
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2011 

Mining Multiple Related Tables Using Object-Oriented Model Mining Multiple Related Tables Using Object-Oriented Model 

Dan Zhang 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Zhang, Dan, "Mining Multiple Related Tables Using Object-Oriented Model" (2011). Electronic Theses and 
Dissertations. 8059. 
https://scholar.uwindsor.ca/etd/8059 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8059?utm_source=scholar.uwindsor.ca%2Fetd%2F8059&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Mining Multiple Related Tables Using 
Object-Oriented Model 

By 

Dan Zhang 

A Thesis 
Submitted to the Faculty of Graduate Studies through the School of 

Computer Science in Partial Fulfillment of the Requirements for the Degree 
of Master of Science at the 

University of Windsor 

Windsor, Ontario, Canada 

2011 

©2011 Dan Zhang 



1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
OttawaONK1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-81744-5 
Our file Notre r6f6rence 
ISBN: 978-0-494-81744-5 

NOTICE: AVIS: 

The author has granted a non­
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduce, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

1+1 

Canada 



DECLARATION OF ORIGINALITY 

I hereby certify that I am the sole author of this thesis and that no part of this thesis has 

been published or submitted for publication. 

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's 

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or 

any other material from the work of other people included in my thesis, published or 

otherwise, are fully acknowledged in accordance with the standard referencing practices. 

Furthermore, to the extent that I have included copyrighted material that surpasses the 

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I 

have obtained a written permission from the copyright owner(s) to include such 

material(s) in my thesis and have included copies of such copyright clearances to my 

appendix. 

I declare that this is a true copy of my thesis, including any final revisions, as approved 

by my thesis committee and the Graduate Studies office, and that this thesis has not been 

submitted for a higher degree to any other University or Institution. 

in 



ABSTRACT 

An object-oriented database is represented by a set of classes connected by their class 
inheritance hierarchy through superclass and subclass relationships. An object-oriented 
database is suitable for capturing more details and complexity for real world data. 
Existing algorithms for mining multiple databases are either Apriori-based or machine 
learning techniques, but are not suitable for mining multiple object-oriented databases. 

This thesis proposes an object-oriented class model and database schema, and a series of 
class methods including that for object-oriented join (OOJoin) which joins superclass and 
subclass tables by matching their type and super type relationships, mining Hierarchical 
Frequent Patterns (MineHFPs) from multiple integrated databases by applying an 
extended TidFP technique which specifies the class hierarchy by traversing the multiple 
database inheritance hierarchy. This thesis also extends map-gen join method used in 
TidFP algorithm to oomap-gen join for generating k-itemset candidate pattern to reduce 
the candidate itemset generation by indexing the (k-l)-itemset candidate pattern using 
two position codes of start position and end position codes tied to inheritance hierarchy 
level. Experiments show that the proposed MineHFPs algorithm for mining hierarchical 
frequent patterns is more effective and efficient for complex queries. 

Keywords: Multiple database mining, object-oriented model, inheritance hierarchies, 
Hierarchical Frequent Patterns 

IV 



ACKNOWLEDGEMENT 

I would like to give my sincere appreciation to all of the people who have helped me 

throughout my education. I express my heartfelt gratitude to my father and mother for 

their support throughout my graduate studies. 

I am very grateful to my supervisor, Dr. Christie Ezeife for her continuous support 

throughout my graduate study and also for numerous awards of research assistantship. 

She always guided me and encouraged me throughout the process of this research work, 

taking time to read all my thesis updates. 

I would also like to thank my external reader, Dr. Mehdi S. Monfared, my internal reader, 

Dr. Ziad Kobti, and my thesis committee chair, Dr. Robert Kent for making time to be in 

my thesis committee, reading the thesis and providing valuable input. I appreciate all 

your valuable suggestions and time, which have helped improve the quality of this thesis. 

At last, I would express my appreciations to all my friends and colleagues in Dr. Ezeife's 

WODD lab and school of Computer Science. Thank you all! 

v 



TABLE OF CONTENT 
DECLARATION OF ORIGINALITY Ill 
ABSTRACT IV 
ACKNOWLEDGEMENT V 
LIST OF CONTENT VI 
LIST OF FIGURES VIII 
LIST OF TABLES X 
1. INTRODUCTION 1 

1.1 Object-oriented data model 2 
1.2 Object-oriented database schema 6 
1.3 Assocication rule 17 
1.4 Frequent Pattern Mining in Object-oriented model 17 
1.5 Hierarchical Frequent Pattern 22 
1.6 Thesis contribution 23 

2. RELATED WORKS 25 
2.1 Frequent Pattern Mining 25 

2.1.1 Apriori 25 
2.1.2 FP-Tree 27 
2.1.3 TidFP 30 

2.2 Mining Distributed Databases 33 
2.2.1 Count Distribution 33 
2.2.2 DMA 36 

2.3 Mining multiple-level assocication rules 38 
2.4 Frequent Pattern Mining in Object-oriented Model 41 

2.4.1 Object-oriented approach to multi-level association rule mining 42 
2.4.2 OR-FP 44 

3. MINING OBJECT-ORIENTED MULTIPLE DATABASES 48 
3.1 Problem Addressed in Mining Multiple Object Databases 50 
3.2Mining Frequent Patterns for Each Class 51 

3.2.1 Process flow and Algorithm for Mining Frequent Patterns for each class 51 
3.2.2 Object-oriented Join (OOJoin) 53 

3.3 Mining Frequent Patterns in Transaction(Root) Table 58 
3.3.1 Definitions and Algorithms used in Method of Root Class 58 

3.3.1.1 Inheritance Hierarchy Tree 59 
3.3.1.2 Pre-order Traverse and Position Coding method 62 
3.3.1.3 map-gen join of TidFP algorithm 65 
3.3.1.4 oomap-genjoin 66 
3.3.1.5 Transaction IDs Stored MHTree (TMHTree) 72 
3.3.1.6 Linkage Built TMHTree (LTMHTree) 73 

3.3.2 Insert Transactions into Root table 75 
3.3.3 Mining Frequent Patterns in Root Table 80 

3.3.3.1 Create Multiple Databases Hierarchy Tree 84 
3.3.3.2 Populate Transaction IDs into MHTree 86 
3.3.3.3 Generate 1-itemset candidate pattern with transaction IDs 90 

VI 



TABLE OF CONTENT 
3.3.3.4 Build Linkage for Multiple Inheritance Hierarchy Tree 91 
3.3.3.5 Mining Hierarchical Frequent Patterns 94 

4. IMPLEMENTATON AND EXPERIMENTS 101 
4.1 Generate and process testing dataset 101 

4.1.1 Generate Class Tables C, 101 
4.1.2 Generate Root Tables 103 

4.2 Algorithm implementation 104 
4.3 Performance comparison 104 
4.4 Time and Space Complexity Analysis I l l 

4.4.1Time and Space Complexity of the Apriori algorithm I l l 
4.4.2 Time and Space Complexity of the TidFP algorithm 113 
4.4.3Time and Space Complexity of the MineHFPs algorithm 113 

5. CONCLUSION AND FUTURE WORK 115 
REFERENCES 118 
VITAAUCTORIS 122 

VII 



LIST OF FIGURES 
Figure 1.1: is-a relationship 6 
Figure 1.2: An example of object-oriented database 7 
Figure 1.3: Example of class inheritance hierarchies for Computer object database 9 
Figure 1.4: Multiple database inheritance hierarhcy tree 10 
Figure 1.5: Concpet hierarhcy of milk product 21 
Figure 2.1: Tree branch for Tl 28 
Figure 2.2: Tree branch for T2 28 
Figure 2.3: complete FP-tree 29 
Figure 2.4:13 conditional FP-tree 29 
Figure 2.5: Concept hierarchy 39 
Figure 2.6: Concept hierarchy 43 
Figure 2.7: Concept hierarchy 43 
Figure 2.8: Class inheritance hierarchy for person, actor, and movie classes 45 
Figure 3.1: Algorithm for method MineClassFPs 52 
Figure 3.2: Process flow for mining each object database 53 
Figure 3.3: Algorithm for OOJoin 55 
Figure 3.4: HTree for 3 class inheritance hierarhcy 60 
Figure 3.5:Algorithm for creating HTree 61 
Figure 3.6: Algorithm for pre-order traverse 62 
Figure 3.7: Position codes assigned tree 63 
Figure 3.8: Algorithm for assigning position codes 64 
Figure 3.9: Algorithm for oomap-gen join 71 
Figure 3.10: TMHTree 73 
Figure 3.11: LTMHTree 74 
Figure 3.12: Algorithm for method InsertTransactions 75 
Figure 3.13: Process flow of private method InsertTransaction of Root class 76 
Figure 3.14: Algorithm for InsertTrans 79 
Figure 3.15: Algorithm for method MineRootFPs of Root class 81 
Figure 3.16: Process Flow of private method MineRootFPs of Root Class 83 
Figure 3.17: Algorithm for creating multiple inheritance hierarchy tree (MHTree) 85 
Figure 3.18: MHTree of computer object databases example 86 
Figure 3.19: Algorithm for storing transaction ids into tree 87 
Figure 3.20: TMHTree store transaction ID 1 88 
Figure 3.21: TMHTree store transaction ID 1, 2 89 
Figure 3.22: TMHtree stores all transaction IDs 89 
Figure 3.23: Algorithm for generating 1-item candidate patterns with transaction IDs... 90 
Figure 3.24: Algorithm for BuildLinkage 92 
Figure 3.25: Linkage built LTMHTree 94 
Figure 3.26: Algorithm for MineHFPs 95 
Figure 3.27: Algorithm for CheckSupp 96 
Figure 4.1: CPU executing time on 125K dataset 106 
Figure 4.2: Memory usage on 125K dataset 107 
Figure 4.3: CPU executing time at the minimum support 10% 109 
Figure 4.4: Memory usage at the minimum support 10% 110 

VIII 



LIST OF FIGURES 
Figure 4.5: Lattice of candidate generation 112 

IX 



LIST OF TABLES 

Table 1.1: Object table of computer class in IBM database 13 
Table 1.2: Object table of laptop class in IBM database 14 
Table 1.3: Object table of desktop class in IBM database 14 
Table 1.4: Example of Root class table 14 
Table 1.5: result of object-oriented join Table 1.1 and Table 1.2 17 
Table 2.1: Transaction Database 26 
Table 2.2: Complete mining result of FP-tree 30 
Table 2.3: Example Drug/Side Effects Database record 32 
Table 2.4: Example Patient/Drugs Database records 32 
Table 2.5: Distributed Databases 33 
Table 2.6: 1-itemsets 34 
Table 2.7: 1-itemsets and counts 34 
Table 2.8: Large 1-itemsets and counts 34 
Table 2.9: 2-itemsets and counts 35 
Table 2.10: large 2-itemsets and counts 35 
Table 2.11: Distributed Databases 36 
Table 2.12: 1-itemsets 36 
Table 2.13: Heavy 1-itemsets 37 
Table 2.14: 2-itemsets 37 
Table 2.15: heavy 2-itemsets 37 
Table 2.16: heavy 3-itemsets 38 
Table 2.17: Encoded transactions 39 
Table 2.18: Encoded transactions 40 
Table 2.19: level-1 large 1-itemset 40 
Table 2.20: level-1 large 2-itemset 40 
Table 2.21: Encoded transactions 40 
Table 2.22: level-2 large 1-itemset 41 
Table 2.23: level-2 large 2-itemset 41 
Table 2.24: level-2 large 3-itemset 41 
Table 2.25: level-3 large 1-itemset 41 
Table 2.26: level-3 large 2-itemset 41 
Table 3.1: result of "Computer" table cross product "Laptop" table 56 
Table 3.2: result of selected rows 57 
Table 3.3: Result table of OOJoin 58 
Table 3.4: Object Table of Computer Class in IBM DB 78 
Table 3.5: Objects table of Laptop class in IBM DB 78 
Table 3.6: Objects table of Desktop class in IBM DB 78 
Table 3.7: Result table of OOJoin 78 
Table 3.8: Indexed Root table 80 
Table 4.1: characteristics of the generated dataset 105 
Table 4.2: CPU executing time at 100K dataset 106 

x 



LIST OF TABLES 

Table 4.3: Memory usage at 100K dataset 106 
Table 4.4: CPU executing time at 250K dataset 107 
Table 4.5: Memory usage at 250K dataset 107 
Table 4.6: CPU executing time at 500K dataset 108 
Table 4.7: Memory usage at 500K dataset 108 
Table 4.7: Table 4.8 CPU executing time at the minimum support 10% 109 
Table 4.7: Memory usage at the minimum support 10% 110 

XI 



1. INTRODUCTION 

Data mining is a process of extracting relevant and important knowledge from large data 

to facilitate decision making. Data mining has attracted tremendous amount of attention 

in database research because of its applicability in many areas, including decision 

support, market strategy and financial forecast. The process of discovering interesting 

information from huge set of data often employs different techniques and approaches. 

Some of the approaches include: Classification, Clustering, Regression, and Association 

rule mining. Agrawal and Srikant (1995) proposed the Apriori algorithm that mines 

frequent patterns from a single database table by generating candidate itemsets and 

scanning database to count the support of each candidate. The later research work such as 

FP-tree proposed by Han and et al. (2004) also mines a single database table by 

projecting the database into a compressed tree and mining frequent pattern by pattern-

growth technique. However, mining single database table is not enough to extract useful 

information or answer more complex queries. Ezeife and Zhang (2009) proposed the 

Apriori-based TidFP algorithm that not only improves the efficiency of mining a single 

database table by intersecting transaction ids to avoid multiple scanning of the database, 

but also mines multiple tables by a set of operations such as intersect, minus, or union. 

The researchers have begun to work on mining multiple data sources about a decade ago. 

The early research work of mining multiple data sources was applying hardware 

techniques (e.g., Agrawal and Shafer (1996)), such as parallel computer or distributed 

system, to separate data sources. Then they utilize multiple computing resources to mine 

the data. The later research work on mining multiple data sources such as Sequential 

Pattern Mining in Multi-Databases via Multiple Alignment (Kum and et al. (2006)) 

l 



applies machine learning techniques, such as clustering to discover both local patterns 

and global patterns of each data source. Mining multi-level association rule (Han and Fu 

(1995)) generalizes or specializes patterns to higher or lower concept hierarchy (class 

hierarchy) to discover the frequent pattern in different hierarchy levels. There are also 

research work that proposed frequent pattern mining methods for object-oriented 

databases. Kuba and Popelinsky (2003) proposed the algorithm OR-FP that mines 

frequent patterns that covers at least a given minimum number of objects in object-

oriented data. However, these algorithms are not designed for object-oriented multiple 

database mining. 

1.1 Object-oriented data model 

Real world data are complex and good to be presented as objects (Dzeroski and Lavrac 

(2001)). An object-oriented database is suitable for capturing more comprehensive and 

detailed complexity of real world data, such as different products on a Business to 

Customer (B2C) website, their histories, versions, price, images, or specifications. Data 

captured from B2C websites are not suitable to store in a relational database, because of 

the scalability of the relational database is limited. For example, changing the schema of 

a relational database is a complicated process. Products sold on B2C websites are being 

changed frequently. There are always new products coming. New products have their 

new features and specification. For example, several years ago, B2C websites such as 

Bestbuy™ or Futureshop™, were not selling one type of computer called "Pad". The new 

product "Pad" is an extension of "laptop", but has its new features or specifications, such 

as "3G device" or "Touch screen". However, it still has common feature as laptops, such 

2 



as "CPU", "RAM", "LCD screen size". If we want to store the information of "Pad" in a 

relational database, we need to modify the database schema of the table for Laptop, such 

as adding more columns into the table for Laptop. Alternatively, we can create a new 

database table for "Pad" which stores all features and specifications of "Pad". However, 

this solution will be hard to show the relationship between "Laptop" and "Pad". In 

addition, mining queries of the database also need to be modified due to the changes of 

the database schema. Therefore, an object-oriented database schema is more suitable for 

the complexity of Web data. All products are grouped into classes and show the 

inheritance hierarchy relationships. For example, the new products "Pad" has its own 

features and specifications, but it does have some common features or specifications as 

"Laptop". In an object-oriented database, a new class called "Pad" can be added as a 

subclass of "Laptop" class. The new class "Pad" inherits all features and specifications of 

"Laptop", but has its own features and specifications as well. Also, the new class "Pad" 

will have its own method to deal with mining queries. 

An object-oriented data model is a logical organization of real world objects (entities), for 

example, an object-oriented data model represents classes of computers (computer, 

laptop, or desktop) about which a company wishes to hold information. There exist 

constraints (for example, properties of a computer object, CUP, RAM, and Harddrive 

must be valid to satisfy a computer object) and relationships (for example, there exists 

inheritance hierarchical relationship between object "computer" and object "laptop") 

among the objects. An object-oriented database system is the database system that 

3 



implements the object-oriented data model. The object-oriented data model consists of 

the following core concepts: 

1) The object and object identifier 

Real world entity such as a "computer" is represented as an object. In object-oriented 

database, every instantiated object is associated with a unique object-oriented identifier, 

also called OID. The object-oriented database system requires every instantiated object to 

get a unique identifier at the object instantiation time and it has to be guaranteed that this 

identifier remains unique throughout the lifetime of the object. Therefore, this object-

identifier is also called logical object identifier. 

2) Attributes and methods 

Attributes of an object, such as specifications of a computer object (for example, CPU, 

RAM, or Harddrive specifications), have a set of values assigned to them, are the 

properties that an object has. The values of attributes represent the state of the object. The 

methods of an object (for example, a method of a computer object is getCPU) ar e 

behaviors of the object. These behaviors operate on the state (for example, a state a 

computer object having CPU = "2GHz", RAM = "2GB", and Hard_drive = "250GB") of 

the object. For example, for Computer class, there is a computer object and its CPU type 

is known. There is a class method, called getCPU() that returns this CPU type. 

3) Class: 

Class is an abstraction of all the instantiated objects (instances) which share the same set 

of attributes and methods. An instantiated object must belong to only one class as an 

instance of that class. A class may also be primitive (no attributes), e.g., integer, string, 

Boolean. For example, 

4 



Computerf 

CPU: String 
RAM: String 
Harddrive: String 

private set MineComputerFPs (float minsupp) 
private int GetCountCPU(String cputype) 

} 

In the above example, the class Computer has the attributes: CPU, RAM, and Hard_drive 

that are all string type. The class computer also has class methods 

MineComputerFPs(float minsupp) and GetCountCPU(String cpu_type). The private 

method MineComputerFPs(fioat min_supp) takes a percentage number for minimum 

support as a parameter and mines the attributes of a computer class as frequent patterns. 

For example, mine all frequent attributes of Computer class having minimum support of 

50%. The private method GetCountCPU(String cputype) takes CPU type as a parameter 

and return the number of CPU attributes of Computer class according to the specified 

CPU types. For example, get the number of "2GHz" CPUs in the computer class. 

4) Class Hierarchy and Inheritance 

Class hierarchy in Computer Science is the classification of objects class type, which is a 

set of classes and their inter relationships. Entities and objects with similar characteristics 

are grouped together and described as a class type. Similar characteristics means that the 

objects have the same structure and behaviours, or the same attributes and methods. If 

objects slightly differ in their structure or behaviours, they should belong to different 

class types. The relationship between the classes that host slightly different objects is 

called class inheritance hierarchy. Class inheritance hierarchy shows a relationship 

5 



between all classes in the object database, which derives a new child class (subclass) 

from an existing parent class (superclass). The subclass inherits all attributes and class 

methods from the superclass, but also has its own attributes and methods. Subclass can 

inherit from either one superclass or multiple superclasses. The general idea behind 

inheritance is the is-a relationship between object types, as shown in Figure 1.1. 

Computer 

is-a 

Laptop 

Figure 1.1 is-a relationship 

In Figure 1.1, Computer is a super type (superclass) and Laptop is a sub type (subclass). 

Super type and sub type relationship represents the concept of generalization and 

specification respectively. Computer is a generalization of Laptop and Laptop is a 

specialization of Computer. 

1.2 Object-oriented database schema 

"An object-oriented database is a database management system in which information is 

represented in the form of objects" (Wikepedia (2011)). The Object-oriented database 

model has several advantages over a relational database model. The First Normal form 

(INF) of the relational database model stipulates that there must be atomic values for 

attributes in a tuple. It does not allow complex values, such as sets, lists, or other data 

structures. However, the attributes of an object-oriented database model can be a complex 

6 



collection of types, such as, sets, lists, or some other data structure. The object-oriented 

database model does not need additional tables to store the data represented in a 

collection type. In a relational database model, procedures must be maintained outside of 

the relational model itself. However, in an object-oriented database model, these 

procedures can be considered as behaviors of the objects and can be maintained as 

methods of the classes (Wikepedia (2011)). Some object-oriented databases are designed 

to work with object-oriented programming languages such as Delphi, Ruby, Python, Perl, 

Java, C#/Visual Basic.NET, C++, Objective-C and Smalltalk. The research/commercial 

products of the object-oriented databases include EXODUS, Vodak, Gemstone, Gbase, 

Objectivity/DB, ObjectStore, and etc. Figure 1.2 provides an example of an object-

oriented database model. 

Object 3: Computer 

' •^ computet K.1 ^ J 
cpu I 

1 ??nJ „ , . . .1 J 

I cvmpw« unnic 1 

Object 1: Sales transaction 

1—• 

tiaiisaetion id 
Computer 
Saks Staff 
Date-

Object 2: Sale 

*>, staff id j " 

s s 

> age | 
1 salan- 1 
i name 1 

tafl f 

Figure 1.2 an example of object-oriented database model 

In Figure 1.2, there are three objects, Sales transaction, Computer, and Sales staff. The 

computer object and the sales staff object are attributes of the sales transaction object. 

"An object-relational database is a database management system (DBMS) similar to a 

relational database, but with an object-oriented database model: objects, classes and 

http://Basic.NET


inheritance are directly supported in database schemas and in the query language." 

Compared with relational database model, the object-relational database supports 

complex data types for the attributes of every tuple, type inheritance, and object 

behaviors such as methods of the classes. The products of object-relational database 

management systems include Illustra, PostgreSQL, Omniscience, and etc. The database 

management systems such as IBM's DB2, Oracle database, and Microsoft SQL Server, 

make claims to support the object-relational technology (Wiki (2011)). 

An object-oriented database is represented by a set of classes connected by their class 

inheritance hierarchy through superclass and subclass relationships (Kemper and 

Moerkotte (1994)). Other hierarchies like object link or part-of hierarchies may also exist. 

An object-oriented database consists of a set of classes, C„ with a class inheritance 

hierarchy H. Each class is defined as an ordered relation Q = (K, T, S, A, M, O), where K 

is the class identifier, T is the class type, S is the super type (superclass) of the class, A is 

a set of attributes (Ezeife and Barker (1998)). M is a set of methods, O is a set of objects. 

Class inheritance hierarchy H is used to depict superclass and subclass relationship 

between classes in an object-oriented database and can be represented as a set of pairs of 

class and superclass in the form of (class, superclass). 

Example 1.1 (An object database class inheritance hierarchy): A computer object-

oriented database consists of three classes (computer, laptop, desktop), which are related 

through class inheritance hierarchy H={(Laptop, Computer), (Desktop, Computer)}. 

Database schema for this database is provided as: 

CI = (Kl, Type, Super, {oid, CPU, RAM, Hard_drive, computername }, 01,02,..., on); 

8 



C2 = (K2, Type, Super, {oid, Screensize, Batterylife}, 01,02,..., on); 

C3 = (K3, Type, Super, {oid, Graphic}, 01,02,..., on); 

Provide the class inheritance hierarchy for this computer object-oriented database. 

Solution 1.1: The class inheritance hierarchy of the computer object-oriented database 

described above is shown in Figure 1.3. 

/ Computer} N. 
/ CPU: String \ 
( RAM: String ) 
V Harddrive: String / 
\ > y 

^^~~ ~~~~-~^^ / Desktop} \ 
/ L a p t o p } >v ( graphic: String \ 

I Screensize: String \ y > I 
y Battery life: String / \ / 

V } y ^ ^ / 

Figure 1.3 Example of class inheritance hierarchies for Computer object database 

In Figure 1.3, class Computer is the super class of Laptop class and Desktop class. 

