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ABSTRACT 
An uncertain data sequence is a sequence of data that exist with some level of doubt or 
probability. Each data item in the uncertain sequence is represented with a label and 
probability values, referred to as existential probability, ranging from 0 to 1. 

Existing algorithms are either unsuitable or inefficient for discovering frequent sequences 
in uncertain data. This thesis presents mining of uncertain Web sequences with a method 
that combines access history probabilities from several Web log sessions with features of 
the PLWAP web sequential miner. The method is Uncertain Position Coded Pre-order 
Linked Web Access Pattern (U-PLWAP) algorithm for mining frequent sequential 
patterns in uncertain web logs. While PLWAP only considers a session of weblogs, U-
PLWAP takes more sessions of weblogs from which existential probabilities are 
generated. Experiments show that U-PLWAP is at least 100% faster than U-apriori, and 
33% faster than UF-growth. The UF-growth algorithm also fails to take into 
consideration the order of the items, thereby making U-PLWAP a richer algorithm in 
terms of the information its result contains. 

KEYWORDS 
Uncertain data mining, frequent sequential patterns, Web log mining, existential 
probability generation, dirty data mining, Tree-based mining, probabilistic data mining. 
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1. INTRODUCTION 
Data mining or knowledge discovery is generally referred to as the process of analyzing 

data from different views and situations and presenting it into useful information that can 

be used to make critical decisions about day to day running of a business or process. This 

process involves analysing data from many different dimensions or angles, categorizing 

and summarizing the relationships identified with the aim of increasing revenue and/or 

cutting time and costs of the processes represented by the data. Agrawal and Srikant 

(1996) define data mining as a way of efficiently discovering interesting rules from large 

databases. This area of study is motivated by the need to continuously look for solutions 

to decision support problems faced by large retail organisations. 

Data mining typically involves creating databases or warehouses where data are then read 

using various techniques to analyse and forecast on future events. Algorithms that 

employ techniques from statistics, machine learning and pattern recognition are used to 

search large databases automatically. The process goes beyond simple data analysis. 

Continuous innovations in computer processing power, disk storage, data capture 

technology, algorithms and methodologies have all helped in realizing this objective. One 

key factor that is important towards ensuring that information derived from data mining 

is accurate is the use of broad range of representative data so that conclusions drawn from 

data can be good enough to represent the general situation. Related to this is also the 

aspect of ensuring proper cleaning is done on these representative data when required so 

that accurate results are generated. 

1.1 Data mining approaches 
The process of discovering interesting information from huge set of data often employs 

different techniques and approaches. Some of the approaches include: 

• Classification 

• Clustering 

• Regression 

• Association rule mining 



Classification involves arranging data into predefined groups. This is the filtering 

technique used in grouping spam and non-spam mails. Some of the algorithms used here 

are nearest neighbours, Naive Bayes classifier and neural network. 

Clustering, like classification, also groups data into groups but using similarities that exist 

between data rather than predefined grouping. K-means algorithm is an example that is 

used with this approach. Regression method finds functions that model the data with least 

error. Genetic programming is one of such techniques used for this purpose. 

Association rule mining involves finding relationships that exist among data items in a 

database. It involves finding patterns in the data items which are dependent on support 

count and confidence values of the rules establishing relationships between data items. 

Rules like if item A (antecedent) is purchased then item B (consequent) is also purchased 

can be used to calculate the support count and confidence of "if A then B" as follows: 

Support (A => B ) = number of occurrence of (A and B)/ Total number of transaction. 

Confidence (A => B) = number of occurrence of (A and B)/ number of occurrence of (A) 

The approach proposed in this research is based on this technique. 

1.2 Web mining types 

Web Mining is often referred to as the extraction of interesting and potentially useful 

patterns and implicit information from the activity related to the World Wide Web. Three 

categories in which web mining is usually viewed are: 

• Web Content Mining 

• Web Structure Mining 

• Web Usage Mining. 

Web content mining is the process of extracting knowledge from the content of web 

pages, documents or their descriptions. Wrappers are used to map documents into some 

models in order to be able to explore known structures in documents. Documents can 

either be directly mined or the results of some content search of search engines can be 

improved upon. 

2 



Web structure mining can be defined as the process of discovering knowledge from the 

World Wide Web organization and links between references and referents on the Web. 

Web structure mining involves making intelligent deductions from the links directed into 

and out of contents on the web. This inward and outward links indicates the richness or 

importance to which the content is to a particular topic. Counters attached to these links 

can be used to retrace the structure of the activities on the web content. 

Web Log Mining is the process of extracting interesting patterns in web access logs. 

Since web servers record and accumulate data about user interactions whenever requests 

for resources are received, such information can be collected, cleaned and analysed for 

knowledge discovery. Information such as user behaviour as regards page visiting 

patterns can be studied in order to aid the design and organisation of such websites. It can 

also serve as attractive means of choosing where advertisements are placed on websites. 

The web log can be taken a step further by dynamically customizing the order and 

structure in which pages are displayed for each user based on their respective browsing 

history. 

1.3 Uncertain data sequence 
An uncertain data sequence is a sequence of data that exists with some level of doubt or 

probability. Each data item in the uncertain sequence is represented with a label and 

probability values, referred to as existential probability, ranging from between 0 and 1. 

This shows the level of assurance that an item exist in the sequence. A zero (0) value 

indicates the item does not exist while one (1) shows that the item is 100% present in the 

sequence. Table 1 gives an example of uncertain sequences. 

UserJD 

10 

20 

30 

Table 1: 

Uncertain sequence 

(a:l,b:0.5,c:0.75,d:0.5) 

(a:l,d:0.5,e:0.5,d:0.5) 

(a:l,b:0.5,d:0.5,b:0.5) 

Example of uncertainty 
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UserJDD 10 for example, is represented by (a:l, b:0.5, c:0.75, d:0.5) indicating that item 

'a' has 100% probability of existence. Items b, c and d however have 50%, 75%, and 

50%o existential probabilities respectively. 

The problem of mining frequent sequence in uncertain data sequence is that of 

determining those sequences whose expected support count are greater than or equal to a 

specified threshold called minimum support. The expected support of an uncertain 

sequence is given by the sum of product of existential probability of the constituent items 

of the sequence (Chui et al., 2007). For example, given the database as shown in table 1, 

the expected support count of sequence 'ab' is calculated as (1 x 0.5) + (1 x 0.5) = 1. This 

is then compared with a specified minimum support. If the minimum support is 1, the 

sequence 'ab' is said to be frequent. 

1.4 Problems and applications of mining with dirty and uncertainty 
data 
Cong et al. (2007) show that real world data often contain inconsistencies and errors. The 

challenge is therefore in removing these errors (dirt) while ensuring the integrity of the 

data is maintained. It is of high importance that the original meaning of the data is not, in 

any way, changed. They demonstrate that the traditional functional dependencies in 

database (Normal forms) may not fully guarantee the correct content of the database. 

Given an order database shown as follows: 

Order (id, name, AC, PR, PN, STR, CT, ST, zip). Each order contains name, unique item 

id, and price (PR) of the item. It also contains the phone number, which contains area 

code (AC) and phone number (PN), and the address that indicates street (STR), city (CT), 

state (ST) and Zip code (Zip) of the customer buying the item. The functional 

dependencies of the Order database are as follows: 

fi[AC, PN]—• [STR, CT, ST] f2 [Id] —• [name, PR] 

f3[Zip] — • [CT, ST] U [CT, STR] —• [Zip] 

4 



Where AC, PN, STR, CT, ST are Area Code, Phone Number, Street, City and State 

respectively. Id represents the item identification number and PR is its price. This design 

for example only specifies that AC and PN identify [STR, CT, ST] but fails to restrict 

values that can be entered to represent real life situation. Area code 212 for example, can 

be used to represent any city in the US. However in real life situation, 212 can only 

represent New York City (NYC) as a city and New York (NY) as a state. A conditional 

functional dependency (CFD) cp is then defined as ([AC, PN] —•[STR, CT, ST]), with an 

additional constraint T defined on attributes of the table that stipulates the kind of values 

that may exist together in the tables while still ensuring that each AC and PN uniquely 

identify each STR, CT, ST combinations. An instance of the table showing the constraint 

T is shown in Table 2: 

AC 
-

212 
610 
215 
Tab 

PN 
-
-
-
-

e2 :C 

STR 
-
-
-
-

]ondit 

CT 
-

NYC 
PHI 
PHI 

lonal fu 

ST 
-

NY 
PA 
PA 

nctioi functional dependencies 

With these additional constraint, all entries having 212 as AC must be from NYC and NY 

while those from PHI and PA must either have 610 or 215 AC. Non conforming tuples 

are cleaned accordingly. 

Cong et al. (2007) stress that it is in order to guarantee the accuracy of cleaned data after 

the application of data cleaning methodology, inspection of a manageable sample of the 

cleaned data is needed. This ensures the accuracy of the repairs found is above a 

predefined bound with high confidence. This is done by drawing a sample of K tuples 

from the repaired database. A predefined inaccuracy threshold £, is specified. The sample 

is partitioned into M strata where M< K. Each stratum is then assigned its inaccuracy 

threshold ^i such that E,\ +^2 +...+ ^M = 1- Each ^i can be adjusted depending on the 

likelihood that inaccurate tuples may exist in a particular stratum. The number of tuples 

drawn from each stratum is given by the product of ^i and K (total number of tuples). The 

number of inaccurate tuples e; in each stratum is noted. The test statistic (z) is computed 

as follows: 
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The ratio of number of tuples in stratum i to the number of tuples drawn from the stratum 

to check for inaccuracy is defined by Sj = Pj / (^ . K). 

The inaccuracy rate, p = (Xei . Sj) / (£Pj . Si ), where Pj is the number of tuples in each 

stratum i. 

The test statistic z = (p - £,) / (V(£(l - £,)/K)) where p is the inaccuracy rate of the sample 

The test statistic z is tested against the critical value zx at confidence level 5. If z < - zx , 

inaccuracy level of the cleaned data is said to be below the threshold £, making the 

cleaned data acceptable for use. 

Chiang and Miller (2008) go a step further by automatically generating conditional 

functional dependencies (CFDs) for a given relation with sample data. These CFDs are 

then used to remove the dirty data that fail to comply with the CFDs without any need of 

human inspection. Given the relation showing US Census Data: 

Tuple 
ti 

t2 

t3 

t4 

t5 

t6 

t7 

t8 

t9 

tio 

tn 

CLS 
Private 
Private 

Self-emp 
? 

Self-emp 
Never-
worked 
Self-emp 

Local-
gov 
State-gov 

? 

Self-emp 

ED 
Bachelors 
Bachelors 

Masters 
HS-grad 

Masters 
7m-8th 

HS-grad 

Some 
college 
Masters 

Bachelors 

Some 
college 

MR 
Married 
Married 

Married 
Divorced 

Married 
Divorced 

Never-
married 
Never-
married 
Divorced 

Divorced 

Never-
married 

occ 
Exec-mgr 
Prof-
specialty 
Exec-mgr 
? 

Admin 
? 

Farming 

Admin 

Prof-
specialty 
? 

Machine-
up 

REL 
Husband 
Husband 

Wife 
Not-in-
family 
Wife 
Not-in-
family 
Own-child 

Own-child 

Own-child 

Not-in-
family 
Not-in-
family 

GEN 
Male 
Male 

Male 
Male 

Female 
Male 

Male 

Female 

Male 

Female 

Female 

SAL 
>50K 
>50K 

>50K 
>50K 

>50K 
<50K 

<50K 

<50K 

>50K 

<50K 

>50K 

Table 3: The US-Census sample data 
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The CFDs are generated by partitioning a relation into attributes of equivalence classes. 

CFDs are then defined between classes X—•Y when there exist some classes in X that are 

fully contained in some classes in Y. The CFDs are then defined on the conditions in 

which the classes are contained in each other. If for example, the following classes, 

denoted by n , are defined from the census sample data based on the similarities in their 

values: 

n M R = {{1,2,3,5}, {4,6,9,10}, {7,8,11}} 

nREL= {{1,2}, {3,5}, {4,6,10,11}, {7,8,9}} 

n(R,M) = {{1, 2}, {3, 5}, {4, 6, 10}, {7, 8} {9}, {11}} 

nE D - {{1, 2, 10}, {3, 5, 9}, {4, 7}, {6}, {8, 11}} 

ricLS = {{1, 2}, {3, 5, 7, 11}, {4, 10}, {6}, {8}, {9}} 

n(C,E)= {{1,2}, {10}, {3,5}, {4}, {6}, {7}, {8}, {9}, {11}} 

n(M,E)= {{1, 2}, {10}, {3, 5}, {4}, {6}, {7}, {9}, {8, 11}} 

n(M)E,c)= {{1,2}, {10}, {3,5}, {4}, {6}, {7}, {9}, {8}, {11}} 

The class TIMR is formed by grouping tuple numbers with same value in column MR. 

That of ri(c,E) is formed by grouping tuples with same value in both CLS and ED and so 

on. Rules are then formed by establishing edges between classes. For edge 

X—•Y = (REL —•(REL, MR)). The classes {1,2}, {3,5} in REL are also contained in 

(REL, MR). REL is then conditioned on common values in {1,2} and {3, 5} to give the 

CFDs required. The CFDs are: ({REL = 'Husband'}__• MR) and 

({REL = 'Wife'} —•MR) or more explicitly as ({REL = 'Husband'} — • Married) and 

({REL ='Wife'} —> Married). 

By going to the next level, when the 'X' part of the edge has more than an attribute, one 

of the attributes is made the conditional attribute if a match is found. 

If X—*Y = (ED, MR)—•(ED, MR, CLS)). The classes {1, 2} and {3, 5} in (ED, MR) is 

contained in (ED, MR, CLS). If MR is made the conditional attribute from (ED, MR), a 

class in nMR that only contains tuples from {1,2} and {3, 5} must be found in order to 

define a rule. Since EIMR has {1,2,3,5}, a conditional rule can be formed on the common 
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value in {1,2,3,5} = Married. Therefore, the rule: ({MR = 'Married', ED} —• {CLS}). 

This means that MR must be married for MR and ED to functionally determine CLS. 

The main problem with dirty data is being able to strike a balance between making sure 

dirty data are not used for mining and at the same time ensuring the cleaning process does 

not introduce another set of unwanted data. While the Cong et al. (2007) approach needs 

sampling and physical inspection to guarantee its correctness, the automatic approach of 

Chiang and Miller (2008) depends on the cleanliness of the data that is used to generate 

the rules. 

In recent times, there has been interest in mining data generated from non-traditional 

domains such as sensor networks and location based services. Such data are generated 

with some level of uncertainty due to measurement inaccuracies, sampling error and 

network latencies. Location based systems as found in GSM (Global System for Mobile 

communication) are used in delivering several value added services in the mobile 

telephoning industry. It can be used in determining location of a subscriber or the nearest 

banking cash machine. However, due to the unreliability of radio signal that is used to 

relay information from the nearest mobile base station (tower), information delivered 

might sometimes be prone to errors. Fluctuations in signals and network can cause some 

farther base stations to serve a particular mobile subscriber and as a result deliver 

information on a farther location. Therefore mining data generated by such systems 

demands attaching some uncertainties unto them. 

