis-

tance, correlation coefficient) function normally do not reflect the temporal 

data embedded in the expression profiles. 

We are proposing new profile alignment approaches to cluster microarray 

time-series gene expression profiles. Clustering time-series expression data 

with unequal time intervals is a very special problem, as measurements are 

not necessarily taken at regular time points. The area-based profile alignment 
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proposed in [15] takes two features vectors, and produces two new vectors in 

such a way that the area between the "aligned" vectors is minimized. The 

profile alignment method that takes the length of the intervals between the 

time-points into consideration was proposed in [15]. In both [15] and [25], 

hierarchical agglomerative clustering is used where the decision rule is based 

on the furthest-neighbor or complete linkage distance between two clusters. 

That clustering approach performs the pairwise alignment before measuring 

the distance between two profiles during each iteration, which slows down the 

computational process. Also, piecewise linear representation of gene expres-

sion profile was used which does not reflect the actual representation of the 

gene expression. 

To reflect the actual representation of the gene expression profiles, we gen-

eralize piecewise linear profiles to natural cubic spline profiles. Taking the 

lengths of the time intervals into account is accomplished by means of ana-

lyzing the area between two expression profiles, joined by the corresponding 

measurements at subsequent time points. This is equivalent to considering the 

sum or average of squared errors between the infinite points in the two lines. 

This analysis can be easily achieved by computing the underlying integral, 

which is analytically resolved in advance, subsequently avoiding expensive 

computations during the clustering process. Our approach allows us to apply 

flat clustering such as fc-means, which, though not optimal, provides a fast 

and practical solution to the problem. We also apply our approach to the 

expectation maximization (EM) clustering method. 
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1.5 Contributions 

In this thesis, clustering approaches are proposed based on the concept of 

Profile-Alignment, for clustering microarray time-series gene expression pro-

files. Our main contributions in this thesis are: 

1. Generalize the theoretical results of [15] to any continuously integrable 

representation of time-series gene expression profiles. The contributions 

are: 

a) Piecewise Linear (PL) function to Natural Cubic Spline (NCS) 

function representation. 

b) Pairwise alignment of NCS functions. 

c) Distance between two NCS functions. 

d) Analytical solutions of b) and c). 

2. Multiple Alignment of NCS representations and of PL representations 

of gene expressions time-series profiles. The contributions are: 

a) Universal Alignment Theorem: align the profiles such that the 

squared error between any two vertically shifted profiles is mini-

mal. 

b) Centroid of a cluster: a centroid function, which aim to find repre-

sentative profile of a cluster, defined based on natural cubic spline 

profiles. 

c) Analytical solutions of a) and b). 

3. Clustering approaches using alignment methods. The contributions are: 
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a) Theoretical results: clustering multiple-aligned data is equivalent 

to clustering original data, but is faster when using multiple-aligned 

data. 

b) Clustering multiple-aligned data using any representation (NCS or 

PL): 

i. /.-Means clustering via multiple alignment (fc-MCMA): an al-

gorithm that clusters multiple aligned profiles with /c-mcans. 

ii. EM clustering via multiple alignment (EMMA): a method that 

combines EM and multiple alignment of gene expression pro-

files to cluster microarray time-series data. 

iii. Theoretical result: we can cluster with any distance-based clus-

tering method. 

c) New measure of clustering accuracy using: 

i. Hungarian matching algorithm for clustering-phase assignment. 

ii. c-Nearest Neighbor (c-NN) method: combined with cross-validation 

and validity indices. 

Our major contribution is to use the benefit of alignment method in combi-

nation with any clustering method. Initialization is a major issue in /c-means 

and EM methods but we are not interested in improving fc-means or EM 

clustering methods. 
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1.6 Thesis Organization 

The thesis is organized in five chapters. Chapter II provides a survey of 

clustering, microarray time-series clustering and clustering with alignment. 

Chapters III and IV present the proposed alignment approaches and clus-

tering algorithms, respectively. Chapter V deals with experimental results 

and performance analysis, where all proposed approaches are analyzed and 

compared to existing methods. Finally, Chapter VI concludes the thesis and 

identifies open research problems arising from this work. 



Chapter 2 

Microarray Time-Series Data 

Clustering 

A brief review about clustering and its uses are discussed in this chapter. 

Microarray time-series data clustering is also formally defined here. The liter-

ature review of previous works on clustering, and specially microarray time-

series data clustering are discussed in Section 2.3. 

2.1 Clustering 

Clustering is a multivariate analysis technique used to discover unknown pat-

terns or groups in data. Clustering is appropriate when there is no a priori 

knowledge about the underlying data. Clustering, the process of grouping 

similar entities, can be done on any data such as genes, samples, time points 

in a time-series, etc. The particular type of input makes no difference on the 

clustering algorithm. The algorithm will treat all inputs as an n-dimensional 

11 



CHAPTER 2. MICROARRAY TIME-SERIES DATA CLUSTERING 12 

feature vector. To group objects that are similar, we need a very precise 

definition of measure of similarity. There are many different ways in which 

such a measure of similarity can be calculated depending on the representa-

tion of gene expression profiles. We are considering clustering on microarray 

time-series expression profiles. 

2.2 Microarray Time-Series Data Clustering 

In this section, we discuss the clustering the problem of the microarray time-

series gene expression profiles. Time-Series clustering problem is formally 

stated in order to discuss these approaches. Given a dataset V = ( x i ( t ) , . . . , 

x i = [x%i j • • •, xi„]1 is a n ^-dimensional feature vector that represents the ex-

pression level of gene i at n different time points, t = [£],..., tn]L. We want to 

partition a set of s profiles, T>, into k disjoint clusters Ci,..., Ch, 1 < k < s; 

such that (i) Ct ± 0,« = 1 , . . . , k; (ii) U.tA = V (iii) C{ n Cj = i ± j ; 

i,j = 1 ,...,k. Also, each profile is assigned to the cluster whose distance 

is the closest. We are considering the specific case of time-series clustering, 

where the order of time-points cannot be permuted because of the different 

permutations give different results which are biologically meaningless. 

2.3 Literature Review 

Many clustering methods for time-series gene expression data have been de-

veloped. A partitional clustering method based on A;-means applied in [29] 

to cluster gene expression temporal data.This approach does not require any 



CHAPTER 2. MICROARRAY TIME-SERIES DATA CLUSTERING 13 

prior knowledge, except the value of k needs to be known a priori, about the 

structure or to make any assumptions about the dynamics of the expression 

profile. In [20], Tamayo et al applied Self-organizing maps (SOM) to visualize 

and interpret the patterns of gene temporal expression profiles. The SOM, a 

type of mathemetical cluster analysis suits well with exploratory analysis of 

the data and to reveal relevant patterns in a large, high-dimensional dataset. 

Several other methods also have proposed including a jack-knife correlation 

coefficient model [14], an order-restricted inference-based method [28], a sta-

tistical two-regression step approach [1], a method for assigning genes to pre-

defined set of model profiles [12], and combined spline smoothing and first 

derivative computation [27]. In [6], fuzzy clustering of time-series data based 

on the similarity of relative change of expression level and the corresponding 

temporal information of the profiles. 

A hidden phase model was used for clustering time-series data to define 

the parameters of a mixture of normal distributions in a Bayesian-like manner 

that are estimated by using expectation maximization (EM) [4], A Bayesian 

approach in [16], partitional clustering based on /c-means in [29] and an Eu-

clidean distance approach in [20] have been proposed for clustering time-series 

gene expression profiles. They have applied self-organizing maps (SOMs) to 

visualize and interpret gene temporal expression profile patterns. Also, the 

methods proposed in [14, 26] are based on correlation measures. A method 

that uses jack-knife correlation with or without using seeded candidate profiles 

was proposed for clustering time-series microarray data as well [14]. Specifying 

expression levels for the candidate profiles in advance for these correlation-

based procedures requires estimating each candidate profile, which is made 
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using a small sample of arbitrarily selected genes. The resulting clusters de-

pend upon the initially chosen template genes, because there is a possibility 

of missing important genes. A regression-based method, which is suitable for 

analyzing single or multiple microarrays was proposed in [12] to address the 

challenges in clustering short time-series expression datasets. 

A Bayesian approach for improving the clustering results of gene expression 

series using rough knowledge the general shapes of the classes was proposed 

[4]. Knowledge about the general shapes can be elementary regarding the 

change of the mean expression level over time. The information regarding the 

shape of the class are directly integrated into the model so that class with the 

desired profiles are favored. A Bayesian method was also applied for model-

based clustering where the models are autoregressive curves of fixed order 

[16]. To search for the most likely set of clusters out of the given temporal 

expression data, an agglomerative procedure was used. The dynamic nature of 

gene expression time-series data explicitly takes into account during clustering. 

This approach also identifies the number of distinct clusters based on the well-

known Akaike information criterion. This approach is a specialized version of 

Bayesian Clustering by Dynamics where two time-series are considered similar 

if they are generated by the same stochastic process. 

In [28], Peddada et al. applied an order-restricted inference method for se-

lecting and clustering genes expression profiles for time-series or dose-response 

data. The method applies the ideas of order-restricted inference and uses 

known inequalities among parameters. In this procedure, two profiles are 

placed in the same cluster only if all the inequalities between the expected 

expression levels at various time points are the same. This method makes 
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use of the ordering in a time-series study and can detect genes more sen-

sitively using their temporal ordering and finding consistent patterns over 

time. A regression-based approach that identifies genes with different expres-

sion profiles across analytical groups in time-series experiments was proposed 

in [lj.This method uses a two-step regression strategy, where the first step 

adjusts a global regression model with all the defined variables to identify 

differentially expressed genes and the next step finds statistically-significant 

different profiles by applying a variable selection strategy that studies the 

difference between the groups. This method can be used to find genes with 

significant temporal expression changes between experimental groups, and to 

analyze the magnitude of these differences. 

The analysis of gene temporal expression profiles with the problem of miss-

ing values and non-uniformly sampled data was discussed in [38]. Each ex-

pression profile estimated from observed data where gene temporal expression 

profiles are represented as continuous curve using statistical spline estimation. 

The spline coefficients of the genes are constrained in such way that similar 

expression patterns fall into the same class. In [27], a method that focuses 

on the shapes of the curves and not on the absolute levels of expression was 

proposed to obtain relevant clustering of gene expression temporal profiles by 

identifying homogeneous clusters of genes. It combines first derivative com-

putations and spline smoothing with hierarchical and partitional clustering. 

This approach is based on the framework of functional data analysis [24], 

which focuses on the first derivative of curves by means of a priori spline 

smoothing. 

