
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2010

Mining of uncertain Web log sequences with access history Mining of uncertain Web log sequences with access history

probabilities probabilities

Olalekan Habeeb Kadri
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Kadri, Olalekan Habeeb, "Mining of uncertain Web log sequences with access history probabilities"
(2010). Electronic Theses and Dissertations. 8058.
https://scholar.uwindsor.ca/etd/8058

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8058&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8058?utm_source=scholar.uwindsor.ca%2Fetd%2F8058&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Mining of Uncertain Web Log Sequences
with Access History Probabilities

By

Olalekan Habeeb Kadri

A Thesis
Submitted to the Faculty of Graduate Studies through the School of

Computer Science in Partial Fulfillment of the Requirements for the Degree
of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2010

©2010 Olalekan Kadri

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-62717-4
Our file Notre reference
ISBN: 978-0-494-62717-4

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Nntemet, prefer,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extra its substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

AUTHOR'S DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyone's

copyright nor violate any proprietary rights and that any ideas, techniques, quotations, or

any other material from the work of other people included in my thesis, published or

otherwise, are fully acknowledged in accordance with the standard referencing practices.

Furthermore, to the extent that I have included copyrighted material that surpasses the

bounds of fair dealing within the meaning of the Canada Copyright Act, I certify that I

have obtained a written permission from the copyright owner(s) to include such

material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee and the Graduate Studies office, and that this thesis has not been

submitted for a higher degree to any other University or Institution.

111

ABSTRACT
An uncertain data sequence is a sequence of data that exist with some level of doubt or
probability. Each data item in the uncertain sequence is represented with a label and
probability values, referred to as existential probability, ranging from 0 to 1.

Existing algorithms are either unsuitable or inefficient for discovering frequent sequences
in uncertain data. This thesis presents mining of uncertain Web sequences with a method
that combines access history probabilities from several Web log sessions with features of
the PLWAP web sequential miner. The method is Uncertain Position Coded Pre-order
Linked Web Access Pattern (U-PLWAP) algorithm for mining frequent sequential
patterns in uncertain web logs. While PLWAP only considers a session of weblogs, U-
PLWAP takes more sessions of weblogs from which existential probabilities are
generated. Experiments show that U-PLWAP is at least 100% faster than U-apriori, and
33% faster than UF-growth. The UF-growth algorithm also fails to take into
consideration the order of the items, thereby making U-PLWAP a richer algorithm in
terms of the information its result contains.

KEYWORDS
Uncertain data mining, frequent sequential patterns, Web log mining, existential
probability generation, dirty data mining, Tree-based mining, probabilistic data mining.

IV

DEDICATION

To all those whom I had leaned on through my sojourn in life. This is

another good reason for you all to be part of my story.

ACKNOWLEDGEMENT

My sincere appreciation goes to my parents, wife and siblings. Your perseverance and

words of encouragement gave me the extra energy to see this work through. Special

thanks go to Dr. A.O. Abdulkadri and family. Your financial and moral support is key to

seeing me through those challenging moments. I will forever be grateful.

I will be an ingrate without recognising the invaluable tutoring and supervision from Dr.

Christie Ezeife. Your constructive criticism and advice at all times gave me the needed

drive to successfully complete this work. The research assistantship positions helped as

well!!

Special thanks go to my external reader, Dr. Dilian Yang, my internal reader, Dr. Alioune

Ngom, and my thesis committee chair, Dr. Akshaikumar Aggarwal for accepting to be in

my thesis committee. Your decision, despite your tight schedules, to help in reading the

thesis and providing valuable input is highly appreciated.

And lastly to friends and colleagues at Woddlab, I say a very big thank you for your

advice and support through out the duration of this work.

VI

TABLE OF CONTENT
AUTHOR'S DECLARATION OF ORIGINALITY Ill

ABSTRACT IV

DEDICATION V

ACKNOWLEDGEMENT VI

LIST OF FIGURES IX

LIST OF TABLES X

1. INTRODUCTION 1
1.1 Data mining approaches 1
1.2 Web mining types 2
1.3 Uncertain data sequence 3
1.4 Problems and applications of mining with dirty and uncertainty data 4
1.5 Thesis problem and contribution 11

2. RELATED WORKS 12
2.1 Apriori based methods 12

2.1.1 Apriori algorithm (AprioriAII) 13
2.1.2TheGSP algorithm 16

2.2 Pattern approaches 20
2.2.1 FP-growth algorithm 20
2.2.2 Freespan 22
2.2.3 PrefixSpan 25
2.2.4 The WAP mine algorithm 27
2.2.5 PLWAP algorithm 30

2.3 Uncertainty approaches for mining patterns 32
2.3.1 Trio system 33
2.3.2 Databases with uncertainty and Lineage 34
2.3.3 Working Model for uncertain data 37
2.3.4 U-apriori and local trimming, global pruning and simple-pass patch up
strategy (LGS) algorithm 40
2.3.5 UF-growth algorithm 43

3. PROPOSED MINING OF UNCERTAIN WEBLOG SEQUENCES WITH
ACCESS HISTORY PROBABILITIES 48

3.1 Observation on uncertain sequences 50
3.3 Building U-PLWAP algorithm 52
3.4 The U-PLWAP algorithm 53
3.5 Example of mining using U-PLWAP 60

4. COMPARATIVE ANALYSIS 71
4.1 Comparing U-PLWAP with U-apriori and UF-growth 71

4.1.1 Effect of minimum support on execution time 72
4.1.2 Effect of varying data size on execution time 73
4.1.3 Effect of varying length of sequence on execution time 74
4.1.4 Effect of minimum support on memory use 76
4.1.5 Effect of varying data size on memory use 77

vn

4.1.6 Effect of varying length of sequence on memory use 78
4.2 Time complexity analysis 79

4.2.1 Time complexity of U-PLWAP 79
4.2.2 Complexity of U-PLWAP tree in terms of number of nodes 80

5. CONCLUSION AND FUTURE WORK 81
BIBLIOGRAPHY 83
VICTAAUTORIS 91

vm

LIST OF TABLES
Table 1: Example of uncertainty in sequences 3
Table 2: Conditional functional dependencies 5
Table 3: The US-Census sample data 6
Table 4: The 4 different web log sessions 9
Table 5: The merged and sorted logs for the different sessions 10
Table 6: The generated uncertainty in the logs 10
Table 7: The sequence formed 13
Table 8: The sample transaction database 13
Table 9: The Large 1-sequence 14
Table 10: The transformed sequence 15
Table 11: L3 15
Table 12: C3 15
Table 13: L2 15
Table 14: C2 15
Table 15: L4 16
Table 16: C4 16
Table 17: The table explaining GSP algorithm 18
Table 18: The data sequence for candidate sequence check 19
Table 19: The sample database 20
Table 20: The FP-growth mining process 22
Table 21: The sample sequence database 23
Table 22: The frequent item matrix 23
Table 23: Pattern generation 24
Table 24: The sequence database 26
Table 25: The Projected database and frequent patterns 27
Table 26: The Web Access Sequence Database 28
Table 27: The Web Access Database 31
Table 28: The representation of uncertain data 33
Table 29: Models and their constraints 39
Table 30: Closure property of the incomplete model 40
Table 31: Sequence without probability 41
Table 32: Sequence with uncertainty 41
Table 33: The uncertain database 44
Table 34: The 4 different web log sessions 49
Table 35: The merged and sorted logs for the different sessions 49
Table 36: Uncertainty in sequences 50
Table 37: Sequence without probability 50
Table 38: Sequence with uncertainty 50
Table 39: Sample uncertain sequence mined with U-PLWAP 60
Table 40: U-apriori details for C3 70
Table 41: U-apriori details for C2 70
Table 42: The performance of U-PLWAP, UF-growth and U-apriori with different
minimum support 72
Table 43: The performance of U-PLWAP, UF-growth and U-apriori with different data
sizes 73

ix

Table 44: Comparison of U-PLWAP, UF-growth and U-apriori with different sequence
length 75
Table 45: Memory consumption of U-PLAWP, UF-growth and U-apriori with different
minimum support 76
Table 46: Memory size requirement for different data sizes 77
Table 47: Memory requirement of U-PLWAP, UF-growth and U-apriori with different
length of sequence 78

x

LIST OF FIGURES
Figure 1: The constructed FP-tree 21
Figure 2: The Web Access Pattern tree 28
Figure 3: |c 29
Figure 4: jac 29
Figure 5: The PLWAP tree with the header linkages 31
Figure 6: Hierarchies of the models 39
Figure 7: The UF-tree 45
Figure 8: |e 46
Figure 9: |de 46
Figure 10: The Existential Probability algorithm 51
Figure 11: The U-PLWAP algorithm 56
Figure 12: Frequentl-events algorithm 56
Figure 13: U-PLWAP_tree algorithm 57
Figure 14: Mine algorithm 59
Figure 15: The U-PLWAP tree after reading the first sequence 62
Figure 16: The U-PLWAP tree after the second sequence is read 63
Figure 17: The U-PLWAP tree after the third sequence is read 64
Figure 18: The U-PLWAP tree after the fourth sequence is read 65
Figure 19: The complete linked U-PLWAP tree 66
Figure 20: Conditional suffix tree of 'a ' 68
Figure 21: Conditional suffix tree of'ab' 69
Figure 22: The graph comparing execution time of U-PLWAP with U-apriori when
minimum support values vary 72
Figure 23: The graph comparing execution time of U-PLWAP with UF-growth when
minimum support values vary 73
Figure 24: The graph comparing speed of U-PLWAP and U-apriori when data sizes vary

74
Figure 25: The graph comparing speed of U-PLWAP and UF-growth when data sizes
vary 74
Figure 26: The graph demonstrating the effect of varying the length of sequence on U-
PLWAP and U-apriori 75
Figure 27: The graph comparing speed of U-PLWAP with UF-growth when length of
sequences vary 76
Figure 28: The graph demonstrating the memory need U-PLWAP, UF-growth and U-
apriori with different minimum support values 77
Figure 29: The graph showing memory requirement for the 3 algorithms when data sizes
are varied 78
Figure 30: The graph demonstrating the memory requirement of the algorithms with
different length of sequence 79

XI

1. INTRODUCTION
Data mining or knowledge discovery is generally referred to as the process of analyzing

data from different views and situations and presenting it into useful information that can

be used to make critical decisions about day to day running of a business or process. This

process involves analysing data from many different dimensions or angles, categorizing

and summarizing the relationships identified with the aim of increasing revenue and/or

cutting time and costs of the processes represented by the data. Agrawal and Srikant

(1996) define data mining as a way of efficiently discovering interesting rules from large

databases. This area of study is motivated by the need to continuously look for solutions

to decision support problems faced by large retail organisations.

Data mining typically involves creating databases or warehouses where data are then read

using various techniques to analyse and forecast on future events. Algorithms that

employ techniques from statistics, machine learning and pattern recognition are used to

search large databases automatically. The process goes beyond simple data analysis.

Continuous innovations in computer processing power, disk storage, data capture

technology, algorithms and methodologies have all helped in realizing this objective. One

key factor that is important towards ensuring that information derived from data mining

is accurate is the use of broad range of representative data so that conclusions drawn from

data can be good enough to represent the general situation. Related to this is also the

aspect of ensuring proper cleaning is done on these representative data when required so

that accurate results are generated.

1.1 Data mining approaches
The process of discovering interesting information from huge set of data often employs

different techniques and approaches. Some of the approaches include:

• Classification

• Clustering

• Regression

• Association rule mining

Classification involves arranging data into predefined groups. This is the filtering

technique used in grouping spam and non-spam mails. Some of the algorithms used here

are nearest neighbours, Naive Bayes classifier and neural network.

Clustering, like classification, also groups data into groups but using similarities that exist

between data rather than predefined grouping. K-means algorithm is an example that is

used with this approach. Regression method finds functions that model the data with least

error. Genetic programming is one of such techniques used for this purpose.

Association rule mining involves finding relationships that exist among data items in a

database. It involves finding patterns in the data items which are dependent on support

count and confidence values of the rules establishing relationships between data items.

Rules like if item A (antecedent) is purchased then item B (consequent) is also purchased

can be used to calculate the support count and confidence of "if A then B" as follows:

Support (A => B) = number of occurrence of (A and B)/ Total number of transaction.

Confidence (A => B) = number of occurrence of (A and B)/ number of occurrence of (A)

The approach proposed in this research is based on this technique.

1.2 Web mining types

Web Mining is often referred to as the extraction of interesting and potentially useful

patterns and implicit information from the activity related to the World Wide Web. Three

categories in which web mining is usually viewed are:

• Web Content Mining

• Web Structure Mining

• Web Usage Mining.

Web content mining is the process of extracting knowledge from the content of web

pages, documents or their descriptions. Wrappers are used to map documents into some

models in order to be able to explore known structures in documents. Documents can

either be directly mined or the results of some content search of search engines can be

improved upon.

2

Web structure mining can be defined as the process of discovering knowledge from the

World Wide Web organization and links between references and referents on the Web.

Web structure mining involves making intelligent deductions from the links directed into

and out of contents on the web. This inward and outward links indicates the richness or

importance to which the content is to a particular topic. Counters attached to these links

can be used to retrace the structure of the activities on the web content.

Web Log Mining is the process of extracting interesting patterns in web access logs.

Since web servers record and accumulate data about user interactions whenever requests

for resources are received, such information can be collected, cleaned and analysed for

knowledge discovery. Information such as user behaviour as regards page visiting

patterns can be studied in order to aid the design and organisation of such websites. It can

also serve as attractive means of choosing where advertisements are placed on websites.

The web log can be taken a step further by dynamically customizing the order and

structure in which pages are displayed for each user based on their respective browsing

history.

1.3 Uncertain data sequence
An uncertain data sequence is a sequence of data that exists with some level of doubt or

probability. Each data item in the uncertain sequence is represented with a label and

probability values, referred to as existential probability, ranging from between 0 and 1.

This shows the level of assurance that an item exist in the sequence. A zero (0) value

indicates the item does not exist while one (1) shows that the item is 100% present in the

sequence. Table 1 gives an example of uncertain sequences.

UserJD

10

20

30

Table 1:

Uncertain sequence

(a:l,b:0.5,c:0.75,d:0.5)

(a:l,d:0.5,e:0.5,d:0.5)

(a:l,b:0.5,d:0.5,b:0.5)

Example of uncertainty

3

UserJDD 10 for example, is represented by (a:l, b:0.5, c:0.75, d:0.5) indicating that item

'a' has 100% probability of existence. Items b, c and d however have 50%, 75%, and

50%o existential probabilities respectively.

The problem of mining frequent sequence in uncertain data sequence is that of

determining those sequences whose expected support count are greater than or equal to a

specified threshold called minimum support. The expected support of an uncertain

sequence is given by the sum of product of existential probability of the constituent items

of the sequence (Chui et al., 2007). For example, given the database as shown in table 1,

the expected support count of sequence 'ab' is calculated as (1 x 0.5) + (1 x 0.5) = 1. This

is then compared with a specified minimum support. If the minimum support is 1, the

sequence 'ab' is said to be frequent.

1.4 Problems and applications of mining with dirty and uncertainty
data
Cong et al. (2007) show that real world data often contain inconsistencies and errors. The

challenge is therefore in removing these errors (dirt) while ensuring the integrity of the

data is maintained. It is of high importance that the original meaning of the data is not, in

any way, changed. They demonstrate that the traditional functional dependencies in

database (Normal forms) may not fully guarantee the correct content of the database.

Given an order database shown as follows:

Order (id, name, AC, PR, PN, STR, CT, ST, zip). Each order contains name, unique item

id, and price (PR) of the item. It also contains the phone number, which contains area

code (AC) and phone number (PN), and the address that indicates street (STR), city (CT),

state (ST) and Zip code (Zip) of the customer buying the item. The functional

dependencies of the Order database are as follows:

fi[AC, PN]—• [STR, CT, ST] f2 [Id] —• [name, PR]

f3[Zip] — • [CT, ST] U [CT, STR] —• [Zip]

4

Where AC, PN, STR, CT, ST are Area Code, Phone Number, Street, City and State

respectively. Id represents the item identification number and PR is its price. This design

for example only specifies that AC and PN identify [STR, CT, ST] but fails to restrict

values that can be entered to represent real life situation. Area code 212 for example, can

be used to represent any city in the US. However in real life situation, 212 can only

represent New York City (NYC) as a city and New York (NY) as a state. A conditional

functional dependency (CFD) cp is then defined as ([AC, PN] —•[STR, CT, ST]), with an

additional constraint T defined on attributes of the table that stipulates the kind of values

that may exist together in the tables while still ensuring that each AC and PN uniquely

identify each STR, CT, ST combinations. An instance of the table showing the constraint

T is shown in Table 2:

AC
-

212
610
215
Tab

PN
-
-
-
-

e2 :C

STR
-
-
-
-

]ondit

CT
-

NYC
PHI
PHI

lonal fu

ST
-

NY
PA
PA

nctioi functional dependencies

With these additional constraint, all entries having 212 as AC must be from NYC and NY

while those from PHI and PA must either have 610 or 215 AC. Non conforming tuples

are cleaned accordingly.