Sensor networks that combine computational functionalities with physical sensing 

capabilities could also transmit errors of the physical entity such as temperature that they 

are designed to measure. Sensors designed to capture temperature values might be 

corrupted or biased if placed near a power generating plant or an air conditioner. Analysis 

based on these types of data may therefore be inaccurate if the uncertainties that may be 

present are not equally accounted for. 
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One main problem associated with mining uncertain data is how such data are objectively 

generated. Chui et al. (2007) and Leung et al. (2008) also suggested that historical 

behaviour of entities can be used for presenting uncertainties that might be attached to 

their current behaviour. Their work does not show exactly how this can be done 

objectively. The use of historical data can be used objectively in arriving at a more 

unbiased result during mining based on sample data. Uncertainties can also be useful in 

analysing how unique users may find a particular webpage useful. Such analysis can then 

be used in improving the design of such websites. Web logs, though are doubtless facts, 

can be represented with uncertainty when history of log sessions for each user is used to 

compute the consistency of the user's behaviour based on the most current web log 

session. 

Given four different web log sessions as shown in Tables 4a, 4b, 4c and 4d. The tables 

represent access histories for users 10, 20 and 30 at different times 1, 2, 3 and 4. User IDs 

10 and 30 participates in all the 4 sessions while user ID 20 only take part in twice. The 

most current session is time 4. The four web log sessions are then merged into one 

database and ordered by user ID and time so that the most current web log for each user 

comes first as shown in Table 5. 

User ID 
10 
20 
30 

Time 
2 
2 
2 

Web log 
(a,d,c,a) 
(a,d,e,d) 
(a,e,d,e) 

User ID 
10 
20 
30 

Time 
1 
1 
1 

Web log 
(a,c,a,c) 
(a,c,b) 
(a,e) 

a b 
User ID 
10 
30 

Time 
4 
4 

Web log 
(a,b,c,d) 
(a,b,d,b) 

User ID 
10 
30 

Time 
3 
3 

Web log 
(a,d,a,b) 
(a,c,e,b) 

c d 
Table 4: The 4 different web log sessions 
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User ID 
10 

20 

30 

Time 
4 
3 
2 
1 
2 
1 
4 
3 
2 
1 

Web logs 
(a,b,c,d) 
(a,d,a,b) 
(a,d,c,a) 
(a,c,a,c) 
(a,d,e,d) 
(a,c,b) 
(a,b,d,b) 
(a,c,e,b) 
(a,e,d,e) 
(a,e) 

Table 5: The merged and sorted logs for the different sessions 

The existential probability, prob (u(e)), of each event e, for each user u, in the most 

current log is given as: Number of existence of e in any record with u 
prob (u(e)) = 

Total number of records with u 

The likelihood of having the latest log to be a true reflection of how each user browses 

the site based on the historical behaviour is calculated as follows: 

User ID 10: Since 'a' appears at least once in all the 4 logs, existential probability of 'a' 

is given as 4/4 = 1. Item 'b' appears only in the first two logs, its existential probability is 

2/4 = 0.5. Item 'c ' appears 3 times, its existential probability is 3/4 = 0.75 and that of d is 

2/4 = 0.5. Using the same method, user ID 20's existential probability values for the 

latest log is: 

'a' = 2/2 = 1 

'd' = 1/2 = 0.5 

'e ' = l/2 = 0.5 

User ID 30: 

'a' = 4/4 = 1 

'b ' = 2/4 = 0.5 

'd' = 2/4 = 0.5 

The uncertain sequence to be mined is therefore given as in Table 6 : 

User ID 
10 
20 
30 

Web logs 
(a:l,b:0.5,c:0.75,d:0.5) 
(a:l,d:0.5,e:0.5,d:0.5) 
(a:l,b:0.5,d:0.5,b:0.5) 

Table 6: The generated uncertainty in the logs 
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UserlD 10 for example, is represented by (a:l, b:0.5, c:0.75, d:0.5) indicating the 

consistency of the current behaviour based on the historical behaviour. There is a 100% 

certainty that User lD 10 always visit page 'a'. In the same manner, the probability of 

pages b, c, d are 50%, 75%, and 50% respectively. 

1.5 Thesis problem and contribution 
This thesis is set out to propose a sequential web log mining solution for mining 

uncertain weblog sequences with access history probabilities using the PLWAP tree 

mining approach. The works of Agrawal and Srikant (1995), Pei et al. (2000) and Ezeife 

and Lu (2005) are all based on precise data sequences with 100% certainty. Chui et al. 

(2007) proposed U-apriori, an uncertain data implementation of apriori algorithm. Leung 

et al. (2008) proposed UF-growth that is a non-sequential mining approach of frequent 

patterns. The contributions of this thesis are therefore as follows: 

• The approach (U-PLWAP) is the first tree based sequential mining approach for 

data with uncertainty. 

• U-PLWAP makes use of historical web log session in calculating existential 

probability of web log sessions. 

• The speed of the algorithm is improved by collapsing events with the same label 

but different existential probabilities into one single node during the construction 

of the U-PLWAP tree. This makes the U-PLWAP tree more scalable in terms of 

number of nodes. 

• In order to effectively mine frequent patterns in U-PLWAP, sequence of 

cumulative products of existential probabilities of events found along each 

temporary root nodes (from the root node) are dynamically generated for each 

new sets of temporary root nodes. 

• The general performance of U-PLWAP is at least 2 times faster than U-apriori. 

The U-PLWAP algorithm is also at least 33% faster than UF-growth. This is 

addition to the richer result generated by U-PLWAP (frequent sequential patterns) 

as against UF-growth that is a frequent non sequential pattern algorithm. 
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2. RELATED WORKS 
There have been several research findings on the general area of data mining. Specifically, 

the problem of mining web logs can be traced back to the association rule mining 

technique originally introduced by Agrawal and Srikant (1995). Etzioni (1996) state that 

web mining can be useful for server performance enhancements, restructuring of website 

and direct marketing in e-commerce. This has made research in this area an important 

one, given the role internet and websites play in our day to day activities. Web log mining, 

synonymous with Web usage mining, is one of the three areas of web mining identified 

by Madria et al. (1999) and Borges and Leven (1999). Technically, the problem of 

sequential mining of web logs is that of finding all ordered sequence of web pages 

accessed whose support count is greater than a specified minimum threshold (Ayres et al., 

2002). Cooley (2003) defined web usage mining as "the application of data mining 

techniques to web click stream data in order to extract usage patterns". Han and Kamber 

(2006) also gave an insight to the area of data mining including the sequential mining of 

web logs. 

The discussion in this chapter is grouped into those methods that are apriori and pattern-

based. The algorithms with uncertainty are also discussed in a separate section. 

2.1 Apriori based methods 
This section gives an introduction into the problem of sequential pattern mining and the 

early methods used to solve this problem. It gives insight into the general problem of 

sequential mining which can be adapted to the web usage mining environment. 

Agrawal and Srikant (1995) introduce the problem of mining frequent sequential patterns. 

They state that early works by Agrawal et al. (1993) only concentrate on discovering 

patterns within transactions. Agrawal and Srikant (1995) introduce and addressed the 

problem of discovering sequential patterns in transactional databases where transactions 

are taken as sequences with each sequence containing one or more items. The authors set 

out to identify inter-transaction patterns, treating each transaction (itemsets) as a unit 
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rather than treating items as a unit. For example, itemsets ((1,5) (2) (3) (4,7)) can be 

considered for a single user or customer in the approach introduced by Agrawal and 

Srikant (1995). That is, more than one itemset per record/user is considered for mining as 

against single itemset per user in Agrawal et al. (1993). 

2.1.1 Apriori algorithm (AprioriAll) 
Agrawal and Srikant (1995) propose AprioriAll algorithm to discover sequential patterns 

in a transaction database. The algorithm finds sequential patterns in transaction database 

where several transactions can be done by a given customer as shown in Table 8. Such 

transactions are grouped to form a sequence for each customer as given in Table 7. 

Cust Id 
1 
1 
1 
1 
2 
2 

2 
2 
3 
3 
3 
3 
4 
4 
4 
5 
5 

Time 
1 
2 
3 
4 
1 
2 

3 
4 
1 
2 
3 
4 
2 
3 
4 
1 
2 

Transaction 
1,5 
2 
3 
4,7 
1,8 
3 

4 
3,5 
1 
2 
3 
4 
1 
3 
5 
4 
5 

Cust id 
1 
2 
3 
4 
5 

Sequence 
<(1,5)(2)(3)(4,7)> 
<(1,8)(3)(4)(3,5)> 
<(1) (2) (3) (4)> 
<(D(3)(5)> 
< (4) (5)> 

Table 7: The sequence formed 

Table 8: The sample transaction database 

The sample transaction in Table 8 shows transactions done by each customer at different 

time. The transactions are then grouped by customer ID so that customer ID 1 for 

example has a sequence of transactions ((1,5) (2) (3) (4,7)) as shown in table 6. Each 

transaction grouping in a sequence is known as itemset. For example, ((1,5) and (2) are 

itemsets. In order to mine frequent sequence pattern, a minimum threshold referred to as 
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the minimum support must be specified. The database is then scanned to record the 

occurrence of each itemset in order to discover if such itemset is frequent. Itemsets with 

count that is greater or equal to the minimum support are said to be frequent. The set of 

frequent itemsets are referred to as the Large itemsets. Given the sequence shown in 

Table 8, the algorithm operates in 5 phases; Sort phase, Litemset (Large itemset) phase, 

Transformation phase, Sequence phase and Maximal phase. 

The sort phase prepares the transaction database by grouping transactions according to 

the customer ID thereby forming a sequence for each customer ED. Using the sequence in 

Table 8, AprioriAll works by first ordering the transaction database by customer ID and 

time. It is then implicitly changed to the form shown in Table 7. Given that the minimum 

support is 2, the Large itemset phase then finds all frequent (Large) 1-sequences by 

scanning the database for itemsets that occur more than once provided that the minimum 

support specified is 2. Out of the possible itemsets (candidate itemsets) {(1), (2),(3), (4), 

(5), (1,5), (1,8), (3,5) and (4,7)}, the frequent 1-sequences are as shown in Table 9. 

1-Sequences 
(1) 
(2) 
(3) 
(4) 
(5) 

Support 
4 
2 
4 
4 
4 

Table 9: The Large 1-sequence 

Transformation phase is done by removing the non-frequent items/itemsets. It also 

replaces all transactions with the set of all Large itemsets contained in that transaction. A 

mapping of the transformed database is also shown in Table 10 given that large itemsets 

(1). (2), (3), (4) and (5) are mapped to 1, 2, 3, 4, 5 respectively. Items 7 and 8 are not 

contained in Large 1-sequences and have been removed in the transformed sequence. 
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Custid 

1 
2 
3 
4 
5 

Sequence Before 
Transformation 

<(1,5)(2)(3)(4,7)> 
<(1,8)(3)(4)(3,5)> 
<(1) (2) (3) (4)> 

<(D 0 ) (5)> 
<(4) (5)> 

Sequence After 
Transformation (deleting 
small items) 
<{(1),(5)} {(2)} {(3)} {(4)}> 
<{(!)} 1(3)} 1(4)} f(3),(5)» 
<{(1)} {(2)} {(3)} {(4)}> 
<f(l)} {(3)} {(5)}> 
<{(4)} {(5)}> 

Table 10: The transformed sequence 

The Sequence phase performs an apriori-gen join on the frequent 1-sequence in Table 9 

to form candidate sequence C2 as shown in Table 14. Large 2-sequences (L2) are then 

derived from C2 by selecting those with support greater than or equal to 2 since the 

minimum support is 2. L2 is then used in an apriori-gen join to generate C3. Apriori-gen 

join works by performing a self join on Lk-i in order to arrive at Ck only when the first 

k-2 items are equal. The generated Ck is then pruned by removing any sequence in Ck 

that has any of its k-1 subsequence not in Lk-i. For example, C3 is derived by an apriori-

gen join on L2 when the first items in each L2 are the same. That is, (12) joins with (13) 

to form (1 2 3) because they both have ' 1 ' as the first item. C3 is then pruned by 

removing any sequence that has any of its 2-subsequences not in L2. For example, 

sequence (1 3 2) is pruned from C3 since its sub-sequence (3 2) is not in L2. This process 

is recursively done to generate new Ck and I* until no more Ck is formed or no frequent 

sequence found. The Tables 11 to 16 show the process in details. 

Seq 
(12) 
(13) 
(14) 
(15) 
(2 3) 
(2 4) 
(2 5) 
(3 4) 
(3 5) 
(4 5) 

Count 
2 
4 
3 
3 
2 
2 
0 
3 
2 
2 

Seq 
(12) 
(13) 
(14) 
(15) 
(2 3) 
(2 4) 
(3 4) 
(3 5) 
(4 5) 

Count 
2 
4 
3 
3 
2 
2 
3 
2 
2 

Table 13: L2 

Seq 
( 1 2 3 ) 
(12 4) 
(12 5) 
(13 4) 
(13 5) 
(14 5) 
(2 3 4) 
(3 4 5) 

Count 
2 
2 
0 
3 
2 
1 
2 
1 

Table 12: C3 

Seq 
( 1 2 3 ) 
(12 4) 
(13 4) 
(13 5) 
(2 3 4) 

Supp 
2 
2 
3 
2 
2 

Table 11: L3 

Table 14: C2 
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Seq 
(12 3 4) 
(13 4 5) 

Count 
2 
0 

Seq 
(12 3 4) 
Table 15: 

Count 
2 

L4 
Table 16: C4 

Maximal phase is then executed by finding only frequent itemsets that are not contained 

in any other large itemset. Itemsets {(4 5), (1 3 5), (12 3 4)} are not contained in any of 

the large sequences. The maximal sequences are therefore {(4 5), (1 3 5), (12 3 4)}. 

2.1.2 The GSP algorithm 

Srikant and Agrawal (1996) introduced GSP, a more flexible approach into their earlier 

work stated above. They show that the problem of discovering sequential patterns with 

earlier approaches fail to take into account time constraints in the sequence to be 

considered. They also stress that existing approaches have rigid definitions of 

transactions. Grouping of items into hierarchies (taxonomies) can also be found to be 

missing in the earlier algorithms. The authors proposed GSP (Generalized Sequential 

Patterns) to cater for these limitations. The GSP algorithm is made more flexible by 

including time constraints, flexibility in the definition of transaction and inclusion of 

taxonomies. The time constraint is used to further extend the flexibility of the algorithm 

by specifying the time limit within which a particular pattern can be considered frequent. 

The flexibility in transaction definition also introduces the freedom to regroup 

transactions based on a specified time interval within which transactions can be combined 

into one unit (one itemset). This specified time is referred to as the sliding window. The 

inclusion of taxonomy helps in further showing the hierarchy along which a frequent 

pattern can be expressed. The example below shows the transactions of books sold in a 

store. For simplicity, the transaction time is represented in number of days. 
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Sequence-Id 

CI 
CI 
CI 
C2 
C2 
C2 

Transaction 
Time 

1 
2 
15 
1 

20 
50 

Items 

Ringworld 
Foundation 
Ringworld Engineers, Second Foundation 
Foundation, Ringworld 
Foundation and Empire 
Ringworld Engineers 

Taxonomy T 

Asimov Niven 

Foundation Foundation Second Ringworld Ringworld 
and Empire Foundation Engineers 

Example 2.1 The example demonstrating additional functionalities of GSP algorithm. 

If the minimum support is specified as 2, the frequent 2- element patterns are: 

{(Ringworld) (Ringworld Engineers)} and {(Foundation) (Ringworld Engineers)}. 