A similarity measure for the co-expressed genes based on the expression 
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level rate of change across time-points was proposed in [6]. The similarity 

between gene expression time-series profiles was calculated by measuring the 

difference of the slopes between the functions, where gene temporal profiles 

were represented as piece-wise linear functions. The variable time intervals 

are viewed as weights, where far apart expressions take smaller weights in the 

comparison. A clustering algorithm was proposed which is motivated by the 

advantages of fuzzy clustering, and incorporates the distance measure in the 

fuzzy-c-means clustering scheme [10]. 

Clustering based on profile alignment has been discussed recently [3, 21, 

31, 11, 36]. In [36], the authors proposed an approach that translates gene 

expression into gene variation vectors and derives the proximity measure for 

these vectors. In [3], the authors proposed a method that finds clusters of 

genes such that the genes within a cluster share a common alignment, but 

each cluster is aligned independently of the others. The authors also present 

a segment-based alignment algorithm for time series. A clustering method 

that uses a local shape-based similarity measure based on Spearman rank 

correlation is proposed in [21]. In their method, similar local regions can be 

time-shifted to allow the detection of transcription control relationships. An 

alignment method that uses HMMs to align time-series gene expression to a 

common profile has been introduced in [31]. An Area-based profile alignment 

and mean-square-error profile alignment methods have been introduced in [15] 

and [25], respectively. 



Chapter 3 

Gene Expression Profile Alignment 

Methods 

Many clustering methods have been developed, and each has its own advan-

tages and disadvantages regarding handling noise in the measurements and 

the properties of the data set being clustered. In [15], hierarchical clustering 

was used and the decision rule was the farthest-neighbor distance between two 

clusters computed using an equivalent of Eq. (3.1) for piece-wise linear pro-

files. Hierarchial clustering is a greedy method that cannot be readily applied 

on large data sets. 

An important process in functional genomic studies is clustering microar-

ray time-series data, where genes with similar expression profiles are expected 

to be functionally related. A common problem in biology is to partition a 

set of experimental data into clusters in such a way that the data points 

within the same cluster are highly similar while data points in different clus-

ters are as dissimilar as possible. Profile alignment clustering is based on 

17 
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deciding upon the similarity often involves pairwise distance measures of co-

expressions. Clustering algorithms that apply a conventional distance (e.g. 

the Euclidian distance, correlation coefficient) function normally do not re-

flect the temporal data embedded in the expression profiles. We are proposing 

new profile alignment approaches to cluster microarray time-series gene ex-

pression profiles. 

3.1 Clustering with Alignment 

There is some alignment techniques already introduced to resolve this issue 

before applying the distance function. Area based profile alignment proposed 

in [15] takes two features vectors, and produces two new vectors in such a way 

that the area between "aligned" vectors is minimized. The profile alignment 

method that takes the length of the intervals between the time-points into con-

sideration was proposed in [15]. That approach considers the weights of the 

intervals equally, irrespective to the actual size of the interval of the measure-

ment. The Profile-Alignment algorithm takes two feature vectors from the 

original space as input and outputs two feature vectors in the transformed 

space after aligning them in such way that the sum of squared errors is min-

imized. The alignment of the profiles is done using an area-based distance 

function rather than conventional distance functions. The area-based dis-

tance function is defined by computing the integral distance between the two 

aligned profiles. In both [15] and [25], hierarchical agglomerative clustering is 

used where the decision rule is based on the furthest-neighbor or complete link-

age distance between two clusters. The complete linkage or furthest-neighbors 
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approach calculates the distance between the furthest pair of points for each 

pair of clusters and merges the two clusters that have the minimum distance 

among all such distances between all pair of clusters under consideration. That 

clustering approach does the pairwise alignment before measuring distance be-

tween two profiles during each iteration, which slows down the computational 

process. Also piecewise linear representation of gene expression profile does 

not reflect the actual representation of the gene expression. 

We re-formulate the profile alignment problem of [15] in terms of inte-

grals of arbitrary functions, allowing us to generalize from a piecewise linear 

interpolation to any type of interpolation one believes be more physically 

realistic. The expression measurements are basically snapshots taken at time-

points chosen by the experimental biologist. The cells expressing genes do not 

know when the biologist is going to choose to measure gene expression, which 

one would guess is changing continuously and smoothly at all the time points. 

Thus, smooth spline curve through the known time-points in the cell's expres-

sion path would be a better guess. We use natural cubic spline interpolation 

to represent each gene expression profile, which gives a handy way to align 

profiles for which measurements were not taken at the same time-points. We 

generalize the pairwise expression profile alignment formulae of [15] from the 

case of piece-wise linear profiles to profiles which are any continuous integrable 

function on a finite interval. Next, we extend the concept of pairwise align-

ment to multiple expression profile alignment, where the profiles from a given 

set are aligned in such a way that the sum of squared errors over a time-interval 

defined on the set is minimized. Finally, we combine A;-rrieans clustering with 

our multiple alignment approach to cluster microarray time-series data. In 
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this thesis, we call this clustering approach as k-Means Clustering via Multi-

ple Alignment (fc-MCMA). Our multiple alignment approach is also combined 

with expectation-maximization (EM) clustering, called as EM Clustering via 

Multiple Alignment (EMMA) to cluster microarray time-series data. 

3.2 Alignment Methods for Continuous and In-

tegrate Functions 

3.2.1 Pairwise Alignment 

Given two profiles, x(t) and y(t) (either piece-wise linear or continuously in-

tegrable functions), where y(t) is to be aligned to x(t), the basic idea of align-

ment is to vertically shift y(t) towards x(t) in such a way that the squared 

errors between the two profiles is minimal. Let y(t) be the result of shifting 

y(t). Here, the error is defined in terms of the areas between x(t) and y(t) 

in interval [0, T]. Functions x(t) and y(t) may cross each other many times, 

but we want that the sum of all the areas where x(t) is above y(t) minus the 

sum of those areas where y(t) is above x(t) to be minimal (see Fig. 3.1). Let 

a denote the amount of vertical shifting of y(t). Then, we want to find the 

value amjn of a that minimizes the integrated squared error between x(t) and 

y(t). Once we obtain am;n, the alignment process consists of performing the 

shift on y{t) as y(t) = y(t) - am i n . 

The pairwise alignment results of [15] generalize from the case of piece-wise 

linear profiles to profiles which are any integrable functions on a finite interval. 

Suppose we have two profiles, x(t) and y{t), defined on the time-interval [0, T], 
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The alignment process consists of finding the value a that minimizes 

rT r . ,9 cT 
fa(x(t),y(t))= [ \x(t)-y(t)]2dt= [ \x(t) - [y(t) - a] 

Jo 1 J Jo L J 

Differentiating yields 

dt. (3.1) 

A 
da" 

fa(x(t),y(t)) = 2 [ \x(t)+a-y(t)]dt = 2 [ \x{t)-y(t) 
Jo 1 J Jo 1 

dt + 2aT. (3.2) 

Setting j-fa(x(t), y(t)) = 0 and solving for a gives 

1 fT r n 
Omin = -Tp J x(t)-y(t) dt, (3.3) 

and since j^fa(x(t),y(t)) = 2T > 0 then amin is a minimum. The integrated 

error between x(t) and the shifted y(t) = y(t) — amjn is then 

[ \x(t) - y(t)]dt = f \x(t)-y(t) 
Jo J Jo L J 

dt + aminT = 0. (3.4) 

In terms of Fig. 3.1, this means that the sum of all the areas where x(t) 

is above y(t) minus the sum of those areas where y(t) is above x(t) is zero. 

Given an original profile x{t) = [ei, e2 , . . . , e„] (with n expression values 

taken at n time-points t\, t2, • •., tn), we use natural cubic spline interpolation, 

with n knots, (t l5 e i ) , . . . , (tn, en), to represent x(t) as a continuously integrable 

function 

xi{t) if ti <t<t2 

x(t) = ; (3.5) 

xn-i(t) if tn_i<t<tn 

where Xj(t) = Xj3(t — tj)3 + Xj2(t — tj)2 + x3] (t — tj)1 + x]()(t — tj)° interpolates 

x(t) in interval [tj,tj+1], with spline coefficients Xjk € for 1 < j < n — 1 

and 0 < k < 3. 
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For practical purposes, given the coefficients, Xjk £ 5?, associated with 

x(t) = [ei, e 2 , . . . , en] € 3?n, we need only to transform x(t) into a new space as 

x{t) = [xi3, X12, Xn, Xio, • . • , Xj3, Xj2, Xji, Xjo, . . . , X(n-1)3) £(n-l)2? X(„_i)x, G 

gfj4(n_1). We can add or subtract polynomials given their coefficients, and the 

polynomials are continuously differentiable. This yields an analytical solution 

for omin in Eq. (3.3) as follows: 

— - 4 e r h'> - » « ] * - - f £ t 
j=1 J t i j=1 fc=0 

(3.6) 

Fig. 3.1(b) shows a pairwise alignment, of the two initial profiles in Fig. 

3.1(a), after applying the vertical shift y(t) y(t) — am jn . The two aligned 

profiles cross each other many times, but the integrated error, Eq. (3.4), is 

zero. 

Figure 3.1: (a) Unaligned, and (b) Aligned profiles x(t) and y(t) after applying y(t) y(t) — amjn. 

In particular, from Eq. (3.4), the horizontal t-axis will bisect a profile x(t) 

into two halves with equal areas, when x(t) is aligned to the t-axis. In the next 
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section, we use this property of Eq. (3.4) to define the multiple alignment of 

a set of profiles. 

3.2.2 Multiple Alignment 

Given a set D — {x i (£ ) , . . . , xs(t)}, we want to align the profiles such that the 

integrated squared error between any two vertically shifted profiles is minimal. 

Thus, for any Xi(t) and x3(t), we want to find the values of ar and a3 that 

minimize 

rT „ o rT f r i 2 f i 
fai,a, (xi(t),xj(t)) = / Xi(t)-Xj(t) dt = I [xi(t) - Oi]-[xj{t) - aj] 

Jo 1 • ' J o 1 

2 
dt, 

(3.7) 

where both Xi(t) and Xj(t) are shifted vertically by an amount a; and a3, re-

spectively, in possibly different directions, whereas in the pairwise alignment 

of Eq. (3.1), profile y(t) is shifted towards a fixed profile x(t). The mul-

tiple alignment process consists then of finding the values of ai,... ,as that 

minimize 

Fai_a,(x1(t),...,xa(t))= (3-8) 
l<i<j<s 

We use Lemma 3.2.1 to find the values aj and aj, 1 < i < j < s, that 

minimize Fa^,„As . 

Lemma 3.2.1. If Xi(t) and Xj(t) are pairwise aligned each to a fixed profile, 

z(t), then the integrated error JQ
T [Xi(t) — Xj(t)] dt = 0. 