Cong et al. (2007) stress that it is in order to guarantee the accuracy of cleaned data after

the application of data cleaning methodology, inspection of a manageable sample of the

cleaned data is needed. This ensures the accuracy of the repairs found is above a

predefined bound with high confidence. This is done by drawing a sample of K tuples

from the repaired database. A predefined inaccuracy threshold £, is specified. The sample

is partitioned into M strata where M< K. Each stratum is then assigned its inaccuracy

threshold ^i such that E,\ +^2 +...+ ^M = 1- Each ^i can be adjusted depending on the

likelihood that inaccurate tuples may exist in a particular stratum. The number of tuples

drawn from each stratum is given by the product of ^i and K (total number of tuples). The

number of inaccurate tuples e; in each stratum is noted. The test statistic (z) is computed

as follows:

5

The ratio of number of tuples in stratum i to the number of tuples drawn from the stratum

to check for inaccuracy is defined by Sj = Pj / (^ . K).

The inaccuracy rate, p = (Xei . Sj) / (£Pj . Si), where Pj is the number of tuples in each

stratum i.

The test statistic z = (p - £,) / (V(£(l - £,)/K)) where p is the inaccuracy rate of the sample

The test statistic z is tested against the critical value zx at confidence level 5. If z < - zx ,

inaccuracy level of the cleaned data is said to be below the threshold £, making the

cleaned data acceptable for use.

Chiang and Miller (2008) go a step further by automatically generating conditional

functional dependencies (CFDs) for a given relation with sample data. These CFDs are

then used to remove the dirty data that fail to comply with the CFDs without any need of

human inspection. Given the relation showing US Census Data:

Tuple
ti

t2

t3

t4

t5

t6

t7

t8

t9

tio

tn

CLS
Private
Private

Self-emp
?

Self-emp
Never-
worked
Self-emp

Local-
gov
State-gov

?

Self-emp

ED
Bachelors
Bachelors

Masters
HS-grad

Masters
7m-8th

HS-grad

Some
college
Masters

Bachelors

Some
college

MR
Married
Married

Married
Divorced

Married
Divorced

Never-
married
Never-
married
Divorced

Divorced

Never-
married

occ
Exec-mgr
Prof-
specialty
Exec-mgr
?

Admin
?

Farming

Admin

Prof-
specialty
?

Machine-
up

REL
Husband
Husband

Wife
Not-in-
family
Wife
Not-in-
family
Own-child

Own-child

Own-child

Not-in-
family
Not-in-
family

GEN
Male
Male

Male
Male

Female
Male

Male

Female

Male

Female

Female

SAL
>50K
>50K

>50K
>50K

>50K
<50K

<50K

<50K

>50K

<50K

>50K

Table 3: The US-Census sample data

6

The CFDs are generated by partitioning a relation into attributes of equivalence classes.

CFDs are then defined between classes X—•Y when there exist some classes in X that are

fully contained in some classes in Y. The CFDs are then defined on the conditions in

which the classes are contained in each other. If for example, the following classes,

denoted by n , are defined from the census sample data based on the similarities in their

values:

n M R = {{1,2,3,5}, {4,6,9,10}, {7,8,11}}

nREL= {{1,2}, {3,5}, {4,6,10,11}, {7,8,9}}

n(R,M) = {{1, 2}, {3, 5}, {4, 6, 10}, {7, 8} {9}, {11}}

nE D - {{1, 2, 10}, {3, 5, 9}, {4, 7}, {6}, {8, 11}}

ricLS = {{1, 2}, {3, 5, 7, 11}, {4, 10}, {6}, {8}, {9}}

n(C,E)= {{1,2}, {10}, {3,5}, {4}, {6}, {7}, {8}, {9}, {11}}

n(M,E)= {{1, 2}, {10}, {3, 5}, {4}, {6}, {7}, {9}, {8, 11}}

n(M)E,c)= {{1,2}, {10}, {3,5}, {4}, {6}, {7}, {9}, {8}, {11}}

The class TIMR is formed by grouping tuple numbers with same value in column MR.

That of ri(c,E) is formed by grouping tuples with same value in both CLS and ED and so

on. Rules are then formed by establishing edges between classes. For edge

X—•Y = (REL —•(REL, MR)). The classes {1,2}, {3,5} in REL are also contained in

(REL, MR). REL is then conditioned on common values in {1,2} and {3, 5} to give the

CFDs required. The CFDs are: ({REL = 'Husband'}__• MR) and

({REL = 'Wife'} —•MR) or more explicitly as ({REL = 'Husband'} — • Married) and

({REL ='Wife'} —> Married).

By going to the next level, when the 'X' part of the edge has more than an attribute, one

of the attributes is made the conditional attribute if a match is found.

If X—*Y = (ED, MR)—•(ED, MR, CLS)). The classes {1, 2} and {3, 5} in (ED, MR) is

contained in (ED, MR, CLS). If MR is made the conditional attribute from (ED, MR), a

class in nMR that only contains tuples from {1,2} and {3, 5} must be found in order to

define a rule. Since EIMR has {1,2,3,5}, a conditional rule can be formed on the common

7

value in {1,2,3,5} = Married. Therefore, the rule: ({MR = 'Married', ED} —• {CLS}).

This means that MR must be married for MR and ED to functionally determine CLS.

The main problem with dirty data is being able to strike a balance between making sure

dirty data are not used for mining and at the same time ensuring the cleaning process does

not introduce another set of unwanted data. While the Cong et al. (2007) approach needs

sampling and physical inspection to guarantee its correctness, the automatic approach of

Chiang and Miller (2008) depends on the cleanliness of the data that is used to generate

the rules.

In recent times, there has been interest in mining data generated from non-traditional

domains such as sensor networks and location based services. Such data are generated

with some level of uncertainty due to measurement inaccuracies, sampling error and

network latencies. Location based systems as found in GSM (Global System for Mobile

communication) are used in delivering several value added services in the mobile

telephoning industry. It can be used in determining location of a subscriber or the nearest

banking cash machine. However, due to the unreliability of radio signal that is used to

relay information from the nearest mobile base station (tower), information delivered

might sometimes be prone to errors. Fluctuations in signals and network can cause some

farther base stations to serve a particular mobile subscriber and as a result deliver

information on a farther location. Therefore mining data generated by such systems

demands attaching some uncertainties unto them.

Sensor networks that combine computational functionalities with physical sensing

capabilities could also transmit errors of the physical entity such as temperature that they

are designed to measure. Sensors designed to capture temperature values might be

corrupted or biased if placed near a power generating plant or an air conditioner. Analysis

based on these types of data may therefore be inaccurate if the uncertainties that may be

present are not equally accounted for.

8

One main problem associated with mining uncertain data is how such data are objectively

generated. Chui et al. (2007) and Leung et al. (2008) also suggested that historical

behaviour of entities can be used for presenting uncertainties that might be attached to

their current behaviour. Their work does not show exactly how this can be done

objectively. The use of historical data can be used objectively in arriving at a more

unbiased result during mining based on sample data. Uncertainties can also be useful in

analysing how unique users may find a particular webpage useful. Such analysis can then

be used in improving the design of such websites. Web logs, though are doubtless facts,

can be represented with uncertainty when history of log sessions for each user is used to

compute the consistency of the user's behaviour based on the most current web log

session.

Given four different web log sessions as shown in Tables 4a, 4b, 4c and 4d. The tables

represent access histories for users 10, 20 and 30 at different times 1, 2, 3 and 4. User IDs

10 and 30 participates in all the 4 sessions while user ID 20 only take part in twice. The

most current session is time 4. The four web log sessions are then merged into one

database and ordered by user ID and time so that the most current web log for each user

comes first as shown in Table 5.

User ID
10
20
30

Time
2
2
2

Web log
(a,d,c,a)
(a,d,e,d)
(a,e,d,e)

User ID
10
20
30

Time
1
1
1

Web log
(a,c,a,c)
(a,c,b)
(a,e)

a b
User ID
10
30

Time
4
4

Web log
(a,b,c,d)
(a,b,d,b)

User ID
10
30

Time
3
3

Web log
(a,d,a,b)
(a,c,e,b)

c d
Table 4: The 4 different web log sessions

9

User ID
10

20

30

Time
4
3
2
1
2
1
4
3
2
1

Web logs
(a,b,c,d)
(a,d,a,b)
(a,d,c,a)
(a,c,a,c)
(a,d,e,d)
(a,c,b)
(a,b,d,b)
(a,c,e,b)
(a,e,d,e)
(a,e)

Table 5: The merged and sorted logs for the different sessions

The existential probability, prob (u(e)), of each event e, for each user u, in the most

current log is given as: Number of existence of e in any record with u
prob (u(e)) =

Total number of records with u

The likelihood of having the latest log to be a true reflection of how each user browses

the site based on the historical behaviour is calculated as follows:

User ID 10: Since 'a' appears at least once in all the 4 logs, existential probability of 'a'

is given as 4/4 = 1. Item 'b' appears only in the first two logs, its existential probability is

2/4 = 0.5. Item 'c ' appears 3 times, its existential probability is 3/4 = 0.75 and that of d is

2/4 = 0.5. Using the same method, user ID 20's existential probability values for the

latest log is:

'a' = 2/2 = 1

'd' = 1/2 = 0.5

'e ' = l/2 = 0.5

User ID 30:

'a' = 4/4 = 1

'b ' = 2/4 = 0.5

'd' = 2/4 = 0.5

The uncertain sequence to be mined is therefore given as in Table 6 :

User ID
10
20
30

Web logs
(a:l,b:0.5,c:0.75,d:0.5)
(a:l,d:0.5,e:0.5,d:0.5)
(a:l,b:0.5,d:0.5,b:0.5)

Table 6: The generated uncertainty in the logs

10

UserlD 10 for example, is represented by (a:l, b:0.5, c:0.75, d:0.5) indicating the

consistency of the current behaviour based on the historical behaviour. There is a 100%

certainty that User lD 10 always visit page 'a'. In the same manner, the probability of

pages b, c, d are 50%, 75%, and 50% respectively.

1.5 Thesis problem and contribution
This thesis is set out to propose a sequential web log mining solution for mining

uncertain weblog sequences with access history probabilities using the PLWAP tree

mining approach. The works of Agrawal and Srikant (1995), Pei et al. (2000) and Ezeife

and Lu (2005) are all based on precise data sequences with 100% certainty. Chui et al.

(2007) proposed U-apriori, an uncertain data implementation of apriori algorithm. Leung

et al. (2008) proposed UF-growth that is a non-sequential mining approach of frequent

patterns. The contributions of this thesis are therefore as follows:

• The approach (U-PLWAP) is the first tree based sequential mining approach for

data with uncertainty.

• U-PLWAP makes use of historical web log session in calculating existential

probability of web log sessions.

• The speed of the algorithm is improved by collapsing events with the same label

but different existential probabilities into one single node during the construction

of the U-PLWAP tree. This makes the U-PLWAP tree more scalable in terms of

number of nodes.

• In order to effectively mine frequent patterns in U-PLWAP, sequence of

cumulative products of existential probabilities of events found along each

temporary root nodes (from the root node) are dynamically generated for each

new sets of temporary root nodes.

• The general performance of U-PLWAP is at least 2 times faster than U-apriori.

The U-PLWAP algorithm is also at least 33% faster than UF-growth. This is

addition to the richer result generated by U-PLWAP (frequent sequential patterns)

as against UF-growth that is a frequent non sequential pattern algorithm.

11

2. RELATED WORKS
There have been several research findings on the general area of data mining. Specifically,

the problem of mining web logs can be traced back to the association rule mining

technique originally introduced by Agrawal and Srikant (1995). Etzioni (1996) state that

web mining can be useful for server performance enhancements, restructuring of website

and direct marketing in e-commerce. This has made research in this area an important

one, given the role internet and websites play in our day to day activities. Web log mining,

synonymous with Web usage mining, is one of the three areas of web mining identified

by Madria et al. (1999) and Borges and Leven (1999). Technically, the problem of

sequential mining of web logs is that of finding all ordered sequence of web pages

accessed whose support count is greater than a specified minimum threshold (Ayres et al.,

2002). Cooley (2003) defined web usage mining as "the application of data mining

techniques to web click stream data in order to extract usage patterns". Han and Kamber

(2006) also gave an insight to the area of data mining including the sequential mining of

web logs.

The discussion in this chapter is grouped into those methods that are apriori and pattern-

based. The algorithms with uncertainty are also discussed in a separate section.

2.1 Apriori based methods
This section gives an introduction into the problem of sequential pattern mining and the

early methods used to solve this problem. It gives insight into the general problem of

sequential mining which can be adapted to the web usage mining environment.

Agrawal and Srikant (1995) introduce the problem of mining frequent sequential patterns.

They state that early works by Agrawal et al. (1993) only concentrate on discovering

patterns within transactions. Agrawal and Srikant (1995) introduce and addressed the

problem of discovering sequential patterns in transactional databases where transactions

are taken as sequences with each sequence containing one or more items. The authors set

out to identify inter-transaction patterns, treating each transaction (itemsets) as a unit

12

rather than treating items as a unit. For example, itemsets ((1,5) (2) (3) (4,7)) can be

considered for a single user or customer in the approach introduced by Agrawal and

Srikant (1995). That is, more than one itemset per record/user is considered for mining as

against single itemset per user in Agrawal et al. (1993).

2.1.1 Apriori algorithm (AprioriAll)
Agrawal and Srikant (1995) propose AprioriAll algorithm to discover sequential patterns

in a transaction database. The algorithm finds sequential patterns in transaction database

where several transactions can be done by a given customer as shown in Table 8. Such

transactions are grouped to form a sequence for each customer as given in Table 7.

Cust Id
1
1
1
1
2
2

2
2
3
3
3
3
4
4
4
5
5

Time
1
2
3
4
1
2

3
4
1
2
3
4
2
3
4
1
2

Transaction
1,5
2
3
4,7
1,8
3

4
3,5
1
2
3
4
1
3
5
4
5

Cust id
1
2
3
4
5

Sequence
<(1,5)(2)(3)(4,7)>
<(1,8)(3)(4)(3,5)>
<(1) (2) (3) (4)>
<(D(3)(5)>
< (4) (5)>

Table 7: The sequence formed

Table 8: The sample transaction database

The sample transaction in Table 8 shows transactions done by each customer at different

time. The transactions are then grouped by customer ID so that customer ID 1 for

example has a sequence of transactions ((1,5) (2) (3) (4,7)) as shown in table 6. Each

transaction grouping in a sequence is known as itemset. For example, ((1,5) and (2) are

itemsets. In order to mine frequent sequence pattern, a minimum threshold referred to as

13

the minimum support must be specified. The database is then scanned to record the

occurrence of each itemset in order to discover if such itemset is frequent. Itemsets with

count that is greater or equal to the minimum support are said to be frequent. The set of

frequent itemsets are referred to as the Large itemsets. Given the sequence shown in

Table 8, the algorithm operates in 5 phases; Sort phase, Litemset (Large itemset) phase,

Transformation phase, Sequence phase and Maximal phase.

The sort phase prepares the transaction database by grouping transactions according to

the customer ID thereby forming a sequence for each customer ED. Using the sequence in

Table 8, AprioriAll works by first ordering the transaction database by customer ID and

time. It is then implicitly changed to the form shown in Table 7. Given that the minimum

support is 2, the Large itemset phase then finds all frequent (Large) 1-sequences by

scanning the database for itemsets that occur more than once provided that the minimum

support specified is 2. Out of the possible itemsets (candidate itemsets) {(1), (2),(3), (4),

(5), (1,5), (1,8), (3,5) and (4,7)}, the frequent 1-sequences are as shown in Table 9.

1-Sequences
(1)
(2)
(3)
(4)
(5)

Support
4
2
4
4
4

Table 9: The Large 1-sequence

Transformation phase is done by removing the non-frequent items/itemsets. It also

replaces all transactions with the set of all Large itemsets contained in that transaction. A

mapping of the transformed database is also shown in Table 10 given that large itemsets

(1). (2), (3), (4) and (5) are mapped to 1, 2, 3, 4, 5 respectively. Items 7 and 8 are not

contained in Large 1-sequences and have been removed in the transformed sequence.

14

Custid

1
2
3
4
5

Sequence Before
Transformation

<(1,5)(2)(3)(4,7)>
<(1,8)(3)(4)(3,5)>
<(1) (2) (3) (4)>

<(D 0) (5)>
<(4) (5)>

Sequence After
Transformation (deleting
small items)
<{(1),(5)} {(2)} {(3)} {(4)}>
<{(!)} 1(3)} 1(4)} f(3),(5)»
<{(1)} {(2)} {(3)} {(4)}>
<f(l)} {(3)} {(5)}>
<{(4)} {(5)}>

Table 10: The transformed sequence

The Sequence phase performs an apriori-gen join on the frequent 1-sequence in Table 9

to form candidate sequence C2 as shown in Table 14. Large 2-sequences (L2) are then

derived from C2 by selecting those with support greater than or equal to 2 since the

minimum support is 2. L2 is then used in an apriori-gen join to generate C3. Apriori-gen

join works by performing a self join on Lk-i in order to arrive at Ck only when the first

k-2 items are equal. The generated Ck is then pruned by removing any sequence in Ck

that has any of its k-1 subsequence not in Lk-i. For example, C3 is derived by an apriori-

gen join on L2 when the first items in each L2 are the same. That is, (12) joins with (13)

to form (1 2 3) because they both have ' 1 ' as the first item. C3 is then pruned by

removing any sequence that has any of its 2-subsequences not in L2. For example,

sequence (1 3 2) is pruned from C3 since its sub-sequence (3 2) is not in L2. This process

is recursively done to generate new Ck and I* until no more Ck is formed or no frequent

sequence found. The Tables 11 to 16 show the process in details.