Computer class has attributes CPU, RAM and Harddrive. Class Laptop and Desktop are 

sublcasses of class Computer that inherit the class Computer and have inherited all 

attributes from class Computer, but have their own attributes Screen size, Batterylife, 

and Graphic. 

Definition 1 (tree structure of multiple database class inheritance hierarchy): MHTree is 

the tree structure representation of multiple databases inheritance hierarchy. For example, 

three object-oriented computer databases for IBM, Dell, and HP are shown in Figure 1.3. 

Example 1.2 (A multiple database class inheritance hierarchy): Inheritance hierarchy in 

multiple databases, MH represents three computer object databases such as IBM, Dell, 

9 



and HP. Every database consists of three classes (computer, laptop, desktop). MH is 

represented in a set of pairs used to depict supperclass and subclass relationship. 

MH={(IBM, Root), (Dell, Root), (HP, Root), (Computer, IBM), (Computer, Dell ), 

(Computer, HP), (Laptop, Computer), (Desktop, Computer)}. Provide multiple database 

inheritance hierarchy in a tree structure. 

Solution 1.2: The multiple database inheritance hierarchy for three object-oriented 

Computer databases having "Computer", "Laptop", and "Desktop" inheritance hierarchy 

relationships for IBM, Dell, and HP can be represented as a tree structure in Figure 1.4. 

Figure 1.4 Multiple databases inheritance hierarchy Tree (MHTree) 

In Figure 1.4, the nodes "IBM", "Dell", and "HP" represent three companies that make 

computers and also they represent three databases. Every database has Computer class 

table and inherited by two other class tables "Laptop" and "Desktop". Computer, Laptop, 

and Desktop class tables store the specification of all computers, such as CPU, RAM, 

Harddrive, Screen_size, or Graphic. The Computer database table schema is shown in 

Figure 1.3. The object database consists of all classes with the Root. 

10 



Definition 2 (database schema of Root table): Root(K, T, S, A, M, O). Root class table is 

a transactional table which records the transactions, for example, sales transactions from 

different object databases. K is the object id which stands for the transaction id. T is the 

class type of the transaction (name of the database where the transaction comes from). S 

is the super type of the transaction. A is a set of attributes which includes a set of 

superjype S of C„ super, (number of super, depends on levels of hierarchy of C,) and all 

attributes A of C,. M is a set of class methods which are behaviors of Root class, such as 

updating Root table and mining patterns in Root table. O is a set of objects of transaction 

(one object stands for one transaction). For example, a sale transaction of a purchased 

desktop from IBM database recorded in Root table (sales transaction table) has object id 

K which is a transaction id (an integer number), class type T which indicates the database 

where the transaction comes from (database is "IBM" in this case), super_type S which is 

"Root", the attributes A include two super type, superi and super2 (in computer object 

database, there are two levels of hierarchy) and all attributes of C„ CPU, RAM, 

Harddrive, Screen_size, batterylife and Graphic. 

In an object-oriented database model, the instantiated objects (instance) are referenced 

(retrieved) by following the object pointers, so do the inheritance relationships. 

Therefore, it will be a problem to retrieve the information of inheritance hierarchy in an 

object-oriented database model. Inheritance hierarchy can be represented by foreign keys 

in a relational model. The relational database model provides a clear vision of all 

attributes of a table including the information of inheritance hierarchy. However, 

converting the object-oriented database model into a relational model is also a challenge, 

11 



such as the join operation. In an object-oriented database model, there is no specific join 

operation, because the instantiated objects are referenced by the object pointers. We will 

provide the solution to address the problem of the join operation in section 3.2.2. 

We can also define the object-oriented database as a relational database represented with 

a set of tables (relations) connected through foreign key relationships where the foreign 

keys in our object-oriented database model of C, = (K, T, S, A, M, O) and Root(K, T, S, A, 

M, O) are realizing the inheritance hierarchy with the subclass and supperclass 

relationships as defined in the T, S attributes of an object class. 

In this thesis, we are dealing with data from different databases and or data captured from 

different B2C websites. Different databases and websites may give different names to the 

same product. For example, a laptop computer may be given the name of "Laptop" in one 

database or website and "Notebook computer" in a different database or website. 

Therefore, data from different database or websites must be cleaned. For example, we 

should change all such names to be consistent across the databases. As an example the 

name "Notebook computer" should be changed to the name "Laptop". This thesis is not 

concerned with such as cleaning problems and assumes that data had been previous 

cleaned such that all schemas from the different databases of the same domain are the 

same. 

Example 1.3 (object database represented with relational model): Provide relational 

database and tables that represent the computer object database in Figure 1.2 and the Root 

class table defined in Definition 2. 

12 



Solution 1.3: 

Computer (comp id: string, type: string, super_type: string, cpu: string, 

ram: string, harddrive: string); 

Laptop dap id: string, type: string, superjype: string, screen_size: string, 

batterylife: string); 

Desktop (desk id: string, type: string, supertype: string, graphic: string); 

Root (transaction id: integer, type: string, super_type: string, supers string, 

super2: string, cpu: string, ram: string, hard_drive: string, screen_size: string, 

battery_life: string, graphic: string) 

In the above relational database schema, compjd is the primary key of the computer 

table, lapjd is the primary key of laptop table, deskjd is the primary key of the desktop 

table, and transaction id is the primary key of Root table. All class tables have the 

composite foreign keys consisting of the two attributes type and supertype in each table. 

A sample computer object database owned by IBM company is shown in Table 1.1, 

Table 1.2, and Table 1.3. 

Comp_id 

compl 

comp2 

comp3 

comp4 

comp5 

comp6 

Type 

Laptop 

Laptop 

Laptop 

Desktop 

Desktop 

Desktop 

Supertype 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

CPU 

2GHz 

2GHz 

3GHz 

3GHz 

3GHz 

3GHz 

RAM 

2GB 

2GB 

4GB 

4GB 

4GB 

4GB 

Hard 
Drive 

250GB 

320GB 

350GB 

500GB 

500GB 

500GB 

Computername 

Ideapad laptop 

Ideapad laptop 

Thinkpad laptop 

IBM workstation 

IBM workstation 

IBM PC 

Table 1.1 Object Table of Computer Class in IBM DB 

13 



Lapid 

laptl 

lapt2 

lapt3 

Type 

Ideapad Laptop 

Ideapad Laptop 

Thinkpad 
Laptop 

Supertype 

Laptop 

Laptop 

Laptop 

Screen_size 

15" 

15" 

17" 

Battery_life 

3 hours 

3 hours 

3.5 hours 

Table 1.2 Objects table of Laptop class in IBM DB 

Deskid 

deskl 

desk2 

desk3 

Type 

Work station 

Work station 

Desktop 

Super_type 

Desktop 

Desktop 

Desktop 

Graphic 

256M 

256M 

512M 

Table 1.3 Objects table of Desktop class in IBM DB 

Table 1.1 is the Computer class table that stores the specifications of computers. Table 

1.2 and Table 1.3 stores the specifications of laptop and desktop that inherit the computer 

class. An example of Root class table that records all computers purchased from different 

databases, such as IBM, Dell, or HP is shown in Table 1.4 

Oid 
(Tid) 

1 

2 

3 

4 

5 

6 

7 

8 

Type 

IBM 

IBM 

Dell 

HP 

HP 

Dell 

IBM 

HP 

Super 
Type 

Root 

Root 

Root 

Root 

Root 

Root 

Root 

Root 

superi 

computer 

computer 

computer 

computer 

computer 

computer 

computer 

computer 

super2 

laptop 

laptop 

laptop 

desktop 

desktop 

desktop 

laptop 

laptop 

CPU 

2GHz 

2GHz 

2GHz 

3GHz 

3GHz 

3GHz 

2GHz 

3GHz 

RAM 

2GB 

4GB 

2GB 

4GB 

4GB 

4GB 

2GB 

4GB 

Hard 
Drive 

250GB 

320GB 

350GB 

500GB 

500GB 

500GB 

320GB 

350GB 

Computer 
Name 

Ideapad 
laptop 
Ideapad 
laptop 
Thinkpad 
laptop 
Media 
centre 
Media 
centre 
precision 

Thinkpad 
Laptop 
Media 
centre 

Screen 
Size 

15" 

15" 

17" 

15" 

17" 

Battery 
Life 

3hrs 

3hrs 

3.5hrs 

3hrs 

3.5hrs 

Graphic 

256M 

256M 

512M 

Table 1.4 example of Root class table integrated from tables of three databases IBM, HP, and Dell 

Table 1.4 is a sales transactions table. There are 8 Root class objects. Every object 

indicates one transaction of computer purchased. In the schema of Root{K, T, S, A, M, O), 

14 



Oid is the object id, K, which indicates the transaction id represented by integer number. 

Type is the class type T which indicates the database where the computer comes from, 

such as "IBM", "Dell", or "HP". Super type is S. A set of attributes of class Root, A 

include: 

1) super] and super2 are super types of the computer object database. In this example, 

class Computer has subclasses Laptop and Desktop. There are 2 levels of hierarchy, so 

there are 2 "super" attributes superiand super2. If there are n levels of hierarchy, there 

will be superi, super2... and super,, 

2) CPU, RAM, Harddriver, Screensize, Batterylife, Graphic are all attributes of 

Computer, Laptop, and Desktop classes. 

The Root class also has a set of class methods M: 

private InsertTransactions(); 

private MineRootFPs (float minsupp); 

The private method InsertTransactionsQ is used to insert computer purchase transactions 

into the Root table. Such a transaction record contains the model and specifications of 

the computer, and the company that made the computer. When the method is called, the 

new purchase transaction will be inserted into the Root table. The private method 

MineRootFPs(float min_supp) takes a percentage number representing the minimum 

support as parameter and mines the attributes of a Root class as frequent patterns. For 

example, this method can answer queries such as: What are the most popular hardware 

component specifications (CPU, RAM, Hard drive, screen size, battery life, and 

Graphics card) among the computer systems that have been sold (with a minimum 

support of 50%)? 

15 



In the computer object database, there are three classes. Computer, Laptop, and Desktop 

are shown in Figure 1.2. When a purchase is made, it specifies the purchase as laptop or 

desktop. Therefore, the computer specifications need to be extracted from two object 

tables, Computer and Laptop, or Computer and Desktop. A method, called object-

oriented join {OOJoin) needs to be defined to join two object tables which have 

inheritance relationship. 

Definition 3 (join superclass and subclass tables): Object-oriented Join, OOJoin, is used 

to join tuples in two object class tables, superclass table, CSUper and subclass table, Csub. 

Every tuple in the object class table has the primary key K, foreign keys type Tand super 

type S, and a set of other attributes A. OOJoin select a set of tuples based on distinct 

Csuper-K and Csub.K from the result of Csuper M Csub where(Csuper.T = Csub.T or Csuper.T = 

Csut,.S). For example, OOJoin algorithm joins the Computer class table and Laptop class 

table and the resulting join will result in a table that contains all Laptop attributes with the 

expanded attributes of the superclass Computer. 

Example 1.5 (Object-oriented Join): Show the result oi object-oriented join of two object 

tables, the Computer class table (Table 1.1) and the Laptop class table (Table 1.2). The 

resulting table should contain all the attributes of the Laptop class and its superclass 

Computer. 

Solution 1.5: Table 1.5 is the result of object-oriented join of Table 1, the Computer class 

table and Table 1.2, the Laptop class table. 

16 



ID 

compl 

comp2 

comp3 

Type 

Laptop 
Laptop 

Laptop 

Super 

Computer 

Computer 

Computer 

CPU 

2GHz 

2GHz 

3GHz 

RAM 

2GB 

2GB 

4GB 

Hard 
Drive 

250GB 

320GB 

350GB 

Comp 
Name 

I laptop 

I laptop 

T laptop 

ID 

laptl 

lapt2 

lapt3 

Type 

Ideapad 
Laptop 
Ideapad 
Laptop 
Thinkpad 
Laptop 

Super 

Laptop 

Laptop 

Laptop 

Screen 
Size 

15" 

15" 

17" 

Battery 
Life 

3hrs 

3hrs 

3 5hrs 

Table 1.5 result of object-oriented join Table 1.1 and Table 1.2 

Details of the Object-oriented join algorithm will be discussed in section 3.2. 

1.3 Association rule Mining 

Frequent patterns are itemsets that appear in a data set with frequency (also called 

support) no less than a user-specified threshold (also called minimum support). For 

example, a set of items, such as milk, juice, and bread that appear frequently together in a 

transaction dataset, forms a frequent itemset. Frequ ent pattern mining is the task of 

discovering the frequent patterns from the transactional databases. Frequent pattern 

mining is the essential step of association rule mining. Association Rule is an implication 

of the form X => Y„ where X is a set of some items in the set of all items Y, and Y, is a 

single item in 7 that is not present in X. In above example, frequently occurred items 

milk, juice, and bread may lead to find association rules milk & juice => bread, which 

means that the customers who purchase milk and juice may usually purchase bread. 

1.4 Frequent pattern Mining in Object-oriented Model 

Frequent pattern mining in a single relational database table is used to find the itemsets 

whose frequencies are no less than a user-specified threshold (also called minimum 

support). The frequency of an itemset is the occurrence over all transactions. One 

17 



transaction is one row in the database table. Therefore, frequent patterns in traditional 

database system are just items or combination of items (itemsets). 

In an object table, every instantiated object can be considered as one row in a relational 

database table. The attributes of the object can be considered as itemsets (pattern). 

Mining the frequent pattern in an object table is used to discover an object attribute or 

combination of object attributes that appear frequently in all objects. In Example 1.3, 

Table 1.1, a Computer class table has attributes "CPU", "RAM", "Hard_drive". The 

objects in Table 1.1 have attributes, such as <2GHz>, <3GHz>, <2GB>, <4GB>, or 

<500GB>. These attributes can be considered as itemsets. 

Based on Example 1.3 (sample of Computer database), some frequent pattern mining 

queries can be answered: 

Query 1: What are the most frequent hardware components (CPU, RAM, hard drive) 

used by IBM in their computer model lineup? (with a minimum support of 50%) 

Query 1 can be answered by calling the method MineComputerFPs(50%) of the class 

Computer. The method can apply one of the frequent pattern mining algorithms, such as 

the TidFP algorithm to Table 1.1. 

Query 2: What are the most frequent hardware components (CPU, RAM, Screen size) 

used by IBM in their laptop model lineup? (with a minimum support of 50%) 

Query 2 cannot be answered by applying the TidFP algorithm on table 1.1. It involves 

two tables, table 1.1 and table 1.2. An Object-oriented Join needs to be applied on Table 

18 



1.1 and Table 1.2. Following the join we need to apply a frequent pattern mining 

algorithm on the joined table. 

If we want to determine (mine) the most popular hardware components or hardware 

component combinations among the computer systems that have been sold, we need to 

mine the sales transaction table (shown in Example 1.5). Assuming that we want to 

answer the query such as: 

Query 3: What are the most popular hardware component specifications (CPU, RAM, 

Hard drive, screen size, battery life, and Graphics card) among the computer systems 

that have been sold (with a minimum support of 50%)? 

If we apply the TidFP algorithm on Table 1.4, it returns the patterns in the following 

format, <Tidlist, itemset>. Each pattern consists of a transaction id list and an itemset. 

For example: <1,2,3,7, 2GHz>, <4,5,6,8, 3GHz>, <1,3,7, 2GB>, <2,4,5,6,8, 4GB>, 

<1,3,7, 2GHz,2GB>, and <4,5,6,8, 3GHz,4GB>. Unfortunately, query 3 is not good 

enough to discover patterns at different hierarchies for an informative database table such 

as Table 1.4. For example in Table 1.4, 2GHz processors are not considered to be of a 

significant enough of a frequency when both desktop and laptop computers are 

considered, however, 2GHz processors are of a significant frequency when only laptop 

computers are considered. This table integrates information of hierarchy from multiple 

class tables from different databases. 

19 



Therefore, we need an algorithm which can handle queries that not only mine the 

frequent patterns in a table, but which also specify at what hierarchy level the pattern is 

frequent. Examples of such queries are query 4 and query 5. 

Query 4: What are the most popular hardware component specifications (CPU, RAM, 

Harddrive, screen size, battery life, and Graphics card) among the computer systems 

that have been sold by a particular company like Dell (with a minimum support of 50%)? 

Query 5: What are the most popular hardware component specifications (CPU, RAM, 

Harddrive, screen size, and battery life) among a computer system subgroup such as 

laptops and sold by a particular company like Dell (with a minimum support of 50%)? 

The algorithm for mining multi-level association rules (Han and Fu (1995)) can discover 

a frequent pattern(s) at different concept hierarchy levels. In this algorithm, a pattern can 

be generalized or specialized by a roll-up or a drill-down along the concept hierarchy 

(class hierarchy). Then the pattern(s) will be replaced by another pattern from a higher or 

a lower concept hierarchy level. For example, two patterns <2%milk> and <l%milk> can 

be replaced by the pattern <milk> from a higher concept hierarchy (class hierarchy) level 

or <Dairyland l%milk> from a lower concept hierarchy (class hierarchy) level, as shown 

in Figure 1.5. 

20 



Figure 1.5 Concept hierarchy (class hierarchy) of Milk product 

However, the algorithm for mining multi-level association rules (Han and Fu (1995)) 

does not consider an instantiated class object as a pattern and does not consider the 

attributes of such instantiated objects as pattern(s). For example, the milk, l%milk, and 

Dairylandl%milk could be classes and have their attributes, such as Milk: {protein, 

calories). 1% Milk:{ protein, calories, fat). Dairylandl%milk :{ protein, calories, fat, 

brand). The attributes such as protein, calories, fat, or brand could be mined for frequent 

patterns. The OR-FP algorithm (Kuba and Popelinsky (2003)) mines instantiated objects 

and the attributes of such objects for frequent patterns using the query/mining class and 

the objects in the subclasses of the query/mining class. In the milk example above, the 

OR-FP algorithm can consider milk as the query/mining class. The instantiated mining 

class object(s) could be frequent patterns, and the instantiated subclass objects such as 

l%milk, Dairylandl%milk, along with attributes such as protein, calories, fat, or brand 

could also be frequent patterns. However, the OR-FP algorithm does not specify at which 

hierarchy such patterns are frequent. 

21 



To answer the previously stated queries in this paper which were labeled as query 4 and 

query 5 (queries for mining frequent patterns in a transactional table), an algorithm is 

required which can mine the attributes of Computer, Laptop, and the Desktop class, and 

in addition to also specify the hierarchy level at which the pattern is frequent at. 

1.5 Hierarchical Frequent Pattern 

As discussed in section 1.2, frequent patterns are itemsets that appear in a data set with a 

frequency (also called support) of not less than a user-specified threshold (also called 

minimum support). Therefore, the patterns are itemset, 7, which is a set of items. For 

example, an itemset could be <a, b, d>, which means that itemset < a, b,d> are frequent 

patterns. The TidFP algorithm (Ezeife and Zhang (2009)) proposed a method that mines 

for frequent pattern(s) along with a transaction id list. Therefore, in TidFP, the frequent 

patterns are not just itemsets, but a combination of itemsets and their transaction id lists, 

77. T is a list of transaction ids, and 7 is a set of items. For example, an itemset with 

transaction ids could be <7y, 7?, T4, a, b, d>, which means that frequent pattern <a, b, d> 

appears in transaction Tj, T2, and T4. In this thesis, we introduce a new term, called 

hierarchical frequent pattern. Because we are looking for the patterns that at different 

class hierarchy levels, we need to specify which hierarchy level the pattern belongs to. 

We will still mine the frequent patterns by their transaction ids. Therefore, our 

hierarchical patterns are represented by the forms of <Tidlist, itemset, classj> (TIC). TI is 

the frequent patterns with transaction ids, same as in the TidFP algorithm. C is the class 

hierarchies that the pattern belongs to. For example, a hierarchical frequent pattern could 

22 



be <Tj, T2, T4, a, b, d, computer/IBM>, which means that the frequent pattern <a, b, d> 

appears in transaction Tj, T2, T4 and belongs to class hierarchy IBM computer. 

Definition 4 (Frequent patterns with specifying class hierarchy): Hierarchical Frequent 

Pattern, HFP, is represented in the format of <Tidlist, itemset, classj> and is used to 

indicate in which transactions and at which class hierarchy a frequent pattern appears. 

Example 1.6 (hierarchical frequent pattern): Show a hierarchical frequent pattern of 

computer object database that consists of transaction ids (Tidlist), itemset, and hierarchy. 

Solution 1.6: <1, 3, 4, 2GHz, 2G, laptop/computer/IBM>. 1,3,4 are transaction 

ids(Tidlist), 2GHz, 2GB are itemsets, and laptop/computer/IBM is the hierarchy. 

1.6 Thesis Contributions 

This thesis proposes a series of methods for mining frequent patterns from multiple data 

sources and multiple tables in object-oriented model which include joining object 

database tables, integrating multiple data sources, and mining hierarchical frequent 

patterns. 

This thesis argues that: 1) it is beneficial to capture multiple real life databases as object-

oriented databases and 2) to develop techniques to mine such multiple object-oriented 

databases at different levels of inheritance hierarchy. 

The following are main contributions of this thesis: 

1. Define an object-oriented class model which has class attributes and class 

methods connected by (type, supertype) foreign keys relationship and database 

23 



schema as C, = (K, T, S, A, M, O), where K is object id, T is class type, S is super 

type, A is a set of attributes, M is a set of class methods, and O is a set of class 

objects. 

2. Define the method called Object-Oriented Join {OOJoin) which joins super table 

CSUper and sub class table Csub by selecting the tuples which have distinct object id 

(K), Type (T), and Supertype (S), such that CSUper.^ and CSUb-^ from the result of 

^super ^ ^sub Wnere(L/Super-•* — '--'sub--' OF '--super--' —' L-sub-'J.)' 

3. Define the new term, hierarchical frequent patt ern, HFP, formed as <Tidlist, 

Itemset, Hierarchy>, where Tidlist is a set of object id K, Itemset is a set of class 

attributes A, and Hierarchy is a set of classes, C, (class,). Hierarchical frequent 

pattern specifies at which hierarchy level the pattern is frequent and is an 

extension of the TidFP's pattern <Tidlsit, itemset>. 

4. Propose an algorithm called MineHFPs that mines Hierarchical frequent patterns 

to answer frequent pattern mining queries and specify at which hierarchy level the 

pattern is frequent by traversing multiple database hierarchy tree (MHTree) with 

the 1-itemset candidate patterns and transaction IDs. 

5. Propose a new method called oomap-gen join which is an extension of map-gen 

join used in TidFP algorithm for generating k-itemsets candidate patterns during 

the process of MineHFP algorithm to reduce the number of k-itemsets candidate 

patterns and avoid unnecessary intersecting of transaction ids by indexing the 

patterns by two position codes according to inheritance hierarchy, start position 

and end position and checking the position code before generating k-itemsets 

candidate patterns. 

24 



2. PREVIOUS/RELATED WORK 

2.1 Frequent Pattern Mining 

The early research work of frequent pattern mining is the Apriori algorithm (Agrawal and 

Srikant (1994)). Apriori algorithm generates the candidate itemsets and check the support 

of them by scanning the dataset. Han and et al. (2004) proposed the FP-tree algorithm, 

and algorithm that projects the dataset into a compressed tree structure so that it avoids 

multiple database scanning and candidate generation. Ezeife and Zhang (2009) proposed 

an algorithm called TidFP that uses a bitmap to count the support of candidate itemset to 

avoid multiple database scanning and also generate transaction ids of each frequent 

patterns at the same time. The TidFP algorithm also mines multiple tables by applying set 

operations on transaction ids. 

2.1.1 Apriori 

The Apriori algorithm was proposed by Agrawal and Srikant (1994). The algorithm is 

used to find the frequent itemsets and association rule in a transaction database. The main 

idea of the Apriori algorithm is generating candidate itemsets by apriori-join and 

scanning the database to count the support for each candidate. The large itemset will be 

the itemsets whose support count is equal to or greater than a given minimum support 

(minsupp) and considered as frequent itemset. Given a transaction database D, {Ij, h, h, 

I4J5} is a set of items. Table 2.1 is an example of a transaction database. From there, it is 

known that items //, h, I5 appear in transaction 1. The task is to find all frequent itemsets 

whose support frequencies are equal to or greater than a given minimum support. 