However, when a sliding window of 7 days is given, the pattern 

{(Ringworld) (Ringworld Engineers)} also becomes frequent since the first 2 transactions 

of CI becomes one transaction. Setting a maximum constraint of 30 days generates no 2-

element frequent pattern since Ringworld Engineer in C2 was bought after the 30-day 

limit. 

Frequent patterns can also be expressed in form of their taxonomies. For example, 

patterns supporting {(Foundation) (Ringworld Engineers)} will also support {(Asimov) 

(Niven)}. This is made possible by also specifying the taxonomy as part of the input data. 

For example, {(Foundation) (Ringworld)} will be represented as {(Foundation, 

Ringworld, Asimov, Niven)}. 
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The GSP algorithm is a multiple-pass solution. The first pass considers the items 

individually and generate the frequent 1-sequence for those with support count greater 

than the minimum support. The 1-itemset (Li) is used to generate the next set of 

candidate sequences (C2) by a join operation with itself. Subsequent Ck are generated 

from Lk-i. A join operation (apriori gen join) is carried out only when the subsequence 

generated by removing the first item in sequences in L .̂i is the same as removing the last 

item during the self join on Lk-i. The candidate sequences are searched for using the 

forward and backward phase algorithm. Pruning operation is also performed to remove 

those candidate sequences whose k-1 contiguous sub-sequences are not frequent. The set 

of Lk sequences are then generated. The algorithm ends when there are no more 

sequences generated in Lk . 

Using Table 17 as an example, frequent 3-sequences is self joined using the apriori gen 

join which states that a join can only occur if by removing the first item in sequences in 

Lk-i , the subsequence left is the same as removing the last item during the self join on 

Lk-i. For example, sequence ((1,2) (3)) joins with ((2) (3,4)) since the last 2 items (2,3) in 

the first sequence and the first 2 items (2,3) in the second sequence are the same. Equally, 

((1,2) (3)> joins with ((2) (3) (5)>. The join operation then produces ((1,2) (3,4)> and 

((1,2) (3) (5)). Sequence ((1,2) (3) (5)) is however pruned since its contiguous sub­

sequence ((1,2) (5)) is not frequent (not in frequent 3-sequence). 

Frequent 
3-Sequences 

( ( 1 , 2 ) (3)) 
< (1, 2) (4)) 
<W(3,4)) 
{(1 .3) (5)) 
{(2) ( 3 , 4 ) ) 

< (2 ) (3 ) (6 )> 

Candidate 4-Sequences 
after join 

( ( 1 . 2 ) (3. 4 ) ) 
( ( 1 , 2 ) (3) (5)) 

after pruning 
( ( 1 , 2 ) ( 3 , 4 ) ) 

Table 17: The table explaining GSP algorithm 
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The GSP algorithm checks for candidate sequence in 2 phases; the forward and backward 

phase. The forward phase finds successive elements of candidate sequence in a sequence 

databases given that the difference between the start time of the new element and the end 

time of the previous element is within the maximum time (constraint) specified. When 

the difference is more than the maximum time, the algorithm calls the backward phase. If 

no element(s) is found in this phase, the sequence database does not contain the candidate 

sequence. 

The backward phase backtracks and checks the previous elements. This is to ascertain 

that no occurrence of the immediate previous element has its start time earlier than the 

difference between end time of the present element and the maximum gap constraint. The 

backtracking continues until such an occurrence is found or the very first element of the 

candidate sequence is pulled up. A new set of elements are then searched with the 

forward phase starting from the last point of backtrack. 

Transaction- Time 
10 
26 
45 
50 
65 
90 
95 

Items 
1, 2 
4, 6 
3 
1, 2 
3 
2,4 
6 

Table 18: The data sequence for candidate sequence check 

If Table 18 is used as an example with maximum gap of 30, minimum gap of 5 and 

window size 0. Candidate sequence <(1, 2) (3) (4)> can be searched by first finding (1, 2) 

at transaction time 10 and then (3) at time 45. Because the time between the 2 elements is 

35 days (greater than max gap of 30), element (1, 2) is pulled up by the backward phase 

of the algorithm. The first occurrence of (1, 2) with transaction time after 15 (45 - 30) is 

searched for. Since no such element exists and the first element in the candidate sequence 

is pulled up already, the forward phase continues with a fresh search of the candidate 

sequence. The first occurrence of (1, 2) is found at time 50. The next element (3) also 
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found at 65. Since the gap between these two elements is within thin the minimum and 

maximum gap, the next element (4) is then found at transaction time 90 

Which is also within the maximum gap relative to immediate past element (3) found at 

time 65. Therefore the data sequence shown in Table 18 contains the candidate sequence 

<(1, 2) (3) (4)> under the conditions stated. 

2.2 Pattern approaches 

2.2.1 FP-growth algorithm 
Han et al. (2004) aim at solving problem of candidate set generation during frequent 

pattern mining process. They found that candidate set generation can be costly especially 

when many patterns are present and when such patterns are long. 

Han et al. (2004) proposed a frequent mining algorithm, FP-growth, based on frequent 

pattern tree (FP-tree) data structure. Through this, the authors contributed to the study by 

ensuring large database is compressed into FP-tree therefore removing repetitive database 

scan. This divide and conquer, conditional mining approach also remove candidate set 

generation. 

The FP-tree is built on the intuition that if frequent items are used to re-order items in the 

database, multiple transactions sharing same itemset can be represented with the same 

path in FP-tree by registering their counts. FP-tree is constructed after a first scan of the 

database is carried out where frequent items are found and ordered. The order is then 

used to enter items into the FP-tree during the second scan. Given the database below: 

TID 
100 
200 
300 
400 
500 

Items Bought 

/ , a,c,d}g, i, tn-,p 
a,h,c,f, f ,m,0 

b,f,h,j}o 
b,c,k, s,p 

a , / , c, <s,Z,p, m,n 

(Ordered) Frequent Items 

f,c,a,m,p 
/,c?a,fo, m 

f\b 
c,k,P 

f,c,a,m.,p 

Table 19: The sample database 

20 



It is assumed that the minimum support is 3. The items are re-ordered according to 

descending order of frequent items (f:4, c:4, a:3, b:3, m:3, p:3). Items h, I, j , k, 1 have 

been removed from the database since they are not frequent. 

The items are then inserted into the FP-tree in the ordered fashion, registering the count 

on each occasion. A header link table is also constructed to show the order in which 

nodes of same type are inserted in order to aid mining process. The FP-tree generated is 

as given below: 

Figure 1: The constructed FP-tree 

The mining process is done by starting from the bottom of the header table. Item p has 2 

tree paths f:4, c:3, a:3, m:2, p:2 and c:l, b:l, p:l. Removing p and ensuring only counts 

for item p are present gives p's conditional base tree: f:2, c:2, a:2, m:2, and c:l, b:l. Only 

item c make the minimum count of 3 (sum), therefore forms p's conditional FP-tree (c:3). 

Pattern 'cp:3' is therefore frequent. The process is then repeated for all items on the 

header table. The conditional FP-tree is repeatedly mined when more then one frequent 

items are found. Table 20 summarises the operation: 
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Items 

P 
m 

b 
a 
c 
f 

Conditional pattern base 
(f:2,c:2,a:2,m:2), (c:l,b:l) 
(f:2, c:3,a:2), 
(f:l,c:l,a:l,b:l) 
(f:l,c:l,a:l),(f:l),(c:l) 
(f:3,c:3) 
(f:3) 
-

Conditional FP-tree 
c:3 
f:3, c:3, a:3 

-

f:3, c:3 
f:3 
-

Final Frequent pattern 
cp:3 
am:3, cm:3, fm:3, cam:3, 
fam:3, fcam:3 
-

ca:3, fa:3, fca:3 
Fc:3 
-

Table 20: The FP-growth mining process 

This approach is however limited to finding frequent patterns in non-sequential data. 

2.2.2 Freespan 
Han et al. (2000) proposed FreeSpan in order to solve the problem of sequential pattern 

mining. It also removes some of the drawbacks of Apriori algorithm including, several 

scan of the database, generation of huge candidate sequences and difficulty associated 

with long sequential patterns. 

The authors' approach is based on the integration of frequent pattern approach with that 

of sequential patterns and uses projected databases to limit the search and growth of 

subsequence fragments. Han et al. (2000) contributions include design of frequent item 

matrix where frequent length 2-sequences are discovered. The authors also defined how 

generation of item repeating patterns and projected databases for each frequent item are 

found. 

The algorithm works by using the first scan to generate the frequent items arranged in 

order on f-list. The second scan of the database then generates the frequent item matrix. 

From the matrix, the frequent 2-length sequences are noted. The sequences corresponding 

to the frequent diagonal elements are noted in the annotation for repeating items. Other 

non-diagonal sequences are also noted when the equivalent diagonal elements of the 

constituent items are frequent. Annotations that form triple F[i,j], F[k,j], F[i,k] with i<j 

and k < i (all corresponding pairs are frequent) are then used in defining projected 

column set by including k and annotations containing i and j . The database is then 
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scanned the third time to generate the final item repeating patterns and the projected 

databases. 

Given the sequence database as shown below: 

Sequence-id 

id 
20 
30 
40 
50 

Sequence 
((bd)cb(ac)} 

MHceMfg)) 
({ah)(bf)ab/) 

<(*e)(«)d> 
(a(bd)bcb(ade)) 

Table 21: The sample sequence database 

The frequent item list are generated and ordered as follows: (b:5, c:4, a:3, d:3, e:3, f:3). A 

6x6 frequent item matrix is then formed with the frequent items. A triangular matrix is 

then formed since half of the matrix is similar. The diagonal elements have one value 

while other cells have three values with the first two representing the count of the 

constituent items in the database when their positions are noted while the last value 

represents the count when they both occur together. Table 22 represents this. 

b 
c 
a 
d 
e 
/ 

4 
(4,3,0) 
(3,2,0) 
I £t, *•', M f 

|d , i ,1} 
(2,2,2) 

b 

1 
(2,1,1) 
(2,2,0) 
(1,1,2) 
(1,1,0) 

c 

2 
(1,2,1) 
(1,0,1) 
(1,1,0) 

a 

1 
(1,1,1) 
(0,0,0) 

d 

1 
(1,1,0) 

e 
2 
/ 

Table 22: The frequent item matrix. 

Taking the example of the second cell on the first column (4,3,0). This means (b,c) 

occurs 4 times, <c,b> 3 times and 0 means both <(b,c)> never occur together at a time. The 

frequent length 2 sequences, annotation on repeating items and annotation on projected 

databases are then generated as in Table 23: 
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Item 

f 
e 
d 

a 
c 
b 

Output length-2 sequential pattern 

<bf):2,<fb>:2,<(bf)>:2 
<be):3,<(ce)>:2, 
<bd>:2, <db>:2, <(bd)>:2, <cd>:2, 
<dc>:2, <da>:2, 
<ba>:3, <ab>:2, <ca>:2, <aa>:2, 
<bc>:4, <cb>:3 
<bb>:4 

Ann. on repeating 
items 
{b+f} 
<b+e> 
{b+d},<da+> 

<a a+>, {a+ b+} (d a+> 
{b+c} 
<bb+> 

Ann. On projected DB 

-

<(ce)>: {b} 
<da):{bc}, {cd}:{b} 

<ca>:{b} 
-

-

Table 23: Pattern generation 

The length 2-sequential patterns are those entries that are greater than or equal to 

minimum support of 2. Since F[b,b] and F[f,fJ are frequent, b and f can be repeated in as 

many times as possible (+) and in any order ({}) as shown in the annotation for repeating 

item column. Since no other frequent item exist with f apart from b, the annotation for 

projected database is null. For the second row (e), F[e,e] is infrequent, as a result e is not 

a repeating item as shown <b+,e>. Angular bracket is also used to restrict order of the item 

since only one of the 3 values of (b,e) on the item matrix is frequent (3,1,1). Set notation 

({}) is used if otherwise to indicate that both (b,e) and (e,b) are frequent. 

The items on row 2 also form a triple F[c,e], F[b,e], F[b,c]. Set {b} is therefore included 

in the projected database with the annotation containing c and e. In this case, <(ce)> is 

used since it is the only frequent annotation. The third database scan is then done using 

the item repeating annotation and projected database as guide to obtaining frequent 

sequential pattern of longer length. The mining operation is then restricted to the patterns 

contained in the projected database header set. The frequent patterns obtained in the third 

scan are as follows: {<bbf>:2, <fbf>:2, <(bf)b>:2, <(bf)f>:2, <(bf)bf>:2, <(bd)b>:2, <bba>:2, 

<aba>:2, <abb>:2, <bcb>:3, <bbc>:2}. There might be need to construct a new frequent item 

matrix for projected databases whose annotation contains more than 3 items and 

recursively mine its sequential pattern. 

This approach, with the help of projected database, helps reduce the search space for 

sequential patterns and make the mining process faster. There is however the need to 

recursively reconstruct frequent item matrix when there are more patterns to be mined. 
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2.2.3 PrefixSpan 
A sequence database is one that records events in its database in the order in which they 

occur. As a result, it takes into account the time at which events occur. For example, the 

sequences (abc) is different from (bac). Though both sequences contain the same 

item/events, event 'a' comes before event 'b ' in the first sequence and vice versa in the 

second sequence. Therefore, in sequence databases, the two sequences are regarded as 

two different sequences. Sequence of transactions can also be represented in the order in 

which they occur and at the same time indicate events of the same transaction. For 

example, the sequence (a(abc)(ac)d(cf)> contains (a), (abc), (ac), (d) and (cf) transactions 

(elements) that occur separately in the order shown. 

The Prefix-Projected Sequential Pattern Mining (PrefixSpan) by Pei et al. (2004) is 

designed to solve the problem of mining sequential pattern. The approach uses a divide 

and conquer method by projecting the sequence database over common frequent prefixes 

and recursively mining each projected database. A prefix of a sequence is the part of a 

sequence that strictly precedes it. For example, sequences (a), (a(ab)), (a(abc)) are 

prefixes of sequence (a(abc)(ac)d(cf)>. On the other hand, sequences (ab> and (a(bc)) are 

not. 

The algorithm works by first making a scan on the database to find the frequent 

1-sequential patterns. The database is then divided into n projected databases, defined by 

sequences starting with each of the n 1-sequaential database. Each of these projected 

databases are then recursively mined by further projection to determine the frequent 

patterns they contain. Given the database as shown in Table 24 and minimum support of 

2, the database is scanned to generate the frequent 1-sequentila pattern: a:4, b:4, c:4, d:3, 

e:3 and f:3 
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Sequencaid 

10 

20 

30 

40 

Sequence 

{a(abc)(ac)d(cf)) 

{(ad)c(hc)(m}) . 

((ef){ab)(4f)d>) ' 

(eg(af)cbc) 

Table 24: The sequence database 

The sequence database is then divided into 6 parts (6-projected databases) based on 

sequences preceded by each of the frequent 1-sequential patterns. The second column of 

Table 25 depicts this. A-projected database is found for example, by scanning the 

database to find all sequences prefixed by 'a'. The first 2 sequences with sequence_ids 10 

and 20 are preceded by 'a'. The sequences (a (abc) (ac) d (cf)> and ((ad) c (be) (ac)) 

minus 'a' forms their respective projected sequences ((abc) (ac) d (cf)> and ((-d) c (be) 

(ac)). The sequence ((ef) (ab) (df) (cb)) is preceded by 'a' at element (ab). Element (ei) is 

removed and the a-prefix sequence formed is ((-b (df) (cb)). The same method is used to 

complete column 2 of Table 25. 