Seq
(12)
(13)
(14)
(15)
(2 3)
(2 4)
(2 5)
(3 4)
(3 5)
(4 5)

Count
2
4
3
3
2
2
0
3
2
2

Seq
(12)
(13)
(14)
(15)
(2 3)
(2 4)
(3 4)
(3 5)
(4 5)

Count
2
4
3
3
2
2
3
2
2

Table 13: L2

Seq
(1 2 3)
(12 4)
(12 5)
(13 4)
(13 5)
(14 5)
(2 3 4)
(3 4 5)

Count
2
2
0
3
2
1
2
1

Table 12: C3

Seq
(1 2 3)
(12 4)
(13 4)
(13 5)
(2 3 4)

Supp
2
2
3
2
2

Table 11: L3

Table 14: C2

15

Seq
(12 3 4)
(13 4 5)

Count
2
0

Seq
(12 3 4)
Table 15:

Count
2

L4
Table 16: C4

Maximal phase is then executed by finding only frequent itemsets that are not contained

in any other large itemset. Itemsets {(4 5), (1 3 5), (12 3 4)} are not contained in any of

the large sequences. The maximal sequences are therefore {(4 5), (1 3 5), (12 3 4)}.

2.1.2 The GSP algorithm

Srikant and Agrawal (1996) introduced GSP, a more flexible approach into their earlier

work stated above. They show that the problem of discovering sequential patterns with

earlier approaches fail to take into account time constraints in the sequence to be

considered. They also stress that existing approaches have rigid definitions of

transactions. Grouping of items into hierarchies (taxonomies) can also be found to be

missing in the earlier algorithms. The authors proposed GSP (Generalized Sequential

Patterns) to cater for these limitations. The GSP algorithm is made more flexible by

including time constraints, flexibility in the definition of transaction and inclusion of

taxonomies. The time constraint is used to further extend the flexibility of the algorithm

by specifying the time limit within which a particular pattern can be considered frequent.

The flexibility in transaction definition also introduces the freedom to regroup

transactions based on a specified time interval within which transactions can be combined

into one unit (one itemset). This specified time is referred to as the sliding window. The

inclusion of taxonomy helps in further showing the hierarchy along which a frequent

pattern can be expressed. The example below shows the transactions of books sold in a

store. For simplicity, the transaction time is represented in number of days.

16

Sequence-Id

CI
CI
CI
C2
C2
C2

Transaction
Time

1
2
15
1

20
50

Items

Ringworld
Foundation
Ringworld Engineers, Second Foundation
Foundation, Ringworld
Foundation and Empire
Ringworld Engineers

Taxonomy T

Asimov Niven

Foundation Foundation Second Ringworld Ringworld
and Empire Foundation Engineers

Example 2.1 The example demonstrating additional functionalities of GSP algorithm.

If the minimum support is specified as 2, the frequent 2- element patterns are:

{(Ringworld) (Ringworld Engineers)} and {(Foundation) (Ringworld Engineers)}.

However, when a sliding window of 7 days is given, the pattern

{(Ringworld) (Ringworld Engineers)} also becomes frequent since the first 2 transactions

of CI becomes one transaction. Setting a maximum constraint of 30 days generates no 2-

element frequent pattern since Ringworld Engineer in C2 was bought after the 30-day

limit.

Frequent patterns can also be expressed in form of their taxonomies. For example,

patterns supporting {(Foundation) (Ringworld Engineers)} will also support {(Asimov)

(Niven)}. This is made possible by also specifying the taxonomy as part of the input data.

For example, {(Foundation) (Ringworld)} will be represented as {(Foundation,

Ringworld, Asimov, Niven)}.

17

The GSP algorithm is a multiple-pass solution. The first pass considers the items

individually and generate the frequent 1-sequence for those with support count greater

than the minimum support. The 1-itemset (Li) is used to generate the next set of

candidate sequences (C2) by a join operation with itself. Subsequent Ck are generated

from Lk-i. A join operation (apriori gen join) is carried out only when the subsequence

generated by removing the first item in sequences in L .̂i is the same as removing the last

item during the self join on Lk-i. The candidate sequences are searched for using the

forward and backward phase algorithm. Pruning operation is also performed to remove

those candidate sequences whose k-1 contiguous sub-sequences are not frequent. The set

of Lk sequences are then generated. The algorithm ends when there are no more

sequences generated in Lk .

Using Table 17 as an example, frequent 3-sequences is self joined using the apriori gen

join which states that a join can only occur if by removing the first item in sequences in

Lk-i , the subsequence left is the same as removing the last item during the self join on

Lk-i. For example, sequence ((1,2) (3)) joins with ((2) (3,4)) since the last 2 items (2,3) in

the first sequence and the first 2 items (2,3) in the second sequence are the same. Equally,

((1,2) (3)> joins with ((2) (3) (5)>. The join operation then produces ((1,2) (3,4)> and

((1,2) (3) (5)). Sequence ((1,2) (3) (5)) is however pruned since its contiguous sub­

sequence ((1,2) (5)) is not frequent (not in frequent 3-sequence).

Frequent
3-Sequences

((1 , 2) (3))
< (1, 2) (4))
<W(3,4))
{(1 .3) (5))
{(2) (3 , 4))

< (2) (3) (6)>

Candidate 4-Sequences
after join

((1 . 2) (3. 4))
((1 , 2) (3) (5))

after pruning
((1 , 2) (3 , 4))

Table 17: The table explaining GSP algorithm

18

The GSP algorithm checks for candidate sequence in 2 phases; the forward and backward

phase. The forward phase finds successive elements of candidate sequence in a sequence

databases given that the difference between the start time of the new element and the end

time of the previous element is within the maximum time (constraint) specified. When

the difference is more than the maximum time, the algorithm calls the backward phase. If

no element(s) is found in this phase, the sequence database does not contain the candidate

sequence.

The backward phase backtracks and checks the previous elements. This is to ascertain

that no occurrence of the immediate previous element has its start time earlier than the

difference between end time of the present element and the maximum gap constraint. The

backtracking continues until such an occurrence is found or the very first element of the

candidate sequence is pulled up. A new set of elements are then searched with the

forward phase starting from the last point of backtrack.

Transaction- Time
10
26
45
50
65
90
95

Items
1, 2
4, 6
3
1, 2
3
2,4
6

Table 18: The data sequence for candidate sequence check

If Table 18 is used as an example with maximum gap of 30, minimum gap of 5 and

window size 0. Candidate sequence <(1, 2) (3) (4)> can be searched by first finding (1, 2)

at transaction time 10 and then (3) at time 45. Because the time between the 2 elements is

35 days (greater than max gap of 30), element (1, 2) is pulled up by the backward phase

of the algorithm. The first occurrence of (1, 2) with transaction time after 15 (45 - 30) is

searched for. Since no such element exists and the first element in the candidate sequence

is pulled up already, the forward phase continues with a fresh search of the candidate

sequence. The first occurrence of (1, 2) is found at time 50. The next element (3) also

19

found at 65. Since the gap between these two elements is within thin the minimum and

maximum gap, the next element (4) is then found at transaction time 90

Which is also within the maximum gap relative to immediate past element (3) found at

time 65. Therefore the data sequence shown in Table 18 contains the candidate sequence

<(1, 2) (3) (4)> under the conditions stated.

2.2 Pattern approaches

2.2.1 FP-growth algorithm
Han et al. (2004) aim at solving problem of candidate set generation during frequent

pattern mining process. They found that candidate set generation can be costly especially

when many patterns are present and when such patterns are long.

Han et al. (2004) proposed a frequent mining algorithm, FP-growth, based on frequent

pattern tree (FP-tree) data structure. Through this, the authors contributed to the study by

ensuring large database is compressed into FP-tree therefore removing repetitive database

scan. This divide and conquer, conditional mining approach also remove candidate set

generation.

The FP-tree is built on the intuition that if frequent items are used to re-order items in the

database, multiple transactions sharing same itemset can be represented with the same

path in FP-tree by registering their counts. FP-tree is constructed after a first scan of the

database is carried out where frequent items are found and ordered. The order is then

used to enter items into the FP-tree during the second scan. Given the database below:

TID
100
200
300
400
500

Items Bought

/ , a,c,d}g, i, tn-,p
a,h,c,f, f ,m,0

b,f,h,j}o
b,c,k, s,p

a , / , c, <s,Z,p, m,n

(Ordered) Frequent Items

f,c,a,m,p
/,c?a,fo, m

f\b
c,k,P

f,c,a,m.,p

Table 19: The sample database

20

It is assumed that the minimum support is 3. The items are re-ordered according to

descending order of frequent items (f:4, c:4, a:3, b:3, m:3, p:3). Items h, I, j , k, 1 have

been removed from the database since they are not frequent.

The items are then inserted into the FP-tree in the ordered fashion, registering the count

on each occasion. A header link table is also constructed to show the order in which

nodes of same type are inserted in order to aid mining process. The FP-tree generated is

as given below:

Figure 1: The constructed FP-tree

The mining process is done by starting from the bottom of the header table. Item p has 2

tree paths f:4, c:3, a:3, m:2, p:2 and c:l, b:l, p:l. Removing p and ensuring only counts

for item p are present gives p's conditional base tree: f:2, c:2, a:2, m:2, and c:l, b:l. Only

item c make the minimum count of 3 (sum), therefore forms p's conditional FP-tree (c:3).

Pattern 'cp:3' is therefore frequent. The process is then repeated for all items on the

header table. The conditional FP-tree is repeatedly mined when more then one frequent

items are found. Table 20 summarises the operation:

21

Items

P
m

b
a
c
f

Conditional pattern base
(f:2,c:2,a:2,m:2), (c:l,b:l)
(f:2, c:3,a:2),
(f:l,c:l,a:l,b:l)
(f:l,c:l,a:l),(f:l),(c:l)
(f:3,c:3)
(f:3)
-

Conditional FP-tree
c:3
f:3, c:3, a:3

-

f:3, c:3
f:3
-

Final Frequent pattern
cp:3
am:3, cm:3, fm:3, cam:3,
fam:3, fcam:3
-

ca:3, fa:3, fca:3
Fc:3
-

Table 20: The FP-growth mining process

This approach is however limited to finding frequent patterns in non-sequential data.

2.2.2 Freespan
Han et al. (2000) proposed FreeSpan in order to solve the problem of sequential pattern

mining. It also removes some of the drawbacks of Apriori algorithm including, several

scan of the database, generation of huge candidate sequences and difficulty associated

with long sequential patterns.

The authors' approach is based on the integration of frequent pattern approach with that

of sequential patterns and uses projected databases to limit the search and growth of

subsequence fragments. Han et al. (2000) contributions include design of frequent item

matrix where frequent length 2-sequences are discovered. The authors also defined how

generation of item repeating patterns and projected databases for each frequent item are

found.

The algorithm works by using the first scan to generate the frequent items arranged in

order on f-list. The second scan of the database then generates the frequent item matrix.

From the matrix, the frequent 2-length sequences are noted. The sequences corresponding

to the frequent diagonal elements are noted in the annotation for repeating items. Other

non-diagonal sequences are also noted when the equivalent diagonal elements of the

constituent items are frequent. Annotations that form triple F[i,j], F[k,j], F[i,k] with i<j

and k < i (all corresponding pairs are frequent) are then used in defining projected

column set by including k and annotations containing i and j . The database is then

22

scanned the third time to generate the final item repeating patterns and the projected

databases.

Given the sequence database as shown below:

Sequence-id

id
20
30
40
50

Sequence
((bd)cb(ac)}

MHceMfg))
({ah)(bf)ab/)

<(*e)(«)d>
(a(bd)bcb(ade))

Table 21: The sample sequence database

The frequent item list are generated and ordered as follows: (b:5, c:4, a:3, d:3, e:3, f:3). A

6x6 frequent item matrix is then formed with the frequent items. A triangular matrix is

then formed since half of the matrix is similar. The diagonal elements have one value

while other cells have three values with the first two representing the count of the

constituent items in the database when their positions are noted while the last value

represents the count when they both occur together. Table 22 represents this.

b
c
a
d
e
/

4
(4,3,0)
(3,2,0)
I £t, *•', M f

|d , i ,1}
(2,2,2)

b

1
(2,1,1)
(2,2,0)
(1,1,2)
(1,1,0)

c

2
(1,2,1)
(1,0,1)
(1,1,0)

a

1
(1,1,1)
(0,0,0)

d

1
(1,1,0)

e
2
/

Table 22: The frequent item matrix.

Taking the example of the second cell on the first column (4,3,0). This means (b,c)

occurs 4 times, <c,b> 3 times and 0 means both <(b,c)> never occur together at a time. The

frequent length 2 sequences, annotation on repeating items and annotation on projected

databases are then generated as in Table 23:

23

Item

f
e
d

a
c
b

Output length-2 sequential pattern

<bf):2,<fb>:2,<(bf)>:2
<be):3,<(ce)>:2,
<bd>:2, <db>:2, <(bd)>:2, <cd>:2,
<dc>:2, <da>:2,
<ba>:3, <ab>:2, <ca>:2, <aa>:2,
<bc>:4, <cb>:3
<bb>:4

Ann. on repeating
items
{b+f}
<b+e>
{b+d},<da+>

<a a+>, {a+ b+} (d a+>
{b+c}
<bb+>

Ann. On projected DB

-

<(ce)>: {b}
<da):{bc}, {cd}:{b}

<ca>:{b}
-

-

Table 23: Pattern generation

The length 2-sequential patterns are those entries that are greater than or equal to

minimum support of 2. Since F[b,b] and F[f,fJ are frequent, b and f can be repeated in as

many times as possible (+) and in any order ({}) as shown in the annotation for repeating

item column. Since no other frequent item exist with f apart from b, the annotation for

projected database is null. For the second row (e), F[e,e] is infrequent, as a result e is not

a repeating item as shown <b+,e>. Angular bracket is also used to restrict order of the item

since only one of the 3 values of (b,e) on the item matrix is frequent (3,1,1). Set notation

({}) is used if otherwise to indicate that both (b,e) and (e,b) are frequent.

The items on row 2 also form a triple F[c,e], F[b,e], F[b,c]. Set {b} is therefore included

in the projected database with the annotation containing c and e. In this case, <(ce)> is

used since it is the only frequent annotation. The third database scan is then done using

the item repeating annotation and projected database as guide to obtaining frequent

sequential pattern of longer length. The mining operation is then restricted to the patterns

contained in the projected database header set. The frequent patterns obtained in the third

scan are as follows: {<bbf>:2, <fbf>:2, <(bf)b>:2, <(bf)f>:2, <(bf)bf>:2, <(bd)b>:2, <bba>:2,

<aba>:2, <abb>:2, <bcb>:3, <bbc>:2}. There might be need to construct a new frequent item

matrix for projected databases whose annotation contains more than 3 items and

recursively mine its sequential pattern.

This approach, with the help of projected database, helps reduce the search space for

sequential patterns and make the mining process faster. There is however the need to

recursively reconstruct frequent item matrix when there are more patterns to be mined.

24

2.2.3 PrefixSpan
A sequence database is one that records events in its database in the order in which they

occur. As a result, it takes into account the time at which events occur. For example, the

sequences (abc) is different from (bac). Though both sequences contain the same

item/events, event 'a' comes before event 'b ' in the first sequence and vice versa in the

second sequence. Therefore, in sequence databases, the two sequences are regarded as

two different sequences. Sequence of transactions can also be represented in the order in

which they occur and at the same time indicate events of the same transaction. For

example, the sequence (a(abc)(ac)d(cf)> contains (a), (abc), (ac), (d) and (cf) transactions

(elements) that occur separately in the order shown.

The Prefix-Projected Sequential Pattern Mining (PrefixSpan) by Pei et al. (2004) is

designed to solve the problem of mining sequential pattern. The approach uses a divide

and conquer method by projecting the sequence database over common frequent prefixes

and recursively mining each projected database. A prefix of a sequence is the part of a

sequence that strictly precedes it. For example, sequences (a), (a(ab)), (a(abc)) are

prefixes of sequence (a(abc)(ac)d(cf)>. On the other hand, sequences (ab> and (a(bc)) are

not.

The algorithm works by first making a scan on the database to find the frequent

1-sequential patterns. The database is then divided into n projected databases, defined by

sequences starting with each of the n 1-sequaential database. Each of these projected

databases are then recursively mined by further projection to determine the frequent

patterns they contain. Given the database as shown in Table 24 and minimum support of

2, the database is scanned to generate the frequent 1-sequentila pattern: a:4, b:4, c:4, d:3,

e:3 and f:3

25

Sequencaid

10

20

30

40

Sequence

{a(abc)(ac)d(cf))

{(ad)c(hc)(m}) .

((ef){ab)(4f)d>) '

(eg(af)cbc)

Table 24: The sequence database

The sequence database is then divided into 6 parts (6-projected databases) based on

sequences preceded by each of the frequent 1-sequential patterns. The second column of

Table 25 depicts this. A-projected database is found for example, by scanning the

database to find all sequences prefixed by 'a'. The first 2 sequences with sequence_ids 10

and 20 are preceded by 'a'. The sequences (a (abc) (ac) d (cf)> and ((ad) c (be) (ac))

minus 'a' forms their respective projected sequences ((abc) (ac) d (cf)> and ((-d) c (be)

(ac)). The sequence ((ef) (ab) (df) (cb)) is preceded by 'a' at element (ab). Element (ei) is

removed and the a-prefix sequence formed is ((-b (df) (cb)). The same method is used to

complete column 2 of Table 25.