25 



Transaction ID (TID) 

1 

2 

3 

4 

Items 

Ii, h, h 

h,U 

I2,I3 

h, h, U 

Table 2.1 Transaction Database 

For instance, a given minimum support (minsupp) is 50%, all itemsets that appear in two 

or more than two transactions need to be found as frequent or large itemsets. The Apriori 

algorithm will first find frequent 1-itemset. All //, h, h, U J5 are candidate 1-itemset. 

From scanning the database (Table 2.1.1), it is known that // appears in transactions 1 and 

4. Its support count is 2. h appears in all 4 transactions. Its support count is 4.I4 appears 

in transaction 2 and 4. Its support count is 2. I3 and I5 only appear in one transaction. 

Therefore, the large itemsets are /;, I2, U. Next, candidate 2-itemsets need to be generated 

by applying an apriori-gen join. The apriori-gen join of large itemset Lj with Lj joins 

every itemset k of first Lj with every itemset n of second Lj where n > k and first (1-1) 

members of itemsets k and n are the same. In this example, /; will join h and I4. h will 

join I4, but /; will not join //, and h will not join I2. Candidate 2-itemsets are Iih, IiU and 

I2I4. Support count of these three candidate 2-itemsets need to be checked by scanning the 

transaction database. Iih and I2I4 are large 2-itemsets, since their support counts are 2 

which equals to minimum support. Candidate 3-itemsets will be generated by large 2-

itemsets that is hhU- The Support count of hhU is 1 which is less than minimum 

support. Therefore, there is no large 3-itemsets. The algorithm will halt, since the large 

26 



itemset is an empty set. The problem with the Apriori algorithm is that large candidate 

generation and multiple scanning of a database will be costly in CPU time. 

2.1.2 FP-Tree 

Apriori algorithms use the candidate set generation and test approach. Apriori algorithm 

needs multiple scanning of a database, so it is very costly, especially when the dataset is 

large and minimum support is low. Han and et al. (2004) proposed a frequent-pattern 

tree (FP-tree) structure that projects the database to a compressed version to represent the 

frequent items and stores it in a prefix tree in descending order with their supports. The 

FP-tree is then mined using the FP-growth mining method. Table 2.1 will be used as an 

example to demonstrate the FP-growth method. 

1. In the first scan, the frequent 1-itemsets are obtained with their support count. 

Keeping the same minimum support count of 2 as we used in previous section. The 

set obtained in first scan is stored in descending order of the support count denoted by 

L. 

L= [12:7,1! :6,I3:6,I4:2,I5:2]. 

2. After the first scan, the FP-tree construction process begins with the creation of the 

root node labeled 'null'. 

3. After this the database is scanned for the second time, all of the items in each 

transaction are processed in descending support count order and a branch is created 

for each transaction. 

4. Transaction Tl has three items "Ii, I2, I5". Its L order would be "I2.I1, Is"- The tree 

branch created for this transaction is shown in Figure 2.1. 

27 

http://I2.I1


Item ID Support Node-Link ^ n u l l » 
. Count / ^ B 

\ I / _ ^ 
h 
II 
I3 

14 
I5 

7 
6 
6 
2 
2 

-

•v. 

- - ^ " ^ i P 

Figure 2.1 Tree branch for Tl 

5. This completes the transformation of first transaction from the database to one of the 

branches of the FP-tree. 

6. Second transaction T2 consists of two items "I2,14"- Its L order would be "I2,14". I2 

will be connected to the root and I4 will be connected to the node I2. The support 

count for I2 will be incremented by 1 since this new branch shares the common prefix 

(I2). Hence a new node I4 will be created as a child note of I2, this is shown in Figure 

2.2. 

Item ID Support Node-Link ^ n u l 1 » 
. Count . ^ B \ \ / ^s^ 
I2 

II 
I3 
I4 

Is 

7 
6 
6 
2 
2 

-

^ 

""" "*>l2ix 

"•(Of © 
*& / 

^ ^—-» ** 

Figure 2.2 Tree branch for T2 
7. The algorithm will run for all the transactions in the database and the resulting tree 

looks as shown in Figure 2.3. 

28 



Figure 2.3 Complete FP tree 

8. Along with the FP-Tree data structure, this algorithm also maintains an item header 

table. Each item from that table points to its occurrences in the FP-Tree using node-

links. 

9. Once the FP-Tree construction is complete, the mining process starts with the 

construction of the conditional pattern base from each frequent 1 -itemset. Let us 

mine frequent patterns for I3. 

10.13 has two branches in its conditional FP-tree as shown in Figure 2.4, which generates 

the following set of patterns :{l2 I3: 4, Ij 13:2,12 Ii 13:2}. 

Item ID Support Node-Link 
. Count , ^ ^ n u l l{} 

I2 

I, 
4 
4 

*̂©-— s 
Figure 2.413 conditional FP Tree 

Complete mining of FP-tree is shown in table 2.2. 

29 



Item 

Is 

I4 

I3 

Ii 

Conditional pattern base 

[(I2Ii:l),(I2Iil3:l)] 

[(I2I i :l),(I2:l)] 

[(I2Ii:2),(I2:2),(Ii:2)] 

[(1*4)] 

Conditional FP-tree 

(I2:2, Ii:2) 

(I2:2) 

(l2:4,I,:2),(Ii:2) 

(I2:4) 

Frequent patterns generated 

I2 I5:2, Ii I5:2, I2 Ii I5:2 

I2I4:2 

I2 I3:4, Ii I3:2,12 I, I3:2 

I2Ii:4 

Table 2.2 Complete mining result of FP-tree 

2.1.3 TidFP Algorithm 

Ezeife and Zhang (2009) proposed the TidFP algorithm which mines the frequent 

patterns with transaction ids. Mining patterns with transaction ids contributes in two 

aspects. First, it improves the efficiency of the mining process. Second, it mines more 

informative patterns not only from one database table, but also from multiple related 

tables to answer more complex queries. 

The TidFP algorithm proposed a map-join algorithm. In Apriori algorithm, the ap-gen 

join of a large itemset Lj with Lj joins every itemset k of first Lj with every itemset n of 

second Lj where n > k and first (1-1) members of itemsets k and n are the same. The map-

gen join performs the same operation on join of the itemset, however, it also intersects the 

transaction id lists of candidate itemsets. Table 2.1 will be used as an example of a 

transactional database. The first step of TidFP scans the database once and obtains all 1 -

item candidate itemsets with their transaction IDs in the format of a list a transaction IDs 

and itemset. In the table 2.1, all 1-item candidate itemsets are: 

<1, 4> Ii, <1, 2, 3, 4>I2, <3>I3, <2,4>I4, <1>I5 



The support count of the 1 -item itemset will be performed by counting the number of 

transaction ids of every item. If we are looking for the frequent pattern having a 

minimum support of 50%, the large 1-item itemsets are: 

LI = {<1, 4> I,, <1, 2, 3, 4>I2, <2, 4>I4} 

Candidate 2-item itemsets will be found by performing LI map-join LI: The parts of the 

itemset will be obtained the same as ap-gen join and the transaction ids will be derived by 

intersecting transaction ids. For example, 

C2 = {<1, 4> I,I2, <4> hl4, <2, 4> I2I4} 

The part representing transaction ids will be computed by counting the number of ids in a 

transaction id list. Because we are looking for the frequent pattern having a minimum 

support of 50%, the number of ids having less than 2 (out of 4) will be discarded. We 

obtain the large 2-item itemsets: 

L2 = {<1,4>I,I2,<2,4>I2I4} 

Candidate 3-item itemsets will be found by performing a map-join: 

C3 = {<4> I,I2I4} 

By counting the transaction ids of IiI2I4, we can determine that itemset IiI2I4 is not a large 

itemset. Finally, we obtain the large itemsets with their transaction ids: 

L = {<1, 4> I,, <1, 2, 3, 4>I2, <2, 4>I4, <1, 4> I,I2, <2, 4> I2I4} 

TidFP algorithm only needs to scan the database once and intersecting the id lists is 

performed by a bitmap operation, which significantly improves the efficiency of 

discovering frequent patterns. 

31 



The TidFP algorithm can also mine more complex knowledge from multiple database 

tables. For example, table 2.3 and table 2.4 are drug/side effects table and patient/drugs 

table. 

Patient 
Pi 
P2 
P3 
P4 

Drug 
D1D2 
Dl D2 D3 
D3D4 
Dl D2 D4 

Tid (Drug) 
Dl 
D2 
D3 
D4 

Items (Side Effect) 
1 3 4 
2 3 5 
1 2 3 5 
2 5 

Table 2.3 Example Drug/Side Effects Database Table 2.4 Example Patient/Drugs Database 
Records Records 

The frequent patterns are discovered with their transaction ids in both tables, and then we 

can apply set operation such as intersection, union, or minus, which is able to answer 

queries as: 

1. How many people have various patterns and frequent patterns of adverse effects 

given minimum 50% total occurrence? 

Solution: Mining frequent patterns with transaction ids from the Patient/Drugs database 

records and mining frequent patterns with transaction ids from the Drug/Side Effects 

database records. Intersect the foreign keys of frequent patterns with transaction ids. 

2. How many people use frequent combinations of products having minimum 

total occurrence of 50%? 

Solution: Mine frequent patterns with transaction ids from the Patient/Drugs database 

records and then count the distinct ids. 

3. Which drugs have dangerous combinations of adverse effects? 

Solution: Mining the frequent patterns with transaction ids from the Drug/Side Effects 

database records, and then obtain the ids. 

32 



2.2 Mining Distributed Databases 

This section reviews some of the algorithms for mining association rule from distributed 

databases. These algorithms are based on Apriori algorithm and apply parallel and 

distributed computing techniques. Also, these studies focus on less candidate generation 

and less message exchange over the distributed system. 

2.2.1 Count Distribution (CD) 

The algorithm CD was proposed by Agrawal and Shafer (1996). In the CD algorithm, 

every node generates and counts its own local itemsets, and then broadcast its itemsets 

with count to all other nodes. Every node will have identical candidate itemsets with the 

same order. Therefore, only the count of each itemset needs to be broadcast over the 

network. Table 2.5 is an example of distributed database. Consider mining the global 

frequent itemsets with a minimum support of 50% over three sites and 12 transactions in 

total. 

TID 
900 
1000 
1200 
1300 

Items 
ab e 
bd 
be 
ab d 

TID 
500 
600 
700 
800 

Items 
abf 
bd 
be 
ab d 

TID 
100 
200 
300 
400 

Items 
ab e 
bd 
be 
ab d 

Site 1 Site 2 Site 3 

Table 2.5 Distributed Databases 

Every site scans the database and counts for 1-itemset locally, as shown in Table 2.6. 

33 



Ltemset 
a 
b 
c 
d 
e 

Count 
2 
4 
1 
2 
1 

Itemset 
a 
b 
c 
d 

f 

Count 
2 
4 
1 
2 
1 

Ltemset 
a 
b 
c 
d 
e 

Count 
2 
4 
1 
2 
1 

Site 1 Site 2 Site 3 

Table 2.6 1-itemsets 

Every site broadcast its own 1-itemsets and their local counts, and then every site will 

have identical candidate itemsets, as shown in Table 2.7 which are summed at each site to 

get these global counts. 

Ltemset 
a 
b 
c 
d 
e 

f 

Count 
6 
12 
3 
6 
2 
1 

Ltemset 
a 
b 
c 
d 
e 

f 

Count 
6 
12 
3 
6 
2 
1 

Ltemset 
A 
B 
C 
D 
E 
F 

Count 
6 
12 
3 
6 
2 
1 

Site 1 Site 2 Site 3 

Table 2.7 1-itemset and counts 

Since the minimum support is 50%, the candidates whose global counts are less than 6 

will be eliminated. The global large 1-itemsets is shown in Table 2.8. 

Large 
Ltemset 
a 
b 
d 

Count 

6 
12 
6 

Large 
Itemset 
a 
b 
d 

Count 

6 
12 
6 

Large 
Itemset 
a 
b 
d 

Count 

6 
12 
6 

Site 1 Site 2 Site 3 

Table 2.8 Large 1-itemset and counts 

2-item candidates will be generated from every local site by apriori-gen join and count 

will be calculated locally, as shown in Table 2.9. 

34 



Large 
Itemset 
ab 
ad 
bd 

Count 

2 
1 
2 

Large 
Itemset 
ab 
ad 
bd 

Count 

2 
1 
2 

Large 
Itemset 
ab 
ad 
bd 

Count 

2 
1 
2 

Site 1 Site 2 Site 3 

Table 2.9 2-itemset and counts 

Since all candidates are identical and same ordered in every site, only a count of each 

itemset needs to be broadcasted, as shown in Table 2.10. 

Large 
Itemset 
ab 
ad 
bd 

Count 

6 
3 
6 

Large 
Itemset 
ab 
ad 
bd 

Count 

6 
3 
6 

Large 
Itemset 
ab 
ad 
bd 

Count 

6 
3 
6 

Site 1 Site 2 Site 3 

Table 2.10 Large 2-itemset and counts 

From table 2.10, it can be seen that ad is less than 6 and should be dropped and large 2-

itemsets will be ab and bd. Then candidate 3-itemsets will be generated by apriori-join 

locally on every site, which is abd. Count of abd is 1 on every site. After broadcasting 

count of abd, the global count of abd is found to be 3. Therefore abd is not frequent. 

Large 3-itemsets turned to be an empty set and algorithm will exit. 

The CD algorithm will actually hash the itemsets and do the support counting by a vector 

summation in order to save time for comparing and matching the itemsets. It only 

broadcasts the count of each itemset, so that the message exchange over the network is 

small. 

35 



2.2.2 Distributed Mining Association Rules (DMA) 

The DMA algorithm was proposed by Cheung, Ng, and Fu (1996). The authors claim that 

in the algorithm CD, candidates are generated in every local site redundantly. DMA can 

reduce candidate generation by generating candidate only from heavy itemsets and 

itemsets that is not locally large will be pruned away locally but still could be locally 

large in other sites. DMA proves that if an itemset is globally large, then there exists a 

site, where the itemset is locally large, also called local heavy itemset. Every site only 

generates candidate itemsets locally from local heavy itemsets and broadcasts to other 

sites to count the supports. Table 2.11 is an example of distributed databases. Consider to 

mine the global frequent itemsets with minimum support 50% over three sites, 12 

transactions in total. 

TID 
100 
200 
300 
400 

Items 
ab e 
b de 
bee 
a b d 

TID 
500 
600 
700 
800 

Items 
abf 
bd 
be 
ab d 

TID 
900 
1000 
1200 
1300 

Items 
ab e 
bd 
be 
ab d 

Site 1 Site 2 Site 3 

Table 2.11 Distributed Databases 

Every site scans the database and counts for 1-itemset locally, as shown in Table 2.12. 

Itemset 
a 
b 
c 
d 

f 

Count 
2 
4 
1 
2 
1 

Itemset 
a 
b 
c 
d 
e 

Count 
2 
4 
1 
2 
3 

Itemset 
a 
b 
c 
d 
e 

Count 
2 
4 
1 
2 
1 

Site 1 Site 2 Site 3 

Table 2.12 1-itemsets 

Every site only keeps its heavy 1-itemsets. In this case, every itemset that has a support 

count equal to or greater than 2 in its local site is considered as a heavy itemset, as shown 



in Table 2.13. Every site will also have to check its itemsets' global support count on 

other sites. 

Heavy 
Itemset 

a 
b 
d 
e 

Count 

2 
4 
2 
3 

Heavy 
Itemset 
a 
b 
d 

Count 

2 
4 
2 

Heavy 
Itemset 
a 
b 
d 

Count 

2 
4 
2 

Site 2 Site 3 
Site 1 

Table 2.13 Heavy 1-itemsets 

Candidate 2-itemsets are generated from heavy 1-itemsets locally, as shown in Table 

2.14. Every itemset at its own site needs to check the global support count with other 

sites. However, only local heavy 2-itemsets will be kept to generate 3-itemset, as shown 

in Table 2.15. 

Large 
Itemset 
ab 
ad 
ae 
bd 
be 
de 

Count 

2 
1 
1 
2 
3 
1 

Site 1 

Large 
Itemset 
ab 
bd 
be 

Count 

2 
2 
3 

Large 
Itemset 
ab 
ad 
bd 

Count 

2 
1 
2 

Large 
Itemset 
ab 
ad 
bd 

Count 

2 
1 
2 

Site 2 Site 3 

Table 2.14 2-itemsets 

Large 
Itemset 
ab 
bd 

Count 

2 
2 

Large 
Itemset 
ab 
bd 

Count 

2 
2 

Site 2 Site 3 
Site 1 

Table 2.15 heavy 2-itemsets 

37 



All 3-itemsets will be generated locally from the heavy 2-itemsets, as shown in Table 

2.16. Then it can be seen that none of the 3-itemset sets are heavy sets locally and large 

sets globally. The algorithm will terminate. 

Large 
Itemset 
abd 

Count 

1 

Large 
Itemset 
abd 

Count 

1 

Large 
Itemset 
abd 
abe 
bde 

Count 

1 
1 
1 

Site 1 

Table 2.16 heavy 3-itemsets 

The DMA algorithm also uses a polling site to reduce the message exchange over the 

network. The polling site will avoid double message exchange during the process of 

global support counting. DMA generates less candidates than CD. However, CD only 

needs to broadcast the count of each itemset to other sites, because every site maintains 

identical candidate itemsets. On the other hand, DMA has to broadcast itemsets and their 

counts to other sites. 

2.3 Mining Multiple-level Association Rules 

Han and Fu (1995) claimed that previous association rule mining focused on mining from 

the single concept level. However, finding rules from a multiple concept level is also very 

useful. For example, finding rules such as 80% of customers that purchase milk may also 

purchase bread. It could be informative to also show that 75% of people buy wheat bread 

if they buy 2% milk. The authors also stated that large support is more likely to exist at a 

higher concept level, such as milk and bread, rather than at lower concept levels, such as 

a particular brand of milk and bread. If someone wants to find strong association rules at 

lower concept levels, the minimum support must be reduced. This action will result in 

38 



finding some uninteresting rules, such as "toy->2%milk". To address these problems, a 

concept hierarchy needs to be created and every item will be encoded followed by the 

concept hierarchy, and also the different minimum support threshold should be used at 

mining different level of concept hierarchies. A data mining query is usually in relevance 

to only a portion of the transaction databases. For example, only food section is 

considered in a mining procedure. Figure 2.5 is a portion of concept hierarchy of food. 

Figure 2.5 concept hierarchy 

For example, "2% Foremost milk" is encoded as "112". Follow the concept hierarchy, the 

digit " 1 " represents milk at level one, the second digit " 1 " represents 2% milk at level 2, 

and the third digit "2" represents "Foremost" milk product at level three. By the same 

encoding schema, a transaction database will be encoded as Table 2.17 

TID 
Tl 
T2 
T3 
T4 
T5 
T6 
T7 

Items 
{111,112,211,221} 
{111,211,222,323} 
{112,122,221,411} 
{111,121} 
{111,122,211,221,413} 
{211,323,524} 
{323,411,524,713} 

Table 2.17 Encoded transactions 

39 



Mining of finding frequent patterns begins from level one of a concept. In this example, 

«]**" represents all milk products and "2**" represents all bread products. Suppose we 

wish to find all the frequent itemsets at each concept level. 

We start looking for the patterns at level-1 and minimum support is 4. Because the 

mining level is 1, for all items in Table 2.17, we only keep the first digit of the item. The 

table 2.17 should be represented as table 2.18. 

TID 
Tl 
T2 
T3 
T4 
T5 
T6 
T7 

Items 
M** J** 2** 2**} 
n** 2** 2** 3**) 
M** ]** 2** 4**) 
r j * * j**> 

M** j * * 2** 2** 4**} 
12** 3** 5**1 
13** 4** 5** 7**1 

Table 2.18 Encoded transactions 

Level-1 large 1-itemsets is shown in Table 2.19 and Level-1 large 2-itemsets is shown in 

table 2.20. 

Itemset 
{1**} 
{2**} 

Support 
5 
5 

Itemset 
M** 2**) 

Support 
4 

Table 2.20 level-1 large 2-itemset 
Table 2.19 level-1 large 1-itemset 

If an itemset is not large at a higher concept level, it must not be large at a lower concept 

level. Therefore, other itemsets which are not large at concept level one need to be 

filtered out. Table 2.21 is the filtered transaction. 

TID 
Tl 
T2 
T3 
T4 
T5 
T6 

Items 
{111,112,211,221} 
{111,211,222,323} 
{112,122,221} 
{111,121} 
{111,122,211,221} 
{211} 

Table 2.21 Encoded transactions 

40 



After large itemsets are found at level one, mining needs to be processed at level-two. 

The third digit will be ignored. The item will be represented as 11*, 12*, etc. The 

minimum support is changed to 3 at this level. 

Item set 
{11*} 
{12*} 
{21*} 
{22*} 

Support 
5 
4 
4 
4 

Table 2.22 level-2 large 1-
itemset 

Item set 
{11*,12*} 
{11*,21*} 
{11*,22*} 
{12*,22*} 
{21*,22*} 

Support 
4 
3 
4 
3 
3 

Item set 
{11*, 12*, 22*} 

Support 
3 

Table 2.24 level-2 large 3-itemset 

Table 2.23 level-2 large 2-itemset 

Same as the process at Level one mining, large 1 -itemsets will be found first, as shown in 

Table 2.22, then large 2-itemsets, as shown in Table 2.23, and large 3-itemsets, as shown 

in Table 2.24. 

The minimum support of level-three is also 3. By the same process of level-one and 

level-two, the frequent itemsets are found as shown in Table 2.25 and Table 2.26 

Item set 

{111} 
{211} 
{221} 

Support 
4 
4 
3 

Item set 
{111,211} 

Support 
3 

Table 2.26 Ievel-3 large 2-itemset 

Table 2.25 level-3 large 1-itemset 

2.4 Frequent pattern mining in object-oriented model 

This section introduces several methods that mine frequent patterns and association rules 

from an object-oriented model or from object-oriented databases. Fortin and Liu (1996) 

proposed the method that mines multi-level association rules in object-oriented model. 

The method can flexibly combine multiple multi-level concept hierarchies for mining 

more informative and refined knowledge from the relational databases. Han and et al. 

(1997) proposed Generalization-based frequent pattern mining approach that generalizes 

the complex data objects from object-oriented databases, including object identifier, 

41 



single attribute values, structured data and etc. to mine the frequent patterns and 

association rules. Kuba and Popelinsky (2003) proposed an algorithm called OR-FP that 

mines the frequent patterns as class objects and attributes from the query class table and 

its subclass tables in object-oriented database. 

2.4.1 An Object-Oriented Approach to Multi-Level Association Rule 

Mining 

Fortin and Liu (2005) claimed that an object-oriented approach is more flexible and more 

informative for mining multi-level association rule for a single concept hierarchy and 

across multiple concept hierarchies. 

The authors stated the drawbacks of relational database tables. 

1) Weak item representation. For example, in an item table, there is an attribute 

called "expiry_date". All items needs to be added this attribute in a flat relational 

database table, but for some products the attribute "expiry_date" has no meaning. 

2) Relational databases do not present the concept hierarchies. For example, milk is 

a type of food and apple is type fruit. This concept cannot be demonstrated in a 

relational database table. There must a domain-specified expert to manually 

specify it. 

3) A multi-level hierarchy cannot be treated as a unit of concurrency control in 

relational system. A concurrent update may cause data loss. 