Each projected database is then recursively mined by projection to discover any possible 

frequent pattern. The a-projected database is for example, mined to discover if another 'a' 

is frequent. The a-projected database shows that a is frequent (a:2) thereby making (aa) a 

frequent pattern as shown in column 3 of Table Table 25. The resulting aa-projected 

database found from a-projected database is {((-bc)(ac)(d)(cf)), ((-e))}. No further 

frequent item can be found from this, therefore no frequent pattern prefixed by 'aa' can 

be found. The algorithm, in the same manner, mines for 'b ' from a-projected database to 

check if (ab) is frequent. Item 'b' is found 4 times, making (ab) frequent. The resulting 

ab-projected database is ((-c) (ac) (d) (cf)), <(-c)(ae)>, ((c)), Recursively mining the ab-

projected database, using same method, gives (aba), (abc), (a(bc)) and (a(bc)a). 
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The same process is used for all the projected databases to find the respective frequent 

patterns shown in Table 25. The union of these frequent patterns gives set of frequent 

patterns for the database. 

prefix 

<«} 

(6) 

(c) 
(d) 

(e) 

if) 

projected (suffix) database 

((ahc)(ac)d(cf)), <(_<i)c(6c)(a«)>, 

« J0 (# )<*> , ((-f)cbc) 

<(.x)Cac)d(c/)>, <(-c)(oe)>, 
<(d/)e&), (c) 

((ac)d(cf)), ((bc)(ae)), (6}t <fec) 

( ( c / » , (c(bc)(ae)), (U)cb) 

(U){ab)(df)cty, ((af)cbc) 

((ah)(df)cb), (cbc) 

sequential pat terns 

(a), (aa), (ah), (a(bc)), (a(bc)a), (aba), 

(abc), <(afe)), <(aft)c), ((a6)d), <(o6)/>, 

{(a6)dc), (ac), (aca), (ocb), (occ), (ad), 

{adc), ( a / ) 

<6>, (6o>, <*c>, ({be)), <(fcc)a), <M), (Mc), 

<e>, <c«), <c6), (cc) 

<d>, (db), (dc), (deb) 

(e), (ea), (eab), (eac), (each), (eb), (ebc), 

H . <«*), <c/>, <e/6), (e/c>, (e/d»>.. 

</>. </6>,- </««), ( /c) , (fob) 

Table 25: The Projected database and frequent patterns 

The technique has removed the need to generate candidate sequences during mining. It 

also results in shrinking of projected databases as the mining process progresses. The 

limitation of this technique is the need to construct and store the projected databases. Pei 

et al. (2004) proposed pseodoprojection method to solve this problem. This is done by 

replacing the physically constructed projected databases with their various sequence 

identifiers and offsets where their suffixes begin. This makes the projected fit into 

memory. 

2.2.4 The WAP mine algorithm 
The WAP mine algorithm of Pei et al. (2000) is based on the construction of Web Access 

Pattern (WAP) Tree constructed from the web log sequences after non-frequent events 

have been removed. 

The algorithm can be described in 3 stages. The web access sequence database (WASD) 

is first scanned to determine the frequent 1-sequence. It is then scanned the second time 

in order to remove non-frequent event from the sequence. These sequences are then used 

to build the WAP tree. The tree is built by representing events with nodes showing labels 
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and counts of the node along that path. Each event has a queue linking all its nodes in the 

order in which they are inserted. The head of each queue is registered in a header table 

for the WAP tree. Table 26 and Figure 2 represent these 2 stages 

TID Web access sequence Frequent subsequence 

100 

200 

300 

400 

abdac 

eaebcac 

babfaec 

ajbacfc 

abac 

abcac 

babac 

abacc 

Table 26: The Web Access Sequence Database 

Figure 2: The Web Access Pattern tree 

The third stage then recursively mines the WAP tree using conditional search. The search 

is based on looking for all sequences with common suffix. As the suffix becomes longer, 

the remaining search space becomes shorter. The header table created with the WAP tree 

above helps construct conditional sequence base for each of the events considered as 

suffixes by following the link to all nodes in the WAP tree. This is then used to construct 

conditional WAP tree for every suffix considered. The conditional WAP tree is then 

recursively mined for frequent events, each time concatenating newly discovered 

frequent event with the old ones. The process continues until there are no trees to mine or 

no more frequent events discovered. 
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Using the above WAP tree as an example, with 75% minimum support, the conditional 

WAP tree for suffix sequence 'c ' is as shown in Figure 3. This tree is constructed from all 

prefix sequences of suffix sequence V . The possible prefix sequences, called conditional 

pattern base of suffix sequence V are: aba:2, ab:l, abca:l, ab:-l, baba:l, abac:l, aba:-l. 

The negative sequences indicate an overlap in the count because they are already 

contained in some other prefixes of 'c ' . Because the count of 'c ' is less than 75%, it is 

removed from the sequence. The resulting sequences are aba:l, aba:l, baba:l, aba:l from 

which Figure 3 is constructed. The same process can be used to construct conditional 

WAP tree for other suffix sequences, for example 'ac' from Figure 3. The resulting tree is 

as shown on Figure 4. 

Figure 4: |ac 

Figures 3 and 4 show the conditional WAP tree for suffix sequence 'c ' and 'ac' 

respectively. 

The conditional WAP tree 'ac' now confirms that frequent sequences with 'c ' as suffix 

are ac, aac, bac, abac. The same process can be done with the WAP tree in Figure 2 with 

suffixes 'b ' and 'a'. 

The limitation of this technique is the recursive construction of intermediate WAP tree 

for suffixes under consideration. 

Figure 3: |c 
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2.2.5 PLWAP algorithm 
In order to eliminate the need to recursively construct intermediate trees during mining, 

PLWAP algorithm was proposed. The approach of Ezeife and Lu (2005) uses position 

codes generated for each node such that antecedent/descendant relationships between 

nodes can be discovered from the position code. The same WAP tree originally created is 

then mined prefix-wise using the position codes as identifiers thereby eliminating 

generation of fresh intermediate WAP trees for each sequence mined. The concept of 

binary tree is used in generating the position codes. The root has a position code of null. 

Starting from the root, all tree nodes are assigned a position code using the following rule. 

The position code of the leftmost child node is the position code of its parent 

concatenated with ' 1' at the end; the position code of any other node is the same as 

appending '0 ' to the position code of its closest left sibling. 

The algorithm first scans the web access sequence database (WASD) to obtain support 

count for all events in it. Events with support greater than or equal to a specified 

threshold are said to be frequent. A second scan is then used to eliminate non-frequent 

events from the original sequences. These new sequences are then used to construct a 

PLWAP-tree with each node representing label, count and position code of the event 

along a particular path. The PLWAP-tree is then traversed in a pre-ordered fashion 

starting from the root to the left sub-tree followed by the right sub-tree to build to build 

the header node linkages. Each event has a queue linking all its nodes in the order in 

which they are inserted. The head of each queue is registered in a header table for the 

PLWAP tree. 

The PLWAP algorithm then recursively mines the PLWAP tree using prefix conditional 

sequence search. Given the WASD as shown in Table 27: 
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TID Web access sequence Frequent subsequence 

10G abdac abac 

200 eaebcae abcac 

300 babfaec bahac 

400 ajbacfc abacc 

Table 27: The Web Access Database 

With the minimum support threshold of 75%, the sequence is reduced to that shown on 

the frequent sub sequences column shown above since events 'e ' and 'f ' are both 50% 

frequent. Events 'e ' and 'f ' are not frequent, they are therefore removed in the frequent 

subsequences. The resulting reduced sequences are then used to build the PLWAP tree as 

shown in Figure 5. 

Reader _ 

Figure 5: The PLWAP tree with the header linkages. 

The mining starts by mining sequences with the same prefix. Starting from frequent 1-

sequence, the PLWAP algorithm mines starting from the root (for the first time). Using 

the header linkage, it traverses the tree to identify frequent 1-sequences by searching for 

the first occurrence of an event say 'a'. The position code then helps in preventing 

duplicate count of support of an event in the same suffix sub tree. The addition of these 

counts is then used to compare with the specified minimum support threshold. 
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In the case of the above example, the event 'a' is counted with nodes a:3:l and a: 1:101. 

The total count for 'a' is 4, making it a frequent 1-sequence. In order to find the next 

frequent sequence with 'a' as prefix, the PLWAP tree is rooted at b:3:ll and b:l:1011. 

The first occurrence of say 'a' in these sub-trees are then noted with the counts. For 'a' 

event, the following nodes are identified using b:3:ll and b:l:1011 as roots: a:2:lll, 

a:l:l 1101 and a:l:10111. Again 'a' occurs 4 times, making it frequent. Therefore, 'aa' is 

frequent sequence. The next 3-sequence with 'aa' as its prefix can be found by setting the 

root of the PLWAP tree to c:2: l l l l , c:l:111011 and cl:101111. There are no other 

events except 'c ' with counts of c:2:l111, c:l:ll 1011 and cl:101 111, making it atotal of 

3. This makes 'c ' frequent. Therefore, 'aac' is frequent. Shifting the root to c : l : l l l 11 

gives no other frequent event. The algorithm then backtracks to find other possible 

frequent sequence combinations at each level. The same procedure is followed and the 

following frequent sequences were found: (a,aa,aac, ac, ab, aba, abac, abc,b, ba, bac, be, 

c). 

The advantage associated with this algorithm includes efficiency in terms of I/O and 

memory utilisation since it eliminates the need to store intermediate WAP tree. The need 

to continuously store and reconstruct intermediate WAP trees has been eliminated by the 

introduction of position codes, making tree traversal a lot easier. The use of pre-order 

linking of header nodes of the same suffix tree also makes searching of nodes easier. 

2.3 Uncertainty approaches for mining patterns 
Recent research has been done on representation and mining of data that exist with 

uncertainty. Uncertain data sequences are series of data that exist with doubt. The level of 

doubt is usually expressed with probability values attached to the elements of the 

sequence. These probability values are referred to as existential probability. This section 

gives an insight into how data with uncertainty are represented and the progress made in 

mining such data. 
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2.3.1 Trio system 
Agrawal et al. (2006) introduce the Trio system as a system aimed at representing data, 

uncertainty of the data and data lineage. The uncertainty shows the level of doubt 

attached to the data. Lineage of a tuple is defined as the information showing how the 

tuple is derived. It shows the origin of the tuple. The authors demonstrate how 

Uncertainty and Lineage Databases (ULDBs), a new scheme earlier proposed by the 

authors, can be represented using the 'crime solver' application. The application is 

designed to express doubts of observers on driver information and crime-vehicle 

sightings. They also show TriQL, a query language of this scheme, that can operate on 

ULDBs. 

The authors represent uncertain data with x-tuple notations indicating the possible 

combinations of database instances. An x-tuple is a tuple in a database that has alternative 

values. The values of x-tuple are not 100% defined. There is also the need to represent a 

'may be' (denoted with '?') occurrence of an x-tuple indicating the x-tuple may not exist 

as shown in Table 28. Confidence (probability) values are attached to each x-tuple 

representing the likelihood of its existence. The sum of these values is less or equal to 1 

depending on a 'may be' presence on each x-tuple as shown below. 

(witness, car) 

(Amy, Honda) : 0.7 || (Amy, Toyota) : 0.3 
(Betty,Acura):0.6 

Table 28: The representation of uncertain data 

It is assumed that the likelihood that Amy saw a Honda car is 0.7 and that of Toyota is 

0.3. Therefore, (Amy, Honda):07 || (Amy, Toyota):03 is an x-tuple. The events are 

mutually exclusive, indicating only one must exist at a time. The second tuple indicates a 

0.6 confidence that Betty saw Acura. Though not an x-tuple, the '? ' sign indicates the 

tuple may not exist. As a result, there is a 0.4 confidence that Betty did not see an Acura. 

From these uncertainties, it is possible to have 4 possible instances, referred to as the 

'possible worlds', of this relation as follows: 
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(Witness, Car) 

Amy, Toyota 

Betty, Acura 

(Witness, Car) 

Amy, Toyota 

Example 2.3.1 Demonstration of possible instances in uncertain databases 

The authors have been able to propose a method for representing uncertain data. The 

representation is found to be useful in preparing data sequence for mining as confidence 

values can equally be attached to possible sequences in web log mining. 

2.3.2 Databases with uncertainty and Lineage 
Benjelloun et al. (2006) further gives a formal representation of databases with 

uncertainty and lineage. Lineage in database shows the origin of a particular tuple when a 

new relation is formed. They found that completeness of uncertainty in databases is 

possible as a result of lineage attached to relations when new relations are formed. Much 

of the work is on querying of Uncertainty and Lineage Databases (ULDBs). The work of 

Widom (2005) that is centered on incorporating data lineage and uncertainty in general 

purpose database management system provides a motivation for this work. 

The technique presented here is highly related to that of Agrawal et al. (2006) except that 

some level of formalism is introduced and more emphasis is laid on lineage 

representation as a means of ensuring completeness of uncertainty representation. Since 

lineage gives information about the origin and how a particular tuple is derived, such 

information is found to be useful in understanding the uncertainty attached to the tuple. 

The authors claim that formalism for representing an uncertain database is said to be 

complete if it can represent any finite set of possible instances. 

Amy, Honda 

Betty, Acura 

(Witness, Car) 

Amy, Honda 
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Given the example below: 

ID 
21 
23 

Saw(wiMe5a, caarj 
(Snry,Masda3 (Jkm^, Toyota^ 

{Bet ty , Honda]! 

IS 
31 
34 
33 
34 

Efcrives&Mrago, erne) 

{Jimmy, Mazda) 
i Jimmy, Tbyota) 
iBilly,Masda) 
(Bi l ly ,Honda) 

m 
41 
42 
43 
44 

Aeeasesfnitiiess, person) 

(Army, Jimmy) 
(ftray,Jimmy) 
CSray,Billy) 

( B e t t y , B i l l y ) 

? A(41,I)={C21,1W31,1>} 
? A(42,1H(2U).(32.1)} 
f A<43,1HC21,1X(33,1)} 
? A<44,1H(23,1),CM,1)} 

Example 2.3.2 Explanation of databases with uncertainty and lineage 

Joining the tables SAW (witness, car) and DRIVES (person, car) gives the table Accuses 

(witness, person). Adding the lineage function X helps identify the origin of each tuple in 

Accuses table. It also helps determine which tuple may exist as a result of the existence 

of its parent tuple. The function A,(41,l) = [(21,1) , (31,1)] shows that the first and the 

only possible value of tuple with ID 41 in Accuses is derived from the first possible 

values of IDs 21 and 31 from tables Saw and Drives respectively. In the same manner, 

function A,(42,l) = [(21,2) , (32,1)] shows that the first and the only possible value of 

tuple with ID 42 in Accuses is derived from the second possible value of ID 21 and the 

first possible value of ID 32 from tables SAW and DRIVES respectively. 

A ULDB Database D is therefore represented as a triple (R,S,A,) where R is a set of x-

relations, S is a set of symbols in instances of R and A, is a lineage function showing the 

source of a newly generated relation. 

The following definition then shows the importance of lineage in ensuring completeness 

in ULDBs. Given that Dk is an instance of D, S(i,j) represents the ith tuple and jth 

alternative and Sk 3 S, then 

1. If S(ij) e Sk, then every j ' 4- j , S(ij') g Sk 

2- V S(ij) e Sk, A,(S(jj)) c Sk 
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3. If for some x-tuple t j , there does not exist a S(y) e Sk, then t; is a may be x-tuple, 

and V S(ij) e U, X(S^) = <|> or Sk c A.(S(ij)) 

Condition 1 formalises the mutual exclusiveness of instances on uncertain databases. 