Each projected database is then recursively mined by projection to discover any possible

frequent pattern. The a-projected database is for example, mined to discover if another 'a'

is frequent. The a-projected database shows that a is frequent (a:2) thereby making (aa) a

frequent pattern as shown in column 3 of Table Table 25. The resulting aa-projected

database found from a-projected database is {((-bc)(ac)(d)(cf)), ((-e))}. No further

frequent item can be found from this, therefore no frequent pattern prefixed by 'aa' can

be found. The algorithm, in the same manner, mines for 'b ' from a-projected database to

check if (ab) is frequent. Item 'b' is found 4 times, making (ab) frequent. The resulting

ab-projected database is ((-c) (ac) (d) (cf)), <(-c)(ae)>, ((c)), Recursively mining the ab-

projected database, using same method, gives (aba), (abc), (a(bc)) and (a(bc)a).

26

The same process is used for all the projected databases to find the respective frequent

patterns shown in Table 25. The union of these frequent patterns gives set of frequent

patterns for the database.

prefix

<«}

(6)

(c)
(d)

(e)

if)

projected (suffix) database

((ahc)(ac)d(cf)), <(_<i)c(6c)(a«)>,

« J0 (#)<*> , ((-f)cbc)

<(.x)Cac)d(c/)>, <(-c)(oe)>,
<(d/)e&), (c)

((ac)d(cf)), ((bc)(ae)), (6}t <fec)

((c / » , (c(bc)(ae)), (U)cb)

(U){ab)(df)cty, ((af)cbc)

((ah)(df)cb), (cbc)

sequential pat terns

(a), (aa), (ah), (a(bc)), (a(bc)a), (aba),

(abc), <(afe)), <(aft)c), ((a6)d), <(o6)/>,

{(a6)dc), (ac), (aca), (ocb), (occ), (ad),

{adc), (a /)

<6>, (6o>, <*c>, ({be)), <(fcc)a), <M), (Mc),

<e>, <c«), <c6), (cc)

<d>, (db), (dc), (deb)

(e), (ea), (eab), (eac), (each), (eb), (ebc),

H . <«*), <c/>, <e/6), (e/c>, (e/d»>..

</>. </6>,- </««), (/c) , (fob)

Table 25: The Projected database and frequent patterns

The technique has removed the need to generate candidate sequences during mining. It

also results in shrinking of projected databases as the mining process progresses. The

limitation of this technique is the need to construct and store the projected databases. Pei

et al. (2004) proposed pseodoprojection method to solve this problem. This is done by

replacing the physically constructed projected databases with their various sequence

identifiers and offsets where their suffixes begin. This makes the projected fit into

memory.

2.2.4 The WAP mine algorithm
The WAP mine algorithm of Pei et al. (2000) is based on the construction of Web Access

Pattern (WAP) Tree constructed from the web log sequences after non-frequent events

have been removed.

The algorithm can be described in 3 stages. The web access sequence database (WASD)

is first scanned to determine the frequent 1-sequence. It is then scanned the second time

in order to remove non-frequent event from the sequence. These sequences are then used

to build the WAP tree. The tree is built by representing events with nodes showing labels

27

and counts of the node along that path. Each event has a queue linking all its nodes in the

order in which they are inserted. The head of each queue is registered in a header table

for the WAP tree. Table 26 and Figure 2 represent these 2 stages

TID Web access sequence Frequent subsequence

100

200

300

400

abdac

eaebcac

babfaec

ajbacfc

abac

abcac

babac

abacc

Table 26: The Web Access Sequence Database

Figure 2: The Web Access Pattern tree

The third stage then recursively mines the WAP tree using conditional search. The search

is based on looking for all sequences with common suffix. As the suffix becomes longer,

the remaining search space becomes shorter. The header table created with the WAP tree

above helps construct conditional sequence base for each of the events considered as

suffixes by following the link to all nodes in the WAP tree. This is then used to construct

conditional WAP tree for every suffix considered. The conditional WAP tree is then

recursively mined for frequent events, each time concatenating newly discovered

frequent event with the old ones. The process continues until there are no trees to mine or

no more frequent events discovered.

28

Using the above WAP tree as an example, with 75% minimum support, the conditional

WAP tree for suffix sequence 'c ' is as shown in Figure 3. This tree is constructed from all

prefix sequences of suffix sequence V . The possible prefix sequences, called conditional

pattern base of suffix sequence V are: aba:2, ab:l, abca:l, ab:-l, baba:l, abac:l, aba:-l.

The negative sequences indicate an overlap in the count because they are already

contained in some other prefixes of 'c ' . Because the count of 'c ' is less than 75%, it is

removed from the sequence. The resulting sequences are aba:l, aba:l, baba:l, aba:l from

which Figure 3 is constructed. The same process can be used to construct conditional

WAP tree for other suffix sequences, for example 'ac' from Figure 3. The resulting tree is

as shown on Figure 4.

Figure 4: |ac

Figures 3 and 4 show the conditional WAP tree for suffix sequence 'c ' and 'ac'

respectively.

The conditional WAP tree 'ac' now confirms that frequent sequences with 'c ' as suffix

are ac, aac, bac, abac. The same process can be done with the WAP tree in Figure 2 with

suffixes 'b ' and 'a'.

The limitation of this technique is the recursive construction of intermediate WAP tree

for suffixes under consideration.

Figure 3: |c

29

2.2.5 PLWAP algorithm
In order to eliminate the need to recursively construct intermediate trees during mining,

PLWAP algorithm was proposed. The approach of Ezeife and Lu (2005) uses position

codes generated for each node such that antecedent/descendant relationships between

nodes can be discovered from the position code. The same WAP tree originally created is

then mined prefix-wise using the position codes as identifiers thereby eliminating

generation of fresh intermediate WAP trees for each sequence mined. The concept of

binary tree is used in generating the position codes. The root has a position code of null.

Starting from the root, all tree nodes are assigned a position code using the following rule.

The position code of the leftmost child node is the position code of its parent

concatenated with ' 1' at the end; the position code of any other node is the same as

appending '0 ' to the position code of its closest left sibling.

The algorithm first scans the web access sequence database (WASD) to obtain support

count for all events in it. Events with support greater than or equal to a specified

threshold are said to be frequent. A second scan is then used to eliminate non-frequent

events from the original sequences. These new sequences are then used to construct a

PLWAP-tree with each node representing label, count and position code of the event

along a particular path. The PLWAP-tree is then traversed in a pre-ordered fashion

starting from the root to the left sub-tree followed by the right sub-tree to build to build

the header node linkages. Each event has a queue linking all its nodes in the order in

which they are inserted. The head of each queue is registered in a header table for the

PLWAP tree.

The PLWAP algorithm then recursively mines the PLWAP tree using prefix conditional

sequence search. Given the WASD as shown in Table 27:

30

TID Web access sequence Frequent subsequence

10G abdac abac

200 eaebcae abcac

300 babfaec bahac

400 ajbacfc abacc

Table 27: The Web Access Database

With the minimum support threshold of 75%, the sequence is reduced to that shown on

the frequent sub sequences column shown above since events 'e ' and 'f ' are both 50%

frequent. Events 'e ' and 'f ' are not frequent, they are therefore removed in the frequent

subsequences. The resulting reduced sequences are then used to build the PLWAP tree as

shown in Figure 5.

Reader _

Figure 5: The PLWAP tree with the header linkages.

The mining starts by mining sequences with the same prefix. Starting from frequent 1-

sequence, the PLWAP algorithm mines starting from the root (for the first time). Using

the header linkage, it traverses the tree to identify frequent 1-sequences by searching for

the first occurrence of an event say 'a'. The position code then helps in preventing

duplicate count of support of an event in the same suffix sub tree. The addition of these

counts is then used to compare with the specified minimum support threshold.

31

In the case of the above example, the event 'a' is counted with nodes a:3:l and a: 1:101.

The total count for 'a' is 4, making it a frequent 1-sequence. In order to find the next

frequent sequence with 'a' as prefix, the PLWAP tree is rooted at b:3:ll and b:l:1011.

The first occurrence of say 'a' in these sub-trees are then noted with the counts. For 'a'

event, the following nodes are identified using b:3:ll and b:l:1011 as roots: a:2:lll,

a:l:l 1101 and a:l:10111. Again 'a' occurs 4 times, making it frequent. Therefore, 'aa' is

frequent sequence. The next 3-sequence with 'aa' as its prefix can be found by setting the

root of the PLWAP tree to c:2: l l l l , c:l:111011 and cl:101111. There are no other

events except 'c ' with counts of c:2:l111, c:l:ll 1011 and cl:101 111, making it atotal of

3. This makes 'c ' frequent. Therefore, 'aac' is frequent. Shifting the root to c : l : l l l 11

gives no other frequent event. The algorithm then backtracks to find other possible

frequent sequence combinations at each level. The same procedure is followed and the

following frequent sequences were found: (a,aa,aac, ac, ab, aba, abac, abc,b, ba, bac, be,

c).

The advantage associated with this algorithm includes efficiency in terms of I/O and

memory utilisation since it eliminates the need to store intermediate WAP tree. The need

to continuously store and reconstruct intermediate WAP trees has been eliminated by the

introduction of position codes, making tree traversal a lot easier. The use of pre-order

linking of header nodes of the same suffix tree also makes searching of nodes easier.

2.3 Uncertainty approaches for mining patterns
Recent research has been done on representation and mining of data that exist with

uncertainty. Uncertain data sequences are series of data that exist with doubt. The level of

doubt is usually expressed with probability values attached to the elements of the

sequence. These probability values are referred to as existential probability. This section

gives an insight into how data with uncertainty are represented and the progress made in

mining such data.

32

2.3.1 Trio system
Agrawal et al. (2006) introduce the Trio system as a system aimed at representing data,

uncertainty of the data and data lineage. The uncertainty shows the level of doubt

attached to the data. Lineage of a tuple is defined as the information showing how the

tuple is derived. It shows the origin of the tuple. The authors demonstrate how

Uncertainty and Lineage Databases (ULDBs), a new scheme earlier proposed by the

authors, can be represented using the 'crime solver' application. The application is

designed to express doubts of observers on driver information and crime-vehicle

sightings. They also show TriQL, a query language of this scheme, that can operate on

ULDBs.

The authors represent uncertain data with x-tuple notations indicating the possible

combinations of database instances. An x-tuple is a tuple in a database that has alternative

values. The values of x-tuple are not 100% defined. There is also the need to represent a

'may be' (denoted with '?') occurrence of an x-tuple indicating the x-tuple may not exist

as shown in Table 28. Confidence (probability) values are attached to each x-tuple

representing the likelihood of its existence. The sum of these values is less or equal to 1

depending on a 'may be' presence on each x-tuple as shown below.

(witness, car)

(Amy, Honda) : 0.7 || (Amy, Toyota) : 0.3
(Betty,Acura):0.6

Table 28: The representation of uncertain data

It is assumed that the likelihood that Amy saw a Honda car is 0.7 and that of Toyota is

0.3. Therefore, (Amy, Honda):07 || (Amy, Toyota):03 is an x-tuple. The events are

mutually exclusive, indicating only one must exist at a time. The second tuple indicates a

0.6 confidence that Betty saw Acura. Though not an x-tuple, the '? ' sign indicates the

tuple may not exist. As a result, there is a 0.4 confidence that Betty did not see an Acura.

From these uncertainties, it is possible to have 4 possible instances, referred to as the

'possible worlds', of this relation as follows:

33

(Witness, Car)

Amy, Toyota

Betty, Acura

(Witness, Car)

Amy, Toyota

Example 2.3.1 Demonstration of possible instances in uncertain databases

The authors have been able to propose a method for representing uncertain data. The

representation is found to be useful in preparing data sequence for mining as confidence

values can equally be attached to possible sequences in web log mining.

2.3.2 Databases with uncertainty and Lineage
Benjelloun et al. (2006) further gives a formal representation of databases with

uncertainty and lineage. Lineage in database shows the origin of a particular tuple when a

new relation is formed. They found that completeness of uncertainty in databases is

possible as a result of lineage attached to relations when new relations are formed. Much

of the work is on querying of Uncertainty and Lineage Databases (ULDBs). The work of

Widom (2005) that is centered on incorporating data lineage and uncertainty in general

purpose database management system provides a motivation for this work.

The technique presented here is highly related to that of Agrawal et al. (2006) except that

some level of formalism is introduced and more emphasis is laid on lineage

representation as a means of ensuring completeness of uncertainty representation. Since

lineage gives information about the origin and how a particular tuple is derived, such

information is found to be useful in understanding the uncertainty attached to the tuple.

The authors claim that formalism for representing an uncertain database is said to be

complete if it can represent any finite set of possible instances.

Amy, Honda

Betty, Acura

(Witness, Car)

Amy, Honda

34

Given the example below:

ID
21
23

Saw(wiMe5a, caarj
(Snry,Masda3 (Jkm^, Toyota^

{Bet ty , Honda]!

IS
31
34
33
34

Efcrives&Mrago, erne)

{Jimmy, Mazda)
i Jimmy, Tbyota)
iBilly,Masda)
(Bi l ly ,Honda)

m
41
42
43
44

Aeeasesfnitiiess, person)

(Army, Jimmy)
(ftray,Jimmy)
CSray,Billy)

(B e t t y , B i l l y)

? A(41,I)={C21,1W31,1>}
? A(42,1H(2U).(32.1)}
f A<43,1HC21,1X(33,1)}
? A<44,1H(23,1),CM,1)}

Example 2.3.2 Explanation of databases with uncertainty and lineage

Joining the tables SAW (witness, car) and DRIVES (person, car) gives the table Accuses

(witness, person). Adding the lineage function X helps identify the origin of each tuple in

Accuses table. It also helps determine which tuple may exist as a result of the existence

of its parent tuple. The function A,(41,l) = [(21,1) , (31,1)] shows that the first and the

only possible value of tuple with ID 41 in Accuses is derived from the first possible

values of IDs 21 and 31 from tables Saw and Drives respectively. In the same manner,

function A,(42,l) = [(21,2) , (32,1)] shows that the first and the only possible value of

tuple with ID 42 in Accuses is derived from the second possible value of ID 21 and the

first possible value of ID 32 from tables SAW and DRIVES respectively.

A ULDB Database D is therefore represented as a triple (R,S,A,) where R is a set of x-

relations, S is a set of symbols in instances of R and A, is a lineage function showing the

source of a newly generated relation.

The following definition then shows the importance of lineage in ensuring completeness

in ULDBs. Given that Dk is an instance of D, S(i,j) represents the ith tuple and jth

alternative and Sk 3 S, then

1. If S(ij) e Sk, then every j ' 4- j , S(ij') g Sk

2- V S(ij) e Sk, A,(S(jj)) c Sk

35

3. If for some x-tuple t j , there does not exist a S(y) e Sk, then t; is a may be x-tuple,

and V S(ij) e U, X(S^) = <|> or Sk c A.(S(ij))

Condition 1 formalises the mutual exclusiveness of instances on uncertain databases.

Condition 2 enforces the semantics of lineage. This implies that if an alternative is

present in a possible instance, the parent tuple from which it was derived must also have

alternative(s). The last condition indicates that an x-tuple, which is the tuple that does not

have 100% existence (Agrawal et al., 2006), might not be present at all in an instance if it

is a maybe tuple. Its lineage is null or it does not belong to the class of all possible

symbols of lineages recognised.

The authors then provide the following algorithm that extracts query results from the join

operation on database tables with uncertain data by enforcing the three conditions listed

above. This ensures no impossible instance is returned:

1: input: ULDB D = (Jl, S> A), andX C R
2: output: a ULDB D! = (X.'S'.X)
3: S' = i£X)uCU^ j p C)>W)
4: A' = A | g', the restriction of A to S'
5: return D'

Statements 1 and 2 give the input and output representations of ULDB when queries are

issued and results returned. The ULDB is represented by a triple (R,S,A.) with R

representing the relations involved, S the set of tuple values and X represents the lineage

of each tuple derived. Statement 3 shows that new set of symbols in the new relations to

be returned are generated from symbols of instances of the original relations and that of

their lineages if they exist. If the parent relations are not generated from a join operation,

the parent relation will not have lineage. Statement 4 ensures that conditions such as

mutual exclusion and certainty of existence stipulated from the parent relation X are

maintained in X' and by extension S'. The new ULDB D' is then returned.

Using the example 2.3.2, the set of relations in R are tables SAW and DRIVES. The

lineages of tables SAW and DRIVES are empty since they are not derived. Accuses is the

new relation. The set of symbols in S' include Amy Betty, Billy, Jimmy and the tuple IDs

shown in the lineage X'. The lineage A/(i.j) = {(i', j ') , (i", j ") is defined where i represents

36

the tuple ID of the new relation, and j denotes the instance. The tuple IDs i', i" and

instances j ' , j " denote the instances from which new relations are formed in the parent

relations. A/(41,l) = {(21,1),(31,1)} for example shows that tuple ID 41 of instance 1 in

the new relation Accuses is generated from the tuple IDs 21 and 31 in SAW and DRIVES

respectively. The first instance values are used in both Saw and Drive. The lineages A,'

are:

A/(41,1)={(21,1),(31,1)}

A/(42,1)={(21,2),(32,1)}

A/(43,1)={(21,1),(33,1)}

X'(44,1)={(23,1),(34,1)}

From this representation, the restriction of statement 4 can be maintained by ensuring

tuples with similar ID values but different instance values do not exist together in an

instance of the returned relation. For example A/(41,l) = {(21,1),(31,1)} and A'(42,l) =

{(21,2),(32,1)} must not exist in the same instance since they both have ID 21 but

instances 1 and 2 respectively. In the same vein, tuples ^'(41,1) = {(21,1),(31,1)} and

A/(43,l) = {(21,1),(33,1)} must exist together in same instance since they both have ID

20 and instance 1 from the parent relation.