To address the above problems, the authors proposed an object-oriented approach. The 

object-oriented mode can explicitly represent the concept of hierarchies. Unlike relational 

system in Han and etc. (1996), in object-oriented model, concept hierarchies do not need 

42 



to be predefined by a domain expert. Instead, these concept hierarchies can be 

dynamically adjusted by user queries. High levels concept hierarchies are captured 

explicitly and uniformly in the form of classes or objects in classes, and lower level of 

concept hierarchies can be adjusted dynamically upon request. For example, milk and 

bread are the subclasses of food. Both Diaryland skim milk<Diaryland milk < skim milk 

< milk and Diaryland skim milk < skim milk < Diaryland milk < milk are valid 

hierarchies. Furthermore, the concept hierarchies can be build not only on categories but 

also on other information. For example, the hierarchy can be built based on promotion 

and on sale information, as shown in Figure 2.6. 

promotions 

discounted 

on.sale . . . coupon 

/ \ 
advertised •»«unadvans#d 

* * reguiar.prlct 

free-points • • -free-samples 

/ \ 
tak© Jiofne • • * in„storft 

Figure 2.6 concept hierarchy 

Lucem 

food 

, milk . , . bread 

skim milk . . . 2% milk whit© teread . , . whole wfosat 

" \ y \ 
Wonder ,.«Safeway 

Figure 2.7 concept hierarchy 

Authors also proposed an adaptive encoding scheme. Suppose we wish to find a rule 

relating specific milk products to bread. A specific milk product needs to be encoded. 

43 



Follow the concept hierarchy as Figure 2.7. A DairyLand skim milk can be encoded as 

1,1,1,2 which is encoded at each of the four conceptual levels. Bread is encoded as 

1,#,#,2. "#" is the dummy value that makes bread and a specific milk be at the same 

encoding level. Because a specific milk product and bread are encoded at the same level, 

mining can be processed in the same way as in Han and etc. (1996) (See section 2.5.2). 

Adaptive encoding scheme can also encode the items on different hierarchies and 

conjunct the code to discover more complex knowledge. For example, an item is encoded 

as "1,2,1,3" and "1,4,5,1". "1,2,1,3" is encoded from a product category hierarchy and 

"1,4,5,1" is encoded from "on sale" hierarchy. Milk is encoded as "1,2 and on sale is 

encoded as "1,4". Conjunct two code to result conjunctive item "11,24,15,31" where "11" 

represents food & promotion. "24" represents milk & on sale. Thus a user query might be 

"find me all rules invoking milk items at level 4, bread items and level 2, and items which 

are both cheese and on sale". 

2.4.2 Mining Frequent Pattern in Object-oriented Data (OR-FP) 

Kuba and Popelinsy (2003) proposed an algorithm of mining frequent patterns in object-

oriented data, called OR-FP. The authors claimed that frequent patterns in object-oriented 

data are the patterns that cover at least a given minimum number of objects. This research 

work also introduced the term of frequent patterns in object-oriented data, that is frequent 

patterns are considered as objects. The simplest pattern is XT, where X is a variable 

representing an object and T is the type of this object. The patterns in object-oriented 

model will be extended depending on the last variable of the existing patterns. The last 

variable of existing pattern Xt and its type is Tt. Xt: Tt could be simple type, class type, or 

44 



collection type. A simple type could be a String Type. For example, a class Person, 

whose attributes lastname is a string type. A class type variable will be extended with 

attributes and with every subclass of the given class. For example, if the last variable 

whose type is class Person, the pattern should be extended by every attributes of Person 

class, such as name, salary, or age. The pattern also should be extended by all subclasses 

of the Person class, such as class Actor and class Director. A collection type is a set. For 

example, the type of attribute actsjn of Actor class is a set of movies. The frequent 

patterns in object-oriented data are the patterns that cover at least a given minimum 

number of objects. The task of OR-FP is to find frequent patterns for a given query class. 

If a pattern is supposed to be frequent, it covers at least a given minimum number of 

objects of query class and its subclasses. An example for an object-oriented database 

schema of cinema is given as follow: 

Figure 2.8 class inheritance hierarchy of Person, Actor, Director and Movie 

45 



In Figure 2.8, there are four classes, Person, Movie, Actor and Director. The Actor class 
and Director class are subclasses of the Person class. The data in the object-oriented 
database is represented as: 

o,: class = {attribute], attribute2, ..., attribute„) 
Small part of data used in the example is given as follows: 

ol: Person = {'Smith', 'Canada', 16000} 
o2: Actor = {'John', 'Canada', 12000} 
o3: Actor = {'William', 'Canada', 15000, {06}} 
o4: Actor = {'Mike', 'US', 18000, {06}} 
o5: Director = {'Steven', 'US', 25000, {06}} 
06: Movie = {'prostriziny', 1980, {ol, o2}, o5} 

The OR-FP algorithm mines the frequent pattern in the mining class and also the frequent 

patterns in the subclasses of the mining class. In the above example of OR-FP, we are 

looking for the frequent patterns that have a minimum support of 3. The patterns that 

cover at least 5 objects are considered frequent patterns. The query/mining class is the 

Person class. Therefore, the inputs of the algorithm are: the movie object-oriented 

database, the query/mining class Person, and the minimum support level of 3. 

The candidate patterns start from the query/mining class Person. The candidate patterns 

are a list of Person objects, {Xo'.Person}. Actor objects and Director objects are also 

Person objects. There are 5 Person objects in total. The pattern <Xo:Person> is a frequent 

pattern. <Xo:Person> should be extended by the attributes of the Person class. For 

example there may be 3 persons' whose addresses is "Canada", and 4 persons' whose 

salary is within the range (15000, 20000). The new patterns are generated, 

<Xo:Person.address=Xi:String="Canada"> and <Xo:Person.salary= X2:Float= 

(15000,2000)>. Also, the 2-itemset pattern 

<Xi:Person.address:String="Canada", X2:Person.salary:Float=(15000, 20000)>. The 

class Person has subclasses Actor and Director. Pattern Xo:Person should be extended by 

46 



the Actor class and the Director class and check their supports. There are 3 Actor objects 

and only 1 Director object. Therefore, the new pattern should be generated, <Xo:Person, 

Xo:Actor>. 

The class actor has the attributes. The pattern should be extended by the attributes of the 

class Actor. For example there are 3 actors' whose salary is in the range (15000, 2000). 

The new generated pattern is <Xo:Person, Xo:Actor.salary: Float = (15000,2000)>. The 

Actor class does not have any subclasses, so it will not be further extended. 

47 



3. Mining Object-Oriented Multiple Databases 

As discussed in section 1.4, our goal is to define a series of methods that answer frequent 

pattern mining queries from multiple related tables (related by class hierarchies) and the 

database table which is integrated by multiple data sources. In this thesis, we define the 

object-oriented class model and a set of class methods for various classes. These class 

methods are able to integrate multiple data sources (updating the Root class table), join 

object tables, and answer frequent pattern mining queries. The object-oriented class 

model is defined as follows: 

Root{ 

a set of transaction attributes A,//including super type and all physical attributes ofC, 

private void InsertTransactions; 
private set MineRootFPs; 
public set OOJoin; 

} 

C,{ 

a set of physical attributes A, 

private set MineClassFPs; 

} 

Class C, has a set of physical attributes which are the properties of the class C,. In the 

example of an object orientated database representing a computer, the database could be 

represented by a class called Computer, and the physical attributes of the computer could 

be the "CPU", "RAM", and "Hard_dirve". The Laptop class could be an extension of the 

Computer class and its attributes could be things like the "Screen_size" and 

"Battery_life". We define transactions attributes to be composed of two parts. The first 

48 



part is the set of super, which is a supertype of class C,.The second part is comprised of 

all the physical attributes of class C,. The Root class embodies the transaction attributes. 

The private method InsertTransactions of the Root class is used to insert transactions into 

the Root table and can only be called by the class Root. As discussed in section 1.2, in the 

example of a computer object database, the Root table is a sales transaction table which 

records the purchase of computers from all the databases. The private method 

MineRootFPs of the Root class is used to discover the hierarchical frequent patterns 

(HFPs) in the Root table and this method can also only be called from the class Root. 

This method is able to answer the queries labeled as query 4 and query 5 in section 1.4. 

OOJoin is a public method that joins a supper class table and a sub class table, and can be 

invoked by other classes. The private method MineClassFPs is used to mine the frequent 

patterns of a specific class in each database. For example if the MineClassFPs is called 

from a derivative class like Laptop, it will mine the Laptop class and in addition it will 

also mine the Computer class because the Laptop class derives from the Computer class. 

This is accomplished via calling of the public method OOJoin. However if the 

MineClassFPs method is invoked in the class Computer, it will only mine the Computer 

class. Thus, MineClassFPs is able to answer query 1 or query 2 in section 1.4. Section 

3.2 will discuss the MineClassFPs method of class C, in more detail. This method mines 

frequent patterns in each class for each database. In section 3.2 the paper will also give 

the detailed algorithm for OOJoin. Section 3.3 will discuss the private methods 

InsertTransactions and MineRootFPs of the class Root. 

49 



3.1 Problems Addressed in Mining Multiple Object-oriented Databases 

1. Frequent pattern mining algorithms, such as Apiori (Agrawal and Srikant (1994)) and 

FP-tree (Han and et al. (2004)), can only mine the frequent patterns from a single 

database table. They cannot discover the frequent patterns from multiple tables and 

multiple data sources. Also, they cannot discover the patterns at different class 

hierarchies, as the inputs of these algorithms are simple transactional database tables, 

there are no class hierarchies. 

2. The TidFP algorithm proposed by Ezeife and Zhang (2009) mines frequent patterns 

first, generating frequent patterns with their transaction ids (called TidFp), then applying 

set operations on the TidFps to answer frequent pattern related queries across multiple 

database tables. The TidFP algorithm does not mine frequent patterns in object-oriented 

multiple databases nor does it specify the hierarchy levels that patterns belong to. 

3. Existing work, such as Mining Multi-level Association Rule (Han and Fu (1995)) and 

Object-Oriented Approach to Multi-Level Association Rule Mining (Fortin and Liu 

(1996)) replace the patterns by another pattern in a higher or a lower hierarchy level and 

discover frequent patterns at different concept hierarchy levels. However, these 

algorithms do not take object databases as inputs and do not consider the instantiated 

objects or object attributes as patterns. 

4. The OR-FP algorithm takes an object-oriented database as input and mines instantiated 

class objects and attributes of objects as frequent patterns. However, it does not mine 

multiple object databases and does not specify at which hierarchy level patterns are 

frequent. 

50 



5. The database tables that represent classes at different hierarchies representing different 

databases need to be joined in an object-oriented model. 

6. The TidFP algorithm is an efficient algorithm, because it counts the support of every 

candidate pattern by intersecting transaction ids, so that it avoids multiple scanning of a 

database. However, generating candidate patterns is costly. Also, when the dataset is 

large, intersecting transaction ids and counting intersected transaction ids are also 

expensive processes. Reducing the candidate itemset generation and avoiding 

unnecessary support counting are important. 

3.2 Mining Frequent Patterns for Each Class 

This section discusses the private method MineClassFPs of class Ct which mines frequent 

patterns in each class. Section 3.2.1 gives main algorithm and process flow of 

MineClassFPs. Section 3.2.2 gives the detailed algorithm for OOJoin with examples. 

3.2.1 Algorithm and Process Flow for Mining Frequent Patterns for 

Each class 

The private method MineClassFPs outputs a set of class attributes as frequent patterns. 

The algorithm of MineClassFPs is provided in Figure 3.1 

51 



Algorithm MineClassFPs(C, CS„ s%) 

Input: class table C //the class table to be mined, 
class tables CS, II a set of super class tables of C, i = l,2...k. CS2 is superclass 

of CSi, CSk is the superclass of CSk-i 
minimum support s%. 

Other variables: Joined class table T 

Output: A set of frequent patterns FPs. 

Begin 

1.0 JoinClasses (C,CS,) 
1.1 T=C; 
1.2 if(CS, ± NULL) // C has super classes. 

1.2.1 For each superclass table CS, 
1.2.1.1 T = OOJoin(CS,, 7); // call OOJoin to join subclass and 

superclass 
End for 

End if 
2.0 TidFP(r, s%); 

End 

Figure 3.1 Algorithm for method MineClassFPs 

The class method MineClassFPs can be used to answer query 1 or query 2 in section 1.4. 

Query 1 is used to mine the frequent patterns (computer specifications) for Computer 

class. The Computer class does not have any superclass. The algorithm of JoinClasses 

will only execute step 1.1. The joined class table is the Computer class table. Then the 

algorithm of MineClassFPs goes to step 2.0, and then the MineClassFPs method calls the 

TidFP algorithm to mine the frequent patterns. Query 2 is used to mine the frequent 

patterns (Laptop specifications) for the Laptop class. The Computer class is a super class 

for the Laptop class. Because the Laptop class has a superclass, the sub-algorithm 

JoinClasses, will execute step 1.1 and step 1.2. Step 1.2 needs to invoke the OOJoin 

algorithm to join the table of the superclass (Computer) and the table of the subclass 

52 



(Laptop). OOJoin will be discussed in detail in section 3.2. Then the MineClassFPs 

algorithm goes to step 2.0 to call the TidFP algorithm to mine for the frequent patterns. 

Figure 3.2 is the process flow of mining each class. 

Input Object joined table T 

Mining class table C 

Legend: 

/ 

= Process & Algorithm 

= Process flow 

1 = Data 

= Dataflow 

= Database table(s) 

CS,, a set of super class 
tables of C 

Join class table C and 
class superclass tables 
of C iteratively 
Algorithm: JoinClasses 

Output 
Mining Frequent patterns 
Algorithm: TidFP 

Frequent 
Patterns 

Minimum 
Support s% 

Figure 3.2 Process flow for mining FPs for each class 

In Figure 3.2, the inputs are the mining class C (the class table to be mined), a set of 

super class tables CS, of C, and the minimum support s%. The private method 

MineClassFPs calls algorithm JoinClasses which applies the OOJoin algorithm to join 

the mining class C and all super class tables CS, of C iteratively to obtain an object joined 

table T, and then call the TidFP algorithm with a specific minimum support of s% to mine 

the frequent patterns on the object joined table T. 

3.2.2 Object-Oriented Join (OOJoin) 

OOJoin was discussed previously in section 1.2. This section shall explain how the 

53 



OOJoin algorithm functions to join a super class table and a subclass table in an object-

oriented model. 

The first step of the OOJoin algorithm is to cross product every tuple in the super class 

table and the sub class table. The resulting tuples from the cross product operation 

contain all the attributes of the superclass (Computer) and the subclass (Laptop), 

including a number of keys (the primary keys and the foreign keys). The superclass keys 

are: the primary key of the superclass (Ki); the first foreign key which is the type for the 

superclass (Ti), and the second foreign key which is the super Jype for the superclass 

(Si). The keys representing the subclass in the tuple are: the primary key of the subclass 

(K2); the first foreign key of the subclass which is the type for the superclass (T2), and the 

second foreign key which is the super type for the subclass (S2). 

The second step is to discard certain tuples from the result of the cross product operation. 

For each tuple, the foreign key Ti is compared with foreign key T2. If Ti matches T2, or 

Ti matches S2 then the tuple will be kept, else the tuple will be discarded. 

The third step in the algorithm further prunes the list of tuples. The first tuple is always 

kept. Two lists are created, each list is a list of primary keys. The first list will be 

reffered to as List} and it is used to store the K; primary keys and the other list shall be 

reffered to as Listj and it is used to store the K2 primary keys. For each tuple, starting 

with the second tuple, we first check if K] of the current tuple is already in List}. If it is, 

then this tuple will be discarded. Else, if Kj is not already in List], then we check if A^ is 

54 



already in List2. If it is, then the tuple will be discarded, else the tuple is kept. 

The OOJoin algorithm is shown in Figure 3.3 

Algorithm OOJoin(Csuper, Csub) 

Input: Super class table CSUper, Sub class table Csub 
Other variables: 
Tc: set that contains result of cross product of two class tables, initialized as empty 
The superclass primary key Ki, the superclass foreign keys Ti and Si. 
The subclass primary key K2, the subclass foreign keys T2 and S2. 
Tt: set that contains tuples selected by constraints Csuper- Ti = Csub. T2 or CSUper. T\ = 
Csub- S2), initialized as empty. 
Tj: to store output tuples, initialized as empty. 
List]: set of IDs of super class table, initialized as empty. 
List2: set of IDs of sub class table, initialized as empty. 

Output: A set of tuples of objects Td. 

Begin 

1 -U 1 c — ^super x ^sub-

2.0 Tt = select from Tc where (Csuper. Ti = Csub. T2 or Csuper. Ti = CSUb. S2) 

3.0 select a set of distinct tuples Td from Tt; 
3.1 insert the first tuple ti of Tt into Td; 
3.2 insert object id of superclass part in ti into Listi; 
3.3 insert object id of subclass part in ti into List2; 
3.4 For each tuple tx left in the Tt 

3.4.1 If (Ki does not exist in Listi && K2 in ti does not exist in List2) 
3.4.1.1 Insert tx into Td; 
3.4.1.2 Insert Ki in tx into Listi; 
3.4.1.2 Insert K2 in tx into List2; 

End if 
End for 

End 

Figure 3.3 algorithm OOJoin 

The "Computer" table and "Laptop" table are shown in Table 1.1 and Table 1.2 

respectively. The following is a detailed example of the operations of the OOJoin 

55 



algorithm on Table 1.1 and Table 1.2. The result is a set of joined instantiated objects of 

"Computer" and "Laptop". 

Table 3.1 shows the result of step 1.0 of the 00Join algorithm. The tuples shown are the 

cross product of the super class table "Computer" (Table 1.1) and the subclass table 

"Laptop" (Table 1.2). 

ID 

compl 

comp2 

comp3 

comp4 

comp5 

comp6 

compl 

comp2 

comp3 

comp4 

comp5 

comp6 

compl 

comp2 

comp3 

comp4 

comp5 

comp6 

Type 

Laptop 

Laptop 

Laptop 

Desktop 

Desktop 

Desktop 

Laptop 

Laptop 

Laptop 

Desktop 

Desktop 

Desktop 

Laptop 

Laptop 

Laptop 

Desktop 

Desktop 

Desktop 

Super 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

CPU 

2GHz 

2GHz 

3GHz 

3GHz 

3GHz 

3GHz 

2GHz 

2GHz 

3GHz 

3GHz 

3GHz 

3GHz 

2GHz 

2GHz 

3GHz 

3GHz 

3GHz 

3GHz 

RAM 

2G 

2G 

4G 

4G 

4G 

4G 

2G 

2G 

4G 

4G 

4G 

4G 

2G 

2G 

4G 

4G 

4G 

4G 

Hard 
Drive 

250G 

320G 

350G 

500G 

500G 

500G 

250G 

320G 

350G 

500G 

500G 

500G 

250G 

320G 

350G 

500G 

500G 

500G 

Comp 
Name 

Idea 
laptop 
Idea 
laptop 
Think 
laptop 
Wk 
station 
Wk 
station 
IBM 
PC 
Idea 
laptop 
Idea 
laptop 
Think 
laptop 
Wk 
station 
Wk 
station 
IBM 
PC 
Idea 
laptop 
Idea 
laptop 
Think 
laptop 
Wk 
station 
Wk 
station 
IBM 
PC 

ID 

laptl 

laptl 

laptl 

laptl 

laptl 

laptl 

lapt2 

lapf2 

lapt2 

lapt2 

lapt2 

lapt2 

lapt3 

lapO 

lapO 

lapt3 

lapt3 

lapt3 

Type 

Ideapad 
laptop 
Ideapad 
laptop 
Thinkpad 
laptop 
Work 
station 
Work 
station 
desktop 

Ideapad 
laptop 
Ideapad 
laptop 
Thinkpad 
laptop 
Work 
station 
Work 
station 
desktop 

Ideapad 
laptop 
Ideapad 
laptop 
Thinkpad 
laptop 
Work 
station 
Work 
station 
desktop 

Super 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Screen 
Size 

15" 

15" 

15" 

15" 

15" 

15" 

15" 

15" 

15" 

15" 

15" 

15" 

17" 

17" 

17" 

17" 

17" 

17" 

Battery 
Life 

3hrs 

3hrs 

3hrs 

3hrs 

3hrs 

3hrs 

3hrs 

3hrs 

3hrs 

3hrs 

3hrs 

3hrs 

3 5hrs 

3 5hrs 

3 5hrs 

3 5hrs 

3 5hrs 

3 5hrs 

Table 3.1 result of "Computer" table cross product "Laptop" table 

Table 3.2 shows the result of step 2.0 of the OOJoin algorithm. The remaining tuple list is 

smaller since the only tuples kept are the tuples where the keys Ti and T2 are matched, or 

Ti is matched with S2 

56 



ID 

compl 

comp2 

comp3 

compl 

comp2 

comp3 

compl 

comp2 

comp3 

Type 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Super 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

CPU 

2GHz 

2GHz 

3GHz 

2GHz 

2GHz 

3GHz 

2GHz 

2GHz 

3GHz 

RAM 

2G 

2G 

4G 

2G 

2G 

4G 

2G 

2G 

4G 

Hard 
Drive 

250G 

320G 

350G 

250G 

320G 

350G 

250G 

320G 

350G 

Comp 
Name 

Idea 
laptop 
Idea 
laptop 
Think 
laptop 
Idea 
laptop 
Idea 
laptop 
Think 
laptop 
Idea 
laptop 
Idea 
laptop 
Think 
laptop 

ID 

laptl 

laptl 

laptl 

lapt2 

lapt2 

lapt2 

lapt3 

lapt3 

lapt3 

Type 

Ideapad 
laptop 
Ideapad 
laptop 
Thinkpad 
laptop 
Ideapad 
laptop 
Ideapad 
laptop 
Thinkpad 
laptop 
Ideapad 
laptop 
Ideapad 
laptop 
Thinkpad 
laptop 

Super 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Laptop 

Screen 
Size 

15" 

15" 

15" 

15" 

15" 

15" 

17" 

17" 

17" 

Battery 
Life 

3hrs 

3hrs 

3hrs 

3hrs 

3hrs 

3hrs 

3 5hrs 

3 5hrs 

3 5hrs 

Table 3.2 result of selected rows 

Step 3.0 of the OOJoin algorithm produ ces the final result table (Table 3.3). Th e 

algorithm always keeps the first tuple. Extract the ID of super class and ID of sub class 

of first tuple and store them in two sets super class ID set and sub class ID set, 

respectively: {compl}, {laptl}. For the rest of tuples in Table 3.2, start from the second 

tuple, check if the ID of sub class exists in the sub class ID set. In this case, the id of sub 

class is "laptl" and "laptl" is already in the set, so the second tuple should not be 

selected. The id of sub class is also "laptl" of third tuple, so third tuple should not be 

selected either. The id of sub class is "lapt2" of Fourth tuple, so we need to check the id 

of super class, which is "compl". "compl" already exists in the set, so the fourth tuple 

should not be selected. The id of sub class is "lapt2" of fifth tuple, so we need to check 

the id of super class, which is "comp2". The fifth tuple should be selected and stored in 

the result table (Table 3.3). Then we store the super class ID and sub class ID of fifth 

tuple into the ID sets: {compl, comp2}, {laptl, lapt2}. By the same method we can 

obtain Table 3.3 

57 



ID 

compl 

comp2 

comp3 

Type 

Laptop 
Laptop 

Laptop 

Super 

Computer 

Computer 

Computer 

CPU 

2GHz 

2GHz 

3GHz 

RA 
M 

2G 

2G 

4G 

Hard 
Drive 

250G 

320G 

350G 

Comp 
Name 

I laptop 

I laptop 

T laptop 

ID 

laptl 

lapt2 

lapO 

Type 

Ideapad 
Laptop 
Ideapad 
Laptop 
Thinkpad 
Laptop 

Super 

Laptop 

Laptop 

Laptop 

Screen 
Size 

15" 

15" 

17" 

Battery 
Life 

3hrs 

3hrs 

3 5hrs 

Table 3.3 Result table of OOJoin 

OOJoin can be used to join the "Computer" and "Desktop" tables in the same way that 

the "Computer" and "Laptop" tables were joined. 