Condition 2 enforces the semantics of lineage. This implies that if an alternative is 

present in a possible instance, the parent tuple from which it was derived must also have 

alternative(s). The last condition indicates that an x-tuple, which is the tuple that does not 

have 100% existence (Agrawal et al., 2006), might not be present at all in an instance if it 

is a maybe tuple. Its lineage is null or it does not belong to the class of all possible 

symbols of lineages recognised. 

The authors then provide the following algorithm that extracts query results from the join 

operation on database tables with uncertain data by enforcing the three conditions listed 

above. This ensures no impossible instance is returned: 

1: input: ULDB D = (Jl, S> A), andX C R 
2: output: a ULDB D! = (X.'S'.X) 
3: S' = i£X)uCU^ j p C )>W) 
4: A' = A | g', the restriction of A to S' 
5: return D' 

Statements 1 and 2 give the input and output representations of ULDB when queries are 

issued and results returned. The ULDB is represented by a triple (R,S,A.) with R 

representing the relations involved, S the set of tuple values and X represents the lineage 

of each tuple derived. Statement 3 shows that new set of symbols in the new relations to 

be returned are generated from symbols of instances of the original relations and that of 

their lineages if they exist. If the parent relations are not generated from a join operation, 

the parent relation will not have lineage. Statement 4 ensures that conditions such as 

mutual exclusion and certainty of existence stipulated from the parent relation X are 

maintained in X' and by extension S'. The new ULDB D' is then returned. 

Using the example 2.3.2, the set of relations in R are tables SAW and DRIVES. The 

lineages of tables SAW and DRIVES are empty since they are not derived. Accuses is the 

new relation. The set of symbols in S' include Amy Betty, Billy, Jimmy and the tuple IDs 

shown in the lineage X'. The lineage A/(i.j) = {(i', j ' ) , (i", j " ) is defined where i represents 
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the tuple ID of the new relation, and j denotes the instance. The tuple IDs i', i" and 

instances j ' , j " denote the instances from which new relations are formed in the parent 

relations. A/(41,l) = {(21,1),(31,1)} for example shows that tuple ID 41 of instance 1 in 

the new relation Accuses is generated from the tuple IDs 21 and 31 in SAW and DRIVES 

respectively. The first instance values are used in both Saw and Drive. The lineages A,' 

are: 

A/(41,1)={(21,1),(31,1)} 

A/(42,1)={(21,2),(32,1)} 

A/(43,1)={(21,1),(33,1)} 

X'(44,1)={(23,1),(34,1)} 

From this representation, the restriction of statement 4 can be maintained by ensuring 

tuples with similar ID values but different instance values do not exist together in an 

instance of the returned relation. For example A/(41,l) = {(21,1),(31,1)} and A'(42,l) = 

{(21,2),(32,1)} must not exist in the same instance since they both have ID 21 but 

instances 1 and 2 respectively. In the same vein, tuples ^'(41,1) = {(21,1),(31,1)} and 

A/(43,l) = {(21,1),(33,1)} must exist together in same instance since they both have ID 

20 and instance 1 from the parent relation. 

Benjelloun et al. (2006) therefore introduced the formal presentation of databases with 

uncertainty and lineage. They show the completeness of instances of uncertain database 

as a result of inclusion of lineage parameters. This is found to be useful in deriving 

relations from existing relations without returning impossible instances of x-tuples in 

queries. 

2.3.3 Working Model for uncertain data 

Sarma et al. (2006) explain the usefulness and importance of representing uncertain data 

with simple models that might be incomplete in general terms but is sufficient enough in 

handling the domain of the application under consideration. The authors argue the need to 

have an application depending on uncertain data modelled with the simplest possible 

model in order to ensure 'user friendliness' and simplicity without losing 'completeness' 

37 



within the domain of the application. The authors propose a 2-layer approach that 

satisfies general completeness at the background and equally support simpler modelling 

at the surface. Several possible simple models are proposed and the relationship in terms 

of hierarchy is shown in Figure 6. 

The technique used by the authors is based on the fact that a-tuple (same As x-tuple) 

explained by Agrawal et al. (2006) which uses mutual exclusion. Sarma et al. (2006) 

represents this with RA indicating several possible instances of a tuple in a relation 

without any constraint linking it with the existence of other tuples. This is however found 

to be incomplete on general case scenario. An example of this is a probability data base 

in which a tuple A can only exist if another tuple B already existed as shown in the 

following example: 

II: empty 
12s [Carol, 12/25/04, Los Altos, bluebird] 
13; [Carol, 12/25/04, Los Altos, bluebird], 

[Carol, 12/26/04, Los Altos, bluebird] 

Example 2.3.3 Tuple dependency constraint 

The above example shows three possible instances of a database in which it might be 

empty, contain record [Carol, 12/25/04, Los Altos, bluebird] only or compulsorily 

contain both [Carol, 12/25/04, Los Altos, bluebird] and [Carol, 12/26/04, Los Altos, 

bluebird]. In instance 3 (13), the existence of [Carol, 12/26/04, Los Altos, bluebird] is 

dependent on existence of [Carol, 12/25/04, Los Altos, bluebird]. 

The authors therefore make use of complete modelling based on RA
 prop defined as: 

• A multiset of a-tuple, T = t l . . .tn, and 

• A Boolean formula f(T) 

For the above example, its model can be defined as: 

tl = [Carol, 12/2*5/04, Los Altoa, bluebird] 
t2 = [Carol, 12/26/04, Los Altos, bluebird] 
constraints t2 => tl 

This means that modelling this type of database will demand using constraint t2 which is 

dependent on tl in addition to the possibility of having multiset of a-tuples (x-tuples). 
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That is, a tuple might have many possible values. The constraint implies that if tuple 

[Carol, 12/26/04, Los Altos, bluebird] exists, tuple [Carol, 12/25/04, Los Altos, bluebird] 

must also be present in the database. 

Variants of this model are then defined as shown below with their corresponding 

hierarchies. These variants are not complete in all scenario but they can be sufficient to 

model a particular situation. The models are also closed under the operations shown. 

Model 
Building Block 
Constraints 

K* 
a-tuple 
none 

« ? 

tuple 
•*> 

nf 
a-tuple 

*? 
tuple 

binary €!> = 

%2 

tuple 
2-clause 

n* 
a-luple 

2-clatue 

^Vset* 

tuple 
n-way choice 

Table 29: Models and their constraints 

Model RA is a model that allows for a-tuples (x-tuple) with no constraint. That is, no 

additional condition is allowed to be specified on inter tuple existence. Model R? allows 

only precise tuples but such tuples might not exist (maybe tuple). Model RA? allows both 

a-tuple and maybe constraint specification. Model R®= allows precise tuples with 

conditions of only binary exclusive OR and equivalence operations. Model R2 allows 

precise tuples with 2 conditions specified. Model RA2 allows for a-tuples and 2 conditions 

specified. Model Rsets allows precise tuples with n possible conditions. The expressive 

power models in Figure 6 shows that model RA can be used to express models RA?, Rsets 

and RA
2 . Model RA

? can be used to express models Rsets and RA2 . Model R? can be used 

to express all models except RA . 

Figure 6: Hierarchies of the models 
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The various operations that can be performed on the models expressing their closure 

property is as given below 

Closure-Model 

Union 
Seferf(ge) 
Seferf(ea) 
SefccS(ss) 
InlBJsection 
Cross Product 
Join 
BiHeceace 
Projection 
Duplicate Elimination 
Aggregation 

KA 

Y 
Y 
N 
N 
N 
Y 
N 
N 
Y 
N 
N 

E ? 

Y 
Y 
Y 
Y 
Y 
N 
N 
Y 
Y 
Y 
N 

*R# 

Y 
Y 
Y 
N 
N 
N 
N 
N 
Y 
N 
N 

K-#= M-% ) ^2 v&«t* 

Y 
Y 
Y 
Y 
N 
N 
N 
N 
Y 
N 
N 

Table 30: Closure property of the incomplete model 
ee- both operands are exact values 

es- one operand is an exact value, the other or set 

ss - Both or-set 

Sarma et al. (2006) therefore state that the 2-layer model is far more useful in terms of its 

simplicity and user friendliness. They also proposed that complete model must be present 

at the background which can be referred to when needed. The authors therefore propose a 

2-layer model for modelling uncertain data in which the underlying layer is complete 

(RA prop ) and the top layer is simpler, closed under the operation intended and more user 

friendly (variant of RA
 prop ). For example, RA2 can be used to model a union operation 

Select (ee) since it is closed under the operation. Model RA can then be used at the 

background for greater accuracy. 

2.3.4 U-apriori and local trimming, global pruning and simple-pass 
patch up strategy (LGS) algorithm 
Chui et al. (2007) proposed U-apriori and LGS algorithms to solve the problem 

associated with mining frequent patterns in uncertain sequences. The authors stress that 

existing works have only been able to mine frequent patterns in doubtless facts. The 

paper identifies situations in which data exist by chance, expressing their likelihood 

(uncertainty) by probability values. The problem then lies in being able to mine frequent 

patterns in sequences that exist with uncertainty. Areas in which such scenario can be 
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applied include medical records where some symptoms are subjective and can be best 

represented by probability values. The authors also point out the use of their approach in 

pattern recognition applications where satellite pictures are used in determining presence 

of a target. However, certainty of the images can be affected by noise and resolution. 

The authors found that due to the probabilistic nature of items in the dataset, the 

traditional definition support count is changed to expected support. Strongly linked with 

this is the notion of "possible world", representing different possible states of the 

database due to the probabilistic nature of the data it contains. The authors found that 

expected support count can be calculated by summing the product of probability values 

of all items in the sequence under consideration, for all tuples in the database D given as: 

mr ^>y i—|i..n..i.™ ^ ^ 

Expected support (X) = } Ĵ  J_ P±^{x). 
J~ ^ Equation (I) 

Where: 

|D| is the size of the uncertain database D 

tj is the jth tuple in the database 

x is an item in the sequence X in the database. 

It is assumed that probability values of the items x contained in sequence X are 

independent. Therefore, the product of all probabilities of items in X gives the existence 

of X. This is then done for all X in the database, the sum of which gives the expected 

support of X. 

Given the databases below: 

Cust-Id 

10 

20 

30 

Table 31 

Sequences 

abed 

acbd 

abdc 

: Sequence 

Cust-Id 

10 

20 

30 

Sequences 

a:l,b:0.5,c:l,d:0.7 

a:l,c:0.2,b:0.1,d:l 

a:0.5,b:l,d:l,c:l 

Table 32: Sequence with uncertainty 
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The support count of sequence 'ac' in Table 31 is 3 whereas the expected support count 

of 'ac' in Table 32 will be calculated as (lxl) + (1x0.2) + (0.5x1) = 1.7, as defined in 

equation (I). 

It can be seen from above that several calculations might be involved in arriving at 

expected support counts especially when sequence under consideration is long. These 

long calculations might also be wasteful when probability values of items are very low 

and the minimum support count required is high. The authors therefore suggested that 

simply modifying apriori algorithm to account for the expected support count (U-apriori) 

might not be efficient. The authors proposed local trimming, global pruning and simple-

pass patch up strategy (LGS). 

The Local trimming phase introduces trimming threshold value that is used to remove 

items that are unlikely to have a significant effect on the expected support count. This 

trimming threshold is calculated by sorting all probability values for each item in 

ascending order and performing a cumulative sum for each item until it is equal to the 

minimum support threshold. The probability value at this point is chosen as the trimming 

threshold. The probability values for the trimmed items are also kept for error estimation 

which is used at the pruning stage. 

The pruning is based on discovering sequences that are potentially frequent. A sequence 

X in the trimmed database is potentially frequent if the sum of its expected support count 

(ST
e (X)) and the upper bound of the error estimated for its expected support (e (X)) is 

greater than the minimum support. That is sequence X is potentially frequent if: 

ST
e (X) + e (X) > minimum support value. 

The set of frequent and potentially frequent sequences generated during pruning are 

verified using the simple-pass patch up strategy. During the simple patch up strategy, the 

original database (untrimmed database) is scanned once to determine the frequent 

sequences. The result is then used to authenticate those found in potentially frequent 

sequences from the trimmed database. 
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2.3.5 UF-growth algorithm 
Leung at al. (2008) proposed a tree-based algorithm in order to discover frequent patterns 

in situations where data items exist with probability. The authors state that such situations 

are found in patients' records where physicians may suspect but not guarantee certain 

ailment until further tests are carried out. 

The authors' contributions include the proposal of a tree structure, UF-tree for capturing 

the uncertain data. They also proposed UF-growth algorithm for mining frequent patterns 

from the UF-tree. The authors then proposed reduction of probability values of items to 2 

decimal places to reduce the possible tree paths. They also improve the algorithm by 

removing the need to build conditional tree for sub-tree since all subsets of an extracted 

tree path can be enumerated and their expected supports summed to find the frequent 

ones. 

Based on the definition of expected support count in Chui et al. (2007), items existential 

probabilities are used to calculate the expected support counts. This approach is however 

better in that it eliminates the candidate sequence generation associated with U-apriori by 

Chui et al. (2007). 

The tree UF-tree is constructed in a way similar to FP-tree by Han et al. (2000) except 

that nodes also store the probability value of their items in addition to the label and their 

number of occurrences. As a result, similar items may be represented with different nodes 

when they share similar prefixes if they have different probability values. The proposed 

solution first scans the uncertain database to calculate expected support count of items. 

The frequent items greater than the minimum support are then ordered by the value of 

their support counts. This order is then used to scan the database the second time to 

construct the UF-tree after the items have been arranged in this order and the infrequent 

ones removed. 
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Given the following database: 

Transactions 

ti 

t2 

t3 

U 

t5 

t6 

Web logs 

(a:0.9,c:0.81,d: 71875, e:0.72) 

(a:0.9, d:0.72, e:0.71875, f:0.8) 

(b:0.875, c:0.85714) 

(a:0.9,d:0.72,e:0.71875) 

(b:0.875, c:0.85714, d:0.05) 

(b:0.875, f:0.85714) 

Frequent sub-sequences 

(a:0.9, c:0.81,d: 71875, e:0.72) 

(a:0.9,d:0.72, e:0.71875) 

(b:0.875, c:0.85714) 

(a:0.9, d:0.72, e:0.71875) 

(b:0.875, c:0.85714, d:0.05) 

(b:0.875) 

Table 33: The uncertain database 

Each tuple in the uncertain database contains items with their associated existential 

probabilities. For example, tuple t\ in Table 33 contains items 'a', 'c ' , 'd', and 'e with 

existential probabilities 0.9, 0.81, 0.71875 and 0.72 respectively. The existential 

probability of each item in the database is then scanned in each tuple. The sum of the 

existential probabilities for each item represents the expected support count of the item. 

The support count of item 'a' for example, is found by adding 0.9 + 0.9 + 0.9 = 2.7 as 

found in ti, Xi and U- Using the minimum support of 1, items a, b, c, d and e are found to 

be frequent with expected support count of a = 2.7, b = 2.625, c = 2.52429, d = 2.20875 

and e = 2.1575. Item f is infrequent with support count of 0.9. The transactions are 

arranged in descending order of their expected support whenever they appear in the 

database. The order used is a, b, c, d, e since the expected support count of item 'a' is the 

highest and that of 'e ' is the lowest. Item f is removed from the database since it is not 

frequent. The resulting ordered and frequent sub-sequences are as shown in the last 

column of Table 33. 