Benjelloun et al. (2006) therefore introduced the formal presentation of databases with

uncertainty and lineage. They show the completeness of instances of uncertain database

as a result of inclusion of lineage parameters. This is found to be useful in deriving

relations from existing relations without returning impossible instances of x-tuples in

queries.

2.3.3 Working Model for uncertain data

Sarma et al. (2006) explain the usefulness and importance of representing uncertain data

with simple models that might be incomplete in general terms but is sufficient enough in

handling the domain of the application under consideration. The authors argue the need to

have an application depending on uncertain data modelled with the simplest possible

model in order to ensure 'user friendliness' and simplicity without losing 'completeness'

37

within the domain of the application. The authors propose a 2-layer approach that

satisfies general completeness at the background and equally support simpler modelling

at the surface. Several possible simple models are proposed and the relationship in terms

of hierarchy is shown in Figure 6.

The technique used by the authors is based on the fact that a-tuple (same As x-tuple)

explained by Agrawal et al. (2006) which uses mutual exclusion. Sarma et al. (2006)

represents this with RA indicating several possible instances of a tuple in a relation

without any constraint linking it with the existence of other tuples. This is however found

to be incomplete on general case scenario. An example of this is a probability data base

in which a tuple A can only exist if another tuple B already existed as shown in the

following example:

II: empty
12s [Carol, 12/25/04, Los Altos, bluebird]
13; [Carol, 12/25/04, Los Altos, bluebird],

[Carol, 12/26/04, Los Altos, bluebird]

Example 2.3.3 Tuple dependency constraint

The above example shows three possible instances of a database in which it might be

empty, contain record [Carol, 12/25/04, Los Altos, bluebird] only or compulsorily

contain both [Carol, 12/25/04, Los Altos, bluebird] and [Carol, 12/26/04, Los Altos,

bluebird]. In instance 3 (13), the existence of [Carol, 12/26/04, Los Altos, bluebird] is

dependent on existence of [Carol, 12/25/04, Los Altos, bluebird].

The authors therefore make use of complete modelling based on RA
 prop defined as:

• A multiset of a-tuple, T = t l . . .tn, and

• A Boolean formula f(T)

For the above example, its model can be defined as:

tl = [Carol, 12/2*5/04, Los Altoa, bluebird]
t2 = [Carol, 12/26/04, Los Altos, bluebird]
constraints t2 => tl

This means that modelling this type of database will demand using constraint t2 which is

dependent on tl in addition to the possibility of having multiset of a-tuples (x-tuples).

38

That is, a tuple might have many possible values. The constraint implies that if tuple

[Carol, 12/26/04, Los Altos, bluebird] exists, tuple [Carol, 12/25/04, Los Altos, bluebird]

must also be present in the database.

Variants of this model are then defined as shown below with their corresponding

hierarchies. These variants are not complete in all scenario but they can be sufficient to

model a particular situation. The models are also closed under the operations shown.

Model
Building Block
Constraints

K*
a-tuple
none

« ?

tuple
•*>

nf
a-tuple

*?
tuple

binary €!> =

%2

tuple
2-clause

n*
a-luple

2-clatue

^Vset*

tuple
n-way choice

Table 29: Models and their constraints

Model RA is a model that allows for a-tuples (x-tuple) with no constraint. That is, no

additional condition is allowed to be specified on inter tuple existence. Model R? allows

only precise tuples but such tuples might not exist (maybe tuple). Model RA? allows both

a-tuple and maybe constraint specification. Model R®= allows precise tuples with

conditions of only binary exclusive OR and equivalence operations. Model R2 allows

precise tuples with 2 conditions specified. Model RA2 allows for a-tuples and 2 conditions

specified. Model Rsets allows precise tuples with n possible conditions. The expressive

power models in Figure 6 shows that model RA can be used to express models RA?, Rsets

and RA
2 . Model RA

? can be used to express models Rsets and RA2 . Model R? can be used

to express all models except RA .

Figure 6: Hierarchies of the models

39

The various operations that can be performed on the models expressing their closure

property is as given below

Closure-Model

Union
Seferf(ge)
Seferf(ea)
SefccS(ss)
InlBJsection
Cross Product
Join
BiHeceace
Projection
Duplicate Elimination
Aggregation

KA

Y
Y
N
N
N
Y
N
N
Y
N
N

E ?

Y
Y
Y
Y
Y
N
N
Y
Y
Y
N

*R#

Y
Y
Y
N
N
N
N
N
Y
N
N

K-#= M-%) ^2 v&«t*

Y
Y
Y
Y
N
N
N
N
Y
N
N

Table 30: Closure property of the incomplete model
ee- both operands are exact values

es- one operand is an exact value, the other or set

ss - Both or-set

Sarma et al. (2006) therefore state that the 2-layer model is far more useful in terms of its

simplicity and user friendliness. They also proposed that complete model must be present

at the background which can be referred to when needed. The authors therefore propose a

2-layer model for modelling uncertain data in which the underlying layer is complete

(RA prop) and the top layer is simpler, closed under the operation intended and more user

friendly (variant of RA
 prop). For example, RA2 can be used to model a union operation

Select (ee) since it is closed under the operation. Model RA can then be used at the

background for greater accuracy.

2.3.4 U-apriori and local trimming, global pruning and simple-pass
patch up strategy (LGS) algorithm
Chui et al. (2007) proposed U-apriori and LGS algorithms to solve the problem

associated with mining frequent patterns in uncertain sequences. The authors stress that

existing works have only been able to mine frequent patterns in doubtless facts. The

paper identifies situations in which data exist by chance, expressing their likelihood

(uncertainty) by probability values. The problem then lies in being able to mine frequent

patterns in sequences that exist with uncertainty. Areas in which such scenario can be

40

applied include medical records where some symptoms are subjective and can be best

represented by probability values. The authors also point out the use of their approach in

pattern recognition applications where satellite pictures are used in determining presence

of a target. However, certainty of the images can be affected by noise and resolution.

The authors found that due to the probabilistic nature of items in the dataset, the

traditional definition support count is changed to expected support. Strongly linked with

this is the notion of "possible world", representing different possible states of the

database due to the probabilistic nature of the data it contains. The authors found that

expected support count can be calculated by summing the product of probability values

of all items in the sequence under consideration, for all tuples in the database D given as:

mr ^>y i—|i..n..i.™ ^ ^

Expected support (X) = } Ĵ J_ P±^{x).
J~ ^ Equation (I)

Where:

|D| is the size of the uncertain database D

tj is the jth tuple in the database

x is an item in the sequence X in the database.

It is assumed that probability values of the items x contained in sequence X are

independent. Therefore, the product of all probabilities of items in X gives the existence

of X. This is then done for all X in the database, the sum of which gives the expected

support of X.

Given the databases below:

Cust-Id

10

20

30

Table 31

Sequences

abed

acbd

abdc

: Sequence

Cust-Id

10

20

30

Sequences

a:l,b:0.5,c:l,d:0.7

a:l,c:0.2,b:0.1,d:l

a:0.5,b:l,d:l,c:l

Table 32: Sequence with uncertainty

41

The support count of sequence 'ac' in Table 31 is 3 whereas the expected support count

of 'ac' in Table 32 will be calculated as (lxl) + (1x0.2) + (0.5x1) = 1.7, as defined in

equation (I).

It can be seen from above that several calculations might be involved in arriving at

expected support counts especially when sequence under consideration is long. These

long calculations might also be wasteful when probability values of items are very low

and the minimum support count required is high. The authors therefore suggested that

simply modifying apriori algorithm to account for the expected support count (U-apriori)

might not be efficient. The authors proposed local trimming, global pruning and simple-

pass patch up strategy (LGS).

The Local trimming phase introduces trimming threshold value that is used to remove

items that are unlikely to have a significant effect on the expected support count. This

trimming threshold is calculated by sorting all probability values for each item in

ascending order and performing a cumulative sum for each item until it is equal to the

minimum support threshold. The probability value at this point is chosen as the trimming

threshold. The probability values for the trimmed items are also kept for error estimation

which is used at the pruning stage.

The pruning is based on discovering sequences that are potentially frequent. A sequence

X in the trimmed database is potentially frequent if the sum of its expected support count

(ST
e (X)) and the upper bound of the error estimated for its expected support (e (X)) is

greater than the minimum support. That is sequence X is potentially frequent if:

ST
e (X) + e (X) > minimum support value.

The set of frequent and potentially frequent sequences generated during pruning are

verified using the simple-pass patch up strategy. During the simple patch up strategy, the

original database (untrimmed database) is scanned once to determine the frequent

sequences. The result is then used to authenticate those found in potentially frequent

sequences from the trimmed database.

42

2.3.5 UF-growth algorithm
Leung at al. (2008) proposed a tree-based algorithm in order to discover frequent patterns

in situations where data items exist with probability. The authors state that such situations

are found in patients' records where physicians may suspect but not guarantee certain

ailment until further tests are carried out.

The authors' contributions include the proposal of a tree structure, UF-tree for capturing

the uncertain data. They also proposed UF-growth algorithm for mining frequent patterns

from the UF-tree. The authors then proposed reduction of probability values of items to 2

decimal places to reduce the possible tree paths. They also improve the algorithm by

removing the need to build conditional tree for sub-tree since all subsets of an extracted

tree path can be enumerated and their expected supports summed to find the frequent

ones.

Based on the definition of expected support count in Chui et al. (2007), items existential

probabilities are used to calculate the expected support counts. This approach is however

better in that it eliminates the candidate sequence generation associated with U-apriori by

Chui et al. (2007).

The tree UF-tree is constructed in a way similar to FP-tree by Han et al. (2000) except

that nodes also store the probability value of their items in addition to the label and their

number of occurrences. As a result, similar items may be represented with different nodes

when they share similar prefixes if they have different probability values. The proposed

solution first scans the uncertain database to calculate expected support count of items.

The frequent items greater than the minimum support are then ordered by the value of

their support counts. This order is then used to scan the database the second time to

construct the UF-tree after the items have been arranged in this order and the infrequent

ones removed.

43

Given the following database:

Transactions

ti

t2

t3

U

t5

t6

Web logs

(a:0.9,c:0.81,d: 71875, e:0.72)

(a:0.9, d:0.72, e:0.71875, f:0.8)

(b:0.875, c:0.85714)

(a:0.9,d:0.72,e:0.71875)

(b:0.875, c:0.85714, d:0.05)

(b:0.875, f:0.85714)

Frequent sub-sequences

(a:0.9, c:0.81,d: 71875, e:0.72)

(a:0.9,d:0.72, e:0.71875)

(b:0.875, c:0.85714)

(a:0.9, d:0.72, e:0.71875)

(b:0.875, c:0.85714, d:0.05)

(b:0.875)

Table 33: The uncertain database

Each tuple in the uncertain database contains items with their associated existential

probabilities. For example, tuple t\ in Table 33 contains items 'a', 'c ' , 'd', and 'e with

existential probabilities 0.9, 0.81, 0.71875 and 0.72 respectively. The existential

probability of each item in the database is then scanned in each tuple. The sum of the

existential probabilities for each item represents the expected support count of the item.

The support count of item 'a' for example, is found by adding 0.9 + 0.9 + 0.9 = 2.7 as

found in ti, Xi and U- Using the minimum support of 1, items a, b, c, d and e are found to

be frequent with expected support count of a = 2.7, b = 2.625, c = 2.52429, d = 2.20875

and e = 2.1575. Item f is infrequent with support count of 0.9. The transactions are

arranged in descending order of their expected support whenever they appear in the

database. The order used is a, b, c, d, e since the expected support count of item 'a' is the

highest and that of 'e ' is the lowest. Item f is removed from the database since it is not

frequent. The resulting ordered and frequent sub-sequences are as shown in the last

column of Table 33.

The UF-tree is then constructed by scanning the frequent sub-sequences. Starting from

the root node, the first frequent sub-sequence (a:0.9, c:0.81, d: 71875, e:0.72) is entered

into the tree as the leftmost sub-tree since there no previously existing nodes. The count

for each node initialised to 1 and their corresponding existential probability values are

recorded. The second frequent sub-sequence (a:0.9, d:0.72, e:0.71875) is read. Starting

from the root, since a node with label 'a' already exist with the same existential

44

probability, the count of this node is incremented by 1. Item 'd' is read. A new node is

created as no node with label 'd' exists along this path. Its count is set to 1 and the

existential probability 0.72 is recorded. New node is also created for item 'e' along this

path and the existential probability 0.71875 recorded with the count is also set to 1. The

same process is repeated for sequence (b:0.875, c:0.85714) with which a new right sub­

tree is created from the root node since no node with label 'b ' exists as child to the root

node. As a general rule, new nodes are created if no node already exist with the same

label and existential probability along a path. If a node with the same label but different

existential probability exist in a path, a new node must be created. Nodes with the same

label are then linked in order to help in building conditional suffix tree during mining.

The completed UF-tree is shown in Figure 7.

Figure 7: The UF-tree

UF-growth mining also operates like the FP-growth, except that for each extracted tree

path, the expected support of a pattern is calculated by the sum of the product of the

expected support of its constituent items.

Starting with item e, the conditional suffix tree of item e is built by extracting all prefix

pattern of item 'e ' without including item 'e'. Each of the existential probability values of

the items in the pattern is then multiplied by the existential probability value and count of

'e'. The sequences are {(a:0.9 x 0.72):1, (c:0.81 x 0.72):1, (d:0.71875 x 0.72):!} and

45

{(a:0.9 x 0.71875):2, (d:0.72 x 0.71875):2}. The support count of the items is then based

on the sum of products of existential probabilities and count of item 'e' for each item in

the pattern. Support count of item 'a' is found to be (0.9 x 0.72 x 1) + (0.9 x 0.71875 x 2)

= 1.94175. That of item 'c ' = (0.81 x 0.72 x 1) = 0.5832 and item 'd' = (0.71875 x 0.72

x 1) + (0.72 x 0.71875 x 2) = 1.5525. Therefore, 'ae' and 'de' are frequent patterns.

Since the support count of item 'c ' is less than the minimum support 1, item 'c ' is

removed and the resulting sequence is used to build the conditional prefix tree of e (|e) as

shown in Figure 8.

0.72 0.71875

Figure 8: |e

The conditional prefix tree |de can also be built from figure 8 by extracting item 'a' along

the paths (a:0.9 x 0.71875 x 0.72 x 1) and (a:0.9 x 0.72 x 0.71875 x 2). The total support

count of i t em 'a '= (0.9x0.71875x0.72x1)+ (0.9x0.72 x 0.71875x2)= 1.39725.

Since the 1.39725 is greater than the minimum support 1, pattern 'ade' is also frequent.

The |de is shown in Figure 9.

a

0.5175

Figure 9: |de

The same procedure is used to build conditional suffix tree for items d, c, b and a. The

following patterns are found to be frequent: (a), (a,d), (a,d,e), (a,e), (b), (b,c), (c), (d),

(d,e) and (e). The limitation associated with this technique is that it will only cater for

uncertainty within the domain of non-sequential pattern. This is as a result of re-ordering

46

of the items in the sequence of the original database. The algorithm only discovers

frequent patterns in uncertain data but fail to ascertain the order in which the frequent

pattern occurs. For instance in the example above, the algorithm only discovers (a,d,e) as

a frequent pattern but can not confirm the order in which the item appear. We can only

assume at least one of (ade), (aed), (dae), (dea), (ead) or (eda) is frequent.

47

3. PROPOSED MINING OF UNCERTAIN WEBLOG
SEQUENCES WITH ACCESS HISTORY PROBABILITIES
Recently, there has been the emergence of novel database applications in various non-

traditional domains, including World Wide Web, location-based services, sensor

networks, RFID systems, and biological and biometric databases. Traditionally, data

mining has been widely used to reveal interesting patterns in the vast amounts of data

generated by such applications. However, for most of these emerging domains, data are

often riddled with uncertainty, arising, for instance, from inherent measurement

inaccuracies, sampling errors, and network latencies.

It is in the light of this that Uncertain Position Coded Pre-order Linked Web Access

Pattern (U-PLWAP) algorithm is proposed to provide solution in mining data that are

associated with uncertainty. The uncertainty can be introduced, for example, in web logs,

based on web log histories of different users. Leung et al. (2008) suggest that probability

values (existential probabilities) demonstrating uncertainty of items can be deduced from

history of the data.

Given the history of web logs of users over a particular time, the web log can be grouped

by session and user. The likelihood of the last session being a true reflection of each user

can then be expressed in probability values calculated from the history of each user. The

result of the mining done with this data can then be useful in rearranging web pages for

convenient browsing. Equally, it removes biases and makes the result more accurate since

users' web log history is considered and the influence of the history only affect existential

probability values of the user only. For instance, given four different web log sessions as

shown in Tables 34a, 34b, 34c and 34d, user IDs 10 and 30 participate in all the 4

sessions while user ED 20 only takes part in twice. The most current session is time 4.

The four web log sessions are then merged into one database and ordered by user ED and

time so that the most current web log for each user comes first as shown in Table 35.