3.3 Mining Frequent Patterns in Transaction (Root) Table 

In section 3.2, we defined the class method MineClassFPs for mining frequent patterns 

for every class C, in each object database. In this section, we define two methods 

InsertTransactions and MineRootFPs belonging to class Root. The method 

InsertTransactions is used to update the Root table and the method MineRootFPs is used 

to mine hierarchical frequent patterns (HFPs) in the Root table. Section 3.3.1 will 

introduce some definitions and algorithms that will be used in the above two methods. 

Section 3.3.2 will give the process flow diagram of the methods InsertTransactions and 

MineRootFPs. Section 3.3.3 will provide the details of the InsertTransactions method. 

Section 3.3.4 will provide the details of the MineRootFPs method. 

3.3.1 Definitions and Algorithms used by Methods of Root Class 

This section will introduce some definitions and algorithms that will be used in the 

methods InsertTransactions and MineRootFPs of the class Root. Section 3.3.1.1 will 

introduce Inheritance Hierarchy Tree (slightly different from the MHTree induced in 

section 1.2). Section 3.3.1.2 will discuss pre-order traversal and the position coding 

58 



method used in the PLWAPLong algorithm proposed by Ezeife, Saeed, and Zhang 

(2009). Section 3.3.1.3 will discuss the map-gen join algorithm used in the TidFP 

algorithm proposed by Ezeife and Zhang (2009). Section 3.3.1.4 will introduce the 

oomap-gen join algorithm, an extended version of map-gen join which is suitable for 

mining object-oriented data. 

3.3.1.1 Inheritance Hierarchy Tree 

As we discussed in Definition 1, in section 1.2, a multiple database class inheritance 

hierarchy can be represented in a tree structure called MHTree as shown in Figure 1.3 in 

section 1.2. However, the class inheritance hierarchy in each database can also be 

represented in a tree structure. 

Definition 5 (structure of inheritance hierarchy): Inheritance Hierarchy Tree, HTree, is a 

tree structure representation of inheritance hierarchy //(class and superclass 

relationships). For example, class inheritance hierarchy of three classes "Computer", 

"Laptop", and "Desktop" in one database shown in Figure 3.4. 

Example 3.1 (show s a tree structure of inheritance hierarchy): given an inheritance 

hierarchy (class and superclass relationships) for 3 classes "Computer", "Laptop", and 

"Desktop": (laptop, computer), (desktop, computer), show an HTree. 

Solution 3.1: Figure 3.4 shows the Inheritance Hierarchy Tree, HTree, for 3 classes 

"Computer", "Laptop", and "Desktop". 

59 



u. 
( Laptop j 

Computer 

Desktop 

Figure 3.4 HTree for 3 class inheritance hierarhcy 

The algorithm for creating the inheritance hierarchy tree (HTree) is given in Figure 3.5. 

60 



Algorithm CreateTree (//) 

Input: inheritance hierarchy H(class„ super,), subclass and superclass relationships, 
sorted from higher hierarchy to lower hierarchy 
Output: HTree that represents the class inheritance hierarchy in one database 
Other variable: pointer nodePtr, // a node pointer variable points to the node of tree 

pointer Root II a node pointer variable points to the root of tree 
Sub algorithm: CreateNode (nodePtr)// traverse existing part of the tree to find 
matches and create new node 

Begin 

0.0 For each pair in H(class,, super J i= 1,2.. .n do 
0.1 if (7=1) 

1.1.1 Create node and label it as super,; 
1.1.2 Root points to node super, 
1.1.3 Create node, label it as class,, and set its parent as super,; 

End if 
1.2 else 

1.2.1 nodePtr points to node Root 
1.2.2 CreateNode(nodePtr) 

1.2.2.1if(nodePtr!=null) 
1.2.2.1.1 if (super, matches nodePtr->label) 

1.2.2.1.1.1 Create new node, class,, and set its parent as 
* nodePtr; 

1.2.2.1.1.2 if (currentNode has a leftmost child) 
Set new node as right sibling of rightmost 
child of currentNode 

else 
Set new node as leftmost son of currentNode 

End if 
End if 
1.2.2.1.2 CreateNode(nodePtr->left most child); 
1.2.2.1.3 CreateNode(NodePtr ->right sibling); 

End if 

End for 

Figure 3.5 Algorithm for Creating Inheritance Hierarchy Tree 

61 



3.3.1.2 Pre-order Traversal and the Position Coding method 

Pre-order traversal of a tree means recursively traverse the tree by first visiting (printing) 

the root node (N), followed by visiting the left subtree (L), and finally visiting the roght 

subtree (R). 

Example 3.2 (pre-order traverse): Given a tree such as Figure 3.4, shows a process of 

pre-order traversal. 

Solution 3.2: In Figure 3.4 node "Computer" is the root node. Node "Laptop" is the 

leftmost child of node "Computer", and the node "Desktop" is the right sibling of node 

"Laptop". The Pre-order traversal algorithm will visit node "Computer" first. Node 

"Computer" has a leftmost child, the node "Laptop". The algorithm then will visit the 

"Laptop" node. Node "Laptop" has no leftmost child. The algorithm will visit the right 

sibling child "Desktop". 

The algorithm of pre-order traversal is show in Figure 3.6. 

Algorithm PreOrderTraverse {root) 

Input: root node of the tree 7 to be traversed. 

Output: traversed tree T 

Other variables: pointer nodePtr 

Begin 

1.0 nodePtr = T. root; 
2.0if(nodePtr!=Null) 

2.1 PreOrderTraverse (nodePtr->leftmost child); 
2.2 PreOrderTraverse (nodePtr->right sibling); 

End if 

End 

Figure 3.6 Algorithm for pre-order traversal 

62 



In the PLWAPLong algorithm (Ezeife, saeed and Zhang(2009)), two position codes, start 

position and end position (tow integer numbers) are assigned to every node of the tree to 

distinguish the position of the nodes in the tree. Position codes are assigned by pre-order 

traversing the tree. 

Example 3.2 (pre-order traverse): Given a tree such as Figure 3.4, each node of the tree is 

assigned two position codes, the start position and the end position by pre-order traversal. 

Solution 3.2: In Figure 3.4 node "Computer" is the root node. Node "Laptop" is the 

leftmost child of the node "Computer", and the node "Desktop" is the right sibling of the 

node "Laptop". The Pre-order traversal algorithm will visit the "Computer" node first and 

will assign a start position for the node of "0". The algorithm then will visit the leftmost 

child node of the "Computer" node, node "Laptop", and will assign to the node a start 

position of " 1 " . Node "Laptop" has no leftmost child and will be assigned an end position 

of "2". The algorithm will visit the right sibling child "Desktop" and it will assign a start 

position of "3" to the node "Desktop". Node "Desktop" has no leftmost child and it will 

be assigned an end position of "4". The algorithm will traverse back to assign an end 

position of "5" to the root node "Computer". Figure 3.7 shows the position codes 

assigned to the nodes of the tree. 

Figure 3.7 Position codes assigned Tree 

63 



The algorithm for assigning position codes is shown in Figure 3.8. 

Algorithm AssignPosCode (T, root) 

Input: tree to be assigned position codes T, root node of T. 

Output: position codes assigned tree Tp 

Other variables: pointer currentNode, posNumber initialized as 0, Boolean variable 
forward initialized as True, backward initialized as False. 

Begin 
1.0 roo?->startPosition = posNumber; 
2.0 currentNode = root->leftmost son; 
3.0 while(currentNode != root) 

3.1 posNumber incremented by 1; 
3.2 if (forward = True and back/ward = False) 

3.2.1 if (currentNode->leftmost son !=NULL) 
3.2.1.1 currentNode->startPosition = posNumber; 
3.2.1.2 currentNode = currentNode->leftmost son; 

End if 
3.2.2 else 

3.2.2.1 currentNode->startPosition = posNumber; 
3.2.2.2 forward = false; 
3.2.2.3 backward = true; 

End else 
End if 
3.3else 

3.3.1 if (forward = False and backward = True) 
3.3.1.1 if(currentNode->right sibling == NULL) 

3.3.1.1.1 currentNode->endPosition = posNumber; 
3.3.1.1.2 currentNode = currentNode->parent; 

End if 
3.3.1.2 else 

3.3.1.2.1 currentNode->endPosition = posNumber; 
3.3.1.2.2 currentNode = currentNode->right sibling; 
3.3.1.2.3 forwar d = True; 
3.3.1.2.4 backward = False; 

End else 
End else 

End 

Figure 3.8 Algorithm for Assigning position codes 

64 



In this thesis, we borrowed the idea of assigning position codes and use it to represent the 

levels of inheritance hierarchy. This will be discussed in detail in section 3.3.1.4. 

3.3.1.3 map-gen join of TidFP algorithm 

One of the main techniques used in the TidFP algorithm is map-gen join. According to 

Ezeife and Zhang (2009), map-gen join is: For each pair of itemsets Mand P EFCk where 

each FCk itemset has the two parts "< itemset, transaction id list >", the following three 

conditions have to be satisfied: M joins with P to get itemset M U P if the following 

conditions are satisfied. 

(a) itemset M comes before itemset P in FCk, 

(b) the first k-1 items in M and P (excluding just the last item) are the same, 

(c) the transaction id list of the new itemset M UP represented as TidMuP is obtained as 

the intersection of the Tid lists of the two joined k-itemsets M and P and thus, TidMup -

Tidu H Tidp. 

Example 3.3 (generate 2-itemset candidate patterns by map-gen join): Given a set of 1-

itemset patterns with their transaction id lists. <1, 2, 3, a>, <1, 2, b>, <1, 2, c>, <3, 4, d>, 

generate 2-itemsets candidate patterns by map-gen join. 

Solution 3.3: The part of itemsets are: a, b, c, d. Combinations can be generated as ab, 

ac, ad, be, cd. For ab, intersect the transaction id list of a and transaction id list of b and 

this results in <1,2>. Therefore, the pattern is <1, 2, ab>. By the same method, we obtain 

all 2-itemset candidate patterns <1, 2, ab >, <1, 2, ac >, <3, ad>, <1, 2, be >, <None, bd 

> 

<None, cd >. 

Example 3.4 (generate 3-itemset candidate pattern by map-gen join): Given a set of 2-

65 



itemset patterns with their transaction id lists. <1, 2, ab >, <1, 2, ac >, <3, ad>, 

<1, 2, be >, generate 3-itemsets candidate patterns by map-gen join. 

Solution 3.4: The itemset parts are ab, ac, ad, be. ab will be checked with the other 

itemsets ac, ad, and be. The first item of ab is a, the first items of ac, and ad is also a, 

therefore a 3-itemset will be generated such as abc and abd. For abc, intersect the 

transaction id list of ab and the transaction id list of be to obtain <1, 2>. This results in 

the pattern <1, 2, abc>. Then ac, will be checked with ad, be and cd. ad will be check 

with be, and cd. be will be checked with cd. The 3-itemset candidate patterns are: <1, 2, 

abc >, <None, abd >, <None, acd >, and <None, bed >. 

3.3.1.4 oomap-gen join 

According to Ezeife and Zhang (2009), map-gen join avoids scanning a database multiple 

times. It provides support for support counting by intersecting the transaction ids. This is 

much more efficient than the Apriori algorithm. However, when the pattern is sparse, 

generating k-itemset candidate patterns is still time consuming. When the dataset is large 

and contains hundreds of thousands or millions of transactions, intersecting transaction 

ids of every k-itemset candidate pattern is time consuming. 

In this thesis, we extend the map-gen join of the TidFP algorithm so that it avoids 

unnecessary candidate pattern generation along the inheritance hierarchy. The new 

algorithm avoids having to intersect the transaction ids of unnecessary candidate patterns. 

The modified version of the algorithm shall be called oomap-gen join. 

66 



In object-oriented frequent pattern mining, the patterns are in fact the attributes of the 

class objects. Example 1.3 shows computer object database. In that example the 

Computer class object has the attributes of, "CPU", "RAM", and "hard_drive". 

"Screen_size" and "battery_life" are attributes of the Laptop class object which inherits 

from the Computer class. "Graphic" is attribute of the Desktop class object which also 

inherits from the Computer class. 

The 1-itemset candidate pattern such as <2GHz> is "CPU" attribute of the Computer 

class and it can be joined with <17"> which is "screen size" attribute of the Laptop class 

and <256M> is the "Graphic" attribute of the Desktop class. Examples of generated 2-

itemset candidate patterns are <2GHz, 17"> and <2GHz, 256M>. However, we should 

not generate the candidate pattern <17", 256M>, because the patterns <17"> and <256M> 

will not appear at the same transaction after we joined the class tables. The map-gen join 

unfortunately would generate the candidate pattern <17", 256M>. Once the candidate 

pattern is generated the map-gen join algorithm will intersect the transaction ids of <17"> 

and <256M>, and thus determine that the intersection of these two id lists is "None". 

The new algorithm is more efficient because it would not have generated the candidate 

pattern <17", 256M> and thus can avoid having to perform the intersection operation. In 

section 3.3.1.2, we used two position codes, the start position and the end position to 

represent levels of inheritance hierarchy. We will use these two position codes to index 

the patterns (attributes of classes) to judge which class the patterns belong to, so that we 

can find out that if two k-itemset patterns should be joined to generate an (k+l)-itemset 

candidate pattern before joining them. Therefore, we need to define a new format for a 

67 



pattern. As discussed in section 1.5, the TidFP algorithm proposed the pattern in the 

format of <Tidlist, itemset>, and called this the 77 pattern. We can also extend the pattern 

to the format of <Tidlist, itemset>(start_position, end_position), which is the same as the 

77 pattern except with two position codes {start position and end position). This new form 

will be called the TIP pattern. An example of a TIP pattern is <1,2,3, "2GHz" "2GB">(0, 

5). "1,2,3" is the transaction ids list which means the pattern appears in transaction 1, 2, 

and 3. "2GHz" "2GB" is itemsets. (0, 5) are position codes. "0" is the start position and 

"5" is the end position. 

As discussed in section 3.3.1.2, the two position codes {start position and end position) 

can represent and account for the levels of a class inheritance hierarchy. As shown in 

Figure 3.6, each of the three classes (three nodes in the tree) is assigned a start position 

and end position. The class Computer is assigned "0" and "5" for the start and end 

position values. The class Laptop is assigned " 1 " and "2" for the start and end position 

values. The class Computer is assigned "3" and "4" for the start and end position values. 

The class Computer is the superclass of class Laptop. We can see that the start position of 

the class Computer is smaller than start position of the class Laptop and that the end 

position of the class Computer is greater than the end position of the class Desktop. 

There is no superclass or subclass relationship between the class Laptop and the class 

Desktop. We can see that the start position of the class Laptop is smaller than the start 

position of the class Desktop. We can also see that the end position of the class Laptop is 

smaller than the end position of the class Desktop. 

68 



As we discussed in the previous paragraph in this section, before joining two k-itemset 

patterns to generate an (k+l)-itemset pattern, we should check the level of inheritance 

hierarchy the patterns belong to. The two position codes {start and end position) can be 

used to check the level of hierarchy. When mining object-oriented data, patterns are class 

attributes. The start and end position coding scheme allows for patterns to be indexed 

according to the level of hierarchy they belong to. A set of rules is used to decide whether 

the patterns should be joined. This set of rules is defined as follows: 

Rule 1: Given two patterns P and M, which are both k-itemset patterns, if the start 

position of P is equal to the start position of M and also the end position of P is equal to 

the end position of M, then P and M can be joined to generate a (k+l)-itemset candidate 

pattern. With reference to Example 1.3 (describing a computer object database) and 

Figure 3.6 (describing the HTree and position codes assigned to the nodes of the tree), the 

patterns <2GHz> and <4G> can be determined to both belong to the class Computer, 

since both will be index by the start position "0" and end position "5". Therefore, they 

can be joined to generate the candidate pattern <2GHz, 4G>. 

Rule 2: Given two patterns P and M which are both k-itemset patterns, if the start 

position of P is smaller than the start position of M and also the end position of P is 

greater than the end position of M, then P and M can be joined to generate a (k+1)-

itemset candidate pattern. With reference to Example 1.3 (describing a computer object 

database) and Figure 3.6 (describing the HTree and position codes assigned to the nodes 

of the tree), the pattern <2GHz> can belong to the class Computer or Laptop but the 

pattern <3hrs> exclusively belongs to the class Laptop. The Pattern <2GHz> will be 

indexed by a start position "0" and end position "5". Pattern <3hrs> is indexed by start 

69 



position " 1 " and end position "2". Therefore, they can be joined to generate a candidate 

pattern <2GHz, 2hrs>. 

Rule 3: Given two patterns P and M which are both k-itemset patterns, if the start 

position of P is greater than the start position of M and also the end position of P is 

smaller than the end position of M, then P and M can be joined to generate a (k+1)-

itemset candidate pattern. With reference to Example 1.3 (describing a computer object 

database) and Figure 3.6 (describing the HTree and position codes assigned to the nodes 

of the tree), the pattern <256M> belongs to the class Desktop and the pattern <3GHz> 

belongs to the class Computer. Pattern <256M> will be indexed by start position " 3 " and 

end position "4". Pattern <3GHz> be indexed by start position "0" and end position "5". 

Therefore, they can be joined to generate the candidate pattern <256M, 3GHz?*. 

As we discussed in section 3.3.1.3, map-gen join will check if the first k-litems in two k-

itemset patterns are matched. Then it generates a (k+l)-itemset pattern by appending the 

last item of the second pattern to the end of first pattern, and it also intersects the 

transaction id lists of the two patterns. The difference between map-gen join and oomap-

gen join is that the oomap-gen join will check if the two patterns satisfy any one of the 

rules described above (Rule 1, Rule 2, or Rule 3). If any of the rules are satisfied then we 

check for a match of k-1 items of two k-itemset patterns, and if they are matched then we 

generate a new (k+l)-itemset pattern. Once the new (k+l)-itemset pattern is generated, 

we intersect the transaction ids and append the position codes of second pattern to the 

newly generated (k+l)-itemset pattern. We need to append the position code of the 

second pattern to the newly generated pattern because the position codes need to be 

70 



checked for generating a (k+2)-itemset candidate pattern. The algorithm of oomap-gen is 

given in Figure 3.9. 

Algorithm oomapgenjoin (Fk) 

Input: a set of k-itemset patterns Fk 
Output: a set of (k+l)-itemset candidate patterns in format of 

transaction id list, itemset>(start_position, endjposition). 

Other variables: any two k-itemset pattern P and M in Fk, in the format of 
transaction id list, itemset>(start_position, endjposition). 

(k+l)-itemset candidate pattern generated by P and M, in format of 
transaction id list, itemset>(start_position, end_position). 

Begin 

1.0 For every two k-itemset patterns P and M in Fk, P comes before M 
1.1 if ((start_position of P = start_position of M and 

end_position of P = end_position of M) 
or (start_position of P < start_position of M and 
end_position of P > end_position of M) 
or (start_position of P < start_position of M and 
end_position of P < end_position of M)) 

1.1.1 if (the first k-1 itemsets in M and P are the same) 
1.1.1.1 transaction id list of N = transaction id lsit of P D transaction id 

List of M; 
1.1.1.2 itemset of N = itemset of P append last item of M; 
1.1.1.3start_position of N = start_position of M; 
1.1.1.4 end_position of N = end_position of M; 

End if 
End if 

End 

Figure 3.9 Algorithm for oomap-gen join 

For example, if a pattern P has the format of <1,2,3,4, 2GHz, 2G>(0, 5), then we can 

determine from this format that the pattern appears in transaction 1,2,3,4 and belongs to 

the class Computer which has a start position "0" and an end position "5". Another 

pattern M may have the format of <1,2,3,5, 2GHz, 3hrs>(l, 2). From pattern M we can 

71 



determine that the pattern appears in transaction 1,2,3,5 and belongs to the class Laptop 

which has start position " 1 " and end position "2". In step 1.0, oomap-gen join algorithm 

will check the start position and end position of these two patterns. The start position of 

P is smaller than the start position of M and the end position of P is greater than the end 

position of M. Then the oomap-gen join algorithm goes to step 1.1. Pattern P and M are 

2-itemset patterns, and the first item of both patterns is "2GHz". The algorithm goes to 

step 1.1.1, where the transaction id lists of the two patterns will be intersected and to get 

the result <1,2,3>, which is the transaction id list. After the algorithm goes to step 1.1.2, 

the new itemset shall be <2GHz, 2G, 3hrs>. Finally, the algorithm goes to step 1.1.3 and 

1.1.4. The start and end position of the new pattern is " 1 " and "2". Therefore, the final 

form of the new pattern is <1,2,3, 2GHz, 2G, 3hrs>(l,2). 

3.3.1.5 Transaction IDs Stored MHTree (TMHTree) 

As defined in Definition /(multiple databases inheritance hierarchy tree) in section 1.2, 

multiple databases inheritance hierarchy can be represented in a tree structure called 

MHTree. When the method MineRootFPs mines hierarchical frequent patterns (HFPs) 

in the Root table, the transaction ids need to be stored in the nodes of MHTree to provide 

the information necessary to describe at which level of inheritance hierarchy the 

transaction appears. 

Definition 6 (transaction ids stored multiple databases inheritance hierarchy tree): 

Transaction ids stored in the nodes of a multiple database inheritance hierarchy tree 

(MHTree). Due to the transaction ids being stored in the node we rename the modified 

MHTree to be called TMHTree. 

72 



The example for an MHTree is shown in Figure 1.3 of section 1.2. That MHTree stores 

the transaction ids of a Root table (transaction table). The Root table was shown in Table 

3.4 of section 3.3.2. The resulting TMHTree is shown in Figure 3.10. 

Figure 3.10 TMHtree transaction IDs stored MHTree 

In Figure 3.10, integer numbers stored in the nodes of TMHTree are transaction ids. 

3.3.1.6 Linkage Built TMHTree (LTMHTree) 

In the PL WAP algorithm (Ezeife and Lu (2005)), the nodes in the tree with the same 

label can be connected by linkage and be accessed by a link header table. 

Definition 7 (linkage built multiple databases inheritance hierarchy tree): after the 

linkage step the TMHTree is reffered to as the LTMHTree. As an example, a TMHTree 

is shown in Figure 3.10 of section 3.3.1.5. Figure 3.11 provides an LTMHTree for three 

computer object databases, IBM, Dell, and HP with linkage built. 

73 



Figure 3.11 Linkage built LTMHTree (LTMHTree) 

In Figure 3.11, the three rectangles which are labelled as "Computer", "Laptop", and 

"Desktop" represent the link header table. The link header table can access the nodes of 

the LTMHTree through the linkages. The detail of algorithm for building the linkage will 

be discussed in section 3.3.4.4. 

74 



3.3.2 Insert Transactions into Root table 

As defined in section 1.2, the Root table is a transactional table which records the 

purchase transactions. When a purchase is made, a transaction needs to be inserted into 

the Root table. The main algorithm of the method InsertTransactions is shown in Figure 

3.12. 

Algorithm InsertTransactions (H, C„ Q) 

Input: Inheritance hierarchy H, //superclass and subclass relationship 
Class tables of purchased product C, 
CS, //a set of superclass tables of C, 
Purchase inquiry Q 

Output: transaction inserted Root table 
Other variables: Inheritance hierarchy Tree HTree, object joined table T 

Begin 

1.0 CreateHTree(/f); //create inheritance hierarchy tree HTree 

2.0 AssignPosCode(//7>ee); //assign position codes to HTree 

3.0 IndexAttri(//7>ee, C,); //index class attributes by two position codes 

4.0 JoinClasses( OS1,, C,); //join class tables and result a object joined table T 
4.1 T=C; 
4.2 if(GS, ^ NULL) // C has super classes. 

4.2.1 For each superclass table CS, 
4.2.1.1 T = OOJoin(GS,, 7); // call OOJoin to join subclass and 

superclass 
End for 

End if 

5.0 InsertTrans(g, 7); // insert transaction into Root table 

End 

Figure 3.12 Algorithm for method InsertTransactions 

Figure 3.13 is the process flow of the private method InsertTransactions belonging to the 

Root class. 