Proof. If Xi(t) and Xj(t) are pairwise aligned each to z(t), then from Eq. (3.3), 

we have am i n i = /Q
T [z(t) - Xi(t)] dt and am i n . = JQ

T [z(t) - Xj(t)] dt. 

Then, 
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So [Xi(t) - Xj(t)] dt = Jq [[Xj(£) - a m i n J - [Xj(t) - a m i n J ] dt = 

J0
T

 Xi(t)dt + f0
T [z(t) - Xi(t)] dt - f0

T
 Xj(t)dt - J0

T [z(t) - xj(t)} dt = 0. • 

In other words, Xj(t) is automatically aligned relative to .x?(i), given z(t) 

is fixed. 

Corollary 3.2.2. I f x ^ t ) andxj(t) are pairwise aligned each to a fixed profile, 

z(t), then famin.,aminj (xi(t),xj(t)) is minimal. 

Proof. From Lemma 3.2.1, 

So &(<) - Xj(t)] dt = 0 /0
T [[xi(t) - am i nJ - [xj(t) - a m i n J ] 2 dt is minimal. 

• 

Lemma 3.2.3. If profiles X \ ( t ) , . . . , x s ( t ) are pairwise aligned each to a fixed 

profile, z ( t ) , then FaaiBii...,amSnB { x x ( t ) , . . . , x a ( t ) ) is minimal. 

Proof. From Corollary 3.2.2, fauaj ( x i { t ) , x j ( t ) ) > f a ^ a ^ . {xi(t),Xj(t)), with 

equality holding when a^ = aminfc; which is attained by aligning each Xk(t) in-

dependently with z(t), 1 < k < s. From the definition of Eq. (3.8), it 

follows that Faij...,0s (x1(t),...,xa(t)) > El<i<j< s /amini ,amin. (Xi(t), Xj (t)) = 

Famini,...,amins (xi(t),...,xa(t)), with equality holding when ak = amink, 1 < 

k<s. • 

Thus, given a fixed profile z(t), applying Corollary 3.2.2 to all pairs of 

profiles minimizes Faii...)0s ( x i ( t ) , . . . , x s ( t ) ) in Eq. (3.8). 

Theorem 3.2.4. Given a fixed profile, z(t), and a set of profiles, X = 

{xi(t),... ,xs(t)}, there always exists a multiple alignment, X = (xi(i),...,xs(i)}, 
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such that 

1 F \ 1 Xi(t) = Xi(t) - am i n i , where, am i n i = - — J \z(t) - Xi(t) dt, (3.9) 

and, in particular, for profile z(t) = 0, defined by the horizontal t-axis, we 

have 
1 f T 

Xi(t) = Xi(t) - omin i , where, amin . = — J Xi(t)dt. (3.10) 

We use the multiple alignment of Eq. (3.10) in all subsequent discussions. 

Using spline interpolations, each profile Xi(t), 1 < i < s, is a continuously 

integrable profile 

xi,l(f) if tx < t < h 

Xi(t) = < (3.11) 

xi,n-l(t) if 1 < t < tn 

where, xi,j(t) = Xijz(t — tj)z + Xij2(t — tj)2-\-xiji(t — tj)1 +Xij0(t — tj)° represents 

Xi(t) in interval [t,3, tJ+1], with spline coefficients xl?i, for 1 < i < s, 1 < j < 

n — 1 and 0 < k < 3. Thus the analytical solution for am;ni in Eq. (3.10) is 

n-1 3 I h J. XJ 

run* — Tf, 
xijk {tj-1-1 t j ) 

k+1 

j=1 fc=0 k + 1 
(3.12) 

3.2.3 Distance Function 

The distance between any two piecewise linear profiles was defined as / ( a m i n ) 

in [15]. For convenience here, we change the definition slightly to: 

rT i i / r 
d(x,y) = — / ( a m i n ) = ? j0 + an y{t) dt. (3.13) 
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For any function 4>(t) defined on [0 ,T], we also define 

Then, from Eqs. (3.1) and (3.3), 

i r T r 
d(x, y) = ^J [[x(t) - y(t)}2 + 2amin [x(t) - y(t)) + 

i fT r l 2 

= T J0 ~ ^ J d t ~ 2a™in + a™in 

(3.14) 

dt 

= ([x{t) - y{t)}2) - (x(t)-y{t)}2. (3.15) 

Apart from the factor this is precisely the distance dpA.{x,y,t) in [15]. 

By performing the multiple alignment of Eq. (3.10) to obtain new profiles 

x(t) and y(t), we have: 

fT 
d(x, y) = ([x(t) - y(t)]2) = f j [£(*) - Vit) dt. (3.16) 

Thus, d(x, y)^ is the 2-norm, satisfying all the properties we might want for 

a metric. On the other hand, it is easy to show that d(x, y) in Eq. (3.16) does 

not satisfy the triangle inequality, and hence it is not a metric. We, however, 

use d(x,y) in Eq. (3.16) as our distance function, since it is algebraically 

easier to work with than the metric d(x, y)^. Eq. (3.16) is closer to the spirit 

of regression analysis, and thus, we can dispense with the requirement for the 

triangle inequality. Also the distance as defined in Eq. (3.16) is unchanged 

by an additive shift, and hence, is order-preserving; that is: d(u, v) < d(x, y) 

if and only if d (u, v) < d (x. y). This property has important implications for 

distance-based clustering methods that rely on pairwise alignments of profiles; 

as discussed later in the experiment chapter. 
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With the spline interpolations of Eq. (3.5), we derived the analytical 
solution for d{x,y) in Eq. (3.16), using the symbolic computational package, 
Maple*, as follows: 

P2(n7 — m7) (2PQ - 6P2m)(n6 - m6) (2PR - 10PQm + Q2 + 15P2m2)(n5 - m5) 
d(x, y) — + -| - |-7 6 5 

(-8PRm - 4Q2m + 2PS + 20PQm2 + 2QR - 20P2m3)(n4 - m4) 
4 

(-6QRm - 20Pm3Q + R2 + 6Q2m2 + 12Pm2R - 6PmS + 15P2m4 + 2Q5)(n3 - m3) 

{ 

3 
(10Pm4<3 + 6Qm2R + 2RS - 8Pm3R - 2R2m - 6P2m5 + &Pm2S - 4QmS - 4Q2m3) 

(n2 - m2)} - 2RmS(n - m) + S2(n - m) + P2m6(n - m) + Q2mA[n - m) + 

R2m2(n - m) - 2Qm3R(n - m) - 2Pm5Q(n - m) - 2Pm3S(n - m) + 

2Pm4R(n - m) + 2Qm2S(n - m) (3.17) 

where P = (xj3 - yj3), Q = (xj2 - R = {xji - Vji), S = (xj0 - yj0 + 

cy — cx)i m = tj and n = tj+\. 

3.2.4 Centroid of a Cluster 

Given a set of profiles D = ( x i ( t ) , . . . , rcs(i)}, we aim to find a centroid profile 

fi(t) that well represents D. An obvious choice is the function that minimizes 

s 

= (3.18) 
i=i 

where A plays the role of the within-cluster-scatter defined in [15]. Since d(-, •) 

is unchanged by an additive shift x(t) x(t) — a in either of its arguments, 

we have 
s 1 fT S 

A\ii) = Y , d { x i , n ) = - I (3.19) 
2=1 i= 1 

where, X = {xi(t),..., xs(t)} is the multiple alignment of Eq. (3.10). This 

is a functional of /x; that is, a mapping from the set of real valued functions 

* All the analytical solutions in this paper were derived by Maple. 
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defined on [0, T] to the set of real numbers. To minimize with respect to /i we 

set the functional derivative to zero*. This functional is of the form 

F[<j>] = J L(<j>(t))dt, (3.20) 

for some function L, for which the functional derivative is simply 6<p(t) 

• In our case, we have 

5A[/x] 2 
&(*) - Hit)] = -7r E Xi{t) - sn(t) . (3.21) 

> i=l \ i= l 

Setting = o gives 

1 s 

V(t) = - ^ X i i t ) . (3.22) 
s 

2=1 

With the spline coefficients, of each Xi(t) interpolated as in Eq. (3.11), 

the analytical solution for /j,(t) in Eq. (3.22) is 

3 

2=1 
] xijk (t t j ) 

,k=0 

— am;ni, in each interval [tj,tj+i]. (3.23) 

Eq. (3.22) applies to aligned profiles while Eq. (3.23) can apply to unaligned 

profiles. 

3.3 Alignment Methods for Piecewise Linear Func-

tions 

In this chapter, we have proposed pairwise alignment, multiple alignment, 

distance function and centroid of a cluster for continuous integrable functions 

^For a functional F [<-/;], the functional derivative is defined as ^(tj = 

lira, _>o (^I'ft+'^l-^M) ; w here 6t(r) = 8(t — t) is the Dirac delta function centered at t. 
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which is Natural Cubic Spline function. All the above theoretical results on 

Natural Cubic Spline representations including lemmas and theorems are also 

apply to Piecewise Linear representations of time-series profiles. Clustering 

algorithms that are proposed in the next chapter also apply to Piecewise 

Linear representations of time-series profiles. 



Chapter 4 

Clustering via Continuous Gene 

Expression Profile Alignment 

In both [15] and [25], profiles were represented as piecewise linear functions. 

Area-based profile alignment takes two features vectors, and produces two new 

vectors in such a way that the area between "aligned" vectors is minimized. 

In [15], hierarchical-agglomerative-clustering is used where the decision rule 

is based on the furthest-neighbor or complete linkage distance between two 

clusters. The complete linkage or furthest neighbors calculates the distance 

between the furthest pair of points for each pair of clusters and merges the two 

clusters that have the minimum distance among all such distances between 

all pairs of clusters under consideration. The proposed clustering algorithms 

are discussed in this chapter. Validity indices to determine the accuracies of 

the proposed approaches and to determine the number of clusters are also 

discussed. 

30 
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4.1 £;-Means Clustering via Multiple Alignment 

The fc-means algorithm is one of the simplest and fastest clustering algorithms. 

It takes the number of clusters, k, as an input parameter. The program starts 

by randomly choosing k points as the centers of the clusters. These points 

may be just random points from more densely populated volumes of the input 

space or just randomly chosen patterns from the data itself. Once some cluster 

centers have been chosen, the algorithm will take each profile and calculate 

the distance from it to all cluster centers. Since the cluster centers were 

chosen randomly, it is not said that this is the correct clustering. The second 

steps starts by considering all profiles associated which one cluster center and 

calculating a new position for this cluster center. The coordinates of this 

new center are usually obtained by calculating the mean of the coordinates 

of the points belonging to that cluster. Since the centers have moved, the 

profile memberships need to be updated by recalculating the distance from 

each profile to the new cluster centers. The algorithm continues to update 

the cluster centers based on the new membership and update the membership 

of each profile until the cluster centers are such that no profile moves from 

one cluster to another. Since no profile has changed its membership, the 

centers will remain the same and the algorithm will terminate. A more formal 

definition of /e-means clustering is stated below. 