48

User ID
10
20
30

Time
1
1
1

Web log
(a,c,a,c)
(a,c,b)
(a,e)

User ID
10
30

Time
3
3

Web log
(a,d,a,b)
(a,c,e,b)

User ID
10
20
30

Time
2
2
2

Web log
(a,d,c,a)
(a,d,e,d)
(a,e,d,e)

b
User ID
10
30

Time
4
4

Web log
(a,b,c,d)
(a,b,d,b)

Table 34: The 4 different web log sessions

User ID
10

20

30

Time
4
3
2
1
2
1
4
3
2
1

Web logs
(a,b,c,d)
(a,d,a,b)
(a,d,c,a)
(a,c,a,c)
(a,d,e,d)
(a,c,b)
(a,b,d,b)
(a,c,e,b)
(a,e,d,e)
(a,e)

Table 35: The merged and sorted logs for the different sessions

The four different sessions have been merged and sorted by their user IDs and time. This

makes it possible to define the existential probability of the latest log based on the history

of the other sessions for each user.

The existential probability prob(u(e)), of each event e, for each user u, in the most current

log is given as . Number of existence of event e in any record of u
prob (u(e)) = — — — —

Total number of records of u

The likelihood of having the latest log to be a true reflection of how each user browses

the site over a number of sessions is calculated as follows:

User ID 10: Since 'a' appears at least once in all the 4 logs, existential probability of 'a'

is given as 4/4 = 1. Item 'b ' appears only in the first two logs, its existential probability is

2/4 = 0.5. Item 'c ' appears 3 times, its existential probability is 3/4 = 0.75 and that of d is

2/4 = 0.5.

49

Using the same method, user ID 20's existential probability values for the integrated log

is:

'a' -2 /2 = 1

'd' = 1/2 = 0.5

'e' = l/2 = 0.5

User ID 30:

'a' = 4/4 = 1

'b ' = 2/4 = 0.5

'd' = 2/4 = 0.5

The uncertain sequence to be mined is therefore given as in Table 36:

UserJD

10

20

30

Web logs

(a:l,b:0.5,c:0.75,d:0.5)

(a:l,d:0.5,e:0.5,d:0.5)

(a:l,b:0.5,d:0.5,b:0.5)

Table 36: Uncertainty in sequences

For User_ID 10, for example can therefore be said to have visited page 'a' at 100%

certainty for every session. Pages 'b ' , 'c ' , and 'd' have 50%, 75% and 50% certainty of

being visited for every session of UserED 10.

3.1 Observation on uncertain sequences
Given the databases below:

Cust-Id

10

20

30

Sequences

a:l,b:0.5,c:l,d:0.7

a:l,c:0.2,b:0.1,d:l

a:0.5,b:l,d:l,c:l

Cust-Id

10

20

30

Sequences

abed

acbd

abdc

Table 37: Sequence without probability Table 38: Sequence with uncertainty

The support count of sequence 'ac' in Table 37 is 3 whereas the support count of 'ac' in

Table 38 will be calculated as (lxl) + (1x0.2) + (0.5x1) = 1.7

50

It is noted here that unlike in traditional precise sequences where occurrence count of an

item automatically contributes towards the support count of an item, the sum of the

product of the existential probability values are used in arriving at support counts.

An equally important observation with uncertain data item is that items with the same

label can have different existential probability values. It is therefore important to record

item's label, occurrence count and existential probability values in order to accurately

determine frequent sequences.

3.2 Preparing data for U-PLWAP algorithm
In order to generate existential probabilities for weblogs as described earlier, weblogs for

different sessions need to be collected and cleaned. These weblog sessions are merged

into one file after each record is identified by combination of customer ID and the session

number/time. The file is then sorted by customer ID and partially by session number (in

order to pick the latest session for each customer ID). The existential probability (denoted

as prob (u(e))) of each event e, for each user u, in the most current log is given as

Number of existence of event e in any record of u

Total number of records of u

The computation of existential probabilities is presented formally as shown in Figure 10:

Algorithm 1: Existential probability algorithm
Input: Web Access Sequence Databases (WASDs), Minimum Support
Output: Uncertain Web Access Sequence Database (UDB)
Intermediate: eventsequence, prob_sequence
Begin:

1. Merge all logs into one file
2. Sort the file by customer ID and partially by session number (the latest weblog session is at the top for

each set of unique customer ID)
3. For each sequence in merged file

Scan customer ID, latest sequence into eventsequence
Find probsequence by dividing the total number of presence of each item in eventsequence by the
total number of records with the unique customer ID
Write into UDB customer ID, eventsequence, prob_sequence

4. Return UDB
End

Figure 10: The Existential Probability algorithm

51

The length of access history period (LAH) plays a major role in determining the

execution time of the existential probability algorithm specified in Figure 10. Longer

access period will most likely generate more web logs, provided that the traffic is

uniform during the period, thereby increasing the execution time. The length of each

session (LOS) also affects the speed of execution of existential probability algorithm. If

for example web logs are collected over a year period (LAH = 1 year), they can be

divided into sessions of 12 months (LOS = 1 month). This therefore generates a

maximum of 12 tuples (1 for each month session) for each user over the 1 year access

period. If however sessions are based on a weekly basis (LOS = 1 week), each user has a

maximum of 52 tuples. This therefore increases the number of tuples to be sorted in the

existential probability algorithm, which in effect increases the execution time of

existential algorithm. It is important to note that the length of each tuple in the LOS of 1

week will be shorter than that of 1 month. The U-PLWAP algorithm in Figure 11

therefore takes longer time to run when LOS is 1 month compared to LOS of 1 week as

shown in section 4.1.3. Both LAH and LOS are specified by the users of the result of the

mining process in a way that best suits their need.

It is also important to note that the existential probability algorithm generates the same

value for repeated events/items of the same tuple. This is because the total sample space

of each event is restricted to each user and only events in the latest web logs are

considered for the existential probability computation. As a result, the problem that may

arise due to existence of different existential probability values for repeated events in a

tuple is resolved. If however this scenario occurs in another application domain, the

highest existential probability value among the various values can be chosen from each

tuple. For example if a tuple consists of (a:l, c:0.5, a:0.5, b:0.25, a:0.4), the value 1 is

chosen to compute the expected support count of event 'a' in the U-PLWAP algorithm in

Figure 11

3.3 Building U-PLWAP algorithm
The motivation of the proposed solution came from the numerous advantages that are

associated with PLWAP algorithm discussed in section 2.3.4. However, since PLWAP

only mines precise sequences, designing an algorithm based on PLWAP but extended to

52

cater for uncertain sequences will be a welcome idea. The following extensions are made

to PLWAP in order to mine uncertain data. The extensions are based on the observations

noted in section 3.1.

• The use of the most current web log access history to define each item's

existential probability for each user

• Each node representing items in U-PLWAP tree records item's label, occurrence

count, position code and set of existential probability values

• Sequences that share the same prefix/suffix but differ in existential probability of

constituent items are combined into same node, making the U-PLWAP tree a

more compact and faster to mine. UF-growth algorithm, however creates separate

nodes for similar items having different existential probabilities.

• The mining process is done on each suffix tree by dynamically generating

cumulative product sequence when new temporary nodes are found. This

eliminates the need to search for existential probabilities of items found from the

root of the tree to the newly found temporary nodes.

3.4 The U-PLWAP algorithm
This newly proposed algorithm works by first scanning the sequence database to discover

the frequent 1-sequences. The second scan of the database is used to remove non-frequent

items from the sequence database. The resulting sequence is then used to build

U-PLWAP tree. The header table is then created for each frequent 1-sequence, using it to

link all identical nodes in a pre-ordered version. The U-PLWAP tree is then mined

recursively using prefix conditional search with the data items created on the header table.

U-PLWAP eliminates the need to search for existential probability from root of the tree

to the newly found temporary roots (as would have been done if direct application of

PLWAP is to be used) by dynamically generating cumulative products of items found

along each suffix tree. This is because there is need to find the products of all existential

probability values of items found from the root to the temporary roots of the U-PLWAP

tree at any point in time during mining operation. U-PLWAP is also richer than

53

UF-growth in output since U-PLWAP discovers frequent sequential pattern while UF-

growth does not. Comprehensive description of the steps involved is as follows:

Stepl: The U-PLWAP scans the sequence database to discover the frequent

1-sequences.This is done by adding up all existential probability values for each item

whenever they occur in the database. Whenever an item is repeated in a particular

sequence, its existential probability is only added once. The frequent 1-sequences are

those items with counts greater than or equal to the minimum support threshold.

Step2: Each of the frequent 1-sequences is used to create entries in the header table.

Step3: A second scan is used to create U-PLWAP tree after the non frequent data items

have been removed from the sequence. The U-PLWAP tree is created starting from a null

root. Sequences are read from the database and nodes are created for each item in the

sequence. Each node contains the item's label, occurrence counts and position code,

denoted as label:count:position code. Since similar labels with different existential

probabilities in a path are merged into one node, each sequence read is identified by its

sequence ID and recorded against the existential probabilities of its items in every node.

A left node is created if no node already exist, otherwise, a right node is created and the

count initialised to 1. If node already exists, its count is incremented by 1. The position

code of each nth leftmost node is determined by appending the binary value of 2""1 to the

end of the position code of its parent. The item label and its existential probabilities are

read from the sequence database. Entries created in the header table are then used to link

their corresponding nodes by traversing the U-PLWAP tree in a pre-ordered fashion

(from root to left node first before right node). This makes U-PLWAP tree traversal faster

and more efficient since similar nodes in the same suffix tree are brought closer.

Step4: The U-PLWAP tree created is then mined recursively using prefix conditional

search. Starting from the root with a particular frequent item 'a' (in order to find all

frequent items starting with a) on the header table, all sub-trees are traversed to search for

the first occurrence of item 'a'. Its expected support count is calculated by summing all

existential probabilities recorded for each sequence ID for all nodes found. Item 'a' is

frequent if its expected support count is greater or equal to the specified minimum

support count. The sub-trees are rooted at this point. A sequence of cumulative product of

54

existential probabilities of items contained in each sequence ID from the root of U-

PLWAP tree to all the new roots is then generated. Since this is the only item found so

far, the entries in the sequence of the cumulative product of the existential probabilities

are the same as the values of the existential probabilities for each sequence ID present in

the new root found. The search continues down the tree in order to find another frequent

sequence say 'aa'. The same process is repeated once another first occurrence of 'a' is

found on all sub-trees. The sequence of cumulative product of the existential probability

of items found for each sequence ID is then updated with the product of the existential

probability of the newly found 'a' and the last cumulative product of existential

probability having the same sequence ID. The expected support count of 'aa' is found by

summing all entries in the updated sequence of cumulative products of existential

probabilities. If no such 'a' is found, the algorithm backtracks to the last root and search

for another item 'b' . The process continues recursively until no more item is found. The

algorithm then backtracks to the null root to start mining for sequences starting with a

fresh item from the header table.

The terms used in the algorithm are defined as follows:

1. The root of the U-PLWAP tree referred to as root

2. UDB is the uncertain web access sequence database derived from the history of

the web log sessions

3. Link header table is a list containing all frequent 1-events from which identical

labels in the U-PLWAP tree can be linked to form event queue

4. Root_set is the set of temporary nodes found in each suffix tree

5. Minimum support is the threshold with which counts of events should be greater

than or equal to in order to be frequent

55

Formal presentation of the U-PLWAP algorithm is as shown in Figure 11:

Algorithm 2 : The U-PLWAP algorithm

Input: Uncertain Web Access Sequence Database (UDB), Minimum Support X (0< X<1)
Output: Complete set of frequent patterns fp in UDB
Begin:

1. Find the frequent 1-items as by calling the Frequentl events algorithm (Figure 12)
2. Insert all frequent 1-items in the Link header table
3. Build U-PLWAP tree from the UDB by calling U-PLWAP_tree algorithm on Figure 13
4. Recursively mine the U-PLWAP tree by calling Mine algorithm on Figure 14

End
Figure 11: The U-PLWAP algorithm

Algorithm 3: The Frequentlevent algorithm

Input: Uncertain Web Access Sequence Database (UDB) drawn from the set of events E with existential
probabilities p attached to each event e in sequence , Minimum Support X
Output: Complete set of frequent 1-items F b frequency f
Intermediate variables: Iterator k, Check set Ch (records events found already in a sequence)

Begin:
1. f= X * number of tuples in UDB
2. Initialize Fj to empty set
3. For each sequence S in UDB

Begin
Initialize Check set Ch to empty set
For each event e in sequence S

Begin
If event e e Fi

If e e Ch
Add existential probability e.p to count of e in Fi
Add e to Check set Ch /*To avoid counting e.p more than once in a sequence */

Else
Add event e to Fi
Set count of e in F] to e.p

End
End

4. Set k to the start of F!
5. While k<> end of F!

Begin
If the count of item at k < f

Remove event at k from the Fi
k = k + l

End
6. Return F[, f

End
Figure 12: Frequent 1-events algorithm

56

Algorithm 4: The U-PLWAP tree algorithm

Input: Uncertain Web Access Sequence Database (UDB), Link header table L
Output: U-PLWAP Tree T, Linked Link header table
Intermediate variables: Boolean Variable NodeFound

Begin:
1. Create root node of T with event label set to NULL, position code set to NULL and count set to 0
2. For each access sequence S in UDB

Begin
Extract frequent sub-sequence S' from S by removing all events in S but not in L
Let S' = eie2e3 ... e„ where e; are events in S' and n is the length of S'
Let currentnode point to the root node of T
For i = 1 to n do

Begin
If left child of currentnode is NULL, then create a new child node (e;: 1) and its position code

is formed by appending " 1 " at the end of the position code of the current_node
Register existential probability of e; against the sequence ID of S'
Make the currentnode point to the newly created node

Else If currentnode is labeled ej, then set Nodefound to true
Increase support count by 1 and register existential probability of e; against the
sequence ID of S'

Else
Let the currentnode point to currentnode.rightsibling, and keep checking whether
current node is labeled ej, until there is no more right sibling or ej is found

If NodeFound
Then increase the count of e; by 1 and register existential probability of ej against the
sequence ID of S'
Make the current_node point to the node of ej

Else
Create a new child node (e^ 1) and its position code is formed
by appending "0" at the end of the position code of the current_node
Register existential probability of e; against the sequence ID of S'
Make the currentnode point to the newly created node

End
End

3. Entries in the Link header table are then linked to corresponding nodes in the U-PLWAP tree in a pr-
ordered fashion (from root to left child and then right child)

4. Return T with the linked Link header table
End

Figure 13; U-PLWAP_tree algorithm

The U-PLWAP tree algorithm works by first creating the root nodes and initialising its

label and position code to null while its count set to 0. Each sequence is then extracted

from the database. For each sequence scanned, its constituent items are checked if they

are frequent (from the list of frequentl-items in L). Current node is first made to point to

57

the root node. Starting from the root node, the left child is checked if it exists. If it is

NULL, a left child is created and the label set to the item while count is set to 1. The

position code is found by appending ' 1' to the end of position code of current node, the

existential probability of the item is also registered against its sequence ID in the set of

existential probability values. When a left child already exists and has same label as the

item read, its count is incremented by 1 and its existential probability entered against the

sequence ED in the set of existential probability values. If however, the left child has a

different label from the item read, the U-PLWAP algorithm continues to search all the

right siblings for a match. When a match is found, its count is incremented by 1 and its

existential probability entered against the sequence ID in the set of existential probability

values. In the situation where no match is found in all the right siblings, a fresh right

sibling is created. The label of the newly created right sibling is set to the item while

count is set to 1. The position code is found by appending '0 ' to the end of position code

of the current node and the existential probability of the item is registered against its

sequence ID in the set of existential probability values. The current node is then set to the

newly created node.

The next item is then read while still keeping track of the point reached in the tree

through the current node pointer. The whole process is repeated until the end of the

sequence fetched is reached. A new sequence is then fetched, this time the current node

pointer is set to the root of the U-PLWAP tree.

58

Algorithm 5: The Mine Algorithm

Input: U-PLWAP tree T, Root_set R, Link header table L, set of cumulative Product of existential probabilities K,
Frequent n-sequence F, Minimum support X (R contains root, K and F are empty when the algorithm is called the first
time)
Output: Frequent n-sequence F'
Intermediate variables: S stores the information of node whether it is the ancestor of the following node in the queue
of similar nodes, C stores the total count of event ej in different suffix tree

Begin:
1. If R is empty, return
2. For each event e; in L, find the suffix tree of e; in T (e; |suffix tree)

Save first event in ej -queue to S
Following the ej -queue

If event e; is the descendant of any event in R, and is not the descendant of S
Insert node of e; into new root set R'
Replace S with ej
If K is empty

Add all existential probability entries in node ej into C
Enter all entries of existential probabilities in node ej into K', each identified by sequence ID

Else
Find products of corresponding entries in K and entries of set of existential probability values
in node e;
Add all the products found to C
Enter each product of existential probability values in node ej into K', each identified by
Sequence ID

If C is greater than X
Append ej to end of F to form F' and output F'
Call algorithm 4 passing R', F' and K'

End
Figure 14: Mine algorithm

The Mine algorithm works by accepting the root of the U-PLWAP tree (The Root_set R

is initialised with the root of the U-PLWAP tree), the set of cumulative product K and set

of frequent pattern F as input (K and F are set to empty set). The link header table L is

also an input. Mining starts by finding frequent sequence that begins with entries in the

header table. For each entry in L, the algorithm finds its set of suffix tree(s). Each node

found is entered into new set of R (R') if it is the first occurrence of event e; along each

suffix tree path. The queue linking all nodes of type e; is followed in order to discover the

first nodes in each suffix tree path. The sum of all existential probability entries for these

nodes is then added to count C if K (cumulative products found so far) is empty. Each of

the existential probability entries is also entered into K'. If K is not empty (Not the first

59

time of calling algorithm 3), each corresponding entries in the cumulative products of

existential probabilities of events found before (i.e contained in K) is found and

multiplied with the entries of existential probabilities of the current nodes, the sum of

which is added to variable count C. The set K' is updated by each of the products of

existential probabilities found with each entry identified by its sequence ID.