75 



Input 

Super class tables CSi 

Class tables C 

Inheritance 
Hierarchy Tree 
(HTree) 

Position codes / 
assigned 
HTree 

Inheritance 
Hierarchy 

Purchase 
inquiry 

Create inheritance 
hierarchy tree 
Algorithm: CreateHTree 

Pre-order traverse to 
assign position code to 
the nodes of HTree 
Algorithm: AssignPosCode 

i 

T 

Legend: 
= Process & Algorithm 

/ 7 = Data 

_ .̂ _ Process flow 

.w _ Data flow 

= Database table(s) 

Output 

Root table 

Indexing attributes of 
objects in C and CS, 
by position code 
Algorithm: IndepAttr 

Join object tables 
iteratively 
Algorithm: JoinClasses 

i T 
i 
i 

. J 

Indexed super 
class tables CS, 

i 
T" 

i 
T 

Insert transactions into 
Root table 
Algorithm: InsertTrans 

i 
. J 

i 

Object joined 
table T 

Indexed class 
tables C, 

Figure 3.13 Process Flow of private method InsertTransactions of Root Class 

76 



As shown in Figure 3.13, the private method InsertTransactions of the Root class consists 

of 5 steps: 

1) Create the Inheritance hierarchy tree (HTree). 

2) Use pre-order traversal to assign position codes to the nodes of the tree. 

3) Index the attributes in the object database for each table. 

4) Join the object table and its super class tables 

5) Insert a transaction into the Root table. 

For example, the private method InsertTransactions has the inputs: inheritance hierarchy 

//={(laptop, computer), (Desktop, Computer)}, a computer object database (refer to 

Example 1.3 of section 1.2), and a purchase inquiry of a laptop computer. The result of 

running the method is an updated Root table consisting of the new transaction. 

Step 1.0 of the algorithm will create an inheritance hierarchy tree (HTree), from H (as 

discussed in section 3.3.1.1). Step 2.0 will pre-order traverse the HTree to assign the 

position code values (as discussed in section 3.3.1.2). Step 3.0 will index the attributes of 

the computer object tables (Refer to Table 1.1, Table 1.2 and Table 1.3 of section 1.2) by 

position codes in the HTree. The indexed object tables are shown in Table 3.4, Table 3.5, 

and Table 3.6. 

77 



Compid 

compl 

comp2 

comp3 

comp4 

comp5 

comp6 

Type 

Laptop 

Laptop 

Laptop 

Desktop 

Desktop 

Desktop 

Supertype 

Computer 

Computer 

Computer 

Computer 

Computer 

Computer 

CPU 

2GHz 
(0,5) 
2GHz 
(0,5) 
3GHz 
(0,5) 
3GHz 
(0,5) 
3 GHz 
(0,5) 
3 GHz 
(0,5) 

RAM 

2G 
(0,5) 
2G 
(0,5) 
4G 
(0,5) 
4G 
(0,5) 
4G 
(0,5) 
4G 
(0,5) 

Hard Drive 

250G 
(0,5) 
320G 
(0,5) 
350G 
(0,5) 
500G 
(0,5) 
500G 
(0,5) 
500G 
(0,5) 

Table 3.4 Object Table of Computer Class in IBM DB 

Lapid 

laptl 

lapt2 

lapt3 

Type 

Ideapad Laptop 

Ideapad Laptop 

Thinkpad Laptop 

Supertype 

Laptop 
(1,2) 
Laptop 
(1,2) 

Laptop 
(1,2) 

Screensize 

15" 
(1,2) 
15" 
(1,2) 

17" 
(1,2) 

Batterylife 

3 hours 
(1,2) 
3 hours 
(1,2) 

3.5 hours 
(1,2) 

Table 3.5 Objects table of Laptop class in IBM DB 

Deskid 

deskl 

desk2 

desk3 

Type 

Work station 

Work station 

Desktop 

Supertype 

Desktop 

Desktop 

Desktop 

Graphic 

256M 
(3,4) 
256M 

(3,4) 
512M 

(3,4) 
Table 3.6 Objects table of Desktop class in IBM DB 

Step 4.0 will apply OOJoin algorithm to join the superclass tables and subclass tables. 

The resulting table of the join is shown in Table 3.7 

ID 

compl 

comp2 

comp3 

Type 

Laptop 
Laptop 

Laptop 

Super 

Computer 

Computer 

Computer 

CPU 

2GHz 
(0,5) 
2GHz 
(0,5) 
3GHz 
(0,5) 

RAM 

2G 
(0,5) 
2G 
(0,5) 
4G 
(0,5) 

Hard 
Drive 

250G 
(0,5) 
320G 
(0,5) 
350G 
(0,5) 

Comp 
Name 

I. laptop 

I. laptop 

T.laptop 

ID 

laptl 

lapt2 

Iapt3 

Type 

Ideapad 
Laptop 
Ideapad 
Laptop 
Thinkpad 
Laptop 

Super 

Laptop 

Laptop 

Laptop 

Screen 
Size 

15" 
(1,2) 
15" 
(1,2) 
17" 
(1,2) 

Battery 
Life 

3hrs 
(1,2) 
3hrs 
(1,2) 
3.5hrs 
(1,2) 

Table 3.7 Result table of OOJoin 

78 



Step 5.0 of the algorithm will insert a transaction into the Root table. As defined, the 

Root class primary key (transaction id) is an integer number. The class Type is the 

database name where the transaction came from. The class Super type has the value of 

Root. The Root table also contains a set of attributes which are the attributes of the 

classes in each database and also contains the super types of these classes. The input 

"purchase inquiry" of the InsertTrans algorithm indicates the purchased object and which 

object database the purchase comes from. 

The new purchase transaction is inserted into the Root table in such a form that attributes 

such as the transaction id, the Type (name of database where the transaction comes from), 

the Super Jype (topmost object in the inheritance hierarchy), and super, of the object (the 

Super type of the objects being joined), and also all the attributes of the joined classes. 

The algorithm of InsertTrans is shown in Figure 3.14. 

Algorithm InsertTrans(^, 7) 

Input: purchase inquiry Q indicate the object purchased 
Joined object table T 

Other variables: Root class table, 
DBname // the name of the database the purchase comes from 
Tid // transaction id, a sequence ID created by a DBMS 
Superj // super types of joined class tables 
Attrij // all attributes of joined class tables 

Output: Root class table with inserted transaction. 

Begin 

1.0 select purchased object from object joined table T; 
2.0 insert(Tid, DBname, "Root", Super;, Attrij) into Root. 

End 

Figure 3.14 Algorithm for InsertTrans 

79 



After calling the method InsertTransactions a few times, a sample Root table is shown in 

Table 3.8. 

TID 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Type 

IBM 

IBM 

Dell 

HP 

HP 

Dell 

IBM 

HP 

Dell 

Superjype 

Root 

Root 

Root 

Root 

Root 

Root 

Root 

Root 

Root 

super] 

computer 

computer 

computer 

computer 

computer 

computer 

computer 

computer 

computer 

Super2 

Laptop 

Laptop 

Laptop 

Desktop 

Desktop 

Desktop 

Laptop 

Laptop 

Desktop 

CPU 

2GHz 
(0,5) 
3 GHz 
(0,5) 
2GHz 
(0,5) 
3GHz 
(0,5) 
3 GHz 
(0,5) 
3GHz 
(0,5) 
2GHz 
(0,5) 
3GHz 
(0,5) 
3GHz 
(0,5) 

RAM 

2G 
(0,5) 
4G 
(0,5) 
2G 
(0,5) 
4G 
(0,5) 
4G 
(0,5) 
4G 
(0,5) 
2G 
(0,5) 
4G 
(0,5) 
4G 
(0,5) 

Hard 
Drive 

250G 
(0,5) 
320G 
(0,5) 
350G 
(0,5) 
500G 
(0,5) 
500G 
(0,5) 
500G 
(0,5) 
300G 
(0,5) 
160G 
(0,5) 
300G 
(0,5) 

Screen 
Size 

13" 
0,2) 
14" 
(1,2) 
17" 
(1,2) 

15" 
0,2) 
17" 
(1,2) 

Battery 
Life 

3hrs 
(1,2) 
3hrs 
(1,2) 
3.5hrs 
(1,2) 

3hrs 
0 , 2 ) 
3.5hrs 
(1,2) 

Graphic 

128M 
(3,4) 
256M 
(3,4) 
512M 
(3,4) 

256M 
(3,4) 

Table 3.8 indexed Root table 

3.3.3 Mining Frequent Patterns in the Root Table 

As discussed in section 1.4, directly applying one of the frequent pattern mining 

algorithms, such as the TidFP algorithm to mine the object attributes as frequent patterns 

of the Root class is not informative enough. An example of such a query is query 3 

provided in section 1.4 (mining object attributes as frequent patterns for all computers 

purchased). 

In order to discover the Hierarchical Frequent Patterns (HFPs) in the format of <Tidlist, 

itemsets, clasSj>, queries like query 4 and query 5 of secion 1.4 (mining object attributes 

as frequent patterns while at the same time being able to indicate at which level the 

frequent patterns are significant at) requires a method such as MineRootFPs. 

80 



The main algorithm for the method MineRootFPs belonging to the Root class is given in 

Figure 3.15. 

Algorithm MineRootFPs(Mi/, s%, Root) 

Input: multiple database inheritance hierarchy MH, Root table, minimum support s% 

Other variables: multiple database inheritance hierarchy Tree MHTree, 
TMHTree, //Transaction ids stored MHTree 
LTMHTree //Linkage built TMHTree, 
set of k-itemset frequent pattern Fk; 
set of k-itemset candidate pattern Q; 

Output: hierarchical frequent patterns HFPs in the format of 
<Tidlist, itemsets, classj>. 

Begin 

1.0 CreateMHTree(Aff/); //create multiple database inheritance hierarchy tree, 
MHTree 

2.1 StoreTidMHTree(Mi/7>ee, Root); //store transaction ids into MHTree and 
Obtain TMHtree 

2.2 GenOneCand(i?oor); //generate 1-itemset candidate patterns 

3.0 BuildLinkage(rA///7ree); //build linkage of TMHTree and obtain 
TMHTree 

4.0 MinetiFYsiLTMHTree, Ck, s%) 
4.1 Ck= {1-itemset candidate patterns} 
4.2 Fk = CheckMinS(Aff/7>ee, Ck, s%); 
4.3 if {Fk is not empty) 

4.3.1 Ck+i = oomap-gen-join(F^); 
4.3.2 k = k+l 
4.3.2 go to step 4.2 

End 

Figure 3.15 Algorithm for the method MineRootFPs of the Root class 

Step 1.0 is creating a multiple database inheritance hierarchy tree (MHTree). Step 2.1 

scans the entire table and stores the transa ction ids into the nodes of the MHTree. 

Concurently with Step 2.1, Step 2.2 generates the 1-itemset candidate patterns. Step 3.0 

81 



is building the linkage to MHTree, so that nodes of the MHTree can be easily accessed. 

Step 4.0 is mining for the hierarchical frequent patterns in the Root table. The detail of 

each step will be discussed in the Section 3.3.4.1, 3.3.4.2, 3.3.4.3, 3.3.4.4, and 3.3.4.5. 

The process flow of the private method MineRootFPs belonging to the Root class is 

shown in Figure 3.16. 

82 



Input 

Root table 

Legend: 
= Process & Algorithm 

I 7 = Data 

_ Database table(s) 

_^. _ Process flow 

k — Dataflow 

/ Minimum 
Support s% 

Multiple 
Database 
Inheritance 
Hierarchy 

Output 

k-itemset (k=l) 
candidate patterns 

Create Multiple Database 
Inheritance Hierarchy tree 
Algorithm CreateMHTree 

Generate 1-itemset 
candidate patterns 
Algorithm GenOnePattern 

i 

Populate transaction ids into 
MHTree 
Algorithm PopulateMHTree 

Pre-order traverse MHTree 
to build linkage of nodes 
Algorithm BuddLinkage 

i 

MHTree MHTree 
populated by 
transaction ids 

i 
i 

-W k-itemset / 
I frequent patterns / 

Traverse MHTree 
through linkage to find 
hierarchical Frequent 
Patterns 
Algorithm CheckSupp 

Generate (k+l)-itemset 
candidate patterns 
Algorithm oomap-gen-join 

Algorithm MineHFPs 

Linkage built 
MHTree populated 
by transaction ids 

(k+l)-itemset 
candidate patterns 

Figure 3.16 Process Flow of private method MineRootFPs of Root Class 

83 



3.3.3.1 Create Multiple Databases Inheritance Hierarchy Tree 

Step 1.0 of the method MineRootFPs belonging to the class Root is the algorithm of 

CreateMHTree. The Multiple databases Hierarchy Tree (MHTree) is retrieved from MH 

which is a set representing the relationship between each subclass and its respective 

superclass. The pairs from the MH set are sorted with respect to hierarchy level, from 

highest to lowest hierarchy. The algorithm will first create root node labelled as the 

"super" element of the first pair and the "class" element of the first pair is the leftmost 

child node of the root node. The element super in each pair from the set MH, will be first 

checked to see if it is already an established node in the MHTree that is being built. If the 

node does not yet exist, then the node is appended to the MHTree in its appropriate place 

with respect to its parent (hierarchy level). If the existing parent node to which the new 

node is about to be added does not have a child, the newly created node is set to be the 

leftmost child of the parent node. If the existing node has a leftmost child, then we find 

the rightmost child of the parent node and set the newly created node to be the new 

rightmost child. The algorithm of CreateMHTree is shown in Figure 3.17 and it is similar 

to the algorithm for creating the inheritance hierarchy tree in Figure 3.5. 

84 



Algorithm CreateMHTree (MH) 

Input: multiple database class inheritance hierarchy MH(class„ super,), a set of 
pairs, sorted from higher hierarchy to lower hierarchy 
Output: MHTree that represents the class inheritance hierarchy in multiple 
databases 
Other variable: pointer nodePtr // a poniter variable points to the node of tree 
Sub algorithm: CreateNode ()// traverse existing part of the tree to find matches and 
create new node 

Begin 

1.0 For each pair in MH(class„ super,) i- 1,2.. .n do 
1.1 if (7=1) 

1.1.1 Create node and label it as Root; 
1.1.2 Create node, label it as class,, and set its parent as Root; 

End if 
1.2 else 

1.2.3 nodePtr points to node Root 
1.2.4 CreateNode(nodePtr) 

1.2.4.1if(nodePtr!=null) 
1.2.4.1.1 if {super, matches nodePtr->label) 

1.2.4.1.1.1 Create new node, class,, and set its parent as 
*nodePtr; 

1.2.4.1.1.2 if (currentNode has a leftmost child) 
Set new node as right sibling of rightmost 
son of currentNode 

else 
Set new node as leftmost son of currentNode 

End if 
End if 
1.2.4.1.2 CreateNode(nodePtr->left most child); 
1.2.4.1.3 CreateNode(NodePtr ->right sibling); 

End if 
End for 

End 

Figure 3.17 Algorithm for creating multiple inheritance hierarchy tree (MHTree) 

In Example 1.1, the MHTree will be obtained as Figure 3.18. 

85 



Figure 3.18 MHTree of computer object databases example 

3.3.3.2 Store Transaction IDs into MHTree 

Step 2.1 of the method MineRootFPs of the Root class is the algorithm of 

StoreTidMHTree. As discussed in section 1.4 and section 3.3.3, the Root table has the 

schema Root(K, T, S, A, M, O). T is the Type of the Root class. When the Root table is a 

transaction table, T is the name of database where the transaction comes from. A is a set 

of attributes. A consists of super types (represented as superi, super2 ... super „ in the Root 

table) and the physical attributes of all classes in the databases. In step 2.1, the algorithm 

scans the database table and extracts the attributes transaction ID, type (Database name), 

super 1, super2 ... super„ from the Root table. For every tuple in the Root table, the 

MHTree is traversed by the StoreTidMHTree algorithm. To insert the thransaction ids 

into the MHTree, we search the direct children of the root node for a match in the 

database name. Once the node is found with a matching database name, we insert the 

86 



transaction id of the transaction record into the matching node. Then, we take each super, 

that is found in that same transaction row, and we search the MHtree for the node 

representing that super,. Once the node is found which represents the super element in 

the transaction record, the transaction id of that transaction record is inserted into that 

node. 

The algorithm of PopulateMHTreeQ is shown in Figure 3.19. 

Algorithm StoreTidMHTree(MHTree, Root) 
Input: multiple databases inheritance hierarchy tree MHTree, Root table 
Output: TMHTree//MHTree stored with transaction IDs 
Other variables: pointer nodePtr //a node pointer 

Tuple in Root table t, 

Begin 

1 .OFor each tuple tj in integrated Root table do 
1.1 nodePtr points to leftmost child node of Root node of MHTree; 
1.2 while(nodePtr != Null) 

1.2.1 if ti.supertype matches nodePtr->label 
1.2.1.1 store t,.transactionID in *nodePtr; 
1.2.1.2 break; 

End if 
1.2.2else 

1.2.2.1 nodePtr = nodePtr->right_slibling; 
End else 

End while 
1.3 nodePtr points to leftmost child of nodePtr; 
1.4 For each t,.superj (j = 1, 2.. .n) 

1.4.1 nodePtr points to leftmost child of nodePtr; 
1.4.2 while(nodePtr !=Null) 

1.4.2.1 if tj.super matches nodePtr->label 
1.4.2.1.1 store t,.transactionID in *nodePtr; 
1.4.2.1.2 break; 

End if 
1.4.2.2 else 

1.4.2.2.1 nodePtr = nodePtr->right_slibling; 
End else 

End while 

End 

Figure 3.19 Algorithm of TraverseTreeQ 

87 



Table 3.4 (Root table) and Figure 3.18 (MHTree) show the sample input of the algorithm 

StoreTidMHTree. The first row has the attributes transaction id, database name, and 

superi...supern As an example, the attributes of the first row of Table 3.4 would be <1, 

IBM, computer, laptop> and traversal of the MHTree will result in the MHTree being as 

shown in Figure 3.20. Transaction id is stored in node "IBM", "Computer", and 

"Laptop". 

( Computer \ 

f Laptop \ 
( 1 ) ( Desktop -,&© 

Figure 3.20 TMHTree store transaction ID 1 

As an example, the attributes of the first row of Table 3.4 would be <2, IBM, computer, 

laptop> and traversal of the MHTree will result in the MHTree being as shown in Figure 

3.21. Transaction id is stored in node "IBM", "Computer", and "Laptop". 



Figure 3.21 TMHTree store transaction ID 1, 2 

After all the rows in Table 3.4 have been processed, the MHTree nodes will be populated 

with the appropriate transaction ids. The result obtained is shown in Figure 3.22. 

Figure 3.22 TMHtree stores all transaction IDs 

89 



3.3.3.3 Generate 1-itemset candidate pattern with transaction IDs 

Step 2.2 of the method MineRootFPs is processed concurrently with Step 2.1 of the 

MineRootFPs method. While scanning the database in order to populate the MHTree 

nodes with the appropriate transaction ids, the other attributes of each record in the 

transaction table is also extracted and 1-itemset candidate patterns are generated. The 

generation of the 1-itemset candidate patterns is similar to the way that the TidFP 

algorithm generates 1-itemset candidate patterns. The algorithm for generating the 1-item 

candidate patterns with transaction ids is shown in Figure 3.23 

Algorithm GenOneCand(-KooO 
Input: Root table. 
Output: a set 1 -itemset candidate patterns in the format of <TidList, itemset>. 
Other variables: candSet, initialized as empty //a set stores 1-itemset candidate 
patterns, 
setPointer //a pointer points to the element of set of 1-itemset candidate patterns 

Begin 

1.0 For Each tuple /, in the integrated Root table 
1.1 For each attribute av in tt 

1.1.1 setPointer points to the begin of candSet; 
1.1.2 while(setPointer != end of the canSet) 

1.1.2.1 if(setPointer->itemset = av) 
insert t,.Tid into setPointer->TidList; 

end if 
1.1.2.2 setPointer points to next element of canSet; 

End while 
1.1.3 if(a,j is not found in candSet) 

1.1.3.1 Create a new 1 -itemset candidate pattern c; 
1.1.3.2 insert t,.Tid into c.TidList; 
1.1.3.3 c.itemset = a,/, 

End if 
End for 

End for 

End 

Figure 3.23 Algorithm for generating 1-item candidate patterns with transaction IDs 

90 



Table 3.4 (Root table) shows the sample input for the genCandidate algorithm. The 

variable candSet is initialized as empty. The first attribute of the first record in Table 3.4 

is "2GHz". candSet is empty and therefore does not contain the pattern "2GHz". A 1-

itemset candidate pattern <1, 2GHz> is generated. Insert transaction ids " 1 " in to TidList 

and itemset is "2GHz". The candidate pattern <1, 2GHz> is placed into the candSet 

variable. Then the second attribute of first record is checked and a candidate pattern <1, 

2G> is generated and placed into the candSet variable. The rest of attributes in the record 

will create 1-itemset candidate pattern <1, 250G>, <1, 13">, and <1, 3hrs>. After the first 

record has been processed, the candSet variable will contain the following set of 

candidate patterns, <1, 2GHz>, <1, 250G>, <1, 13">, and <1, 3hrs>. 

The second record is processed in a similar way to how the first record was processed. 

The difference is that a candidate pattern having the itemset "3hrs" already exists and 

therefore there is no need to create a new candidate pattern having the itemset "3hrs". 

Only the transaction id ("2") of the second record needs to be added to the transaction id 

list of the candidate pattern <1, 3hrs> which then becomes <1,2, 3hrs>. 

By the same process the 1-itemset candidate patterns are: <1, 3, 7, 2GHz>, <1, 3, 7, 2G>, 

<2, 4, 5, 6, 8,9, 3GHz>, <2, 4, 5, 6, 8, 9, 4G>, <1, 250G>, <1, 13">, <2, 14"> <2, 320G>, 

<3, 350G>, <7,9, 300G>,<8,160G>, <4, 5, 6, 500G>, <7, 15">,<3, 8, 17">, <1, 2, 7, 

3hrs>, <3, 8, 3.5hrs >, <4, 128M>, <5, 9, 256M>, and <6, 512M>. 

3.3.3.4 Build Linkage for Multiple Inheritance Hierarchy Tree 

As discussed in section 3.3.1.6, the linkage can be used to access the nodes of the tree. 

Step 3.0 of the method MineRootFPs belonging to the Root class is using the 

91 



BuildLinkage algorithm to build the linkage to the nodes of the MHTree having the 

appropriate transaction ids. The BuildLinkage algorithm is given in Figure 3.24 

Algorithm BuildLinkage(ZM//7>ee) 
Input: TMHTree //transaction ids stored MHTree. 
Output: LTMHTree //linkage built TMHTree. 
Other variables: linkage queues q, II to store nodes in an appropriate queue 

Link header t, 
Link header table T, 
Root //the root node of TMHTree 
C, //class tables 

Begin 

1.0 create link header table T, according to class tables C„ and each link header t, 
is named as the name of each class table C,; 

2.0 create linkage queue q, for each link header t,; 
3.0 From Root, pre-order traversal of LTMHTree, visit Root, then left and then 

right subtrees and add all nodes to the appropriate linkage queue q„ for every 
node, retrieve the hierarchy and store it in the node; 

End 

Figure 3.24 Algorithm for BuildLinkage 

To serve as an example, the sample input of the BuildLinkage algorithm is the TMHTree 

(Figure 3.21). The step 1.0 of the algorithm is to build the link header table. In the 

computer object database, there are three object tables, "Computer", "Laptop", and 

"Desktop". The link header tables is shown bellow. 

Computer 

Laptop 

Desktop 

Step 2.0 is to build a linkage queue for each link header. Step 3.0 is to pre-order traverse 

the tree and to add all the nodes of the tree to the appropriate linkage queue. Firsth the 

92 



root is visited, then the "IBM" node is visited. There is no appropriate queue for node 

"IBM". The left child of "IBM" is visited, which happens to be the "Computer" node. 

The "Computer" node is added to the "Computer" queue. Then the left child node of 

"Computer" is visited, this happens to be the "Laptop" node and the "Laptop" node is 

added to the "Laptop" queue. The "Laptop" node does not have a left child. The 

algorithm traverses backward. The "Laptop" node has the "Desktop" node as a sibling 

and the "Desktop" node is added to the "Desktop" queue. The "Desktop" node has no left 

child. The algorithm traverses backward. In this manner, the algorithm will build the 

node linkage. This step also retrieves the hierarchy of every node in the linkage queues. 