In A;-means [35], we want to partition a set of s profiles, T> — {x\(t),..., xs(£)}, 

into k disjoint clusters Ci,..., C/., 1 < k < s; such that (i) Ci ^ 0, i = 1 , . . . , k\ 

(ii) Uf=lCi = V (iii) Ci fl Cj = i j^ j; i,j = 1 ,...,k. Also, each profile 

is assigned to the cluster whose mean is the closest. It is similar to EM for 
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mixtures of Gaussians in the sense that they both attempt to find the centers 

of natural clusters in the data. It assumes that the object features form a 

vector space. Let U = {uVJ} be the membership matrix defined as follows: 

{ 1 if d (xi, fij) = mini=i i-d (x,, jii) where i = l,...,s 
(4.1) 

0 otherwise 

The aim of fc-means is to minimize the sum of squared distances: 

n k 

= (4-2) 
%=i j=i 

where 0 = //i,/x2, 

Algori thm 1 k-MCMA: k-Means Clustering with Multiple Alignment 
Input: Set of profiles, T> — {xi(t),... ,xs(t)}, and desired number of clusters, 

k 
Output: Clusters C^,..., Cp,k 

1. Apply natural cubic spline interpolation on xi(t) G T>, for 1 < i < k 
(see Section 3.2.1) 

2. Multiple-align transformed T> to obtain T> = { x i ( t ) , . . . , using 
Eq. (3.10) 

3. Randomly initialize centroid p>i(t), for 1 < i < k 
repeat 
4.a. Assign Xj(t) to cluster CIH with minimal d (x3, fij), for 1 < j < s and 

1 <i<k 

4.b. Update /tj(£) of C^, for 1 < i < k 
until Convergence: that is, no change in fii(t), for 1 < i < k 
return Clusters C ^ , . . . , Cp,k 

In A-MCMA (see Algorithm. 1), we first multiple-align the set of profiles 

V, using Eq. (3.10), and then cluster the multiple aligned V with fc-means. 

Recall that the process of Eq. (3.10) is to pairwise align each profile with 

the t-axis. The k initial centroids are found by randomly selecting k pairs of 
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profiles in t>, and then take the centroid of each pair. In step (4.a), we do 

not use pairwise alignment to find the centroid [ii{t) closest to Xj(t), since, 

by Lemma 3.2.1, they are automatically aligned relative to each other. When 

profiles are multiple-aligned, any arbitrary distance function other than Eq. 

(3.16) can be used in step (4.a), including the Euclidean distance. Also, by 

Theorem 4.1.1 below, there is no need to multiple-align C^ in step (4.b), to 

update its centroid fiiit). 

Theorem 4.1.1. Let jl(t) be the centroid of a cluster of m multiple-aligned 

profiles. Then p,(t) = fl(t). 

Proof. We have p,(t) = p,(t) - am i n- . However, amin- = ^ JQ
T p,(t)dt 

= T Jo m i = since each Xi(t) is aligned with the £-axis. • • 

Thus, Lemma 3.2.1 and Theorem 4.1.1 make fc-MCMA much faster than 

applying fc-means directly on the non-aligned dataset T>, and even more than 

this when the Euclidean distance is used to assign a profile to a cluster. An 

important implication of Eq. (3.16) is that applying fc-means on the non-

aligned dataset V (i.e., clustering on £>), without any multiple alignment, 

is equivalent to fc-MCMA (i.e., clustering on T>). That is, if a profile xi(t) 

is assigned to a cluster CIH by fc-means on T>, its shifted profile Xi{t) will 

be assigned to cluster C^ by fc-MCMA (fc-means on T>). This can be easily 

shown by the fact that multiple alignment is order-preserving, as pointed out 

in Section 3.2.3. In fc-means on Z>, step (4.a) would require 0{sk) pairwise 

alignments to assign s profiles to fc clusters, whereas no pairwise alignment is 

needed in fc-MCMA. In other words, we show that we can multiple-align once, 

and obtain the same fc-means clustering results, provided that we initialize the 
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means in the same manner. This also reinforces a known fact demonstrated in 

[33], which is a dissimilarity function that is not metric can be made metric by 

using a shift operation (in our case any metric can be used in step (4.a) such as 

the Euclidean distance). In this case, the objective function of A;-means does 

not change, and convergence is assured. Thus, this saves a lot of computations 

and opens the door for applications of multiple alignment methods to many 

distance-based clustering methods. 

4.2 EM Clustering via Multiple Alignment 

In [18], we devised a clustering approach, A-MCMA, where we combined the 

multiple alignment of Eq. (3.10) and the A;-means clustering method with 

a distance function based on the pairwise alignment of Eq. (3.3). In this 

section, we use the EM clustering algorithm instead and combine it with the 

alignment methods. 

EM is used for clustering in the context of mixture models [2], The goal 

of EM clustering is to estimate the means and standard deviations for each 

cluster so as to maximize the likelihood of the observed data (distribution). 

In other words, the EM algorithm attempts to approximate the observed 

distributions of values based on mixtures of different distributions in different 

clusters. A mixture of Gaussians is a set of k probability distributions, where 

each distribution represents a cluster. With an initial approximation of the 

cluster parameters, it iteratively performs two steps: first, the expectation step 

computes the values expected for the cluster probabilities, and second, the 

maximization step computes the distribution and their likelihood. It iterates 
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until the log-likelihood reaches a (possibly local) maximum. The algorithm is 

similar to fc-means in the sense that the centers of the natural clusters in the 

data are re-computed until a desired convergence is achieved. 

In EM [35], we want to partition a set of s profiles, V = {xi(t),..., xs(t)}, 

into k disjoint clusters Ci,..., C 1 < k < s, such that; (i) Q ^ 0, i = 1 , . . . , A;; 

(ii) U=ici = ^ (i") CiHCj = = 1 ,...,k and i ± j. Let V be the 

complete-data space drawn independently from the mixture density: 

k 

E-step: p(x\6) = \CU 6i)P{Ci) (4.3) 

i=1 

where parameter 6 = [6 \ , . . . , Ô }1 is fixed but unknown, and P{Ci) is the known 

posterior probability of class Ci. The aim is to maximize the likelihood: 
s 

M-step: p(D\0) = JJp(z e |0 ) (4.4) 
e = l 

To maximize the likelihood function, log-likelihood is used in the normal dis-

tribution of the component densities given by: p(xk\Ci,9i) ~ Niji.^ £j) where 

0, = [/ij, Ej]4; /ii and Ei are the means and the covariances of the classes, 

respectively. Both steps iterate until the log-likelihood reaches a maximum. 

Thus, EM assigns profiles to multiple clusters, like in fuzzy clustering. Also, 

unlike in /c-means, each profile is assigned to the cluster that finds the maxi-

mum posterior probability. 

In EMMA (see Algorithm 2), we first multiple-align the set of profiles T>, 

using Eq. (3.10), and then cluster the multiple-aligned V with EM. Recall 

that the process of Eq. (3.10) is to pairwise align each profile with the t-

axis. The k centroids can be initialized randomly in step (3) of EMMA, or by 

any initialization approach. However, to obtain better clustering results with 
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Algori thm 2 EMMA: EM Clustering with Multiple Alignment 
Input: Set of profiles, T> = {x\(t),..., xs(t)}, and desired number of clusters, 

fc 
Output: Clusters C^,..., C/xk 

1. Apply natural cubic spline interpolation on Xi(t) G V, for 1 < i < k 
(see Section 3.2.1) 

2. Multiple-align transformed V to obtain V = (x i (£ ) , . . . ,xs(t)}, using 
Eq. (3.10) 

3. Initialize centroid fti(t), for 1 < i < k 

4. Compute the initial log-likelihood (see Eq. (4.4)) 
repeat 

1. E-step: p(x\0) = £ * = 1 p ( z | 4 > W 4 ) 

2. Assign Xj(t) to cluster Ct~H with maximum log-likelihood, for 1 < 
j < s and 1 < i < k 

3. M-step: p{D\9) = Y[s
e=1p{xe\6) 

until The log-likelihood reaches its maximum 
return Clusters C ^ , . . . , C^ 

EMMA, it is necessary to start with near-optimal centroids; thus, we applied 

the fc-MCMA algorithm of [18] to generate the fc initial centroids in step (3). 

For distance-based clustering algorithms such as the fc-means method, it 

has been shown that any arbitrary distance function (including Euclidean) can 

be used in the cluster assignment step of the algorithm, when the profiles are 

multiple-aligned first [18]. Moreover, Theorem 4.1.1 showed that, for distance-

based methods, there is no need to multiple-align C^ to update its centroid 

ik{t). 

By Theorem 4.1.1, there is also no need to multiple-align a cluster C^ in 

step (1) of EMMA, for updating its centroid fii{t). Likewise, any arbitrary 

distance function can be used in step (1), for computing the centroids. Thus, 
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Theorem 4.1.1 makes EMMA run much faster than applying EM directly 

on the non-aligned data set V. EMMA is not a distance-based clustering 

are also preserved when the distances are preserved. In other words, we show 

that we can multiple-align once, and obtain the same EM clustering results, 

provided that we initialize the means in the same manner. 

The two fundamental properties, number of clusters and the goodness of the 

clustering itself, need to be determined in any typical clustering system. To 

determine the appropriate number of clusters and also the goodness or validity 

of the resulting clusters, we have run our fc-MCMA algorithm in conjunction 

with four cluster validity indices [17], namely Davies-Bouldin's index, Dunn's 

index, Calinski-Harabasz's index, and index I . Once the appropriate number 

of clusters is determined, fc-MCMA is used for proper partitioning of the data 

into the said number of clusters. Let K be the number of clusters. 

Davies-Bouldin's ( D B ) index is a function of the ratio of the sum of 

within-cluster scatter to between-cluster separation. The within-cluster scatter 

for the ith cluster, Su and the distance between clusters is d.LJ = 11//j — fij 11. 

Then, the Davies-Bouldin (DB) index is defined as follows: 

The objective is to minimize the DB index for achieving the best clustering. 

method, nevertheless the quantities p(x\8), p(x\C(H,di), P(C^) , and p(D\9) 

4.3 Assessment of Clustering Quality 

(4.5) 
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D u n n ' s index: Let S and T be two nonempty subsets of 7ZN . The 

diameter A of S is defined as A(S) = maxX:yeS{d(x, y)} and the distance 5 

between S and T is defined as 5(S,T) = m i n X e S , y e T { d { x , y ) } , where d(x,y) 

denotes the distance between x and y. Then, Dunn's index defined as follows: 

Dunn = min { min { — — — — ( 4 . 6 ) 

The number of clusters that maximizes Dunn is taken as the optimal number 

of clusters. 