The UF-tree is then constructed by scanning the frequent sub-sequences. Starting from 

the root node, the first frequent sub-sequence (a:0.9, c:0.81, d: 71875, e:0.72) is entered 

into the tree as the leftmost sub-tree since there no previously existing nodes. The count 

for each node initialised to 1 and their corresponding existential probability values are 

recorded. The second frequent sub-sequence (a:0.9, d:0.72, e:0.71875) is read. Starting 

from the root, since a node with label 'a' already exist with the same existential 
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probability, the count of this node is incremented by 1. Item 'd' is read. A new node is 

created as no node with label 'd' exists along this path. Its count is set to 1 and the 

existential probability 0.72 is recorded. New node is also created for item 'e' along this 

path and the existential probability 0.71875 recorded with the count is also set to 1. The 

same process is repeated for sequence (b:0.875, c:0.85714) with which a new right sub­

tree is created from the root node since no node with label 'b ' exists as child to the root 

node. As a general rule, new nodes are created if no node already exist with the same 

label and existential probability along a path. If a node with the same label but different 

existential probability exist in a path, a new node must be created. Nodes with the same 

label are then linked in order to help in building conditional suffix tree during mining. 

The completed UF-tree is shown in Figure 7. 

Figure 7: The UF-tree 

UF-growth mining also operates like the FP-growth, except that for each extracted tree 

path, the expected support of a pattern is calculated by the sum of the product of the 

expected support of its constituent items. 

Starting with item e, the conditional suffix tree of item e is built by extracting all prefix 

pattern of item 'e ' without including item 'e'. Each of the existential probability values of 

the items in the pattern is then multiplied by the existential probability value and count of 

'e'. The sequences are {(a:0.9 x 0.72):1, (c:0.81 x 0.72):1, (d:0.71875 x 0.72):!} and 
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{(a:0.9 x 0.71875):2, (d:0.72 x 0.71875):2}. The support count of the items is then based 

on the sum of products of existential probabilities and count of item 'e' for each item in 

the pattern. Support count of item 'a' is found to be (0.9 x 0.72 x 1) + (0.9 x 0.71875 x 2) 

= 1.94175. That of item 'c ' = (0.81 x 0.72 x 1) = 0.5832 and item 'd' = (0.71875 x 0.72 

x 1) + (0.72 x 0.71875 x 2) = 1.5525. Therefore, 'ae' and 'de' are frequent patterns. 

Since the support count of item 'c ' is less than the minimum support 1, item 'c ' is 

removed and the resulting sequence is used to build the conditional prefix tree of e (|e) as 

shown in Figure 8. 

0.72 0.71875 

Figure 8: |e 

The conditional prefix tree |de can also be built from figure 8 by extracting item 'a' along 

the paths (a:0.9 x 0.71875 x 0.72 x 1) and (a:0.9 x 0.72 x 0.71875 x 2). The total support 

count of i t em 'a '= (0.9x0.71875x0.72x1)+ (0.9x0.72 x 0.71875x2)= 1.39725. 

Since the 1.39725 is greater than the minimum support 1, pattern 'ade' is also frequent. 

The |de is shown in Figure 9. 

a 

0.5175 

Figure 9: |de 

The same procedure is used to build conditional suffix tree for items d, c, b and a. The 

following patterns are found to be frequent: (a), (a,d), (a,d,e), (a,e), (b), (b,c), (c), (d), 

(d,e) and (e). The limitation associated with this technique is that it will only cater for 

uncertainty within the domain of non-sequential pattern. This is as a result of re-ordering 
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of the items in the sequence of the original database. The algorithm only discovers 

frequent patterns in uncertain data but fail to ascertain the order in which the frequent 

pattern occurs. For instance in the example above, the algorithm only discovers (a,d,e) as 

a frequent pattern but can not confirm the order in which the item appear. We can only 

assume at least one of (ade), (aed), (dae), (dea), (ead) or (eda) is frequent. 
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3. PROPOSED MINING OF UNCERTAIN WEBLOG 
SEQUENCES WITH ACCESS HISTORY PROBABILITIES 
Recently, there has been the emergence of novel database applications in various non-

traditional domains, including World Wide Web, location-based services, sensor 

networks, RFID systems, and biological and biometric databases. Traditionally, data 

mining has been widely used to reveal interesting patterns in the vast amounts of data 

generated by such applications. However, for most of these emerging domains, data are 

often riddled with uncertainty, arising, for instance, from inherent measurement 

inaccuracies, sampling errors, and network latencies. 

It is in the light of this that Uncertain Position Coded Pre-order Linked Web Access 

Pattern (U-PLWAP) algorithm is proposed to provide solution in mining data that are 

associated with uncertainty. The uncertainty can be introduced, for example, in web logs, 

based on web log histories of different users. Leung et al. (2008) suggest that probability 

values (existential probabilities) demonstrating uncertainty of items can be deduced from 

history of the data. 

Given the history of web logs of users over a particular time, the web log can be grouped 

by session and user. The likelihood of the last session being a true reflection of each user 

can then be expressed in probability values calculated from the history of each user. The 

result of the mining done with this data can then be useful in rearranging web pages for 

convenient browsing. Equally, it removes biases and makes the result more accurate since 

users' web log history is considered and the influence of the history only affect existential 

probability values of the user only. For instance, given four different web log sessions as 

shown in Tables 34a, 34b, 34c and 34d, user IDs 10 and 30 participate in all the 4 

sessions while user ED 20 only takes part in twice. The most current session is time 4. 

The four web log sessions are then merged into one database and ordered by user ED and 

time so that the most current web log for each user comes first as shown in Table 35. 
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User ID 
10 
20 
30 

Time 
1 
1 
1 

Web log 
(a,c,a,c) 
(a,c,b) 
(a,e) 

User ID 
10 
30 

Time 
3 
3 

Web log 
(a,d,a,b) 
(a,c,e,b) 

User ID 
10 
20 
30 

Time 
2 
2 
2 

Web log 
(a,d,c,a) 
(a,d,e,d) 
(a,e,d,e) 

b 
User ID 
10 
30 

Time 
4 
4 

Web log 
(a,b,c,d) 
(a,b,d,b) 

Table 34: The 4 different web log sessions 

User ID 
10 

20 

30 

Time 
4 
3 
2 
1 
2 
1 
4 
3 
2 
1 

Web logs 
(a,b,c,d) 
(a,d,a,b) 
(a,d,c,a) 
(a,c,a,c) 
(a,d,e,d) 
(a,c,b) 
(a,b,d,b) 
(a,c,e,b) 
(a,e,d,e) 
(a,e) 

Table 35: The merged and sorted logs for the different sessions 

The four different sessions have been merged and sorted by their user IDs and time. This 

makes it possible to define the existential probability of the latest log based on the history 

of the other sessions for each user. 

The existential probability prob(u(e)), of each event e, for each user u, in the most current 

log is given as . Number of existence of event e in any record of u 
prob (u(e)) = — — — — 

Total number of records of u 

The likelihood of having the latest log to be a true reflection of how each user browses 

the site over a number of sessions is calculated as follows: 

User ID 10: Since 'a' appears at least once in all the 4 logs, existential probability of 'a' 

is given as 4/4 = 1. Item 'b ' appears only in the first two logs, its existential probability is 

2/4 = 0.5. Item 'c ' appears 3 times, its existential probability is 3/4 = 0.75 and that of d is 

2/4 = 0.5. 
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Using the same method, user ID 20's existential probability values for the integrated log 

is: 

'a' -2 /2 = 1 

'd' = 1/2 = 0.5 

'e' = l/2 = 0.5 

User ID 30: 

'a' = 4/4 = 1 

'b ' = 2/4 = 0.5 

'd' = 2/4 = 0.5 

The uncertain sequence to be mined is therefore given as in Table 36: 

UserJD 

10 

20 

30 

Web logs 

(a:l,b:0.5,c:0.75,d:0.5) 

(a:l,d:0.5,e:0.5,d:0.5) 

(a:l,b:0.5,d:0.5,b:0.5) 

Table 36: Uncertainty in sequences 

For User_ID 10, for example can therefore be said to have visited page 'a' at 100% 

certainty for every session. Pages 'b ' , 'c ' , and 'd' have 50%, 75% and 50% certainty of 

being visited for every session of UserED 10. 

3.1 Observation on uncertain sequences 
Given the databases below: 

Cust-Id 

10 

20 

30 

Sequences 

a:l,b:0.5,c:l,d:0.7 

a:l,c:0.2,b:0.1,d:l 

a:0.5,b:l,d:l,c:l 

Cust-Id 

10 

20 

30 

Sequences 

abed 

acbd 

abdc 

Table 37: Sequence without probability Table 38: Sequence with uncertainty 

The support count of sequence 'ac' in Table 37 is 3 whereas the support count of 'ac' in 

Table 38 will be calculated as (lxl) + (1x0.2) + (0.5x1) = 1.7 
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It is noted here that unlike in traditional precise sequences where occurrence count of an 

item automatically contributes towards the support count of an item, the sum of the 

product of the existential probability values are used in arriving at support counts. 

An equally important observation with uncertain data item is that items with the same 

label can have different existential probability values. It is therefore important to record 

item's label, occurrence count and existential probability values in order to accurately 

determine frequent sequences. 

3.2 Preparing data for U-PLWAP algorithm 
In order to generate existential probabilities for weblogs as described earlier, weblogs for 

different sessions need to be collected and cleaned. These weblog sessions are merged 

into one file after each record is identified by combination of customer ID and the session 

number/time. The file is then sorted by customer ID and partially by session number (in 

order to pick the latest session for each customer ID). The existential probability (denoted 

as prob (u(e))) of each event e, for each user u, in the most current log is given as 

Number of existence of event e in any record of u 

Total number of records of u 

The computation of existential probabilities is presented formally as shown in Figure 10: 

Algorithm 1: Existential probability algorithm 
Input: Web Access Sequence Databases (WASDs), Minimum Support 
Output: Uncertain Web Access Sequence Database (UDB) 
Intermediate: eventsequence, prob_sequence 
Begin: 

1. Merge all logs into one file 
2. Sort the file by customer ID and partially by session number (the latest weblog session is at the top for 

each set of unique customer ID) 
3. For each sequence in merged file 

Scan customer ID, latest sequence into eventsequence 
Find probsequence by dividing the total number of presence of each item in eventsequence by the 
total number of records with the unique customer ID 
Write into UDB customer ID, eventsequence, prob_sequence 

4. Return UDB 
End 

Figure 10: The Existential Probability algorithm 
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The length of access history period (LAH) plays a major role in determining the 

execution time of the existential probability algorithm specified in Figure 10. Longer 

access period will most likely generate more web logs, provided that the traffic is 

uniform during the period, thereby increasing the execution time. The length of each 

session (LOS) also affects the speed of execution of existential probability algorithm. If 

for example web logs are collected over a year period (LAH = 1 year), they can be 

divided into sessions of 12 months (LOS = 1 month). This therefore generates a 

maximum of 12 tuples (1 for each month session) for each user over the 1 year access 

period. If however sessions are based on a weekly basis (LOS = 1 week), each user has a 

maximum of 52 tuples. This therefore increases the number of tuples to be sorted in the 

existential probability algorithm, which in effect increases the execution time of 

existential algorithm. It is important to note that the length of each tuple in the LOS of 1 

week will be shorter than that of 1 month. The U-PLWAP algorithm in Figure 11 

therefore takes longer time to run when LOS is 1 month compared to LOS of 1 week as 

shown in section 4.1.3. Both LAH and LOS are specified by the users of the result of the 

mining process in a way that best suits their need. 

It is also important to note that the existential probability algorithm generates the same 

value for repeated events/items of the same tuple. This is because the total sample space 

of each event is restricted to each user and only events in the latest web logs are 

considered for the existential probability computation. As a result, the problem that may 

arise due to existence of different existential probability values for repeated events in a 

tuple is resolved. If however this scenario occurs in another application domain, the 

highest existential probability value among the various values can be chosen from each 

tuple. For example if a tuple consists of (a:l, c:0.5, a:0.5, b:0.25, a:0.4), the value 1 is 

chosen to compute the expected support count of event 'a' in the U-PLWAP algorithm in 

Figure 11 

3.3 Building U-PLWAP algorithm 
The motivation of the proposed solution came from the numerous advantages that are 

associated with PLWAP algorithm discussed in section 2.3.4. However, since PLWAP 

only mines precise sequences, designing an algorithm based on PLWAP but extended to 
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cater for uncertain sequences will be a welcome idea. The following extensions are made 

to PLWAP in order to mine uncertain data. The extensions are based on the observations 

noted in section 3.1. 

• The use of the most current web log access history to define each item's 

existential probability for each user 

• Each node representing items in U-PLWAP tree records item's label, occurrence 

count, position code and set of existential probability values 

• Sequences that share the same prefix/suffix but differ in existential probability of 

constituent items are combined into same node, making the U-PLWAP tree a 

more compact and faster to mine. UF-growth algorithm, however creates separate 

nodes for similar items having different existential probabilities. 

• The mining process is done on each suffix tree by dynamically generating 

cumulative product sequence when new temporary nodes are found. This 

eliminates the need to search for existential probabilities of items found from the 

root of the tree to the newly found temporary nodes. 

3.4 The U-PLWAP algorithm 
This newly proposed algorithm works by first scanning the sequence database to discover 

the frequent 1-sequences. The second scan of the database is used to remove non-frequent 

items from the sequence database. The resulting sequence is then used to build 

U-PLWAP tree. The header table is then created for each frequent 1-sequence, using it to 

link all identical nodes in a pre-ordered version. The U-PLWAP tree is then mined 

recursively using prefix conditional search with the data items created on the header table. 

U-PLWAP eliminates the need to search for existential probability from root of the tree 

to the newly found temporary roots (as would have been done if direct application of 

PLWAP is to be used) by dynamically generating cumulative products of items found 

along each suffix tree. This is because there is need to find the products of all existential 

probability values of items found from the root to the temporary roots of the U-PLWAP 

tree at any point in time during mining operation. U-PLWAP is also richer than 
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UF-growth in output since U-PLWAP discovers frequent sequential pattern while UF-

growth does not. Comprehensive description of the steps involved is as follows: 

Stepl: The U-PLWAP scans the sequence database to discover the frequent 

1-sequences.This is done by adding up all existential probability values for each item 

whenever they occur in the database. Whenever an item is repeated in a particular 

sequence, its existential probability is only added once. The frequent 1-sequences are 

those items with counts greater than or equal to the minimum support threshold. 

Step2: Each of the frequent 1-sequences is used to create entries in the header table. 

Step3: A second scan is used to create U-PLWAP tree after the non frequent data items 

have been removed from the sequence. The U-PLWAP tree is created starting from a null 

root. Sequences are read from the database and nodes are created for each item in the 

sequence. Each node contains the item's label, occurrence counts and position code, 

denoted as label:count:position code. Since similar labels with different existential 

probabilities in a path are merged into one node, each sequence read is identified by its 

sequence ID and recorded against the existential probabilities of its items in every node. 