Hierarchy is retrieved by traversing backward along the parent node until the node is 

Root. The linkage built LTMHTree is shown in Figure 3.25. 

93 



Figure 3.25 Linkage built LTMHTree 

3.3.3.5 Mining Hierarchical Frequent Patterns 

The Step 4.0 of the method MineRootFPs, the MineHFPs algorithm finds the hierarchical 

frequent patterns in the table Root. The algorithm is shown in Figure 3.26. 

94 



Algorithm MineHFPs(ZTMHTree, Ch s%) 

Input: linkage built and transaction ids stored multiple database inheritance 
hierarchy LTMHTree, minimum support s%, 
a set of 1-itemset candidate pattern C/, in the format of <Tidlist, itemset> 

Output: a set of hierarchical frequent patterns Fk in the format of 
<Tidlist, itemsets, classj> 

Other variable: a set of candidate pattern C* 

Begin 

1.0 Ck = C, 

2.0 Fh = CheckSupp(LTMHTree, Ck, s%); 
3.0 if {Fu is not empty) 

3.1 Ck+i = oomap-gen-join(Fi); 
3.2k = k+l 
3.3 goto step2.0 

End 

Figure 3.26 Algorithm for MineHFPs 

The MineHFPs algorithm takes as an input the LTMHTree (with transaction IDs stored 

and linkage built), a set of 1-itemset candidate patterns with transaction IDs, and a 

minimum support value s%. The algorithm MineHFPs will call the algorithm CheckSupp 

which uses every 1-itemset candidate pattern to traverse LTMHTree to check the support 

of each 1-itemset candidate pattern. If the support is greater than or equal to the minimum 

support of s% at any level in the hierarchy, then the 1-itemset candidate pattern counts as 

a 1-itemset frequent pattern. If 1-itemset frequent pattern(s) already exists, the oomap-

gen-join algorithm is used to generate 2-itemset candidate patterns. 

The CheckSupp algorithm is utilized to check the support level of the newly generated 2-

itemset candidate patterns and to generate 2-itemset frequent pattern(s) if the support 

level is sufficient. If 2-itemset frequent patterns exist, use algorithm oomap-gen-join to 

generate 3-itemset candidate patterns. By the same process, k-itemset frequent patterns 

95 



can be generated. The algorithm of CheckSupp is given in Figure 3.27. 

Algorithm CheckSupp(LTMHTree, Ck, s%)\ 
Input: MHTree, k-itemset candidate pattern with transaction IDs Q, in the format of 

<Tidlist, itemsets, class,>, k = 1 initially, minimum support s%. 
Output: Frequent k-itemsets Fk, in the format of <Tidlist, itemsets, class,>. 
Other variables: intersected transaction id list intersectTidlist, unioned Transaction 

id list UTidlist, Pointer nodePtr, Frequent pattern/ 
Boolean Flag=false, linkage queue of LTMHTree q„ 
Hierarchy of every node class, 

Begin 

1.0 For each element cx in Ck do 
1.1 Flag = false; 
1.2 For each queue q, do 

1.2.1 For each element ev in the queue q, do 
1.2.1.1 intersectTidlist = c^.Tidlist D ^.Tidlist; 
1.2.1.2 if((number of IDs in intersectTidlist)/(number of 

IDs in ey.Tidlist) >= s%) 
1.2.1.2.1/=cx; 
1.2.1.2.2 insert/ into F& 
1.2.1.2.3/=/append ey. classy 
1.2.1.2.4 Flag = true; 

1.2.1.3 UTidlist = UTidlist U ey.Tidlist; 
1.2.2 intersectTidlist = c^.Tidlist fl UTidlist; 
1.2.3 if((number of IDs in intersectTidlist)/(number of 

IDs in UTidlist) >= s%) 
1.2.3.1 insert/ into Fk, 
1.23.2 f=cx concatenate ey. class,; 
1.2.3.3 Flag = true; 

End if 
End for 

End for 
1.3 if(Flag = true) 

4.3.1 Insert cx into F& 
End if 

End for 

End 

Figure 3.27 Algorithm for CheckSupp 

To serve as an example, the MineHFPs algorithm uses the input LTMHTree (Figure 

3.24), 1-itemset candidate patterns: <1, 3, 7, 2GHz>, <1, 3, 7, 2G>, <2, 4, 5, 6, 8,9, 

3GHz>, <2, 4, 5, 6, 8, 9, 4G>, <1, 250G>, <1, 13">, <2, 14"> <2, 320G>, <3, 350G>, 

96 



<7,9, 300G>,<8,160G>, <4, 5, 6, 500G>, <7, 15">,<3, 8, 17">, <1, 2, 7, 3hrs>, <3, 8, 

3.5hrs >, <4, 128M>, <5, 9, 256M>, and <6, 512M>, and a minimum support value of 

50%. The MineHFPs algorithm will output a set of hierarchical frequent patterns in the 

format of <Tidlist, itemsets, class,>. 

Step 1.0 and 2.0 of the MineHFPs algorithm use the transaction id list (Tidlist) of every 

1 -itemset candidate pattern to intersect the Tidlist of every node in every linkage queue of 

the LTMHTree in order to discover the 1-itemset frequent patterns. The MineHFPs 

algorithm starts from the first 1-itemset candidate pattern <1, 3, 7, 2GHz>. The Tidlist of 

the candidate pattern <1, 3, 7, 2GHz> is <1, 3, 7>. The first node of linkage queue of 

"Computer <1, 2, 7>" is <1, 2, 7> (according to Figure 3.13). Intersecting <1, 3, 7, 2> 

and <1, 2, 7> obtains <1, 7>. There are two transaction ids in <1, 7>. The number of ids 

in <1, 2, 7> is 3. The frequency is 2/3 which is greater than 50%. Hierarchy of node 

"Computer <1, 2, 7>" is node "computer/IBM". Therefore, we obtain the hierarchical 

frequent pattern <1, 7, 2GHz, computer/IBM>. We also insert the candidate pattern <1, 3, 

7, 2GHz> into frequent pattern set Fj. In the same way of processing the candidate 

pattern <1, 3, 7, 2GHz> and node "Computer <3,6,9>" is intersected, and pattern <1, 3, 7, 

2GHz> and node "Computer <4,5,8>"is intersected. We find out that pattern <1, 3, 7, 

2GHz> is not frequent at node "Computer <3,6,9>" nor at node "Computer <4,5,8>". We 

also need to union the Tidlists of all three nodes in the "Computer" linkage queue. Union 

of Tidlists <1,2,7>, <3,6,9>, and <4,5,8> is <1, 2, 7, 3, 6, 9, 4, 5, 8>. Intersecting Tidlist 

of pattern <1, 3, 7, 2, 2GHz> and <1, 2, 7, 3, 6, 9, 4, 5, 8> is <1, 3, 7, 2>. The frequency 

is 4/9 which is less than the minimum support of 50%. Therefore the pattern <1, 3, 7, 2, 

97 



2GHz> is not frequent at the hierarchy "Computer". The Tidlist of candidate pattern <1, 

3, 7, 2, 2GHz> will intersect Tidlist of nodes in "Laptop" linkage queue and "Desktop" 

linkage queue. The rest of 1-itemset candidate patterns in the 1-itemset candidate pattern 

set C/, will be processed by the same procedure as above to discover the frequent 1-

itemset patterns. The complete set of 1-itemset frequent patterns is: <1, 7, 2GHz, 

computer/IBM>, 

<1, 2, 7, 2GHz, laptop/computer/IBM>, <1, 7, 2G, computer/IBM> 

<1, 2, 2G, laptop/computer/IBM>, <6, 9, 3GHz, computer/Dell>, 

<6, 9, 3GHz, desktop/computer/Dell>, <8, 3GHz, laptop/computer/HP>, 

<6, 3GHz, desktop/computer/HP>, <2, 4, 5, 6, 8, 3GHz, computer>, 

<4, 5, 6, 8, 9, 3GHz, desktop>, <6, 9, 4G, computer/Dell>, 

<6, 9, 4G, desktop/computer/Dell>, <8, 4G, laptop/computer/HP>, 

<6, 4G, desktop/computer/HP>, <2, 4, 5, 6, 8, 4G, computer>, 

<4, 5, 6, 8, 9, 4G, desktop>,<l, 2, 7, 3hrs, computer/IBM>, 

<1, 2, 7, 3hrs, laptop/computer/IBM>, <3, 350G, laptop/computer/Dell>, 

<3, 17", laptop/computer/Dell>, <8, 17", laptop/computer/HP>, 

<3, 3.5hrs, laptop/computer/Dell>, <8, 17", laptop/computer/HP>, 

<6, 500G, desktop/computer/Dell>, <4, 5, 500G, desktop/computer/HP>, 

<9, 300G, desktop/computer/dell>, <8,160G, laptop/computer/dell>, 

<4, 128M, desktop/computer/HP>, <9,256M, desktop/computer/Dell>, 

<5, 256M, desktop/computer/HP>, and <6, 512M, desktop/computer/Dell>. 

98 



The frequent 1-itemset patterns set Fj contains these patterns: <1, 3, 7, 2GHz>, 

<1, 3, 7, 2G>, <2, 4, 5, 6,8, 9, 3GHz>, <2, 4, 5, 6,8, 9, 4G>, <1,2, 7, 3hrs>, <2, 350G>, 

<3, 8, 17">, <3, 8, 3.5hrs>, <4, 5, 6, 500G>, <7, 9, 300G>, <8, 160G>, <4, 128M>, 

<5, 9, 256M>, and <6, 512M>. oomap-gen join will be applied on these frequent 1-

itemset patterns to generate candidate 2-itemset patterns. We have indexed patterns by 

assigned position codes. Therefore, the frequent 1-itemset patterns with position codes in 

the set Fi are: <1, 3, 7, 2GHz>(0, 5), <1, 3, 7, 2G>(0, 5), 

<2, 4, 5, 6, 8, 9, 3GHz>(0, 5), <2, 4, 5, 6, 8, 9, 4G>(0, 5), <1, 2, 7, 3hrs>(l, 2), 

<2, 350G>(0, 5), <3, 8, 17">(1, 2), <3, 8, 3.5hrs>(l, 2), <4, 5, 6, 500G>(0, 5), 

<7, 9, 300G>(0, 5), <8, 160G>(0, 5), <4,128M>(3,4), <5,9,256M>(3,4), 

<6, 512M>(3, 4). There exist 1-itemset frequent patterns, so the algorithm will go to step 

3.1 and will apply the oomap-gen join algorithm on these 1-itemset patterns to generate 

2-itemset candidate patterns. The result of the oomap-gen join algorithm is: <1, 3, 7, 

2GHz, 2G>(0, 5), <None, 2GHz, 3GHz>(0, 5), 

<None, 2GHz, 4G>(0, 5), <1, 7, 2GHz, 3hrs>(l, 2), <None, 2GHz, 350G>(0, 5), 

<3, 2GHz, 17">(1, 2), <3,2GHz, 3.5hrs>(l, 2), <None, 2Ghz, 500G>(0, 5), 

<7, 2GHz, 300G>(0, 5), <None, 2GHz, 160G>(0, 5), <None, 2GHz, 128M>(3, 4), 

<None, 2GHz, 256M>, <None, 2G, 3GHz>(0, 5), <None, 2G, 4G>(0, 5), 

<1,7, 2G, 3hrs>(l, 2), <None, 2G, 350G>(0, 5), <3, 2G, 17">(1, 2), 

<3, 2G, 3.5hrs>(l, 2), <None, 2G, 500G>(0, 5), <7,2G, 300G>(0, 5), 

<None, 2G, 160G>(0, 5), <None, 2G, 128M>(3,4), <None, 2G, 256M>(3, 4), 

<None, 2G, 512M>(3,4), <2,4, 5, 6, 8, 9, 3GHz,4G >(0, 5), <2, 3GHz, 3hrs>(l, 2), 

<2, 3GHz, 350G>, <8, 3GHz, 17">(1, 2), <8, 3GHz, 3.5hrs>(l, 2), 

99 



<4, 5, 6, 3GHz, 500G>(0, 5), <9, 3GHz, 300G>(0, 5), <8, 3GHz, 160G>(0, 5), 

<4, 3GHz, 128M>(3, 4), <5, 9, 3GHz, 256M>(3, 4), <6, 3GHz, 512M>(3, 4), 

<2, 4G, 3.5hrs>(l, 2), <4, 5, 6,4G, 500G>(0, 5), <None, 4G, 300G>(0, 5), 

<8, 4G, 160G>(0, 5), <4, 4G, 128M >(3, 4), <5, 9, 4G, 256M>(3, 4), 

<6, 4G, 512M>(3, 4), <2, 3hrs, 350G>(0, 5), <None, 3hrs, 17">(1, 2), 

<None, 3hrs, 3.5hrs>(l, 2), <None, 3hrs, 500G>(3, 4), <7, 3hrs, 300G>(0, 5), 

<None, 3hrs, 160G>(0, 5), <None, 350G, 17">(1, 2), <None, ,350G, 3.5hrs>(l, 2), 

<None, 350G, 500G>(0, 5), <None, 350G, 300G>(0, 5), <None, 350G, 160G>(0, 5), 

<None, 350G, 128M>(3, 4), <None, 350G, 256M>(3, 4), <None, 350G, 512M>(3, 4), 

<3, 8, 17", 3.5hrs>(l, 2), <None, 17", 500G>(0, 5), <None, 17", 300G>(0, 5), 

<8, 17", 160G>(0, 5), <None, 3.5hrs 500G>(0, 5), <None, 3.5hrs, 300G>(0, 5), 

<8, 3.5hrs, 160G>(0, 5), <None, 500G, 300G>(0, 5), <None, 500G, 160G>(0, 5), 

<4, 500G, 128M>(3, 4), <5, 500G, 256M>(3, 4), <6, 500G, 512M>(3, 4)), 

<None, 300G, 160G>(0, 5), <None, 300G, 128M>(3, 4), <9, 300G, 256M>(3, 4), 

<None, 300G, 512M>(3, 4), <None, 160G, 128M>(3, 4), < None, 160G, 256M>(3, 4), 

<None, 160G, 512M>(3, 4), <None, 128M, 256M>(3, 4), <None, 128M, 512M>(3, 4), 

<None, 256M, 512M>(3, 4). These 2-itemset candidate patterns will serve as inputs to 

the CheckSupp algorithm and 2-itemset frequent patterns are generated. Then the 2-

itemset frequent patterns will be used to generate 3-itemset candidate patterns by oomap-

genjoin. By the same process we obtain all k-itemsets hierarchical frequent patterns, until 

there are no frequent patterns generated. 

100 



4. IMPLEMENTATION AND EXPERIMENTS 

To test the performance of our proposed method of mining hierarchical frequent patterns 

in table Root (transaction table) , we use the IBM quest synthetic data generator to 

generate datasets. The IBM quest synthetic data generator is publicly available at 

http://www.almaden.ibm.com/cs/quest/and is used by other pattern mining researchers. 

The proposed algorithm MineHFPs in section 3.5.3.4 will be compared with the TidFP 

algorithm with respect to CPU execution time and memory usage. 

4.1 Generate and Process Testing Dataset 

The characteristics of the data generated by IBM quest synthetic data generator are 

described as follows: \D\: Number of transactions in the database, \C\: Average length of 

the transactions, |5|: Average length of maximal potentially frequent itemset, \N\: number 

of items (attributes). The IBM quest synthetic data generator generates a set of 

transactions to serve as the dataset. Every transaction has a set of patterns presented by 

integers. The integers that represent patterns are from 0 to |N|. 

4.1.1 Generate the Class Tables Q 

In Example 1.3 in section 1.2 (computer objects database), there are three databases, IBM, 

Dell, and HP. Every database has three class tables, "Computer", "Laptop", and 

"Desktop". The IBM quest synthetic data generator is used to generate three datasets for 

the three databases. There are three datasets (class object table Q) in every database, the 

first one represents the "Computer" objects table, the second for the "Laptop" objects 

table, and the third for the "Desktop" objects table. The dataset generated by the data 

101 

http://www.almaden.ibm.com/cs/quest/and


generator are set of transactions in the format of transaction id, number of items, a set of 

items> . 

The IBM quest synthetic data generator generates integer numbers to represent patterns 

(attributes of objects in the case of object-oriented databases). If we specify the number 

of items, \N\, as "15", it means that the patterns will be represented by the integer 

numbers from " 1 " to "15". When we use the IBM quest synthetic data generator to 

generate the dataset which represents the Computer class table, we specify \N\ as "15". 

This means that the integer numbers from " 1 " to "15" will represent the patterns of the 

Computer class table. When we generate the dataset for the Laptop class table, we specify 

|JV| as "60". However, the integer numbers from " 1 " to "15" have already been used to 

represent the patterns of the Computer class table. We need to eliminate the numbers " 1 " 

to "15" so that the dataset generated will only contain the integer numbers from "16" to 

"60". Therefore, the integer number from "16" to "60" will be used to represent patterns 

of the Laptop class table. When we generate the dataset for the Desktop class table, we 

specify \N\ as "120". Since the numbers from " 1 " to "15" has already been used to 

represent the patterns of the Computer class table and the integer numbers from "15" to 

"60" has already been used to represent the patterns of the Laptop class table, we need to 

eliminate the numbers from " 1 " to "60" so that the dataset generated will only contain the 

integer numbers from "60" to "120". Therefore, the integer number from "60" to "120" 

will be used to represent patterns of the Desktop class table. 

Each transaction of the dataset represents one instantiated object. The transaction id of a 

transaction record will represent the object id of one instantiated object and a set of items 

102 



in a transaction record will represent a set of object attributes in one instantiated object. 

We generate three datasets (Computer, Laptop, Desktop) for each of the three databases 

(IBM, Dell, and HP). We use an integer number to represent a particular database (the 

database name) and an integer number to represent a particular class object table. For 

example, " 1 " represents the "IBM" database, "2" represents the "Dell" database, " 3 " 

represents the "HP" database, "4" represents the "Computer" class, "5" represents the 

"Laptop" class, and "6" represents the "Desktop" class. 

The "Computer" class is inherited by the "Laptop" and the "Desktop" class. As discussed 

in section 1.2, the database schema of C, is C, (K, T, S, A, M, O). T is the type and S is the 

super type. The dataset that stands for the "Computer" class will be assigned a number "4" 

as S (super Jype), and randomly assigned "5" or "6" as T (type). With regards to the 

"Laptop" class, S(superjype) will be assigned as "5", and T (type) will be randomly 

assigned as "5","7" or "8" (which represent different subclasses of the "Laptop" class). 

With regards to the dataset that stands for the "Desktop" class, S(supertype) will be 

assigned as the number "6", and T (type) will be randomly assigned as "6","9" or "10" 

(which represent different subclasses of the "Desktop" class).. 

4.1.2 Generate the Root Tables 

In Example 1.3 in section 1.2, the Root table has the database schema Root (K, T, S, A, M, 

O). As we discussed in section 1.2, the Root table is a transaction table that has 

transaction id K as a primary key, T and S as foreign keys (which represent type and 

super type of the transactions in Root table). K is the transaction id which is an integer 

103 



number from \-\D\ sequentially. As discussed in the beginning of this section, |D| is 

number of transactions in the database. We will generate a number of transaction ids 

(depending on the size of dataset we want to test). Type, T, is used to represent the name 

of the database where the transactions come from. We randomly generate an integer 

number among " 1 " , "2", "3" for type, T, for every transaction to represent the name of a 

databases (such as IBM, Dell, and HP). Then we apply OOJoin algorithm to join all class 

tables C, in every database to obtain an object joined table. Finally, randomly select the 

objects from object joined table in each database to fill in the attributes A in the Root 

Table. 

4.2 Algorithm Implementation 

The algorithm of MineHFPs and TidFP are both implemented in C++ with the same data 

structures and can run on both windows and UNIX platforms. In a UNIX environment, 

the programs are compiled with "g++ filename" and executed with "a.out". The class 

object table C,-, inheritance hierarchy H, and multiple database inheritance hierarchy MH 

are all stored in text file. 

4.3 Performance Comparison 

Our proposed algorithm MineHFPs can be applied on the integrated Root table to answer 

all the Root table mining queries from section 1.4. If we separate the integrated Root 

table by class hierarchy, the TidFP algorithm can also be applied to each separated part to 

answer those queries. For example, using the TidFP algorithm to answer "Query 4: What 

are the most popular hardware component specifications (CPU, RAM, Hard_drive, 

104 

file:///-/D/


screen size, and battery life) among a computer system subgroup such as laptops and 

sold by a particular company like Dell (with a minimum support of 50%)?", we will 

select transactions having type as "3" (transaction comes from Dell database), and also 

has superj "4" and super2 "5" to represent "Computer" and "Laptop", respectively. 

In this section, we will compare the performance of our proposed algorithm MineHFPs 

and the TidFP algorithm. Both the CPU execution time and the memeory usage is 

measured for each algorithm. The MineHFPs algorithm performance measures include 

the tasks of creating the MHTree, storing transaction ids in the MHTree, generating 1 -

itemset candidate patterns, building linkage, and executing the MineHFPs algorithm. We 

generate the Root tables of size 125K, 250K, 500K, and 1M. The characteristics of the 

generated dataset are described in Table 4.1 

Root table 

100K 

250K 

500K 

1000K 

Computer class 

C7.S4.N20.D100K 

C7.S54.N20.D250K 

C7.S4.N20.D500K 

C7.S4.N20.D1000K 

Laptop class 

C15.S4.N60.D50K 

C15.S4.N60.D125K 

C15.S4.N60.D250K 

C15.S4.N60.D500K 

Desktop class 

C25.S4.N120.D50K 

C25.S4.N20.D125K 

C25.S4.N20.D250K 

C25.S4.N20.D500K 

Table 4.1 characteristics of the generated dataset 

Table 4.2 and Figure 4.1 describes the execution time of the MineHFPs and the TidFP 

algorithm on 125K dataset with low minimum support (20%, 10%, 9%, 8%, and 7%). 

105 



Algorithms 

MineHFPs 

TidFP 

Runtime (in Seconds) at different supports(% ) 

20% 

290 

279 

10% 

4186 

12327 

9% 

6356 

23083 

8% 

9606 

40097 

7% 

17785 

74046 

Table 4.2 CPU executing time on 125K dataset with minimum support 20%, 10%, 9%, 8%, and 7% 

80000 

5 70000 

| 60000 

50000 

40000 

30000 

20000 

10000 

0 

c o 

u 
0) 
X 

LLI 

a. u 

7 8 9 10 

Minimum Support (%) 

20 

MmeHFPs 

TidFP 

Figure 4.1 CPU executing time on 125K dataset with minimum support 20%, 10%, 9%, 8%, and 7% 

Table 4.3 and Figure 4.2 describes the memory usage of the MineHFPs and the TidFP 

algorithm on 125K dataset with low minimum support (20%, 10%, 9%, 8%, and 7%). 

Algorithms 

MineHFPs 

TidFP 

Memory usage (in M) at different supports(% ) 

20% 

62 

26 

10% 

430 

158 

9% 

590 

214 

8% 

774 

266 

7% 

1070 

350 

Table 4.3 Memory usage on 100K dataset with minimum support 20%, 10%, 9%, 8%, and 7% 

106 



1200 

1000 

bo 
ra I/I 
3 
>• i _ 
O 
E 
0) 

2 

800 

600 

4U0 

200 

"**«*„ 

MineHFPs 

— TidFP 

8 9 10 

Minimum Support (%) 

20 

Figure 4.2 Memory usage on 125K dataset with minimum support 20%, 10%, 9%, 8%, and 7% 

Table 4.4 is the execution time of the MineHFPs and the TidFP algorithm on 250K 

dataset with low minimum support (20%, 10%, 9%, 8%, and 7%). 

Algorithms 

MineHFPs 

TidFP 

Runtime (in Seconds) at different supports(% ) 

20% 

584 

577 

10% 

8321 

24008 

9% 

12382 

43584 

8% 

19241 

74432 

7% 

35281 

crashed 

Table 4.4 CPU executing time on 250K dataset with minimum support 20%, 10%, 9%, 8%, and 7% 

Table 4.5 is the memory usage of the MineHFPs and the TidFP algorithm on 250K 

dataset with low minimum support 20%, 10%, 9%, 8%, and 7%. 