Calinski Harabasz's (CH) index: CH index is defined as follows: 

[traceB/(K- 1)] 
[traceW/(n- K)Y { } 

where B is the between-cluster matrix and W the within-cluster scatter ma-

trix. The maximum level is used to indicate the correct number of clusters in 

the data. 

I index: The I index is defined as follows: 

X { K ) = {1< X ^ X D k Y > ( 4 " 8 ) 

where EK = Y,k=iYTj=iukj\\xj - Zk\\, D K = m a x ^ = 1 ||zj - Zj\\. U(X) = 

[ukj]Kxn is a partition matrix for the data, and Zk is the centroid of the fcth 

cluster. The number of clusters that maximizes T(K) is considered to be the 

correct number of clusters. We have taken p = 2, which is used to control the 

contrast between the different cluster configurations. This index is typically 

used in many applications. 

To find the best number of clusters, we applied fc-MCMA and EMMA on 

a data set in conjunction with the four above-discussed validity indices for 
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fc = 1 , . . . , y/s (where s is the number of profiles) clusters. Among the four 

validity indices, we see which number is the most frequent and that number 

is chosen as the best number of clusters for that data set. 

4.4 Cluster Visualization 

To visualize the clusters with pre-clustered yeast phases, we face a combina-

torial assignment problem. We assigned each fc-MCMA and EMMA cluster 

to a yeast phase using the Hungarian algorithm [13]. The Hungarian method 

is a combinatorial optimization algorithm which solves the assignment prob-

lem in polynomial time. Our phase assignment problem is formulated using 

a complete bipartite graph G = (C, P, E) with fc cluster vertices (C) and fc 

phases vertices (P), and each edge in E has a nonnegative cost c(CfH, Vo:j), 

CIH € C and V^ € P. We want to find a perfect matching with minimum 

cost. The cost of an edge between a cluster vertex C^ and a phase vertex V^ 

is the distance between their centroids /i2, that is V^) = d(C{H, V^) , 

and the distances are computed using Eq. (3.16). In terms of such a bipar-

tite graph, the Hungarian method will select the fc perfect matching pairs 

(CiM, Vo3) with minimum cost. In Fig. 5.2, the cluster and the phase of each 

of the five selected pairs, found by the Hungarian algorithm, are shown at the 

same level; e.g., cluster C5 of fc-MCMA is assigned to the Late Gl phase of 

[22] by our phase assignment approach, and hence they are at the same level 

in the figure. 



Chapter 5 

Computational Experiments 

We have experimented our approaches on six well-known data sets. First, we 

normalized the data sets as did by the authors of data sources. Second, we 

represent profiles to natural cubic spline (NCS) profiles and multiple align 

them. Third, using these multiple-aligned data set as input in one of our 

fc-MCMA or EMMA approaches in conjunction with validity indices ran to 

determine the number of clusters. Forth, after obtaining number of clusters we 

performed the clustering using fc-MCMA and EMMA approaches, respectively. 

Fifth, for comparison, an average classification accuracy was computed by 

performing a c-Nearest neighbor (c-NN) classifier with clusters to classify the 

data with a 10-fold cross validation procedure where c is the number of nearest 

profiles from the centroids. At the end, we also compare our approaches with 

previously published approaches. 

40 
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5.1 Data Description 

Six groups of data have been used in the experiments: Saccharomyces cere-

visiae budding yeast data set, Pseudomonas aeruginosa transcriptomes data 

set, Serum data set obtained from [32], Micrococcus luteus infection chal-

lenge to Anopheles gambiae data set, Escherichia coli infection challenge to 

Anopheles gambiae data set and Schizosaccharomyces pombe data set of cdc25 

mutant cell gene expression profiles. 

Expression level represents a gene that express to certain protein(s) which 

make the whole or part of biological process behave in a particular way. This 

expression is measured in the microarray and is being reflected in the quan-

tification process. The expression ration is the comparison of two expression 

levels, namely "normal" vs. "abnormal", or "control" vs. experiment. In 

our experiments, Saccharomyces cerevisiae data set and Schizosaccharomyces 

pombe data set contain the expression levels and rest of the data sets are 

expression ratios. More precisely, typical microarray experiment involves five 

processing stages target preparation, design DNA chips for targeted genes, 

hybridization, detecting expression levels or ratios, and data preparation for 

analysis. Data preparation stage itself involves in certain steps like image 

processing, quantification, data pre-processing, normalizations and data rep-

resentation for analysis. In whole data preparation process, every steps does 

some sort of " corrections". The normalization processes help identify the ab-

normalities of gene expression levels. To increase the reliability of the experi-

ments, Saccharomyces cerevisiae and Serum data set were made in replicates 

where as Schizosaccharomyces pombe data set of cdc25 mutant cell gene raw 
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expression levels. Rest of the three data sets were made in triplicates. 

The detail description and the normalization procedure of each data sets 

are described below in their specific sub-section. 

5.1.1 Saccharomyces cerevisiae Data Set 

A data set of pre-clustered genes of budding yeast, Saccharomyces cerevisiae, 

[22]* is discussed in this section. The data set contains time-series gene ex-

pression profiles of the complete characterization of mRNA transcript levels 

during the yeast cell cycle. These experiments measured the expression levels 

of the 6,220 yeast genes during the cell cycle at seventeen different points, 

from 0 to 160 minutes, at every 10-minute time-interval. From those gene 

profiles, 221 profiles were analyzed. We normalized each expression profile as 

described in [22]; that is, we divided each transcript level by the mean value 

of each profile with respect to each other. 

The data set contains five known clusters called phases: Early G1 phase 

(32 genes), Late G1 phase (84 genes), S phase (46 genes), G2 phase (28 genes) 

and M phase (31 genes). 

5.1.2 Pseudomonas aeruginosa Data Set 

We have also experimented on another data set of 3315 Pseudomonas aerug-

inosa bacterium gene expression ratios of [34], These experiments measured 

the expression ratios of Pseudomonas aeruginosa genes during the planktonic 

cultures at 0, 4, 8, 14, 24 and 48 hours time points. Expressions are averaged 

* h t t p : / / g e n o m i c s . s t a n f o r d . e d u / y e a s t _ c e l l _ c y c l e / c e l l c y c l e . h t m l 

http://genomics.stanford.edu/yeast_cell_cycle/cellcycle.html
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values of the three replicates for each condition, and then normalized to zero 

mean and unit variance. 

5.1.3 Serum Data Set 

The serum data set contains data on the transcriptional response of cell cycle-

synchronized human fibroblasts to serum. These experiments have measured 

the expression levels of 8,613 human genes after a serum stimulation at twelve 

different time points, at 0 hr., 15 min., 30 min., 1 hr., 2 hrs., 3 hrs., 4 hrs., 8 

hrs., 16 hrs., 20 hrs. and 24 hrs. From these 8,613 gene profiles, 517 profiles 

were separately analyzed, as their expression ratio has changed substantially 

at two or more time points. The experiments and analysis have focused on 

this dataset, which is the same group of 517 genes used in [32]. 

5.1.4 Micrococcus luteus Data Set 

Immune responses of the malaria vector mosquito Anopheles gambiae were 

monitored systematically by the induced expression of five RNA markers after 

M. luteus infection challenge. Bacterial infection of third and fourth instar 

larvae and adult female mosquitoes were performed by pricking with a needle 

dipped in a concentrated solution of M. luteus at seven different time points, 

at 1 hr., 4 hrs., 8 hrs., 12 hrs., 18 hrs., and 24 hrs. Expression values were 

the log-2 transformed, normalized ratios of medians, as described in Materials 

and Methods in [9]. 
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5.1.5 Escherichia coli Data Set 

Immune responses of the malaria vector mosquito Anopheles gambiae were 

monitored systematically by the induced expression of five RNA markers after 

Escherichia coli infection challenge. Bacterial infection of third and fourth 

instar larvae and adult female mosquitoes were performed by pricking with 

a needle dipped in a concentrated solution of E. coli at seven different time 

points, at 1 hr., 4 hrs., 8 hrs., 12 hrs., 18 hrs., and 24 hrs. Expression values 

were the log-2 transformed, normalized ratios of medians, as described in 

Materials and Methods in [9]. 

5.1.6 Schizosaccharomyces pombe Data Set 

Data set containing the cell cycle progressions of the fission yeast Schizosac-

charomyces pombe prepared by Peng et al [8]. This data set contains 747 

genes and two types of cell, namely, wild-type and cdc25 mutant cells. We 

have used the cdc25 type mutant cells genes. 

5.2 Experimental Results 

We performed experiments to show the clustering capabilities of the proposed 

algorithms combined with presented alignment approaches in this thesis. All 

programs were written in Matlab (Version 7.7.0.471 (R2008b)) and all tests 

were run on an Intel Core™ 2 Duo CPU 1.83GHz with 2GB of RAM under 

Windows Vista™ Home Premium with Service Pack 1. 
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5.2.1 Experimental Results of fc-MCMA 

Experiments have been carried out using fc-MCMA in conjunction with four 

validity indices, described in Section 4.3 on all the above five data sets to 

determine the number of clusters. After determining the number of clusters for 

each data sets, actual clusterings were performed using fc-MCMA algorithm. 

To see the clusters visually, fc-MCMA clusters of each data set were graphically 

presented. 

Table 5.1 shows the results of fc-MCMA in conjunction with four cluster 

validity indices for 2 to V221 = 14 clusters on the Saccharomyces cerevisiae 

data set. 

Clusters DB CH Dunn I-index 
2 2.141 36.371 0.927 0.024 
3 1.364 53.554 0.909 0.023 
4 1.308 61.814 1.148 0.045 
5 1.582 54.142 0.829 0.038 
6 1.647 47.213 0.847 0.020 
7 1.948 32.041 0.335 0.065 
8 1.536 41.560 0.554 0.032 
9 1.718 39.859 0.695 0.087 
10 1.705 35.074 0.608 0.100 
11 1.715 33.985 0.697 0.022 
12 1.686 30.799 0.623 0.038 
13 1.774 30.175 0.427 0.026 
14 1.568 30.984 0.623 0.030 

Table 5.1: Validity index values for fc-MCMA clusters on the Saccharomyces cerevisiae data set. 