The value of count C is then compared to the minimum support value X. If count is

greater or equal to X, ej is appended to the end of F and printed as output. The mine

algorithm is then called again with new sets R', F' and K'. If count is less than X, then this

signals the end of all frequent sequences starting with event ej. The next event is selected

from the header table L and the whole process repeated.

3.5 Example of mining using U-PLWAP
Given the uncertain sequence database shown below:

UserJD

10

20

30

40

Web logs

(a:l,b:0.5,c:0.75,d:0.5)

(a:l, b:0.25, d:0.5, c:0.25,d:0.5, e:0.2)

(a:l,b:0.5,c:0.75,d:0.25, e:0.5)

(b:l, c:0.5, a:l, d:0.5, c:0.5, f:0.2)

Frequent sub-sequences

(a:l,b:0.5,c:0.75,d:0.5)

(a:l, b:0.25, d:0.5, c:0.25,d:0.5)

(a:l,b:0.5,c:0.75,d:0.25)

(b:l,c:0.5, a:l,d:0.5,c:0.5)

Table 39: Sample uncertain sequence mined with U-PLWAP

Assuming the minimum support value is 1 out of 4 tuples, that is 25%. The expected

support count values for all the items are calculated by adding up the existential

probabilities of the item in each tuple. For example, the existential probability of item 'a'

in user ID 10 is 1. The same value (1) is present in user IDs 20, 30 and 40. The expected

support count of item 'a' is therefore given as 1 + 1 + 1 + 1 = 4. In the same vein, item

'b' has existential probabilities 0.5, 0.25, 0.5 and 1 in user IDs 10, 20, 30 and 40

respectively. The support count of item 'b' is therefore calculated as 0.5 + 0.25 + 0.5 + 1

= 2.25. The same process is used to find expected support counts for items 'c', 'd', 'e '

and ' f as follows:

60

Item a =1+ 1 + 1 + 1 = 4

Item b = 0.5 + 0.25 + 0.5 + 1 = 2.25

Item c = 0.75 + 0.25 + +0.75 + 0.5 = 2.25

Item d = 0.5 + 0.5 + 0.5 +0.25 = 1.75

Item e = 0.2 + 0.5 = 0.7

Item f= 0.2

Items 'e' and ' f are non-frequent and are removed from the sequences. The resulting

frequent sub-sequences are as shown on the last column of Table 39.

The U-PLWAP tree is then built by first creating the root which is null. The first

sequence a:l,b:0.5,c:0.75,d:0.5 is entered into the tree as the leftmost sub-tree since there

no previously existing nodes. The count for each node initialised to 1 and their

corresponding existential probability value are recorded. Each of the existential

probabilities are also recorded against the sequence ID. The position codes for the nodes

are given using the rule specified in step 3 of section 3.3. Figure 15 shows this process.

The second sequence a:l, b:0.25, d:0.5, c:0.5,d:0.5 is read. Starting from the root, since a

node with label 'a' already exist with the same existential probability, the count of this

node is incremented by 1. Its sequence ID is recorded against its existential probability.

Item 'b' is read. The existential probability 0.25 is recorded against sequence ID 20 and

the count of label 'b ' set to 2. Item 'd' is read. Since no node exists with label 'd' along

this path, a new child of node b:2:ll is created. New nodes are also created for items 'c '

and 'd' as shown in Figure 16. The other two sequences are read following the same rules

as shown in Figure 17 and Figure 18. Header table linking the corresponding nodes in a

pre-ordered fashion (by visiting the root, leftmost sub-tree first and then right sub-tree) is

also created. The completed linked U-PLWAP tree is as shown on Figure 19

61

Figure 15: The U-PLWAP tree after reading the first sequence.

62

Figure 16: The U-PLWAP tree after the second sequence is read

63

Figure 17: The U-PLWAP tree after the third sequence is read

64

Figure 18: The U-PLWAP tree after the fourth sequence is read

65

Figure 19: The complete linked U-PLWAP tree

If C is the sequence of cumulative products of sequences found at an immediate old roots

and S is the sequence of existential probabilities of new root, with entries of both

sequences identified by sequence ID, the expected support count of the sequence (X)

found at new root is given as:

Expected support (X) = Z (Q D * SID)

Where Q D and SID are the entries at corresponding sequence IDs of sequence of

cumulative product and sequence of existential probability respectively. It is assumed that

the items exist independent of one another (independence of events).

66

Using Figure 19, mining starts by checking for frequent sequences starting with 'a'. From

the root, the U-tree is traversed for the first occurrence of a in the suffix trees of the root

node. In this case: a:3:l and a: 1:1011. The expected support of 'a ' is then calculated as (1

+1+1) + (1) = 4. This confirms 'a' is frequent since 4 is greater than the minimum

support 1. A sequence of cumulative products of existential probability of all items found

so far is created at this point. Since these are the first set of items, the sequence is

(1, 1, 1, 1) representing each of the 4 paths 10, 20, 30 and 40 respectively. Figure 20

shows this process.

The tree is then rooted at points a: 3:1 and a: 1:1011 and their suffix trees are traversed for

another occurrence of 'a' to check if 'aa' is frequent. No occurrence of 'a' is found. The

algorithm then backtracks to the roots a:3:l and a:l:1011. A new sequence 'ab' is then

checked by traversing the suffix trees to search for the first occurrence of 'b ' . Item 'b ' is

found at b:2:ll. The suffix trees are then rooted at this point. The expected support for

'ab' is then calculated by summing the product of entries representing each path in the

cumulative product sequence and the existential probability values of items in the new

found 'b'. The expected support for 'ab' is then found as: (1 x 0.5) + (0.25 x 1) + (1 x

0.5) = 1.25. Since 1.25 is greater than 1, 'ab' is frequent. The entries of the new sequence

of cumulative product of existential probability is then generated as (0.5, 0.25, 0.5)

representing the paths 10, 20 and 30 respectively as shown in Figure 21.

67

Sequence of cumulative product of probabilities

10

1

20

1

30

1

40

1

Header Table

Figure 20: Conditional suffix tree of 'a'

68

Sequence of cumulative product of probabilities

10

1

0.5

20

1

0.25

30

1

0.5

40

1

-

Header Table

Figure 21: Conditional suffix tree of 'ab'

Using the same technique, 'aba', and 'abb' were not found. Item 'c ' is found at nodes

c: 2:111 and c:l:l 1101. The suffix trees are rooted at these nodes. The expected support

69

of 'abc' is calculated as: (0.5 x 0.75) + (0.5 x 0.75) + (0.25 x 0.25) = 0.8125. 'abc' is

therefore not frequent.

The process is recursively repeated following the same logic and the frequent sequences

found are: a, ab, ac, ad, b, be, ba, bd, c, d.

Using the same example in table 39 with the U-apriori technique gives same result. To

start with, the frequent 1-items are: a, b, c, d with expected support of 4, 2.25, 2.25 and

1.75 respectively. A self join of this gives the following candidate sequences: aa, ab, ac,

ad, ba, bb, be, bd, ca, cb, cc, cd, da, db, dc, dd. The database is scanned to detect the

frequent 2-items. The sequences are ab, ac, ad, be, ba, bd. Apriori gen join is performed

on these sequences and database scanned all over again. The next candidate sequences

are: aba, abc, abd, bac, bad. The database is then scanned again to calculate each of the

candidate sequence expected support count. None of these is found to be frequent as

shown in Table 40 and Table 41.

C2
aa
ab
ac
ad
ba
bb
be
bd
ca
cb
cc
cd
da
db
dc
dd

Expected Support count
-

1.25
2.25
1.75
1
-

1.3125
1
0.5
-

0.25
0.9375
-
-

0.25
0.25

Frequent?
-

Yes
Yes
Yes
Yes
-

Yes
Yes
No
-

No
No
-
-

No
No

C3
aba
abc
abd
bac
bab
bad
Tab

Expected. Support count
-

0.8125
0.5
0.5
-

0.5
e 40: U-apriori details for

Frequent?
-

No
No
No
-

No
C3

Table 41: U-apriori details for C2

70

4. COMPARATIVE ANALYSIS
This chapter shows analysis of how the proposed solution is more efficient than

previously existing U-apriori technique. While PL WAP is an efficient algorithm, it is

designed to mine precise data sequence only. UF-growth algorithm though mine

uncertain data sequences, it only produces non-sequential frequent patterns.

4.1 Comparing U-PLWAP with U-apriori and UF-growth
The approach of Leung et al. (2008), though cater for uncertain data, only generate non­

sequential patterns. Comparing U-PLWAP with UF-growth might not be suitable since

they produce different results. Chui et al. (2007) found that LGS outperforms U-apriori

algorithm. It is however unclear how the trimmed sequence does not affect the final

results in LGS. U-apriori is based on apriori principle that generates candidate sequences.

The technique still inherits the problem of repeatedly scanning database and handling

long sequences.

In this section, experiments are conducted to see the effect of varying different

parameters on both U-PLWAP and U-apriori. The experiments are conducted on Sun Fire

880, UltraSparc III+ processor (8) (1200MHz x 8) with 16GB RAM. The clock speed is

150MHz. The operating system is Unix and the implementation is done with C++.

Synthetic data is used from the IBM data generator. Because the IBM data generator does

not completely serve the needed input data sequences, the U-PLWAP approach is

simulated by generating 3 different versions of the synthetic data from which existential

probabilities are generated as described in Figure 10 for each experiment. The following

notations are used for the description of the datasets:

|D| = The data size

|C| = The average length of sequence

|N| = Number of unique items

71

4.1.1 Effect of minimum support on execution time
The following parameters describes the dataset used for this experiment

|D| = 20K

|C| = 6

|N| = 2119

Minimum Support
U-apriori (sec)
U-PLWAP (sec)
UF-growth (sec)

0.002
20012

10
22

0.003
4767

4
11

0.004
1099

3
6

0.005
233

2
3

Table 42: The performance of U-PLWAP, UF-growth and U-apriori with different
minimum support

The experiment demonstrates that U-PLWAP is more than 100 times faster than U-

apriori in all cases examined. The execution time increases with lower minimum support

values as more frequent sequences are found with lower minimum support value. The U-

PLWAP algorithm only traverse the tree to find and calculate potentially frequent

sequences and their support counts while U-apriori first generate candidate sequences

(potentially frequent sequences) and for each sequence scan the database for its support

count. Figure 23 also shows that U-PLWAP is at least 50% faster than UF-growth in

addition to the richer result U-PLWAP generates.

U-PLWAP Vs. U-apriori: Effect of changes in minimum
support on exec, time

-•— U-apriori (sec)
* - U-PLWAP (sec)

Figure 22: The graph comparing execution time of U-PLWAP with U-apriori when
minimum support values vary

_ 25000
o
j» 20000
a>
.1 15000
c
o

IP
3
U
a>
x

LU

10000

5000

0

0.002 0.003 0.004

Minimum support

0.005

72

U-PLWAP vs. UF-growth: Effect of varying
minimum support

••-U-PLWAP (sec)

m— UF-growth (sec)

Figure 23: The graph comparing execution time of U-PLWAP with UF-growth
when minimum support values vary

4.1.2 Effect of varying data size on execution time

The following parameters are used for the dataset

Minimum support = 0.005

|C| = 6

Average |N| = 2249

Data size (K)
U-apriori (sec)
U-PLWAP (sec)
UF-growth (sec)

20
223

2
3

40
474

5
7

60
603

6
8

80
903

9
12

Table 43: The performance of U-PLWAP, UF-growth and U-apriori with different
data sizes

The effect of varying the data size while maintaining the same minimum support value

also demonstrates that U-PLWAP is extremely faster with the execution time increasing

with increased data size. The U-PLWAP is more than 50 times faster in the cases shown.

Figure 25 also demonstrates that U-PLWAP is 33% faster than UF-growth despite the

fact that UF-growth only generates frequent non-sequential patterns.

0.002 0.003 0.004

Minimum support

0.005

73

U-PLWAP Vs U-apriori: Effect of varying data size
on exec, time

^ 1000

«- 800
0)
E

c
o
3
O
0)
X
u

600

400

200

-•—U-apriori (sec)

~m— U-plwap (sec)

20 40 60 80

Data size (K)

Figure 24: The graph comparing speed of U-PLWAP and U-apriori when data sizes
vary

U-PLWAP Vs UF-growth: Effect of varying data
size on exec, time

o
fl>
42-
v
E
^B
c
o
3
O
0>
X

UJ

14
12
10
8
6
4
2
0

•U-PLWAP (sec)

- UF-growth (sec)

20 40 60 80

Data size (K)

Figure 25: The graph comparing speed of U-PLWAP and UF-growth when data
sizes vary

4.1.3 Effect of varying length of sequence on execution time
The parameters used are:

Minimum support = 0.004

|D| = 10K

Average |N| = 6832

74

Sequence length
U-apriori (sec)
U-PLWAP (sec)
UF-growth (sec)

10
2
1
2

20
1392

4
6

30
30357

14
34

Table 44: Comparison of U-PLWAP, UF-growth and U-apriori with different
sequence length

The U-PLWAP algorithm outperforms both U-apriori and UF-growth when length of

sequence is varied, but the number of operations involved in U-PLWAP increases with

longer sequence. This is because the depth of the U-PLWAP tree is longer therefore

taking longer time to traverse the tree during mining. The effect of increased length is

also felt in U-apriori during candidate sequence generation. However the bulk of the

execution time lies in the database scan. Since the database size is kept constant at 10K

for the 3 databases, U-PLWAP is at least 2 times faster than U-apriori. The U-PLWAP is

also at least 50% faster than UF-growth. It is however important to note that while U-

PLWAP is a frequent sequential mining algorithm, UF-growth is a frequent non­

sequential mining algorithm.

o
o

JO,
0)

E
E
O
'-B
3
U
0)
X
Hi

35000

30000

25000

20000

15000

10000

5000

0

U-PLWAP Vs U-apriori: Effect of varying
sequence length on exec, time

I f
/ / I

/
/ I

a—......' , H

10 20

Sequence length

30

• U-apriori (sec)

• U-plwap (sec)

Figure 26: The graph demonstrating the effect of varying the length of sequence on
U-PLWAP and U-apriori

75

U-PLWAP Vs. UF-growth: Effect of varying length
of sequence

40
a>
.1 30

"J
.2 20
<-»
3
O

S 10
UJ

m

10 20 30

Sequence length

-•— U-PLWAP (sec)

-m— UF-growth (sec)

Figure 27: The graph comparing speed of U-PLWAP with UF-growth when length
of sequences vary

4.1.4 Effect of minimum support on memory use
|D| = 20K

|C| = 6

|N| = 2119

Minimum Support
U-apriori (KB)
U-PLWAP (KB)
UF-growth (KB)

0.002
138000

10000
4016

0.003
38000
4624
2960

0.004
10000
3080
2440

0.005
3680
2464
2232

Table 45: Memory consumption of U-PLAWP, UF-growth and U-apriori with
different minimum support

76

U-PLWAP, UF-growth and U-apriori: Effect of
varying minimum support on main memory

150000
S
~o 100000
N

"to

o 50000

-•— U-apriori (KB)

-m- U-PLWAP (KB)

UF-growth (KB)

0.002 0.003 0.004

Minimum support

0.005

Figure 28: The graph demonstrating the memory need U-PLWAP, UF-growth and
U-apriori with different minimum support values

The memory requirement of U-apriori is more than that of U-PLWAP in all cases but the

gap shrinks as minimum support increases. The memory requirement of U-apriori

reduces drastically with increased minimum support as smaller numbers of candidate

sequences are generated. No extra storage is needed for potentially frequent sequences in

U-PLWAP as they formed on-the-fly from the U-PLWAP tree traversal. However, lesser

memory is required for UF-growth as there is no need to keep track of the order in which

items exist.

4.1.5 Effect of varying data size on memory use
The parameters use for the data sets are:

Minimum support = 0.005

|C| = 6

Average |N| = 2249

Data size (K)
U-apriori (KB)
U-PLWAP (KB)
UF-growth (KB)

20
3680
2464
2232

40
3768
2888
2280

60
3512
3192
2288

80
3680
3648
2328

Table 46: Memory size requirement for different data sizes

77

U-PLWAP, UF-growth and U-apriori: Effect of
varying data size on main memory

4000
ST
£ 3000
0)
N

"j* 2000
r

E 1000
0)

- U-apriori (KB)

-U-PLWAP (KB)

UF-growth (KB)

20 40 60 80

Data size (K)

Figure 29: The graph showing memory requirement for the 3 algorithms when data
sizes are varied

The memory requirement of U-PLWAP increases with increase in data size but the same

cannot be said of U-apriori. This can be attributed to the fact that increase in data size

does not automatically increase the amount of data generated during candidate sequence

generation. The memory requirement of U-PLWAP is lesser than U-apriori. The UF-

growth algorithm has the smallest memory requirement due to its limitation of generating

only non sequential frequent patterns. No additional memory is required to track the order

of items.