Algorithms 

MineHFPs 

TidFP 

Memory usage (in M) at different supports(% ) 

20% 

114 

46 

10% 

814 

282 

9% 

1098 

422 

8% 

1145 

490 

7% 

2001 

crashed 

Table 4.5 Memory usage on 250K dataset with minimum support 20%, 10%, 9%, 8%, and 7% 

Table 4.6 is the execution time of the MineHFPs and the TidFP algorithm on 500K 

107 



dataset with low minimum support (20%, 10%, 9%, 8%, and 7%). 

Algorithms 

MineHFPs 

TidFP 

Runtime (in Seconds) at different supports(% ) 

20% 

1180 

1150 

10% 

16233 

48077 

9% 

24679 

85027 

8% 

37514 

crashed 

7% 

68143 

crashed 

Table 4.6 CPU executing time on 500K dataset with minimum support 20%, 10%, 9%, 8%, and 7% 

Table 4.7 is the memory usage of the MineHFPs and the TidFP algorithm on 500K 

dataset with the low minimum support (20%, 10%, 9%, 8%, and 7%). 

Algorithms 

MineHFPs 

TidFP 

Memory usage (in M) at different supports(% ) 

20% 

222 

78 

10% 

1150 

530 

9% 

2130 

722 

8% 

2770 

crashed 

7% 

3839 

crashed 

Table 4.7 Memory usage on 500K dataset with minimum support 20%, 10%, 9%, 8%, and 7% 

From Table 4.2, 4.4, and 4.6, we can see that the MineHFPs algorithm outperforms the 

TidFP at the low minimum support thresholds. The MineHFPs algorithm is 

approximately 3.5 times faster than the TidFP algorithm for a 125K dataset, 3.9 times 

faster for a 250K dataset, and 4.4 times faster for a 500K dataset when the minimum 

support is lower than 20%. As the size of the dataset is increased, the performance margin 

between the MineHFPs and the TidFP algorithm increases in the favour of the MineHFPs 

algorithm. From Table 4.3, Table 4.5, and Table 4.7, we can see that the MineHFPs 

algorithm has greater memory usage compared to the TidFP algorithm. The memory 

usage of the MineHFPs algorithm is approximately 2.8 times, 2.5 times, and 2.6 times 

greater than the TidFp algorithm for respective dataset sizes of 125K, the 250K, and 

500K (at the minimum supports of 20%, 10%, 9%, 8%, and7%). 

108 



Table 4.8 and Figure 4.3 describe the execution time of the MineHFPs and the TidFP 

algorithm at the minimum support of 10% on dataset sizes of 125K, 250K, 500K, and 

1M. 

Algorithms 

MineHFPs 

TidFP 

Runtime (in Seconds) on different size of dataset at the minimum support of 

10% 

125K 

3311 

10264 

250K 

8321 

24008 

500K 

16233 

48077 

1M 

34089 

98858 

Table 4.8 CPU executing time at the minimum support 10% on the size of dataset of 125K, 250k, 

500k, and 1M 

120000 

™ 100000 

•J 80000 #* 
c 
o 
<-» 
3 u 
01 
X 

UJ 

3 
Q. u 

60000 

40000 

20000 

0 

MineHFPs 
TidFP 

,i«s***" 

125 250 500 1000 

Size of the Dataset (K) 

Figure 4.3 CPU executing time at the minimum support 10% on the size of dataset of 125K, 250k, 

500k, and 1M 

Table 4.9 and Figure 4.4 describes the memory usage of the MineHFPs and the TidFP 

algorithm at the minimum support level of 10% on dataset sizes of 125K, 250K, 500K, 

and 1M. 

109 



Algorithms 

MineHFPs 

TidFP 

Memory usage (in M) on different size of dataset at the minimum support of 

10% 

125K 

430 

158 

25 OK 

814 

282 

500K 

1150 

530 

1M 

1840 

836 

Table 4.9 Memory usage at the minimum support 10% on the size of dataset of 125K, 250k, 500k, 

and 1M 

2 
0) 
OJO 

</> D 
> 
O 
E 
O) 
5 

2000 

1800 

1600 

1400 

1200 

1000 

800 

600 

400 

200 

0 

// 

*<*** 

MineHFPs 

TidFP 

125 250 500 

Size of the Dataset (K) 

1000 

Figure 4.4 Memory usage at the minimum support 10% on the size of dataset of 125K, 250k, 500k, 

and 1M 

From Table 4.8 and Figure 4.4, we can see that when the size of the dataset is doubled, 

The CPU execution times of both the MineHFPs and TidFP algorithm approximately 

increase by double, and so the CPU execution time seems to grow almost linearly. From 

Table 4.9, we can also see that when the size of the dataset is doubled, the memory 

usages of both algorithms increased in the same way. 

no 



When the minimum support is 20%, the TidFP algorithm actually performs better than 

the MineHFP algorithm. This is because when the minimum support is not very low, 

there are not many frequent patterns and as such not many candidate patterns are 

generated. Also, it is time consuming to traverse every node of the MHTree to count the 

support of every candidate pattern. Therefore, the advantage of MineHFPs algorithm 

cannot be seen obviously. At high support levels the MineHFPs algorithm even performs 

worse than TidFP algorithm. When the minimum support is low enough, there will be a 

large number of frequent patterns and a large number of candidate patterns generated. 

The MineHFPs algorithm only needs to scan the database once and generate candidate a 

pattern once. However, TidFP algorithm needs to re-generate same candidate patterns for 

every query. Most importantly, oomap-gen join can reduce the k-itemset candidate 

pattern generation and avoid unnecessary support counting. When the number of 

candidate patterns is large, the advantage of the oomap-gen join is more obvious. 

However, because the MHTree stores the transaction ids, the MineHFPs algorithm 

utilizes more memory. It is a reasonable trade off. 

4.4 Time and Space Complexity Analysis 

This section provides a comparsion of time and space complexity of the Apriori 

algorithm, the TidFP algorithm, and the MineHFPs algorrithm. 

4.4.1 Time and space Complexity of the Apriori algorithm 

The Apriori algorithm has two main steps: 1) Candidate patterns generation, and 2) 

support counting of candidate patterns. Candidate pattern generation performs a breadth-

Hi 



first traversal over lattice to find the k-itemsets candidate patterns, as shown in Figure 

4.5. 

a b ^ 

a b c ^ 

S^ 
\ > 

jrabcd w 

abd • ^ acd 

a d ^ be 

0 

\ 
\ 

^ 

bd 

> < 

^ 

v , ^ 

^ d 

Level 4 

. , . , , 

^ ^ c d Level 2 

7 
Level 1 

Level 0 

Figure 4.5 lattice of candidate pattern generation 

Let |S| be the length of a maximal frequent pattern. It is well known that the worst case 

time complexity of generating candidate pattern of the Apriori algorithm is: 

0(2|si) 

Let |D| be the number of transactions in the database and let |C| be the length of the 

longest transaction. Then, the worst case time complexity of support counting is: 

<9(|D|x|C|x2|S|) 

Therefore , the worst case time complexity of Apriori algorithm is: 

0(2 | s | + |D|x|C|x2 |S|) = 0(|D|x|C|x2 |S |) 

The space complexity of Apriori algorithm is (9(2|S|). 

112 



4.4.2 Time and space Complexity of the TidFP algorithm 

The TidFP algorithm is an Apriori-based algorithm. Let |S| be the length of a maximal 

frequent pattern. The time complexity of generating candidate patterns is same as Apriori 

algorithm. Therefore, the worst case time complexity of candidate patterns generation of 

algorithm TidFP is 0(2|S|). 

Support counting of the TidFP algorithm is performed by bitmap operation. Let |D| be the 

number of transactions in the database. The worst case time complexity of support 

counting of the TidFP algorithm is: 

0(|D|x2|s|) 

Therefore, the worst case time complexity of TidFP is: 

6>(|D|x2|s|+ 2|S|) = 0(|D|x2|S|) 

Besides memory space for holding the candidate pattern, the TidFP algorithm needs 

additional memory space to hold the transaction id list of every candidate pattern. 

Therefore, the worst case space complexity of TidFP algorithm is: 

<9(|D|x2|s|) 

4.4.3 Time and space Complexity of the MineHFPs algorithm 

The algorithm, MineHFPs, proposed in this thesis is an extension of the TidFP algorithm. 

Let |S| be the length of a maximal frequent pattern. The time complexity of candidate 

patterns generation is same as those of the Apriori algorithm and the TidFP algorithm. 

Therefore, the worst case time complexity of candidate patterns generation of MineHFPs 

algorithm is (9(2|S|). 

113 



The MineHFPs algorithm needs to count the support of each candidate pattern in every 

class of every database. Let |D| be the number of transactions in the database table (Root 

class table). Let |L| be the number of classes in every database, and |B| be the number of 

databases. The worst case time complexity of algorithm MineHFPs is: 

0(|L|x|B|x|D|x2|S|) 

The MineHFPs algorithm needs memory space for holding the multiple databases 

inheritance hierarchy tree and every node of the tree holds the transaction ids besides the 

memory space for holding the transaction id list and candidate pattern. Therefore, the 

worst case space complexity of MineHFPs is: 

<9(|L|x|B|x|D| + |D|x2|S|) = 0(|D|x2|S|) 

In conclusion, the worst case time complexity of the Apriori algorithm is greater than that 

of the TidFP algorithm. The worst case space complexity of the Apriori algorithm is 

smaller than that of the TidFP algorithm. We can have the same conclusion from the 

experimental results of the TidFP algorithm compared with the Apriori algorithm (Ezeife 

and Zhang (2009)). The time complexity of the MineHFPs algorithm is greater than that 

of the TidFP algorithm by a factor of |L|x|B|. This is because that the MineHFPs 

algorithm mines for the frequent patterns at every level of hierarchy. If we apply the 

TidFP algorithm at every level of hierarchy, we need to run the TidFP algorithm |L|x|B| 

times. From the experimental results of section 4.3 of this thesis, the MineHFPs 

algorithm is a constant factor faster than running the TidFP algorithm |L|*|B| times on the 

different size of datasets and at the different minimum support threshold. The memory 

usage of MineHFPs algorithm is a constant factor smaller than running the TidFP 

algorithm |L|*|B| times. 

114 



5. CONCLUSION AND FUTURE WORK 

The early research on mining multiple databases focuses on applying parallel and 

distributed computing techniques and developed a series of Apriori-based algorithm to 

mine frequent pattern, such as Count Distribute (CD) and Distributed Mining Association 

Rules (DMA) proposed by Agrawal and Shafer (1996). Machine learning techniques, 

such as clustering, are also used to mine patterns in multiple databases to discover both 

global and local patterns, such as mining sequential patterns by multiple alignment 

(approxMAP) proposed by Kum, Chang and Wang (2006). Ezeife and Zhang (2009) 

proposed mining frequent patterns by transaction ids (TidFP) algorithm based on Apriori 

technique that generates frequent patterns and counts the support of each candidate 

patterns by intersecting the transaction ids to avoid multiple scanning of the dataset. Also, 

TidFP algorithm can mine frequent patterns from multiple database tables by applying set 

operations on transaction ids. Han and Fu (1995) proposed Mining Multiple-Level 

Association Rules which discovers the frequent patterns at different concept hierarchy 

levels. A pattern can be replaced by another pattern in its higher or lower hierarchy level 

and be mined by Apriori algorithm. The recent work, object-oriented frequent pattern 

mining (OR-FP) algorithm proposed by Kuba and Popelinsky (2003) is also Apriori 

based which takes input as object-oriented database and mines class objects and class 

attributes as the frequent pattern. There is not much research on mining multiple object-

oriented databases. However, more comprehensive and detailed real world data, such as 

different products on a Business to Customer (B2C) Website, their histories, versions, 

price, images, or specifications are more suitable to be stored in object-oriented 

databases. 

115 



This thesis proposes an object-oriented class model and database schema, and a series of 

class methods. The methods can mine frequent patterns on each local object database and 

also mines the Hierarchical Frequent Pattern (MineHFPs) which specify at which 

hierarchy level the pattern is frequent in a global integrated table by extending Apriori-

based TidFP algorithm. The thesis also proposed object-oriented join (OOJoin) which 

joins superclass and subclass tables by matching their type and super type relationships. 

To improve the performance of the MineHFPs algorithm, This thesis also extends map-

gen join method used in TidFP algorithm to oomap-gen join for generating k-itemset 

candidate pattern to reduce the candidate generation and avoid unnecessary support 

counting by indexing the (k-l)-itemset candidate pattern using two position codes, start 

position and end position tied to inheritance hierarchy. The experimental results show 

that the proposed MineHFPs algorithm for mining hierarchical frequent patterns is 

approximately 3 to 4 times faster than TidFP algorithm to mine the same patterns but 

have trade off on costing 2 to 3 times more memory usage. However, the MineHFPs 

algorithm can discover the frequent pattern at different hierarchy levels in the format of 

<Tidlist, itemsets, classy. The TidFP algorithm can only discover the patterns in the 

format of <Tidlist, itemsets>. 

Our proposed object oriented class model and database schema can be applied to other 

application domains, such as a Student Information System. Every department or faculty 

has its own database tables C,. The Root table can be the class enrolment table and it may 

store the class and students enrolment information. 

116 



In this thesis, we are using IBM quest synthetic data generator to generate the datasets. 

However, the data stored in database tables C, can be collected from webpage contents. 

The existing system such as WebOMiner (Mutsuddy(2010)) extracts webpage contents 

and mines them in a object-oriented model. WebOMiner can be improved to extract not 

only the contents but also the inheritance hierarchy from the Web pages. 

The database tables Ct and Root do not include any historical attribute such as a time 

stamp (which may include date, month and year). The historical attribute can display the 

history of the products and the history of sales transactions. The mining of historical 

information is also an important problem in the field of data mining. 

The Object-oriented class model defined in this thesis gives the same names to classes in 

different databases. For example, the name "Computer", "Laptop", and "Desktop" are 

used as names for classes in different databases such as "IBM", "Dell", and "HP". This 

approach is convenient for integrating multiple data sources to the Root table and mining 

frequent patterns at different hierarchy levels. Future work may wish to modify the 

algorithm proposed so that classes can be named differently across databases. 

The newly defined pattern, HFP (Hierarchical Frequent Pattern), in this paper, is in the 

format of <Tidlist, Itemsets, classj>. The TidFP algorithm can use the Tidlist of frequent 

patterns as foreign keys to answer more complex queries in more than one database table. 

Future work may also consider methods that use the Tidlist or hierarchy class* of HFP to 

answer more complex queries in different database tables across databases. 

117 



REFERENCES 

Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. In: Proceedings 
of the 20th Very Large Database conference, pages 487-499 (1994) 

Agrawal R., R. Srikant: (1995) Mining sequential patterns. In: Proceedings of the 11th 
International Conference on Data Engineering, pages 344. (1995) 

Agrawal R., Shafer J.C.: Parallel Mining of Association Rules: Design, Implementation 
and Experience. In IEEE Knowledge & Data Engg.,8(6): pages 962-969. (1996) 

Annoni, E., & Ezeife, C. I. (2009). Modeling Web Documents as Objects for Automatic 
WebContent Extraction. In: proceeding of ACM / LNCS sponsored 11th international 
conference on Enterprise Information Systems (ICEIS 09) pages 91-100, May 6-10, 2009 

Ayres J., Flannick J., Gehrke J., Yiu T.: Sequential Patterns Mining Using A Bitmap 
Representation, In: Proceedings of the ACM SIKDD conference, pages 429^135 (2002) 

Buchner A., Mulvenna M.: Discovering Internet Marketing Intelligence through Online 
Analytical Web Usage Mining. SIGMOD Record, Vol.27, No.4, 54-61. (1998) 

Ceci, M., Malerba, D.: Classifying web documents in a hierarchy of categories: a 
comprehensive study. Journal of Intelligence Information System, 28(1): pages 37-78. 
(2007) 

Cheung D., Ng V., Fu A., Fu Y.: Efficient mining of Association Rules in Distributed 
Databases. IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pages 
911-922(1996) 

Cooley R., Mobasher B., Srivastava J.: Data preparation for mining World Wide Web 
browsing patterns, Knowledge and Information Systems, pages 1-26. (1999) 

Dai H.: An Object-oriented Approach to Schema Integration and Data Mining in Multiple 
Databases. IEEE Computer Society, pages 294-303. (1998) 

Dzeroski S. and Lavrac N.: Relational Data Mining. In: proceeding of SIGKDD 
Explorations, 5(1) pages 339-364(2001) 

Ezeife, C.I. and Barker K.: Distributed Object Based Design: Vertical Fragmentation of 
Classes, International Journal of Distributed and Parallel Databases (DPDS), Vol. 6, 
No. 4, pages 327-360, Kluwer Academic Publishers. (1998) 

Ezeife C.I. and Liu Y.: Fast Incremental Mining of Web Sequential Patterns with 
PL WAP Tree, Data Mining and Knowledge Discovery Journal (DAMI), Vol. 19, pages 
376 - 418, Springer Verlag publishers, DOI numberl0.1007/sl0618-009-0133-6. (2009) 

118 



Ezeife C. I., Lu Y., Liu Y.: PL WAP Sequential Mining, Open Source Code. In: 
proceedings of the Open Source Data Mining Wrokshop on Frequent Pattern Mining 
Implementations, in conjunction with ACM SIGKDD, pages 26-35 (2005) 

Ezeife C.I. and Lu Y.: Mining Web Log sequential Patterns with Position Coded Pre-
Order Linked WAP-tree. The International Journal of Data Mining and Knowledge 
Discovery (DMKD), Vol. 10, pages 5-38, Kluwer Academic Publishers. (2005). 

Ezeife C.I., Saeed K., and Zhang D.: Mining Very Long Sequences in Large Databases 
with PLWAPLong. In: proceedings of the 13th ACM sponsored International Database 
Engineering & Applications Symposium Cetraro, Calabria, Italy, 16-18 September 2009 
(IDEAS 09), pages 234 - 241 (2009) 

Ezeife C.I., Zhang D.: TidFP: Mining Frequent Patterns in Different Databases with 
Transaction ID, In: LNCS proceedings of the 11th international conference on Data 
Warehousing and Knowledge Discovery (DAWAK 09), Linz, Austria, Springer Verlag, 
pages 125-137 (2009) 

Fortin S., Liu L. An Object-Oriented Approach to Multi-Level Association Rule Mining, 
In Proc. of IntT Conf. on Information and Knowledge Management, pages 12-16 (1996) 

Han J., Fu Y.: Discovery of Multiple-Level Association Rules from Large Databases. In: 
Proceeding of the 21st VLDB Conference, pages 420 - 431 (1995) 

Han J., Pei J., Yin Y.: Mining frequent patterns without candidate generation, In: 
Proceedings of ACM SIGMOD international conference on Management of data and 
Symposium on Principles of Database Systems, pages 1-12. (2000) 

Juan T., Manuel P., Gomez J., Song L.: Designing Data Warehouses with OO Conceptual 
Models: IEEE Computer, special issue on Data Warehouses, pages 66-75 (2001) 

Kadri O., Ezeife C.I.: "Mining Uncertain Web Log Sequences with Access History 
Probabilities", In: proceedings of the 26th ACM Symposium on Applied Computing, 
ACM SAC, DTTA - Database Theory, Technology, and Application, Tunghai University, 
TaiChung, Taiwan, March 21 - 24, 2011, pages 1064-1065. (2011) 

Kemper A., Moerkotte G.: "Object-Oriented Database Management", a book published 
by Prentice-Hall Inc, ISBN: 0-13-629239-9. (1994) 

Konovalov A.: Object-oriented Data Model for Data Warehouse, In: ADBIS 2002, 
LNCS, pages 319-325. (2002) 

Kuba P., Popelinsky L.,: Mining Frequent Patterns in Object-Oriented Data, In: 
Proceedings of the 2nd International Workship on Mining Graphs, Trees and Sequences, 
pages 15-25 (2004) 

119 



Kum H., Chang J. Wang W.: Sequential Pattern Mining in Multi-Databases via Multiple 
Alignment. Data Mining and Knowledge Discovery, 12, pages 151-180. (2006) 

Lu. Y., Ezeife C.I.: Position Code Pre-Ordered Linked WAP-Tree for Web log sequential 
pattern mining, In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery 
and Data Mining, pages 337-349 (2003) 

Lu Y. and C.I. Ezeife C.I.: Mining Web Log sequential Patterns with Position Coded Pre-
Order Linked WAP-tree. The International Journal of Data Mining and Knowledge 
Discovery (DMKD), Vol. 10, pages 337-349 (2005) 

Mabroukeh, N. and Ezeife C.I.: A Taxonomy of Sequential Pattern Mining Algorithms, 
ACM Computing Surveys (CSUR), Vol. 43, No. 1, Article 3, pages 3:1 - 3:41. (2010) 

Mobasher B., Cooley R., Srivastava J.: Automatic personalization based on Web usage 
mining. Communications of the ACM Volume 43, Issue 8, pages 142-151. (2000) 

Muslea, I., Minton, S., Knoblock, C : A hierarchical approach to wrapper induction. In 
AGENTS'99: Proceedings of the third annual conference on Autonomous Agents, 
New York, USA. ACM, pages 190-197. (1999) 

Mutsuddy T.: Towards Comparative Web Content Mining using Object Oriented Model. 
Master's thesis, School of Computer Science, University of Windsor (2010) 

Pei J., Han J., Mortazavi-asi B., Zhu H.: Mining Access Patterns Efficiently from web 
logs. In: Proceedings Pacific-Asia conference on Knowledge Discovery and data Mining, 
pages 396-407. (2000) 

Pei J., Hart J., Mortazavi-Asl B., Pinto H., Chen Q., Dayal U., Hsu M.: PrefixSpan 
mining sequential patterns efficiently by prefix projected pattern growth. In Proc. 2001 
Int. Conf. Data Engineering (ICDE'01), pages 215-224 (2001) 

Satheesh A., Patel R.: Use of Obejct-oriented Concpet in Database for Effective Mining, 
In: International Journal on Computer Science and Engineering vol. 1(3) pages 206-216. 
(2009) 

Srivastava J., Cooley R., Deshpande M., Tan P.: Web usage mining: discovery and 
applications of usage patterns from Web data. SIGKDD Explorations, Volume 1, Issue, 
pages 12-23. (2000) 

Wikepedia., The Free Encyclopedia :Object Databases, 
http://en.wikipedia.org/wiki/ Object_database. (2011) 

120 

http://en.wikipedia.org/wiki/


Wu X. Zhang Z.: Synthesizing High-Frequency Rules from Different Data Sources. 
Knowledge and Data Engineering, IEEE Transactions, pages 353-367. (2003) 

Zaki M. J.: SPADE: An efficient algorithm for mining frequent sequences, Machine 
Learning Journal, Special Issue on Unsupervised Learning, Vol. 42, No. lA, pages 31-60. 
(2001) 

Zhang C , Liu. M., Nie W., Zhang S.: Identifying Global exceptional patterns in Multi-
database mining. IEEE Computational Intelligence Bulletin, Vol.3 No.l, pages 19-21 
(2004) 

Zhao, H., Meng, W., Wu, Z., Raghavan, V., Yu, C : Fully automated wrapper generation 
for search engines. In: WWW'05: Proceeding of the 14th international conference on 
WWW, NY, USA, ACM, pages 66-75. (2005) 

121 



Vita Auctoris 

NAME 
PLACE OF BIRTH 
YEAR OF BIRTH 
EDUCATION 

Dan Zhang 
Shanghai, China 
1979 
Department of Computer Science 
University of Windsor, Windsor, ON, Canada 
Honors Bachelor of Computer Science (2006) 

Department of Computer Science 
University of Windsor, Windsor, Ontario, Canada 
M.Sc. (2008-2011) 

122 


	Mining Multiple Related Tables Using Object-Oriented Model
	Recommended Citation

	tmp.1573231044.pdf.G9mXM