Table 5.2 shows the results of fc-MCMA in conjunction with four cluster 

validity indices for 2 to \/3315 = 57 clusters on the Pseudomonas aeruginosa 

bacterium data set. But we are only showing up to 50 clusters because it 
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is not significant to show all the validity indices when actual the number of 

clusters lies between 7 to 10. 

Clusters DB CH Dunn I-index Clusters DB CH Dunn I-index 

2 1.331 1094.649 1.239 0.299 27 1.516 618.003 0.290 0.537 

3 1.611 783.397 0.912 0.981 28 1.434 571.141 0.227 0.733 

4 2.157 578.282 0.579 1.097 29 1.643 535.542 0.359 0.571 

5 1.224 1316.982 1.026 0.734 30 1.592 560.812 0.354 0.663 

6 1.203 1314.547 0.819 0.633 31 1.487 537.927 0.367 0.719 

7 1.245 1362.184 0.953 1.391 32 1.592 554.643 0.336 0.624 

8 1.436 1092.089 0.690 0.575 33 1.711 476.496 0.234 0.675 

9 1.356 1010.209 0.641 0.912 34 1.573 522.204 0.262 1.134 

10 1.454 960.256 0.543 1.080 35 1.681 528.118 0.261 0.790 

11 1.484 1007.263 0.571 1.344 36 1.620 528.575 0.233 0.848 

12 1.625 880.004 0.475 0.892 37 1.672 516.902 0.300 0.773 

13 1.679 830.367 0.454 1.095 38 1.684 491.492 0.195 0.715 

14 1.580 907.636 0.462 0.674 39 1.517 511.396 0.321 0.623 

15 1.788 687.293 0.454 0.636 40 1.475 531.148 0.280 0.508 

16 1.477 726.658 0.443 1.226 41 1.493 488.864 0.339 0.576 

17 1.508 793.470 0.484 1.126 42 1.695 439.103 0.291 0.531 

18 1.403 773.875 0.435 0.620 43 1.678 483.437 0.283 0.532 

19 1.611 580.932 0.470 0.560 44 1.499 487.624 0.387 0.566 

20 1.626 711.419 0.405 0.995 45 1.598 445.929 0.306 0.698 

21 1.467 646.555 0.566 0.648 46 1.500 489.593 0.289 0.897 

22 1.524 708.820 0.521 0.799 47 1.572 460.559 0.315 0.485 

23 1.448 713.085 0.439 0.791 48 1.545 431.215 0.290 0.511 

24 1.523 628.134 0.403 0.976 49 1.638 425.329 0.259 0.594 

25 1.465 653.459 0.374 0.504 50 1.539 444.991 0.259 0.539 

Table 5.2: Validity index values for fc-MCMA clusters on the Pseudomonas aeruginosa data set. 

Table 5.3 shows the results of fc-MCMA in conjunction with four cluster 

validity indices for 2 to y/517 = 22 clusters on the serum data set. Table 5.4 

shows the results of fc-MCMA in conjunction with four cluster validity indices 

for 2 to \/652 = 25 clusters on the Micrococcus luteus data set. Table 5.5 

shows the results of fc-MCMA in conjunction with four cluster validity indices 
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for 2 to -\/652 = 25 clusters on the Escherichia coli data set. 

Clusters DB CH Dunn I-index 
2 1.052 163.868 1.054 1.805 
3 2.334 32.858 0.244 6.558 
4 1.538 45.265 0.468 2.183 
5 1.502 38.046 0.089 2.897 
6 1.749 35.567 0.047 1.819 
7 1.475 30.800 0.235 1.100 
8 1.621 43.192 0.021 0.531 
9 1.620 20.821 0.129 0.084 
10 2.007 20.057 0.065 1.283 
11 1.852 25.363 0.032 3.554 
12 1.988 31.458 0.016 3.795 
13 2.001 28.543 0.018 3.998 
14 1.783 15.847 0.063 1.283 
15 1.864 16.474 0.038 0.398 
16 1.675 27.160 0.035 0.624 
17 1.867 21.537 0.016 0.234 
18 1.693 99.103 0.038 0.872 
19 1.725 21.985 0.022 3.360 
20 1.960 17.778 0.016 4.104 
21 1.710 13.364 0.032 2.483 
22 1.649 12.436 0.031 1.573 

Table 5.3: Validity index values for fc-MCMA clusters on the serum data set. 

5.2.2 Experimental Results of EMMA 

Experiments have been carried out using EMMA in conjunction with four 

validity indices, stated in Section 4.3 on all the above five data sets to de-

termine the number of clusters. After determining the number of clusters for 

each data set, actual clusterings were performed using EMMA. To see the 

clusters visually, EMMA clusters of each data set are graphically presented. 
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Clusters DB CH Dunn I-index 
2 1.821 88.074 1.052 0.002 
3 2.544 73.761 0.617 0.003 
4 1.548 93.396 0.670 0.018 
5 1.810 76.600 0.710 0.007 
6 1.807 60.925 0.509 0.016 
7 1.947 60.216 0.608 0.004 
8 1.816 61.984 0.651 0.008 
9 1.623 60.466 0.381 0.062 
10 1.946 50.403 0.451 0.011 
11 1.763 53.020 0.426 0.013 
12 1.758 53.028 0.356 0.014 
13 1.849 49.483 0.353 0.024 
14 1.806 42.747 0.418 0.011 
15 1.668 47.393 0.419 0.014 
16 1.762 47.600 0.358 0.023 
17 1.796 43.373 0.343 0.009 
18 1.614 42.831 0.325 0.015 
19 1.713 41.569 0.367 0.008 
20 1.765 42.003 0.273 0.010 
21 1.783 37.275 0.334 0.017 
22 1.670 40.124 0.323 0.016 
23 1.677 38.574 0.289 0.012 
24 1.721 35.604 0.322 0.012 
25 1.632 39.063 0.391 0.015 

Table 5.4: Validity index values for fc-MCMA clusters on the Micrococcus luteus data set. 

Table 5.6 shows the results of EMMA in conjunction with four cluster va-

lidity indices for k = 2 to \/221 = 14 clusters on the Saccharomyces cerevisiae 

data set. 

Table 5.7 shows the results of EMMA in conjunction with four cluster 

validity indices for 2 to V3315 = 57 clusters on the Pseudomonas aeruginosa 

data set. But we are only showing up to 50 clusters because it is not significant 

to show all the validity indices when actual number of clusters lies between 7 
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Clusters DB CH Dunn I-index 
2 1.637 55.288 1.085 0.007 
3 1.678 110.924 0.793 0.014 
4 1.880 79.309 0.521 0.010 
5 2.223 62.590 0.584 0.002 
6 1.747 92.469 0.614 0.006 
7 2.084 55.623 0.430 0.018 
8 2.003 70.878 0.336 0.008 
9 1.763 66.573 0.418 0.014 
10 1.752 56.926 0.665 0.002 
11 1.751 56.824 0.357 0.006 
12 1.995 51.193 0.373 0.004 
13 1.911 43.066 0.338 0.001 
14 1.638 58.905 0.447 0.006 
15 1.659 58.720 0.290 0.009 
16 1.787 40.065 0.308 0.004 
17 1.829 50.900 0.295 0.027 
18 1.841 39.892 0.348 0.001 
19 1.715 38.456 0.292 0.007 
20 1.964 45.139 0.162 0.012 
21 1.747 42.812 0.249 0.006 
22 1.767 36.968 0.326 0.006 
23 1.613 45.675 0.254 0.012 
24 1.876 34.020 0.307 0.002 
25 1.642 43.876 0.186 0.006 

Table 5.5 : Validity index values for fc-MCMA clusters on the Escherichia coli data set. 

and 10. 

Table 5.8 shows the results of EMMA in conjunction with four cluster 

validity indices for k = 2 to y/517 = 22 clusters on the serum data set. Table 

5.9 shows the results of EMMA in conjunction with four cluster validity indices 

for k = 2 to \/652 = 25 clusters on the Micrococcus luteus data set. Table 5.10 

shows the results of EMMA in conjunction with four cluster validity indices 

for k = 2 to y/652 = 25 clusters on the Escherichia coli data set. Table 5.11 
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Clusters DB CH Dunn I-index 
2 1.365 96.985 1.283 0.024 
3 1.461 77.554 1.109 0.035 
4 1.218 73.484 1.152 0.070 
5 1.616 60.302 0.546 0.101 
6 1.376 56.358 0.964 0.029 
7 1.339 47.253 0.781 0.053 
8 1.571 47.564 0.683 0.057 
9 1.872 40.628 0.446 0.078 
10 1.479 33.609 0.572 0.042 
11 1.514 38.366 0.000 0.071 
12 1.213 32.077 0.000 0.039 
13 1.773 29.696 0.000 0.028 
14 1.785 29.078 0.000 0.052 

Table 5.6: Validity index values for EMMA clusters on the Saccharomyces cerevisiae data set. 

shows the results of EMMA in conjunction with four cluster validity indices 

for fc = 2 to y/747 = 27 clusters on the Schizosaccharomyces pombe data set. 

5.3 Analysis and Discussion 

After analyzing all the validity indices tables, taking the majority and the 

most frequent value and therefore we choose the best number of clusters for 

their respective data sets using both fc-MCMA and EMMA proposed in this 

thesis. Table 5.12 shows the results. 

Setting fc = 5, we ran both proposed approaches on Saccharomyces cere-

visiae data set. Once the clusters have been found, to compare the fc-MCMA 

and EMMA clustering with the pre-clustered dataset of [22], the next step is 

to label the clusters, where the labels are the "phases" in the pre-clustered 

dataset. Although this can be done in many different ways, we adopted the 
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Clusters DB CH Dunn I-index Clusters DB CH Dunn I-index 

2 1.104 2266.705 1.673 0.526 27 1.572 515.792 0.225 0.206 

3 1.489 1521.172 1.020 0.851 28 1.722 571.660 0.117 0.189 

4 1.071 1423.356 0.984 0.842 29 1.735 534.723 0.276 0.168 

5 1.172 1138.453 0.583 0.641 30 1.730 524.307 0.219 0.194 

6 1.695 1200.588 0.451 0.617 31 1.684 492.669 0.240 0.147 

7 1.702 1078.647 0.448 0.787 32 1.763 507.150 0.205 0.188 

8 1.824 1012.971 0.251 0.514 33 1.755 469.873 0.261 0.164 

9 1.924 901.677 0.259 0.710 34 1.783 492.258 0.147 0.130 

10 1.742 912.016 0.393 0.314 35 1.721 465.076 0.205 0.121 

11 1.748 857.910 0.374 0.431 36 1.746 464.978 0.239 0.140 

12 1.464 813.231 0.435 0.468 37 1.592 463.270 0.279 0.153 

13 1.472 780.632 0.332 0.410 38 1.808 470.246 0.212 0.464 

14 1.662 748.058 0.200 0.356 39 1.737 479.956 0.190 0.157 

15 1.700 811.941 0.162 0.263 40 1.839 433.889 0.189 0.144 

16 1.810 710.175 0.156 0.391 41 1.793 429.553 0.196 0.144 

17 1.655 689.087 0.184 0.321 42 1.721 476.158 0.139 0.161 

18 1.813 630.497 0.220 0.247 43 1.670 400.140 0.196 0.118 

19 1.767 604.265 0.224 0.349 44 1.662 483.996 0.229 0.094 

20 1.663 629.283 0.247 0.281 45 1.708 428.435 0.228 0.246 

21 1.691 599.885 0.264 0.202 46 1.769 423.514 0.188 0.118 

22 1.839 585.073 0.152 0.238 47 1.782 394.460 0.172 0.119 

23 1.803 538.253 0.174 0.308 48 1.677 432.974 0.261 0.155 

24 1.916 532.247 0.129 0.205 49 1.581 433.622 0.206 0.122 

25 1.777 560.800 0.180 0.224 50 1.670 420.860 0.258 0.108 

Table 5.7: Validity index values for EMMA clusters on the Pseudomonas aeruginosa data set. 

following approach. The five clusters found by EMMA are shown in Fig. 