4.1.6 Effect of varying length of sequence on memory use
The parameters are as follows:

Minimum support = 0.004

|D| = 10K

Average |N| = 6832

Sequence length
U-apriori (KB)
U-PLWAP (KB)
UF-growth (KB)

10
2240
2232
2288

20
14000
2816
2568

30
162000

10000
4864

Table 47: Memory requirement of U-PLWAP, UF-growth and U-apriori with
different length of sequence

78

U-PLWAP, UF-gowth and U-apriori: Effect of
varying sequence length on main memory

—•—U-apriori (KB)

-m— U-PLWAP (KB)

UF-growth (KB)

Figure 30: The graph demonstrating the memory requirement of the algorithms
with different length of sequence

The memory requirement for U-PLWAP increases with an arithmetic progression while

that of U-apriori increases geometrically. U-PLWAP has a lower memory utilization

which can be attributed to its non candidate sequence generation. As the length increase,

memory is required to hold possibly longer candidate sequence generated. The UF-

growth algorithm requires the least memory as no additional memory is required to track

the order of items.

4.2 Time complexity analysis
The estimate of the time complexity of both U-apriori and U-PLWAP is shown here. The

worst case scenario is considered in both cases. The following notations are used:

N - Number of sequence in the database

F - Number of frequent 1 -events

L - Length of the longest sequence

M - Length of the longest event queue

4.2.1 Time complexity of U-PLWAP
The U-PLWAP algorithm also finds frequent 1-events at the first scan of the database,

builds the tree U-PLWAP tree with the second database scan. Each frequent 1 event

found is then linked with its identical nodes in U-PLWAP tree. The mining is then done

200000
S
£ 150000
0)
N

' 100000
c
E 50000

10 20

Sequence length

30

79

recursively with the number of recursive calls for each frequent 1 item bounded by the

longest possible sequence (Worst case).

The number of operations for computing the frequent 1-events is:

A = N x L

The number of operations needed to construct the U-PLWAP tree is:

B = N x F x L

The number of operations needed for mining operation:

C = (F x M x L) + (F x M x L-l) + (F x M x L-2) + ... (F x M x 1)

Total time = A + B + C = (NxL) + (N x F x L) + (FMl(i))

where 1 < i < L.

Since X(i) where 1 < i < L is the sum of first L integers,

£(i) = ((L(L+l))/2)

Total time = (N x L) + (N x F x L) + FM ((L (L + l))/2)

= (NxL) + (N x F x L) + FM ((L2 + L)/2)

= (2(N x L) + 2 (N x F x L) + FM ((L2 + L))) / 2

Time complexity = 0(2NFL + FM (L2 + L))

4.2.2 Complexity of U-PLWAP tree in terms of number of nodes
The size of the PLWAP tree is defined by the length of the longest sequence and the

number of frequent 1-items in the database.

Total number of nodes is X(F') where 1 < i < L

This forms sum of geometric progression where F is both the first term and the common

ratio.

Total number of nodes = F(FL - 1)/(F - 1)

Complexity of number of nodes = 0(FL+1).

80

5. CONCLUSION AND FUTURE WORK
The research area in data mining and more specifically, web log sequential mining has

attracted so much interest in the in the last 15 years. Their applications have been widely

used in market basket analysis, re-organisation of web pages and advertisement

placement on websites.

Progress has been made in sequential mining, starting from the apriori algorithm by

Agrawal and Srikant (1995). Later effort sees progress in GSP, a more efficient version

of apriori algorithm. The candidate generation problem associated with apriori-based

approached were removed in WAP mine algorithm proposed by Pei et al. (2000). While

WAP mine algorithm is much better than apriori algorithm, it is also faced with having to

build intermediate trees during mining. Ezeife and Lu (2005) proposed PLWAP in order

to solve the problem of recursive construction of intermediate trees. These algorithms are

all based on precise and confirmed sequences of data.

Recently there has been effort in mining frequent pattern in areas where existence of data

may be uncertain or error prone. The only sequential pattern algorithm proposed in this

domain is apriori based which inherits the candidate generating problem of apriori

algorithm. The proposed algorithm in this thesis is therefore set out to solve this problem.

The U-PLWAP, based on PLWAP algorithm, generates sequential patterns in uncertain

sequences without generating candidate sequences, recursive construction of intermediate

trees and the need to scan the sequence database repeatedly. It also eliminates the need to

traverse the various tree paths in order to scan for existential probabilities of all items

found from the root. Instead a sequence of cumulative product of all existential

probability is generated at each step of the mining process.

The support count values for each sequence are also calculated based on independence of

events. Future work can be based on support counts calculated with conditional

probability that is dependent on the probability values of constituent items. Another

limitation of this approach is that nodes can grow larger in size as existential probability

81

values are registered for each tuple. Future research will be directed to represent

existential probabilities in a more compact form.

82

BIBLIOGRAPHY
1. Agrawal P., Benjelloun O., Sarma A.D., Hayworth C , Nabar S., Sugihara T. and

Widom J. (2006) Trio: A system for Data Uncertainty and Lineage. In Proceedings of

the 32nd international conference on Very large data bases, Seuol Korea, 1151-1154.

2. Agrawal R., Imielinski T., Swami A. (1993) Mining association rules between sets of

items in large databases. In Proceedings of the ACM SIGMOD Conference on

Management of Data, Washington D.C., USA, 207-216.

3.Agrawal R., Srikant R. (1994) Fast Algorithms for Mining Association Rules.

Proceedings of the 20th VLDB conference, Santiago, Chile, 487-499.

4. Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Proceedings of

11th International Conference on Data Engineering (ICDE). Taipei, Taiwan, 3-14.

5. Antunes C. and Oliveira A. (2004) Sequential pattern mining algorithms: Trade-offs

between speed and memory. In Proceedings of 2nd Workshop on Mining Graphs,

Trees and Seq., 1-12.

6. Ayres J., Flannick J., Gehrke J., Yiu T. (2002) Sequential Pattern Mining using A

Bitmap Representation. In Proceedings of ACM SIGKDD Conference, Edmonton,

Alberta, 429-435.

7. Benjelloun O., Sarma A.D., Halevy A. and Widom J. (2006) ULDBs: Databases with

Uncertainty and Lineage. In Proceedings of the 32nd international conference on

Very large data bases, Seuol Korea, 953-964.

8. Bodon F. (2005) A trie-based APRIORI implementation for mining frequent item

sequences. In Proceedings of the 1st international workshop on open source data

mining: frequent pattern mining implementations, Chicago, Illinois, 56-65.

83

9. Borges J. and Leven M. (1999) Data mining of user navigation patterns. In

Proceedings of the KDD Workshop on Web mining, San Diego, California, 31-36.

10. Buchner A.G., Baumgarten M., Anand S.S., Mulvenna M.D. and Hughes J.G. (1999)

Navigation Pattern Discovery from Internet Data, available at

http://www.infj .ulst.ac.uk/~cbgv24/PDF/WEBKDD99.pdf (accessed on 05/04/2008).

11. Burdick D., Calimlim M. and Gerhke J. (2001) MAFIA: A maximal frequent itemset

al.gorithm for transactional databases. In Proceeding 2001 International Conference

of Data Engineering, Heidelberg, Germany 443-452.

12. Chen J. and Cook J. (2007) Mining Contiguous Sequential Patterns from Web Logs.

In Proceedings of the 16th international conference on World Wide Web, Alberta,

Canada, 1177-1178.

13. Cherkasova (1998) Improving www proxies performance with greedy-dual-size

frequency caching policy. In HP Technical Report, 98-69 (R.l), Palo Alto, 98-69

(R.1).

14. Chiu D., Wu Y. and Chen A.L.P. (2004) An Efficient Algorithm for mining Frequent

Sequences by a New Strategy without Support Count. In Proceedings of 20th

International Conference on Data Engineering, 375 - 386.

15. Chiang F. and Miller R. (2008) Discovering Data Quality Rule. In PVLDB, Auckland

New Zealand, 1166-1177.

16. Chui C , Kao B. and Hung E. (2007) Mining Frequent Itemsets from Uncertainty

Data. In LNAI, 4426, 47-58.

17. Cong G., Fan W., Geerts F., Jia X., Ma S. (2007) Improving Data Quality:

Consistency and Accuracy. In VLDB, Vienna Austria, 315-326.

84

http://www.infj
http://ulst.ac.uk/~cbgv24/PDF/WEBKDD99.pdf

18. Cooley R. (2003) The Use of Web Structure and Content to Identify Subjectively

Interesting Web Usage Patterns. In ACM Transaction on Internet Technology, 3(2),

93-116.

19. Cooley R., Mobasher R. and Srivastava J. (1997) Web Mining: Information and

Pattern Discovery on the World Wide Web. In Proceedings of the 9th IEEE

International Conference on Tools with Artificial Intelligence, 558-567.

20. Cooley R., Mobasher B., and Srivastava (1999) Data preparation for mining World

Wide Web browsing patterns. In journal of Knowledge and Information Systems, 1(1).

21. Dietterich T.G. and Michalski R.S. (1985) Discovering patterns in sequences of

events. In Artificial Intelligence, 25:187-232.

22. El-Sayed M., Ruiz C , Rundensteiner E.A. (2004) FS-Miner: efficient and

incremental mining of frequent sequence patterns in web logs. In Proceedings of the

6th annual ACM international workshop on Web information and data management,

128-135.

23. Etzioni O. (1996) The World Wide Web: Quagmire or gold mine. In Communications

of the ACM, 39(1), pp. 65-68.

24. Ezeife C.I and Lu Y. (2005) Mining Web Log Sequential Patterns with Position

Coded Pre-Order Linked WAP-Tree. In Data Mining and Knowledge Discovery,

Springer Science, 10, 5-38.

25. Goethal B. and Zaki M.J. (2003) Advances in frequent itemset mining

implementations. In proceedings of the IEEE ICDM Workshop on frequent itemset

mining implementations, Florida, USA, 90.

85

26. Han J. and Fu Y. (1995) Discovery of Multiple level association rules from large

databases. In Proceedings of the 21st International Conference on Very Large

Databases, Zurich, Switzerland, 1-12.

27. Han J. and Kamber M. (2006) Data Mining -Concepts and Techniques. Morgan

Kaufmann/Springer Verlog, Second Edition.

28. Han J., Pei J., Mortazavi-Asl B., Wang J., Chen Q., Dayal U. and Hsu M. (2000)

FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining. In Proceedings

2000 ACM SIGKDD International Conference Knowledge Discovery in Databases,

355-359.

29. Han J., Pei J., Yin Y. and Mao R. (2004) Mining frequent patterns without candidate

generation: A frequent pattern tree approach. International Journal of Data Mining

and Knowledge Discovery, 8(1), 53-87.

30. Huang Y. and Lin S. (2003) Mining Sequential Patterns Using Graph Search

Technique. In Proceedings of 27th Annual International Computer Software and

Applications Conference, 4-9.

31.Kui G., Bei-jun R., Zun-ping C , Fang-zhong S., Ya-qin W., Xu-bin D., Ning S.,

Yang-yong Z. (2005) A Top-Down Algorithm for Mining Web Access Patterns from

Web Logs. In Proceedings of 9th Pacific-Asia Conference on Knowledge Discovery

and Data Mining, Berlin, 838-843.

32. Leung C.K., Mateo M.A. and Brajczuk D. A. (2008) A Tree-Based Approach for

Frequent Pattern Mining from Uncertain Data. In Proceedings of 2008 PAKDD, 653-

661.

86

33.Madria S.K., Bhowmick S.S., Ng W.K. and Lim E.P. (1999). Sampling large

databases for finding rules. In Proceedings of the First International Data

Warehousing and Knowledge Discovery, DaWak99, 303-312.

34. Mannila H., Toivonen H., Verkoma A. I. (1995) Discovering frequent episodes in

sequences. In Proceedings of International Conference on Knowledge Discovery in

Databases and Data Mining, Montreal Canada, 210-215.

35. Masseglia P., Poncelet P., Teisseire M. (1999) Incremental mining of sequential

patterns in large databases. In Actes des Jouenes Bases de Donnes Avances (BDA '00),

Blois, France.

36. Nanopoulos and Manopoulos (2001) Finding Generalized path patterns for web log

data mining. In Data and Knowledge Engineering, 37(3), 243-266.

37. Oates T., Schmill M.D., Jensen D. and Cohen P.R. (1997) A family of algorithms for

finding temporal structure in data. In proceedings of the 6' International Workshop

on AI and Statistics.

38. Ouyang W. and Cai Q. (1998) An Incremental updating techniques for discovering

generalized sequential patterns. In Journal of Software, 9(10), 778-780.

39. Ozden B., Ramaswamy S. and Silberschatz (1998) Cyclic Association Rules. In

Proceeding 1998 International Conference Data Eng. (ICDE), 412-421.

40. Parthasarathy S., Zaki M.J., Ogihara M. and Dwarkada S. (1999) Incremental and

Interactive sequence mining. In CIKM, 251-258.

41.Pei J., Han J. and Mao R. (2000) CLOSET: An efficient algorithm for mining

frequent closed itemsets. In Proceedings 2000 ACM-SIGMOD International

Workshop Data Mining and Knowledge Discovery (DMKD), 11-20, Dallas, TX.

87

42. Pei J., Han J., Mortazavi-asl B. and Zhu H. (2000) Mining Access Pattern Efficiently

from web logs. Knowledge Discovery and Data Mining, 396-407.

43. Pei J., Han J., Mortazavi-Asl B., Wang J., Pinto H., Chen Q., Dayal U. and Hsu M.

(2004) Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach. In

IEEE Transactions on Knowledge and Data Engineering, 16(11), 1424 - 1440.

44. Ren J. and Zhou X. (2005) A New Maintenance Algorithm for Mining Sequential

Patterns. In Proceedings of fourth International Conference on Machine Learning

and Cybernetics, IEEE Computer Society, 1605-1610.

45. Sarma D., Benjelloun O., Halevy A. and Widom J. (2006) Working models for

uncertain data. In Proceedings of International Conference on Data Engineering

(ICDE), 7.

46. Spiliopoulou M. (1999) The laborious way from data mining to web mining. In

International Journal of Computing Systems, Science and Engineering, 113-126.

47. Spiliopoulou M. and Faulstich L. (1999) WUM: A tool for Web utilization and

analysis. In extended version ofProc. EDBT '98. LNCS, 1590, Springer Verlag, 184-

203.

48. Srikant R. and Agrawal R. (1996) Mining Sequential Patterns: Generalization and

Performance Improvements. In Proc. 5th Int. Conference Extending Database

Technology (EDBT), Springer-Verlag, Avignon France, 3-17.

49. Srinivasan A., Bhatia D. and Chakravarthy S. (2006) Discovery of Interesting

Episodes in Sequence Data. In Proceedings of the 2006 ACM symposium on Applied

computing, 598-602.

88

50. Su Z., Yang Q., Lu Y. and Zhang H. (2000) Whatnext: A prediction system for web

requests using n-gram sequence models. In Proceedings of the first International

Conference on Web Information System and Engineering, 200-207, Hong Kong.

51. Wang J., Han J. and Pei J. (2003) Closet+: Scalable and space-saving closed iteemset

mining. Submitted for publication.

52. Widom J. (2005) Trio: A System for Integrated Management of Data, Accuracy and

Lineage. In Proceedings ofCIDR.

53. 49. Wu S., Li Y., Xu Y., Pham B. and Chen P. (2004) Automatic Pattern-Taxonomy

Extraction for Web Mining. In Proceedings of the 2004 IEEE/WIC/ACM

International Conference on Web Intelligence, 242-248.

54. Yan X., Han J. and Afshar R. (2003) CloSpan: Mining Closed Sequential Patterns in

Large Datasets. In Proceedings of 3rd SIAM International Conference on Data

Mining, San Francisco, 1-12.

55. Yang Q., Zhang H. and Li T. (2001) Mining Web Logs for Prediction Models in

WWW Catching and Pre-fetching. In Proceedings of the seventh ACM SIGKDD

international conference on Knowledge discovery and data mining, San Francisco,

California, 473 - 478.

56. Yang Z. and Kitsuregawa M. (2005) LAPIN-SPAM: An Improved Algorithm for

Mining Sequential Pattern. In IEEE Proceedings of the 21st International Conference

of Data Engineering, 1222 - 1222.

57. Yen S. and Chen A.L.P. (1996) An efficient approach for discovering knowledge

from large databases. In Proceedings of 4l IEEE International Conference on

Parallel and Distributed Information Systems, 8-18.

89

58. Zaiane O.R., Xin M. and Han J. (1998) Discovering Web Access Patterns and Trends

by applying OLAP and Data Mining Technology on Web Logs. In Proceedings of

Advances in Digital Libraries Conference, 19-29.

59. Zaki M. J. (2001) SPADE: An Efficient Algorithm for Mining Frequent Sequences.

Machine Learning Journal, 42(1) 31-60.

60. Zaki MJ. and Hsiao (2002) CHARM: An efficient algorithm for closed itemset

mining. In Proceeding 2002 SIAM International Conference Data Mining, Arlington,

VA 457-473.

90

VICTAAUTORIS
Olalekan Habeeb Kadri was born in 1978 in Oke-Ola-Oro, Nigeria. He graduated from

Offa Grammar School in 1995. From there, he went on to the University of Ibadan,

Nigeria where he obtained a B Sc. in Computer science in 2002. He equally, obtained a

Master's degree in Information Systems at Roehampton University, London, UK in 2008.

He is currently a candidate for Master's degree in Computer Science at the University of

Windsor and hopes to graduate in Spring 2010.

91

	Mining of uncertain Web log sequences with access history probabilities
	Recommended Citation

	ProQuest Dissertations