A left node is created if no node already exist, otherwise, a right node is created and the 

count initialised to 1. If node already exists, its count is incremented by 1. The position 

code of each nth leftmost node is determined by appending the binary value of 2""1 to the 

end of the position code of its parent. The item label and its existential probabilities are 

read from the sequence database. Entries created in the header table are then used to link 

their corresponding nodes by traversing the U-PLWAP tree in a pre-ordered fashion 

(from root to left node first before right node). This makes U-PLWAP tree traversal faster 

and more efficient since similar nodes in the same suffix tree are brought closer. 

Step4: The U-PLWAP tree created is then mined recursively using prefix conditional 

search. Starting from the root with a particular frequent item 'a' (in order to find all 

frequent items starting with a) on the header table, all sub-trees are traversed to search for 

the first occurrence of item 'a'. Its expected support count is calculated by summing all 

existential probabilities recorded for each sequence ID for all nodes found. Item 'a' is 

frequent if its expected support count is greater or equal to the specified minimum 

support count. The sub-trees are rooted at this point. A sequence of cumulative product of 
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existential probabilities of items contained in each sequence ID from the root of U-

PLWAP tree to all the new roots is then generated. Since this is the only item found so 

far, the entries in the sequence of the cumulative product of the existential probabilities 

are the same as the values of the existential probabilities for each sequence ID present in 

the new root found. The search continues down the tree in order to find another frequent 

sequence say 'aa'. The same process is repeated once another first occurrence of 'a' is 

found on all sub-trees. The sequence of cumulative product of the existential probability 

of items found for each sequence ID is then updated with the product of the existential 

probability of the newly found 'a' and the last cumulative product of existential 

probability having the same sequence ID. The expected support count of 'aa' is found by 

summing all entries in the updated sequence of cumulative products of existential 

probabilities. If no such 'a' is found, the algorithm backtracks to the last root and search 

for another item 'b' . The process continues recursively until no more item is found. The 

algorithm then backtracks to the null root to start mining for sequences starting with a 

fresh item from the header table. 

The terms used in the algorithm are defined as follows: 

1. The root of the U-PLWAP tree referred to as root 

2. UDB is the uncertain web access sequence database derived from the history of 

the web log sessions 

3. Link header table is a list containing all frequent 1-events from which identical 

labels in the U-PLWAP tree can be linked to form event queue 

4. Root_set is the set of temporary nodes found in each suffix tree 

5. Minimum support is the threshold with which counts of events should be greater 

than or equal to in order to be frequent 
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Formal presentation of the U-PLWAP algorithm is as shown in Figure 11: 

Algorithm 2 : The U-PLWAP algorithm 

Input: Uncertain Web Access Sequence Database (UDB), Minimum Support X (0< X<1) 
Output: Complete set of frequent patterns fp in UDB 
Begin: 

1. Find the frequent 1-items as by calling the Frequentl events algorithm (Figure 12) 
2. Insert all frequent 1-items in the Link header table 
3. Build U-PLWAP tree from the UDB by calling U-PLWAP_tree algorithm on Figure 13 
4. Recursively mine the U-PLWAP tree by calling Mine algorithm on Figure 14 

End 
Figure 11: The U-PLWAP algorithm 

Algorithm 3: The Frequentlevent algorithm 

Input: Uncertain Web Access Sequence Database (UDB) drawn from the set of events E with existential 
probabilities p attached to each event e in sequence , Minimum Support X 
Output: Complete set of frequent 1-items F b frequency f 
Intermediate variables: Iterator k, Check set Ch (records events found already in a sequence) 

Begin: 
1. f= X * number of tuples in UDB 
2. Initialize Fj to empty set 
3. For each sequence S in UDB 

Begin 
Initialize Check set Ch to empty set 
For each event e in sequence S 

Begin 
If event e e Fi 

If e e Ch 
Add existential probability e.p to count of e in Fi 
Add e to Check set Ch /*To avoid counting e.p more than once in a sequence */ 

Else 
Add event e to Fi 
Set count of e in F] to e.p 

End 
End 

4. Set k to the start of F! 
5. While k<> end of F! 

Begin 
If the count of item at k < f 

Remove event at k from the Fi 
k = k + l 

End 
6. Return F[ , f 

End 
Figure 12: Frequent 1-events algorithm 
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Algorithm 4: The U-PLWAP tree algorithm 

Input: Uncertain Web Access Sequence Database (UDB), Link header table L 
Output: U-PLWAP Tree T, Linked Link header table 
Intermediate variables: Boolean Variable NodeFound 

Begin: 
1. Create root node of T with event label set to NULL, position code set to NULL and count set to 0 
2. For each access sequence S in UDB 

Begin 
Extract frequent sub-sequence S' from S by removing all events in S but not in L 
Let S' = eie2e3 ... e„ where e; are events in S' and n is the length of S' 
Let currentnode point to the root node of T 
For i = 1 to n do 

Begin 
If left child of currentnode is NULL, then create a new child node ( e;: 1) and its position code 

is formed by appending " 1 " at the end of the position code of the current_node 
Register existential probability of e; against the sequence ID of S' 
Make the currentnode point to the newly created node 

Else If currentnode is labeled ej, then set Nodefound to true 
Increase support count by 1 and register existential probability of e; against the 
sequence ID of S' 

Else 
Let the currentnode point to currentnode.rightsibling, and keep checking whether 
current node is labeled ej, until there is no more right sibling or ej is found 

If NodeFound 
Then increase the count of e; by 1 and register existential probability of ej against the 
sequence ID of S' 
Make the current_node point to the node of ej 

Else 
Create a new child node ( e^ 1) and its position code is formed 
by appending "0" at the end of the position code of the current_node 
Register existential probability of e; against the sequence ID of S' 
Make the currentnode point to the newly created node 

End 
End 

3. Entries in the Link header table are then linked to corresponding nodes in the U-PLWAP tree in a pr-
ordered fashion (from root to left child and then right child) 

4. Return T with the linked Link header table 
End 

Figure 13; U-PLWAP_tree algorithm 

The U-PLWAP tree algorithm works by first creating the root nodes and initialising its 

label and position code to null while its count set to 0. Each sequence is then extracted 

from the database. For each sequence scanned, its constituent items are checked if they 

are frequent (from the list of frequentl-items in L). Current node is first made to point to 
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the root node. Starting from the root node, the left child is checked if it exists. If it is 

NULL, a left child is created and the label set to the item while count is set to 1. The 

position code is found by appending ' 1' to the end of position code of current node, the 

existential probability of the item is also registered against its sequence ID in the set of 

existential probability values. When a left child already exists and has same label as the 

item read, its count is incremented by 1 and its existential probability entered against the 

sequence ED in the set of existential probability values. If however, the left child has a 

different label from the item read, the U-PLWAP algorithm continues to search all the 

right siblings for a match. When a match is found, its count is incremented by 1 and its 

existential probability entered against the sequence ID in the set of existential probability 

values. In the situation where no match is found in all the right siblings, a fresh right 

sibling is created. The label of the newly created right sibling is set to the item while 

count is set to 1. The position code is found by appending '0 ' to the end of position code 

of the current node and the existential probability of the item is registered against its 

sequence ID in the set of existential probability values. The current node is then set to the 

newly created node. 

The next item is then read while still keeping track of the point reached in the tree 

through the current node pointer. The whole process is repeated until the end of the 

sequence fetched is reached. A new sequence is then fetched, this time the current node 

pointer is set to the root of the U-PLWAP tree. 
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Algorithm 5: The Mine Algorithm 

Input: U-PLWAP tree T, Root_set R, Link header table L, set of cumulative Product of existential probabilities K, 
Frequent n-sequence F, Minimum support X (R contains root, K and F are empty when the algorithm is called the first 
time) 
Output: Frequent n-sequence F' 
Intermediate variables: S stores the information of node whether it is the ancestor of the following node in the queue 
of similar nodes, C stores the total count of event ej in different suffix tree 

Begin: 
1. If R is empty, return 
2. For each event e; in L, find the suffix tree of e; in T ( e; |suffix tree) 

Save first event in ej -queue to S 
Following the ej -queue 

If event e; is the descendant of any event in R, and is not the descendant of S 
Insert node of e; into new root set R' 
Replace S with ej 
If K is empty 

Add all existential probability entries in node ej into C 
Enter all entries of existential probabilities in node ej into K', each identified by sequence ID 

Else 
Find products of corresponding entries in K and entries of set of existential probability values 
in node e; 
Add all the products found to C 
Enter each product of existential probability values in node ej into K', each identified by 
Sequence ID 

If C is greater than X 
Append ej to end of F to form F' and output F' 
Call algorithm 4 passing R', F' and K' 

End 
Figure 14: Mine algorithm 

The Mine algorithm works by accepting the root of the U-PLWAP tree (The Root_set R 

is initialised with the root of the U-PLWAP tree), the set of cumulative product K and set 

of frequent pattern F as input ( K and F are set to empty set). The link header table L is 

also an input. Mining starts by finding frequent sequence that begins with entries in the 

header table. For each entry in L, the algorithm finds its set of suffix tree(s). Each node 

found is entered into new set of R (R') if it is the first occurrence of event e; along each 

suffix tree path. The queue linking all nodes of type e; is followed in order to discover the 

first nodes in each suffix tree path. The sum of all existential probability entries for these 

nodes is then added to count C if K (cumulative products found so far) is empty. Each of 

the existential probability entries is also entered into K'. If K is not empty (Not the first 
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time of calling algorithm 3), each corresponding entries in the cumulative products of 

existential probabilities of events found before (i.e contained in K) is found and 

multiplied with the entries of existential probabilities of the current nodes, the sum of 

which is added to variable count C. The set K' is updated by each of the products of 

existential probabilities found with each entry identified by its sequence ID. 

The value of count C is then compared to the minimum support value X. If count is 

greater or equal to X, ej is appended to the end of F and printed as output. The mine 

algorithm is then called again with new sets R', F' and K'. If count is less than X, then this 

signals the end of all frequent sequences starting with event ej. The next event is selected 

from the header table L and the whole process repeated. 

3.5 Example of mining using U-PLWAP 
Given the uncertain sequence database shown below: 

UserJD 

10 

20 

30 

40 

Web logs 

(a:l,b:0.5,c:0.75,d:0.5) 

(a:l, b:0.25, d:0.5, c:0.25,d:0.5, e:0.2) 

(a:l,b:0.5,c:0.75,d:0.25, e:0.5) 

(b:l, c:0.5, a:l, d:0.5, c:0.5, f:0.2) 

Frequent sub-sequences 

(a:l,b:0.5,c:0.75,d:0.5) 

(a:l, b:0.25, d:0.5, c:0.25,d:0.5) 

(a:l,b:0.5,c:0.75,d:0.25) 

(b:l,c:0.5, a:l,d:0.5,c:0.5) 

Table 39: Sample uncertain sequence mined with U-PLWAP 

Assuming the minimum support value is 1 out of 4 tuples, that is 25%. The expected 

support count values for all the items are calculated by adding up the existential 

probabilities of the item in each tuple. For example, the existential probability of item 'a' 

in user ID 10 is 1. The same value (1) is present in user IDs 20, 30 and 40. The expected 

support count of item 'a' is therefore given as 1 + 1 + 1 + 1 = 4. In the same vein, item 

'b' has existential probabilities 0.5, 0.25, 0.5 and 1 in user IDs 10, 20, 30 and 40 

respectively. The support count of item 'b' is therefore calculated as 0.5 + 0.25 + 0.5 + 1 

= 2.25. The same process is used to find expected support counts for items 'c', 'd', 'e ' 

and ' f as follows: 
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Item a =1+ 1 + 1 + 1 = 4 

Item b = 0.5 + 0.25 + 0.5 + 1 = 2.25 

Item c = 0.75 + 0.25 + +0.75 + 0.5 = 2.25 

Item d = 0.5 + 0.5 + 0.5 +0.25 = 1.75 

Item e = 0.2 + 0.5 = 0.7 

Item f= 0.2 

Items 'e' and ' f are non-frequent and are removed from the sequences. The resulting 

frequent sub-sequences are as shown on the last column of Table 39. 

The U-PLWAP tree is then built by first creating the root which is null. The first 

sequence a:l,b:0.5,c:0.75,d:0.5 is entered into the tree as the leftmost sub-tree since there 

no previously existing nodes. The count for each node initialised to 1 and their 

corresponding existential probability value are recorded. Each of the existential 

probabilities are also recorded against the sequence ID. The position codes for the nodes 

are given using the rule specified in step 3 of section 3.3. Figure 15 shows this process. 

The second sequence a:l, b:0.25, d:0.5, c:0.5,d:0.5 is read. Starting from the root, since a 

node with label 'a' already exist with the same existential probability, the count of this 

node is incremented by 1. Its sequence ID is recorded against its existential probability. 

Item 'b' is read. The existential probability 0.25 is recorded against sequence ID 20 and 

the count of label 'b ' set to 2. Item 'd' is read. Since no node exists with label 'd' along 

this path, a new child of node b:2:ll is created. New nodes are also created for items 'c ' 

and 'd' as shown in Figure 16. The other two sequences are read following the same rules 

as shown in Figure 17 and Figure 18. Header table linking the corresponding nodes in a 

pre-ordered fashion (by visiting the root, leftmost sub-tree first and then right sub-tree) is 

also created. The completed linked U-PLWAP tree is as shown on Figure 19 
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Figure 15: The U-PLWAP tree after reading the first sequence. 
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Figure 16: The U-PLWAP tree after the second sequence is read 
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Figure 17: The U-PLWAP tree after the third sequence is read 
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Figure 18: The U-PLWAP tree after the fourth sequence is read 
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Figure 19: The complete linked U-PLWAP tree 

If C is the sequence of cumulative products of sequences found at an immediate old roots 

and S is the sequence of existential probabilities of new root, with entries of both 

sequences identified by sequence ID, the expected support count of the sequence (X) 

found at new root is given as: 

Expected support (X) = Z ( Q D * SID ) 

Where Q D and SID are the entries at corresponding sequence IDs of sequence of 

cumulative product and sequence of existential probability respectively. It is assumed that 

the items exist independent of one another (independence of events). 
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Using Figure 19, mining starts by checking for frequent sequences starting with 'a'. From 

the root, the U-tree is traversed for the first occurrence of a in the suffix trees of the root 

node. In this case: a:3:l and a: 1:1011. The expected support of 'a ' is then calculated as (1 

+1+1) + (1) = 4. This confirms 'a' is frequent since 4 is greater than the minimum 

support 1. A sequence of cumulative products of existential probability of all items found 

so far is created at this point. Since these are the first set of items, the sequence is 

(1, 1, 1, 1) representing each of the 4 paths 10, 20, 30 and 40 respectively. Figure 20 

shows this process. 

The tree is then rooted at points a: 3:1 and a: 1:1011 and their suffix trees are traversed for 

another occurrence of 'a' to check if 'aa' is frequent. No occurrence of 'a' is found. The 

algorithm then backtracks to the roots a:3:l and a:l:1011. A new sequence 'ab' is then 

checked by traversing the suffix trees to search for the first occurrence of 'b ' . Item 'b ' is 

found at b:2:ll. The suffix trees are then rooted at this point. The expected support for 

'ab' is then calculated by summing the product of entries representing each path in the 

cumulative product sequence and the existential probability values of items in the new 

found 'b'. The expected support for 'ab' is then found as: (1 x 0.5) + (0.25 x 1) + (1 x 

0.5) = 1.25. Since 1.25 is greater than 1, 'ab' is frequent. The entries of the new sequence 

of cumulative product of existential probability is then generated as (0.5, 0.25, 0.5) 

representing the paths 10, 20 and 30 respectively as shown in Figure 21. 
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Sequence of cumulative product of probabilities 

10 

1 

20 

1 

30 

1 

40 

1 

Header Table 

Figure 20: Conditional suffix tree of 'a' 
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Sequence of cumulative product of probabilities 

10 

1 

0.5 

20 

1 

0.25 

30 

1 

0.5 

40 

1 

-

Header Table 

Figure 21: Conditional suffix tree of 'ab' 

Using the same technique, 'aba', and 'abb' were not found. Item 'c ' is found at nodes 

c: 2:111 and c:l:l 1101. The suffix trees are rooted at these nodes. The expected support 
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of 'abc' is calculated as: (0.5 x 0.75) + (0.5 x 0.75) + (0.25 x 0.25) = 0.8125. 'abc' is 

therefore not frequent. 