5.2(a) and those found by fc-MCMA are shown in Fig 5.2(c), while the cor-

responding phases of [22] after the phase assignment (assignment is found by 

Hungarian algorithm which procedure can be found in Section 4.4) are shown 

in Fig. 5.2(b). The horizontal axis represents the time-points in minutes and 

the vertical axis represents the expression values. Each cluster is vertically 

shifted by six units up, in order to distinguish them visually. The dashed black 
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Clusters DB CH Dunn I-index 
2 1.733 42.266 0.664 0.013 
3 1.938 50.972 0.166 1.512 
4 1.288 66.996 0.182 6.043 
5 1.724 56.515 0.089 5.037 
6 1.342 80.509 0.091 11.498 
7 1.598 49.518 0.109 8.270 
8 1.443 42.173 0.049 7.333 
9 1.336 39.686 0.048 2.083 
10 1.492 33.100 0.048 4.391 
11 1.484 40.578 0.026 1.857 
12 1.496 29.981 0.032 4.097 
13 1.535 27.689 0.022 5.213 
14 1.594 36.058 0.000 3.041 
15 1.533 26.698 0.000 19.272 
16 1.433 32.950 0.019 18.895 
17 1.304 51.896 0.017 2.642 
18 1.428 20.438 0.000 14.331 
19 1.259 68.625 0.016 1.712 
20 1.583 19.512 0.000 2.823 
21 1.597 18.639 0.000 1.740 
22 1.562 21.731 0.000 1.404 

Table 5.8: Validity index values for EMMA clusters on the serum data set. 

lines are the cluster centroids learned by EMMA (Fig. 5.2(a)) and the known 

phase centroids of the yeast data (Fig. 5.2(b)). In the figure, each cluster and 

phase were multiple-aligned using Eq. (3.10) to enhance visualization. 

Setting k = 7, we applied fc-MCMA and EMMA on the Saccharomyces 

cerevisiae data set to see if fc-MCMA and EMMA are able to find these clusters 

correctly. 

The clusters found by fc-MCMA and EMMA are shown in Fig. 5.2(a) and 

Fig. 5.2(b), respectively. The horizontal axis represents the time points in 

hours and the vertical axis represents the expression ratios. The fc-MCMA 
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Clusters DB CH Dunn I-index 
2 2.041 99.820 0.870 0.000 
3 3.918 46.920 0.225 0.001 
4 1.945 90.408 0.563 0.010 
5 3.032 54.024 0.297 0.002 
6 3.122 48.059 0.228 0.006 
7 2.987 46.685 0.197 0.007 
8 2.232 46.035 0.232 0.019 
9 2.343 43.697 0.201 0.007 
10 1.822 51.275 0.314 0.006 
11 1.929 48.783 0.206 0.013 
12 2.027 50.673 0.259 0.015 
13 1.833 54.198 0.303 0.012 
14 2.497 35.252 0.199 0.004 
15 1.629 49.106 0.306 0.005 
16 1.618 50.318 0.335 0.009 
17 1.906 32.792 0.231 0.006 
18 1.728 40.035 0.247 0.011 
19 1.772 35.893 0.169 0.006 
20 1.742 46.854 0.215 0.006 
21 1.617 40.290 0.242 0.012 
22 1.920 34.470 0.142 0.013 
23 1.623 35.566 0.183 0.011 
24 1.820 35.006 0.060 0.005 
25 1.708 42.872 0.035 0.009 

Table 5.9: Validity index values for EMMA clusters on the Micrococcus luteus data set. 

and EMMA clusters in Fig. 5.2(a) and (b) are vertically shifted by 6 points 

up to distinguish them visually. The dashed black lines are the cluster cen-

troids learned by EMMA (Fig. 3(c)) and the centroids of the bacterium data 

computed using Eq. (3.10). 

The performance of the Multiple-Alignment method on the Saccharomyces 

cerevisiae data set is discussed in this section. The Multiple alignment method 

of Section 3.2.2 we have used in fc-MCMA and EMMA is based on natural 
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Clusters DB CH Dunn I-index 
2 7.137 10.629 0.196 0.000 
3 5.061 41.568 0.159 0.013 
4 3.561 40.357 0.201 0.008 
5 3.341 40.395 0.203 0.009 
6 2.819 45.872 0.250 0.004 
7 2.163 62.821 0.257 0.006 
8 3.117 35.060 0.149 0.006 
9 2.264 55.137 0.213 0.005 
10 2.635 36.678 0.166 0.002 
11 2.104 37.027 0.223 0.017 
12 3.887 25.563 0.133 0.017 
13 2.404 35.654 0.117 0.002 
14 2.600 30.571 0.124 0.012 
15 1.796 40.118 0.153 0.004 
16 2.358 35.756 0.181 0.007 
17 2.325 32.344 0.127 0.006 
18 2.197 29.198 0.000 0.010 
19 1.999 35.955 0.174 0.009 
20 2.126 27.307 0.121 0.012 
21 1.932 36.178 0.142 0.037 
22 1.977 30.745 0.165 0.002 
23 1.704 35.493 0.155 0.003 
24 2.481 27.217 0.000 0.005 
25 2.073 27.884 0.114 0.010 

Table 5.10: Validity index values for EMMA clusters on the Escherichia coli data set. 

cubic spline profiles. We extend the pairwise alignment formulae of [15] for 

piecewise linear profiles to multiple expression profile alignment. The pro-

cedure for extending pairwise profile alignment to multiple profile alignment 

is similar to the one described in [18], except that in this case we have used 

piecewise linear profiles instead of natural cubic spline profiles. We combine 

fc-means clustering with our multiple alignment approaches to cluster microar-

ray time-series data. 
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Clusters DB CH Dunn I-index 
2 2.455 88.186 0.543 0.005 
3 2.694 88.873 0.361 0.007 
4 2.410 71.351 0.321 0.006 
5 2.466 108.008 0.304 1.259 
6 1.654 125.466 0.221 0.177 
7 1.543 157.105 0.263 0.499 
8 1.205 204.634 0.390 0.782 
9 1.314 178.000 0.199 0.764 
10 1.574 135.519 0.183 1.257 
11 2.328 51.883 0.110 0.184 
12 1.410 82.840 0.134 0.105 
13 1.748 45.277 0.125 0.021 
14 1.412 72.565 0.100 0.094 
15 1.491 68.239 0.108 0.096 
16 1.460 127.589 0.174 1.169 
17 1.542 102.795 0.123 0.332 
18 1.936 35.091 0.066 0.049 
19 1.470 57.766 0.069 0.075 
20 1.447 100.789 0.000 0.520 
21 2.410 65.073 0.095 0.355 
22 1.443 100.122 0.121 0.478 
23 1.609 49.927 0.000 0.052 
24 3.258 27.278 0.060 0.027 
25 1.678 58.370 0.041 0.114 
26 1.396 91.524 0.000 0.243 
27 2.043 60.000 0.048 0.388 

Table 5.11: Validity index values for EMMA clusters on the Schizosaccharomyces pombe data set. 

Setting fc = 5, we applied fc-MCMA on the yeast data set for both types of 

profiles (natural cubic spline and piecewise linear profiles) to find those phases 

as accurately as possible. Once the clusters have been found, we compared the 

resulting clusters with those of the pre-clustered dataset of [22]. To achieve a 

better visual representation, we assigned each cluster obtained by fc-MCMA 

to its corresponding phase in [22], The cluster-phase matching is done by 
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Data sets Number of Clusters 
Saccharomyces cerevisiae 5 (DB, CH, I) 
Pseudomonas aeruginosa 7 (CH, I) 

serum 15 (CH, I) 
Micrococcus luteus 8 (CH, I) 

Escherichia coli 7 (CH, Dunn) 
Schizosaccharomyces pombe 8 (DB, CH) 

Table 5.12: Best number of clusters for all data sets. 
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Figure 5.1: (a) EMMA clusters, (b) Saccharomyce cerevisiae phases [22] and (c) fc-MCMA clusters, 
with centroids shown. 

applying the Hungarian algorithm as described in Section 4.4. 

The five clusters found by fc-MCMA using natural cubic spline profiles 

are shown in Fig. 5.3(b), while the corresponding phases of [22] after the 

phase assignment are shown in Fig. 5.3(a). The horizontal axis represents the 
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( a ) T i m e in hrs. ( k - M C M A clusters) (b) T i m e in hrs. ( E M M A clusters) 

Figure 5 . 2 : (a) fc-MCMA clusters and (b) EMMA clusters of Pseudomonas aeruginosa data set, with 
centroids shown. 

time points in minutes and the vertical axis represents the expression values. 

The dashed black lines are the cluster centroids learned by fc-MCMA (Fig. 

5.3(b)), and the known phase centroids of the yeast data (Fig. 5.3(a)). Fig. 

5.4 shows the clustering on the same data set as Fig. 5.3, where, fc-MCMA 

uses piecewise linear profiles. In the figures, each cluster and phase were 

vertically shifted by three units up, in order to enhance visualization. After 

visually representing each cluster in both cases, we see that fc-MCMA clusters 

with both representations are quite similar to exactly one of the yeast phases. 

We applied both fc-MCMA and EMMA on the Micrococcus luteus data set 

for both types of profiles (natural cubic spline and piecewise linear profiles). 
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Figure 5.3: (a) Saccharomyce cerevisiae phases [22] and (b) fc-MCMA clusters using natural cubic 
spline profiles, with centroids shown. 

The clusters found by fc-MCMA and EMMA using natural cubic spline profiles 

are shown in Figs. 5.5(a) and 5.5(c), respectively. The clusters and phases in 

Fig. 5.5 are vertically shifted by four points up to distinguish them visually. 

We clearly see that EMMA clusters are similar to exactly one of the luteus 

phases. 

5.4 Comparison with Previous Approaches 

We have compared our approaches with the following two previously published 

approaches: 1) a clustering method that uses piecewise linear profiles which 
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Figure 5. 4 : (a) Saccharomyce cerevisiae phases [22] and (b) fc-MCMA clusters using piecewise linear 
profiles, with centroids shown. 

was published in [15], and 2) the Variation-based Coexpression Detection 

(VCD) algorithm which is described in [36]. 

We performed an objective measure for comparing the EMMA clusters 

with the yeast phases. The measurement was computed by taking the average 

classification accuracy, as the number of genes that EMMA correctly assigned 

to one of the phases. Considering each EMMA cluster as a class, C ( 1 < 

c < k = 5), we trained a c-Nearest neighbor (c-NN) classifier with clusters 

to classify the data with a 10-fold cross validation procedure where c is the 

number of nearest profiles from the centroids. In our scenario, we found 

that c = 5 is the best number of clusters for the data set and we used the 
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Figure 5.5: (a) EMMA clusters, (b) Micrococcus luteus phases [9] and (c) fc-MCMA clusters, with 
centroids shown. 

distance function of Eq. 3.16 to measure the distance between the centroids 

and the nearest profiles. We applied the same procedure for fc-MCMA clusters 

too. This criterion is reasonable, as fc-MCMA and EMMA are unsupervised 

learning approaches that do not know the phases beforehand, and hence the 

aim is to "discover" these phases. In [22], the 5 phases were determined using 

biological information, including genomic and phenotypic features observed 

in the yeast cell cycle experiments. EMMA's average classification accuracy 

is 91.03% whereas fc-MCMA is 89.51%. 

We also applied the same objective measure as described above for com-

paring the EMMA clusters with bacterium planktonic clusters and obtained 
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average classification accuracy of 91.40%. In [34, 15], the correlation coef-

ficient is used as the distance measure between gene profiles while here, we 

used the distance as defined in Eq. 3.16. Fig. 5.2 shows that EMMA yields 

the better results than fc-MCMA and the methods used in [34], 

We also applied the same objective measure as described above for com-

paring the fc-MCMA clusters using piecewise linear profiles (an approach of 

[15]) with the yeast phases and obtained average classification accuracy of 

86.12%. For the bacterium data set, we obtained average classification accu-

racy of 90.90%. Table 5.13 shows the average classification accuracies of our 

approaches with the approach of [15]. 

Profiles Approaches 
S. 
cere-
visiae 

P. 
aerugi-
nosa 

serum M. Lu-
teus 

E. 
Coli 

natural cubic 
spline (NCS) 

fc-MCMA 89.51% 91.40% 78.47% 85.24% 85.37% 

piecewise lin-
ear (PL) fc-MCMA 86.12% 90.90% 77.21% 82.73% 81.33% 

natural cubic 
spline (NCS) 

EMMA 91.03% 92.71% 85.83% 89.37% 88.36% 

piecewise lin-
ear (PL) 

EMMA 86.43% 89.37% 83.79% 87.76% 86.91% 

Table 5.13: Experiment results overview of fc-MCMA and EMMA with piecewise linear profile of [15] 

From Figs. (5.3 - 5.4) and Table 5.13, we observe that natural cubic spline 

profiles performed better than piecewise linear profiles. We also see that fc-

MCMA and EMMA clusters using natural cubic spline profiles on both data 

sets obtained over 90% classification accuracy, which is very high considering 

the fact that they are both unsupervised learning methods while EMMA yields 

the better performance results than fc-MCMA. 
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We also performed the same classification comparison for a method pre-

sented in [36] which is Variation-based Coexpression Detection (VCD) algo-

rithm. In that approach, gene expressions are translated into gene variation 

vectors and the cosine values of these vectors are then used to evaluate their 

similarities over time. We have compared the results of our EMMA approach 

and VCD approach of [36] on two data sets: Saccharomyces cerevisiae and 

Schizosaccharomyces pombe data sets. Results are listed in Table 5.14. 

Approaches Saccharomyces cerevisiae Schizosaccharomyces pombe 
fc-MCMA 89.51% 87.63% 
EMMA 91.03% 86.94% 
VCD 80.68% 70.46% 

Table 5.14: Experiment results overview of EMMA approach and the VCD method of [36] 

In Fig. (5.6), cluster no. 5 of EMMA and fc-MCMA is similar to the 

corresponding S phase where as VCD method assigned so many differentially 

expressed genes and same thing happened for the cluster no. as well. If we 

carefully see the figure, we can see that EMMA's clusters are better than 

all other methods. EMMA's clusters are even better than pre-characterized 

phases, at least visually. In Fig. (5.7), VCD identified three clusters that 

contain only 2 genes and we can also see visually that there are many genes 

assigned to the clusters that should not be in those clusters. In this data set, 

fc-MCMA's clusters are better than that of EMMA's. 

On Saccharomyces cerevisiae data set, both EMMA and VCD found five 

clusters whereas EMMA clusters obtained over 90% classification accuracy. 

On Schizo saccharomyces pombe data set, we ran EMMA in conjunction with 

four validity indices. We found there are eight clusters (see 5.12) in this data 
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Figure 5.6: (a) EMMA clusters, (b) Saccharomyce cerevisiae phases [22], (c) fc-MCMA clusters, and 
(d) VCD clusters, with centroids shown. 

set. The EMMA therefore applied with a setting of k = 8 and obtained 89.53% 

classification accuracy. Setting A = 0.59 and zp = 7, we applied VCD of [36] on 

Schizosaccharomyces pombe data set as well to find the clusters. VCD iden-

tified also eight clusters and obtained 70.46% classification accuracy. VCD 

identified 33 unique genes which are not belong to any clusters. According 

to the authors, they obtained 71 clusters in Schizosaccharomyces pombe data 

set when they set the parameters A = 0.75 and zp = 1.96. In their method, A 

covers the similarity between sets and zp determines the number of clusters. 

The eight EMMA and £;-MCMA clusters on Schizosaccharomyces pombe data 

set obtained 86.94% and 87.63% classification accuracy, respectively, which 
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Figure 5.7: (a) fc-MCMA clusters, (b) EMMA clusters, and (c) VCD clusters on Schizosaccharomyces 
pombe data set, with centroids shown. 

definitely shows that Schizosaccharomyces pombe data set contains eight clus-

ters. In fact, EMMA and VCD are both unsupervised learning methods while 

EMMA's performance results better than that of the VCD of [36]. 



Chapter 6 

Conclusion 

6.1 Summary of Contributions 

In this thesis, we represented the microarray time series profiles using natural 

cubic spline profiles. We have extended pairwise profile alignment of [25] to use 

natural cubic spline profile. We also extended the pairwise profile alignment 

to multiple profile alignment. 

We proposed fc-MCMA, a method that combines fc-means with multiple 

profile alignment of gene expression profiles to cluster microarray time-series 

data. The profiles are represented as natural cubic splines functions to com-

pare profiles, where the expression measurements are not necessarily taken at 

regular time-intervals. Multiple alignment is based on minimizing the sum of 

integrated squared errors over a time-interval, defined on a set of profiles. A 

method EMMA is also proposed by combining EM and multiple alignment of 

gene expression profiles to cluster microarray time-series data. We designed a 

distance function that suits to the natural cubic spline profiles. Four cluster 

65 
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validity indices were used in conjunction with the above methods to determine 

the appropriate number of clusters and also the goodness or the validity of 

the clusters. 

An objective measure for comparing the fc-MCMA and EMMA clusters 

using natural cubic spline profiles with the yeast phases [22] was computed 

by taking the average classification accuracy, as the number of genes that fc-

MCMA and EMMA correctly assigned to one of the phases. We have used 

a supervised classification approach (c-nearest neighbor) to consolidate the 

discriminability of the inferred classes, obtaining accuracy near 90%. This is 

very high considering that our clustering methods are unsupervised. EMMA 

performed better than fc-MCMA on all data sets. This suggests that EMMA 

can also be used to correct manual phase assignment errors. 

Meanwhile, the results showed that EMMA using natural cubic spline 

profiles approach for clustering microarray gene expression data, presented in 

this work, are able to find clusters that are very close to those of biologically 

characterized phases using natural cubic spline profiles. EMMA using natural 

cubic spline profiles performed better than the piecewise linear profile method 

of [15]. EMMA also outperformed the VCD method of [36] especially when 

the VCD did not assign some of the genes to any clusters. 

fc-MCMA and EMMA both outperformed some published distance based 

clustering algorithms (i.e. using piecewise linear profiles of [15] and the VCD 

method of [36]). Our experiments showed that EMMA algorithm proposed 

are able to find better clusters than those of biologically characterized phase in 

[22], The clustering algorithms proposed in this thesis, can be modified to be 

used in well-known problems in bioinformatics and computational biology that 
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are expressed as clustering visualization and supervised pattern recognition 

for microarray time-series gene expression analysis. 

We want to use the benefit of alignment method with the combination of 

any clustering method in particular fc-means and EM. We also analyzed and 

compared the performance of the proposed methods with other clustering 

methods and between each other. Initialization is a major issue in fc-means 

and EM methods but we are not interested in improving fc-means or EM 

clustering methods. 

6.2 Future Work 

In the future, we plan to study other distance-based clustering approaches 

using our multiple alignment method. Support Vector Clustering (SVC) or 

Spectral Clustering with multiple alignment approach, different other validity 

indices (e.g. BAC), phase detection by aligning over a portion of the time 

series expression can be interesting to investigate. The effect of multiple 

alignment method on visualizing the clusters can be explored in the field 

of cluster visualization. 

It will be also interesting to study the effectiveness of any clustering meth-

ods in dose-response microarray data sets. Cluster validity indices based on 

multiple alignment can also be investigated. We argue that in real applications 

data can be very noisy, and the use of cubic spline interpolation could lead to 

some problems. The use of splines has the advantage of being tractable, how-

ever, although we also plan to study interpolation methods that incorporate 

noise. Though our main focus on clustering, the effect of using different impu-



CHAPTER 6. CONCLUSION 68 

tation methods rather than natural cubic spline on representing the profiles 

should also be investigated. 

We currently focus on the analysis of gene temporal expression profiles 

(with the use of spline interpolation and multiple alignment) that can cope 

with the problem of missing values and non-uniformly sampled data. 
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