The process is recursively repeated following the same logic and the frequent sequences 

found are: a, ab, ac, ad, b, be, ba, bd, c, d. 

Using the same example in table 39 with the U-apriori technique gives same result. To 

start with, the frequent 1-items are: a, b, c, d with expected support of 4, 2.25, 2.25 and 

1.75 respectively. A self join of this gives the following candidate sequences: aa, ab, ac, 

ad, ba, bb, be, bd, ca, cb, cc, cd, da, db, dc, dd. The database is scanned to detect the 

frequent 2-items. The sequences are ab, ac, ad, be, ba, bd. Apriori gen join is performed 

on these sequences and database scanned all over again. The next candidate sequences 

are: aba, abc, abd, bac, bad. The database is then scanned again to calculate each of the 

candidate sequence expected support count. None of these is found to be frequent as 

shown in Table 40 and Table 41. 

C2 
aa 
ab 
ac 
ad 
ba 
bb 
be 
bd 
ca 
cb 
cc 
cd 
da 
db 
dc 
dd 

Expected Support count 
-

1.25 
2.25 
1.75 
1 
-

1.3125 
1 
0.5 
-

0.25 
0.9375 
-
-

0.25 
0.25 

Frequent? 
-

Yes 
Yes 
Yes 
Yes 
-

Yes 
Yes 
No 
-

No 
No 
-
-

No 
No 

C3 
aba 
abc 
abd 
bac 
bab 
bad 
Tab 

Expected. Support count 
-

0.8125 
0.5 
0.5 
-

0.5 
e 40: U-apriori details for 

Frequent? 
-

No 
No 
No 
-

No 
C3 

Table 41: U-apriori details for C2 
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4. COMPARATIVE ANALYSIS 
This chapter shows analysis of how the proposed solution is more efficient than 

previously existing U-apriori technique. While PL WAP is an efficient algorithm, it is 

designed to mine precise data sequence only. UF-growth algorithm though mine 

uncertain data sequences, it only produces non-sequential frequent patterns. 

4.1 Comparing U-PLWAP with U-apriori and UF-growth 
The approach of Leung et al. (2008), though cater for uncertain data, only generate non­

sequential patterns. Comparing U-PLWAP with UF-growth might not be suitable since 

they produce different results. Chui et al. (2007) found that LGS outperforms U-apriori 

algorithm. It is however unclear how the trimmed sequence does not affect the final 

results in LGS. U-apriori is based on apriori principle that generates candidate sequences. 

The technique still inherits the problem of repeatedly scanning database and handling 

long sequences. 

In this section, experiments are conducted to see the effect of varying different 

parameters on both U-PLWAP and U-apriori. The experiments are conducted on Sun Fire 

880, UltraSparc III+ processor (8) (1200MHz x 8) with 16GB RAM. The clock speed is 

150MHz. The operating system is Unix and the implementation is done with C++. 

Synthetic data is used from the IBM data generator. Because the IBM data generator does 

not completely serve the needed input data sequences, the U-PLWAP approach is 

simulated by generating 3 different versions of the synthetic data from which existential 

probabilities are generated as described in Figure 10 for each experiment. The following 

notations are used for the description of the datasets: 

|D| = The data size 

|C| = The average length of sequence 

|N| = Number of unique items 
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4.1.1 Effect of minimum support on execution time 
The following parameters describes the dataset used for this experiment 

|D| = 20K 

|C| = 6 

|N| = 2119 

Minimum Support 
U-apriori (sec) 
U-PLWAP (sec) 
UF-growth (sec) 

0.002 
20012 

10 
22 

0.003 
4767 

4 
11 

0.004 
1099 

3 
6 

0.005 
233 

2 
3 

Table 42: The performance of U-PLWAP, UF-growth and U-apriori with different 
minimum support 

The experiment demonstrates that U-PLWAP is more than 100 times faster than U-

apriori in all cases examined. The execution time increases with lower minimum support 

values as more frequent sequences are found with lower minimum support value. The U-

PLWAP algorithm only traverse the tree to find and calculate potentially frequent 

sequences and their support counts while U-apriori first generate candidate sequences 

(potentially frequent sequences) and for each sequence scan the database for its support 

count. Figure 23 also shows that U-PLWAP is at least 50% faster than UF-growth in 

addition to the richer result U-PLWAP generates. 

U-PLWAP Vs. U-apriori: Effect of changes in minimum 
support on exec, time 

-•— U-apriori (sec) 
* - U-PLWAP (sec) 

Figure 22: The graph comparing execution time of U-PLWAP with U-apriori when 
minimum support values vary 
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U-PLWAP vs. UF-growth: Effect of varying 
minimum support 

••-U-PLWAP (sec) 

m— UF-growth (sec) 

Figure 23: The graph comparing execution time of U-PLWAP with UF-growth 
when minimum support values vary 

4.1.2 Effect of varying data size on execution time 

The following parameters are used for the dataset 

Minimum support = 0.005 

|C| = 6 

Average |N| = 2249 

Data size (K) 
U-apriori (sec) 
U-PLWAP (sec) 
UF-growth (sec) 

20 
223 

2 
3 

40 
474 

5 
7 

60 
603 

6 
8 

80 
903 

9 
12 

Table 43: The performance of U-PLWAP, UF-growth and U-apriori with different 
data sizes 

The effect of varying the data size while maintaining the same minimum support value 

also demonstrates that U-PLWAP is extremely faster with the execution time increasing 

with increased data size. The U-PLWAP is more than 50 times faster in the cases shown. 

Figure 25 also demonstrates that U-PLWAP is 33% faster than UF-growth despite the 

fact that UF-growth only generates frequent non-sequential patterns. 

0.002 0.003 0.004 

Minimum support 

0.005 
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U-PLWAP Vs U-apriori: Effect of varying data size 
on exec, time 

^ 1000 
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E 

c 
o 
3 
O 
0) 
X 
u 

600 

400 

200 
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20 40 60 80 

Data size (K) 

Figure 24: The graph comparing speed of U-PLWAP and U-apriori when data sizes 
vary 

U-PLWAP Vs UF-growth: Effect of varying data 
size on exec, time 
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Figure 25: The graph comparing speed of U-PLWAP and UF-growth when data 
sizes vary 

4.1.3 Effect of varying length of sequence on execution time 
The parameters used are: 

Minimum support = 0.004 

|D| = 10K 

Average |N| = 6832 
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Sequence length 
U-apriori (sec) 
U-PLWAP (sec) 
UF-growth (sec) 

10 
2 
1 
2 

20 
1392 

4 
6 

30 
30357 

14 
34 

Table 44: Comparison of U-PLWAP, UF-growth and U-apriori with different 
sequence length 

The U-PLWAP algorithm outperforms both U-apriori and UF-growth when length of 

sequence is varied, but the number of operations involved in U-PLWAP increases with 

longer sequence. This is because the depth of the U-PLWAP tree is longer therefore 

taking longer time to traverse the tree during mining. The effect of increased length is 

also felt in U-apriori during candidate sequence generation. However the bulk of the 

execution time lies in the database scan. Since the database size is kept constant at 10K 

for the 3 databases, U-PLWAP is at least 2 times faster than U-apriori. The U-PLWAP is 

also at least 50% faster than UF-growth. It is however important to note that while U-

PLWAP is a frequent sequential mining algorithm, UF-growth is a frequent non­

sequential mining algorithm. 
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U-PLWAP Vs U-apriori: Effect of varying 
sequence length on exec, time 
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Figure 26: The graph demonstrating the effect of varying the length of sequence on 
U-PLWAP and U-apriori 
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U-PLWAP Vs. UF-growth: Effect of varying length 
of sequence 
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Figure 27: The graph comparing speed of U-PLWAP with UF-growth when length 
of sequences vary 

4.1.4 Effect of minimum support on memory use 
|D| = 20K 

|C| = 6 

|N| = 2119 

Minimum Support 
U-apriori (KB) 
U-PLWAP (KB) 
UF-growth (KB) 

0.002 
138000 

10000 
4016 

0.003 
38000 
4624 
2960 

0.004 
10000 
3080 
2440 

0.005 
3680 
2464 
2232 

Table 45: Memory consumption of U-PLAWP, UF-growth and U-apriori with 
different minimum support 
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U-PLWAP, UF-growth and U-apriori: Effect of 
varying minimum support on main memory 
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UF-growth (KB) 

0.002 0.003 0.004 
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Figure 28: The graph demonstrating the memory need U-PLWAP, UF-growth and 
U-apriori with different minimum support values 

The memory requirement of U-apriori is more than that of U-PLWAP in all cases but the 

gap shrinks as minimum support increases. The memory requirement of U-apriori 

reduces drastically with increased minimum support as smaller numbers of candidate 

sequences are generated. No extra storage is needed for potentially frequent sequences in 

U-PLWAP as they formed on-the-fly from the U-PLWAP tree traversal. However, lesser 

memory is required for UF-growth as there is no need to keep track of the order in which 

items exist. 

4.1.5 Effect of varying data size on memory use 
The parameters use for the data sets are: 

Minimum support = 0.005 

|C| = 6 

Average |N| = 2249 

Data size (K) 
U-apriori (KB) 
U-PLWAP (KB) 
UF-growth (KB) 

20 
3680 
2464 
2232 

40 
3768 
2888 
2280 

60 
3512 
3192 
2288 

80 
3680 
3648 
2328 

Table 46: Memory size requirement for different data sizes 

77 



U-PLWAP, UF-growth and U-apriori: Effect of 
varying data size on main memory 
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Figure 29: The graph showing memory requirement for the 3 algorithms when data 
sizes are varied 

The memory requirement of U-PLWAP increases with increase in data size but the same 

cannot be said of U-apriori. This can be attributed to the fact that increase in data size 

does not automatically increase the amount of data generated during candidate sequence 

generation. The memory requirement of U-PLWAP is lesser than U-apriori. The UF-

growth algorithm has the smallest memory requirement due to its limitation of generating 

only non sequential frequent patterns. No additional memory is required to track the order 

of items. 

4.1.6 Effect of varying length of sequence on memory use 
The parameters are as follows: 

Minimum support = 0.004 

|D| = 10K 

Average |N| = 6832 

Sequence length 
U-apriori (KB) 
U-PLWAP (KB) 
UF-growth (KB) 

10 
2240 
2232 
2288 

20 
14000 
2816 
2568 

30 
162000 

10000 
4864 

Table 47: Memory requirement of U-PLWAP, UF-growth and U-apriori with 
different length of sequence 
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U-PLWAP, UF-gowth and U-apriori: Effect of 
varying sequence length on main memory 
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Figure 30: The graph demonstrating the memory requirement of the algorithms 
with different length of sequence 

The memory requirement for U-PLWAP increases with an arithmetic progression while 

that of U-apriori increases geometrically. U-PLWAP has a lower memory utilization 

which can be attributed to its non candidate sequence generation. As the length increase, 

memory is required to hold possibly longer candidate sequence generated. The UF-

growth algorithm requires the least memory as no additional memory is required to track 

the order of items. 

4.2 Time complexity analysis 
The estimate of the time complexity of both U-apriori and U-PLWAP is shown here. The 

worst case scenario is considered in both cases. The following notations are used: 

N - Number of sequence in the database 

F - Number of frequent 1 -events 

L - Length of the longest sequence 

M - Length of the longest event queue 

4.2.1 Time complexity of U-PLWAP 
The U-PLWAP algorithm also finds frequent 1-events at the first scan of the database, 

builds the tree U-PLWAP tree with the second database scan. Each frequent 1 event 

found is then linked with its identical nodes in U-PLWAP tree. The mining is then done 
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recursively with the number of recursive calls for each frequent 1 item bounded by the 

longest possible sequence (Worst case). 

The number of operations for computing the frequent 1-events is: 

A = N x L 

The number of operations needed to construct the U-PLWAP tree is: 

B = N x F x L 

The number of operations needed for mining operation: 

C = ( F x M x L ) + ( F x M x L-l) + (F x M x L-2) + ... (F x M x 1) 

Total time = A + B + C = (NxL) + ( N x F x L ) + ( FMl(i)) 

where 1 < i < L. 

Since X(i) where 1 < i < L is the sum of first L integers, 

£(i) = ((L(L+l))/2) 

Total time = (N x L) + (N x F x L) + FM ((L (L + l))/2) 

= (NxL) + ( N x F x L ) + FM ((L2 + L)/2) 

= ( 2(N x L) + 2 (N x F x L) + FM ((L2 + L)) ) / 2 

Time complexity = 0(2NFL + FM (L2 + L)) 

4.2.2 Complexity of U-PLWAP tree in terms of number of nodes 
The size of the PLWAP tree is defined by the length of the longest sequence and the 

number of frequent 1-items in the database. 

Total number of nodes is X(F') where 1 < i < L 

This forms sum of geometric progression where F is both the first term and the common 

ratio. 

Total number of nodes = F(FL - 1)/(F - 1) 

Complexity of number of nodes = 0(FL+1). 
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5. CONCLUSION AND FUTURE WORK 
The research area in data mining and more specifically, web log sequential mining has 

attracted so much interest in the in the last 15 years. Their applications have been widely 

used in market basket analysis, re-organisation of web pages and advertisement 

placement on websites. 

Progress has been made in sequential mining, starting from the apriori algorithm by 

Agrawal and Srikant (1995). Later effort sees progress in GSP, a more efficient version 

of apriori algorithm. The candidate generation problem associated with apriori-based 

approached were removed in WAP mine algorithm proposed by Pei et al. (2000). While 

WAP mine algorithm is much better than apriori algorithm, it is also faced with having to 

build intermediate trees during mining. Ezeife and Lu (2005) proposed PLWAP in order 

to solve the problem of recursive construction of intermediate trees. These algorithms are 

all based on precise and confirmed sequences of data. 

Recently there has been effort in mining frequent pattern in areas where existence of data 

may be uncertain or error prone. The only sequential pattern algorithm proposed in this 

domain is apriori based which inherits the candidate generating problem of apriori 

algorithm. The proposed algorithm in this thesis is therefore set out to solve this problem. 

The U-PLWAP, based on PLWAP algorithm, generates sequential patterns in uncertain 

sequences without generating candidate sequences, recursive construction of intermediate 

trees and the need to scan the sequence database repeatedly. It also eliminates the need to 

traverse the various tree paths in order to scan for existential probabilities of all items 

found from the root. Instead a sequence of cumulative product of all existential 

probability is generated at each step of the mining process. 

The support count values for each sequence are also calculated based on independence of 

events. Future work can be based on support counts calculated with conditional 

probability that is dependent on the probability values of constituent items. Another 

limitation of this approach is that nodes can grow larger in size as existential probability 
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values are registered for each tuple. Future research will be directed to represent 

existential probabilities in a more compact form. 
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